

Enterprise Integration with Ruby
A Pragmatic Guide

Maik Schmidt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

law lab
Cross-Out

law lab
Inserted Text

law lab
Cross-Out

law lab
Inserted Text

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-6-9

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, March 2006

Version: 2006-5-4

http://www.pragmaticprogrammer.com

Für meine Eltern.
Ihr seid die Giganten, auf deren Schultern ich stehe!

For my parents.
You are the giants on whose shoulders I stand!

Contents
Foreword viii

1 Introduction 1

1.1 What Is Enterprise Software? 2
1.2 What Is Enterprise Integration? 3
1.3 Why Ruby? . 3
1.4 Who Should Read This Book? 5
1.5 PragBouquet . 5
1.6 Acknowledgments . 6

2 Databases 8

2.1 The Coupon Application 9
2.2 Database Interface (DBI) 25
2.3 Object-Relational Mappers 28
2.4 Lightweight Directory Access Protocol (LDAP) 51

3 Processing XML 79

3.1 A Short XML Reminder 81
3.2 Generating XML Documents 83
3.3 Processing XML Documents 95
3.4 Validating XML Documents 127
3.5 Are There Alternatives to XML? 132

4 Low-Ceremony Distributed Applications 145

4.1 “I’d Rather Use a Socket” 146
4.2 Remote Procedure Calls Using HTTP 159

5 Distributed Applications with RPC 179

5.1 Another Day, Another Protocol 179
5.2 We Will Take No REST, Will We? 189
5.3 SOAP . 200
5.4 CORBA, RMI, and Friends 221

CONTENTS vii

6 Tools and Techniques 240

6.1 Internationalization and Localization 240
6.2 Logging . 261
6.3 Creating Daemons and Services 279
6.4 Build and Deployment Process 286
6.5 Project Automation with Rake 303
6.6 Testing Legacy Applications 314

A Resources 321

A.1 Bibliography . 321

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=vii

Foreword
A few years ago, I came across the Ruby programming language, and I fell in

love. Somehow, it just seemed to work the way my brain works—I can express

myself in Ruby more naturally and with less intervening fluff than in any other

language I know. I liked it so much I persuaded Andy Hunt to coauthor a book

about it.

That was back in 1999. Since then, a lot has happened in the Ruby world.

The language went from release 1.6 to 1.8, and the standard library matured

into something world class. It gained a standardized documentation system, a

standard library distribution mechanism, and a fine build tool. I produced a

second edition of Programming Ruby to celebrate.

And now, for the first time, I can seriously say that Ruby is ready for the

enterprise. The language is stable, the libraries are great, and there is a growing

pool of talented and enthusiastic Ruby developers, all rising to the challenge.

We see companies such as Amazon and EarthLink using Ruby for both internal-

and external-facing projects.

The problem is that—until now—there wasn’t much documentation on using

Ruby in the enterprise. Sure, you can always find the API documentation for a

library, but that doesn’t really explain the how and the why.

Now the situation has changed. With Enterprise Integration with Ruby, Maik

has done something I would have thought impossible. Not only has he doc-

umented just how to use Ruby to create new enterprise solutions and to knit

together existing applications, but he has also documented the backgrounds to

all the technologies, along with how and when to use each.

I consider this book a worthy partner to Programming Ruby. With it, you’ll

exploit the power and flexibility of Ruby to create new solutions for your com-

pany in record time.

And, just as importantly, you’ll have fun.

Dave Thomas

The Pragmatic Programmers

There are two types of complex systems: those that have

grown out of simpler systems and those that do not work.

Unknown

Chapter 1

Introduction
Have you ever worked for a big enterprise? Do you remember your
expectations as you walked into work on that first day? Whistling as
the sun shone brightly, you might have been thinking, “It will be great
to work for <company name here>. They will have a professional envi-
ronment where coffee is free and where every system has been specified
accurately, implemented carefully, and tested thoroughly. Hmmmm...
I wonder which database and programming language they use.”

After your fifth cup of free coffee (around 9:07) you came to realize that
the real world looks completely different from your expectations. Typi-
cal enterprises use dozens, hundreds, and sometimes even thousands
of applications, components, services, and databases. Many of them
were custom-built in-house or by third parties, some were bought, oth-
ers are based on open source projects, and the origin of a few—usually
the most critical ones—is completely unknown. A lot of applications
are very old, some are fairly new, and seemingly no two of them were
written using the same tools. They run on heterogeneous operating sys-
tems and hardware, they use databases and messaging systems from
various vendors, and they were written in completely different program-
ming languages.

The reasons for this are manifold. You can find countless books that
explain why the situation is so bad. You can even find books claim-
ing that they help you prevent such chaos. This book uses another
approach. We will not help you clean up this mess, but we will help
you deal with the problems pragmatically. Instead of complaining that
valuable data is spread across different database schemas or across
databases from several vendors, we will write code that integrates it. We
will take it even a step further and write new applications that aggregate

WHAT IS ENTERPRISE SOFTWARE? 2

all your existing resources. It doesn’t matter if we have to use relational
databases, LDAP repositories, XML files, or web services based on dif-
ferent protocol standards. We will blend data from multiple, disparate
databases to create new business knowledge.

Along the way we’ll show you how to solve all the small day-to-day
problems. These are the issues that occur over and over again, espe-
cially when developing enterprise software. We will access relational
databases such as Oracle and MySQL, and we will work with LDAP
repositories. We’ll show you how to do application logging, how to
deploy your software, how to automate tedious and error-prone tasks,
and how to survive in an international environment. Oh, and as you
might have guessed already from the book’s title, we will use Ruby to
accomplish all these feats.

1.1 What Is Enterprise Software?

In Patterns of Enterprise Application Architecture [Fow03], Martin Fowler
writes, “Enterprise applications are about the display, manipulation,
and storage of large amounts of often complex data and the support or
automation of business processes with that data.”

That’s a concise but nevertheless abstract definition, because every
nontrivial piece of software has to store, manipulate, and display data.
Video games do nothing else (and modern video games also need huge
amounts of data that often can get complex). The key point in the pre-
vious definition is the second part: the data in enterprise applications
is used for business processes and not for rendering alien spaceships.

Unsurprisingly, there are more differences between enterprise applica-
tions and other types of software. For example, enterprise applications
are often created only for a small user group that is in close contact
with the development team, implying the developers know their cus-
tomers very well. In extreme cases programs are written for only a
single person (special report generators for the CEO, for example).

Enterprise software demands a certain set of tools. Large amounts
of data—complex or not—have to be stored somehow and somewhere.
Often it is stored in relational databases, but it can also be in plain-text
files or LDAP repositories. In addition, modern enterprise software is
often based on distributed architectures consisting of many small to
midsize components that perform specialized tasks and that are con-

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=2

WHAT IS ENTERPRISE INTEGRATION? 3

nected by some kind of middleware such as CORBA, RMI, SOAP, and
XML-RPC.

Obviously, as an enterprise software developer, you’re better off if you
know how to deal with such technologies. You shouldn’t be troubled by
the details of reading from a relational database or accessing an LDAP
repository. Mastering skills such as these help you concentrate on the
fun stuff—the application itself.

1.2 What Is Enterprise Integration?

Enterprise integration is a rather vague term and cannot be defined in
a strict mathematical sense. Simply put, it happens whenever you use
an existing enterprise resource to achieve some results. If you use an
existing database or web service in your application, you’re perform-
ing enterprise integration. If you build a new component that is used
by other pieces of your existing architecture, you’re doing enterprise
integration, too.

Integration needn’t just happen inside a single enterprise. It’s quite
possible—and not too unusual—that the software or data of two differ-
ent enterprises has to be integrated. If you’re using a payment gateway
to bill your customers, for example, you’re effectively integrating enter-
prise software.

You might ask yourself whether every development activity in an enter-
prise environment is some kind of enterprise integration. There are a
few exceptions. Enterprise integration does not happen when you build
a completely new piece of software from scratch, for example. In reality
this case is rare, but from a theoretical point of view this is the only
clear exception.

Enterprise integration often means integration with standard software
such as databases, LDAP repositories, message queues, ERM systems,
and so on. If you’re using one of these technologies, chances are good
that you’re doing some enterprise integration.

1.3 Why Ruby?

Most enterprise software running today was written in languages such
as COBOL, C/C++, and Java. Because of its distributed nature, enter-
prise software often makes it easy to use new tools and programming

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=3

WHY RUBY? 4

languages. When you have to create a small stand-alone application—
one that relies only upon an existing database, SOAP service, or LDAP
repository—it almost doesn’t seem to matter whether you were to write
it in C++, Java, or Ruby. But if you look into it more deeply, dynamic
languages such as Perl, Python, and Ruby have many advantages,
especially in enterprise environments:

• They are interpreted and do not need a compile phase, which
increases development speed tremendously. After editing your
program, you can see the results of your changes immediately.

• Enterprise software is about munging data. Dynamic languages
are designed to handle data and include high-level data types such
as hashes.

• Memory management is dealt with by the language. This is a great
advantage over languages such as C++ where you have to specify
the length of each string you read from a database. Dynamic lan-
guages prevent waste and result in more concise, more robust,
and more secure software.

• Software written in dynamic languages is installed as source code,
so you always know exactly which version is currently running on
your production system. Gone are the days when you had to guess
whether a certain binary executable is the right one.

We will show you Ruby’s strengths and how Ruby helps you accom-
plish many tasks much faster, more elegantly, and with more fun than
with any other programming language available today. But, even more
important, we will also tell you about Ruby’s weaknesses. Ruby is com-
paratively young, and although the core of the language is mature and
lots of excellent libraries are available, many features are still missing
or incomplete.

Although there is no industry standard for enterprise programming
with Ruby (as there is with J2EE or .NET), everything you need is
readily available. The most important libraries come with every Ruby
distribution, and the standard distribution has grown rapidly over the
last years. All the other stuff can be found in public places such as
RubyForge1 or the Ruby Application Archive.2

1http://www.rubyforge.org
2http://raa.ruby-lang.org

http://www.rubyforge.org
http://raa.ruby-lang.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=4

WHO SHOULD READ THIS BOOK? 5

1.4 Who Should Read This Book?

This book was written for experienced enterprise developers who know
Java, C#, or C++ but don’t know much Ruby (although you should
probably have read Programming Ruby [TFH05]). We assume you are
familiar with relational databases and have at least an idea of what
LDAP is. Maybe you do not know RELAX NG, but you understand the
concepts of XML and what well-formed, SAX2, and DOM mean.

You’ve probably used tools such as object-relational mappers. Maybe
you’re familiar with Enterprise Java Beans (EJB), Java Data Objects
(JDO), and so on. Maybe you’re fed up with editing configuration files
instead of coding. You are looking for better ways to integrate the exist-
ing resources in your company, and you are looking for better ways to
quickly create new and fancy applications based on all the wonderful
stuff you already have.

Depending on the tools you’ve used to build your architecture, differ-
ent choices are available for the integration process. If you’re using
message queues, you have a lot of freedom and flexibility for integrat-
ing your services and software with others. The same holds true for
all kinds of web service protocols. It’s slightly different with databases,
because they usually do not offer interfaces as clean as message-based
systems do. Sometimes you have to access tables directly, and some-
times you have to use a set of stored procedures written in a proprietary
database programming language.

In this book we do not talk about sophisticated messaging patterns.
Instead, we cover the basics. We show you how to use databases, web
services, XML files, and all the other legacy stuff you want to combine
for building new applications.

1.5 PragBouquet

To make things more interesting and tangible, we’ve founded an imag-
inary company called PragBouquet. It sells flowers from a web shop.
Customers from all over the world can order flowers and send them to
people living in the United States.

PragBouquet’s business demands a lot of components and services. It
depends on several partners, too. Their current infrastructure is shown
in Figure 1.1, on the following page. Customers place orders in the web
shop. The shop communicates with the central order system. Because

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=5

ACKNOWLEDGMENTS 6

Figure 1.1: PragBouquet Infrastructure

PragBouquet has no billing system, the order system uses an external
payment gateway to charge orders. In parallel, the production system
is informed of new orders, and busy florists create wonderful bunches
of flowers. Eventually, the floral goods are picked up by a parcel service
and are delivered to the happy recipient.

This is only a rough overview. We’ll show single components in more
detail when necessary.

1.6 Acknowledgments

First, I’d like to thank Dave Thomas and Andy Hunt for giving me the
opportunity to write this book for the Pragmatic Bookshelf. Working
with them has been both an honor and a pleasure. I couldn’t imagine
better or more professional working conditions.

It would be impossible to write a book about software for enterprise
integration without the software itself. The following gentlemen kindly
made their ingenious work public for free and have always responded
quickly and accurately to all my questions: Yukihiro “Matz” Matsumoto,
Will Drewry, arton (the author of Rjb), Sean Russel, Ian Macdonald,
Takaaki Tateishi, Thomas Uehlinger, Jim Weirich, Nikolai Lugovoi, Matt
Mower, Daniel Berger, why the lucky stiff, Minero Aoki, Michael Neu-

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=6

ACKNOWLEDGMENTS 7

mann, Kubo Takehiro, Tomita Masahiro, David Heinemeier Hansson,
Hiroshi Nakamura, John W. Small, Takahashi Masayoshi, Gotou Yuu-
zou, Yoshida Masato, and Grant McLean.

Please join me in thanking my reviewers: Frank Tewissen, Matthias
“Matze” Klame, Uwe Simon, and Kaan Karaca did an awesome job!
Without their corrections and suggestions this book wouldn’t be half
as good.

A loud “Thank you very much!!!” goes to all the people who sent
errata and suggestions during the beta book process: Lee Grey, Hoang
Uong, Ola Bini, Ron Lusk, John Athayde, Blair Zajac, Jim Weirich, Pat
Podenski, Gregory Brown, Lachlan Dowding, Sean, Eldon, Henry Chiu,
Stuart Halloway, Raymond Brigleb, Ken Barker, Peter Morelli, Eric-
Olivier Lamey, Jim Kimball, Wilson Bilkovich, John Douthat, Remco
van ’t Veer, Mark Mayo, Joe Duhamel, Carl Graf, Adam Keys, Manirith
Nuth, Andres Paglayan, Dána Watanabe, Mike Stok, Eric Kramer, and
Urban Hafner.

Perhaps there are authors who write books in isolation under a rock
or on a lonesome island. Fortunately, I didn’t, and I got invaluable
support from a lot of wonderful people. I am deeply grateful to my
parents (this one is for you); my sister, Yvonne Janka (yet another
book you won’t read?); my brother, André Schmidt (for relaxing shop-
ping/running tours and even more relaxing evenings with “the boys”);
Christian and Agnieszka Rattat (for being true friends when I needed
them most); Frank Tewissen (for listening patiently and for advising
carefully); Manu (for being “die Manu”! Heja BVB!); AleX Reinartz (I’m
looking forward to the next decades); Bettina Hamidian and Corinna
Lorscheid (for insightful talks and lots of fun); Katja Wevelsiep (let’s
have a coffee tomorrow, OK?); Frank Möcke (for giving me the opportu-
nity to publish texts in my mother tongue); Dr. Andreas Kötz (for your
appreciation); and the “gleis drei” staff (for providing a perfect proof-
reading environment).

Mia: I promise to write until I finally learn to clearly express how excit-
ing and wonderful the last months have been.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=7

Chapter 2

Databases
Database management systems are one of the oldest and most widely
used applications in information technology—they are indispensable to
enterprises. It’s nearly impossible to do some serious enterprise inte-
gration without touching some kind of database directly or indirectly.
Various types exist (relational databases, object-oriented databases,
directory services, XML databases, and hash databases such as Berke-
ley DB). They differ mainly in the way data is organized and accessed
internally. Under the hood, though, they are all similar: data is stored
in some kind of file system and is accessed through a special layer,
often over a network. You can find one or more of the different types
in every company, but relational databases are by far the most popular
ones in use today.

Although it’s often tedious, repetitive, and error-prone work, access-
ing databases is, in principle, easy. You open a connection, create
and execute some statements, read and process some data, and finally
free all resources occupied. At least, that’s how the Gods Of Persistence
wanted it to be. But real life in our sinful world looks different. Informa-
tion and business logic are often spread across different schemas and
databases. To make things even worse, many companies use products
from multiple vendors. This happens for various reasons: they want
to prevent vendor lock-in, the company is the product of a corporate
merger, different departments prefer different tools, and so on.

Unfortunately, PragBouquet is no exception. Its data is stored in both
Oracle and MySQL databases. In this chapter we will show you not only
how to directly manipulate different types of databases but also how
to access them using more advanced tools such as object-relational
mappers and database abstraction layers.

THE COUPON APPLICATION 9

2.1 The Coupon Application

PragBouquet’s business has been doing well, but business can always
be better, can’t it? To boost sales, the marketing department wants to
send a coupon to every customer who has used the online store but
hasn’t used it in the last six months. People who asked not to receive
e-mail from us should not get an e-mail.

That does not sound too difficult. PragBouquet already has a mass-
mailing program that expects a CSV (Comma-Separated Values) file
containing e-mail addresses, customer names, and text to be sent.
The problem becomes selecting names and e-mail addresses of all cus-
tomers who did not place an order in the last six months, filtering out
those who do not want to be e-mailed, and writing the rest to the CSV
file.

Instantly you’ve fired up your favorite text editor thinking that this is a
great opportunity to strengthen your Ruby skills. Creating CSV files is
a breeze, and selecting some data sets from a database should not be a
problem either. So you ask your database administrator where you can

Figure 2.1: Coupon Application Workflow

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=9

THE COUPON APPLICATION 10

find the information you need, and he takes you down a peg or two. He
tells you that for historical reasons (a euphemism for “Nobody knows
why”) the information you need is spread across two databases. Cus-
tomer data and order data are stored in an Oracle database, but the
white list containing the e-mail addresses of all customers who want
to receive e-mail from PragBouquet is stored in the web shop’s MySQL
database. You scribble a bit on your notepad and realize that the sys-
tem architecture has to look like Figure 2.1, on the page before.

Exploring the Environment

You decide to start with the Oracle part. Before moving on, you want to
take a closer look at the structure of the order database. Your database
administrator told you that the relevant tables are called customers and
orders. He gave you plenty of Microsoft Word documents describing
every single table in the order database. Despite this you look at the
current state of affairs yourself using SQL*Plus, Oracle’s SQL shell:

C:\> sqlplus scott

SQL*Plus: Release 9.2.0.1.0 - Production on Sat Jun 4 16:00:04 2005

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Enter password:

Connected to:

Personal Oracle9i Release 9.2.0.1.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options

JServer Release 9.2.0.1.0 - Production

SQL> describe customers

Name Null? Type

--- -------- -------------------

ID NOT NULL NUMBER(38)

NAME NOT NULL VARCHAR2(64)

SURNAME NOT NULL VARCHAR2(128)

STREET NOT NULL VARCHAR2(128)

HOUSE_NUMBER NOT NULL VARCHAR2(10)

POSTAL_CODE NOT NULL VARCHAR2(10)

CITY NOT NULL VARCHAR2(128)

STATE VARCHAR2(20)

COUNTRY_CODE NOT NULL VARCHAR2(2)

EMAIL NOT NULL VARCHAR2(128)

CREATED DATE

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=10

THE COUPON APPLICATION 11

Why Didn’t We Use a Standard Product?

You might be asking yourself whether it’s a good idea for
PragBouquet to have created its own customer and order
database. Wouldn’t it be much easier to buy a solution off the
shelf? Customer data is at the core of every enterprise, and
many processes rely upon it. It’s needed for billing, for statistics,
for troubleshooting, and so on. Although many big compa-
nies offer software for customer relationship management, it’s
never a bad idea to think about building your own customer
database. No product will fit your needs better than your own,
and no product will ever be as flexible as yours.

SQL> describe orders

Name Null? Type

--- -------- -------------------

ID NOT NULL NUMBER(38)

CUSTOMER_ID NOT NULL NUMBER(38)

STATE NOT NULL NUMBER(38)

CREATED TIMESTAMP(6)

No big surprises here. Obviously, customers are characterized mainly
by their address data, and we guess that the tables are connected using
column customer_id in table orders.

Determine the Winners

If we’re going to use a Ruby program to extract information from an
Oracle database, we’ll need a library that connects our code to the
underlying Oracle API. There are currently three different Ruby mod-
ules for Oracle:

• Oracle by Yoshida Masato1

• Ruby/OCI8 by Kubo Takehiro2

• Ruby9i by Jim Kain3

The main difference between these libraries is their support (or lack
thereof) for new data types. Gone are the days when you could store

1http://raa.ruby-lang.org/project/oracle
2http://rubyforge.org/projects/ruby-oci8
3http://rubyforge.org/projects/ruby9i

http://raa.ruby-lang.org/project/oracle
http://rubyforge.org/projects/ruby-oci8
http://rubyforge.org/projects/ruby9i
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=11

THE COUPON APPLICATION 12

Storing Addresses—A Plea from the Rest of the World

Even though addresses are critical for many purposes, their
data representation is often performed carelessly and with-
out foresight. In particular, aspects of internationalization are
often forgotten, because designers and developers normally
do not know a lot about the administrative characteristics of
their neighbors.

For example, Germany is a federal country divided into 16
states, but to the Germans the different states do not mean
a lot. They aren’t part of an address, they do not occur on
envelopes, and you do not have to put them into a web form
when ordering something from an Internet shop. It’s not surpris-
ing that German customers get annoyed by web forms insisting
on a state. When working in an international environment, it’s
better to make the state optional.

There is no international standard for the representation of an
address. In Germany, for example, a street address is the street
name followed by a blank followed by the house number. In
Italy, there’s a comma between the street name and the house
number. Other countries put the number before the name.

It’s nearly impossible to automatically separate street names
and house numbers afterward, because house numbers can
contain nearly arbitrary characters.

Another aspect of addresses that is forgotten surprisingly often
in this context is that addresses represent geographical objects.
Geographical objects have coordinates, locations that are
becoming increasingly important as we move into a world
using location-based services. If you want to offer location-
based services to your customers some day, you’ll have to
determine the geographical position of their addresses. For
many cities it’s possible to locate an object down to the indi-
vidual house number.

Please, don’t misunderstand me: you should not try to come up
with a solution that will work with every possible address format
in the world (I think that would probably be impossible), but
you should at least take a closer look at the countries you’re
potentially working in.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=12

THE COUPON APPLICATION 13

only small strings and numbers in your database. Nowadays you can
store complete books or MP3 files in CLOB (Character Large Object) or Character Large Object

BLOB (Binary Large Object) columns. Major versions of the Oracle Call Binary Large Object

Interface (OCI) also differ in other areas, such as security and perfor-
Oracle Call Interface

mance.

In this book we’ll use Kubo Takehiro’s Ruby/OCI8 driver—it’s actively
maintained, it runs on many platforms, and it provides a lot of func-
tionality. It comes in two flavors: a low-level and a high-level API. The
low-level API directly reflects the Oracle C library, and we won’t show
its usage, because the high-level API is probably more convenient to
use.

Let’s dive into Ruby now and see how we can identify the customers
who should get a coupon:

File 16 Line 1 require ' oci8'

-

- connection = OCI8.new(' maik' , ' maik')

- cursor = connection.exec(<<-SQL)

5 select a.id, a.name, a.surname, a.email

- from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - 180

- and b.created = (

10 select max(created)

- from orders

- where customer_id = a.id

-)

- SQL

15

- while row = cursor.fetch do

- puts row[3]

- end

-

20 cursor.close

- connection.logoff

This code produces something like this:

homer@example.com

seymour@example.com

Here we have a typical example of accessing a database. It would
look similar in every modern programming language. First we estab-
lish a database connection by calling the new() method of class OCI8

(connect() would have been a much better name, but for the moment
we have to live with it). The new() method returns a connection object

http://media.pragprog.com/titles/fr_eir/code/db/coupon/first_ora_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=13

THE COUPON APPLICATION 14

that can be used to communicate with the database server and to create
other database objects, such as statements and cursors.

The SQL statement joins the tables customers and orders and returns
only those customers whose last order is older than 180 days. The sub-
select identifies the most current entry for each customer and makes
sure that every customer is returned only once.

As you can see, SQL statements can be executed directly by calling the
exec() method of an OCI8 connection. For SELECT statements, exec()
returns a so-called cursor representing a result set on the database
server. Clients can move through a result set by calling fetch() on the
cursor object. After the last row has been read from the cursor, fetch()
returns nil.

Finally, we close our cursor to free valuable resources on the data-
base server. Cursors are resources like file handles and are in limited
supply. If you’re a bad citizen and fail to free these resources, Oracle
will raise an exception sooner or later.

Admittedly, our example is concise and expressive, but using Ruby’s
iterators automatically leads you to a more elegant solution with less
explicit resource management:

File 17 Line 1 require ' oci8'

-

- connection = OCI8.new(' maik' , ' maik')

- sql = <<-SQL

5 select a.id, a.name, a.surname, a.email

- from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - 180

- and b.created = (

10 select max(created)

- from orders

- where customer_id = a.id

-)

- SQL

15

-

- num_customers = connection.exec(sql) do |row|

- puts row[3]

- end

20

-

- puts "Found #{num_customers} coupon recipients."

- connection.logoff

This code produces the following:

http://media.pragprog.com/titles/fr_eir/code/db/coupon/first_ora_example_it.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=14

THE COUPON APPLICATION 15

homer@example.com

seymour@example.com

Found 2 coupon recipients.

When exec() is called as an iterator—with a code block—it returns the
number of rows selected. The code block automatically gets each row
fetched as a parameter, and you no longer have to close the cursor
explicitly. Actually, you don’t even notice that you’re working with a
cursor.

Enhancing Flexibility

OK, our first example works. We know where to get the data from
and we know how to get it, so let’s turn our little script into software.
Now we have to replace the constant 180 days with something more
dynamic. To do this, we could create the string containing the SQL
statement on the fly, substituting in the time value, but this approach
has some serious drawbacks.

As we already know, the SQL statement gets transferred over the net-
work to the database server whenever we call exec(). Then it gets
parsed, analyzed, optimized, and executed, and eventually the result
is sent back to the client.

Actually, modern database servers try to optimize a lot. Part of this pro-
cess is the creation of a query execution plan for every statement they query execution plan

receive. Current Oracle versions even try to compress the result sets
before sending them back to the client to decrease bandwidth and pro-
cessing time. For SQL statements that are executed often, this means
we could gain a lot if the statement could be parsed, analyzed, and
optimized only once.

Furthermore, building SQL statements on the fly often creates danger-
ous security holes. What if someone uses a web form to pass us the
following string for the number of days?

' 180; delete from customers; commit;'

In the worst case, the database server will happily execute the malicious
statement, giving you an excellent opportunity to check whether your
backup system is working properly. This common kind of attack is
called SQL injection. SQL injection

Fortunately, it is possible to circumvent all these disadvantages by
using prepared statements. We transmit a statement template to the prepared statements

server, where it is parsed, analyzed, and optimized. The server then

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=15

THE COUPON APPLICATION 16

sends back a statement handle. All the dynamic portions of our state-
ment are replaced by placeholders. Whenever we want to execute our
statement, we send the server only the handle and the actual values for
our placeholders:

File 15 Line 1 require ' oci8'

-

- Customer = Struct.new(:id, :name, :surname, :email)

File 15 Line 1 class CustomerFinder

- def initialize(connection)

- @find_stmt = connection.parse(<<-SQL)

- select a.id, a.name, a.surname, a.email

5 from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - :days

- and b.created = (

- select max(created)

10 from orders

- where customer_id = a.id

-)

- SQL

- end

15

- def find(days)

- @find_stmt.bind_param(' :days' , days)

- @find_stmt.exec

- customers = []

20 while row = @find_stmt.fetch do

- customers << Customer.new(*row)

- end

- customers

- end

25 end

First of all, we have inserted a placeholder (:days) into the SELECT state-
ment. Second of all, we have created a prepared statement by calling
parse(sql) on our connection. This method returns a handle identifying
our statement on the server.

Calling bind_param() in line 17 binds the :days placeholder to its actual
value, and in the following line we finally execute the SELECT statement,
to which @find_stmt is referring. The rest is business as usual. Using
the CustomerFinder looks like this:

File 15 ora_connection = OCI8.new(' maik' , ' maik')

finder = CustomerFinder.new(ora_connection)

customers = finder.find(180)

customers.each { |c| puts c.email }

ora_connection.logoff

http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=16

THE COUPON APPLICATION 17

Respecting Customer Privacy

So far, so good. We can create a list of all customers who should poten-
tially get a coupon, but we still have to sort out those who do not want
to receive e-mails from PragBouquet. As we’ve already learned, this
information is stored in the web shop’s MySQL database. There we can
find a table called whitelist containing a list of all e-mail addresses that
we are allowed to use.

MySQL, created by Monty Widenius, is one of the most popular open
source databases at the moment. It started as a thin wrapper for the
mSQL database and has grown over the years into a full-blown trans-
actional database management system. MySQL support in Ruby was
made possible by the great work of Tomita Masahiro. He has developed
both a C library binding called MySQL/Ruby4 and a pure Ruby bind-
ing called Ruby/MySQL.5 Thanks to a patch written by Matt Mower,
Ruby/MySQL now also works with MySQL version 4.1.1 and later.6

In this book we’ll use the pure Ruby implementation (for no special
reason). As with our order database we first examine the webshop
database using the MySQL shell:

C:\>mysql webshop

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3 to server version: 4.0.22-nt

Type ' help;' or ' \h' for help. Type ' \c' to clear the buffer.

mysql> describe whitelist;

+---------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+------------------+------+-----+---------+-------+

| id | int(10) unsigned | | PRI | 0 | |

| email | varchar(255) | | UNI | | |

| created | timestamp(14) | YES | | NULL | |

+---------+------------------+------+-----+---------+-------+

3 rows in set (0.16 sec)

mysql>

As a first exercise we try to connect to the MySQL server and print the
whole whitelist.

4http://tmtm.org/en/mysql/ruby/README.html
5http://tmtm.org/en/ruby/mysql/README_en.html
6This patch is part of Rails’ ActiveRecord module. See

http://lists.rubyonrails.org/pipermail/rails-core/2005-November/000195.html

if you want to install the patch separately.

http://tmtm.org/en/mysql/ruby/README.html
http://tmtm.org/en/ruby/mysql/README_en.html
http://lists.rubyonrails.org/pipermail/rails-core/2005-November/000195.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=17

THE COUPON APPLICATION 18

File 18 Line 1 require ' mysql'

- connection = Mysql.new(' localhost' , ' ' , ' ' , ' webshop')

- whitelist = connection.query(' select * from whitelist');

- whitelist.each_hash { |h| puts h[' email'] }

5 connection.close

This code produces something like this:

homer@example.com

info@example.net

...

c-m-burns@example.org

Here we have a textbook example of database use: create a connec-
tion, execute a query, print its result, and finally close the connec-
tion. What more could we say that hasn’t already been expressed in
the code? All right, we have some details for you. Calling the query(sql)

method returns an object of class Mysql::Result that represents a com-
plete result set. You can read the single rows of a result set using var-
ious methods—here we chose each_hash(). It returns a hash for every
row where the column names are the hash keys with the data as the
corresponding values.

Printing the whole whitelist was not exactly what we wanted. Instead
we have to check whether a certain e-mail address is contained in the
whitelist. That means we have to execute a statement such as:

select count(*)

from whitelist

where email = ' email@example.com'

and see whether it returns 1. Obviously, the e-mail address in the
where clause of our statement is variable, and from what we’ve learned
in Section 2.1, Enhancing Flexibility, on page 15, you might assume it
would be a good idea to use a prepared statement for this purpose. You
are absolutely right: but unfortunately support for prepared statements
in MySQL is a rather new feature. It was introduced in version 4.1, and
the current Ruby drivers do not support it:

File 22 Line 1 require ' mysql'

- class Whitelist

- def initialize(connection) @connection = connection; end

- def contains?(email)

5 sql = "select * from whitelist where email = ' #{email}' "

- result = @connection.query(sql)

- result.num_rows == 1

- end

- end

http://media.pragprog.com/titles/fr_eir/code/db/coupon/print_whitelist.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/whitelist_naive.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=18

THE COUPON APPLICATION 19

Obviously, num_rows() returns the number of rows in a result set (which
is what we wanted to determine). In use, our Whitelist class looks as
follows:

File 22 Line 1 connection = Mysql.new(' localhost' , ' ' , ' ' , ' webshop')

- whitelist = Whitelist.new(connection)

- puts whitelist.contains?(' homer@example.com')

- puts whitelist.contains?(' unknown_address')

5 connection.close

This code produces the following:

true

false

We’ve created our SQL statement using strings. Does it make you feel
comfortable? Although the coupon application is an internal project,
the e-mail addresses come from an external source, so you should
never trust them. In addition, it’s really wasteful to execute a SQL
statement for every single e-mail address. So, we will trade some space
for time and read all e-mail addresses into a hash initially.

File 21 Line 1 require ' mysql'

-

- class Whitelist

- def initialize(connection)

5 @whitelist = {}

- result = connection.query(' select email from whitelist');

- result.each_hash { |h| @whitelist[h[' email']] = true }

- end

-

10 def contains?(email)

- @whitelist.has_key?(email)

- end

- end

That’s a really good compromise. Even if we have to read several thou-
sand e-mail addresses into memory, it’s still a low price for the perfor-
mance and security we get.

Joining Forces

We have everything available now to create the list of our lucky coupon
recipients: we can read all potential customers from the Oracle order
database and can look them up on the white list stored in the MySQL
webshop database. Because the mailing program expects data as CSV
(comma-separated values), we reopen the Customer class and add an
appropriate method (see Section 3.5, Comma-Separated Values (CSV),
on page 133, to learn more about Ruby’s CSV library):

http://media.pragprog.com/titles/fr_eir/code/db/coupon/whitelist_naive.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/whitelist.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=19

THE COUPON APPLICATION 20

File 15 require ' csv'

class Customer

def to_csv(del = ' ,')

str = ' '

CSV::Writer.generate(str, del) do |csv|

csv << [name, surname, email]

end

str

end

end

The following program then prints CSV data to the console so it can be
easily redirected to the mass-mailing program:

File 13 Line 1 require ' cusfinder'

- require ' whitelist'

-

- # Read all potential customers

5 ora_connection = OCI8.new(' maik' , ' maik')

- finder = CustomerFinder.new(ora_connection)

- customers = finder.find(180)

- ora_connection.logoff

-

10 # Sort out customers not in whitelist

- mysql_connection = Mysql.new(' localhost' , ' ' , ' ' , ' webshop')

- whitelist = Whitelist.new(mysql_connection)

-

- customers.each do |c|

15 puts c.to_csv if whitelist.contains?(c.email)

- end

- mysql_connection.close

This code produces the following:

Homer,Simpson,homer@example.com

Barney,Gumble,barney_gumble@example.org

...

Ned,Flanders,nflanders@example.net

That’s it. We could happily move to the next project. But wouldn’t
it be interesting to know how many customers actually convert their
coupon? To do this, we have to store at least the customer IDs of all
coupon recipients somewhere. Let’s put them into the order database
in a new table called coupon_recipients. This will let us check how many
of the customers on this list placed an order after the coupon mailing.

File 20 create table coupon_recipients (

customer_id int not null,

created timestamp default sysdate

);

http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/coupon.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/recipients.sql
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=20

THE COUPON APPLICATION 21

For the first time in this chapter we’re going to write data into the
database. It’s nearly the same as reading information, but there are
a few subtleties we have to take care of:

File 19 Line 1 require ' oci8'

-

- class Recipient

- def initialize(connection)

5 sql = ' insert into coupon_recipients (customer_id) values(:1)'

- @insert_rec = connection.parse(sql)

- end

-

- def create(customer)

10 @insert_rec.bind_param(1, customer.id)

- @insert_rec.exec

- end

- end

Here, we’ve used another form of bind variable, numbering them rather
than naming them explicitly. It’s more or less a matter of taste whether
you bind parameters by name or by number, but you have to be con-
sistent. If you’ve used numbers as placeholders for the parameters in
the SQL statement, you have to bind them by number later. That’s
especially important for output parameters:

File 41 Line 1 connection = OCI8.new(' maik' , ' maik')

- cursor = connection.parse("begin :now := sysdate; end;")

- cursor.bind_param(' :now' , Time.mktime(1972, 9, 30), Date)

- puts cursor[' :now']

5 puts cursor[1]

- cursor.exec

- puts cursor[' :now']

- puts cursor[1]

- cursor.close

10 connection.logoff

At the time of this writing, this produces:

1972-09-30

nil

2005-04-03

nil

There’s something even more critical hidden in our Recipient class:

File 19 Line 1 require ' cusfinder'

- connection = OCI8.new(' maik' , ' maik')

- connection.autocommit = true

- recipients = Recipient.new(connection)

5 customer = Customer.new(1, ' Selma' , ' Bouvier' , ' selma@example.com')

- recipients.create(customer)

- connection.logoff

http://media.pragprog.com/titles/fr_eir/code/db/coupon/recipient.rb
http://media.pragprog.com/titles/fr_eir/code/db/oracle/outparam.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/recipient.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=21

THE COUPON APPLICATION 22

See that we’ve enabled the autocommit feature of the connection object autocommit

on line 3. This makes sure that every SQL statement gets committed
immediately, saving any changes to the database when the statement
is executed. That’s what we’d normally expect to happen.

Oracle is a transactional database—you can group several SQL state-
ments as if they were one. If any of the statements fail, all the state-
ments will be ignored—the database content will not be changed. The
current transaction can be committed by executing the COMMIT com-
mand, or it can be rolled back by calling ROLLBACK. Setting autocommit

to true is like calling COMMIT after every single SQL statement. Without
it, nothing would ever get written to the database. You wouldn’t even
notice it, because from the database’s point of view it’s not an error.

Our final version of the coupon application differs only slightly from our
original approach:

File 14 Line 1 require ' cusfinder'

- require ' whitelist'

- require ' recipient'

-

5 # Read all potential customers

- ora_connection = OCI8.new(' maik' , ' maik')

- ora_connection.autocommit = true

- recipients = Recipient.new(ora_connection)

- finder = CustomerFinder.new(ora_connection)

10 customers = finder.find(180)

-

- # Sort out customers not in whitelist

- mysql_connection = Mysql.new(' localhost' , ' ' , ' ' , ' webshop')

- whitelist = Whitelist.new(mysql_connection)

15

- customers.each do |c|

- if whitelist.contains?(c.email)

- puts c.to_csv

- recipients.create(c)

20 end

- end

-

- ora_connection.logoff

- mysql_connection.close

The most important changes affect the Oracle connection object. We’ve
set its autocommit feature to true. We also defer closing the connection
until the end of the program, because it’s needed during the whole
runtime.

http://media.pragprog.com/titles/fr_eir/code/db/coupon/coupon_final.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=22

THE COUPON APPLICATION 23

The Fruits of Our Labor

Two weeks ago the coupons were sent to their lucky recipients. Today
started like any other: you switched on your computer and went into
the kitchen to get a (free) cup of coffee. As you came back to your desk
to create yet more extraordinary code, one of the marketing guys was
waiting for you. “You’re the techie who sent out the coupons two weeks
ago, aren’t you?” he asks. Before you can say a word, he proceeds:
“Although we worked several weeks on the functional specification of
the coupon application, we somehow forgot to define some statistics
requirements. Now we’re afraid that we can’t find out how successful
our marvelous and groundbreaking coupon idea was. Is there any way
you could create some statistics, anyhow?”

Mostly, you’re surprised that something like a functional specification
exists—it’s the first you heard of it. But, when you recover, you remem-
ber the coupon_recipients table and open a SQL*Plus shell:

SQL> select count(*) from coupon_recipients;

COUNT(*)

3145

SQL> select count(*) from orders where customer_id in (\

2 select customer_id from coupon_recipients \

3) and created > sysdate - 14;

COUNT(*)

917

SQL> select 917 * 100 / 3145 from dual;

917*100/3145

29.1573927

SQL>

Turning around to the marketing guy, you say, “29.16% of the coupon
recipients placed an order during the last two weeks. Do you need
anything else?” He is obviously impressed: “No, thank you very much!
You did an awesome job, and I wouldn’t be surprised if you get a corner
office soon.” You lean back and take a sip of your coffee. It’s still hot.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=23

THE COUPON APPLICATION 24

Managing Database Resources

So far, our examples have been simple, and we didn’t care
about performance and optimization. But opening a new
database connection is expensive and should not be per-
formed unnecessarily. If you need only a single connection,
databases can be represented as singleton objects. A single-
ton object is available everywhere in your program and can
be created only once. Thanks to the Ruby standard library, it’s
a piece of cake to create a singleton encapsulating our OCI8
driver:

File 40 require ' oci8'

require ' singleton'

class Database

include Singleton

attr_reader :connection

def initialize

@connection = nil

end

def connect(usr, pwd, dbname = nil)

@connection = OCI8.new(usr, pwd, dbname)

@connection.autocommit = true

@connection

end

def disconnect

if !@connection.nil?

@connection.logoff

@connection = nil

end

end

end

Class Database makes a connection to our database available
wherever we need it, and we get access to the one and only
instance by calling Database.instance(). At program start we
have to call Database.instance.connect(usr,pwd) once, and from
then on Database.instance.connection contains our connection.

http://media.pragprog.com/titles/fr_eir/code/db/oracle/database.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=24

DATABASE INTERFACE (DBI) 25

2.2 Database Interface (DBI)

It’s a bit annoying that the information we needed for our coupon
application is spread across two databases—it might be a good idea
to change this situation someday. Anticipating this change, it might
be advantageous to make our application more independent of the
underlying drivers. As we’ve seen in the previous sections, access-
ing databases using native drivers in principle differs only slightly from
vendor to vendor: you have to obtain a connection, create or prepare
statements, execute statements, and retrieve results eventually. Tech-
nically, though, there are many subtle (and sometimes not so sub-
tle) differences. Countless attempts have been made to standardize
this interface. For example, on the Microsoft Windows platform there
is ODBC, OLE DB, and ADO.NET, to name just a few. Java has its
JDBC, and dynamic languages such as Perl, Python, and Ruby use an
approach called DBI (Database Interface).7 DBI

All database abstraction layers work in a similar fashion: they define database abstraction

layers
an abstract interface to the database, and a concrete implementation,
called a database driver, for each specific database. For the Ruby DBI database driver

library, these drivers are known as DBD modules.8 These drivers are
accessed by your program through a standard interface,9 so you don’t
have to remember whether the method to get a new connection was
called new(), connect(), create_connection(), or whatever. In DBI it’s
called connect(driver_url, user=nil, auth=nil, params=nil) for every database,
and it always expects the same parameters in the same order.

Compared to other database abstraction layers, DBI is extremely sim-
ple. To use it you have to know only two classes, DatabaseHandle and
StatementHandle. A database handle represents a connection to the
database, while a statement handle represents an active SQL state-
ment. To examine whether we can benefit from using DBI in our Prag-
Bouquet application, we’ll change the Whitelist class to use it:

File 24 Line 1 require ' dbi'

-

- DBI.connect(' DBI:Mysql:webshop' , ' ' , ' ') do |conn|

- conn.select_all(' select * from whitelist') { |row| p row }

5 end

7This list proves the old adage: the good thing about standards is that there are so
many to choose from.

8http://ruby-dbi.rubyforge.org/DBD_SPEC.html
9http://ruby-dbi.rubyforge.org/DBI_SPEC.html

http://media.pragprog.com/titles/fr_eir/code/db/dbi/print_whitelist.rb
http://ruby-dbi.rubyforge.org/DBD_SPEC.html
http://ruby-dbi.rubyforge.org/DBI_SPEC.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=25

DATABASE INTERFACE (DBI) 26

Because of the block syntax supported by the DBI methods, our demon-
stration program became extremely compact. In line 3, DBI.connect()
returns a database handle that gets passed into the block. When the
program reaches the end of the block, the connection is closed auto-
matically. Within the block we call select_all(), which executes a SELECT

statement and calls a code block for every row that was returned.
Again, we do not have to care about resource management—the state-
ment will be released at the end of the block. The only thing left to do
is to integrate the code into the Whitelist class:

File 25 Line 1 require ' dbi'

- class Whitelist

- def initialize(connection)

- @whitelist = {}

5 connection.select_all(' select email from whitelist') do |row|

- @whitelist[row[0]] = true

- end

- end

- def contains?(email) @whitelist.has_key?(email); end

10 end

We did not change the interface, and only the connection object has to
be instantiated differently to use the Whitelist class:

File 25 Line 1 connection = DBI.connect(' DBI:Mysql:webshop' , ' ' , ' ')

- whitelist = Whitelist.new(connection)

- puts whitelist.contains?(' homer@example.com')

- connection.disconnect

Should we move the whitelist table from MySQL to our Oracle database,
we only have to change the string “Mysql” to “Oracle”, and the program
will still work.

Encouraged by our success, we’ll change the Oracle stuff in our Cus-

tomerFinder class to use DBI too:

File 23 Line 1 class CustomerFinder

- def initialize(connection)

- @find_stmt = connection.prepare(<<-SQL)

-

5 select a.id, a.name, a.surname, a.email

- from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - :days

- and b.created = (

10 select max(created)

- from orders

- where customer_id = a.id

-)

- SQL

15 end

http://media.pragprog.com/titles/fr_eir/code/db/dbi/whitelist.rb
http://media.pragprog.com/titles/fr_eir/code/db/dbi/whitelist.rb
http://media.pragprog.com/titles/fr_eir/code/db/dbi/cusfinder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=26

DATABASE INTERFACE (DBI) 27

-

-

- def find(days)

- @find_stmt.bind_param(' :days' , days)

20 @find_stmt.execute

- customers = []

- while row = @find_stmt.fetch do

- customers << Customer.new(*row)

- end

25 customers

- end

- end

As with the previous example, we did not have to change a lot. Instead
of calling parse() on our connection object in line 3, we have to call
prepare() now. Similarly, exec() becomes execute() on line 18. We have
to pass a DBI connection object now:

File 23 Line 1 connection = DBI.connect(' DBI:Oracle' , ' maik' , ' maik')

- finder = CustomerFinder.new(connection)

- customers = finder.find(180)

- customers.each { |c| puts c.email }

5 connection.disconnect

Despite all this, the benefits of a database abstraction layer aren’t as
big as you might think. It’s convenient to work with DBI when you
have to access a database product that you haven’t worked with before,
but you shouldn’t assume that you can easily replace your existing
database with a completely different one only because you’re using an
abstraction layer. Moving from one database to another is one of the
most complicated feats in developing enterprise software.

Because there are so many proprietary additions to SQL in every ven-
dor’s implementation, writing portable statements is nearly impossible.
Often such statements look quite harmless. For example, look at the
statement starting on line 3 in our CustomerFinder class. It contains at
least three potential problems:

• Not all databases support subselects.

• sysdate is specific to Oracle. In MySQL you’d have to use now(),
and in DB2 it’d be current timestamp.

• The syntax of arithmetic expressions for dates (such as sysdate-180)
differs from vendor to vendor.

Sometimes the problems aren’t directly related to a SQL statement but
are caused by some side effects like autogenerated identifiers that are

http://media.pragprog.com/titles/fr_eir/code/db/dbi/cusfinder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=27

OBJECT -RELATIONAL MAPPERS 28

not available in every database. To support such database-specific
functions, the drivers used by DBI allow for some extensions, but if
you want to write portable software, it’s certainly not a good idea to
use them. For example, to read the last autogenerated identifier from
a MySQL database, you call the last_insert_id() method. This method is
not available for Oracle databases, and it’s not easy to simulate the
autogeneration feature in Oracle.

A last problem with DBI could be performance: the extra layers and
the need to map features can decrease performance significantly. For
example, accessing MySQL using the native driver is twice as fast as
using the DBI layer.

There are much more important (and tricky) issues that might prevent
you from easily changing your database. Consider, for example, C/C++
programs that contain embedded SQL. Even if you’re lucky and have embedded SQL

access to the source code of all programs running in your environment,
it still will be a lot of work to adjust them all.

So, if you know up front that you have to support multiple databases,
you can gain a lot by using an abstraction layer, but you have to plan
for it carefully.

2.3 Object-Relational Mappers

A lot of people working in the software development department of Prag-
Bouquet have been thinking about reorganizing the current database
landscape for quite a long time. The design of many databases has
become a bit messy over the years, and it’s a big problem that logic
and data are spread across Oracle and MySQL databases. To save
license costs, all the Oracle databases should be migrated to a MySQL
database in the future, and all new stuff should be implemented in the
MySQL database right from the beginning.

The first feature that has to be added is an automatic management sys-
tem for ordering flowers. Today flowers are ordered from a big whole-
saler more or less manually by the buying department. The clerks get
daily order reports, and they can see how many flowers are still in stock.
Then they do some simple calculations using a spreadsheet application
and place new orders accordingly. It’s your task now to automate this
process as far as possible; i.e., you have to create a database for the
flowers in stock and to remove flowers from stock whenever a new bou-
quet leaves PragBouquet.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=28

OBJECT -RELATIONAL MAPPERS 29

Generating Unique IDs

It’s really strange: humankind is talking about going to Mars, but
creating artificial primary keys in databases is still a problem in
the 21st century, because there’s no standard.

From a design point of view, there are a lot of advantages
to creating an artificial unique (numeric) primary key for every
table in the database, even if a natural primary key does exist.
Numeric values need only a small amount of space and can
be indexed efficiently.

Although there’s a need for unique IDs in every database, all
vendors come up with their own ideas and concepts to gen-
erate them. It’s easy to generate them to be more or less
portable by creating a table containing only two columns:

create table sequences (

value int default 1 not null,

table_name varchar(64)

);

To create a sequence for our customers table, we insert a new
row into the sequences table:

insert into sequences (table_name) values (' customers');

Generating a new sequence value is straightforward then:

begin

update sequences set id = id + 1

where table_name = ' customers' ;

select id from sequences

where table_name = ' customers' ;

end;

Unfortunately, this solution is not particularly efficient, because it
has to be executed in a transaction that can slow down things
a bit. Oh, and did I mention that not all databases support
transactions?

Whenever your program relies upon autogenerated identifiers,
you should encapsulate this process carefully to prevent bad
surprises when you have to migrate to another database.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=29

OBJECT -RELATIONAL MAPPERS 30

Before opening your text editor, you take a day off to think about the
new database structure, and after 24 hours of thinking, you finally had
this revolutionary idea: you need a table that represents flowers:

File 4 Line 1 create table flowers(

- id int unsigned not null auto_increment primary key,

- name varchar(64) not null,

- price double not null

5);

That should be sufficient for a first version: flowers have a name, a
price, and an artificial primary key that is created by the database auto-
matically. The “only” step left to do is to map the flowers table to a Flower

class and map all its columns to the according attributes.

You have read Martin Fowler’s Patterns of Enterprise Application Archi-

tecture [Fow03], and you still remember his ActiveRecord pattern and
its definition:

“An object that wraps a row in a database table or view encapsulates
the database access and adds domain logic on that data.”

Before creating an ActiveRecord class to map the flowers table, we’ll
encapsulate access to the MySQL database in a singleton:

File 6 Line 1 require ' dbi'

- require ' singleton'

-

- class Database

5 include Singleton

- attr_reader :connection

-

- def initialize() @connection = nil; end

-

10 def connect(usr, pwd, db)

- @connection = DBI.connect("DBI:Mysql:#{db}", usr, pwd)

- end

-

- def disconnect

15 @connection.disconnect if !@connection.nil?

- @connection = nil

- end

- end

We used DBI both for convenience and because it allows us to simulate
prepared statements even though MySQL may not support them. After
calling Database.instance.connect() once, we can access the database
connection calling Database.instance.connection() from anywhere in the
code we want. So, let’s use it to create new flowers:

http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower_dbi.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=30

OBJECT -RELATIONAL MAPPERS 31

File 6 Line 1 class Flower

- attr_reader :id

- attr_accessor :name, :price

-

5 def Flower.create(name, price)

- connection = Database.instance.connection

- @@create_flower ||= connection.prepare(<<-SQL)

- insert into flowers (name, price) values(?,?)

- SQL

10 @@create_flower.execute(name, price)

- flower_id = connection.func(:insert_id)

- Flower.new(flower_id, name, price)

- end

-

15 def to_s

- "A #{@name} (#{@id}) costs $#{@price}."

- end

-

- private

20

- def initialize(id, name, price)

- @id, @name, @price = id, name, price

- end

- end

Nothing special happens here: in line 7 we prepare our SQL statement,
and in line 10 we execute it (we prepared the statement only once and
stored a reference to it in the class variable @@create_flower). Prepared
statements are a new feature in MySQL. They are not in widespread use
today, and are not supported by the current Ruby drivers. Despite this,
it makes sense to use DBI’s prepared statements, because they prevent
SQL injection attacks by quoting the parts of a SQL statement that are
substituted in from the outside.

In line 11 we find the primary key of the newly created row by asking
MySQL for the last insert ID. We use the func(func_name) method of the
DBI class, which allows us to access database-specific functions.

Virtually planting a rose looks like this:

File 6 Line 1 Database.instance.connect(' ' , ' ' , ' webshop')

- rose = Flower.create(' rose' , 1.99)

- puts rose

This code produces the following:

A rose (1) costs $1.99.

The first version of the Flower class allows for creating new objects
by calling create(name,price). This method inserts a new row into the

http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower_dbi.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower_dbi.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=31

OBJECT -RELATIONAL MAPPERS 32

database, reads the ID that has been generated by MySQL, and returns
a new Flower object. To make sure that no conflicts happen in the
database because of duplicate id values, we have declared the initialize()
method private. Hence, only methods of the Flower class are able to
create new objects.

For the sake of completeness, we add the remaining methods needed
to be fully CRUD compliant (CRUD stands for Create, Retrieve, Update, CRUD

and Delete):

File 6 Line 1 class Flower

- def Flower.find(name)

- connection = Database.instance.connection

- @@find_flower ||= connection.prepare(<<-SQL)

5 select id, name, price from flowers where name = ?

- SQL

- @@find_flower.execute(name)

- flower = @@find_flower.fetch

- return nil if flower.nil?

10 Flower.new(*flower)

- end

-

- def update

- connection = Database.instance.connection

15 @@update_flower ||= connection.prepare(<<-SQL)

- update flowers set name = ?, price = ? where id = ?

- SQL

- @@update_flower.execute(@name, @price, @id)

- end

20

- def destroy

- connection = Database.instance.connection

- @@destroy_flower ||= connection.prepare(<<-SQL)

- delete from flowers where id = ?

25 SQL

- @@destroy_flower.execute(@id)

- end

- end

Now we can retrieve, update, and delete Flower objects in the database:

File 6 Line 1 rose = Flower.find(' rose')

- rose.price = 2.49

- rose.update

-

5 rose = Flower.find(' rose')

- puts rose

- rose.destroy

- puts Flower.find(' rose')

- Database.instance.disconnect

http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower_dbi.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower_dbi.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=32

OBJECT -RELATIONAL MAPPERS 33

Object-Relational Mappers for Ruby

Because of its dynamic nature, Ruby is a perfect language
for creating tools like object-relational mappers: you can eas-
ily create classes and methods on the fly, and determining
the structure of a database is not a big problem with most
database systems either.

Unsurprisingly, several projects have been initiated to imple-
ment an object-relational mapper,∗ but ActiveRecord is by far
the most popular and most advanced. It’s much more than a
simple mapper; it’s fast, it supports nearly every database avail-
able, and it is constantly enhanced by a big community.

∗Kansas (http://raa.ruby-lang.org/project/kansas) and Og
(http://www.nitrohq.com/view/Og) are interesting, for example.

This produces the following:

A rose (1) costs $2.49.

nil

It took less than an hour to create the ActiveRecord, and it works fine,
but despite all this you still think that sometimes life isn’t fair: all your
friends are hanging around at the beach having fun, and you’re writing
tons of boring SQL statements only to read and save Flower objects.
Enough is enough, and hence you decide to look for a tool that will do
all this tedious stuff for you.

ActiveRecord Basics

ActiveRecord is an enhanced implementation of Martin Fowler’s Active-

Record object-relational mapping pattern.10 ActiveRecord was created
by David Heinemeier Hansson because he needed it for the famous
Ruby on Rails project.11 ActiveRecord now supports nearly every data-
base system currently in use (MySQL, PostgreSQL, SQLite, Microsoft
SQL Server, Oracle, and DB2).

Code always trumps prose, so instead of explaining academic persis-
tence strategies, let’s start by telling ActiveRecord to connect to our
database:

10http://www.martinfowler.com/eaaCatalog/activeRecord.html
11http://www.rubyonrails.com

http://raa.ruby-lang.org/project/kansas
http://www.nitrohq.com/view/Og
http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://www.rubyonrails.com
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=33

OBJECT -RELATIONAL MAPPERS 34

File 5 Line 1 require ' rubygems'

- require ' active_record'

-

- ActiveRecord::Base.establish_connection(

5 :adapter => ' mysql' ,

- :host => ' 127.0.0.1' ,

- :database => ' webshop'

-)

These statements load the ActiveRecord Gem (for more details about
RubyGems see Section 6.4, RubyGems, on page 299), and then estab-
lish a connection to the webshop database running on localhost.

Now we have to map the flowers table to a Ruby class called Flower:

File 5 Line 1 class Flower < ActiveRecord::Base; end

That’s it! All we had to do was derive our class from ActiveRecord::Base.
Every instance of class Flower represents a single row of the flowers table.

ActiveRecord derives the name of the database table by taking the class
name, turning it into lowercase, and pluralizing it. So, Flower becomes
flowers, and PragmaticProgrammer becomes pragmatic_programmers. You
can also set the table name explicitly, either because the built-in plu-
ralization rules don’t work for you or because you want to map to an
existing table whose name doesn’t meet ActiveRecord’s expectations:

class LegacyTable < ActiveRecord::Base

set_table_name ' xy12aj'

end

All Flower objects automatically have accessors for all the columns of
the flowers table, so there’ll be accessors named name() and price():

File 5 Line 1 flower = Flower.new

- flower.name = ' primrose'

- flower.price = 0.99

ActiveRecord stores all columns internally in a hash called attributes,
but using this knowledge is dangerous, because it links us to Active-
Record’s implementation. Instead, we should access column values
using just the attributes. For example, we could add a to_s() method to
our class.

File 5 Line 1 class Flower < ActiveRecord::Base

- def to_s

- "A #{self.name} (#{self.id}) costs $#{self.price}."

- end

5 end

http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=34

OBJECT -RELATIONAL MAPPERS 35

In addition, ActiveRecord creates methods for reading, updating, and
deleting rows in the database. To initialize the flowers table with some
lovely plants, we can do the following:

File 5 Line 1 [

- [' rose' , 1.10],

- [' violet' , 0.40],

- [' sunflower' , 0.40],

5 [' clove' , 0.65],

- [' lily' , 0.80]

-].each do |name, price|

- flower = Flower.new(:name => name, :price => price)

- flower.save

10 end

The database will then contain the following rows:

mysql> select * from flowers;

+----+-----------+-------+

| id | name | price |

+----+-----------+-------+

| 1 | rose | 1.1 |

| 2 | violet | 0.4 |

| 3 | sunflower | 0.3 |

| 4 | clove | 0.65 |

| 5 | lily | 0.8 |

+----+-----------+-------+

5 rows in set (0.00 sec)

It’s important that every table that is mapped has an id column that
gets filled automatically when a new row is created (the column name
is id by default, but like the table name you can change it calling
set_primary_key(column_name)).12

For reading all entities belonging to a particular class, we use Active-

Record’s find(*args) method and pass it the :all option:

File 5 Line 1 Flower.find(:all).each do |f|

- puts "A #{f.name} costs $#{f.price}."

- end

This gives us a list of all flowers:

A rose costs $1.1.

A violet costs $0.4.

A sunflower costs $0.3.

A clove costs $0.65.

A lily costs $0.8.

12Not all databases support columns that get incremented automatically. For details,
see the documentation of the ActiveRecord adapter for your database system.

http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=35

OBJECT -RELATIONAL MAPPERS 36

As well as defining methods that perform more fine-grained searches,
ActiveRecord dynamically defines finder methods for each column and
for all combinations of columns. This example finds a flower by its
name:

File 5 Line 1 rose = Flower.find_by_name(' rose')

The following statement:

File 5 Line 1 Flower.find_all_by_price(0.4).each { |f| puts f }

returns a list of flowers costing $0.40 each:

A sunflower (48) costs $0.4

A violet (47) costs $0.4

Finally, we can search for flowers having a particular name and price:

File 5 Line 1 clove = Flower.find_by_name_and_price('clove' , 0.65)

All the find() methods we’ve used previously are created automatically—
there is a method_missing() handler that turns your method calls into
SQL statements.

If searching for columns having certain values is not sufficient, you can
use another variant of find() that accepts a list of conditions as they may
appear in the WHERE clause of a SELECT statement:

File 5 Line 1 cheap = Flower.find(:all, :conditions => [' price < 0.8'])

- cheap.each { |f| puts f }

This prints the following values:

A clove (49) costs $0.65

A sunflower (48) costs $0.4

A violet (47) costs $0.4

To prevent SQL injection attacks in the condition string, you can use a
variant of the find() method that supports placeholders. The following
code produces the same result as the previous example:

File 5 Line 1 cheap = Flower.find(:all, :conditions => [' price < ?' , 0.8])

- cheap.each { |f| puts f }

You don’t like sunflowers? Destroy ’em:

File 5 Line 1 sunflower = Flower.find_by_name(' sunflower')

- sunflower.destroy

ActiveRecord gives us the CRUD methods (Create, Read, Update, and
Delete) for free—this alone is a great benefit. But ActiveRecord does
a lot more. In the next section we’ll see how it helps us express the
relationships between tables.

http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=36

OBJECT -RELATIONAL MAPPERS 37

Cultivating Relationships with Flowers

Now that we have so many flowers, we should try to make some won-
derful bouquets out of them. We’ll need another table to represent
them. Because we know that we will access it with ActiveRecord, we’ll
call it bouquets. Bouquets have a name and a base price (which covers
wrapping paper, florist work, and so on):

File 4 create table bouquets(

id int unsigned not null auto_increment primary key,

name varchar(64) not null,

base_price double not null

);

The relationship between bouquets and flowers is simple: bouquets
have many flowers, and flowers may belong to several different bou-
quets. (Obviously what we mean here is that roses may appear in many
bouquets, not that a particular rose is in many direct bouquets. The
latter could lead to some interesting problems on Valentine’s Day.) SQL
pros call this a many-to-many relationship. To implement it, they usu- many-to-many

relationship
ally introduce a join table (see Figure 2.2, on the next page), which

join tablemaps rows from one table to the other, and vice versa:

File 4 create table bouquets_flowers(

bouquet_id int not null,

flower_id int not null

);

alter table bouquets_flowers add constraint fk1_bouquet

foreign key (bouquet_id) references bouquets(id);

alter table bouquets_flowers add constraint fk2_flower

foreign key (flower_id) references flowers(id);

The table name is no coincidence. We want to implement the rela-
tionship between the bouquets table and the flowers table. By default,
ActiveRecord searches for a table that is named after the tables to be
joined. Concatenate the table names in lexical order and separate them
by an underscore, and you have the name of your join table. In addi-
tion, the join columns follow a naming scheme, too. You have to append
_id; to the class name in lowercase letters (camel case is turned into
underscores).

When you adhere to the naming rules, ActiveRecord makes it easy to
express the relationship between flowers and bouquets using special
macros:

File 7 class Bouquet < ActiveRecord::Base

has_and_belongs_to_many :flowers

end

http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=37

OBJECT -RELATIONAL MAPPERS 38

Figure 2.2: Join Table for Bouquets and Flowers

class Flower < ActiveRecord::Base

has_and_belongs_to_many :bouquets

end

Many-to-many relationships are symmetrical, so we have to use the
has_and_belongs_to_many() macro in both the Flower and Bouquet classes.

The following code snippet creates a new bouquet and stores it in the
database:

File 7 Line 1 rose = Flower.find_by_name(' rose')

- bouquet = Bouquet.new

- bouquet.name = ' Red Dream'

- bouquet.base_price = 2.49;

5 bouquet.save

- 6.times { bouquet.flowers << rose }

- bouquet.flowers << Flower.find_by_name(' sunflower')

In line 6, we add six roses to our bouquet. In the following line we add
a single sunflower. The flowers member of the Bouquet class was created
automatically after we called has_and_belongs_to_many(). It acts as an
array, except that whenever we add a flower to it, it creates a new entry
in the join table.

After storing the bouquet, the database content looks as follows:

mysql> select * from flowers where name in (' rose' , ' sunflower');

+----+-----------+-------+

| id | name | price |

+----+-----------+-------+

| 1 | rose | 1.1 |

| 3 | sunflower | 0.3 |

+----+-----------+-------+

2 rows in set (0.02 sec)

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=38

OBJECT -RELATIONAL MAPPERS 39

mysql> select * from bouquets;

+----+-----------+------------+

| id | name | base_price |

+----+-----------+------------+

| 1 | Red Dream | 2.49 |

+----+-----------+------------+

1 row in set (0.00 sec)

mysql> select * from bouquets_flowers;

+------------+-----------+

| bouquet_id | flower_id |

+------------+-----------+

| 1 | 1 |

| 1 | 1 |

| 1 | 1 |

| 1 | 1 |

| 1 | 1 |

| 1 | 1 |

| 1 | 3 |

+------------+-----------+

7 rows in set (0.00 sec)

As expected, the bouquets_flowers table contains seven rows describing
the content of the “Red Dream” bouquet. Six of them refer to the rose
entry in the flowers table, and one refers to the sunflower. To read all
components with SQL we’d need a select statement with a join clause.
ActiveRecord does this dirty work transparently:

File 7 b = Bouquet.find_by_name(' Red Dream')

puts "' #{b.name}' contains #{b.flowers.size} flowers:"

b.flowers.each { |f| puts f.name }

These statements disassemble our bunch of flowers:

' Red Dream' contains 7 flowers:

sunflower

rose

rose

rose

rose

rose

rose

This is nice and easy, but it’s also a bit messy. Instead of storing every
rose in a single row, it would be better to store the information that
there are six roses in this bouquet. To do this, we’ll add another piece
of information to the relationship between flowers and bouquets:

File 1 alter table bouquets_flowers add (quantity int not null);

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/alter_db.sql
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=39

OBJECT -RELATIONAL MAPPERS 40

The join table bouquets_flowers now also stores the quantity of a partic-
ular flower that belongs to a bouquet. To populate this column, we use
the push_with_attributes() method:

File 8 Line 1 rose = Flower.find_by_name(' rose')

- sunflower = Flower.find_by_name(' sunflower')

- bouquet = Bouquet.new

- bouquet.name = ' Honeybunch'

5 bouquet.base_price = 1.37;

- bouquet.save

- bouquet.flowers.push_with_attributes(rose, :quantity => 1)

- bouquet.flowers.push_with_attributes(sunflower, :quantity => 6)

We can read the information back from the database (remember, we’re
still working with a database):

File 8 Line 1 b = Bouquet.find_by_name(' Honeybunch')

- puts "' #{b.name}' contains #{b.flowers.size} different flowers:"

- b.flowers.each { |f| puts "#{f.name} (#{f.quantity})" }

This prints a compact recipe for the “Honeybunch” bouquet:

' Honeybunch' contains 2 different flowers:

sunflower (6)

rose (1)

The join table looks like this:

mysql> select * from bouquets_flowers;

+------------+-----------+----------+

| bouquet_id | flower_id | quantity |

+------------+-----------+----------+

| 2 | 3 | 6 |

| 2 | 1 | 1 |

+------------+-----------+----------+

2 rows in set (0.00 sec)

It’s easy to add more logic to our domain classes, such as a method
that calculates the price of a bouquet:

File 8 Line 1 class Bouquet

- def price

- flowers.inject(self.base_price) { |total, f|

- total += f.price * f.quantity.to_i

5 }

- end

- end

- b = Bouquet.find_by_name(' Honeybunch')

- puts "' #{b.name}' costs $#{b.price}."

For our “Honeybunch” bouquet, the following prints:

' Honeybunch' costs $4.87.

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=40

OBJECT -RELATIONAL MAPPERS 41

Let’s summarize what we’ve done so far: we created three database
tables that represent flowers, bouquets, and their many-to-many rela-
tionship. The table names and the names of their columns conformed
to a fairly natural convention, one that you may have used anyway. To
map them to a Ruby class hierarchy that lets us manipulate them in
every imaginable way, we needed six lines of code:

File 8 Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

- end

-

5 class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

- end

What Do We Have in Stock?

We shouldn’t forget that we originally wanted to automate the ordering
process for flowers. We still have to implement the concept of stock:

File 4 create table stock_items(

id int unsigned not null auto_increment primary key,

quantity int not null

);

Each row of the stock_items table represents the quantity of a particular
flower that we currently have in stock—there is a stock item for every
flower, and vice versa.13 This is a classic one-to-one relationship, which one-to-one relationship

can be modeled in the database like this:

File 2 alter table flowers add (stock_item_id int not null);

alter table flowers add constraint fk1_flowers

foreign key (stock_item_id) references stock_items(id);

Here’s the Ruby model:

File 11 Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

- end

- class Flower < ActiveRecord::Base

5 has_and_belongs_to_many :bouquets

- belongs_to :stock_item

- end

- class StockItem < ActiveRecord::Base

- has_one :flower

10 end

13We could have added the quantity column to the flowers table, but in the future we will
stock more than flowers.

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/alter_flowers.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=41

OBJECT -RELATIONAL MAPPERS 42

It reads a bit like the notes you typically scribble on a piece of paper
when thinking about a new database, doesn’t it? Despite that, it’s
actual code that runs. In line 6 we declare that every flower belongs
in stock, and line 9 makes every stock item a flower.

Like has_and_belongs_to_many(), the has_one() and belongs_to() macros
automatically create some methods for the classes that use them. Let’s
fill our stock with some flowers:

File 11 Line 1 [

- [' rose' , 1.10, 1000],

- [' violet' , 0.40, 2000],

- [' sunflower' , 0.40, 500],

5 [' clove' , 0.65, 2000],

- [' lily' , 0.80, 1500]

-].each do |name, price, quantity|

- si = StockItem.new(:quantity => quantity)

- si.save

10 Flower.new(

- :stock_item => si,

- :name => name,

- :price => price

-).save

15 end

Note that in line 11 we have connected a particular flower with the
current stock item by setting its stock_item attribute.

We can print a stock report like this:

File 11 Line 1 puts "Stock items:"

- StockItem.find(:all).each { |si|

- puts "#{si.flower.name}: #{si.quantity} in stock."

- }

This produces the following values:

Stock items:

rose: 1000 in stock.

violet: 2000 in stock.

sunflower: 500 in stock.

clove: 2000 in stock.

lily: 1500 in stock.

This time the magic is hidden in line 3. Obviously, ActiveRecord has
added a flower member to the StockItem class that contains the Flower

object that belongs to a certain instance.

Now for the real thing: the ultimate stock management system! First of
all, we map all database tables to Ruby classes and add bits of business
logic where necessary:

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=42

OBJECT -RELATIONAL MAPPERS 43

File 3 Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

-

- def price

5 flowers.inject(self.base_price) do |total, f|

- total += f.price * f.quantity.to_i

- end

- end

-

10 def add(flower, quantity)

- self.flowers.push_with_attributes(

- flower,

- :quantity => quantity

-)

15 end

- end

-

- class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

20 belongs_to :stock_item

- end

-

- class StockItem < ActiveRecord::Base

- has_one :flower

25 end

No big surprises here. The only new method is the add(flower,quantity)

method in Bouquet, and it was added only for convenience. More inter-
esting is the Stock class:

File 3 Line 1 class Stock

- def add_flower(name, price, quantity)

- si = StockItem.new(:quantity => quantity)

- si.save

5 si.create_flower(

- :name => name,

- :price => price

-)

- end

10 def remove(bouquet)

- Bouquet.transaction do

- bouquet.flowers.each do |f|

- si = StockItem.find(f.stock_item_id)

- if si.quantity < f.quantity.to_i

15 raise ' Not enough flowers left!'

- end

- si.quantity -= f.quantity.to_i

- si.save

- end

20 end

- end

http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=43

OBJECT -RELATIONAL MAPPERS 44

-

- def print_report

- StockItem.find(:all).each do |si|

25 puts "#{si.flower.name}: #{si.quantity} in stock."

- end

- end

- end

It has everything we’d normally expect a Stock class to have: we can
add a certain number of flowers having a certain price just by call-
ing add_flower(name, price, quantity). The remove(bouquet) method will
remove all flowers belonging to a bouquet from stock, and print_report()
will print something nice for the clerks.

In line 11 we used another valuable ActiveRecord feature: transactions.
When removing a bouquet from the database, we want to remove it
completely—all the flowers go, or none go. The transaction() method exe-
cutes a code block and performs a rollback if an exception was raised
in the block.

Let’s fill our stock and print a first report:

File 3 Line 1 stock = Stock.new

- [

- [' rose' , 1.10, 1000],

- [' violet' , 0.40, 2000],

5 [' sunflower' , 0.40, 6]

-].each do |name, price, quantity|

- stock.add_flower(name, price, quantity)

- end

- stock.print_report

This produces the following values:

rose: 1000 in stock.

violet: 2000 in stock.

sunflower: 500 in stock.

Then we create a new bouquet:

File 3 Line 1 bouquet = Bouquet.new(

- :name => ' Honeybunch' ,

- :base_price => 1.37

-)

5 bouquet.save

- bouquet.add(Flower.find_by_name('rose'), 1)

- bouquet.add(Flower.find_by_name('sunflower'), 6)

- puts "' #{bouquet.name}' costs $#{bouquet.price}."

and print its price:

' Honeybunch' costs $4.87.

http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=44

OBJECT -RELATIONAL MAPPERS 45

Where to Put Constraints?

Putting constraints on columns and on the relationships
between tables is a two-edged sword. On the one hand, you
have constraints that apply globally and can be checked only
by the database system itself. It does not make sense—and
often is impossible—to implement primary keys, foreign keys, or
unique constraints in your application.

On the other hand, you have issues such as column value con-
straints like “prices should not be negative.” To assert that a
numerical column value always is in a certain range can be
easily achieved in both the database and the application.
ActiveRecord supports this with its validation mechanism.

When you know for sure that a database will be used exclu-
sively by your application, you may put the constraints on your
data into the database. In all other cases, try to put as much
of your business logic into your application, because it can be
found more easily (you don’t have to look into the database
and the application), and you won’t affect other (future) appli-
cations that might have different or additional constraints on
some columns.

No matter which way you choose, don’t forget the DRY
principle—Don’t Repeat Yourself.∗ Define every constraint just
once, either in the application or in the database.

∗http://www.artima.com/intv/dry.html

Finally, we remove all flowers belonging to the bouquet from stock:

File 3 Line 1 stock.remove(bouquet)

- stock.print_report

and print another report:

rose: 999 in stock.

violet: 2000 in stock.

sunflower: 494 in stock.

It’s almost unbelievable: the only SQL statements we had to write
were the table definitions (if you want to avoid writing table definitions,
too, refer to Section 2.3, Migrating Database Schemas, on page 47).
ActiveRecord let us implement PragBouquet’s new stock management
system in less than 80 lines of Ruby code that reads like a specification.

http://www.artima.com/intv/dry.html
http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=45

OBJECT -RELATIONAL MAPPERS 46

Validation

As we all know, the most difficult tasks in software development are
usually more or less unrelated to the actual problem being solved. The
biggest problems are caused by error conditions: users enter invalid
data, networks break down, hard disks crash, and so on.

This is also true in database programming. The most important tech-
nique for preventing errors in relational databases is to impose con-
straints on columns so that they contain only valid values. As a special
case of this, we need to maintain referential integrity—to make sure
that foreign keys always refer to existing table rows in the other table.

All relational database systems allow you to put constraints on columns
and tables somehow, but there are huge differences between their capa-
bilities (many versions of MySQL, for example, allow you to define for-
eign key constraints, but they do not actually check them). To over-
come these incompatibilities, ActiveRecord lets you define validations
for your database objects in Ruby code.

For our Flower and Bouquet object, the rules are simple:

File 12 Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

-

- def validate

5 errors.add_on_empty %w(name base_price)

- unless base_price >= 0.0

- errors.add(' base_price' , ' is negative')

- end

- errors.add(' flowers' , ' must exist') unless flowers.size > 0

10 end

- end

-

- class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

15

- def validate

- errors.add_on_empty %w(name price)

- errors.add(:price, ' is negative') unless price >= 0.0

- end

20 end

Every ActiveRecord object has a member called errors which is of type
ActiveRecord::Errors. Before writing an object to the database using the
save() method, ActiveRecord calls the validate() method of the object.
After validate() returns, ActiveRecord checks to see whether any error
has been written to the errors object. If any error occurred, the database

http://media.pragprog.com/titles/fr_eir/code/db/ar/validation.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=46

OBJECT -RELATIONAL MAPPERS 47

will not be updated, and save() returns false (you can also use the save!()
variant that will raise an exception if an error occurred).

The rules for our domain objects are simple: the name and base price
of a bouquet may not be empty, the base price has to be non-negative,
and every bouquet must have at least one flower. Flowers must have a
name and a price, too, and their price has to be greater than or equal
to zero. The validation for this is shown in the following snippet:

File 12 Line 1 print ' Trying to save nameless flower: '

- puts Flower.new(:name => nil, :price => 0).save

- print ' Trying to save really cheap flower: '

- puts Flower.new(:name => ' cheap' , :price => -1).save

5 print ' Trying to save a valid flower: '

- puts Flower.new(:name => ' daisy' , :price => 0.02).save

This produces the following:

Trying to save nameless flower: false

Trying to save really cheap flower: false

Trying to save a valid flower: true

Now we can prevent ourselves from storing imaginary bouquets:

File 12 Line 1 rose = Flower.find_by_name(' rose')

- sunflower = Flower.find_by_name(' sunflower')

- bouquet = Bouquet.new

- bouquet.name = ' Honeybunch'

5 bouquet.base_price = 1.37

- print ' Trying to save bouquet without flowers: '

- puts bouquet.save

- bouquet.flowers.push_with_attributes(rose, :quantity => 1)

- bouquet.flowers.push_with_attributes(sunflower, :quantity => 6)

10 print ' Trying to save valid bouquet: '

- puts bouquet.save

This produces the following:

Trying to save bouquet without flowers: false

Trying to save valid bouquet: true

Migrating Database Schemas

One of the biggest problems with relational databases is maintaining
their schemas and content. For example, in the development phase you
often have to rename, drop, or add a column to a table. On your local
machine this is not a big deal—you can mess with your private database
installation however you want. However, when you check your code in,
your fellow developers might be surprised to see that a new column is
used in your Ruby code that is not present in their database.

http://media.pragprog.com/titles/fr_eir/code/db/ar/validation.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/validation.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=47

OBJECT -RELATIONAL MAPPERS 48

ActiveRecord migration addresses this problem in a pragmatic way. The
Migration class14 defines methods for manipulating database schemas
without writing a single DDL (Data Definition Language) statement. You
can create and drop tables and indices, and you can add, rename, or
drop columns, without knowing anything about the nitty-gritty details
of the CREATE TABLE and ALTER TABLE statements of the database system
you’re using. Migration handles all this for you. This has significant
advantages:

• All changes to your database schema are documented in Ruby
code.

• The application can be easily migrated to every database system
that is supported by Migration. (At the time of this writing, it works
on MySQL, PostgreSQL, Microsoft SQL Server, and Oracle. Sup-
port for DB2 is in the works.)

To make the automatic flower ordering process even more intelligent,
let’s add a new column containing the average lifetime of a flower to the
flowers table. When we have a lot of roses in stock and know that they
survive only a few days in the cold store, it could make sense to make
bouquets containing roses a bit cheaper in the shop.

Let’s call our new column life_time. Using migrations, we’ll add it like
this:

File 9 Line 1 class AddLifeTime < ActiveRecord::Migration

- def self.up

- add_column :flowers, :life_time, :integer, :default => 5

- end

5

- def self.down

- remove_column :flowers, :life_time

- end

- end

Every migration step is encapsulated in a class (AddLifeTime in our case)
that is derived from ActiveRecord::Migration. The migration class has
to implement the up() and down() methods for upgrading and down-
grading the database schema. In these methods you can use meth-
ods such as create_table(), drop_table(), add_column(), rename_column(),
remove_column(), add_index(), and remove_index() to modify your schema
in any way you’d like. In addition, you can call execute(sql) to run arbi-
trary SQL statements.

14http://api.rubyonrails.com/classes/ActiveRecord/Migration.html

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_migration.rb
http://api.rubyonrails.com/classes/ActiveRecord/Migration.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=48

OBJECT -RELATIONAL MAPPERS 49

Let’s test our migration class:

File 9 Line 1 AddLifeTime.up

- Flower.reset_column_information

- [

- [' rose' , 1.10, 4],

5 [' sunflower' , 0.40, 10],

- [' lily' , 0.80, 5]

-].each do |name, price, life_time|

- flower = Flower.new(

- :name => name,

10 :price => price,

- :life_time => life_time

-)

- flower.save

- end

15

- Flower.find(:all).each do |f|

- puts "A #{f.name} costs $#{f.price} and lives " +

- "for #{f.life_time} days."

- end

This produces the following:

A rose costs $1.1 and lives for 4 days.

A sunflower costs $0.4 and lives for 10 days.

A lily costs $0.8 and lives for 5 days.

After calling the up() method of class AddLifeTime, we can use the life_time

attribute like any other attribute. The only important step to remember
is to call reset_column_information() (as we did in line 2) after changing a
database schema. This will clear all cached column information. This
is necessary only in this test case, because the program changes the
schema while it is running.

Now the flowers table looks as follows:

mysql> describe flowers;

+-----------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+------------------+------+-----+---------+----------------+

| id | int(10) unsigned | | PRI | NULL | auto_increment |

| name | varchar(64) | | | | |

| price | double | | | 0 | |

| life_time | int(11) | YES | | 5 | |

+-----------+------------------+------+-----+---------+----------------+

4 rows in set (0.00 sec)

As expected, Migration has added a new life_time column behind the
scenes that we could remove just as easily by calling AddLifeTime.down.

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_migration.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=49

OBJECT -RELATIONAL MAPPERS 50

The default lifetime value is five days. What if we wanted to set it
to another value for existing rows right after we have added the new
column? Simple answer: set it to whatever value you like in the up()
method:

File 10 Line 1 class AddLifeTime < ActiveRecord::Migration

- def self.up

- add_column :flowers, :life_time, :integer, :default => 5

- Flower.reset_column_information

5 Flower.find(:all).each do |f|

- f.life_time = 3

- f.save

- end

- end

10

- def self.down

- remove_column :flowers, :life_time

- end

- end

Right after adding the new column, we call reset_column_information() in
line 4 to activate it. Then, in line 5, we use the ordinary find(*args)

method to iterate over all flowers and set their lifetime to three days.

To implement a real migration strategy, you’d need to write support
scripts that work out which of your migrations to apply, but ActiveRe-

cord::Migration will simplify this task significantly.15

Conclusion

ActiveRecord can seem pretty magical, shielding you from the low-level
SQL needed to perform CRUD operations and joins between tables.
And, for much of the time, that’s good enough. But ActiveRecord can’t
do everything. SQL is still a very important technology. The examples
in this chapter were chosen to demonstrate ActiveRecord’s strengths. If
you cannot develop a complete database from scratch and instead have
to integrate with a legacy schema, things can get much more compli-
cated. ActiveRecord relies upon a lot of conventions, and modeling
complicated relationships between tables that have primary keys span-
ning several columns can be tricky to impossible.16

In any case you should study the ActiveRecord documentation care-
fully (or look at Agile Web Development with Rails [TH05]), because it

15The Ruby on Rails project has a sophisticated solution for migrating database
schemas. You should have a look at it.

16Read what the pros have to say: http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Tech/Ruby/IsRailsReady

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_migration2.rb
http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Tech/Ruby/IsRailsReadyForPrimeTime.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=50

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 51

has many useful features (such as table inheritance) that we did not
cover here. Additionally, its capabilities differ from database system, to
database system so, for example, not all the features that are available
with MySQL are also available if you use DB2.

2.4 Lightweight Directory Access Protocol (LDAP)

We use directories in the real world all the time: telephone books,
lists of network accounts, address books, the domain name service
(DNS), and so on. Typically, directories are organized hierarchically—as
trees—and their entries are often read and rarely modified.

Implementing directories with relational database systems can be a bit
complicated. Even though many database vendors added tools for hier-
archical queries to their products, using them is still far from being
convenient. (Some vendors, including Oracle, even ship a separate
directory service that is based on their relational database product.)

Because of this, a standard for accessing directories was created as
part of the X.500 directory specification. It was called Directory Access X.500 directory

specification
Protocol (DAP). Unfortunately, it was both complex and complicated,

Directory Access Protocoland no one implemented it completely.

As a consequence, an easier standard was defined: the Lightweight
Directory Access Protocol (LDAP).17 This is the most widespread direc-
tory service in use today.

I’ll give a short introduction to LDAP in the rest of this section. If you’re
already familiar with LDAP you can safely skip it and go directly to
Section 2.4, An Address Book for PragBouquet Customers, on page 55.

Simply put, LDAP is to directories what SQL is to relational databases.
It helps you to model real-world entities as directory entries (not as directory entries

tables) that have different attributes. Attributes have a name, a type,
and a multidimensional value; i.e., attributes can have a list of values.
Every directory entry (from now on we call them entries for short) has
at least one attribute called objectclass that determines which attributes
the entry has.

In LDAP you put all object classes and their according attribute type
definitions belonging to a particular problem domain into a schema. schema

17http://www.faqs.org/rfcs/rfc2251.html

http://www.faqs.org/rfcs/rfc2251.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=51

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 52

The core schema, for example, contains the definition of the residential-

Person object class:

objectclass (

2.5.6.10

NAME ' residentialPerson'

DESC ' RFC2256: an residential person'

SUP person

STRUCTURAL

MUST l

MAY (

businessCategory $ x121Address $ registeredAddress $

destinationIndicator $ preferredDeliveryMethod $

telexNumber $ teletexTerminalIdentifier $ telephoneNumber $

internationaliSDNNumber $ facsimileTelephoneNumber $

preferredDeliveryMethod $ street $ postOfficeBox $

postalCode $ postalAddress $ physicalDeliveryOfficeName $

st $ l

)

)

This looks similar to SQL’s create table statement, doesn’t it? The
biggest difference is that the type of the attributes (SQL calls them
columns) are defined separately. The meaning of the different declara-
tions and keywords is as follows:

• In LDAP, every definition begins with an object identifier (OID) that object identifier

uniquely identifies the object class or attribute type worldwide.
OIDs are numbers separated by periods and have to be registered
at the Internet Assigned Numbers Authority (IANA).18 Private OIDs
always start with 1.3.6.1.4.

• Object classes have a name that is defined with the NAME key-
word. To prevent name clashes, you should add a unique prefix
or postfix to your own object class and attribute type names.

• DESC lets you give a human-readable description of the object
class.

• The SUP keyword points to the superclass of an object class. LDAP
is object oriented, and an object class can inherit the attributes of
another class. Every class has at least one superclass called top.

• An LDAP class can be a STRUCTURAL, AUXILIARY, or ABSTRACT class.
Abstract classes are classes that are meant only to be base classes
(such as top). Classes meant to define completely new object

18http://www.iana.org/cgi-bin/enterprise.pl

http://www.iana.org/cgi-bin/enterprise.pl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=52

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 53

hierarchies are declared as STRUCTURAL. AUXILIARY classes let you
“mixin” attributes into existing structural classes.

• MUST expects a dollar-separated list which contains the classes’
mandatory attributes.

• MAY expects a dollar-separated list containing the classes’ optional
attributes.

Attribute types, such as the telephoneNumber attribute we have used in
the residentialPerson object class, are defined as follows:

attributetype (

2.5.4.20

NAME ' telephoneNumber'

DESC ' RFC2256: Telephone Number'

EQUALITY telephoneNumberMatch

SUBSTR telephoneNumberSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32}

)

Like an object class, the attribute type definition starts with an OID.
NAME and DESC have the same meaning as in the object class definition.
The remaining keywords have the following meaning:19

• EQUALITY specifies which algorithm should be used to test whether
two telephoneNumber attributes are equal. This is a little bit more
sophisticated than a simple string comparison, because telephone
numbers often contain characters only for better readability. For
example, “0049 (0) 1234 / 56 78” and “004912345678” are com-
pletely different strings, but they represent the same telephone
number. The LDAP standard defines a lot of equality algorithms.

• SUBSTR lets you define which algorithm should be used to check
whether a particular telephoneNumber number attribute contains
a particular substring.

• The SYNTAX element refers to the OID of the attributes’ syntax.
LDAP defines a syntax for many types that are used often such as
integers, strings, timestamps, and even JPEG files.

It’s not difficult to build your own object classes and attribute types, but
it’s certainly a good idea first to check whether the object class you need
has not already be defined. LDAP specifies dozens of base classes for

19To learn about attribute types, you have to read RFC 2252:
http://www.faqs.org/rfcs/rfc2252.html.

http://www.faqs.org/rfcs/rfc2252.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=53

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 54

all the elements you typically find in directories: person, residentialPerson,
organizationalPerson, and so on. Often it’s sufficient to derive a new class
from an existing one, adding just a few attributes. For example, if you
need to store address data containing the geographical position of the
address, you can derive a new geoPerson class from residentialPerson,
adding longitude and latitude attributes.

That’s all not too different from what you do with relational databases
(except for the inheritance features), and you could use LDAP to store
nonhierarchical data. But usually LDAP repositories represent hierar-
chical trees of entries belonging to one or more object classes.

Each entry has a unique name, the distinguished name (DN). The DN distinguished name

consists of several relative distinguished names (RDN). An RDN is a list relative distinguished

namesof attribute name/value pairs that are separated by a comma or a semi-
colon. For example, telephoneNumber=004912345678 could be an RDN
with the attribute name telephoneNumber and the value 004912345678. A
more precise RDN could be

cn=Maik Schmidt,telephoneNumber=004912345678

This additionally specifies the cn (“common name”) attribute of a person

object.

As we all know, a picture is worth approximately 2
10 words, so let’s have

a look at Figure 2.3, on page 59. The root entry of the directory in this root entry

figure has a DN consisting of two RDNs: dc=pragbouquet,dc=com.20 It
automatically becomes an RDN for all entries in the tree. The deeper
you go down the hierarchy, the longer the DNs and RDNs get. For
example, the distinguished names of all entries on the left side con-
tain the relative distinguished name uid=4711,dc=pragbouquet,dc=com.
Simply put, DNs specify leaves, and RDNs specify subtrees.

LDAP allows you to read, modify, and delete subtrees and single nodes
of your directories. In relational databases you specify particular rows
with a WHERE clause in your SQL statements. In LDAP you use RDNs
and DNs to do so.

We mentioned before that directory entries are often read and rarely
updated. Hence, the LDAP standard defined a technology that makes
an initial import of directory entries easy: the LDAP Data Interchange

Format (LDIF).21 It’s a simple textual file format for describing directory LDAP Data Interchange

Format

20dc stands for domain component. dc is a mandatory attribute for entries belonging
to the organization object class.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=54

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 55

entries. Here’s an LDIF representation of the root entry and one of its
descendants of our sample directory:

First (root) entry: the PragBouquet organization.

dn: dc=pragbouquet,dc=com

objectclass: dcObject

objectclass: organization

o: PragBouquet

dc: pragbouquet

Second entry: an address book for customer 4711.

dn:uid=4711,dc=pragbouquet,dc=com

objectclass: top

objectclass: person

objectclass: uidObject

uid: 4711

cn: John Jackson

sn: Jackson

description: Address book of John Jackson.

LDIF is line oriented. Comment lines start with a # character. All the
other lines represent an attribute and its corresponding value, sep-
arated by a colon. If an attribute has more than one value, it may
appear several times. Every LDAP server comes with a bunch of utili-
ties for modifying an existing repository and for importing .ldif files.

Although a lot of directory services work more or less invisibly, touched
only by your system administrators, chances are good that you’ll have
to integrate with one someday, because LDAP is gaining popularity
among application developers, too. In the following sections we’ll show
how to manipulate a directory service based on OpenLDAP with Ruby.

An Address Book for PragBouquet Customers

The marketing department made yet another astonishing observation:
there are people who celebrate their birthdays every year! Wouldn’t it
be great if PragBouquet customers could easily send them a bouquet
on those birthdays? And wouldn’t it be nice if PragBouquet customers
could be spared the extra work of entering the same address data for
the recipients, over and over again?

So, marketing came up with an ingenious idea. All PragBouquet cus-
tomers should have their own address book where they can store the
addresses of the people they’ve ever sent a bunch of flowers.

21http://www.faqs.org/rfcs/rfc2849.html

http://www.faqs.org/rfcs/rfc2849.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=55

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 56

The web shop team said that it’s not a big deal to create a user interface
for the address book, but they asked you to create the corresponding
backend services. Fortunately, they want to give Ruby on Rails22 a try,
so you can use Ruby for implementing the address book logic.

When thinking about things like address books, LDAP immediately
comes to mind, so you decide to implement the address book as a direc-
tory service using the OpenLDAP23 system. It has everything you need,
it’s available for free, it works on top of several database systems, and
it ships with several utilities for reading and manipulating data.

For the development phase we install an OpenLDAP server on our local
machine and configure it using this configuration file:

File 39 Line 1 include /sw/etc/openldap/schema/core.schema

-

- database bdb

- suffix "dc=pragbouquet,dc=com"

5 rootdn "cn=root,dc=pragbouquet,dc=com"

- rootpw secret

- directory /sw/var/openldap-data

- index objectclass eq

That is really all we need to get our address book application up and
running. We have to include the core schema, because we’ll need some
of its definitions (person, residentialPerson, and uidObject). In addition, we
have to define the database we want to use (the LDAP standard does
not define how the directory is to be stored). It’s a Berkeley DB (bdb)24

with all data files stored in directory /sw/var/openldap-data. The dis-
tinguished name of our root node (needed for administrative purposes
only) is cn=root,dc=pragbouquet,dc=com. We have to authenticate our-
selves using the nearly unbreakable plain-text password secret when-
ever we want to write to the database.

LDAP allows you to create a sophisticated directory layout for address
books comprising lots of organizational units or even define your own
object classes, but we will use a more modern and simpler approach.
We will organize our directory in a flat way using domain components
and uid attributes.25

22http://www.rubyonrails.com
23http://www.openldap.org
24http://sleepycat.com
25http://www.faqs.org/rfcs/rfc2377.html

http://media.pragprog.com/titles/fr_eir/code/db/ldap/slapd.conf
http://www.rubyonrails.com
http://www.openldap.org
http://sleepycat.com
http://www.faqs.org/rfcs/rfc2377.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=56

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 57

Before diving into Ruby code, let’s take a closer look at the directory
structure and then initialize our repository with some sample data
stored in init.ldif:

File 34 Line 1 # Create the PragBouquet organization.

- dn: dc=pragbouquet,dc=com

- objectclass: dcObject

- objectclass: organization

5 o: PragBouquet

- dc: pragbouquet

-

- # Create an address book for customer 4711.

- dn:uid=4711,dc=pragbouquet,dc=com

10 objectclass: top

- objectclass: person

- objectclass: uidObject

- uid: 4711

- cn: John Jackson

15 sn: Jackson

- description: Address book of John Jackson.

-

- # Create the first address book entry for customer 4711.

- dn:cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com

20 objectclass: top

- objectclass: residentialPerson

- cn: Marge Jackson

- sn: Jackson

- l: Springfield

25 st: IL

- street: Evergreen Terrace 42

- postalCode: 62701

- description: Don' t forget our wedding anniversary!

-

30 # Create the second address book entry for customer 4711.

- dn:cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: residentialPerson

- cn: P.H. Beans

35 sn: Beans

- l: Springfield

- st: MO

- street: Nuclear Powerplant Road 1

- postalCode: 65801

40 description: My boss.

-

- # Create an address book for customer 0815.

- dn:uid=0815,dc=pragbouquet,dc=com

- objectclass: top

45 objectclass: person

- objectclass: uidObject

- uid: 0815

http://media.pragprog.com/titles/fr_eir/code/db/ldap/init.ldif
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=57

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 58

- cn: Max Mustermann

- sn: Mustermann

50 description: Address book of Max Mustermann.

-

- # Create the first address book entry for customer 0815.

- dn:cn=Jane Doe,uid=0815,dc=pragbouquet,dc=com

- objectclass: top

55 objectclass: residentialPerson

- cn: Jane Doe

- sn: Doe

- street: 125 N. Arbitrary Street

- st: DC

60 l: Washington

- postalCode: 20500

- description: My Sweetheart!

The previous LDIF file should be nearly self-explanatory (comment lines
start with a # character). Every entry has a distinguished name (DN). distinguished name

All its other attributes are listed as “key: value” pairs. All attributes are
potentially multidimensional, so they may appear several times.

Note that we use the attribute uid to structure our address books. Every
web shop user is identified by a particular identifier (it might be a cus-
tomer ID, an e-mail address, or something similar). Whenever a cus-
tomer creates a completely new address book (not an address book
entry), a new directory entry for her user ID will be added. The direc-
tory belonging to our init.ldif file looks like Figure 2.3, on the next page
(we have left out most attributes for brevity).

Let’s start our server and load the initial data using the ldapadd com-
mand:

mschmidt:~/ldap> sudo slapd

Password:

mschmidt:~/ldap> ldapadd -c -x -D "cn=root,dc=pragbouquet,dc=com" \

> -W -f init.ldif

Enter LDAP Password:

adding new entry "dc=pragbouquet,dc=com"

adding new entry "uid=4711,dc=pragbouquet,dc=com"

adding new entry "cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com"

adding new entry "cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com"

adding new entry "uid=0815,dc=pragbouquet,dc=com"

adding new entry "cn=Jane Doe,uid=0815,dc=pragbouquet,dc=com"

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=58

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 59

Figure 2.3: Address Book Layout

Our .ldif file didn’t contain any errors, and six new entries have been
created.

OpenLDAP’s ldapsearch command allows us to query the repository.
It prints its results in LDIF. To become a bit more familiar with our
directory, let’s print the address book of the user identified by uid 4711:

mschmidt:~/ldap> ldapsearch -x -s one \

> -b ' uid=4711,dc=pragbouquet,dc=com' \

> ' (objectclass=*)'

extended LDIF

#

LDAPv3

base <uid=4711,dc=pragbouquet,dc=com> with scope one

filter: (objectclass=*)

requesting: ALL

#

Marge Jackson, 4711, pragbouquet.com

dn: cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com

objectClass: top

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=59

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 60

objectClass: residentialPerson

cn: Marge Jackson

sn: Jackson

l: Springfield

st: IL

street: Evergreen Terrace 42

postalCode: 62701

description: Don' t forget our wedding anniversary!

P.H. Beans, 4711, pragbouquet.com

dn: cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com

objectClass: top

objectClass: residentialPerson

cn: P.H. Beans

sn: Beans

l: Springfield

st: MO

street: Nuclear Powerplant Road 1

postalCode: 65801

description: My boss.

search result

search: 2

result: 0 Success

numResponses: 3

numEntries: 2

Obviously, everything is up and running. Our query returned the two
address book entries that belong to the customer identified by user ID
4711. But what are those options we passed to the command?

• -x uses the simple authentication mechanism. In our case the
communication is unencrypted, and no password is needed.

• -s one searches the directory “one level beyond base,” so it returns
all entries below our search base, but not the base itself. -s base

would have returned the base object only, and -s sub would have
returned the base object and all its descendants.

• -b ’uid=4711,dc=pragbouquet,dc=com’ sets the search base to the
distinguished name uid=4711,dc=pragbouquet,dc=com, so that all
entries of the subtree belonging to this DN will be returned.

• (objectclass=*) specifies a filter for the entries to be returned. The
(objectclass=*) filter is comparable to SQL’s SELECT * statement and
selects all entries no matter what attributes they have. If we were
interested in entries from Illinois only, we could have set the filter
to (st=IL).

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=60

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 61

In the following sections we’ll see how to manipulate our repository with
Ruby.

Ruby/LDAP

The Ruby/LDAP26 library was initially created by Takaaki Tateishi and
is currently maintained by Ian Macdonald. It supports all LDAP clients
that comply with the LDAP Application Program Interface.27 You can
use Ruby/LDAP to interface with OpenLDAP, Netscape, and ActiveDi-
rectory, among others.

As a first exercise we’ll try to read John Jackson’s address book. It
should not be too surprising that accessing a directory service looks
similar to accessing a relational database system:

File 33 Line 1 require ' pp'

- require ' ldap'

- include LDAP

-

5 begin

- connection = Conn.new(' 127.0.0.1' , LDAP_PORT)

- connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind do

- base_dn = ' uid=4711,dc=pragbouquet,dc=com'

10 scope = LDAP_SCOPE_ONELEVEL

- filter = ' (objectClass=*)'

- connection.search(base_dn, scope, filter) do |entry|

- pp entry.to_hash

- end

15 end

- rescue Exception => ex

- puts ex

- end

This prints the following:

{"cn"=>["Marge Jackson"],

"st"=>["IL"],

"l"=>["Springfield"],

"sn"=>["Jackson"],

"description"=>["Don' t forget our wedding anniversary!"],

"postalCode"=>["62701"],

"street"=>["Evergreen Terrace 42"],

"objectClass"=>["top", "residentialPerson"],

"dn"=>["cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com"]}

{"cn"=>["P.H. Beans"],

26http://ruby-ldap.sourceforge.net
27http://www.faqs.org/rfcs/rfc1823.html

http://media.pragprog.com/titles/fr_eir/code/db/ldap/first_access.rb
http://ruby-ldap.sourceforge.net
http://www.faqs.org/rfcs/rfc1823.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=61

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 62

"st"=>["MO"],

"l"=>["Springfield"],

"sn"=>["Beans"],

"description"=>["My boss."],

"postalCode"=>["65801"],

"street"=>["Nuclear Powerplant Road 1"],

"objectClass"=>["top", "residentialPerson"],

"dn"=>["cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com"]}

First, we create a new connection to the LDAP service by calling the
method LDAP::Conn.new(host='localhost', port=LDAP_PORT). We then set the
LDAP_OPT_PROTOCOL_VERSION option, because we’ve set up an LDAPv3
service (it’s OpenLDAP’s default).

In line 8 we bind our connection object to the server. The real work
is performed in the code block we pass to the bind(dn=nil, password=nil,

method=LDAP_AUTH_SIMPLE) method. The heart of our “program logic” is
the search() method. It expects the following parameters:

1. base_dn contains the base DN of the subtree to search in.

2. scope defines the search scope; one of: LDAP_SCOPE_ONELEVEL,
LDAP_SCOPE_SUBTREE, or LDAP_SCOPE_BASE.

In our example we have used LDAP_SCOPE_ONELEVEL, which means
“one level beyond base.” We are not interested in the base object
(the address book owner) itself.

If we had set the scope to LDAP_SCOPE_SUBTREE the program would
have printed the entry for the address book owner, too:

{"cn"=>["John Jackson"],

"sn"=>["Jackson"],

"uid"=>["4711"],

"description"=>["Address book of John Jackson."],

"objectClass"=>["top", "person", "uidObject"],

"dn"=>["uid=4711,dc=pragbouquet,dc=com"]}

...

LDAP_SCOPE_BASE returns only the base object (the address book
owner in our case).

3. filter contains the LDAP search filter to be used.

4. The attributes array contains the name of the attributes which will
be returned. If it is empty or nil (the default), all attributes are
returned.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=62

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 63

5. The attributes_only flag indicates whether only the names of the
attributes should be returned (true). When it is set to false (the
default), it returns both names and values.

6. seconds specifies the seconds portion of the search timeout. It
defaults to 0. If either this parameter or the useconds parameter is
greater than 0, the timeout mechanism will be activated.

7. useconds specifies the microseconds portion of the search timeout.
It defaults to 0. If this parameter or the seconds parameter is
greater than 0, the timeout mechanism will be activated. To set a
timeout of 2.5 seconds, set seconds to 2 and useconds to 500.

8. sort_attribute specifies the attribute by which to sort the search
result entries. If no sort attribute is specified (the default), the
order of the result entries is unpredictable.

9. sort_proc may contain a code block that is used for sorting the
entries returned by the server. It defaults to nil, so the order of the
result entries is unpredictable.

search() is an iterator. It expects a code block that gets passed the
current entry as an LDAP::Entry object. In line 13 we turn these objects
into hashes and print them, nicely formatted.

Reading LDAP entries seems to be fairly easy. Let’s try to create new
ones now. First let’s add an empty address book for Jane Doe (she is
already a member of Max Mustermann’s address book, but that doesn’t
matter, because for us they are two different customers):

File 32 Line 1 User = Struct.new(:uid, :forename, :surname)

- class AddressBook

- BASE_DC = ' dc=pragbouquet,dc=com'

-

5 attr_reader :user

-

- def initialize(connection, user)

- @connection, @user = connection, user

- end

10

- def AddressBook.create(connection, user)

- cn = user.forename + ' ' + user.surname

- adr_book = []

-

15 [

- [' objectclass' , %w(top person uidObject)],

- [' uid' , [user.uid]],

- [' cn' , [cn]],

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=63

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 64

- [' sn' , [user.surname]],

20 [' description' , [' Address book of ' + cn]]

-].each do |attr, values|

- adr_book << LDAP.mod(LDAP_MOD_ADD, attr, values)

- end

-

25 connection.add(

- ' uid=' + user.uid + ' ,' + BASE_DC,

- adr_book

-)

- AddressBook.new(connection, user)

30 end

- end

On line 1 we declare a User class that contains all the attributes we need
to manage an address book for a web shop user: a user ID (typically
something like a customer ID or an e-mail address), a first name, and
a surname.

New address books are created using create(connection,user). Objects
returned by initialize(connection,user) refer to address books that have to
exist already. This time we did not make our connection object available
as a singleton. If we decide to do so later, we can easily change our
class.

The interesting stuff happens in the create(connection,user) method. We
have to iterate over an array of two-dimensional arrays. Because LDAP
attributes can often appear multiple times, each entry contains the
name of an attribute to be added and an array of values.

LDAP::Mod objects represent modifications to a single attribute. These
modifications can be of type LDAP_MOD_ADD, LDAP_MOD_REPLACE, or
LDAP_MOD_DELETE (some LDAP servers define extension types).28 In line
22 we create LDAP::Mod objects for adding attributes by calling the
LDAP.mod(mod_type,attr,values) method and append them to the adr_book

array. The result is an array that contains “add modifications” for all
the attributes we’re storing for a new address book.

Finally, in line 25, we send our modifications list to the server and can
create a new AddressBook object:

File 32 Line 1 connection = Conn.new

- connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind(' cn=root,dc=pragbouquet,dc=com' , ' secret')

28If you want to add binary values, you have to logically or the modification type with
LDAP_MOD_BVALUES, so to add a binary value you’d use LDAP_MOD_ADD | LDAP_MOD_BVALUES.

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=64

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 65

-

5 user = User.new(' 23' , ' Jane' , ' Doe')

- address_book = AddressBook.create(connection, user)

We had to use a variant of the bind() method in line 3. Because we want
to use our connection for writing, we have to authenticate ourselves,
passing the root DN and the corresponding password.

Now that we’ve seen how to add entries to an LDAP database in prin-
ciple, let’s define a method for adding bouquet recipients to an existing
address book:

File 32 Line 1 Recipient = Struct.new(

- :forename, :surname, :street, :postal_code,

- :city, :state, :description

-)

5

- class AddressBook

- def udn

- ' uid=' + @user.uid + ' ,' + BASE_DC

- end

10

- def add(recipient)

- cn = recipient.forename + ' ' + recipient.surname

- entry = {

- ' objectclass' => %w(top residentialPerson),

15 ' cn' => [cn],

- ' sn' => [recipient.surname],

- ' l' => [recipient.city],

- ' street' => [recipient.street],

- ' postalCode' => [recipient.postal_code],

20 ' st' => [recipient.state || ' '],

- ' description' => [recipient.description || ' ']

- }

- @connection.add(' cn=' + cn + ' ,' + udn(), entry)

- end

25 end

There is not much to say here.

We declared a Recipient class that represents the happy recipients of a
bouquet, and an add(recipient) method that adds a Recipient object to
the address book of a particular user. This time we did not create an
array of LDAP::Mod objects.

Instead we used a hash containing all the attributes (and their cor-
responding values) for the new recipient. LDAP::Conn.add(dn, entry) can
handle a hash object, too. For convenience we defined the udn() method
that returns the distinguished name for a directory entry belonging to

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=65

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 66

a particular user ID. So, let’s add a new entry to Jane Doe’s address
book:

File 31 Line 1 user = User.new(' 23' , ' Jane' , ' Doe')

- address_book = AddressBook.new(connection, user)

- recipient = Recipient.new(

- ' Jose' , ' Rodriguez' ,

5 ' Casanova Street 6' , ' 77002' ,

- ' Houston' , ' TX' ,

- ' Rrrrrrr!'

-)

- address_book.add(recipient)

Hmmm, did it work? We’d better implement a method to print the whole
address book:

File 32 Line 1 class AddressBook

- def each

- @connection.search(

- udn,

5 LDAP_SCOPE_ONELEVEL,

- ' (objectClass=residentialPerson)',

- nil, false, 0, 0,

- ' sn'

-) do |recipient|

10 yield recipient

- end

- end

-

- def each_recipient

15 each do |entry|

- rec_data = entry.to_hash

- sn = rec_data[' sn'][0]

- cn = rec_data[' cn'][0]

- cn.sub!(Regexp.new(' ' + sn + ' $'), ' ')

20 yield Recipient.new(

- cn,

- sn,

- rec_data[' street'][0],

- rec_data[' postalCode'][0],

25 rec_data[' l'][0],

- rec_data[' st'][0],

- rec_data[' description'][0]

-)

- end

30 end

- end

Yeah, that’s Ruby code!

Starting on line 2, we define an iterator that passes every recipient to
a code block. In line 6 we define an object filter for the first time—we

http://media.pragprog.com/titles/fr_eir/code/db/ldap/add_recipient.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=66

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 67

Why Isn’t AddressBook#each Private?

Back in the dark and ancient days of object-oriented program-
ming, a lot of people were obsessed with declaring everything
private whenever possible (not when it made sense!).

Of course, purists may say that the each() method of the
AddressBook class should be declared private, because it passes
LDAP::Entry objects to its code block and reveals some of its
innards. What if you change your address book backend? Or
use a relational database instead of an LDAP repository?

They are right—in a way—but at the moment it’s more impor-
tant to create an API that’s easy to use and—more important—
easy to test. It’s more difficult to test a private each() method.
The users of your AddressBook class won’t care about method
visibility, but they will care about bugs that could have been
prevented by simple unit tests...

As a rule of thumb, you should care only about the visibility of
your methods when programming libraries that will be used by
a large number of programmers. When writing code for appli-
cations, it’s usually more important to think about issues such as
testability.

are interested only in objects of class residentialPerson—and in line 8 we
set the sort attribute to sn,; so the results are sorted by the recipient’s
surname attribute. In the preceding line we had to explicitly pass the
default values for all remaining parameters. We hope named parame-
ters will be introduced in Ruby 2.0....

The each_recipient() method is a piece of cake. In line 16 we turn each
LDAP::Entry object into a hash and use its entries to initialize a new Recip-

ient object. Line 19 is a bit more interesting: here we extract the recipi-
ent’s first name from the entries’ common name.

Now let’s print the address book of Jane Doe:

File 36 Line 1 user = User.new(' 23' , ' Jane' , ' Doe')

- address_book = AddressBook.new(connection, user)

- address_book.each_recipient { |r| pp r}

This produces the following:

#<struct Recipient

forename="Jose",

http://media.pragprog.com/titles/fr_eir/code/db/ldap/print_entries.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=67

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 68

surname="Rodriguez",

street="Casanova Street 6",

postal_code="77002",

city="Houston",

state="TX",

description="Rrrrrrr!">

That’s correct, and Jose Rodriguez’s entry was the one we expected.
But the formatting needs some adjustments:

File 32 Line 1 require ' ldap/ldif'

- class AddressBook

- include Enumerable

-

5 def to_ldif

- inject(' ') { |ldif,e| ldif << e.to_ldif }

- end

- end

That’s a perfect example for idiomatic Ruby: because we have defined
an each() method, we can include the Enumerable module. Because we
called include Enumerable, we can use the inject(initial) method to create
an LDIF representation of the whole address book with a single line of
code (note that we had to require ‘ldap/ldif’, too).

So, let’s do it:

File 37 Line 1 user = User.new(' 23' , ' Jane' , ' Doe')

- address_book = AddressBook.new(connection, user)

- puts address_book.to_ldif

Here’s the corresponding LDIF output:

dn: cn=Jose Rodriguez,uid=23,dc=pragbouquet,dc=com

cn: Jose Rodriguez

st: TX

l: Houston

objectClass: top

objectClass: residentialPerson

sn: Rodriguez

description: Rrrrrrr!

postalCode: 77002

street: Casanova Street 6

That sure looks like something that could be imported by any modern
address book application, doesn’t it?

Jane just realized that Jose did not get the last present she sent (the
biggest bouquet that has ever been produced by PragBouquet) because
Jane got the wrong house number: it’s 8 not 6. We need to change the
entry:

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/print_ldif.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=68

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 69

File 32 Line 1 class AddressBook

- def modify(recipient)

- cn = recipient.forename + ' ' + recipient.surname

- entry = {

5 ' l' => [recipient.city],

- ' street' => [recipient.street],

- ' postalCode' => [recipient.postal_code],

- ' st' => [recipient.state],

- ' description' => [recipient.description]

10 }

- @connection.modify(' cn=' + cn + ' ,' + udn(), entry)

- end

- end

LDAP::Conn.modify(dn,attributes) modifies the object identified by the dis-
tinguished name dn, setting its attributes to the content of the attributes

parameter. This parameter can be a hash or an array of LDAP::Mod

objects. The following snippet corrects Jose’s address:

File 35 Line 1 user = User.new(' 23' , ' Jane' , ' Doe')

- address_book = AddressBook.new(connection, user)

- recipient = Recipient.new(

- ' Jose' , ' Rodriguez' ,

5 ' Casanova Street 8' , ' 77002' ,

- ' Houston' , ' TX' ,

- ' Rrrrrrr!'

-)

- address_book.modify(recipient)

Although Jose definitely got Jane’s present this time, he was not as
enthusiastic as Jane would have liked, so she decides to remove him
from her address book. Fortunately, we have defined an appropriate
method already:

File 32 Line 1 class AddressBook

- def remove(recipient)

- cn = recipient.forename + ' ' + recipient.surname

- @connection.delete(' cn=' + cn + ' ,' + udn())

5 end

- end

The only new thing is the delete(dn) call we used in line 4. Now removing
Jose is easy:

File 38 Line 1 user = User.new(' 23' , ' Jane' , ' Doe')

- address_book = AddressBook.new(connection, user)

- recipient = Recipient.new(' Jose' , ' Rodriguez')

- address_book.remove(recipient)

Two weeks later Jane met a guy called Ron, and now she doesn’t need
her PragBouquet address book any longer:

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/modify_entry.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/remove.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=69

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 70

File 32 Line 1 class AddressBook

- def delete() @connection.delete(udn); end

- end

ActiveLDAP

After reading the preceding sections about databases, ActiveRecord,
and LDAP, you might be thinking that it would be a good idea to develop
an ActiveRecord equivalent for LDAP. What would you call it? Active-
LDAP, perhaps? I’ve got good news for you: Will Drewry had the same
idea. He has released a small library called ActiveLDAP that maps
LDAP repository structures to Ruby classes, and vice versa.29 Under
the hood, it is based on Ian Macdonald’s Ruby/LDAP library.

Let’s use ActiveLDAP to clean up our customer account data. Users
of PragBouquet’s web shop have to enter their e-mail address and a
password to create an account. These two values are stored in an LDAP
repository. Later, they can be used to log into the web shop, allowing
them to place new orders or look at current orders.

People who have an account do not necessarily have to be customers.
Unless someone actually ordered something from the shop, PragBou-
quet will not ask for address data, and so on. As a result, there are
nominal accounts that have been created but never have been used for
shopping. The marketing department wants to know how many there
are, and it wants the e-mail addresses belonging to these accounts.
(Maybe they can find out why these people never bought anything.)

PragBouquet runs an OpenLDAP server that manages the account data
of all customers and of all employees. The server has been configured
like this:

File 30 Line 1 include /sw/etc/openldap/schema/core.schema

- include /sw/etc/openldap/schema/cosine.schema

- include /sw/etc/openldap/schema/nis.schema

-

5 database bdb

- suffix "dc=pragbouquet,dc=com"

- rootdn "cn=root,dc=pragbouquet,dc=com"

- rootpw secret

- directory /sw/var/openldap-data

10 index objectclass eq

29http://ruby-activeldap.rubyforge.org

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/slapd.conf
http://ruby-activeldap.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=70

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 71

Because we store account data that depends on the posixGroup and
posixAccount object classes, we have to include the nis schema. This
schema in turn depends on the cosine schema, so we include that, too.

Sample data in the repository looks like this:

File 27 Line 1 # Create the PragBouquet organization.

- dn: dc=pragbouquet,dc=com

- objectclass: dcObject

- objectclass: organization

5 o: PragBouquet

- dc: pragbouquet

-

- # Create a container for all groups.

- dn:ou=Groups,dc=pragbouquet,dc=com

10 objectclass: organizationalUnit

- ou: Groups

-

- # Create a group for employee accounts.

- dn:cn=employees,ou=Groups,dc=pragbouquet,dc=com

15 objectclass: top

- objectclass: posixGroup

- cn: employees

- gidNumber: 42

-

20 # Create a group for customer accounts.

- dn:cn=customers,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: posixGroup

- cn: customers

25 gidNumber: 23

-

- # Create an account for employee Maik Schmidt.

- dn:uid=mschmidt,cn=employees,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

30 objectclass: account

- objectclass: posixAccount

- cn: Maik Schmidt

- uid: mschmidt

- uidNumber: 1000

35 gidNumber: 42

- userPassword: {SSHA}wFH8hVlIQKttNK2+334mh2K3PHBRv9Lt

- homeDirectory: /home/mschmidt

-

- # Create an account for employee Carl Coder.

40 dn:uid=ccoder,cn=employees,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: account

- objectclass: posixAccount

- cn: Carl Coder

45 uid: ccoder

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/init.ldif
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=71

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 72

- uidNumber: 1001

- gidNumber: 42

- userPassword: {SSHA}ytRSx9Sc8v3RmitArARTfPRdQRCGZRs9

- homeDirectory: /home/ccoder

50

- # Create an account for Homer Simpson.

- dn:uid=homer@example.com,cn=customers,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: account

55 objectclass: posixAccount

- cn: Homer Simpson

- uid: homer@example.com

- uidNumber: 2000

- gidNumber: 23

60 userPassword: {SSHA}DFTpR8b5R+x+p5E9fj1NZwrQQLRgfeBn

- homeDirectory: /tmp

-

- # Create an account for Jane Doe.

- dn:uid=jane_doe@example.net,cn=customers,ou=Groups,dc=pragbouquet,dc=com

65 objectclass: top

- objectclass: account

- objectclass: posixAccount

- cn: Jane Doe

- uid: jane_doe@example.net

70 uidNumber: 2001

- gidNumber: 23

- userPassword: {SSHA}lc7hXzhDP9T8qS51TUSE/89oLfq4EWti

- homeDirectory: /tmp

There are two groups, called “customers” and “employees.” Each has
two entries: Carl Coder and Maik Schmidt belong to the employees
group, and Homer Simpson and Jane Doe to the customers group.

In Ruby, we’ll represent these groups using classes Group and Customer.
Our hope is that (just as ActiveRecord does for database tables) Active-
LDAP will create them automatically for us.

But before we can use ActiveLDAP, we have to initialize it:

File 26 Line 1 require ' rubygems'

- require ' activeldap'

-

- ActiveLDAP::Base.connect(

5 :base => ' dc=pragbouquet,dc=com' ,

- :bind_format => ' cn=root,dc=pragbouquet,dc=com' ,

- :password_block => Proc.new { ' secret' },

- :allow_anonymous => false

-)

After loading the ActiveLDAP Gem, call ActiveLDAP::Base.connect(options),
passing it the following options:

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=72

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 73

• base defines the search base that will be appended to all distin-
guished name attributes.

• bind_format contains the distinguished name to be used for binding
to the server. Usually, this is the rootdn defined in the OpenLDAP
server configuration.

• password_block points to a code block that returns a password.
Defaults to nil.

• If allow_anonymous is true, it is possible to bind to the server anony-
mously after all other bind methods fail. Otherwise it is not.
Defaults to true.

The connect() method supports many more options, but we don’t need
them here. If you don’t want to modify data in your LDAP repository and
your server allows anonymous binding, you don’t have to call connect()
at all—ActiveLDAP will do it for you automatically:

File 26 Line 1 class Group < ActiveLDAP::Base

- ldap_mapping :dnattr => ' cn' , :prefix => ' ou=Groups'

- end

-

5 customers = Group.new(' customers')

- puts "The ' customers' group has the following attributes:"

- customers.attributes.each { |a| puts " #{a}" }

-

- puts "\nIts group id is #{customers.gidNumber}."

10

- puts "\nWe have the following groups:"

- Group.find_all(' *').each { |g| puts " #{g}" }

This produces the following:

The ' customers' group has the following attributes:

gidNumber

cn

memberUid

commonName

description

userPassword

objectClass

Its group id is 23.

We have the following groups:

employees

customers

Although the example is short, there’s a lot to be explained. In line 1 we
derive our Group class from ActiveLDAP::Base. That would be sufficient

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=73

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 74

if we were mapping a relational database using ActiveRecord, but for
LDAP we have to call ldap_mapping() in line 2. It accepts the following
parameters:

• prefix is the static (more or less) part of the distinguished name
that will always be prepended to the base defined in the connect()
call. It defaults to ‘ou=class name’ (‘ou=Group’ in our case).

• dnattr contains the variable part of the distinguished name of an
object. It defaults to ‘cn’, so we could have left it out this time.

• classes contains an array of all object classes whose attributes
should be mapped to the ActiveLDAP object. Its default value is
[‘top’].

When we create the ActiveLDAP object in line 5, it references the LDAP
object with the DN cn=customers,ou=Groups,dc=pragbouquet,dc=com.

In line 7 we use the reflective features of ActiveLDAP for the first time
and print a list of all attributes belonging to a Group object. ActiveLDAP
gives you accessors for all these attributes for free.

Then, in line 12, we read some real data from our repository with the
find_all() method. ActiveLDAP objects can use the following class meth-
ods to search for entries in a repository:

• find(config={}) returns the dnattr of the first entry that matches a
certain query. config can be a String or a Hash object. If it is a String,
it will be matched against dnattr. For example, Group.find(‘e*’)

returns the common name attribute of the first group entry whose
cn attribute starts with e. In our case, it returns ‘employees’.

If config is a hash, it may contain the keys:attribute,:value, and
:objects. The :attribute and :value parameters can be used to search
for objects where a particular attribute has a particular value. To
find the common name of the group having the group ID 23, run
the following statement:

Group.find(:attribute => ' gidNumber' , :value => ' 23')

Usually, you are not interested only in the dnattr of an object but
in the object itself. To get back complete objects, pass :objects =>

true:

Group.find(

:attribute => ' gidNumber' ,

:value => ' 23' ,

:objects => true)

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=74

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 75

• find_all(config={}) works like the find() method but returns all the
entries matching a certain query.

• search(config={}) gives you more or less direct access to the search()
method of the underlying Ruby/LDAP library. It implements the
:attrs, :base, :filter, and :scope parameters, corresponding to the
attributes, base_dn,filter, and scope parameters of the Ruby/LDAP
search() method described on page 61. The return value has the
same format, too:

Group.search(:filter => ' (cn=cus*)')

This returns the following:

[

{

"gidNumber" => ["23"],

"cn" => ["customers"],

"objectClass" => ["posixGroup"],

"dn" => ["cn=customers,ou=Groups,dc=pragbouquet,dc=com"]

}

]

The following code segment separates the customer account data from
the employee account data:

File 26 Line 1 class Customer < ActiveLDAP::Base

- ldap_mapping :dnattr => ' uid' ,

- :prefix => ' cn=customers,ou=Groups'

- end

5

- puts "Our customers are:"

- Customer.find_all(' *').each { |c| puts " #{c}" }

- h = Customer.new(' homer@example.com')

- puts "\nCommon name attribute:"

10 p h.cn

- p h.cn(true)

This produces the following:

Our customers are:

homer@example.com

jane_doe@example.net

Common name attribute:

["Homer Simpson"]

"Homer Simpson"

The definition of the Customer class does not differ much from the Group

class—we just set the dnattr and prefix attributes differently. In lines
10 and 11, we print the common name attribute of a Customer object.

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=75

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 76

Usually, all attribute values will be returned as an array, as every LDAP
attribute is potentially multidimensional. If you want to get back an
attribute value as a String object, pass true to the accessor.

We have everything at hand now to solve our little problem. The fol-
lowing method expects an array containing the e-mail addresses of all
customers who have ever bought something in our web shop. It returns
a list of e-mail addresses of all people who have created an account but
have never used it to send some flowers:

File 26 Line 1 def get_unused_accounts(used_accounts)

- unused_accounts = []

- Customer.find_all(' *').each do |email|

- unused_accounts << email if !used_accounts.include?(email)

5 end

- unused_accounts

- end

-

- puts get_unused_accounts([' homer@example.com'])

Our original job is done, but since we have a test system up and run-
ning anyway, wouldn’t it be fun to see what other interesting features
ActiveLDAP has to offer?

Perhaps you want to delete the unused accounts?

File 26 Line 1 def delete_unused_accounts(used_accounts)

- Customer.find_all(' *').each do |cn|

- Customer.new(cn).delete if !used_accounts.include?(cn)

- end

5 end

Or perhaps you want to tag them with a special note in their description
attribute?

File 26 Line 1 def mark_unused_accounts(used_accounts)

-

- Customer.find_all(' *').each do |cn|

- if !used_accounts.include?(cn)

5 c = Customer.new(cn)

- c.description = ' unused'

- c.write

- end

- end

10 end

ActiveLDAP gives us all the CRUD methods for free. This feature alone
makes it a valuable tool. But it gives us even more, allowing us to define
relationships between objects as if we were working with a relational
database:

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=76

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 77

File 28 Line 1 class Customer < ActiveLDAP::Base

- ldap_mapping :dnattr => ' uid' ,

- :prefix => ' cn=customers,ou=Groups'

-

5 belongs_to :groups,

- :class_name => ' Group' ,

- :foreign_key => ' gidNumber' ,

- :local_key => ' gidNumber'

- end

10

- h = Customer.new(' homer@example.com')

- h.groups.each { |g| puts g.cn }

This prints the following:

customers

Great, isn’t it? In line 5 we declare that every customer belongs to a
group, with the relationship defined by the gidNumber attribute in both
the Group and Customer classes. The first parameter of the belongs_to()
method is the name of the new member variable to be created in the
Customer class. The second parameter is a hash that contains up to
three parameters: :class_name points to the class to which your current
class belongs. :foreign_key determines which attribute of the “foreign”
class should be used to build the relationship, and :local_key determines
which attribute of the local class will be considered.

The newly created groups method accepts an optional boolean argu-
ment. If you pass true, it returns an array of Group objects. If you pass
false, you’ll get back an array of strings containing the dnattr of every
group to which our customer belongs.

If you know ActiveRecord, you’ll know that if you have a method called
belongs_to(), there’s likely to be a method called has_many(), too:

File 29 Line 1 class Group < ActiveLDAP::Base

- ldap_mapping :dnattr => ' cn' , :prefix => ' ou=Groups'

- has_many :members,

- :class_name => ' Employee' ,

5 :local_key => ' gidNumber' ,

- :foreign_key => ' gidNumber'

- end

-

- class Employee < ActiveLDAP::Base

10 ldap_mapping :dnattr => ' uid' ,

- :prefix => ' cn=employees,ou=Groups'

- end

-

- employees = Group.new(' employees')

15 employees.members.each { |e| puts e.cn }

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/relationships.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/relationships2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=77

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 78

This outputs the following list:

Maik Schmidt

Carl Coder

There is really not much to say here: has_many(member,options) works
exactly like belongs_to(member,options).

Conclusion

ActiveLDAP is in an early stage of development, and it will certainly
take some time until all the details are settled. Despite this, it’s an
amazingly useful tool and makes working with LDAP a breeze.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=78

Chapter 3

Processing XML
Exchanging data between processes, components, and companies has
always been a vital part of enterprise software. Many attempts have
been made to create a universal format for data exchange, but they all
have failed for various technical and political reasons.

It’s hard to believe it took several decades before something like a stan-
dard for a platform-independent data representation was both created
and accepted. The eXtensible Markup Language (XML) has, over the eXtensible Markup

Language
years, evolved into such an industry standard for portable data. That’s
because it has some useful characteristics:

• It is plain text.

• It has been standardized by the W3C.1

• It is machine independent (so low-level details such as byte order-
ing do not matter).

• It is easy to use.

• It supports international character sets.

XML is supported by all modern programming languages. The current
Ruby distribution comes with good XML support, but compared to lan-
guages such as Java and C#, there is still a lot to be done. On the one
hand, it is easy to create and parse XML documents in Ruby. On the
other hand, Ruby lacks support for some important technologies such
as Document Type Definitions (DTDs), schema validation, and XSLT.

1http://www.w3.org/XML

http://www.w3.org/XML

CHAPTER 3. PROCESSING XML 80

REXML: What’s the Difference?

Although several XML parsers exist for Ruby (for example,
NQXML∗ or xmlparser†), the most popular is Sean Russel’s
REXML.

The majority of XML parsers are based on either the SAX2 or
DOM APIs. These have been standardized and hence look
the same in all programming languages. That’s certainly a
good thing, because if you’re familiar with DOM programming
in Java, you do not have to learn a lot to do DOM programming
in C++ or Ruby.

The downside is that general approaches such as DOM are a
compromise and tend not to be tailored to exploit the strengths
of a particular language. Sean Russel felt so too, and while
looking for better alternatives he found the Electric XML library
for Java (created by a company called The Mind Electric).‡

REXML is a pure Ruby implementation of the original Electric
XML API.

REXML is not a copy of the Java API but a genuine Ruby port.
All classes and methods have been renamed to follow Ruby
conventions, and special Ruby features (such as iterators) have
been used wherever it was possible and advantageous. In
addition, REXML comes with a lot of features that were not part
of the original Electric XML interface. There is support for SAX2,
a proprietary stream parsing API, an experimental pull parser,
and an experimental RELAX NG validator.

∗http://nqxml.sourceforge.net
†This is a binding for James Clark’s expat XML parser. It can be found under

http://www.yoshidam.net/Ruby.html#xmlparser.
‡The company is called Webmethods today, and the Electric XML library is

now integrated into their products. It’s no longer available as a stand-alone
product.

http://nqxml.sourceforge.net
http://www.yoshidam.net/Ruby.html#xmlparser
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=80

A SHORT XML REMINDER 81

Figure 3.1: Tree Representation of a CD

It’s unlikely that you can find a single company in this world that does
not use XML in some capacity and a lot of enterprise data is no longer
only stored in tables but between angle brackets. Hence, you better
know how to extract it and in the following sections we’ll cover the
most important XML-processing requirements: we’ll show you how to
create XML documents, how to parse them, and how to validate them.

3.1 A Short XML Reminder

XML is a subset of the more flexible and more liberal Standard General-

ized Markup Language (SGML). It allows you to define your own markup Standard Generalized

Markup Language
languages for describing data organized hierarchically in a tree struc-
ture. For example, Figure 3.1 shows a possible tree representation of
an audio CD. Its XML representation might look like this:

<?xml version=' 1.0' encoding=' ISO-8859-1' ?>

<!-- Comments look like this! -->

<cd title="Developer' s Dreams">

<track id=' 1' title=' No More Bugs' playing-time=' 3:49' />

<track id=' 2' title=' Unlimited Resources' playing-time=' 4:14' />

<track id=' 3' title=' Fat-Free Fast Food' playing-time=' 1:23' />

</cd>

All XML documents must be well-formed, which roughly means the
following:

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=81

A SHORT XML REMINDER 82

• The document must have a single top-level element.

• All elements have to be closed explicitly, and they have to be
nested properly; i.e., <a> is not allowed, because ele-
ment must be closed before element <a>.

• Attributes always have a value, and this value has to be set in
single or double quotes. HTML attributes such as NOWRAP or
colspan=5 are not allowed in XML documents.

Should I Use Elements or Attributes?

Sometimes it’s just a matter of taste, but more often it’s a decision that
should be made carefully.

The following cases force us to use elements:

• The information you want to describe can potentially occur more
than once or can potentially have child elements. It’s important to
plan for such cases up front—if you are not sure, use an element.

• Whitespace characters are significant.

In other cases, we prefer attributes over elements:

• You do not have to worry about whitespace characters. Using
attributes, it’s clear that hello differs from hello .

• Attributes often produce less noise and are more readable. For
example, compare this:

<person>

<name>Homer</name>

<middle-name>Jay</middle-name>

<surname>Simpson</surname>

</person>

to this:

<person name="Homer" middle-name="Jay" surname="Simpson"/>

• Attributes are slightly faster, because they usually need less space
than elements, and therefore less text has to be processed by the
XML parser (this is especially true for documents with long tag
names for elements that get opened and closed over and over
again). In addition, they increase parsing speed because of the
inner structure of most XML parsers. Many XML parsers are event
driven and use the SAX2 API. They search for the start tag of ele-
ments, and whenever they find one, they call the startElement()

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=82

GENERATING XML DOCUMENTS 83

method, transmitting the element name and a list of all attributes
belonging to the current element.

If you have a document fragment looking like this:

<book>

<title>Pragmatic Project Automation</title>

<isbn>0974514039</isbn>

<publisher>Pragmatic Bookshelf</publisher>

</book>

startElement() is called four times (for each of the elements <book>,
<title>, <isbn>, and <publisher>), and calling methods in pro-
gramming languages supporting polymorphism is expensive. If we
use attributes instead of elements, our document will look like
this:

<book title=' Pragmatic Project Automation' isbn=' 0974514039'

publisher=' Pragmatic Bookshelf' />

Now startElement() is called only once for every <book> element.
You might not consider this a big performance boost, but if you’re
Amazon.com and have to parse several hundred thousand books
having dozens of elements, it certainly will matter.

3.2 Generating XML Documents

Generating XML documents is often necessary for communicating with
other systems. If you are using technologies such as SOAP or XML-
RPC, you do not have to worry about the XML generation yourself,
because it will be done under the hood by supporting libraries. But
there are still many applications today expecting XML documents that
you have to create “manually.”

In this section we’ll show you various techniques for generating XML
documents. You’ll see how to create documents using rather naive
approaches (such as writing raw strings). We’ll then look at more
sophisticated technologies, such as the REXML API.

To Score Well

From the beginning, customers using PragBouquet’s web shop could
freely choose from various payment methods: prepaid, invoice, or credit
card. But after some months you came to realize that there were actu-
ally customers who cheated you. They ordered flowers but never paid
for them. Therefore, the company decided to buy a so-called e-score

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=83

GENERATING XML DOCUMENTS 84

Figure 3.2: e-score architecture

application. This assigns a risk score to each of your new customers.
A customer with a low e-score will be allowed to order only if he or she
pays up front.

The e-score provider uses a proprietary protocol but gives you a proxy
application that hides all that stuff behind an XML/HTTP layer. It
expects an XML file containing a list of customers and returns a similar
document where every customer is assigned a risk score. You can see
the architecture in Figure 3.2 .

It’s your task to convert a customer address into an XML document
acceptable to the e-scoring application. Based on the response, you’ll
then decide which payment options will be offered to the customer.

The input documents are simple: they consist of a list of <person> ele-
ments. Of course, the e-scoring company—like every company employ-
ing more than two people—defined its own XML markup, looking like
this:

File 169 <persons>

<person name=' Max' surname=' Mustermann' >

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

</persons>

Generating XML Documents Using Raw Strings

Because XML documents are nothing but text, it’s tempting to generate
them using strings. So, let’s start with a simple helper function that
tags a certain value:

http://media.pragprog.com/titles/fr_eir/code/xml/persons.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=84

GENERATING XML DOCUMENTS 85

File 174 Line 1 def tag(tag_name, value, attrs ={})

- tmp = "<#{tag_name}"

- if attrs

- attrs.each { |k,v| tmp += " #{k}=' #{v}' " }

5 end

- tmp + ">#{value}</#{tag_name}>\n"

- end

-

- puts tag(' hello' , ' world')

10 puts tag(' a' , ' b' , { ' c' => ' d' })

This produces the following:

<hello>world</hello>

b

For generating our <person> elements, we’ll take the object-oriented
road—we’ll create classes for both addresses and persons. Because
they are only storage classes, we use Struct to create them automatically
then add to_xml() methods to turn them into XML documents:

File 174 Line 1 Address = Struct.new(:street, :city, :postal_code)

-

- class Address

- def to_xml

5 tag(' address' ,

- tag(' street' , self.street) +

- tag(' city' , self.city) +

- tag(' postal-code' , self.postal_code)

-)

10 end

- end

One of the things that makes working with Ruby so much fun is reopen-
ing classes. After Struct created an Address class for us, we reopened its
definition and added our to_xml() method. It works the same way for
the Person class:

File 174 Line 1 Person = Struct.new(:name, :surname, :address)

-

- class Person

- def to_xml

5 tag(' person' ,

- self.address.to_xml, {

- ' name' => self.name,

- ' surname' => self.surname

- }

10)

- end

- end

Finally, we check whether it all works together:

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=85

GENERATING XML DOCUMENTS 86

File 174 Line 1 address = Address.new(

- ' Musterstr. 42' ,

- ' Berlin' ,

- ' 11011'

5)

- max_m = Person.new(' Max' , ' Mustermann' , address)

- puts max_m.to_xml

This produces the following:

<person name=' Max' surname=' Mustermann' ><address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

Although everything looks fine, you should follow this approach only in
the simplest cases, because it has some serious disadvantages. For
example, you cannot move around and refine document fragments.
This is a pity, because XML is such a flexible format and it happens
often that new elements or attributes get added to existing document
structures. If you’ve worked exclusively with strings, you have to either
parse or manipulate them directly to add the new stuff.

Let’s assume we have access to one of those new localization services
that determine the geographic coordinates of an address, and you want
to add this information to the XML representation of the Address objects
without both adding a position attribute and changing to_xml().

Accessing the localization service is easy: you give it the street, the
postal code, and the city, and it returns a pair of coordinates:

address = Address.new(

' Musterstr. 42' ,

' 11011' ,

' Berlin'

)

coordinates = LocalizationService.locate(address)

puts coordinates.latitude # -> 51.5245

puts coordinates.longitude # -> 6.75

Representing the coordinates in XML would probably look like this:

<position latitude=' 51.5245' longitude=' 6.75' />

How can you add this to an existing XML file containing <address> ele-
ments? You can try using regular expressions and all the fancy meth-
ods of the String class, but think about it for a moment: did you consider
all special cases? What about comments or CDATA sections? What

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=86

GENERATING XML DOCUMENTS 87& a m p ;& & g t ;& l t ; >< & a p o s ; " & q u o t ;'C h a r a c t e r X M L E n t i t y C h a r a c t e r X M L E n t i t y
Figure 3.3: XML Standard Entities

about <address> elements that don’t belong to <person> elements?
Or <address> elements that already have a <position> element?

You have to admit that it can get complicated. Sometimes it’s nearly
impossible to perform this kind of manipulation without parsing the
document fragment, adding the new stuff using conventional DOM
manipulation methods, and finally creating a new XML string again.

Believe it or not, we still have some disadvantages left. For example, if
you work with raw strings, chances are good that you forget to mark up
elements correctly as we did in our tag() function previously. What if a
person’s address is Main Street 7 & 8? The resulting <street> element
would be as follows:

<street>Main Street 7 & 8</street>

Every standards-compliant XML parser will reject this, complaining
that your document isn’t well-formed—blanks are not allowed after an
ampersand. Whenever the parser sees an ampersand, it assumes it
introduces an entity reference, which has to have an alphanumeric
name, ends with a semicolon, and has been defined in a Document
Type Definition (DTD). Similar things will happen whenever you use one
of XML’s special characters. If you really want to use strings for gen-
erating your documents, you’ll have to replace these characters with
their standard entities shown in Figure 3.3 .

Adding such a mechanism to our tag() method is easy:

File 173 def encode_markup(text)

return ' ' if text.nil? or text == ' '

text.gsub!(' &' , ' &')

text.gsub!("' ", ' '')

text.gsub!(' "' , ' "')

text.gsub!(' <' , ' <')

text.gsub!(' >' , ' >')

end

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/markup.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=87

GENERATING XML DOCUMENTS 88

def tag(tag_name, value, attrs = nil)

tmp = "<#{tag_name}"

if attrs

attrs.each { |k,v| tmp += " #{k}=' #{encode_markup(v)}' " }

end

tmp + ">#{encode_markup(value)}</#{tag_name}>\n"

end

puts tag(' favorite' , ' Starsky & Hutch')

This produces the following:

<favorite>Starsky & Hutch</favorite>

You’ll face more subtle problems if you ignore character set issues (as
we did in the tag() method). An XML document that does not explicitly
specify a character set encoding in its header automatically is supposed
to contain only UTF-8 characters. For ASCII texts this is perfect, but
what if you have a customer from Germany with the popular surname
Müller? In UTF-8 the German umlaut, ü, is represented as a two-byte
sequence (0xc2, 0x81), but it’s a single byte (0xfc) in the character set
ISO-8859-1 (see Section 6.1, Internationalization and Localization, on
page 240, for more details).

Whenever you get text data from an external source, from a database,
from a file, or from an HTTP server, for example, you have to determine
what character set encoding has been used.

If the specified encoding and the document’s content do not match,
your XML parser will reject it or—even worse—will misinterpret some
characters. Before reading on, you should have a look at Joel Spol-
sky’s awesome essay The Absolute Minimum Every Software Developer

Absolutely, Positively Must Know About Unicode and Character Sets (No

Excuses!).2

For our documents we now have two choices: we can set the encoding
attribute in the XML header correctly, or we can convert our final doc-
ument into UTF-8. To convert texts between different character sets in
Ruby, you can use the Iconv library. Its interface is simple: a single Iconv

line of code converts text encoded in the ISO-8859-1 character set into
the UTF-8 character set:

Iconv.conv(' utf-8' , ' iso-8859-1' , ' Müller')

2http://www.joelonsoftware.com/articles/Unicode.html

http://www.joelonsoftware.com/articles/Unicode.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=88

GENERATING XML DOCUMENTS 89

Our final version of method tag() will use this, assuming that all ele-
ment and attribute values are encoded in ISO-8859-1:

File 172 Line 1 require ' iconv'

-

- def empty?(text) text.nil? or text == ' ' ; end

-

5 def encode_markup(text)

- return ' ' if empty?(text)

- text.gsub!(' &' , ' &')

- text.gsub!("' ", ' '')

- text.gsub!(' "' , ' "')

10 text.gsub!(' <' , ' <')

- text.gsub!(' >' , ' >')

- end

-

- def to_utf8(text)

15 Iconv.conv(' utf-8' , ' iso-8859-1' , text)

- end

-

- def encode(value)

- encode_markup(to_utf8(value))

20 end

-

- def tag(tag_name, value, attrs ={})

- tmp = "<#{tag_name}"

- if !attrs.nil? and !attrs.empty?

25 attrs.each { |k,v| tmp += " #{k}=' #{encode(v)}' " }

- end

- if !empty?(value)

- tmp += ">#{encode(value)}</#{tag_name}>\n"

- else

30 tmp += "/>\n"

- end

- end

This version is much better than our first one, but it’s also much longer,
and it still has some flaws that cannot be solved easily. For example, it
does not check whether element and attribute names are valid accord-
ing to the XML standard (be honest: do you know the rules?). Addition-
ally, you cannot reformat the generated document—you do not have
much control over indentation, line breaks, etc. Obviously, generating
well-formed XML documents is not as simple as it seems.

Generating XML Documents with REXML

Although REXML does not implement the original DOM interface, it
offers an API based on trees. Using this API you can convert an XML
document into trees and create trees that represent XML documents.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/better_tag.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=89

GENERATING XML DOCUMENTS 90

Everything starts with a document. With REXML you create it like this:

require ' rexml/document'

doc = REXML::Document.new

An empty document is as useful as an empty bottle of beer. Let’s add
an element to it:

root = REXML::Element.new(' my-root')

doc.add_element(root)

puts doc.to_s

This produces the following:

<my-root/>

Creating attributes makes our toolbox complete:

root.add_attribute(' an-attribute' , ' a-value')

puts doc.to_s

This results in the following:

<my-root an-attribute=' a-value' />

Now we can turn our Address object into XML the right way.

File 174 Line 1 class Address

- def to_xml

- adr = REXML::Element.new(' address')

- adr.add_element(' street').add_text(self.street)

5 adr.add_element(' city').add_text(self.city)

- adr.add_element(' postal-code').add_text(self.postal_code)

- adr

- end

- end

10

- address.to_xml.write($stdout, 0)

This produces the following:

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

That’s how it should look: every element is created explicitly, and the
to_xml() method no longer returns a simple string but a document frag-
ment. In addition, we can now use the write() method. This allows us
to control the string representation of an XML document. It expects an
object derived from IO and the level of indentation to be used.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=90

GENERATING XML DOCUMENTS 91

The result of the to_xml() method can be processed further by other
methods now. Adding coordinates to an Address object, for example,
can be done like this:

File 174 Line 1 adr = address.to_xml

- pos = REXML::Element.new(' position')

- pos.add_attribute(' longitude' , ' 12.345')

- pos.add_attribute(' latitude' , ' 56.789')

5 adr.add_element(pos)

- adr.write($stdout, 0)

This produces the following:

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

<position latitude=' 56.789' longitude=' 12.345' />

</address>

REXML correctly encodes markup characters, but you still can’t ignore
character set encoding issues. REXML internally uses the UTF-8 char-
acter set, so you have to encode all strings before inserting them into
a REXML document, and you have to decode them accordingly when
reading them back.

We already saw how to achieve this using the Iconv library in Sec-
tion 3.2, Generating XML Documents Using Raw Strings, on page 84.
You can also use Ruby’s unpack() and pack() methods.

"hello".unpack("C*").pack("U*") turns a string into UTF-8. To do the oppo-
site, call "hello".unpack("U*").pack("C*").

Builder

As we’ve seen, building well-formed XML documents is not a trivial
task. So people constantly try to simplify it. One of those people is
Jim Weirich, who produced the Builder library for Ruby.3 Its core class
is Builder::XmlMarkup, which provides everything you need to generate
well-formed XML documents. For example:

File 158 Line 1 require ' rubygems'

- require ' builder'

-

- doc = Builder::XmlMarkup.new

5 doc.person(:name => ' Max' , :surname => ' Mustermann')

- puts doc.target!

3http://builder.rubyforge.org

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://builder.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=91

GENERATING XML DOCUMENTS 92

This prints the following little document:

<person surname="Mustermann" name="Max"/>

The technique is probably familiar to Ruby fans: Builder defines a special
handler named method_missing() that catches calls to unknown methods
and turns them into XML tags with the same name as the method that
was called originally. In addition, a hash of parameters is turned into
attributes of the newly created element.

The resulting document can be obtained by calling target!() as we did in
line 6.

To build hierarchical documents, XmlMarkup has a nice syntax: if you
pass a code block to one of those “unknown” methods, it gets passed
the current element automatically:

File 158 Line 1 xml = ' '

- doc = Builder::XmlMarkup.new(:target => xml)

- doc.person(:name => ' Max' , :surname => ' Mustermann') { |person|

- person.address { |address|

5 address.street(' Hauptstr. 42')

- }

- }

- puts xml

This produces the following:

<person surname="Mustermann" name="Max"><address>

<street>Hauptstr. 42</street></address></person>

Intuitive, isn’t it? Note that in line 2 we have specified the target option
and set it explicitly to a String object. Hence, Builder fills up the xml

variable with our document. The target option accepts any object that
responds to the <<(text) operator.

That’s all very nice, but the formatting of the result document is, let’s
say, suboptimal. Fortunately, there is the indent option:

File 158 Line 1 xml = ' '

- doc = Builder::XmlMarkup.new(:target => xml, :indent => 2)

- doc.person(:name => ' Max' , :surname => ' Mustermann') { |person|

- person.address { |address|

5 address.street(' Hauptstr. 42')

- address.tag!(' postal-code' , ' 12345')

- address.city(' Musterstadt')

- }

- }

10 puts xml

This prints this beautiful XML document:

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=92

GENERATING XML DOCUMENTS 93

<person surname="Mustermann" name="Max">

<address>

<street>Hauptstr. 42</street>

<postal-code>12345</postal-code>

<city>Musterstadt</city>

</address>

</person>

There’s also a margin option, which specifies the indentation offset, so
you can format your XML documents in any way you like.

Did you notice the little trick with the postal code in line 6? postal-

code() is not a valid method name in Ruby, but <postal-code> is a
perfectly valid XML tag. To get around this, Builder lets you explicitly
insert tags using the tag!(sym,*args,&block) method.

To make sure that we do not get into trouble when XML documents
without an explicit encoding get prohibited by federal law, we better
add another line of code:

File 158 Line 1 xml = ' '

- doc = Builder::XmlMarkup.new(:target => xml, :indent => 2)

- doc.instruct!

-

5 doc.person(:name => ' Max' , :surname => ' Mustermann') { |person|

- person.address { |address|

- address.street(' Hauptstr. 42')

- address.tag!(' postal-code' , ' 12345')

- address.city(' Musterstadt')

10 }

-

- person.position(:longitude => ' 12.345' , :latitude => ' 56.789')

- }

-

15 puts xml

This produces this perfect XML document:

<?xml version="1.0" encoding="UTF-8"?>

<person surname="Mustermann" name="Max">

<address>

<street>Hauptstr. 42</street>

<postal-code>12345</postal-code>

<city>Musterstadt</city>

</address>

<position longitude="12.345" latitude="56.789"/>

</person>

That’s nearly all you have to know to create XML documents with
Builder, but for some special cases you’d might need to use some of
the following methods as well:

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=93

GENERATING XML DOCUMENTS 94

text!(text)

Allows you to create elements with mixed content:

File 158 doc = Builder::XmlMarkup.new(:indent => 2)

doc.foo { |f|

f.bar

f.text! "I live outside the bar!\n"

}

puts doc.target!

This prints the following:

<foo>

<bar/>

I live outside the bar!

</foo>

cdata!(data)

Inserts a CDATA section into an XML document:

File 158 doc = Builder::XmlMarkup.new

doc.cdata!(' Do not run with scissors!')

puts doc.target!

This prints the following:

<![CDATA[Do not run with scissors!]]>

comment!(text)

Inserts a comment into an XML document:

File 158 doc = Builder::XmlMarkup.new

doc.comment!(' Some comments are totally useless!')

puts doc.target!

This prints the following:

<!-- Some comments are totally useless! -->

declare!(instruction,*args,&block)

Allows you to insert DTD declarations into your document:

File 158 doc = Builder::XmlMarkup.new

doc.declare!(:ENTITY, :pp, ' Pragmatic Programmers')

puts doc.target!

This prints the following:

<!ENTITY pp "Pragmatic Programmers">

Conclusion

It should be clear by now that creating XML documents is by no means
as simple as it seems. Because of this, you’ve probably already received

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=94

PROCESSING XML DOCUMENTS 95

or created documents that were not well-formed or that contained char-
acters that did not match the document’s encoding.

Although it is tempting to use a raw string approach, it does not scale
very well and has a lot of drawbacks. Compared to using REXML or
Builder, it’s even more complex and results in more code (and ugly code).
From a pragmatic point of view it is certainly beneficial to do it correctly
from the beginning. In Refactoring to Patterns [Ker04], you will even find
patterns that help you to refactor “I absolutely wanted to create XML
myself” code.

3.3 Processing XML Documents

Imagine you’ve sent a bunch of flowers to a person you like. Wouldn’t
it be interesting to know whether he or she got the flowers on time, or
even whether the person refused the flowers? Fortunately, all big parcel
services offer their customers the opportunity to check the status of a
parcel using the Internet.

PragBouquet works together with several parcel services. Although we
could simply give our customers the tracking numbers assigned by the
particular service to their order, that means they would then need to
visit the shipping service’s site and enter that number to track their
flowers. That isn’t great customer service on our part.

A better solution is to periodically track the status of all undelivered
orders in our system and inform our customers about all important
events in the life of a delivery via e-mail or SMS messages. To do this,
we’ll have to take a closer look at the parcel service’s web services.

A typical parcel tracking result looks like this:

File 177 <tracking-result>

<parcel-history tracking-no=' 2X42' >

<event timestamp=' 2005-05-02T04:05:00'

state=' picked-up' />

<event timestamp=' 2005-05-02T08:30:00'

state=' first-delivery-attempt' />

<event timestamp=' 2005-05-03T09:05:00'

state=' second-delivery-attempt' />

<event timestamp=' 2005-05-04T10:15:00'

state=' refused-damaged' >

<consignee>Mrs. Smith</consignee>

</event>

<event timestamp=' 2005-05-04T19:07:00' state=' returns-to-sender' />

</parcel-history>

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/packages.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=95

PROCESSING XML DOCUMENTS 96

<parcel-history tracking-no=' 2X43' >

<event timestamp=' 2005-05-02T04:25:00' state=' picked-up' />

<event timestamp=' 2005-05-02T09:15:00' state=' delivered' >

<consignee>Mr. Gumble</consignee>

</event>

</parcel-history>

<parcel-history tracking-no=' 2X44' >

<event timestamp=' 2005-05-02T03:55:00' state=' picked-up' />

</parcel-history>

</tracking-result>

Here we have the history of three different parcels, each identified by a
unique tracking number:

• Parcel 2X42 was picked up by the parcel service at the production
site at 4:05 a.m. on May 2nd. They tried to deliver it on the
same day and later on May 3rd without success. On May 4th the
driver finally met Mrs. Smith, but she refused to accept the parcel
because it was damaged. Now it’s on its way back home.

• Parcel 2X43 is a textbook example: Picked up, delivered.

• Parcel 2X44 was picked up but has not yet been delivered.

In the following sections we’ll demonstrate how to parse a document
such as this using different approaches.

XML Processing with REXML

One of the key problems when dealing with XML documents is parsing
them and representing the result in our programs. Currently, there are
two major parsing schemes: tree parsing and stream parsing. A tree
parser reads an XML document as a whole and represents it as a tree
in memory. Stream parsers expect you to provide a so-called listener
that is invoked whenever the parser finds a new element. Hence, all

elements get processed in the order of their start tags, and the listener
is responsible for handling them.

Both approaches have their advantages and disadvantages. Tree-style
parsers are significantly slower and consume much more memory. On
the upside, they give you convenient access to the tree’s nodes. On the
other hand, stream parsers are fast and do not consume much memory,
but they force you to organize the elements yourself. Choosing the
right way to parse your documents depends to a large extent on your
performance needs and on how you want to process the document. If

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=96

PROCESSING XML DOCUMENTS 97

you want to process every node, a stream parser is what you need. If
you often have to access different node sets, a tree parser might be a
better choice.

There are standard APIs for both tree and stream parsing: DOM and
SAX2, respectively. DOM has been standardized by the W3C, and SAX2
is an open standard maintained by David Megginson.4 Because it’s so
simple, there’s not much discussion about the usefulness of the SAX2
API. DOM, though, has always been something of an enfant terrible.
Its inventors wanted the DOM API to work in as many environments
and programming languages as possible. Even COBOL programmers
should have their DOM parser. This requirement turned DOM into the
beast it is today. Ironically, nearly every programming platform now
has an additional convenience API for tree parsing. Java, for example,
has JDOM5 and XOM.6

REXML is no exception to this rule and supports both tree and stream
parsing. For reasons explained in the preceding paragraphs, the only
standard API it supports is SAX2. Its tree parsing API is completely
proprietary but meets the needs of a Ruby programmer much better
than DOM.

Tree Parsing

Easy things should be easy. Turning an XML document into a tree
could not be much easier than this:

File 168 Line 1 require ' rexml/document'

- include REXML

-

- doc = Document.new("<sample>Our first example.</sample>")

5 print doc.root.name, ": ", doc.root.text, "\n"

This produces the following:

sample: Our first example.

The first two lines load the REXML module and include its namespace
into our code, so we don’t have to prefix all its class names with REXML::

over and over again (from now on we’re going to omit these lines). By
calling Document.new() with our little example document in line 4, we

4http://www.saxproject.org
5http://www.jdom.org
6http://www.xom.nu

http://media.pragprog.com/titles/fr_eir/code/xml/parsing/first_rexml_example.rb
http://www.saxproject.org
http://www.jdom.org
http://www.xom.nu
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=97

PROCESSING XML DOCUMENTS 98

turn a string into an instance of class Document. The new() method
accepts parameters of different types:

• Instances of class REXML::Document will get copied.

• Strings containing XML documents will be parsed and turned into
instances of class REXML::Document.

• Instances of class IO will be read and then parsed. For example,
to parse a file called example.xml, you’d call this:
Document.new(File.new(' example.xml'))

Finally, the last line of our example program prints the name and
the content of our document’s root element, which is an instance of
class REXML::Element. Not surprisingly, the root element can be accessed
using a document’s root() method.

Our first successful parsing attempts should give us enough confidence
to tackle our original problem: processing parcel-tracking results. Let’s
load and parse our document and play around a bit with its elements
and attributes:

File 184 Line 1 doc = Document.new(File.new(' packages.xml'))

- tracking_results = doc.root

- first_parcel = tracking_results.elements[1]

- tracking_no = first_parcel.attributes[' tracking-no'] # -> 2X42

All REXML elements (including the root element) have an accessor
called elements containing an array of the element’s children. This array
is indexed starting at 1, not 0, so to get the first child of the root ele-
ment you have to call doc.root.elements[1] instead of doc.root.elements[0].
As a shortcut, you can index the element directly to access its children:
doc.root[0]. In this case, the index starts at 0, and you get the element’s
children (which are not necessarily elements; they could, for example,
be text nodes).

Every element also has an attributes accessor that contains all that ele-
ment’s attributes. It can be used as a hash, so the attribute tracking-no=

of our first <parcel-history> element can be found by using the expres-
sion doc.root.elements[1].attributes[’tracking-no’].

It’s nice that accessing elements and attributes is easy with REXML,
but it’s not exactly what we need, because we do not know up front
how many parcel histories we will get from our provider. It would be
nice to be able to iterate over a set of elements matching certain criteria.
For example, we might want to get at all the children of an element with
a certain name. each_element() comes to the rescue:

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/tree_parse_parcels.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=98

PROCESSING XML DOCUMENTS 99

File 184 doc.root.each_element(' parcel-history') do |ph|

puts ph.attributes[' tracking-no']

end

This produces the following:

2X42

2X43

2X44

It seems that each_element() allows you to iterate over all children hav-
ing a particular name, but that’s only half the story. each_element()
expects an XPath expression. XPath can be used for describing nearly XPath

arbitrary node sets. We’ll talk more about XPath in Section 3.3, XPath,
on page 115, but for now we’ll try to get by with what we have already:

File 178 Line 1 require ' time'

- require ' rexml/document'

- include REXML

-

5 Event = Struct.new(:timestamp, :state, :consignee)

-

- class Event

- def to_s

- self.timestamp.strftime(' %Y-%m-%d %H:%M') + ": " + self.state

10 end

- end

-

- class ParcelHistory

- attr_reader :tracking_no, :events

15 def initialize(tracking_no)

- @tracking_no = tracking_no

- @events = []

- end

- def add_event(event) @events << event; end

20 end

-

- class ParcelHistoryParser

- def initialize(source)

- @doc = Document.new(source)

25 end

- def each_parcel

- @doc.root.each_element(' parcel-history') do |ph|

- history = ParcelHistory.new(ph.attributes['tracking-no'])

- ph.each_element("event") do |event_element|

30 history.add_event(to_event(event_element))

- end

- yield history

- end

- end

35

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/tree_parse_parcels.rb
http://media.pragprog.com/titles/fr_eir/code/xml/tracking/parcel_parser.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=99

PROCESSING XML DOCUMENTS 100

- private

-

- def to_event(element)

- timestamp = Time::xmlschema(element.attributes['timestamp'])

40 state = element.attributes[' state']

- consignee = nil

- if !element.elements[' consignee'].nil?

- element.elements[' consignee'].text

- end

45 Event.new(timestamp, state, consignee)

- end

- end

-

- parser = ParcelHistoryParser.new(File.new('packages.xml'))

50 parser.each_parcel do |history|

- puts history.tracking_no + ":"

- history.events.each { |e| puts " " + e.to_s }

- end

This produces the following:

2X42:

2005-05-02 04:05: picked-up

2005-05-02 08:30: first-delivery-attempt

2005-05-03 09:05: second-delivery-attempt

2005-05-04 10:15: refused-damaged

2005-05-04 19:07: returns-to-sender

2X43:

2005-05-02 04:25: picked-up

2005-05-02 09:15: delivered

2X44:

2005-05-02 03:55: picked-up

Admittedly, for Ruby this is a really big example, but we will dissect
it class by class. Classes Event and ParcelHistory are only for storage
purposes. Event encapsulates all attributes describing an event in the
lifetime of a parcel and ParcelHistory accumulates a list of such events.

Event is pretty trivial, so we let class Struct create it for us automatically.
In lines 8 to 10 we reopen it to add our own to_s() method. Because
ParcelHistory contains an array (events), which has to be managed “man-
ually,” we could not use Struct to create it. Struct should be used only for
the simplest cases, such as when you have a list of atomic attributes
that do not depend on each other and do not demand any logic while
initializing, setting, and getting them.

The real fun begins on line 13. Class ParcelHistoryParser provides all
the functionality that turns a parcel history document from all sources
supported by the REXML parser into a list of ParcelHistory objects.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=100

PROCESSING XML DOCUMENTS 101

Mixed Content

In line 43 of our parcel parser example we determine the name
of a consignee by calling text() on an instance of Element. In our
case this is perfect, because we expect any <consignee> ele-
ment to have exactly one child node of type text. What would
happen if it had more than one? The answer is simple: text()
returns only the first child node of type text. You have to be
careful when dealing with so-called mixed content—elements
that have child nodes of different types. Given the following
document:

File 175 doc = Document.new(<<-XML)

<root>

<a>

First!

xyz

Second!

abc

Third!

</root>

XML

the following code:

puts doc.elements[' root/a'].text

produces this:

First!

If we use the texts() method, with code like this:

puts doc.elements[' root/a'].texts

we’ll instead see the following:

First!

Second!

Third!

Sometimes you don’t parse an XML document yourself, but
get it as a REXML::Document object from another method. In
these cases be prepared to get elements that do not contain
mixed content but instead contain more than one text node.
Depending on how the elements were built, it happens easily:

File 167 e = Element.new(' example')

e.add_text(' foo')

e.add_text(Text.new(' bar'))

puts e.texts.size # -> 2

http://media.pragprog.com/titles/fr_eir/code/xml/text_nodes.rb
http://media.pragprog.com/titles/fr_eir/code/xml/multiple_text_nodes.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=101

PROCESSING XML DOCUMENTS 102

Right at the beginning of our code, in initialize(source), you can see one
of the biggest advantages of dynamic languages such as Ruby: we
initialize the attribute doc with our parsed document without caring
where the document came from originally. As we explained previously,
REXML accepts an XML string, an object derived from IO, or another
REXML::Document instance. Automatically, our initialize(source) method
behaves in the same liberal fashion. For unit testing we can feed our
parser with constant strings or files, and in production it will probably
get a Socket object or something similar without changing a single line
of code.

Our next method is each_parcel(). It’s a Ruby iterator. Iterators invoke
a block of code for every member of a collection. Within each_parcel()
we iterate over all <parcel-history> elements, and for each of these
elements we iterate over all <event> elements. Every <event> element
is converted into an Event object by calling to_event(element), and all
the Event objects are added to their corresponding ParcelHistory object.
The yield() call in line 32 invokes the code block that is associated with
each_parcel(), passing it the current ParcelHistory object.

At the end of our program, we finally use our ParcelHistoryParser to write
the content of our example document to the console. Note that we have
solved only the mechanical, part of our problem—we have parsed the
tracking results and represented them in our own class hierarchy. Aca-
demics call this process deserialization or XML data binding. Because
it really is mechanical there are tools out there that will do it automat-
ically for you. We’ll look at such a tool in Section 3.3, XML Processing

with XmlSimple, on page 124.

For the final solution the results still have to be interpreted—we need
a class that determines the actual state of each package, stores it in
a database, and sends e-mails or SMS messages but that has nothing
to do with XML. In this section we wanted to show you how you can
process an XML document using the basic functions of REXML.

REXML Stream Parsing

Last Valentine’s Day was chaotic: PragBouquet’s parcel-tracking sys-
tem nearly broke down under the heavy load. Mother’s Day is looming,
so you did some performance tests and found that one of the biggest
bottlenecks was the XML processing. Obviously, loading several thou-

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=102

PROCESSING XML DOCUMENTS 103

sand tracking results into memory was not a good idea, particularly
because you then process all the tracking results serially anyway.

It would be much better if you could parse the XML documents serially,
element by element. Fortunately, REXML’s stream-parsing API allows
you to do just that. Stream parsers always work the same way: they
process an XML document character by character and invoke meth-
ods on a so-called listener class whenever an interesting event occurs:
when a start tag was found, text was found, a comment was found, and
so on.

Calling REXML::Document.parse_stream(source,listener) invokes the REXML
stream parser, where source is an XML source and listener is your lis-
tener class. Let’s see what happens if we pass an empty listener:

File 180 class ParcelHistoryListener; end

Document.parse_stream(

File.new(' packages.xml'),

ParcelHistoryListener.new

)

This produces the following:

c:/ruby/lib/ruby/1.8/rexml/parsers/streamparser.rb:37:in ‘send' :

undefined method ‘xmldecl' for #<ParcelHistoryListener:0x2ad5620>

(NoMethodError)

from c:/ruby/lib/ruby/1.8/rexml/parsers/streamparser.rb:37:in ‘parse'

from c:/ruby/lib/ruby/1.8/rexml/document.rb:171:in ‘parse_stream'

from sp_empty_listener.rb:8

Not surprisingly, the stream parser complains that it could not find
the xmldecl() method in our ParcelHistoryListener class. Obviously, this
method is invoked when the stream parser finds an XML declaration,
and that’s the first thing in our tracking results document.

Let’s do some more reverse engineering (that’s more exciting than read-
ing API docs, isn’t it?) by adding method_missing(method_id,*args) to our
listener class. This is a Ruby-standard method that’s called whenever
an undefined method is called in an object. method_id is the name of
the method called (as a symbol), and args is any arguments that were
passed to it:

File 181 class ParcelHistoryListener

def method_missing(method_id, *args)

puts "Method ' #{method_id.id2name}' was called."

end

end

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sp_empty_listener.rb
http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sp_method_missing.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=103

PROCESSING XML DOCUMENTS 104

Document.parse_stream(

File.new(' packages.xml'),

ParcelHistoryListener.new

)

This produces the following:

Method ' xmldecl' was called.

Method ' comment' was called.

Method ' tag_start' was called.

Method ' text' was called.

Method ' tag_start' was called.

Method ' text' was called.

Method ' tag_start' was called.

Method ' tag_end' was called.

Method ' text' was called.

Method ' tag_start' was called.

...

Method ' tag_end' was called.

Method ' text' was called.

Method ' comment' was called.

Method ' text' was called.

Method ' comment' was called.

Method ' text' was called.

At the very least, the stream parser expects us to implement meth-
ods called xmldecl(), comment(),tag_start(),text(), and tag_end(). We stop
playing detective now and have a look at the complete list of possible
events:

xmldecl(version, encoding, standalone)

Called when the parser encounters an XML declaration. xmldecl

will be called with parameters that directly reflect an XML decla-
ration’s attributes, so for the following declaration:

<?xml version=' 1.0' encoding=' iso-8859-1' ?>

the parser would invoke xmldecl(version='1.0', encoding='iso-8859-1',

standalone=nil). Note that the default value for encoding and stan-

dalone is nil, which is different from the XML standard’s default
values (utf-8 and no).

tag_start(name, attrs)

Called when the beginning of an element is found. name contains
the element’s name, and attrs is an array containing the element’s
attributes, where every list item is a two-element array consist-
ing of the attribute’s name and its value. If the element has no
attributes, attrs is an empty array. Given the following element:

<person name=' Homer' age=' 45' />

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=104

PROCESSING XML DOCUMENTS 105

the parser invokes the following:

tag_start(' person' , [[' name' , ' Homer'], [' age' , ' 45']])

tag_end(name)

Called when the end of element <name> was found.

text(text)

Called when text is encountered in the document. For nicely for-
matted documents, this method is invoked more often than you
might think, because by default whitespace in your document is
significant. The actual text is passed as the parameter.

cdata(content)

Called when a CDATA section has been found. Parameter content

contains the CDATA section including all whitespace characters.

comment(text)

Called when a comment has been found. The comment text is
passed in text without the <!-- and --> sequences.

instruction(target, instruction)

Processing instructions were introduced in XML for passing infor-
mation to particular applications reading a document. They have
the following format:

<?target [instructions depending on application]?>

Common targets are xml-stylesheet and php. Whenever the stream
parser detects a processing instruction, it calls instruction(), setting
target and instruction accordingly. The processing instruction:

<?xml-stylesheet href=' sitestyle.css' type=' text/css' ?>

would call:

instruction("xml-stylesheet", "href=' sitestyle.css' type=' text/css' ")

doctype(root_name, pub_sys, long_name, uri)

Documents may be associated with a DTD that can be used for
validating the document’s content. DTDs come in different flavors:

• <!DOCTYPE root SYSTEM "http://path/to/dtd">

• <!DOCTYPE rss PUBLIC

"-//Netscape Communications//DTD RSS 0.91//EN"

"http://my.netscape.com/publish/formats/rss-0.91.dtd">

• <!DOCTYPE books [

<!ELEMENT books (book*)>

<!ATTLIST book title CDATA #IMPLIED isbn CDATA #IMPLIED>

]>

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=105

PROCESSING XML DOCUMENTS 106

If a document contains a document type declaration (there is only
one allowed), the stream parser calls the doctype() method, set-
ting all parameters accordingly. All attributes that have not been
declared in the document type declaration will be set to nil.

elementdecl(declaration)

Called when an element declaration like <!ELEMENT books (book*)>

was found in a document type definition.

attlistdecl(element_name, attributes, raw_content)

Called for every attribute list declaration in a DTD. Parameter ele-

ment_name contains the name of the element the attribute list has
been defined for, attributes is a hash containing all the attributes
and raw_content contains the original declaration from the DTD.
For example, the following declaration:

<!ATTLIST book title CDATA #IMPLIED isbn CDATA #IMPLIED>

would result in the following method call:

attlistdecl(

' book' ,

{ ' title' => ' ' , ' isbn' => ' ' },

' <!ATTLIST book title CDATA #IMPLIED isbn CDATA #IMPLIED>'

)

entity(entity_name)

Called when an entity reference (such as %shortcut;) is found in a
document type declaration.

entitydecl(declaration)

Called when an entity declaration (e.g., <!ENTITY ms Maik Schmidt>) is
found in a document type definition.

notationdecl(content)

If you want to embed non-XML content (such as images or audio
files) in your document, you can describe it in more detail using
notations in a DTD. The stream parser calls notationdecl() when it
finds a notation type attribute in a DTD. For the following:

<!NOTATION gif SYSTEM ' image/gif' >

the parser would invoke:

notationdecl([' gif' , ' SYSTEM' , ' image/gif'])

This attribute type is rarely used in practice.

That’s a lot of methods, but we already knew that XML is a fairly com-
plex beast. For building our own listener classes it seems that we have

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=106

PROCESSING XML DOCUMENTS 107

only a few options: we could implement all of the previous methods,
leaving some of them empty, or we could implement only the meth-
ods we definitely need and define method_missing() to suppress the rest.
Because this is such a common scenario, REXML has a predefined
solution for it, namely, REXML::StreamListener.

REXML::StreamListener is a template module that can be used when build-
ing your own listeners. It provides an empty implementation for all
methods that can potentially be invoked by the stream parser. You
include it in your listener class:

File 182 Line 1 require ' rexml/streamlistener'

-

- class ParcelHistoryListener

- include StreamListener

5

- def tag_start(tag_name, attrs)

- puts tag_name

- end

- end

10

- Document.parse_stream(

- File.new(' packages.xml'),

- ParcelHistoryListener.new

-)

This produces the following:

tracking-result

parcel-history

event

event

event

event

consignee

event

parcel-history

event

event

consignee

parcel-history

event

That’s highly convenient, especially because many of the stream parser
events are related to DTDs, which aren’t used often nowadays.

We should not forget that we still have a problem to solve: the tree-
parsing approach was too slow, and we wanted to enhance it using a
stream parser. Our listener class might look like this:

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sp_stream_listener.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=107

PROCESSING XML DOCUMENTS 108

File 183 Line 1 class ParcelHistoryListener

- include StreamListener

-

- def initialize

5 @in_consignee = false

- end

-

- def tag_start(tag_name, attrs)

- if tag_name == ' parcel-history'

10 @parcel_history = ParcelHistory.new(attrs[' tracking-no'])

- elsif tag_name == ' event'

- timestamp = Time::xmlschema(attrs[' timestamp'])

- state = attrs[' state']

- @event = Event.new(timestamp, state, nil)

15 elsif tag_name == ' consignee'

- @in_consignee = true

- end

- end

-

20 def tag_end(tag_name)

- if tag_name == ' parcel-history'

- puts @parcel_history.tracking_no + ":"

- @parcel_history.events.each { |e| puts ' ' + e.to_s }

- elsif tag_name == ' event'

25 @parcel_history.add_event(@event)

- elsif tag_name == ' consignee'

- @in_consignee = false

- end

- end

30

- def text(value)

- if @in_consignee

- @event.consignee = ' ' unless @event.consignee

- @event.consignee << value

35 end

- end

- end

-

- Document.parse_stream(

40 File.new(' packages.xml'),

- ParcelHistoryListener.new

-)

This produces the following:

2X42:

2005-05-02 04:05: picked-up

2005-05-02 08:30: first-delivery-attempt

2005-05-03 09:05: second-delivery-attempt

2005-05-04 10:15: refused-damaged

2005-05-04 19:07: returns-to-sender

2X43:

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/stream_parse_parcels.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=108

PROCESSING XML DOCUMENTS 109

2005-05-02 04:25: picked-up

2005-05-02 09:15: delivered

2X44:

2005-05-02 03:55: picked-up

Here we have a classical stream-parsing example. We had to only imple-
ment three StreamListener methods: tag_start(), tag_end(), and text(). The
single biggest difference between tree parsing and stream parsing is
that stream parsers force you to maintain state yourself. For example,
as you can see in lines 32 to 35, we are interested in text nodes only
if we are currently in a <consignee> element. Therefore, we store this
state in the boolean instance variable @in_consignee.

Method tag_start() is responsible for creating new elements. Whenever
we encounter a new <parcel-history> or <event> element, we create
a corresponding ParcelHistory or Event object and store it in an instance
variable. The only exceptions to this are <consignee> elements.

But It’s Not Standard

Long before XML became more popular among software developers than
caffeine, there were no standards except the XML standard itself. If you
wanted to process XML documents, you were forced to write your own
parser or to use one of countless proprietary solutions. To overcome
this awkward situation, a group of developers collaboratively developed
an API on the XML-DEV mailing list and called it Simple API for XML
(SAX). This happened in 1998, and SAX version 1.0 quickly became
the de facto industry standard for XML stream parsing. The current
version is called SAX2 and was released in 2002. Since then, nothing
has changed in the API.

Because of the nature of stream parsing, both the proprietary REXML
approach and the SAX2 API are similar. You have to define a listener
whose methods are invoked by the parser, whenever it encounters an
interesting event.

For the sake of completeness we’ll show you the REXML::SAX2Listener

class in its entirety, but we’ll often refer to REXML::StreamListener to avoid
redundancy.

start_document()
Called at the beginning of a document.

end_document()
Called at the end of a document.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=109

PROCESSING XML DOCUMENTS 110

start_element(uri, localname, qname, attributes)

Called when the beginning of a new element is encountered. uri

contains the namespace URI of the element (an empty string when
the element is not associated with a namespace). If the element
is associated with a namespace, localname contains the element’s
name without the namespace prefix, and otherwise it is empty.
qname contains the element’s qualified name—the name as it orig-
inally appeared in the XML document. It might be empty for ele-
ments associated with a namespace URI. attributes contains all the
element’s attributes.

end_element(uri, localname, qname)

Called when the end of an element is encountered.

cdata(content)

See the description in Section 3.3, REXML Stream Parsing, on
page 102.

characters(text)

See the description of text() in Section 3.3, REXML Stream Parsing,
on page 102.

comment(comment)

See Section 3.3, REXML Stream Parsing, on page 102.

start_prefix_mapping(prefix, uri)

Called at the beginning of a namespace declaration. prefix is the
namespace prefix, and uri the namespace URI.

end_prefix_mapping(prefix)

Called at the end of a namespace declaration when the current
namespace goes out of scope.

processing_instruction(target, data)

See the description of instruction() in Section 3.3, REXML Stream

Parsing, on page 102.

doctype(name, pub_sys, long_name, uri)

See the description in Section 3.3, REXML Stream Parsing, on
page 102.

elementdecl(content)

See the description in Section 3.3, REXML Stream Parsing, on
page 102.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=110

PROCESSING XML DOCUMENTS 111

attlistdecl(element, pairs, contents)

See the description in Section 3.3, REXML Stream Parsing, on
page 102.

entitydecl(content)

See the description in Section 3.3, REXML Stream Parsing, on
page 102.

notationdecl(content)

See the description in Section 3.3, REXML Stream Parsing, on
page 102.

Let’s rewrite our ParcelHistoryListener using the SAX2 parser:

File 179 Line 1 require ' time'

- require ' rexml/parsers/sax2parser'

- require ' rexml/sax2listener'

-

5 class ParcelHistoryListener

- include REXML::SAX2Listener

-

- def initialize

- @in_consignee = false

10 end

-

- def start_element(uri, localname, tag_name, attrs)

- if tag_name == ' parcel-history'

- @parcel_history = ParcelHistory.new(attrs[' tracking-no'])

15 elsif tag_name == ' event'

- timestamp = Time::xmlschema(attrs[' timestamp'])

- state = attrs[' state']

- @event = Event.new(timestamp, state, nil)

- elsif tag_name == ' consignee'

20 @in_consignee = true

- end

- end

-

- def end_element(uri, localname, tag_name)

25 if tag_name == ' parcel-history'

- puts @parcel_history.tracking_no + ":"

- @parcel_history.events.each { |e| puts ' ' + e.to_s }

- elsif tag_name == ' event'

- @parcel_history.add_event(@event)

30 elsif tag_name == ' consignee'

- @in_consignee = false

- end

- end

-

35

-

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sax2_parse_parcels.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=111

PROCESSING XML DOCUMENTS 112

- def characters(value)

- if @in_consignee

- @event.consignee = ' ' unless @event.consignee

40 @event.consignee << value

- end

- end

- end

-

45 parser = REXML::Parsers::SAX2Parser.new(File.new('packages.xml'))

- parser.listen(ParcelHistoryListener.new)

- parser.parse

We already knew that both APIs were similar, but isn’t it surprising
how similar they really are? In the ParcelHistoryListener class itself we
had to change only the names and the signature of some methods.
tag_start(tag_name, attrs) became start_element(uri, localname, tag_name,

attrs), tag_end(tag_name) became end_element(uri, localname, tag_name),
and text(value) became characters(value). Instead of StreamListener we had
to include SAX2Listener, but not a single line of business logic had to be
changed.

Because it’s not part of the REXML::Document class, invoking the parser
is a bit different. Additional parsers can be found in the rexml/parsers

directory and reside in the REXML::Parsers namespace. In the last three
lines of our program, we create the REXML::Parsers::SAX2Parser, pass it our
implementation of a REXML::SAX2Listener, and eventually start the parsing
process.

SAX was originally defined to make XML processing easier for Java, so
its design reflects the typical shortcomings of a more or less static pro-
gramming language. Sean Russel realized this and added some sugar
to REXML that makes it more, let’s say, Rubyesque.

For example, if you are interested only in a small subset of your doc-
ument’s nodes, you don’t have to implement a complete listener class.
It’s possible to associate SAX2 events with a code block. To extract all
text nodes from the following document:

File 176 <?xml version="1.0" encoding="iso-8859-1"?>

<todo-list>

<to-do>Write a book.</to-do>

<to-do>Learn a new programming language.</to-do>

<to-do>Don't Repeat Yourself</to-do>

</todo-list>

We could do the following:

http://media.pragprog.com/titles/fr_eir/code/xml/todo.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=112

PROCESSING XML DOCUMENTS 113

File 163 Line 1 require ' rexml/parsers/sax2parser'

-

- todo_list = File.new(' todo.xml')

- parser = REXML::Parsers::SAX2Parser.new(todo_list)

5 parser.listen(:characters) { |text| puts "* #{text}" }

- parser.parse

and it produces this:

Line 1 *

-

- * Write a book.

- *

5

- * Learn a new programming language.

- *

-

- * Don't Repeat Yourself

10 *

- *

Hmm, that’s not exactly what we expected, is it? The standard entity
' has not been resolved, and obviously our code block was called
for all text nodes, even for those containing only whitespace characters.

REXML’s handling of all things related to DTDs is rudimentary, and
you have to do a lot of tasks yourself that other parsers won’t expect
you to do. It’s a bit annoying, but at least for the XML standard entities
we have to perform only simple text substitutions.

To solve our whitespace problem, we could check whether the text that
is passed to the code block is empty. But wouldn’t it be much nicer if we
could tell the parser to call our code block only for <to-do> elements?
Here we go:

File 163 Line 1 def decode_markup(text)

- text.gsub!(/</, ' <')

- text.gsub!(/>/, ' >')

- text.gsub!(/'/, "' ")

5 text.gsub!(/"/, ' "')

- text.gsub!(/&/, ' &')

- text

- end

-

10 todo_list = File.new(' todo.xml')

- parser = REXML::Parsers::SAX2Parser.new(todo_list)

- parser.listen(:characters, [' to-do']) { |text|

- puts "* #{decode_markup(text)}"

- }

15 parser.parse

http://media.pragprog.com/titles/fr_eir/code/xml/extract_todo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/extract_todo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=113

PROCESSING XML DOCUMENTS 114

This produces the following:

* Write a book.

* Learn a new programming language.

* Don' t Repeat Yourself

As well as taking the event to listen for, the listen() method can take a
list of element names. It’s even possible to pass regular expressions
that describe the element names to be matched against.

In the following descriptions of the variants of the listen() method, the
parameters have the following meaning:

• symbol can be one of :start_element, :end_element, :characters,
:cdata, :start_prefix_mapping, :end_prefix_mapping,
:processing_instruction, :doctype, :attlistdecl, :elementdecl, :entitydecl,
:notationdecl, :xmldecl, or :comment.

• array contains regular expressions or strings that will be matched
against fully qualified element names.

• listener implements all methods of the REXML::SAX2Listener class.

• block will be passed the same arguments as the corresponding
REXML::SAX2Listener method would get. The method name is the
same as the matched symbol.

You can invoke listen() as follows:

listen(symbol, array, &block)

Listens to the symbol event for all elements in array. For example,
the following:

parser.listen(:characters, %w(name surname)) do |text|

puts text

end

prints the text of all <name> and <surname> elements.

listen(symbol, &block)

Calls block whenever the symbol event occurs. For example, the
following:

parser.listen(:comment) { |text| puts text }

prints all comments in a document.

listen(array, listener)

Invokes methods of listener only for elements whose names are in
array. For example, the following:

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=114

PROCESSING XML DOCUMENTS 115

class MyListener

include REXML::SAX2Listener

...

end

parser.listen(%w(to-do), MyListener.new)

invokes listener methods only for <to-do> elements.

listen(array, &block)

block is called when the :start_element event occurs and the name
of the current element is in array. For example, the following:

parser.listen(%w(order person)) do |uri, localname, qname, attr|

attr.each { |k, v| puts "#{k}=#{v}" }

end

prints all attributes of all <order> and <person> elements.

listen(listener)

Listens to all events and invokes the according methods of the
listener.

class MyListener

include REXML::SAX2Listener

...

end

parser.listen(MyListener.new)

That’s the standard way of SAX2 parsing.

XPath

In Section 3.3, Tree Parsing, on page 97, we saw that the each_element()
method of class REXML::Element accepts an element name or a so-called
XPath expression. According to the official specification,7 “XPath is a
language for addressing parts of an XML document, designed to be used
by both XSLT and XPointer.” And that’s exactly how it is: with XPath
you can extract single nodes and node sets matching certain criteria
from an XML document. Simply put, XPath is for XML documents
what regular expressions are for strings.

XPath expressions are not XML documents or document fragments
themselves: they have their own syntax. We will not fully cover XPath
and all its nitty-gritty details, but we will at least show you enough of

7http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=115

PROCESSING XML DOCUMENTS 116

its syntax to move conveniently through typical XML documents using
REXML (for a complete reference see XPath and XPointer [Sim02]).

Besides XPath support in the Element class, REXML has a class called
XPath. This class contains three methods that allow you to select arbi-
trary node sets from a certain element:8

each(element,xpath=nil,namespaces={})

Iterates over all nodes matching xpath in the context of element.
xpath defaults to ’*’. The namespaces hash may contain a names-
pace mapping.

first(element,xpath=nil,namespaces={})

Returns the first node matching xpath in the context of element.
xpath defaults to *. Iterates over all nodes matching xpath in the
context of element.

match(element,xpath=nil,namespaces={})

Returns all nodes matching xpath in the context of element. xpath

defaults to *.

In the following shortened version of our tracking history document
from Section 3.3, Processing XML Documents, on page 95, we use these
methods to demonstrate how REXML’s XPath support works:

File 190 <tracking-result>

<parcel-history tracking-no=' 2X42' >

<event timestamp=' 2005-05-02T04:05:00'

state=' picked-up' />

<event timestamp=' 2005-05-02T08:30:00'

state=' first-delivery-attempt' />

<event timestamp=' 2005-05-04T10:15:00'

state=' refused-damaged' >

<consignee>Mrs. Smith</consignee>

</event>

<event timestamp=' 2005-05-04T19:07:00' state=' returns-to-sender' />

</parcel-history>

<parcel-history tracking-no=' 2X43' >

<event timestamp=' 2005-05-02T04:25:00' state=' picked-up' />

<event timestamp=' 2005-05-02T09:15:00' state=' delivered' >

<consignee>Mr. Gumble</consignee>

</event>

</parcel-history>

</tracking-result>

8These methods potentially deal with objects of different classes. For example, match()
may return objects of class Element, Attribute, etc.

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/packages.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=116

PROCESSING XML DOCUMENTS 117

We assume that the doc variable has been initialized like this:

File 191 doc = Document.new(File.new(' packages.xml'))

Let’s start with some simple examples:

File 191 puts XPath.match(doc, ' /tracking-result/parcel-history')[1]

This produces the following:

<parcel-history tracking-no=' 2X43' >

<event timestamp=' 2005-05-02T04:25:00' state=' picked-up' />

<event timestamp=' 2005-05-02T09:15:00' state=' delivered' >

<consignee>Mr. Gumble</consignee>

</event>

</parcel-history>

XPath expressions are made up of location paths and location steps. In location paths

location stepsthe previous example, the location path is /tracking-result/package-history.
It consists of two location steps: /tracking-result and package-history.

As you might have guessed, location steps are separated by a slash, but
the leading slash in the first location step is not a delimiter—it identifies
the document root. So the first location step identifies the <tracking-
result> child of the document root—the root element. The second loca-
tion step identifies all <parcel-history> children of the preceding ele-
ment (the <tracking-result> element). Because there are three of them,
match() returns them all as an array. We select the second one.

We can achieve the same result a bit differently by using XPath’s index
features. Node sets can be treated as arrays and can be indexed using
square brackets:

File 191 puts XPath.first(doc, ' /tracking-result/parcel-history[2]')

Did you notice that we used the index 2? It’s true: XPath indices start
at 1, not 0! That’s why the indexing of the elements array of class
REXML::Element starts at 1, too.

It’s also possible to define relative paths: they do not start with a slash.
A more or less obscure way to get all the consignees belonging to deliv-
ered packages could look like this:

File 191 events = XPath.match(

doc,

' /tracking-result/parcel-history/event[@state="delivered"]'

)

events.each do |event|

puts XPath.match(event, ' consignee')

end

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=117

PROCESSING XML DOCUMENTS 118

It produces the following:

<consignee>Mr. Gumble</consignee>

XPath expressions are similar to file and directory paths under Unix,
but this analogy cannot be stretched too far. Even in our small example
we have encountered the first big difference: every element may have
an arbitrary number of children having the same name. For example, a
<tracking-result> element may have more than one <package-history>

child element (which is impossible in file systems). The next big differ-
ence is that we can recursively select nodes. For example, the following
statement:

File 191 puts XPath.match(doc, ' //consignee')

Produces the following:

<consignee>Mrs. Smith</consignee>

<consignee>Mr. Gumble</consignee>

//consignee selects all <consignee> nodes in the document. The expres-
sion // is an abbreviation for the descendant-or-self axis. This contains descendant-or-self axis

all descendant nodes (not only direct children) belonging to a particular
node, along with the node itself. At the beginning of a location path, //

means “select all nodes in the document,” and we refine that by adding
the consignee location step.

The concepts of context and axes are important when working with
XPath, because XPath interpreters see XML documents as trees where
every node has a type and lives in a particular context that defines a
relationship to all other nodes in the tree. For example, our tracking
result document looks to an XPath interpreter like Figure 3.4, on the
next page.

It is a tree consisting of 30 nodes (actually, it has many more because
of all the whitespace text nodes belonging to nearly every element, but
we left them out for brevity). Twelve of them are element nodes, sixteen
are attribute nodes, and two are text nodes.

Given a particular node, you can easily define node sets that are some-
how related to this node. For an element node, for example, you can
create a set consisting of all its children, all its attributes, all its descen-
dants, all its siblings, and so on. XPath defines some standard ways
to create node sets from a given context node and calls them axes (you
can see them in Figure 3.5, on page 121). To make things more com-
plicated, all axes can not only select nodes by their position but also by
their type. For example, the descendant-or-self axis we used previously

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=118

PROCESSING XML DOCUMENTS 119

Figure 3.4: Tree Representation of Tracking Results

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=119

PROCESSING XML DOCUMENTS 120

selects all nodes below the current context node, but only if they are
not attribute nodes or namespace nodes.

We could have selected all consignees more verbosely without using the
// abbreviation:

File 191 puts XPath.match(doc, ' descendant-or-self::consignee')

It works the same with all other axes. For example, the following two
statements select all tracking numbers:

File 191 puts XPath.match(doc, ' //parcel-history/@tracking-no')

File 191 puts XPath.match(doc, ' //parcel-history/attribute::tracking-no')

Now we know how to access each node and some particular interest-
ing neighbors of each of them. XPath is concise and elegant in many
respects, but we could have achieved this using iterators and loops,
too.

But XPath can do more for us; i.e., it allows us to use conditions—
XPath calls them predicates—that refine node sets even further. For predicates

example, the following statement locates all events belonging to pack-
age 2X43:

File 191 puts XPath.match(doc, ' //parcel-history[@tracking-no="2X43"]/*')

and produces the following:

<event timestamp=' 2005-05-02T04:25:00' state=' picked-up' />

<event timestamp=' 2005-05-02T09:15:00' state=' delivered' >

<consignee>Mr. Gumble</consignee>

</event>

We’ve selected nodes anonymously—without knowing their names—by
using the asterisk (*). It stands for “select every node you can find.”
Predicates are put in square brackets and can occur after any location
step. They are boolean expressions. Whenever a predicate evaluates to
true, the corresponding node becomes part of the result node set. XPath
boolean expressions are usually of the form lvalue op rvalue, where op is
one of the operators shown in Figure 3.6, on page 122.

Predicates can be stacked by chaining them together (with no separa-
tor). For example, the following statement selects all <event> elements
that have been delivered on 2005-05-02:

File 191 puts XPath.match(

doc,

' //event[starts-with(@timestamp, "2005-05-02")][@state="delivered"]'

)

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=120

PROCESSING XML DOCUMENTS 121

child

All immediate children of the context node.
Selects: element, processing instruction, comment, text

descendant

All descendants of the context node; i.e., all children, grandchil-
dren, and so on.
Selects: element, processing instruction, comment, text

parent

All nodes immediately above the context node. It may include the
root node. Abbreviation: ..
Selects: element

ancestor

All ancestors of the context node; i.e., its parents, grandparents,
and so one. Includes the root node.
Selects: element

preceding-sibling/following-sibling

All siblings preceding (or following) the context node having the
same parent. Empty for attribute and namespace nodes. Never
includes the root node.
Selects: Any except attribute and namespace

preceding/following

All nodes preceding (or following) the context node excluding any
ancestors (or descendants) and excluding attribute nodes and
namespace nodes. Never includes the root node.
Selects: Any except attribute and namespace

attribute

All attribute nodes of the context node. Abbreviation: @
namespace

All namespace nodes of the context node.
self

The context node itself. Abbreviation: .
descendant-or-self

The context node and all its descendants. Abbreviation: //
Selects: Any except attribute and namespace

ancestor-or-self

The context node and all its ancestors. Includes the root node.
Selects: element

Figure 3.5: XPath Axes

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=121

PROCESSING XML DOCUMENTS 122

Operator Meaning

= Equal to

!= Not equal to

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

Figure 3.6: XPath Boolean Operators

This produces the following:

<event timestamp=' 2005-05-02T09:15:00' state=' delivered' >

<consignee>Mr. Gumble</consignee>

</event>

But wait, what about that first predicate? Apparently, it’s a boolean
expression, but it does not contain an operator. As you might have
guessed already, XPath defines functions, too, and starts-with(string, sub-

string) is one of them. If string actually starts with substring, this method
returns true, and otherwise it returns false.

XPath functions are divided into four groups:9

• Node set functions let you perform operations on node sets. For
example, the count(node-set) function returns the number of nodes
in the argument node-set.

• String functions manipulate and compare strings. For instance,
the normalize-space(string) function returns a normalized represen-
tation of the argument string (it defaults to the current context
node). It removes leading and trailing whitespace characters and

9http://www.w3.org/TR/xpath#corelib contains a description of all functions.

http://www.w3.org/TR/xpath#corelib
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=122

PROCESSING XML DOCUMENTS 123

replaces sequences of multiple whitespace characters by a single
space.

• Boolean functions implement common predicates. For example,
not(expr) returns true, if expr is false. Otherwise, it returns false.

• Number functions help you work with numeric expressions. The
sum(node-set) function, for example, converts the string values of
all nodes belonging to node-set into numbers and returns their
overall sum.

REXML::Element has one more interesting method, xpath(). It returns
one XPath belonging to a particular element (there’s a nearly infinite
number of XPaths leading to every XML document node). For example,
the following statement

File 191 event = XPath.first(

doc,

' /tracking-result/parcel-history/event[@state="delivered"]'

)

puts event.xpath

produces the following:

/tracking-result/parcel-history[2]/event[2]

REXML’s XPath support is comparatively good, but its implementation
of the standard functions and some of the more complex features of the
XPath specification is still a work in progress. So, before depending on
a particular function, you’d better test REXML’s support for it.

For example, the union operator does not work as expected. In XPath
it’s possible to join node sets using the | operator. The following expres-
sion should return all state= and all tracking-no= attributes:

File 191 puts XPath.match(doc, ' //event/@state | //parcel-history/@tracking-no')

puts XPath.match(

doc,

' //event[@state="delivered"]|//event[@state="picked-up"'

)

Currently, REXML returns the node set only on the left side of the |

operator. The previous code prints the following:

picked-up

first-delivery-attempt

refused-damaged

returns-to-sender

picked-up

delivered

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=123

PROCESSING XML DOCUMENTS 124

As with stored procedures in databases, it’s usually not a good idea
to put too much of your business logic into XPath expressions (even
simple length constraints can make up a vital part of your business
logic). On the other hand, XPath is probably the most convenient way
to access content of XML documents, and the REXML way of life will
certainly change the way you approach your next parsing problem.

XML Processing with XmlSimple

The attentive reader (and that’s all of you, isn’t it?) might have noticed
that processing XML is often a tedious job, involving mapping elements
to classes and attributes to member variables. Usually, the classes
have the same names as their corresponding XML elements, and the
member variables have the same names as their attribute counterparts.
This calls for automation. Fortunately, a lot of tools exist to free you
from this type of repetitive work.

Depending on the programming environment you’re working in, you
can choose from a variety of tools today ranging from small helper
libraries that support your own serialization strategy to sophisticated
solutions that automatically create complete class hierarchies and seri-
alizer classes based on XmlSchema files. Java and .NET certainly have
the most mature support for these kind of things, but there are some
useful libraries for Ruby, too.

Grant McLean got fed up writing the same code over and over again and
came up with a clever solution. His Perl module XML::Simple10 con-
verts an XML document into a structure of hashes and arrays accord-
ing to some simple rules and conventions. I often used this model
back in the old days when Ruby was nearly unknown, so it seemed
natural to port it across when I started using Ruby. The Ruby version,
named XmlSimple,11 implements nearly 100% of the original’s function-
ality and fixes some of its major flaws.

Less talk, more examples! Here we have a configuration file called app-

config.xml, as found in countless projects the world over:

File 189 <?xml version="1.0" encoding="iso-8859-1"?>

<app-config>

10http://www.cpan.org/modules/by-module/XML/XML-Simple-2.14.readme
11It is available as a Gem called xml-simple or from

http://raa.ruby-lang.org/project/xml-simple.

http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.xml
http://www.cpan.org/modules/by-module/XML/XML-Simple-2.14.readme
http://raa.ruby-lang.org/project/xml-simple
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=124

PROCESSING XML DOCUMENTS 125

<database env=' test' >

<usr>developer</usr>

<pwd>foo</pwd>

</database>

<database env=' production' >

<usr>admin</usr>

<pwd>secret</pwd>

</database>

<http-proxy>

<host>my.proxy.host</host>

<port>8080</port>

</http-proxy>

</app-config>

Configuration files like this are often read when the application starts.
Their content is then made available globally using a singleton class
or something similar. It would be a complete overkill to deserialize its
content manually and to create a corresponding class hierarchy. A
hash containing all configuration parameters would be sufficient. To
achieve this with XmlSimple, do something like the following:

File 188 require ' xmlsimple'

cfg = XmlSimple::xml_in(' appconfig.xml')

p cfg

This produces the following:

{

"http-proxy" => [

{

"port" => ["8080"],

"host" => ["my.proxy.host"]

}

],

"database" => [

{

"env" => "test",

"pwd" => ["foo"],

"usr" => ["developer"]

},

{

"env" => "production",

"pwd" => ["secret"],

"usr" => ["admin"]

}

]

}

http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=125

PROCESSING XML DOCUMENTS 126

XmlSimple turns the XML document into a structure consisting of
hashes and arrays, where every element and attribute name becomes
a hash key pointing to its associated content. Because elements can
potentially occur more than once, their values are stored in arrays by
default, while attribute values are not.

Our first result looks promising, but it’s far from optimal. To find the
password of our production database, for example, we have to search
for an entry in the array cfg[’database’], where the value associated with
the key env is production.

To adjust the output’s structure, xml_in() accepts an optional hash con-
taining name => value option pairs. The option key_attr controls which
elements should be used as the basis for the array folding. We’ll set it
to env:

File 188 cfg = XmlSimple::xml_in(' appconfig.xml' , ' key_attr' => ' env')

p cfg

Now we get the following:

{

"http-proxy" => [

{

"port" => ["8080"],

"host" => ["my.proxy.host"]

}

],

"database" => { # -> No longer an Array.

"production" => {

"pwd" => ["secret"],

"usr" => ["admin"]

},

"test" => {

"pwd" => ["foo"],

"usr" => ["developer"]

}

}

}

That’s much better. Now we can access the production database’s pass-
word using the following:

cfg[' database'][' production'][' pwd'][0]

The arrays containing a single element are still a bit annoying, but we
can get rid of them by setting the parameter force_array to false:

File 188 p XmlSimple::xml_in(nil, ' key_attr' => ' env' , ' force_array' => false)

The output is simpler:

http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=126

VALIDATING XML DOCUMENTS 127

{

"http-proxy" => {

"port" => "8080",

"host" => "my.proxy.host"

},

"database" => {

"production" => {

"pwd" => "secret",

"usr" => "admin"

},

"test" => {

"pwd" => "foo",

"usr" => "developer"

}

}

}

cfg[’database’][’production’][’pwd’] now contains the database password.

As we saw, xml_in() expects some kind of XML source and a parameter
hash. The XML source can be the following:

• A filename, as in

cfg = XmlSimple.xml_in(' appconfig.xml')

• nil

If there is no XML source, xml_in() will check the source program’s
directory for a file with the same name as the script but with the
extension .xml. If you want to specify options, you must specify
the value nil:

cfg = XmlSimple.xml_in(nil, ' force_array' => false)

• A string containing XML (recognized by the presence of < and >
characters) will be parsed directly. For example:

cfg = XmlSimple.xml_in(' <cfg env="test" password="foo" />')

• An IO object will be read and its contents parsed. For example:

cfg = XmlSimple.xml_in(File.new(' appconfig.xml'))

XmlSimple is not a full-blown XML data-binding tool, but it does just
what you need surprisingly often.

3.4 Validating XML Documents

Because you have to pay for every request to the e-scoring applica-
tion even when it’s syntactically invalid, you decide to validate all XML

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=127

VALIDATING XML DOCUMENTS 128

documents you’re going to send before actually transmitting them (all
documents we create using REXML are well-formed, but they do not
have to be valid necessarily). In general, you could choose from vari-
ous validation technologies, using DTDs (Document Type Definitions),
XmlSchema, and RELAX NG. (Regular Language for XML, New Gener-
ation)12 Fortunately, the decision with Ruby is easy, because REXML
supports only RELAX NG. That’s good news, because RELAX NG is the
most powerful and most convenient of the three. The bad news is that
REXML’s support for RELAX NG is highly experimental, and a lot of
important features do not work at all.

RELAX NG does not allow you to control the lexical appearance of a
document, so you can’t use it to control what kind of quotes you’ve
used for attributes or the comments or processing instructions that
can be used.

RELAX NG comes in two different syntax styles: XML syntax and com-
pact syntax. Both have their pros and cons, but again the choice is
made easy for Ruby programmers, because REXML does not support
the compact syntax style. To be honest, at the current stage of develop-
ment, REXML’s support for RELAX NG is barely useful, but it’s still pos-
sible to perform some basic validation, if you obey some simple rules.

Before diving into the details of RELAX NG, let’s revisit our example
document from Section 3.2, Generating XML Documents, on page 83.

File 169 <persons>

<person name=' Max' surname=' Mustermann' >

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

</persons>

Considering only a document’s structure and not its content, a valid
document fulfills the following requirements:

• There’s exactly one root element called <persons>.

• The <persons> element may have one or more <person> children.

• A <person> element has exactly two attributes called name and
surname.

12http://www.oasis-open.org/committees/relax-ng.

http://media.pragprog.com/titles/fr_eir/code/xml/persons.xml
http://www.oasis-open.org/committees/relax-ng
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=128

VALIDATING XML DOCUMENTS 129

• A <person> element has one <address> child.

• Every <address> element has a <street>, a <city>, and <postal-
code> child.

• The <street>, <city>, and <postal-code> elements may contain
text.

RELAX NG allows us to translate these requirements easily into the
XML syntax:

File 185 <?xml version=' 1.0' ?>

<element xmlns=' http://relaxng.org/ns/structure/1.0' name=' persons' >

<oneOrMore>

<element name=' person' >

<attribute name=' name' />

<attribute name=' surname' />

<element name=' address' >

<element name=' street' ><text/></element>

<element name=' city' ><text/></element>

<element name=' postal-code' ><text/></element>

</element>

</element>

</oneOrMore>

</element>

To validate our example document against this schema, we do the fol-
lowing:

File 186 Line 1 require ' rexml/document'

- require ' rexml/validation/relaxng'

- include REXML

-

5 def read_doc(filename)

- doc = IO.readlines(filename).to_s

- doc.gsub!(/\s+</, ' <')

- doc.gsub!(/\s+$/, ' ')

- doc

10 end

-

- begin

- schema = File.new(' person_schema.xml')

- validator = Validation::RelaxNG.new(schema)

15 parser = Parsers::TreeParser.new(read_doc('persons.xml'))

- parser.add_listener(validator.reset)

- parser.parse

- rescue Validation::ValidationException => e

- puts "An error occurred during validation: #{e}"

20 rescue Exception => e

- puts "An exception occurred: #{e}"

- end

http://media.pragprog.com/titles/fr_eir/code/xml/validation/person_schema.xml
http://media.pragprog.com/titles/fr_eir/code/xml/validation/valid_persons.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=129

VALIDATING XML DOCUMENTS 130

Because we don’t need to process the document any further, it doesn’t
matter which parser we use for our validation purposes, so we arbitrar-
ily chose the TreeParser. Most of the code should be self-explanatory: in
lines 14 to 17 we initialize a validator with our schema and pass it to
the parser. If anything goes wrong while validating the document, a
ValidationException exception will be thrown.

But what the heck does read_doc() do? As mentioned earlier, REXML’s
support for RELAX NG validation is full of flaws. One of them is the
incorrect handling of whitespace. Whitespace handling has always
been a complicated issue in XML. When validating documents, whites-
pace becomes an even bigger problem. In a formatted XML document,
the indentation before tags automatically is converted into text nodes.
So, even if your element does not allow for text, it actually has some, if
you format your document. The corresponding schema must support
it too.

RELAX NG usually works pragmatically with this issue, because it con-
siders whitespace and empty content equal—you do not have to clutter
your schema document with <text> elements only because you want to
format your source with whitespace. REXML currently does not imple-
ment this behavior, so instead of adding countless <text> elements,
read_doc() eliminates all whitespace before < characters. Yet another
annoying bug is REXML’s comment handling. There’s no way in RELAX
NG to restrict comments in any way, but if you have a comment in an
XML document you’re trying to validate with REXML, it will fail miser-
ably, because REXML complains about the unexpected comment node.
Finally, REXML does not support the XML header.

xmllint

If you definitely need to validate XML documents against a particular
schema, you can use xmllint.13 xmllint is a command-line tool that is
available for nearly all operating systems. It checks that a given set
of XML files are well-formed and whether they are in compliance with
a certain schema. The following class encapsulates access to the xmllint

program. If there is native schema support someday in Ruby, you’ll be
able to replace the system() call easily:

File 187 Line 1 class Validator

- class << self

13http://xmlsoft.org/xmllint

http://media.pragprog.com/titles/fr_eir/code/xml/validation/validator.rb
http://xmlsoft.org/xmllint
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=130

VALIDATING XML DOCUMENTS 131

- def validate(document, schema)

- option = case schema

5 when /\.dtd$/ then ' -valid'

- when /\.xml$/ then ' -relaxng'

- when /\.xsd$/ then ' -schema'

- end

- exec_xmllint(document, schema, option)

10 end

-

- private

-

- def exec_xmllint(file, schema, option)

15 rc = system("xmllint -noout #{option} #{schema} #{file}")

- status = $?.exitstatus

- return true if rc && status == 0

- raise ' ValidationError' if [3, 4].include?(status)

- raise ' UnexpectedError' unless rc

20 end

- end

- end

This solution isn’t particularly efficient, but it’s good enough in many
cases. xmllint’s validation support is excellent. From line 4 to 8 we
determine which options have to be passed to xmllint. In line 15 we
call xmllint and evaluate its return status. First we check whether the
system() call succeeded—whether it returned true or false (it will return
false, for example, if xmllint could not be found). Then we determine
xmllint’s return code. xmllint returns 0 if it could parse and validate a
document successfully. If a validation error occurred, it returns 3 or 4.
All other return codes indicate errors.

To validate our sample document, you have to do this:

File 187 Line 1 begin

- Validator.validate(' persons.xml' , ' person_schema.xml')

- rescue => ex

- puts ex

5 end

Conclusion

Validating XML documents using any kind of schema is not as useful as
it might initially seem; as a careful and defensive programmer you will
check the restrictions defined in the schema in your program anyway.
Validation makes sense only when you generate the code completely
from a schema or when you generate documents that are going to be
consumed by other applications.

http://media.pragprog.com/titles/fr_eir/code/xml/validation/validator.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=131

ARE THERE ALTERNATIVES TO XML? 132

Ruby’s support for any kind of XML schema language is currently weak.
If you are in need of high-performance XML validation, you will have to
look for alternatives or—even better—implement a libxml2 binding for
Ruby.

3.5 Are There Alternatives to XML?

Data representation is one of the most important things in our busi-
ness; you shouldn’t take it lightly. Sometimes you do not have a choice.
If you have to deal with legacy data, you usually have to eat what has
been served.

Although XML is a comparatively young technology, for some people
it seems hard to remember the dark and ancient times without XML.
Today nearly every program offers functions for importing or exporting
XML or can be configured by editing one or more XML files.

Many developers do not think about alternative file formats anymore.
“XML is a standard and I get a parser for free, so why should I use
something else or even invent something new?” they say. Certainly
this is true under some circumstances, but more often than not you’re
better off if you think about alternatives.

As a rule of thumb you should try to avoid XML when you know that
human beings have to read or edit the documents. It’s OK for machines
to do it, because that’s what they were built for, but you do not want
your customers to learn the secrets of well-formedness. Even if your
customers are programmers, they will be deeply grateful if you offer
them the most convenient way to achieve their goals.

You should not use XML only because you get a parser for free. James
Duncan Davidson did this when he created the Java build tool Ant, and
today he publicly regrets having done it,14 because looking back, XML
wasn’t an adequate choice. It does not fit the needs of a build tool,
and we’ll see a much better approach in Section 6.5, Project Automation

with Rake, on page 303.

XML is quite a misnomer, because it is not a language itself but a set
of rules for describing markup languages. You should never consider
using XML for the description of a programming language. Proba-

14http://web.archive.org/web/20040602210721/x180.net/Articles/Java/AntAndXML.html

http://web.archive.org/web/20040602210721/x180.net/Articles/Java/AntAndXML.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=132

ARE THERE ALTERNATIVES TO XML? 133

bly the most obvious example of this kind of misuse is the eXtensible
Stylesheet Language (XSL).15

Despite all this, XML should be part of every modern developer’s tool-
box, because it is widespread and can be handy under certain circum-
stances, but you should always keep this in mind: there’s no such thing
as “cool technology.” There are only tools that help you to get your job
done, and there are tools that don’t.

Comma-Separated Values (CSV)

Although there is no official standard, the Comma-Separated Values Comma-Separated

Values
(CSV) format may well be the most popular data exchange format ever,
because countless spreadsheet and database applications use it for
importing and exporting data.16

Simply put, a CSV file is a plain-text file containing tabular data where
every line represents a table row and where all columns (fields) are
separated by a delimiter. The lines themselves are usually separated
by a carriage return. If a column contains the delimiting character or
a carriage return, quotes will be put before and after its value. If the
value contains quotes too, the quotes will be doubled. Optionally the
first line of the file may contain the column names (separated by the
delimiter, too).

Here we have a CSV representation of some bunches of flowers:

File 160 id,name,price,description

1,Red Dream,79.99,"Lots of red roses saying ""Come back, please!"""

2,Blue Velvet,29.99,Your Mom will love it.

Because the description of the “Red Dream” data set contains a comma,
we had to set it in quotes. Consequently, we had to double all the
quotes in the description, too.

The name Comma-Separated Values is a bit of a misnomer, because
today it’s used for all kind of formats where a set of attributes is sep-
arated by special characters. For every file you have to be consistent
about the delimiter; i.e., all attributes in every line have to be sepa-
rated by the same character. Frequently used delimiters include the
characters ;, :, |, blanks, and tabulators. Hence, pedantic people call
the format Character-Separated Values nowadays. Character-Separated

Values

15http://www.w3.org/Style/XSL
16Under http://en.wikipedia.org/wiki/Comma-separated_values you’ll find a

lot of interesting background information.

http://media.pragprog.com/titles/fr_eir/code/xml/csv/products.csv
http://www.w3.org/Style/XSL
http://en.wikipedia.org/wiki/Comma-separated_values
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=133

ARE THERE ALTERNATIVES TO XML? 134

You might be tempted to create and read CSV files using strings and
regular expressions, but beware: it’s not as easy as it seems,and there
are a lot of pitfalls lurking. In addition, Hiroshi Nakamura’s excellent
CSV library in the meantime became part of the standard distribution
and makes both reading and writing CSV data a breeze.

Generating Comma-Separated Values

For generating CSV data we use the generate(stream,fs=',',rs=nil, &block)

method of class CSV::Writer. Parameter stream is an object supporting
the <<(string) operator, fs is the field separator to be used (a comma
by default), rs is the record separator to be used (carriage return by
default), and block is a code block to be called for every line to be gen-
erated. The code block will be called with a single parameter of class
CSV::BasicWriter.

To generate our list of flowers using a semicolon as delimiter, we have
to do the following:

File 162 Line 1 require ' csv'

- CSV::Writer.generate(STDOUT, ' ;') do |csv|

- csv << [1, ' Red Dream' , ' Red roses saying "Come back, please!"']

- csv << [2, ' Blue Velvet' , ' Your Mom will love it.']

5 end

This produces the following:

1;Red Dream;"Red roses saying ""Come back, please!"""

2;Blue Velvet;Your Mom will love it.

Did you notice that CSV::Writer enclosed our “Red Dream” description in
quotes, although it does not contain the delimiter? Always keep this in
mind: there is no CSV standard, and whenever you have to create or
process CSV files, you should talk to the sender or recipient of the files
up front. Maybe Hiroshi’s library does not emit what your counterpart
expects, or vice versa.

Processing Comma-Separated Values

You already guessed it: the CSV library contains a CSV::Reader class for
reading CSV files. The following program produces a price list of our
flavorsome products:

File 161 Line 1 require ' csv'

- CSV::Reader.parse(File.open('products.csv' , ' r')) do |row|

- puts "#{row[1]}: #{row[2]}"

http://media.pragprog.com/titles/fr_eir/code/xml/csv/write_csv.rb
http://media.pragprog.com/titles/fr_eir/code/xml/csv/read_csv.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=134

ARE THERE ALTERNATIVES TO XML? 135

- end

This produces the following:

name: price

Red Dream: 79.99

Blue Velvet: 29.99

Obviously we forgot to ignore our header line, and the parse(stream, fs=',',

rs=nil, &block) method of class CSV::Reader does not offer the ability to
ignore it. Hence, we will use open(path, mode, fs=nil, rs=nil, &block) to get
an instance of CVS::Reader:

File 161 Line 1 csv = CSV.open(' products.csv' , ' r')

- header = csv.shift # Ignore header line.

- csv.each { |row| puts "#{row[1]}: #{row[2]}" }

- csv.close

This produces the following:

Red Dream: 79.99

Blue Velvet: 29.99

Normally, you would not ignore the header but use it to dynamically
create objects or reports. The following program dynamically creates a
list of Product classes from our CSV file:

File 159 Line 1 require ' csv'

- csv = CSV.open(' products.csv' , ' r')

- Product = Struct.new(*(csv.shift.map { |f| f.to_sym }))

- products = csv.inject([]) do |products, row|

5 products << Product[*row]

- end

- csv.close

-

- products.each do |p|

10 puts "#{p.name}: #{p.price}"

- end

This produces the following:

Red Dream: 79.99

Blue Velvet: 29.99

That’s the Ruby way of life, and nearly all the magic comes from line
3, where we create a new Product class on the fly by using class Struct.
Let’s dissect this line from the inside out: csv.shift.map { |f| f.to_sym } reads
the header line from our CSV file and turns all columns into a symbol
by calling to_sym(). The result is an array of symbols that is converted
into a parameter list using the asterisk. This parameter list is then
used to create a new Struct called Product. Our newly created class has

http://media.pragprog.com/titles/fr_eir/code/xml/csv/read_csv.rb
http://media.pragprog.com/titles/fr_eir/code/xml/csv/product_generator.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=135

ARE THERE ALTERNATIVES TO XML? 136

accessors for all the header columns (id, name, price, description) and
new instances can be created using the new() or [] operator (as shown
in line 5).

Skimming the documentation of the CSV library is not a bad idea,
because it contains some convenient methods (such as foreach() and
readline()) we didn’t cover here.

Properties Files

Properties files can be often found in Java environments, and it hap- Properties files

pens sometimes that you have to add a program to an existing enter-
prise Java project that has to use the same configuration as the project.
For example, the HTTP proxy and database parameters are typically the
same for many applications running on the same machine.

Simply put, a property is a value associated with a unique key, and a
properties file is a file containing such key/value pairs. Keys and values
are separated by = or : characters, and logical lines can comprise more
than one physical line.

A typical properties file looks like this:

File 171 ! Comments start with ' !' ...

... or with ' #' .

ruby = pragmatic

A property spanning two lines.

broken_value = This value is \

long.

colon_prop: hello

A property spanning three lines.

fruits: apple, banana, pear, \

cantaloupe, watermelon, \

kiwi, mango

http.proxyHost=example.com

http.proxyPort=8080

Although the original specification is much more complicated (e.g., it
allows : and = characters in keys and Unicode characters), the follow-
ing class should understand enough of the Java properties syntax to
process most properties files out there:

File 170 Line 1 class PropertiesFile

- def initialize(file_name)

http://media.pragprog.com/titles/fr_eir/code/xml/properties/regular.properties
http://media.pragprog.com/titles/fr_eir/code/xml/properties/propfile.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=136

ARE THERE ALTERNATIVES TO XML? 137

- @properties = load_props(file_name)

- end

5

- def [](key) @properties[key]; end

- def to_hash() @properties; end

-

- private

10

- def load_props(file_name)

- properties = {}

- file = File.new(file_name)

- while !file.eof? do

15 line = get_line(file)

- next if line =~ /^[#!]/ or line =~ /^\s*$/

- if line =~ /^\s*(\S+)\s*[=:]\s*(.*)$/

- properties[$1] = $2

- end

20 end

- file.close

- properties

- end

-

25 def get_line(file)

- current_line = file.readline.chomp

- while current_line =~ /^(.*)\\$/

- next_line = file.readline.chomp

- current_line = $1 + next_line.gsub(/^\s*(.*)$/, ' \\1')

30 end

- current_line

- end

- end

Here’s a simple program to feed the sample file to our class:

require ' propfile'

properties = PropertiesFile.new(' regular.properties')

properties.to_hash.each do |k,v|

puts "#{k}: #{v}"

end

broken_value: This value is long.

http.proxyPort: 8080

fruits: apple, banana, pear, cantaloupe, watermelon, kiwi, mango

colon_prop: hello

ruby: pragmatic

http.proxyHost: example.com

Fixed-Length Records

One of the oldest and simplest file formats in the history of computer
science is fixed-length records, where every line of a file is divided into

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=137

ARE THERE ALTERNATIVES TO XML? 138

several fields having a fixed length. A fixed-length record file containing
a credit card number (19 characters), a first name (20 characters), and
a surname (30 characters) looks like this:

File 164 Line 1 1234-5678-9012-3456Barney Gumble

- 1111-2222-3333-4444Homer Simpson

Even in times of seemingly unlimited resources we still have to think
about maximum sizes surprisingly often. For instance, relational data-
bases still force us to define the maximum length of columns (how long
can a surname or a street name be? In North America? In Iceland?),
and therefore database exports are often files containing fixed-length
records. But using fixed-length records can also be a natural choice,
because the size of a lot of data, e.g., Social Security or credit card
numbers, is limited anyway.

Hence, files containing fixed-length records are still in widespread use
today, and processing them with Ruby is easy:

File 165 class FixedLengthRecordFile

def FixedLengthRecordFile.open(filename, field_sizes)

field_pattern = ' a' + field_sizes.join(' a')

IO.foreach(filename) do |line|

record = line.chomp.unpack(field_pattern)

record.map { |f| f.strip! }

yield record

end

end

end

File 166 FixedLengthRecordFile.open('customers.fix' , [19, 20, 30]) do |row|

puts "#{row[1]}, #{row[2]} (#{row[0]})"

end

This produces the following:

Barney, Gumble (1234-5678-9012-3456)

Homer, Simpson (1111-2222-3333-4444)

The main work in our class is done by the unpack(format) method, which
is a string tokenizer on steroids, that can be used whenever you have to
dissect a string of bytes. It expects a format string consisting of single-
letter commands and returns an array of all values extracted from the
string.

In our case we dynamically construct a format string that extracts
sequences of ASCII characters from a string. An a followed by a num-
ber means “extract this amount of ASCII characters.” For our customer
example it is “a19a20a30”; i.e., extract 19 characters, then 20 char-

http://media.pragprog.com/titles/fr_eir/code/xml/fixlength/customers.fix
http://media.pragprog.com/titles/fr_eir/code/xml/fixlength/fixfile.rb
http://media.pragprog.com/titles/fr_eir/code/xml/fixlength/read_fix_customers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=138

ARE THERE ALTERNATIVES TO XML? 139

acters, and finally 30 characters. It should be obvious that it’s not
possible to process binary data using our class.

YAML Ain’t Markup Language (YAML)

You probably won’t have to integrate your software with existing YAML
documents in your enterprise. But, in the Ruby world, YAML is popular,
maybe even more popular than XML. So let’s spend a few pages looking
at YAML.

YAML stands for “YAML Ain’t Markup Language.” That’s no lie: YAML
actually does not define markup sequences the way XML does. Instead,
it specifies a small set of simple rules for formatting structured data
without much clutter, using plain text. YAML is available not only for
Ruby but also for Python,PHP, and Perl.17

The following YAML file (themes.yaml) represents a list of wrapping paper
themes. It shows examples of array elements, which start with a -
symbol and are separated by newline characters:

File 193 - red hearts

- lovely smileys

- rainbows

To load and parse the file, we use the YAML parser written by why the

lucky stiff:

File 194 Line 1 require ' yaml'

- themes = YAML::load_file(' themes.yaml')

- puts themes.class

- puts themes.join("\n")

This prints the following:

Array

red hearts

lovely smileys

rainbows

Obviously, the parser knows how to turn our list back into a native
Ruby array, but does it work the other way around, too?

File 194 Line 1 include YAML

- puts %w(a spectacular example).to_yaml

This produces the following:

17http://www.yaml.org

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/themes.yaml
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://www.yaml.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=139

ARE THERE ALTERNATIVES TO XML? 140

- a

- spectacular

- example

When you include YAML, every object will get a to_yaml() method that
returns its YAML representation. That whets our appetite; let’s see how
YAML treats other data types:

File 194 Line 1 [

- ' PragBouquet' ,

- :aSymbol,

- 42,

5 3.14,

- true,

- { ' chunky' => ' bacon' , ' answer' => 42},

-].each do |obj|

- puts "#{obj.class}#to_yaml:\n#{obj.to_yaml}\n"

10 end

This produces the following:

String#to_yaml:

PragBouquet

Symbol#to_yaml:

:aSymbol

Fixnum#to_yaml:

42

Float#to_yaml:

3.14

TrueClass#to_yaml:

true

Hash#to_yaml:

answer: 42

chunky: bacon

All the basic data types (Fixnum, Float, Boolean, and String) seem to be
encoded as ordinary Ruby literals. The encoding of Hash objects looks
intuitive, too.

By default, every sequence of characters starting with an alphanumeric
character is a String object in YAML unless it matches the more fine-
grained rules for other data types.

As usual, symbols start with a colon (keep in mind that YAML is not
specific to Ruby, so it has no specific syntax for symbols, because they
do not exist in all dynamic languages). Integer objects are sequences

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=140

ARE THERE ALTERNATIVES TO XML? 141

of digits that may start with an optional sign character (+ or -). They
may contain commas for better readability, so -1,234 will be interpreted
as an integer. Boolean values are represented by true and false. Float

objects are two sequences of digits separated by a period (.). They may
start with an optional sign character, and in contrast to Ruby’s literals
for Float objects, the scientific notation for floating-point numbers is
allowed in YAML.

Hash objects are represented as key/value pairs where the key and
value are separated by a colon and each pair is separated by a newline
character.

Now we know how Ruby’s standard types are represented in YAML, so
let’s look at more complex structures. When running this little pro-
gram:

File 194 Line 1 [

- [%w(a nested list)],

- [' another' , %w(more deeply), ' nested' , ' list'],

- [' a' , { ' list' => ' of' , 3 => ' different' }, ' objects'],

5 { ' that' => %w(is getting), ' really' => { ' very' => ' complex' }}

-].each do |obj|

- puts "#{obj.inspect}.to_yaml:\n#{obj.to_yaml}\n"

- end

we get the following result:

[["a", "nested", "list"]].to_yaml:

- - a

- nested

- list

["another", ["more", "deeply"], "nested", "list"].to_yaml:

- another

- - more

- deeply

- nested

- list

["a", {"list"=>"of", 6=>"different"}, "objects"].to_yaml:

- a

- list: of

3: different

- objects

{ "that"=>["is", "getting"], "really"=>{"very"=>"complex"}}.to_yaml:

really:

very: complex

that:

- is

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=141

ARE THERE ALTERNATIVES TO XML? 142

- getting

No big deal: nested arrays and hashes are encoded by indenting the
nested elements with leading spaces. The number of characters used
for indentation doesn’t matter, but it has to be consistent, so if the first
element is indented by four characters, the following elements have to
be indented by four characters, also.

Because there are no more standard types left, let’s look at other inter-
esting objects:

File 194 Line 1 Flower = Struct.new(:name, :price)

- [

- Time.now,

- Flower.new(' rose' , 1.99),

5 /even regexes/i,

- ' a' ..' f'

-].each do |obj|

- puts "#{obj.class}#to_yaml:\n#{obj.to_yaml}\n"

- end

This is how our objects are “yamlfied”:

Time#to_yaml:

2005-11-06 13:13:41.536822 +01:00

Flower#to_yaml:

!ruby/struct:Flower

name: rose

price: 1.99

Regexp#to_yaml:

!ruby/regexp /even regexes/i

Range#to_yaml:

!ruby/range

begin: a

end: f

excl: false

Timestamps and dates are encoded in ISO-8601 format or—as shown
in the previous example—a slight variation where you can put spaces
between the date, time, and time zone.

Struct objects begin with !ruby/struct:struct name, followed by the mem-
bers of the Struct object, listed as colon-separated key/value pairs. Reg-
ular expressions are encoded by putting !ruby/regexp in front. Finally,
the representation of Range objects starts with the !ruby/range sequence,
followed by the three attributes begin, end, and excl, corresponding to
the range definition.

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=142

ARE THERE ALTERNATIVES TO XML? 143

Now let’s see how YAML encodes objects created from the classes you
write:

File 194 Line 1 class CustomClass

- attr_accessor :a_hash, :an_array, :a_timestamp

- end

-

5 custom_class = CustomClass.new

- custom_class.a_hash = { ' how' => ' boring' }

- custom_class.an_array = %w(still awake?)

- custom_class.a_timestamp = Time.now

- puts custom_class.to_yaml

This prints the following:

!ruby/object:CustomClass

a_hash:

how: boring

a_timestamp: 2005-11-07 19:36:54.477093 +01:00

an_array:

- still

- awake?

That should be fairly self-explanatory.

We’ve looked at YAML serializing data. It can also deserialize data. If,
for example, the file demo.yaml is as follows:

File 192 - 42

- ~

- null

- true

- 1.2345

- :aSymbol

- 2005-11-07

- 1972-09-30T03:42:17.0+01:00

- !ruby/object:CustomClass

a_hash:

how: boring

a_timestamp: 2005-11-07 19:36:54.477093 +01:00

an_array:

- still

- awake?

and we parse it like this:

File 194 Line 1 p YAML::load_file(' demo.yaml')

then we get the following (manually formatted) output:

[

42, nil, nil, true, 1.2345, :aSymbol,

#<Date: 4907363/2,0,2299161>, Sat Sep 30 03:42:17 CET 1972,

#<CustomClass:0x392ffc

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/demo.yaml
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=143

ARE THERE ALTERNATIVES TO XML? 144

@a_hash={"how"=>"boring"},

@a_timestamp=Mon Nov 07 19:36:54 CET 2005,

@an_array=["still", "awake?"]>

]

Conclusion

YAML is a useful technology, and its Ruby support is excellent. It still
has many more useful features we didn’t cover here.18 For example,
you can put several documents into a single file, and you can define
references to particular entries in a document and use them wherever
you want. The next time you need a data format, you should give YAML
a chance....

18Visit http://yaml4r.sourceforge.net/cookbook to learn every little detail.

http://yaml4r.sourceforge.net/cookbook
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=144

Chapter 4

Low-Ceremony Distributed
Applications

Few technologies have changed the IT landscape the way networks
have. Today networks are ubiquitous. Some key players claim that
the network is the computer. Think about it for a moment: when was
the last time you switched on your computer and did not immediately
connect to the Internet? When was the last time you started your office
PC and did not log in to a server using ssh or telnet?

Yes, it’s true: networks have changed the way we think about comput-
ers significantly. They’ve changed the way we think about applications,
too. Nowadays, even small applications often depend on distributed
architectures where parts of a program are made available using net-
work technologies.

That’s obvious on the Internet, where you can freely use services offered
by Amazon.com or Google. By sending simple HTTP requests, you get
back information about a book, or you can search for news about your
favorite football team.

Big companies in the banking or telecommunications business were the
first to adapt to the distributed applications paradigm. Because these
companies often are spread across different continents, they were moti-
vated to find ways to implement a feature or a function only once and
to reuse it wherever possible. Today it’s so easy to implement interpro-
cess communication that nearly every company can benefit from using
the technology.

“I’D RATHER USE A SOCKET” 146

You do not have to use heavyweight industry standards such as SOAP
or CORBA to make your processes talk to each other. In this chapter
we’ll show you how to use plain sockets and pure HTTP to separate
concerns and to distribute business logic across process boundaries.

4.1 “I’d Rather Use a Socket”

During a conference in 2003 someone asked Robert C. Martin about
the future of SOAP. After listening to the answers of his panelists, Uncle
Bob replied, “I’d rather use a socket.”1 He is right: more often than not
it’s sufficient to use some plain text files and a socket instead of huge
databases and complex middleware. So, let’s start by looking at this
simple approach.

Using plain sockets in an efficient and platform-independent manner
isn’t trivial; handling multithreading issues and the like can become
fairly complicated. If you’re really interested in the nitty-gritty details
of socket programming, look at Unix Network Programming [Ste98] and
the appendix of Programming Ruby [TFH05]. Fortunately, a few off-the-
shelf solutions are available in Ruby’s standard distribution.

Ruby comes with a class called GServer that helps in the creation of
generic TCP servers. Written by John W. Small, GServer deals with
stuff such as connection handling and distributing requests to different
threads, leaving you to implement the business logic. The unavoidable
echo server example that sends back everything it gets looks like this:

File 58 Line 1 require ' gserver'

-

- class Parrot < GServer

- def initialize(host = ' localhost' , port = ' 3333')

5 super(port, host)

- end

-

- def serve(client)

- text = client.gets

10 client.puts(text)

- end

- end

-

- lora = Parrot.new

15 lora.start

- lora.join

1http://www.artima.com/weblogs/viewpost.jsp?thread=4846

http://media.pragprog.com/titles/fr_eir/code/dist_app/echosrv.rb
http://www.artima.com/weblogs/viewpost.jsp?thread=4846
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=146

“I’D RATHER USE A SOCKET” 147

On line 3 we derive our class Parrot from GServer, initializing it on line
5. The serve(client) method gets called whenever a client connects to
our server. After reading what the client has to say, it sends it back as
an echo. As you might have guessed already, start() starts the server,
and the join() method ensures that all running threads finish their work
before shutting down the server. Here we have a recording from a live
performance:

mschmidt:/tmp> telnet localhost 3333

⇒ Trying ::1...

Connected to localhost.

Escape character is ' ^]' .

⇐ Do you wanna have a cookie

⇒ Do you wanna have a cookie

Connection closed by foreign host.

mschmidt:/tmp>

The PragBouquet Status Monitor

Because building a server with GServer is so easy, we will try to solve
a problem that has been around for a long time now at PragBouquet.
Nearly every application running at PragBouquet writes a log file, often
used for troubleshooting.

Unfortunately, not all of them (to be exact, no two of them) use the
same format, and the files are scattered across several file systems.
Even if you’re lucky and eventually find the file that should contain the
information you need to resolve a trouble ticket initiated by one of your
best (and probably most choleric) customers, chances are good that it
has been overwritten already and no backup is available.

To overcome this situation we will create a status monitor, a TCP server
whose only purpose is to centrally store messages sent by PragBouquet
applications. Each message belongs to a certain application and is
tagged with a severity level (warn, error, fatal).

You might be wondering “Hey, why rewrite syslogd?” but our little server
differs from syslogd in a lot of ways: it’s used exclusively by PragBouquet
applications, we can decide where and how to store our log messages,
special actions can be triggered for certain log levels, and it’s platform
independent—it will run on Unix boxes as well as on Windows PCs.

Release candidate 1 of status monitor V0.0.1b writes messages only to
STDOUT. It looks like this:

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=147

“I’D RATHER USE A SOCKET” 148

File 74 Line 1 require ' logger'

- require ' gserver'

-

- class StatusMonitor < GServer

5 def initialize(host = ' 127.0.0.1' , port = ' 3333')

- super(port, host)

- @level_map = {

- ' w' => ' warn' , ' e' => ' error' , ' f' => ' fatal'

- }

10 @logger = Logger.new(STDOUT)

- end

-

- # Expects CSV data in the following format:

- # level,application,message.

15 def serve(client)

- level, app, msg = client.readline.chomp.split(' ,' , 3)

- if @level_map.has_key?(level)

- @logger.send(@level_map[level], "#{app}: #{msg}")

- client.puts(' 0')

20 else

- client.puts(' 1')

- end

- end

- end

25 sm = StatusMonitor.new

- sm.start

- sm.join

Let’s test it using good old telnet:

mschmidt:/tmp> telnet localhost 3333

⇒ Trying ::1...

Connected to localhost.

Escape character is ' ^]' .

⇐ f,billing,Lost connection to payment gateway.

⇒ 0

Connection closed by foreign host.

mschmidt:/tmp>

Our request has been successful (0 was returned). The corresponding
server output looks like this:

F, [2005-09-03T16:32:03.952707 #1124] FATAL -- : billing: \

Lost connection to payment gateway.

Line 18 shows a nice Ruby trick; it dynamically invokes a method on
our logger object using send(symbol, [, args...]) (to read more about the
Logger class, see Section 6.2, Logging, on page 261).

By the way, if you don’t want to test your GServer objects using old-
fashioned manual prodding with telnet, you can easily use ordinary

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=148

“I’D RATHER USE A SOCKET” 149

unit tests, too. Thanks to the magic of duck typing (see the sidebar,
on the next page), you can pass any object to the serve() method that
responds to the readline() and puts() methods.StringIO works well for this
sort of task:

File 68 Line 1 require ' test/unit'

- require ' stringio'

- require ' status_monitor'

-

5 class StatusMonitorTest < Test::Unit::TestCase

- def setup

- @server = StatusMonitor.new

- end

-

10 def test_empty_string

- result = simulate_request("\n")

- assert_equal(' 1' , result)

- end

-

15 def test_invalid_level

- result = simulate_request("x,foo,invalid level\n")

- assert_equal(' 1' , result)

- end

-

20 def test_normal_case

- result = simulate_request("e,foo,normal case\n")

- assert_equal(' 0' , result)

- end

-

25 def simulate_request(request)

- client = StringIO.new(request)

- @server.serve(client)

- client.string[request.size - 2 .. -2]

- end

30 end

This produces the following:

Loaded suite sm_test

Started

..E, [2005-10-14T08:00:54.960679 #374] ERROR -- : foo: normal case

.

Finished in 0.012851 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

For the unit tests, we’ve initialized StringIO objects with messages that
potential clients could send to the status monitor. The Status Monitor’s
serve() method doesn’t care what class its clients belong to and happily
reads requests from a StringIO object and writes results to it.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sm_test.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=149

“I’D RATHER USE A SOCKET” 150

Duck Typing

Ruby is an object-oriented language. Where there are objects,
classes and types are usually not far away. However, in con-
trast to Java or C++ programs, Ruby programs are not cluttered
with type declarations. In Ruby, the type of variables, methods,
and method parameters do not have to be explicitly declared.
Despite this, all Ruby objects have a certain type.

However, when you’re programming in a dynamic language,
you soon realize that the most important question about a par-
ticular object is normally not “What’s its class, and what are all
the methods it responds to?” but instead “Does the object at
hand respond to foo()?”

That’s where the duck analogy comes from: if it walks like a
duck and talks like a duck, then it will be treated as if it is a
duck. No matter if it actually is one or not.

This situation is not uncommon even in apparently statically
typed languages. For example, Java programmers expect
every object to have a toString() method. In Java, this is
because all objects are derived from the omnipresent Object
class. The implementation is different, but the principle is the
same: you want a particular object to respond to a certain
message; its class doesn’t matter much to you.

Our implementation of the GServer’s serve(client) method
doesn’t care about client’s class: it doesn’t declare its type, and
it doesn’t check whether it actually is some kind of TCP socket.
It expects client to respond only to methods called readline()
and puts(text).

The main work is done by the simulate_request() method. This calls the
serve() method, passing it a StringIO object. To read the result on line 28,
we have to ignore the message that is still in the StringIO object, and we
have to ignore the line feed the server sends at the end of the message.

Status Monitor Clients

The biggest problem with servers is that they are totally useless without
a client. In our case, we have to create one for every programming lan-
guage PragBouquet uses. Although this may seem like a lot of redun-
dancy, it’s always a good idea to provide programmers with the highest

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=150

“I’D RATHER USE A SOCKET” 151

degree of flexibility. If there is no status monitor client library for Java,
they will not use it (the status monitor, of course. Not Java). If you
think the status monitor is a Good Thing and you want your colleagues
to use it, then you have to make it as painless as possible to do so.

Currently, there are not many Ruby applications in the PragBouquet
environment, but we want to be prepared. Feeding our status monitor
from Ruby programs can be accomplished using class TCPSocket:

File 78 Line 1 require ' socket'

-

- class StatusMonitorClient

- WARN = ' w'

5 ERROR = ' e'

- FATAL = ' f'

-

- def initialize(host, port)

- @sm = TCPSocket.new(host, port)

10 end

-

- def warn(app, msg) log(WARN, app, msg); end

- def error(app, msg) log(ERROR, app, msg); end

- def fatal(app, msg) log(FATAL, app, msg); end

15 def terminate() @sm.close; end

-

- private

-

- def log(level, app, msg)

20 @sm.puts [level, app, msg].join(' ,')

- @sm.readline

- end

- end

At the heart of class Status MonitorClient is the log(level,app,msg) method.
It sends a string to the status monitor and reads back the result.
Because TCPSocket objects behave like any other IO instance, it’s easy
to implement. You can use this class as follows:

File 78 Line 1 sm = StatusMonitorClient.new(' 127.0.0.1' , 3333)

- # ...

- sm.fatal(' billing' , ' Lost connection to payment gateway.')

- # ...

5 sm.terminate

One of the most important clients will be the Java client, because it
has been the programming language of choice for a long time at Prag-
Bouquet. As we did with the Ruby client, we won’t go abstracting too
much. At the same time, adding a little layer on top of the TCP stack
will certainly pay off in the future:

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=151

“I’D RATHER USE A SOCKET” 152

File 71 Line 1 import java.io.*;

- import java.net.*;

-

- public class StatusMonitor {

5 public static final String WARN = "w";

- public static final String ERROR = "e";

- public static final String FATAL = "f";

-

- public StatusMonitor(final String host, final int port)

10 throws UnknownHostException, IOException

- {

- _sm = new Socket(host, port);

- _out = new PrintWriter(_sm.getOutputStream(), true);

- _in = new BufferedReader(

15 new InputStreamReader(_sm.getInputStream())

-);

- }

-

- public int warn(final String app, final String msg)

20 throws IOException

- {

- return log(WARN, app, msg);

- }

-

25 public int error(final String app, final String msg)

- throws IOException

- {

- return log(ERROR, app, msg);

- }

30

- public int fatal(final String app, final String msg)

- throws IOException

- {

- return log(FATAL, app, msg);

35 }

-

- public void terminate() throws IOException {

- _out.close();

- _in.close();

40 _sm.close();

- }

-

- private int log(

- final String level,

45 final String app,

- final String msg) throws IOException

- {

- final String DEL = ",";

- _out.println(level + DEL + app + DEL + msg);

50 final String response = _in.readLine();

- int return_code = 1;

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/statusMonitor.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=152

“I’D RATHER USE A SOCKET” 153

- try {

- return_code = Integer.parseInt(response);

- }

55 catch(NumberFormatException ignoreMe) {}

- return return_code;

- }

-

- private Socket _sm;

60 private PrintWriter _out;

- private BufferedReader _in;

- }

Again, most of the work takes place in the log(level,app,msg) method.
Because this is a book about Ruby, we will not go into all the nitty-
gritty details of the StatusMonitor class. However, we will demonstrate
how to use it:

File 72 Line 1 public class StatusMonitorTest {

- public static void main(String[] args) {

- try {

- final StatusMonitor sm = new StatusMonitor(

5 "127.0.0.1",

- 3333

-);

- final int result = sm.debug("billing", "ALAAARM!!");

- System.out.println(result);

10 sm.terminate();

- }

- catch(Exception e) {

- System.err.println(

- "An error occurred: " + e.getMessage()

15);

- }

- }

- }

Oh, and we shouldn’t forget the ragged hordes of Perl programmers who
inhabited our IT department in the past. All the poor guys who have
to maintain their legacy code have the right to use our amazing status
monitor, too:

File 73 Line 1 package StatusMonitor;

-

- use strict;

- use IO::Socket;

5

- use constant WARN => ' w' ;

- use constant ERROR => ' e' ;

- use constant FATAL => ' f' ;

-

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/statusMonitorTest.java
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor.pm
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=153

“I’D RATHER USE A SOCKET” 154

10 sub new {

- my $class = shift;

- my ($host, $port) = @_;

- my $self = {};

- my $sm = IO::Socket::INET->new("$host:$port");

15 die "Could not connect to status monitor: $!\n" unless $sm;

- $self->{' sm' } = $sm;

- bless $self, $class;

- }

-

20 sub warn() {

- my ($self, $app, $msg) = @_;

- $self->_log(WARN, $app, $msg);

- }

-

25 sub error() {

- my ($self, $app, $msg) = @_;

- $self->_log(ERROR, $app, $msg);

- }

-

30 sub fatal() {

- my ($self, $app, $msg) = @_;

- $self->_log(FATAL, $app, $msg);

- }

-

35 sub _log() {

- my ($self, $level, $app, $msg) = @_;

- my $sm = $self->{' sm' };

- $sm->print("$level,$app,$msg\n");

- $sm->getline;

40 }

-

- sub DESTROY {

- close($_[0]->{' sm' });

- }

45

- 1;

For those who are familiar with Perl (the Pathological Eclectic Rubbish
Lister, as its inventor Larry Wall sometimes calls it), the previous lines
should be no problem. For all the others it will look like line noise
until they have studied Perl for several years. Just believe it: this code
achieves the same results as our Ruby and Java code. Here’s a little
test program to prove it:

File 79 use strict;

use status_monitor;

my $sm = StatusMonitor->new(' 127.0.0.1' , 3333);

$sm->error(' tracking' , ' Lost connection to service.');

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_test.pl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=154

“I’D RATHER USE A SOCKET” 155

This produces the following:

E, [2005-09-17T17:23:43.216794 #1419] ERROR -- : tracking: \

Lost connection to service.

Admittedly, this is a lot of code that has to be maintained from now on,
but it has some valuable benefits. Although we had to implement TCP
client code for various languages, we can now add features to the status
monitor without touching the client libraries. For example, we can send
an e-mail to the operations department whenever an application logs a
fatal error. Additionally, to change the transport layer, only the different
log(level,app,msg) methods have to be changed.

Adding Better Persistence

Let’s illustrate that flexibility by replacing our cheap logger by a full-
blown MySQL database. At the same time, we’ll add an e-mail fea-
ture, too. Our little database (called smon) consists of only one table,
log_entries. Its structure should be fairly clear:

File 67 create table log_entries(

id int unsigned not null primary key,

application varchar(64) not null,

level enum(' warn' , ' error' , ' fatal'),

message text,

created timestamp not null

);

We’ll access the status monitor database using ActiveRecord:

File 75 Line 1 require ' rubygems'

- require ' active_record'

- require ' gserver'

-

5 ActiveRecord::Base.establish_connection(

- :adapter => ' mysql' ,

- :host => ' 127.0.0.1' ,

- :database => ' smon'

-)

10

- class LogEntry < ActiveRecord::Base; end

-

- class StatusMonitor < GServer

- def initialize(host = ' 127.0.0.1' , port = ' 3333')

15 super(port, host)

- @level_map = {

- ' w' => ' warn' , ' e' => ' error' , ' f' => ' fatal'

- }

- end

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/create_smon.sql
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=155

“I’D RATHER USE A SOCKET” 156

20

- # Expects CSV data in the following format:

- # level,application,message.

- def serve(client)

- level, app, msg = client.readline.chomp.split(' ,' , 3)

25 if @level_map.has_key?(level)

- entry = LogEntry.new

- entry.application = app

- entry.level = @level_map[level]

- entry.message = msg

30 entry.save

- client.puts(' 0')

- else

- client.puts(' 1')

- end

35 end

- end

First, we removed the Logger class (maybe we will use it again for log-
ging the status monitor’s own status, but for now we try to keep the
examples short). Next, we added initialization code for ActiveRecord and
the LogEntry class (to learn more about ActiveRecord, see Section 2.3,
ActiveRecord Basics, on page 33). In our serve(client) method we didn’t
have to change a lot either. All the logging stuff was replaced by initial-
ization code for a new LogEntry object that gets saved for each request.

None of the client libraries had to be touched. By changing only a few
lines of Ruby code, we solved one of our biggest problems—important
information is now stored centrally. From now on we do not have to
search tons of log files to find vital information; a simple SELECT state-
ment will be sufficient. Provided that your database and system admin-
istrators earn their salaries by creating regular database backups, this
information will be safe forever.

Sending E-mails

At this point we’re unstoppable. Let’s add some more code to the status
monitor that sends an e-mail to the operations department whenever
an application logs a fatal error:

File 76 Line 1 require ' rubygems'

- require ' active_record'

- require ' gserver'

- require ' tmail'

5 require ' net/smtp'

-

-

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor3.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=156

“I’D RATHER USE A SOCKET” 157

- ActiveRecord::Base.establish_connection(

- :adapter => ' mysql' ,

10 :host => ' 127.0.0.1' ,

- :database => ' smon'

-)

-

- class LogEntry < ActiveRecord::Base; end

15

- class StatusMonitor < GServer

- def initialize(host = ' 127.0.0.1' , port = ' 3333')

- super(port, host)

- @level_map = {

20 ' w' => ' warn' , ' e' => ' error' , ' f' => ' fatal'

- }

- end

-

- # Expects CSV data in the following format:

25 # level,application,message.

- def serve(client)

- level, app, msg = client.readline.chomp.split(' ,' , 3)

- if @level_map.has_key?(level)

- entry = LogEntry.new

30 entry.application = app

- entry.level = @level_map[level]

- entry.message = msg

- entry.save

- puts "Entry was saved."

35 inform_helpdesk(app, level, msg) if level == ' f'

- client.puts(' 0')

- else

- client.puts(' 1')

- end

40 end

-

- private

-

- def inform_helpdesk(app, level, msg)

45 subject = "A fatal error occurred in #{app}!"

- subject << " Regret your sins!"

- mail = create_mail(

- ' helpdesk@pragbouquet.com' ,

- subject,

50 msg

-)

- send_mail(' localhost' , mail)

- end

-

55 def create_mail(to, subject, body)

- mail = TMail::Mail.new

- mail.date = Time.now

- mail.mime_version = ' 1.0'

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=157

“I’D RATHER USE A SOCKET” 158

- mail.set_content_type ' text' , ' plain'

60 mail.from = ' status_monitor@pragbouquet.com'

- mail.to = to

- mail.subject = subject

- mail.body = body

- mail

65 end

-

- def send_mail(host, mail)

- msg = mail.encoded

- Net::SMTP.start(host, 25) do |smtp|

70 smtp.send_mail(msg, mail.from_address, mail.destinations)

- end

- end

- end

Sending e-mail can be divided into two parts: creating the SMTP (Sim-
ple Mail Transfer Protocol) formatted e-mail and sending that e-mail
over a network. To create the SMTP representation, we used Minero
Aoki’s excellent tmail library2 (you can see how to obtain and install it
in Section 6.4, Deploying with setup.rb, on page 287).

In the create_mail(to,subject,body) method, we’ll make a TMail::Mail object
that contains all the attributes we’d expect an e-mail to have. Finally,
on line 68, we call encoded(). It returns something like this:

Date: Sat, 17 Sep 2005 14:48:30 +0200

From: status_monitor@pragbouquet.com

To: helpdesk@pragbouquet.com

Subject: A fatal error occurred in billing! Regret your sins!

Mime-Version: 1.0

Content-Type: text/plain

Lost connection to payment gateway.

Ruby’s standard class Net::SMTP is quite handy for sending the e-mail
we just created. Lines 69 to 71 of method send_mail(host,mail) show how
to accomplish this.

We’re done! The application is now backed by a database and sends an
e-mail to the operations department whenever a fatal application error
occurs.

2http://raa.ruby-lang.org/project/tmail

http://raa.ruby-lang.org/project/tmail
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=158

REMOTE PROCEDURE CALLS USING HTTP 159

4.2 Remote Procedure Calls Using HTTP

Our new status monitor has been a huge success—the system failure
rate has dropped down to an all-time low of two per day, each lasting
for less than ten minutes. Unfortunately, this is true only for the time
between 8 a.m. and 5 p.m., Monday to Friday. Every night three to five
fatal application errors still occur, and they don’t get solved until the
following morning.

Obviously, the status monitor e-mails are read only during office hours.
It would increase our quality of service significantly if we could inform
our operations department’s employees of failures wherever they are
and whatever time it is. A good way to do this is to use the Short
Messages (SMS) supported by cellular networks: to send the message
you simply need a cellular number, and to receive it the employee needs
only to keep their cell phone with them.

Waking Up the Operator

To send short messages from a computer to a cell phone, you can do
the following:

1. Serially connect a computer and a cellular phone or modem that
can be controlled via an AT cellular command interface.

2. Connect to a Short Message Service Center (SMSC) at your net-
work provider. You send messages using a protocol called Short
Message Peer-to-peer Protocol (SMPP)3 to the SMSC. The SMSC is
responsible for delivering them to the according mobile devices.

3. Use an existing web service on the Internet.

4. Use an e-mail-to-SMS gateway.

PragBouquet chose the SMSC connection. We already have a server
that is capable of sending SMS. This particular piece of software offers a
simple interface via HTTP: it supports the single function send(recipient,

sender, type, data).

You have to distinguish between Short Messages containing textual or
binary data. Set type to text or binary accordingly (text is the default).
Binary data has to be transmitted in two-digit hexadecimal ASCII rep-
resentation, so a binary zero is transmitted as 00 and binary 63 is
transmitted as 3f.

3http://en.wikipedia.org/wiki/SMPP

http://en.wikipedia.org/wiki/SMPP
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=159

REMOTE PROCEDURE CALLS USING HTTP 160

More Privacy!

Even in the early days of the World Wide Web, security was an
important issue. In 1994 Netscape Communications invented a
protocol called Secure Sockets Layer (SSL)∗ that enabled web
clients and servers to exchange sensitive data without worries.

The first protocol version and its implementation were full of
flaws, but since then, SSL has become a de facto standard and
has been improved several times. Currently, its most popular
implementation is OpenSSL.† The OpenSSL project has created
a C library that has been ported to countless platforms and is
the basis for Ruby’s SSL support, too.

In the simplest cases it makes nearly no difference whether you
use HTTP or HTTPS. For example, printing the index page of the
OpenSSL web site can be achieved as follows:

File 94 Line 1 require ' net/https'

-

- h = Net::HTTP.new(' www.openssl.org' , 443)
- h.use_ssl = true

5 h.get2(' /') { |response| print response.body }

You have to set the use_ssl attribute of your Net::HTTP object to
true, and you have to use get2(path,initheader=nil,&block) instead
of get(path,initheader=nil,dest=nil,&block). Oh, and it’s important
that you explicitly set the SSL port (443) when opening the con-
nection. Otherwise, the HTTP default port (80) will be used, and
your request will probably fail.

Because it’s based on the OpenSSL reference implementation,
Ruby’s support of the SSL protocol is as secure and complete
as it can be. You can encrypt and decrypt communication
transparently (as we did in the previous example). There are
methods for signing and verifying both client and server certifi-
cates. For example, peer_cert() returns the server’s X.509 cer-
tificate, and using cert=(certificate) you can set a client’s X.509
certificate. The library allows you to maintain a certificate store
in your local file system, too.

∗http://en.wikipedia.org/wiki/Secure_Sockets_Layer
†http://www.openssl.org

http://media.pragprog.com/titles/fr_eir/code/dist_app/ssl_test.rb
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://www.openssl.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=160

REMOTE PROCEDURE CALLS USING HTTP 161

The remaining parameters contain the data to be sent and the recipi-
ent’s and the sender’s phone numbers in international format. If the
sender parameter is not set, it will be set to the recipient parameter
automatically. This way the recipient thinks he has sent himself a
message—in our case that is all right.

The service listens on port 4242 under path /send. It returns its result
using the HTTP status code, so 200 means everything went fine and
500 means an error occurred. Let’s try it using telnet:

mschmidt:/tmp> telnet localhost 4242

⇒ Trying ::1...

Connected to localhost.

Escape character is ' ^]' .

⇐ GET /send?type=text&recipient=+011234123456&data=hello HTTP/1.0

⇒

HTTP/1.1 200 OK

Connection: close

Date: Wed, 14 Sep 2005 20:26:47 GMT

Content-Type: text/plain

Server: WEBrick/1.3.1 (Ruby/1.8.2/2004-12-25)

Content-Length: 0

Connection closed by foreign host.

mschmidt:/tmp>

Hmm, there’s no error message from the session, but our cell phone
didn’t yell “YOU HAVE A NEW MESSAGE!” at full volume as it usually
does when it receives an SMS. So, what’s wrong? Provided that the SMS
server is working properly, the problem must be hidden in our input.
Obviously, the type and data parameters are correct, but the recipient’s
phone number contains a subtle syntax error. All international phone
numbers start with one of the following prefixes:4

• 00<international area code><national area code>

• +<international area code><national area code>

At first sight, everything seems to be all right with the recipient’s phone
number, but we forgot that we are using an HTTP service that expects
all its parameters in URL-encoded format. Hence, the leading + sign
is interpreted as a blank that renders the phone number completely

4Usually, a leading zero of the national area code is omitted, but you should not
blindly follow this rule. For Italy, as an example, you have to explicitly transmit the
leading zero of the national area code in international phone numbers.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=161

REMOTE PROCEDURE CALLS USING HTTP 162

Figure 4.1: Testing the SMS Server

wrong. Instead of transmitting +011234123456 (an American phone
number), 011234123456 (a national phone number with a leading
blank) is transmitted.

In the best case, this phone number does not exist, and the SMSC
fails to deliver your message. In the worst case, someone could become
really angry while you’re desperately running your unit test suite over
and over again at 2 a.m. on a Saturday night.

When testing complex HTTP services, the telnet command can be a
bit tedious. For services expecting GET requests, you’re much bet-
ter off using an ordinary web browser (as shown in Figure 4.1). The
browser transparently handles all encoding issues for you (command-
line diehards will use wget5 or curl6 anyway). An HTML page such as
the following is sufficient for testing purposes:

File 80 Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

-

- <html>

5 <head>

- <title>SMS Service Test Page</title>

- </head>

- <body>

5http://www.gnu.org/software/wget/wget.html
6http://curl.haxx.se

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/testpage.html
http://www.gnu.org/software/wget/wget.html
http://curl.haxx.se
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=162

REMOTE PROCEDURE CALLS USING HTTP 163

- <h1>Send an SMS</h1>

10 <form action="http://localhost:4242/send">

- <table>

- <tr>

- <td>Type:</td>

- <td>

15 <select name="type">

- <option>text</option>

- <option>binary</option>

- </select>

- </td>

20 </tr>

- <tr>

- <td>Recipient:</td>

- <td><input type="text" name="recipient"/></td>

- </tr>

25 <tr>

- <td>Sender:</td>

- <td><input type="text" name="sender"/></td>

- </tr>

- <tr>

30 <td>Data:</td>

- <td><input type="text" name="data"/></td>

- </tr>

- <tr>

- <td colspan="2">

35 <input type="submit" value="Send"/>

- </td>

- </tr>

- </table>

- </form>

40 </body>

- </html>

Another way to circumvent problems like these is to use a mature HTTP
client library, such as the one that comes with the Ruby standard dis-
tribution. Let’s see how we can perform HTTP requests and encapsulate
the SMS server:

File 69 Line 1 require ' net/http'

- require ' cgi'

-

- class SmsService

5 def initialize(host = ' 127.0.0.1' , port = 4242)

- @host, @port = host, port

- end

-

- def send_text(params)

10 send_sms(params, ' text')

- end

-

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=163

REMOTE PROCEDURE CALLS USING HTTP 164

- def send_binary(params)

- send_sms(params, ' binary')

15 end

-

- private

-

- def send_sms(params, type)

20 result = false

- Net::HTTP.start(@host, @port) do |http|

- query = "type=#{type}"

- params.each do |k,v|

- query << "&#{k}=#{CGI.escape(v)}"

25 end

- response = http.get("/send?#{query}")

- result = response.class == Net::HTTPOK

- end

- result

30 end

- end

A small sample program demonstrates the usage of the SmsService class.
Finally you (and all your enervated colleagues) can hear it again: “YOU
HAVE A NEW MESSAGE!”

File 69 Line 1 sms = SmsService.new

- sms.send_text(

- :recipient => ' +0112341234567' ,

- :data => ' Hello, world!'

5)

In send_sms(params,type) of the SmsService class we open a new HTTP
connection using the start(host,port) method of class Net::HTTP. It expects
a code block that gets passed the current connection. Within the code
block the query string for the GET request is prepared (note that we
have to use the encode(string) method of the CGI class to URL-encode
our query parameters).

Eventually, on line 26 we initiate a GET request that returns an object
derived from Net::HTTPResponse. This object encapsulates everything that
makes up an HTTP response. Its most important methods are as fol-
lows:

• code() returns the HTTP status code.

• message() returns the HTTP status message.

• body() returns the response body.

• The headers hash contains all HTTP headers.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=164

REMOTE PROCEDURE CALLS USING HTTP 165

URL Encoding

In the beginning of computer networking everything had to be
represented in ASCII characters using only 7 bits. Because of
this, nearly all protocols in today’s Internet turn non-ASCII data
into 7-bit ASCII characters somehow. RFC 1738∗ painstakingly
explains which characters are allowed in URLs:

“Only alphanumerics [0--9a--zA--Z], the special characters [$-
_.+!*’(),], and reserved characters used for their reserved pur-
poses may be used unencoded within a URL.”

The rules are simple: all ASCII control characters (0x00–0x1f,
0x7f), all non-ASCII characters (0x80–0xff), and all reserved
characters ([$&+,/:;=?@]) have to be encoded under all circum-
stances.

In addition, some characters considered unsafe should be
encoded, too: ["?<>#%{}|\ˆ~‘] and the square brackets ([,])
themselves (0x5b, 0x5d).

Encoding a single value is easy: you prepend its case-
insensitive, two-digit hexadecimal ISO-Latin code by a percent
symbol (%).

For example, the blank character is encoded as %20 (for con-
venience, a blank can also be encoded as a single ’+’ symbol)
and an uppercase ’A’ (whose ISO-Latin code is 65) is turned
into %41.

∗http://www.rfc-editor.org/rfc/rfc1738.txt

There is a separate class for every HTTP status code (yes, this little
library defines more than 50 classes), so instead of checking whether
code() returns 200, you can alternatively check whether your response
object’s class is Net::HTTPOK (as we did in line 27).

Integrating the SMS service into StatusMonitor is left as an exercise for
the reader. Keep in mind that short messages do have to be short: they
shouldn’t be more than 160 characters.

Sending Java stack traces is definitely not an option.

If you don’t like encoding query parameters manually, you can use
HTTP’s POST command. In the current example it doesn’t make a big
difference, though. Here’s how send_sms(params,type) would look:

http://www.rfc-editor.org/rfc/rfc1738.txt
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=165

REMOTE PROCEDURE CALLS USING HTTP 166

File 70 Line 1 def send_sms(params, type)

- result = false

- Net::HTTP.start(@host, @port) do |http|

- query = "type=#{type}"

5 params.each { |k,v| query << "&#{k}=#{v}" }

- response = http.post(

- ' /send' ,

- query,

- ' content-type' => ' application/x-www-form-urlencoded'

10)

- result = response.class == Net::HTTPOK

- end

- result

- end

In lines 4 and 5 we build up the query string by concatenating key,
value pairs using the = symbol. The pairs themselves are delimited by
& symbols. That’s how input values from an HTML form get transferred
to a server, and therefore, we have set the content type of our POST
request to application/x-www-form-urlencoded. Because the server
now knows how to interpret the data and because we’re not sending
it in a URL, we don’t have to encode it.

The Other Side of HTTP

We have seen that accessing HTTP services with Ruby is a breeze. This
made us think a bit: shouldn’t we make the status monitor available
as an HTTP service, too? It certainly would have some advantages:

• We could get rid of the proprietary CSV parameter list, which
would make it much easier to add new parameters.

• Adding additional functions would be easier, because we could
publish them using different URLs—new functions would never
interfere with existing ones.

• We could access the status monitor with an ordinary web browser.
This certainly has some advantages when we add statistics or
query features.

Now that we’ve convinced ourselves, let’s see what the Ruby platform
has to offer for creating HTTP services. Unsurprisingly, it comes with
one of the most advanced and most convenient frameworks currently
available: WEBrick. WEBrick really has it all: you can create generic
HTTP and HTTPS servers. All of them are multithreaded, they support
servlets, and you will find a bunch of useful utility classes and func-
tions, too.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=166

REMOTE PROCEDURE CALLS USING HTTP 167

So, let’s see how we can turn our status monitor into an HTTP service:

File 77 Line 1 require ' webrick'

- include WEBrick

- class StatusMonitorServlet < HTTPServlet::AbstractServlet

-

5 # ...

-

- def do_GET(req, res)

- app = req.query[' app']

- msg = req.query[' msg']

10 level = req.query[' level'] || ' '

- level.downcase!

- res[' content-type'] = ' text/plain'

- if %w(debug info warn error fatal).include?(level)

- entry = LogEntry.new

15 entry.application = app

- entry.level = level

- entry.message = msg

- entry.save

- inform_helpdesk(app, level, msg) if level == ' fatal'

20 res.status = 200

- res.body = "Message was logged successfully."

- else

- res.status = 500

- res.body = "An error occurred while logging message!"

25 end

- end

-

- alias do_POST :do_GET

-

30 # ...

-

- end

-

- server = HTTPServer.new(:Port => 4242)

35 server.mount(' /log' , StatusMonitorServlet)

-

- %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

40

- server.start

Even if it doesn’t seem obvious at first sight, we had to modify our last
version only a small amount. The StatusMonitor class has been renamed
to StatusMonitorServlet and is derived from WEBrick::HTTPServlet::Abstract-

Servlet. initialize(host,port) has been removed, and serve(client) has been
replaced by do_GET(request,response). Everything else was left alone.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor4.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=167

REMOTE PROCEDURE CALLS USING HTTP 168

Whenever the server receives a GET request, do_GET(request,response) is
called automatically. The query parameters app, level, and msg are read
from the client request. This renders the former CSV solution obsolete,
and adding new parameters is trivial now (for better readability we have
dropped the level_map hash).

What follows is business as usual. We initialize a new LogEntry object
and store it in the database. Instead of sending back 0 or 1 to indicate
success or failure, we now set the HTTP status code accordingly in lines
20 and 23. Another way of setting the response status is to raise an
exception, so raise HTTPStatus::OK is the same as res.status = 200. In this
case it doesn’t seem to make a lot of sense, but raising an exception for
an error condition such as HTTPStatus::InternalServerError automat-
ically sets the response body to an HTML error page containing a full
stack trace. Such a page will be returned for uncaught exceptions, too.

Because there is no reason for the status monitor to care about the
request method, we have aliased the method do_GET(request, response)

to do_POST(request, response) on line 28. This allows clients to freely
choose which request method they want to use.

Naked servlets are nonviable; they depend heavily on a friendly server
environment to live in. Hence, we create a servlet environment begin-
ning on line 34. In the next line the StatusMonitorServlet is mounted
under the path /log, and lines 37 to 39 install a callback for INT and TERM

signals that shuts down the server gracefully when it receives a corre-
sponding signal. After starting the server in the last line, you can point
your web browser to http://localhost:4242/log?app=billing&level=info&msg=hello
to create a new log message.

Some WEBrick Details

WEBrick’s rules for dispatching HTTP requests are simple. When the
server receives a command, for example PUT, it calls the corresponding
do_XXX method, in this case do_PUT(request,response). WEBrick does not
restrict this dispatching mechanism to the official HTTP commands,
and you’re free to define your own HTTP commands, such as the one in
our friendly greeting service below:

File 63 Line 1 class FriendlyServlet < HTTPServlet::AbstractServlet

- def do_GREET(req, res)

- res.status = 200

- res.body = "Hello!! Nice to meet you!\n"

5 end

- end

http://localhost:4242/log?app=billing&level=info&msg=hello
http://media.pragprog.com/titles/fr_eir/code/dist_app/greet.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=168

REMOTE PROCEDURE CALLS USING HTTP 169

HTTP Proxy Servers

Our first HTTP example works fine, because the SMS service is
running on a server in the local network.

But in big companies HTTP access to servers on the Internet is
often routed through a proxy server. Proxies cache frequently
requested web sites to decrease network load, and they restrict
access to unapproved content.

HTTP clients have to connect to the proxy server instead of the
actual server. The proxy server then forwards the client’s request
and sends back the result.

Using a proxy server with Net::HTTP works as follows:

Net::HTTP::Proxy(

proxy_host,

proxy_port).start(' www.example.com') do |http|

http is connected to proxy_host:proxy_port

end

If the proxy host is set to nil, no proxy will be used, so it will do no
harm if you always use the proxy call.

Sometimes a proxy server expects an authentication via a user
name and a password. Such information is passed as follows:

Net::HTTP::Proxy(

proxy_host, proxy_port,

proxy_user, proxy_pass).start(' www.example.com') do |http|

http is connected to proxy_host:proxy_port

end

-

- server = HTTPServer.new(:Port => 4200)

- server.mount(' /' , FriendlyServlet)

10 %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

- server.start

You can use it like any other HTTP command, and you will receive the
same request parameters, too (so, if you need a WEBDAV7 extension,
for example, go ahead and build one):

7http://www.webdav.org

http://www.webdav.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=169

REMOTE PROCEDURE CALLS USING HTTP 170

mschmidt:/tmp> telnet localhost 4200

⇒ Trying ::1...

Connected to localhost.

Escape character is ' ^]' .

⇐ GREET / HTTP/1.0

⇒

HTTP/1.1 200 OK

Connection: close

Date: Fri, 23 Sep 2005 07:18:19 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.2/2004-12-25)

Content-Length: 26

Hello!! Nice to meet you!

Connection closed by foreign host.

The HEAD and OPTIONS commands have default implementations:

do_HEAD(request,response)

Returns everything do_GET(request,response) would return except
the response body. This enables clients to check whether a certain
document has changed, so it is downloaded only if it is necessary.

do_OPTIONS(request,response)

Returns a list of all commands available.

All do_XXX methods get passed request and response parameters of
type WEBrick::HTTPRequest and WEBrick::HTTPResponse, respectively. Both of
them provide all the features you’d normally expect. The most impor-
tant methods and attributes of WEBrick::HTTPRequest are as follows:

• query is a hash object containing all query parameters that have
been sent by the client. If a parameter is transmitted more than
once, the corresponding entry in the query hash is an array object
containing all values transmitted.

• header is a hash object containing all HTTP headers sent by the
client.

• cookies is an array object containing all cookies sent by the client.
Array elements are WEBrick::Cookie objects.

• Details of the resource requested by the client are available in
the attributes host, port, request_uri, query_string, script_name, and
path_info.

WEBrick::HTTPResponse is just as simple:

• Put the overall status of a request into the status attribute.

• Set body to the data you want to send back to the client. Make
sure it corresponds to the response’s content type.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=170

REMOTE PROCEDURE CALLS USING HTTP 171

• WEBrick automatically sends back standard HTTP headers such
as server and date. The header hash allows you to add your own.
For example, the following:
response.header[' content-type'] = ' text/xml'

declares that the server output is an XML document.

• You can send cookies to the client by adding WEBrick::Cookie objects
to the cookies array.

There are many more methods and attributes. Most are simply for
convenience to provide access to low-level HTTP properties.

It Can Always Be Easier

Although creating your own servlets is easy, WEBrick comes with some
default servlet implementations for common tasks such as serving files
(we talk about FileHandler in Section 4.2, WEBricklets, on page 173) and
executing CGI scripts.

Sometimes it seems to be overkill to define a complete servlet class. The
WEBrick::HTTPServer class has a highly convenient shortcut:

File 95 Line 1 server = HTTPServer.new(:Port => 4100)

- server.mount_proc(' /') do |req, res|

- res.status = 200

- res.body = "Hello, #{req.query[' name']}!"

5 end

-

- %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

10 server.start

In line 2 we add a code block using mount_proc(dir,&block) to a server
object. These handlers respond to both GET and POST requests and
are managed by an instance of class ProcHandler.

Another useful WEBrick handler is CGIHandler. It’s invoked automati-
cally by FileHandler when the request URL ends with the extension .cgi.
The Common Gateway Interface (CGI) defines a simple protocol between Common Gateway

Interface
web servers and programs that create dynamic content: the web server
runs an executable program with the exec() system call, and the CGI
protocol specifies a list of environment variables that can be used by the
CGI script to get request parameters, and so on. After the program has
terminated, the web server sends its output to the web client. Typical
companies have tons of old CGI programs (often Perl or bash scripts)

http://media.pragprog.com/titles/fr_eir/code/dist_app/webrick_cb.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=171

REMOTE PROCEDURE CALLS USING HTTP 172

that “will definitely be replaced as soon as we have some time.” Here’s
a simple Perl script that creates an XML report of all flowers that are
currently used in our bouquets:

File 42 Line 1 #!/usr/bin/perl -w

-

- use strict;

- use DBI;

5

- sub get_flowers {

- my $result = [];

- my $dbh = DBI->connect(' dbi:mysql:webshop' , ' ' , ' ');

-

10 my $sql = qq{ SELECT name, price FROM flowers };

- my $sth = $dbh->prepare($sql);

- $sth->execute();

- my ($name, $price);

- $sth->bind_columns(undef, \$name, \$price);

15

- while($sth->fetch()) {

- push(@$result, [$name, $price]);

- }

-

20 $sth->finish();

- $dbh->disconnect();

- return $result;

- }

-

25 print "status: 200\r\n";

- print "content-type: text/xml\r\n\r\n";

-

- print "<?xml version=' 1.0' ?>\r\n";

- print "<flowers>\r\n";

30 my $flowers = get_flowers();

- for (@$flowers) {

- print " <flower name=' $_->[0]' price=' $_->[1]' />\r\n";

- }

- print "</flowers>\r\n";

To reuse such legacy scripts (do you remember why you switched to
Ruby?), we set up an HTTP server as follows:

File 43 Line 1 cgi_dir = File.expand_path(' ./cgi-bin')

- s = HTTPServer.new(:Port => 2080)

- s.mount(' /cgi-bin' , HTTPServlet::FileHandler, cgi_dir,

- :FancyIndexing => true

5)

We installed a FileHandler that manages the content of the cgi-bin direc-
tory. Whenever you request a resource ending with .cgi, WEBrick del-
egates the request to CGIHandler, executes the corresponding program,

http://media.pragprog.com/titles/fr_eir/code/dist_app/cgi-bin/report.cgi
http://media.pragprog.com/titles/fr_eir/code/dist_app/cgisrv.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=172

REMOTE PROCEDURE CALLS USING HTTP 173

Figure 4.2: WEBrick’s CGI Handler in Action

and returns its output. (You’ll learn what the FancyIndexing option is in
Section 4.2, Hiding Little Secrets, on page 175). The CGI program can
set the final HTTP status code by printing the status header (as we did
in line 25 of the Perl program).

For the sake of completeness, let’s look at the ERBHandler. This is
called by the FileHandler when a resource ending with .rhtml is requested.
Before the requested file is sent back, it gets processed by the templat-
ing engine ERB. To learn the scoop about .rhtml files, have a look at
Agile Web Development with Rails [TH05].

WEBricklets

You do not have to develop huge applications to benefit from WEBrick.
Often little scripts—WEBricklets—can significantly improve your life. WEBricklets

For example, when developing Java software for PragBouquet, I often
work on a remote host using a Secure Shell. I do this because the host
is extremely powerful, and it has the same Java environment as the
final production system. My only development tools there are Vim8 and

8http://www.vim.org

http://www.vim.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=173

REMOTE PROCEDURE CALLS USING HTTP 174

Ant.9 I write a lot of unit tests, and I use Ant’s junit task to execute
them. This task produces nicely formatted HTML pages. In the past I
had to copy these pages to my PC using scp in order to view them.

Thanks to WEBrick, these times are long gone. I now run a mini
WEBrick-based server on the remote host that allows me to view the
pages using the web browser running on my PC:10

File 59 Line 1 require ' webrick'

- include WEBrick

-

- dir = Dir::pwd

5 port = 13000 + (dir.hash % 1000)

-

- puts "URL: http://#{Socket.gethostname}:#{port}"

-

- s = HTTPServer.new(

10 :Port => port,

- :DocumentRoot => dir,

- :ServerType => Daemon

-)

-

15 trap(' INT') { s.shutdown }

- s.start

These 16 lines of Ruby code start an HTTP server on a vaguely random
port and provide access to all files in the current directory. The script
turns itself into a daemon process. After you run it in the directory
the junit task’s output goes to, it will serve your test results until you
explicitly kill it.

In line 4 we detect the current directory (which is used as the server’s
document root), and in line 5 a new port is calculated. Then, the
file server’s URL is printed to the console. Usually, I paste it to my
browser’s bookmark manager and give it a reasonable name like “JUnit
results of project X.” It can happen that the program calculates a port
that is already in use by another application. In this case, set the port
variable temporarily to a constant value, and start the server again.

Beginning in line 9, we create and initialize a new HTTPServer object and
pass it two new options. We set DocumentRoot to the current directory,
mapping that directory to the path /.

9http://ant.apache.org
10The basis for this example was originally posted by Jim Weirich under

http://onestepback.org/index.cgi/Tech/Ruby/WEBrick.rdoc.

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv.rb
http://ant.apache.org
http://onestepback.org/index.cgi/Tech/Ruby/WEBrick.rdoc
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=174

REMOTE PROCEDURE CALLS USING HTTP 175

Behind the scenes this option installs an HTTPServlet::FileHandler object
whose do_GET() method returns every file requested (after determining
its MIME type and setting the content-type header correctly).

Option ServerType is set to “Daemon” which—unsurprisingly—turns the
server into a daemon (you can learn how to turn your own scripts into
a daemon by intensively studying some of H.P. Lovecraft’s books at full
moon or by referring to Section 6.3, Creating Daemons and Services, on
page 279).

Hiding Little Secrets

For files such as unit test results, the solution in the preceding section
is appropriate, because the files’ contents usually contain no secrets
(your unit tests results are running constantly at a 100% success rate
anyway, aren’t they?). As we all know, being paranoid does not mean
they aren’t after us, so it sometimes makes sense to plug a little security
layer to our software.

In the case of our file server, we could add HTTP basic authentication:

File 60 Line 1 require ' webrick'

- include WEBrick

-

- dir = Dir::pwd

5 port = 13000 + (dir.hash % 1000)

- puts "URL: http://#{Socket.gethostname}:#{port}"

-

- authenticate = Proc.new do |req, res|

- HTTPAuth.basic_auth(req, res, "") do |usr, pwd|

10 usr == ' maik' && pwd == ' secret'

- end

- end

-

- s = HTTPServer.new(:Port => port, :ServerType => Daemon)

15 s.mount(' /' , HTTPServlet::FileHandler, dir,

- :FancyIndexing => true,

- :HandlerCallback => authenticate

-)

-

20 trap(' INT') { s.shutdown }

- s.start

Lines 8 to 12 define our authentication logic by creating a Proc object
that uses method basic_auth(request,response,realm)11 of class HTTPAuth.

11The realm parameter is currently ignored.

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=175

REMOTE PROCEDURE CALLS USING HTTP 176

This method expects a code block and passes it the user name and
password that have been transmitted with the current request. If the
authentication fails—basic_auth() returns false—WEBrick automatically
returns the HTTP status code 401 and a corresponding HTML error
page. If authentication succeeds, WEBrick continues as usual.

Now we have to install the authentication handler. We can’t use the call
to mount_proc() any longer, because it doesn’t allow us to install any
hooks. Instead, we have to use a servlet. Fortunately, for our purposes
it’s not necessary to define a new one—we can use the HTTPServlet::File-

Handler class. We add it to the server using mount() and pass several
options:

• FancyIndexing defines how directory listings will be handled. If the
requested URI refers to a directory and this option is false (the
default), the HTTP status code 403 (Forbidden) is returned. Oth-
erwise, a directory listing will be displayed.

• HandlerCallback points to a code block that will be called before the
do_XXX method belonging to the current request is called.

This solution is far from being perfect. It would increase security only if
you put the script into your home directory and grant read permission
to no one but yourself.

WEBrick offers more advanced security mechanisms, including support
for the same password files the Apache web server12 uses. These files
are usually created with the htpasswd command:

mschmidt:/tmp> htpasswd -cdb /tmp/test.pwd scott tiger

Adding password for user scott

mschmidt:/tmp> cat /tmp/test.pwd

scott:Erw4v9nQMuwHQ

mschmidt:/tmp>

Here we created a file called test.pwd that contains the encrypted pass-
word of the user named scott. To use this password database with
WEBrick, only the authenticate() method is redefined:

File 61 Line 1 authenticator = HTTPAuth::BasicAuth.new(

- :UserDB => HTTPAuth::Htpasswd.new(' /tmp/test.pwd'),

- :Realm => ""

-)

5 authenticate = Proc.new do |req, res|

- authenticator.authenticate(req, res)

- end

12http://www.apache.org

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv3.rb
http://www.apache.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=176

REMOTE PROCEDURE CALLS USING HTTP 177

Instead of hardwiring user names and passwords into your script, they
will be read by HTTPAuth::Htpasswd and evaluated by HTTPAuth::BasicAuth.

You can increase the level of security even more if you use htdigest

to create passwords. In authenticate(), replace HTTPAuth::Htpasswd with
HTTPAuth::Htdigest and HTTPAuth::BasicAuth by HTTPAuth::DigestAuth. Unfor-
tunately, all these mechanisms implement only weak security. For
something stronger, use HTTPS right from the beginning:

File 62 require ' webrick'

require ' webrick/https'

include WEBrick

dir = Dir::pwd

port = 13000 + (dir.hash % 1000)

puts "URL: http://#{Socket.gethostname}:#{port}"

authenticate = Proc.new do |req, res|

HTTPAuth.basic_auth(req, res, "") do |usr, pwd|

usr == ' maik' && pwd == ' secret'

end

end

s = HTTPServer.new(

:Port => port,

:ServerType => Daemon,

:SSLEnable => true,

:SSLVerifyClient => ::OpenSSL::SSL::VERIFY_NONE,

:SSLCertName => [%w(C US), %w(O PragBouquetSSL.com), %w(CN WWW)]

)

s.mount(

' /' ,

HTTPServlet::FileHandler,

dir,

:FancyIndexing => true,

:HandlerCallback => authenticate

)

trap(' INT') { s.shutdown }

s.start

Here we have modified our first version and added support for SSL. We
had to require webrick/https, and we had to slightly modify the initial-
ization of our server in lines 19 to 21. For a production system you’d
need to get a valid certificate, but we merely wanted to demonstrate the
technical details.

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv4.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=177

REMOTE PROCEDURE CALLS USING HTTP 178

Conclusion

HTTP gets abused in countless ways. Because these ways weren’t even
considered by its inventors, implementations that bend HTTP stray out-
side of HTTP’s design. (There’s even a whole RFC called On the Use of

HTTP as a Substrate13 dealing with this issue.) Sometimes it’s unnec-
essary to add an HTTP layer to your program, but often it is highly
convenient. It may even open your application up to completely unex-
pected purposes.

In the end it doesn’t really matter whether HTTP has been a good choice
for a particular application or not. If you have to integrate with an
existing HTTP service, you have to use HTTP, too. As you have seen,
Ruby supports you in any imaginable way.

Alternatively, if you do want to add an HTTP interface to your own
application, WEBrick will prove to be an invaluable companion.

In terms of HTTP support, Ruby is more than ready for prime time.

13http://www.faqs.org/rfcs/rfc3205.html

http://www.faqs.org/rfcs/rfc3205.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=178

Chapter 5

Distributed Applications with RPC
In the beginning, distributed applications seemed to be some kind of
magic to many people, because you had to use rather obscure stan-
dards like Sun’s Remote Procedure Call (RPC)1 protocol to make two
processes talk to each other.

Today countless protocols, technologies, products, and standards exist
for interprocess communication (IPC). Most of them—such as CORBA,
XML-RPC, and SOAP—are language neutral, and bindings are available
for many programming languages. Still, some protocols do work only
with certain programming languages such as Java’s Remote Method

Invocation (RMI) or Distributed Ruby (DRb). Remote Method

Invocation

Theoretically, when building an architecture from scratch, there are
many options to choose from (XML-RPC, CORBA, RMI, REST, SOAP,
etc.), and chances are good that the company you are working for uses
at least two thirds of all protocol standards available worldwide. Ruby
supports many of them, and in the following sections we will demon-
strate the usage of those that are most frequently used today.

5.1 Another Day, Another Protocol

After studying the market intensively for several years, PragBouquet’s
marketing department made an astonishing observation: people often
add personalized greeting cards to bunches of flowers!

To satisfy this unexpected requirement on a technical level, the follow-
ing solution has been implemented: in the web shop users can choose

1http://www.faqs.org/rfcs/rfc1057.html

http://www.faqs.org/rfcs/rfc1057.html

ANOTHER DAY, ANOTHER PROTOCOL 180

an image from a list and write a short text, and then the text is printed
onto the back of the greeting card in a nice font.

In the past people often got some strange texts on their cards, because
their love letters were too long and the old solution did not provide any
feedback. Hence, PragBouquet decided to separate the image produc-
tion process into a server and to add some more logic to it. The web
shop client requests the front and back pages of the greeting card from
the server and presents them to the user. If everything is fine, the client
will ask the server to print the card. Otherwise, it will be deleted.

At the time the current greeting card system was built, the responsible
chief software evangelist was convinced that XML-RPC would last for-
ever. Hence, he insisted on plugging an XML-RPC interface to nearly
everything during his short employment period. One of the last relics is
a C++ server that handles all things related to the creation of greeting
cards. This piece of software is a pain in the neck.

It runs only on Windows NT 4, and since the order volume increased
significantly at PragBouquet, it cries for Dr. Watson two times a week
without an obvious reason. Don’t forget that while trying to make it
work with a newer, faster laser printer, two people got mad.

Parts of the source code got lost somehow and the company that devel-
oped the current solution does not exist any longer. No one has been
able to find the programmer who originally created the server (you hope
that he has to make a living by creating microcode for toasters today),
and consequently it has been decided to reimplement it, at least par-
tially.

The new system still has to support the old XML-RPC interface, because
the web shop guys are not able to change their software soon enough.
The server has to only care about the image manipulation, because for
printing the cards, another system will be built. It only has to transfer
the cards to be printed as .pdf files (comprising two pages) into a certain
directory where they are picked up by the new printer process (see
Figure 5.1, on the following page).

Luckily, we have found a README file that accurately describes the
procedures supported by the server:

• draw_card(order_no,image_id,text) draws a greeting card; i.e., it cre-
ates images in GIF format for the front and back pages. It returns
the image data and a unique card reference that can be used to

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=180

ANOTHER DAY, ANOTHER PROTOCOL 181

Figure 5.1: Greeting Card Architecture

identify the card later. To identify a greeting card and to put it to
the right bouquet, the client has to transmit the according order
number as the first parameter. All images used for greeting cards
at PragBouquet have an ID that has to be passed as the image_id

parameter. text contains the text that should appear on the card.

• print_card(cardref) sends the greeting card identified by cardref to
the printer.

• delete_card(cardref) deletes the greeting card identified by cardref.

Before implementing the previous interface, we will briefly describe
XML-RPC. If you are already familiar with its bowels, you can safely
skip the next section.

XML-RPC in Less Than Eight Minutes

Shortly after XML was born, a lot of people obsessively tried to repre-
sent everything using < and > symbols. So it came as no surprise that
in 1998/1999 a protocol for Remote Procedure Calls based on XML
was defined by Dave Winer. Running out of creativity after a long and
exhausting specification process, its inventor called it XML-RPC.2

2http://www.xmlrpc.com

http://www.xmlrpc.com
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=181

ANOTHER DAY, ANOTHER PROTOCOL 182

Figure 5.2: XML-RPC Architecture

Simply put, XML-RPC works like any other RPC protocol, but under the
hood it is a lot simpler than its binary brothers and sisters. Implement-
ing your own XML-RPC client will not take much more than a boring
winter day, but smart people have already done it for you. So, better
spend such a day reading trivial stuff while having a good cup of tea.

From an architectural point of view, XML-RPC is a synchronous pro-
tocol where every request is followed by a response. Only two types
of messages, method calls and method responses, are supported, and
both are encoded as XML documents that get transferred on an HTTP
layer (see Figure 5.2).

When we call a method to draw a greeting card having the ID 42 and the
message text on the back of the card using draw_card(4711, 42, ’Please,

forgive me, honeybunch!’), its XML-RPC representation will look like:

File 101 Line 1 <methodCall>

- <methodName>draw_card</methodName>

- <params>

- <value><int>4711</int></value>

5 <value><int>42</int></value>

- <value>

- <string>Please, forgive me, honeybunch!</string>

- </value>

- </params>

10 </methodCall>

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/request_sample.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=182

ANOTHER DAY, ANOTHER PROTOCOL 183I n t e g e r 3 2 6 b i t s i g n e d i n t e g e r < i 4 > o r < i n t >D o u b l e 6 4 6 b i t I E E E 7 5 f l o a t i n g 6 p o i n tn u m b e r < d o u b l e >B o o l e a n f a l s e (0) o r t r u e (1) < b o o l e a n >S t r i n g B i n a r y s t r i n g e n c o d e d i n B a s e 6 4 < s t r i n g >B a s e 6 4 A S C I I s t r i n g (m a y c o n t a i n N U L Lb y t e s) . C u r r e n t i m p l e m e n t a t i o n ss u p p o r t U n i c o d e , t o o < b a s e 6 4 >D a t e T i m e A b s o l u t e s p e c i f i c a t i o n o f d a t e a n dt i m e w i t h o u t t i m e z o n e i n f o r m a t i o n < d a t e T i m e .i s o 8 6 0 1 >n i l N u l l v a l u e (t h i s i s a n u n o f f i c i a le x t e n s i o n t o t h e s t a n d a r d < n i l >T y p e V a l u e s T a g
Figure 5.3: XML-RPC Simple Data Types

The response contains an image file encoded in Base 64 and addition-
ally indicates the type of the file, such as GIF, JPEG, PNG, and so on.

File 102 Line 1 <methodResponse>

- <params>

- <value><string>4711_006754</string></value>

- <value><string>GIF</string></value>

5 <value>

- <base64>

- VGhpcyBpcyBhIHJhdGhlciBsb25nIHRleHQgSSBo

- YXZlIHdyaXR0ZW4gdG8gc2ltdWxhdGUgYSBwaWN0

- dXJlLiBPZiBjb3Vyc2UsIEkgZGlkIG5vdCB3YW50

10 IHRvIGZha2UgYSBiYXNlLTY0IHN0cmluZyBhbmQg

- c28gSSBoYXZlIHVzZWQgUnVieSB0byBidWlsdCBv

- bmUgZnJvbSB0aGlzIHJlYWxseSBzdHVwaWQgYW5k

- IHVzZWxlc3MgdGV4dC4=

- </base64>

15 </value>

- <value><nil/></value>

- </params>

- </methodResponse>

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/response_sample.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=183

ANOTHER DAY, ANOTHER PROTOCOL 184

XML-RPC supports a fixed set of simple and compound data types (see
Figure 5.3, on the preceding page for a list of all simple data types).
Because of the nature of XML, all parameter values are tagged, and
their values are transmitted as strings. For example, a double value
such as -3.14 is encoded as <double>-3.14</double>.

In addition, two compound types are available: arrays and structs.
Contrary to array implementations in most programming languages,
XML-RPC arrays aggregate a list of elements that must not all be of the
same type. Arrays may contain simple data types, structs, and other
arrays. For example, [1, 2, 3] is represented like this:

<value>

<array>

<value><int>1</int></value>

<value><int>2</int></value>

<value><int>3</int></value>

</array>

</value>

Structs contain a list of key/value pairs where values might be sim-
ple data types, arrays, or structs. The following XML represents the
example hash { ’name’ => ’maik’, ’age’ => 32 }:

<value>

<struct>

<member>

<name>name</name>

<value><string>Maik</string></value>

</member>

<member>

<name>age</name>

<value><int>32</int></value>

</member>

</struct>

</value>

As a response to a method call, an exception (XML-RPC calls them
faults) can be raised. Because they can occur only instead of a method
response, they are encoded in the same way:

File 96 Line 1 <methodResponse>

- <fault>

- <value>

- <struct>

5 <member>

- <name>faultCode</name>

- <value><int>7777</int></value>

- </member>

- <member>

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/fault_sample.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=184

ANOTHER DAY, ANOTHER PROTOCOL 185

10 <name>faultString</name>

- <value>

- <string>Text too short for an apology!</string>

- </value>

- </member>

15 </struct>

- </value>

- </fault>

- </methodResponse>

Fault codes have not been standardized, but several XML-RPC imple-
mentations use small numbers to indicate errors on the lower transport
layers, so you’d better use numbers bigger than 1,000 for your own
codes.

All these details should only deepen your understanding of the under-
lying technology, because for an application developer most of these
things happen completely transparently. Usually, you won’t even notice
that you’re calling a procedure on a remote host. An XML-RPC library
handles all the low-level stuff, turns method calls into XML documents,
transfers these documents via HTTP to a server, gets its XML response,
turns the response into a data structure or an exception, and finally
returns the result to the caller.

xmlrpc4r

Kudos to Michael Neumann for contributing xmlrpc4r—one of the most xmlrpc4r

complete and the most advanced XML-RPC implementations currently
available—to the Ruby standard library.

We will use it in the following to develop the new greeting cards server
and its according test client. Before diving into the details of xmlrpc4r,
let’s create a skeleton class for representing two-sided greeting cards:

File 97 Line 1 class GreetingCard

- attr_reader :card_ref, :front, :back

-

- class << self

5 def create(order_no, image_id, text)

- front = read_image(image_id)

- back = create_text_page(text)

- card_ref = order_no.to_s + "_" + rand(1000).to_s

- store_card(card_ref, front, back)

10 GreetingCard.new(card_ref, front, back)

- end

-

- private

-

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/greeting_card.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=185

ANOTHER DAY, ANOTHER PROTOCOL 186

15 def read_image(image_id)

- IO.read("img/#{image_id}.gif")

- end

-

- def create_text_page(text)

20 return nil unless text

- # Here we have to create the nice-looking

- # text page somehow.

- ""

- end

25

- def store_card(card_ref, front, back)

- # Generate PDF and store cardref.pdf

- # containing front and back images.

- end

30 end

-

- private

-

- def initialize(card_ref, front, back)

35 @card_ref, @front, @back = card_ref, front, back

- end

- end

A GreetingCard has only three attributes: a unique reference (cardref),
a front page (front), and a back page (back). A factory method called
create(image_id,text) creates new GreetingCard objects.

Current versions of xmlrpc4r are based on WEBrick, and the following
server should look familiar:

File 99 Line 1 require ' webrick'

- require ' xmlrpc/server'

- require ' net/ftp'

- require ' greeting_card'

5

- s = XMLRPC::WEBrickServlet.new

-

- s.add_handler(' pragbouquet.draw_card') do |order_no, id, text|

- card = GreetingCard.create(order_no, id, text)

10 {

- ' cardref' => card.card_ref,

- ' front' => XMLRPC::Base64.encode(card.front),

- ' back' => XMLRPC::Base64.encode(card.back)

- }

15 end

-

- s.add_handler(' pragbouquet.print_card') do |cardref|

- # Transfer cardref.pdf to special directory, where

- # it gets picked up and is printed eventually

20 ftp = Net::FTP.new(' ftp.imagehost')

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/image_server.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=186

ANOTHER DAY, ANOTHER PROTOCOL 187

- ftp.login(' imageserver' , ' secret')

- files = ftp.chdir(' pub/cards/img')

- ftp.putbinaryfile("#{cardref}.pdf")

- ftp.close

25 end

-

- s.add_handler(' pragbouquet.delete_card') do |cardref|

- File.delete("#{cardref}.pdf")

- end

30

- s.set_default_handler do |name, *args|

- raise XMLRPC::FaultException.new(

- -100,

- "Method #{name} missing or wrong number of parameters!"

35)

- end

-

- server = WEBrick::HTTPServer.new(:Port => 8080)

- server.mount(' /RPC2' , s)

40 trap(' INT') { server.shutdown }

-

- server.start

We have created a servlet of class XMLRPC::WEBrickServlet and added han-
dlers for the draw_card(),print_card(), and delete_card() functions. It’s
not demanded by the specification, but it’s good style to give them all a
prefix (pragbouquet in our case), and it will pay off later.

draw_card()’s implementation is straightforward using the GreetingCard

class. Note that in lines 12 and 13 we had to explicitly convert our
images into Base64 format.

The print_card() handler transfers a particular file to the print server via
FTP, and delete_card() deletes a particular greeting card.

In line 31 we have installed a so-called default handler that is compa-
rable to Ruby’s method_missing() method. It gets called whenever the
server receives a request it cannot dispatch for any reason, such as the
method name is unknown or the amount of method parameters does
not match. In these cases an exception is raised; i.e., a fault response
will be returned.

The rest of the server does not differ from initializing and starting any
other WEBrick server. By loose convention, XML-RPC services are
located under /RPC2, so we mount our servlet there.

All right, the XML-RPC service is listening on port 8080 under the path
/RPC2. The following client will test whether it works as expected:

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=187

ANOTHER DAY, ANOTHER PROTOCOL 188

File 98 Line 1 require "xmlrpc/client"

-

- server = XMLRPC::Client.new(' localhost' , ' /RPC2' , 8080)

- begin

5 response = server.call(

- ' pragbouquet.draw_card' ,

- 4711,

- 42,

- ' Forgive me!'

10)

- rescue XMLRPC::FaultException => e

- puts "An error occurred:"

- puts e.faultCode

- puts e.faultString

15 end

xmlrpc4r’s usage is intuitive. To obtain a reference to the server, you
have to create an instance of XMLRPC::Client, specifying the host, the
path, and the port on which the service is listening. Calling a particular
procedure is performed by call(procedure,*args) then. Its result is the
decoded server response.

As we all know, there is no Ruby code that could not be made shorter
and more expressive:

File 100 Line 1 require "xmlrpc/client"

-

- server = XMLRPC::Client.new(' localhost' , ' /RPC2' , 8080)

- gc = server.proxy2(' pragbouquet')

5 success, cards = gc.draw_card(4711, 42, ' Forgive me!')

- if success

- puts cards

- else

- puts "An error occurred:"

10 puts cards.faultCode

- puts cards.faultString

- end

In line 4 we have created a proxy for the greeting card service that
allows us to use the remote procedures exactly as if they were local
ones (here we needed the prefix pragbouquet again). Furthermore, we
have suppressed the exception feature; i.e., calling proxy2() makes all
remote procedures return a boolean value indicating success or failure.
If we had used proxy(), exceptions would be raised. The same applies to
call() and call2().

In addition to the WEBrick servlet, you can choose from a variety of
different server types that can be configured by several options:

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/image_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/proxy_client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=188

WE WILL TAKE NO REST, WILL WE? 189

• Server is a stand-alone server that does not depend on WEBrick or
anything else.

• CGIServer can be used in a CGI environment; i.e., you can put your
XML-RPC implementation into a CGI script that is executed by a
web server, whenever it receives an XML-RPC request. To prevent
the web server from executing the script over and over again, this
server type works with FastCGI,3 too.

• ModRubyServer allows you to embed your XML-RPC procedures
into a web server using mod_ruby.4

Conclusion

XML-RPC is fairly popular; e.g., it is supported by many operating sys-
tems such as Apple’s Mac OS X, and it builds the basis for services like
the Blogger API.5 Its biggest strength compared to competitors such as
SOAP or CORBA is its simplicity. When designing a distributed appli-
cation, XML-RPC is always worth a look especially when you’re using
Ruby, because xmlrpc4r is extremely powerful and gives you a variety
of options for making your remote procedures available to the public
quickly.

5.2 We Will Take No REST, Will We?

Remember the LDAP address book we implemented in Section 2.4,
Lightweight Directory Access Protocol (LDAP), on page 51? We did it
because the web shop guys wanted to give Ruby on Rails a try. Because
of some unexpected change requests (what else?), they didn’t have
enough time to work their way through Ruby and the Rails framework,
but the address book is still needed. They know you’ve already set up
an LDAP server and that your Ruby classes are working, too. So they
asked you to turn the implementation into an HTTP service that they
can access from their Java classes. Although the web shop team said
that the details of the interface do not matter much, you know that
they’d prefer XML.

You decide that it would be a good idea to map the address book opera-
tions (create a new address book, show an address book, add an entry

3http://www.fastcgi.com
4http://www.modruby.net
5http://www.blogger.com/developers/api/1_docs

http://www.fastcgi.com
http://www.modruby.net
http://www.blogger.com/developers/api/1_docs
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=189

WE WILL TAKE NO REST, WILL WE? 190

to an existing address book, modify an entry, delete an entry, and delete
an address book) to different HTTP methods. To show an address book,
for example, we could use the HTTP GET method. To delete an entry or a
complete address book, we can use an HTTP DELETE. We’ll pass param-
eters as XML documents.

Let’s create the main infrastructure first: a WEBrick server that will be
the basis for our service:

File 64 Line 1 require ' rexml/document'

- require ' addressbook'

- require ' ldap'

- require ' thread'

5 require ' cgi'

- require ' webrick'

- include WEBrick

- class AddressBookServlet < HTTPServlet::AbstractServlet

- @@instance = nil

10 @@instance_creation_mutex = Mutex.new

-

- def self.get_instance(config, *options)

- @@instance_creation_mutex.synchronize do

- @@instance ||= self.new(config, *options)

15 end

- end

-

- def initialize(config, ldap_conn)

- super

20 @ldap_conn = ldap_conn

- @ldap_mutex = Mutex.new

- end

- end

- connection = Conn.new

25 connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind(' cn=root,dc=pragbouquet,dc=com' , ' secret')

-

- server = HTTPServer.new(:Port => 4242)

- server.mount(' /ab' , AddressBookServlet, connection)

30

- %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

-

35 server.start

This server differs a bit from the servers we have used so far. The
servlet is a bit more complicated because we’re working with an expen-
sive resource, the connection to the LDAP server. By default, a new
servlet instance will be created for every request. This is convenient,

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=190

WE WILL TAKE NO REST, WILL WE? 191

because you do not have to care about multithreading issues, but it
can waste a lot of resources, too.

The WEBrick inventors were aware of this problem, so they provided
the get_instance(config,*options) method. This gives you complete control
over the servlet creation process.

We used it to implement a singleton pattern that creates only a single
instance of the AddressBookServlet class, but you can come up with any
resource management strategy you prefer or need. For example, you
could instead implement a servlet pool.

Our solution is much simpler. In line 13 we synchronize the creation of
the one and only servlet instance (to prevent a race condition when two
requests arrive simultaneously before the instance is created), and in
the following line we actually create a new instance if it does not exist
already.

For the first time we’ve defined an initialize() method for our servlet. We
had to do this because we want to configure it before we actually mount
it. In line 29 we pass it the LDAP connection. In addition, we create a
Mutex object in line 21 that we will use for synchronizing access to the
LDAP server.

Initializing the server is business as usual. We create a connection
to the LDAP server, initialize a servlet, and mount it at /ab (ab is an
abbreviation for address book).

Before adding handlers for the different HTTP methods, we add to_xml()
methods to the Recipient and AddressBook classes that return XML rep-
resentations of their according instances:

File 64 Line 1 class Recipient

- def to_xml

- recipient = REXML::Element.new(' recipient')

- recipient.add_attribute(' forename' , forename)

5 recipient.add_attribute(' surname' , surname)

- address = recipient.add_element(' address')

- address.add_element(' street').add_text(street)

- address.add_element(' postal-code').add_text(postal_code)

- address.add_element(' city').add_text(city)

10 address.add_element(' state').add_text(state)

- recipient.add_element(' description').add_text(description)

- recipient

- end

- end

15

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=191

WE WILL TAKE NO REST, WILL WE? 192

- class AddressBook

- def to_xml

- addressbook = REXML::Element.new(' address-book')

- addressbook.add_attribute(' uid' , user.uid)

20 each_recipient { |r| addressbook.add_element(r.to_xml) }

- addressbook

- end

- end

We use REXML to turn our objects into XML. This is convenient, because
the to_xml() methods return REXML::Element objects, not strings, so we
can easily add elements and attributes if needed (of course, we will).

Now we have everything prepared, so let’s implement the first HTTP
method handler. This returns the complete address book belonging to a
particular uid. Our server expects a request of the form http://host:port/ab/(uid),
so to get the address book belonging to uid 4711, you send a GET request
to http://host:port/ab/4711:

File 64 Line 1 class AddressBookServlet

- # Return all entries belonging to a particular address book.

- def do_GET(req, res)

- res[' content-type'] = ' text/xml'

5 uid = get_uid(req)

- @ldap_mutex.synchronize do

- begin

- ab = AddressBook.new(@ldap_conn, User.new(uid))

- entries = ab.to_xml

10 entries.each_element(' recipient') do |r|

- cn = to_cn(

- r.attributes[' forename'],

- r.attributes[' surname']

-)

15 link = r.add_element(' link')

- link.add_text(

- "http://#{req.host}:#{req.port}/ab/#{uid}/#{cn}"

-)

- end

20 entries.write(res.body, 0)

- res.body << "\n"

- res.status = 200

- rescue ResultError

- res.status = 404

25 end

- end

- end

-

- def get_uid(req)

30 req.path_info =~ /\/(\d+)$/ ? $1 : nil

- end

http://host:port/ab/(uid)
http://host:port/ab/4711
http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=192

WE WILL TAKE NO REST, WILL WE? 193

-

- def to_cn(forename, surname)

- CGI.escape(forename + " " + surname)

35 end

- end

Admittedly, this is a lot of code, but it’s not difficult to understand.
Let’s dissect it, line by line. First, we extract the uid from the URL. This
is done in the get_uid() method.

Because we need it two lines later to read the address book, in line 6
we synchronize the access to the LDAP server. Then we convert the
address book into an XML element with our new to_xml() method.

The iterator starting on line 10 adds a <link> element to each address
book entry (that’s the reason why to_xml() does not return a string, but
a REXML::Element object). This element tells the client how to refer to
the entry on the server. To build the URL we append the common name
(cn) of the entry to the address book’s URL, and therefore we have to
URL-encode it in the to_cn() method.

Eventually, we create a nicely formatted version of our XML document
in line 20 and send it back to the client. If we could not find the address
book requested, we leave the body empty and set the status to File Not

Found in line 24.

Let’s test the method with the command-line tool curl (the -i option
instructs curl to print the HTTP headers, too):

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 09:02:52 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 739

<address-book uid=' 4711' >

<recipient forename=' P.H.' surname=' Beans' >

<address>

<street>Nuclear Powerplant Road 1</street>

<postal-code>65801</postal-code>

<city>Springfield</city>

<state>MO</state>

</address>

<description>My boss.</description>

<link>http://localhost:4242/ab/4711/P.H.+Beans</link>

</recipient>

<recipient forename=' Marge' surname=' Jackson' >

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=193

WE WILL TAKE NO REST, WILL WE? 194

<address>

<street>Evergreen Terrace 42</street>

<postal-code>62701</postal-code>

<city>Springfield</city>

<state>IL</state>

</address>

<description>

Don't forget our wedding anniversary!

</description>

<link>http://localhost:4242/ab/4711/Marge+Jackson</link>

</recipient>

</address-book>

Everything looks good, but you may ask yourself, what does all this
have to do with REST—Representational State Transfer?6 Isn’t it an Representational State

Transfer
ordinary HTTP service? Yes, it is! The main thing that differs from the
services we have built so far is the use of URLs. They do not contain
actions such as send_sms or store_address, but they refer to resources
such as address books on the server.

Another difference with REST is that we no longer use just GET and POST

requests. To delete an address book entry or a complete address book,
we use the DELETE method, for example:

File 64 Line 1 class AddressBookServlet

- def do_DELETE(req, res)

- if req.path_info =~ /\/(\d+)\/(.+)$/

- delete_recipient($1, $2)

5 elsif req.path_info =~ /\/(\d+)$/

- delete_address_book($1)

- end

- res.status = 204 # No Content

- end

10

- def delete_recipient(uid, common_name)

- @ldap_mutex.synchronize do

- ab = AddressBook.new(@ldap_conn, User.new(uid))

- cn = CGI.unescape(common_name)

15 surname = cn.split(/.* (\w+)$/)[1]

- forename = cn[0 .. -(surname.size + 1)]

- ab.remove(Recipient.new(forename, surname))

- end

- end

20

- def delete_address_book(uid)

- @ldap_mutex.synchronize do

- ab = AddressBook.new(@ldap_conn, User.new(uid))

6http://en.wikipedia.org/wiki/Representational_State_Transfer

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=194

WE WILL TAKE NO REST, WILL WE? 195

- ab.each_recipient { |r| ab.remove(r) }

25 ab.delete

- end

- end

- end

At the beginning of the do_DELETE(req,res) method, we check whether
we have to delete a single address book entry or a complete address
book. Depending on the URL format, we delegate work to either the
delete_address_book(uid) or to delete_recipient(uid, common_name). Then
in lines 14 to 16 we extract the forename and surname of the recipient
to be deleted from the common name passed in the URL.

The following session first demonstrates how to delete Marge Jackson
from the address book belonging to user 4711 and then how to delete
the entire address book (curl’s -X option lets us specify which HTTP
request to use):

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711/Marge+Jackson \

> -X DELETE

HTTP/1.1 204 No Content

Date: Sun, 13 Nov 2005 13:20:42 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 13:24:02 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 373

<address-book uid=' 4711' >

<recipient forename=' P.H.' surname=' Beans' >

<address>

<street>Nuclear Powerplant Road 1</street>

<postal-code>65801</postal-code>

<city>Springfield</city>

<state>MO</state>

</address>

<description>My boss.</description>

<link>http://localhost:4242/ab/4711/P.H.+Beans</link>

</recipient>

</address-book>

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711 -X DELETE

HTTP/1.1 204 No Content

Date: Sun, 13 Nov 2005 13:20:55 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=195

WE WILL TAKE NO REST, WILL WE? 196

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711

HTTP/1.1 404 Not Found

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 13:24:40 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

It looks like our delete methods work. Now let’s balance the books by
creating new entries:

File 64 Line 1 class AddressBookServlet

- def do_POST(req, res)

- doc = REXML::Document.new(req.body)

- if doc.root.name == ' recipient'

5 create_recipient(doc, req, res)

- else

- create_address_book(doc, req, res)

- end

- end

10

- def create_address_book(doc, req, res)

- user = parse_user(doc)

- @ldap_mutex.synchronize do

- AddressBook.create(@ldap_conn, user)

15 end

- res.status = 201

- res[' Location'] = "/ab/#{user.uid}"

- end

-

20 def create_recipient(doc, req, res, update = false)

- uid = get_uid(req)

- recipient = parse_recipient(doc)

- @ldap_mutex.synchronize do

- begin

25 ab = AddressBook.new(@ldap_conn, User.new(uid))

- if update

- ab.modify(recipient)

- else

- ab.add(recipient)

30 end

- cn = to_cn(recipient.forename, recipient.surname)

- res.status = 201 # Created

- res[' Location'] = "/ab/#{uid}/#{cn}"

- rescue ResultError => ex

35 @logger.info ex

- res.status = 404

- end

- end

- end

40

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=196

WE WILL TAKE NO REST, WILL WE? 197

- def parse_user(doc)

- attributes = doc.root.attributes

- User.new(

- attributes[' uid'],

45 attributes[' forename'],

- attributes[' surname']

-)

- end

-

50 def parse_recipient(doc)

- attributes = doc.root.attributes

- Recipient.new(

- attributes[' forename'],

- attributes[' surname'],

55 attributes[' street'],

- attributes[' postal-code'],

- attributes[' city'],

- attributes[' state'],

- attributes[' description']

60)

- end

- end

New objects are created using the POST request. First, we check whether
a new address book or a new address book entry should be created. In
both cases we read the attributes of the object to be created from an
XML document that is passed with the request. Attributes for a new
address book will be read by parse_user(doc), and attributes for a new
address book entry will be read by parse_recipient(doc).

The create_recipient(doc,req,res,update=false) method is a bit special. It’s
not only able to create new recipient objects, but it can also modify
existing ones. You can change its behavior using the update flag.

Both methods, create_address_book() and create_recipient(), set the Loca-

tion header in the HTTP response. This contains a link to the object that
we just created. This is a REST convention.

The following session creates a new address book and a new address
book entry:

mschmidt:/tmp> curl -i http://localhost:4242/ab/23 -X POST -d \

> "<address-book uid=' 23' forename=' Homer' surname=' Simpson' />"

HTTP/1.1 201 Created

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 18:46:54 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

Location: http://localhost:4242/ab/23

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=197

WE WILL TAKE NO REST, WILL WE? 198

mschmidt:/tmp> curl -i http://localhost:4242/ab/23 -X POST -d \

> "<recipient forename=' Barney' surname=' Gumble' street=' Musterstr. 42' \

> postal-code=' 11011' city=' Berlin' state=' n/a' \

> description=' My best friend.' />"

HTTP/1.1 201 Created

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 18:48:46 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

Location: http://localhost:4242/ab/23/Barney+Gumble

mschmidt:/tmp> curl -i http://localhost:4242/ab/23

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 18:49:41 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 366

<address-book uid=' 23' >

<recipient forename=' Barney' surname=' Gumble' >

<address>

<street>Musterstr. 42</street>

<postal-code>11011</postal-code>

<city>Berlin</city>

<state>n/a</state>

</address>

<description>My best friend.</description>

<link>http://localhost:4242/ab/23/Barney+Gumble</link>

</recipient>

</address-book>

Now we can create new objects. It would be nice to be able to modify
existing entries, too:

File 64 Line 1 class AddressBookServlet

- def do_PUT(req, res)

- doc = REXML::Document.new(req.body)

- create_recipient(doc, req, res, true)

5 end

- end

This code is short, because we could reuse the create_recipient() method
that we used to create new entries. Note that to update existing entries,
we use the PUT request. If, for example, Barney becomes Homer’s very
best friend, we can change the description attribute as follows:

mschmidt:/tmp> curl -i http://localhost:4242/ab/23 -X PUT -d \

> "<recipient forename=' Barney' surname=' Gumble' \

> street=' Musterstr. 42' postal-code=' 11011' \

> city=' Berlin' state=' n/a' \

> description=' My very best friend.' />"

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=198

WE WILL TAKE NO REST, WILL WE? 199C R U D A c t i o n H T T P M e t h o dC r e a t eR e t r i e v eU p d a t eD e l e t e P O S TG E TP U TD E L E T E
Figure 5.4: Mapping CRUD to REST

HTTP/1.1 201 Created

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 19:02:07 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

Location: http://localhost:4242/ab/23/Barney+Gumble

mschmidt:/tmp> curl -i http://localhost:4242/ab/23

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 19:03:46 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 371

<address-book uid=' 23' >

<recipient forename=' Barney' surname=' Gumble' >

<address>

<street>Musterstr. 42</street>

<postal-code>11011</postal-code>

<city>Berlin</city>

<state>n/a</state>

</address>

<description>My very best friend.</description>

<link>http://localhost:4242/ab/23/Barney+Gumble</link>

</recipient>

</address-book>

Perfect! We now have methods for all the CRUD actions. Figure 5.4
shows how we mapped them to HTTP request types. At the risk of

destroying your faith in technology, we have a confession to make.
There is no REST standard. REST is an architectural style that depends
on a lot of other standards such as HTTP and XML. It recommends rep-
resenting entities on a server as XML documents that can be referred
to by URLs. But that’s about it. There is no such thing as a REST
service framework. But, because Ruby has excellent support for HTTP
and XML, it also has excellent support for REST services. Maybe you’ve
already implemented a REST service without noticing it.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=199

SOAP 200

5.3 SOAP

Today you gave a little presentation of the Stock class we developed in
Section 2.3, What Do We Have in Stock?, on page 41, to the clerks and
the team that develops PragBouquet’s financial applications. They were
all very impressed, so you’ve landed the job to work out the details of
the final system with Jeff, the leader of the financial applications team.

Jeff told you that Microsoft’s .NET environment is their preferred devel-
opment platform. Processes and components on this platform often
communicate via SOAP, so Jeff’s life would be easier if the Stock class
were available as a SOAP service, too. You don’t have much experience
with SOAP and absolutely no experience with Ruby and SOAP, but you
are sure that there will be an easy way to turn the Stock class into a
SOAP service.

Refactoring the Stock Class API

First, we have to refactor the API of the Stock class a bit, because Jeff
made some useful suggestions. For example, he wants to remove the
Bouquet class, because in his opinion, a flower stock should not have to
know anything about bouquets. At least it should be possible to remove
flowers without putting them into a bouquet first. He also thinks that
the print_report() method should be replaced with a get_report() method
that actually returns a stock report instead of printing it.

After 90 minutes of discussion, you both agree upon the following API:

create_flower(name,price,quantity)

Creates an entry for a new flower called name in the database and
sets an initial price and an initial quantity.

add_flowers(name,quantity)

Adds quantity flowers called name to the stock. It returns the quan-
tity of flowers called name in stock.

remove_flowers(name,quantity)

Removes quantity flowers called name from the stock. It returns
the quantity of flowers called name in stock.

set_price(name,price)

Sets the price of the flower called name to price.

get_report()
Returns a hash containing a two-element array for each flower, in

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=200

SOAP 201

stock. The first array entry is the quantity of the flower and the
second is the current price. A typical example looks like this:

{

' rose' => [1000, 2.99],

' sunflower' => [500, 1.79]

}

All price information is stored in U.S. dollars. Every method can raise
an exception if it gets invalid arguments or runs into a database error.
“That’s great!” you think. “I don’t have to make any changes to the
database schema.”7 Before we deal with any “soapy” things, we will
drop the Bouquet class and completely refactor our Stock. If SOAP is
worthy of all the hype surrounding it, we won’t have to modify our
class again later. Our database access layer looks like this:

File 92 Line 1 require ' rubygems'

- require ' active_record'

-

- ActiveRecord::Base.establish_connection(

5 :adapter => ' mysql' ,

- :host => ' 127.0.0.1' ,

- :database => ' webshop'

-)

- class Flower < ActiveRecord::Base

10 belongs_to :stock_item

- end

- class StockItem < ActiveRecord::Base

- has_one :flower

- end

No big surprises here: the Bouquet class and all its dependencies are
gone. Let’s implement our API specification:

File 92 Line 1 class Stock

- def create_flower(name, price, quantity)

- flower = Flower.find_by_name(name)

- raise "#{name} already exists!" if !flower.nil?

5 si = StockItem.new(:quantity => quantity)

- si.save

- si.create_flower(:name => name, :price => price)

- quantity

- end

10

- def add_flowers(name, quantity)

- adjust_quantity(name, quantity)

- end

7Still thinking the old way, eh? With ActiveRecord these changes would have been a
piece of cake anyway. :-)

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/stock.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=201

SOAP 202

-

15 def remove_flowers(name, quantity)

- adjust_quantity(name, -quantity)

- end

-

- def set_price(name, price)

20 flower = Flower.find_by_name(name)

- raise "#{name} is unknown!" if flower.nil?

- flower.price = price

- flower.save

- price

25 end

-

- def get_report

- StockItem.find(:all).inject({}) do |r,si|

- r[si.flower.name] = [si.quantity, si.flower.price]; r

30 end

- end

-

- private

-

35 def adjust_quantity(name, difference)

- flower = Flower.find_by_name(name)

- raise "#{name} is unknown!" if flower.nil?

- si = StockItem.find(flower.stock_item_id)

- si.quantity += difference

40 raise ' Not enough flowers!' if si.quantity < 0

- si.save

- si.quantity

- end

- end

As expected, the Ruby implementation reads like the API description
itself, and ActiveRecord makes the code pure, short, and simple.

A Look Under the Hood of SOAP

In doing some research on SOAP, you might have come across the draft
W3C specification:8

“SOAP is a lightweight protocol for exchange of information in a decen-
tralized, distributed environment. It is an XML-based protocol that con-
sists of three parts: an envelope that defines a framework for describing
what is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a conven-
tion for representing remote procedure calls and responses.”

8http://www.w3.org/TR/2000/NOTE-SOAP-20000508

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=202

SOAP 203

Simply put, SOAP is XML-RPC after it has been ground by the mills
of a standards committee.9 Like XML-RPC, SOAP specifies a way to
implement a remote procedure call architecture where all requests and
responses are encoded as XML documents. Compared to XML-RPC, it
has a more flexible data type system, deals with encoding and authen-
tication issues, and is meant to be used on different transport layers,
not only HTTP.

Let’s see how it works in the real world. A method call such as cre-

ate_flower(’rose’, 1.99, 1000) gets converted into the following document:

<?xml version="1.0" encoding="utf-8"?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Body>

<n1:create_flower xmlns:n1="urn:Stock"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:string">rose</name>

<price xsi:type="xsd:double">+1.99</price>

<quantity xsi:type="xsd:int">1000</quantity>

</n1:create_flower>

</env:Body>

</env:Envelope>

If we leave out all the namespace stuff, it becomes easier to see how it
works:10

<?xml version="1.0"?>

<Envelope>

<Body>

<create_flower>

<name type="string">rose</name>

<price type="double">+1.99</price>

<quantity type="int">1000</quantity>

</create_flower>

</Body>

</Envelope>

Obviously, every method call gets translated into its own element (in
our case, it’s <create_flower>). All the method’s parameters are turned
into elements, too, and they become child elements of the method call

9In the beginning SOAP stood for “Simple Object Access Protocol,” but today it only
means SOAP. Have a look at the current specification, and you can easily see why the
committee decided to drop the “Simple.”

10We remove the namespaces only for better readability. When you are actually work-
ing with SOAP, you have to use them!

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=203

SOAP 204

element. They all have a type= attribute that specifies the data type of
the parameter using XmlSchema.11

The return value of our method call looks like this:

<?xml version="1.0" encoding="utf-8"?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Body>

<n1:create_flowerResponse xmlns:n1="urn:Stock"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:int">1000</return>

</n1:create_flowerResponse>

</env:Body>

</env:Envelope>

Removing all the namespace clutter will help again:

<?xml version="1.0"?>

<Envelope>

<Body>

<create_flowerResponse>

<return type="int">1000</return>

</create_flowerResponse>

</Body>

</Envelope>

To encode a method’s return value, a new element is created and its
name is built by appending Response to the name of the method that
was called. The return value itself is encoded as a child called <return>

of the newly created element. Its data type is specified the same way as
the data type of method parameters.

SOAP is much more than this (see Programming Web Services with

SOAP [STK02], for example), but for our purposes it’s sufficient to know
how method calls and responses are encoded. (There are more details
in Section 5.3, SOAP Headers, on page 213.) To call the create_flower()
method, we could create an XML document such as the previous exam-
ple and send it using Ruby’s HTTP library. We could then parse the
response using REXML. Actually, lots of clients out there work exactly
this way. We will follow a more flexible approach and use Ruby’s stan-
dard SOAP library, called soap4r.

11http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=204

SOAP 205

SOAP the Hard Way

To turn the Stock class into a SOAP service, we use Hiroshi Nakamura’s
soap4r library. It is part of the Ruby standard library, implements SOAP
version 1.1,12 and makes the creation of web services really easy:

File 89 Line 1 require ' soap/rpc/standaloneServer'

- require ' stock'

-

- class StockServer < SOAP::RPC::StandaloneServer

5 def on_init

- @stock = Stock.new

- @log.level = Logger::Severity::DEBUG

- add_method(self, ' create_flower' , ' name' , ' price' , ' quantity')

- add_method(self, ' add_flowers' , ' name' , ' quantity')

10 add_method(self, ' remove_flowers' , ' name' , ' quantity')

- add_method(self, ' set_price' , ' name' , ' price')

- add_method(self, ' get_report')

- end

-

15 def create_flower(name, price, quantity)

- @stock.create_flower(name, price, quantity)

- end

-

- def add_flowers(name, quantity)

20 @stock.add_flowers(name, quantity)

- end

-

- def remove_flowers(name, quantity)

- @stock.remove_flowers(name, quantity)

25 end

-

- def set_price(name, price)

- @stock.set_price(name, price)

- end

30

- def get_report

- @stock.get_report

- end

- end

35

- server = StockServer.new(' stock' , ' urn:Stock' , ' 0.0.0.0' , 2000)

- trap(:INT) { server.shutdown }

- server.start

We didn’t actually have to touch the Stock class to make its functionality
available in our first SOAP server. In fact, we didn’t have to do very
much at all.

12W3C has a recommendation for version 1.2, but it’s currently not in widespread use.

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/s_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=205

SOAP 206

First, we derived our StockServer class from a standard SOAP4R class
called SOAP::RPC::StandaloneServer. This is one of several ways to create
SOAP services with soap4r.

The on_init() method gets called when the server is initialized, so we
use it to create our Stock instance, configure the logging system (you’ll
need a lot of debug output, especially in the beginning), and declare all
the remote methods we’re going to support. All the remaining methods
simply delegate their work to their counterparts in the Stock class.

In line 36 we create a server instance. The constructor gets four param-
eters:

• The application name.

• URN of the application.

• The name or IP address of the host the service is running on.
0.0.0.0 means that the service is listening on all interfaces.

• The port the service is running on.

In line 37 we make sure the server gets terminated when it receives a
SIGINT signal. Finally, on the last line, we start the server.

At this point you could ask a member of Jeff’s team to try to use and
test the new service, but you’re afraid that if it doesn’t run properly,
it could ruin your newly gained reputation. Better write your own test
client:

File 87 Line 1 require ' soap/rpc/driver'

-

- stock = SOAP::RPC::Driver.new(' http://localhost:2000' , ' urn:Stock')

- [

5 %w(create_flower name price quantity),

- %w(add_flowers name quantity),

- %w(remove_flowers name quantity),

- %w(set_price name price),

- %w(get_report)

10].each do |signature|

- stock.add_method(*signature)

- end

-

- begin

15 stock.create_flower(' rose' , 1.99, 1000)

- stock.create_flower(' orchid' , 3.14, 200)

- puts "Created ' rose' and ' orchid' ."

- p stock.get_report

-

20 stock.remove_flowers(' rose' , 5)

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/c_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=206

SOAP 207

- puts ' Removed 5 roses.'

- p stock.get_report

-

- stock.add_flowers(' orchid' , 100)

25 puts ' Added 100 orchids.'

- p stock.get_report

-

- stock.set_price(' orchid' , 3.01)

- puts ' Changed orchid price to $3.01.'

30 p stock.get_report

- rescue Exception => ex

- puts ex

- end

This produces the following output (after we have deleted all records
from the flowers table):

Created ' rose' and ' orchid' .

{"orchid"=>[200, 3.14], "rose"=>[1000, 1.99]}

Removed 5 roses.

{"orchid"=>[200, 3.14], "rose"=>[995, 1.99]}

Added 100 orchids.

{"orchid"=>[300, 3.14], "rose"=>[995, 1.99]}

Changed orchid price to $3.01.

{"orchid"=>[300, 3.01], "rose"=>[995, 1.99]}

That wasn’t too difficult either. We obtained a proxy for the stock service
by creating a SOAP::RPC::Driver instance, passing it the address and the
URN of the service we want to access. In lines 4 to 12 we tell the proxy
which methods we’d like to use. From then on we could treat the proxy
as if it were an instance of the Stock class.

So far, so good, but our current implementation of the server does not
meet our high coding standards. Why do we have to repeat the Stock

class’s API in the SOAP server? Ruby is supposed to be a dynamic
language. Isn’t it possible to create the server automatically from the
Stock class? Fortunately, it is:

File 90 Line 1 class StockServer < SOAP::RPC::StandaloneServer

- def initialize(*args)

- super

- @log.level = Logger::Severity::DEBUG

5 add_servant(Stock.new)

- end

- end

Sweet, isn’t it? Instead of adding every single remote method with
add_method(), you can make all the methods of a particular class avail-
able by passing an instance of the class to add_servant().

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/s_stock2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=207

SOAP 208

Web Services Description Language

Did you notice that we are still violating the DRY principle? In the client
we call add_method() for every method of the Stock class to define the
interface we want to use. Wouldn’t it be nice if we could generate the
boring and tedious interface code from a more abstract definition?

In CORBA environments you can use the Interface Definition Language
(IDL) to describe interfaces and to generate stubs and skeletons for
servers and clients. SOAP uses the Web Services Description Language Web Services Description

Language
(WSDL) for this purpose. It’s an XML dialect made for describing the
interface of remote services.

With WSDL you can describe the service itself, its interface, and its
bindings. It’s not required, but it’s good practice to separate the ser-
vice description from the interface description. Our service description
looks as follows:

File 91 Line 1 <?xml version="1.0"?>

- <definitions name="StockServiceImplementationDescription"

- targetNamespace="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns="http://schemas.xmlsoap.org/wsdl/"

5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

- xmlns:tns="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns:xsd="http://www.w3.org/2001/XMLSchema">

-

- <import namespace="urn:Stock" location="stock.wsdl"/>

10

- <service name="StockService">

- <documentation>

- The stock service allows you to manage PragBouquet' s flower

- stock.

15 </documentation>

- <port binding="tns:StockBinding" name="StockPort">

- <soap:address location="http://localhost:2000"/>

- </port>

- </service>

20 </definitions>

The biggest problem with WSDL files is that they are often cluttered
with XML namespaces. If you ignore them the rest is easy to read. In
line 9 we import the interface definition of the stock service that we are
going to describe next. We then use the <service> element to briefly
describe it. With the <documentation> element, we explain a bit about
the purpose of our service, and the <port> element tells us where it
can be found.

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/sd_stock.wsdl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=208

SOAP 209

Describing the service’s interface is a bit more complex but still not
difficult:

File 93 Line 1 <?xml version="1.0"?>

- <definitions name="StockServiceInterfaceDescription"

- targetNamespace="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns="http://schemas.xmlsoap.org/wsdl/"

5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

- xmlns:tns="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns:xsd="http://www.w3.org/2001/XMLSchema">

-

- <message name="set_price_in">

10 <part name="name" type="xsd:string"/>

- <part name="price" type="xsd:double"/>

- </message>

-

- <message name="set_price_out">

15 <part name="price" type="xsd:double"/>

- </message>

-

- <portType name="StockInterface">

- <operation name="set_price">

20 <input message="tns:set_price_in"/>

- <output message="tns:set_price_out"/>

- </operation>

- </portType>

-

25 <binding name="StockBinding" type="tns:StockInterface">

- <soap:binding style="rpc"

- transport="http://schemas.xmlsoap.org/soap/http"/>

- <operation name="set_price">

- <soap:operation soapAction="set_price"/>

30 <input>

- <soap:body

- encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

- namespace="urn:Stock"

- use="encoded"/>

35 </input>

- <output>

- <soap:body

- encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

- namespace="urn:Stock"

40 use="encoded"/>

- </output>

- </operation>

- </binding>

- </definitions>

WSDL does not force us to declare the whole interface at once, so we
declared only the set_price(name,price) method. Let’s dissect it element
by element.

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/stock.wsdl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=209

SOAP 210

We use the <message> elements to declare the signatures and return
values of all methods we are going to describe. In SOAP everything is
a message—a method gets a message containing its parameters, and
it sends back its return value as a message. The set_price(name,price)

method receives a message called set_price_in that consists of two parts:
a string called name and a double called price. A set_price_out message
containing a double object named price is returned.

It may look a bit awkward to declare our Ruby methods this way, but
SOAP was meant to be interoperable, so the standards committee had
to agree upon the data types that are available in most (static) pro-
gramming languages. Hence, data types in SOAP can be everything
you are used to in object-oriented languages such as Java and C++:
atomic types such as int and double, arrays, structs, and even full-
blown objects. They are described using XmlSchema13 and reside in
the xsd namespace.

We describe the methods (or operations as SOAP calls them) offered by
the service with the <portType> element beginning on line 18. In our
case this is simple: we have an operation called set_price() that expects
a message of type set_price_in and returns a set_price_out message.

The rest of the WSDL file deals with the so-called service binding. It’s
possible to declare several implementations of the same interface in a
single WSDL file. For example, there could be different SOAP imple-
mentations of our Stock servicer: one that uses HTTP as its transport
layer and another one that uses HTTPS. Both services would have the
same interface, but they would have different bindings. (In fact, they
don’t even have to be SOAP services at all.) But our Stock service is a
plain old SOAP service running on top of HTTP.

Now that we have this abstract, omnipotent XML description of our
stock, only a single question remains: what the heck can we do with it?
Simple answer: we can use it to generate all the boring code we had to
write manually before:

mschmidt:/tmp> ls

sd_stock.wsdl stock.wsdl

mschmidt:/tmp> wsdl2ruby.rb --type client --wsdl sd_stock.wsdl

I, [2005-12-31T12:29:39.745796 #567] INFO -- app: Creating class \

definition.

I, [2005-12-31T12:29:39.786257 #567] INFO -- app: Creates file \

' StockServiceImplementationDescription.rb'.

13http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=210

SOAP 211

I, [2005-12-31T12:29:39.789094 #567] INFO -- app: Creating driver.

I, [2005-12-31T12:29:39.790492 #567] INFO -- app: Creates file \

' StockServiceImplementationDescriptionDriver.rb'.

I, [2005-12-31T12:29:39.796227 #567] INFO -- app: Creating client \

skelton.

I, [2005-12-31T12:29:39.797680 #567] INFO -- app: Creates file \

' StockServiceClient.rb' .

I, [2005-12-31T12:29:39.800845 #567] INFO -- app: End of app.\

(status: 0)

mschmidt:/tmp> ls

StockServiceClient.rb

StockServiceImplementationDescription.rb

StockServiceImplementationDescriptionDriver.rb

sd_stock.wsdl

stock.wsdl

mschmidt:/tmp>

wsdl2ruby.rb turns .wsdl files into Ruby code. Although it is part of soap4r,
it is not part of the Ruby standard distribution and has to be installed
separately.14

You can specify the .wsdl file to be compiled with the --wsdl option. Using
the --type option, you can choose whether you want client or server code.
We were interested in client code this time, and wsdl2ruby.rb has gener-
ated three files for us. The most interesting one is StockServiceClient.rb:

File 81 Line 1 #!/usr/bin/env ruby

- require ' StockServiceImplementationDescriptionDriver.rb'

-

- endpoint_url = ARGV.shift

5 obj = StockInterface.new(endpoint_url)

-

- # run ruby with -d to see SOAP wiredumps.

- obj.wiredump_dev = STDERR if $DEBUG

-

10 # SYNOPSIS

- # set_price(name, price)

- #

- # ARGS

- # name String - {http://www.w3.org/2001/XMLSchema}string

15 # price Double - {http://www.w3.org/2001/XMLSchema}double

- #

- # RETURNS

- # price Double - {http://www.w3.org/2001/XMLSchema}double

- #

20 name = price = nil

- puts obj.set_price(name, price)

14SOAP4R’s home page is http://dev.ctor.org/soap4r.

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/StockServiceClient.rb
http://dev.ctor.org/soap4r
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=211

SOAP 212

How convenient: replace name and price in line 20 with actual values,
and you are done.

All the other files that have been created are not meant to be touched.
The file ending with Driver contains the proxy (or driver, as SOAP4R
calls it) for the SOAP service. The remaining file contains those classes
needed by the driver. Whenever the .wsdl file changes, they have to be
generated anew.

For the sake of completeness, let’s generate the server side, too:

mschmidt:/tmp> ls

sd_stock.wsdl stock.wsdl

mschmidt:/tmp> wsdl2ruby.rb --type server --wsdl sd_stock.wsdl

I, [2005-12-31T14:33:09.426067 #701] INFO -- app: Creating class \

definition.

I, [2005-12-31T14:33:09.428748 #701] INFO -- app: Creates file \

' StockServiceImplementationDescription.rb'.

I, [2005-12-31T14:33:09.431321 #701] INFO -- app: Creating servant \

skelton.

I, [2005-12-31T14:33:09.432716 #701] INFO -- app: Creates file \

' StockServiceImplementationDescriptionServant.rb'.

I, [2005-12-31T14:33:09.436486 #701] INFO -- app: Creating standalone \

stub.

I, [2005-12-31T14:33:09.438000 #701] INFO -- app: Creates file \

' StockService.rb' .

- Standalone stub can have only 1 port for now. So creating stub for \

the first port and rests are ignored.

- Standalone server stub ignores port location defined in WSDL. \

Location is http://localhost:10080/ by default. Generated client \

from WSDL must be configured to point this endpoint manually.

I, [2005-12-31T14:33:09.474488 #701] INFO -- app: End of app. \

(status: 0)

mschmidt:/tmp> ls

StockService.rb

StockServiceImplementationDescription.rb

StockServiceImplementationDescriptionServant.rb

sd_stock.wsdl

stock.wsdl

mschmidt:/tmp>

The skeleton for our server can be found in StockServiceImplementation-

DescriptionServant.rb:

File 82 Line 1 require ' StockServiceImplementationDescription.rb'

-

- class StockInterface

- # SYNOPSIS

5 # set_price(name, price)

- #

- # ARGS

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/StockServiceImplementationDescriptionServant.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=212

SOAP 213

- # name String - {http://www.w3.org/2001/XMLSchema}string

- # price Double - {http://www.w3.org/2001/XMLSchema}double

10 #

- # RETURNS

- # price Double - {http://www.w3.org/2001/XMLSchema}double

- #

- def set_price(name, price)

15 p [name, price]

- raise NotImplementedError.new

- end

- end

Generating the server skeleton is normally interesting only if you’re
developing a SOAP service from scratch. If you already have an imple-
mentation (like our Stock class), it’s easier to “soapify” it with the method
add_servant(). Despite all this, it’s always a good idea to design your
software without having a certain technology for distributed applica-
tions in mind. It may change sooner than you think....

There’s an even easier way to automatically create client code from a
.wsdl file:

File 88 Line 1 require ' soap/wsdlDriver'

- wsdl = ' sd_stock.wsdl'

- stock = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

- stock.set_price(' orchid' , 2.42)

The constructor of the SOAP::WSDLDriverFactory accepts the file name of
a WSDL file or a URL that points to one. Its create_rpc_driver() method
returns a proxy for the service described in the WSDL file.

We cannot simplify the client anymore, so it’s time to start the server
and to send the .wsdl files to Jeff and his guys. They’ll know what to do
with ’em....

SOAP Headers

The stock control server is a vital component of PragBouquet’s infras-
tructure. It would certainly cause a lot of problems if someone could
manipulate the number of items in stock. To protect against this, you
decide to add some kind of authentication to the service.

Authentication for SOAP services can be added at several levels. Typ-
ically, you have to decide whether to implement authentication at the
transport or at the application layer. Many SOAP services run on top of
HTTP, so it’s only natural to think about HTTP’s authentication mech-
anisms, such as basic authentication.

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/dynclient.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=213

SOAP 214

Unfortunately, support for HTTP authentication is weak in SOAP4R. At
the moment it is not possible to set up a SOAP server that requires
basic authentication, regardless of whether you use HTTP or HTTPS.

It is, however, possible to create SOAP clients that are capable of using
basic authentication. First, you have to install http-access2.15 Then you
have to set the protocol.http.basic_auth option of your driver:

url = ' http://localhost:2000'

stock = SOAP::RPC::Driver.new(url, ' urn:Stock')

stock.options[' protocol.http.basic_auth'] << [url, ' username' , ' password']

Of course, relying on the transport layer’s authentication mechanism
means you’re tied to that transport layer. As an alternative, we could
add some kind of authentication to the application layer. For example,
we could define a login(userid,password) method for each service. Before
doing anything else, users of our application would have to call login()
to obtain a session ID. From then on, they’d have to pass this session
ID as a parameter to any other method they’d like to use.16

Because this approach is ugly, SOAP has a much better solution: using
headers to transport meta information such as session IDs. In Sec-
tion 5.3, A Look Under the Hood of SOAP, on page 202, we showed what
typical SOAP messages look like. What we didn’t mention is that as well
as having a <Body> element, SOAP messages also have a <Header>
element. Headers transport meta information such as login data or
session IDs in parallel to method calls and responses. SOAP4R pro-
vides an easy way to manage them. In this section you’ll learn how to
use them.

Regardless how we transport user IDs and passwords, we have to create
a piece of software that actually determines whether a particular user is
allowed to invoke a particular method. Usually, such a class manages
a set of session IDs that are created whenever a user logs into the
application. Our Authenticator class looks like this:

File 83 Line 1 require ' digest/md5'

-

- class Authenticator

- def initialize

5 @users = {

- ' scott' => ' tiger' , ' maik' => ' secret'

- }

15http://raa.ruby-lang.org/project/http-access2
16I’ve seen SOAP interfaces where every method expects a user ID and password!

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/auth/authenticator.rb
http://raa.ruby-lang.org/project/http-access2
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=214

SOAP 215

- @sessions = {}

- end

10

- def login(userid, password)

- userid and password and @users[userid] == password

- end

-

15 def authenticate(sessionid)

- @sessions[sessionid] # -> userid

- end

-

- def create_session(userid)

20 while true

- sessionid = create_sessionid

- break unless @sessions[sessionid]

- end

- @sessions[sessionid] = userid

25 sessionid

- end

-

- def destroy_session(sessionid)

- @sessions.delete(sessionid)

30 end

-

- private

-

- def create_sessionid

35 Digest::MD5.hexdigest(Time.now.usec.to_s)

- end

- end

In a real application we’d add a persistence layer (probably a database
or an LDAP repository) to store the different user accounts, and you
wouldn’t store passwords unencrypted. For demonstration purposes,
the Authenticator is sufficient. It stores all known users and their pass-
words in the @users hash and all active sessions in the @sessions hash.

The login(userid,password) method checks whether a certain combina-
tion of user ID and password is valid. authenticate(userid) determines
whether there is a valid session for a given user ID, and the method
create_session(userid) creates a new session ID for a user ID.

Our session IDs are not too sophisticated, but at least we use an MD5
digest to increase the security level a bit.

How can we integrate our Authenticator into our stock server? The idea
was to transport login data in a SOAP header. In SOAP4R we manage
headers with the SOAP::Header::SimpleHandler class:

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=215

SOAP 216

File 84 Line 1 require ' soap/header/simplehandler'

-

- class AuthHeaderHandler < SOAP::Header::SimpleHandler

- AuthHeaderName = XSD::QName.new(

5 ' http://pragbouquet.com/authHeader',

- ' auth'

-)

-

- def initialize

10 super(AuthHeaderName)

- end

- end

Because we need an implementation of our new header on both the
server side and the client side, we created a base class called Auth-

HeaderHandler. It is derived from SOAP::Header::SimpleHandler, and it
defines an XSD::QName object that represents the qualified name of our
new header. It’s called auth and resides in the namespace http://pragbouquet.com/authHeader
Now we implement the handler that processes the <auth> header on
the server side:

File 86 Line 1 require ' authenticator'

- require ' authheader'

-

- class ServerAuthHeaderHandler < AuthHeaderHandler

5 @authenticator = Authenticator.new

-

- def self.create

- new(@authenticator)

- end

10

- def initialize(authenticator)

- super()

- @authenticator = authenticator

- @userid = @sessionid = nil

15 @mustunderstand = true

- end

-

- def on_simple_inbound(auth_header, mustunderstand)

- authenticated = false

20 userid = auth_header[' userid']

- passwd = auth_header[' passwd']

- if @authenticator.login(userid, passwd)

- authenticated = true

- elsif sessionid = auth_header[' sessionid']

25 if userid = @authenticator.authenticate(sessionid)

- @authenticator.destroy_session(sessionid)

- authenticated = true

- end

- end

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/auth/authheader.rb
http://pragbouquet.com/authHeader
http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/auth/server.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=216

SOAP 217

30 unless authenticated

- raise RuntimeError.new(' Authentication failed!')

- end

- @userid = userid

- @sessionid = @authenticator.create_session(userid)

35 end

-

- def on_simple_outbound

- { ' sessionid' => @sessionid }

- end

40 end

That’s a lot of code, but it’s all necessary. SOAP4R expects all header
handler classes to be factory classes, so in line 7 we define a class
method called create() that returns a fully initialized instance of our
ServerAuthHeaderHandler class.

In the following code we define the two most important methods for
header handlers:

on_simple_inbound(header,mustunderstand)

Is called for every incoming SOAP message. header contains the
value of the header for which the class is responsible. It can be a
hash, a string, or nil. If the SOAP header looks like this:

<env:Header>

<n1:auth xmlns:n1="http://pragbouquet.com/authHeader"

env:mustUnderstand="1">

<n1:passwd>tiger</n1:passwd>

<n1:userid>scott</n1:userid>

</n1:auth>

</env:Header>

we get the hash { ’userid’ => ’scott’, ’passwd’ => ’tiger’ }.

The logic of our on_simple_inbound() method is easy: if the client
sends the parameters userid and passwd, we try to authenticate
them with the Authenticator class. If this wasn’t successful, we
see whether the client has sent a valid sessionid. If yes, we create
a new one to prevent session hijacking. Otherwise, we raise an
exception.

The mustunderstand parameter specifies whether the application
must understand a particular header. Sometimes some head-
ers are optional—an application might or might not use them. In
these cases mustunderstand is false. In our class we set @mustunder-

stand to true in line 15, because our clients must understand the
auth header.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=217

SOAP 218

on_simple_outbound()
Is used to set a header in an outgoing SOAP message. It returns
the header values to be sent back as a hash, a string, or nil. The
resulting SOAP document fragment looks like this for our sessionid:

<env:Header>

<n1:auth xmlns:n1="http://pragbouquet.com/authHeader"

env:mustUnderstand="1">

<n1:sessionid>0068f34003a3912b6843ee549659fb94</n1:sessionid>

</n1:auth>

</env:Header>

Adding the header handler to our existing server is easy:

File 86 Line 1 require ' soap/rpc/standaloneServer'

- require ' stock'

-

- class StockServer < SOAP::RPC::StandaloneServer

5 def initialize(*args)

- super

- @log.level = Logger::Severity::DEBUG

- namespace = ' http://pragbouquet.com/stockPort'

- add_servant(Stock.new, namespace)

10 add_request_headerhandler(ServerAuthHeaderHandler)

- end

- end

We added just a single line: in line 10 we add the handler for our
new header. Now our server always expects a valid user ID/password
combination or a valid session ID for every method call. Hence, our
client needs a header handler, too:

File 85 Line 1 require ' authheader'

-

- class ClientAuthHeaderHandler < AuthHeaderHandler

- def initialize(userid, passwd)

5 super()

- @userid, @passwd = userid, passwd

- @sessionid, @mustunderstand = nil, true

- end

- def on_simple_outbound

10 if @sessionid

- { ' sessionid' => @sessionid }

- else

- { ' userid' => @userid, ' passwd' => @passwd }

- end

15 end

- def on_simple_inbound(auth_header, mustunderstand)

- @sessionid = auth_header[' sessionid']

- end

- end

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/auth/server.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/auth/client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=218

SOAP 219

In the on_simple_inbound() method we store the session ID that was
transmitted in the header. In on_simple_outbound() we send back this
session ID or—if it doesn’t exist—the user ID and the password. Here’s
a simple usage example:

File 85 Line 1 require ' soap/rpc/driver'

-

- namespace = ' http://pragbouquet.com/stockPort'

- stock = SOAP::RPC::Driver.new(' http://localhost:7000' , namespace)

5 stock.add_method(' get_report')

- stock.add_method(' create_flower' , ' name' , ' price' , ' quantity')

- stock.headerhandler << ClientAuthHeaderHandler.new(

- ' scott' ,

- ' tiger'

10)

- stock.wiredump_dev = STDOUT

- begin

- stock.create_flower(' rose' , 1.99, 1000)

- p stock.get_report

15 rescue Exception => ex

- puts ex

- end

We initialized the client as usual. On line 7, we add an instance of the
ClientAuthHeaderHandler to the list of header handlers (there can be as
many header handlers as you need).

The message that our client sends first looks as follows:

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Header>

<n1:auth xmlns:n1="http://pragbouquet.com/authHeader"

env:mustUnderstand="1">

<n1:passwd>tiger</n1:passwd>

<n1:userid>scott</n1:userid>

</n1:auth>

</env:Header>

<env:Body>

<n2:create_flower xmlns:n2="http://pragbouquet.com/stockPort"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:string">rose</name>

<price xsi:type="xsd:double">+1.99</price>

<quantity xsi:type="xsd:int">1000</quantity>

</n2:create_flower>

</env:Body>

</env:Envelope>

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/auth/client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=219

SOAP 220

Everything looks as expected. The body is the same as before, but the
SOAP message contains a <Header> element with our newly defined
<auth> element. The server return the following response:

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Header>

<n1:auth xmlns:n1="http://pragbouquet.com/authHeader"

env:mustUnderstand="1">

<n1:sessionid>523069cbf5351bb1a670183f873b9de1</n1:sessionid>

</n1:auth>

</env:Header>

<env:Body>

<n2:create_flowerResponse xmlns:n2="http://pragbouquet.com/stockPort"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:int">1000</return>

</n2:create_flowerResponse>

</env:Body>

</env:Envelope>

It works! The server has sent us a session ID that the client has to
transfer back to the server in the next request. Then it will get a new
session ID, and so on.

SOAP headers are a useful part of the standard and are well supported
by SOAP4R. They are often used for authentication purposes but can be
used for all tasks that should be handled outside the normal processing
of the application itself.

Conclusion

After the inevitable hype dissipated, SOAP quickly became a standard
technology in the industry. If you haven’t used it already, the chances
are good that you’ll have to use or build a SOAP service someday. For
most applications, SOAP is complete overkill. Sometimes, though, it
makes sense (and there will always be pointy-haired bosses who force
you to use a certain technology even when it’s absolutely inappropri-
ate).

With Ruby it doesn’t matter whether SOAP is appropriate, because
SOAP4R completely hides all the nasty details, allowing you to fully
concentrate on your application domain.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=220

CORBA, RMI, AND FRIENDS 221

5.4 CORBA, RMI, and Friends

With the advent of the Internet, textual protocols such as SMTP, HTTP
became the norm and so it comes as no surprise that the most pop-
ular web services protocols such as SOAP and XML-RPC are textual
protocols, too.

Some years ago the situation looked a bit different, and many organiza-
tions and companies tried to establish their own “standard” for build-
ing distributed architectures. Sun, e.g., has defined the Remote Method

Invocation (RMI) protocol for Java, and the Object Management Group Remote Method

Invocation

Object Management

Group

(OMG)17 has specified CORBA.

All these approaches suffered from the same problems: they were way
too complex, and they all relied upon binary protocols. Only big compa-
nies such as Sun, Borland, and IBM had the power to implement such
specifications and even for them it was sometimes too difficult to do it
right. Consequentially, the situation today is a mess: there are imple-
mentations for only a few programming languages, many systems do
not interact as they should because of proprietary vendor extensions,
and all in all the former “standards” have been superseded by their
young and fresh fellows like XML-RPC anyway.

Despite this, many companies have created CORBA components and
RMI services during that short period of time, and chances are good
that you still have to use some of these relics. Unfortunately, there is no
CORBA or RMI implementation for Ruby (and probably there never will
be one), but instead of implementing a CORBA or RMI protocol stack in
Ruby, it’s much more comfortable to reuse an existing implementation
like the one for Java, for example.

Hence, this section mainly deals with integrating Ruby and Java, and
we will show you how you can still use the gigabytes of .jar files that you
have collected and created during the last years. Although our main
example deals with CORBA, it explains all the techniques necessary for
accessing your good old RMI services, too.

CORBA, Java, and Ruby

CORBA stands for Common Object Request Broker Architecture and is
a language-neutral standard for object-oriented interprocess commu-
nication. Simply put, it allows you to instantiate remote objects and

17Read more about the OMG and its work at http://www.omg.org.

http://www.omg.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=221

CORBA, RMI, AND FRIENDS 222

invoke methods on them transparently over a network. It has been
popular in the industry at the end of the nineties, so chances are good
that you can find some CORBA services in any company that has sur-
vived the dot-com bubble burst.18

At the core of every CORBA system is the Object Request Broker (ORB). Object Request Broker

All service objects register themselves at the ORB, and clients ask the
ORB for particular services. To make network transparency possible,
all the marshaling and demarshaling code for all objects is generated
from an abstract interface definition. Interfaces of CORBA objects are
defined using the Interface Definition Language (IDL). Such interfaces Interface Definition

Language
are compiled using an IDL compiler that generates stubs for the clients

stubsand skeletons for the server objects. Stubs and skeletons act as proxies
skeletonsand convert method calls into network traffic, and vice versa.

CORBA implementations usually come with a lot of standard services
such as a naming service. Hence, clients do not have to know exact net-
work addresses to obtain a reference to a particular service; they have
to know only its name and have to ask the ORB to find the service (they
do have to know the address of the ORB, of course). It is even possible
that different ORBs communicate to find a particular service. Therefore
the Internet Inter ORB Protocol (IIOP) was invented. See Figure 5.5, on Internet Inter ORB

Protocol
the following page, for an overview.

The SMS Server Again

Before drowning you in theory, we will show you how to access CORBA
services with Ruby. Do you remember the HTTP server that allowed us
to send short messages in cellular networks (if not, you should read
Section 4.2, Waking Up the Operator, on page 159, now)? I have to
admit that I’ve tricked you a bit: there is no such thing like an HTTP
interface for this server. It’s a CORBA service, and I’ve wrapped it with
a thin HTTP layer.

The CORBA interface definition of the SMS service we have used looks
like this:

File 48 Line 1 #ifndef SMS_IDL__

- #define SMS_IDL__

-

- module sms {

5

18http://en.wikipedia.org/wiki/Dot-com

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/sms.idl
http://en.wikipedia.org/wiki/Dot-com
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=222

CORBA, RMI, AND FRIENDS 223

Figure 5.5: CORBA Overview

- exception IOError {};

-

- interface SmsService {

- /* Sends a textual short message and returns the amount

10 * of characters sent.

- */

- short send_text(

- in string recipient,

- in string sender,

15 in string data) raises (IOError);

-

- /* Sends a binary short message (the data has to be

- * encoded as two-digit, case-insensitive hexadecimal

- * values). Returns the amount of bytes sent.

20 */

- short send_binary(

- in string recipient,

- in string sender,

- in string data) raises (IOError);

25 };

- };

-

- #endif

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=223

CORBA, RMI, AND FRIENDS 224

Even if you’ve never seen an .idl file before, you should have no problems
understanding it. We define an interface called SmsService that declares
an exception called IOError and exports two methods for sending short
messages. All these elements belong to the sms module.

An IDL compiler turns such an interface definition into stub and skele-
ton code for a particular programming language and generates every-
thing that is needed to transport data types, method calls, and excep-
tions in a transparent manner.

Unfortunately, there is no native CORBA binding for Ruby (to be con-
cise, there is not even a standardized IDL mapping. Standardized map-
pings exist for C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python,
and IDLscript), and consequentially there is no IDL compiler for Ruby.
That’s not a big problem because there are many for Java, and it’s easy
for us to use one of them.19

Our approach is to build the client code with Java and embed it into
Ruby. One of the nice features of CORBA is that it doesn’t matter
whether the server has been implemented in C++ or Java. You can
always write or use a Java client, which is usually easier than fiddling
around with C++ compiler options and the like.

The idlj command shipping with the Java SDK turns our .idl file into
a bunch of .java files (the -fall option generates both client and server
code):

mschmidt:~/sms> idlj -fall sms.idl

mschmidt:~/sms> ls sms

IOError.java SmsServiceHolder.java

IOErrorHelper.java SmsServiceOperations.java

IOErrorHolder.java SmsServicePOA.java

SmsService.java _SmsServiceStub.java

SmsServiceHelper.java

We’ll create a dummy implementation of the SMS service that makes
testing easier and prevents us from sending short messages frequently.
Our implementation has to be derived from class SmsServicePOA and
looks as follows:

File 47 Line 1 import sms.*;

-

- class SmsServiceImpl extends SmsServicePOA {

- public short send_text(

19At http://java.sun.com/j2se/1.4.2/docs/guide/idl/GShome.html you can
find a nice Java/CORBA tutorial.

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SmsServiceImpl.java
http://java.sun.com/j2se/1.4.2/docs/guide/idl/GShome.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=224

CORBA, RMI, AND FRIENDS 225

5 final String recipient,

- final String sender,

- final String data) throws IOError

- {

- // Send SMS somehow...

10 final short text_length = (short)data.length();

- final short bit_amount = (short)(text_length * 7);

- short byte_amount = (short)(bit_amount / 8);

- if (bit_amount % 8 != 0)

- byte_amount++;

15 return byte_amount;

- }

-

- public short send_binary(

- final String recipient,

20 final String sender,

- final String data) throws IOError

- {

- if (data.length() % 2 != 0)

- throw new IOError("Odd length of binary data!");

25

- // Send SMS somehow...

- return (short)(data.length() / 2);

- }

- }

This implementation of the sendTextSms() and sendBinarySms() does not do
a lot, but for testing purposes it’s sufficient. Both methods calculate the
number of bytes that would have been transmitted if we actually had
sent a short message. For binary messages it’s easy, because we encode
the binary data as a string of two-digit, case-insensitive hexadecimal
values. Hence, we have to divide the string length by 2 to get the byte
count. The calculation for text messages is a bit more complicated,
because the character set encodings for short messages usually use
only 7 bits per character:

File 45 Line 1 import org.omg.CosNaming.*;

- import org.omg.CORBA.*;

- import org.omg.PortableServer.*;

- import sms.*;

5

- public class SmsServer {

- public static void main(final String args[]) {

- try {

- final ORB orb = ORB.init(args, null);

10 final POA rootpoa = POAHelper.narrow(

- orb.resolve_initial_references("RootPOA")

-);

- rootpoa.the_POAManager().activate();

-

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SmsServer.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=225

CORBA, RMI, AND FRIENDS 226

15 final org.omg.CORBA.Object ref =

- rootpoa.servant_to_reference(new SmsServiceImpl());

- final org.omg.CORBA.Object objRef =

- orb.resolve_initial_references("NameService");

-

20 final NamingContextExt ncRef =

- NamingContextExtHelper.narrow(objRef);

- final NameComponent path[] =

- ncRef.to_name("SmsService");

- ncRef.rebind(path, SmsServiceHelper.narrow(ref));

25

- System.out.println("SMS server is starting ...");

- orb.run();

- }

- catch(Exception e) {

30 System.err.println("An exception occurred: " + e);

- e.printStackTrace(System.err);

- }

- }

- }

If you’re a CORBA pro, the previous lines will be totally clear to you.
All the others have to believe me: these lines register the services of the
SmsServer class at the ORB under the name SmsService. So, every client
that wants to use our service has to ask the ORB for a reference to the
service called SmsService.

Before actually starting and registering the SmsServer object, we have to
start the ORB itself. For our purposes Sun’s reference implementation
called orbd is everything we need:

mschmidt:~/sms> orbd -ORBInitialPort 1050 -ORBInitialHost localhost &

The standard port for ORBs is 900, but we did not want to start the
service as the root user, so we chose port 1050.

Let’s start the server and register our service object at the ORB:

mschmidt:~/sms> javac SmsServer.java sms/*.java

mschmidt:~/sms> java SmsServer -ORBInitialHost localhost \

> -ORBInitialPort 1050 &

SMS server is starting ...

The CORBA Client

Now that the whole infrastructure is up and running, we can implement
our client:

File 46 Line 1 import sms.*;

- import org.omg.CosNaming.*;

- import org.omg.CORBA.*;

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SmsServiceClient.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=226

CORBA, RMI, AND FRIENDS 227

-

5 public class SmsServiceClient {

- public SmsServiceClient() throws Exception {

- this("localhost", 1050);

- }

-

10 public SmsServiceClient(

- final String host,

- final int port) throws Exception

- {

- _smsService = getSmsService(host, port);

15 }

-

- public short sendTextSms(

- final String recipient,

- final String sender,

20 final String data) throws IOError

- {

- return _smsService.send_text(recipient, sender, data);

- }

-

25 public short sendBinarySms(

- final String recipient,

- final String sender,

- final String data) throws IOError

- {

30 return _smsService.send_binary(recipient, sender, data);

- }

-

- private SmsService getSmsService(

- final String host,

35 final int port) throws Exception

- {

- final String[] args = new String[] {

- "-ORBInitialHost", host,

- "-ORBInitialPort", "" + port

40 };

- final ORB orb = ORB.init(args, null);

-

- final org.omg.CORBA.Object objRef =

- orb.resolve_initial_references("NameService");

45 final NamingContextExt ncRef =

- NamingContextExtHelper.narrow(objRef);

-

- final String name = "SmsService";

- return SmsServiceHelper.narrow(ncRef.resolve_str(name));

50 }

-

- private final SmsService _smsService;

- }

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=227

CORBA, RMI, AND FRIENDS 228

To demonstrate the usage of class SmsServiceClient in Java, we have
written a small command-line tool that allows us to send textual short
messages from the shell:

File 44 Line 1 public class SendSms {

- public static void main(final String args[]) {

- try {

- final String recipient = args[0];

5 final String sender = args[1];

- final String data = args[2];

- final SmsServiceClient smsServiceClient =

- new SmsServiceClient();

- short bytes = smsServiceClient.sendTextSms(

10 recipient,

- sender,

- data

-);

- System.out.println(bytes + " bytes have been sent.");

15 }

- catch(Exception e) {

- System.err.println("An exception occurred: " + e) ;

- e.printStackTrace(System.err);

- }

20 }

- }

This little program expects three command-line arguments: the phone
number of the recipient, the phone number of the sender, and the text
to be sent (do not forget to put the text in quotes if it contains blanks.

Otherwise, the shell will interpret parts of your text as separate argu-
ments.) It is compiled and run as follows:

mschmidt:~/sms> javac SmsServiceClient.java SendSms.java sms/*.java

mschmidt:~/sms> java SendSms +0112345 +0198765 Hello

5 bytes have been sent.

Bridging the Gap

We have everything available now: a running CORBA service and the
appropriate client code. The only task left to do is integrating the client
code with Ruby. Thanks to a project called Ruby Java Bridge,20 this is
really a piece of cake, as you’ll see in the code following the sidebar.

20http://raa.ruby-lang.org/project/rjb

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SendSms.java
http://raa.ruby-lang.org/project/rjb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=228

CORBA, RMI, AND FRIENDS 229

Ruby and Java

One of the features that makes Java as popular as it is, is its vir-
tual machine (JVM). Instead of generating code for a particular
CPU, Java source code is compiled into byte code for a virtual
processor. Hence, to run Java programs on a new hardware
platform or a new operating system, you only have to write a
new interpreter for the Java byte code.

Many projects have successfully built interpreters for languages
targeting the Java Virtual Machine. For example, Jython∗ is a
Java implementation of the Python interpreter and Groovy† is
a new dynamic language—similar to Ruby in many respects—
that has been built for the JVM from the beginning.

Simply put, for integrating an arbitrary programming language
with the JVM you have two options: you can choose the Jython
or Groovy approach and translate the language directly into
Java byte code, or you can embed the JVM using the Java
Native Interface (JNI).‡ Sun has created a Java Specification
Request (JSR)§ that deals with the integration of the JVM and
scripting languages.

It’s only natural that Ruby developers also tried to reuse all the
fine stuff that is available in the Java world, so there are many
projects dealing with this topic:

• JRuby¶ is an implementation of a Ruby interpreter in Java.
It’s useful for embedding Ruby in Java and vice versa.

• rjb (Ruby Java Bridge)‖ uses JNI to access Java objects
in Ruby programs. We will use it in this book, because it’s
relatively lightweight and is a perfect fit for integration pur-
poses.

• yajb (Yet Another Java Bridge)∗∗ uses a network approach
to access Java objects in Ruby programs; i.e., it imple-
ments a Ruby client and a Java server that communicate
using some kind of XML-RPC.

∗http://www.jython.org
†http://groovy.codehaus.org
‡http://java.sun.com/docs/books/tutorial/native1.1
§http://www.jcp.org/en/jsr/detail?id=223
¶http://jruby.sourceforge.net
‖http://raa.ruby-lang.org/project/rjb

∗∗http://raa.ruby-lang.org/project/yajb

http://www.jython.org
http://groovy.codehaus.org
http://java.sun.com/docs/books/tutorial/native1.1
http://www.jcp.org/en/jsr/detail?id=223
http://jruby.sourceforge.net
http://raa.ruby-lang.org/project/rjb
http://raa.ruby-lang.org/project/yajb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=229

CORBA, RMI, AND FRIENDS 230

File 49 Line 1 require ' rjb'

-

- sms_service_client_class = Rjb::import(' SmsServiceClient')

- sms_service = sms_service_client_class.new(' localhost' , 1050)

5 begin

- puts sms_service.sendTextSms(' +0112345' , ' +0198765' , ' hello')

- puts sms_service.sendBinarySms(' +0112345' , ' +0198765' , ' caffe')

- rescue IOError => ex

- puts "An exception occurred: #{ex}"

10 end

It produces the following:

mschmidt:~/sms> ruby sms_client.rb

5

An exception occurred: IDL:sms/IOError:1.0

The whole integration happens in two lines of code.

Rjb::import(classname) returns a reference to the SmsServiceClient class,
and then we create an instance as usual. Afterward, we can forget that
it actually is a Java class.

In the following lines we send a text message and a binary message. To
provoke an exception, we send an invalid binary message and catch the
exception in line 8.

It’s nearly unbelievable, but that’s all you have to do to use arbitrary
Java classes in your Ruby programs, and the API of the Rjb library is
really lightweight:

• load(classpath='.',jvmargs=[]) explicitly loads the JVM (Java Virtual
Machine). classpath contains a list of directories separated by the
host’s path separator. This list is prepended to ENV[’CLASSPATH’].
jvmargs is an array of strings containing all arguments to be passed
to the JVM. For example, the following statement:
Rjb::load(

' .:lib/servlet.jar' ,

[

' -Dhttp.proxyHost=example.com' ,

' -Dhttp.proxyPort=8080'

]

)

loads the JVM, prepends the current directory and the file lib/serv-

let.jar to the class path, and sets the system properties for an HTTP
proxy. If the JVM is not loaded explicitly by calling load(), it will be
loaded automatically, before the first call to import(). Hence, you
can write hybrid Ruby/Java one-liners:

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/sms_client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=230

CORBA, RMI, AND FRIENDS 231

ruby -rrjb -e "Rjb::import(' java.lang.System').out.println(' Strange, eh?')"

This prints the following:
Strange, eh?

• unload() removes the Java Virtual Machine from memory.

• import(classname) turns the Java class called classname into a Ruby
class. If we have the following Java class:

File 65 package com.pragbouquet;

public class Flower {

public Flower(final String name, final double price) {

_name = name;

_price = price;

}

public String getName() { return _name; }

public double getPrice() { return _price; }

public void setPrice(final double price) {

_price = price;

}

private double _price;

private String _name;

}

we can use it like this:
File 66 flower = Rjb::import(' com.pragbouquet.Flower')

f = flower.new(' rose' , 2.49)

puts "A #{f.getName()} costs $#{f.getPrice()}."

and the code produces the following:
A rose costs $2.49.

• bind() allows you to associate a Ruby class with a Java interface.
For example, the following program defines a FileFilter in Ruby that
gets passed to the listFiles(filter) method of Java’s File class:

File 66 Line 1 class FileFilter

- def accept(file)

- !(file.toString =~ /\.java$/).nil?

- end

5 end

-

- filter = FileFilter.new

- filter = Rjb::bind(filter, ' java.io.FileFilter')

- java_file = Rjb::import(' java.io.File')

10 jf = java_file.new(' .')

- jf.listFiles(filter).each { |f| puts f.toString }

This produces the following:
./BindDemo.java

./Flower.java

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/Flower.java
http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=231

CORBA, RMI, AND FRIENDS 232

• throw() throws a Java exception. When you extend a Java class
that has been converted into a Ruby class, it can be necessary to
“simulate” a Java exception:
def foo(argument)

if argument.nil?

Rjb::throw(' java.lang.NullPointerException' , ' argument is null.')

end

end

All classes returned by Rjb::import(classname) automatically have the fol-
lowing methods:

• new_with_sig(signature,[arg]+) allows you to call typed Java construc-
tors from Ruby. Java is a statically typed language, and therefore
you sometimes have to explicitly say which constructor you want
to use. Rjb tries to automatically determine the signature you
want according to the following rules:

1. First, Rjb checks whether the number of arguments matches.

2. All arguments that are instances of the same class match.

3. Ruby Fixnum arguments match Java byte, char, double, float,
int, long, and short parameters.

4. Ruby String arguments match java.lang.String parameters.

5. true and false match Java boolean parameters.

6. Ruby arrays match Java arrays.

7. Every Ruby object matches the Java Object class.

If there still is an ambiguity, you can call the constructor you want
by passing the type information explicitly. Therefore you have to
encode the signature using Java’s type encoding21 (see Figure 5.6,
on the following page):

File 66 Line 1 flower = Rjb::import(' com.pragbouquet.Flower')

- f = flower.new_with_sig(' Ljava.lang.String;D' , ' rose' , 2.49)

- puts "A #{f.getName()} costs $#{f.getPrice()}."

To encode the signature of an array, you have to prepend a [char-
acter to the type encoding. The following irb session demonstrates
how to call Java’s String(byte[] bytes,String charsetName) constructor:

irb(main):001:0> require ' rjb'

=> true

21http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html#getName()

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html#getName()
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=232

CORBA, RMI, AND FRIENDS 233

Element Type Encoding Element Type Encoding

boolean Z byte B
char C class L<classname>;
interface L<interface name>; double D
float F int I
long J short S

Figure 5.6: Encoding of Java Types

irb(main):002:0> Str = Rjb::import(' java.lang.String')

=> #<Rjb::Java_lang_String:0x337b04>

irb(main):003:0> ruby = Str.new_with_sig(

irb(main):004:1* ' [BLjava.lang.String;' ,

irb(main):005:1* [82, 117, 98, 121],

irb(main):006:1* ' iso-8859-1'

irb(main):007:1>)

=> #<#<Class:0x34739c>:0x328b90>

irb(main):008:0> p ruby.toString

"Ruby"

=> nil

• _invoke(method_name,signature,[arg]+) invokes a method_name hav-
ing the signature signature on the current object and passes it the
appropriate arguments. For details about the signature mecha-
nism, see the description of new_with_sig(signature,[arg]+).

• _classname() returns the class name as a string:

File 66 Line 1 str = Rjb::import(' java.lang.String')

- instance = str.new(' Hello, world!')

- puts instance._classname

This produces the following:

java.lang.String

CORBA Is Coming Home...

Finally, we implement an HTTP server using WEBrick that forwards
incoming requests to the CORBA service:

File 50 Line 1 require ' rjb'

- require ' webrick'

- include WEBrick

-

5 Rjb::load

- sms_service_client_class = Rjb::import(' SmsServiceClient')

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/sms_server.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=233

CORBA, RMI, AND FRIENDS 234

- sms_service = sms_service_client_class.new(' localhost' , 1050)

-

- sms_server = HTTPServer.new(:Port => 4242)

10 sms_server.mount_proc(' /send') do |req, res|

- type = req.query[' type'] || ' text'

- recipient = req.query[' recipient']

- sender = req.query[' sender'] || recipient

- data = req.query[' data']

15

- res[' Content-Type'] = ' text/plain'

- res.status = 200

- res.body = ' Message was sent successfully.'

- method = type == ' binary' ? ' sendBinarySms' : ' sendTextSms'

20 begin

- sms_service.send(method, recipient, sender, data)

- rescue IOError => ex

- res.status = 500

- res.body = ' Message could not be sent.'

25 end

- end

-

- trap("INT") { sms_server.shutdown }

- sms_server.start

If you have read carefully, the previous program should be perfectly
clear to you, and with less than 30 lines of Ruby code we have turned
our CORBA service into an HTTP service.

C++ CORBA Services

For CORBA clients, in theory it doesn’t matter whether the service they
want to use has been written in C++, Java, or COBOL. If you absolutely
want to (or have to) use a C++ client, you can use an approach similar
to our previous Java example: generate the C++ client stub from the .idl

file using the idl2cpp command, and compile the resulting code into a
shared object. Then, integrate the shared object using the Ruby native
interface, SWIG22, or Ruby/DL.23

We won’t cover this topic here, because you can find tons of tutorials
about integrating Ruby with C/C++ code on the Internet, and in Pro-

gramming Ruby [TFH05] there is a whole chapter about it, too.

22http://www.swig.org
23http://raa.ruby-lang.org/project/ruby-dl

http://www.swig.org
http://raa.ruby-lang.org/project/ruby-dl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=234

CORBA, RMI, AND FRIENDS 235

Distributed Ruby (dRuby)

As soon as a programming language offered dynamic features (such
as reflection or code that’s interpreted at runtime), it was pretty much
guaranteed that someone would invent a system for distributing objects
over a network. It’s so easy: create methods that marshal and unmar-
shal objects, put the resulting byte streams into an envelope, and trans-
fer them between processes using TCP (or any other protocol, for that
matter).

The Ruby community fell to the temptation, so Masatoshi Seki devel-
oped the Distributed Ruby (dRuby or DRb) module.24 dRuby is simi-
lar to Java’s RMI in many respects, including its use of a proprietary
binary format to encode messages. It’s simple to use and usually does
not require any modifications to the classes you want to distribute.

To see how it works, we’ll implement a distributed sequence object.
Back in the sidebar, on page 29, we complained about the weak support
for artificial primary keys in modern databases. Now it’s time to roll up
our sleeves and fix the problem once and for all—at least for our Ruby
applications:

File 57 Line 1 require ' drb'

-

- class Sequence

- def initialize(start_value = 0, step = 1)

5 @value, @step = start_value - step, step

- end

-

- def next_value

- @value += @step

10 end

- end

-

- DRb.start_service(' druby://localhost:9000' , Sequence.new)

- DRb.thread.join

As promised, we did not have to use any special tricks to turn the
Sequence class into a network service. To make an object available on
a network with dRuby, you have to pass it to DRb.start_service(url,object)

(see line 13). This method expects a dRuby URL and the object to be
distributed.

It’s easy to use our distributed sequence:

24http://www2a.biglobe.ne.jp/~seki/ruby/druby.en.html

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence_srv.rb
http://www2a.biglobe.ne.jp/~seki/ruby/druby.en.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=235

CORBA, RMI, AND FRIENDS 236

File 55 Line 1 require ' drb'

-

- DRb.start_service

- puts "Sequence #1:"

5 sequence = DRbObject.new(nil, ' druby://localhost:9000')

- 2.times { puts sequence.next_value }

-

- puts "Sequence #2:"

- sequence2 = DRbObject.new(nil, ' druby://localhost:9000')

10 2.times { puts sequence.next_value }

This produces the following:

Sequence #1:

0

1

Sequence #2:

2

3

That was too easy, wasn’t it? Usually, creating network services is a
difficult thing, so where’s the catch in our example? Right: it isn’t
thread-safe. If two clients try to get the next sequence value simultane-
ously, it’s possible that both of them get the same value. We’ll fix this
by adding some synchronization code:

File 54 Line 1 require ' thread'

-

- class Sequence

- def initialize(start_value = 0, step = 1)

5 @value, @step = start_value - step, step

- @mutex = Mutex.new

- end

-

- def next_value

10 @mutex.synchronize do

- @value += @step

- end

- @value

- end

15 end

This version can be safely used in a multithreaded environment, so are
we done? Will a single sequence be sufficient for all our processes and
database tables? Probably not. Let’s implement a class that manages a
set of named sequences:

File 53 Line 1 require ' drb'

- require ' sequence'

-

- class SequenceManager

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/seq_manager.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=236

CORBA, RMI, AND FRIENDS 237

5 def initialize

- @sequences = {}

- @mutex = Mutex.new

- end

-

10 def create(name, start_value, step)

- @mutex.synchronize do

- if !@sequences.has_key?(name)

- @sequences[name] = Sequence.new(start_value, step)

- end

15 end

- @sequences[name]

- end

-

- def get(name)

20 @sequences[name]

- end

- end

-

- DRb.start_service(' druby://localhost:9000' , SequenceManager.new)

25 DRb.thread.join

Let’s see whether it works as expected:

File 56 Line 1 require ' drb'

- require ' sequence'

-

- DRb.start_service

5 factory = DRbObject.new(nil, ' druby://localhost:9000')

-

- puts "Sequence #1:"

- sequence = factory.create(' order_table' , 5, 2)

- 2.times { puts sequence.next_value }

10

- puts "Sequence #2:"

- sequence2 = factory.get(' order_table')

- 2.times { puts sequence2.next_value }

This produces the following:

Sequence #1:

5

7

Sequence #2:

5

7

Hmm, we have a problem here. It’s because dRuby normally passes
objects by value. In our case the Sequence objects created by the
SequenceManager are copied before being transmitted, so changes to
the local instances aren’t seen on the server. In line 8, we create a

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence_client2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=237

CORBA, RMI, AND FRIENDS 238

sequence called order_table and get two values from it in the following
line. These changes are made only to the local object. When we get the
order_table sequence again in line 12, it’s another copy of the original
on the server.

What we actually need is a remote reference to a Sequence object on the
server. Fortunately, dRuby makes it possible: just mix DRbUndumped

into classes you want to transfer by reference:

File 54 Line 1 class Sequence

- include DRbUndumped

- end

Class DRbUndumped creates a proxy that communicates with the real
object. Instead of marshaling the whole object and passing it by value,
only the proxy will be transferred. This explains why you have to exe-
cute DRb.start_service in your clients, too: every client has to be prepared
to act as a server for incoming proxy calls.

After restarting the modified server, our client works as expected:

Sequence #1:

5

7

Sequence #2:

9

11

For the final solution, you’d probably add a thin persistence layer that
stores the current sequence values in a database or file system, but
from a networking point of view we are done.

The implementation of dRuby is a perfect example of Ruby’s strengths,
demonstrating how easy it is to create a complete distributed object
system with some nice bells and whistles in less than 3,000 lines of
code. If necessary, you can run it over a secure SSL connection and
across firewalls.25 In addition, it is surprisingly fast, because it uses
Ruby’s internal marshaling mechanism that’s written in C.

dRuby finds uses all over the place. Folks often use it for prototyping
new architectures. You’ll also find it in Ruby on Rails,26 where it’s used
to implement the remote breakpoint facility.

Despite all this, dRuby shares the same disadvantages as all other
language-specific systems.

25See http://www.rubygarden.org/ruby?DrbTutorial for more details.
26http://api.rubyonrails.com/classes/Breakpoint.html

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence.rb
http://www.rubygarden.org/ruby?DrbTutorial
http://api.rubyonrails.com/classes/Breakpoint.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=238

CORBA, RMI, AND FRIENDS 239

Distributed Ruby and Security

dRuby passes (references to) real Ruby objects. In terms of
security this is a big problem. For example, running the following
code:

File 52 Line 1 require ' drb'

- DRb.start_service
- object = DRbObject.new(nil, ' druby://localhost:9000')
- puts object.instance_eval("‘date‘")

will print something like this:

Mon Dec 19 18:49:09 CET 2005

Would you be comfortable with code executing the shell com-
mand rm -rf /*? If not, you’d better set $SAFE = 1 and unde-
fine potentially dangerous methods such as instance_eval() and
instance_variable_set(). In addition, you can install Access Con-
trol Lists (ACLs) that prevent or allow access from certain hosts:

File 51 Line 1 require ' drb'

- require ' drb/acl'

-

- acl = ACL.new(%w(
5 deny all
- allow localhost
- allow 192.168.1.*
-))
- DRb.install_acl(acl)

In particular, to access a dRuby service you have to use a Ruby client.
Although we think that Ruby is currently the best programming lan-
guage available, we’re sure that it’ll be improved or replaced by a better
one someday. To prepare your distributed objects for the unpredictable
future, you might want to consider using a standard technology such
as HTTP.

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/injection.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/acl_sample.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=239

Chapter 6

Tools and Techniques
A programming language alone will not make you more productive in an
enterprise environment. Ruby will certainly increase your development
speed, because it supports a lot of advanced concepts (pure object-
oriented programming, iterators, and meta-programming, to name a
few), but that’s less than half the battle.

Especially in enterprise environments, you face a lot of challenges that
are not directly related to your programming language of choice but
that are typical for every piece of enterprise software. For example,
enterprise software often comes in the shape of servers and daemon
processes without any user interface. They have to be deployed some-
how into the production system. To indicate that they are still alive
and working, they usually write into external log files. In addition,
enterprise software often has to fulfill the needs of clients coming from
different countries, speaking different languages, and paying in strange
currencies.

Hence, in this chapter you will learn how to overcome international-
ization problems, how to create sophisticated logging strategies, how to
create your own daemon processes, and how to automatically deploy
your software.

6.1 Internationalization and Localization

The world is getting smaller. For enterprise applications, internation-
alization (i18n) and localization (l10n)1 have become important topics.

1i18n is an abbreviation for internationalization. The word starts with an i, ends with
an n, and in between are 18 letters. Guess what l10n means....

INTERNATIONALIZATION AND LOCALIZATION 241

You now have to be prepared to have people use your application in
foreign countries—you’ll have to deal with different character sets, date
formats, address formats, number formats, etc.

There is no official definition of the terms internationalization and local-

ization. We’ll define them as follows:

• Your software is internationalized if it runs correctly in all locales
it has to run in. If, for example, you have developed and tested a
program in the United States and it runs correctly in your target
markets Germany and Japan without modifying it, it is interna-
tionalized.

• Your software is localized if it is internationalized and reflects the
peculiarities of the locale it is running in—it outputs messages in
the correct language; prints numbers, dates, and currencies in
the right format; and so on.

Perhaps you have worked with Java or C# before, and now you are
impatiently waiting for easy answers to all your i18n questions. You’ve
skimmed the documentation of the Ruby standard library and did not
instantly find the counterparts of Locale, DateFormat, InputStream, and
so on. In this chapter we will reveal an ugly truth: i18n is not supported
very well in Ruby. Enterprise platforms such as J2EE and .NET come
with a huge number of classes that deal with this topic and even have
standardized formats for resource bundles, and so on. Ruby does not.

This is not as bad as it may seem in the beginning, but you will have
to perform a lot of tasks manually that you took for granted in other
programming languages. But you can always find a solution.

Character Sets and Encodings

Character sets and encodings are different. The Unicode code charac-
ter set, for example, contains nearly all known characters. It can be
encoded in more than one way: UTF-8, UTF-16, and UTF-32.2 Because
of its Japanese roots, Ruby in principle supports different encodings
such as EUC, SJIS, and UTF-8. Unfortunately, many of its classes do
not.

2For more information about character sets and their encodings, see the following:

• http://www.w3.org/International/resource-index.html

• http://www.joelonsoftware.com/articles/Unicode.html

http://www.w3.org/International/resource-index.html
http://www.joelonsoftware.com/articles/Unicode.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=241

INTERNATIONALIZATION AND LOCALIZATION 242

What’s $KCODE?

You can specify Ruby’s internal character set by assigning EUC,
SJIS, UTF8, or NONE (which means use the default character set)
to the global variable $KCODE. Alternatively, pass e, s, or u to
the -K option of the Ruby interpreter.

$KCODE determines which characters are allowed in identifiers
(variable names, method names, etc.) and literals. To see
what implications it has, run the following UTF-8 program with-
out telling Ruby that it is encoded in UTF-8:

File 113 Line 1 class Circle < Struct.new(:x, :y, :r)
- def area
- π = Math::PI
- π * r * r
5 end

- end

-

- c = Circle.new(0, 0, 1)
- puts c.area

You will get the following result (in a UTF-8 terminal):

mschmidt:/tmp> ruby circle.rb

circle.rb:3: Invalid char ‘\317' in expression

circle.rb:3: Invalid char ‘\200' in expression

circle.rb:3: parse error, unexpected ' ='

π = Math::PI

^

circle.rb:4: Invalid char ‘\317' in expression

circle.rb:4: Invalid char ‘\200' in expression

circle.rb:4: parse error, unexpected ' *' , expecting ' ='

π * r * r

^

Obviously, ’π’ has not been recognized as a valid word char-
acter. Tell Ruby that it is an UTF-8 program and everything is
fine:

mschmidt:/tmp> ruby -Ku circle.rb

3.14159265358979

Note, though, that the $KCODE does not affect the behavior of
the String class, so the length() method, for example, still returns
the number of bytes, not characters:

mschmidt:/tmp> ruby -Ku -e ' puts "Motörhead".length'

10

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/circle.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=242

INTERNATIONALIZATION AND LOCALIZATION 243

One of the biggest problems with i18n is that developers do not know—
and often do not care—what encoding their textual data has. If you get
text from an external source such as a database, an LDAP repository,
a socket, or a plain file, you always have to ask, “What encoding does
this data use?”

In fact, the situation is even worse: you also have to ask yourself which
encoding your text editor uses to store your source code files. The Ruby
lexer treats everything between single or double quotes as a String—it
copies all the bytes between quotes into a String object. Hence, it makes
a big difference whether these bytes represent characters of a single-
byte encoding such as ASCII or a multibyte encoding such as UTF-8.

To see the difference, store the following statement as UTF-8 text3 and
run it:

File 119 puts ' Über-Programmer' .length

It will print 16, although our string has only 15 characters. That’s
because the German umlaut Ü needs two bytes in UTF-8. Store the file
using the ISO-8859-1 encoding, and it will print 15.

We have to realize that Ruby’s String class is nothing more than a byte
array with a convenient API. It doesn’t know anything about the char-
acter concept. That becomes even more obvious when we try methods
such as upcase(). When we store the following source code as an UTF-8
file and run it like this:

File 128 puts ' Müller' .upcase

it produces the following:

MüLLER

When we store the same source code in ISO-8859-1, it prints the fol-
lowing:4

M?LLER

Both versions produce an incorrect result: the correct uppercase ver-
sion of Müller is MÜLLER. Fortunately, the German alphabet has only
four additional characters: ä, ö, ü, and ß. Their uppercase versions are
Ä, Ö, Ü, and SS, so we can write a correct upcase() method ourselves:

3If your text editor does not support UTF-8, go get a new one. No excuses!
4I’m working with an UTF-8 terminal that prints ? for every character it doesn’t

recognize. In this case ? stands for 0xfc, which is a lowercase ü in ISO-8859-1 and is
invalid in UTF-8.

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/length_utf.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/upcase.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=243

INTERNATIONALIZATION AND LOCALIZATION 244

It really is that complicated...

If you’ve never had to deal with characters outside the ASCII
set then you might be surprised how complicated things get
when you want to perform apparently simple operations such
as converting a string to uppercase or sorting words.

Although the German alphabet has only four additional let-
ters, they cause a lot of trouble and debate. We have three
umlauts ä, ö, ü, and we have the letter ß (“sharp s”). The upper-
case equivalents of the umlauts are ’Ä’, ’Ö’, and ’Ü’, but ’ß’
becomes ’SS’ when it’s turned into uppercase, i.e. the size of
an uppercase string can be bigger than the size of the original
string!

A few years ago, the rules were even more complicated. When
turning a string to uppercase, it was acceptable to convert ß to
SZ, if SS had otherwise led to a misunderstanding (for example
in the uppercase versions of Busse (plural form of the German
word for bus) and Buße (German for expiation).

Another big problem is sort order (collation). Usually, you ignore
the umlaut—if you have two words that only differ in the dots
(such as the German verbs “fallen” and “fällen”), the not-
dotted version comes first. But there’s also an industry standard
(DIN 5007) that turns all German umlauts into their “non-dotted”
equivalents (ae for ä, oe for ö, and ue for ü) and sorts them lex-
ically. In this case “faellen” would come before “fallen”.

File 115 Line 1 def german_upcase(text)

- uc = text.upcase

- uc.tr(' äöü' , ' ÄÖÜ')

- uc.gsub(' ß' , ' SS')

5 end

-

- str = ' Märchenstraße'

- puts str

- puts german_upcase(str)

The previous program outputs the following:5

Märchenstraße

MÄRCHENSTRASSE

5Märchen is the German word for fairy tale and Straße is German for street.

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/german_upcase.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=244

INTERNATIONALIZATION AND LOCALIZATION 245

All right, we have corrected one method, but what about downcase(),
index(), reverse(), and so on? All of them fail with multibyte characters:

File 126 Line 1 str = ' Märchen'

- puts ' Ouch!' if str.length != 7

- puts ' Ouch again!' if str.reverse != ' nehcräM'

This prints the following:

Ouch!

Ouch again!

Hmmm, things are getting complicated. Ruby supports different char-
acter sets, but you have to do a lot yourself. To determine the correct
length of an UTF-8 string, for example, you could use the unpack()
method with the format specifier U*, which stands for unsigned integer

values representing UTF-8 characters:

puts ' Motörhead' .unpack(' U*').length # -> 9

To manipulate each character (not byte!) of a UTF-8 string, you can use
a regular expression that knows about UTF-8:

File 125 str = ' Motörhead'

p str.scan(/./)

p str.scan(/./u)

This produces the following:

["M", "o", "t", "\303", "\266", "r", "h", "e", "a", "d"]

["M", "o", "t", "\303\266", "r", "h", "e", "a", "d"]

When you add the u-modifier to a regular expression, you get each UTF-
8 character as a string (these strings can contain more than one byte!).
Without the u-modifier, you get every byte separately. This works for
EUC (modifier: e) and SJIS (modifier: s), too.

Now let’s turn our newly gained knowledge into a class that represents
UTF-8 strings in Ruby:6.

File 129 Line 1 class UString < String

- def length; self.unpack(' U*').length end

-

- def reverse; self.scan(/./u).reverse.join end

5

- def inspect; "u#{super}" end

- end

-

6This example was originally published by why the lucky stiff :
http://redhanded.hobix.com/inspect/closingInOnUnicodeWithJcode.html

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/strmanip.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/scan.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring.rb
http://redhanded.hobix.com/inspect/closingInOnUnicodeWithJcode.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=245

INTERNATIONALIZATION AND LOCALIZATION 246

- module Kernel

10 def u(str)

- UString.new str.gsub(/U\+([0-9a-fA-F]{4})/u) {

- ["#$1".hex].pack(' U*')

- }

- end

15 end

Our UString class demonstrates some of Ruby’s biggest strengths. First,
we can override the methods of one of the most important standard
classes (String) by subclassing it. Then, we override the length() and
reverse() methods with our UTF-8 implementations. In addition, we
changed the inspect() method so we can distinguish String and UString

objects.

Finally, we added a new method called u(str) to Kernel. It allows us to
create UTF-8 strings that can contain hexadecimal character literals
beginning with U+. Here’s a small usage example:

File 129 Line 1 str = u' Märchen'

- puts str.length == 7

- puts str.reverse == ' nehcräM'

-

5 str = u' MU+00fcnchen'

- puts str

- puts str.length

It prints the following:

true

true

München

7

UString could be the basis for a full-blown UTF-8 string class, but you’d
have to add a lot of code. Rather than writing your own implementation
like this, you’re better off using an existing one. We’ll introduce some
options in the following sections. None of them is perfect—they all
have their strengths and weaknesses—so if you need stronger encoding
support, choose carefully.

jcode

jcode is a standard library that modifies Ruby’s String class. Depending
on the value of the global variable $KCODE (see the sidebar, on page 242)
jcode updates the methods chop!(), chop(), delete!(), delete(), squeeze!(),
squeeze(), succ!(), succ(), tr!(), tr(), tr_s!(), and tr_s(). Additionally, it adds

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=246

INTERNATIONALIZATION AND LOCALIZATION 247

Don’t Panic!

We have to admit it: Ruby is still in its infancy when it comes to
internationalization, and it will take some time until the situation
gets better.∗

But don’t panic! Keep in mind that all this is relevant only if you
have to manipulate, compare, or sort strings. If all you do is
read them from an external source and write them to another
(such as displaying database data in a web browser) without
touching a single byte, you are safe. And for special domains
such as the Ruby on Rails framework, i18n solutions will probably
be available soon.

Even if you absolutely have to manipulate Unicode strings,
there is a good chance that you might find what you need
in an open source library such as ICU4R. It might not be conve-
nient, but at least it will work.

∗http://redhanded.hobix.com/inspect/futurismUnicodeInRuby.html

shows what Matz wants to do.

methods such as jlength(), jcount(), and each_char(), but it does not
provide correct implementations for upcase(), downcase(), and so on:

File 118 Line 1 $KCODE = ' UTF8'

- require ' jcode'

- str = ' Köln' # Cologne, a big city in Germany.

- puts "Ruby length: #{str.length}."

5 puts "jcode length: #{str.jlength}."

- str.each_char { |c| print c.inspect, ' ' }

- puts

This prints the following:

Ruby length: 5.

jcode length: 4.

"K" "ö" "l" "n"

jcode’s biggest advantage is that it is part of every Ruby installation. In
other respects it is severely limited and will be sufficient only for the
simplest transformations.

http://redhanded.hobix.com/inspect/futurismUnicodeInRuby.html
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/jcode_sample.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=247

INTERNATIONALIZATION AND LOCALIZATION 248

Unicode

For the sake of completeness we mention Yoshida Masato’s unicode
project.7 It complements jcode somewhat, because it offers methods
that allow you to compare UTF-8 strings and change them to uppercase
or lowercase:

File 127 Line 1 require ' rubygems'

- require ' unicode'

-

- puts Unicode::downcase(' HOFBRÄUHAUS')

5 puts Unicode::upcase(' straße')

This prints the following:

hofbräuhaus

STRAßE

Unfortunately, our trivial example does not work correctly, because the
ß letter has not been converted properly. In addition, the library seems
not to be maintained any longer, so I recommend not using it.

ICU4R

ICU4R8 is (as I write this) a new project created by Nikolai Lugovoi that
looks very promising. It is a C extension for IBM’s International Com-
ponent for Unicode (ICU).9 It provides two classes: UString and URegexp.
UString is a feature-rich implementation of strings encoded in UTF-16:

File 130 Line 1 require ' ustring'

-

- str = u' Märchenstraße'

- puts "Length is #{str.length} characters."

5 puts str.downcase

- puts str.upcase

- p str.to_s(' ISO-8859-1').scan(/./)

This produces the following:

Length is 13 characters.

märchenstraße

MÄRCHENSTRASSE

["M", "\344", "r", "c", "h", "e", "n", "s", "t", "r", "a", "\337", "e"]

In line 3 we create a new UString object with the u(string) method (you
can turn a String object into a UString object by calling its to_u() or u()

7http://raa.ruby-lang.org/project/unicode
8http://rubyforge.org/projects/icu4r
9http://ibm.com/software/globalization/icu

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/unicode/unicode_test.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://raa.ruby-lang.org/project/unicode
http://rubyforge.org/projects/icu4r
http://ibm.com/software/globalization/icu
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=248

INTERNATIONALIZATION AND LOCALIZATION 249

method). We then print its length and change its case, and finally
we turn back our UString object into a String by invoking to_s(encoding),
which accepts an encoding for the result now.

After you have created a UString, you can do a lot of useful things with
it. For example, you can iterate over its characters and words:

File 130 Line 1 str = u' Märchenstraße'

- str.each_char(' de_DE') { |c| puts c.inspect_names }

- "Hello, world!".u.each_word(' en_US') { |w| puts "' #{w}' " }

Here’s the output of the previous program:

<U00004D>LATIN CAPITAL LETTER M

<U0000E4>LATIN SMALL LETTER A WITH DIAERESIS

<U000072>LATIN SMALL LETTER R

<U000063>LATIN SMALL LETTER C

<U000068>LATIN SMALL LETTER H

<U000065>LATIN SMALL LETTER E

<U00006E>LATIN SMALL LETTER N

<U000073>LATIN SMALL LETTER S

<U000074>LATIN SMALL LETTER T

<U000072>LATIN SMALL LETTER R

<U000061>LATIN SMALL LETTER A

<U0000DF>LATIN SMALL LETTER SHARP S

<U000065>LATIN SMALL LETTER E

' Hello'

' ,'

' '

' world'

' !'

In the first line we iterate over each character using each_char(locale)

and print its code and its official name. A lot of ICU methods accept
a locale that consists of a two-character language code and a two-
character country code separated by an underscore (de_DE, en_GB,
en_US, etc.). If you set this locale to an empty string, it uses your
machine’s default locale. When iterating over characters, the locale is
important because of so-called combining marks that are sometimes
used to store letters and their accents separately.10

The each_word(locale) method lets you iterate over the words in a string.
Because the concept of a word greatly differs from language to lan-
guage, you can pass a locale, too.

10See http://www.unicode.org/notes/tn2 for the gory details.

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://www.unicode.org/notes/tn2
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=249

INTERNATIONALIZATION AND LOCALIZATION 250

Another great feature of the UString class is its fmt(locale,*args) method,
which is sprintf() on steroids:

File 130 Line 1 gb = u"In{0, date, MMMM} it will cost {1, number, currency}."

- puts gb.fmt(' en_GB' , Time.now, 12345.34)

- us = u"In{0, date, MMMM} it will cost {1, number, currency}."

- puts us.fmt(' en_US' , Time.now, 12345.34)

5 de = u"Im{0, date, MMMM} kostet es {1, number, currency}."

- puts de.fmt(' de_DE' , Time.now, 12345.34)

This produces the following:

In January it will cost £12,345.34.

In January it will cost $12,345.34.

Im Januar kostet es 12.345,34 e.

fmt() handles everything nicely: month names are translated, decimal
points are chosen correctly, and thousands are separated by the right
character. It picks the right currency symbol, and it knows where to
put it (did you know where euro symbols go?). Awesome, isn’t it? And
it gets even better:

File 130 Line 1 s = u' {0, choice, 0#no chance|1#a chance|1<many chances}.'

- 0.upto(2) { |i| puts "We have " + s.fmt(' de_DE' , i) }

This produces the following:

We have no chance.

We have a chance.

We have many chances.

The choice pattern consists of a number of range specifiers separated
by |-characters. Every range specifier is compared to the actual argu-
ment, and depending on its value, the right one is chosen.11

Objects of class URegexp handle Unicode regular expressions and can
be created with the ure(str) method:

File 130 Line 1 puts ' Last character: ' + ure(' (.)(.)(.)').match(' süß' .u)[3]

-

- strange_csv = ' thisäisästrange'

- puts ure(' ä').split(strange_csv.to_u, nil)

This produces the following:

Last character: ß

this

is

strange

11You should look at the ICU4R documentation. There are many more nice features.

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=250

INTERNATIONALIZATION AND LOCALIZATION 251

ICU4R’s biggest disadvantage is that your strings need twice as much
memory as before. In addition, a lot of important methods such as
tr(), chop(), delete(), etc., are still missing.12 Despite this, ICU4R is the
most advanced Unicode library currently available for Ruby and might
well become an important milestone for the internationalization of Ruby
programs.

International I/O

We know how strings in Ruby work in general. Now we’d like to see how
the I/O classes support different character set encodings.

For our first experiment, take your favorite text editor, set its encoding
to UTF-8, and create a file called utf8.txt containing only the German
surname Müller. Six characters, no newline.

Then store the same file using the ISO-8859-1 character set, or use the
iconv utility to convert it:13

mschmidt:/tmp/data> iconv -f UTF-8 -t iso-8859-1 utf8.txt > \

> iso-8859-1.txt

mschmidt:/tmp/data> ls -l

total 16

-rw-r--r-- 1 mschmidt mschmidt 6 Jan 3 19:26 iso-8859-1.txt

-rw-r--r-- 1 mschmidt mschmidt 7 Jan 3 19:25 utf8.txt

Notice that the ISO-8859-1 file is shorter than its UTF-8 counterpart.
A hex viewer such as xxd shows us why:

mschmidt:/tmp/data> xxd iso-8859-1.txt

0000000: 4dfc 6c6c 6572 M.ller

mschmidt:/tmp/data> xxd utf8.txt

0000000: 4dc3 bc6c 6c65 72 M..ller

mschmidt:/tmp/data>

In ISO-8859-1 the German umlaut, ü, is encoded with a single byte
(0xfc), but in UTF-8 it needs two (0xc3, 0xbc). All the other characters
of the string Müller are encoded the same way in both ISO-8859-1 and
UTF-8.

Let’s see what happens when we feed our files to Ruby’s standard IO
classes:

12It is a fairly young project, so that might already have changed by the time you are
reading this.

13The ISO-8859-1 character set represents all Western European languages.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=251

INTERNATIONALIZATION AND LOCALIZATION 252

File 116 Line 1 def examine_file(file_name)

- content = IO.read(file_name)

- puts "Its content is ' #{content}' ."

- puts "Content length is #{content.length} bytes."

5 a = []; content.each_byte { |b| a << b }; p a

- end

-

- puts ' Here we have the ISO-8859-1 file...'

- examine_file(' data/iso-8859-1.txt')

10 puts

- puts ' ... and here we have the UTF-8 file:'

- examine_file(' data/utf8.txt')

This produces the following:

Here we have the ISO-8859-1 file...

Its content is ' M?ller' .

Content length is 6 bytes.

[77, 252, 108, 108, 101, 114]

... and here we have the UTF-8 file:

Its content is ' Müller' .

Content length is 7 bytes.

[77, 195, 188, 108, 108, 101, 114]

That doesn’t look very promising. Reading data in our standard charac-
ter set works, but the IO class and the String class obviously don’t know
anything about character set encodings. All standard Ruby IO meth-
ods are strictly byte oriented—you cannot tell them which character set
encoding they should use.

This is different in Java, for example, where all strings are encoded
with a Unicode encoding internally and all IO classes support different
character set encodings. They distinguish between byte streams and
character streams.

To read an input stream that uses a particular encoding, you can use a
java.io.InputStreamReader and initialize it with an InputStream and a char-
acter set encoding:

InputStreamReader in = new InputStreamReader(System.in, ' UTF-8');

The reader called in in the previous example reads bytes from the con-
sole and interprets them as characters encoded in UTF-8.

If we need such a feature in Ruby, we have to do the conversion manu-
ally. Thanks to Iconv, this is a piece of cake:

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/iotest.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=252

INTERNATIONALIZATION AND LOCALIZATION 253

File 117 Line 1 require ' iconv'

-

- class IO

- def IO.i18n_read(name, from_cs = ' utf-8' , to_cs = ' iso-8859-1')

5 converter = Iconv.new(to_cs, from_cs)

- converter.iconv(read(name))

- end

- end

-

10 content = IO.i18n_read(' data/utf8.txt')

- puts "#{content} (#{content.length} bytes)"

In an UTF-8 terminal the previous program prints the following:

M?ller (6 bytes)

We added a method called i18n_read() to the IO class that allows us to
specify an input and an output character set. Now we can specify which
character set encoding the creator of the file used and which encoding
we’d like to work with.

Iconv is sufficient as long as you don’t have to manipulate data. If you
want to display it only on a web site, for example, set the character set
encoding of the HTML pages and the HTTP header content-type appro-
priately, or convert the data using Iconv.

Date and Time Formats

Back in the good old days of C programming, you had nothing but
the printf() family of functions to format textual data. Sometimes you
needed esoteric stuff such as strftime(), but even then you didn’t want
to know that there were different calendars such as the Gregorian and
the Julian, and you didn’t want to know that there were people who did
not use “am” and “pm” in timestamps.

This kind of thinking no longer cuts it. The creators of platforms such
as J2EE and .NET tried to solve typical i18n problems once and for all.
Despite this, many programs that run on these platforms are often not
capable of dealing with i18n issues. So what’s the problem? Are the
libraries buggy? Are the developers too stupid? They aren’t, but often
the APIs of the standard classes are much too complicated. Today you
have beasts such as Java’s Calendar and DateFormat classes that enable
you to calculate your grandma’s next 20 birthdays and print them in
Klingon standard time, but seemingly simple tasks such as printing the
current date need several method calls.

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/iotest2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=253

INTERNATIONALIZATION AND LOCALIZATION 254

Perhaps surprisingly, in Ruby you have the best-of-breed classes when
it comes to time and dates: the Time, Date, and DateTime classes provide
everything you’re likely to need for date and time management. They
even come with excellent documentation.14 In addition, you can still
hack away with sprintf(), strftime(), and friends.15.

You won’t run into serious problems as long as you output dates only
in a numerical format such as 2006-01-09 or 30/09/1972. As soon
as you want to output the name of a month or the name of a day, you
have to manage the names for every language yourself if you use the
standard classes. Ruby’s Date and Time classes provide only the English
names:

File 114 Line 1 require ' date'

-

- birthday = Date.new(1972, 9, 30)

- puts birthday.strftime(' It was a %A in %B.')

This prints the following:

It was a Saturday in September.

If you want to print the German translation, do something like the
following:

File 114 Line 1 MONTHS = {

- :de => %w(

- placeholder Januar Februar März April Mai Juni

- Juli August September Oktober November Dezember

5)

- }

-

- DAYS = {

- :de => %w(

10 Sonntag Montag Dienstag Mittwoch Donnerstag Freitag Samstag

-)

- }

-

- month_name = MONTHS[:de][birthday.month]

15 day_name = DAYS[:de][birthday.wday]

- puts "Es war ein %s im Monat %s." % [day_name, month_name]

Then you’ll get this result:

Es war ein Samstag im Monat September.

14See http://www.ruby-doc.org/stdlib/libdoc/date/rdoc and
http://www.ruby-doc.org/stdlib/libdoc/time/rdoc

15Isn’t it interesting that Sun added sprintf()-like behavior recently to the Java platform?
(http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html)

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/dates/names.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/dates/names.rb
http://www.ruby-doc.org/stdlib/libdoc/date/rdoc
http://www.ruby-doc.org/stdlib/libdoc/time/rdoc
http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=254

INTERNATIONALIZATION AND LOCALIZATION 255

That means you have to manage the translation of month and day
names for every language you’d like to support. In the following section
you’ll learn how to solve this kind of problem (alternatively, you can
look at Section 6.1, ICU4R, on page 248).

Managing Message Text

One of the most important issues when localizing software is the man-
agement of message text. Every program whose source code reaches
a critical mass outputs hundreds or even thousands of different mes-
sages. No matter whether the program has a text interface, a batch
interface, or a GUI, it usually has to ask for input and print results or
error messages.

Translating every single message into another language is already a
lot of work, so it would be nice if you didn’t also have to worry about
the technical details of managing the different translations in your pro-
grams. Fortunately, the GNU foundation has created the gettext com-
mand.16 Even better: Masao Mutoh has created a Ruby version called
Ruby-GetText.17

In principle, using the gettext family of commands is simple. To localize
all messages of your program, you have to perform the following steps:

1. Pass all hard-coded strings in your program to one of the gettext

methods (_(str), gettext(), etc.).

2. Run rgettext to create a .pot (portable object template) file that con- portable object template

tains a list of all messages to be translated.

3. For every language you’d like to support create a copy of the .pot

file, and give it the extension .po (portable object). portable object

4. Edit the .po files, and translate every message.

5. Turn all portable objects into machine objects with the rmsgfmt machine objects

command. The machine objects have the extension .mo.

When you run the following program:

File 124 Line 1 require ' gettext'

- include GetText

-

- bindtextdomain(' sample')

16http://www.gnu.org/software/gettext
17http://gettext.rubyforge.org

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/sample.rb
http://www.gnu.org/software/gettext
http://gettext.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=255

INTERNATIONALIZATION AND LOCALIZATION 256

5 puts _(' Our first example!')

- str = gettext(' Translate me!')

- puts str

it prints the following:

Our first example!

Translate me!

We tell rgettext where to look for a particular translation of our mes-
sage texts with the bindtextdomain(domain,path=nil,locale=nil,charset=nil)

method. This points it to a file that can be found in the following subdi-
rectory: path/locale/LC_MESSAGES/domain.mo. The parameters are
as follows:

domain
Is a symbolic name for the translation package.

path
Points to the directory that contains the .mo files. If it’s nil and
the environment variable GETTEXT_PATH is not set, gettext searches
in /usr/share/locale and /usr/local/share/locale.

locale
Specifies the locale (de_DE, en_US, and so on) to be used in the
current file. If it is nil, the following environment variables will be
checked consecutively: LC_ALL, LC_TYPE, LC_MESSAGES, and LANG.
If they are all empty, the system’s default language will be used.
You should not normally set this value explicitly, because doing
so defeats the purpose of gettext.

charset
Sets the output character set of the translated messages. If it
is nil and the environment variable OUTPUT_CHARSET is not set, it
defaults to the system’s character set. You shouldn’t set this vari-
able explicitly.

Let’s localize our little example step by step, creating a German trans-
lation. First, we extract all the messages with rgettext:

mschmidt:/tmp> rgettext sample.rb -o sample.pot

The newly created file sample.pot looks as follows:

File 123 msgid ""

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"POT-Creation-Date: 2006-01-12 19:28+0100\n"

"PO-Revision-Date: 2006-01-12 19:28+0100\n"

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/sample.pot
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=256

INTERNATIONALIZATION AND LOCALIZATION 257

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: sample.rb:5

msgid "Our first example!"

msgstr ""

#: sample.rb:6

msgid "Translate me!"

msgstr ""

It starts with a list of meta-information, followed by all messages that
have to be translated. Messages aren’t identified by an artificial identi-
fier but by the message text itself.

For every language we’d like to support, we have to create a portable
object (.po) file:

mschmidt:/tmp> mkdir de

mschmidt:/tmp> cp sample.pot de/sample.po

Then we have to translate every message in the .po file. In our case the
result looks like this:

File 121 msgid ""

msgstr ""

"Project-Id-Version: Sample 0.0.1\n"

"POT-Creation-Date: 2006-01-12 19:28+0100\n"

"PO-Revision-Date: 2006-01-12 19:28+0100\n"

"Last-Translator: Maik Schmidt\n"

"Language-Team: DE <de@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: sample.rb:5

msgid "Our first example!"

msgstr "Unser erstes Beispiel!"

#: sample.rb:6

msgid "Translate me!"

msgstr "Übersetze mich!"

Now we turn the translation into a machine object, creating a .mo file
that contains a more compact representation. Usually, you will put
them into a directory called locale that itself contains a subdirectory for

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/de/sample.po
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=257

INTERNATIONALIZATION AND LOCALIZATION 258

every language supported (actually, we put it under a directory called
LC_MESSAGES, which is a convention for affirmative and negative system
responses):

mschmidt:/tmp> mkdir -p locale/de/LC_MESSAGES

mschmidt:/tmp> rmsgfmt de/sample.po \

> -o ./locale/de/LC_MESSAGES/sample.mo

Finally, we test whether everything works as expected:

mschmidt:/tmp> export GETTEXT_PATH=./locale

mschmidt:/tmp> LANG=de_DE ruby sample.rb

Unser erstes Beispiel!

Übersetze mich!

We set the GETTEXT_PATH environment variable to tell gettext where to
search for .mo files (if your program does not work as expected, start it
in debug mode with ruby -d). For the runtime of our sample script, we
set the LANG variable to a German locale.

For the simplest cases this is all you need, but sometimes messages are
a bit more dynamic (for example, when the value of a variable dictates
whether you’d choose a plural or singular form of a message):

File 122 Line 1 require ' gettext'

- include GetText

- bindtextdomain("plural")

- 0.upto(3) do |i|

5 printf(

- n_("%d file was removed.\n", "%d files were removed.\n", i),

- i

-)

- end

This prints the following:

0 files were removed.

1 file was removed.

2 files were removed.

3 files were removed.

You can specify different text for singular and plural forms of a mes-
sage with the n_(singular,plural,quantity) method. You can define a “plural
rule” in the portable object that determines—depending on the value of
quantity—which message should be used.

In our current example gettext didn’t just help us with translating a
message text; it helped choose the right one. Although we did not
specify which message text to choose, the output is correct, because

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/plural.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=258

INTERNATIONALIZATION AND LOCALIZATION 259

by default gettext chooses the first message text only if the parameter
value is 1 (usually a good guess for a singular form).

A nice-looking German translation is a bit more difficult, because we
need three different texts. Let’s create the portable object first:

mschmidt:/tmp> rgettext plural.rb -o plural.pot

mschmidt:/tmp> cp plural.pot de/plural.po

After editing plural.po, it looks like this:

File 120 msgid ""

msgstr ""

"Project-Id-Version: Sample 0.0.1\n"

"POT-Creation-Date: 2006-01-14 10:07+0100\n"

"PO-Revision-Date: 2006-01-14 10:07+0100\n"

"Last-Translator: Maik Schmidt\n"

"Language-Team: DE <de@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=3; plural=(n < 2 ? n : 2)\n"

#: plural.rb:5

msgid "%d file was removed.\n"

msgid_plural "%d files were removed.\n"

msgstr[0] "Keine Dateien wurden gelöscht.\n"

msgstr[1] "Eine Datei wurde gelöscht.\n"

msgstr[2] "%d Dateien wurden gelöscht.\n"

For the first time we had to change one of the portable object headers:
Plural-Forms. This header specifies how to determine a plural form. It
consists of two parts: nplurals defines how many plural forms a message
may have, and plural is set to a piece of Ruby code that returns the index
of the message text to be used for a particular parameter value. In our
case we have different plural forms for 0, for 1, and for values that are
greater than 1. Finally, we have to define the translated message texts
in array syntax.

It’s time for a final test run:

mschmidt:/tmp> rmsgfmt de/plural.po \

> -o ./locale/de/LC_MESSAGES/plural.mo

mschmidt:/tmp> export GETTEXT_PATH=./locale

mschmidt:/tmp> LANG=de_DE ruby plural.rb

Keine Dateien wurden gelöscht.

Eine Datei wurde gelöscht.

2 Dateien wurden gelöscht.

3 Dateien wurden gelöscht.

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/de/plural.po
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=259

INTERNATIONALIZATION AND LOCALIZATION 260

Perfect! gettext is a mature and powerful tool.18 Its Ruby implemen-
tation is comprehensive, and often it will be everything you need to
localize your software.

Conclusion

It will take some time until Ruby fully supports all the techniques
that are necessary to create fully internationalized applications. For-
tunately, it will probably take even longer until all software developers
really understand what these techniques are. ;-)

In the meantime you should keep in mind that many important tips and
tricks related to internationalization and localization are completely
independent of a particular programming language:

• Always test your applications with non-ASCII content from the
beginning. The sooner you notice that your program fails mis-
erably when Özgür Müller wants to get some stuff delivered to
Düsseldorf, the better the chances that you can quickly fix it.

• Structure data—especially address data—as finely grained as pos-
sible, because it’s easier to create different output formats when
you need them.

• Do not hardwire message texts, icons, and other resources. Use
tools like gettext instead.

• Do not hardwire output formats for dates, numbers, currencies,
etc.

• If you can specify an encoding (e.g., in HTTP headers or HTML
pages), do it. At least it will make you think about it.

• Encapsulate string manipulations carefully so you can replace
them easily as soon as Ruby gets better i18n support.

• Delegate i18n issues to external sources if they have better sup-
port. If, for example, your database provides a to_upper(text) func-
tion that correctly converts a string into uppercase, use it.

18Read its manual (http://www.gnu.org/software/gettext/manual/gettext.html)
if you want to get the best out of it. Although it covers the C version, you’ll learn a lot of
useful tricks for the Ruby version, too.

http://www.gnu.org/software/gettext/manual/gettext.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=260

LOGGING 261

6.2 Logging

Typical enterprise production systems are often implemented as dis-
tributed architectures where lots of server processes that do not have
any user interfaces communicate with each other. As a result, enter-
prise systems are full of log files. You probably already deal with some
of these, such as the ones created by the Apache web server or the Unix
syslog daemon.

Log files are used for different purposes:

• As a poor man’s debugger

• For creating statistics

• For troubleshooting

• For monitoring purposes

If you choose your logging strategy carefully, a whole tool suite can be
built around the log files of your program. For the Apache web server,
for example, programs can take the logs and create access statistics,
click streams, and so on. Because it logs messages in a standard for-
mat, this whole process is decoupled from the web server.

In this section we’ll introduce the two logging tools that are available
for Ruby, Logger and Log4r.

Logging with Logger

The standard distribution of Ruby provides logging support in the form
of the Logger class. It’s pretty straightforward to use:

File 147 require ' logger'

logger = Logger.new(STDOUT)

logger.debug("Look, Ma: I' ve created my first logger...")

logger.info(' ... and started a program.')

logger.warn("It' s getting boring.")

Our first example prints something like this to the console:

File 146 D, [2005-03-05T08:11:17.305000 #3012] DEBUG - :

Look, Ma: I' ve created my first logger...

I, [2005-03-05T08:11:17.305000 #3012] INFO - :

... and started a program.

W, [2005-03-05T08:11:17.305000 #3012] WARN - :

It' s getting boring.

As expected, we got three output lines. Big deal—we could’ve achieved
the same results using simple puts() statements. But Logger has a lot
more to offer than this.

http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_usage.rb
http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_usage.out
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=261

LOGGING 262

Log Levels

Every message that is logged with Logger has an associated log level:

DEBUG < INFO < WARN < ERROR < FATAL < UNKNOWN

The log levels are ordered by priority, so a warning message is more
important than a debug message. For every log level there is a corre-
sponding method that logs a message with a certain priority. This is
especially useful for filtering and suppressing messages. For example,
debug messages are good for debugging purposes only, and in a pro-
duction system they may be annoying or could even slow down your
process. Hence, it is possible to set a threshold for a Logger so only
messages with a priority bigger or equal to the current threshold value
get logged:

File 150 Line 1 require ' logger'

- logger = Logger.new(STDOUT)

- logger.level = Logger::WARN

- logger.debug(' You will not see me ...')

5 logger.info(' ... or me.')

- logger.warn("I' ve warned you!")

- logger.error(' Ouch!')

In line 3 we have set the threshold to WARN, so only the last two mes-
sages get logged:

W, [2005-09-26T08:59:02.567292 #408] WARN -- : I' ve warned you!

E, [2005-09-26T08:59:02.570480 #408] ERROR -- : Ouch!

The set of available log levels is fixed, so if you need something other
than the six levels provided by Logger, you’ll have to use Log4r (see
Section 6.2, Logging with Log4r, on page 264) instead.

Logging to Files

Printing messages to the console doesn’t cut it in a production environ-
ment. At the very least we’d like to store the output of our program in
a file. Therefore, Logger’s new() method accepts a file name or an object
derived from IO. This is how the file name variant works:

File 148 logger = Logger.new(' logger_with_file.log')

logger.info(' Logging to a file now.')

This example creates a file called logger_with_file.log in the current direc-
tory. Your program will log to it until your file system becomes full. To
prevent such accidents (and angry calls from your system administra-

http://media.pragprog.com/titles/fr_eir/code/tools/logger/threshold.rb
http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_with_file.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=262

LOGGING 263

tor), Logger supports so-called rotating loggers that automatically create
generations of log files:

File 149 logger = Logger.new(' rotating_logger.log' , 2, 512)

10.times { logger.info(' Wasting space and time...') }

This will create a rotating Logger, which renames the current log file
whenever its size exceeds 512 bytes after logging a message.19 The file
name will be generated by appending a number, so after running the
program, we have two files in the current directory: rotating_logger.log

and rotating_logger.log.0.

In addition, it’s possible to create new generations of log files depending
on periods of time. Logger.new(’sys.log’, ’daily’) will create a Logger that
changes the log file daily. Other options are weekly and monthly.

Logging to ordinary files is what you will need 99% of the time, but
sometimes it’s useful to log to an arbitrary IO object, such as a StringIO

in the following example.

File 148 require ' stringio'

buffer = StringIO.new

io_logger = Logger.new(buffer)

io_logger.debug(' Logging with IO.')

puts buffer.string

This produces the following:

D, [2005-09-26T09:52:34.393910 #510] DEBUG -- : Logging with IO.

By writing your own class derived from IO, it’s possible to create sophis-
ticated loggers with Logger, but if you really need such a beast, you
might be better off using Log4r.

The Log Line Format

Logger’s biggest weakness is its lack of configuration options, especially
regarding the format of the log lines. They always look like this:

log level, [timestamp #pid] log level -- progname: message

The elements are separated by different characters: the abbreviated
log level is separated by a comma from the timestamp, timestamp and
process ID are put in square brackets, and so on. Wouldn’t it be much

19We set the limit low here to show rotation in action. In production, you’re likely to
set the size limit to something in the megabyte range.

http://media.pragprog.com/titles/fr_eir/code/tools/logger/rotating_logger.rb
http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_with_file.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=263

LOGGING 264

How and What Should I Log?

Choosing a log file format does not seem like a big decision,
but you should consider it carefully. The biggest challenge is to
make it suitable for both human readers and automatic pro-
cesses. If you have to spend minutes (or even hours) watching
a log file using less or tail to find an obscure bug, you will be
grateful if you don’t have to read the same useless debug mes-
sages over and over again. You will be even more grateful if
you can quickly come up with a little shell script that will do the
job for you.

Make sure you always write all vital information into the log file.
Nothing is worse than having your application behave unex-
pectedly but seeing no evidence of a problem in the log file. In
an ideal world, the log file should contain everything you need
to diagnose the problem. It is a good idea to log every input
value your program receives so you can at least create a unit
test (and you have lots of them, don’t you?) to reproduce the
error on your development box.

Especially in enterprise environments, standardizing log file lay-
out and timestamp format pays off quickly.

easier to automatically process a log file if its format were a bit more
consistent? Unfortunately, you cannot change the format easily.20

There is one piece of customization: the timestamp’s format can be
changed by setting the instance variable datetime_format to a format
string supported by strftime(). For example, you could write the following
assignment:

logger.datetime_format = ' %Y-%m-%d %H:%M:%S'

Logging with Log4r

For many purposes Logger is sufficient, but sometimes you need more
sophisticated features. One of the biggest disadvantages of Logger is the
lack of customizable log formats (in the current version) and the inflexi-
bility of log destinations. In a multithreaded environment, for example,

20At least not in the version that ships with Ruby 1.8.2. The next generation may
provide such an option.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=264

LOGGING 265

it is usually helpful to log the ID of the current thread. In a distributed
environment, logging to a local file may not meet your needs. With the
basic Logger class, though, you don’t have many options.

In the Java, C++, Perl, and Python worlds, the log4* family (log4j,
log4cpp, Log4perl, and log4p) sets the standard for logging. Thanks
to Leon Torres, we have a Log4r, too. It can be used like this:

File 140 Line 1 require ' rubygems'

- require ' log4r'

- include Log4r

-

5 joker = Logger.new(' joker')

- joker.outputters = Outputter.stdout

- joker.info(' I am back!')

- joker.warn(' This is my last warning, Batman!')

This produces the following:

INFO joker: I am back!

WARN joker: This is my last warning, Batman!

For convenience we installed Log4r as a Gem (read more about Gems in
Section 6.4, RubyGems, on page 299), so we have to require ’rubygems’.
To save some keystrokes, we used include to bring the Log4r module into
our program’s namespace.

We first create a Logger instance on line 5, giving it the name joker. By
default, the Logger objects in Log4r do nothing with the messages you
give them. To see the messages appear on the console, in a file, and so
on, you have to explicitly assign one or more outputters to the Logger

instance. On line 6 we make sure that Joker’s messages can be seen
on the console, and in the following lines an information message and
a warning are sent to our first Logger. Admittedly, the output is a bit
spartan, but we will beautify it later.

Because superheroes are usually a bit short of time, they are inter-
ested only in the really important statements and serious threats com-
ing from their archenemies. Log4r allows our heroes to increase the log
level by setting joker.level = WARN, so Joker’s annoying info and debug
messages will be suppressed and so only the really scary stuff will
appear on the ticker in the Batcave. Our little program already demon-
strates two of the most important classes in the Log4r class hierarchy,
Logger and Outputter (the latter is equivalent to log4j’s Appender class.)
Together with the Formatter class (called Layout in log4j), they form the
basis for Log4r. We’ll dissect them in the following sections.

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/hello_world.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=265

LOGGING 266

Loggers

The Logger class is the interface to the whole logging system. You can
create as many Logger objects as you like. Each must have a unique
name, because Log4r organizes them in a hierarchy. Usually, you will
create a separate Logger for every class with the same name as the
class. This is only a convention: you can name your loggers in any way
you like.

Logger objects have methods for every log level; debug(), info(), warn(),
error(), and fatal(). All take the message to be logged. Every Logger holds
a threshold value. When one of these methods is called, the logger
checks whether the message’s level is bigger or equal to the current
threshold. If yes, the message is sent to all outputters belonging to the
Logger. Otherwise, the message is ignored. Log4r’s default levels are as
follows:

DEBUG < INFO < WARN < ERROR < FATAL

Log4r’s Level class allows you to completely redefine the log levels. You
can add new levels and change the order of existing levels. You could,
for example, implement Sun’s log-level hierarchy for Java:21

File 136 Line 1 require ' rubygems'

- require ' log4r'

- require ' log4r/configurator'

- include Log4r

5

- Configurator.custom_levels(

- :FINEST, :FINER, :FINE, :CONFIG,

- :INFO, :WARNING, :SEVERE

-)

10

- logger = Logger.new(' java-style')

- logger.outputters = Outputter.stdout

- logger.finest(' Who needs this?')

- logger.config(' Or this?')

15 logger.info(' yo')

This produces the following:

FINEST java-style: Who needs this?

CONFIG java-style: Or this?

Do not worry if you don’t exactly know what a Configurator is—we’ll
explain it shortly. To define your own hierarchy of log levels, you have

21http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/custom_levels.rb
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=266

LOGGING 267

to call custom_levels(*levels) and pass it a list of all the levels you want
your Logger objects to have. This list has to be in ascending order
of the log-level priority. You can use strings or symbols for the level
names. Level names have to start with an uppercase letter, but the
names of their corresponding log methods will be completely lowercase.
You should define your custom levels before you do anything else.

All Logger objects are children of the RootLogger singleton. This can be
obtained by calling Logger.root or Logger.global. To navigate through the
hierarchy of your Logger objects, you can use path-like structure:

File 141 Line 1 Logger.new(' abe')

- Logger.new(' abe::homer')

- Logger.new(' abe::homer::bart')

- Logger[' abe'].outputters = Outputter.stdout

5

- Logger[' abe'].debug(' Once upon a time...')

- Logger[' abe::homer'].debug("D' oh!")

- Logger[' abe::homer::bart'].debug(' Eat my shorts!')

This produces the following:

DEBUG abe: Once upon a time...

DEBUG homer: D' oh!

DEBUG bart: Eat my shorts!

Here we created a hierarchy of three different Loggers called abe, homer,
and bart. By default the logger path delimiter is the :: sequence (it can
be changed by setting LoggerPathDelimiter). In our case we made homer

a child of abe, and bart a child of homer. Although we have added an
Outputter only to abe, the debug messages of homer and bart are logged,
too. This happens because all children inherit their parent’s outputters
by default (you can change this behavior by setting the additive attribute
of the parent to false).

Child Loggers also inherit the log-level threshold of their parents. This
means that it’s possible to change this value for a whole subtree of the
Logger hierarchy:

File 141 Line 1 Logger[' abe::homer'].level = INFO

- Logger[' abe'].debug(' *snore*')

- Logger[' abe::homer'].debug("Marge!")

- Logger[' abe::homer::bart'].debug(' Ay, caramba!')

This produces the following:

DEBUG abe: *snore*

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/hierarchy.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/hierarchy.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=267

LOGGING 268

We have set the log-level threshold to INFO for all Loggers that are
descendants of homer and therefore only the debug messages of the
abe Logger are still visible.

Formatters

Until now our log messages have been pretty boring, because only the
log level, the logger name, and the log message itself have been printed.
So, where’s all the fancy stuff that we’re been promising? Where are
the timestamps, process IDs, and so on? Don’t panic! Log4r has it all.
Let’s start with a simple example:

File 138 Line 1 fancy = Logger.new(' fancy')

- p = PatternFormatter.new(:pattern => "[%5l] %d: %m")

- fancy.add(StdoutOutputter.new('stdout' , :formatter => p))

- fancy.info(%w(cat mouse dog))

5 fancy.error(' I am so nicely formatted!')

This produces the following:

[INFO] 2005-09-25 16:33:41: catmousedog

[ERROR] 2005-09-25 16:33:41: I am so nicely formatted!

Did you notice that we have passed an array to the info() call? Log4r

handles such things nicely, because it calls to_s() on every object that
is passed to a log method.

All the formatting stuff Log4r has to offer is performed by the Format and
PatternFormat classes. Usually, a pattern format is all you need, because
it works the way printf() fans like. On line 2, we create a new Pattern-

Format object that prints the log level (in square brackets and with a
fixed width of five characters), the current timestamp, and the actual
log message. Format strings may contain arbitrary characters and spe-
cial sequences prefixed by a percent sign. All attributes available are
listed in Figure 6.1, on the following page.

Because it’s one of the most important pieces of information in log files,
Log4r handles the formatting of timestamps separately. If your web
shop is new and you do not expect too many requests, the following
date format may be sufficient:

File 138 Line 1 p = PatternFormatter.new(

- :pattern => ' [%5l] %d: %m' ,

- :date_pattern => ' %Y'

-)

5 fancy.add(StdoutOutputter.new('stdout' , :formatter => p))

- fancy.info(' Oh, our second customer.')

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_format.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_format.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=268

LOGGING 269A L o g g e r ' s n a m eA L o g g e r 's f u l l n a m e u p t o t h e R o o t L o g g e rC u r r e n t t i m e s t a m p (i n I S O ¯ 8 6 0 1 f o r m a t b yd e f a u l t) . O t h e r w i s e t h e f o r m a t r e t u r n e d b yd a t e _ p a t t e r n () o r b y d a t e _ m e t h o d ()w i l l b e u s e d .N a m e o f t h e f i l e (a n d l i n e n u m b e r) t h a t 's t h eo r i g i n o f t h e l o g m e s s a g e . H a s t h e s a m et a s K e r n e l . c a l l e r [0] .e v e r i s r e t u r n e d w h e n t o _ s () i s c a l l e dl o g m e s s a g e .e v e r i s r e t u r n e d w h e n f o r m a t _ o b j e c t ()s s B a s i c F o r m a t t e r i s c a l l e d o n t h e l o gg e . F o r e x a m p l e , e x c e p t i o n s w i l l b ef o r m a t t e d a u t o m a t i c a l l y .g l e v e l .e r c e n t s i g n i t s e l f .
cC d tmM l%

F o r m a tS p e c i f i e r M e a n i n g

Figure 6.1: Log4r Format Specifiers

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=269

LOGGING 270

This produces the following:

[INFO] 2005: Oh, our second customer.

Or maybe you have so many requests that even microseconds mat-
ter. No problem, just pass the usec() method of the Time class as
date_method to the PatternFormat constructor (date_method expects one
of class Time’s methods):

File 138 Line 1 p = PatternFormatter.new(

- :pattern => ' [%5l] %d: %m' ,

- :date_method => :usec

-)

5 fancy.add(StdoutOutputter.new('stdout' , :formatter => p))

- fancy.info(' Money, money, money.')

This produces the following:

[INFO] 724998: Money, money, money.

Still unsatisfied? OK, then let’s write a completely new Formatter. The
following example formats exceptions in an aggressive manner:

File 135 Line 1 class ExceptionFormatter < Log4r::Formatter

- def format(e)

- log = "[%5s] %s: %s\n" %

- [LNAMES[e.level], Time.now, e.data.to_s]

5 if e.data.class == Exception

- msg = e.data.message

- size = msg.size

- line = ' !' * (size + 6) + "\n"

- log << line

10 log << ' ! ' + msg.center(size + 2) + " !\n"

- log << line

- end

- log

- end

15 end

-

- custom = Logger.new(' my_first_format')

- outputter = StdoutOutputter.new(

- ' stdout' ,

20 :formatter => ExceptionFormatter

-)

- custom.add(outputter)

- custom.info(%w(cat mouse dog))

- custom.fatal(Exception.new('ALAAARRRRMMM!'))

25 custom.error(' I am so nicely formatted!')

This produces the following:

[INFO] Sun Sep 25 18:17:12 CEST 2005: catmousedog

[FATAL] Sun Sep 25 18:17:12 CEST 2005: ALAAARRRRMMM!

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_format.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/custom_format.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=270

LOGGING 271

!!!!!!!!!!!!!!!!!!!

! ALAAARRRRMMM! !

!!!!!!!!!!!!!!!!!!!

[ERROR] Sun Sep 25 18:17:12 CEST 2005: I am so nicely formatted!

Writing your own formatter is simple: derive a class from Formatter,
and override the format(event) method that gets passed the current log
event as an instance of LogEvent. The LogEvent class encapsulates the
attributes belonging to a single log message: the log level, the logger
name, the message itself, and so on (the LNAMES hash we have used in
line 4 maps the numerical log levels to their textual representations).
At the end of format(), return a string in your selected format.

Outputters

Log messages are pretty useless if they don’t appear somewhere. Log4r

supports the concept of outputters that receive log messages and “visu-
alizes” them somehow. You can print them to the console, write them
to a file, send them via e-mail, or send them to a syslog daemon (see
Figure 6.2, on page 273, for a complete list).

Each Logger can have many outputters. You can add them to the output-

ters array at any time. In addition to the log level threshold of the Logger,
each Outputter has a threshold, too. It can be set with the only_at(*levels)

method (for example, outputter.only_at(ERROR, FATAL)).

Log4r comes with a lot of configurable outputters. Usually these will do
everything you need. However, you can also create your own outputters
if you need something special.

The following class implements a buffered outputter that consumes a
certain number of log events and then logs them all at once whenever
a configurable threshold value has been reached or a fatal event has
been logged:

File 137 Line 1 class BufferedOutputter < IOOutputter

- def initialize(name, io, options = {})

- super(name, io, options)

- @out = io

5 @last_events = []

- @max_events = options[:max_events] || 50

- end

-

- def canonical_log(event)

10 @last_events << event

- if @last_events.size >= @max_events ||

- LNAMES[event.level] == ' FATAL'

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/custom_outputter.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=271

LOGGING 272

- @last_events.each { |e| super(e) }

- @last_events = []

15 end

- end

- end

-

- logger = Logger.new(' buffered-outputter')

20 outputter = BufferedOutputter.new(

- ' buffered' ,

- $stdout,

- :max_events => 2

-)

25 logger.outputters = outputter

- logger.debug(' I cannot be seen immediately!')

- logger.info(' Now both are there!')

This produces the following:

DEBUG buffered-outputter: I cannot be seen immediately!

INFO buffered-outputter: Now both are there!

Because BufferedOutputter needs a number of IO facilities, we chose
to subclass IOOutputter, rather than Outputter. The initialize(name, out,

options) method expects the outputter’s name, the IO object to write to,
and an optional options hash.

Beginning on line 9 we override the canonical_log(logevent) method. This
is responsible for handling a log event that has made its way to our
outputter.

By the time a log event arrives here, it has passed all log-level checks
and is actually meant to be logged. We add every event to our current
list of events. Whenever this list exceeds the maximum size or a fatal
event is logged, we delegate the logging of every buffered event to Log4r’s
default implementation by calling super().

In our main program we create new Logger and BufferedOutputter objects.
We associate the outputter with $stdout, so all outputs will appear on
the console. To make sure we will see anything, we set max_events to 2.

Configuration

Until now we have configured all our Loggers manually in the code.
For demonstration purposes this is perfect, but in a production system
you want to have configuration files that can be safely edited without
touching a single line of your program. Log4r gives you the freedom to
choose XML or YAML as the format of your configuration files.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=272

LOGGING 273

Outputter Purpose

IOOutputter Logs to an arbitrary IO object.

StdoutOutputter Logs to STDOUT.

StderrOutputter Logs to STDERR.

FileOutputter Logs to a single file.

RollingFileOutputter Logs to a file and automatically maintains a gen-
eration of log files depending on their size, that is,
files will be closed and renamed at a certain size.

DateFileOutputter Logs to a file and automatically maintains a genera-
tion of log files depending on their timestamp: files
will be closed and renamed daily, monthly, etc.

SyslogOutputter Logs to the syslog daemon.

EmailOutputter Sends log messages via e-mail.

RemoteOutputter Sends log messages to a remote LogServer instance.

Figure 6.2: Log4r Outputters

Configurator is a central component that controls most of the config-
uration options (we have already used it in Section 6.2, Loggers, on
page 266, to configure our own log levels). Its most important methods
are load_xml_file(file_name) and load_xml_string(xml_string). These are used
to configure Log4r using its XML dialect. A typical example looks like:

File 142 Line 1 <log4r_config>

- <pre_config>

- <custom_levels>

- FINEST, FINER, FINE, CONFIG,

5 INFO, WARNING, SEVERE

- </custom_levels>

- <global level="FINE"/>

- </pre_config>

- </log4r_config>

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/log4r.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=273

LOGGING 274

Log4r’s XML configuration has to be defined under a <log4r_config>

element. This doesn’t have to be the root element in the actual XML file.
This allows you to embed the Log4r configuration into your application’s
global configuration file: you do not have to spread your configuration
across several files.

Optionally, the XML file may contain a <pre_config> section, where
custom log levels, configuration parameters, and a global log level can
be defined.

If we store the previous XML configuration file in a file called log4r.xml,
we can use it like this:

File 139 Line 1 Configurator.load_xml_file('log4r.xml')

- main = Logger.new(' main')

- main.outputters = Outputter.stdout

- main.finest("That' s how my coffee should be!")

5 main.fine("That' s ok, too.")

This produces the following:

FINE main: That' s ok, too.

Because we have set the global log level to FINE, only the second message
gets logged.

Using parameters defined in the <pre_config> section, we can commu-
nicate between the Configurator class and the configuration file:

File 143 <log4r_config>

<pre_config>

<parameter name="pattern" value="%l [%d] %m"/>

</pre_config>

<outputter name="logfile" level="WARN">

<type>FileOutputter</type>

<filename>#{basepath}/main.log</filename>

</outputter>

<logger name="main" level="DEBUG" trace="true">

<outputters>stdout, logfile</outputters>

</logger>

</log4r_config>

We initialize the basepath variable used in the previous configuration
file in our Ruby program:

File 145 Line 1 Configurator[' basepath'] = ' /tmp'

- Configurator.load_xml_file('log4r2.xml')

- main = Logger[' main']

- main.debug(' On console only.')

5 main.warn(' On console and in file.')

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_xml_config.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/log4r2.xml
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/pre_config_parameters.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=274

LOGGING 275

This is where the fun begins! We have configured a Logger with two
outputters for the first time. One prints to STDOUT and the other one
into a file (/tmp/main.log). On the console we have the following:

DEBUG main(pre_config_parameters.rb:11): On console only.

WARN main(pre_config_parameters.rb:12): On console and in file.

and /tmp/main.log contains the following:

WARN main(pre_config_parameters.rb:12): On console and in file.

There are configuration sections for every Log4r object: loggers, format-
ters, and outputters. As a rule of thumb, all attributes we have used
as we have configured our objects manually are also available in the
configuration files. Let’s examine a complete example:

File 132 Line 1 <log4r_config>

- <pre_config>

- <global level="WARN"/>

- <parameter name="pattern" value="%l [%d] %m"/>

5 </pre_config>

-

- <outputter name="console">

- <type>StdoutOutputter</type>

- <formatter type="PatternFormatter" pattern="#{pattern}">

10 <date_pattern>%Y-%m-%d %H:%M:%S</date_pattern>

- </formatter>

- </outputter>

-

- <outputter name="logfile" level="ERROR">

15 <type>RollingFileOutputter</type>

- <filename>#{basepath}/main.log</filename>

- <maxsize>1048576</maxsize>

- <count>5</count>

- <trunc>false</trunc>

20 <formatter type="PatternFormatter" pattern="#{pattern}">

- <date_method>usec</date_method>

- </formatter>

- </outputter>

-

25 <logger name="app">

- <outputter>console</outputter>

- </logger>

-

- <logger name="db" outputters="logfile"/>

30 </log4r_config>

Here we define two outputters called console and logfile. The first one
writes its output to the console using a StdoutOutputter; the other uses
a RollingFileOutputter that keeps up to five log files, each with a max-
imum size of 1MB. Both outputters use a PatternFormatter with the

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=275

LOGGING 276

same format. Only the date format differs: for the console we use the
date_pattern modifier, and for the log file we use date_method.

Then we define two loggers called app and db. app logs only to the
console, and db logs into a log file. Running the following snippet:

File 131 Line 1 require ' log4r/outputter/rollingfileoutputter'

- include Log4r

- Configurator[' basepath'] = ' /tmp'

- Configurator.load_xml_file('complete.xml')

5

- app = Logger[' app']

- app.debug(' Look at me!')

- app.warn(' Look at Roy!')

-

10 db = Logger[' db']

- db.error(' DB logs go always into a file.')

- db.warn(' But not this one.')

leaves these messages on our console:

WARN [471281] Look at Roy!

Because we have set the global log level to WARN in the <pre_config>

section, only the second message sent to the app object gets logged.
Our log file contains something like this:

ERROR [163338] DB logs go always into a file.

Only the first message is written, because the log level of the logfile

outputter is ERROR.

You have to require all Log4r classes you’ve used in your configuration
to prevent problems during the configuration process. For example, we
had to explicitly require ’log4r/outputter/rollingfileoutputter’. Annoyingly, for
the rolling file outputter, Log4r creates an empty /tmp/main.log file and
starts logging in a file called /tmp/main000001.log. Note that we have set
trunc to false. If we hadn’t, our new log file would be truncated whenever
we restart our program. That’s usually not what you want.

For those who prefer YAML over XML’s verbosity, Log4r has the Yaml-

Configurator. Let’s translate our previous example into YAML (see Sec-
tion 3.5, YAML Ain’t Markup Language (YAML), on page 139, if you are
not familiar with YAML):

File 133 log4r_config:

pre_config:

global:

level: WARN

my_pattern:

- &pat "%l [%d] %m"

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete.yaml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=276

LOGGING 277

XML Parameters in Log4r

It’s possible to use Ruby variables in Log4r configuration files, and
vice versa. To pass a value from Ruby to the configuration, you
can use the Configurator class like a hash:

Configurator[' basepath'] = ' /tmp'

In the configuration file, you can use it like this then:

<log4r_config>

<pre_config>

<parameters>

<basepath>#{basepath}</basepath>

</parameters>

<parameter name="pattern" value="[%l] %d: %m"/>

</pre_config>

</log4r_config>

On the other side, you can access parameters defined in the
<pre_config> section of the XML configuration file in your Ruby
program. For example, you can access the pattern parameter
defined previously like this:

puts Configurator[' pattern']

Most Log4r configuration parameters can be expressed in two
ways, namely, as a value= attribute or as a child element. For
example, the following definition:

<outputter name="main" filename="./log/main.log"/>

is equivalent to this:

<outputter>

<name>main</name>

<filename>./log/main.log</filename>

</outputter>

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=277

LOGGING 278

loggers:

- name : app

outputters:

- stdout

- name : db

outputters:

- logfile

outputters:

- type : StdoutOutputter

name : stdout

formatter:

date_pattern: ' %Y-%m-%d %H:%M:%S'

pattern : *pat

type : PatternFormatter

- type : RollingFileOutputter

level : ERROR

name : logfile

maxsize : ' 1048576'

count : ' 5'

date_pattern: ' %Y%m%d'

trunc : ' false'

filename : "#{basepath}/main.log"

formatter :

date_method : ' usec'

pattern : *pat

type : PatternFormatter

By replacing only the first two lines of the previous XML example, we
achieve the same results with our YAML configuration:

File 134 Line 1 require ' log4r/yamlconfigurator'

- YamlConfigurator[' basepath'] = ' /tmp'

- YamlConfigurator.load_yaml_file('complete.yaml')

Performance Considerations

Logging is an invaluable tool in enterprise environments. But, like most
things in life, logging has a dark side. Excessive logging will slow down
your processes significantly, because logging usually causes a lot of
I/O, and I/O is expensive. To prevent this, it’s a good idea to execute
some logging statements only when they are absolutely necessary. To
help you do this, Log4r makes it easy for you to check the current log
level:

File 144 Line 1 logger = Logger.new(' perf')

- logger.outputters = Outputter.stdout

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete_yaml.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/performance.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=278

CREATING DAEMONS AND SERVICES 279

-

- long_list = %w(lots of elements)

5 if logger.debug?

- long_list.each_with_index do |o, i|

- logger.debug("Element #{i}: #{o}")

- end

- end

Logging the contents of long_list—especially when it’s really long—is an
expensive operation, because you have to iterate over all elements and
to_s() is called each time. Therefore, it makes sense to execute the
appropriate method calls only when the debug log level is actually
active. It should not be too surprising that all log methods are capable
of processing code blocks, too.

Conclusion

Logger’s API is as simple as it could be. Although it is often tempting,
you should not use plain puts() statements to print messages even from
simple scripts. Use Logger instead, because it’s as easy to use as puts()
and comes with a lot of benefits.

For bigger software systems that comprise several modules, you will
run into Logger’s limits soon. In these cases, you’re better off using
Log4r right from the beginning. It is highly configurable and has every-
thing (and even more) you’d expect from a full-blown logging tool.

6.3 Creating Daemons and Services

On Unix operating systems, daemons are long-living processes that run
in the background and do not have a controlling terminal. Often they
are started when a computer is booted and then run forever. Their
names usually end with d, as in syslogd or httpd. Because daemons are
dangerous creatures, you have to tame them with a control script.

The Apache web server, for example, comes with the famous apachectl

script that allows you to start, stop, or restart the server. Daemons
exist in the Microsoft Windows world, too, but the superstitious folks
in Redmond call them services instead.

In the following sections we show you how to create them on both plat-
forms with Ruby.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=279

CREATING DAEMONS AND SERVICES 280

Unix Daemons

According to Unix Network Programming [Ste98], you have to perform
a lot of complicated tasks to safely create a daemon under Unix. You
have to detach from the console, change the current working directory
to a specific location (usually to the root directory /), set the file cre-
ation mask to 0, and close all unneeded file descriptors. Even for Unix
wizards, it’s not easy to remember these steps (how they are ordered is
significant, too).

To make it even harder, your work isn’t done after the daemon is run-
ning, because you still need a control script such as apachectl. It’s
therefore very nice that Thomas Uehlinger has created the Daemons

package22 that transparently handles all this for us. It turns an arbi-
trary Ruby script into a daemon process and automatically generates
the appropriate control script for starting, restarting, and stopping it.

Do you remember the greeting card server from Section 5.1, Another

Day, Another Protocol, on page 179? We didn’t implement the complete
architecture that could be seen in Figure 5.1, on page 181. One process
is still missing: the one that actually prints the cards. In this section we
will develop a daemon process that will do the job. Our print process is
a little script that reads a particular directory every ten seconds, sends
all .pdf files in the directory to a process called print_card, and deletes
them afterward:

File 111 Line 1 require ' logger'

-

- path = ARGV[0] || ' /tmp'

- interval = ARGV[1] || 10

5 interval = interval.to_i

-

- logfile = File.dirname(__FILE__) + ' /watcher.log'

- logger = Logger.new(logfile)

- logger.info(' Started the watcher...')

10

- loop do

- files = Dir["#{path}/*.pdf"]

- files.each do |filename|

- logger.info("Processing #{filename}.")

15 %x(print_card #{filename})

- File.delete(filename)

- end

- sleep(interval)

- end

22http://daemons.rubyforge.org

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/watcher.rb
http://daemons.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=280

CREATING DAEMONS AND SERVICES 281

Our little observer accepts two command-line parameters, the directory
to be observed (/tmp by default) and the timer interval measured in
seconds (10 by default). Then we create a logger to see what our process
is doing. In line 7 we determine the full path name of the log file. This is
very important, because we are going to turn our script into a daemon
process, and these processes normally change their working directory
to / when they start. The path variable has to contain an absolute path
if we’re to put the log file in the correct place.

The rest is fairly easy. We read the directory’s content every interval

seconds, execute a system command called print_card, and delete the
file. Now let’s turn our script into a full-blown Unix daemon process:

File 112 Line 1 require ' rubygems'

- require ' daemons'

- Daemons.run(' watcher.rb')

Really, that’s all we have to do. Using the automatically generated
control script, we can start, stop, or restart our process like this:

$ ruby watcher_control.rb start

$ ruby watcher_control.rb restart

$ ruby watcher_control.rb stop

To perform all this magic, Daemon writes the process ID into a file called
watcher.rb.pid and reads it whenever it’s needed.

You can pass command-line options after a double hyphen:

$ ruby watcher_control.rb start -- /tmp/cards/img 5

This command line starts our daemon process and looks for new .pdf

files in the /tmp/cards/img directory every five seconds. It logs its activ-
ities into a file called watcher.log that lives in the same directory as the
watcher script itself.

The Daemons class allows you to daemonize your programs in several
ways. For example, it’s possible to turn your script into a daemon by
calling Daemons.daemonize at any time, but by doing so you lose the
ability to use the _control script to administer your daemon.

For debugging purposes, there is a run option that starts the script in
the foreground.

Windows Services

None of the nice things we learned in the preceding section will work
on the Microsoft Windows platform, because Unix daemons depend

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/watcher_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=281

CREATING DAEMONS AND SERVICES 282

on the fork() system call, which isn’t available on Windows. Daniel
Berger opened the Windows platform to Ruby programmers with his
win32utils project.23 Part of this project is win32-service. This allows us
to create daemons (services) for Win32, too. It is not as convenient as
the Daemons package, because it does not have automatic support for
control scripts, but it certainly is helpful.

Do you remember our status monitor (see Section 4.1, The PragBou-

quet Status Monitor, on page 147) and the SOAP stock server (see Sec-
tion 5.3, SOAP, on page 200)? To make sure the stock server is working
properly, let’s create a small script that periodically checks to see if the
server is still alive. If it detects any problem, it sends a message to the
status monitor. Our checks will not be too sophisticated—we’ll test only
whether the service is physically available, but for a first solution this
approach is sufficient.

Because we install the observer script as a Windows service, we have to
(partly) implement the interface of a Windows service:

File 110 Line 1 $:.unshift File.dirname(__FILE__)

- require ' status_monitor_client'

- require ' logger'

- require ' soap/rpc/driver'

5 require ' win32/service'

- include Win32

-

- class StockServerObserver < Daemon

- def initialize(opts = {})

10 super()

- @opts = opts

- end

-

- def service_init

15 @interval = @opts[:interval] || 60

- @logger = Logger.new(@opts[:logfile] || ' c:/observer.log')

- @stock = SOAP::RPC::Driver.new(

- @opts[:soap_url] || ' http://localhost:2000' ,

- @opts[:soap_urn] || ' urn:Stock'

20)

- @stock.add_method(' get_report')

- @sm = StatusMonitorClient.new(

- @opts[:sm_host] || ' 127.0.0.1' ,

- @opts[:sm_port] || 3333

25)

- @logger.info(' Observer has been initialized.')

- end

23http://rubyforge.org/projects/win32utils

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/stock_observer.rb
http://rubyforge.org/projects/win32utils
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=282

CREATING DAEMONS AND SERVICES 283

-

- def test_stock_service

30 @stock.get_report.class == Hash

- end

-

- def service_main

- @logger.info(' Observer has been started.')

35 sleep 1 while state != RUNNING

- while state == RUNNING

- if !test_stock_service

- msg = ' Stock service is not running.'

- @logger.warn(msg)

40 @sm.warn(' stock' , msg)

- else

- @logger.info(' Stock service is running.')

- end

- sleep(@interval)

45 end

- @logger.info(' Observer has been stopped.')

- end

- end

All the stuff related to our original task—observing the stock server—is
fairly trivial. In the test_stock_service() method we perform a simple test
to see whether the stock server is still alive. We call the get_report()
method and verify that it returns a hash object. If the remote proce-
dure call works properly, we can be fairly confident that the physical
connection to our stock server is working. If it does not, we send a
warning message to the status monitor.

We derived our StockServerObserver from the Win32::Daemon class, and
we overrode the service_init() and service_main() methods. service_init()
gets called when a service is initialized—we use it to create clients for
the status monitor and the stock server. In addition, we initialize a
Logger for logging the observer’s status.

The service_main() method contains the main logic of the daemon. This
is typically an “infinite” loop that waits for external events or performs
a task periodically. In our case we call test_stock_service() every @interval

seconds as long as the daemon’s state is RUNNING. If test_stock_service()
returns false or an exception is raised, we send a message to the status
monitor.

Two facts are very important when developing Windows services:

• Windows services (like Unix daemons) change their working direc-
tory when they start, so you must specify all the files you need in

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=283

CREATING DAEMONS AND SERVICES 284

absolute form. To find Ruby libraries outside the standard direc-
tories, add the script’s directory to Ruby’s load path in the first
line.

• You should not rely upon being in a certain state. A lot of things
regarding Windows services work asynchronously, because ser-
vices are controlled from the outside with a control script or the
services panel. Hence, in line 35 we wait until the service is actu-
ally running, because sometimes it needs a few seconds.

You cannot simply start our current script and expect that it turns
itself into a service. Every service has to have a name and it has to be
installed properly before starting it:

File 109 Line 1 require ' win32/service'

- include Win32

-

- def install_service(name, display_name, executable)

5 service = Service.new

- service.create_service do |s|

- s.service_name = name

- s.display_name = display_name

- s.binary_path_name = ' ruby ' + File.expand_path(executable)

10 s.dependencies = []

- end

- service.close

- puts "#{name} has been installed."

- end

Call install_service() to install any Ruby program you like as a service.
Pass it a unique service name, the name that should be displayed in
the service list, and the path to a Ruby script that should be installed
as a service. The working of the function is fairly obvious, but line 9 is
interesting. Here we specify the program that is going to be installed
using (as is the case with all files referenced by a service) its absolute
file name.

Provided that our stock observer is in a file called stock_observer.rb, we
can now install it like this:

irb(main):002:0> service_name = ' StockObserver'

=> "StockObserver"

irb(main):003:0> install_service(

irb(main):004:1* service_name,

irb(main):005:1* ' PragBouquet Observer' ,

irb(main):006:1* ' stock_observer.rb'

irb(main):007:1>)

StockObserver has been installed.

=> nil

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=284

CREATING DAEMONS AND SERVICES 285

Figure 6.3: PragBouquet Observer in the Service Control Panel

Our internal service name is StockObserver, but in the service list it
appears as PragBouquet Observer. Even though it’s in the service list, it
isn’t running yet. You could start it using the Windows Services control
panel (see Figure 6.3), but isn’t it more fun to do it programmatically?

File 109 Line 1 def start_service(name)

- Service.start(name)

- started = false

- while !started

5 s = Service.status(name)

- started = (s.current_state == ' running')

- break if started

- puts ' Trying to start service...'

- sleep 1

10 end

- puts "#{name} was started."

- end

To safely start a service, call the start(name) method of the Service class,
and wait until its status turns to running:

irb(main):004:0> start_service(service_name)

Trying to start service...

StockObserver was started.

=> nil

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=285

BUILD AND DEPLOYMENT PROCESS 286

From now on the stock observer will send SOAP requests to the stock
server every minute until the end of time...or until we stop it:

File 109 Line 1 def stop_service(name)

- Service.stop(name)

- stopped = false

- while !stopped

5 s = Service.status(name)

- stopped = (s.current_state == ' stopped')

- break if stopped

- puts ' Trying to stop service.'

- sleep 1

10 end

- puts "#{name} was stopped."

- end

Stopping a service works exactly like starting it: call the stop() method
of the Service class, and wait until the service has the stopped state:

irb(main):005:0> stop_service(service_name)

StockObserver was stopped.

=> nil

Finally, we should be prepared to uninstall a service:

File 109 Line 1 def uninstall_service(name)

- begin

- Service.stop(name)

- rescue

5 end

- Service.delete(name)

- puts "#{name} was uninstalled."

- end

That’s all you need to turn your Ruby programs into Windows services.
The Daemon class provides many more useful and important meth-
ods, and the win32utils project is full of interesting stuff. If you want to
develop Ruby applications on the Windows platform, you must have a
look at it.

6.4 Build and Deployment Process

Compared to deployment processes needed when shipping software on
a CD or DVD to end users, deployment processes in enterprise envi-
ronments are relatively simple. Often, they can be reduced to copying a
bunch of files from a development or integration platform to a produc-
tion host. If anything goes wrong, bugs can be fixed in a single place
instead of providing all users with an update.

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=286

BUILD AND DEPLOYMENT PROCESS 287

Additionally, installers for enterprise software do not need colorful wiz-
ards with bells and whistles or several hundred kilobytes of End User
License Agreements (EULA). Nevertheless, all software—your own and
the third-party products and the libraries they depend on—has to be
deployed somehow. There are several alternatives for Ruby programs.

Many programming languages encourage developers to produce com-
pletely self-contained programs that bring everything they need with
them. For example, it’s not unusual for companies using Java to have
several XML parsers (in dozens of versions) lying around on their pro-
duction systems, because every application ships with its own xerces-

xyz.jar.

Sometimes they are even bundled with their own version of the Java
virtual machine. For C++ applications, people often link the required
libraries into huge executable images or risk DLL hell by shipping the
required shared libraries with each of their applications.

Ruby’s (and Perl’s, Python’s, etc.) approach is different. It’s oriented
toward a more central installation philosophy, where all libraries are
installed only once in the same directory. On Unix systems this is by
default something like /usr/lib/ruby or /usr/local/lib/ruby and on Microsoft
Windows boxes it’s c:\Program Files\ruby\lib or c:\ruby\lib. (If you’re look-
ing for the source code of a certain library, these places are good start-
ing points.)

You aren’t constrained to have a single, central Ruby installation. You
can install it wherever you want (and you can have multiple, indepen-
dent installations on the same machine). On some platforms it’s even
possible to turn Ruby programs into self-contained executables that do
not even depend on an existing Ruby installation.

Deploying with setup.rb

Back in the dark and ancient days of Ruby’s childhood, nearly every
developer who made available a library or script in the Ruby Application
Archive (RAA) 24 wrote yet another proprietary installation program that
usually copied some files to the central Ruby lib directory.

These programs were often quick ’n’ dirty solutions that failed on many
platforms: their authors did not know the nitty-gritty details of every
environment their software was going to be installed in.

24http://raa.ruby-lang.org

http://raa.ruby-lang.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=287

BUILD AND DEPLOYMENT PROCESS 288

Considering that generations of programmers contributed to tools like
GNU’s autoconf, it’s not surprising that an individual Ruby coder would
struggle with these issues.

Minero Aoki was fed up with the situation. He built a sophisticated
solution, called setup.rb, that over time became extremely powerful.
Before the appearance of the RubyGems project, it was the de facto
standard for packaging Ruby software. As a result, there are still hun-
dreds of projects out there that depend on it. It’s still vital for every
serious Ruby programmer to know how it works.

We’ll demonstrate the use of setup.rb by installing the tmail library we
used in Section 4.1, “I’d Rather Use a Socket”, on page 146 (for those
who don’t read books front to back: tmail is a library that supports the
creation of e-mail messages in SMTP format). Before installing tmail, we
have to get it somehow. Figure 6.4, on the following page shows how
to download and unpack the current tmail distribution (by the way, the
terminal application I’ve used on Mac OS X is iTerm.)25 To download
the file, of course, you can use wget, your favorite web browser, or
whatever you prefer instead of the curl command I used.26

Part of the tarball is a file called setup.rb. This contains everything
needed to install the tmail library on an arbitrary platform. The only
prerequisites are Ruby and a C compiler. (The C compiler is necessary
because tmail includes code written in C. If the software to be installed
does not contain C extensions, a compiler is not needed.)

setup.rb is similar to GNU’s autoconf; it divides the installation of soft-
ware in a Unix environment into three steps.

With autoconf, you do something like the following:

1. ./configure

2. make

3. make install

Step 1 detects the specifics of the current environment: which C com-
piler is installed, the size of a native int, and so on. The second step
builds the software from source. The final step copies everything to its
final destination (so this step usually has to be performed by a user
having root privileges).

25http://iterm.sourceforge.net
26Whatever you use, keep in mind that you’d usually have to specify a proxy server in

an enterprise environment. For curl you’d have to add the option -x proxy_host:proxy_port.

http://iterm.sourceforge.net
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=288

BUILD AND DEPLOYMENT PROCESS 289

Figure 6.4: Getting tmail from the Internet

setup.rb works in an equivalent fashion—even the meaning of the three
steps is the same as in the UNIX installation procedure described pre-
viously:27

1. ruby setup.rb config

2. ruby setup.rb setup

3. ruby setup.rb install

Let’s examine the installation of the tmail library step by step. Fig-
ure 6.5, on page 291, shows the output of running ruby setup.rb con-

fig. The script automatically explored the environment and created two
Makefiles that will be used in the next step to compile all C exten-
sions needed by tmail. Platform-independent Makefiles are created by
extconf.rb, which uses the mkmf library to do its dirty work. This step’s

27In older versions an additional file called install.rb was part of the setup.rb project. It’s
not supported any longer, but you will still find it in many older packages.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=289

BUILD AND DEPLOYMENT PROCESS 290

output differs from package to package. For example, the majority of
Ruby packages don’t depend on C extensions; for these, no Makefiles
are created.

Usually, the configuration step just detects where the Ruby installation
is located on the current system. Its results are stored in a file called
config.save that can be edited manually if necessary. On my box it looks
as follows (all values starting with a $ sign can be configured during
the installation process; you can also view the current configuration by
running ruby setup.rb show):

File 151 bin-dir=$prefix/bin

site-ruby=$prefix/lib/ruby/site_ruby/1.8

prefix=/usr

ruby-path=/usr/bin/ruby

make-prog=make

rb-dir=$site-ruby

without-ext=no

ruby-prog=/usr/bin/ruby

site-ruby-common=$prefix/lib/ruby/site_ruby

std-ruby=$prefix/lib/ruby/1.8

data-dir=$prefix/share

so-dir=$prefix/lib/ruby/site_ruby/1.8/powerpc-darwin8.0

tmail depends on two C extensions (one for encoding and decoding
of Base64 strings and one for scanning e-mails). In Figure 6.6, on
page 292, you can see how running ruby setup.rb setup compiles these.

In our textbook example everything went fine, and the GNU compiler
on my Mac happily produced the object files needed. However, if you
have even a small amount of experience with Unix, you’ll know that a
lot can go wrong during this step.

Tools such as autoconf and setup.rb made it much easier to build and
install software even on exotic hardware and operating systems, but
there are still potential incompatibilities, and you have to be prepared
for compiler warnings, errors, and so on.

This is especially true for the Microsoft Windows platform, where often
no C compiler or make command is available. For popular tools and
libraries you can sometimes get precompiled binaries, but often you
are doomed to have to try to build it yourself. This can be a frustrating
(and sleep-depriving) experience....

Finally, tmail has to be copied to the standard Ruby library directory.
You can see how this can be achieved in Figure 6.7, on page 293. Nor-

http://media.pragprog.com/titles/fr_eir/code/tools/setup/config.save
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=290

BUILD AND DEPLOYMENT PROCESS 291

Figure 6.5: Configuring tmail

mally Ruby libraries are installed in a systemwide directory, so the final
step has to be performed by a user having root privileges.

As good citizens we did not log in as root, but we used the sudo com-
mand28 instead.

Underprivileged?

Sometimes you do not have the root password and have no write per-
mission for some directories. Sometimes you explicitly do not want to
install your software in the standard paths for other reasons. setup.rb

therefore supports some global options and some task-specific options
that allow you to override nearly every setting that would normally be
determined automatically. Using these, you can control where stuff
goes.

28http://en.wikipedia.org/wiki/Sudo

http://en.wikipedia.org/wiki/Sudo
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=291

BUILD AND DEPLOYMENT PROCESS 292

Figure 6.6: Setting Up tmail

Considering good old Unix traditions, the most important global option
is -q or --quiet. This completely mutes the output of setup.rb.

The --prefix option is often useful for the config and install tasks, because
it allows you to specify the base directory of the installation. If you
want to install a package in the lib/ruby directory right under your home
directory, for example, run the following:

$ ruby setup.rb config --prefix=~/lib/ruby

Afterward, don’t forget to set the environment variable RUBYLIB accord-
ingly or to add the path specified in --prefix to your load path (by adding
it to $:), Otherwise, the Ruby interpreter will not be able to find your
freshly installed stuff.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=292

BUILD AND DEPLOYMENT PROCESS 293

Figure 6.7: Installing tmail

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=293

BUILD AND DEPLOYMENT PROCESS 294

It’s Not Perfect

By default the Firefox browser∗ running on my Mac stores files I
downloaded from the Internet in the directory ~/Documents/My
Downloads. I never experienced any problems with this setting
until I tried to install tmail from this particular location in the file
system.

After downloading and unpacking the tarball, I ran ruby setup.rb
config, which unexpectedly resulted in the following error mes-
sage:

/usr/bin/ruby: No such file or directory -- ~/Documents/My \

(LoadError)

' system /usr/bin/ruby ~/Documents/My Downloads/tmail-0.10.8/ \

ext/tmail/base64/extconf.rb ' failed

Try ' ruby setup.rb --help' for detailed usage.

Obviously, setup.rb dynamically creates a command-line string
that gets executed with the system() method. Unfortunately, this
command-line string does not work for directory names con-
taining blanks. The lesson I’ve learned is this: do not try to run
setup.rb (or extconf.rb) from a directory whose name contains
spaces!

∗http://www.mozilla.org/products/firefox

A complete list of all options can be found on setup.rb’s web site,29

but beware: the documentation does not completely match the cur-
rent state of affairs. For example, the all task is documented but not
supported any longer.

Shipping the Status Monitor

Although it took several pages to demonstrate the usage of setup.rb, in
reality it’s simple. Just run the following commands:

$ curl http://i.loveruby.net/archive/tmail/tmail-0.10.8.tar.gz \

> -o tmail-0.10.8.tar.gz

$ tar xfz- tmail-0.10.8.tar.gz

$ cd tmail-0.10.8

$ ruby setup.rb config

$ ruby setup.rb setup

$ sudo ruby setup.rb install

29http://i.loveruby.net/en/man/setup/usage.html

http://www.mozilla.org/products/firefox
http://i.loveruby.net/en/man/setup/usage.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=294

BUILD AND DEPLOYMENT PROCESS 295

setup.rb Destination

lib /usr/local/lib/site_ruby/1.8

bin /usr/bin

data /usr/share

ext /usr/local/lib/site_ruby/1.8/i386-linux

Figure 6.8: Typical Directory Mapping for setup.rb

So where does all the magic come from?

Even Ruby programmers do not believe in magic (although many of
them firmly believe that Matz is from outer space. Some concepts are
just too advanced...). You may ask yourself what you have to do to
package your own stuff and make it available on nearly all platforms
currently supported.

The answer is quite simple: probably nothing if you did what good
programmers (and that’s all of you, isn’t it?) do anyway: you have to
put your software into a certain directory structure, and you have to
add a copy of setup.rb to your project. That’s it!

setup.rb expects you to use the following directory layout:

project-root/

setup.rb

lib/

bin/

ext/

data/

The different directories are mapped to certain destinations. A typical
setup for Linux running on an Intel processor can be seen in Figure 6.8
. These values will differ from platform to platform, but you should get
the idea.

It’s OK to put more than one module into a package. Simply add sub-
directories to your project’s root directory. The classic compiler example
looks like this (note: the packages directory is mandatory):

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=295

BUILD AND DEPLOYMENT PROCESS 296

my-compiler/

setup.rb

packages/ --> mandatory directory name!

scanner/

bin/

lib/

ext/

data/

parser/

bin/

lib/

ext/

data/

codegen/

bin/

lib/

ext/

data/

So, let’s get a bit more concrete and create a package for the status
monitor we developed in Section 4.1, “I’d Rather Use a Socket”, on
page 146. Our directory layout is simple:

sm/

setup.rb

create_smon.sql

bin/

control_sm.sh

lib/

pre-install.rb

sm/

status_monitor.rb

status_monitor_client.rb

sms.rb

setup.rb was copied verbatim from Minero Aoki’s web site. The script cre-

ate_smon.sql contains everything to create the MySQL database needed
by the status monitor:

File 152 create database smon;

use smon;

create table log_entries(

id int unsigned not null primary key,

application varchar(64) not null,

level enum(' debug' , ' info' , ' warn' , ' error' , ' fatal'),

message text,

created timestamp not null

);

http://media.pragprog.com/titles/fr_eir/code/tools/setup/sm/create_smon.sql
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=296

BUILD AND DEPLOYMENT PROCESS 297

In the bin directory we placed a shell script called control_sm.sh that
controls the status monitor—it lets the users of the monitor start and
stop it.

The lib/sm directory contains all the files we created for the status mon-
itor: the status monitor itself (status_monitor.rb), the library that encap-
sulates the access to the SMS server (sms.rb), and the Ruby library for
accessing the status monitor (status_monitor_client.rb).

There’s only one file left to be explained: pre-install.rb in the lib direc-
tory. setup.rb has a nice feature that makes it possible to execute a
Ruby script before and after every installation phase. Such scripts are
named (pre|post)-(config|setup|install).rb. In our case the script gets
executed before the status monitor is installed. Unsurprisingly, the
script installs the status monitor database:

File 153 Line 1 # pre-install.rb creates the status monitor database

- # before installing the status monitor itself.

-

- system(' mysql < ../create_smon.sql')

One of the biggest problems with installation processes is testing them,
because you normally don’t have access to the final production envi-
ronment. In addition, installation processes often perform tasks that
cannot be reverted easily, such as dropping or modifying databases or
files.

Fortunately, setup.rb’s inventor was well aware of these restrictions and
added useful options that make testing much easier. Probably the most
important one is --no-harm, which simulates the installation process
without actually touching anything. It will not create or copy any direc-
tories or files. In Figure 6.9, on the following page, you can see a sample
run.

Oops! Didn’t we say that nothing would be touched? In the lower third
of the screenshot MySQL complains about the existence of our smon

database. It does already exist, because we installed it for running our
local tests. The problem is that setup.rb’s philosophy regarding the pre-
and post-script mechanism is a bit more local.

setup.rb was not primarily designed for processes installing complete
databases, but for creating temporary files that are needed for further
steps generating C code by executing commands like lex and yacc.

http://media.pragprog.com/titles/fr_eir/code/tools/setup/sm/lib/pre-install.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=297

BUILD AND DEPLOYMENT PROCESS 298

Figure 6.9: Simulating Status Monitor Installation

Fortunately, there is the “Hook Script” API30 that allows us to read
nearly all options that have been passed to setup.rb. For example, call-
ing get_config(’prefix’) in a pre- or post- script determines the current
value of the --prefix option (/opt/pb in our case). Unfortunately, this is
true only for configuration options and not for options that have been
passed to the different installation steps such as --no-harm.

Open source to the rescue: after examining the source code of setup.rb,
I quickly discovered that the hash object @options contains everything
we need to make the status monitor installation complete:

30http://i.loveruby.net/en/man/setup/hookapi.html

http://i.loveruby.net/en/man/setup/hookapi.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=298

BUILD AND DEPLOYMENT PROCESS 299

File 154 Line 1 # pre-install.rb creates the status monitor database

- # before installing the status monitor itself.

-

- if @options[' no-harm']

5 puts ' Normally, we would install the database now!'

- else

- system(' mysql < ../create_smon.sql')

- end

From now on only a polite message will be printed to the console when
we run ruby setup.rb install --no-harm.

Of course, relying on the internals of an implementation like this is
generally a bad idea, but in this case we will get away with it, because
the probability is low that setup.rb is going to change. This is especially
true for our local copy.

RubyGems

As Ruby grew in popularity and more and more great libraries were
released, it became obvious that a full-blown standardized packaging
and installation system was needed. setup.rb does a fairly good job for
typical installation tasks, but it lacks a lot of important features. For
example, it is not possible to install different versions of a particular
package in parallel. Uninstalling packages isn’t possible either.

To create a more advanced solution, David A. Black, Paul Brannan,
Chad Fowler, Richard Kilmer, and Jim Weirich sat together during a
Ruby conference some years ago and designed (and implemented!) a
first version of a new packaging system. They called the packages Gems Gems

and the package system RubyGems.31

Since these modest beginnings, RubyGems has been rewritten com-
pletely and greatly enhanced. It has become the de facto standard for
distributing Ruby libraries and applications. At the time of this writing
RubyGems was not part of the official Ruby distribution, but chances
are good that things have changed by the time you’re reading this. You
can see whether RubyGems is installed already by running gem list.
This command prints a list of all Gems that are installed on your sys-
tem. The output should look like this:

mschmidt:/tmp> gem list

*** LOCAL GEMS ***

31http://rubygems.rubyforge.org

http://media.pragprog.com/titles/fr_eir/code/tools/setup/sm/lib/pre-install_safe.rb
http://rubygems.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=299

BUILD AND DEPLOYMENT PROCESS 300

actionmailer (1.1.3, 1.0.1)

Service layer for easy email delivery and testing.

actionpack (1.11.0, 1.9.1)

Web-flow and rendering framework putting the VC in MVC.

actionwebservice (0.9.3, 0.8.1)

Web service support for Action Pack.

activerecord (1.13.0, 1.11.1)

Implements the ActiveRecord pattern for ORM.

...

xml-simple (1.0.7)

A very simple API for XML processing.

If instead you get an error message like “gem: No such file or directory,”
you probably don’t have RubyGems installed. You’ll need to download
and install it. It might be the last Ruby program you have to install
manually....

RubyGems comes with an excellent documentation system (try gem --

help, and play around with the options of the list command a bit), there’s
a great user guide on the project’s home page,32 and Chad Fowler has
written a chapter about it in [TFH05]. Because of all this, I’m not going
to write yet another full tutorial, but I’d like at least to explain briefly
how to use RubyGems.

A Gem is a self-contained package that contains everything belonging
to a particular Ruby library or application. It doesn’t matter whether
it’s a program written in pure Ruby or it’s a C extension, whether it
contains extensive documentation, or whether it comes with a big test
suite. Everything belonging to the package can be found in the .gem

file. In the next section we will need the rake command that is available
as a Gem, so let’s install it now:

mschmidt:/tmp> sudo gem install rake

Password:

Attempting local installation of ' rake'

Local gem file not found: rake*.gem

Attempting remote installation of ' rake'

Updating Gem source index for: http://gems.rubyforge.org

Successfully installed rake-0.6.2

Installing RDoc documentation for rake-0.6.2...

32http://docs.rubygems.org

http://docs.rubygems.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=300

BUILD AND DEPLOYMENT PROCESS 301

Because Gems are usually installed in a central directory (usually in a
local tree such as /usr/local/lib/ruby/gems), you have to run gem as the
root user. As good citizens we use the sudo command instead of su.

RubyGems tries to find a local installation of the rake Gem first. If it
doesn’t find one, it tries to get it from the central Gems server.33 Then
it downloads the package, unpacks it, and installs it. The installation
process usually is more than a simple cp or install command. Often, C
extensions and documentation files are built before copying the result
to the central Gems directory.

The update option installs the most current version of an existing pack-
age:

mschmidt:/tmp> sudo gem update activerecord

Password:

Upgrading installed gems...

Attempting remote upgrade of activerecord

Attempting remote installation of ' activerecord'

Install required dependency activesupport? [Yn] Y

Successfully installed activerecord-1.13.2

Successfully installed activesupport-1.2.5

Installing RDoc documentation for activerecord-1.13.2...

Installing RDoc documentation for activesupport-1.2.5...

Gems: [activerecord] updated

gem automatically downloaded the current ActiveRecord version, along
with its dependency ActiveSupport (another important feature of Gems:
they can depend on each other, and the gem command knows about it).
Then, it installed the two libraries and their documentation, which is
freshly generated from RDoc comments in the source code.

To find out which versions of ActiveRecord are installed, we use the list

option again:

mschmidt:/tmp> gem list activerecord

*** LOCAL GEMS ***

activerecord (1.13.2, 1.13.0, 1.11.1)

Implements the ActiveRecord pattern for ORM.

There seem to be different versions of ActiveRecord installed on our sys-
tem. But how can we use them in our Ruby programs? Until RubyGems

33If you’re trying to install Gems on a computer in your company, you probably have
to specify a proxy server:
mschmidt:/tmp>gem install -p http://proxy:port rake

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=301

BUILD AND DEPLOYMENT PROCESS 302

actually becomes the Ruby packaging standard, you have to call require

‘rubygems’ whenever you want to use a Gem.34

require ' rubygems'

require ' active_record'

Note that even though the Gem is called activerecord, we require the
‘active_record’ module and not ‘activerecord’.

If you don’t want to add require ’rubygems’ to all of your programs, you
can invoke the Ruby interpreter and use the -r option:35

ruby -rubygems . . .

Even better, set the RUBYOPT environment variable:

mschmidt:/tmp> export RUBYOPT=rubygems

If you want to use a particular version of a Gem, you have to use the
require_gem(gem,*version_requirements) function:

irb(main):001:0> require ' rubygems'

=> true

irb(main):002:0> require_gem ' activerecord' , ' = 1.11.1'

=> true

irb(main):003:0>

In this case we loaded version 1.11.1 of ActiveRecord. If we try to load a
version that is not installed on our system, RubyGems complains with
an informative error message:

irb(main):003:0> require_gem ' activerecord' , ' = 1.11.0'

Gem::LoadError: RubyGem version error: activerecord(1.11.1 not = 1.11.0)

To specify a particular Gem version, you have to pass a list of version
requirements to require_gem(). Every version requirement consists of
an operator and a version number. The operators are =, !=, >, >=, <, <=,
and ~>. Most of them should be self-explanatory, so the following:

require_gem ' activerecord' , ' > 1.1'

loads the most current ActiveRecord Gem whose version is greater than
1.1. If instead we’d used the following:

require_gem ' activerecord' , ' > 1.1' , ' <= 1.2'

34RubyGems is currently in transition. It is very likely to become built in to a future
version of Ruby, but until then it allows you to write your require statements as if it
already were the standard tool. Someday you only have to remove all the require ‘rubygems’

statements.
35Yes, there is a file called ubygems.rb.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=302

PROJECT AUTOMATION WITH RAKE 303

RubyGems would load the most current ActiveRecord Gem in the ver-
sion range 1.1–1.2.

However, the ~> operator (read: approximately greater than) looks unfa-
miliar. It’s called the pessimistic operator, because it makes the pes-
simistic assumption that major releases of software are often incom-
patible with former releases. Using that reasoning, it’s optimistic to do
the following:

require_gem ' activerecord' , ' > 2.1'

because this may end up loading ActiveRecord version 18.7.1, which
may no longer support some of the methods that you’re using in your
script. A more pessimistic approach would be to constraint the version
number to start 2:

require_gem ' activerecord' , ' > 2.1' , ' < 3.0'

That’s what the pessimistic operator does. The following is (in effect)
identical to the previous code:

require_gem ' activerecord' , ' ~> 2.1'

RubyGems provides many more useful features for the Gem user. You
can also write your own Gems. All this isn’t necessary to get your enter-
prise integration software up and running, but if you want to become a
real Ruby hacker, you’d better read the RubyGems manual.

Conclusion

When creating open source software that will be disseminated via Inter-
net, RubyGems is the best choice today—it has been designed for this
specific purpose. For the deployment of enterprise software, setup.rb is
still a useful tool. setup.rb dictates a directory layout you have proba-
bly used anyway, and there is no reason why setup.rb and RubyGems
should not coexist peacefully.

6.5 Project Automation with Rake

In the lifetime of every software project there comes a point when you
have to automate things. It might be sufficient to run the compiler
manually and to copy the resulting executable to its final destination by
hand if you have to compile only two files. But as soon as the number
of source files reaches a critical mass (i.e., which only takes three files
or so), you’d better think about automating tasks such as compiling,
linking, packaging, and so on.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=303

PROJECT AUTOMATION WITH RAKE 304

When developing software, impatience is a good guide. Whenever you’re
working with a compiled programming language such as C/C++, Java,
or C#, you think about project automation automatically to decrease
compile time. It does not make sense to compile every single file every
time. Instead, you want to compile only those files that are newer than
their corresponding binary objects. Integrated Development Environ-
ments (IDEs) such as Eclipse and tools such as make manage these
steps for you.

With interpreted languages like Ruby this compilation and build man-
agement isn’t necessary. There are, however, still some tasks that have
to be managed the “make way”. For example, if you use SOAP, you’d
like to call wsdl2ruby.rb (see Section 5.3, Web Services Description Lan-

guage, on page 208) only when it’s necessary.

Also, compiling files is not the only task that can be automated in a
typical software project. Usually, you have to generate documentation
using rdoc, package and deploy your software, and run all unit tests.
Often, these tasks depend on each other and have to be performed in a
particular order.

Many project automation tools exist: make,36 Ant,37 and A-A-P,38 to
name a few. Although they differ slightly in functionality, they have
one thing in common: their input file formats are rarely convenient.
For example, make depends on significant whitespace characters, and
Ant expects you to write bloated XML documents. For simple tasks,
that is OK, but as soon as you have to implement some logic, you’re
doomed.

Jim Weirich was fed up with this situation. Because he likes Ruby,
he has developed a project automation tool called rake.39 Jim did not
invent yet another input file format. Instead, he used Ruby to drive his
build tool. This Ruby lives inside things called Rakefiles.

Rakefiles

Before this section gets too theoretical (after all, this is a pragmatic
book), we’d better run rake and see what happens:

mschmidt:/tmp> rake

36http://www.gnu.org/software/make
37http://ant.apache.org
38http://www.a-a-p.org
39http://rake.rubyforge.org

http://www.gnu.org/software/make
http://ant.apache.org
http://www.a-a-p.org
http://rake.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=304

PROJECT AUTOMATION WITH RAKE 305

rake aborted!

No Rakefile found (looking for: rakefile, Rakefile, rakefile.rb, \

Rakefile.rb)

/usr/local/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake.rb:1373:in \

‘load_rakefile'

rake automatically searches for an input file called rakefile, Rakefile, rake-

file.rb, or Rakefile.rb. Because it searches for files with the extension .rb,
we conclude that it expects a Ruby file. Let’s create our first Rakefile:

puts ' Hello, Rake!'

And run rake again:

mschmidt:/tmp> rake

(in /tmp)

Hello, Rake!

rake aborted!

Don' t know how to build task ' default'

We’re getting closer. rake has executed our Ruby code but complains
that we did not specify a task called default. So, what is a rake task and
what is the default task?

Rakefiles consist of ordinary Ruby code that uses a set of methods and
classes defined by rake. Typically, a Rakefile contains several tasks.
Each has a name and is associated with a block of Ruby code. Tasks
can depend on other tasks—a task may have some prerequisites that
have to be fulfilled before it gets executed. If you do not specify a task
to be executed, the task called default is run. Tasks can be defined with
the task(args,&block) method. Here’s the new version of our Rakefile:

task :default do

puts ' Hello, Rake!'

end

This time everything works as expected:

mschmidt:/tmp> rake

(in /tmp)

Hello, Rake!

In most Rakefiles the default task doesn’t have code in its body (rake

calls this body an action). Instead, the default task will list other tasks
as dependencies, and these tasks will run by default when rake is exe-
cuted without any overriding parameters.

Let’s refactor our Rakefile and store it in a file called hello.rb:

File 104 Line 1 # The refactored Rakefile.

- task :default => [:hello]

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/hello.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=305

PROJECT AUTOMATION WITH RAKE 306

Some Syntax Notes

Rakefiles tend to look nice. In part, that’s because they use
some of Ruby’s syntactic sugar. Two things often confuse inex-
perienced Ruby programmers when they work with rake:

• The prerequisites of a task are passed as a hash with the
=> notation:

task :default => [:hello]

This is the same as this

prerequisites = Hash.new

prerequisites[:default] = [:hello]

task(prerequisites)

• Because of the different precedence of do/end blocks
and their curly counterparts ({ }), you have to be careful
when using the latter. The following statement produces a
parse error:

task :default { puts ' Hello, Rake!' }

The code block is associated with the :default symbol and
not with the task() method. Put :default into parentheses
and everything is fine again:

task(:default) { puts ' Hello, Rake!' }

I recommend not using the curly braces syntax in Rake-
files.

-

- desc ' Prints a nice greeting!'

5 task :hello do

- puts ' Hello, Rake!'

- end

This way we can reuse the ingenious hello task, and we can run it
separately: rake -f hello.rb hello.40 The default task was reduced to a list
of dependencies that consists of only a single element in our case.

In addition, we have written a description for the hello task with the desc

task. These descriptions will be output when you pass the -T option to

40It’s possible to specify a list of tasks on the command line that should be executed:
rake task1 task2....

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=306

PROJECT AUTOMATION WITH RAKE 307

rake. With -f you can set the Rakefile to be used and the -P option will
print all tasks and their prerequisites:

mschmidt:/tmp> rake -f hello.rb -T

(in /tmp)

rake hello # Prints a nice greeting!

mschmidt:/tmp> rake -f hello.rb -P

(in /tmp)

rake default

hello

rake hello

Tasks and Actions

Having a mechanism for defining tasks and their dependencies is use-
ful. It’s even more useful that you can implement the actions needed
when executing in the same Ruby code. And, to get you started, rake

comes with a lot of useful predefined tasks. We’ll use one of these, Pack-

ageTask, to create a package of the Ruby files belonging to our status
monitor. Here’s the content of the lib directory:

mschmidt:~/work/sm> ls lib

StatusMonitor.java status_monitor.rb

status_monitor.pm status_monitor_client.rb

We’d like to create a .tgz file that contains all the Ruby files in the lib

directory (along with the directory itself). The Rakefile that does this
looks like this:

File 105 Line 1 require ' rake'

- require ' rake/packagetask'

- include Rake

-

5 SM_VERSION = ' 0.0.1'

-

- PackageTask.new(' sm-ruby' , SM_VERSION) do |p|

- p.need_tar = true

- p.package_files.include(' lib/**/*.rb')

10 end

First we load the two libraries we need to use the standard rake tasks.
In line 7 we define the package task with PackageTask. Its constructor
expects the name of the file to be created and the version information
that should be appended to the file name. The rest is defined in a
code block that gets the current PackageTask instance. By setting the
need_tar attribute to true, we tell the task that we want to have a .tgz

file. package_files is an instance of class FileList that we set to all .rb

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/Rakefile
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=307

PROJECT AUTOMATION WITH RAKE 308

files below the lib directory (see Section 6.5, File Lists, on page 313, for
details). To find the name of the task and usage, it’s -T to the rescue:

mschmidt:~/work/sm> rake -T

(in /Users/mschmidt/work/sm)

rake clobber_package # Remove package products

rake package # Build all the packages

rake repackage # Force a rebuild of the package files

Obviously, rake defines three tasks automatically for us as soon as we
define a package task. So, let’s use them:41

mschmidt:~/work/sm> rake package

(in /Users/mschmidt/work/sm)

mkdir -p pkg

mkdir -p pkg/sm-ruby-0.0.1/lib

rm -f pkg/sm-ruby-0.0.1/lib/status_monitor.rb

ln lib/status_monitor.rb pkg/sm-ruby-0.0.1/lib/status_monitor.rb

rm -f pkg/sm-ruby-0.0.1/lib/status_monitor_client.rb

ln lib/status_monitor_client.rb \

pkg/sm-ruby-0.0.1/lib/status_monitor_client.rb

cd pkg

tar zcvf sm-ruby-0.0.1.tgz sm-ruby-0.0.1

sm-ruby-0.0.1/

sm-ruby-0.0.1/lib/

sm-ruby-0.0.1/lib/status_monitor.rb

sm-ruby-0.0.1/lib/status_monitor_client.rb

cd -

mschmidt:~/work/sm> ls pkg

sm-ruby-0.0.1 sm-ruby-0.0.1.tgz

mschmidt:~/work/sm>

To execute the package task, rake calls standard Unix commands such
as cd, ln, and rm. Do you need a .zip file, too? Add p.need_zip = true to
the PackageTask task, and run it again:

mschmidt:~/work/sm> rake package

(in /Users/mschmidt/work/sm)

cd pkg

zip -r sm-ruby-0.0.1.zip sm-ruby-0.0.1

adding: sm-ruby-0.0.1/ (stored 0%)

adding: sm-ruby-0.0.1/lib/ (stored 0%)

adding: sm-ruby-0.0.1/lib/status_monitor.rb (deflated 43%)

adding: sm-ruby-0.0.1/lib/status_monitor_client.rb (deflated 50%)

cd -

mschmidt:~/work/sm>

41At the time of writing, rake has some problems with Ruby 1.8.4. If you run into any
problems (such as “no such option: noop”), try to install the latest version, gem update

rake.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=308

PROJECT AUTOMATION WITH RAKE 309

rake creates the .zip file and is clever enough to realize that the .tgz file
does not have to be created again. Anyway, we will clean up our mess:

mschmidt:~/work/sm> rake clobber_package

(in /Users/mschmidt/work/sm)

rm -r pkg

mschmidt:~/work/sm>

But what if you want to have different package tasks? Maybe we need
one that creates the status monitor files for Ruby programmers, and
another one that creates it for Java programmers? rake automatically
gives the package task a name, and there is no way to set it. But rake

has a much better solution: namespaces: namespaces

File 107 Line 1 require ' rake'

- require ' rake/packagetask'

- include Rake

-

5 SM_VERSION = ' 0.0.1'

-

- namespace :ruby do

- PackageTask.new(' sm-ruby' , SM_VERSION) do |p|

- p.need_tar = true

10 p.need_zip = true

- p.package_files.include(' lib/**/*.rb')

- end

- end

-

15 namespace :java do

- PackageTask.new(' sm-java' , SM_VERSION) do |p|

- p.need_tar = true

- p.need_zip = true

- p.package_files.include(' lib/**/*.java')

20 p.package_files.include(' build.xml')

- end

- end

You can wrap any task in a namespace. Rake automatically puts this
namespace in front of the task name (separated by a colon). This time
we have defined two package tasks, one for the Ruby package and one
for the Java package. You can use them like this:

mschmidt:~/work/sm> rake -T

(in /Users/mschmidt/work/sm)

rake java:clobber_package # Remove package products

rake java:package # Build all the packages

rake java:repackage # Force a rebuild of the package files

rake ruby:clobber_package # Remove package products

rake ruby:package # Build all the packages

rake ruby:repackage # Force a rebuild of the package files

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/Rakefile_with_ns
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=309

PROJECT AUTOMATION WITH RAKE 310

rake comes with a lot of standard tasks:

• The file task creates a file from a list of other files. In C/C++
projects, for example, an executable is built by linking a list of
object files:

file ' game' => %w(aliens.o joystick.o screen.o sound.o) do |t|

sh "c++ -o #{t.name} #{t.prerequisites.join(' ')}"

end

Whenever one of the object files is more recent than our exe-
cutable, the game file is rebuilt. We build it by invoking the C++
compiler with the sh() method. This method, which comes with
rake, simply executes shell commands. The code block gets passed
the task, and we use some of its properties (the task’s name and
prerequisites) to create the command-line string.

Note we did not specify how to create the object files themselves.
You could do this with a file task for every object file, but we’ll show
you a better way using the rule task.

• The rule task specifies what rake should do if it encounters a file
name that has no task associated with it. For example, you can
define how to create .o files from .cc files:

rule ' .o' => [' .cc'] do |t|

sh "c++ -c #{t.source} -o #{t.name}"

end

You can access the names of both the source and the destination
files in the task’s action. We use them to invoke the C++ compiler
with rake’s sh() method. rule works recursively; if it cannot find the
.cc file it needs, it would try to find a rule for creating .cc files.
This is useful when you’re working with code generators such as
lex and yacc.

Regular expressions can be used to specify the output files, and
the source files can be determined by a code block. Our last rule
was an abbreviation for the following:42

rule(/.o$/ => [proc { |dest| dest.sub(/\.[^.]+$/, ' .cc') }]) do |t|

sh "c++ -c #{t.source} -o #{t.name}"

end

• The directory task creates paths in the file system. For example,
the :default task in the following Rakefile:

42In this case it’s necessary to put the arguments of rule() in brackets.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=310

PROJECT AUTOMATION WITH RAKE 311

File 103 require ' rake'

data_dir = ' pkg/test/data'

task :default => [data_dir]

directory data_dir

will create the directory pkg/test/data if it does not already exist.

• The clean and clobber tasks can be used to clean up the work-
ing directory. clean removes all temporary files that have been
created during the build process, and clobber removes all files
that have been added to the original package. The files to be
removed are specified by the file lists CLEAN and CLOBBER, respec-
tively. (CLOBBER always contains all the files in CLEAN.)

require ' rake/clean'

CLEAN.add(' **/*.o')

CLOBBER.add(' **/*~' , ' **/*.bak' , ' **/*.tmp')

• RDoc is the de facto standard for documenting Ruby code. The
RDocTask task runs the rdoc command to create documentation
from the comments in your source files. A typical RDocTask looks
as follows:

Rake::RDocTask.new(:docs) do |rd|

rd.main = ' README.rdoc'

rd.rdoc_files.add(' README.rdoc' , ' lib/**/*.rb')

rd.options << ' --all'

end

In this case we gave the RDocTask the name docs. Rake automati-
cally creates two additional tasks called clobber_docs (remove the
generated documentation) and redocs (force a rebuild of the docu-
mentation) for us.

• You can create a Gem for your project with GemPackageTask. It
works exactly like PackageTask, except that it expects a Gem spec-
ification:

File 106 Line 1 require ' rubygems'

- require ' rake/gempackagetask'

- include Rake

-

5 SM_VERSION = ' 0.0.1'

- gem_spec = Gem::Specification.new do |s|

- s.name = ' sm'

- s.version = SM_VERSION

- s.platform = Gem::Platform::RUBY

10 s.files = FileList[' lib/**/*.rb']

- s.requirements << ' none'

- s.require_path = ' lib'

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/dirtask.rb
http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/Rakefile_with_gem.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=311

PROJECT AUTOMATION WITH RAKE 312

- s.autorequire = ' status_monitor_client'

- s.summary = ' Status monitor for PragBouquet applications.'

15 s.description = ' Use the status monitor to report errors.'

- end

-

- GemPackageTask.new(gem_spec) do |pkg|

- pkg.need_zip = true

20 pkg.need_tar = true

- end

The preceding Rakefile creates a .tgz, a .zip, and a .gem version of
our status monitor package:

mschmidt:~/work/sm> rake package

(in /Users/mschmidt/work/sm)

mkdir -p pkg

mkdir -p pkg/sm-0.0.1/lib

rm -f pkg/sm-0.0.1/lib/status_monitor.rb

ln lib/status_monitor.rb pkg/sm-0.0.1/lib/status_monitor.rb

rm -f pkg/sm-0.0.1/lib/status_monitor_client.rb

ln lib/status_monitor_client.rb \

pkg/sm-0.0.1/lib/status_monitor_client.rb

cd pkg

tar zcvf sm-0.0.1.tgz sm-0.0.1

sm-0.0.1/

sm-0.0.1/lib/

sm-0.0.1/lib/status_monitor.rb

sm-0.0.1/lib/status_monitor_client.rb

cd -

cd pkg

zip -r sm-0.0.1.zip sm-0.0.1

adding: sm-0.0.1/ (stored 0%)

adding: sm-0.0.1/lib/ (stored 0%)

adding: sm-0.0.1/lib/status_monitor.rb (deflated 43%)

adding: sm-0.0.1/lib/status_monitor_client.rb (deflated 50%)

cd -

Successfully built RubyGem

Name: sm

Version: 0.0.1

File: sm-0.0.1.gem

mv sm-0.0.1.gem pkg/sm-0.0.1.gem

mschmidt:~/work/sm> ls pkg/

sm-0.0.1 sm-0.0.1.gem sm-0.0.1.tgz sm-0.0.1.zip

You can find more tasks on the Internet. For example, there are tasks
that create code statistics or publish files with ssh. Before you write a
new task, find out whether someone else had a similar problem and
solved it already.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=312

PROJECT AUTOMATION WITH RAKE 313

File Lists

Managing software projects often comes down to managing files. Files
have to be created, removed, and compiled. Files depend on each other.
So it’s only natural that rake supports the handling of file lists with a
separate class called FileList.

FileList objects are arrays with some additional methods for managing
files specified by file name patterns. These patterns are evaluated
lazily—when the first object is requested from a FileList object. In a typi-
cal Java project, you will probably find a file list that looks like this:

files = FileList[' build.xml' , ' lib/**/*.jar' , ' src/**/*.java']

Once a FileList has been created, more files can be added with both the
add(*filenames) or include(*filenames) method:

files.add(' README')

files.include(' MANIFEST')

If you pass an array to any of these methods, every element of the array
is added to the file list. Excluding files is possible, too:

files.exclude(' src/**/Test*.java')

By default, file lists will ignore files:

• Containing CVS or .svn in the file path

• Ending with .bak or ~

• Named core

You can clear the default exclude pattern with the clear_ignore_patterns()
method. Calling select_default_ignore_patterns() sets it back to the initial
default value.

When automating software project tasks, you often have to rename files
or change their extensions. FileList supports these actions, too:

File 108 Line 1 files = FileList[' lib/**/*.rb']

- puts "Original files:"

- puts files

- puts

5

- backup_files = files.gsub(/$/, ' .bak')

- puts "Backup files:"

- puts backup_files

- puts

10

- rhtml_files = files.ext(' .rhtml')

- puts "rhtml files:"

- puts rhtml_files

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/fl_test.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=313

TESTING LEGACY APPLICATIONS 314

This prints the following (for the directory of the status monitor):

Original files:

lib/status_monitor.rb

lib/status_monitor_client.rb

Backup files:

lib/status_monitor.rb.bak

lib/status_monitor_client.rb.bak

rhtml files:

lib/status_monitor.rhtml

lib/status_monitor_client.rhtml

FileList has more interesting methods. Look at them before you start
working with rake. It’s an independent class, and maybe you can use it
in your own projects, too.

Conclusion

rake is well accepted in the Ruby community, is actively maintained,
and will certainly become more and more popular (perhaps even out-
side the Ruby world). Interestingly, most of the rake tutorials you can
find on the Internet concentrate on topics such as building C/C++ pro-
grams. That’s nice for demonstrating some of rake’s features, but it’s a
bit misleading, too. rake is in an early stage of development and does
not work well with tools such as GNU’s autoconf, which are important
when building portable tools. At the moment I recommend not using
Rake for anything other than Ruby projects.

Rake might not even be an optimal choice for all Ruby projects. One of
the biggest advantages of the Java build tool ant is that it offers useful
commands such as ftp and scp that are independent of the underlying
operating system. Hence, you do not have to write and maintain .sh and
.bat versions of the same build and deploy tools.

Unfortunately, rake does not work this way. It calls the tools it needs
with the system() call. If no tar command is found in your path, the Pack-

ageTask won’t work. For development teams that are working on differ-
ent operating systems, it might be better to use a platform-independent
tool such as ant (even though its input files are a pain to maintain).

6.6 Testing Legacy Applications

One of the biggest problems when working with existing enterprise soft-
ware is that it is often undocumented and cannot be tested automat-

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=314

TESTING LEGACY APPLICATIONS 315

ically. Whenever you add a column to a database table or change a
configuration file, you have to ask yourself whether everything else
is still working as expected.43 Most legacy code does not have unit
tests because unit testing wasn’t widely used back in the eighties and
nineties (and because programming languages such as C and C++ don’t
make it as convenient as, for example, Ruby does). So, before you
change something in an existing infrastructure, you had better find a
way to check whether everything still works afterward.

Usually, it’s a good compromise to create a tool that performs a system
test instead of creating unit tests from scratch. If, for example, you have
an executable program that expects an input file and sends output to
another file, you can easily create a test tool. Such tools always work
the same way:

1. Create input files for all the things you want to test.

2. Run your program with every input file and store the program’s
output for every test case separately.

3. Check whether the output files are correct—that they contain the
expected results. You have to do this manually, but only once.

4. Whenever you change the program, run it again with all the input
files, and check whether the current output matches the reference
output files you created in the preceding steps.

Let’s create a tool that performs these steps. We’ll use YAML to describe
our tests (see Section 3.5, YAML Ain’t Markup Language (YAML), on
page 139, to learn more about YAML):

File 155 - cmd: ' echo Hello'

out: ' echo_test.out'

- cmd: ' date -u'

out: ' date_test.out'

Every test case is defined by the executable that should be run and by
the output file that should be created or compared to. For demonstra-
tion purposes we chose to test the echo and date commands. Our test
tool looks like this:

File 156 Line 1 require ' yaml'

- require ' logger'

- require ' fileutils'

-

43And you know it probably isn’t!

http://media.pragprog.com/titles/fr_eir/code/tools/testing/suite1.yaml
http://media.pragprog.com/titles/fr_eir/code/tools/testing/test_tool.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=315

TESTING LEGACY APPLICATIONS 316

Executing External Programs

You’ll usually use one of the following methods to execute exter-
nal programs from your Ruby programs:

• system() runs a command and sends its output to STDOUT—
the command’s output and the calling program’s output
go to the same channel. It returns true if the command
was found and could be executed successfully; otherwise,
it returns false:

mschmidt:/tmp> irb

irb(main):001:0> system(' ls /etc/rc*')

/etc/rc /etc/rc.netboot

/etc/rc.common /etc/rc.shutdown

=> true

irb(main):002:0> puts $?.exitstatus

0

=> nil

• %x (and the backquotes—some people call them back-
ticks) run an external program and return its standard out-
put as a string. Depending on the command you’re call-
ing, this string can contain newlines:

mschmidt:/tmp> irb

irb(main):001:0> %x(env | grep TERM)

=> "TERM_PROGRAM=iTerm.app\nTERM=vt100\n"

irb(main):002:0> $?.exitstatus

=> 0

irb(main):003:0> ‘cat /etc/passwd | wc -l‘

=> " 36\n"

irb(main):004:0> $?.exitstatus

=> 0

In all cases the command string will be interpolated; i.e., all
expressions and escape sequences are expanded before the
command is called. The exit status of all these functions can
be found in the global variable $?, which is an instance of class
Process::Status.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=316

TESTING LEGACY APPLICATIONS 317

5 class TestTool

- attr_accessor :create_reference

- attr_accessor :reference_dir, :output_dir

-

- def initialize(options)

10 @create_reference = options[:create_reference]

- @reference_dir = options[:reference_dir]

- FileUtils.mkdir_p(@reference_dir) if @create_reference

- @output_dir = options[:output_dir]

- FileUtils.mkdir_p(@output_dir)

15 @logger = Logger.new(options[:logfile])

- end

-

- def process(input_file)

- @logger.info("Processing #{input_file}.")

20 test_suite = YAML::load_file(input_file)

- test_suite.each do |test_case|

- command = test_case[' cmd']

- output_file = File.join(@output_dir, test_case[' out'])

- process_test_case(command, output_file)

25 end

- end

- def process_test_case(command, output_file)

- begin

- output = exec_command(command)

30 @logger.info("Storing output in #{output_file}.")

- File.open(output_file, ' w') { |f| f.write(output) }

- reference_file = File.join(@reference_dir, output_file)

- if @create_reference

- FileUtils.mkdir_p(File.dirname(reference_file))

35 FileUtils.cp(output_file, reference_file)

- else

- if !FileUtils.compare_file(output_file, reference_file)

- @logger.warn("#{output_file} differs from reference file!")

- else

40 @logger.info("#{output_file} is correct.")

- end

- end

- rescue Exception => ex

- puts ex.backtrace

45 @logger.error(ex.to_s)

- end

- end

- def exec_command(command)

- @logger.info("Running #{command}.")

50 output = ‘#{command}‘

- raise "An error occurred: #{$?}!" if $? != 0

- output

- end

- end

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=317

TESTING LEGACY APPLICATIONS 318

Although the program nearly fills a single page in this book, it is all
you need to perform a system test for typical command-line programs.
In the initialize() method we store some configuration data: the variable
@create_reference specifies whether the test tool was started to create
the reference output files or whether it should check that the system
to be tested still produces the expected results. @reference_dir contains
the directory where the reference files are stored, and @output_dir points
to the directory the output files for a test run are written. Finally, we
create a Logger for writing the test log.

process(input_file) reads one of our YAML test suites. For every command
and its output file it calls process_test_case(command,output_file). This
method is the heart of our TestTool class. It executes the program to
be tested and stores its output in the output file. If the test tool is
in “create reference data” mode, it copies the output file to the direc-
tory containing the reference data. Otherwise, it compares the current
output file with the reference file.

It’s time for a first test run. Let’s create the reference data for our little
test suite:

File 156 Line 1 tt = TestTool.new(

- :reference_dir => ' ./reference' ,

- :create_reference => true,

- :output_dir => ' ./output' ,

5 :logfile => ' test_tool.log'

-)

- tt.process(' suite1.yaml')

In the log file we’ll find the following messages (I’ve adjusted the output
for brevity):

INFO -- : Processing suite1.yaml.

INFO -- : Running echo Hello.

INFO -- : Storing output in ./output/echo_test.out.

INFO -- : Running date -u.

INFO -- : Storing output in ./output/date_test.out.

Nothing special happened—all we did was create the reference data.
echo_test.out contains “Hello\n”, and date_test.out contains something
like “Sun Jan 29 08:04:52 GMT 2006\n.”

Now let’s perform our first system test:

File 156 Line 1 tt.create_reference = false

- tt.process(' suite1.yaml')

This is what we find in our log file:

http://media.pragprog.com/titles/fr_eir/code/tools/testing/test_tool.rb
http://media.pragprog.com/titles/fr_eir/code/tools/testing/test_tool.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=318

TESTING LEGACY APPLICATIONS 319

INFO -- : Processing suite1.yaml.

INFO -- : Running echo Hello.

INFO -- : Storing output in ./output/echo_test.out.

INFO -- : ./output/echo_test.out is correct.

INFO -- : Running date -u.

INFO -- : Storing output in ./output/date_test.out.

WARN -- : ./output/date_test.out differs from reference file!

As expected, the echo command produces the same output as before,
but our test case for the date command failed—which comes as no
surprise, because time flies....

Finally, we add a nice command-line interface to our TestTool class:

File 157 Line 1 require ' getoptlong'

- require ' test_tool'

-

- tt_options = {

5 :reference_dir => ' ./reference' ,

- :create_reference => false,

- :output_dir => ' ./output' ,

- :logfile => ' test_tool.log'

- }

10

- begin

- options = GetoptLong.new(

- [' -create-reference' , ' -c' , GetoptLong::NO_ARGUMENT],

- [' -reference-dir' , ' -r' , GetoptLong::OPTIONAL_ARGUMENT],

15 [' -output-dir' , ' -o' , GetoptLong::OPTIONAL_ARGUMENT],

- [' -logfile' , ' -l' , GetoptLong::OPTIONAL_ARGUMENT]

-)

-

-

20 options.each_option do |name, value|

- case name

- when ' -create-reference'

- tt_options[:create_reference] = true

- when ' -reference-dir'

25 tt_options[:reference_dir] = value

- end

- end

- rescue Exception => ex

- puts "#{File.basename($0)} usage: ..."

30 end

-

- test_tool = TestTool.new(tt_options)

- ARGV.each do |input_file|

- test_tool.process(input_file)

35 end

Now we can run it like this:

http://media.pragprog.com/titles/fr_eir/code/tools/testing/test_tool_runner.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=319

TESTING LEGACY APPLICATIONS 320

mschmidt:/tmp> ruby test_tool_runner.rb -c suite1.yaml

mschmidt:/tmp> ruby test_tool_runner.rb suite1.yaml

Admittedly, the first version of our test tool is pretty simple, but it’s a
good basis for more sophisticated solutions. For example, you could
add preconditions for each input file that create a particular state in a
database or generate some test data. Sometimes it even makes sense
to define a complete domain-specific language (DSL) to describe your
test cases. In addition, you don’t have to restrict yourself to running
executable programs. You can also test HTTP or SOAP services, or you
can test Java programs with Rjb (see Section 5.4, Bridging the Gap, on
page 228).

The quality of a test tool mainly depends on the quality of the test suite,
not on the quality of the tool itself. Only an extensive test suite will give
you the confidence to make changes. It does not have to be complete
right from the beginning—even a small test suite might reveal bugs
quickly—but it should grow over the time.

Conclusion

Although this book tries to show that Ruby is a full-blown programming
language that can be used for implementing nearly all of your system
architecture, we should never forget that it’s also a perfect language
for little scripts that can simplify your working life. In particular, when
testing applications, it can greatly increase your productivity.

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=320

Appendix A

Resources
A.1 Bibliography

[Fow03] Martin Fowler. Patterns of Enterprise Application Architec-

ture. Addison Wesley Longman, Reading, MA, 2003.

[Ker04] Joshua Kerievsky. Refactoring To Patterns. Addison-Wesley,
Reading, MA, 2004.

[Sim02] John E. Simpson. XPath and XPointer. O’Reilly & Asso-
ciates, Inc, Sebastopol, CA, 2002.

[Ste98] W. Richard Stevens. Unix Network Programming, Volume 1:

Networking APIs: Sockets and Xti. Prentice Hall, Englewood
Cliffs, NJ, second edition, 1998.

[STK02] James Snell, Doug Tidwell, and Paul Kulchenko. Program-

ming Web Services with SOAP. O’Reilly & Associates, Inc,
Sebastopol, CA, 2002.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-
matic Programmers, LLC, Raleigh, NC, and Dallas, TX, sec-
ond edition, 2005.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development With Rails. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2005.

Index
Symbols
* (select nodes XPath), 120
+ symbol (YAML), 141
- - double hyphen (daemons), 281
- symbol (YAML), 139, 141
. abbreviation (XPath), 121
.. abbreviation (XPath), 121
// abbreviation (XPath), 121
: character (LDIF), 55
: symbol (YAML), 140
[] (predicates XPath), 120
character (LDIF), 55, 58
$KCODE, 242
%x (Ruby), 316
| (ICU4R), 250
| (XPath), 123

A
A-A-P, 304
Abstraction layers, 25
Accessors, 34
Active Record (Fowler), 33
ActiveDirectory (Ruby/LDAP interface),

61
ActiveLDAP, 70–78

accessors for attributes, 74
ActiveLDAP::Base, 73
ActiveLDAP::Base.connect() method, 72
additional features, 76
allow_anonymous option, 73
:attribute, 74
attributes as array, 76
attributes as string, 76
:attrs parameter, 75
base option, 73
:base parameter, 75
belongs_to() method, 77, 78
bind_format option, 73
:class_name parameter, 77

classes parameter, 74

connect() method, 73, 74

cosine schema, 71

CRUD (Create, Retrieve, Update, and
Delete), 76

delete accounts, 76

DN (distinguished names), 74

dnattr parameter, 74, 75, 77

:filter parameter, 75

find() method, 74, 75

find_all() method, 74, 75

:foreign_key parameter, 77

gidNumber attribute, 77

Group object, 74

has_many() method, 77, 78

initialize, 72

keys, 74

ldap_mapping() method, 74

:local_key parameter, 77

nis schema, 71

object relationships, 76

:objects, 74

password_block option, 73

posixAccount object class, 71

posixGroup object class, 71

prefix parameter, 74, 75

rootdn, 73

:scope parameter, 75

search() method, 75

tag with description, 76

:value, 74

ActiveRecord, 33, 48–51

accessors, 34

add_column() method, 48

add() method, 43

add_flower() method, 44

add_index() method, 48

:all option, 35

ADD() METHOD 323 BLACK

API specification, implementing, 201,
202

attributes, 34
background, 33
belongs_to() method, 42
code block, 44
connect to database, 33
create_table() method, 48
CRUD (Create, Retrieve, Update, and

Delete), 32, 36
delete rows, 35
down() method, 48
drawbacks, 50
drop_table() method, 48
errors, 46
execute() method, 48
find() method, 35, 36, 50
gem, 34
has_and_belongs_to_many() method,

38, 42
has_one() method, 42
id column, 35
JOIN, 39
join tables, 37, 38f, 38–41
Logger class, 156
macros, 42
many-to-many relationship, 37, 38,

41
method_missing() method, 36
name derivation, 34
pattern definition, 30
print_report() method, 44
push_with_attributes() method, 40
read rows, 35
remove() method, 44
remove_column() method, 48
remove_index() method, 48
rename_column() method, 48
reset_column_information() method, 49,

50
Ruby, 201, 202
Ruby mapping, 41
RubyGems, 301
save!() method, 47
save() method, 46
security, 36
SELECT, 39
serve() method, 156
set_primary_key(), 35
SQL, 39
SQL statements, 36

status monitor database, accessing,
155

table names, 37
tables, relationships, 37
to_s(), 34
transaction() method, 44
transactions, 44
up() method, 48–50
update rows, 35
validate() method, 46
validation, 46–47
see also ActiveLDAP

add() method, 313
add_flowers() method, 200
add_method() method, 207, 208
add_servant() method, 207, 213
Addresses

add recipients to existing book, 65
customer address book, 55
directory layout with LDAP, 56
layout of book, 59f
mass mailing, 20
storing, 12
user id, 64

Agile Web Development with Rails

(Thomas), 50, 173
Ant, 173, 304
Aoki, Minero, 288, 296
API (application program interface)

Oracle, 11, 13
Arrays

XML-RPC, 184
Artificial primary keys, 29, 30, 235
ASCII characters, 165
AT cellular command interface, 159
authenticate() method, 176, 177, 215
autocommit, 22
autocommit feature, 22
Autogenerated identifiers, 27, 29
Automatic management system, 28
Automation, see rake

B
basic_auth() method, 176
Berger, Daniel, 282
Berkeley DB (bdb), 56
Binary data, 159
Binary values, 64n
bind() method, 231
Bind variable (SQL), 21
Black, David A., 299

BLOB (BINARY LARGE OBJECT) 324 CSV (COMMA-SEPARATED VALUES)

BLOB (binary large object), 13
body() method, 164
Brannan, Paul, 299
Build processes, 286–303
Builder, 91–95

C
C++ (CORBA services), 234
call() method, 188
call2() method, 188
canonical_log() method, 272
CGI (common gateway interface), 171
CGI Handler (WEBrick), 173f
Character sets, 241–255

collation, 244
I/O classes, 251–253
ICU4R, 248–251
jcode, 246–247
sort order, 244
string to uppercase, 244
Unicode, 248

Character-Separated Values, see CSV
(comma-separated values)

chop!() method, 246
chop() method, 246, 251
classname() method, 233
clear_ignore_patterns() method, 313
CLOB (character large object), 13
code() method, 164, 165
Code block

ActiveRecord, 44
LDAP (Lightweight Directory Access

Protocol), 62, 63
Ruby, 15, 66

Columns
constraints on, 45, 46

COMMIT command, 22
Configuration (Log4r), 272–278
Configuration files, 125
connect() method, 13, 25
Connection handling (with GServer),

146
Connection object, 13, 26, 27
Constraints, 45, 46
CORBA, 179

binary messages, 225
C++, 224
C++ services, 234
client, implementing, 226–228
HTTP server, via WEBrick, 233–234

IDL (interface definition language),
208, 222

IDL compiler, 224
.idl file, 223
IIOP (Internet inter ORB protocol),

222
interface definition (SMS service),

222
interfaces, 222
introduction to, 221
Java client, 224
Java SDK, 224
OMG (object management group),

221
ORB (object request broker), 222
orbd, 226
overview, 223f
Ruby access, 222
Ruby Java Bridge, 228–233
skeletons, 222, 224
SmsServer class, 226
stubs, 222, 224
text messages, 225

Coupon application, 9–23, 23
mass mailing, 20
security, 19
statistics, 23
workflow, 9f

create() method, 31, 186, 217
create_address_book() method, 197
create_connection() method, 25
create_recipient() method, 197, 198
create_flower() method, 200, 204
create_mail() method, 158
create_recipient() method, 197
create_rpc_driver() method, 213
create_session() method, 215
CRUD (Create, Retrieve, Update, and

Delete), 32, 50
REST, 199f

CSV (comma-separated values),
133–139

accessors, 136
code block, 134
CSV library, 134
CSV::Reader class, 134
CSV::Writer class, 134
data, generating, 134
defined, 133
delimiters, 133, 134
expressions, regular, 134

CURSORS 325 DEBUG() METHOD

fs (field separator), 134
generate() method, 134
mailing program, 19
new() class, 136
open() method, 135
parse() method, 135
PragBouquet mailing, 9
processing, 134–136
product classes, 135
rs (record separator), 134
stream parameter, 134
strings, 134
Struct class, 135
to_sym() method, 135

Cursors, 14, 15
Custom databases, 11
Customers

address book, 55
address databases, 12
order tracking, 95–102
payment application (e-score), 83
privacy, 17
statistics, 20, 23
tracking, 20

D
Daemons, 279–281

- - (double hyphen), 281
absolute path, 281
command-line options, 281
control scripts, 280, 281
debugging, 281
introduction to, 279
logger, 281
Ruby package, 280

DAP (Directory Access Protocol), 51
Data binding, 102
Data Definition Language (DDL)

statement, 48
Database driver, 25
Database interface (DBI), 25
Database.instance.connect() method, 30
Database.instance.connection() method,

30
DatabaseHandle, 25
Databases, 8–78

abstraction layers, 27
accessing, 8
artificial primary keys, 29, 30
autogenerated identifiers, 28
automatic management system, 28

C/C++, 28
column constraints, 46
columns, automatic increments, 35
content maintenance, 47
CRUD (Create, Retrieve, Update, and

Delete), 32
customer, 11
customer addresses, 12
data constraints, 45
directories, 51
drivers, 25
Embedded SQL, 28
id values, 32
introduced, 8
migrating data, 28
modeling one-to-one relationship, 41
multiple vendors, 8, 27
MySQL, 17, 155
objects, 32
password for writing to, 56
replacing and moving, 27
resource management, 24
schema maintenance, 47
singleton object, 24
stock management, 42, 44, 45
subselects, 27
transactions, 29
vs socket, 146
writing data, 21

Date formats, 253–255
Dates, 27
Davidson, James Duncan, 132
:days, 16
DBI (database interface)

abstraction layers, 25, 28
block syntax, 26
connect(), 25
connection object, 27
database driver, 25
DatabaseHandle, 25
DBI.connect() method, 26
drivers for, 28
native drivers, 25
performance, 28
prepared statements, 30, 31
select_all() method, 26
StatementHandle, 25

DBI.connect() method, 26
DDL (Data Definition Language)

statement, 48
debug() method, 266

DELETE!() METHOD 326 GSERVER

delete!() method, 246
delete() method, 246, 251
delete_address_book() method, 195
delete_card() method, 181, 187
delete_recipient() method, 195
Delimiters (in CSV), 133
Deployment processes, 286–303

introduction to, 286
Descendant-or-self axis, 118
Deserialization, 102
Directory

entries, 51
LDAP (Lightweight Directory Access

Protocol), 54
services, 61
structure, 51

Directory Access Protocol (DAP), 51
Distributed applications, 179
DN (distinguished names), 54, 58, 60,

62, 65, 74
do_DELETE() method, 195
do_GET() method, 167, 168, 175
do_POST() method, 168
do_PUT() method, 168
DOM, 80, 97
downcase() method, 245, 247
draw_card() method, 180, 187
DRb (distributed Ruby), 235–239
DRb.start.service() method, 235
Drewry, Will, 70
dRuby (distributed Ruby), 235–239

DRbUndumped class, 238
remote reference, 237
security, 239
uses for, 238

DSL (domain-specific language), 320
Duck typing, 149, 150
Dynamic languages

DBI (database interface), 25
objects, 150

E
e-mail

status monitor, 158
to-SMS-gateway, 159

E-score application, 83
E-score architecture, 84f
each_char() method, 247, 249
each_word() method, 249
each_hash() method, 18
Electric XML library, 80

encode() method, 164
encoded() method, 158
Encodings, 241–255

I/O classes, 251–253
ICU4R, 248–251
Unicode, 246–248

End User License Agreements (EULA),
287

Enterprise integration, 3
databases, 5
defined, 3
Ruby standards, 4
tools, 5

Enterprise software, 2–3
defined, 2
dynamic languages, advantages, 3–4
replacing and moving databases, 27
requirements of, 2–3
vs other software, 2

error() method, 266
EULA (end user license agreements),

287
exec() method, 14, 15, 27, 171
execute() method, 27

F
fatal() method, 266
Fatal application errors, 159
fetch(), 14
fmt() method, 250
fork method, 282
format() method, 271
Format specifiers (Log4r), 269f
Formatters (in Log4r), 268–271
Fowler, Chad, 299, 300
Fowler, Martin, 2, 30, 33
func() method, 31

G
get_instance() method, 191
GET request, 162, 168
get_report() method, 200, 283
get_uid() method, 193
gettext() method, 255
Greeting Card Architecture, 181f
Groovy, 229
GServer, 146–150

duck typing, 149
join() method, 147
puts() method, 149, 150
readline() method, 149

HANSSON 327 JAVA

serve() method, 147, 149
start() method, 147

H
Hansson, David Heinemeier, 33
Hash, 19

in MySQL, 18
LDAP, 65, 67

Header handlers, 217
Hook Script API, 297
HTTP, 146

+ sign, 161
add new entries, 196
authentication, 213
basic authentication, 175
client library, 163
CRUD, mapping to REST, 199f
delete methods, 195
GET request, 164
international phone numbers, 161
key,value pairs, 166
layer for CORBA, 222
location header, 197
map address book to, 189–199
method handler, 192
modify entries, 197
POST command, 165
proxy servers, 169
remote procedure calls, 159–164
SMS interface with, 159
status code, 161, 165
testing, 162
URL, use of, 194
URL-encoding, 161, 164
WEBrick, 168

HTTP service status monitor, 166–168

I
I/O classes, 251–253
i18n (internationalization), 240–241

encoding for source code files, 243
encoding for textual data, 241
J2EE, 253
.NET, 253
tips and tricks, 260
see also l10n (localization)

i18n_read() method, 253
ICU (and ICU4R), 248
ICU4R, 248–251

|-characters, 250
chop() method, 251

delete() method, 251
disadvantages of, 251
each_char() method, 249
each_word() method, 249
fmt() method, 250
iterate over characters, 249
sprintf() method, 250
to_u() method, 248
to_s() method, 249
tr() method, 251
u() method, 248
URegexp class, 248
UString class, 248, 249

IDE (integrated development
environments), 304

IDL (interface definition language), 208,
222

IIOP (Internet inter ORB protocol), 222
import() method, 230, 231
index() method, 245
info() method, 266, 268
initialize() method, 32, 167, 191, 272,

318
inspect() method, 246
install_service() method, 284
instance_eval() method, 239
instance_variable_set method, 239
International Component for Unicode

(and ICU4R), 248
International I/O, 251–253
Internationalization, 240–241

see also Localization
Internet Assigned Numbers Authority

(IANA), 52
_invoke() method, 233
IPC (interprocess communication), 179

J
J2EE

i18n, 241, 253
Java

Ant, 132
Electric XML library, 80
encoding of types, 233f
exception, 232
JNI (Java natural interface, 229
JRuby, 229
JVM (Java virtual machine),

229–231
rjb (Ruby Java Bridge), 229

JCODE 328 LDAP (LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL)

RMI (remote method invocation),
179, 221

Ruby Java Bridge, 228–233
Ruby, embed code in, 224
Ruby, integrating, 221–233
status monitor client library,

151–153
toString() method, 150
XmlSchema files, 124
yajb (yet another Java bridge), 229

jcode, 246–247
advantages of, 247
chop!() method, 246
chop() method, 246, 251
delete!() method, 246
delete() method, 246, 251
each_char() method, 247
jcount() method, 247
jlength() method, 247
squeeze!() method, 246
squeeze() method, 246
succ!() method, 246
succ() method, 246
tr!() method, 246
tr() method, 246, 251
tr_s!() method, 246
tr_s() method, 246
Unicode, 248

jcount() method, 247
jlength() method, 247
JNI (Java natural interface), 229
join() method, 147
Jython, 229

K
Kain, Jim, 11
Key/value pairs

XML-RPC, 184
Key:value pairs (in LDAP), 58
Kilmer, Richard, 299

L
l10n (localization), 240–241

tips and tricks, 260
last_insert_id() method, 28
LDAP (Lightweight Directory Access

Protocol), 51–78
: character (LDIF), 55
character (LDIF), 55
ABSTRACT, 52
ActiveLDAP, 70–78

add() method, 65
add recipients to an existing book,

65
address book layout, 59f
address books, 56
arrays, 62, 64
attribute modifications, 64
attributes, 51, 53, 64
attributes_only, 63
AUXILIARY, 53
-b uid option, 60
base_dn, 62
Berkeley DB (bdb), 56
binary values, 64n
bind() method, 62, 65
cn (common name), 54
code block, 62, 63, 66
connection object, 62
core schema, 52, 56
create entries, 63
create() method, 64
database password, 56
delete() method, 69
DESC keyword, 52, 53
directory entries, 51
directory layout, 56
directory structure, 57
DN (distinguished names), 54, 58,

60, 62, 65, 69
each() method, 67, 68
each() method (private), 67
each_recipient() method, 67
EQUALITY, 53
filter, 62
hash, 65, 67
hashes, 63
initialize() method, 64
inject() method, 68
key:value pairs, 58
LDAP::Conn.add() method, 65
ldapadd command, 58
LDAP::Conn.modify(), 69
LDAP::Mod, 64
LDAPv3 service, 62
LDIF, 68
LDIF (LDAP Data Interchange

Format), 54, 68
MAY, 53
MUST, 53
NAME keyword, 52, 53
nil, 62, 63

LDAPSEARCH COMMAND 329 LOGGER

object classes, 51, 53
(objectclass=*) option, 60
OID (object identifier), 52
OpenLDAP, 56
options, 60
overview of, 51–55
print method, 66, 67
RDN (relative distinguished names),

54
root DN, 65
root entry, 54
root node, 56
Ruby/LDAP, 61–69
-s base option, 60
-s one option, 60
-s sub option, 60
schemas, 51
scope, 62
search filter, 62
search() method, 62, 63
seconds, 63
sn attribute, 67
sort_attribute, 63
sort_proc, 63
STRUCTURAL, 53
SUBSTR, 53
SUP keyword, 52
SYNTAX keyword, 53
udn() method, 65
uid attributes, 56, 58
useconds, 63
User class, 64
-x option, 60

ldapsearch command, 59
LDIF (LDAP Data Interchange Format),

54
LDIF (LDAP Data Interchange Format)

file, 57–58
Legacy applications, testing, 314–320

DSL (domain-specific language), 320
executing external programs, 316
log file, 318
reference data, 318
test log, 317
TestTool class, 318
tools for, 315

length() method, 242, 246
listFiles() method, 231
load() method, 230
load_xml_file() method, 273
load_xml_string() method, 273

Localization, 240–241
Location paths, 117
Location steps, 117
Log files, 261
Log4r, 264–279

app logger, 276
attributes, 275
canonical_log() method, 272
child loggers, 267
configuration, 272–278
configuration sections, 275
Configurator, 272
console outputter, 275
db logger, 276
debug() method, 266
default levels, 266
error() method, 266
fatal() method, 266
format() method, 271
format exceptions, 270
format specifiers, 269f
formatters, 268–271
hierarchy of levels, defining, 266,

267
info() method, 266, 268
initialize() method, 272
level names, 267
Log4r classes, require, 276
Log4r objects, 275
logfile outputter, 275
vs Logger, 262, 279
Logger class, 265–268
Logger with two outputters, 274
Outputter class, 265
outputters, 271–272
PatternFormat class, 268, 270
printf() method, 268
Ruby gem, 265
super() method, 272
timestamps, formatting of, 268, 270
to_s() method, 268
usec() method, 270
vs Logger, 263, 264
warn() method, 266
XML configuration, 272, 273
XML outputters, 273f
XML parameters, 277
YAML, 276–278
YAML configuration, 272
see also Logger

Logger

LOGGER CLASS 330 ORACLE

vs Log4r, 279
Logger class, 261–264

configuration options, lack of, 263
to files, 262
IO object, logging to, 263
log level, 262
log lines, 263
vs Log4r, 262
new() method, 262
rotating loggers, 263
strftime() method, 264
timestamp format, 264
vs Log4r, 264
vs Logger, 263

Logging, 261–279
daemons application, 281
drawbacks, 278
to files with Logger, 262
Log files, purposes of, 261
log levels, 262
Log4r, 264–279
Logger class, 261–264
with Logger, 279
test tool logger, 318

login() method, 214, 215
log() method, 151, 153, 155
Lugovoi, Nikolai, 248

M
Macdonald, Ian, 61, 70
Machine objects, 255
make, 304
Martin, Robert, 146
Masahiro, Tomita, 17
Masato, Yoshida, 11, 248
McLean, Grant, 124
Megginson, David, 97
message() method, 164
method_missing() method, 187
Mind Electric, 80
Mixed content, 101
mount() method, 176
mount_proc() method, 176
Mower, Matt, 17
Mutoh, Masao, 255
MySQL

background information, 17
databases, 155
portable statements, 27
PragBouquet database, 10
prepared statements, 18, 31

Ruby/MySQL, 17
singleton, 30
table, moving to Oracle, 26

MySQL/Ruby, 17

N
n_() method, 258
Nakamura, Hiroshi, 134, 205
.NET

i18n, 253
i18n support, 241
XmlSchema files, 124

Netscape (Ruby/LDAP interface), 61
Networks

ASCII, 165
background information, 145–146
e-mail, 158
proxy servers, 169

Neumann, Michael, 185
new() method, 13, 25, 262
new_with_sig() method, 232, 233
Node sets (XPath), 118
num_rows() method, 19

O
Object identifier (OID), 52
Object-relational mappers, 28–51
OCI (Oracle Call InterfaceI), 13
OID (object identifier), 52
OMG (object management group), 221
on_init() method, 206
on_simple_inbound method, 217, 219
One-to-one relationship, 41
only_at() method, 271
OpenLDAP, 56

code block, 62
connection object, 62
ldapsearch command, 59
LDAPv3 service, 62
Ruby/LDAP interface with, 61
see also LDAP (Lightweight Directory

Access Protocol)
OpenSSL, 160
Oracle

autogeneration feature, 28
connection object, 22
cursors, 14
DBI (database interface), 26
grouping SQL statements, 22
migration to MySQL, 28
optimization, 15

Oracle (MASATO) 331 RAKE

portable statements, 27
PragBouquet database, 10
SQL*Plus, 10

Oracle (Masato), 11
Oracle Call Interface (OCI), 13
ORB (object request broker), 222
Ordering process, stock, 41
Outputters (Log4r), 271–272, 273f

P
parse() method, 16, 27
parse_recipient() method, 197
parse_user() method, 197
Patterns of Enterprise Application

Architecture (Fowler), 2, 30
peer_cert() method, 160
Perl

dynamic language, advantages, 4
status monitor client, 153–154
XML::Simple, 124
YAML, 139

PHP (YAML), 139
Placeholders, 16, 36
Portable object, 255
Portable object template, 255
Portable software, 28
Portable statements, 27
PragBouquet (example company)

address book add entries, 196
address book delete method, 195
address book modify entries, 197
API of stock class, refactoring, 200
authentication for stock control

server, 213–220
automated ordering, 48
convert customer addresses into

XML, 84
coupon application, 9–23
customer account data, 70
customer address book, 55
DBI (database interface), 25
e-score application, 83
e-score architecture, 84f
greeting card application, 179–189
greeting card architecture, 181f
greeting card printing (daemons

process), 280
infrastructure, 6n
Java client, 151
map address book to HTTP, 189–199
mass mailing program, 9

OpenLDAP server, 70
orders, automatic management

system, 28
overview, 5–6
performance of XML processing, 102
Perl client, 153
remote procedure calls, 159–164
Ruby client, 151
server for greeting card application,

185–189
service control panel observer, 285f
SMSC, 159–164
sorting customer list, 17
status monitor clients, 150–155
status monitor, create, 147–150
status monitor, services test, 282
stock management, 42, 44, 45
tracking orders, 95–102
user accounts (web), 70

Predicates, 120
Prepared statements, 15, 18
Primary keys, artificial, 29
print() method, 187
print_card() method, 181, 187
print_report() method, 200
printf() method, 253, 268
Privacy, 17
process() method, 318
process_test_case() method, 318
Programming Ruby (Thomas), 5, 146
proxy() method, 188
proxy2() method, 188
puts() method, 149, 150, 261, 279
Python

dynamic language, advantages, 4
YAML, 139

Q
query() method, 18
Query execution plan, 15

R
RAA (Ruby application library), 287
rake, 303–314

-T, 308
actions, 307–312
classes, 305
clean task, 311
clear_ignore_patterns() method, 313
clobber task, 311
directory task, 310

RDN (RELATIVE DISTINGUISHED NAMES) 332 REXML

file task, 310
file lists, 313–314
file name patterns, 313
FileList class, 313
GemPackageTask, 311
IDE (integrated development

environments), 304
lib directory, 307
libraries, 307
managing files, 313
methods, 305
namespaces, 309
package tasks, 308
pros and cons, 314
rakefiles, 304–307
RDocTask, 311
rule task, 310
select_default_ignore_patterns() method,

313
sh() method, 310
standard tasks, 310
syntax, 306f
task() method, 305
tasks, 305, 307–312
tutorials, 314
Unix commands, 308

RDN (relative distinguished names), 54
readline() method, 149, 150
Refactoring to Patterns (Kerievsky), 95
RELAX NG (Regular Language for XML,

New Generation), 128–130
< characters, 130
comments, 130
compact syntax, 128
parsing, 130
read_doc() method, 130
syntax styles, 128
translate requirements into XML

syntax, 129
validate against schema, 129
whitespace, 130
XML header, 130
XML syntax, 128

Remote procedure calls
testing, 162

Remote procedure calls (HTTP)
SMSC, 159–164

remove_flowers() method, 200
require_gem() method, 302
REST (Representational State

Transfer), 194

add new entries, 196
CRUD mapping, 199f
delete methods, 195
location header, 197
modify entries, 197
standards, 199

reverse() method, 245, 246
REXML

support for RELAX NG, 128
array parameter, 114
attlistdecl() method, 106, 111
attributes accessor, 98
block parameter, 114
cdata() method, 105, 110
characters() method, 110
children, 98
comment() method, 104, 105, 110
comments in RELAX NG, 130
doctype() method, 105, 110
DTD handling, 113
each_element() method, 98, 99
elementdecl() method, 106, 110
elements, 98
end_document() method, 109
end_element() method, 110
end_prefix_mapping() method, 110
entity() method, 106
entitydecl() method, 106, 111
instruction() method, 105
invoke stream parser, 103
listen() method, 114–115
listener parameter, 114
method_missing() method, 103, 107
new() method, 98
notationdecl() method, 106, 111
processing_ method, 110
read_doc() method, 130
RELAX NG (Regular Language for

XML, New Generation), 128–130
REXML::StreamListener, 107
root() method, 98
root element, 98
SAX2, 109–115
start_document() method, 109
start_element() method, 110
start_prefix_mapping() method, 110
stream parsing, 102–109
support for RELAX NG, 130
symbol parameter, 114
tag_end() method, 104, 105, 109
tag_start() method, 104, 109

REXML::STREAMLISTENER 333 RUBY

text() method, 104, 105, 109
UTF-8 character set, 91
validating documents, 128
whitespace, 130
XML header, 130
XML processing, 96
XML, turn objects into, 192
xmldecl() method, 103, 104
xpath() method, 123
XPath support, 116, 123
see also RELAX NG (Regular

Language for XML, New
Generation)

REXML::StreamListener, 107
Rjb::import(classname), 232
RMI (remote method invocation), 221
ROLLBACK, 22
Root DN (distinguished names), 65
RPC (Sun’s remote procedure call), 179
Ruby, 149

$KCODE, 242
%x, 316
connect() method, 13
ActiveLDAP, 70–78
ActiveLDAP Gem, 72
ActiveRecord, 155, 201, 202
ActiveRecord Gem, 34
add() method, 313
address book, 56
API of Rjb library, 230
Application Archive, 4
artificial primary keys, 235
attlistdecl() method, 106, 111
authenticate() method, 215
Authenticator class (SOAP), 214
basic_auth() method, 176
body() method, 164
build and deployment processes,

286–303
Builder, 91–95
cdata!() method, 94
cdata() method, 105, 110
central installation, 287
character set encodings, 251–253
character sets, 241–255
characters() method, 110
chop!() method, 246
chop() method, 246, 251
classes for storage, 100
clear_ignore_patterns() method, 313
code() method, 164, 165

code block, 15, 66
comment!() method, 94
comment() method, 104, 105, 110
compilation and build management,

304
CORBA access, 222
CORBA binding, 224
CORBA to HTTP via WEBrick,

233–234
create server automatically from

class, 207
create_mail() method, 158
create_session() method, 215
Daemons package, 280
daemons, 279–281
database drivers, 25
Date class, 253
date formats, 253–255
DateTime class, 253
DBD modules, 25
DBI (database interface), 25
declare!() method, 94
delete!() method, 246
delete() method, 246, 251
deserialization, 102
Distributed Ruby (DRb), 179
do_GET() method, 167, 168, 175
do_POST() method, 168
do_PUT() method, 168
doctype() method, 105, 110
downcase() method, 245, 247
DRbUndumped class, 238
dRuby (distributed Ruby), 235–239
duck typing, 150
dynamic language, advantages, 3–4
each_char() method, 247, 249
each_parcel() method, 102
each_word() method, 249
echo command, 319
echo server (example), 146
elementdecl() method, 106, 110
encode() method, 164
encoded() method, 158
encodings, 241–255
end_document() method, 109
end_element() method, 110
end_prefix_mapping() method, 110
entity() method, 106
entitydecl() method, 106, 111
exec() method, 14, 15
executing external programs, 316

RUBY 334 RUBY

factory classes, 217
fmt() method, 250
fork() method, 282
Gem, 124
generate code, 210
gettext() method, 255
header handler (SOAP), 218
HTTP client library, 163
HTTP server, 174
HTTP services, accessing, 159–166
HTTP services, creating, 166–168
I/O classes, 251–253
i18n, 247, 260
i18n support, 241
i18n_read() method, 253
Iconv, 252, 253
ICU4R, 248–251
indent option, 92
index() method, 245
initialize() method, 102, 167, 318
InputStream, 252
insert tags for XML, 93
inspect() method, 246
install_service() method, 284
instruction() method, 105
iterators, 14
Java exception, simulate, 232
Java interface, associate Ruby class,

231
Java type encoding, 232
Java, integrating, 221–233
jcode, 246–247
jcount() method, 247
jlength() method, 247
JRuby, 229
JVM (Java virtual machine), 230,

231
l10n, 260
language translation, 255
LDAP, 66
Legacy applications, testing,

314–320
length() method, 242, 246
load_xml_file() method, 273
load_xml_string() method, 273
Log4r, 264–279
Logger class, 261–264
Logger class, 156
logger object, 148
login() method, 215
mapping from ActiveRecord, 41

margin option, 93
message() method, 164
method_missing() method, 92, 103,

107
migration advantages, 48
modeling one-to-one relationship, 41
mount() method, 176
mount_proc() method, 176
MySQL support, 17
MySQL/Ruby, 17
n_() method, 258
NET::SMTP, 158
network services, creating, 236
new() method, 13, 262
notationdecl() method, 106, 111
object-relational mappers, 33
objects, 150
only_at() method, 271
OpenSSL, 160
Oracle modules, 11–13
pack() method, 91
parcel tracking with REXML, 100
peer_cert() method, 160
prepared statements (in MySQL), 18
process() method, 318
process_test_case() method, 318
processing_instruction() method, 110
protocol standards, support, 179
puts() method, 149, 261, 279
RAA (Ruby application library), 287
rake, 303–314
rake syntax, 306f
readline() method, 149
remote reference with dRuby, 237
require_gem() method, 302
REST support, 199
reverse() method, 245, 246
REXML stream parser, 103
Rjb methods, 232
Rjb signature, rules for, 232
rjb (Ruby Java Bridge), 229
Ruby Java Bridge, 228–233
Ruby-GetText, 255–257
Ruby/Java hybrid, 230
Ruby/LDAP, 61–69
Ruby/MySQL, 17
RubyGems, 299–303
rule() method, 310
security with dRuby, 239
select_default_ignore_patterns() method,

313

RUBY APPLICATION ARCHIVE 335 RUBY-GETTEXT

send() method, 159
send_sms() method, 164, 165
send_mail() method, 158
SequenceManager class, 236
serve() method, 149, 167
Services (for Windows), 281–286
setup.rb, 288–299
sh() method, 310
singleton object, 24
skeleton (server), 212
SOAP soap4r library, 204
sprintf() method, 250
squeeze!() method, 246
squeeze() method, 246
start() method, 164, 285
start_document() method, 109
start_element() method, 110
start_prefix_mapping() method, 110
status monitor, 147
status monitor client, 151
Status MonitorClient, 151
stop() method, 286
strftime() method, 254, 264
String objects, 243
Struct class, 100
succ() method, 246
sudo command, 291
support for DTD, 79
support for validation, 79
support for XSLT, 79
system() method, 130, 131, 294, 314,

316
tag() method, 87–89
tag_end() method, 104, 105, 109
tag_start() method, 104, 109
target!() method, 92
target option, 92
task() method, 305, 306
TCP servers, creating, 146
TCPSocket, 151
test tool logger, 318
test tool, creating, 315
test tool, example, 315–317
test_stock_service() method, 283
TestTool class, 318, 319
text!() method, 94
text() method, 101, 104, 105, 109
thread-safe, 236
Time class, 253
time formats, 253–255
tmail library, 288

to_u() method, 248
to_xml() method, 90
to_event() method, 102
to_s() method, 100, 249, 279
to_upper() method, 260
to_xml() method, 85, 86, 91
tr!() method, 246
tr() method, 246, 251
tr_s!() method, 246
tr_s() method, 246
U*, 245
u() method, 246, 248
Unicode, 248
Unicode strings, manipulating, 247
unpack() method, 91, 245
unsigned integer values representing

UTF-8* characters, 245
upcase method, 243, 247
UString, 246
UTF-8 strings, 245
validating XML documents, 128
validation, 46
variables in Log4r configuration files,

277
vs C++, 150
vs Java, 150
WEBrick, 166–173
WEBricklets, 173–175
win32utils, 282
write() method, 90
.wsdl files, 211–213
wsdl2ruby.rb, 210
X.509 certificate, 160
xml_in() method, 126, 127
XML parsers, 80
XML support, 79
xmldecl() method, 103, 104
xmlrpc4r, 185–189
XmlSchema files, 124
XmlSimple, 124
yajb (yet another Java bridge), 229
YAML, 139–144
YAML test suite, 318
yield() method, 102
see also RubyGems

Ruby Application Archive, 4
Ruby Application Library (RAA), 287
Ruby Java Bridge, 228–233
Ruby on Rails, 33, 56
Ruby-GetText, 255–257

array syntax, 259

RUBY/LDAP 336 SETUP.RB

machine object (.mo) file, 257, 258
parameters, 256
plural forms, 259
portable object (.po) file, 257, 259
test example, 258
translation example, 256–257, 259

Ruby/LDAP, 61–70
attributes parameter, 75
base_dn parameter, 75
directory service, 61
filter parameter, 75
scope parameter, 75

Ruby/MySQL, 17
Ruby/OCI8 (Takehiro), 11
Ruby/OCI8 driver, 13
Ruby9i (Kain), 11
RubyForge, 4
RubyGems, 299–303

ActiveSupport, 301
compared with setup.rb, 303
documentation system, 300
.gem file, 300
gem list, 299
Gems server, 301
how to use, 300
invoke Ruby interpreter, 302
list option, 301
open source software, 303
operators, 302
pessimistic operator, 303
proxy server, 301
rake command, install, 300
require ’rubygems’, 302
root user, 301
sudo command, 301
update option, 301
user guide, 300
version requirements, 302
versions, 302

rule() method, 310
Russel, Sean, 80, 112

S
SAX2, 80, 109–115

background information, 109, 112
code block, 112, 113
compared with REXML Stream

Parsing, 112
parsing example, 111
text nodes, 112, 113
whitespace, 113

Schemas, 51
maintaining, 47
validating with xmllint, 130
validating XML documents, 129

Security
authentication for stock control

server, 213–220
coupon application, 19
dRuby (distributed Ruby), 239
HTTP basic authentication, 175
password (LDAP), 56
prepared statements, 15
SQL, 15
SQL injection, 31, 36
SSL (secure sockets layer), 160
WEBrick, 176

Seki, Masatoshi, 235
select_all() method, 26
select_default_ignore_patterns() method,

313
send() method, 159
send_sms() method, 164, 165
send_mail() method, 158
sendBinarySms() method, 225
sendTextSms() method, 225
serve() method, 147, 149, 156, 167
service_init() method, 283
service_main() method, 283
Services (for Windows), 281–286

absolute file name, 284
control scripts, 282
external control, consequences of,

284
introduction to, 279
logging, 283
service control panel observer, 285f
service names, 284
starting a service, 285
stock server, 283
stopping a service, 286
uninstall a service, 286
win32utils, 282
Windows interface, implementing,

282
working directory, 283
see also Daemons

set_price() method, 200, 209, 210
setup.rb, 287–299

alternatives to, 299
compared with RubyGems, 303
create MySQL database, 296

SGML (STANDARD GENERALIZED MARKUP LANGUAGE) 337 SQL STATEMENTS

directory layout, 295
directory mapping, typical, 295f
directory names containing blanks,

294
execute Ruby scripts, 297
global options, 291
Hook Script API, 297
lib/sm directory, 297
options, complete list, 292
status monitor package, 296
subdirectories, 295
task-specific options, 291
test status monitor installation, 298f
testing installation, 297
tmail library, 288
usage, 294

SGML (Standard Generalized Markup
Language), 81

sh() method, 310
Short message peer-to-peer protocol

(SMPP), 159
Short message service center (SMSC),

159
HTTP, 159

Short messages (SMS), 159
Simple data types (XML-RPC), 183f
simulate_request() method, 150
Singleton, 125
Singleton objects, 24, 30
Small, John W., 146
SMPP (short message peer-to-peer

protocol), 159
SMS (short messages), 159

binary data, 159
international phone numbers, 161
status monitor testing, 162f
testing (HTML page), 162
textual data, 159

SMSC (short message service center),
159

HTTP, 159
testing, 162

SOAP, 146, 179
authenticate() method, 215
authentication for clients, 214
authentication for stock control

server, 213–220
Authenticator class, 214
background information, 202–207
child, 204
create_session() method, 215

elements, 203
header, 216
header handler, 218, 219
headers, 217, 220
headers (transport for meta

information), 214
industry standard, 220
languages, programming, 210
login() method, 215
messages, 210
method parameter, 203
mustunderstand, 217
Response, 204
return value, 204
skeleton (server), 212
soap4r, 220
soap4r Ruby library, 204
textual protocol, 221
W3C specification, 202
.wsdl files, 213
WSDL (Web Services Description

Language), 208–213
XML-RPC comparison, 202
XmlSchema, 210

soap4r, 205
authentication for HTTP, 213
factory classes, 217
header handlers, 217
headers, 215, 217
proxy, 207
server instance, 206
SIGINT signal, 206
SOAP::RPC::StandaloneServer, 206
test client, 206
web service creation, 205
wsdl2ruby.rb, 210

soap4r library
parameters, 206

Sockets, 146–158
esprintf() method, 250
SQL

autocommit, 22
bind variable, 21
embedded, 28
injection, 15, 31, 36
joining tables, 14
portable statements, 27
SELECT option, 60

SQL statements
bind parameters, 21
grouping in Oracle, 22

SQL*PLUS 338 UNICODE

strings, 19

SQL*Plus

PragBouquet coupon application, 10

statistics for coupon application, 23

squeeze!() method, 246

squeeze() method, 246

SSL (secure sockets layer), 160

Standard Generalized Markup
Language (SGML), 81

Standard product, 11

start() method, 147, 164, 285

StatementHandle, 25

Statistics, 20

Status Monitor

class, 153

clients, creating, 150–155

creating, 147

duck typing, 149

e-mail, 158

fatal application errors, 159

features, adding, 155

HTTP service, 166–168

log() method, 151, 153, 155

package withsetup.rb, 296

serve() method, 149

services test, 282

simulate_request() method, 150

STDOUT, 147

StringIO, 149

telnet, 148

test installation of, 298f

testing remote procedure calls, 162f

V0.0.1b, 147

web access, 166

Stock management, 42, 44, 45

stop() method, 286

Stream parsing, 97, 102–109

defined, 103

strftime() method, 253, 254, 264

StringIO, 149, 150

Structs, 184

Subselects, 27

succ!() method, 246

succ() method, 246

super() method, 272

Syntax for dates, 27

syslogd, 147

system() method, 314, 316

system method, 294

T
Tables

constraints on, 45, 46
joining with SQL, 14

Takehiro, Kubo, 11, 13
task() method, 306
Tateishi, Takaaki, 61
TCP server, creating, 147
TCPSocket, 151
telnet, 148, 161
test_stock_service() method, 283
throw() method, 232
Time formats, 253–255
tmail, 288–291

C extensions, 290
configuring, 290, 291f
copy to Ruby library directory, 290
directory names containing blanks,

294
downloading from Internet, 289f
global options(setup.rb), 291
incompatibilities, 290
installation, 288, 293f
library, 288
root password, 291
setup, 292f
setup.rb, 288, 289
sudo command, 291
task-specific options(setup.rb), 291,

292
to_u method, 248
to_cn() method, 193
to_s() method, 34, 249, 268, 279
to_upper() method, 260
to_xml() method, 191–193
Torres, Leon, 265
toString() method (in Java), 150
tr!() method, 246
tr() method, 246, 251
tr_s!() method, 246
tr_s() method, 246
Tree parsers, 96–102

DOM, 97
Tree structure, 81f

XML, 81

U
u() method, 246
u method, 248
Uehlinger, Thomas, 280
Unicode, 248

UNIQUE IDS 339 XML

Unique IDs, 29
Unix daemons, 280–281
Unix Network Programming (Stevens),

146, 280
unload() method, 231
unpack() method, 245
upcase method, 243, 247
URL encoding, 164, 165
usec() method, 270

V
Validation, 46
Vim, 173

W
W3C, 79, 97
Wall, Larry, 154
warn() method, 266
WEBrick, 166–178

Apache web, 176
attributes, 170
authenticate() method, 176, 177
CGI scripts, executing, 171
CGIHandler, 171, 172, 173f
cookies, 170
dispatching, 168
ERBHandler, 173
exec() method, 171
FancyIndexing, 176
FileHandler, 173
GET request, 171
HandlerCallback, 176
hash objects, 170
HEAD command, 170
header, 170
htpasswd, 176
HTTP basic authentication, 175
HTTP requests (rules), 168
HTTP server, implementing, 233–234
HTTPAuth, 175
HTTPRequest, 170
HTTPResponse, 170
map address book to HTTP, 189–199
methods, 170
OPTIONS command, 170
POST requests, 171
query, 170
security, 176
serving files, 171
servlet creation, 191
WEBricklets, 173–175

xmlrpc4r, 186
WEBricklets, 173–175
Weirich, Jim, 91, 299, 304
why the lucky stiff

(YAML parser), 139
Widenius, Monty, 17
win32utils, 282–286

get_report() method, 283
install_service() method, 284
Logger, 283
service_init() method, 283
service_main() method, 283
start() method, 285
StockServerObserver, 283
stop() method, 286
test_stock_service() method, 283

Winer, Dave, 181
WSDL (Web Services Description

Language), 208–213
elements, 208, 209
generate code, 210
interface, 209
interface description, 208
service binding, 210
service description, 208
XML namespaces, 208

wsdl2ruby.rb, 210

X
X.500 directory specification, 51
X.509 certificate, 160
XML, 79–144

alternatives to, 132–133
attributes, 82
attributes vs elements, 82–83
automation, 124
Builder, 91–95
cdata!() method, 94
CDATA section, insert, 94
characteristics of, 79
comment!() method, 94
data binding, 102
declare!() method, 94
deserialization, 102
document processing, 95–115
documents, generating, 83–95
DTD, 105, 106
DTD declarations, inserting, 94
indent option, 92
international character sets, 79
listener class, 106, 107

XML-RPC 340 XPATH

margin option, 93
method_missing() method, 92
mixed content, 94, 101
nesting, 82
notations in DTD, 106
overview of, 81–83
pack() method, 91
parameters in Log4r, 277
parsing schemes, 96
REXML, processing with, 96
REXML::StreamListener, 107
SAX2, 109–115
SAX2 parser, example, 111
serial processing, 103
SGML, 81
startElement() method, 82, 83
stream parsers, 96, 97, 102–109
strings to generate documents, 84
tag() method, 87–89
target!() method, 92
target option, 92
text!() method, 94
to_xml() method, 85, 86, 90, 91
tracking orders, 95
tree parsers, 96–102
unpack() method, 91
validating documents, 127–132
W3C, 79, 97
well-formedness, 81
when to avoid, 132–133
whitespace, 130
widespread use of, 79
write() method, 90
XML::Simple (Perl module), 124
xmllint, 130–131
XmlSchema files, 124
XmlSimple, 124–127
XPath, 115–124
XSL (eXtensible Stylesheet

Language), 133
YAML, 139–144
see also XML-RPC, see also

XmlSimple, see also XPath, see

also YAML (YAML Ain’t Markup
Language)

XML-RPC, 179
architecture, 182f, 182
arrays, 184
data types, 184
faults, 184, 185
overview, 181–185

s/RPC2, 187
services, 187
simple data types, 183f
SOAP comparison, 202
structs, 184
textual protocol, 221
xmlrpc4r, 185–189

xmllint, 130–131
xmlrpc4r, 185–189

default handler, 187
delete_card() method, 187
draw_card() method, 187
print() method, 187
proxy, 188
server reference, 188
server types, 188
WEBrick, 186

XmlSchema files, 124
XmlSimple, 124–127

arrays, 126
attribute values, 126
elements, 126
hashes, 125, 126
IO object, 127
key_attr option, 126
nil, 127
production base password

(accessing), 126, 127
string, 127
xml_in() method, 126, 127
XML source (for xml_in() method), 127

XPath, 115–124
!= (not equal to), 122f
* symbol, 116, 120
. abbreviation, 121
.. abbreviation, 121
// abbreviation, 118, 120, 121
= (equal to), 122f
[] predicates, 120
| (union operator), 123
> (greater than), 122f
>= (greater than or equal), 122f
< (less than), 122f
<= (less than or equal), 122f
ancestor axis, 121
ancestor-or-self axis, 121
attribute axis, 121
axes, 118, 121f
boolean, 120, 122
boolean functions, 123
boolean operators, 122f

XPath and XPointer (SIMPSON) 341 YAML (YAML AIN’T MARKUP LANGUAGE)

child axis, 121
compared with Unix, 118
context, 118
defined, 115
descendant axis, 121
descendant-or-self axis, 118, 121
each() method, 116
expressions, 117
first() method, 116
following axis, 121
following-sibling axis, 121
functions, defining, 122–123
location paths, 117
location steps, 117
lvalue op rvalue, 120
match() method, 116, 117
methods (REXML), 116
namespace axis, 121
namespaces, 116
node set functions, 122
node sets, 99, 117, 118, 120
nodes, 118
number functions, 123
parent axis, 121
preceding axis, 121
preceding-sibling axis, 121
predicates, 120
REXML support for, 123
root element, 117
self axis, 121
string functions, 122
tracking results, 119f
tree structure, 118, 119f
xpath() method, 123

XPath and XPointer (Simpson), 116

Y
YAML (YAML Ain’t Markup Language),

139–144
- symbol, 139
. (period), 141
: (colons), 140, 141
array elements, 139
arrays, 142
begin attribute, 142
Boolean values, 141
data (serializing, deserializing), 143
data types, 140
dates, 142
encodes objects, 143
end attribute, 142
excl attribute, 142
expressions (regular), 142
Float objects, 141
Hash objects, 140, 141
hashes, 142
indentation, 142
integer objects, 140
key/value pairs, 141, 142
leading spaces, 142
Log4r, 276–278
objects (yamlfied), 142
parser, 139
Range objects, 142
Ruby array, 139
sign characters, 141
string object, 140
Struct objects, 142
symbols, 140
timestamps, 142
to_yaml method, 140

	Enterprise Integration with Ruby
	Contents
	Foreword
	1 Introduction
	2 Databases
	3 Processing XML
	4 Low-Ceremony Distributed Applications
	5 Distributed Applications with RPC
	6 Tools and Techniques
	A Resources
	Index

