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Preface

Programmed cell death is a fascinating process common to all multicellular

organisms. Programmed cell death results in the elimination of cells via a complex

but a highly defined programme. Defects in the regulation of programmed cell

death are associated with serious diseases such as cancer, autoimmunity, AIDS, and

neurodegeneration.

Apoptosis has been the best studied type of programmed cell death so far. Cells

that undergo apoptosis are characterized by chromatin condensation, nuclear frag-

mentation, membrane blebbing, cell shrinkage, and formation of apoptotic bodies.

The central role in apoptosis execution belongs to cysteine-specific aspartate

proteases (caspases). Caspases are enzymes that orchestrate apoptosis via cleavage

of cellular substrates.

There are two major pathways of apoptosis: intrinsic and extrinsic. The intrinsic

pathway is triggered via chemotherapeutic drugs, irradiation, and growth factor

withdrawal. These stimuli lead to mitochondrial outer membrane permeabilization

(MOMP), which results in cytochrome C release and caspase activation. In the

extrinsic apoptotic pathway, the caspase cascade is triggered by signals emanating

from the cell-surface death receptors (DR) triggered by death ligands (DL)

(TNF, CD95L/FasL, TRAIL). The DR stimulation results in the formation of the

death-inducing signaling complex (DISC) and subsequent caspase activation.

Despite the fact that signaling pathways of apoptosis have been described with

an impressive level of detail, the understanding of apoptosis regulation in quantita-

tive terms has been missing until recently. There were many unclear points: when

does a cell decide that it has to die, what are the rate-limiting steps in apoptosis, is

there a point of no return, how can cell death be accelerated or blocked, and many

others. From another side the years of apoptosis research resulted in a profound

understanding of how signaling in apoptosis occurs. All major apoptotic complexes

have been identified from the DISC to the apoptosome, including the death

receptors and adaptors and the most important enzymes and their inhibitors.

Therefore, apoptosis was an ideal system to go into quantitative studies using the

emerging field of systems biology.

v



Systems biology combines mathematical modeling with experimental

approaches in a closed loop cycle (Fig. 1). On the modeling side there are a number

of mathematical formalisms, e.g., Ordinary Differential Equations (ODEs), Bool-

ean models, etc., that allow to address different biological questions. Experimental

work for systems biology of apoptosis involves the generation of quantitative data

using different apoptotic assays.

EXPERIMENTS

PREDICTIONS

MODEL

ANALYSIS

• Quantitative Western Blots
• Cell death assays
• Single cell analysis

• Ordinary Differential Equations(ODEs)
• Bayesian modeling
• Boolean modeling

Fig. 1 Systems biology of apoptosis. Schematic view of systems biology of apoptosis

The development of this field in the recent years is fascinating. Studies of

apoptosis using systems biology have provided novel insights into the quantitative

regulation of cell death. In this book we describe contemporary systems biology

studies devoted to cell death signaling both from experimental and modeling sides

and focus on the question how systems biology helps to understand life/death

decisions made in the cell and how to develop new approaches to rational treatment

strategies.

Chapter 1 starts with an overview of the major types of mathematical modeling

used in apoptosis and cell death. A simple minimalistic model of CD95/

Fas-induced apoptosis is designed to introduce the most commonly used mathe-

matical formalism, ordinary differential equations (ODEs). Besides ODEs, other

modeling approaches are discussed in depth as well.

In Chap. 2 we focus on the biology of the extrinsic apoptotic pathway and its

modeling by Ordinary Differential Equations (ODEs). We discuss new insights in

the extrinsic death signaling which have been obtained using modeling.

Chapter 3 is devoted to model reduction approaches and uses the extrinsic

apoptotic signaling as an example. This chapter provides a beautiful example of
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how complex biological signaling can be simplified using mathematical modeling

and how a simplified model can provide new insights in complex biological

questions. The first three chapters provide a major insight into the modeling of

extrinsic pathways.

Chapter 4 covers the molecular mechanisms of the mitochondrial apoptotic

pathway and the major models describing this pathway. An emerging question in

the field how bioenergetics influence the cell death pathway is also addressed in

detail.

Chapter 5 further addresses the molecular mechanisms of extrinsic and intrinsic

apoptosis in the context of modeling hepatocytes. Notably, an enormous progress

has been recently made in modeling the signaling pathways in the liver and, in

particular, cell death in the liver. This work is essential to define new therapeutic

strategies for liver regeneration and liver disease.

Chapter 6 explores other forms of cell death, e.g., necrosis, autophagy, their

cross talk with apoptosis, as well as the way to model cross talk between different

cell types using Boolean modeling.

Chapter 7 describes a single cell analysis. Single cell analysis is compared to

bulk approaches and the importance to follow a single cell rather than a cell

population is discussed.

Chapter 8 discusses a systems-level understanding of cytokine–cytokine cross

talk, namely how the cross talk between different cytokine pathways could be

modeled on intracellular and extracellular levels. The importance of this cross

talk for development and disease is also highlighted.

Chapter 9 deals with an important question in the field: the importance of

searching for new components of cell death networks using different screening

techniques. The unraveling of new components versus the investigation of dynamic

models, which include all known components of the network, is a highly discussed

question.

Taken together, the different chapters of the book describe in detail the remark-

able progress which was made in recent years in systems biology of apoptosis and

show new challenges in this field that can provide even more exciting insights into

cell death regulation.
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Chapter 1

Modeling Formalisms in Systems

Biology of Apoptosis

Stefan Kallenberger and Stefan Legewie

Abstract Apoptosis is a form of cellular suicide central to various aspects in

biology including tissue homeostasis, embryonic development, carcinogenesis,

and neurodegenerative disorders. Quantitative modeling approaches provided valu-

able insights into the digital and irreversible nature of apoptosis initiation. In this

chapter, we summarize the mathematical formalisms used in systems biology of

apoptosis. In addition, we give an overview of apoptosis-related research questions

that can be addressed by modeling. Moreover, we review top-down and bottom-up

modeling approaches applied to apoptosis, and particularly focus on ordinary

differential equation (ODE) modeling. Basic concepts such as bistability and

sensitivity analysis are introduced, and a review of apoptosis-related ODE models

is provided. We describe bistability, temporal switching, crosstalk between death

and survival, and also discuss approaches to model cell-to-cell variability.

1.1 Why Modeling Apoptosis?

Apoptosis is a phenomenologically easily observable process. However, under-

standing its mechanistic basis is challenging owing to complex interactions of a

large number of signaling proteins and emergent behavior at the systems level.

After applying a sufficiently strong death-inducing stimulus to a population of cells,

irreversible signaling events are initiated leading to the characteristic appearance of

an apoptotic cell: Membrane blebbing proceeds, the cell shrinks, and organelles

disintegrate. Apoptosis occurs for extrinsic stimuli on a timescale of hours and for

intrinsic stimuli of days, and is accessible to several experimental techniques

S. Kallenberger

Division of Theoretical Bioinformatics, DKFZ and BioQuant, Heidelberg, Germany

S. Legewie (*)

Institute of Molecular Biology, Mainz, Germany

e-mail: s.legewie@imb-mainz.de

I.N. Lavrik (ed.), Systems Biology of Apoptosis, DOI 10.1007/978-1-4614-4009-3_1,
# Springer Science+Business Media New York 2013

1

mailto:s.legewie@imb-mainz.de


allowing for the acquisition of quantitative data. The classical techniques

of Western blotting and immunoprecipitation enable coincidental acquisition of

coarsely time-resolved population data for proteins and their intermediate

processing stages. Fluorescence-based flow cytometry techniques allow measuring

the protein concentrations at the single-cell level. A major disadvantage of flow

cytometry is the inability of tracking time-dependent behavior of individual cells.

This problem is overcome by fluorescence-based microscopic methods that were

developed to obtain quantitative data of single cells with high temporal resolution:

The activity of caspases can be monitored with FRET reporters or smart probes that

harbor caspase cleavage sites. Moreover, the mitochondrial pathway of apoptosis

can be monitored by measuring Bax translocation, outer membrane permeabi-

lization, and Smac release. The wide range of available experimental techniques

and the detailed knowledge about molecular events render apoptosis a system

suitable for modeling analyses. Apoptosis induced by death ligands is one of the

few cell fate decisions known to proceed by purely posttranscriptional mechanisms,

thus further simplifying the formulation of mathematical models.

Even though individual steps of the apoptotic signal transduction cascades are

well understood, we lack insights into the system properties and the dynamics of the

death decision. Questions to be addressed in apoptosis by systems biology

approaches include:

1. How do cells ensure that apoptosis robustly occurs in all-or-none manner? What

is the “point-of-no-return” representing irreversibility in apoptosis? Which

signaling motifs are responsible for such digital and history-dependent behav-

ior? As detailed below, mechanisms proposed using kinetic modeling include

bistability due to positive feedback and sigmoidal responses arising from com-

petitive inhibition.

2. How is specificity in the apoptosis vs. survival responses ensured? A topic of

particular interest for apoptosis modeling is that apoptotic stimuli trigger sur-

vival or death signaling depending on initial conditions and the stimulus

strength. At least in some cases, the inhibitory crosstalk between survival and

cell death signaling pathways appears to be mutually exclusive at the single-cell

level (Nair et al. 2004), implying that death and survival represent different

attractor states for the cell. Modeling can be employed to identify critical nodes

of signaling crosstalk that tip the balance between cell death and survival.

Furthermore, the interlocked regulation of cell cycle is a topic followed by

modelers. In this context the characterization of attractors, fixed points, and

limit cycles is of interest.

3. What are the principles underlying cell-to-cell variability in the apoptosis

response of a cell population? Why do cell types differ in their sensitivity to

death-inducing stimuli? Currently, several therapeutic applications are tested to

stimulate apoptosis in cancer cells, to decelerate tumor growth, or to prevent

cells, preferentially neurons or cardiomyocytes, from undergoing programmed

cell death. Modeling approaches could help to plan therapies and to predict the

outcome on a population of cells. Particularly by distinguishing cell death
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kinetics and the behavioral heterogeneity of different cell types, and predicting

drug sensitization by cotreatments, modeling could be a valuable tool. We will

describe and review strategies to predict cell death kinetics of single cells and of

heterogeneous cell populations.

First we will give an overview of the basics of mathematical formalisms and then

review successful application of ODE apoptosis models to resolve biological

questions.

1.2 Overview of Mathematical Formalisms

Analyzing the cell on a systems view can be done by top-down and bottom-up

approaches. Detailed mechanistic mathematical models constructed from the

molecular characteristics of individual proteins (“bottom-up models”) have only

been developed for metabolic and signaling networks. In contrast, transcriptional

regulatory networks, and the link between signaling networks and ultimate cellular

decisions are best tackled by statistical methods which integrate huge amounts of

data but are mostly phenomenological (“top-down modeling”).

Top-down approaches examine the cell on a global level, treating individual

regulatory modules as black boxes that are not analyzed mechanistically but only

characterized with respect to input–output behavior. Thus, top-down methods typi-

cally do not require much prior knowledge about the system, so that many signaling

and/or metabolic pathways can be studied at once. Most top-down approaches are

solely data-driven and rely on high throughput screens of cellular behavior (gene

expression profiling, proteomics, siRNA screening, sequencing, and affinity assays).

Typically, the ultimate goal of top-down approaches is to identify biologically

relevant patterns and correlations to the data (e.g., disease marker gene identification)

or to predict new molecular interactions (e.g., reverse engineering algorithms).

Bottom-up approaches focus on well-characterized parts of the biochemical

regulatory network, and are typically based on the assumption that the properties

of these subnetworks (or “modules”) can be studied in isolation. Based on prior

knowledge and on time-resolved experimental data, mechanistic mathematical

models describing the interactions of individual proteins in the module are

constructed (e.g., by using sets of coupled differential equations). The goal of

bottom-up modeling is to identify physiologically relevant systems-level properties

emerging from complex interactions within the network (e.g., feedback).

Apoptosis-inducing signaling cascades, especially those induced by death

ligands, were mainly studied using bottom-up modeling approaches, since (1) the

molecular events are well characterized; (2) transcriptional events can be

neglected; (3) the ultimate death decision often closely correlates with all-or-

none activation of effector caspases, implying that statistical methods are not

required to link signaling to cellular phenotypes. However, bottom-up approaches

to apoptosis are diverse and the methodology of choice depends on the complexity
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of the signaling network under study, the available experimental data, and the

question to be addressed by modeling. Boolean approaches are typically employed

to qualitatively analyze the (quasi-)static behavior of large apoptosis-survival

crosstalk networks which comprise many molecular species. Ordinary differential

equation (ODE) models allow for the quantitative description of network dynamics

but typically require knowledge about many kinetic parameters which either limits

the network size and/or requires huge amounts of experimental data. Standard

ODE modeling may even not be sufficient if spatiotemporally resolved single-cell

data is available (1) spatial gradients within the cell can be modeled using

subcellular compartment ODE models or partial differential equations (PDEs).

(2) Cell-to-cell variability may arise due to stochastic dynamics of the apoptotic

signaling cascade (“intrinsic noise”) or due to cell-to-cell variability in the expres-

sion of pathway components (“extrinsic noise”). While ODE models with ran-

domly sampled initial protein concentrations can be employed to simulate extrinsic

noise, stochastic simulation algorithms are required to understand intrinsic noise.

In the following, we will give an overview of top-down and bottom-up modeling

approaches applied to apoptosis signaling, before discussing applications of ODE

models in more detail.

1.2.1 Linear Regression Models

To systematically analyze how the pro- and anti-apoptotic cytokines TNF, EGF,

and insulin impinge on the cellular apoptosis decision, Janes et al. (2005) generated

a compendium of costimulation measurements. Based on the assumption that

simple linear combinations of signaling activity profiles account for apoptosis

initiation, they employed a top-down modeling approach known as partial least-

squares regression (PLSR) which does not require prior knowledge. PLSR

modeling calculates super axes as an orthogonal set of “principal components,”

which contain linear combinations of the original signaling protein activities

weighted by their contribution to the apoptotic outputs. Thereby, the dimension

of the data matrix is reduced to a small set of informative super axes, which can be

used to predict apoptosis initiation for any experimental condition, provided that

measurements of signaling species used for model training are available. PLSR has

been successfully applied to other large-scale apoptosis datasets, and provided

insights into complex phenomena such as autocrine amplification loops (Janes

et al. 2006). For a more detailed description, please, see the chapter by Deppmann

and Janes. A major drawback of PLSR is the lack of mechanistic insights into (1)

how signaling activity patterns are generated and (2) how signaling activities are

integrated, e.g., at the level of caspases, to control the death decision. Therefore, the

next section will be devoted to bottom-up approaches applied to apoptosis which

take into account mechanisms of apoptosis initiation.

4 S. Kallenberger and S. Legewie



1.2.2 Boolean Models

Recent biomedical research revealed a plethora of protein–protein and enzymatic

interactions, and thus extensively characterized the topology of the intracellular

signaling network. However, quantitative information characterizing the affinity

of protein–protein interactions or enzyme kinetic parameters is still scarce. More-

over, quantitative characterization is often performed using recombinant proteins

in vitro, with questionable relevance to the in vivo situation. Simulations of large-

scale networks is therefore often performed using Boolean or logic modeling, a

qualitative approach that is based on network topology, but does not take into

account quantitative features of individual reactions. Instead protein activities are

represented by nodes which can either be on or off (activity 0 or 1), depending on

the activities of upstream input nodes. Logic rules are applied at each iteration: For

example, in a so-called AND-gate, the node Z will be activated if and only if both
input nodesX and Y are active. In contrast, anOR-gate simply requires eitherX or Y
to be active. Thus, Boolean rules can be used to qualitatively represent real

biochemical mechanisms such as functional redundancy (OR-gate) or coincidence
detection (AND-gate), the latter, arising from sequential processing by two distinct

enzymes. Since logical rules are applied iteratively, the approach can be used

to study temporal phenomena such as adaptation.Moreover, Boolean networks can

exhibit nonlinear dynamic phenomena such as oscillations, and stable vs. unstable
attractors. Please see chapters by Schlatter et al. and Calzone et al. for a detailed

review on Boolean network dynamics.

A number of Boolean modeling studies have been presented in the context of

apoptosis (Calzone et al. 2010; Mai and Liu 2009; Philippi et al. 2009; Schlatter

et al. 2009; Zhang et al. 2008). All these studies analyzed the crosstalk of apoptosis

signaling via caspases and survival pathways such as NF-кB signaling. The main

goal was the identification of stable states in the systems, representing cell fates

such as apoptosis, necrosis, and survival. Calzone et al. (2010) and Mai and Liu

(2009) focused on signaling upon death receptor engagement. They showed that the

stable states of the apoptosis network are robust and investigated the requirements

for irreversibility in the apoptosis decision. Schlatter et al. (2009) and Philippi et al.

(2009) took into account costimulation with prodeath and prosurvival ligands, and

experimentally confirmed key model predictions. Zhang et al. (2008) analyzed

antigen-induced survival signaling network in T cell large granular lymphocyte

(T-LGL) leukemia cells including transcriptional induction of cytokines and auto-

crine stimulation events. Model predictions could be confirmed in leukemic cells

isolated from patients, thus contributing to our understanding of signaling deregu-

lation in the disease. Taken together, Boolean modeling approaches provided

valuable insights into apoptosis at multiple timescales and for various experimental

settings.
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1.2.3 Quantitative Modeling Approaches

Boolean models are inherently limited in their capability of quantitatively describing

the temporal dynamics of biochemical networks. In the context of perturbation

analysis, Boolean approaches are restricted to the simulation of complete elimina-

tion of network nodes and/or reactions; thus, gradual phenomena such as dosage

compensation cannot be studied. Moreover, the qualitative effects of perturbations

as revealed by Boolean modeling are often intuitively clear. Thus, in many cases,

nontrivial and experimentally testable predictions require quantitative modeling

approaches such as ODE and PDE modeling, as well as stochastic simulations.

ODE approaches, described in detail below, assume that large numbers of

signaling molecules are present within the cell, so that random fluctuations in

reaction events can be neglected by averaging over the whole molecule population.

Moreover, in ODE modeling it is assumed that the cell represents a well-stirred

reactor, implying that diffusion effects do not matter. In apoptosis networks, these

assumptions are likely to be fulfilled, as caspase and their regulators are typically

expressed at the number of several hundred thousand molecules per cell (Svingen

et al. 2004). Furthermore, the time scale of apoptosis induction (hours) is slow

relative to the time scale of protein diffusion within a cell (milliseconds to seconds);

therefore, spatial gradients of apoptosis signaling molecules are unlikely to play a

decisive role in apoptosis initiation.

Nonetheless, reaction–diffusion models allowed investigating molecular

mechanisms of apoptosis induction: Using live-cell imaging with high temporal

resolution, Rehm and colleagues (2009) observed that cytochrome c release from

mitochondria during apoptosis occurs in spatial waves that propagate from a

subcellular mitochondrial pool to the remainder of the mitochondrial population.

PDE modeling was employed to investigate the dynamics of nonsteady state

diffusion. This approach revealed that localized release and diffusion of inducers

of mitochondrial outer membrane permeabilization (MOMP) alone was insufficient

to explain the data. However, then the authors took into account that MOMP

inducers bind to mitochondria, and modeling indicated that this absorption shapes

the dynamics of cytochrome c release, thus providing insights into molecular

mechanisms controlling apoptosis induction.

Owing to low molecule numbers of Bcl-2 family members, stochastic

simulations using cellular automaton approaches were performed by Chen et al.

(2007a), Siehs et al. (2002), and D€ussmann et al. (2010) to describe the dynamics of

MOMP. Chen et al. (2007a) focused on bistability and concluded that the stochastic

system attained two distinct stable states much like the deterministic case; thus

robustness of switching towards molecular noise could be confirmed. D€ussmann

et al. (2010) compared their model to measurements in cells expressing Bax-FRET

probes monitoring Bax oligomerization. Their model could provide an explanation

for pore formation upon Bax accumulation and oligomerization in the outer

mitochondria membrane.
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Live cell imaging tools are increasingly important and allow the analysis

of apoptosis at the single cell level or even with subcellular resolution. Thus,

stochastic and reaction–diffusion modeling are likely to become central to apopto-

sis modeling. For example, death receptors are frequently expressed at low levels

and form localized (nano-) clusters on the cell membrane (Dumitru and Gulbins

2006), implying that deterministic ODE approaches will fail, especially upon weak

stimulation. Stochastic and reaction–diffusion modeling will reveal underlying

mechanisms and, more importantly, predict strategies for intervention for testing

the functional relevance of such phenomena.

1.3 Basic Concepts in ODE Modeling

In this section, we give an overview of the most important steps in ODE model that

include implementation, optimization, and analysis.

1.3.1 Building Blocks of Biochemical Models

The kinetics of chemical reactions can be described with reaction rates dependent

on the concentrations of educts and products. Specifically, one typically assumes

that the number of product molecules synthesized in a certain time interval is

linearly dependent on the concentrations of educt molecules (law of mass action).

The net influx or efflux arising from all participating reactions determines the rate

of change in each molecular species. Thus, ODE modeling is based on the assump-

tion that the temporal derivatives of molecule concentrations equal the sum of all

relevant reaction rates (Table 1.1). Larger biochemical signal transduction

networks are therefore reflected using coupled ODEs.

Table 1.1 lists elementary reactions in biochemical networks: Most steps in ODE

models are described as unimolecular reactions that could represent irreversible

reactions representing processes as degradation or substrate cleavage (1.1) or

reversible transitions between certain states of a protein (1.2). Other common

elements are the reversible assembly of two proteins, such as ligand binding to a

receptor (1.3), reversible dimerization of two monomers (1.4), and

enzyme–catalyzed reactions (1.5). In many cases, the full enzyme catalysis mecha-

nism (enzyme + substrate $ enzyme–substrate complex ! enzyme + product)

can be described by a single overall reaction rate, e.g., by using the

Michaelis–Menten approximation (see biophysical textbooks).
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1.3.2 Simulation

Based on such simple building blocks, mechanistic models of biochemical reaction

networks can be implemented. As a demonstrative example, we constructed a

model of caspase activation by death ligands (Fig. 1.1a), where each reaction is

described by an equation similar to those in Table 1.1. Signaling is initiated by

reversible ligand binding to the death receptor, followed by formation of the

so-called death-inducing signaling complex (DISC), recruitment of procaspase-

8 and procaspase-3 cleavage by active caspase-8. The model consists of the

stimulus (L; assumed to have a constant concentration in the medium), eight

dynamical variables (R, LR, DISC, C8, DISC.C8, C8*, C3, C3*), and seven kinetic

parameters (k1+, k1�, k2, k3+, k3�, k4, k5). The kinetic parameters and initial

concentrations were taken from previous theoretical and experimental studies

(Albeck et al. 2008b; Bentele et al. 2004; Neumann et al. 2010; Rehm et al.

2009; Stennicke et al. 1998).

Using numerical integration techniques, the temporal evolution of the model

species to extracellular stimulation by death ligands can be simulated (Fig. 1.1b).

The simplest numerical integrationmethod, known as the Eulermethod, approximates

the solution of the differential equation dx/dt ¼ f(x) iteratively by the discretization

xðtiþ1Þ ¼ xðtiÞ þ f ðxðtiÞÞ _ Dt; (1.6)

where x(ti) is the solution at time point ti and Dt ¼ ti+1 � ti. In practice, the solution
of the differential equation at any time point is obtained by iteratively applying

(1.6) starting from the initial conditions at t ¼ 0. The smaller the time increment

Dt is chosen, the more accurate solution might be obtained. However, in general,

the numerical error of the Euler method increases with increasing number of

Table 1.1 Exemplary components of a model graph

Unimolecular irreversible

reaction

dA
dt

¼ �kA (1.1)

Unimolecular reversible

reaction

dA2

dt
¼ kþA1 � k�A2 (1.2)

Reversible ligand–receptor

binding

dRL

dt
¼ kþR � L� k�RL (1.3)

dRL

dt
¼ 0 , Kb ¼ kþ

k�
¼ RL

R � L
Dimerization

dD

dt
¼ kþM2 (1.4)

Enzyme–catalyzed

reaction

dB

dt
¼ kAE

E ¼ const.

(1.5)
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Fig. 1.1 Exemplary model of extrinsic apoptosis and predicted trajectories for its variables.

(a) The model graph represents five reactions that are translated into a set of eight ODEs. The

ligand in the medium is assumed to be present in excess, and is therefore not described by a

differential equation, but considered to be constant. The model variables are receptor (R with

R0 ¼ 100 nM), receptor ligand complexes (RL), DISCs, procaspase-8 (C8 with C80 ¼ 250 nM),

procaspase-8 bound to DISCs (DISC.C8), active caspase-8 (C8*), procaspase-3 (C3 with C30
¼ 120 nM), and active caspase-3 (C3*). (b) Simulated model trajectories for a step-like increase in

the death ligand stimulus (see legend for ligand concentrations)
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numerical integration steps. Thus, more accurate algorithms are usually applied,

e.g., the Runge–Kutta method which uses a weighted average of slopes instead of a

single slope f(x(ti)) (see textbooks on ODEs). Corresponding numerical integration

algorithms are integrated in standard mathematical computing software packages

(e.g., Matlab, Maple, Mathematica).

The simulations in Fig. 1.1b reveal that the concentrations in the receptor–ligand

module no longer change at the later time points, indicating that this subnetwork

has reached (quasi-) steady state. At steady state the influxes and effluxes of each

molecule even out, implying that the receptor–ligand system fulfills dRL/dt ¼ 0.

Steady states represent important characteristics of biochemical reaction networks

and are amenable to mathematical analysis, since the differential equation system

simplifies to a set of algebraic conditions. In the context of cellular signaling, steady

states are often analyzed to show that the system can reversibly switch between two

distinct states, or undergo an irreversible switch as in the case of cell death

(see Sect. 1.4).

1.3.3 Parameter Estimation, Identifiability, and Model Selection

In many cases, the model parameters pj comprising initial concentrations of model

species and kinetic constants are not known, but needed to be estimated by fitting

the model to experimental data using optimization algorithms. One problem in

fitting is that the model is formulated in absolute concentrations of the species,

while experimental data in biology can often only be obtained in relative units (e.g.,

relative intensities of immunoblot bands). In this case, the model trajectories are

multiplied by a fitted scaling factor to match the experimental measurements. Thus,

by introducing another degree of freedom, only the shape of the model trajectory is

adjusted to the data, but not its absolute value(s). The parameters are chosen in such

a way that they optimize the correspondence between the measurements Eij of them
experimentally species at times tj for j ¼ 1 . . . n with standard deviations si and the
corresponding simulated values Si. Most often the maximum likelihood estimator

w2 ¼
Xm
i¼1

Xn
j¼1

Eij � Sij
sij

� �2

; (1.7)

is used for this purpose (Press et al. 1992; Raue et al. 2009; Timmer et al. 2004).

A reasonable model fit to N data points in total is obtained if the condition w2 < N
holds, indicating that the model is on average within the experimental error. Several

algorithms for parameter estimation have been proposed including simulated

annealing, genetic algorithms, and the Levenberg–Marquardt method (Levenberg

1944; Marquardt 1963). The maximum likelihood estimator (1.7) of the fitted

models can be used to discriminate between different model topologies: Specifi-

cally, the presence or absence of certain biochemical mechanisms can be verified or
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neglected by comparing model variants with respect to their ability to fit the

experimental data. In particular, one often compares so-called nested model variants,

where the larger variant includes all reactions of a smaller one. Model selection

approaches such as the Akaike information criterion and the likelihood ratio test

weigh the goodness of fit (w2) with the number of model parameters, and allow the

discrimination of nested models. Specifically, the larger model (which includes the

topology of the smaller model) is rejected in case it only improves the fit within

experimental error (“overfitting”). A major problem in parameter estimation is

nonidentifiability of parameters: typically, not all parameters can be unambiguously

determined from experimental data (“nonidentifiability”). This leads to uncertainties

in model predictions. Tools have been developed to calculate (1) which parameters

can be identified from the data and (2) confidence intervals for model predictions

(Raue et al. 2009, 2010). In the context of model discrimination, experimental

conditions can be predicted where the distance between simulated trajectories

that result from different topologies is maximal; these conditions are then used to

experimentally discriminate between model topologies, and to further refine the

parameter estimation results (iterative cycle between experiment and model-based

experimental design).

1.3.4 Sensitivity Analysis

Once a realistic model has been established, it might be important to identify points

of fragility in the network to guide model reduction, experimental design or

pharmacological intervention, and to understand robustness principles. The behav-

ior of a signaling system described with a set of coupled ODEs changes when initial

concentrations of the model species or kinetic constants are altered. Sensitivity

analysis systematically quantifies such responses by calculating how the concentra-

tion of the model species ci reacts to alterations in each parameter pj.

sij ¼ @ci=ci
@pj=pj

: (1.8)

The sensitivities sij (1.8) are often calculated at a steady state. To characterize

time-dependent sensitivity, Bentele et al. (2004) introduced an absolute sensitivity

Sij (1.9) which sums up the sensitivities over the whole trajectories.

Sij ¼
ð
jsijjdt: (1.9)

In the case of programmed cell death, the ligand concentration needs to exceed a

certain threshold to induce cell death. Sensitivity analysis provides a useful tool

to investigate how this threshold and thus cellular susceptibility to apoptosis
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could be modulated pharmacologically (Hua et al. 2005; Legewie et al. 2006).

Moreover, sensitivity analysis has been applied to identify reactions determining

whether a cell dies by type I or type II cell death (Okazaki et al. 2008), and to reduce

model complexity (Bentele et al. 2004).

In the theoretical study of Aldridge et al. (2006) another method based on direct

finite–time Lyapunov exponents (DLEs) was presented to provide an extension to

common sensitivity analysis methods. This method is used to analyze dynamic

changes in an apoptosis signaling network upon simultaneous perturbations of

several model components. The paradigm that the decision of a cell towards or

against apoptosis does not depend on the concentration of a single signaling protein

but rather is defined by a combination of several initial concentrations also

motivated another theoretical study (Hua et al. 2006). An ODE model was used

to simulate model trajectories for various initial protein concentrations, and a

decision tree was constructed reflecting outcomes for given initial concentration

sets by using the classification and regression trees method (Breiman et al. 1984).

Thus, the outcome to an apoptotic stimulus could be predicted depending on a set of

relative signaling protein concentrations with a certain accuracy.

1.4 Conceptual Model of an Irreversible Switch in Apoptosis

Programmed cell death should be initiated in all-or-none manner, as incomplete

cellular demise may support the development of diseases such as cancer. Accord-

ingly, single-cell measurements revealed that caspase activation occurs in a digital

manner (Albeck et al. 2008b). In this section, we will derive a minimal model of

apoptosis initiation by caspases which exhibits two stable steady states

(“bistability”) that show very different caspase activation levels, corresponding to

life and death.

Consider the simplified topology of extrinsic apoptosis (Fig. 1.2a), which does

not take into account details of CD95L binding to its receptor and DISC formation,

but describes all these steps by a single reaction step. Accordingly, the differential

equation for caspase-3 (1.10) comprises a linear term f, which describes ligand-

induced cleavage of procaspase-3 into caspase-3 (1.11). Active caspase-3 is known

to enhance its own production as a part of a positive amplification loop, for

example, by enhancing caspase-8 activation or cytochrome c release from

mitochondria. We assume that caspase-3 feedback exhibits cooperativity, implying

that increasing the concentration of C3* facilitates further caspase-3 activation in a

highly nonlinear manner. In the model, we described feedback by a Hill equation
term g (1.12), which shows a steep, cooperative response for increasing values of

the exponent m. The term h (1.13) describes the degradation of caspase-3.

dC3�

dt
¼ f þ gðC3�Þ þ hðC3�Þ; (1.10)
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Fig. 1.2 Switch-like activation of caspase-3 arising from positive feedback and cooperativity.

(a) Model graph of CD95 ligand (CD95L) dependent activation, cooperative self-activation, and

degradation of active caspase-3 (C3*) with kinetic constants k1–k4. (b) Concentration time series

of active caspase-3 at different concentrations of the CD95 ligand with parameters k1 ¼ 0.1,

k2 ¼ k3 ¼ 1, k4 ¼ 0.2, and m ¼ 10. Above a critical concentration of CD95L, a switch-like

increase of the concentration of active caspase-3 occurs. (c and d) Temporal derivative of active

caspase-3 dependent on the concentration of caspase-3 for different concentrations of the CD95

ligand at the same value for exponent m (c) and for different exponents m (d) representing no

(m ¼ 1), intermediate (m ¼ 3) or strong cooperativity (m ¼ 10) at the same CD95L concentra-

tion. Stable steady state concentrations of C3* are denoted with filled black circles, unstable

steady states with empty circles. (e) Signal response diagram of caspase-3 activation. The solid
and dashed lines represent stable and unstable steady states of caspase-3, respectively. Upon

increase of CD95L concentrations when a certain ligand concentration is reached the lower of

the previously two first steady states vanishes and the system abruptly switches to the remaining

higher steady state concentration. Even after removal of the stimulus this higher steady state is

not left representing an irreversible switch. Arrows denote locations of hypothetic trajectories

and their directions from certain start values of C3* and CD95L. Their lengths correspond to

dC3*/dt
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f ¼ k1CD95L; (1.11)

gðC3�Þ ¼ k2
C3�m

C3�m þ k3
; (1.12)

hðC3�Þ ¼ �k4C3
�: (1.13)

In Fig. 1.2b time series of active caspase-3 at different concentrations of the

CD95L are shown that result from this exemplary model structure. Above a certain

threshold ligand concentration and after a lag phase, C3* increases abruptly to a

higher steady state level as observed experimentally at the single cell level (Albeck

et al. 2008b; Rehm et al. 2002). In this model, trajectories that reach higher C3*

levels could be regarded as “cell death” and such that remain at a lower level as

“survival.”

Figures 1.2b, c illustrate the dynamic behavior of the system. Figure 1.2b shows

the trajectories of active caspase-3: low ligand concentrations do not induce a

remarkable C3* activation; above a critical CD95L concentration the system

switches to higher C3* concentrations. At all ligand concentrations, the system

reaches a steady state after sufficiently long times (Fig. 1.2b). Figure 1.2c shows the

dependency of the rate dC3*/dt on the caspase-3 concentration, and provides

insights into the system steady states which fulfill the condition dC3*/dt ¼ 0.

In particular, the irreversible nature of apoptosis initiation can be understood:

In the absence of stimulation (CD95L ¼ 0), the model system exhibits a steady

state with no caspase activation (C3* ¼ 0); this life steady state is stable, since for

small perturbations (C3* > 0), the caspase-3 pool will decay (dC3*/dt < 0). More-

over, the system exhibits two non-zero steady states (C3* ¼ 1; C3* ¼ 5) even in

the absence of ligand, but these can only be reached if caspase-3 was previously

activated strongly (remember that the caspase-3 pool will monotonously decay for

C3* < 1). The intermediate steady state is unstable (dC3*/dt < 0 for C3* < 1 and

dC3*/dt > 0 for C3* > 1), while the upper steady state is stable (dC3*/dt > 0 for

C3* < 5 and dC3*/dt < 0 for C3* > 5). The existence of a stable death state even

in the absence of CD95L implies that our model captures the irreversible nature of

apoptosis induction.

What are the requirements to reach this death state by external ligand stimula-

tion? Does the system exhibit a sharp threshold? Increasing the CD95L concentra-

tion shifts the life steady state to low, nonzero caspase-3 activation levels. Once

CD95L exceeds a critical concentration (CD95Lcrit), the lower two steady states

suddenly disappear, and the system shifts to the death state (dC3*/dt > 0 for

C3* < 6 in case of CD95L ¼ 1). Thus, a sudden, qualitative change in the system

behavior is observed at CD95Lcrit, and this phenomenon is known as a bifurcation.

In biological terms, all-or-none caspase-3 activation from nonapoptotic to apoptotic

levels occurs at the critical CD95L concentration. Once the system passed the

threshold, caspase-3 will be activated irreversibly even if the ligand is removed.
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Figure 1.2d illustrates the relevance of the exponentm for the existence of steady

states. In the absence of cooperativity (m ¼ 1), C3* exhibits only one stable

steady state concentration, thus implying gradual and reversible caspase activation.

This demonstrates that nonlinear, sigmoidal positive feedback is essential for

all-or-none and irreversible apoptosis initiation.

Figure 1.2e shows the steady states of the system as a more common

dose–response diagram of caspase-3 activation. The stable steady states are

indicated as solid black lines, while the unstable steady state is shown as a dashed

line. Moreover, the flow of the system (dC3*/dt) is indicated for any initial C3*

concentration (arrows). As expected, this representation includes the same

features as Fig. 1.2c: Starting from a low ligand concentration the system is

kept at low C3* concentrations. At a critical CD95L threshold concentration, the

lower steady states disappears, and C3* switches in an all-or-none manner to a

high concentration level. The unstable steady state (dashed line) represents a so-

called separatrix of the system: the concentration of C3* decreases below the

unstable steady state, while it increases otherwise. This implies that caspase-3

activation in our model is an irreversible process; once the higher steady state has

been reached removing the ligand is insufficient to cross the separatrix, and the high

steady state remains. We conclude that our model can reproduce the experimental

observation that apoptosis initiation is an irreversible process characterized by

a point-of-no-return.

Several more realistic apoptosis models, reviewed in the next section, also

incorporate highly nonlinear positive feedback and bistability, and are thus based

on the same building blocks as our conceptual model. The models mainly differ in

the molecular mechanisms responsible for bistability of apoptosis, e.g., caspase

activation (e.g., Eissing et al. 2004; Legewie et al. 2006; Bagci et al. 2006),

interactions of the Bcl-2 protein family members (Cui et al. 2008), trimerization

of death receptors (Ho and Harrington 2010).

1.5 Mechanistic ODE Models Describing Apoptosis Networks

The conceptual model of apoptosis presented in Sect. 1.4 provided insights into

mechanisms of all-or-none and irreversible decision making, but is certainly an

oversimplification. In this section, we will review other more complex models of

apoptosis.

The first mechanistic apoptosis model of coupled differential equations,

presented by Fussenegger et al. (2000), described sequential activation of

caspase-8, caspase-9, and caspase-3 by intrinsic or extrinsic stimuli. The model

encountered for a positive feedback from caspase-3 promoting the release of

cytochrome c from mitochondria and thus promoting the additional activation

of caspase-9 in apoptosomes. As this model was not trained against quantitative
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data, it provided only predictions on activated fractions of initiator and executioner

caspases dependent on initial concentrations of apoptosis promoting or inhibiting

proteins. A lot of progress has been made since this first apoptosis model, and

different aspects have been studied in detail.

In the following, we will review the current literature on ODE-based apoptosis

modeling. Figure 1.3 shows an overview about subareas of the apoptotic signaling

network that were investigated by current models. First, we will describe models

which are similar to the conceptual model in the sense that they understand

apoptosis as a bistable process. Second, we will summarize studies investigating

the temporal dynamics of apoptosis. Third, crosstalk models describing apoptosis

and survival networks will be discussed. The final focus of our review will be

cell-to-cell variability.

Fig. 1.3 Overview of the extrinsic and intrinsic parts of the apoptotic signaling network. Subareas

are indicated that were investigated by current modeling studies. (a) Modeling studies that

captured extrinsic and intrinsic pathways (Albeck et al. 2008b; Bagci et al. 2006; Bentele et al.

2004; Fussenegger et al. 2000; Harrington et al. 2008; Hua et al. 2005; Okazaki et al. 2008).

(b) Modeling studies with main focus on the level of death receptors, DISC assembly, and caspase

activation processes (Eissing et al. 2004; Fricker et al. 2010; Ho and Harrington 2010; Neumann

et al. 2010; W€urstle et al. 2010). (c) Modeling studies that described interactions between members

of the Bcl-2 family prior to mitochondria outer membrane permeabilization (MOMP) (Chen et al.

2007a, b; Cui et al. 2008; D€ussmann et al. 2010; Siehs et al. 2002). (d) Modeling studies with main

focus on intrinsic apoptosis and caspase inhibition (Legewie et al. 2006; Rehm et al. 2006; Stucki

and Simon 2005; Zhang et al. 2009)

16 S. Kallenberger and S. Legewie



1.5.1 Origins of a Robust All-or-None Behavior: Models
Characterized by Bistability and Feedback Mechanisms

Bistability may play an important role for all-or-none and irreversible decision

making, thus allowing the suppression of noise and prevention from accidental

apoptotic stimuli. In the following, we will review models exhibiting bistability due

to positive feedback in the intrinsic or extrinsic apoptosis pathways.

1.5.1.1 Extrinsic Apoptosis Pathway

Understanding bistability in the process of apoptosis initiation was the focus of the

study of Eissing et al. (2004). Their model described the bistability in extrinsic

apoptosis within the context of caspase-mediated positive feedback. Caspase-8

activated by receptor-induced apoptosis in type I cells activates caspase-3, while

caspase-3 promotes positive feedback by caspase-8 activation. A stability analysis

of this minimal model showed that bistability and therefore a stable live steady state

were only possible parameter values far off the experimentally measured kinetic

parameters. By extending the model topology, the authors concluded that bistable

caspase activation within the physiologically reasonable parameter range required

the consideration of inhibitors of activated caspase-8. Specifically, it was suggested

that caspase-8 inhibitory proteins such as bifunctional apoptosis regulator protein

(BAR) (Zhang et al. 2000), and caspase-8 and -10-associated RING proteins

(CARPs) (McDonald and El-Deiry 2004) play a central role for establishing

bistability. The important antiapoptotic role of the protein BAR was investigated

in the study of Pace et al. (2010).

Bistability on the ligand/receptor level was proposed upon theoretical

considerations of a positive feedback in receptor oligomerization reactions (Ho and

Harrington 2010). These were motivated by new insights into the structure and

function of CD95 (APO-1/Fas) molecules (Scott et al. 2009). Protein crystallization

experiments on receptor/FADD-clusters had shown that receptors in the absence of

ligands favor a closed form where FADD cannot bind. Upon ligand binding an

open form is favored, allowing FADD binding, DISC formation, and signal progres-

sion. The conformation of open receptors allows that open receptors stabilize each

other, which causes receptor oligomerization and positive feedback amplification.

An ODE model was formulated in a continuum approximation where molecule

numbers were treated as local protein concentrations. At high receptor densities,

which could be potentially induced locally inside lipid rafts, reactions can take

place, where several open receptors stabilize each other. In the model these events

could be approximated by higher-order reactions. As described in Sect. 1.4, rate

equations for reactions that contain terms with an order of three or larger can have

two stable steady states and one unstable steady state in between, which causes

bistable behavior. Therefore, depending on the local receptor densities reversible or

irreversible bistability can result. This leads to an all-or-none response on the level of

DISCs, resulting in a gradual response, integrated over all clusters on the cell level.
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1.5.1.2 Intrinsic Apoptosis Pathway

The theoretical study by Bagci et al. (2006) addressed origins of bistability on the

level of MOMP and apoptosome formation. Two positive feedback mechanisms

contribute to bistability: First, caspase-3 cleaves and inactivates the MOMP inhibi-

tor Bcl-2, and thereby amplifies its own production. A second feedback arises from

the cleavage of the MOMP inducer Bid by caspase-3; thus Bid cleavage, initially

triggered by caspase-8, can be enhanced by caspase-3. Their mass-action model

describes oligomerization of Apaf-1 bound to cytochrome c to the heptameric

complexes of apoptosomes. As this cooperative oligomerization process leads to

higher-order terms in the corresponding rate equation, the positive feedback

interactions can result in bistable regimes corresponding to either survival or

apoptosis. As the model of Bagci et al. (2006) does not consider reactions upstream

of initiator caspases, initial doses of caspase-8 and caspase-3 serve as stimulus. Their

considerations were motivated by experimental studies that had shown a survival

mechanism of cancer cells based on elevated Bax degradation (Li and Dou 2000),

decreased Bax expression in human breast cancers (Schorr et al. 1999), or

overexpression of Bcl-2 (Reed 1999). In the model of Bagci et al. (2006) bifurcation

points in the caspase-3 activity were investigated, that are dependent on the produc-

tion or degradation of Bax and their relation to inhibitory Bcl-2 proteins. Above a

certain threshold for the degradation rate of Bax or below a certain threshold for the

Bax production rate, the bistable behavior is changed into a monostable survival

state. In this state an initiator caspase stimulus cannot trigger the apoptosome-

mediated feedback anymore. Recent studies on Bcl-2 family members show even

more complicated relations on the level of mitochondria among proteins that act as

sensitizers (as Bad, Noxa, or Puma), activators (Bid, Bim), or effectors (Bax, Bak).

To characterize the vulnerability of tumors to apoptosis effectors, the impacts of

different Bcl-2 family members on mitochondria isolated from tumor samples were

investigated (Certo et al. 2006; Deng et al. 2007). For more detailed reviews see

(Brunelle and Letai 2009; Chonghaile and Letai 2008; Vo and Letai 2010).

In a subsequent study the model was expanded to investigate the modulation of

bistable switching by nitric oxide (NO) signaling which plays a dual role in the

regulation of apoptosis and survival (Bagci et al. 2008): Several nitric oxide species

such as NO or dinitrogen trioxide (N2O3) prevent apoptosis by inactivating both

caspase-8 and caspase-3 (Li et al. 1997; Mannick et al. 1999; R€ossig et al. 1999).

In contrast, the NO species peroxynitrite (ONOO-) promotes apoptosis by trigger-

ing mitochondrial pore formation (Vieira et al. 2001). The model of Bagci et al.

(2008) quantitatively describes the metabolism of nitric oxide species, and their

effect on apoptosis. While NO species that exclusively inhibit caspase-8 only delay

apoptosis, such species that inhibit caspase-3 as well as caspase-8 can prevent the

bistable feedback from apoptosome formation, and cause survival. Bagci et al. also

investigated the impact of glutathione which acts as a regulator of nitric oxide

metabolism (Hu et al. 2006). Their model suggested that the proapoptotic effect of

glutathione by inhibiting antiapoptotic NO species is stronger than its antiapoptotic

effect by inhibiting NO species that facilitate mitochondria permeabilization.
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1.5.1.3 Implicit Feedback Mechanisms in the Intrinsic Apoptosis Pathway

In the modeling studies summarized so far, the positive feedback mechanisms

known from the biomedical literature and their contribution to bistability were

analyzed. Additionally, mathematical modeling could provide valuable insights

into non-obvious, hidden feedback loops that arise from the topology of the

apoptosis network. This phenomenon has been referred to as implicit positive

feedback regulation. The interplay of caspase-3, caspase-9, and inhibitors of apo-

ptosis (IAPs) in the mitochondrial proapoptotic pathway was investigated in a

model by Legewie et al. (2006): Cytochrome c released from mitochondria, triggers

activation of caspase-9, which in turn cleaves procaspase-3 into active caspase-3.

Both caspase-3 and caspase-9 are inhibited by XIAPs to prevent autoreactive

activation. Interestingly, an implicit positive feedback loop arises from the dual

inhibition of both caspases by XIAPs: Once active caspase-3 is generated, it can

bind to XIAPs, thus sequestering XIAPs away from caspase-9. This sequestration

effect enhances caspase-9 activation, resulting in autoamplification of caspase-3

cleavage. In the model by Legewie et al., the dependency of the concentration of

active caspase-3 as the response to an Apaf-1 concentration shows different

characteristics of either monostable, bistable reversible, or bistable irreversible

behavior. The authors concluded that implicit positive feedback alone brings a

very small range of bistability; however, implicit feedback synergizes with other

feedback mechanisms to establish a broad bistable range and irreversibility in the

life–death decision.

The studies of Chen et al. (2007a, b) combined ODE, stochastic and cellular

automaton modeling to further understand signaling processes that potentially lead

to MOMP. In these studies interactions between pore-forming effectors (Bax, Bak),
activators and enablers (tBid and several others), and inhibitors (Bcl-2 amongst

others) that lead to or prevent mitochondria outer membrane permeabilization are

analyzed. After translocation to mitochondria, inactive Bax and Bak are catalyzed

to their active form by an activator. Subsequently, activated Bax and Bak lead to

membrane pore formation and cell death. In the study of Cui et al. (2008), models

involved in the bistability of MOMP were further developed. Questions on the

possible model topology led to hierarchical considerations in the studies of Chen

et al. (2007a, b) as well as Cui et al. (2008): Do activators and enablers indirectly
induce apoptosis by sequestering Bcl-2 away from Bax, or are activators directly

proapoptotic by catalyzing the reaction of Bax to its active form that can cause pore

formation and cytochrome c release? This question led to an indirect model

recapturing the inhibition of Bcl-2 by activators and topologies describing direct

Bax activation. Inhibitors as Bcl-2 in the indirect topology interfere by inhibiting

Bax and thereby preventing its oligomerization at the pores. In direct topologies

they inhibit activators from catalyzing Bax activation. Direct topologies were

favored in this study, as they involve two possible feedback mechanisms that

could contribute to a bistability in Bax activation. These considerations were

motivated by experimental studies that showed a bimodal distribution of cells
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that had low or high amounts of activated Bax and Bak monitored by flow

cytometry (Fischer et al. 2004; Gómez-Benito et al. 2005; Willis et al. 2005). The

first described feedback mechanism is facilitated by activated Bax that can seques-

ter Bcl-2, leading to an increase of free activators and thereby providing increased

Bax activation. This mechanism is similar to the role of XIAP as discussed in the

study of Legewie et al. (2006), since Bcl-2 acts as a dual inhibitor of upstream

activators and their downstream effector Bax. Furthermore, the model of Cui et al.

(2008) considers a feedback mechanism, in which activated Bax itself provides

further Bax activation. In their study the signal response behavior is characterized

by the dependency of active Bax and Bcl-2 steady state levels as dependent on the

production rate of activators. In a model containing both feedback mechanisms the

interval of activator production rates that lead to bistability of active Bax and Bcl-2

concentrations is significantly enlarged compared to a variant with only one

feedback mechanism. Therefore, the combination of both feedback mechanisms

would provide a higher robustness for the bistable behavior of Bax activation and

mitochondria pore formation.

1.5.2 Origins of a Robust All-or-None Behavior: Switching
and Threshold Mechanisms Other Than Bistability

Biochemical signaling networks may exhibit switching mechanisms other than

bistability arising from positive feedback. In such cases, the system exhibits a

single steady state which increases in a steep, nonlinear manner with increasing

input concentration. Such sigmoidal, all-or-none dose–response behavior has been

termed ultrasensitivity. One ultrasensitivity mechanism with particular relevance to

apoptosis is inhibitor ultrasensitivity: here, a protein inhibitor strongly binds to its

target, implying that the target remains completely inactive unless the total concen-

tration exceeds the total inhibitor concentration (Ferrell 1996). Thus, the stoichio-

metry between inhibitor and target determines the system behavior, explaining why

the mechanism is also known as stoichiometric switch.

The critical roles of c-FLIPL and c-FLIPS, which potentially act as stoichiometric

inhibitors in the DISC, were investigated in a model of Bentele et al. (2004). The

dependence of the ligand concentration threshold on the concentrations of both

splicing variants of c-FLIP was characterized, and it was concluded that c-FLIPs

establish a stoichiometric switch. A large-scale model comprising DISC assembly,

caspase activation, MOMP, interference from caspase inhibitors, and degradation

processes was derived. The model could be fitted to quantitative Western blot data

(caspase-8, -2, -7, -3, -9, Bid, PARP) representing population measures of protein

concentrations under different ligand concentrations using hierarchical parameter

estimation. By a global sensitivity analysis, clusters of modeled signaling proteins

with high mutual sensitivities of protein concentrations were defined, which lead to

functional subsystems. By disregarding parameters that had low sensitivities
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to parameters in one cluster, the dimensionality of the parameter estimation problem

could be decreased. Predictions of the reduced model were subsequently verified

experimentally. Most importantly, it could be shown that the threshold ligand

concentration was highly sensitive to the c-FLIP concentration which is consistent

with a stoichiometric switchmechanism. A refined version of the Bentele model was

presented in the theoretical study of Toivonen et al. (2011) which took into account

fast turnover of c-FLIP variants that could be relevant for their antiapoptotic effect.

It could be shown that the concentration of c-FLIP at the time of ligand addition is

central to apoptosis timing.

Another ultrasensitivity mechanism with potential relevance to apoptosis is

protein dimerization. For protein dimerization the steady state of the active dimer

depends on the total protein concentration in a quadratic manner as described in

Sect. 3.1, (1.4). Thus, weak input signals controlling the concentration of the

monomer species can be suppressed, while stronger inputs are transmitted. This

phenomenon, known as multistep ultrasensitivity, was analyzed by W€urstle et al.

(2010) as described in the following.

In the absence of death receptor ligands the amplification loop from

active caspase-8 to caspase-3, from activated caspase-8 to caspase-6 and back

to caspase-8, has to be silenced to prevent apoptosis induction at low levels of

active caspase-8. W€urstle et al. (2010) compared different model variants to under-

stand how efficient suppression of the amplification loop can be achieved. First, they

analyzed the role of well-known caspase inhibitors such as the caspase-8 inhibitor

BAR and the caspase-3 inhibitor XIAP. Second, they took into account that only

caspase-8 dimers are catalytically active, and considered dedimerization of caspase-

8 complexes released from the DISC. In this context, it had been shown

experimentally that the caspase-8 dimerization equilibrium favors the formation of

caspase-8 monomers (Pop et al. 2007). A core model describing the activation loop

only was extended by either one of these three inhibitingmechanisms. Time series of

caspase activation and substrate cleavage by caspase-3 caused bymild initial stimuli

of caspase-8, -3, or -6, were calculated for each model variant, using experimentally

measured kinetic constants for caspase activities and caspase-8 dimerization. Sub-

sequently, time courses of the model variables were calculated under various initial

concentrations of procaspases-3, -6, and -8, BAR, and XIAP to assess the sensitivity

of the system towards each inhibitory mechanism in a time interval of 24 h,

respectively. Each parameter constellation leading to less than 20% substrate cleav-

age was classified as non-apoptotic, while more than 80% substrate cleavage was

considered as effective apoptosis. Thereby model variants could be compared

regarding their potential to prevent apoptosis. A model was considered as more

preventive if it caused weak cleavage in a larger fraction of the randomly chosen

parameter sets than othermodel variants. As a result of an initial stimulus of caspase-

8 the numbers of parameter constellations leading to hypothetic survival were

slightly higher in the XIAP model than for the dedimerization model, while the

number was highest for the dedimerizationmodel in response to stimuli of caspase-3

or caspase-6. The apoptosis-preventing effect of the low affinity in a caspase-8 dimer

becomes evident when considering that caspase-6 can only cleave monomers of
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procaspase-8 in absence of a dimerization inducer as the DISC. Because of the low

affinity in the caspase-8 dimer, the system is especially stable against a stimulus of

caspase-8 monomers. Consequently all three inhibitory mechanisms were included

into one model to assess thresholds of the maximal caspase-8 stimulus strength that

could be compensated. Threshold changes upon removal of one of the mechanisms

were determined that showed again the strong perturbation resistance by caspase-

8 dimerization and dissociation (W€urstle et al. 2010). Thus, it was concluded that the
caspase-8 dimerization equilibrium efficiently prevents accidental cell death

initiation.

Another monostable model of the apoptosis threshold was introduced in the

theoretical study of Stucki and Simon (2005). However, these authors did not focus

on the mechanism of ultrasensitivity, but represented all-or-none caspase-3 activa-

tion phenomenologically using a Heaviside function in the caspase-3 production

term. The major focus of the study was to analyze how the caspase-3 activation

threshold could be modulated by the caspase-3 inhibitory XIAPs, the XIAP antag-

onist Smac, and Smac-binding antiapoptotic proteins such as survivin (Song et al.

2003). The potentially limiting role of caspase-3 degradation was addressed, and it

was concluded that XIAPs efficiently suppress apoptosis by triggering the degrada-

tion of caspase-3 in a nonlinear manner.

1.5.3 Models Characterized by a Timing Switch

Steady states, bistable switches, and ultrasensitivity govern long-term decision

making within biochemical signaling networks. However, in the context of apopto-

sis, it is also important that the time course of effector caspase activation is abrupt.

Such temporal switching ensures complete and coherent initiation of cellular

demise. Single cell measurements using GFP-tagged cytochrome C and caspase

FRET probes confirmed that mitochondrial permeabilization and subsequent effec-

tor caspase activation indeed occur in a temporally abrupt manner (Goldstein et al.

2000; Rehm et al. 2002). Accordingly, a more recent study concluded that the

apoptosis timing in single cells consists of a variable lag time followed by

the sudden switch-like effector caspase activation (Albeck et al. 2008a). While

the lag time varies within the range of one to several hours, dependent on the

stimulus strength, the sudden switching time was shown to be relatively invariant

around 30 min. This robustness of sudden switching can be interpreted as necessary

to prevent from states of partial destruction that could cause genomic instability.

The lag time is lengthened by proteins upstream of activated Bax, as c-FLIP, BAR,

or cytosolic Bcl-2, and shortened by TRAIL receptors, caspase-8, Bid, and Bax.

Moreover, the robustness of the switching time is determined on the level of

Bax–Bcl-2 interaction leading to mitochondria pore formation (Albeck et al.

2008a). Thus, most modeling studies characterizing the temporal dynamics of

apoptosis initiation in type II cells employing the mitochondrial pathway focused
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on regulation at caspase-8 or Bcl-2 level. In the following we will review the

systems biological literature on the temporal dynamics of apoptosis initiation.

In the study of Hua et al. (2005) different topologies reflecting possible

interactions of Bcl-2 with Bid, tBid, or Bax were compared regarding their role

in controlling the kinetics of caspase-3 activation and preventing apoptosis. Four

topologies, including Bcl-2 binding to Bid, tBid, or Bax only, or to tBid and Bax,

were implemented into a large-scale model describing extrinsic apoptosis from

ligand binding to caspase-3 activation. Specifically, their model describes DISC

assembly, caspase-8 activation, Bid cleavage, and subsequent mitochondrial

reactions (i.e., binding reactions of Bcl-2, Bax oligomerization, Smac release,

cytochrome c release, and apoptosome formation). By comparing experimental

data from wild type and Bcl-2 overexpressing cells with simulated trajectories of

the model variants, model discrimination was possible: Their experimental data

supported a mechanism where the caspase-3 time course reacts very sensitively

to Bcl-2 overexpression, and the model suggested that this can only be realized if

Bcl- 2 can simultaneously inhibit both tBid and Bax. A global sensitivity analysis

on initial concentrations of the model variables gave insight into effects of

overexpression or suppression. In this context it was interesting, that in the model

of Hua et al. (2005) suppression of Bcl-2 under its basal level did not accelerate

apoptosis, which could be experimentally verified. This indicates that Bcl-2

inhibitors could selectively sensitize Bcl-2 overexpressing tumor cells to apoptosis

(Reed et al. 1996), while not affecting nontransformed cells expressing Bcl-2 at

moderate levels. The sensitivity analysis by Hua et al. showed further asymmetric

effects of overexpression or suppression: In some proteins an overexpression does

not affect apoptosis timing, while their suppression causes significant changes (e.g.,

death receptors). Taken together, the model was able to predict dynamics of

caspase-3 activation with high accuracy and provided insights into mechanisms

of Bcl-2 action.

Albeck et al. (2008b) presented a refined model which exhibits similar complex-

ity as the Hua et al. (2005) model, but takes into a large body of data, mostly at the

single-cell level. Specifically, the model was trained against population data

acquired with flow cytometry and western blotting as well as single cell imaging

data. These were measured at various TRAIL concentrations and under several

conditions of overexpression or depletion of signaling proteins. In the study of

Albeck et al. (2008b) it was shown experimentally that MOMP timing and the

kinetics of Smac/cytochrome c release were only dependent on the upstream

signaling network controlling caspase-8 activation, while the contribution of posi-

tive feedback was negligible. Specifically, a role of three putative positive feedback

mechanisms from caspase-3, caspase-6, or caspase-9 could be excluded. This

suggests that some of the bistability mechanisms discussed above do not account

for the temporal dynamics of apoptosis initiation at least in HeLa cells. In contrast

to other apoptosis models the cell death decision was not dependent on bistability

but explained apoptosis by the monostable transcritical process of MOMP.

The interaction of Bcl-2 family members with tBid and Bax, the process of Smac

release followed by the reduction of effector caspase inhibition by XIAP, and the
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mitochondria membrane pore formation dynamics were identified as critical stages

of the all-or-none behavior of effector caspase activation. Signal transduction from

MOMP to effector caspases apparently proceeds in a redundant manner through

Smac inactivating XIAP and apoptosome formation causing XIAP sequestration

and activation of caspase-3. In conclusion, the study by Albeck et al. currently

represents the most comprehensive and realistic large-scale model of apoptosis.

In a combined experimental and theoretical study, Rehm et al. (2006) analyzed

the kinetics of temporally switch-like effector caspase activation downstream of

mitochondria. In particular, they focused on the control of effector caspase activa-

tion by XIAP. Their model described apoptosis signaling following MOMP

induced by the drug staurosporine. The agent tetramethylrhodamine methylester

(TMRM) was used to experimentally measure changes of the mitochondria mem-

brane potential to monitor the occurrence of MOMP. In their model, Smac and

cytochrome c released from mitochondria served as stimuli. Subsequent events in

the model include apoptosome formation, caspase-9 as well as caspase-3 activation

and caspase inhibition by XIAP. Their modeling analyses focused on the inhibition

of caspase-9 and caspase-3 auto-amplification loops by XIAP, and model predic-

tions were confirmed using single cell experiments with cells stably expressed

FRET probes that contained a cleavage site for caspase-3. Specifically, their

model prediction, that a reduction of XIAP levels would not affect apoptosis timing,

while an XIAP overexpression would significantly delay effector caspase activation

could be experimentally verified in HeLa cells and in MCF7 cells, which are

completely devoid of caspase-3. Similarly, another prediction that interference on

the level of Smac has only weak influences on apoptosis timing was verified.

In conclusion the study of Rehm et al. (2006) provided detailed insights into the

regulative function of XIAP on the timing of effector caspase activation.

We expected that future research will provide much more detailed insights into

the kinetics of apoptosis initiation, since various tools are now available to monitor

apoptosis on several signaling levels at the single-cell level: FRET reporters

consisting of two fluorescent proteins linked with a cleavage sequence for

caspase-8 or caspase-3 were used to monitor the activity of initiator and effector

caspases (Albeck et al. 2008a; Rehm et al. 2002, 2006; Tyas et al. 2000). A GFP-

tagged form of Bax was used to measure the translocation of Bax into mitochondria

upon Bid activation (Albeck et al. 2008a). Furthermore in the study of Albeck et al.

(2008a) a reporter protein that contains the mitochondria import sequence of Smac

and thus accumulates in the mitochondria inter-membrane space (IMS-RP) was

used to indicate MOMP in single cells. Simultaneous and quantitative description

of multiple signaling levels will be a major challenge for future modeling studies.

1.5.4 Ambiguity of Cell Death or Survival

Experimental studies by Nair et al. (2004) had suggested that the mechanisms of

cell death and survival can be mutually exclusive. The behavior of a population

of cells upon an oxidative stress (H2O2) stimulus was observed. While some cells
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underwent apoptosis, others clearly showed a successful overcoming of the stress

stimulus and a proliferative response. However, the paradigm of mutually exclusive

cell death or survival processes was challenged in the subsequent experimental and

theoretical studies described in this section.

To understand the double-edged role of CD95 (APO-1/Fas) activation in

apoptosis as well as in NF-кB activation, models describing the role of c-FLIP on

both cell fates were established (Fricker et al. 2010; Neumann et al. 2010), that are

also described in chapter on extrinsic apoptosis. A focus of the models is the

balance between caspase activation and inhibitory processes at the DISC. Cleavage

of procaspase-8 homodimers bound to FADD can result in two forms that possess

catalytic activity: an intermediate form p43 that remains bound to the DISC as a

homodimer, and the completely processed form p18 that dissociates from the DISC

as p182–p102 heterotetramers (Hoffmann et al. 2009; Hughes et al. 2009). Three

splicing variants of the cellular FADD-like interleukin-1b-converting enzyme

inhibitory protein (c-FLIP), c-FLIP short (c-FLIPS), c-FLIP long (FLIPL), and

c-FLIP Raji (FLIPR) can heterodimerize with a monomer of procaspase-8 bound

to a FADD molecule at the DISC and interfere with caspase-8 activation. The two

variants c-FLIPS and c-FLIPR block procaspase-8 autoprocessing in a heterodimer

and therefore inhibit propagation of the apoptosis signal. In contrast, c-FLIPL can

facilitate procaspase-8 cleavage to p43 but not to p18. Therefore, c-FLIPL leads to

heterodimers with p43 at the DISC, and these complexes have a certain catalytic

activity. While the two forms c-FLIPS and c-FLIPR clearly inhibit signal propaga-

tion, it was not obvious if c-FLIPL promotes or also inhibits apoptosis (Golks et al.

2005; Krueger et al. 2001; Scaffidi et al. 1999).

To resolve this question, a study of Fricker et al. (2010) on the signaling function

of c-FLIPL combined experiments and modeling, and showed an ambiguous func-

tion of the protein as dependent on the stimulus strength. Their model considered

the formation of homodimers of procaspase-8 or heterodimers of procaspase-8 and

c-FLIP variants at the DISC and either termination of further reactions or

processing to caspase-8 or p43-FLIPL by other active homo- or heterodimers. The

model was trained against immunoblot data of procaspase-8 (p55), the intermediate

form p43, and caspase-8 (p18 in p182–p102) at a given ligand concentration.

The model predicted that at a low ligand concentration, a 20-fold overexpression

of c-FLIPL would lead to a significant reduction of caspase-8 activity. Contrarily, it

was predicted, that at high ligand concentration, the same overexpression would

lead to an acceleration of cell death. The authors could confirm these predictions

with time lapse imaging of cells moderately overexpressing c-FLIPL. As the

processing of procaspase-8 is relatively fast and c-FLIPL overexpression therefore

can only cause small accelerating effects, Fricker et al. tested their model subse-

quently in conditions of c-FLIPS or c-FLIPR overexpression. As these c-FLIP

variants inhibit caspase-8 activation, an even stronger activating effect of c-FLIPL
was predicted. Again the predictions were verified, confirming the predicted

ambiguous effect of c-FLIPL being antiapoptotic at low and proapoptotic at high

stimulus strengths.
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The study by Neumann et al. (2010) investigated in detail how NF-кB is

activated by CD95L, and how this process is modulated by c-FLIP and caspase-8.

The different possibilities of DISC formation of activated receptors, FADD,

procaspase-8, c-FLIPL, and c-FLIPS and their processed forms were described in

their model (1) DISCs containing at least two procaspase-8 molecules give rise to

p43 dimers and subsequently mature caspase-8. (2) At DISCs that contain at least

one procaspase-8 and one c-FLIPL molecule the heterodimer p43-FLIPL is created.

Besides, several other DISC constitutions preventing further processing were

considered. By immunoprecipitation experiments, it was shown that complex

formation of the heterodimer p43-FLIPL and IKKa leads to the phosphorylation

of IкB (NF-кB·IкB·P). Phosphorylation of IкB was previously shown to trigger

degradation, thereby promoting NF-кB activation. The subsequent translocation of

p65 into the nucleus (NF-кB*) after IкB·P degradation was monitored in live cell

experiments. The model matched the dynamics of these processes and the model

complexity was iteratively reduced by summarizing or disregarding variables and

modeled reactions. The simplification was supervised by means of the fitting

accuracy in iterative parameter estimations. The balance between c-FLIPL and

procaspase-8 was shown to be responsible for proliferative or apoptotic effects of

CD95 stimulation. Regimes of predominant NF-кB activation or caspase-3 or of

both processes could be predicted.

Systems biological studies on the ambiguity towards cell death or survival

pathways revealed close interlinks between both processes. A more complicated

overall image results when considering interlinks to other cellular signaling

processes. Within the process of cell growth and mitosis, cell cycle regulatory

mechanisms can determine pro- or anti-apoptotic conditioning as investigated in the

cell cycle model of Pfeuty et al. (2008). Further interlinks exist between cell cycle

repair mechanisms leading to cell cycle arrest or apoptosis execution (Zhang et al.

2009). Additionally, the apoptosis sensitivity is modulated by other cellular stress

responses as theoretically analyzed in recent modeling studies (Bagci et al. 2008;

Toivonen et al. 2011).

1.5.5 Understanding Cell-to-Cell Variability

Several new experimental techniques and theoretical approaches were developed

to investigate the origins and the role of cellular variability in cell death signaling.

In several modeling studies the effects of randomly choosing initial protein con-

centration sets from probability distributions to estimate consequences of variable

initial protein concentrations were investigated (e.g., in Albeck et al. 2008b; Eissing

et al. 2004; Toivonen et al. 2011; W€urstle et al. 2010). This approach was employed

by Eissing et al. to reconcile contradictions in single-cell and cell population-based

measurements: Caspase activation is temporally abrupt at the single cell level

(see above), while it apparently takes several hours when assessed by Western

Blot measurements summing up over millions of cells. Using in silico simulations,
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Eissing et al. could demonstrate that cell-to-cell variability in the lag time before

caspase activation could explain the slow and gradual Western Blot time course.

Thus, owing to cell-to-cell variability the fast kinetics of caspase-3 activation in

single cells (Rehm et al. 2002) is masked in experimental observations of popula-

tion data that show a gradual increase.

In general, it is not clear whether cell-to-cell variability in cell signaling mainly

arises from stochastic dynamics in biochemical reactions (intrinsic noise) or from

the variability of initial protein levels termed (extrinsic noise). Combining

modeling and single cell experiments, it could be shown that heterogeneous apo-

ptosis timing in a population of cells has its origin in the variable initial levels of

apoptotic proteins (Spencer et al. 2009). In single cell experiments using FRET

reporters for initiator and effector caspase activity and the MOMP reporter protein

IMS-RP, after cell divisions pairs of cells were observed. While the time of

apoptosis was highly correlated in the first hours after cell division, correlation in

cell death timing ceased in pairs of older sister cells. This correlation was sustained

over a longer period of time by inhibition of protein synthesis. Thereby, it was

demonstrated that the variability of protein levels arising from noise in gene

expression is responsible for cell-to-cell variability in apoptosis timing rather

than genetic mutations or epigenetic differences that occur on a larger time scale.

By combining single cell experiments with the model of Albeck et al. (2008b), it

was verified that the time of apoptosis is dependent on the concentrations of several

signaling proteins upstream of MOMP. Thus, the control of apoptosis timing

appears to be distributed over many protein expression levels. Only when

overexpressing single signaling proteins as Bid, the dependency of single protein

concentration increases.

As an alternative approach to link the possible behavior of heterogeneous single

cells to their population level measures at certain time points of a dynamic process,

Hasenauer et al. (2011) developed methods based on parameter probability

densities. These were demonstrated on a synthetic data set for a simple model of

tumor necrosis factor (TNF) signaling (Chaves et al. 2008). The original parameter

densities could successfully be estimated from artificial population snap shot data

that represent flow cytometric data.

Cell-to-cell variability is an inherently complex phenomenon that can only be

tackled by quantitative approaches. We therefore expect that ODE modeling

combined with sensitivity analysis and stochastic modeling will be valuable tools

in this field of apoptosis research.

1.6 Conclusions

Apoptosis is a well-characterized biological process amenable to mathematical

modeling. Mechanistic models provided valuable insights into nonlinear

phenomena such as all-or-none switching and irreversible decision making.

Modeling reconciled apparently contradictory observations at the single-cell and

population level, and was employed to identify molecular mechanisms controlling
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whether a cell enters death via the type I or type II pathway of apoptosis (Harrington

et al. 2008; Hua et al. 2005; Okazaki et al. 2008). In particular, the study by Hua et al.

(2005) verified corresponding model predictions experimentally, and showed that

the antiapoptotic influence of Bcl-2 is completely lost in type II cells in the case of

procaspase-8 overexpression. Nonintuitive feedback loops arising implicitly from

the apoptosis network structure could be identified by simulation analysis (Cui et al.

2008; Legewie et al. 2006).

Less progress has been made concerning crosstalk between cell death and

survival signaling; here, modeling was mostly restricted to top-down and qualita-

tive approaches owing to crosstalk complexity. However, quantitative modeling

and sensitivity analysis are required to predict effective cotreatment strategies for

cancer cells that often harbor combined mutations in interdependent growth factor

and apoptosis networks. Currently, a major limitation is our incomplete understand-

ing of autophagy (“self eating”) which shares many molecular components with the

apoptosis machinery (e.g., Bcl-2 family members). Depending on the cell type,

autophagy protects cells from death by removing damaged organelles or it triggers

another form of cell death, further complicating the apoptosis survival network.

Another limitation of current models is that they mainly focus on extrinsic

apoptosis induced by death ligands. However, most pharmacologically relevant

responses, e.g., during chemotherapy, proceed via the intrinsic mitochondrial

pathway. The intrinsic pathway includes another layer of complexity, as it requires

transcriptional regulation, e.g., of Bcl-2 protein family regulators (PUMA, NOXA).

Quantitative gene expression profiling and chromatin immunoprecipitation (ChIP)

studies combined with systematic molecular perturbations are required to quantita-

tively model gene regulatory networks controlling intrinsic apoptosis. Antagonists

inhibiting the Inhibitor of Apoptosis (IAPs) appear to be promising therapeutics, as

they selectively kill cancer cells in the absence of further stimulation (Schimmer

2004); apoptosis models taking into account basal state signaling are required to

understand and to optimize such therapeutic approaches.

Live-cell imaging and flow cytometric approaches led to insights into apoptosis

at the single cell level, and revealed principles of cell-to-cell variability (Rehm et al.

2006; Spencer et al. 2009). Further experimental and theoretical analyzes are

required to understand how complete eradication of tumor cell populations can be

achieved. In principle, it might be possible that nonlinear phenomena such as

bistability give rise to tumor cell sub-populations that are completely insensitive

to therapy. Moreover, single cells may differ in the apoptosis pathways they

employ, implying that combinatorial inhibition of multiple pathways is required

for elimination of the whole tumor. This requires the development of new parame-

ter estimation tools which take into account cell-to-cell variability, and integrate

population-based as well as single-cell measurements.
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Chapter 2

Systems Biology of Death Receptor-Induced

Apoptosis

Kolja Schleich and Inna N. Lavrik

Abstract Programmed cell death, termed apoptosis, plays a fundamental role in

the development and homeostasis of multicellular organisms. Dysregulation of

apoptosis can lead to numerous diseases, including autoimmune diseases, neurode-

generative diseases, and cancer. In mammalian cells apoptosis can be induced by

intra- or extracellular stimuli. Extracellular stimuli comprise death ligands which

lead to death receptor-induced apoptosis, referred to as extrinsic pathway. Intracel-

lular signals, such as DNA damage, trigger the intrinsic pathway which results in

the activation of Bcl-2 proteins and release of proapoptotic factors from the

mitochondria into the cytosol. Apoptosis is executed by a family of cysteine

proteases, the caspases, which eventually lead to the apoptotic phenotype, such as

chromatin condensation, nuclear fragmentation, membrane blebbing, cell

shrinkage, and formation of apoptotic bodies. The focus of this chapter is on

understanding the signaling complexity of the extrinsic apoptotic pathway using

systems biology. We summarize the main signaling paradigms and the major

models of the extrinsic pathway. The development of these models has elucidated

new insights into the regulation of apoptosis.
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2.1 Death Receptor-Mediated Apoptosis

Death receptors (DR) belong to the tumor necrosis factor (TNF) family of proteins

and are characterized by extracellular cysteine rich domains (CRD) and an intra-

cellular ~80 amino acid long motif, the death domain (DD) (Ashkenazi 1998;

Krammer et al. 2007). The best characterized DRs are CD95 (also named

Fas/APO-1), TNFR1, TRAIL receptor 1 (TRAIL-R1), and TRAIL-R2 (Ashkenazi

1998; Krammer 2000; Krammer et al. 2007). Other DRs include DR3 and DR6,

EDA-R, and NGF-R (Ashkenazi 1998; Krammer et al. 2007; Lavrik et al. 2005a).

Death ligands (DL) are assumed to be homotrimeric (Yan and Shi 2005) and exist in

a membrane-bound or a soluble form.

The CD95-induced apoptotic pathway is one of the best-studied signaling

pathways. The natural ligand of CD95, CD95L, is expressed on a variety of cells,

such as cytotoxic T cells, as a type II membrane protein (Krammer 2000; Rathmell

et al. 1995). Cleavage of the membrane-bound to the soluble form reduces

its apoptosis-inducing potential by more than 1,000-fold (Schneider 1998).

Stimulation of CD95 with its ligand or with agonistic anti-CD95 antibodies, such

as anti-APO-1 (Trauth et al. 1989), triggers the oligomerization of CD95 (Fig. 2.1).

This leads to the recruitment of Fas-associated death domain (FADD) through DD

interactions, as well as procaspase-8, procaspase-10, and cellular FLICE inhibitory

proteins (c-FLIPs) via N-terminal death effector domains (DED), and formation of

the death-inducing signaling complex (DISC). In the DISC procaspase-8/10 are

activated by dimerization and internal cleavage (Lavrik et al. 2005b), which is

regulated by c-FLIP proteins. Recently, it has been reported that ubiquitylation

plays an important role in caspase-8 activation (Jin et al. 2009). Recent structural

analyses challenge the concept of a trimeric ligand binding to a trimeric receptor.

Scott et al. (2009) reported a tetrameric conformation of the CD95/FADD complex.

Wang et al. (2010) suggest that the minimal signaling unit of CD95L is at least

hexameric and found an asymmetric conformation of 5–7 CD95 bound to 5

FADD molecules.

Triggering of CD95 has also been reported to induce nonapoptotic pathways,

such as NF-kB, AKT, and ERK (Neumann et al. 2010; Peter et al. 2007).

However, the detailed mechanisms of the induction of CD95-mediated nonapoptotic

pathways are not elucidated yet.

Activated caspase-8 is released from the DISC and activates effector caspases-3

and -7, which cleave a variety of substrates, such as DFF45/ICAD, thus releasing

the DNase DFF40/CAD. DFF40/CAD is responsible for the fragmentation of

chromosomes (Strasser et al. 2009; Yan and Shi 2005). Additionally, caspase-8

cleaves the BH3-only Bcl-2 protein Bid. The C-terminal part, tBid, then translocates

to the mitochondria resulting in mitochondrial outer membrane permeabilization

(MOMP) and the release of proapoptotic factors into the cytosol, such as cytochrome

c, Apaf-1, or endonuclease G (Li 1998; Yan and Shi 2005). Recently, it has been

reported that caspase-8 cleaves Bid in a specific complex at the mitochondria, which

involves cardiolipin (Gonzalvez et al. 2008; Schug et al. 2011). This results in the
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Fig. 2.1 Overview of CD95-induced pathways. Stimulation of CD95 leads to the formation of the

death-inducing signaling complex (DISC), which includes at least CD95, FADD, procaspase-8,

procaspase-10, and c-FLIP proteins. Caspase-8 is activated at the DISC which is regulated by

c-FLIP proteins. In the cytosol caspase-8 cleaves and activates procaspase-3 or the Bcl-2 protein

Bid. The truncated form of Bid (tBid) translocates to the mitochondria, which leads to mitochon-

drial outer membrane permeabilization (MOMP) and the release of cytochrome c, as well as other

proapoptotic proteins from the mitochondria into the cytosol. Cytochrome c is involved in

apoptosome formation and procaspase-9 activation. Procaspase-9 in turn also activates

procaspase-3 resulting in caspase-3 activity and eventually cell death. Additionally CD95 stimu-

lation can lead to the activation of nonapoptotic pathways, such as NF-kB or MAPK and cell

survival

2 Systems Biology of Death Receptor-Induced Apoptosis 35



formation of another complex, the apoptosome, including cytochrome c, Apaf-1,

ATP and procaspase-9, and activation of procaspase-9 in this complex (Boatright

et al. 2003; Shi 2002). Caspase-9 also cleaves and activates caspase-3.

In CD95-induced apoptosis two different cell types are distinguished: Type I and

Type II (Barnhart et al. 2003; Scaffidi et al. 1998). Type I cells [e.g., thymocytes

(Strasser et al. 2009)] are characterized by high amounts of CD95 DISC, which

results in very efficient procaspase-8 activation, leading to massive activation of

caspase-3 and cell death. Type II cells [e.g., hepatocytes (Strasser et al. 2009)], on

the other side, are characterized by lower amounts of CD95 DISC formation, that

results in less active procaspase-8 and require signal amplification through tBid-

mediated mitochondrial permeabilization.

2.2 Effectors and Regulators of Extrinsic Apoptosis

DR-induced apoptosis is regulated at several levels and involves numerous protein

families, from the DISC to effector caspases. The interplay between the different

levels of regulation provides a significant complexity, which can be understood

better using systems biology. In the following sections, we will give a summary of

the different protein families and their roles in extrinsic apoptosis.

2.2.1 Caspases as Major Effector Molecules
of Apoptosis Pathway

Caspases are cysteine proteases and are the effector molecules of the apoptotic

machinery (Fuentes-Prior and Salvesen 2004; Lavrik et al. 2005b). There are

apoptotic, as well as inflammatory caspases. The apoptotic caspases are divided

into initiator caspases, including caspase-2, -8, -9, and -10, and effector caspases,

such as caspase-7 and -3 (Fuentes-Prior and Salvesen 2004). All caspases are

present in the cell as inactive zymogens referred to as procaspases and are activated

by internal cleavage (Fuentes-Prior and Salvesen 2004; Yan and Shi 2005).

Initiator caspases act upstream of effector caspases and activate them through

cleavage. Effector caspases then cleave a variety of cellular substrates, eventually

resulting in cell death (Fuentes-Prior and Salvesen 2004). All caspases share a

common structure. Caspase monomers consist of a large (~20 kDa) and small

(~10 kDa) subunit (Fig. 2.2). Initiator caspases additionally have specific recruit-

ment domains at their N-terminus. Procaspase-8 and -10 have two tandem DED

through which they interact with FADD at the DISC, procaspase-9 possesses a

caspase-recruitment domain (CARD) which is required for recruitment to the

apoptosome via interactions with Apaf-1 (Fuentes-Prior and Salvesen 2004;

Krammer et al. 2007; Lavrik et al. 2005b; Yan and Shi 2005).
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Active caspases are heterotetramers consisting of two large and two small

subunits (Fig. 2.3). Initiator caspases are present in the cytosol as monomers and

are activated by dimerization or oligomerization at caspase-activating platforms

and cleavage between the large and small subunits only stabilizes the dimer

(Fuentes-Prior and Salvesen 2004; Hughes et al. 2009; Krammer et al. 2007; Lavrik

et al. 2005b; Oberst et al. 2010). It was shown that both dimerization and

interdomain cleavage are required for full activation of caspase-8 (Hughes et al.

2009; Keller et al. 2009; Oberst et al. 2010). Effector caspases on the contrary are

present as inactive dimers and are readily activated by internal cleavage

(Fuentes-Prior and Salvesen 2004; Oberst et al. 2010). This cleavage is performed

by initiator caspases. The conceptual difference between the two classes is that

there is no proteolytic enzyme upstream of initiator caspases. Consequently, initia-

tor caspases exhibit low zymogenicity, which is defined as the ratio of activity

between the cleaved and the uncleaved form. While initiator caspases have highest

ratios of 10 (caspase-9) or 100 (caspase-8), the ratio for caspase-3 is more than

10,000 (Fuentes-Prior and Salvesen 2004).

Fig. 2.2 Structural organization of caspases. Caspases are generally divided into inflammatory

and apoptotic caspases. Apoptotic caspases are further divided into initiator and effector caspases.

Caspases possess a large (p20) and small (p10) subunit. Initiator caspases additionally have DEDs

(procaspase-8/10) or CARD domains (procaspase-9) at their N-terminus
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Fig. 2.3 Structure and suggested catalytic mechanism of caspases. (a) Crystal structure of

procaspase-7 (left, PDB 1GQF) and active caspase-7 (right, PDB 1RHJ). The large and small

subunits are colored light orange and gray, respectively. Cleavage of the intersubunit linker (L2)
results in a conformational change in the active site and activation of caspase-7. The active site is

formed by five loops, loops L1–L4 from one monomer and loop L20 from the adjacent monomer.

The structure was generated using PyMOL (Schrodinger, 2010). (b) The catalytic mechanism

of caspases is suggested to be similar to serine proteases (Fuentes-Prior and Salvesen 2004). The

cysteine acts as nucleophile and forms a tetrahedral intermediate with the substrate (step 2).

A nearby histidine is critical for the subsequent hydrolysis of the substrate (step 3) [adapted

from Fesik (2000)]
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The active site of caspases is highly conserved and is formed by five protruding

loops: L1, L2, L3, and L4 from one monomer and loop L20 from the adjacent

monomer (Fig. 2.3) (Fuentes-Prior and Salvesen 2004; Yan and Shi 2005).

The catalytic cysteine residue is positioned in the loop L2 which determines,

together with L1, L3, and L4 substrate specificity, recognizing specific tetrapeptide

sequences. The L20 loop from the adjacent monomer has mainly a stabilizing

function of the active site (Fuentes-Prior and Salvesen 2004; Yan and Shi 2005).

Initiator and effector caspases have a fundamental difference in active site archi-

tecture, which explains their different modes of activation. The intersubunit linker

(L2) of initiator caspases is longer than that of effector caspases, which allows the

formation of the active site also in its uncleaved form and results in the low

zymogenicity (Fuentes-Prior and Salvesen 2004). The catalytic mechanism of

caspases is suggested to be similar to serine proteases (Fuentes-Prior and Salvesen

2004). The cysteine acts as nucleophile and forms a tetrahedral intermediate with

the substrate (Fig. 2.3b, step 2). A nearby histidine is critical for the subsequent

hydrolysis of the substrate (Fig. 2.3b, step 3) (Fesik 2000; Fuentes-Prior and

Salvesen 2004).

2.2.1.1 Caspase-8/10 Activation at the DISC

Two isoforms of procaspase-8 procaspase-8a (p55) and -8b (p53) are recruited to

the DISC (Scaffidi et al. 1997). After binding to the DISC, procaspase-8a/b

(p55/p53) undergoes processing, thus generating active caspase-8 (Lavrik et al.

2005b; Medema et al. 1997; Muzio et al. 1996) (Fig. 2.4). This processing has been

suggested to occur via dimerization of two procaspase-8 monomers followed by a

conformational change, leading to autoactivation of procaspase-8 homodimers

(Chang et al. 2002; Golks et al. 2006b; Hughes et al. 2009; Yu et al. 2009).

Procaspase-8a/b (p55/p53) processing at the DISC also results in the generation

of the N-terminal cleavage products p43/p41, the prodomains p26/p24, as well as

the C-terminal cleavage products p30, p18, and p10 (Golks et al. 2006b; Hoffmann

et al. 2009; Hughes et al. 2009; Medema et al. 1997). Active caspase-8

heterotetramers (p10/p18)2 generated at the DISC initiate the execution of apoptotis

(Krammer et al. 2007). Recently, it has been reported that the cleavage products

p30 and p43/p41 also possess catalytic activity leading to apoptosis initiation

(Hoffmann et al. 2009; Hughes et al. 2009). Hence, procaspase-8 processing at

the DISC initiates apoptosis through the generation of several catalytically active

cleavage products. Recently it has been reported that full activation of caspase-8 at

the DISC requires Cullin3-mediated polyubiquitination in the C-terminal part of

caspase-8 (Jin et al. 2009).

Three isoforms of caspase-10 namely procaspase-10a, procaspase-10c, and

procaspase-10d were reported to be bound to the DISC (Sprick et al. 2002).

Procaspase-10 is also activated at the DISC via generation of homodimers, leading

to the formation of an active heterotetramer. However, whether caspase-10 can
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trigger cell death in the absence of caspase-8 in response to CD95 stimulation is

controversial (Fischer et al. 2006;M€uhlethaler-Mottet et al. 2011; Sprick et al. 2002).

2.2.2 c-FLIP Proteins Regulate Caspase Activation at the DISC

Three c-FLIP isoforms and two cleavage products have been characterized so far

(Golks et al. 2005, 2006a; Scaffidi et al. 1999; Ueffing et al. 2008) (Fig. 2.5).

Three isoforms include one long, c-FLIPL, and two short variants, c-FLIPS and

c-FLIPR. All three c-FLIP isoforms possess two tandem DED domains at their

Fig. 2.4 Caspase-8 cleavage products and processing at the DISC. (a) Procaspase-8 can be

cleaved between the large and small subunit or between the prodomain and the large catalytic

subunit, resulting in numerous different cleavage products. (b) Procaspase-8 homodimers

at the DISC can be processed to the active caspase-8 heterotetramers (p10/p18)2 via the

intermediate p43/p41. The procaspase-8/c-FLIPL heterodimer can only be processed to

the intermediate p43-FLIP

40 K. Schleich and I.N. Lavrik



N-terminus. c-FLIPL additionally contains catalytically inactive caspase-like

domains (p20 and p12). The two short isoforms, c-FLIPS and c-FLIPR, block

DR-induced apoptosis by inhibition of procaspase-8 activation at the DISC (Golks

et al. 2005; Krueger et al. 2001). This has been suggested to occur through the

formation of catalytically inactive procaspase-8/c-FLIPR/S heterodimers. c-FLIPL
can play both a pro- and an antiapoptotic role. It can act as an antiapoptotic

molecule, functioning in a way analogous to c-FLIPS when it is present at high

concentrations at the DISC (Chang et al. 2002; Krueger et al. 2001). c-FLIPL can act

proapoptotic when expressed at lower concentrations, in combination with strong

receptor stimulation or in the presence of high amounts of either of the short c-FLIP

isoforms c-FLIPS or c-FLIPR. Under these conditions c-FLIPL facilitates the activa-

tion of procaspase-8 at the DISC (Fricker et al. 2010). This occurs via the formation

of catalytically active procaspase-8/c-FLIPL heterodimers in which the procaspase-

8 active loop is stabilized by c-FLIPL (Micheau et al. 2002; Yu et al. 2009), thereby

increasing the catalytic activity of procaspase-8.

2.2.3 IAP Family of Proteins

The Inhibitors of Apoptosis (IAP) proteins directly inhibit caspases. They all share a

conserved sequence motif of 70–80 amino acids, the baculoviral IAP repeat (BIR)

Fig. 2.5 c-FLIP isoforms and cleavage products. Three isoforms of c-FLIP proteins exist, one long

(c-FLIPL) and two short variants (c-FLIPS and c-FLIPR). All isoforms contain two tandem DEDs

which are required for DISC recruitment. c-FLIPL additionally has a large and small caspase-like

subunit, which are catalytically inactive. C-FLIPL can be cleaved by caspase-8 at different positions

generating the N-terminal fragment p43-FLIP or N-terminal fragment p22-FLIP
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domain, which is arranged around a coordinated zinc atom (Fuentes-Prior and

Salvesen 2004; Shi 2002), of which each family member can possess up to three

copies (Deveraux and Reed 1999). There are six human IAPs, which include XIAP, c-

IAP1, c-IAP2, NAIP, Bruce, and survivin (Deveraux and Reed 1999).

Numerous mammalian IAPs, as well as IAPs in flies and viruses, possess a

C-terminal RING domain, however, the requirement of this domain for apoptosis

suppression remains unclear (Deveraux and Reed 1999). There are reports that both

domains are required for their antiapoptotic function in insects (Clem andMiller 1994;

Harvey et al. 1997), however, c-IAP1, c-IAP2, and XIAP in humans could still inhibit

apoptosis when lacking the RINGdomain (Deveraux andReed 1999; Hay et al. 1995).

XIAP directly inhibits active caspase-3. After MOMP Smac is released from the

mitochondria into the cytosol and relieves XIAP-mediated inhibition. This causes a

delay between receptor-mediated initiator phase and final commitment to cell death in

type II cells (Albeck et al. 2008; Fuentes-Prior and Salvesen 2004).XIAP also contains

a RING domain with E3 ubiquitin ligase activity, which promotes caspase-3 degrada-

tion by the proteasome (Albeck et al. 2008; Fuentes-Prior and Salvesen 2004).

2.2.4 Bcl-2 Family of Proteins

The Bcl-2 family of proteins play a key role in the regulation of apoptosis at the

mitochondrial level and are essential for extrinsic apoptosis in type II cells or

intrinsic apoptosis (Adams 1998; Yan and Shi 2005). The Bcl-2 protein family

comprises at least 15 members with pro- as well as antiapoptotic functions (Adams

1998). All family members share a conserved structural motif, the Bcl-2 homology

domain (BH1-BH4) (Adams 1998; Yan and Shi 2005). Prosurvival family members

include Bcl-2 and Bcl-XL. The proapoptotic Bcl-2 family members can be further

subdivided into multidomain proteins, represented by Bax and Bak, and BH3-only

proteins, such as Bid (Adams 1998; Yan and Shi 2005). The balance of pro- and

antiapoptotic Bcl-2 family members determines the apoptosis induction.

Proapoptotic Bcl-2 proteins cause the release of proapoptotic factors from the

mitochondria by inducing MOMP. This process is triggered either in the extrinsic

pathway through cleavage of Bid by caspase-8 or in the intrinsic pathway which is

mainly controlled by the tumor suppressor p53 (Yu and Zhang 2005). The Bcl-2

family is described in detail in the Chaps. 4 and 5.

2.3 CD95-Induced Nonapoptotic Pathways

Accumulating evidence suggests that stimulation of CD95 can also induce

nonapoptotic pathways, such as tumor growth and invasion, as well as proliferation

and programmed necrosis, termed necroptosis (Chen et al. 2010; Choi et al. 2010;

Geserick et al. 2009; Lee et al. 2011; Steller et al. 2011; Strasser et al. 2009; Tang
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et al. 2010). CD95-mediated nonapoptotic signaling occurs via induction of NF-kB,
Akt and mitogen-activated protein kinases (MAPK) pathways. These, however, are

not well understood, but have been reported to require caspase-8 activity

(Kober et al. 2011; Lee et al. 2011; Nakajima et al. 2008; Neumann et al. 2010;

Shikama et al. 2003; van Raam and Salvesen 2011). C-FLIP proteins play a very

important role in the regulation of caspase-8 activation as well as induction of

nonapoptotic pathways. It could be shown that the cleavage product of c-FLIPL
p43-FLIP directly interacts with the IKK complex, leading to the activation of

NF-kB (Neumann et al. 2010). Other prominent players in nonapoptotic pathways

are receptor-interacting protein 1 (RIP1) and RIP3 which are important for

CD95-induced necroptosis, as well as activation of NF-kB (Geserick et al. 2009;

Kamarajan et al. 2010).

2.3.1 CD95-Mediated NF-kB Activation

The eukaryotic transcription factor NF-kB was originally discovered transcribing

the immunoglobulin kappa light chain gene in B cells (Sen and Baltimore 1986).

NF-kB can be activated following a variety of stimuli, including bacterial

lipopolysaccharide (LPS), T cell receptor (TCR) signaling, different cytokines,

such as TNFa, interleukin 1 (IL-1) and IL-2, viral infections, UV and X-ray

radiation, nitric oxide, and also CD95 (Ghosh et al. 1998; Hayden and Ghosh

2004; Legembre et al. 2004; Verma et al. 1995). The NF-kB transcription family

comprises multiple members, including RelA (p65), NF-kB1 (p50, p105), NF-kB2
(p52, p100), c-Rel, and RelB (Ghosh et al. 1998; Li and Verma 2002; Rasper et al.

1998; Verma et al. 1995). All NF-kB proteins share a conserved N-terminal

300-amino acid motif, the Rel homology domain (RHD), which contains a dimer-

ization, nuclear localization as well as DNA-binding domain (Ghosh and Hayden

2008). NF-kB proteins form homo- or heterodimers with each other, except for

RelB. The most prominent dimer which is commonly referred to as NF-kB is the

heterodimer of p65 with either p50 or p52 (Li and Verma 2002). Importantly, only c-

Rel, RelA, and RelB possess a transactivation domain and thus act as transcriptional

activators, while other NF-kB proteins act as transcriptional repressors (Ghosh

and Hayden 2008). In the absence of activating stimuli NF-kB dimers are inhibited

by IkB (inhibitor of NF-kB) proteins via ankyrin-repeat motifs and masking their

nuclear localization signal (Hayden et al. 2006). IkB proteins are phosphorylated

by IkB kinases (IKKs) and subsequently degraded by the proteasome (Li and Verma

2002). The IKK complex, consisting of IKKa, IKKb, and NEMO (IKKg) regulates
NF-kB activation following various stimuli and lack of either IKK complex compo-

nent blocks NF-kB activation (Ghosh and Hayden 2008).

Besides its well studied proapoptotic function, CD95 also has nonapoptotic

functions. It was shown that T cell proliferation under suboptimal CD3 stimulation

could be enhanced by CD95 costimulation (Alderson et al. 1993; Paulsen and

Janssen 2011; Paulsen et al. 2011). Additionally, CD95-knockout mice had
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abnormally low lymphocyte levels (Hao et al. 2004). Further, cancer cells were

found to produce CD95L and inhibition of CD95 reduced tumor size in several

cancer mouse models (Chen et al. 2010). The mechanism of the nonapoptotic

functions of CD95 is largely unknown. It could be shown from different indepen-

dent groups that CD95 stimulation triggers NF-kB activation, the exact mechanism,

however, remains elusive (Kataoka et al. 2000; Kreuz et al. 2004; Neumann et al.

2010; O’Reilly et al. 2004). Numerous groups have reported that CD95-mediated

activation of NF-kB, ERK, and MAPK requires caspase-8 activity and is controlled

by c-FLIP proteins (Fricker et al. 2010; Golks et al. 2006a; Hughes et al. 2009;

Kataoka et al. 2000; Kober et al. 2011; Kreuz et al. 2004; Nakajima et al. 2008;

Neumann et al. 2010; Shikama et al. 2003; van Raam and Salvesen 2011).

Our group could show in a systems biology study that p43-FLIP mediates NF-kB
activation by direct interaction with the IKK complex (Neumann et al. 2010).

However, the exact details of molecular mechanism of nonapoptotic signaling of

CD95 will be addressed in further studies.

2.3.2 The Function of RIP in CD95-Mediated Nonapoptotic
Pathways

The receptor-interacting protein (RIP) family plays a major role in CD95-mediated

necrosis, as well as in life and death decisions after DR stimulation (Geserick et al.

2009, 2010; Kamarajan et al. 2010; Kreuz et al. 2004; Moquin and Chan 2010;

Shikama et al. 2003; Vandenabeele et al. 2010a). The most prominent member is

RIP1, a serine/threonine kinase, which also possesses one C-terminal DD, a RIP

homotypic interaction motif (RHIM) and a ubiquitylation site (Geserick et al. 2009;

Moquin and Chan 2010; Vandenabeele et al. 2010a, b). The DD of RIP1 allows it to

interact with DR or FADD. Another important player is RIP3, a homolog of RIP1,

lacking the DD. RIP1 and RIP3 can interact via their RHIM domains (Moquin and

Chan 2010; Vandenabeele et al. 2010b). RIP1 can form another cytosolic complex,

termed ripoptosome, which consists of at least RIP1, Caspase-8/10, and FADD and

is regulated by cIAPs and c-FLIP proteins (Feoktistova et al. 2011; Tenev et al.

2011). The essential role of RIP1 for CD95-induced necroptosis, however, is

controversial and it may be that both RIP1 and RIP3 are required (Bertrand and

Vandenabeele 2010; Wong et al. 2010). While the kinase domain of RIP1 is

required for the execution of necroptosis, ubiquitylation by cIAP1/2 has been

reported to be needed for its nonapoptotic activities (Moquin and Chan 2010;

Vandenabeele et al. 2010a, b). The exact roles of RIP1 and RIP3 in nonapoptotic

pathways induced by CD95 are still unresolved and will be addressed in models of

extrinsic apoptosis in the chapter by Zhivotovsky (Calzone et al. 2010).

Especially the mechanistic interactions leading to nonapoptotic pathways after

death receptor stimulation are poorly understood.
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2.4 Mathematical Formalisms Used in Modeling

of the Extrinsic Pathway

There are numerous different modeling formalisms to describe cellular systems

and some of them have been applied for modeling the extrinsic pathway.

The simplest model is a graph, which only qualitatively describes a system and

cannot be used for simulation. Further, apoptosis signaling has been described by

Boolean models (Calzone et al. 2010; Mai and Liu 2009; Saez-Rodriguez et al.

2009; Schlatter et al. 2009). The advantage of Boolean models is that simulation

and optimization can be done very fast and no kinetic parameters need to be known,

because each variable can be either on or off, represented by 1 or 0, respectively.

The disadvantage, however, is that Boolean models are not quantitative and cannot

represent reaction kinetics. Other modeling approaches which were also applied to

apoptosis modeling include Bayesian models and petri nets (Heiner et al. 2004;

Yang 2005). The most common approach used in apoptosis modeling is based on

ordinary differential equations (ODEs), which describe cellular reactions based

on mass-action kinetics and can describe biochemical networks with adequate

accuracy. A first order ODE has the form _x ¼ f ðt; xðtÞÞ: Coupled differential

equations can be used to describe the changes in protein concentrations depending

on the system state. ODEs cannot describe diffusion in a cell. Diffusion is mostly

neglected when modeling a signaling pathway, based on the general assumption

that molecule diffusion is much faster compared to signal transduction. In order to

include diffusion, partial differential equations (PDE) can be applied.

Contrary to models based on differential equations, which are deterministic,

stochastic models use probabilities that two molecules interact with each other.

This can be also used in agent-based models (Bonabeau 2002; Brown et al. 2011;

Macal and North 2005, 2009; Roche et al. 2011). Each molecule is represented by

an agent with certain properties based on biological knowledge. Agent-based

models take into account local heterogeneity of molecules, while other approaches

only consider molecule populations.

ODEs are constructed based on mass-action kinetics. The following chemical

reaction:

Aþ B Ðk1
k2

C

transforms into the following system of ODEs:

d½A�
dt

¼ d½B�
dt

¼ �k1 � A � Bþ k2 � C
d½C�
dt

¼ k1 � A � B� k2 � C

Usually ODEs cannot be solved analytically, but are solved numerically using

computer programs, such as Matlab. The larger the model, the more kinetic
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parameters the system has. Measuring a large amount of parameters is often not

possible resulting in unknown parameters. Either the system needs to be simplified

to reduce parameter complexity or parameters need to be estimated. When

estimating parameters the system should describe the system as accurately as

possible. Parameter estimation can be done by the method of least-squares to fit

experimental data to the model. Oftentimes the model includes many kinetic

parameters compared to few experimental data, which gives multiple solutions

for the parameter estimation. Therefore, sensitivity analysis is applied to test the

robustness of the model upon parameter changes.

2.4.1 Modeling Extrinsic Apoptosis

The first model of CD95-mediated apoptosis was published more than a decade ago

by Fussenegger et al. (2000), which was not based on experimental data, but only

mechanistically described the apoptotic pathway. Albeck et al. (2008) quantita-
tively described death receptor-induced signaling with a focus on MOMP. Others

focused on the intrinsic pathway and mitochondrial permeabilization (D€ussmann

et al. 2010; Rehm et al. 2009). The following section gives a review of systems

biology studies of the CD95 signaling pathway as prototypic extrinsic pathway, all

using an ODE-based modeling approach.

2.4.1.1 Revealing a Threshold Mechanism in CD95-Induced Apoptosis

In Bentele et al. (2004) the CD95 pathway topology was reconstructed by literature
and database research. Initially, a model was generated consisting of about

70 molecules, 80 reactions, and more than 120 unknown parameters. The relatively

high number of parameters did not allow parameter estimation using experimental

data. Thus, subunits of varying information qualities were added. Well-known

interactions were modeled mechanistically, and two “black boxes” were introduced

for mitochondria and the degradation process. Black boxes were defined by their

input–output behavior. For simplification the DISC was modeled as one complex,

without taking into account its stoichiometry. These steps led to a model of

CD95-induced apoptosis with 41 molecules (including complexes, e.g., DISC),

32 reactions, and two black boxes, namely mitochondria and degradation.

The mitochondria black box takes the concentration of Bcl-XL/Bcl-2 and tBid as

input and triggers the release of cytochrome c if the concentration of tBid reaches a

certain threshold compared to the concentrations of the antiapoptotic proteins.

For degradation, a decay function was introduced, depending on the apoptotic

activity of the different molecules. This model still had over 50 unknown

parameters and was further simplified by applying sensitivity analysis, which

tests the system stability upon parameter changes. Due to the large number of

unknown parameters, the sensitivities for many randomly chosen points, covering a
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range of three orders of magnitude, were calculated. This analysis indicated that

most sensitivities of the system were highly robust to changes in parameters.

This analysis led to a simplified model of the DISC system in which the different

c-FLIP isoforms were not distinguished and it was assumed that c-FLIP proteins

block procaspase-8 activation at the DISC. Furthermore, the system dimensionality

could be reduced from 58 to 18 unknown parameters. Based on this structured

information model of CD95-induced cell death, experiments were designed to

measure time-dependent concentrations of 15 different molecules after stimulation

of CD95. The experiments were performed in the type I B lymphoblastoid cell line

SKW6.4. The cells were stimulated with agonistic anti-APO-1 antibodies and

the concentrations of the molecules of interest were measured by Western blot.

In the first approach, kinetics of molecule concentrations were measured with an

oversaturated ligand concentration of 5 mg/ml anti-APO-1, corresponding to a

ligand/receptor ratio of about 5:1. The mathematical model could describe well

the experimental data under these conditions. However, the system was still

underdetermined, meaning different model parameters could match the same

experimental data. Therefore, the same kinetics were measured for lower ligand

concentrations and the parameters were estimated based on these different stimula-

tion conditions. The resulting model could fit different stimulation scenarios.

Most importantly, the model predicted a critical ligand concentration, below

which apoptosis is abrogated, which could be verified experimentally (Bentele

et al. 2004; Lavrik et al. 2007). It could be shown experimentally that c-FLIP

proteins play a critical role in maintaining the threshold behavior of CD95 signal-

ing. Upon low ligand concentration only few receptors would be activated and c-

FLIP proteins could block all binding sites for caspase-8, thus preventing induction

of apoptosis. High ligand concentrations, however, could lead to the activation of

many receptors and caspase-8 would outnumber c-FLIP proteins at the DISC,

allowing its activation and initiation of apoptosis.

2.4.1.2 The Stoichiometry of the DISC Determines Life and Death at CD95

In Neumann et al. (2010) life/death decisions after CD95 stimulation were

analyzed. In particular, we focused on the crosstalk between the apoptotic and

NF-kB signaling pathways. Initially a model was designed in which a trimerized

ligand binds to trimerized CD95 further leading to the recruitment of three FADD

molecules and DISC formation. To each of the FADD molecules either procaspase-

8, c-FLIPL, or c-FLIPS could be recruited via DED interactions. The order of

binding of the DED proteins to the DISC gave rise to different intermediates.

Fully formed DISCs were divided into three groups. The first group contained at

least two procaspase-8 molecules leading to activation of procaspase-8 and apopto-

sis. The second group contained at least one procaspase-8 and one c-FLIPL mole-

cule and would lead to the activation of NF-kB via generation of the c-FLIPL
cleavage product p43-FLIP. The model assumed a direct interaction between p43-
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FLIP and the IKK complex, leading to the phosphorylation and degradation of IkB
and translocation of p65 to the nucleus. This prediction could be also verified

experimentally. The third group of DISCs comprised all other conformations

leading to a blocked state which neither initiates apoptosis nor NF-kB activation.

The model was simulated using coupled ODEs and the large number of unknown

parameters was reduced by assuming irreversible reactions. The remaining

unknown parameters were estimated from experimental Western blot data by the

method of least-squares. The model could well describe experimental data and

postulated direct interaction between p43-FLIP and the IKK complex. Interestingly

effector caspase-activity was not required to reproduce the dynamics of NF-kB
activation after CD95 stimulation. In addition, the model postulated that apoptotic

and nonapoptotic pathways diverge at the DISC. This hypothesis was tested

experimentally by inhibiting the apoptotic branch using the pan-caspase inhibitor

zVAD-fmk, which blocks caspase activation downstream of the DISC, but not at

the DISC (Golks et al. 2006b; Hughes et al. 2009). We stimulated zVAD-fmk

pretreated CD95 overexpressing HeLa cells (HeLa-CD95) and studied NF-kB
activation as well as apoptotic signaling. We could see p65 translocation to the

nucleus using mCherry-tagged p65 and fluorescence microscopy, but could not

detect apoptosis, thus validating the model prediction. In order to study whether the

complete model might hide key features due to its complexity we performed a step-

wise model reduction. Parameter estimation was done after each reducing step and

its performance compared to the original complete model. A simpler model usually

gives more reliable parameter estimation, because very complex models are prone

to overfitting. We came up with a simplified model, in which CD95 and FADD

were assumed to be pretrimerized (RF). Upon ligand (L) binding, the L/RF complex

could further recruit procaspase-8, c-FLIPL, or c-FLIPS. Two procaspase-8molecules

in the DISC would lead to the generation of active caspase-8 heterotetramers (p18/

p10)2 via p43/p41, while the presence of one molecule of procaspase-8 and c-FLIPL
initiates the NF-kB pathway via the cleavage product p43-FLIP leading to nonlin-

ear dynamics. Recruitment of c-FLIPS to the DISC leads to inhibition. This model

could still well describe experimental data and also fit with the previously found

threshold behavior of CD95-signaling (Bentele et al. 2004). Interestingly, the

threshold concentration did not depend on the number of CD95 on the cell surface,

but determines the rates of apoptotic and nonapoptotic signaling, which was found

by comparing HeLa wt and HeLa-CD95 (Neumann et al. 2010). Importantly,

we revealed that the stoichiometry of DISC components and especially the ratios

of c-FLIP isoforms to procaspase-8 and the concentration of their cleavage products

p43/p41 and p43-FLIP play a crucial role in the life/death decisions in CD95

signaling.

2.4.1.3 Dual Function of c-FLIPL in Procaspase-8 Processing

and Cell Death

In Fricker et al. (2010) we also focused on the CD95 DISC and studied the role of

c-FLIP proteins in the activation of procaspase-8 and cell death. We studied the
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influence of c-FLIP on caspase-8 activation in HeLa-CD95 cells which stably

overexpress c-FLIPL (HeLa-CD95-FL), c-FLIPS (HeLa-CD95-FS), or c-FLIPR
(HeLa-CD95-FR). Procaspase-8 activation was studied after stimulation of these

cell lines for different times with CD95L, followed by CD95 DISC Immunoprecipi-

tation (IP) and Western blot analysis. Overexpression of either of the short isoforms

of c-FLIP resulted in inhibition of procaspase-8 processing, even after several hours.

Interestingly overexpression of c-FLIPL strongly accelerated the first cleavage step

to p43/p41, which agreed with previous studies (Golks et al. 2005; Krueger et al.

2001; Micheau et al. 2002). This effect was also observed for different

concentrations of CD95L. Even though the first cleavage of procaspase-8 was

enhanced, c-FLIPL overexpressing HeLa-CD95 cells were less sensitive to apopto-

sis induction compared to normal HeLa-CD95. Stimulation with lower

concentrations of CD95L resulted in complete inhibition of procaspase-8 processing

as well as caspase-3 and PARP cleavage in c-FLIPL overexpressing HeLa-CD95

cells, but not in normal HeLa-CD95 cells. Stimulation with a high dose of ligand led

to accelerated caspase-8 processing and cleavage of caspase-3 and PARP. Essen-

tially, we observed nonlinear effects of c-FLIPL overexpression on procaspase-8

processing and cell death. To further study these effects, we built a mathematical

model of caspase-8 processing at the DISC using coupled ODEs. The model

involved CD95L which binds to CD95, further causing the recruitment of FADD

to form theDISC. Contrary to themodel of Neumann et al. (2010), we considered the
complex of CD95L/CD95/FADD as monomer which can further recruit one DED

protein. Procaspase-8 can form three different dimers at the DISC: procaspase-

8 homodimers, procaspase-8/c-FLIPL heterodimers, and procaspase-8/c-FLIPS/R
heterodimers. Procaspase-8 homodimers could be fully processed to p43/p41 and

p18, procaspase-8/c-FLIPL heterodimers could be only processed to p43/p41, but

not p18, and procaspase-8/c-FLIPS/R heterodimers could not be processed at all.

This assumption was experimentally validated in HeLa-CD95-c-FLIPL/R cells,

overexpressing both the short and long isoforms of c-FLIP. Furthermore,

procaspase-8 homodimers and procaspase-8/c-FLIPL heterodimers were assumed

to be catalytically active and cleave other molecules at the DISC. Fully processed

caspase-8 heterotetramers would be released into the cytosol and replaced by new

DED proteins, causing a turnover of caspase-8 at the DISC. Additionally, to reduce

model complexity, procaspase-8a and procaspase-8b were considered as one entity,

because they had been reported to have similar catalytic properties (Hughes et al.

2009). In addition, processing of procaspase-8 to p30 was neglected due to much

lower amounts compared to p43/p41 (Hoffmann et al. 2009). Essentially, we showed

that c-FLIPL only acts proapoptotic under certain conditions and depends upon the

strength of stimulation. At moderate concentrations at the DISC combined with

strong stimulation of CD95 or high amounts of one of the short c-FLIP isoforms at

the DISC c-FLIPL plays a proapoptotic role, while high amounts of c-FLIPL at the

DISC results in inhibition of apoptotic signaling. Due to its high affinity to the DISC

(Chang et al. 2002), c-FLIPL could be preferentially recruited to the DISC and

compete with procaspase-8 for binding sites. In addition c-FLIPL could block

procaspase-8 turnover at the DISC by blocking the final cleavage step to p18.
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Finally, the role of c-FLIPL in procaspase-8 processing is further modulated by the

short c-FLIP isoforms. High levels of c-FLIPR/S in the cell cause a sensitizing effect

of c-FLIPL. These findings demonstrate that c-FLIP proteins are critical regulators of

life and death decisions in CD95 signaling. Further, they demonstrate the impor-

tance of the stoichiometry of the DISC in this decision process. Changes in DISC

components could shift the signaling from apoptotic to nonapoptotic or vice versa. In

addition the data show the complex interplay of the different components at the

DISC, because the action of c-FLIPL does not only depend on its own concentration

but also on the concentration of the short variants at the DISC as well as the strength

of stimulation.

2.5 Conclusions

CD95-induced apoptosis is one of the best-studied signaling pathways, making it

especially interesting for modeling. Stimulation of CD95 can induce, both, apopto-

tic and nonapoptotic responses. The apoptotic response upon CD95 stimulation is

very well defined. CD95 stimulation leads to the formation of the DISC and

activation of the initiator procaspases-8 and -10 that, in turn, triggers the apoptotic

cascade.

Apoptosis has been subject of intense modeling, using different modeling

formalisms, including Boolean modeling (Calzone et al. 2010; Mai and Liu 2009;

Saez-Rodriguez et al. 2009; Schlatter et al. 2009), Bayesian modeling, petri nets

(Heiner et al. 2004; Yang 2005), and ODEs (Albeck et al. 2008; Bentele et al. 2004;

Cui et al. 2008; Fricker et al. 2010; Fussenegger et al. 2000; Kober et al. 2011;

Legewie et al. 2006; Neumann et al. 2010; Rehm et al. 2006; Spencer and Sorger

2011). We could successfully model extrinisic apoptosis using coupled ODEs based

on biochemical data and derive reasonable biological conclusions. Using this

systems biology approach, we could reveal the threshold mechanism of

CD95-induced apoptosis (Bentele et al. 2004; Lavrik et al. 2007). Furthermore,

we could show that the stoichiometry of the DISC is central to life and death

decisions upon CD95-stimulation (Neumann et al. 2010). In the same study, we

showed that p43-FLIP directly interacts with the IKK complex leading to NF-kB
activation after CD95 stimulation. In addition, we could gain detailed insights into

the role of c-FLIP proteins in the activation of apoptosis or nonapoptotic

pathways and showed that c-FLIPL can exhibit pro- or antiapoptotic functions,

depending on the strength of stimulation, as well as its concentration at the DISC

(Fricker et al. 2010).

Our results depicted the important function of the DISC in the activation of

apoptotic as well as nonapoptotic responses. Especially the DISC stoichiometry and

the complex interplay between DISC components decide the signaling outcome.

The stoichiometry of the DISC, however, has only been studied for CD95 and

FADD (Scott et al. 2009; Wang et al. 2010), but no conclusive data on all major

components, including caspase-8/10 as well as c-FLIP proteins are available.
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Determining the stoichiometry of the CD95 DISC and comparing apoptotic vs.
nonapoptotic cells could provide key insights into this decision process, which is

still not understood conclusively. Analysis of the CD95 DISC stoichiometry using

mathematical modeling should provide new insights into the regulation of CD95

signaling. Furthermore, it could be possible to alter the DISC stoichiometry

pharmacologically, thus switching between the two signaling outcomes in CD95.

This would add new therapies for diseases with dysfunctional apoptosis, such as

neurodegenerative disorders or cancer.
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Chapter 3

Systematic Complexity Reduction

of Signaling Models and Application

to a CD95 Signaling Model for Apoptosis

Dennis Rickert, Nicolai Fricker, Inna N. Lavrik, and Fabian J. Theis

Abstract A major problem when designing mathematical models of biochemical

processes to analyze and explain experimental data is choosing the correct degree of

model complexity. A common approach to solve this problem is top-down: Initially,

complete models including all possible reactions are generated; they are then itera-

tively reduced to a more manageable size. The reactions to be simplified at each step

are often chosenmanually since exploration of the full search space seems unfeasible.

While such a strategy is sufficient to identify a single, clearly structured reduction of

the model, it discards additional information such as whether somemodel features are

essential. In this chapter, we introduce alternate set-based strategies to model reduc-

tion that can be employed to exhaustively analyze the complete reduction space of a

biochemical model instead of only identifying a single valid reduction.
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3.1 Introduction

Amajor problem when designing mathematical models of biochemical processes to

analyze and explain experimental data is choosing the correct degree of model

complexity. Minimalistic models that include only the core reactions of a regu-

latory pathway will often fail to capture all mechanisms and be unable to reproduce

the experimentally observed dynamics. In contrast, models that include all possible

interactions may suffer from overfitting, strongly diminishing their predictive and

analytical value. This becomes especially severe in pathways where interacting

molecules are modified by, or bind with multiple interaction partners, as is common

in inter- and intracellular signaling.

A common approach to solve this problem is top-down: Initially, complete

models including all possible reactions are generated; they are then iteratively

reduced to a more manageable size. The reactions to be simplified at each step

are often chosen manually since exploration of the full search space seems unfeasi-

ble. While such a strategy is often sufficient if the goal is limited to finding a single,

clearly structured reduction of the model, other questions that could be of interest

from a modeling point of view are not considered. Examples for such questions are:

• Are some model features essential, i.e., can never be reduced?

• What are the smallest versions of the model that are still viable?

• Is there a logical pattern common to all valid model reductions?

These questions will often require the analysis of all possible model reductions, a

task that is both time consuming and repetitive, making it ill-suited to manual

analysis. Explicit enumeration and testing of all possible reductions is prohibitively

expensive, imposing the need to utilize heuristic search strategies. In this chapter

we will discuss a set-based strategy that is suited to answer the questions posed

above. While we explain the strategy in the context of ODE modeling with mass

action kinetics, it can be adapted to a wide range of models, including SDEs,

Boolean models, and stochastic simulations. We finish the chapter with an

application to CD95 signaling.

3.2 Graphical Structuring of ODE Models

It is often helpful to organize ODE models into a graph-like data structure. Not only

does this allow easy visualization of the model, it also allows the utilization of

established graph-based operations, like the removal of edges, and graph-based

algorithms, e.g., connectivity analysis with little adaption. This is frequently done

by researches, however, depending on the exact application, the details of the

representation differ. To avoid confusion, we give a short overview of the approach

we utilize. An example for a mass action ODE that is represented by a graph is

illustrated in Fig. 3.1. Note that while we limit ourselves to mass action kinetics in

this chapter to avoid excessively complex notation, the general approach is also

valid for more complex reaction kinetics, such as Michaelis–Menten kinetics.
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We focus on ODE models that can be decomposed into two types of elements:

states and reactions. States represent the molecular species of the system we want

to analyze, whereas reactions are the biochemical reactions that change one or more

molecule into other products. For a given ODE model, we will usually know the

value of all reactions depending on the current state values and the first derivate of

all states depending on the current reaction values. This is sufficient to simulate the

model using a numerical solver.

Based on the following definitions:

S1. . .k The set of all states

R1. . .j The set of all reactions

kn The kinetic rate of reaction n.
SubsR Rnð Þ is the index set of all states that are substrate of reaction n.
SubsSðSnÞ is the index set of all reactions that consume state n.
CatR Rnð Þ is the index set of all states that are catalysts of reaction n.
CatS Snð Þ is the index set of all reactions for which state n is a catalyst.

ProdðSnÞ is the index set of all reactions that produce state n.
stoich Si;Rnð Þ is the stoichiometric constant of state i in reaction n (the stoichio-

metric constant denotes how many molecules of each type partici-

pate in a reaction, e.g., for a homodimerization the stoichiometric

constant is 2).

Fig. 3.1 A graphically represented ODE model. An ODE model represented as a bipartite graph.

Green boxes are states (usually biochemical molecules), white circles are reactions. A state can be

either a substrate (normal line) or a catalyst (dashed line) for a reaction. A directed line from a

reaction to a state indicates that the reaction produces this state. In this model, the state P1–P3 act

as input (e.g., signaling molecules, primary metabolites. . .), the state P7 is the final model output.

P1 dimerizes with either P2 or P3. Both the P1–P2 dimer (P5) and the P1–P3 dimer (P4) can be

activated independently into P7 (P5 via the intermediate P6, P4 directly). In addition, there is a

cooperative mode of activation where P4 catalyzes the activation of P5
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The value of reaction n at time t:

Rn ¼ kn
Y

i2ðSubsR Rnð Þ [Cat Rnð ÞÞ
S
stoichðSi;RnÞ
i

The change of state m at time t:

d

dt
ðSnÞ ¼ þ

X
i2ProdðSnÞ

stoich Sn;Rið Þ � Ri �
X

i2SubsSðSnÞ
stoich Sn;Rið Þ � Ri

To generate the model graph for a given ODE:

For a graphical representation of this an ODE system, both states and reactions

are considered nodes in a model graph. The model graph is bipartite graph, i.e.,

there will only be connections between reactions and states, but not between states

and states or reactions and reactions.

• There is a directed edge from every state n to every reaction m if n 2 SubsR Rmð Þ,
i.e., if state n is substrate for reaction. We label all these edges with stoich

Sn;Rmð Þ and color them as substrate influences.

• There is a directed edge from every state n to every reaction m if n 2 Cat Rmð Þ,
i.e., if state n catalyzes reaction m. We label all these edges with stoich Sn;Rmð Þ
and color them as catalytic influences.

• There is a directed edge from each reactionm to each state n ifm 2 ProdðSnÞ, i.e.,
if reaction m produces state n. We label all these edges with stoich Sn;Rmð Þ and
color them as productions.

It is easy to see that additional, more complex kinetics can be supported by

simply increasing the number of different colors used to color the edges from states

to reaction nodes.

3.2.1 Experimental Noise Model and Error Function

One of the most important tasks in model-driven systems biology is to evaluate how

well a model explains experimental observation. Typically, we will want to run

simulations of different experimental conditions, such as different intensities of

stimulation and compare the resulting model dynamics to experimental

measurements. Figure 3.2 illustrates how the simulation of biochemical models

produces time course data for different experimental conditions.

While generating the experimental data is usually straightforward and can be

done using established toolboxes such as the SBtoolbox 2 for Matlab

(Schmidt 2006), the comparison is less straightforward and can be influenced by

personal bias. To minimize this subjectivity, it is useful to quantify the difference

between model and experimental data. This is often done by utilizing error
functions. An error function quantifies the difference between time course data
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generated by the model and experimental observations. However both the

generation and the interpretation of error functions and their values are nontrivial.

A major problem in systems biology is that data will often be very noisy; even

repeated measurements of the same system at the same time can vary by 10% or

more. This is caused both by measurement errors and by the high variability of

biological systems. In contrast deterministic models such as ODEs will always

reproduce identical results without any noise; therefore, it is unrealistic to expect an

ODE to reproduce experimental observations perfectly.

To deal with this situation, we try to capture the experimental variance in an

error noise model. For many different experimental setups, we observe that mea-

surement errors and experimental variance are normally distributed N(m, s2) with a
mean m of zero and a variance s2 that depends on the exact experimental setup.

We assume that the “basic” behavior of the system is determined by the determin-

istic model and that the difference between deterministic model and observed data

is caused by the experimental variance. This is illustrated in Fig. 3.3.

Observation = deterministic behavior (ODE modelÞ
þmodel variance (stochastic componentÞ

Based on this assumption we can calculate how probable it is to observe our

experimental data. Initially we will only consider the case where a single variable

(e.g., protein concentration) is observed at the time points 1. . .n. This is mainly done

to avoid confusing notation, in the end we will derive the total error value by simply

summing over all individual error values. Let xobs ¼ xobs1...n be the vector of our

experimental observations if only a single replicate of the experiment is performed.

a
b

c

Fig. 3.2 The behavior of dynamic systems can be changed by different experimental conditions.

(a) A typical experimental setup will often involve the reduction or complete knockout of one or

more states of a dynamical system. In our example, the protein P3 is completely knocked out

(set to concentration zero). (b) In wild-type cells, the reaction to stimulation is an early peak in

activity (at around 5 min), followed by a slow decay to a constant concentration level of about 50.

(c) In knockout cells the early peak at 5 min is missing. The later activation remains unaffected by

the knockout
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If the experiment is repeated multiple times, xobs instead contains the mean value of

all observations. The deterministic time course data produced by simulating our

ODE model is xsim ¼ xsim1...n and xstoch ¼ xstoch1...n is the difference between observation

and simulation that we attribute to stochastic effects in our experimental setup:

xobs1...n ¼ xsim1...n þ xstochi

xstochi ¼ xobs1...n � xsim1...n

with xstochi � Nðm; s2i Þ and m ¼ 0 we find (without proof) that the probability for

every single observation is

P xstochi

� � ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2i

p e
�

xstochið Þ2
2s2

i

If we assume independence between the experimental variations at different

time points (e.g., that a large variation at an early time point is not the cause of large

variations at later time points), we can derive the probability for the entire time

course by multiplying the probabilities of each single time point:

P xstoch
� � ¼ Yn

i¼1

P xstochi

� � ¼ Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2i

p e
�

xstochi

� �2
2s2i

a b

c d

Fig. 3.3 Experimental observations of dynamic systems can often be decomposed in determin-

istic and stochastic components. (a) Time course data from a completely deterministic system,

e.g., either a biological system with little variance or an artificial model (blue line) and the

corresponding measurements with added stochastic effects (red circles). (b) To deal with stochas-
tic effects, multiple measurements of each time point are performed, resulting in multiple values

for each time point (red circles). (c) To quantify multiple replicates of experimental

measurements, the mean value (circle) and standard deviation (error bars) for each time point

are determined. (d) Comparison of the deterministic time course (blue) and the quantification of

multiple observations (red)
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P xstoch
� �

is already a quantification of how well our model fits the experimental

data; however, in practice this formula is rather inconvenient as it requires multiple

evaluations of the exponential function and generally results in extremely small

values that are too small to be represented in standard computational variables.

However we can simplify the equation by dropping the normalizing factor

1=
ffiffiffiffiffiffiffiffiffiffi
2ps2i

p
and rescaling it on a logarithmic scale. Logarithmic rescaling allows us

to remove the exponential function and replace the product over each time point

with a sum. In addition, as we are generally interested in an equation that directly

evaluates the quality of the simulation xsim1...n, we substitute x
stoch
i ¼ xobs1...n � xsim1...n and

derive the error function EF xsim
� �

:

EFðxsimÞ ¼
Xn
i¼1

xobsi � xsim
� �2

2s2i

" #

This formula is the sum of squared residuals, normalized by the variance of the

observation. The value of the error function is zero if xobs ¼ xsim and positive

otherwise; the closer the value of the error function is to zero, the better our

simulated data fits to our experimental observations. If multiple replicates of the

experiment have been performed, the experimental variance s2i can be calculated

directly from the data points; otherwise it has to be estimated based on expert

knowledge.

3.2.2 Parameter Optimization

Based on our introduction to ODE’s in Sect. 3.2, it is obvious that the value of the

simulated time course xsim depends on a set of parameters. We will group all

parameters of the ODE system into a vector of parameters we will call y, where
yi is the i-th parameter. For a mass action kinetic model, ywill usually consist of the
kinetic rates of all reactions.

We will utilize the error function introduced in the previous section to find a

value for y that results in a good fit between simulation and experimental data.

We do this by trying to minimize the value of EFðxsimðyÞÞ. This process is called
parameter optimization. As entire books have been written on the topic, we will

limit us here to an overview over a few common techniques. All approaches

introduced here are based on the same general idea; an initial value for y is picked
(either based on literature values or at random) and subsequently modified with

the goal of improving the error function value. This is done iteratively until

some kind of ending criteria is met. Common ending criteria include a fixed

number of total iterations or a number of iterations without marked improvement

in function value.

A very basic strategy is the hill climbing algorithm. In each step the local

neighborhood of the current y is explored. To do so, a candidate for a new
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parameter set, ŷ is generated by adding a value that depends on the exact

implementation of the algorithm to a single element yi . If the change results in

an improvement, y is updated to the new value ŷ. Otherwise another candidate is
generated by subtracting the same value from yi and again, the new candidate is

accepted if it results in an improvement over the previous error value. This is then

iteratively repeated for each element of y until no further improvement is made.

While this method is easy to implement, it has the disadvantage of frequently

becoming stuck in local optima.

Another type of local methods are steepest ascent methods. In these methods, the

next step in each iteration is chosen based on local evaluation or approximation of

the first derivative of the model dynamics. This will usually result in a step that

optimizes the improvement of the error function. While this sounds like a promising

approach, it is limited by how well we can approximate the first derivate of the

model. In addition, models that are determined by higher-order derivates will result

in very small steps, causing long run times. As in hill climbing algorithms, there is a

danger of getting stuck in local minima.

A common heuristic to deal with the issue of local optima are simulated
annealing algorithms. The idea of these algorithms is that in each step a proposal

is generated by randomly changing the current parameter vector. If the change

results in a score improvement, it is always accepted. However, if the error value

increases, the proposal is still accepted with a certain probability. This probability

depends on a temperature value that start at high value and is then decreased

according to a cooling schedule.

3.2.3 Choosing Significant Error Function Cutoffs

In the previous sections we discussed how to quantify the difference between the

simulated time course data and the experimental observations, and gave an over-

view over parameter optimization techniques that can be used to minimize this

quantified value in order to produce a good model fit. However, when we try to

reduce models, we face the question whether a slightly worse error score justifies a

significant simplification of the model. This leads to the question of cutoff values of
the error function: Up to which error value can we say that a model reproduces our

experimental data satisfactory?

One way to derive cutoffs for error values is based on the assumption that the

observed data points are normally distributed around a time course generated by a

deterministic dynamic. This is done using the w2 distribution. The w2 distribution

calculates the probability that summing over a number k of squared, uniform

normally distributed random variables results in a certain value. If we keep in

mind that we assumed ðxobsi � xsimÞ to be normally distributed, this is exactly what

we do in the error function EFðxsimÞ ¼ Pn
i¼1

xobsi �xsimð Þ2
2s2

i

� �
.
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Based on the w2 distribution, we can estimate the expected deviation of an

observation from the real value of the generating system and the resulting expected
error score per time point. For example, we expect that 68% of all data points

should be within one standard deviation of the deterministic time course

(contributing an error value less than one error unit per time point) and 95% should

be within two standard deviations (contributing an error value less than four error

units per time point).

The exact calculation and interpretation of confidence intervals using this

method is nontrivial and exceeds the scope of this chapter. However, as a rule of
thumb based on these considerations, we expect a normalized sum of squared

residuals lesser or equal to the number of time points to be almost always a rather

good fit that explains most data points. Likewise, a score larger than four times the
number of time points is almost always a bad fit that either completely misses some

data points or shows a significant deviation from every single measurement.

It should be noted that, no matter how error cutoff values are derived, they

should always be analyzed in the context of the experimental data and the biological

system. It is very possible that a way to derive a cutoff value that works perfectly

well for one set of data results in a cutoff that is to strict or to permissive in a

different context. It generally makes sense to test multiple cutoff values and

compare which value is closest to the interpretation of the experimental data in a

biological context (Fig. 3.4).

3.3 Reduction of Graph-Based Models

In the context of this chapter, we focus on reducing a model by removing reactions

that are not required to explain the observed dynamic behavior of the model.

This reduces the degree of parameter under determination and helps to identify

the core dynamics essential to the model.

In general, two different types of reactions compose a biochemical model. One is

a set of core reactions that can be considered essential for a pathway. These reactions
have either been confirmed in previous experiments, are established as a gold

standard in literature, or are required in the model for structural reason, e.g.,

reactions that are important for model connectivity. We are generally not interested

in reducing a model by removing core reactions.

In addition there are auxiliary reactions or reduction candidates Rred, reactions

that are either of a hypothetical nature or of a detail level that might be inappropri-

ate for the desired model. Examples for reduction candidates often include

reactions that have been predicted based on binding domain analysis and PPI

data, but have not been confirmed in vivo. For our analysis, any subset of Rred is

a potential reduction of the model. The set of all subsets of a set X is also called the

powerset of X, which we will denote PðXÞ: Thus the entire space of possible

reductions Sred is PðRredÞ: The size of a powerset grows exponentially to the
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base 2. This means that the total number of possible reductions of a model is 2n,

where n is the number of reactions in Rred.

Most times we find that not all members of Sred are valid reductions, i.e., able

to reproduce experimental data with a quality below a cutoff as explained in

Sect. 3.2.3. The challenge lies in identifying which reduction candidates are not

supported by experimental evidence.
It should be noted that parameter optimization for an ODE model is often a

computationally expensive task that can take multiple minutes per attempt. It is

therefore necessary to keep direct testing of reductions to a minimum. Instead,

a b

c d

Fig. 3.4 Visualization of different kinds of cutoffs. (a) Cutoff based on one standard deviation

(cutoff value equal to the number of time points). The black line is a possible simulation that

satisfies the cutoff value, the green lines visualize the simulation +/� one standard deviation.

Note that the borders visualized with respect to the simulated data; this is functionally identical

to considering the borders with respect to the experimental data points. Note that it is not necessary

that all points have to be inside visualized borders; if some data points are close to the black line,
others might be outside the one standard deviation border. (b) Cutoff based on two standard

deviations (cutoff value equal to four times the number of time points). The red lines visualize
a two standard deviation border, (c) Cutoff based on two standard deviations, worst case fit.

The simulated time course still results in an error value below the cutoff, despite two data

points being outside red borders. In this case, the two standard deviation cutoff is too permissive,

as an important qualitative feature of the data, the early activity peak is lost. (d) By analyzing

the minimal error score at which the peaking behavior is lost, we derive a new error cutoff based on

1.4 standard deviations. The new worst case fit (black line) still shows a clear early peak

66 D. Rickert et al.



we hope to verify/reject a large number of reductions indirectly. Since the complete

reduction space grows exponentially with the number of auxiliary reductions, brute

force checking of every reduction candidate will often take a prohibitively long

time. Heuristic strategies need to be employed to speed up the identification

reductions that are not supported by experimental evidence.

3.3.1 Indirect Model Verification and Rejection

Indirect model acceptance and rejection are based on a simple but powerful

property resulting from the definition of our reduction framework. Based on the

definitions given in Sect. 3.2, we find that removing a reaction from a model is

identical to setting the associated kinetic parameter to zero. This implies that

removing a reaction from an invalid model cannot transform the model into a

valid model. Likewise adding reactions to a valid model cannot make this model

invalid, as the newly added reactions could potentially have a kinetic rate of zero.

This results in the following theorem:

Core theorem of set-based model reduction:

1. If a reduction is identified as valid, all reductions that are subsets of the valid

reduction are also valid.

2. If a reduction is identified as invalid, all reductions that are supersets of the

invalid reduction are also invalid.

These properties are essential to our design of reduction strategies. They allow

us to accept valid and reject invalid reductions without the need to explicitly testing

them. This is necessary, as the complete search space doubles with each additional

reduction candidate, making explicit testing of all reductions impossible. We need

to maximize the information gained indirectly in order to deal with the exponen-

tially growing search space.

If we compare the indirect information gained from accepting/rejecting a reduc-

tion, we find that these will strongly differ between different candidates. Most of the

time, reduction with few elements provide the most indirect information gain if they

are rejected, as they are subsets of a larger number of reductions than large

reductions. In contrast, large reductions provide the most information if they are

accepted.

Direct testing of a reduction candidate is based on the analysis introduced in

Sect. 3.2.2, 3.2.3, e.g., multiple parameter fitting attempts are started that attempt to

find a model parameterization that explains the observed data with a quality below a

cutoff. While we only introduce cutoffs that are motivated by statistical analysis of

a given error model, cutoffs and error functions derived in a different way can also

be utilized without changing the other aspects of model reduction. If a parameteri-

zation is found that results in an error value below a certain cutoff, the reduction is

accepted as valid.

3 Systematic Complexity Reduction of Signaling Models and Application. . . 67



Unfortunately, we often find that the probability of accepting a large reduction

picked at random is rather small; likewise, small reductions are more likely to be

accepted than large reductions. This implies that, in order to analyze the reduction

space efficiently, we need to focus on strategies that identify large reductions that

are likely to be accepted or small reductions that are likely to be rejected with a

higher than random frequency.

In addition to estimating the probability of rejecting/accepting a reduction, a

second important aspect to optimize indirect information gain is keeping track of

the reductions that have already been accepted and rejected. While accepting a

large reduction will often result in a significant information gain, this is only true if

only a small number of its subsets have already been accepted. In contrast, if most

subsets of a large reduction candidate have already been accepted, the information

gained by accepting the candidate is still small.

3.4 Topological Model Analysis

As already mentioned, the reduction space we wish to analyze contains all combi-

natorial subsets of the reduction candidates of a model. This space will frequently

contain reductions that can be identified as unable to reproduce experimental data

based solely on the topology of the reduced model (e.g., cases where biologically

important states become disconnected from the rest of the model). Examples for

such reductions are illustrated in Fig. 3.5. We call these reductions topologically
invalid reductions.

In addition, it is possible that different sets of elementary reductions result in

models that show identical dynamic behavior. For these redundant models, it is

sufficient to test the validity of one reduction of the redundancy group and subse-

quently assign all other models the same validity. Examples for redundant models

are given in Fig. 3.5.

To recognize topologically invalid and redundant models we use the concepts

of observability and controllability and activity. While these properties are inspired

by the concepts with the same names as utilized in systems engineering, it should

be noted that we use significantly different versions. We illustrate these concepts

for the ODE models, but they can be applied in a similar way to a large range

of different models, including SDE models, Boolean models, and agent-based

models.

3.4.1 Controllability

We use the property controllability to keep track of which inputs are able to control
which intermediate- and output states. An input is said to control another state if

changing the input results in a change of behavior for the second state. An example
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for this is that during a gene knockout experiment, all other genes that are up- or

down regulated are controlled by the gene knocked out. Models that do not connect

the genes we observe to be experimentally controlled by the gene knocked out can

be rejected without time-consuming parameter optimization attempts. For the type

of ODE models that we consider, the control of states is propagated between the

states by the reactions, as states do not directly depend upon each other. Reactions

in turn are completely determined by a set of states that is specific for each reaction.

Intuitively, we find that an Input State SI:

– Controls itself by definition.

– Controls a reaction Rn if ðSubsR Rnð Þ [ CatR Rnð ÞÞ contains any controlled states,
i.e., if any substrate or catalyst of is Rn controlled.

a b

c d

Fig. 3.5 Examples for valid, invalid, and redundant reductions. (a) is the original, unreduced

model as introduced in Fig 3.1. (b) is a topologically valid reduction. Although both independent

pathways that lead to the production of P7 have been removed, P7 is still produced by the

cooperative pathway (reaction R3). If the cooperative reaction happens at a significantly higher

rate than both indirect pathways, such a reduction can be realistic in a biological context. If this

is the case, the model behavior is determined primarily by the cooperative activation mechanism.

(c) is an invalid reaction. The direct activation of P4 has been removed. In addition, the dimeriza-

tion of P1–P2 has been removed, so that P5 is no longer produced. This results in a situation where

P7 can no longer be produced, rendering the entire pathway inactive. Therefore, model (c) is an

invalid reduction. (d) This reduction is still able to produce P7 through the independent activation

of P5, but can no longer produce state P4. Thus it is a valid reduction. However, it still includes two

reactions that depend on P4 (R3 and R5). These reactions will never have a value larger zero,

rendering them obsolete. A reduction of model (d) that would also remove R3 and R5 would act

identically to model (d) without obsolete reactions. Therefore, we call model (d) redundant
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– Controls a state Sn if ðSubsSðSÞ [ Prod Snð ÞÞ contains any controlled reactions,

i.e., if any reaction that either consumes or produces Sn is controlled.

These intuitive definitions are lacking in so far as they allow for a state’s control-

lability to depend recursively upon itself. While such a situation is easily recognized

by a human researcher, a computer-based analysis needs to explicitly account for

this possibility. It should be noted that these conditions are only necessary, but not
sufficient to confirm control. As we only consider topological criteria, parameter-

izations can exist for which we do not observe control relations despite the topologi-

cal conditions being fulfilled. This is the case if, e.g., the kinetic parameter of a

reaction that is required for a control relation is set to zero.

3.4.2 Observability

The property observability is closely related to controllability. We call a state

observable if changes to the state (either at a certain time point or to the initial

conditions) can be recognized in the states that we are able to measure experimen-

tally. Similar to the limitations imposed in the analysis of controllability, we are

again limited to necessary conditions and have to avoid recursive dependency.

We will use observability to identify reactions that are unimportant for the model

dynamics we observe and can be removed. If any reactions are identified that are

not observable, the model is by definition redundant, as a model that removes these

would behave identically with respect to our experimental observations.

A state Sn:

– Is observable by definition if Sn is an output state

– Is observable if SubsS Snð Þ [ CatS Snð Þð Þ contains any observable reaction

A reaction Rn:

– Is observable if SubsR Rnð Þ [ Prod Rnð Þð Þ contains any observable state

3.4.3 Activity

We find that simulations of biological processes frequently contain only a few states

that start with an initial concentration greater zero, whereas the majority of states

will have an initial condition of zero. This can result in situations where multiple

states and reactions will always have a concentration of zero, for all possible

experimental setup. We use the property of activity to determine if a reduced

model contains any reactions that will always have a value of zero. If this is the

case, the model is redundant. In addition, if any output state is not active, the model

is invalid (Figs. 3.6 and 3.7).
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A state Sn is active:

– If it has an initial concentration larger than zero

– If Prod Snð Þ contains any active reactions

A reaction Rn is active:

– If all states in SubsS Snð Þ [ CatS Snð Þð Þ are active

a b

c d

e f

Fig. 3.6 Illustrating the concept of controllability. (a) State P2 can be controlled directly by

choosing different experimental setups. (b) The reaction R1 is controlled by P2, as P2 is a substrate

of R1. (c) Control is propagated from R1 both forward (to its products) and backward (to its

substrates). (d) Applying this propagation iteratively allows us to analyze the remaining model.

(e) We find that state P2 exerts control over the entire model. (f) If the reaction R1 is removed, P2

loses its entire ability to control the model
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a b

c d

e f

Fig. 3.7 Activity and observability. Activity (right side) and observability (left side) are analyzed
similar to activity; however, some important differences exist. (Observability) In contrast to

Controllability, the initially observed states are the model outputs. A reaction is observable if

either one of its products or substrates is observable. It will propagate this observability to all its

substrates and catalysts (but, in contrast to Controllability, not to its products). (Activity) All states

with an initial concentration larger than zero are initially active. Frequently, the set of initially

active states will either be identically to or a superset of the controlled states. However, it is

insufficient that one substrate or catalyst of a reaction is active to propagate activity to a reaction.

Instead, all substrates and catalysts have to be active. Reactions in turn only propagate activity in a

forward fashion to all their products, but not to their substrates or catalysts
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Summary

Controllability
Input State SI:

Controls itself by definition.

Controls a reaction Rn if ðSubsR Rnð Þ [ CatR Rnð ÞÞ contains any controlled

states, i.e., if any substrate or catalyst of is Rn controlled.

Controls a state Sn if ðSubsSðSÞ [ Prod Snð ÞÞ contains any controlled

reactions, i.e., if any reaction that either consumes or produces Sn is

controlled.

Observability
A state Sn:

Is observable by definition if Sn is an output state

Is observable if SubsS Snð Þ [ CatS Snð Þð Þ contains any observable reaction

A reaction Rn:

Is observable if SubsR Rnð Þ [ Prod Rnð Þð Þ contains any observable state

Activity
A state Sn:
Is active if it has an initial concentration larger than zero

Is active if Prod Snð Þ contains any active reactions

A reaction Rn:

Is active if all states in SubsR Rnð Þ [ CatR Rnð Þð Þ are active

Modeling Implications
A model that contains any inactive or unobservable reactions is redundant.
A model that contains any inactive output state is invalid.
Amodel that violates any experimentally established input/output dependencies

is invalid.

3.5 The Reduction Graph Data Structure

In order to better visualize the concepts introduced in Sect. 3.3, it can be helpful to

further analyze the structure of the reduction space in a way that does not depend on

the model we want to reduce. We already characterized the reduction space as the

powerset of all reduction candidates. We can utilize this by analyzing the inclusion

structure, i.e., the subset/superset relation between its elements. This inclusion

structure can be visualized by a special graph called Hasse diagram. Hasse
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diagrams are utilized to visualize Partially ordered sets, of which powersets are one

example.

Any reduction candidate R1 that is a subset of another candidate R2 will be

considered an ancestor of R2. If, in addition, R1 has exactly one element less than

R2, R1 will be called the direct ancestor or parent. Inversely, R2 will be called a

descendant of R1 if R2 is a superset of R1 and a direct ancestor or child of R1 if R2

has exactly one element more than R1.

To generate a Hasse diagram, we construct a graph in which each reduction

candidate (including the empty set) is assigned one node. Every node is connected

to its direct descendants by a directed edge. The result is a hierarchical, directed

acyclic graph starting from the empty reduction (which has no incoming edges) to

the complete reduction (which has no outgoing edges). All elements of one hierar-

chical level remove exactly the same number of reduction candidates.

The theorem in Sect. 3.3.1, can be reinterpreted in this context:

1. If a reduction is identified as valid, all nodes that have a directed edge leading to

this reduction can also be marked as valid reductions

2. If a reduction is identified as invalid, nodes that can be reached from this

reduction can also be marked as invalid

Based on this interpretation, we can reinterpret the analysis of the reduction set

as a path-finding problem in a graph: we are interested in all nodes that can be

reached by directed paths that start at the empty reduction set node. This allows us

to utilize path-finding algorithms designed for different graph-based problems with

little adaptions.

When analyzing the reduction graph of a model, it becomes obvious that most

valid and invalid reductions can be verified/rejected indirectly. Based on the

considerations in the previous section we find that every valid reduction that also

has a valid descendant can be validated indirectly. Likewise, any invalid reduction

that has an invalid ancestor can be rejected without the need for explicit model

checking.

Only two types of reductions have to be tested explicitly. Invalid reductions that

have only valid parents have to be rejected by direct testing. We will call these

reductions minimal invalid reductions. The description “minimal” is used to clarify

that all models that remove only a subset of a minimal invalid reduction are valid.

Similarly, valid reductions that have no valid children will be called maximal valid
reductions. To completely analyze the reduction space of a model, it is both

necessary and sufficient to find both the set of minimal invalid reductions and the

set of maximal valid reductions. However, in reality, we find that direct identifica-

tion of these sets is rarely possible. Instead, our goal is to find heuristic search

strategies that minimize the direct testing performed for reductions that are neither

maximal valid nor minimal invalid (Fig. 3.8).
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3.6 Search Strategies

The strategies we will introduce in this chapter all utilize a candidate list that is

updated with each accepted or rejected reduction step. If a reduction is accepted, all

its direct descendants that have not already been rejected are added to the end of the

candidate list. If a reduction is rejected all its descendants that are currently

in the candidate list are removed. The order in which candidates are picked from

the list (e.g., oldest first, newest first. . .) determines the exact algorithm. These

strategies are strongly similar to path-searching algorithms for graphs. A common

property of all candidate-generating strategies is that every reduction directly tested

(except the empty reduction set) will always have at least one valid parent.

3.7 Basic Search Strategies

A Breadth first search strategy is one of the basic approaches to analyzing the

reduction graph. It is implemented as a candidate generating strategy that always

picks the first element of the priority queue, i.e., the oldest element as new candidates

are added to the end of the queue. This is also called a first in first out priority strategy.

There are strong similarities between this search strategy and the a priori

algorithm for frequent item set mining as introduced by Agrawal et al. (1994).

Several results regarding the best- and worst-case runtime of the a priori algorithm

can be transferred to the Breadth first search strategy. Like the a priori algorithm, a

breadth first search operates in a semideterministic fashion. If multiple breadth first

runs are started, they will always explicitly test the same reductions, potentially in a

varying order.

Based on the analysis of the a priori algorithm, we can also make observations

regarding the number of unnecessary explicit tests performed. A breadth first search

will only test nodes whose ancestors have all been verified, i.e., accepting a node

during a breadth first search will never result in additional information gain. Vice

versa, all nodes that will be rejected will be minimal invalid reductions, as they

have no invalid ancestors. The result is that the breadth first search will always

explicitly test all valid nodes, but in turn only test those invalid nodes that cannot be

avoided to be tested.

Based on this we find two general applications; if a model either has only a very

small number of valid reductions or rejecting an invalid reduction is on average

significantly more costly than accepting a valid reduction.

A depth first search strategy can be implemented very similar to a breadth first

search, with the difference that the last item of the candidate queue is picked at each

step, i.e., the item that has been added most recently (a last in first out priority

strategy). However, the resulting search dynamics will strongly diverge from the

behavior of a breadth first algorithm. In general, the performance of a depth first

search will vary significantly between different restarts.
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Fig. 3.8 The reduction graph data structure. (a) The unreduced base model is mapped to the root

node (�) or empty reduction of the reduction graph. It is always valid. (b) The reduction B is

topologically invalid. It is mapped to node (R3, R5, R6). (c) The initial reduction graph for the base

model (a), after topological analysis but prior to starting a reduction run. Note that only

the reactions R3–R6 are reduction candidates, R1 + R2 are considered established reactions.

Red nodes are topologically invalid, gray nodes are redundant. Redundant nodes are connected
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A depth first search will most of the time attempt to verify reductions larger than

the last accepted reduction. Only if all descendants of the current reduction are

rejected will the depth first search start to trace back to earlier reductions. Ideally,

the search will find large valid reductions early in its course, indirectly verifying a

large number of valid reductions, thus significantly outperforming the Breadth first

search. However, if a small invalid reduction is missed, a depth first search can

end up getting “stuck” rejecting all its descendants in an unfavorable order. The

following example illustrates this problem and compares the approach of the depth

first to the breadth first approach.

Both breadth- and depth first approaches will perform very badly if the space of

valid reductions is structured in certain ways. The number of verifications required

by breadth first approaches grows proportionally to the size of the solution space

even if the solution space is structured very regular. In contrast, depth first searches

can get stuck in irregular-shaped solution spaces. Therefore it makes sense to

include a random walk-based strategy as a benchmarking baseline. In such a

strategy a random member of the priority queue is chosen at each step. Interest-

ingly, we find that such a random walk-based search will often outperform both

breadth- and depth first approaches. This illustrates that the problematic cases

discussed for breadth- and depth first approaches occur with significant frequency

in modeling applications, and that strategies to deal with these cases are required

(Fig. 3.9).

3.8 Hybrid Switching Approach

If we compare the performance of breadth-first, depth-first, and random walk search

during an reduction run as illustrated in Fig. 3.10, we find recurring properties.

At the start of the reduction run, the depth-first strategy will often outperform both

alternative strategies. The depth first strategy initially identifies large valid

reductions with a higher frequency then both alternatives. This offers a significant

indirect information gain by indirectly verifying a large number of smaller reduc-

tion candidates. However, it subsequently gets stuck rejecting a large number of

reductions with very small indirect information gained for each rejection.

In contrast, the breadth first search exclusively gains indirect information by

rejecting invalid reductions, as has already been discussed. This will often result in

�

Fig. 3.8 (continued) by an arrow to the reduction that is obtained by removing all obsolete

elements from them. If a search encounters such a redundant node, it automatically skips to the

node indicated by the arrow as it is a unique representative of this redundancy group. (d) Both (R3,

R4) and (R3, R5) are redundant. The unique representative of this redundancy group is the

reduction (R3, R4, R5). (e) Explicitly testing the reduction (R4, R5) can have two results. If it is

accepted, this will indirectly verify (R5). If it is rejected, this will indirectly reject (R3, R4, R5) and

(R4, R5, R6). The resulting reduction graph for either case is illustrated
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a b

c d

e f

Fig. 3.9 Direct and indirect validation and rejection in the reduction graph. (a) Most search

strategies will start at the root node of the reduction graph. (b) Verifying that (2) is a valid

reduction does not provide indirect information gain. (c) Verifying node (2,3) also verifies

node (3). Note that node (2) has already been verified, so it does not count as indirect information

gain, despite being an ancestor of node (2,3). (d) Similar to (c), rejecting (1,2,3) results in indirect
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Fig. 3.9 (continued) information gain by indirectly rejecting (1,2,3,4) (e) In the situation as

displayed in d, the analysis of node (1,4) a next step is a smart choice. Either accepting or rejecting

it will result in the indirect analysis of two nodes. Note that no parent of (1,4) has been analyzed;

therefore, only a candidate picking, but not a candidate generating search strategy would be able to

utilize this reasoning to skip to node (1,4). In this example, node (1,4) is rejected, resulting in the

additional rejection of (1,2,4) and (1,3,4). (f) Once the complete graph is analyzed, we know all

valid reductions of the initial model

a b

c d

Fig. 3.10 Comparing depth first and breadth first random search. (a) Completely analyzed

reduction graph. (b) Best case of a search trace for a depth first search. The search initially rejects

(1) and indirectly rejects all its descendants. It then proceeds to analyze the remaining, valid part of

the reduction graph in only four steps. (c) A breadth first search will always identify (1) as an

invalid reduction during its first few steps. However, it will need to verify all remaining valid

reductions explicitly, resulting in a performance that is worse than the best case of a depth first

search as illustrated in (b). (d) However, if a depth-first analysis misses the small invalid

reductions and directly wanders to node (2,3,4), the rejections of the invalid reductions will be

done by backtracking from a large valid reduction. This case results in the worst-case performance

that is worse than the breadth first search
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a slow initial phase, where a large number of small valid reductions are explicitly

tested. In exchange, the problem of long stretches of subsequent rejection with little

information gain is completely avoided, resulting overall in a stable performance

that has smaller information gains then the alternatives during early phases and

larger information gain towards the end.

From comparing all three basic strategies, we already know that on average, the

good early performance of the depth-first strategy and the good late performance of

the breadth-first strategy are insufficient to set off the respective disadvantages

when problematic situations are encountered. We also find that the advantages and

disadvantages of depth- and breadth-first search supplement each other.

An alternative to the weighted random walk we call hybrid switching approach

is to initially start with a DFS that is interrupted as soon as a certain number of

rejections has been reached. Once this has happened, either a new DFS is started

(that would use a path different from the initial DFS) or the DFS phase is stopped

and a BFS is started to analyze the remaining reduction space. Criteria that are

possible to decide the time of switching from DFS to BFS include the information

gained during the last DFS run or the number of remaining unknown reductions.

3.9 Application Example: Reducing a Model

of the CD95 Pathway

Regulation of cell death decisions via CD95 signaling involves complex dynamics

of the involved pro- and anti-apoptotic proteins, e.g., procaspase-8 and c-FLIP, and

their cleavage products. These sometimes interact in surprising, non-intuitive ways.

A signal that induces cell proliferation and survival at low concentrations can

induce apoptosis at higher concentrations, thus resulting in opposing effects

depending on whether a threshold is met (Lavrik et al. 2007). To understand not

only the qualitative level of these regulatory mechanisms, but the details of

the molecular interactions resulting in such a threshold behavior, researchers have

begun developing quantitative signaling models (Fricker et al. 2010). While these

models are currently able to illustrate the molecular dynamics encountered, they

typically suffer from indeterminacies stemming from either over specified models

or biologically relevant alternative architectures. This reduces their value in model-

based prediction, as parameter uncertainties will often directly result in uncertain

and ambiguous predictions. In this section, we will illustrate how model reduction

can be utilized to improve our understanding of the processes happening during this

signaling and to derive new models that better represent these processes.

To analyze the role of c-FLIP cleavage in apoptosis induction, we have used a

model describing the apoptotic branch of the CD95 signaling pathway as

implemented in (Fricker et al. 2010). This model is illustrated in Fig. 3.11. While

the model explains the interaction of c-FLIP in an intuitive way, it is considerably

underdetermined. Many intermediate states of the pathway can only be measured as
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groups and a significant number of potential reactions cannot be observed directly

as they occur in membrane-localized complexes that are difficult to measure in an

experimental context.

The model is roughly divided into three parts. The first part of the model

simulates the binding of the extracellular CD95L (CD95 ligand) to CD95R (CD95

receptor) (Suda et al. 1993). The activated receptor recruits FADD. Bound FADD

multimerizes and thus creates the membrane-localized DISC (Death Inducing

Signaling Complex), denoted as CD95 FADD in the model (Kischkel et al. 1995).

Fig. 3.11 Biological background, experimental data, and computational model of the CD95

pathway. (a) The DISC (Death Inducing Signaling Complex) is formed at the membrane.

Its most important parts are the CD95 ligand/receptor complex and FADD (Fas Associated

Death Domain) protein. Both Procaspase-8/10 and c-FLIPS/L are recruited by and bound to this

complex and further processed and activated. (b) Experimental measurements of various

molecules in the CD95 pathway during stimulation experiments. For protein measurements, the

x-axis denotes time while the y-axis denotes relative intensity. Blue error bars are the measured

points, green lines are simulations by the pathway model (c) with different parameter sets.

All simulations have similar overall quality. For the cell death measurements, the x-axis denotes
the number of the experiments, each blue circle is a separate experiment. The y-axis denotes the
number of cells that had died by the end of the experiment. Red x’s are again the result of

simulating the CD95 model with different parameter sets. (c) The CD95 model. Equally colored

species were measured as one experimental concentration; dissociation reactions were omitted for

clarity. Reactions that are candidates for removal have been highlighted in red. Our goal is to find

model reductions that are roughly as good as the simulations illustrated in (b), but contain fewer of

the reactions marked as reduction candidates
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Fig. 3.12 Model reductions of the full CD95 signaling model and CD95 consensus model. The 14

reduced models are summarized in (a–d) by including any one (c, d) or two (a) edges of the same

color or one edge of each color (b). A recurring pattern is that all reductions include the activation

of the C8 homodimer by either the C8 or the p43 heterodimer. This illustrates that clearly the

interaction of homo- and heterodimers is an essential part of the pathway dynamics and that

limiting the model to homo–homo and hetero–hetero interactions is not a valid approach. The

minimal reductions summarized in (c) can be considered questionable in a biological context; it

seems unlikely that the C8 homodimer can activate the C8 heterodimer but not itself while the C8

heterodimer cannot act as catalyst at all. This illustrates that our current set of experimental data is

insufficient to completely characterize the CD95 pathway in a satisfying fashion. The same holds

true for the reductions summarized in (d); it seems biologically questionable that C8 homodimers

show no catalytic activity. Based on these considerations we derive a new consensus model based

on the minimal reductions summarized in (a) + (b). Both (a) and (b) retain the autocatalytic

activation of the C8 homodimer. In addition, both models have to include the activation of the C8

homodimer by either the C8 or the p43 heterodimer. As either reaction is fine, it can be reasoned

that current data suggests that both reactions are dynamically very similar. The resulting hypothe-

sis that the C8 homodimer is activated by both the C8 heterodimer and the p43 heterodimer with
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The second part of the model summarizes the binding reactions of procaspase-8

and c-FLIP isoforms to the DISC which results in the formation of different types of

dimers. Three types of catalytically active dimers are formed: procaspase-8-

homodimers (called C8 dimers), procaspase-8/c-FLIPL heterodimers (called C8

heterodimers), and procaspase-8/c-FLIPS heterodimers (Neumann et al. 2010).

The third part of the model focuses on the activation of the different procaspase-8

dimers. C8 dimers and C8 heterodimers are proteolytically activated by (spatially)

neighboring dimers and further processed. In contrast the procaspase-8/c-FLIPS
heterodimer is not processed further. The procaspase-8 part of the dimers is cleaved

into the active form p43/p41, resulting in p43/p41 homo- and heterodimers. p43

homodimers are further processed into the caspase-8 tetramer containing the cleav-

age product p18.

The proteolytically activated heterodimers p43/p41 and p18 forms of

procaspase-8 can contribute to the progression of apoptosis by activating various

downstream effector caspases. This effect is summarized as the cleavage of apo-

ptosis substrate. The model state “apoptosis” is measured by rate of cell death

experimentally.

The part of the model that is most severely underdetermined is the activation of

both C8 homodimer and C8 heterodimer. It is known that this reaction has to be

catalyzed; however, C8 homodimer, C8 heterodimer, p43 homodimer, and p43

heterodimer are all candidates as possible catalysts for both reactions. The initial

model therefore includes four activating reactions for each C8 homodimer and C8

heterodimer, one for each possible catalyst. A similar situation occurs for the

activation of apoptosis substrate; here, both p43 heterodimer and p43 homodimer

are potential candidates for catalyzing this reaction.

We applied the model reduction approach as introduced in the previous chapter

to the unreduced base model of the CD95 pathway, using all reactions that activated

either the C8 homodimer, the C8 heterodimer, or the apoptosis substrate as reduc-

tion candidates. The total set of reduction candidates contained 11 reactions,

resulting in 211 ¼ 2,048 possible reduction sets. Redundancy and validity analysis

reduced the unknown model space by about 45% to a total of 1,158 nonredundant

reductions.

Running the reduction search identified 237 reductions as valid, the 921 other

reductions were invalidated. The model space can be characterized by 14 minimal

valid reductions and eight maximal invalid reductions, as illustrated in Fig. 3.12.

All minimal models reproduce the experimental data with an error score compara-

ble to the unreduced base model. All valid reductions included the activation of

�

Fig. 3.12 (continued) the same rate is consistent with modeling results. Additional experiments

with a c-FLIPL cleavage mutant were performed and compared to the behavior of wildtype

c-FLIPL (f). In the mutant cell line the activation of C8 heterodimer to p43 heterodimer is blocked,

no p43 heterodimer is produced. Quantification of cell survival (g) shows that cell survival rates

are the same for wildtype and cleavage mutant cells, supporting the hypothesis that the C8

heterodimer activation does not change its catalytic influence on C8 homodimer activation.
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apoptosis substrate by the p43 heterodimer. The largest valid reduction removes six

reactions, any reduction removing seven reactions is invalid.

Every valid reduction includes the activation of the C8 homodimer by either the

C8 heterodimer or the p43 heterodimer. In turn the autocatalytic activation of

the C8 homodimer or the activation of the C8 homodimer by the p43 heterodimer

is also included. The minimal satisfactory solution for these two conditions, the

activation of C8 homodimer by the p43 heterodimer, but not by either itself or

the C8 homodimer is part of various valid reductions. Indeed, the autocatalytic

activation of the C8 homodimer is retained only in 4 out of 14 minimal reductions,

although there is a strong biochemical evidence reported showing formation of C8

homodimers at the DISC.

The interpretation of these properties confirms that the role of c-FLIPL cannot

simply be reduced to that of an inhibitor of CD95 signaling. Instead, the C8

heterodimer acts as a catalyst for the activation of C8 homodimers, either directly

or in the activated p43 heterodimer version. However, various reported mechanisms

of caspase-8 activation cannot be verified based on the experimental data currently

available. This mainly concerns the catalytic activity of C8 both in homo- and

heterodimer form. We expect that the autocatalytic activation of C8 homodimers is

an essential process in the CD95 apoptosis signaling; yet our experimental data

does not reflect this.
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Chapter 4

Systems Biology of the Mitochondrial

Apoptosis Pathway

Jochen H.M. Prehn, Heinrich J. Huber, and Carla O’Connor

Abstract Mitochondria have multiple functions. Apart from their role in the

regulation of cellular bioenergetics, redox homeostasis and signal transduction,

mitochondria are able to initiate apoptosis. The Bcl-2 family proteins are the key

regulators of the mitochondria-initiated caspase activation pathway. Activation of

caspases is considered one of the most important regulatory steps for apoptosis.

Caspase cascades can be initiated or amplified by the release of cytochrome-c from
the mitochondria. On release into the cytosol, cytochrome-c binds to Apaf-1.

Apaf-1 oligomerises and engages the initiator caspase, pro-caspase-9, which in

turn activates downstream caspases-3 and -7. Furthermore, the release of Smac

from mitochondria assists the amplification of the caspase cascade by abrogating

the function of caspase inhibitors such as XIAP. Moreover, mitochondria are

involved in caspase independent cell death with the release of factors including

apoptosis-inducing factor. There have been considerable developments in recent

years in further understanding the complex signaling networks and cellular decision

making during mitochondria-initiated apoptosis through the use of systems biology.

In this review, we examine the modeling approaches that are currently employed to

further our understanding of the mitochondrial pathway of apoptosis.
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Abbreviations

CTL Cytotoxic T-lymphocytes

NK Natural Killer

Apaf-1 Adaptor protein, apoptotic protease activating factor-1

Bcl-2 B-cell lymphoma protein 2

IAP Inhibitor of Apoptosis

MOMP Mitochondrial Outer Membrane Permeabilisation

BH Bcl-2 homolgy

BIR Baculoviral IAP Repeat

RING Really Interesting New Gene

c-IAP1 and c-IAP2 Cellular inhibitor of apoptosis 1 and 2

NAIP Neuronal Apoptosis Inhibitor Protein

XIAP X-linked inhibitor of apoptosis protein

ILP-2 Inhibitor of Apoptosis-Like Protein-2

Smac Second Mitochondria-derived Activator of Caspases

DIABLO Direct IAP Binding Protein with Low PI

ODE Ordinary Differential Equations

BAR Bifunctional Apoptosis Regulator

NF-kB Nuclear Factor-KappaB

IKK IkB kinase

FRET Foerster resonance energy transfer

TRAIL Tumour Necrosis factor-Related Apoptosis-Inducing Ligand

CHX Cycloheximide

ATP Adenosine Triphosphate

CA Cellular Automata

4.1 “Mitochondrial ”or “Intrinsic” Apoptosis Pathway

In mammalian cells there are at least three main pathways which lead to caspase

activation, the intrinsic or mitochondrial pathway, the extrinsic or death receptor

pathway and the cytotoxic T-lymphocytes (CTL)/natural killer (NK)-derived

granzyme B-dependent pathway. There is a certain amount of crosstalk between

the pathways and all may ultimately result in the apoptotic death of the cell.

The intrinsic pathway of apoptosis can be initiated by various forms of stress such

as DNA damage, trophic factor withdrawal, nutrient deprivation, heat shock and

oxidative stress. Apoptotic signaling in this pathway results in an increase in the

permeability of the mitochondrial outer membrane and the subsequent release of

several proteins from the inter-membrane space of the mitochondria into the cyto-

plasm, resulting in the activation of both initiator and effector caspases. Central to this

pathway is the release of cytochrome c from the mitochondria (Kluck et al. 1997a, b;

Liu et al. 1996). Normally cytochrome-c resides in the inter-membrane space of

the mitochondria, where it functions by transporting electrons between protein
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complexes of the respiratory chain during oxidative phosphorylation. On release of

cytochrome-c into the cytosol, it binds to and activates the adaptor protein, apoptotic
protease activating factor-1 (Apaf-1) (Li et al. 1997; Zou et al. 1997).

Oligomerisation of Apaf-1 results in the recruitment of the initiator caspase

pro-caspase-9 and the formation of the apoptosome (Acehan et al. 2002; Shi 2006).

Once activated, the mature caspase-9 remains part of the apoptosome complex,

with Apaf-1 functioning as an allosteric regulator of caspase-9 activity, allowing it

to cleave and activate downstream effector caspases such as pro-caspase-3 and

pro-caspase-7 (Adrain et al. 1999; Rodriguez and Lazebnik 1999; Slee et al. 1999).

The executioner caspases-3 and -7 exist within the cytosol as inactive dimers

(Boatright et al. 2003; Donepudi and Grutter 2002). When activated, these caspases

cleave and activate further downstream caspases such as caspases-2 and -6.

Caspase-3 is also involved in a feedback amplification loop to further activate

caspase-9 (Slee et al. 1999).

4.2 Regulators of the Mitochondrial Apoptosis Pathway

The importance of properly balanced cell survival and death in an organism is

undeniable. Unscheduled survival and proliferation of cells beyond their natural life

span can lead to the formation of tumours and cancer, while, at the other end of the

spectrum, the premature death of differentiated cells such as neurons or cardiac

muscle cells leads to irreversible, degenerative diseases. Given the complexity of

the signaling involved, it is not surprising that a large variety of endogenous

regulators of apoptotic signaling have been identified and investigated in mamma-

lian cells. Of particular importance for the mitochondrial apoptosis pathway are the

B-cell lymphoma protein 2 (Bcl-2) and inhibitor of apoptosis (IAP) protein

families.

4.2.1 The Bcl-2 Family

The Bcl-2 family of proteins are probably the best described endogenous

modulators of the mitochondrial pathway of apoptosis, and regulate apoptosis by

either promoting or preventing mitochondrial outer membrane permeabilisation

(MOMP) (Hengartner and Horvitz 1994; Adams and Cory 2007). Pro- and anti-

apoptotic family members can heterodimerise and neutralise each other’s function.

The Bcl-2 family proteins can be divided into three subfamilies. The first sub-

family comprises the anti-apoptotic proteins (Bcl-2, Bcl-xL, Bcl-w, Mcl-l, Al and

Boo) (Hockenbery et al. 1990; Oltvai et al. 1993) which are potent inhibitors of the

apoptotic programme and antagonise pore formation at the mitochondrial outer

membrane. These proteins are structurally characterised by four Bcl-2 homolgy
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(BH) domains. The remaining two subgroups, the Bax/Bak family and the

BH3-only protein family, are pro-apoptotic and required for the initiation of

apoptosis. The multi-domain, pro-apoptotic proteins, Bax and Bak (and potentially

a third protein, Bok), bear three BH domains, and oligomerise and facilitate pore

formation in the outer mitochondrial membrane. The BH3-only proteins promote

apoptosis by not only selectively binding to the anti-apoptotic Bcl-2 family

members, but also by directly inducing the activation and oligomerisation of

the Bax and Bak proteins (Adams and Cory 2007; Danial and Korsmeyer 2004;

Youle and Strasser 2008). Activation of Bax and Bak is essential for the activation

of the mitochondrial apoptosis pathway (Wei et al. 2001).

It should also be noted that there is crosstalk between the mitochondrial and

death receptor apoptosis pathways. This crosstalk is carried out by caspase-8-

mediated cleavage of the BH3-only protein family member, Bid (Li et al. 1998;

Luo et al. 1998).

4.2.2 Inhibitor of Apoptosis Proteins

The Inhibitor of Apoptosis Proteins (IAPs) regulate apoptosis by direct inhibition of

caspases by preventing their cleavage (Deveraux and Reed 1999; Deveraux et al.

1998; Riedl et al. 2001; Shiozaki et al. 2003). Interestingly, IAPs seem to be

multifunctional and are not only involved in regulating apoptosis, but are also

involved in cell signaling, inflammation and cell cycle progression (Hofer-

Warbinek et al. 2000; Huang et al. 2000; Lu et al. 2007; MacFarlane et al. 2002;

Sanna et al. 1998; Varfolomeev et al. 2007). All IAPs contain one to three

Baculoviral IAP repeat (BIR) motifs, the presence of at least one BIR domain is

essential for the anti-apoptotic activity of members of the IAP family (Vucic et al.

1998). Several, but not all, IAPs also contain a carboxy-terminal Really Interesting

New Gene (RING) zinc finger, which has been recognised to have E3 ubiquitin

ligase activity (Yang et al. 2000). To date eight members of the IAP family have

been identified in humans. These include cellular inhibitor of apoptosis 1 and

2 (c-IAP1) and (c-IAP2), Neuronal Apoptosis Inhibitor Protein (NAIP), Survivin,

X-linked inhibitor of apoptosis protein (XIAP), Bruce, Inhibitor of Apoptosis-Like

Protein-2 (ILP-2), Livin and Apollon (Liston et al. 2003).

4.2.3 XIAP and Smac/DIABLO

Among the IAPs, XIAP is the most potent inhibitor of cell death, capable of

blocking both the intrinsic and extrinsic pathways of apoptosis through inhibition

of the initiator caspase-9 and effector caspases-3 and -7 (Deveraux et al. 1997; Chai

et al. 2001; Srinivasula et al. 2001). In addition to its caspase inhibition abilities,

XIAP also has a RING motif which functions as an E3 ubiquitin protein ligase to
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catalyse the ubiquitination of itself as well as substrate proteins (Huang et al. 2000;

Yang et al. 2000; Salvesen and Duckett 2002). Caspase inhibition by XIAP may be

counteracted by the release of Second Mitochondria-derived Activator of Caspases/

Direct IAP Binding Protein with Low PI (Smac/DIABLO) or the serine protease

Omi/HtrA2, both of which are released by mitochondria into the cytosol during

apoptosis (Verhagen et al. 2000; Martins et al. 2002).

4.3 ODE-Based Models of the Mitochondrial

Apoptosis Pathway

Mathematical models based on ordinary differential equations (ODE) have deci-

sively contributed to apoptosis research by giving a comprehensive insight

into previously inexplicable phenomena. These phenomena include the rate of

permeabilisation of the mitochondrial membrane (MOMP) and subsequent speed

of effector caspase activation, the phenomena of sub-lethal caspase activation and

the shift between direct effector caspase activation by the death receptors (“type 1”

apoptosis) to the engagement of the Bid-dependent, mitochondrial amplification

loop (“type 2” apoptosis) during the extrinsic pathway of apoptosis.

4.3.1 Caspase Activation Models

A theoretical study by Fussenegger and colleagues investigating the activation of

the stress-induced mitochondrial apoptotic pathway and the induction of extrinsic

pathway by death receptors first introduced the concept of ODE-based modeling to

the field of apoptosis (Fussenegger et al. 2000). They reported that the release of

cytochrome-c as a result of MOMP acted as a determinant of stress-induced cell

death between pro-survival and pro-apoptotic cell death. The study predicted a

temporal profile of caspase activation which was dependent on the intracellular

levels of Bcl-2. In a subsequent analysis by Eissing et al. which focused on

modeling of the extrinsic pathway of apoptosis, excluding the involvement of the

mitochondria, the authors remodelled the fast kinetics of caspase-3 activation that

had been previously reported in single cell studies (Eissing et al. 2004). In further

agreement with this model, Pace et al. were able to compare Eissing’s model

predictions to their in vitro experiments, confirming that reducing the levels of

the pro-caspase-8 inhibitor, bifunctional apoptosis regulator (BAR) leads to

accelerated caspase-3 activation (Pace et al. 2010). The effect of mitochondrial

cytochrome-c and Smac release on caspase activation was first modelled by Stucki

and Simon. In this study the extrinsic pathway was modelled on the activation

of death receptors which resulted in a dose-dependent release of cytochrome-c,
leading to an increased concentration of caspase-3 (Stucki and Simon 2005).
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This increase of caspase-3 was dependent on the level of XIAP, the inhibitor of the

caspases-3, -7 and -9. In comparison, the intrinsic pathway was modelled to activate

a dose-dependent Smac release, which was antagonised by Survivin, a proposed

inhibitor of Smac. Therefore the modeling approach could achieve stability against

inadvertent caspase-3 activation as both Smac and caspase-3 were constrained by

inhibitors of apoptosis. However as the release of cytochrome-c (Goldstein et al.

2000) and Smac (Rehm et al. 2003) has been shown to happen as a rapid, single-step

process, with little dependence on the type or dose of stimulus (Huber et al. 2009),

and as cytochrome-c only binds to the apoptosome transiently (Zou et al. 2003), it

seems improbable that the amount of released cytochrome-c is rate limiting for

caspase-3 activation.

To gain a better understanding of the of CD95 extrinsic apoptosis pathway,

Bentele, Lavrik and colleagues subsequently devised an ODE-based mathematical

model. In combination with experimental data, the model provided a comprehen-

sive analysis of CD95-mediated apoptosis and determined a threshold mechanism

for the regulation of the extrinsic pathway within the cell (Bentele et al. 2004;

Lavrik et al. 2007). Modeling, however, also included aspects of the mitochondrial

apoptosis pathway. CD95/Apo-1-induced capase-8 activity resulted in the concen-

tration of tBid exceeding the threshold concentration and activating the mitochon-

drial cell death cascade. Furthermore, this model has been extended to investigate

the role of nuclear factor-KappaB (NF-kB) activation in CD95-dependent apopto-

sis, which has suggested that p43-FLIP acts as an activator of IkB kinase (IKK)

(Neumann et al. 2010). The authors were able to demonstrate a temporal association

between CD95 stimulation and IKK activity through quantification of Western blot

analysis following anti-CD95 stimulation. This important study suggested that a

cleavage product of c-FLIPL, p43-FLIP, interacts with the IKK complex and

triggers NF-kB activation.

A further example of the use and importance of ODE approach in apoptosis

research was shown by Rehm and co-workers, who provided further insights into

the mitochondrial signaling cascade by combining single cell imaging of caspase

activation with ODE-based modeling (Rehm et al. 2006). The release of the

mitochondrial proteins, cytochrome-c, and Smac was considered trigerring of

effector caspase activation by the model. The model was verified by single cell

experiments using a caspase-3/-7-specific Foerster resonance energy transfer

(FRET) probe. The authors detected the onset of mitochondrial depolarisation, an

indicator of MOMP, which was followed by a rapid onset and cleavage of a

caspase-3-specific FRET probe. The ODE-based approach was effectively able to

remodel the FRET probe cleavage kinetics of HeLa cells and the influence of

caspase-3 deletion or over-expression of XIAP when exposed to pro-apoptotic

stimuli. The authors predicted and also demonstrated biological scenarios of

incomplete cleavage of cellular substrates. Consequently, this system model was

employed once more by O’Connor and co-workers, and provided an understanding

into the faster onset of apoptosis observed in XIAP-deficient colon cancer cells

(O’Connor et al. 2008).
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4.3.2 MOMP Models

The research presented above mainly concentrated on the events downstream of

MOMP such as the release and translocation of cytochrome-c and Smac on caspase

activation; however, the actual mechanism and mathematical modeling of MOMP

formation itself remained more intricate. MOMP is controlled by the Bcl-2 family

of proteins which contain both anti- and pro-apoptotic proteins, and thus they play a

key role in determining cell fate. In order to investigate the exact mechanism of

MOMP, Albeck and co-workers developed a mathematical model of extrinsic

apoptosis, which was validated experimentally by live-cell imaging of caspase

activation and MOMP, flow cytometry and immunoblotting of HeLa cells exposed

to the death receptor agonist tumour necrosis factor-related apoptosis-inducing

ligand (TRAIL) (Albeck et al. 2008a, b). MOMP induction was integrated through

initiator caspase cleavage of Bid which subsequently activated pro-apoptotic Bcl-2

proteins (Bax and Bak), resulting in Bax translocation and Bax- and Bak-induced

pore formation. Within the model anti-apoptotic Bcl-2 proteins were deemed as one

variable, and the kinetics of Bid cleavage were deducted from kinetics of caspase-

8 activation. When MOMP was blocked by Bcl-2 over-expression, the model

rendered a meta-stable state, with initiator, but not effector caspase activity. This

meta-stable state arose as a result of XIAP inhibition of effector caspases, in

addition to proteasome degradation of the caspases, which was further enhanced

by the E3 ligase activity of XIAP. In contrast, this stabilisation was abrogated and

mild effector caspase activity was predicted when low levels of XIAP were

assumed or the degradation of effector caspases was inhibited. This suggested

that a non-committal to apoptosis would occur if cleavage of cellular substrates

was submaximal. The model’s predictions of the existence of a “meta-stable” state

were confirmed on using Bcl-2 over-expressing cells that are resistant to MOMP, on

treatment with TRAIL either in the presence of the proteasome inhibitor MG132 or

by XIAP silencing. Furthermore, the model predicted that a reduction of Bcl-2

levels or increased BH3-only protein levels resulted in the restoration of MOMP

and hence a surge in caspase activation.

An additional theoretical model to investigate the role of Bcl-2-family members

to induce MOMP and subsequent caspase activation upon intrinsic stress was

developed by Zhang and colleagues (Zhang et al. 2009). Their approach consisted

of apoptosis initiation, amplification and execution modules that together

guaranteed cellular robustness to subthreshold stimuli. In agreement with other

models (Albeck et al. 2008a; Chen et al. 2007a, b; Dussmann et al. 2010), the

authors did not distinguish between individual pro- and anti-apoptotic Bcl-2 family

proteins. As genotoxic stress (Brown and Wouters 1999; Kohler et al. 2008), serum

deprivation (Kaufman 1999), or receptor-mediated stress (Kelley and Ashkenazi

2004) each activate a unique subset of BH3-only proteins which specifically

interact with their pro-survival counterparts (Chen et al. 2005), a model extension

to investigate this stress-specific regulations would be a desirable next step.
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4.4 Modeling of Mitochondrial Bioenergetics

During Apoptosis

In addition to its role in caspase-dependent cell death, cytochrome-c is also an

essential component of the mitochondrial respiration chain. Thus, loss of cyto-

chrome-c in the mitochondria during MOMP leads to impairment of mitochon-

drial respiration, adenosine triphosphate (ATP) depletion and depolarisation of

the mitochondrial membrane potential DCm, which may lead to failure of ionic

homeostasis and cell death. Huber and co-workers highlighted the importance of

combining ODE models of apoptotic signaling with cellular bioenergetics for

studying cell death processes subsequent to MOMP (Huber et al. 2011). Their

ODE-based model integrated the molecular mechanisms of mitochondrial respi-

ration and ATP production with caspase-dependent signaling downstream of

MOMP. The model investigated the response of HeLa cells to cytochrome-c
release during apoptosis and bioenergetic disruption. Model predictions were

validated by single cell fluorescence microscopy experiments of HeLa cervical

cancer cells where MOMP was induced by staurosporine. They first confirmed

previous experimental findings that caspase-3 cleavage of respiratory complex I

and II was able to exacerbate DCm depolarisation (Ricci et al. 2003). Subse-

quently, the model identified that increased glucose metabolism subsequent to

cytochrome-c release could lead to a significant DCm repolarisation, and there-

fore induce a bioenergetic recovery. Using single cell microscopy, they verified

that HeLa cells which had depolarised DCm after MOMP were able to partially

repolarise DCm when additional glucose was added to the medium. Since a

similar repolarisation was not observed in non-transformed colon epithelial

CRL1807 cells, the theoretically identified and experimentally confirmed recov-

ery mechanism may be cancer cell specific, suggesting that high glucose levels

may give cancer cells a competitive advantage under conditions of therapeutically

induced MOMP.

4.5 Studying MOMP by Cellular Automata

An alternative approach referred to as Cellular Automata (CA) was engaged to

model the mechanism of MOMP and Bax/Bak pore formation. In comparison

to ODE-based mathematical models, CA models provide us with a modeling

approach which is capable of explaining alterations of proteins at distinct

locations and time points. CA has been employed to investigate and quantify

the relationship of Bcl-2 proteins at the mitochondrial membrane during intrin-

sic apoptosis. CA is used to study signal transduction by investigating protein

interactions on a spatial grid. More specifically, CA investigates how spatial

protein distributions evolve over time, assuming proteins to diffuse along grid

92 J.H.M. Prehn et al.



points and to react with each other at discrete time steps according to a set of

given interaction rules (Bonchev et al. 2010). Siehs and colleagues were the first

to introduce the concept of CA to define the complex dynamics of the interplay

of pro- and anti-apoptotic Bcl-2 proteins in mitochondrial apoptosis pathway

(Siehs et al. 2002). Chen et al. also used this methodology to explore bistability

(Chen et al. 2007a). Whereas these studies were solely theoretical, Duessmann

et al. (2010) combined the CA approach with experimental data to re-model and

quantify Bax translocation and oligomerisation on the mitochondrial membrane

in single cells. Furthermore, this study provided an insight into MOMP induc-

tion and the rapid pore formation kinetics. The model input was defined as the

translocation of the pro-apoptotic protein Bax to the mitochondrial outer mem-

brane, which they determined by quantitative confocal microscopy experiments

of yellow fluorescent protein-Bax accumulation in Bax- and Bak-deficient

human cells. To understand the kinetics of the reactions leading to MOMP,

the outer membrane of a mitochondrion was modelled by a uniformly spaced

grid of 100 � 100 squares, with each point on the square having 0–7 proteins

positioned at each point, and each protein was given a diffusion probability. The

diffusion of proteins between adjacent grid spaces was random, unless the grid

was fully occupied in which case diffusion in this direction was blocked.

Proteins co-located on the same grid were allowed to react and to produce a

set of products according to the known reaction rules of Bcl-2 family members.

The likelihood of occurrence of any given specific reaction was estimated,

equivalent to the use of kinetic constants in ODE-based models. Stochastic

variations were taken into account, generating a detailed description of the

dynamics of the reaction over time. The development of pores on the mitochon-

drial outer membranes occurs on the formation of Bax or Bak tetramers

(Schlesinger and Saito 2006) and thus their formation served as the model

output. Figure 4.1 illustrates the spatial distribution and temporal evolution of

Bax oligomers and Bax bound to pro-survival proteins remodelled from

Dussmann et al. (2010). This cellular automaton approach in combination

with single cell experimental data has provided important insights on the

kinetics of Bax/Bak pore formation at the mitochondrial outer membrane.

Of note, it was observed that MOMP was induced in the presence of only

minimal levels of Bax and that the majority of Bax translocation and

oligomerisation occurred downstream of MOMP. This result has been confirmed

by other groups who have shown that pore formation occurs in the presence of

nominal levels of BH3-only proteins or Bax (Kuwana et al. 2002; Lovell et al.

2008; Annis et al. 2005). These results indicate that an excess level of Bax may

be required to overcome any possible signaling anomalies, such as accumula-

tion of anti-apoptotic Bcl-2 family members at levels sufficient to interfere

with pore formation. Alternatively, Bax may have other functions during apo-

ptosis that require higher Bax levels, such as the regulation of mitochondrial

fission/fusion.
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Fig. 4.1 Comparison of direct and indirect MOMP activation models by Cellular Automata (CA):

Modelled pore formation for the direct (a) and indirect (b) activation model with parameters and

experimental quantifications taken from [75]. Temporal profiles of pore formation (Bax tetramers)

were calculated assuming stochastic movements and reactions. Average (thick lines) and intervals for
single standard deviation (thin lines) were given for 10 calculations. The dashed line indicates pore

formation (1 pore). Pore formation with minimal Bax levels was successfully remodelled with the

direct and indirect activation model. (c) Pore formation in the absence of stimulus in cells expressing

750 (blue dotted thick and thin lines) or 1,000 Bakmolecules (red solid lines) per membrane suggests

instability of the indirect activation model used in b. Stability to pore formation within 24 h was

achieved with less than 100 Bak molecules present at the mitochondrial membrane (not shown)



4.5.1 Modeling of the Direct vs. Indirect Pathway
of Bax Activation Using CA

Although it is assumed that BH3-only proteins promote apoptosis by binding and

inhibiting the activity of anti-apoptotic members of the family, recent analysis

identified a possible role as direct enhancers of the pro-apoptotic function of Bax

and Bak. The direct activation model activates Bax and Bak directly through

interaction with a subclass of BH3-only proteins (PUMA, tBid and Bim) referred

to as “activators” (Letai et al. 2002). In comparison, a second subset of BH3-only

proteins termed “enablers” function to neutralise anti-apoptotic Bcl-2 proteins

through competitive binding, The indirect model, in contrast, assumes that Bax

and Bak are bound in a constitutively active state by the anti-apoptotic Bcl-2

family members, and that Bax and Bak are only activated through competitive

interactions through their interaction with BH3-only proteins (Annis et al. 2005;

Leber et al. 2007).

In fact, a cellular automation approach was used to model both these opposing

theories (Chen et al. 2007b; Dussmann et al. 2010). In both models heterodi-

merisation with the anti-apoptotic Bcl-2 proteins was sufficient to completely inhibit

all Bax fractions. In the “direct” model Bax translocates to the mitochondria and

consequently is fully activated by activators, resulting in oliogmerisation and pore

formation at the mitochondrial membrane. In contrast, in the indirect activation

model, Baxwas assumed to be activated spontaneously, since no activator is assumed

in this model. Thus examination of the Bax pore-forming kinetics of the two

competing models informs us that both models can explain for rapid pore formation

kinetics underminimalmitochondrial Bax accumulation. Conversely, in order for the

indirect model to be an agreement with experimental data, active Bax would be

required to be formed by three events per 1,000 Bax molecules per step. However,

mathematical modeling suggested that under these conditions, the “indirect” activa-

tion model lacks stability, as spontaneous pore formation and apoptosis are predicted

to occur already in non-stimulated cells (Fig. 4.1) (Dussmann et al. 2010).

4.6 Conclusions

Mathematical modeling of biological process is a developing method used to

provide novel insights into the complex pathways, such as the apoptosis pathway.

These models have the potential to predict and explain cellular behaviour in a

quantitative manner which cannot be achieved by biological data alone. To date,

elucidating the complex interplay between pro- and anti-survival Bcl-2 proteins

using a modeling approach has been limited due to the lack of comprehensive

biochemical data defining their structural activation within biological membranes.

It is anticipated that maturation of the modeling approaches can elucidate

these mechanisms and enhance the development and specificity of therapeutics
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such as Bcl-2 antagonists. Experimentally, defining the transcriptional and

post-translational activation of BH3-only proteins at the single cell level will be

of particular significance to the generation of models of stress and survival

signaling pathways as these activation mechanisms could serve as input, interme-

diary or output of a system. Finally, combining experimental measurements with

mathematical modeling has the potential to provide mechanistic insights into the

individual factors underlying disease progression. The translation of mathematical

models to a clinical setting for predicting responsiveness to therapies may enable

tailored treatments for individual patients.
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Chapter 5

Systems Biology of Cell Death in Hepatocytes

Rebekka Schlatter*, Kathrin Schmich*, Christoph Borner,

Michael Ederer, and Irmgard Merfort

Abstract The processes of liver regeneration and liver disease are regulated by a

complex network of soluble and cell-associated apoptotic and inflammatory

signals. To obtain insights into the mechanistic interplay of these signals and to

define new therapeutic strategies, the combination of experimental data and mathe-

matical modeling is a promising systems biological approach. Here, we review

recent results in death receptor-mediated hepatocyte apoptosis focusing

on Fas/CD95 and TNFa-mediated cell death. In this context, we present two

complementary approaches of modeling death receptor-mediated cell death in

hepatocytes. On the one hand we describe an ODE model of TNFa and FasL

sensitising, which was extended by adding the regulation of pJNK and the genera-

tion of ROS after combined TNFa and ActD treatment and in which a published

NF-kB model was integrated. This model is suitable for the integration of further

pathway models, thus contributing to a better understanding of the network. On the

other hand a literature-based and in parts experimentally validated comprehensive
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Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as

pathways connected with them is described. In the future, the according mathemat-

ical models will be a valuable approach to understand the complex crosstalks and

interactions within hepatocytes and between different cells in the liver. Thus,

modeling of apoptosis in hepatocytes will proceed on different routes on the way

to a functional representation of the whole liver.

5.1 Introduction

The liver is an organ of immense complexity and essential for survival since no

other organ can compensate its multiplicity of functions. Among these, the synthe-

sis, metabolism, storage and redistribution of fats, carbohydrates, vitamins and

nutrients are of special relevance. Furthermore, the liver is the main detoxifying

organ of the body. Eighty percent of the liver mass comprises the parenchymal cell,

the hepatocyte, while the remaining 20% are non-parenchymal cells such as the

innate immune system-related Kupffer cells, which are liver-located macrophages,

or lymphocytes, but also stellate cells or endothelial cells (Taub 2004). The liver

has an amazing regenerative capacity which allows recovering lost liver mass up to

70% of its original volume. Normally hepatocytes, bile duct epithelium and endo-

thelial cells are involved in liver regeneration, whereas stem cells do not play a role

(Papa et al. 2009).

The process of liver regeneration is complex and characterised by several

strongly interacting pathways (Taub 2004; Fausto et al. 2006; Michalopoulos

2007; Mohammed and Khokha 2005). Disruptions in the regulatory mechanisms

can totally impair the whole process and result in liver injury and liver failure. It is

generally accepted that enhanced apoptosis induced by death receptor ligands such

as TNFa and FasL is critically implicated in the mechanisms and is linked to a wide

range of liver diseases. Dysregulation can also lead to excessive proliferation and

finally to hepatocellular carcinoma (HCC). Most often, hepatocytes are involved in

liver injury including viral hepatitis, alcoholic liver diseases, acute liver failure,

ischaemia-reperfusion injury, graft rejection and diseases of the bile ducts (Papa

et al. 2009; Hatano 2007; Malhi and Gores 2008; Akazawa and Gores 2007; Malhi

et al. 2010).

The processes of liver regeneration and liver disease are regulated by a complex

network of soluble and cell-associated apoptotic and inflammatory signals (Malhi

and Gores 2008). It is therefore increasingly important to obtain insight into the

mechanistic interplay of these signals to define new therapeutic strategies. Mathe-

matical modeling is a helpful tool to understand and analyse the dynamical

behaviour of such a complex regulatory network (Calzone et al. 2010). Considering

the pivotal importance of the liver in human health and disease, the German

ministry for education and research has started in 2004 the financial support of

the project “HepatoSys” which focused on the investigation of the liver in a systems

biology approach. In the beginning the project concentrated on cell signaling

pathways in primary hepatocytes. The follow-up project “Virtual Liver” has now
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been extended to the tissue level and aims to understand and model a complete

organ from the biochemical, cellular, to the whole organ level.

In the course of the above-mentioned projects, new insights have been gained in

primary hepatocytes on signaling pathways which are involved in the decision of

survival and apoptosis by a systems biological approach (Philippi et al. 2009;

Schlatter et al. 2009a, 2011; Schmich et al. 2011). As a model, primary murine

hepatocytes were chosen, which are more difficult to be handled as compared to

standard cell lines. A standard operating procedure (SOP) for the isolation and

cultivation of primary murine hepatocytes has been established, which is a prereq-

uisite for the development of mathematical models (Klingmuller et al. 2006). Here,

we review recent results in death receptor-mediated hepatocyte apoptosis focusing

on Fas/CD95- and TNFa-mediated cell death. At first the biological background

and then the modeling approach are presented.

5.2 Apoptosis Pathways in the Liver Focusing

on Hepatocytes

5.2.1 Fas Signaling in the Liver

FasL/CD95L and its corresponding receptor Fas/CD95 play a pivotal role in the

immune system inducing the death of virally infected cells as well as of obsolete

lymphocytes (Li-Weber and Krammer 2003). Defects in this system can favour

the development of autoimmune diseases. In the human body, the highest constitu-

tive expression of Fas is found on the surface of hepatocytes where it is critically

involved in hepatic health and diseases (Peter et al. 2007). Hence, mice treated with

a lethal dose of agonistic anti-Fas antibody die due to massive hepatocyte apoptosis

and liver failure (Ogasawara et al. 1993). Moreover, liver cells are thought to die

through Fas-mediated apoptosis during viral and autoimmune hepatitis, alcoholic

liver disease and endotoxin- or ischaemia/reperfusion-induced liver damage (Malhi

and Gores 2008; Malhi et al. 2010; Canbay et al. 2004).

The molecular mechanism of Fas-induced apoptosis has widely been studied in

several cell types. Engagement of Fas by FasL results in receptor aggregation and

trimerization (Lavrik et al. 2007). In the next step, the adaptor molecule FADD

associates with the death domain (DD) of Fas and recruits procaspase-8. This

complex of proteins is called the death-inducing signaling complex (DISC)

(Hughes et al. 2009). At this point, two different Fas signaling pathways can be

executed (Scaffidi et al. 1998), the so-called type I and type II pathways. How

the decision between the two pathways is undertaken remains currently unclear.

There are suggestions that the amount of activated caspase-8 decides for the

substrate specificity (Krammer 2000), while others propose differences in Fas

aggregation and internalisation, the amount of substrates that must be proteolysed

or the levels of caspase inhibitors such as XIAP to be critical (Strasser et al. 2009).
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In general, Fas apoptosis signaling can be classified to be Bid independent (type I

signaling) or Bid dependent (type II pathway) in several cell types. Gene-targeting

experiments have shown that caspase-8-mediated activation of Bid is essential in

pancreatic b-cells, while it is dispensable in lymphoid cells (McKenzie et al. 2008;

Kaufmann et al. 2007). In hepatocytes, Fas-induced cell death is dependent on Bid

since Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis,

fulminant hepatitis and subsequent liver failure (Yin et al. 1999). Thus, in vivo

Fas-mediated apoptosis in hepatocytes occurs via the Bid-dependent type II path-

way. However, recent studies have weakened the fixed definitions of type I and type

II pathway by demonstrating that Fas-induced type II apoptosis can switch to type I

upon different culturing conditions in primary hepatocytes (Walter et al. 2008).

Furthermore, it was shown that high concentrations of FasL may also result in type I

signaling in vivo (Schungel et al. 2009).

Remarkably, Fas is not only a potent inducer of apoptosis but can also activate

non-apoptotic pathways. In this context, Fas turned out to be critical for liver

regeneration after partial hepatectomy (PH). The mechanism remains unclear, but

nuclear factor kappaB (NF-kB) and MAP kinase survival signaling have been

implicated (Peter et al. 2007). Furthermore, hepatocyte-specific loss of caspase-8

also results in impaired liver regeneration after PH (Ben et al. 2007). The role of

caspase-8 in this process again is complex. Caspase-8 has been shown to induce,

together with FADD and RIP, potent NF-kB activation upon Fas treatment, while

cFLIP inhibits this activation (Kreuz et al. 2004). In addition, procaspase-8

generates the cFLIP cleavage products p43-FLIP and p22-FLIP which both also

activate NF-kB (Neumann et al. 2010). Hence, mediators that have originally only

been associated with apoptosis induction turn out to be relevant for non-apoptotic

functions, and the physiological role of Fas extends far beyond cell death control

(Peter et al. 2007).

5.2.2 TNFa-Mediated Apoptosis in Hepatocytes

TNFa is a pleiotropic cytokine that induces a variety of cellular responses such as

inflammation and cell proliferation mainly by activation of NF-kB signaling

cascade. Unlike FasL, association of TNFa with its main receptor TNFR1 does

not primarily lead to cell death in most cell types, including hepatocytes

(Varfolomeev and Ashkenazi 2004). Nevertheless, TNFa has been assigned a

role in the carcinogenetic process (Karin 2006) as well as in chronic viral hepatitis.

Chronic hepatitis C infection is known to cause persistent inflammation and fibrosis

in the liver which is characterised by increased TNFa levels and ongoing NF-kB
activation (Papa et al. 2009; Malhi et al. 2010; Sun and Karin 2008). This chronic

inflammatory stage often results in liver cirrhosis or liver cancer due to protection

from apoptosis as well as NF-kB-induced enhanced proliferation. TNFa can addi-

tionally be a main mediator of hepatocyte apoptosis and liver failure (Bradham

et al. 1998). This is the case in alcoholic liver disease. Elevated serum levels
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of TNFa have been correlated with increased lethality, and TNFR1 has been shown

to be essential for alcohol-induced liver injury (Malhi and Gores 2008). The role

of TNFa in liver apoptosis has widely been studied in the LPS/GalN model.

D-Galactosamine (GalN) is an amino-sugar which is, via its metabolism in the

liver, able to selectively inhibit hepatic transcription. Endotoxins such as lipopoly-

saccharide (LPS) are used to initiate the inflammatory response in this model.

Importantly, it has been shown that LPS/GalN-mediated liver injury depends on

TNFa and its receptor TNFR1 (Nowak et al. 2000). Accordingly, this model is

often used to study TNFa-mediated liver apoptosis in vivo.

Various studies have been undertaken to define the role of TNFa signaling in

hepatocyte apoptosis [for literatures, see review (Papa et al. 2009; Malhi et al.

2010)]. Upon binding of TNFa to TNFR1, a membrane bound complex I

comprising of TNFR1, receptor-interacting protein 1 (RIP1), TNF-receptor-

associated factor 2 (TRAF2) and TNFR1-associated death domain protein

(TRADD) is first formed which rapidly activates the survival transcription factor

NF-kB and the c-Jun N-terminal kinase (JNK) (Micheau and Tschopp 2003; Papa

et al. 2006). To signal for cell death, a second, receptor-free complex II has to

assemble in the cytoplasm which still contains RIP1, TRAF2 and TRADD but

recruits FADD and procaspase-8 to activate procaspase-3/-7 (Micheau and

Tschopp 2003). Under normal conditions, complex II formation is blocked by

cFLIP and NF-kB survival signaling (Karin and Lin 2002). TNFa-mediated

NF-kB activation relies on the IkB kinase complex (IKK). IKK becomes

activated by assembly with TRAF2 and RIP1 and subsequently phosphorylates

the inhibitor of kB (IkB) proteins which normally restrain NF-kB within the

cytosol (Wajant et al. 2003). The phosphorylated IkB proteins become

ubiquitinylated and degraded by the proteasome, a process that allows free

NF-kB to translocate to the nucleus and initiate transcription of target genes

(Baud and Karin 2001). The transcription of anti-apoptotic genes is supposed to

be the main reason why TNFa does not induce cell death in most cell types.

Among these genes are the direct inhibitors of apoptosis Bcl-xL, XIAP, cIAP1

and 2 and cFLIP (Baud and Karin 2009; Micheau et al. 2001). cIAP1 and 2 belong

to the protein family of inhibitor of apoptosis proteins (IAPs) and are associated

to TRAF2 at the TNF receptor. Although their direct function in cell survival is

unknown, neutralisation of cIAPs by the respective antagonists results in

TNFa-triggered apoptosis (Vince et al. 2007).

However, the factors mentioned above cannot fully account for the anti-

apoptotic activity of NF-kB. Another important mechanism to protect cells from

TNFa-induced apoptosis is the inhibition of pro-apoptotic JNK signaling. JNK is a

serine/threonine protein MAPK which is known to be rapidly activated by TNF

complex I via a MAPK kinase cascade (Lin 2003). This transient activation is

rapidly terminated by MAPK phosphatases (MKPs) which are themselves con-

trolled by NFkB (Papa et al. 2006). However, under certain conditions, TNFa can

lead to a sustained activation of JNK which causes apoptosis. In this case, the

termination mechanism of the JNK activity is disturbed, as the activity of MKPs is

inhibited by reactive oxygen species (ROS) (Papa et al. 2006; Kamata et al. 2005;
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Nakano et al. 2006). The origin of ROS in response to TNFR activation is still

unknown, but it is assumed that ROS are generated primarily in the mitochondria

during the transport of electrons in the respiratory chain (Nakano et al. 2006).

However a recent study has also implicated the plasma membrane bound NADPH

oxidase as an early producer of ROS after TNFa treatment (Yazdanpanah et al.

2009). TNFa-induced ROS can accumulate under the condition that they are no

longer suppressed by antioxidant enzymes, such as superoxide dismutases (SODs),

glutathione peroxidase or ferritin. When ROS accumulation induces prolonged

activity of JNK, the connection of this pathway to cell death execution has been

proposed. On the one hand, JNK can directly activate the E3 ubiquitin ligase Itch

which induces proteasomal processing of cFLIP (Chang et al. 2006). Reduced

cFLIP levels allow procaspase-8 to assemble with complex I and form the pro-

apoptotic complex II. Interestingly, this mechanism only works in the presence of

TNFa and the translation inhibitor cycloheximide. No cFLIP degradation is

observed combining TNFa with the transcription inhibitor actinomycin D (ActD)

(Schlatter et al. 2011). Furthermore, it has been proposed that JNK can directly

activate the mitochondrial pathway. While one study suggested that JNK generates

the pro-apoptotic Bid cleavage product jBid (Deng et al. 2003), several other

reports indicate that JNK activates Bim by phosphorylation (Papa et al. 2009;

Corazza et al. 2006; Kaufmann et al. 2009). Both Bid and Bim can trigger

mitochondrial apoptosis type II pathway shown among others in a model of fatal

hepatitis. Thus, apoptosis induction by TNFa is tightly regulated by a complex

network of signaling pathways and dysfunction of any of these signals affects the

whole system.

5.2.3 FasL/TNFa Signaling in Hepatocytes

It has been shown that hepatic Fas and circulating FasL levels are enhanced in

alcoholic steatohepatitis and the crosstalk of FasL and TNFa seems to contribute to

disease progression (Malhi and Gores 2008). In accordance with these in vivo

results, we have recently shown that TNFa sensitises primary murine hepatocytes

cultured on collagen to FasL-induced apoptosis (Schmich et al. 2011). The syner-

gism was shown to be time dependent and specifically mediated by TNFa. Fas itself
was essential for the sensitization, but neither Fas upregulation nor endogenous

FasL induction was responsible for this effect. Whereas FasL was confirmed to

induce Bid-independent apoptosis in hepatocytes cultured on collagen, the

sensitising effect of TNFa was clearly dependent on Bid. Furthermore, both JNK

activation and the BH3-only protein Bim play a crucial role in TNFa-induced
apoptosis sensitization. The interplay of Bim and Bid activates the mitochondrial

amplification loop and induces cytochrome c release, a hallmark of type II apopto-

sis. Thus, our data confirmed that TNFa is capable of engaging the JNK/Bim

apoptotic pathway and of restoring type II signaling on collagen-cultured primary
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hepatocytes. This sensitising effect towards FasL-induced liver damage was also

demonstrated in vivo. Interestingly, it was even reported that loss of TNFR1 and

TNFR2 protects mice from anti-Fas antibody-induced liver injury (Costelli et al.

2003) (Fig. 5.1).

Fig. 5.1 Intrinsic and extrinsic apoptotic pathways according to Plati et al. (2011)
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5.3 Modeling Approaches of Apoptosis Pathways

in Primary Hepatocytes

5.3.1 Modeling FasL- and TNFa-Induced Apoptosis Pathways
Using ODE Models as an Example for Studying Qualitative
Mechanisms in a Complex Interplay

As mentioned above detailed knowledge on individual molecule interactions in

apoptosis signaling is available. This is a prerequisite for mathematical modeling

based on kinetic rate equations and differential equations and a powerful tool to

combine the knowledge on the molecule interactions with the aim to explain the

overall behaviour of the system. In this subchapter we provide an example for a

successful modeling process in which two mathematical apoptosis models were

developed and finally combined, integrating an existing NF-kB model from litera-

ture. We started with the description of the TNFa sensitising effect towards

FasL-induced apoptosis. This effect was first analysed in detail in the context of

different experimental conditions and genotypes. Sufficient measurement data were

gathered to point to a certain crosstalk structure. Based on this hypothesis a

mathematical model was developed which successfully reproduced the data

(Schmich et al. 2011). Additionally, a mathematical model was developed which

reproduced the complex interplay when TNFa was combined with the transcrip-

tional inhibitor ActD, leading to apoptosis in hepatocytes. The model developed to

reproduce the TNFa/FasL sensitising was adapted, enhanced substantially and

combined with a NF-kB model. Finally, a large ordinary differential equation

(ODE) model was obtained which reproduced the data on both crosstalk effects

and might serve as core structure for further additions (Schlatter et al. 2011).

The full description of the models, technical and biological details as well

as according references can be found in Schlatter et al. (2011) and Schmich

et al. (2011).

A scheme of the mathematical sensitising model is shown in Fig. 5.2. The model

is based on literature and own results, and the model parameters have been fitted to

qualitatively reproduce the available experimental data (Schmich et al. 2011).

Hepatocytes treated with Fas ligand only exhibit apoptosis which is strongly

increased in XIAP knockout cells as compared to wild-type cells. This is reproduced

by the mathematical model via the direct caspase-3 cleavage by activated caspase-

8 (v14). The amount of activated caspase-3 is however limited by the protein XIAP

which functions as a buffer in wild-type cells (v18). Accordingly, by omitting XIAP

in the mathematical model, and thereby mimicking XIAP knockout cells, the

caspase-3 activity in the simulation is considerably increased. Moreover, it was

shown that in FasL-treated, cultured hepatocytes apoptosis is independent of Bid

and occurs without mitochondrial release of cytochrome c (Walter et al. 2008). In

the sensitising model, a few Bid molecules are cleaved following FasL treatment

(v9). However, this process has no further impact as the cleaved form tBid is
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buffered by anti-apoptotic members of the Bcl2 family (v11). Thus, only a very low

number of Bax and Bakmolecules are activated by tBid (v12), which is far below the

threshold of 90% Bax/Bak activation needed in the model to result in cytochrome c

release.

Cultured hepatocytes treated with TNFa only fail to induce apoptosis, although

other cell types are known to die after TNFa treatment. This is realised in the

sensitising model where TNFa leads to JNK phosphorylation (v1) and subsequent

phosphorylation of Bim (v3). However, as discussed for tBid, also phosphorylated

Bim is buffered by members of the Bcl-2 family (v5) and is therefore not sufficient

to cause cytochrome c release via Bax/Bak activation (v6). Notably, the presented

mechanism allows apoptosis after TNFa treatment in the mathematical model if the

initial amounts of the participating species, especially Bim and Bcl-2, are changed.

This change in the model corresponds to different expression levels of these

proteins in the cell and thereby the presented sensitising model is not contradicting

the apoptotic effect of TNFa in other cell types.

The sensitising effect of TNFa towards Fas ligand-induced apoptosis is realised

in the mathematical model by the interplay of both signaling pathways on the level

of the Bcl-2 buffer. TNFa clears the way for tBid by neutralising the Bcl-2 proteins

via phosphorylated Bim (v5). The rate constants of the according interactions were

fitted to reproduce the experimentally determined lead time needed for TNFa to

achieve the sensitising effect. Beyond neutralising Bcl-2, phosphorylated Bim also

directly activates a small amount of Bax/Bak. With the Bcl-2 buffer being

Fig. 5.2 Scheme of the

sensitising model, published

in Schmich et al. (2011)

5 Systems Biology of Cell Death in Hepatocytes 109



consumed, tBid can then activate a sufficient amount of Bax/Bak (v12) to induce

cytochrome c release after TNFa and FasL treatment. Importantly, sensitization

does not work in the model when FasL is applied first as it was also experimentally

shown in hepatocytes. The reason is the temporal progression of Bax/Bak activation

which is counteracted by a backwards reaction in the model. If FasL is applied first,

tBid consumes the Bcl-2 buffer (v11) and a small amount of Bax/Bak is activated

(v12) which is however already decayed before the more slowly signaling after

TNFa is able to phosphorylate Bim. In this scenario, the achieved amount of

activated Bax/Bak during the considered time span is under the threshold for

cytochrome c release.

Using knockout mutants, the TNFa/FasL sensitising effect was shown to be Bid

dependent and XIAP independent, but FasL-induced apoptosis alone could not be

further increased in XIAP�/� hepatocytes (Schmich et al. 2011). These results are

also reproduced by the sensitising model. If Bid is missing in the model, Bax/Bak is

not activated to a sufficient amount to result in cytochrome c release. If XIAP

is missing in the model, caspase-3 is activated after FasL treatment almost

maximally, i.e. to 100% of the initial amount of inactive C3, and therefore cannot

be further increased by cytochrome c. Overall, the mathematical sensitising model

is able to reproduce our experimental data as well as literature knowledge. This

shows that the modelled interactions are sufficient to explain the observed

behaviour.

A second mathematical model describing another apoptotic crosstalk in cultured

hepatocytes was developed and both models were combined. Although it has been

known for a long time that only the combination of ActD and TNFa, but not TNFa
alone induces apoptosis in primary hepatocytes, no mathematical model has been

established. A scheme of the finally developed enhanced apoptosis model is shown

in Fig. 5.3. Here, the core structure of the sensitising model is sustained on the left

side of the figure and the overall model still reproduces the sensitising effect as

discussed above. However, modeling of TNFa signaling was substantially

enhanced and also an existing NF-kB model from Lipniacki et al. was integrated

(Lipniacki et al. 2004), which is represented by a grey box in Fig. 5.3.

The enhanced model reproduces apoptosis after combined treatment with TNFa
and the transcriptional inhibitor ActD as experimentally observed. The central

players are ROS which are released from the mitochondria after TNFa treatment

(v29). Normally, ROS are quickly scavenged by a protein P (v30) which is assumed

to be a NF-kB target but whose identity could not yet been clarified definitely.

However, after ActD treatment, P is not produced despite NF-kB activation by

TNFa. In this case, ROS carry on their apoptotic impact by strongly increasing the

amount of phosphorylated JNK (pJNK). In detail, ROS oxidise MKPs (v31) and

thereby prevent them from dephosphorylating JNK. Additionally ROS are

associated with a high increase of the overall amount of JNK (v33). According to

the central role of ROS, the ROS scavenger BHA prevents apoptosis after TNFa
plus ActD treatment in the model as it was also experimentally shown.

The apoptotic effect of pJNK after TNFa plus ActD treatment is realised in the

model via the already discussed phosphorylation of Bim. In contrast to the first
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sensitising model, a maximal amount of phosphorylated Bim which is able to

induce cytochrome c release can be reached by the high amount of pJNK. Finally,

an additional apoptotic route for phosphorylated JNK was included in the model

which was reported by Chang et al. after apoptotic treatment with TNFa plus the

translational blocker Cycloheximide (Chang et al. 2006). They showed that the

amount of cFLIP is diminished via the E3 ligase Itch (v35–v38), which could

however not be confirmed after ActD treatment. The reduced amount of cFLIP

contributes to the apoptotic result as more caspase-8 can then be activated at

complex II (v21).

In conclusion, the enhanced model is able to reproduce a variety of effects by the

molecular interactions in a coherent and consistent way. The model originated from

the connection of more simple sub-models. As the number of mathematical models

of apoptosis and regeneration is constantly growing, the presented modeling

process provides an example of how model integration of different submodels

can produce more comprehensive models elucidating the behaviour of complex

intracellular signaling.

5.3.2 Boolean Models as a Tool for the Integration
of Crosstalks Towards Apoptosis

The large number of participating components in apoptosis, their complex

dependencies and multiple biological stimuli make the model-based analysis of

isolated network parts difficult and often less expressive. Unfortunately, the use of

ODE models for larger networks is restricted due to limited quality and especially

quantity of coherent biological data. The parameter identification for ODE models

is mostly dependent on quantitative measurements which are still a bottleneck of

systems biology. It is a special strength of the Boolean modeling (also called

logical modeling) approach to reproduce qualitative interrelations. In comparison

to kinetic models, Boolean models can be built and validated with a limited amount

of experimental data. This makes logical modeling attractive for systems biology.

Boolean modeling has become an important and frequently used approach in

systems biology, which leads to important insights by model simulation and

analysis (Schlatter et al. 2009b; Saez-Rodriguez et al. 2007; Samaga et al. 2009;

Mai and Liu 2009).

Classical Boolean logic deals with two discrete states, e.g. “1” and “0” or “true”

and “false” or “on” and “off” (Boole 1854), and was shown already in 1940 to be

applicable to electrical relay circuits (Shannon 1940). Furthermore, biological

signal flow networks can also be described by a logical approach (Thomas and

D’Ari 1990). The Boolean formalism is especially useful for qualitative represen-

tation of signaling and regulatory networks where activation and inhibition are the

essential processes (Thomas 1998). In a Boolean representation, the biological

active state of a species can be translated into the “on” state, whereas the inactive
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state is represented by the “off” state. The species in a biological Boolean model

can represent proteins, RNA and genes, for example. Enzymes play the role of

switching other enzymes and genes “on” and “off”. The knock-out of a certain gene

as well as constitutive expression can be represented by fixing the node value of this

species in the “off” or in the “on” state, respectively.

There are different interesting approaches for the simulation of Boolean

networks. A description of so-called updating strategies allowing for simulating

dynamic effects can be found in Faure et al. (2006). For our Boolean model we have

used the approach of the logical steady state (LSS). A logical steady state is reached

if the state of the model, i.e. the activity state of all species, does not change any

more over time. Thus, the definition of LSS is independent from the chosen

updating strategy and consequently the results are more universal. For a given

input setting, all LSSs that can be reached from this state can be computed (Devloo

et al. 2003). Here, an input setting is a set of initial values for certain nodes of the

network. The input setting does not have to define an initial value for all nodes of

the network. For the computation of LSSs for specified initial values, the software

tool CellNetAnalyzer (CNA) is used (Klamt et al. 2006, 2007). It is available at

http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html. CNA also includes use-

ful tools to predict and verify experimental data, examine the structure and the

hierarchy of the model as well as the relevance of its components (Saez-Rodriguez

et al. 2007; Klamt et al. 2006, 2007). Thereby it is easily operated via a graphical

user interface.

A literature-based and in parts experimentally validated Boolean model of the

central intrinsic and extrinsic apoptosis pathways as well as pathways connected

with them was presented by the authors in Schlatter et al. (2009b). The model

comprises 86 nodes and 125 interactions (Fig. 5.4). Descriptions of the network

nodes as well as literature references to the equations can be found in Schlatter et al.

(2009b). There are nine input nodes, namely glucagon, insulin, TNFa [TNF], Fas

ligand [FasL], interleukin-1b [IL-1], UV-B irradiation [UV] and the following

three special nodes:

The first special node represents Smac mimetics which are reagents that sensitise

cells for apoptosis via the neutralisation of inhibitor of apoptosis proteins (IAPs)

and can be employed to kill cancer cells (Wang et al. 2008; Li et al. 2004).

The second special input node “Type 2 receptor ligand” [T2RL] allows

simulating apoptosis via the mitochondrial type II pathway in contrast to the type

I pathway which proceeds via a direct activation of the caspase cascade (Scaffidi

et al. 1998). The type I and type II pathways were shown to operate in the same cell

type but under different culturing conditions, suggesting that cells are able to switch

between both ways depending on external stimuli (Walter et al. 2008). However,

the molecular mechanism of the switch itself has not yet been uncovered. There-

fore, an additional node P representing some unknown protein or mechanism is

introduced to model the switch behaviour.

Another speciality is the “housekeeping” input node, which is in the “on” state

by default and shall reproduce constitutively expressed genes by fixing their node

values in the “on” state (Fig. 5.4). However, the housekeeping node can also be used
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to simulate the influence of transcriptional inhibitors such as ActD or the translation

inhibitor cycloheximide which are used frequently in experimental settings. In this

case, the housekeeping node is manually set to the “off” state and in turn switches

the according node values off.

Finally, the functional output node of the model is apoptosis. There are further

output nodes in the model such as p38 or MEK which affect other proteins in the

cell but not in the model. They are not followed-up in the model but are already tied

for future model extensions.

The network map representing logical interactions is shown. The influence of the

housekeeping node is depicted in green colour. Logical AND connections are

represented by spheres. Activating arcs are represented by arrows and inhibiting

arcs by lines with a bar. Figure adapted from Schlatter et al. (2009b).

Multi-value logic turned out to be indispensable to reproduce the behaviour of

the apoptotic network (Schlatter et al. 2009b). Biochemical decisions are often

made in increments caused by thresholds that are essential for setting boundaries

between different states in living cells. This is especially true for apoptotic pro-

cesses (Bentele et al. 2004; Legewie et al. 2006; Callus et al. 2008). Several

biological settings could not be realised with single-value nodes. On that condition,

the domain of some nodes had to be expanded to the values (0, 1, 2):

1. The FasL pathway was reported to show threshold behaviour (Lavrik et al. 2007;

Bentele et al. 2004). Apoptosis is not reached in the model by FasL in activity

state 1, denoted by [FasL (1)], but by FasL (2) reproducing the threshold

behaviour of Fas signaling. However, FasL (1) activates several nodes in the

network, and their influence and crosstalk with other signaling pathways can be

analysed.

2. The nodes of the anti-apoptotic NF-kB regulated proteins c-FLIP, XIAP and

c-IAPs (Kreuz et al. 2001; Stehlik et al. 1998) have graded effects in their “on”

state. For example, caspase-3 p20 (2) can be further processed to the highly

active caspase-3 p17 form which ensues in apoptosis if XIAP is low abundant as

it is represented by XIAP (1). However, if XIAP is upregulated to value “2”, it

prevents processing and activation of caspase-3 p17.

3. Additionally, a multi-value node for UV irradiation was added based on own

experimental results (Schlatter et al. 2009b). UV (1) leads to apoptosis, whereas

UV (2) does not lead to apoptosis.

The logical apoptosis model is based on a vast number of different studies,

which were performed in different organisms and were in part highly focusing on

details (Schlatter et al. 2009b). Therefore, it was important to examine whether the

behaviour emerging from these particular interactions in the model is coherent with

experimental data on the behaviour of the whole network. Table 5.1 shows the

model predictions for different proteins and stimuli which are critical for apoptosis

represented by the resulting logical steady state values of the model. The model

values of the input nodes are given in parentheses and mock is represented by the

logical steady state of the model without activation of any input node.
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All model predictions listed in Table 5.1 are in accordance with measurement

data. They were achieved on the first attempt without changing the model, apart

from the effect of UV irradiation on the network. This shows that the known

molecular interactions consistently explain the behaviour of the network.

In the experiments, two different cell types were used to account for the distinct

signaling mechanisms in cells using the type I (primary mouse hepatocytes treated

with FasL) and the type II (human Jurkat T cells treated with FasL representing the

T2RL node) apoptotic pathways. Details on the experimental procedures as well as

figures presenting the results can be found in Schlatter et al. (2009b).

During experimental validation of themodel, a dose-dependent NF-kB activation

and apoptosis after UV irradiation were found to occur in primary mouse

hepatocytes. As the Boolean model does not reflect quantitative units, different

strengths of UV irradiation have been tested for the model validation. Based on

the results, two distinct levels for the UV input node were implemented. UV (1)

represents the stimulation of mouse hepatocytes with 300 J/m2 UV irradiation and

UV (2) with 600 J/m2. Weak UV irradiation leads to weak NF-kB activation and no

c-IAP2 and c-FLIP mRNA upregulation. As there is no signaling effect on

the subsequent nodes, the model shows NF-kB (0) in this setting. As a consequence,

mouse hepatocytes show significantly increased caspase-3 activity and consequently

apoptosis can be observed as expected after UV irradiation. In contrast, the higher

dose of UV irradiation leads to strong NF-kB activation, and subsequently c-IAP2

and c-FLIPmRNA are upregulated. This correlates with previous findings showing a

marked NF-kB induction after strong translational inhibition and relative resistance

to lower doses (O’Dea et al. 2008). The proteins c-IAP2 and c-FLIP function as anti-

apoptotic inhibitors and prevent caspase-3 activation in this setting. Accordingly,

cells show less cytotoxicity after strong UV irradiation. The updated model version

reflects the network behaviour in response to UV irradiation.

It is impossible to test every signaling scenario of the presented apoptosis model

due to technical limitations and the mere number of nodes. However, the consis-

tency of the model with the performed validation experiments indicates that the

model is basically correct and has explanatory power.

Analysis of the model revealed a tight regulation emerging from high connectiv-

ity and spanning crosstalks and a particular importance of feedback loops. Detailed

analysis can be found in Schlatter et al. (2009b). One of the results consists of

predictions for double stimulation scenarios. Therefore, the resulting value for the

apoptosis node has been systematically simulated and listed in Table 5.2. The

diagonal shows the resulting apoptosis value for the according single stimulations.

One would assume the outcome for two combined stimuli to follow the rules

0 + 0 ¼ 0, 1 + 1 ¼ 1 and 0 + 1 ¼ 1. However, there are some aberrations which

are highlighted bold in Table 5.2. There are some interesting crosstalks concerning

UV stimulation. The anti-apoptotic effects of insulin and IL-1b also prevent apopto-

sis in combination with UV (1). However, in combination with TNFa, apoptosis is
still enforced by UV (1) as Smac is released according to the model by UV

irradiation and counteracts XIAP upregulation. The input combinations of UV (2)

with TNF and FasL (1) also lead to apoptosis as the latter activate caspase-8 (1).
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In contrast, the combination of FasL (2) and UV (2) does not cause apoptosis in the

model as the NF-kB activation by UV (2) is dominant in this setting.

Additionally, Smac-mimetics lead to apoptosis in combination with FasL (1).

IL-1b, insulin and TNFa prevent apoptosis after FasL (2) stimulation in the model.

However, our latest studies showed that the concurrent stimulation with TNFa and

FasL does not prevent, but still induces apoptosis in hepatocytes. Moreover, the

sensitising effect, as described in Sect. 5.3.1, is also currently not covered by

the Boolean model. It can be expected that the extension of the Boolean model

considering this sensitising effect and including the influence of JNK via Bim on

Bax/Bak may in turn provide new predictions for additional crosstalks on a

dynamical level in the future.

5.4 Conclusion

Here, we present two complementary approaches of modeling death receptor-

mediated cell death in hepatocytes. Kinetic modeling is suited to provide a detailed,

quantitative and dynamic explanation for the different apoptosis decisions under

varying scenarios triggered by two interacting signaling pathways. Boolean

modeling is able to describe larger networks on a qualitative level. We focused

on a comprehensive and coherent description of the apoptosis decision after

different stimuli.

The use of ordinary differential equation (ODE) models is a standard approach

in systems biology allowing the description of dynamic behaviour over time. In the

presented work, an ODE model of TNFa and FasL sensitising was extended by

adding the regulation of pJNK and the generation of ROS after combined TNFa and

ActD treatment and their impact on the signaling network. Moreover, a published

NF-kB model was integrated in the framework. The qualitative interactions in the

network are based on literature and measurement data for murine hepatocytes

which clearly document the modelled functional mechanisms.

Table 5.2 Apoptosis node value for all double stimulation scenarios of the model

Glucagon Insulin TNF

FasL

(1)

FasL

(2) T2RL IL-1

smac-

mimetics

UV

(1)

UV

(2)

Glucagon 0 0 0 0 1 1 0 0 1 0

Insulin 0 0 0 0 1 0 0 0 0

TNF 0 0 0 1 0 1 1 1

FasL (1) 0 – 1 0 1 1 1

FasL (2) 1 1 0 1 1 0

T2RL 1 1 1 1 1

IL-1 0 0 0 0

Smac-mimetics 0 1 0

UV (1) 1 –

UV (2) 0
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The experimental approach combined with the extended model provides a deep

insight into TNF signaling in murine hepatocytes. Systems biology has just been

passing from dynamic modeling of single pathways to dynamic modeling of

comprehensive and intensively cross-linked networks. As already demonstrated

with other cells, more information on apoptosis and NF-kB can be gained by

adding further levels of detail in existing models (Cheong et al. 2008; Lavrik

et al. 2009; Lavrik 2010). We here provide an example for the integration of several

dynamical mathematical models into a holistic model describing complex

crosstalks. The presented model can be used for the integration of further pathway

models. Since subtle dependencies between different pathways exist, the integra-

tion of additional pathways will probably improve the analysis of all pathways

involved and the understanding of the holistic network.

Boolean modeling employing also multi-value logic allows the reproduction of

the apoptotic signaling network in a comprehensive way. The presented apoptosis

model can be used for comparison with own results as well as for further analyses. It

can be modified and expanded to other cell types, additional pathways or crosstalks.

The integration of numerous signaling pathways into one model can especially be

used to predict the systems behaviour after multiple stimuli. In particular, any kind

of knock-out or knock-in scenario can be easily simulated with the model by setting

certain nodes or interactions to the desired value. Subsequently, resulting variations

in signaling behaviour and the changed network topology can be analysed. On the

other hand one can search for minimal intervention sets (Klamt and Gilles 2004).

Thereby the algorithm computes all possibilities to reach a user-defined network

state under user-defined constraints as fixed states or maximum number of

interventions. Finally, uncovering sensitive points in the network and failure

modes of the system concerning specific questions will provide suggestions for

biological experimental design as well as predictions on how the system reacts in

response to selected challenges. Beyond this functionality a comprehensive

Boolean model can help to define a meaningful system boundary for an ODE

model of an included single pathway. The connectivity of sub-networks and single

components via crosstalks is helpful to include all essential interactions when

focusing on a smaller subsystem or specific question.

In the future, modeling of apoptosis in hepatocytes will proceed on different

routes on the way to a functional representation of the whole liver. On the one hand,

there are still functional properties of cell signaling to elucidate. A critical point

thereby is the switch between type I and II apoptosis which is dependent on

culturing conditions, suggesting a central role of integrin signaling (Walter et al.

2008). Additionally, the detailed steps of mitochondrial pore formation are not yet

fully understood and usually still modelled in a more phenomenological than

mechanistic way. Beyond the investigation of single signaling pathways, the

combination of the according mathematical models will be necessary to understand

complex crosstalks and interactions not only inside the hepatocytes but also

between the different cells in the liver. ODE as well as Boolean models will

contribute to this process. As inflammation processes are of central interest regard-

ing apoptosis in the liver from a medical and clinical point of view, especially
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cell–cell models describing the interactions between hepatocytes and cells of the

immune system will be of increasing importance and a next step towards a

mathematical liver model supporting clinical research.
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Chapter 6

Understanding Different Types of Cell Death

Using Systems Biology

Laurence Calzone, Andrei Zinovyev, and Boris Zhivotovsky

Abstract This chapter is devoted to the mathematical modeling of cellular

decisions between death and life (referred to as cell fate decision). These decisions

determine many cell events in multicellular and unicellular organisms. Understand-

ing the principles of cell fate decisions is crucial for the studies of some tissue

functioning (such as gut epithelium) and for the comprehension of tumour

development, for which the tightly regulated mechanism of balancing between

survival and death is violated towards survival. In a broader context, cell fate

decisions are examples of cellular decision-makingmechanisms which are abundant

in all living organisms from viruses and bacteria to mammals (Balazsi et al. 2011).

6.1 Problem Statement: Modeling Cell Fate Decision Process

This chapter is devoted to the mathematical modeling of cellular decisions between

death and life (referred to as cell fate decision). These decisions determine many

cell events in multicellular and unicellular organisms. Understanding the principles

of cell fate decisions is crucial for the studies of some tissue functioning (such as

gut epithelium) and for the comprehension of tumour development, for which the

tightly regulated mechanism of balancing between survival and death is violated

towards survival. In a broader context, cell fate decisions are examples of cellular
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decision-making mechanisms which are abundant in all living organisms from

viruses and bacteria to mammals (Balazsi et al. 2011).

Cell fate decision process clearly possesses characteristics of complex systems

such that the decision outcome can be rarely attributed to the activity of one single

molecular player. The mechanisms underlying these decisions have systemic

properties of complex genetic networks. In 1957, Waddington already proposed

the idea of an epigenetic landscape in the context of morphogenesis (Waddington

1957). According to him, the cell develops through a series of irreversible

transitions that are controlled by complex networks of interacting genes. These

networks are indeed determinant, but there are more parameters intervening in

the choice of the cellular outcome. It is important to note that the roles of external

noise, internal noise and the properties of the surrounding environment are crucial

in these cellular choices. Based on the idea of studying the dynamical properties of

a complex system of interacting genes, a systems biology approach seems to be

suited in deciphering the cell fate decision process.

The term “programmed cell death” was coined in 1965 (Lockshin and Williams

1965) and constitutes one of the three possible cell fates, apart from proliferation

and differentiation, and is one of the elementary processes in cell biology. In the

normal, healthy human adult, cell death affects several millions of cells per second.

Deregulation of apoptosis is involved in several pathologies. Kerr, Wyllie and

Currie (1972) described cell death via apoptosis, which is an example of

programmed cell death, as a basic biological phenomenon with wide-ranging

implications in tissue kinetics. This influential paper implicated apoptosis not

only in normal cell turnover, but also in the spontaneous elimination of potentially

dangerous cells and, hence, in the pathogenesis of cancer. Moreover, the authors

speculated that the mechanism(s) leading to spontaneous apoptosis in growing

malignant neoplasms might also be applicable in therapeutically induced tumour

regression. Today, it is generally agreed that cell populations are tightly regulated

with regard to proliferation, differentiation and death. Dysfunction of any one of

these processes can result in either uncontrolled cell growth or uncontrolled cell

death. Yet, it remains unclear to what extent a perturbation of cell proliferation

and/or cell death regulation must occur in order to influence the pathogenesis of

various diseases. In their 1972 paper, Kerr and colleagues compared two modes of

cell death, apoptosis and necrosis, suggesting that the former represents an

example of gene-regulated processes, while the latter is simply a passive event.

Since then, the field of cell death has become an increasingly important area of

biomedical research.

The apoptotic dying cell undergoes rapid changes, which are reflected in both its

structure and biochemistry. Morphologically, apoptosis is characterised by margin-

ation and condensation of nuclear chromatin (pyknosis), cell shrinkage, nuclear

fragmentation and blebbing of the plasma membrane. The cell subsequently breaks

up into membrane-enclosed fragments, termed apoptotic bodies, which are rapidly

recognised and engulfed by neighbouring cells or macrophages. Considerable

biochemical changes occur within the apoptotic cell to facilitate neat packaging

and removal of the apoptotic bodies by phagocytosis.
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Necrosis has long been regarded as the result of an accidental and uncontrolled

process, usually caused by external factors to the cell or tissue, such as infection,

toxins, heat or trauma. It is characterised by disruption of the plasma membrane,

and of the membranes of intracellular organelles, cell swelling, chromatin diges-

tion, DNA hydrolysis and, finally, cell lysis. Necrosis is often associated with local

inflammation, triggered by the release of factors from dead cells that alert the innate

immune system. Necrosis is known to play a prominent role in many pathological

conditions, including ischaemia/reperfusion (e.g. stroke and myocardial infarction),

trauma and some forms of neurodegeneration.

Accumulating evidence suggests that necrotic cell death might also be regulated

by a specific set of signal transduction pathways and degradative mechanisms

(Golstein and Kroemer 2007). Similar to apoptosis, cell death with a necrotic

appearance can contribute to embryonic development and adult tissue homeostasis.

At present the Nomenclature Committee of Cell Death has recognised several

modes of cells death (Kroemer et al. 2009), which are divided into typical and

atypical. Although these modes are all characterised by distinct morphologies, the

molecular mechanisms underlying a majority of these cell death modalities have

not been sufficiently investigated. The modeling of various cell death modalities

and crosstalk between them will help in the understanding of their regulation

pathways.

6.2 Conceptual Description of Biological Switches

Cellular decision is conceptually linked to the notion of cellular switches. These

switches are molecular devices that integrate a variety of external signals and end

up in a particular state. Cellular switches can be represented by single molecules.

In this case, they are called molecular switches and they are governed by the state of

one single component. However, in cellular decision processes, the switch is

frequently an emergent property of an interaction network. Even if some of the

network components can play a more important role in determining the outcome of

the switch, these players are part of a bigger network that controls the final choice.

Until recently, a requirement for gene expression was documented only for

apoptotic and autophagic cell death. Interestingly, certain genes and their products,

e.g. p53, Bcl-2 family proteins, calpain, etc., are important for both these modes of

cell death. Recent work indicates that basal p53 activity suppresses autophagy,

whereas the activation of p53 by some stimuli induces autophagy as well as

apoptosis mediated by the Bcl-2 family proteins, PUMA and NOXA. As mentioned

above, for many years, necrosis was regarded as the result of an accidental and

uncontrolled process, but many observations revealed that necrotic cell death might

also be mediated by a specific set of signal transduction pathways and degradative

mechanisms (Golstein and Kroemer 2007). Some gene products, such as TNFR,

CD95, TRAIL-R and RIP1, might trigger both apoptosis and necrosis, depending

on their interaction with other proteins. Moreover, there exist some crosstalks
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between these two cell death modalities. For example, inactivation of caspases

might cause a shift from apoptosis to necrosis, or to a mixture of these two cell

death modes. Recently, the term necroptosis has been introduced to designate a

special type of programmed necrosis that depends on serine/threonine kinase RIP1

activity (Degterev et al. 2008). In a genome-wide siRNA screen for regulators of

necroptosis, a set of 432 genes was identified. Among these genes was a subset of

32 genes that act downstream of, and/or as regulators of RIP1 kinase, and 7 genes

involved in both necroptosis and apoptosis. Interestingly, Bmf, a BH3-only, Bcl-2

family member, was shown to be required for death receptor-induced necroptosis.

In fact, it seems that Bcl-2 family proteins are essential for the regulation of a

majority of programmed cell death modalities.

Depending on the type of lethal stimulus, the cell death process can be initiated

in different intracellular compartments, and crosstalk between these compartments

is essential for all cell death modalities. Moreover, it seems that various organelles

might trigger cell death by specific stress sensors and transmit cell death modulating

signals throughout the cell. This inter-organelle crosstalk apparently involves

several molecular “switches” within the signaling network. Thus, p53 can be

activated in response to DNA damage, or to changes in redox balance in the

mitochondria, and Bcl-2 family proteins might act at the level of the mitochondria,

ER or nucleus. Nuclear p53 promotes the transcription of pro-apoptotic and cell

cycle-arresting genes, and also can act as an autophagy-inducing transcription

factor. In contrast, cytoplasmic p53 might trigger apoptosis and exert an

autophagy-inhibitory function, although the precise molecular mechanism(s) of

this dual function is (are) not completely known. Another example of crosstalk

between apoptosis and autophagy was described recently (Wirawan et al. 2010).

Beclin-1 was originally identified as a Bcl-2-interacting protein, whose autophagic

function can be inhibited by both Bcl-2 and Bcl-XL. Notably, although Beclin-1

possesses a BH3-only domain, and all BH3-only proteins of the Bcl-2 family are

well-known inducers of apoptosis, Beclin-1 fails to induce apoptosis and by

stimulation of autophagy offers cytoprotection against various apoptosis triggers.

However, in response to growth factor withdrawal, when autophagy precedes

apoptosis, caspase-mediated cleavage of Beclin-1 inactivates autophagy and

stimulates apoptosis by promoting the release of pro-apoptotic factors from

mitochondria. It seems that in this experimental model, a caspase-generated frag-

ment of Beclin-1 triggers an amplifying loop enhancing apoptosis.

Importantly, depending on the nature and severity of the stimulus, and on the

cell type, the hierarchy of inter-organelle crosstalk might result in different cell

death modalities. Moreover, in some cases, suppression of the function of a

particular intracellular compartment might switch one mode of cell death to

another. For example, inhibition of mitochondrial energy metabolism (lowering

of ATP) can change the mode of cell death from apoptosis to necrosis. Similarly,

inhibition of caspase activity might change apoptosis to necrosis or autophagic cell

death, whereas activation of calpain-mediated cleavage of autophagy-regulated

protein, Atg-5, switches the mode of cell death from autophagy to apoptosis.

Interestingly, although necroptosis, necrosis and secondary necrosis following
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apoptosis, represents different modes of cell death, all of them might eventually

converge on similar cellular disintegration features, albeit with different kinetics.

It seems that the point of no return in various cell death modalities is also similar

and associated with mitochondria. Expression of anti-apoptotic members of Bcl-2

family proteins rescues cells that undergo apoptosis, necrosis/necroptosis and

autophagy. Thus, learning more about the molecular mechanisms regulating vari-

ous cell death modalities and their crosstalk is important, since they play a critical

role in multiple biological processes.

In recent articles, there appeared a number of reports in which analogies and

differences between engineering and biological implementations of specific

functions are discussed (Lazebnik 2002). If we were to study cell fate decision

between survival, necrosis and apoptosis from the engineer’s prospective, we would

be asked to build a device capable of performing three mutually exclusive

functions. The most probable design would be to associate to each output, one

single corresponding input, as depicted in Fig. 6.1 (left panel). This device is such
that it contains three modules performing three functions, each module being

activated by a separate button. To improve the response, some further analyses of

the state of the buttons would be needed: for example we would need to determine

what happens if a button is pressed when another one is already pressed.

By contrast, the design that is used by nature is quite different (Fig. 6.1, right
panel). It is known that the three modules are connected by extensive pathway

crosstalks, and therefore with a high overlap. There is no evident separation

between them as it would be the case for the engineer’s modules. Therefore, the

definition of one module or pathway and the decoupling of one module dynamics

become difficult tasks. Moreover, nature may use only one button (receptor) to

activate the three modules and the decision will then depend on the strength with

which the button is pressed, the duration and the presence or not of some of the

components of the pathways at the exact moment when the button is pressed. As a

result, the response is stochastic and characterised by a non-zero probability of

Fig. 6.1 Engineer vs. biological view of a cell decision device. Engineering solutions are

characterised by clear separation of modules, maximum predictability of the response. Biological

solutions are composed of overlapping modules, a response to a perturbation that is probabilistic

and dependent on the internal system state
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having several resulting phenotypes. If many buttons were to be used, then the

output would be even less predictable.

To assess which design would be more advantageous, one has to formulate the

optimality criteria, i.e. conclude on which design is more resistant to a random

withdrawal of certain elements by systematically comparing both designs. Another

possible criterion could be to identify which design is more probable to appear in

the process of random tinkering. This can be performed by assuming that a typical

mechanism of evolution consists of two recurrent operations: duplication of already

existing and working elements with further partial specialisation and partial con-

servation of a common function; and an ad hoc re-use of already existing settings

for a new and completely different purpose. This evolutionary process leads to the

property of degeneracy of the genetic networks and to the phenomena of network
buffering and distributed robustness (Whitacre and Bender 2010). With these

considerations, several questions emerge, for example: why does cytochrome C

play a role both in the respiratory chain of mitochondria and in the apoptosis

signaling pathway after mitochondria membrane permeabilization has occurred?

Is this double role an advantage or is it a mere random consequence of the ad hoc

use of cytochrome C? How does this decision, when fixed, constrain further the

evolution of the machinery, etc.?

The analogy between the two views brings into relief some unexpected

questions. It mainly proves that much more should be understood in order to define

the correct optimality criteria used by evolution and, hence, to separate the role of

chance from the role of design and selection in biological evolution settings as

compared to engineered devices.

6.3 Mathematical Modeling

Cell fate decision has raised interest in many areas, from immunology to

haematopoiesis, to cell cycle events, or various signaling networks such as growth

factor pathways, insulin pathway and apoptotic pathways. Recently, systems

biology provided a number of concrete implementations of the Waddington’s cell

fate decision paradigm, through mathematical modeling of various biological

systems. In this chapter we will focus on modeling cell fate decisions between

life and death in mammalian cells.

There are several ways to study cell fate decision, from purely phenomeno-

logical approaches (Aguda and Algar 2003), to very detailed descriptions (Helikar

et al. 2008). Here, we propose to approach the cell fate problem from a prospective

of biochemistry and genetics by constructing a genetic network recapitulating, in a

simplified form, our knowledge of the molecular processes leading to death or

survival (Fig. 6.2). Based on a thorough literature search, we built an influence

network that describes how the master regulators of cell decision, i.e. genes,

complexes or processes, relate to each other in a global context. The two possible

relations of the influence network are activation and inhibition. The master
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regulators were chosen based on the importance of the role they play in the three

pathways that we decide to describe in response to the engagement of death

receptors: apoptotic and necrotic pathways for cell death and NFkB activation

pathway for cell survival.

To be able to convert the genetic network into an analytical tool, we translate it

into a mathematical language that will describe the possible dynamical behaviours

in specific conditions. This description allows to determine the set of possible

system solutions or outputs (understood as molecular processes such as activation

of a protein or shutting down expression) and the sequence of events that leads to

these solutions.

The general strategy of building and validating the model is the following:

1. Construction of the generic graph that describes the different processes of cell

survival and cell death in normal conditions. The resulting genetic network

recapitulates published knowledge on biochemistry.

2. Verification of the coherence of the network by crossing it with genetic results

(mutants and drug treatments).

3. Formulation of predictions on the network topology, on mutant phenotypes, on

alterations of pathways.

4. Experimental validation.

The mathematical formalism we chose to describe cell fate decisions in response

to death signals is the Boolean formalism. Boolean modeling is useful when one

wants to verify that the recapitulating network is coherent with published data.

Since it is built from uncorrelated and disseminated articles, there is no guarantee

that when the pieces of the puzzle are assembled and integrated into a unique and

global picture, it accounts for the different expected phenotypes in all cell

conditions. In other words, modeling is one way to prove that the construction of

the network that is supposed to reproduce the cell behaviour of a disease or in

altered signaling pathways is somehow based on coherent facts. Understanding the

topology of the pathways that are altered in normal and abnormal conditions might

shed some light on ways to counteract them. Boolean modeling is an abstraction of

reality, and of continuous and more refined methods such as ordinary differential

Fig. 6.2 Simple view of the

cell fate decision model.

From a single input, death

receptor activation, three

pathways are proposed:

survival pathway with NFkB

activation, necrosis with MPT

occurring and apoptosis with

CASP3 cleavage
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equations (ODEs) that would require more quantitative data (the concentration of

proteins as a function of time, the reaction rates, and the speed of events). Since

quantitative knowledge is hard to find and to include in the model, the description

needs to remain as qualitative as possible. Cell fate decisions can be represented as

a dynamic system having several qualitatively different states. Having this in mind

and also because the quantitative parameters of such a system are rarely available,

we assume that the process of cell fate decisions can be appropriately treated by

Boolean formalism.

6.4 Introduction to Boolean Modeling of Cell Decisions

Boolean networks are primarily described by regulatory or influence networks.
They consist of signed and directed graphs that are composed of nodes and arrows.

The nodes, or variables, correspond to genes, proteins, complexes or processes

depending on the information collected and summarised in the network. These

variables can only take two values in a Boolean framework: 0 if the species

represented by the node is absent or inactive, or 1 if it is present or active. Arrows

correspond to interactions and provide two types of information: they can be

activating (+) or inhibiting (�) arrows. A node is updated according to the state

of its input nodes, the sign of the incoming arrows and the logical rule that connect

the inputs. The most widely used logical connectors found in the published models

are AND for which node A and node B need to be present for node C to

be activated; OR for which node A or node B need to be present for node C to be

activated; NOT for which node A needs to be absent for node C to be activated

(Fig. 6.3).

The choice of the logical rules is, in the best cases, determined by biological

knowledge. The dimension of the network is dependent on the amount of informa-

tion that is gathered and, of course, on the biological question and the amount of

details it requires to answer. Some models (Helikar et al. 2008; Schlatter et al. 2009)

are able to explain decision making with great details and a high number of

variables. Not only they are able to account for cell decision making in different

cellular conditions, but they are also validated on experimental data. For these

models, the logical rules for each node are deduced from experimental facts.

The added value of Boolean modeling lies in the fact that a simple formalism

with limited amount of information can already explain—or start to explain—some

complex and misunderstood observations. For instance, it can predict the effect or

the necessity of some drugs in cancerous scenarios (Layek et al. 2011). Moreover, it

is one way to show that the topology of a network can provide some insight into the

regulation of particular biological processes.

Boolean modeling is a simple formalism for animating an influence diagram.

To achieve this, the state transition graph associated to the Boolean model

(a diagram of all the possible states and their sequence) is generated. On this

graph, each node represents a state of the system, which in this case can be encoded

by a sequence of 0’s and 1’s. The states are connected by a directed edge if a
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transition between two states is allowed, and according to any of the logical update

rules predefined by the model. In principle, the state transition graph can be built

independently and without the biological diagram; however, this would require a

tremendous amount of empirical knowledge, which is not available. Hence, the

biological diagram with associated Boolean rules is used as a compact representa-

tion and a tool to generate the state transition graph. More detailed instructions for

this procedure can be found in Chaouiya et al. (2006).

The state transition graph recapitulates all the possible trajectories of the

system’s dynamics. It provides all the possible states of the system in a discrete

phase space (Fig. 6.4). It can be compared to the epigenetic landscape introduced

by Waddington. From an initial condition or physiological cell state, a certain path

is followed, decisions are made at some bifurcating points and the ending point

corresponds to the cell fate chosen by the cell. These ending points can also be

called sink nodes. Any allowed transition from this node leads to itself. It is an

attractor, a solution or a stable state solution of the model. Note that the

state transition graph is assumed to be rather sparse compared to the fully

connected graph.

The state transition graph can be seen as a tool to interrogate the model.

For instance, one could find the probability to reach each stable state starting

Fig. 6.3 Three simple logical connectors: AND (also represented by and), OR (also represented

by |), NOT (also represented by !)

Fig. 6.4 State transition graph in a Boolean model. One trajectory from a physiological cell state

to the Phenotype 2 is shown. Along this trajectory, a “point of no return” is highlighted. At this
point, the choice of the output is determined
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from a particular state. To do so, the state transition graph is converted into a

Markovian process of random walk on a graph and analysed by classical techniques

(Feller 1968).

The final probability is associated with a probability of observing a particular

phenotype in an experiment. In this way, the Boolean model can take into account

the stochastic nature of cellular decisions and be validated experimentally.

However, due to the lack of quantitative information, the probabilities associated

to each transition are considered to be equiprobable. One biological interpretation

of these probabilities could be that for a generic cell, all possible system trajectories

are explored with the same probability. For a specific cell type, these transition

probabilities would need to be weighted according to the importance—or even the

presence—of a transition. Of course, it can be argued that in any particular concrete

cell, no event occurs with an equal probability and that the generic cell is not

representative of anything real observed in an experiment. Having in mind this

difficulty, direct interpretation of absolute values of probabilities should be

avoided, concentrating rather on their relative changes in response to some system

modifications such as removing a node or fixing a node’s activity. The “generic”

cell model is already capable of reproducing a number of known experimental facts.

6.5 Boolean Modeling of Cell Death

Our special interest here is Boolean modeling of cell death. Boolean formalism has

been used in the context of cell death at different levels (Fig. 6.5): in death receptor-

induced apoptosis (Mai and Liu 2009) and more specifically in cell response to

death receptor engagement (Calzone et al. 2010; Tournier and Chaves 2009;

Philippi et al. 2009); in the mechanisms observed in both intrinsic and extrinsic

Fig. 6.5 Some examples of published Boolean models of cell death
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apoptosis (Schlatter et al. 2009) and in the interaction between MDM2 and p53

(Abou-Jaoude et al. 2009).

Most of the models of cell death are built as a response to cell receptor activa-

tion. Some concentrate on death receptors such as Fas receptors (Philippi et al.

2009), TNF receptors (Tournier and Chaves 2009; Schlatter et al. 2011) or both

(Calzone et al. 2010); others on growth factors (Layek et al. 2011; Morris et al.

2010) or combinations of both growth factors and death receptors (Mai and Liu

2009); on the synergy between diverse input signals: RTK, GPCR and integrins

(Helikar et al. 2008) or as many as eight different inputs including insulin, gluca-

gon, death receptors, interleukins, SMAC mimetics and UV irradiation (Schlatter

et al. 2009). Because the p53/MDM2 module is governed by a negative feedback

loop and that negative feedback loops are not as easy to interpret in Boolean

formalisms, there are few models that describe the activation of the apoptotic

pathway via the p53 pathway (Abou-Jaoude et al. 2009).

According to the mathematical model and the consequent degree of details, some

genes are chosen as readouts of the activated pathways. They may not mean that the

phenotype is observed in the cell, though, only that the activation of the corres-

ponding pathway is possible. What happens downstream of these readouts is often

not described and the fact that these genes are activated does not guarantee that a fate

will be realised. That way, for instance, some genes, alone or in complexes, or

some processes, are selected to represent outputs: Akt, CASP3, AIF or p53 may

account for apoptosis; BCL-2, IAP or NFkB for survival; mitochondrial permeabil-

ity transition (MPT) for necrosis; gene transcription for cell cycle activation; etc.

6.6 Cell Fate Decision Model

We have proposed a molecular mechanism that explains cell fate decision between

life and death in response to death receptor engagement (Calzone et al. 2010).

The only inputs of the model are the activation of the two death receptors: TNFR

and Fas. The different outputs or phenotypes considered in this model are the

following (1) the resting state referred to as “naı̈ve” for which the cell is not

under any life-threatening stress conditions and not receiving death signals; (2)

survival which is associated here to active resistance to stressful conditions by

activation of the NFkB pathway (Karin 2006); (3) death by necrosis which is

triggered by a death receptor-induced pathway and (4) apoptosis.

The pathways depicted here (Fig. 6.6) are the result of a tremendous simplifica-

tion, the purpose of this study being the understanding of the cell decisions in

response to a single input rather than the molecular details of the different

pathways.

NFkB transcription factor is activated after the degradation of its inhibitor, IkB

(not explicitly shown in the diagram), with the help of a specific kinase called IKK.

IKK is itself activated after a protein, RIP1, in its ubiquitinated form (RIP1ub on the

diagram). When NFkB is activated and transported into the nucleus, it can mediate
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the transcription of a plethora of genes, among which are cFLIP, Bcl-2, ROS

scavenging enzyme coding genes, members of the IAP family cIAP1, cIAP2

(together referred to as cIAPs) and XIAP.

There exists a big overlap between the necrotic and apoptotic pathways. The line

separating them in Fig. 6.6 is not clearly defined. After the cell receives death

receptor signals, the apoptotic pathway is activated by the formation of the DISC

(either TNF- or Fas-death inducing signaling complex), leading to the cleavage of

CASP8. When active, CASP8 can initiate the disruption of the mitochondria outer

membrane with the help of a family of BAX proteins. As a result, many mitochon-

drial components are released into the cytosol. Among them, cytochrome C (CYT

C) is one of the most important components for inducing apoptosis. CYT C is a

member of the Apoptosome complex that leads to the activation of the executioner

caspases such as CASP3. A series of event after CASP3 causes the destruction of

intracellular structures including membranes and DNA. Another important ingredi-

ent of the mitochondria inter-membrane space is the second mitochondria-derived

activator of caspase (SMAC), for its role in inhibiting survival.

Necrosis is tightly linked to reactive oxygen species (ROS), which, when present

in high concentrations, can severely damage mitochondria and cause MPT. MPT in

turn causes an additional increase in ROS in the cytosol. In our diagram, ROS is also

controlled by RIP1K, the kinase activity of RIP1, but the level of ROS is not solely

controlled by RIP1. A high increase in the concentration of ROS can be a conse-

quence of many reasons such as toxic conditions, for instance. Thus, in our context,

necrosis can be initiated in a programmed fashion. Disrupting mitochondria in a cell

Fig. 6.6 Boolean model of cell fate decisions between survival, apoptosis and necrosis. Left
panel: Influence network of the molecular interactions involved in cell fate decisions. The diagram

is roughly divided by dashed lines into three modules corresponding to three mechanisms of cell

fate decisions. Right panel: the table of logical rules defining the discrete mathematical model is

provided. To each node corresponds a logical rule
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leads to severe deficit of ATP, the main biochemical currency, with lethal

consequences. A drop of ATP is understood as a necrotic phenotype.

It is important to underline that the three pathways are connected by multiple

crosstalks (Fig. 6.6) at all levels of the pathways (upstream and downstream). These

crosstalks raise a question about the definition of each of the pathways, since it is

difficult to decompose the network back into independent modules without an a

priori definition of pathway borders.

The fully assembled graph is an influence network composed of nodes and arcs.

The nodes represent a protein (TNF, FADD, FASL, TNFR, CASP8, cIAP, cFLIP,

Bcl-2, BAX, IKK, NFkB, CYT C, SMAC, XIAP, CASP3), a state of protein

(RIP1ub, RIP1K), a small molecule (ROS, ATP), a molecular complex

(apoptosome, C2 TNF, DISC FAS), a group of molecular substances (Bax, Bcl-2),

a molecular process (MPT, mitochondrial outer membrane permeabilization

(MOMP)) or a phenotype (survival, apoptosis, non-apoptotic cell death, nonACD).

The arcs represent influences of a node onto another node, either positive (arrowed

edge) or negative (headed edge).

As indicated in the previous section, the influence network is translated into a

dynamical model using Boolean formalism. To each node of the diagram, a logical

rule is associated (Fig. 6.6, right panel).
The scope of this model is to identify the main players and the possible routes

that lead to different phenotypes in response to the same signal. Death receptor

activation such as Fas or TNFR can lead to cell death (through necrosis and

apoptosis) or survival (by activation of NFkB) according to cell condition and

cell type. Moreover, the model emphasises the necessity of mutual inhibition in

these pathways to ensure a proper and unique cell response. Tournier and Chaves

(2009) have shown a similar model between NFkB activation and apoptosis.

6.7 In Silico Experiments

The simulation of the model is based on the properties of random walk on the state

transition graphs as mentioned previously. We computed the probability of

reaching one or the other phenotype, considered as a stable steady state of the

system, for wild-type conditions and for perturbed conditions (mutants or drug

treatments). Mutant models include several modifications: gene deletions that are

simulated in the Boolean model by setting the corresponding node or variable to 0,

i.e. insensitive to its inputs or external stresses; overexpressions that are simulated

in a similar fashion by setting the node to 1; drug treatments by setting the targets of

the drug to the appropriate value on the concerned variables. The result of these

simulations is provided in Fig. 6.7.

In the paper by Calzone and colleagues (2010), this table was systematically

compared to published experimental observations of the cell death phenotype

modifications observed in various mutant systems, such as cell cultures and mice.

The model was able to qualitatively recapitulate all of them. The model provides a
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way to test the effect of more than one alteration. We could answer questions of the

type: how many and which mutations are needed to re-establish a lost phenotype.

Various “mutant” modifications of the dynamical system are tested here in

response to TNF activation. “A” denotes Apoptosis, “N” denotes Necrosis and

“S” denotes Survival, “0” denotes naive state, “o.e.” stands for overexpression of a

protein, “antiox” corresponds to blunting the capacity of NFkB to prevent ROS

formation, “z-VAD fmk” simulates the effect of caspase inhibitor z-VAD-fmk.

For all simulations presented in Fig. 6.7, TNF is set to 1 and therefore considered

to be always ON along the trajectories. It is implied here that the death receptor is

engaged for a sufficiently long time with a dose high enough to trigger a cell

response. All trajectories are generated from a “physiological” condition where

all variables are set to 0 except for TNF, cIAP and ATP.

We tested further in silico experiments by considering a temporary pulse of TNF

rather than a sustained signal. Since time is discrete in our framework, each “time”

or “event” corresponds to one step in the transition graph. The trajectories for all

wild-type and perturbed systems are computed from the physiological condition.

At a given time or after a certain number of events, the value of TNF is forced to 0.

The probabilities to reach a phenotype are then calculated with the new initial

condition that corresponds to the one at which TNF was switched to 0. The average

probabilities are represented for the wild-type and the perturbed models (Fig. 6.8).

Fig. 6.7 Model probabilities of having a particular phenotype starting from the physiological

condition
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This experiment allows to conclude on the number of steps needed to achieve

cell decision upon TNF treatment. It provides a measurable way to assess the

appearance or disappearance of certain phenotypes upon TNF induction. The first

time point corresponds to TNF OFF at all time. The last time point of Fig. 6.8

corresponds to the TNF sustained case (TNF ON all the time) presented in Fig. 6.7.

For most cases, the decision is made very early, at step 4. It can be concluded that

after a certain point, the cell has committed to its fate, even if the signal is removed.

Fig. 6.8 Ligand removal experiments. The x-axis represents the (discrete) duration of the TNF

pulse. At each discrete time point along the x-axis, the TNF signal is turned off. The different

curves represent the average probabilities to reach the different attractors after the pulse (the

number of trajectories N ¼ 2,000). Curves are coloured in blue for naı̈ve state, green for NFkB
survival, orange for apoptosis and purple for necrosis
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6.8 Model Reduction

To complete our study, we reasoned on the simplest model of cell fate that can be

deduced from the model described above. We selected the three readouts for our

phenotypes: NFkB for survival, MPT for necrosis and CASP3 for apoptosis.

We then listed all possible paths from one species to the other in a semi-automatic

manner (Zinovyev et al. 2008), and we deduced a three-node influence diagram

where the sign of each arc represents the overall sign of all the paths linking two

nodes. In some ambiguous cases (e.g. influence of MPT on CASP3 or of NFKB on

MPT), the decision on the sign of the influence is based on the Boolean rules and

not on the paths only. In the case of mutations eliminating all the negative

influences, however, a positive arrow must be considered. In Fig. 6.9, the complete

network along with the state transition graph is shown (upper left and right).

The simple network is symmetrical. Each node auto-activates and inhibits the

other two. The logical rules are written as follows:

CASP3 ¼ NOT MPT AND NOT NFkB AND CASP3
MPT ¼ NOT CASP3 AND NOT NFkB AND MPT
NFkB ¼ NOT CASP3 AND NOT MPT AND NFkB

The state transition graph shows the existence of four phenotypes corresponding

to apoptosis (100), necrosis (010), survival (001) and the passive naı̈ve survival

(000). The three phenotypes are mutually exclusive. This is coherent with what was

observed in the analysis of the complete model.

From this minimal complexity model, one can conclude that the initial model

contains three mutually inhibiting and self-activating “modules” insuring stability

and separability of the phenotypes. It is not easy to dissect and clearly separate the

modules at the level of genetic network. However, one can demonstrate that

the structure of the corresponding state transition graph can be separated into

three large basins of attraction, collecting system trajectories and canalising them

to a particular phenotype.

In the language of engineers, the motif shown in Fig. 6.9 can be called a “three-

stable trigger”. Bistable triggers were shown to be a typical motif in other molecular

mechanisms, regulating, for example the cell cycle (Santos and Ferrell 2008).

6.9 Concluding Remarks

Systems biology takes an interdisciplinary approach to the systematic study of

complex interactions in biological systems. This approach seeks to decipher the

emergent behaviours of complex systems rather than focusing only on their constit-

uent properties. As one example, systems biology approaches help to understand

the initiation, progression and execution of various cell death modalities. Mathe-

matical models, as an important part of systems biology, provide a tool to investi-

gate all possible scenarios in the cell and propose networks or mechanisms
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recapitulating experimental observations. They permit to translate biological

knowledge into a mathematical language. One of the main purposes of these models

is to shed light on some contradictions and paradoxes described in the literature, to

summarise, as much as possible, knowledge about a specific process and to give

some insight on obscure phenomena. Indeed, any kind of hypotheses can be tested

in silico before performing experiments in the laboratories, when one is confident

enough with the model. For a model to be used as a tool for biologists, it must

reproduce existing data, from wild-type conditions to mutant phenotypes and drug

treatment outputs. This requires tight interactions between theoreticians and

experimentalists, and short feedback loops from model results to experimental

Fig. 6.9 Aminimal model of cell fate decision process. Upper row: minimal conceptual model of

cell fate decision machinery (left) and its state transition graph (right).Middle row: a modification

of the minimal model, obtained by removing CASP8 from the biological diagram. Bottom row: a
modification of the minimal model, obtained by removing both CASP8 and cIAP from the diagram

(an example of synthetic interaction)
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assessment, and model revision if needed. Only then can the modeller or the

biologist trust the model and formulate predictions.

Since the main goal of systems biology is to find the most rational route, a

unified “language” (model) should be used by bioinformaticians, which should

include all available information essential for understanding the proper functioning

of the biological system. In our case, the model aims at defining the proper

functioning of cell death machinery. As mentioned above, dysfunction of cell

death programme leads to various diseases associated with too much or too little

cell death. Therefore, systemic understanding of cell death pathways along with

development of new methods of data analysis will result in refining the molecular

diagnosis of various types of disease, associated with dysfunction of cell death, of

optimising the calculation of prognostic and predictive parameters, of guiding new

strategies for the amelioration of existing treatments and the identification of novel

targets for therapeutic modulation of cell death pathways.
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Chapter 7

Modeling Single Cells in Systems Biology

Nicolai Fricker and Inna N. Lavrik

Abstract One of the most powerful methods to study the dynamic behavior of

protein networks is a single-cell analysis. Introduction of fluorescent proteins

provided phenomenal approach to follow living cells in the spatiotemporal manner.

In this chapter we shall discuss major principles and tools used in single-cell

analysis of apoptotic cells. To understand why single-cell analysis is so important,

we shall compare advantages and disadvantages of single-cell versus bulk

measurements. Furthermore, we shall discuss the models based on the live cell

imaging and information that can be obtained with these models. In particular, we

shall focus on the studies devoted to the dynamics of caspase activation and

mitochondrial outer membrane permeabilization.
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7.1 Introduction

Single cells of a genetically homogeneous cell population respond differently upon

perturbation with a stimulating agent (Spencer et al. 2009). Stimulation of a cell

population with death receptor (DR) ligand, for instance, will only induce death in a

fraction of cells, whereas some cells will survive. There are a number of reasons for

this nongenetic cell-to-cell variability. One of them is the phase within the cell

cycle, which a particular cell has. A drug which induces DNA damage in S phase

does not harm cells in G1 or G2 phase. Furthermore, even cells of a synchronized

clonal population will show cell-to-cell variability. Sources of nongenetic cell-to-

cell variability are cell size, cell density, stochastic fluctuations of biochemical

reactions, and differences in the expression levels of proteins.

During the last years especially stochastic differences in protein expression have

been investigated. The expression level of any protein is not identical among the

cells of any cell population but rather forms a log-normal distribution as shown in

Fig. 7.1 (Spencer et al. 2009). The expression level of a particular protein among

cells of a clonal population can vary about 2.5-fold. This is not only true for cancer

cells in culture but also for human tissue (Spencer et al. 2009). Where are these

differences coming from? One of the sources of variations results from the

differences at transcription level. In one cell there might be but few transcription

initiating complexes, in some cells only one or two (Raj and van Oudenaarden

2008). Therefore, stochastic effects could lead to differences in gene transcription

among single cells. Fluctuations in transcribed mRNA levels would result in

differences in protein amounts. Naturally differences in protein amounts may

give rise to differences in the response of the cells.

What might be the biological purpose of this nongenetic cell-to-cell variability?

Sorger and Spencer suggest that this will give the human body a possibility to scale

the response to a death stimulus (Spencer and Sorger 2011). For example, a certain

amount of CD95L could induce death in a certain fraction of cells. If nongenetic

cell-to-cell variability would not occur, either all or none of the cells would die.

However, as cell-to-cell variability exists, the body can choose to induce cell death

in, for example, 30% of all cells of a certain type. To induce apoptosis to a higher

extent of the same population, the concentration of the death-inducing agent should

be increased.
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While this interpretation is a pure speculation, the consequences of nongenetic

cell-to-cell variability for treatment of cancer patients are of high importance. Upon

treatment with a drug which should eliminate cancer cells, it is well documented that

only a fraction of these cells would respond. A simple calculation shows that the

assumption of only small difference in protein amounts, leading to the unrespon-

siveness of the marginal fraction of cells, might explain the absence of response to

the treatment at the population level. Indeed, if one considers that upon treatment

with a particular drug 10% of tumor cells would survive due to a nongenetic

variability, then this particular drug would kill only 90% of tumor cells upon each

application. Furthermore, taken that tumor cells divide once per day and the drug is

applied once per week, this treatment could not control tumor growth in a patient—

even in the absence of resistant stem cells or mutations! In the time interval during

the application of treatment, more tumor cells will grow than will be killed by the

drug (Fig. 7.2). This example demonstrates that to understand the population

response, it is essential to follow the single cells. Therefore, it is of high importance

to model the behavior of not only a certain tissue or cell type, but also of single cells.

7.2 Single-Cell and Bulk Measurement Techniques

To model protein networks two types of quantitative experimental data could be

used: bulk measurements and single-cell analysis. In the following we will compare

these two types of experimental data.
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Fig. 7.2 Cell-to-cell variability contributes to tumor resistance. The black curve shows simulated

tumor growth without treatment. The gray dashed curve displays tumor growth upon weekly

treatment. Arrows indicate application of treatment. Cells in this model divide once per day.

A single dose of treatment eliminates 90% of the tumor cells
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The most commonly used bulk measurement technique for protein amounts,

their activity, and modifications is Western blotting (WB). It allows to determine

the average protein amounts as well as cleavage, phosphorylation, or other protein

modifications in a cell population (Schilling et al. 2005). WB is often combined

with immunoprecipitations which allows to purify and analyze protein complexes.

The principle is that the protein of interest can be detected with specific antibodies

and further quantified using fluorescence or luminescence measurements. Further-

more, the number of proteins that could be detected simultaneously is unlimited if

corresponding antibodies are available. The WB allows to follow the change in

protein amounts, kinetics of protein modifications, and formation of protein

complexes in the cell. However, WB is not applicable for single-cell measurements

as the protein amounts produced by one cell are much too low to be detected.

Another method which can be considered as a bulk measurement is flow

cytometry. In flow cytometry cells are marked or stained with fluorescent molecules

or antibodies. This allows to determine the amount of particular protein in these

cells. Several proteins may be measured simultaneously. In the field of cell death, a

standard application of flow cytometry is determining the amount of dead or

apoptotic cells in response to treatment. However, a disadvantage of this technique

is that it is impossible to follow one single cell over a period of time. Flow

cytometry rather takes a snapshot of a cell population at a certain time point. This

disadvantage can be overcome with live imaging of a single cell.

Fluorescent tagging of proteins or probes has provided a remarkable insight into

cellular processes. A protein can be fused to green fluorescent protein (GFP) or

other fluorescent protein, which would yield information about the localization and

amount of the fusion protein. This gives a unique way for tracking living cells,

organelles, and even single molecules in the spatiotemporal manner. Following

localization, fluorescent protein could be used as a functional readout for many

cellular processes. For example, NFkB activation could be monitored by live cell

imaging, e.g., NFkB nuclear translocation could be visualized using a p65-mCherry

construct (Neumann et al. 2010) (Fig. 7.3).

Fig. 7.3 Measuring NFkB localization with a p65-mCherry fusion protein. A scheme of the

p65-mCherry fusion protein is displayed on top. Bottom: p65-mCherry is mainly found in the

cytosol in non-stimulated cells. Forty-two minutes after CD95 stimulation with 1 mg/ml of

agonistic anti-APO-1 antibody, p65-mCherry translocates into the nucleus. Modified from

Neumann et al. (2010)
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Another method to visualize cellular events is the usage of activity probes, which

typically comprise fluorescent proteins and could be modified by protein activity.

In the field of apoptosis, activity probes are mostly constructed in a way such that

they contain caspase cleavage site, which is cleaved upon caspase activation.

Hence, these probes could be implemented to detect caspase activation and thereby

apoptosis induction. One of the first caspase activity probes has been constructed by

Rehm and coworkers (Rehm et al. 2002). It comprises two fluorophores, which

could generate Foerster resonance energy transfer (FRET) signal. Two fluorophores

are separated by the caspase cleavage site (Fig. 7.4). Without apoptosis induction

the probe produces a constant FRET signal. Upon cleavage of the probe by

caspases, the two fluorophores of the probe get separated and the FRET signal

disappears (Fig. 7.4). In this way the decrease in FRET signal serves as readout for

caspase activity.

Another way to determine caspase activity in single cells is to construct locali-

zation probes. The elegant localization probe was constructed by Joel Beaudouin

(Fricker et al. 2010). It consists of a nuclear export signal linked to the cleavage

sequence of a caspase fused to mCherry. In resting cells, the probe localizes to the

Fig. 7.4 Measuring caspase activity with FRET probes. Top: A scheme of a FRET caspase

activity probe. It consists of two fluorophores linked by a peptide containing the cleavage sequence

of a specific caspase. Upon cleavage of the linker by caspases, the fluorophores separate and the

FRET signal is lost. Bottom: Loss of FRET signal of a caspase-3 activity probe as determined in

HeLA cells upon stimulation with 3 mM staurosporine. Modified from Rehm et al. (2002)
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cytoplasm due to the nuclear export signal. Upon cleavage by caspases, nuclear

export signal is cleaved off and mCherry translocates to the nucleus. Using fluores-

cent probes and live cell imaging, it is possible to follow the response of a single

cell for hours or even for days. Table 7.1 summarizes different fluorescent probes

that could be used in the field of apoptosis to measure single cells.

One might ask why WB is still used in quantitative biology and not exclusively

live cell imaging. Fluorescent reporters have some disadvantages: The number of

reporters that can be visualized simultaneously is, of course, limited. At some point

the fluorescent spectra of the multiple fluorophores used will overlap. Furthermore,

usage of a reporter requires manipulation of the respective cell. Introduction of the

reporter or the reporter itself may alter cellular behavior. These limitations do not

apply for WB. In addition, the formation of several cleavage products may be

measured quite easily with WB. For instance, generation of the caspase cleavage

products can be detected using WB. With fluorescent microscopy, there is no

simple way to observe this. Therefore, it is always an optimal strategy to combine

bulk measurements and single-cell experiments.

7.3 Relying Exclusively on Bulk Data Might Result

in Wrong Interpretations

It is impossible to accurately model single-cell behavior when relying on bulk

measurements exclusively. This can be shown with an example. In a bulk measure-

ment, one could see a continuous and slow increase in protein concentration, for

instance, of cleaved caspase-3 (Fig. 7.5a). Do the single cells display the same

behavior? Not necessarily. Figure 7.5b shows two examples of responses of single

Table 7.1 Fluorescent probes that could be used to measure single cells

Type Description Example

Fusion

proteins

A protein fused to a fluorescent

molecule (e.g., GFP, YFP, CFP,

mCherry, and others)

p65-mCherry (Neumann et al. 2010)

(Fig. 7.3)

FRET

probes

Two fluorophores are kept in

proximity by a linker.

Modification of the probe

abolishes or enhances the FRET

signal

Caspase-3 activity probe (Rehm et al.

2002). Cleavage of the linker by

caspases separates the fluorophores,

leading to the loss of the FRET

signal (Fig. 7.4)

Localization

probes

A target sequence fused to a

fluorescent protein via a linker

A nuclear export signal fused to the

linker peptide sequence IETD fused

to mCherry. Cleavage of the linker

by caspases separates the

fluorescent protein from the target

sequence. The fluorescent protein

then freely diffuses and translocates

into the nucleus (Fricker et al. 2010)
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cells, which could result in the same bulk measurement. They look quite different.

On the left-hand side of Fig. 7.5b, single cells display a slow and gradual increase in

the amount of the protein. On the right-hand side, single cells show a variable lag

time followed by a rapid response. Therefore one might draw wrong conclusions

relying exclusively on WB.

Another example of events which are not feasible to analyze using bulk

measurements are oscillations. For example, p53 oscillations were reported to

occur upon DNA damage (Loewer et al. 2010). Figure 7.6 shows an example,

which includes a bulk measurement and the corresponding single-cell data. In this

case oscillations within single cells disappear in the bulk measurement. This is due

to the fact that cells do not respond synchronously. Relying on bulk measurements,

it is not possible to determine whether two events take place in the same or in

different cells. Upon CD95 stimulation phosphorylation of IkBa and cleavage of

procaspase-8 can be measured usingWB (Fig. 7.7a). Does one cell induce apoptosis

whereas another one decides to activate NFkB? Only with help of a fluorescent

NFkB reporter our group could show that both pathways are indeed activated

simultaneously in the same cell (Neumann et al. 2010) (Fig. 7.7b).
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Fig. 7.5 Single-cell behavior cannot be recovered from bulk measurements. (a) Example of

protein amounts determined in a bulk measurement. (b) Two examples of how single cells

could behave resulting in the same bulk measurement data as shown on top
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7.4 Modeling Single Cells

There are several considerations one has to take into account when modeling single

cells in comparison to building models on bulk data. In the optimal case one knows

the mean protein amounts of the main signaling molecules within a given popula-

tion. These data can be directly put as initial protein concentrations into a model

based on bulk measurement data. This rule does not apply to generation of models

based on a single-cell analysis. One does not know the protein concentrations in a

single cell. Furthermore, the protein amounts within the single cell might be

2.5 times higher or lower than the average amount within the population. Therefore,

protein amounts of single cells have to be estimated. As a consequence single-cell

modeling is more computationally demanding than population modeling. To fit

ODE models to measurement data obtained from single cells, hundreds of

single cell measurments
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Fig. 7.6 Oscillations can be lost in bulk measurement. Left: Experimental data that could be

obtained from a bulk measurement. There is no oscillation visible. Right: Single cells show

oscillations. Building the mean value of the single-cell data will result in the bulk data as shown

on the top
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measurements of single cells have to be used. The protein amounts of each of these

cells have to be guessed. This can be very time consuming.

In the following we will compare fitting of models based on bulk measurements

to those based on single-cell data: We denote ~cð0Þ as the initial protein concentra-

tions, t as the time,~s as the experimental conditions (for example, stimulation), and~k
as the rate constants. A model f : ð~cð0Þ; t;~s; ~kÞ ¼ ~c yields protein amounts,

Fig. 7.7 Simultaneous activation of both NFkB and caspase-8. Top: Cleavage of caspase-8 and

phosphorylation of IkBa as determined by WB upon stimulation of HeLa-CD95 cells with

agonistic anti-APO-1 antibody. Bottom: Single-cell data of p65-mCherry transfected HeLa-

CD95 cells upon stimulation with anti-APO-1. Nuclear localization of p65-mCherry precedes

apoptosis. Modified from Neumann et al. (2010)
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modifications, or other outputs at a given time point upon stimulation~s. Measurement

values are given as tuples mi;j ¼ ~si; tj;~ci;j
� �

. ~Ci;j denotes the measured protein

amounts/modifications upon stimulation ~si and time tj. For the sake of simplicity,

we assume there was only one measurement value per condition and time point. In

order to fit the model, we try to minimize:
P

8i;j:9mi;j
ðf ð~cð0Þ; tj;~si; ~kÞ � pð3;mi;jÞÞ2,

where p(i,x) is the projection of the tupel x to the ith dimension. In case the mean

initial protein amounts as well as their modifications are known, only the rate

constants ~k have to be estimated. However, for modeling single cells, we have to

take into account that single cells possess different protein amounts. We will denote

the initial protein concentrations of a cell n as~cn. In order to fit the model, we would

have tominimize:
P

8n;i;j:9mi;j;n
ðf ð~cnð0Þ; tj;~si; ~kÞ � pð4;mi;j;nÞÞ2withmi;j;n ¼ ~si; tj; n;

�
~ci;j;ni. Like for the model based on bulk measurements, we have to estimate the rate

constants~k. However, additionally the initial protein concentrations or the initial state
of the cells have to be estimated locally, too. Term “locally” means that these values

are estimated for each cell and vary between cells. This type of task could be

performed by software like, for example, “potterswheel.” For large amounts of

cells, the distribution of the initial protein amounts should approximate a log-normal

distribution like the one shown in Fig. 7.1. In contrast, rate constants must be

identical in all cells. They have to be estimated globally. In comparison to fitting to

bulk data, fitting to single-cell data will be more time consuming and the model

parameters might be less determined, as additional unknown variables are

introduced. If the resulting model is simulated several hundred or thousand times

with varying initial conditions according to a log-normal distribution as shown in

Fig. 7.1, then the sum of the simulations outputs will mimic a bulk measurement.

Therefore, a model based on single-cell data is capable of predicting the output of

bulk experiments and can be challenged as well as verified in this way. However, a

model based exclusively on bulk data will in many cases not be able to describe

single-cell behavior accurately. Often, however, the topology which was identified

when constructing a model on bulk measurements might be the same.

7.5 Caspase-3 Activation in Type II Cells: A Case Study

An example of how single-cell measurements can be applied in systems biology is

the modeling of activation of caspase-3 in type II cells. Groups of Jochen Prehn and

Peter Sorger made a significant contribution to unravel this question. Upon DR

stimulation the death-inducing signaling complex (DISC) is formed. Procaspase-

8 is activated at the DISC. Following procaspase-8 activation at the DISC, apoptotic

signaling can go via type I or type II, which is described in detail in Chap. 5. Type I

cells are characterized by high levels of DISC formation and high amounts of active

caspase-8. Activated caspase-8 directly leads to activation of downstream effector

caspases-3 and -7. In type II cells, there are lower levels of DISC formation and,

thus, lower levels of active caspase-8. In this case, comprising the majority of cell
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lines, signaling requires an amplification loop. This amplification loop involves the

cleavage by caspase-8 of the Bcl-2 family protein Bid to generate truncated (t) Bid

and subsequent tBid-mitochondrial outer membrane permeabilization (MOMP).

Only after mitochondrial outer membrane permeabilization (MOMP), caspase-3

is fully activated and apoptosis is initiated. This was shown using FRET reporter

capable of measuring caspase-3 activity by Rehm et al. (2002). Upon cleavage of

the reporter by caspase-3, the FRET signal is diminished as the interaction between

the fluorophores of the probe is lost. Figure 7.8a shows caspase-3 activity as

measured in a bulk experiment. Figure 7.8b displays the kinetic of FRET probe

cleavage in single cells treated with TNF-a. In the bulk experiment it seems that

there is a slow and steady increase over time. However, single-cell data reveal that

the actual behavior is different. There is a lag time after stimulation with TNFa. In
this time interval, no change in probe fluorescence can be detected. This lag time

was also termed pre-MOMP delay. The duration of the lag time greatly varies

between single cells. The lag phase is followed by a rapid cleavage of the probe.

Within 10 min, complete processing of the probe takes place. This is independent of

the stimulus strength used to induce MOMP (Fig. 7.8). The activation of caspase-3

follows an all-or-none behavior. Other groups made the same observation

(Goldstein et al. 2000; Tyas et al. 2000). Either no substrate cleavage occurs or

all substrates are rapidly cleaved. Interestingly MOMP preceded activation of

caspase-3 by 10 min.

Rehm and colleagues found that probe processing could be well described by the

following equation: cðtÞ ¼ f � f
1þeðt�TdÞ=4Ts .

In this equation c(t) is the amount of cleaved substrate at time t, f is the fraction
cleaved at the end of the reactions, and Td is the delay between stimulation and the

half-maximal substrate cleavage. Ts is the switching time between initial and com-

plete effector substrate cleavage. In 2006 the same group combined the caspase-3

activity probe measurements with tetramethyl rhodamine ethyl ester (TMRM), a

marker of the mitochondrial potential. Based on these data, a model describing

caspase-3 activation upon MOMP was built (Fig. 7.9). Applying sensitivity analysis,

the authors identified procaspase-9, -3, and the XIAP concentrations as the main

factors which determine rapid caspase-3 activation following MOMP. There are two

reasons for the all-or-none behavior of caspase-3. First, cleaved and thereby activated

caspase-3 is counteracted by XIAP. Hence, when the amount of the active caspase-3

is above the one that could be blocked by XIAP, the caspase-3 activation could not be

blocked anymore. Second, as soon as cyt c is released, the apoptosome is being

formed, and caspase-9 is activated. A positive feedback between caspase-3 and

caspase-9 is turned on, which leads to rapid caspase-3 activation. The authors

predicted that MOMP-induced apoptosis initiation will be slowed down upon XIAP

overexpression and could confirm this prediction experimentally. Moreover,

overexpression of XIAP could lead to sublethal caspase activation and incomplete

substrate cleavage. This has been proposed to promote tumor formation.

Two years later the group of Peter Sorger came up with a larger model describ-

ing both caspase-8 and subsequent caspase-3 activation upon TRAIL stimulation

(Fig. 7.10) (Albeck et al. 2008b). This was the first model based on single-cell data
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combining both the extrinsic and the intrinsic pathways. The authors used probes

which could specifically be cleaved by either caspase-8 (termed initiator caspase

reporter protein, IC-RP) or caspase-3/7 (termed effector caspase reporter protein,

EC-RP). Using the caspase-8-specific probe, it was demonstrated that caspase-

8 activity gradually builds up at the time before MOMP termed pre-MOMP. The

onset of caspase-3 activity, however, occurred after cyt c release (Fig. 7.11a)
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Fig. 7.8 Kinetics of effector caspase activation upon TNF-a stimulation. (a) Caspase-3 activity as

determined by DEVD cleavage upon stimulation of HeLA cells with TNF-a plus cycloheximide.

Bulk measurements suggest a gradual increase in activity. (b) Caspase-3 activity as determined in

single cells with a FRET probe. Processing of the FRET probe occurs rapidly after a lag phase of

variable length. Modified from Rehm et al. (2002)
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(Albeck et al. 2008a). The variable delay in the onset of caspase-3 activity among

single cells could be mainly explained by differences in initial caspase-8 activity

among single cells. In addition, Smac was identified as an important regulator of

rapid caspase-3 activation. As soon as MOMP occurs, Smac is released from the

mitochondria leading to XIAP degradation, thereby allowing caspase-3 activation.

In a series of experiments, the authors could confirm the proposed mechanism of

a rapid switch from inactive to active caspase-3, which the authors termed

“snap-action of caspase-3” activation:

1. The authors proposed that procaspase-3 was cleaved before MOMP, however,

rapidly inactivated by XIAP. Therefore, XIAP depletion should abolish this

inhibition and allow effector caspase activity before MOMP. Indeed, simulta-

neous depletion of both Bid (in order to prevent MOMP) and XIAP resulted in a

gradual increase in EC-RP cleavage upon stimulation (Fig. 7.11b).

2. Upon MOMP Smac is released from the mitochondria leading to XIAP degra-

dation. This would abolish the caspase-3 inhibition by XIAP and contribute to

snap-action of caspase-3 activation. The Albeck model predicted that upon Smac

down-regulation, caspase-3 activity would increase more slowly following

Fig. 7.9 A model of caspase-3/-9 activation upon MOMP. A scheme of a model of caspase-3 and

-9 activation following MOMP. Enzymatic cleavage is indicated by green arrows. Inhibitory
reactions are shown as red lines. Modified from Rehm et al. (2006)
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MOMP. This prediction could be confirmed experimentally: Upon Smac knock-

down, a gradual increase in effector caspase activity occurred (Fig. 7.11c).

The Albeck model was able to reproduce both single-cell and WB data

accurately. It consists of 70 rate constants and 98 species. Interestingly, the

model parameters were taken from the literature as well as fitted manually. The

model nicely proposed a mechanism for the all-or-none behavior observed with

respect to caspase-3 activation. All-or-none behavior of effector caspase activation

is an important property, as it establishes MOMP as a point of no return. MOMP

leads to full activation of caspases-3 and -9 and cell death.

7.6 Investigation of Nongenetic Cell-to-Cell Variability

in the TRAIL Pathway

Spencer et al. (2009) investigated nongenetic cell-to-cell variability. The authors

found that the phase within the cell cycle or cell size barely influences the mean time

to MOMP upon TRAIL stimulation (Spencer et al. 2009). However they discovered

that sister cells shortly after cellular division behaved very similarly. Similarity

Fig. 7.10 A model of the TRAIL signaling pathway. A scheme of the TRAIL signaling pathway.

Symbols in the scheme follow the convention of Kitano et al. Background colors indicate different
network modules. Modified from Albeck et al. (2008b)
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between sister pairs decreased with increasing time after cellular division.

Directly after division two daughter cells have almost identical protein amounts

and modifications. It was suggested that stochastic events during transcription could

lead to different protein levels among two daughter cells. These differences would

accumulate. Several hours after cellular division, two sister cells will not be more

similar than any two random cells. The authors therefore proposed that random

differences in protein amounts are one major source of cell-to-cell variability. The

model as published by Albeck et al. (2008b) could indeed reproduce this observa-

tion. Differences in protein expression of a factor of 2.5 were sufficient to cause

differences in phenotype. Another important prediction was that for the TRAIL

pathway, there is not one single most important protein deciding the outcome of

stimulation. If, for example, the amount of procaspase-8 is relatively high in a single

cell, this does not mean that this cell is especially sensitive towards TRAIL-induced

apoptosis. As there is a number of anti-apoptotic players involved, the pro-apoptotic

effect of procaspase-8 might be compensated by these proteins. This prediction

could be elegantly confirmed by Spencer and coauthors. A cell line was used

Fig. 7.11 Snap-action of caspase-3. (a) Cleavage of IC-RP and EC-RP in HeLa cell treated with

50 ng/ml TRAIL plus 2.5 mg/ml cycloheximide. Caspase-8 activity (IC-RP) gradually increases

until MOMP. Caspase-3 activity (EC-RP) is absent before MOMP. Cells are aligned by the

average time of MOMP. (b) EC-RP cleavage upon down-regulation of Bid or Bid plus XIAP.

Bid down-regulation will prevent MOMP. Upon co-down-regulation of XIAP, a gradual increase

in probe cleavage is observed. (c) Cleavage of EC-RP and IC-RP upon Smac down-regulation.

Upon down-regulation of Smac, snap-action of caspase-3 is abolished. Instead a gradual and slow

increase in caspase-3 activity is observed. Modified from Albeck et al. (2008b)
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expressing a c-FLIP YFP fusion protein at the endogenous locus, resulting in

physiological expression levels of the construct (Spencer et al. 2009). Surprisingly,

no correlation was found between the expression of c-FLIP YFP in single cells and

the time when MOMP occurred after TRAIL stimulation. On the basis of these

observations, it was suggested that variations in the expression level of one protein

are not sufficient to determine sensitivity. Whether other sources of cell-to-cell

variability like, for example, protein phosphorylation might have similar impacts

is an issue to be addressed in the future.

7.7 Summary and Outlook

In the previous sections, we learned how single-cell experiments could provide

fascinating insights into cellular processes. They allow to investigate dynamics

which cannot be detected in bulk measurements. In combination with mathematical

modeling, single-cell measurements are a powerful tool to gain better understand-

ing in the field of biology.

However, there are issues on both the modeling and the experimental side to be

improved in the future. So far it has not been possible to monitor a large number of

events simultaneously in a single cell. Especially FRET probes have the disadvan-

tage that they occupy a large area of the wavelength spectrum, naturally restricting

a number of proteins to be monitored with FRET probes. Measuring a larger

number of cellular events in parallel would allow investigating the interplay of

signaling processes. On the modeling side mostly ODEs have been applied so far

with great success (Bentele et al. 2004; Albeck et al. 2008a, b; Neumann et al. 2010;

Fricker et al 2010). However, as Spencer et al. (2009) showed that random

fluctuations in transcription have a large impact on cellular behavior, stochastic

modeling will be more and more important in the future. Especially in models in

which transcription has to be incorporated, stochastic models might describe the

cellular behavior more accurately. Taken together, further development of both

experimental methods and modeling approaches could provide even more exciting

insights into regulation of cellular decisions.
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Chapter 8

Cytokine–Cytokine Cross Talk

and Cell-Death Decisions

Christopher D. Deppmann and Kevin A. Janes

Abstract Cells often face life or death decisions in response to conflicting

extracellular cytokine cues. A full understanding of how this information is encoded

has implications for normal development and function of organ systems and also for

pathologies where cues are not processed properly. In this chapter, we discuss how

life–death decisions are influenced by signaling from pro-survival receptor tyrosine

kinases (RTKs) and pro-death tumor necrosis factor (TNF)-family receptors. Intra-

cellular cross talk between these antagonistic receptors is incredibly complex, and

our understanding could be improved by systems biology thinking and approaches.

We describe key systems-level features of RTK and TNF-family receptor signaling

and how points of cross talk may mediate the decision to live or die.

8.1 Introduction

Cells live in a world of mixed messages. Many cellular instructions come from the

microenvironment, which provides cues that are diverse and often contradictory:

proliferate and quiesce, differentiate into one lineage and another, etc. How do cells

process such information and respond appropriately? This question is particularly

important when cell numbers and organization must be precisely controlled, as in

tissues with rapid turnover and during development.

For each cell, no choice is more critical or irreversible than the decision to die.

Consequently, cell-death decisions are steered by many factors—adhesion to
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neighboring cells and the extracellular matrix (ECM; see Table 8.1 for a complete

list of abbreviations), cell cycle status, age, and environmental insults, among

others. One prominent source of information comes from cytokines, a term we

use here to refer collectively to all diffusible protein ligands (Janeway et al. 2001).

Some cytokines, such as those of the tumor necrosis factor (TNF) superfamily,

induce apoptosis in many cell types. Others, such as cytokines from the epidermal,

insulin-like, and nerve growth factor (EGF, IGF, and NGF) families, act as survival

cues that block or attenuate the action of TNF-family cytokines through the action

of their receptor tyrosine kinases (RTKs). Pro-death and pro-survival cytokines

intersect at many points inside and outside the cell, and their cross talk is the focus

of this chapter.

Cross-communication between conflicting cytokines underlies many normal

and pathological functions. During neural development, competition between

death signals from the p75-NGF receptor and survival signals from Trk RTKs

defines the number of neurons innervating a target tissue (Deppmann et al. 2008;

Majdan et al. 2001). In a particular neuron, one pathway appears to become

dominant over the other, ultimately leading to the life–death decision. This

seems to depend on the strength of RTK signaling. For example, in cultured

sympathetic neurons, if NGF concentrations are high enough for “optimal” activa-

tion of TrkA, no amount of a TNF-family ligand can induce death even when

added at saturating concentrations (Deppmann et al. 2008; Kohn et al. 1999). On

the other hand, when NGF is present below this threshold (~5 ng/ml), TNF-family

receptor signaling can become dominant by suppressing survival signaling from

RTKs and inducing apoptosis (Bamji et al. 1998). In many non-neuronal cell types,

the pro-apoptotic functions of TNF are antagonized by EGF (Akca et al. 2003;

Garcia-Lloret et al. 1996; Gibson et al. 1999). Likewise, insulin and IGFs have

been shown to inhibit many TNF-induced responses (Bedard et al. 1998; Goetze

et al. 2001; Qian et al. 2001; Weiner et al. 1991; Wu et al. 1996). For these types of

antagonistic stimuli, communication between signaling pathways through cross

talk is critical in determining outcome.

Cytokine–cytokine cross talk is important for normal cellular functions during

embryonic development and homeostasis in the adult. However, these pathways are

often misregulated and give rise to a wide range of pathologies. In colonic epithelia,

for example, TNF is a key mediator of inflammatory bowel disease (Rutgeerts et al.

2004), whereas EGF and IGF stimulate growth and repair of the mucosa (Chailler

and Menard 1999; Singh and Rubin 1993). A similar TNF-mediated inflammatory

response is thought to critically influence the rate of neurodegeneration during

Alzheimer’s disease (Perry et al. 2001).

The imbalance between pro-death and pro-survival cytokine signaling is perhaps

best documented in cancer. Various cancers amplify pro-growth signals and sup-

press pro-apoptotic signals (Hanahan and Weinberg 2000, 2011). How these

pathways impinge on one another in the context of tumorigenesis is the subject of

ongoing research. Much progress has been made toward understanding how

cross talk pathways are co-opted during cancer. For extrinsic death signaling,

loss-of-function mutations have been reported in tumors for several TNF-family
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receptors, including Fas and the death receptors 4 and 5 (DR4, DR5) (Ozoren and

El-Deiry 2003). Cancer cells further inactivate death signaling by overexpression of

decoy receptors, such as DcR3 and TRID (Pitti et al. 1998; Sheikh et al. 1999), or

overexpression of downstream inhibitors of apoptosis, such as Bcl2, FLIP, XIAP,

Table 8.1 List of

abbreviations used
ADAM A disintegrin and metalloproteinase

AP-1 Activator protein-1

Bcl2 B-cell lymphoma protein 2

c-IAP Cellular inhibitor of apoptosis protein

DcR3 Decoy receptor 3

DISC Death-inducing signaling complex

DR4 Death receptor 4

DR5 Death receptor 5

ECM Extracellular matrix

EGF Epidermal growth factor

ERK Extracellular regulated kinase

FGF Fibroblast growth factor

FLIP FLICE-like inhibitor protein

FOXO Forkhead box O

IGF Insulin-like growth factor

IL-1 Interleukin-1

IL-1ra IL-1 receptor antagonist

IKK IkB kinase

IRF Interferon response factor

IRS Insulin receptor substrate

JNK c-jun N-terminal kinase

MAPK Mitogen-activated protein kinase

MKP1 MAP kinase phosphatase 1

NFkB Nuclear factor kB
NGF Nerve growth factor

PI3K Phosphoinositide 3-kinase

PIP2 Phosphatidylinositol 3,4-bisphosphate

PIP3 Phosphatidylinositol 3,4,5-trisphosphate

PTB Phosphotyrosine binding

PTEN Phosphatase and tensin homolog

RIP1 Receptor interacting protein 1

RTK Receptor tyrosine kinase

SH2 Src homology 2

TCF/LEF T-cell factor/lymphoid enhancer factor

TGFa Transforming growth factor-a
TLR Toll-like receptor

TNF Tumor necrosis factor

TRADD TNF receptor-associated death-domain protein

TRAF2 TNF receptor-associated factor 2

TRAIL TNF-related apoptosis-inducing ligand

TRID TRAIL receptor without an intracellular domain

TRK Tropomoysin receptor kinase

XIAP X-linked inhibitor of apoptosis protein
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c-IAP, and survivin (Altieri 2003; LaCasse et al. 1998). Cancers have also been

shown to mimic RTK-mediated survival signaling through several mechanisms.

For example, the EGF receptor family member, ErbB2, is upregulated in roughly

30% of all breast cancers and is a clinical target for pharmacological interventions

such as Herceptin (Bange et al. 2001). In addition, many downstream RTK effector

pathways are upregulated or acquire gain-of-function mutations in cancer (Blume-

Jensen and Hunter 2001). Interestingly, several commonly mutated oncogenes and

tumor suppressors such as Akt or NFkB (Franke et al. 1997; Perkins 2004) lie at

points of cross talk for survival and death signaling (discussed later in the chapter).

A quantitative understanding of how these pathways interact promises to yield

insight into how we might exploit these pathways to reinstate a surveillance system

that promotes tumor regression.

Both normal and pathological instances of cytokine–cytokine cross talk are far

more complex than one signal from a given RTK interacting with one signal of a

particular TNF-family receptor. Cells usually express several members of both

receptor classes. Aside from receptor expression, we must take into account where

and in what manner the cell encounters death–survival ligands, how those ligands are

processed, and how autocrine, paracrine, or endocrine interactions are interpreted.

Moreover, it will be critical to understand the molecular mechanisms by which a

survival pathway becomes dominant over a death pathway and vice versa.

Systems-level analysis is well suited to delineate the complexities of cytokine–

cytokine cross talk. First, the phenomenon of cross talk is clearly an emergent

property, which cannot be approached by studying single cytokines in isolation

(Bhalla and Iyengar 1999). This requires multiparametric approaches that are

designed to handle multiple inputs (Chatterjee et al. 2010; Garmaroudi et al.

2010). Second, various lines of evidence suggest that cytokine-induced signaling

pathways transmit quantitative information en route to cell-fate decisions (Cohen-

Saidon et al. 2009; Janes et al. 2005, 2008; Miller-Jensen et al. 2007). There are

elements of qualitative logic (Aldridge et al. 2009; Janes et al. 2006; Zhang et al.

2008), but the most predictive models are those based on quantitative signal

activation and propagation (Gordus et al. 2009; Janes et al. 2008; Kumar et al.

2007). Thus, biochemical measurements that are truly quantitative must be obtained

to constrain these types of systems models adequately (Albeck et al. 2006; Janes

and Yaffe 2006).

In this chapter, we focus on the systems-level cross talk between apoptotic

TNF-family cytokines and pro-survival cytokines that directly activate RTKs. We

begin with a brief introduction of TNF-family receptor signaling and RTK signal-

ing, focusing on general recurring themes rather than the details of specific

receptors. The bulk of the chapter is then organized around two major categories

of cytokine–cytokine cross talk: (1) intracellular cross talk through dynamic

transcriptional, and posttranslational modifications and (2) extracellular cross talk

through constitutive or regulated autocrine circuits that reconfigure the microenvi-

ronment. We restrict our material to cross talk between cytokines, omitting any

discussion of the cross talk that is known to occur between pathways activated by

TNF-family or pro-survival cytokines on their own [for reviews on these topics, see
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Avraham and Yarden (2011); Ware (2005)]. Last, we conclude by highlighting

unanswered questions in cytokine–cytokine cross talk that could be tackled in the

future with systems biology approaches.

8.2 Canonical Signaling Pathways Activated by TNF-Family

Receptors and RTKs

Signal transduction is the process by which an extracellular cue is converted to an

intracellular response (Downward 2001). A common requirement for both TNF-

family receptors and RTKs to transduce signals is receptor oligomerization. Upon

receptor clustering and activation, the active receptors recruit effector molecules to

elicit immediate downstream posttranslational responses, which ultimately lead to

changes in gene expression and a cell’s molecular state. Below, we outline these

basic steps of signal transduction in conceptual and molecular terms.

8.2.1 Receptor Oligomerization

Cytokine receptor activation is conventionally thought to occur when a

multimeric ligand causes the dimerization or oligomerization of monomeric

receptors to trigger downstream signal transduction. For RTKs, bivalent ligands

were believed to bring two RTK monomers into close proximity of each other,

allowing for trans-phosphorylation of intracellular domains and recruitment of

downstream effectors (Ullrich and Schlessinger 1990). In contrast to RTKs, TNF-

family receptors do not have enzymatic activity and so signal transduction is

likely initiated by a conformational change (Locksley et al. 2001). This view of

receptor activation is likely to be true in many cases, but structural studies have

revealed several novel mechanisms by which ligands induce signaling indepen-

dent from receptor oligomerization (Lemmon and Schlessinger 2010). For exam-

ple, Trk and Kit RTKs require ligand to provide a dimerization interface,

consistent with early models of RTK activation (Wehrman et al. 2007; Yuzawa

et al. 2007). But for the EGF receptor and the fibroblast growth factor (FGF)

receptor, ligand binding is completely dispensable for receptor dimerization

(Huse and Kuriyan 2002; Schlessinger 2000). Instead, ligand–receptor

interactions likely induce the conformational change of a preformed dimer,

which in turn causes apposition of the intracellular kinase domains and trans-

phosphorylation. Likewise, for some TNF-family receptors, such as p75-NGF

receptor, dimers are thought to pre-exist. By virtue of a reciprocal “hinge” at the

dimer interface, the two intracellular domains move apart from one another when

ligand binding brings the extracellular domains closer together (Vilar et al. 2009).
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We have only a partial understanding of the dynamics of ligand-induced receptor

oligomerization and the accompanying conformational changes, precluding

detailed models of how distinct cytokine pathways interact with each other at

the receptor level.

8.2.2 Effector Recruitment and Downstream Signaling

Upon ligand binding to either TNF-family receptors or RTKs, combinations of

effector proteins are recruited to the receptor’s intracellular domain that ultimately

determine the downstream pathways that will be activated. For RTKs, much of the

binding is through protein interaction modules, such as SH2 and PTB domains, that

selectively bind phosphotyrosine-containing sequence motifs (Pawson and Scott

1997). Proteins containing these interaction domains can serve as adaptors that

recruit other proteins with enzymatic activity, such as guanine exchange factors and

kinases. This recruitment is a key step in defining the intracellular signals

that emanate from RTKs.

Nearly all RTKs canonically activate the Ras-MAPK, phospholipase C, and

phosphoinositide 3-kinase (PI3K) pathways (McKay and Morrison 2007). Activation

of these pathways leads to a wide range of responses including calcium release,

induction of immediate early genes, and phosphoryation of several growth- and

survival-promoting proteins in the cytoplasm (Lemmon and Schlessinger 2010;

Sheng and Greenberg 1990). If all RTKs activate the same pathways, then why are

there 58 different RTKs encoded in the human genome (Manning et al. 2002)? One

explanation is that RTKs vary widely in the strength and duration with which they

activate the canonical pathways. Emerging mechanisms for these differences as well

as the implications for death–survival decisions will be discussed later in this chapter.

In contrast to the shared intracellular tyrosine kinase domain common to all

RTKs, the cytoplasmic domains of TNF-family receptors are not as uniform. This

may not be surprising considering that the 27 TNF-family receptors in humans were

grouped on the basis of their cysteine-rich extracellular domains rather than a

common feature of their intracellular domain as for RTKs (Locksley et al. 2001).

Thus, only 7–10 of the TNF-family receptors contain a canonical death domain that

serves to recruit death-inducing effector complexes (Lavrik et al. 2005). For TNF-

family receptors, the principle of effector recruitment is similar to RTKs. The

death-inducing signaling complex (DISC) links the TNF-family receptor to initiator

caspases 8 or 10, which become activated by cleavage to promote activation of

effector caspase pathways, such as caspase 3 and 6, which rapidly dismantle the

cell. Alternatively, recruitment of non-apoptotic complexes may occur, such

TRADD, RIP1, TRAF2, and cIAP1. These binding events do not activate caspases

and instead promote activation of transcriptional events through IKK–NFkB or

JNK–AP-1 (Ashkenazi and Dixit 1998). Whether and how pro-survival RTK

activation influences effector recruitment by TNF-family receptors remains an

open question.
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8.3 Intracellular Cross talk

Within minutes of receptor binding, TNF-family cytokines and RTK ligands cause

posttranslational modifications on signaling proteins inside the cell (see above).

The canonical signal transduction pathways activated by TNF-family receptors and

RTKs may appear separable. However, in many contexts, TNF-activated pathways

can modulate signal transmission through RTK-activated pathways and vice versa.

Posttranslational cross talk is often specific to certain cell types, stimulus

conditions, and organisms, suggesting that these arose relatively recently during

evolution.

Phosphoinositide 3-kinase (PI3K) is a classic downstream RTK effector, which

is recruited to the receptor and activated via SH2-dependent binding of the PI3K

regulatory subunit. Active PI3K catalyzes the conversion of phosphatidylinositol

3,4-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the

plasma membrane, ultimately leading to activation of the serine-threonine kinase

Akt (Datta et al. 1999). Akt pathway activity is negatively regulated by the tumor

suppressor phosphatase and tensin homolog (PTEN), a lipid phosphatase that

catalyzes the conversion of PIP3 back to PIP2.

Akt is also a target for cross talk from pathways activated by TNF-family

receptors. One way in which TNF-family receptor signaling silences this pathway

is through upregulation of PTEN. In neurons, p75-NGF receptor mediates PTEN

activation, inhibiting PI3K and Akt signaling (Cantley and Neel 1999; Song et al.

2010). This may be clinically relevant for neuron loss in the context of stroke,

where inhibition of PTEN prevents p75-NGF receptor-mediated cell loss (Song

et al. 2010).

Active Akt phosphorylates proteins that contain an RXRXX(S/T) consensus

sequence (Obata et al. 2000), and Akt signaling is an important conduit for cross

talk between TNF-family receptors and RTKs. Among stress and apoptotic

pathways activated by TNF-family ligands, Akt phosphorylation events are usually

inhibitory for cell death. For example, expression of the TNF-family ligand TRAIL
is partly controlled by FOXO transcription factors, which are excluded from the

nucleus when phosphorylated by Akt (Brunet et al. 1999; Modur et al. 2002). The

pro-apoptotic Bcl2-family protein Bad contains an Akt consensus sequence. It has

been shown that Akt phosphorylates BAD at this site, which inhibits permeabi-

lization of the mitochondrial outer membrane and prevents apoptosis (Datta et al.

1997; Scaffidi et al. 1998). Interestingly, BAD S3A knock-in mice (where all Akt

phosphorylation sites have been mutated to alanines) display only a mild apoptotic

phenotype (Datta et al. 2002). This suggests that Akt–Bad cross talk may be

more critical for the metabolic functions of Akt than for controlling apoptosis

(Danial et al. 2003).

Akt has been reported to phosphorylate other proteins activated by TNF-family

cytokines, but their functional importance is more controversial. For instance, Akt

can directly activate NFkB through phosphorylation of IKKa (Ozes et al. 1999).

However, IKKa is not essential for NFkB activation, and relative importance of
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Akt–NFkB cross talk appears to be highly cell-type specific (Delhase et al. 2000;

Gustin et al. 2004; Li et al. 1999). This pathway may nevertheless be most

important in cancers with PTEN loss, which have been found to have constitutively

high NFkB activity (Fernandez-Marcos et al. 2009). Another inhibitory phosphor-

ylation catalyzed by Akt occurs on human caspase-9, an initiator caspase for

apoptosis (Cardone et al. 1998). Here, the generality of this cross talk has been

questioned, because the serine targeted by Akt in human caspase-9 is not conserved

in other mammalian orthologs (Rodriguez et al. 2000). Other inhibitory phosphor-

ylation sites on caspase-9, such as Thr125 catalyzed by ERK, show incomplete

conservation across mammals (Allan et al. 2003). Identification of highly conserved

sites for TNF receptor–RTK cross talk would imply that cells have frequently

encountered dual-cytokine stimulation over the course of evolution (Janes 2010).

8.4 Modeling Posttranslational Cross Talk

The earliest efforts aimed at modeling cytokine–cytokine posttranslational cross

talk were based entirely on quantitative measurements. In an observational study of

signaling synergy between cytokines, Natarajan et al. found that strongly nonaddi-

tive cross talk between cytokines was infrequent but non-negligible (Natarajan et al.

2006). Later work by this group showed that these pairwise synergies could entirely

explain signaling responses to higher-order cytokine combinations (Hsueh et al.

2009), suggesting that nonadditive signal processing may stop at pairs (Janes 2010).

Shortly before the synergy work of Natarajan and coworkers, a group at MIT

published a triplet of papers reporting a systematic survey and analysis of apoptotic

and survival signaling triggered by TNF, EGF, and insulin (Gaudet et al. 2005;

Janes et al. 2005, 2006). Using a dataset of nearly 8,000 signaling events, the

authors built a partial least squares that accurately predicted ~1,500 apoptotic

outcomes at different time points and under different stimulus conditions (Janes

et al. 2005). For widespread predictive accuracy, cytokine combinations were

required, because the model could not predict the observed two-stimulus signaling

trajectories using only the single-treatment data. Moreover, an in-depth analysis of

the validated model showed that model predictions were more robust to measure-

ment noise when trained on cytokine combinations, as opposed to a single cytokine

(Gaudet et al. 2005). Together, these studies illustrated the value of modeling

cytokine combinations explicitly to further our understanding of cell-death control

at the systems level.

More recently, multi-cytokine models of signaling have incorporated basic

molecular rules and pathway connectivity to build predictive intracellular networks

that reflect and expand upon known mechanisms. A simple way for encoding

molecular logic and wiring is through Boolean networks, which flip proteins ON

or OFF depending on the ON/OFF status (“membership class”) of the upstream

proteins that feed into the logic “gate.” Saez-Rodriguez and coworkers assembled

from the literature a Boolean network model of posttranslational cross talk
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activated by seven cytokines in hepatocytes (Saez-Rodriguez et al. 2009). The

authors complemented their model with multiplex phospho-protein measurements

and found that these data were crucial for eliminating irrelevant interactions and

improving predictive power. Using the TNF–EGF–insulin dataset described above,

Aldridge et al. trained a fuzzy logic model of signaling cross talk (Aldridge et al.

2009). Rather than hard-coded rules as in Boolean networks, fuzzy logic models

have more flexible membership classes that enable smoother transitions between

states. From published studies, the authors manually assembled a fuzzy logic

network interconnecting the ten intracellular proteins measured in the earlier

TNF–EGF–insulin studies (Gaudet et al. 2005; Janes et al. 2005, 2006). Based on

the model’s ability to capture the time course of signaling observed upon TNF,

EGF, and insulin stimulation, the authors refined this network with additional logic

gates that substantially improved predictive accuracy. These “logical” additions led

to new predictions about the relationships between intracellular proteins, which

could be explored through mechanistic experiments in the future.

It is challenging to model posttranslational cross talk between cytokines mecha-

nistically, even when the individual stimuli have been extensively studied at the

systems level. For physicochemical modeling, there are important bookkeeping

issues when combining two cytokine-signaling networks, as shared molecular

species must be properly accounted for during model fusion (Aldridge et al.

2006). Borisov et al. reported the first of such model fusions for the EGF and

insulin RTKs networks (Borisov et al. 2009). Their results highlighted the critical

role that adaptor proteins—such as Gab1, Grb2, and IRS—play in mediating cross

talk between shared pathways (ERK and Akt) that are activated both by EGF and

insulin. Interestingly, using data-driven modeling approaches, Gordus and

coworkers showed that simple multi-linear models based on binding affinities

may be sufficient to predict cross talk at the adaptor level (Gordus et al. 2009;

Janes and Yaffe 2006). This raises the future possibility of building hybrid models

that use data-driven approaches to link cytokines to adaptors and then physico-

chemical approaches to connect adaptors to downstream signaling outputs.

8.5 Transcriptional Cross Talk

The extensive transcriptional changes caused by TNF family and RTK signaling

provide ample opportunities for these pathways to cross talk on slower time scales.

The main driver of TNF-induced gene expression is NFkB (Karin and Ben-Neriah

2000), and NFkB has been shown to cross-communicate with other transcriptional

modulators. NFkB works together with interferon response factors (IRFs) to coor-

dinate the expression of shared and stimulus-specific transcriptional targets (Cheng

et al. 2011). Persistent NFkB activity is indirectly antagonized by activator protein-

1 (AP-1) transcription factors during Toll-like receptor (TLR) signaling (Kim et al.

2005). NFkB-mediated transcription can also be directly repressed by b-catenin in

breast and colon cancers, where b-catenin levels are abnormally high (Deng et al.
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2002). Many AP-1 subunits are rapidly upregulated by RTK signaling (Amit et al.

2007), and TCF/LEF transcriptional activity through b-catenin has been shown to

be responsive to growth factors (Graham and Asthagiri 2004). Thus, it would be

interesting to examine how acute AP-1 and TCF/LEF activation converge with

acute NFkB activation, as would be the case in cells costimulated with RTK-

activating and TNF-family cytokines.

A secondary source of transcriptional cross talk occurs through the function of

the target genes that are upregulated or repressed. For example, NFkB induces

transcription of the phosphataseMKP1, which dephosphorylates MAP kinases such

as ERK (Wang et al. 2008; Wu et al. 2006). Conversely, NFkB downregulates

expression of the lipid phosphatase PTEN, leading to increased activation of Akt

(Kim et al. 2004). Various cytokines are themselves subject to joint transcriptional

regulation by TNF family and RTK signaling. For instance, the apoptotic TNF-

family cytokine FASL is upregulated by the combined actions of NFkB and AP-1

(Kasibhatla et al. 1998). Upregulation of cytokine gene expression is one of several

ways in which inducible autocrine circuits can become activated (see below).

8.6 Extracellular Cross Talk

With few exceptions, TNF-family ligands are first presented as bioactive

membrane-bound oligomers, which in many instances can be converted into a

soluble form by a transmembrane ADAM metallopeptidase, ADAM17 (also

known as tumor necrosis factor-a-converting enzyme) (Idriss and Naismith

2000). This cleavage event converts the ligand from a principally juxtacrine

mechanism between adjacent cells to a paracrine–autocrine mechanism of signal-

ing. This has important functional consequences as it is thought that paracrine

signaling via soluble TNF is critical for chronic inflammation (Holtmann and

Neurath 2004; Ruuls et al. 2001), whereas juxtacrine signaling via membrane-

bound TNF is more important for maintaining immunity to pathogens and resolving

inflammation (Alexopoulou et al. 2006; Canault et al. 2004; Mueller et al. 1999).

These different modes of signaling represent a common route to inter-cytokine

cross talk through dual autocrine–paracrine signaling. Different classes of

cytokines can become interlinked when one is secreted by a neighboring cell and

the other is constitutively or inducibly released by the receiving cell. This type of

extracellular cross talk is well suited to systems analyses, because autocrine circuits

are highly iterative and time dependent. Thus, autocrine cytokines require both

quantitative models and quantitative experiments to appreciate them fully (DeWitt

et al. 2001; Lauffenburger et al. 1995; Monine et al. 2005).

Many TNF-family cytokines have been shown to participate in extracellular

signaling circuits that engage other classes of cytokines. In response to TLR

stimulation, TNFa is upregulated and released as an autocrine factor after a time

delay for biosynthesis (Covert et al. 2005; Werner et al. 2005). Interestingly,

modeling and experiments showed that this wiring (TLR ! TNFa with a
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time delay) was critical for sustained NFkB activity. TNFa stimulation alone or

TLR stimulation without autocrine TNFa led to damped oscillations in NFkB
activity, which perturbed NFkB-dependent transcriptional responses compared to

when the native extracellular circuit was intact.

In epithelia, TNF triggers its own cascade of autocrine cytokines that feed back

to influence cell-fate responses. At early times after cytokine stimulation, TNF

causes release of transforming growth factor-a (TGFa), which signals through

RTKs to activate ERK (Chen et al. 2004; Janes et al. 2006). At later times, TNF

transcriptionally upregulates IL1A, which contributes to sustained IKK–NFkB
signaling downstream of TNF (Janes and Lauffenburger 2006; Janes et al. 2008).

Remarkably, autocrine IL-1a signaling requires both the TNF stimulus and the

TGFa autocrine factor for maximal signaling. Finally, at very late times, TNFa
attenuates IL-1a signaling by inducing inhibitory autocrine signaling with IL-1ra,

an IL-1 receptor antagonist. Together, these results (derived from systems-level

signaling datasets and quantitative analyses) indicate a clear molecular logic among

extracellular autocrine circuits (Janes et al. 2006). The basic elements of the

TNFa–TGFa–IL-1a–IL-1ra cascade were shown in multiple cell types and later

extended to control of proliferation and apoptosis in hepatocytes (Cosgrove et al.

2008). Intriguingly, the cytokines were the same, but the molecular logic

interconnecting them was found to be different, suggesting a mechanism for

conferring cell-type specificity to the same initial stimulus.

A largely unexamined area of research is the influence that cytokine–cytokine

cross talk has on promoting membrane release of TNF-family ligands. Barker and

colleagues recently demonstrated that pro-NGF engagement of p75-NGF receptor

induces apoptosis in retinal ganglion cells by inducing the expression of TNFa
(Lebrun-Julien et al. 2010). Taken together with the finding that p75-NGF receptor

can also induce transcriptional upregulation of ADAM17 in sympathetic neurons, it

suggests that p75-NGF receptor controls not only the expression of TNFa but

perhaps also its release (Kenchappa et al. 2010). A provocative-yet-untested impli-

cation of this finding is that TNF-family signaling may control the processing of its

own ligand. There is clear precedent for such a positive-feedback mechanism in the

EGF-family ligand, TGFa, which is shed proteolytically after RTK signaling (Fan

and Derynck 1999). While there are many elegant models for processing of RTK

ligands (Shvartsman et al. 2002a, b), similar approaches have not yet been applied

to TNF-family ligands for analyzing their potential to create autocrine circuits.

8.7 Conclusions and Future Directions

There would be great benefit in gaining a systems-level understanding of

cytokine–cytokine cross talk, even if all the molecular details have not been fully

unraveled. Systems models could evaluate reported mechanisms of cross talk and

distinguish those that are quantitatively important for coupling two cytokine

pathways. Artificially disrupting critical cross talk nodes would allow us to
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“untangle the wires” and determine the physiological importance of cross talk

during development and disease. More creatively, one could engineer synthetic

signaling nodes, which create cross talk between cytokines that would not

ordinarily exist (Howard et al. 2003; Jay et al. 2011; Yeh et al. 2007). Indeed,

there is precedent for de novo cross talk during the evolution of human

cancers (Engelman et al. 2007; Johannessen et al. 2010; Nazarian et al. 2010;

Sergina et al. 2007). Likewise, in neurodegenerative disorders, developmental

signaling pathways are inappropriately reengaged leading to novel and ultimately

destructive signaling nodes (Nikolaev et al. 2009). A similar phenomenon can be

observed in spinal cord injury, where increased TNF-family signaling prevents

axon regrowth and promotes death of neurons (Beattie et al. 2002; Shao et al. 2005).

The ability to engineer cross talk between cytokine pathways promises to yield

novel therapies for a wide array of historically intractable diseases.

References

Akca H, Akan SY, Yanikoglu A, Ozes ON (2003) Suppression of TNF-a mediated apoptosis by

EGF in TNF-a sensitive human cervical carcinoma cell line. Growth Factors 21:31–39

Albeck JG, MacBeath G, White FM, Sorger PK, Lauffenburger DA, Gaudet S (2006) Collecting

and organizing systematic sets of protein data. Nat Rev Mol Cell Biol 7:803–812

Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell

signalling pathways. Nat Cell Biol 8:1195–1203

Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA (2009) Fuzzy logic

analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput

Biol 5:e1000340

Alexopoulou L, Kranidioti K, Xanthoulea S, Denis M, Kotanidou A, Douni E, Blackshear PJ,

Kontoyiannis DL, Kollias G (2006) Transmembrane TNF protects mutant mice against

intracellular bacterial infections, chronic inflammation and autoimmunity. Eur J Immunol

36:2768–2780

Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR (2003) Inhibition of caspase-9

through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654

Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54

Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J et al

(2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet

39:503–512

Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science

281:1305–1308

Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early

and delayed loops. Nat Rev Mol Cell Biol 12:104–117

Bamji SX, Majdan M, Pozniak CD, Belliveau D, Aloyz R, Kohn J, Causing CG, Miller FD (1998)

The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally

occurring sympathetic neuron death. J Cell Biol 140:911–923

Bange J, Zwick E, Ullrich A (2001) Molecular targets for breast cancer therapy and prevention.

Nat Med 7:548–552

Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead

BL, Yoon SO (2002) ProNGF induces p75-mediated death of oligodendrocytes following

spinal cord injury. Neuron 36:375–386

174 C.D. Deppmann and K.A. Janes



Bedard S, Marcotte B, Marette A (1998) Insulin inhibits inducible nitric oxide synthase in skeletal

muscle cells. Diabetologia 41:1523–1527

Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways.

Science 283:381–387

Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

Borisov N, Aksamitiene E, Kiyatkin A, Legewie S, Berkhout J, Maiwald T, Kaimachnikov NP,

Timmer J, Hoek JB, Kholodenko BN (2009) Systems-level interactions between insulin-EGF

networks amplify mitogenic signaling. Mol Syst Biol 5:256

Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J,

Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a

Forkhead transcription factor. Cell 96:857–868

Canault M, Peiretti F, Mueller C, Kopp F, Morange P, Rihs S, Portugal H, Juhan-Vague I, Nalbone

G (2004) Exclusive expression of transmembrane TNF-a in mice reduces the inflammatory

response in early lipid lesions of aortic sinus. Atherosclerosis 172:211–218

Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor

formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci

USA 96:4240–4245

Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC

(1998) Regulation of cell death protease caspase-9 by phosphorylation. Science

282:1318–1321

Chailler P, Menard D (1999) Ontogeny of EGF receptors in the human gut. Front Biosci

4:D87–101

Chatterjee MS, Purvis JE, Brass LF, Diamond SL (2010) Pairwise agonist scanning predicts

cellular signaling responses to combinatorial stimuli. Nat Biotechnol 28:727–732

Chen WN, Woodbury RL, Kathmann LE, Opresko LK, Zangar RC, Wiley HS, Thrall BD (2004)

Induced autocrine signaling through the epidermal growth factor receptor contributes to the

response of mammary epithelial cells to tumor necrosis factor alpha. J Biol Chem

279:18488–18496

Cheng CS, Feldman KE, Lee J, Verma S, Huang DB, Huynh K, Chang M, Ponomarenko JV, Sun

SC, Benedict CA et al (2011) The specificity of innate immune responses is enforced by

repression of interferon response elements by NF-kB p50. Sci Signal 4:ra11

Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U (2009) Dynamics and variability of ERK2

response to EGF in individual living cells. Mol Cell 36:885–893

Cosgrove BD, Cheng C, Pritchard JR, Stolz DB, Lauffenburger DA, Griffith LG (2008) An

inducible autocrine cascade regulates rat hepatocyte proliferation and apoptosis responses to

tumor necrosis factor-alpha. Hepatology 48:276–288

Covert MW, Leung TH, Gaston JE, Baltimore D (2005) Achieving stability of lipopolysaccharide-

induced NF-kB activation. Science 309:1854–1857

Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME,

Licklider LJ, Lowell BB et al (2003) BAD and glucokinase reside in a mitochondrial complex

that integrates glycolysis and apoptosis. Nature 424:952–956

Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation

of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev

13:2905–2927

Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korsmeyer SJ,

Greenberg ME (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial

threshold for apoptosis. Dev Cell 3:631–643

Delhase M, Li N, Karin M (2000) Kinase regulation in inflammatory response. Nature

406:367–368

Deng J, Miller SA, Wang HY, XiaW,Wen Y, Zhou BP, Li Y, Lin SY, HungMC (2002) b-Catenin
interacts with and inhibits NF-k B in human colon and breast cancer. Cancer Cell 2:323–334

8 Cytokine–Cytokine Cross Talk and Cell-Death Decisions 175



Deppmann CD, Mihalas S, Sharma N, Lonze BE, Niebur E, Ginty DD (2008) A model for

neuronal competition during development. Science 320:369–373

DeWitt AE, Dong JY, Wiley HS, Lauffenburger DA (2001) Quantitative analysis of the EGF

receptor autocrine system reveals cryptic regulation of cell response by ligand capture. J Cell

Sci 114:2301–2313

Downward J (2001) The ins and outs of signalling. Nature 411:759–762

Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM,

Zhao X, Christensen J et al (2007) MET amplification leads to gefitinib resistance in lung

cancer by activating ERBB3 signaling. Science 316:1039–1043

Fan H, Derynck R (1999) Ectodomain shedding of TGF-a and other transmembrane proteins is

induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J

18:6962–6972

Fernandez-Marcos PJ, Abu-Baker S, Joshi J, Galvez A, Castilla EA, Canamero M, Collado M,

Saez C, Moreno-Bueno G, Palacios J et al (2009) Simultaneous inactivation of Par-4 and PTEN

in vivo leads to synergistic NF-kB activation and invasive prostate carcinoma. Proc Natl Acad

Sci USA 106:12962–12967

Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell

88:435–437

Garcia-Lloret MI, Yui J, Winkler-Lowen B, Guilbert LJ (1996) Epidermal growth factor inhibits

cytokine-induced apoptosis of primary human trophoblasts. J Cell Physiol 167:324–332

Garmaroudi FS, Marchant D, Si X, Khalili A, Bashashati A, Wong BW, Tabet A, Ng RT, Murphy

K, Luo H et al (2010) Pairwise network mechanisms in the host signaling response to coxsackie

virus B3 infection. Proc Natl Acad Sci USA 107:17053–17058

Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK (2005) A compendium of

signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics

4:1569–1590

Gibson S, Tu S, Oyer R, Anderson SM, Johnson GL (1999) Epidermal growth factor protects

epithelial cells against Fas-induced apoptosis requirement for Akt activation. J Biol Chem

274:17612–17618

Goetze S, Blaschke F, Stawowy P, Bruemmer D, Spencer C, Graf K, Grafe M, Law RE, Fleck E

(2001) TNFalpha inhibits insulin’s antiapoptotic signaling in vascular smooth muscle cells.

Biochem Biophys Res Commun 287:662–670

Gordus A, Krall JA, Beyer EM, Kaushansky A, Wolf-Yadlin A, Sevecka M, Chang BH, Rush

J, MacBeath G (2009) Linear combinations of docking affinities explain quantitative

differences in RTK signaling. Mol Syst Biol 5:235

Graham NA, Asthagiri AR (2004) Epidermal growth factor-mediated T-cell factor/lymphoid

enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression

in nontransformed mammary epithelial cells. J Biol Chem 279:23517–23524

Gustin JA, Ozes ON, Akca H, Pincheira R, Mayo LD, Li Q, Guzman JR, Korgaonkar CK, Donner

DB (2004) Cell type-specific expression of the IkappaB kinases determines the significance of

phosphatidylinositol 3-kinase/Akt signaling to NF-k B activation. J Biol Chem 279:1615–1620

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

Holtmann MH, Neurath MF (2004) Differential TNF-signaling in chronic inflammatory disorders.

Curr Mol Med 4:439–444

Howard PL, Chia MC, Del Rizzo S, Liu FF, Pawson T (2003) Redirecting tyrosine kinase

signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc Natl

Acad Sci USA 100:11267–11272

Hsueh RC, Natarajan M, Fraser I, Pond B, Liu J, Mumby S, Han H, Jiang LI, Simon MI, Taussig R

et al (2009) Deciphering signaling outcomes from a system of complex networks. Sci Signal

2:ra22

Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282

176 C.D. Deppmann and K.A. Janes



Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function

relationship(s). Microsc Res Tech 50:184–195

Janes KA (2010) Paring down signaling complexity. Nat Biotechnol 28:681–682

Janes KA, Lauffenburger DA (2006) A biological approach to computational models of proteomic

networks. Curr Opin Chem Biol 10:73–80

Janes KA, Yaffe MB (2006) Data-driven modelling of signal-transduction networks. Nat Rev Mol

Cell Biol 7:820–828

Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) A systems

model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science

310:1646–1653

Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK (2006) The response

of human epithelial cells to TNF involves an inducible autocrine cascade. Cell 124:1225–1239

Janes KA, Reinhardt HC, Yaffe MB (2008) Cytokine-induced signaling networks prioritize

dynamic range over signal strength. Cell 135:343–354

Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology, 5th edn. Garland,

New York

Jay SM, Kurtagic E, Alvarez LM, de Picciotto S, Sanchez E, Hawkins JF, Prince RN, Guerrero Y,

Treasure CL, Lee RT et al (2011) Engineered bivalent ligands to bias ErbB receptor-mediated

signaling and phenotypes. J Biol Chem 286:27729–40

Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM,

Stransky N, Cogdill AP, Barretina J et al (2010) COT drives resistance to RAF inhibition

through MAP kinase pathway reactivation. Nature 468:968–972

Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[k]B
activity. Annu Rev Immunol 18:621–663

Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR (1998) DNA damaging

agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the

activation of NF-k B and AP-1. Mol Cell 1:543–551

Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, Carter BD (2010) p75

Neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activa-

tion of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17.

J Biol Chem 285:20358–20368

Kim S, Domon-Dell C, Kang J, Chung DH, Freund JN, Evers BM (2004) Down-regulation of the

tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kB (NF-kB)-induc-
ing kinase/NF-kB pathway is linked to a default IkB-a autoregulatory loop. J Biol Chem

279:4285–4291

Kim T, Yoon J, Cho H, Lee WB, Kim J, Song YH, Kim SN, Yoon JH, Kim-Ha J, Kim YJ (2005)

Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between

the AP1 and NF-kB signaling modules. Nat Immunol 6:211–218

Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD (1999) Functionally antagonistic

interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron

growth and target innervation. J Neurosci 19:5393–5408

Kumar D, Srikanth R, Ahlfors H, Lahesmaa R, Rao KV (2007) Capturing cell-fate decisions from

the molecular signatures of a receptor-dependent signaling response. Mol Syst Biol 3:150

LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and

their emerging role in cancer. Oncogene 17:3247–3259

Lauffenburger DA, Forsten KE, Will B, Wiley HS (1995) Molecular/cell engineering approach to

autocrine ligand control of cell function. Ann Biomed Eng 23:208–215

Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA

(2010) ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a

p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci USA 107:3817–3822

Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell

141:1117–1134

8 Cytokine–Cytokine Cross Talk and Cell-Death Decisions 177



Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M (1999)

The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation

and prevention of apoptosis. J Exp Med 189:1839–1845

Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies:

integrating mammalian biology. Cell 104:487–501

Majdan M, Walsh GS, Aloyz R, Miller FD (2001) TrkA mediates developmental sympathetic

neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J Cell Biol

155:1275–1285

Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase comple-

ment of the human genome. Science 298:1912–1934

McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene

26:3113–3121

Miller-Jensen K, Janes KA, Brugge JS, Lauffenburger DA (2007) Common effector processing

mediates cell-specific responses to stimuli. Nature 448:604–608

Modur V, Nagarajan R, Evers BM, Milbrandt J (2002) FOXO proteins regulate tumor necrosis

factor-related apoptosis inducing ligand expression Implications for PTENmutation in prostate

cancer. J Biol Chem 277:47928–47937

Monine MI, Berezhkovskii AM, Joslin EJ, Wiley HS, Lauffenburger DA, Shvartsman SY (2005)

Ligand accumulation in autocrine cell cultures. Biophys J 88:2384–2390

Mueller C, Corazza N, Trachsel-Loseth S, Eugster HP, Buhler-Jungo M, Brunner T, Imboden MA

(1999) Noncleavable transmembrane mouse tumor necrosis factor-alpha (TNFalpha) mediates

effects distinct from those of wild-type TNFalpha in vitro and in vivo. J Biol Chem

274:38112–38118

Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R (2006) A global analysis of cross-

talk in a mammalian cellular signalling network. Nat Cell Biol 8:571–580

Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H et al

(2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS

upregulation. Nature 468:973–977

Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger

axon pruning and neuron death via distinct caspases. Nature 457:981–989

Obata T, Yaffe MB, Leparc GG, Piro ET, Maegawa H, Kashiwagi A, Kikkawa R, Cantley LC

(2000) Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J

Biol Chem 275:36108–36115

Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kB activation by

tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85

Ozoren N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells.

Semin Cancer Biol 13:135–147

Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science

278:2075–2080

Perkins ND (2004) NF-kB: tumor promoter or suppressor? Trends Cell Biol 14:64–69

Perry RT, Collins JS, Wiener H, Acton R, Go RC (2001) The role of TNF and its receptors in

Alzheimer’s disease. Neurobiol Aging 22:873–883

Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ,

Sherwood SW, Baldwin DT et al (1998) Genomic amplification of a decoy receptor for Fas

ligand in lung and colon cancer. Nature 396:699–703

Qian H, Hausman DB, Compton MM, Martin RJ, Della-Fera MA, Hartzell DL, Baile CA (2001)

TNFalpha induces and insulin inhibits caspase 3-dependent adipocyte apoptosis. Biochem

Biophys Res Commun 284:1176–1183

Rodriguez J, Chen HH, Lin SC, Lazebnik Y (2000) Caspase phosphorylation, cell death, and

species variability. Science 287:1363

Rutgeerts P, Van Assche G, Vermeire S (2004) Optimizing anti-TNF treatment in inflammatory

bowel disease. Gastroenterology 126:1593–1610

178 C.D. Deppmann and K.A. Janes



Ruuls SR, Hoek RM, Ngo VN, McNeil T, Lucian LA, Janatpour MJ, Korner H, Scheerens H,

Hessel EM, Cyster JG et al (2001) Membrane-bound TNF supports secondary lymphoid organ

structure but is subservient to secreted TNF in driving autoimmune inflammation. Immunity

15:533–543

Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger

PK (2009) Discrete logic modelling as a means to link protein signalling networks with

functional analysis of mammalian signal transduction. Mol Syst Biol 5:331

Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter

ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, Moasser MM (2007) Escape from

HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature

445:437–441

Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M, Sah

D, McCoy JM et al (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-

66 receptor 1 and regulates axonal regeneration. Neuron 45:353–359

Sheikh MS, Huang Y, Fernandez-Salas EA, El-Deiry WS, Friess H, Amundson S, Yin J, Meltzer

SJ, Holbrook NJ, Fornace AJ Jr (1999) The antiapoptotic decoy receptor TRID/TRAIL-R3 is a

p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the

gastrointestinal tract. Oncogene 18:4153–4159

Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early

genes in the nervous system. Neuron 4:477–485

Shvartsman SY, Hagan MP, Yacoub A, Dent P, Wiley HS, Lauffenburger DA (2002a) Autocrine

loops with positive feedback enable context-dependent cell signaling. Am J Physiol Cell

Physiol 282:C545–559

Shvartsman SY, Muratov CB, Lauffenburger DA (2002b) Modeling and computational analysis of

EGF receptor-mediated cell communication in Drosophila oogenesis. Development

129:2577–2589

Singh P, Rubin N (1993) Insulin-like growth factors and binding proteins in colon cancer.

Gastroenterology 105:1218–1237

SongW, Volosin M, Cragnolini AB, Hempstead BL, Friedman WJ (2010) ProNGF induces PTEN

via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci

30:15608–15615

Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity.

Cell 61:203–212

Vilar M, Charalampopoulos I, Kenchappa RS, Simi A, Karaca E, Reversi A, Choi S, Bothwell M,

Mingarro I, Friedman WJ et al (2009) Activation of the p75 neurotrophin receptor through

conformational rearrangement of disulphide-linked receptor dimers. Neuron 62:72–83

Wang Z, Cao N, Nantajit D, Fan M, Liu Y, Li JJ (2008) Mitogen-activated protein kinase

phosphatase-1 represses c-Jun NH2-terminal kinase-mediated apoptosis via NF-kB regulation.

J Biol Chem 283:21011–21023

Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol

23:787–819

Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC (2007) Structural and mechanistic

insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron

53:25–38

Weiner FR, Smith PJ, Wertheimer S, Rubin CS (1991) Regulation of gene expression by insulin

and tumor necrosis factor alpha in 3T3-L1 cells. Modulation of the transcription of genes

encoding acyl-CoA synthetase and stearoyl-CoA desaturase-1. J Biol Chem 266:23525–23528

Werner SL, Barken D, Hoffmann A (2005) Stimulus specificity of gene expression programs

determined by temporal control of IKK activity. Science 309:1857–1861

Wu Y, Tewari M, Cui S, Rubin R (1996) Activation of the insulin-like growth factor-I receptor

inhibits tumor necrosis factor-induced cell death. J Cell Physiol 168:499–509

8 Cytokine–Cytokine Cross Talk and Cell-Death Decisions 179



Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS, Neufer PD, Shulman GI, Kim JK,

Bennett AM (2006) Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase

activity and resistance to diet-induced obesity. Cell Metab 4:61–73

Yeh BJ, Rutigliano RJ, Deb A, Bar-Sagi D, Lim WA (2007) Rewiring cellular morphology

pathways with synthetic guanine nucleotide exchange factors. Nature 447:596–600

Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J (2007) Structural basis for

activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 130:323–334

Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr (2008) Network

model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA

105:16308–16313

180 C.D. Deppmann and K.A. Janes



Chapter 9

Genetic and Genomic Dissection

of Apoptosis Signaling

Christina Falschlehner and Michael Boutros

Abstract Systematic loss-of-function approaches have significantly contributed to

our understanding of apoptotic signaling networks. In this book chapter, we will

review classical forward genetic approaches and high-throughput RNA interference

screens that led to the identification of key factors regulating cellular survival and

cell death.Wewill describe how synthetic lethal screens helped to dissect regulatory

networks and contributed to the development of targeted drugs. We will further

provide an outlook on future directions of this area in systems biology.

9.1 Genetic Screens for Apoptosis

The search for modulators of cell survival began in the 1960s, right after the

discovery of programmed cell death in insects (Lockshin and Williams 1965) and

further studies in the nematode Caenorhabditis elegans (C. elegans) (Sulston and

Horvitz 1977). Using classical forward genetic approaches, several genes were

identified that play important roles in apoptosis induction and inhibition. C. elegans
proved to be a great model organism to study cell death as the developmental fate of

each somatic cell is predefined. The adult C. elegans hermaphrodite contains

exactly 959 somatic cell nuclei as precisely 131 of 1,090 cells undergo apoptosis

in a time-controlled manner during embryogenesis (Sulston and Horvitz 1977).

Sydney Brenner was the first to introduce the worm C. elegans to the scientific

community (Brenner 1974). In 1974, he showed that point mutations of C. elegans
strains can be easily obtained by the use of mutagens such as ethyl methane

sulphonate (EMS) (Epstein et al. 1974). In the following years, a plethora of mutant
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strains were described. The analysis ofmutants with similar phenotypes revealed that

the affected genes were often part of the same signaling pathway. For example, many

genes of the respective mutant strains with defects in vulva differentiation could be

mapped to two pathways: the Notch and RAS pathway, both required for epidermal

differentiation (Ferguson et al. 1987; Wang and Sternberg 2001). The vulva is

required for egg laying, so the mutants could easily be scored by the fact that no

eggs were present. Some of these mutants later proved to be very useful for the

dissection of the apoptotic signaling pathway in C. elegans. The first experiments on

programmed cell death in C. elegans were undertaken by Robert Horvitz and

colleagues (1994). They used Nomarski optics, a microscopy technique that shows

high contrast differences in transparent samples, to visualize all cells of the worm.

Using this technique, mutants that showed an increased or decreased cell count could

be scored. The observed change in cell number was either due to a defect in prolifera-

tion or a defect to undergo programmed cell death. Looking at diverse mutant strains,

it became clear that programmed cell death is predetermined as exactly the same

131 cells always died during embryogenesis and were missing in the adult worm.

The first gene identified that alters cell numbers in C. elegans was nuc-1 which

was found to play a role in DNA degradation (Sulston and Horvitz 1981; Wu et al.

2000b). In the following years, mutants of ced-1 (cell death abnormality 1) and

ced-2, both showing defects in autophagy were described (Ellis et al. 1991). Under

normal circumstances, apoptotic cells are rapidly engulfed by phagocytic cells and

are thus difficult to visualize. Fortunately, the use of ced-1 mutants allowed easy

imaging of apoptotic cells as they remain visible for a longer period of time. Thus,

genes affecting apoptotic cell death could be identified. This approach led to the

discovery of ced-3, the C. elegans homologue of human caspases (Schwartz and

Osborne 1994; Yuan and Horvitz 1990). As mentioned earlier, mutants defective in

egg laying that were previously generated, turned out to be meaningful for the

dissection of the cell death pathway in C. elegans. A mutant, deficient in egg laying

named egl-1 (egg laying defective) did not contain hermaphrodite specific motor

neurons (HSNs) which are required for egg laying (Trent et al. 1983). In males that

do not have a vulva for egg laying and thus do not contain HSNs, it was shown that

these neurons undergo programmed cell death during development. Introduction of

the proapoptotic protease ced-3 into the egl-1 mutant restored egg laying in these

mutants and thus confirmed the essential role of ced-3 for apoptosis (Ellis and

Horvitz 1986). Egl-1 was later identified as a member of the BH3-domain only

Bcl-2 (B-cell lymphoma 2) family, similar to human Bid (BH3 interacting domain

death agonist) or Bim (BCL2-like 11) (Huang and Strasser 2000). A few years later,

ced-4, the C. elegans homologue of human Apaf-1 (Apoptotic protease-activating

factor 1) and ced-9, the homologue of human Bcl-2 were identified (Cecconi 1999;

Ellis and Horvitz 1986; Hengartner et al. 1992; Hengartner and Horvitz 1994; Yuan

and Horvitz 1990).

Classical forward genetic approaches were also pursued in other model

organisms such as the fly Drosophila melanogaster or the zebrafish Danio Rerio
(Patton and Zon 2001; St Johnston 2002). It became quickly clear that the apoptotic

machinery in flies and vertebrates is more complex and requires additional
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regulatory factors. An important gene family that has been identified is the inhibitor

of apoptosis (IAP) family. In contrast to C. elegans, caspases in flies and vertebrates
have to be kept in check by IAPs to avoid uncontrolled substrate cleavage (Salvesen

and Duckett 2002; Vaux and Silke 2005). The first inhibitor of apoptosis protein in

Drosophila, DIAP1, was identified by a genetic screen for suppressors of reaper-

dependent cell death in 1995 (Hay et al. 1995). The E3 ubiquitin ligase DIAP1 was

shown to be essential for the survival of the flies. Homozygous flies lacking DIAP1

died due to massive caspase-dependent cell death (Rodriguez et al. 2002). In flies,

the homologue of human caspase-9 named Dronc is constitutively activated by Ark

(human Apaf-1) and executes the cell death program, unless it is bound to and

inhibited by DIAP1 (Hay et al. 1995; Lisi et al. 2000; Wang et al. 1999). Various

substrates of Dronc were subsequently identified including the effector caspases

DRICE and Dcp-1 as well as DIAP1 (Kumar and Doumanis 2000). The previously

mentioned protein reaper and the proteins grim and hid were discovered as key

regulators of apoptosis during Drosophila embryogenesis (Abrams et al. 1993;

White et al. 1994). Mutant flies that lacked reaper had more cells and were not

able to hatch (White et al. 1994). Reaper, grim, and hid were later shown to share

significant similarity with the human IAP-antagonists Smac/Diablo and Omi/HtrA2

(Chai et al. 2000; Liu et al. 2000; Martins et al. 2002; Srinivasula et al. 2000; Wu

et al. 2000a). All three proteins can bind with high affinity to DIAP1 preventing it to

interact with and inhibit the initiator caspase Dronc. As a result, fully activated

Dronc drives destruction of the cell finally leading to cell death (Igaki et al. 2002).

9.2 Genetic Screens by RNA Interference

9.2.1 Introduction to RNAi

RNA interference (RNAi) is a sequence-specific, posttranscriptional silencing

mechanism that is mediated by double-stranded RNA (dsRNA) molecules. RNAi

occurs when dsRNA enters the cell and triggers degradation of mRNA molecules

that carry complementary sequences.

The mechanism of RNAi was first discovered in C. elegans. When long dsRNAs

were injected into these roundworms, they blocked the expression of endogenous

genes that shared the same sequence (Fire et al. 1998; Tabara et al. 1998). It was

initially thought that RNAi has evolved as a defense mechanism against viruses

that carry dsRNA. Today, we know that the RNAi machinery is also used to

regulate endogenous gene activity by so-called microRNAs (miRNAs). miRNAs

can be found in almost all higher eukaryotes and are often located in intergenic

regions of chromosomal DNA (Bentwich et al. 2005; Lau et al. 2001). Upon

transcriptional activation, endogenous miRNAs are first produced as approximately

70 nucleotide-long pri-miRNAs by RNA polymerase II (Han et al. 2004). These

hairpin-shaped pri-miRNAs are further processed by the nuclease Drosha into pre-
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miRNAs that are transported from the nucleus into the cytoplasm via exportin 5.

In the cytoplasm the RNA hairpin is recognized by the RNAse III endonuclease

Dicer and cleaved into mature 19–25 nucleotide-long miRNA duplex structures

(Preall and Sontheimer 2005). These mature miRNAs are incoporated into the

RNA-induced silencing complex (RISC) where they are unwound and paired to

complementary mRNA, preferentially to the 30 untranslated region (UTR) of the

transcript. Exact base-pairing results in cleavage and degradation of mRNA while

imperfectmatching leads to translational repression (Good 2003;Meister et al. 2004).

A similar mechanism is triggered when dsRNAs are introduced into the cell.

They are recognized and cleaved by Dicer into small interfering RNAs (siRNAs).

siRNAs usually have a length of 21–23 base pairs with a two nucleotide-long

overhang on their 30 ends. Chemically synthesized siRNAs mimic Dicer-processed

molecules. siRNAs are incorporated into the RISC complex where they regulate

target gene expression similar to the described mechanism above. However, in

contrast to miRNAs, no preferential binding to UTRs of mRNA transcripts has been

observed. Most artificially designed siRNAs are designed to target the open reading

frame of the respective gene.

Dicer-processed siRNAs that share complementary regions with promoters

might translocate back to the nucleus and cause transcriptional gene silencing

(Mette et al. 2000; Zeng and Cullen 2002). This is probably achieved by DNA or

histone methylation leading to tightly packed heterochromatin. However, the exact

molecular mechanism of Dicer-induced gene silencing in the nucleus is currently

not fully understood. A simplified representation of the RNAi mechanism is shown

in Fig. 9.1.

With the availability of whole genome sequences, directed gene silencing by

RNAi has complemented classical forward genetic screening approaches. Mapping

of genetic point mutations that caused a certain phenotype is often time-consuming

and difficult to perform for many identified alleles. In contrast, the use of RNAi

libraries allowed the generation of genome-wide loss-of-function data sets in a

relatively short time and enabled reconstruction of complex signaling networks and

modeling of biological processes. In the past few years, RNAi libraries that

target almost all annotated genes in plants, worms, flies, mice, and humans have

been created and are widely used in high-throughput screening approaches (Boutros

and Ahringer 2008; Hu et al. 2010; Karlas et al. 2010; Neely et al. 2010; Zhang et al.

2009). Depending on the model organism, RNAi libraries are available in various

formats. In worm, fly, or plant models, long dsRNAs (100–700 bp) can be used to

induce gene silencing while mammalian cells have to be treated with shorter

siRNAs (21–23 bp) to avoid an interferon response (Elbashir et al. 2002).

DsRNA can be introduced to the cells by various means in vitro and in vivo.
Common delivery methods for cell culture-based siRNA screens include liposomal

transfection and electroporation. Chemically synthesized siRNAs can be modified

to increase their stability and efficacy. In most cases the ribose at the 20 position is

methylated (20Ome), allylated (20Oal), or modified nucleotides such as locked

nucleic acids (LNAs) or phosphorothioate interlinked nucleotides are used to
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decrease the susceptibility of the siRNA duplex to nuclease attacks (Behlke 2008;

Monia et al. 1996; Pandolfi et al. 1999).

siRNAs can also be produced inside the cell by shRNA-based expression

vectors. The first expression vector encoding an shRNA hairpin, that is transcribed

from an RNA polymerase III promotor, was published in 2002 by Brummelkamp

et al. (Brummelkamp et al. 2002). The authors showed that expression of siRNAs

using this vector caused stable and effective down-regulation of target gene expres-

sion. Furthermore, continuous expression of siRNAs enabled the analysis of

loss-of-function phenotypes that develop over longer time periods. Synthetic

Fig. 9.1 Schematic representation ofRNA interference (RNAi). Endogenously encodedmicroRNAs

or virally integrated shRNA are transcribed from the genome by RNA polymerase II into pri-

miRNAs. These pri-miRNAs are further processed by the RNAse III enzyme Drosha. The

resulting pre-miRNA is then transported from the nucleus into the cytoplasm via Exportin 5

(Exp5) where it is processed by Dicer into a 19–25 bp-long microRNA duplex structure. The

mature miRNA is incoporated into the RNA-induced silencing complex (RISC) where it is

unwound and preferentially paired to the 30 untranslated region (UTR) of mRNA. Perfect base-

pairing leads to cleavage and degradation of complement mRNAwhile imperfect base-pairing will

result in translational repression. Long dsRNAs are cleaved by Dicer into small interfering RNAs

(siRNAs) which are also incoporated into RISC causing downregulation of target gene expression.

siRNAs can also be synthetically introduced to the cell to trigger RNAi-mediated gene silencing.

siRNAs complementary to promoter regions have been shown to cause transcriptional gene

silencing in the nucleus, most likely by heterochromatin modification via histone methylases.

However, the exact molecular mechanism of this phenomenon is currently not fully understood

9 Genetic and Genomic Dissection of Apoptosis Signaling 185



siRNAs and shRNA-expressing plasmids can also be reverse transfected using

multiwell plates or cell-based microarrays (Ziauddin and Sabatini 2001). In primary

cells that are difficult to transfect with plasmids or synthetic siRNAs, virally based

shRNA delivery systems are often used. To date, several shRNA libraries in adeno-,

retro-, or lentiviral vector backbones in an almost genome-wide scale are available

(Arts et al. 2003; Bayona-Bafaluy et al. 2011; Berns et al. 2004; Moffat et al. 2006;

Paddison et al. 2004a; Silva et al. 2005). Stable expression of the respective shRNA

is achieved by integration of the virus into the host genome. In addition to classical

shRNA libraries, pooled shRNA libraries comprising one shRNA and a specific

barcode per vector have recently become available (Paddison et al. 2004a). These

libraries can be used to infect a batch of cells to quickly identify genes required for

proliferation and cell survival. The virus titer for these pooled shRNA libraries has

to be adjusted so that the vector integration per target cells is not more than one.

After virus infection and selection, the sample can be analyzed by microarrays

techniques or next-generation sequencing. The quantitative presence or absence of

certain barcodes will allow to draw conclusions about the effects of the respective

shRNA on cell growth and cell death. Using a pooled shRNA strategy, Ngo et al.
could show that shRNAs targeting the NF-kB pathway were depleted in a subgroup

of B-cell lymphoma which indicated that NF-kB signaling was crucial for survival

of these cells (Ngo et al. 2006). Similar shRNA pooling strategies on a genome-

wide scale led to the identification of key regulators of cancer cell survival and

targets of small molecules (Brummelkamp et al. 2006; Schlabach et al. 2008; Silva

et al. 2008).

Many scientists use inducible RNAi systems to control siRNA expression in a

time and dose-specific manner. Most of the inducible vehicles are Tet or Cre/lox

P-based systems available in viral and non-viral vectors. Both systems can be used

in cell culture and transgenic animals. Tetracycline-inducible systems allow revers-

ible regulation of shRNA expression (on/off switch). However, Tet-regulated

promotors might be leaky and potentially cause stimulation-independent down-

regulation of target genes to a certain extent. In contrast, site-specific DNA

recombination via lox P sites by Cre is irreversible and enables stringent shRNA

expression. In transgenic animals, the Cre/lox P system is a common technique to

induce site-specific recombination at a defined locus. Several genes of interest could

be efficiently downregulated in mouse embryonic stem cells (ESCs) using a

retroviral vector and loxP site-directed recombination (Wang 2010). In this study,

the vector contained a microRNA-embedded short-hairpin RNA (shRNAmir)

to trigger the RNAi mechanism. The idea to express shRNAs in a similar way to

primary miRNA transcripts came from the labs of Greg Hannon (CSHL) and Steve

Elledge (Harvard) (Paddison et al. 2004b). They showed that shRNAmirs trigger the

RNAi pathway through a more natural route leading to specific and effective gene

silencing. To date, a lentiviral shRNAmir library covering around 18,000 genes is

commercially available. The vectors of this library named pGIPZ and pTRIPZ

contain a fluorescence marker and a molecular barcode enabling easy identification

of transduced cells and multiplex screening in pools (Chang et al. 2006).
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In the past few years, the design of RNAi reagents has constantly improved. New

software tools that predict the efficiency of RNAi reagents and their potential off-

target effects have become available. One of these tools is NEXT-RNAi that allows

prediction and evaluation of siRNA and long dsRNA for all annotated genomes

(Horn et al. 2010). However, the complete elimination of off-target effects remains a

challenge. Off-target effect means that the applied RNAi reagent does not only target

the gene of interest, but also other transcripts leading to an increased rate of false-

positive or false-negative candidate genes in an RNAi screen (Jackson et al. 2003). It

has been shown that off-targeted genes often contain sequence homologies between

the 30 UTR of the transcript and the seed region of the siRNA antisense strand

comprising six nucleotides in positions 2–7 (Birmingham et al. 2006; Lin et al.

2005). The observed unintended silencing is likely to occur through a mechanism

similar to miRNA-mediated gene regulation. Thus, improved siRNA design

algorithms and appropriate filters can significantly reduce off-target effects. It has

also been observed that unintended actions of RNAi reagents are concentration-

dependent (Semizarov et al. 2003). A low concentration of an siRNA can signifi-

cantly reduce its off-target effects, but may also lead to insufficient target gene

knockdown. Pooling strategies are often used to circumvent this problem. siRNA

pools usually contain 3–4 individual siRNAs that target the same transcript at

different sites. Therefore, the concentration of each single RNAi reagent is reduced

while the functionality of the pool remains high. A similar principle of operation is

utilized by endoribonuclease-prepared siRNAs (esiRNA). EsiRNAs are pools of

short overlapping fragments of siRNAs that can be generated by in vitro cleavage

of long dsRNA with Escherichia coli RNase III. As a result, the mixture of these

multiple short RNA fragments that all target the same gene transcript can be used at a

very low concentration to cause effective gene silencing. A further reduction of

off-target effects can be achieved by chemical modification of siRNAs such as

20-o-methyl ribosyl substitution in the guide strand (Jackson et al. 2006).

9.2.2 High-Throughput RNAi Screens for Apoptosis Modulators

For the successful outcome of a high-throughput screen, the setup of an appropriate

readout assay is as important as the choice of the RNAi reagent. Cell viability can

quickly be determined by quantification of ATP levels, membrane integrity or

cellular redox potential (Crouch et al. 1993; Vistica et al. 1991). Cell viability

assays are often used to identify modulators of cell death despite the indirect nature

of the measurement. An observed reduction in cell viability can be a result of

necrosis, apoptosis, other forms of cell death or caused by decreased cellular

proliferation. To address whether a gene is involved in regulation of apoptosis

caspase activation can be monitored using fluorescent or luminescent-based

substrates (Antczak et al. 2009). Another possibility is to quantify AnnexinV/PI

positive cells (Vermes et al. 1995) or fragmented DNA (Nicoletti et al. 1991) by

high-throughput flow-cytometric analysis (FACS). However, these assays have
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some disadvantages compared to cell viability readouts such as higher complexity,

consumed time, and reagent costs. Furthermore, right timing of the measurements

especially when determining caspase activity may be crucial for the outcome of the

screen. Therefore, most high-throughput RNAi screens for cell death modulators

are based on cell viability measurements in the initial screen setup followed by

further candidate evaluation in more specific assays.

Today, over 500 studies performing high-throughput RNAi screens have been

reported. Many of these studies have significantly contributed to our understanding

of cell death and cell survival pathways.

The first large-scale RNAi screens for modulators of cell viability were performed

in C. elegans (Kamath et al. 2003) and cultured Drosophila cells (Boutros et al.

2004). In the C. elegans screen 1,170 out of 16,757 dsRNA that were encoded in

E. coli strains and fed to the worms resulted in lethality or sterility. In theDrosophila
screen, the authors identified 438 out of 19,470 dsRNAs that were essential for cell

growth and cell viability. Among those genes prominent cell death modulators with

human homologues such as cIAP1 could be found. Another genome-wide RNAi

screen in Drosophila cells identified several genes implicated in the regulation of

caspase activation that had previously not been linked to apoptosis signaling such as

the N-acetyltransferase ARD1 or the candidate tumor suppressor Charlatan (Yi et al.

2007). Drosophila proved to be a good model system for the identification of

conserved genes that were missed in mammalian screens due to functional redun-

dancy. Nowadays, large-scale RNAi screens cannot only be conduced in cultured

Drosophila cells, but also in transgenic flies using the Vienna Drosophila RNAi

collection (VDRC) based on the UAS-Gal4 system (Dietzl et al. 2007).

The first RNAi screen for apoptosis modulators in human cells was carried out by

Aza-Blanc et al. (Aza-Blanc et al. 2003). The authors used the death ligand TRAIL

(TNF-related apoptosis-inducing ligand) to induce apoptosis in the cervix carcinoma

cell line HeLa. They screened a siRNA library comprising 510 genes including

known and predicted kinases. Using this approach the previously undescribed

proteins DOBI (downstream of BID) and MIRSA (Mina53-related suppressor of

apoptosis) could be identified as modulators of TRAIL-induced apoptosis.

In the past few years, large-scale RNAi approaches conducted in vivo have led to
the discovery of novel gene functions with implications in cancer cell survival and

lethality. Using a pri-miRNA-based shRNA library in a mouse model of hepatocel-

lular carcinoma several novel tumor suppressor genes could be identified (Dickins

et al. 2005; Zender et al. 2008). Among the described genes, tumor suppressors

implicated in the control of cell proliferation and apoptosis could be found.

Michael Green and colleagues used a mouse shRNA library to screen for factors

that reduce transcription of ATF5, a gene that is highly expressed in malignant

glioma (Sheng et al. 2010). The authors were able to reconstruct a signaling

cascade where RAS/MAPK signaling caused induction of the transcription factor

CREB3L2 that activated expression of ATF5 that in turn led to transcription of

the antiapoptotic protein Mcl1 thereby preventing cell death. The knowledge of this

signaling network has enabled the use of small molecules that interfere with this

pathway such as theRAF kinase blocker sorafenib as treatment option for brain cancer.
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9.3 Synthetic Lethality

Cell death caused by simultaneous perturbation of two genes is referred to as

synthetic lethality (see Fig. 9.2). The concept of synthetic lethal genes was first

described in a classical forward genetic approach in Drosophila pseudobscura
(Dobzhansky et al. 1965). It was observed that lethal chromosomes could emerge

by genetic recombination between nonlethal chromosomes. This lethal cross-over

was referred to as “synthetic lethal.”

The first system-wide analysis of synthetic lethality was performed in the yeast

Saccharomyces cerevisiae (S. cerevisiae). Knockout mutants of each of the

siRNA (gene A)

siRNA (gene B)

Drug (gene B)

Mutation (gene B)

Perturbation of single genes 

Synthetic lethal interaction

siRNAs (A + B)

siRNA (A) + Drug (B)

siRNA + Mutation (B)

Cellular Phenotype

Viability

Death

Viability
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Death
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b

Gene A

Gene B

Gene A+B

Viablity

Viablity
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Fig. 9.2 Concept of synthetic lethality. (a) A genetic interaction is present when the phenotype of

combined perturbation of gene A and B is deviating from the phenotype that is caused by

perturbation of gene A or gene B alone. If the consequence of combined perturbation is cell

death, the synergy is called synthetic lethal interaction. (b) Synthetic lethality can be achieved by

knockdown of two target genes, knockdown of one target gene and drug-induced perturbation of

the second gene or knockdown of one target gene in a mutant background
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approximately 6,000 genes of S. cerevisiae have been created and analyzed for

viability and growth potential. Interestingly, only ~1,100 genes were required for

growth on rich glucose medium indicating that essential signaling pathways in

yeast are highly redundant (Giaever et al. 2002). Synthetic lethal screens where two

genes were perturbed at the same time revealed that genes with common synthetic

lethal partners have an increased probability of belonging to the same signaling

pathway, often acting together in the same protein complex (Dixon et al. 2008;

Tong et al. 2004; Ye et al. 2005).

Nowadays, synthetic lethal approaches are frequently applied in the field of

cancer research. Screens are often designed to unravel genetic interactions with

oncogenes or tumor suppressor genes such as RAS and p53. The results of these

research attempts helped to reconstruct signaling networks and determine intersec-

tion points that are required for cell death or cell survival. They also help to explain

why some cancer cells respond to certain drugs while others are resistant.

A good example of a genetic synthetic interaction that is already exploited in

cancer therapy is the BRCA-PARP synthetic lethal interaction. BRCA1 and

BRCA2 mutations are frequently found in breast, ovarian, colon, and prostate

cancer. Loss-of-function of BRCA1 or BRCA2 interferes with proper DNA damage

repair, thus increasing the chance of a cell to accumulate mutations and become

malignant. Using a synthetic lethal approach, PARP1 was identified to genetically

interact with BRCA1 and BRCA2 (Bryant et al. 2005; Farmer et al. 2005; Lord and

Ashworth 2008). Under normal circumstances, DNA is repaired through

homologous recombination by BRCA1 and BRCA2 or base-excision repair by

PARP1. Cells that have lost BRCA1 or BRCA2 can still survive because other

DNA-repair mechanisms can compensate for the loss of homologous recombina-

tion. However, loss of both proteins, PARP1 and BRCA1 or BRCA2, abolished

DNA repair and rapidly induced apoptosis. Fortunately, BRCA1 and BRCA2

mutant cells are around 1,000-fold more sensitive to PARP inhibition than normal

cells with intact DNA repair pathways. As a consequence, PARP inhibitors can be

used to induce cancer-specific apoptosis with a large therapeutic window. Based on

these studies, the PARP inhibitors olaparib (Astra Zeneca) and iniparib

(Sanofi Aventis) have been developed and are currently evaluated in phase II

clinical trials. This very rapid translation of research results into clinical

applications has generated a lot of excitement for synthetic lethal approaches in

tumor therapy.

The first large-scale synthetic lethal screening approach in human cells was

performed in a RAS mutant background using genome-wide RNAi. The oncogene

RAS is frequently mutated in a variety of cancers and causes the continuous

transmission of cell survival and proliferation signals independent of extracellular

signals (Bos 1989). As a result, RAS-mutant cancer cells proliferate in an uncon-

trolled manner and are often insensitive to apoptotic stimuli. Many scientists have

tried to pharmacologically inactivate mutant RAS, which however have not been

successful. At the moment, alternative pathway inhibitors such as transfarnesylthio-

salicylic acid (FTS), which impairs translocation of RAS to the plasma membrane,

are evaluated as drug candidates (Rotblat et al. 2008). In an attempt to identify
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essential components and potential novel drug targets for the survival of RAS

mutant cells, RNAi screens were performed in 19 different RAS mutant and

wild-type cells. The utilized shRNA-based library comprised around 1,000 genes

including kinases, phosphatases, and other cancer-related genes. Using this targeted

approach, the noncanonical IkappaB kinase TBK1 as well as the serine/threonine

kinase STK33 could be identified as synthetic lethal interaction partners of onco-

genic KRAS (Barbie et al. 2009; Scholl et al. 2009). Genome-wide high throughput

screen for synthetic lethal RAS interactors were also conducted in isogenic DLD1

and HCT116 colon cancer cells that either carry an endogenous activating KRAS

mutation or a wild-type allele (Luo et al. 2009; Wang et al. 2010a). By integration

of loss-of-function and gene expression data, a previously underestimated role of

Ras in mitotic progression involving the mitotic checkpoint kinase PLK1 (Luo et al.

2009). In addition, SNAIL2 was found to be an essential factor for the survival of

KRAS mutant cells that have undergone epithelial–mesenchymal transition (EMT)

(Wang et al. 2010a).

Besides RAS mutations, deletions of the adenomatous polyposis coli protein

(APC) occur in more than 80% of all colon cancers leading to accumulation of

nuclear b-catenin and uncontrolled proliferation. Zhang et al. (2010) recently

showed that a combination of TRAIL and RAc (all-trans-retinyl acetate) specifi-

cally kills APC-deficient premalignant tumor cells. This synergistic interaction was

caused by RAc-mediated upregulation of TRAIL receptors and concomitant repres-

sion of cFLIP through activation of c-myc by b-catenin and could in future be

exploited in the prevention of colorectal cancer.

The tumor suppressor p53 that is mutated in more than 50% of all human cancers

(Hollstein et al. 1991) is another desired interaction candidate for synthetic lethal

screening approaches. In normal cells, p53 is a guardian of the DNA repair

machinery (Dasika et al. 1999). Upon DNA damage, induction of p53 ensures

that the cell cycle is arrested at the G1 stage allowing for proper DNA repair. In case

the damage is too severe to be repaired, p53 quickly triggers a cell suicide program,

reducing the chance that a cell acquires decisive mutations and becomes cancerous.

Several genes that are involved in DNA damage repair such as ATM and Chk1 as

well as several kinases have been identified as synthetic lethal interaction partners

of p53 (Baldwin et al. 2010; Jiang et al. 2009; Wang et al. 2004, 2010b).

In summary, synthetic lethal screens greatly improved our understanding of cell

survival and cell death pathways in cancer. Furthermore, they provided insights into

oncogenic network addiction and helped to develop targeted therapies for cancer

treatment.

9.4 Outlook

To dissect the genetic circuitry that underlie life and death decisions of cells,

advances in technology and experimental paradigms promise to provide new

mechanistic and physiological insights. Future systematic loss-of-function
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approaches will involve more complex assays that give a broader view of a

phenotype. For example, it will be possible to exactly determine whether a cell

has undergone apoptosis, necrosis or other forms of cell death. Combination of

morphological signatures will allow a system-wide analysis and clustering

of phenotypes based on their features. Furthermore, time-resolved dissection of

phenotypes on a single cell bases will allow to determine cell to cell variability and

cell type specificity while phenotypic similarities and genetic interaction profiles

enable the association of genes with biological processes (Fuchs et al. 2010; Horn

et al. 2011).

However, there are also challenges that have to be addressed in the future such as

standardized annotation formats for system-wide loss-of-function experiments,

availability of instruments for multiparametric data acquisition, computing power

or long-term storage of large data sets.

In summary, systematic loss-of-function approaches significantly contributed to

our understanding of apoptosis and cell survival networks. The combination of

novel tools and well-established genetic approaches such as synthetic lethality will

provide medical relevant models on the regulation of apoptosis in normal and

cancer cells.
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