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PREFACE 

It has been fashionable to describe electrochemistry as a discipline 
at the interface between the branches of chemistry and many other 
sciences. A perusal of the table of contents will affirm that view. 
Electrochemistry finds applications in all branches of chemistry as well 
as in biology, biochemistry, and engineering; electrochemistry gives us 
batteries and fuel cells, electroplating and electrosynthesis, and a host of 
industrial and technological applications which are barely touched on in 
this book. However, I will maintain that electrochemistry is really a 
branch of physical chemistry. Electrochemistry grew out of the same 
tradition which gave physics the study of electricity and magnetism. 
The reputed founders of physical chemistry-Arrhenius, Ostwald, and 
van't Hoff-made many of their contributions in areas which would now 
be regarded as electrochemistry. With the post-World War II capture of 
physical chemistry by chemical physicists, electrochemists have tended 
to retreat into analytical chemistry, thus defining themselves out of a 
great tradition. G. N. Lewis defined physical chemistry as "the study of 
that which is interesting." I hope that the readers of this book will find 
that electrochemistry qualifies. 

While I have tried to touch on all the important areas of 
electrochemistry, there are some which have had short shrift. For 
example, there is nothing on the use of dedicated microcomputers in 
electrochemical instrumentation, and there is rather little on ion
selective electrodes and chemically modified electrodes. The selection of 
topics has been far harder than I anticipated, a reflection of my 
ignorance of some important areas when I started. On the other hand, 
there may be a few topics which may appear to have received too much 
attention. I confess that my interest in electrochemistry is primarily in 
mechanistic studies, particularly with organometallic systems. This 
orientation may be all too apparent for some readers. 

Since this is a textbook with the aim of introducing electrochemistry 
to the previously uninitiated, breadth has been sought at the expense of 
depth. I have tried, however, to provide numerous entries into the 
review literature so that a particular topic of interest can be followed up 
with a minimum of effort. References in the text are of four types. Some 
are primarily of historical interest; when I have traced ideas to their 
origins, I have tried to give the original reference, fully aware that only a 
science history buff is likely to read them but equally aware that such 
references can be hard to find. A second class of references is to specific 
results from the recent literature, and a third class leads to the review 
literature. These references are collected at the end of each chapter. A 
fourth class of references includes the books and monographs which are 
collected in a classified Bibliography, Appendix 1. 
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SI units have been employed throughout the book. References to 
older units are given in footnotes where appropriate. In most cases, the 
use of SI units eliminates unit conversion problems and greatly 
simplifies numerical calculations. The major remaining source of 
units ambiguity comes from concentrations. When a concentration is 
used as an approximation to an activity, molar units (mol L-I) must be 
used to conform to the customary standard state. But when a 
concentration acts as a mechanical variable, e.g., in a diffusion problem, 
the SI unit, mol m-3 , should be used. The mol m-3 concentration unit is 
equivalent to mmol VI and, in a sense, is a more practical concentration 
scale since voltammetric experiments often employ substrate 
concentrations in the millimolar range. 

Several topics have been added or expanded in the second edition. 
In particular, coverage of microelectrode voltammetry has been much 
expanded, and previous discussions of steady-state voltammetry with 
rotating-disk electrodes have been modified to include microelectrodes; 
spectroelectrochemistry (electron spin resonance and infrared 
spectroscopy) is now discussed as an aid to deducing mechanisms of 
electrode processes; the discussion of cyclic voltammetry has been 
expanded to include adsorption effects and derivative, semi-derivative 
and semi-integral presentation; the discussion of organic 
electrosynthesis has been considerably expanded; and many new 
examples of work from the literature have been added to illustrate the 
techniques discussed. 

It has been said that no book is ever finished, it is just abandoned. 
The truth of that aphorism is never more apparent than to an author 
returning to a previously abandoned project. There has been more than 
one instance when I have been appalled at the state in which I left the 
first edition of this book. I have labored mightily to correct the errors of 
commission and at least a few of the errors of omission, but the awful 
truth is that the book must be abandoned again with topics which should 
have been covered more completely or more clearly. 

I am particularly grateful to my wife, Anne L. Rieger, for her 
patience in listening to my problems and for her encouragement in 
times of discouragement. My colleague, Dwight Sweigart, has been an 
invaluable source of expertise and encouragement during the 
preparation of the second edition. I am indebted to Petr Zuman for some 
valuable suggestions after publication of the first edition and to Nancy 
Lehnhoff for a stimulating discussion of microelectrodes which greatly 
clarified the presentation. I am deeply grateful to Barbara Goldman of 
Chapman and Hall for her thoughtful suggestions and timely support in 
this project. 

Thanks are still due to those who helped with the first edition: to 
David Gosser, who listened to my ideas and offered many helpful 
suggestions-the cyclic voltammogram simulations of Chapters 4 - 6 are 
his work; to my colleagues at Brown who offered advice and 

(' 

encouragement, most particularly Joe Steim, John Edwards, and Ed 
Mason; to Bill Geiger, who provided a stimulating atmosphere during 
my 1985 sabbatical and gave some timely advice on electroanalytical 
chemistry; to James Anderson of the University of Georgia, Arthur Diaz 
of IBM, San Jose, Harry Finklea of Virginia Polytechnic Institute, and 
Franklin Schultz of Florida Atlantic University for their careful reading 
of the first edition manuscript and numerous helpful suggestions. 

The first edition was produced using the IBM Waterloo SCRIPT 
word-processing system and a Xerox 9700 laser printer equipped with 
Century Schoolbook roman, italic, bold, bold italic, greek, and 
mathematics fonts. Seven years later, that system is hopelessly obsolete 
and the present edition has been completely redone using Microsoft 
Word on a Macintosh computer with equations formatted with 
Expressionist. To maintain a semblence of continuity, the principal font 
is again New Century Schoolbook. The figures all have been redone 
using CA-Cricket Graph III, SuperPaint, and ChemDraw. Figures 
from the literature were digitized with a scanner and edited with 
SuperPaint. 

Philip H. Rieger 

May 1993 
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1 ELECTRODE
 
POTENTIALS 

1.1 INTRODUCTION 

OrigilUl ofElectrode Potential. 

When a piece of metal is immersed in an electrolyte solution, an 
electric potential difference is developed between the metal and the 
solution. This phenomenon is not unique to a metal and electrolyte; in 
general whenever two dissimilar conducting phases are brought into 
contact, an electric potential is developed across the interface. In order 
to understand this effect, consider first the related case of two dissimilar 
metals in contact. 

When individual atoms condense to form a solid, the various atomic 
orbital energy levels broaden and merge, generally forming bands of 
allowed energy levels. The band of levels corresponding to the bonding 
molecular orbitals in a small molecule is called the valence band and 
usually is completely filled. The band of levels corresponding to 
nonbonding molecular orbitals is called the conduction band. This band 
is partially filled in a metal and is responsible for the electrical 
conductivity. As shown in Figure 1.1, electrons fill the conduction band 
up to an energy called the Fermi level. The energy of the Fermi level, 
relative to the zero defined by ionization, depends on the atomic orbital 
energies of the metal and on the number of electrons occupying the band 
and thus varies from one metal to another. When two dissimilar metals 
are brought into contact, electrons flow from the metal with the 

(a) (b) (c). 

~T k/~ IWFff;J;~~~0';Z.;,~~~"./.~.;,~J 

Fermi level 

Figure 1.1 The conduction bands of two dissimilar metals (a) when the 
metals are not in contact; (b) at the instant of contact; and (c) at equilibrium. 

1 
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higher Fermi level into the metal with the lower Fermi level. This 
electron transfer results in a separation of charge and an electric 
potential difference across the phase boundary. The effect of the electric 
potential difference is to raise the energy of the conduction band of the 
second metal and to lower the energy of the conduction band of the first 
until the Fenni levels are equal in energy; when the Fermi levels are 
equal, no further electron transfer takes place. In other words, the 
intrinsically lower energy of electrons in the conduction band of the 
second metal is exactly compensated by the electrical work required to 
move an electron from the first metal to the second against the electric 
potential difference. 

A very similar process occurs when a metal, say a piece of copper, 
is placed in a solution of copper sulfate. Some of the copper ions may 
deposit on the copper metal, accepting electrons from the metal 
conduction band and leaving the metal with a small positive charge and 
the solution with a small negative charge. With a more active metal, it 
may be the other way around: a few atoms leave the metal surface as 
ions, giving the metal a small negative charge and the solution a small 
positive charge. The direction of charge transfer depends on the metal, 
but in general charge separation occurs and an electric potential 
difference is developed between the metal and the solution. 

When two dissimilar electrolyte solutions are brought into contact, 
there will be a charge separation at the phase boundary owing to the 
different rates of diffusion of the ions. The resulting electric potential 
difference, called a liquid junction potential, is discussed in §3.4. 

In general, whenever two conducting phases are brought into 
contact, an interphase electric potential difference will develop. The 
exploitation of this phenomenon is one of the subjects of 
electrochemistry. 

Consider the electrochemical cell shown in Figure 1.2. A piece of 
zinc metal is immersed in a solution of ZnS04 and a piece of copper 
metal is immersed in a solution of CUS04. The two solutions make 
contact with one another through a fritted glass disk (to prevent mixing), 
and the two pieces of metal are attached to a voltmeter through copper 
wires. The voltmeter tells us that a potential is developed, but what is its 
origin? There are altogether four sources of potential: (1) the copper
zinc junction where the voltmeter lead is attached to the zinc electrode; 
(2) the zinc-solution interface; (3) the junction between the two solutions; 
and (4) the solution-copper interface. The measured voltage is the sum of 
all four interphase potentials. 

In the discussion which follows, we shall neglect potentials which 
arise from junctions between two dissimilar metals or two dissimilar 
solutions. This is not to say that such junctions introduce negligible 
potentials; however, our interest lies primarily in the metal-solution 
interface and solid or liquid junction potentials make more or less 
constant additive contributions to the measured potential of a cell. In 
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Zn lCu 

glass frit 
(salt bridge) 

Figure 1.2 The Daniell ZnS04 
cell. solution 

CUS0 4 
solution 

careful work, it is necessary to take explicit account of solid and liquid 
junction potentials. 

Origi1Ul ofElectrochemistry 

The electrochemical cell we have been discussing was invented in 
1836 by John F. Daniell. It was one of many such cells developed to 
supply electrical energy before electrical generators were available. 
Such cells are called galvanic cells, remembering Luigi Galvani, who in 
1791 accidentally discovered that static electricity could cause a 
convulsion in a frog's leg; he then found that a static generator was 
unnecessary for the effect, that two dissimilar metals (and an electrolyte 
solution) could also result in the same kinds of muscle contractions. 
Galvani thought of the frog's leg as an integral part of the experiment, 
but in a series of experiments during the 1790's, Alessandro Volta 
showed that the generation of electricity had nothing to do with the frog. 
Volta's work culminated in the construction of a battery (the voltaic pile) 
from alternating plates of silver and zinc separated by cloth soaked in 
salt solution, an invention which he described in a letter to Sir Joseph 
Banks, the President of the Royal Society of London, in the spring of 1800. 
Banks published the letter in the Society's Philosophical Transactions 
that summer, but months before publication, the voltaic pile was well 
known among the scientific literati of London. 

Among those who knew of Volta's discovery in advance of 
publication were William Nicholson and Sir Anthony Carlisle, who 
constructed a voltaic pile and noticed that bubbles of gas were evolved 
from a drop of water which they used to improve the electrical contact of 
the leads. They quickly showed that the gases were hydrogen and oxygen 
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Luilli Galvani (1737-1798) was a physiologist at the University of Bologna. 
Beginning about 1780, Galvani became interested in "animal electricity" 
and conducted all kinds of experiments looking for electrical effects in 
living systems. Alessandro Giuseppe Antonio Anastasio Volta (1745
1827) was Professor of Physics at the University of Pavia. Volta had 
worked on problems in electrostatics, meteorology, and pneumatics before 
Galvani's discovery attracted his attention. 

William Nicholson (1753-1815) started his career as an East India 
Company civil servant, was then a salesman for Wedgwood pottery in 
Holland, an aspiring novelist, a teacher of mathematics, a physics 
textbook writer and translator, a civil engineer, patent agent, and 
inventor of scientific apparatus. He founded the Journal of Natural 
Philosophy, Chemistry, and the Arts in 1797, which he published monthly 
until 1813. Sir Anthony Carlisle (1768-1840) was a socially prominent 
surgeon who dabbled in physics and chemistry on the side. 

Sir Humphry Davy (1778-1829) was Professor of Chemistry at the Royal 
Institution. Davy was an empiricist who never accepted Dalton's atomic 
theory and spent most of his career looking for defects in Lavoisier's 
theories, but in the process he made some very important discoveries in 
chemistry. Michael Faraday (1791-1867) began his career as Davy's 
assistant at the Royal Institution, but he soon made an independent 
reputation for his important discoveries in organic chemistry, electricity 
and magnetism, and in electrochemistry. Although his electrochemical 
work was seemingly an extension of Davy's electrolysis experiments, in 
fact Faraday was asking much more fundamental questions. Faraday is 
responsible (with the classicist William Whewell) for many of the terms 
still used in electrochemistry, such as electrode, cathode, anode, 
electrolysis, anion, and cation. John F. Daniell (1790-1845) was Professor 
of Chemistry at King's College, London. Daniell was a prolific inventor 
of scientific apparatus but is best known for the electrochemical cell 
which bears his name. 

and that water was decomposed by electrolysis. The Nicholson-Carlisle 
experiment, published in Nicholson's Journal only a few weeks after 
Volta's letter, caused a sensation in scientific circles throughout Europe. 
Volta's battery had provided for the first time an electric potential source 
capable of supplying significant current, and this technical advance, 
spurred by the discovery of water electrolysis, led in the next decade to 
the real beginnings of the study of electricity and magnetism, both by 
physicists and chemists. In the forefront among chemists was Sir 
Humphry Davy, who used the voltaic pile as a source of electricity to 
isolate metallic sodium and potassium in 1807, magnesium, calcium, 
strontium and barium in 1808, and lithium in 1818. Davy's assistant, 
Michael Faraday, went on in the next decades to lay the foundations of 
the science of electrochemistry.1 

1 The early history of electrochemistry is brilliantly expounded in Ostwald's 1896 
book, now available in English translation (C'l). 

(
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1.2 ELECTROCHEMICAL CELL THERMODYNAMICS 

Since the most obvious feature of a galvanic cell is its ability to 
convert chemical energy to electrical energy, we begin our study by 
investigating the thermodynamic role of electrical work. In §1.3, we 
discuss applications of data obtained from electrochemical cells. We 
tum to some experimental details in §1.4-§1.6 and conclude this chapter 
with introductions to analytical potentiometry in §1.7 and to batteries 
and fuel cells in §1.8. 

Current also may be passed through a cell from an external source 
to effect a chemical transformation as in the experiments of Nicholeon, 
Carlisle, and Davy; such cells are called electrolysis cells. We return to 
that mode of operation, beginning in Chapter 4. 

Electrical Work 

The first law of thermodynamics"may be stated as 

AU=q+w (LV 
where AUis the change in the internal energy of the system, q is the heat 
absorbed by the system, and w is the work done on the system. In .. elementary thermodynamics, we usually deal only with mechanical 
work, for example, the work done when a gas is compressed under the 
influence of pressure (dw =-PdV) or the expansion of a surface area 
under the influence of surface tension (dw = ')'dA). However, other kinds 
of work are possible and here we are especially interested in electrical 
work, the work done when an electrical charge is moved through an 
electric potential difference. 

Consider a system which undergoes a reversible process at 
constant temperature and pressure in which both mechanical (P-V) 
work and electrical work are done, w = - PA V + Welec. Since, for a 
reversible process at constant temperature, q = TAB, eq (1.1) becomes 

AUT,P = TAB - PAY + welec (1.2) 

At constant pressure, the system's enthalpy change is 

Mlp = AUp + PAY (1.3) 

and at constant temperature, the Gibbs free energy change is 

AGT = MlT - TAB (1.4) 

Combining eqs (1.2)-(1.4), we have 

AGT,P = Welec (L5) 
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Now let us see how electrical work is related to the experimentally 
measurable parameters which characterize an electrochemical system. 
Consider an electrochemical cell (the thermodynamic system) which 
has two terminals across which there is an electric potential difference, 
E.l The two terminals are connected by wires to an external load (the 

Figure 1.8 Electrochemical cell
 
doing work on an external
 I n=-~cell
resistance. 

surroundings), represented by a resistance R. When a charge Q is 
moved through a potential difference E, the work done on the 
surroundings is EQ. The charge passed in the circuit is the product of 
the number of charge carriers and the charge per charge carrier. If we 
assume that the charge carriers are electrons, then 

Q =(number of electrons) x (charge/electron) =Ne 

or 

Q = (number of moles electrons) x (charge/mole) = nF 

where F is the Faraday constant, the charge on one mole of electrons, 
96,484.6 coulombs (C), and n is the number of moles of electrons 
transferred. Thus the work done by the system on the resistor (the 
resistor's energy is raised) is simply nFE. However, according to the 
sign convention of eq (1.1), work done on the system is positive so that the 
electrical work is negative if the system transfers energy to the 
surroundings, 

Welec =-nFE (1.6) 

Substituting eq (1.6) into eq (1.5), we obtain the change in Gibbs free 
energy of the system, 

!J.GT,P =-nFE (1.7) 

IfE is measured in volts (V), Fin C mol-I, and n is the number of moles 
of electrons per mole of reaction (mol molJ), then !J.G will have the units 
of joules per mole (J moP) since 1 J = 1 V-C. This quite remarkable 
result immediately demonstrates the utility of electrochemical 
measurements: We have a direct method for the determination of 

1 In Chapter 2, where we will be dealing with electric potential in a slightly different 
context, we will use the symbol 4> for potential. Here, we follow tradition and denote 
the potential difference produced by an electrochemical cell by the symbol E, which 
comes from the archaic term electromotive force. The electromotive force or emf is 
synonymous with potential difference or voltage. 

( 
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changes in the Gibbs free energy without recourse to measuring 
equilibrium constants or enthalpy and entropy changes. 

Electrochemical CeU Conventions 

According to the second law of thermodynamics, a spontaneous 
process at constant temperature and pressure results in a decrease in 
Gibbs free energy. Thus a positive potential is expected when the cell 
reaction is spontaneous. There is room for ambiguity here since the 
sign of the potential depends in practice on how we clip on the voltmeter. 
However, we recall the convention for the sign of !J.G for a chemical 
reaction: if the chemical reaction is spontaneous, i.e., proceeds from left 
to right as written, we say that!J.G is negative. We need a convention for 
the sign of E which is consistent with that for !J.G. 

. In developing the required conventions, let us consider as a specific 
example the Weston cell shown in Figure 1.4.1 It is customary, in 
discussing electrochemical cells, to use a shorthand notation to 
represent the cell rather than drawing a picture of the experimental 
apparatus. The shorthand representation uses vertical lines to 
represent phase boundaries and starts from left to right, noting the 
composition of each phase in the system. Thus, the Weston cell may be 
represented as: 

Cd(12.5% amalgam)ICdS04(S)ICdS04(aq,satd)IHg2S04(S)IHg(1) 

We now agree by convention that, if the right-hand electrode is positive 
with respect to the left-hand electrode, we will say that the cell potential 
is positive. 

The Weston cell was developed in 1893 by Edward Weston (1850-1936), an 
inventor and manufacturer of precision electrical measuring 
instruments. 

Look now at the chemical processes going on at the two electrodes. 
Consistent with the convention of reading from left to right, we say that 
at the left-hand electrode, the process is 

Cd(Hg) -+ Cd2+(aq)+ 2 e (1.8) 

and, at the right-hand electrode, 

Hg2S04(S) + 2 e- -+ 2 Hg(1) + S042-(aq)' (1.9) 

The overall cell reaction then is the sum of these two half-cell reactions: 

Cd(Hg) + Hg2S04(S) -+ Cd2+(aq)+ S042-(aq) + 2 Hg(l) (1.10) 

1 Because the potential of the Weston cell, 1.0180 V at 25°C, is very reproducible, it 
has long been used as a standard potential source. 
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According to convention, the free energy change for the cell reaction is 
negative if the reaction proceeds spontaneously to the right and, 
according to eq (1.7), the cell potential should then be positive, i.e., the 
right-hand electrode (Hg) should be positive with respect to the left-hand 
electrode (Cd), 

CdS04 
solution 

HgS04(S) 

Figure 1.4 The Weston cell. 

Let us see if this is consistent. If the Hg electrode is positive, then 
conventional (positive) current should flow in the external circuit from + 
to - (from Hg to Cd) and electron (negative) current in the opposite 
direction. Thus electrons should enter the cell at the Hg electrode, 
converting Hg2S04 to Hg and S042- [as in eq (l.9)], and leave the cell at 
the Cd electrode, converting Cd to Cd2+ [as in eq (1.8)]; this is indeed 
consistent with the overall cell reaction proceeding from left to right as 
in eq (1.10). 

The cell convention can be summarized as follows: For an 
electrochemical cell as written, finding that the right-hand electrode is 
positive, relative to the left-hand electrode, is equivalent to a negative AG 
for the corresponding cell reaction. Conventional positive current flows 
from right to left in the external circuit, from left to right in the cell. 
Negative electron current flows from left to right in the external circuit, 
from right to left in the cell. The left-hand (negative) electrode is called 
the anode and the electrode process is an oxidation (removal of 
electrons); the right-hand (positive) electrode is called the cathode and 
the electrode process is a reduction (addition of electronsj.! 

1 The identification of the cathode with the reduction process and the anode with the 
oxidation process is common to both galvanic and electrolysis cells and is a better 

( 
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Activities and Activity Coefficients 

Consider a general chemical reaction 

aA + ~B ~ ;C + SD (1.11) 

According to chemical thermodynamics, the Gibbs free energy change 
when the reaction proceeds to the right is 

AG = AGO + RT In (ac)y(aDt (1.12) 

(aA)B(aB' 

where R is the gas constant, T the absolute temperature, and, for 
example, ac. is the activity of species C. At equilibrium, AG =0, and eq 
(1.12) reduces to the familiar relation 

AGO = -RT In Keq (1.13) 

where 

Ke = (ac!(aDt (1.14)q 
(aA)B(aB' 

In the derivation of eq (1.12), the activities were introduced to account for 
nonstandard states of the species. Thus for an ideal gas with standard 
state partial pressure po =1 bar, the activity is a =PIPO; for a component 
of an ideal solution with standard state concentration Co = 1 mol VI (l 
M), the activity is C I Co. Pure solids Or liquids are already in standard 
states, so that their activities are unity. The solvent in an ideal solution 
is usually assumed to be essentially the pure liquid with unit activity. 

In order to preserve the form of eqs (1.12), (1.13), and (1.14) for non
ideal solutions or mixtures of nonideal gases, so-called activity 
coefficients are introduced which account for the departure from 
ideality. Thus for a solute in a real solution, we write 

a = y CICo (1.15) 

where y is the unitless activity coefficient, C is the concentration, and CO 
is the standard state concentration, 1 M.I Since Co =1 M, activities are 
numerically equal to yC and we will normally leave Co out of 
expressions. We must remember, however, that activities, whether they 
are approximated by molar concentrations or by partial pressures or 
corrected for nonideality, are unitless. Thus equilibrium constants and 

definition to remember than the electrode polarity, which is different in the two 
kinds of cells. 
1 We will use the 1 M standard state in this book, but another common choice is 1 
molal, 1 mole solute per kilogram of solvent. Although activity coefficients are 
unitIess, they do depend on the choice of the standard state (see §2.6). 
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the arguments of logarithms in expressions such as eq (1.12) are also 
unitless. 

In this chapter, we will usually assume ideal behavior and ignore 
activity coefficients. We will return to the problem ofnonideality in §2.6. 

The Nemst Equation 

If we take eq (1.11) to be the overall reaction of an electrochemical 
cell, then eqs (1.7) and (1.12) maybe combined to give 

-nFE = llGo + RT In (ac)T(aD'f (1.16) 
(aA)i1(aB)P 

Ifwe introduce the standard potential, defined by 

EO = -IlGo/nF (1.17) 

and rearrange eq (1.16) slightly, we have the equation first derived by 
Nemst iil1889: 

E =E" _lIT..ln (acJY(aD'f (1.18) 
nF (aA)i1(aB)P 

The Nernst equation relates the potential generated by an 
electrochemical cell to the activities of the chemical species involved in 
the cell reaction and to the standard potential, EO. 

In using the Nemst equation orits predecessors, eqs (1.7) and (1.17), 
we must remember the significance of the parameter n. We usually use 
llG in units of energy per mole for a chemical equation as written. The 
parameter n refers to the number of moles of electrons transferred 
through the external circuit for the reaction as written, taking the 
stoichiometric coefficients as the number of moles of reactants and 
products. In order to determine n, the cell reaction must be broken down 
into the processes going on at the electrodes (the half-cell reactions) as 
was done in discussing the Weston cell. 

If the Nemst equation is to be used for a cell operating at 25°C, it is 
sometimes convenient to insert the values of the temperature and the 
Faraday and gas constants and convert to common (base 10) logs. The 
Nemst equation then is 

E = E" -~ log (ac)Y(aD'f (119) 
n (aA)Q(aB)P . 

Let us now apply the Nemst equation to the Weston cell. Identifying 
the appropriate species for substitution into eq (1.18) we obtain (with n = 2 
moles of electrons per mole of Cd) 

§1.2 Electrochemical Cell Thermodynamics n 

E =E" _lIT..ln (aCd2·XaSO.=a-XaHg) 
2F (acdKaHg2So.) (1.20) 

Hg and Hg2S04 are pure materials and so have unit activities. The 
solution is saturated in Cd804, so that the Cd2+ and 8042- ion activities 
are constant if the temperature remains constant. Finally, the Cd 
activity is constant provided that the concentration of cadmium in the 
amalgam (mercury solution) remains constant. If sufficient current is 
drawn from the cell, enough of the cadmium could be oxidized to change 
this concentration appreciably, but if only small currents are drawn, the 
potential is seen to be relatively insensitive to changes such as 
evaporation of the solvent. The potential of the Weston cell, 1.0180 V at 
25°C, is easily reproducible and has a relatively small temperature 
coefficient. The cell has been widely used as a standard potential source. 

Hermann Walther Nernst (1864-1941) was Ostwald's assistant at the 
University of Leipzig and later Professor of Physical Chemistry at the 
Universities of Gottingen and Berlin. Nernst made many important 
contributions to thermodynamics (he discovered the Third Law) and to 
solution physical chemistry. . 

Half-Cell Potentials 

As we have already seen, it is possible to think of the operation of a 
cell in terms of the reactions taking place at the two electrodes 
separately. Indeed we must know the half-cell reactions in order to 
determine n, the number of moles of electrons transferred per mole of 
reaction. There are advantages in discussing the properties of 
individual half-cells since (1) each half-cell involves a separate reaction 
which we would like to understand in isolation, and (2) in classifying 
and tabulating results, there will be a great saving in time and space if 
we can consider each half-cell individually rather than having to deal 
with all the cells which can be constructed using every possible 
combination of all the available half-cells. 

Consider again the Weston cell, and think of the potential an 
electron would see on a trip through the cell. The potential is constant 
within the metallic phase of the electrodes and in the bulk of the 
electrolyte solution and changes from one constant value to another over 
a few molecular diameters at the phase boundaries.1 The profile of the 
potential then must look something like the sketch shown in Figure 1.5. 

1 The details of this variation of potential with distance are considered in Chapter 2. 
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The Nernst equation for the Weston cell, eq (1.20), gives us the cell 
potential as a function of the standard potential and of the activities of all 
participants in the cell reaction. We would like to break eq 0.20) into two 
parts which represent the electrode-solution potential differences shown 
in Figure 1.5. It is customary in referring to these so-called half-cell 
potentials to speak of the potential of the solution relative to the electrode. 
This is equivalent to referring always to the electrode process as a 
reduction. When, in the actual cell reaction, the electrode process is an 
oxidation, the contribution to the cell potential will then be the negative of 
the corresponding reduction potential. Thus in the case of the Weston 
cell, we can write for the cell potential 

EceU =-ECd2+/Cd + EHg2S0~g (1.21) 

Breaking the standard cell potential into two components in the same 
way, the half-cell potentials defined by eq (1.21) can be written in the form 
of the Nernst equation such that substitution in eq 0.21) gives eq (1.20). 
Thus 

ECda+/Cd =E'Cd'A+tCd _HI In (aCd)
2F (aCd2+) 

\ 

R'l'-l (aHg)(~ol)E o
EHg2S04!'Hg = HgtS04!'Hg - 2F n ( : )

aHgtS~4 

Unfortunately, there is no way of measuring dir~tly the potential 
difference between an electrode and a solution, so that single electrode 
potentials cannot be uniquely defined.l However, since the quantity is 
not measurable we are free to assign an arbitrary standard potential to 
one half-cell which will then be used as a standard reference. In effect 
this establishes a potential zero against which all other half-cell 
potentials may be measured.

By universal agreement among chemists, the hydrogen electrode 
was chosen as the standard reference half-cell for aqueous solution 

1 We will see in §2.5 that some properties (the electrode-solution interfacial tension 
and the electrode-solution capacitance) depend on the electrode-solution potential 
difference and so could provide an indirect means of establishing the potential zero. 

o 
o. 

( 

§1.2 Electrochemical Cell Thermodynamics J3 

electrochemistry.l The hydrogen electrode, shown in Figure 1.6, consists 
of a platinum electrode coated with finely divided platinum (platinum 
black) over which hydrogen gas is bubbled. The half-cell reaction 

2 H+(aq) + 2 e- -+ H2(g) 

is assigned the standard potential of 0.000 V. Thus the potential of the 
cell 

PtlH2(g,a=1)IH+(a=I), Zn2+(a=1)IZn 

is equal to the standard potential of the Zn2+lZn half-cell. By measuring 
the potentials of many such cells containing the hydrogen electrode 

.. H2 

Pt 

FiIfUN 1.8 The hydrogen electrode. 

chemists have built up extensive tables of half-cell potentials. A 
selection of such data, taken from the recent compilation by Bard, 
Parsons, and Jordan (H13), is given in Appendix Table AA. 

1.3 SOME USES OF STANDARD POTENTIALS 

With the data of Table A.4 or more extensive collections of half-cell 
potentials (H1·H14), we can predict the potentials of a large number of 
electrochemical cells. Since the standard potential of a cell is related to 
the standard Gibbs free energy change for the cell reaction by eq (1.17), 
we can also use standard cell potential data to compute Ii.G 0, predict the 
direction of spontaneity, or calculate the equilibrium constant <D6). In 
this section we will work through several examples of such calculations. 

1 See §4.2 for discussion of the problem of reference potentials for nonaqueous 
solutions. 
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Many half-cell reactions in aqueous solutions involve H+, OH-, weak 
acids, or weak bases, so that the half-cell potential is a function of pH. 
While this dependence is predictable using the N ernst equation. it is 
often inconvenient to take explicit account of pH effects and a variety of 
techniques have been developed to simplify qualitative applications of 
half-cell potential data. An understanding of these methods is 
particularly important in biochemical applications. Several graphical 
presentations of half-cell potential data have been developed in attempts 
to make it easier to obtain qualitative predictions of spontaneity for redox 
reactions. 

Potential., Free Energies, and Equilibrium Constant. 

Building a hypothetical cell from two half-cells is straightforward 
on paper. (The construction of an actual working cell often can present 
insurmountable problems.) Consider two half-cells 

A + n e- B Eo AlB 

C + m e- D EOC/D 

The half-cell reactions are combined to give the cell reaction 

mA+nD ....... mB+nC
 

where we have multiplied the first equation by m, the second by n, and 
subtracted. To see that the cell potential is just 

Eocell =EOAlB - EOC/D (1.22) 

we need a few lines of proof. When we add or subtract chemical 
equations, we similarly add or subtract changes in thermodynamic state 
functions such as U, H, S. or G. Thus in this case 

.1Gocell = m .1GoAlB - n .1GoC/D 

.1Gocell = m (-nFEOAlB) - n (-mFEOC/D) 

.1Gocell = -mnF(EOAlB - EOcm) = -tmn. )FEOcell 

where mn is the number of electrons transferred per mole of reaction as 
written. 

Why can we combine half-cell potentials directly without taking 
account of stoichiometric coefficients, whereas .1G's must be properly 
adjusted before combination? There is a significant difference between 
Eo and .1Go: G is an extensive property of the system so that when we 
change the number of moles we are discussing, we must adjust G; E, on 
the other hand. is an intensive variable-it is independent of the size of 
the system-related to .1G by the extensive quantity nF. 

( 

§l.3 Some Uses of Standard Potentials 

Esample 1.1 Compute EO and .1Go for the cell 

Pt(s)II-(aq),I2(aq)IIFe2+(aq),Fe3+(aq)lPt(s) 

(the double vertical line refers to a salt bridge used to separate 
the two solutions). 

Referring to Table AA, we find the following data: 

Fe3+ + e- --+ Fe2+ EOFe3+/Fe2+ = 0.771 V 

12 + 2 e- ....... 2 I- EOI'J!I- =0.536 V 

To obtain the overall cell reaction, we multiply the first 
equation by 2 and subtract the second: 

2 Fe3+ + 2 I- --+ 2 Fe2+ + 12 

Eocell =EOFe3+/Fe2+ - EOI'J!I- =0.235 V
 

.1Go= -2FEO
 

l:1Go = -45.3 kJ mol-l
 

Thus the oxidation of iodide ion by ferric ion is spontaneous
 
under standard conditions. The same standard free energy
 
change should apply for the reaction under nonelectro

chemical conditions. Thus we can use the standard free
 
energy change computed from the cell potential to calculate the
 
equilibrium constant for the reaction of Fe3+ with 1- to give Fe2+
 
and 12. 

In K = -.1Go/RT 

K = 8.6 X 107 = [Fe2+J2[I2] 
[Fe3+]2[I-]2 

Because K is large, it might be difficult to determine directly by 
measurement of all the constituent concentrations, but we 
were able to compute it relatively easily from electrochemical 
data. Indeed, most of the very large or very small equilibrium 
constants we encounter in aqueous solution chemistry have 
their origins in electrochemical cell potential measurements. 

Example 1.2 Given the half-cell potentials 

Ag+(aq) + e- ....... Ag(s) Eo =0.7991 V 

AgBr(s) + e' --+ Ag(s) + Brfaq) ED = 0.0711 V 

compute the solubility-product constant for silver bromide. 
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Subtraction of the first half-cell reaction from the second gives 
the AgBr solubility equilibrium 

AgBr(s) +Z Ag+(aq) + Brfaq) 

The standard potential of the hypothetical cell with this 
reaction is 

Ecell = EOAgBr/Ag - EOAg+/Ag = ~. 7280 V 

AOO = -nFEO = 70.24 kJ mol-1 

K = 4.95 x 10-13 = aAg+(lBr 

While potentials of half-cells are simply subtracted to compute the 
potential of a cell, there are seemingly similar calculations where,this 
approach leads to the wrong answer. Consider the half-cell prccesses . .. 

A + n e- ~ B EOAlB 

B + m e- ~ C EOB/C 

A + (n+m) e- ~ C EOA/C 

Clearly the last reaction is the sum of the first two, but EOAJC is not the 
sum of EOAlB and EOB/C. It must be true that 

AGoNC = AGoNB + AGoB/C 

Converting to standard potentials, we have 

-(n+m)FEoNC = -nFEoAlB - mFEoB/C 

or 
~NC = nE°AlB + ~oB/C (1.23) 

so that when half-cell potentials are combined to produce a new half-cell, 
the potentials are not additive. The best advice for calculations involving 
half-cell potentials is: When in doubt, convert to free energies before 
doing the calculation. Since the desired result is often a free energy 
change or an equilibrium constant, this strategy usually involves no 
more computations and is much less likely to lead to errors. 

Example 1.3 Compute the standard half-cell potential for the 
reduction of Fe3+ to Fets) given EOFe3+fFe2+ and EOFe2+fFe. The 
half-cell potentials from Table AA are 

Fe3+ + e- ~ Fe2+ ~=0.771 V 

Fe2+ + 2 e- ~ Fets) ~=-o.44V 

11.3 Some Uses of Standard Potentials 

These half-cell potentials are combined using eq (1.23) to obtain 
the half-cell potential for the three-electron reduction of Fe3+: 

Fe3+ + 3 e- ~ Fe(s) 

EOFe3+fFe =;<E°Fel!+fFe2+ + 2E°Fe2+fFe) 

EOFe3+fFe = 1<0.771- 0.88) = -0.04 V 

Formal Potentials 

Standard potentials refer to standard states, which for solution 
species are the hypothetical 1 M ideal solutions. Very dilute solutions 
can be assumed ideal and calculations using standard potentials are 
then reasonably accurate without activity coefficient corrections. For 
electrolyte concentrations less than about 0.01 M, activity coefficients can 
be computed reasonably accurately using Debye-Huckel theory (§ 2.6), but 
for more concentrated solutions, empirical activity coefficients are 
required. 

One way around the problem of activity coefficients is through so
called formal potentials. A formal half-cell potential is defined as the 
potential of the half-cell when the concentration quotient of the Nemst 
equation equals 1. Consider the Fe(III)IFe(II) couple. The Nemst 
equation gives 

E = EOFe3+/Fe2+ _l1I..ln are'"
F aFe8+ 

or 

"(F; '" DI'J"I [Fe2+] E = EOFe3+/Fe'" _MIn _e__.u...L.ln-
F 'YFe8+ F [Fe3+] 

Thus when the concentrations of Fe3+ and Fe2+ are equal, the last term 
on the right-hand side is zero and the formal half-cell potential is 

DT 'YFe'"EO' = EOF 3+/F 2+ _ll...L In-
e e F 'YFe8+ 

As we will see in §2.6, activity coefficients depend primarily on the total 
electrolyte concentration (ionic strength) of the solution, so that in a 
solution where the ionic strength is determined mostly by a high 
concentration of an inert electrolyte, the activity coefficients are nearly 
constant. Molar concentrations can then be used, together with formal 
potentials appropriate to the medium, in calculations with the Nemst 
equation. A representative sample of formal potentials for 1 M HCI04, 1 
M HCl, and 1 M H2S04 solutions is given in Table A.6. 

The formal potential of the Fe(III)lFe(II) couple in 1 M HCI04 is EO
= 0.732 V, significantly different from the standard potential of 0.771 V, 
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suggesting that the activity coefficient ratio is about 0.22 in this medium. 
In a medium with coordinating anions, e.g., aqueous HCl, Fe(l!), and 
Fe(II!) form a variety of complexes. In order to compute the half-cell 
potential from the standard potential, we would have to know not only 
the activity coefficients but the formation constants of all the complexes 
present. The formal potential of the Fe(lII)/Fe(Il) couple in 1 M HCl, EO' 
= 0.700 V, thus differs from the standard potential both because of activity 
coefficient effects and because of chloro complex formation. As long as 
the medium is constant, however, the relative importance of the various 
complexes is constant and the formal potential can be used as an 
empirical parameter to compute the overall Fe(I!)lFe(II!) concentration 
ratio. 

Latimer Diagrams 

When we are interested in the redox chemistry of an element, a 
tabulation of half-cell potential data such as that given in Table A.4 can 
be difficult to assimilate at a glance. A lot of information is given and it 
is not organized to give a qualitative understanding of a redox system. 
Nitrogen, for example, exists in compounds having nitrogen oxidation 
states ranging from -3 (NHa) to +5 (NOa-) and all intermediate oxidation 
states are represented. One way of dealing with complex systems like 
this is to use a simplified diagram introduced by Latimer (HI) and 
usually referred to with his name. An example of a Latimer diagram is 
shown in Figure 1.7 for the aqueous nitrogen system. In the Latimer 
diagram, any H+, OH-, or H20 required to balance the half-cell reaction 
is omitted for clarity. Thus, if we wish to use the half-cell potential for 
the N03-1N204 couple, for example, we must first balance the equation 

N03- + 2 H+ + e- ~ ~ N204 + H2O JtO = 0.80 V 

Figure 1.7 also includes a Latimer diagram for nitrogen species in basic 
aqueous solution. The Latimer diagram tells us that one-electron 
reduction of nitrate ion again produces N204, but the half-cell potentials 
differ by 1.66 V. The reason is clear when we write the half-cell reaction. 
The difference between the half-cell reactions is 

2 H20 ~ 2H++20H

the Gibbs free energy of which is -2RT In Kw, 160 kJ mol-1 or 1.66 eV. 

N03- + H20 + e- ~ i N204 + 2 OH- E<' = -0.86 V 

Wendell M. Latimer 0893-1955) was a student of G. N. Lewis and later a 
Professor of Physical Chemistry at the University of California 
(Berkeley). Latimer's contributions were primarily in applications of 
thermodynamics to chemistry. 
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Fieure 1.7 Latimer diagram showing the half-eell potentials for the various 
nitrogen redox couples in acidic and basic aqueous solutions. Hydrogen or 
hydroxide ions or water required to balance the half-cell reactions have been 
omitted for clarity. 

Example 1.4 Compute the half-cell potential for the reduction 
of NOa- to N02- in basic solution given the potential for the 
reduction in acid solution, 0.94 V, and the ionization constants 
of nitrous acid and water, PKa = 3.3, pKw = 14.00. 

The desired half-cell reaction is the sum of the following: 

NOa-+ 3 H+ + 2 e- -+ HN02 + H20 AGO =- 2FEoNOa-/HN02 

HN02 -+ H+ + N02- Mlo = 2.303 RTPKa 

2 H2O ~ 2 H+ + 20H- Mlo =2 x 2.303 RTpKw 

The standard free energy change for the desired half-cell then 
is 

AG' = - 2Fl:0.94) + 2.303 RT (3.3 + 28.00) 

AG' = -2700 J moP 

E<' = -AGol2F = 0.01 V 

Free Energy - Oxidation State Diagrams 

While Latimer diagrams compress a great deal of information into 
a relatively small space, they are expressed in potentials which, as we 
have seen, are not simply additive in sequential processes. Some 
simplification is possible if the potentials are converted to free energy 
changes relative to a common reference point. If we use zero oxidation 
state (the element itself) as the reference point, then half-cell potentials 
can be converted to a kind of free energy of formation where the species 
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of interest is formed from the element in its most stable form at 25°C and 
from electrons, H+ or OH- ions, water, or other solution species. Thus we 
could form HN02 from N2(g) by the following half-cell process: 

i N2(g)+ 2 H2O ~ HN02 + 3 H+ + 3 e" 

The free energy change for this process can be obtained from half-cell 
potential data such as those given in Figure 1.7. Since the reductions of 
HN02 to NO, NO to N20, and N20 to N2 all involve one electron per 
nitrogen atom, the potentials can be added directly to obtain the 
(negative) overall free energy change for the three-electron reduction; 
changing the sign gives !:1Go for the oxidation: 

!:1Go=F<1.77 + 1.59 + 1.00) =4.36F 

!:1Go is usually expressed in kJ molJ, but for the present purpose it is 
easier to think of !:1Go/F, which is equivalent to putting !:1Go in units of 
electron-volts (1 eV = 96.485 kJ mol-l). 

Similar calculations for the free energies of the other nitrogen 
oxidation states can be done using the data of Figure 1.7. These free 
energies are plotted vs. nitrogen oxidation number in Figure 1.8. Free 
energy - oxidation state diagrams were introduced by Frost (1) and often 
are called Frost diagrams. These diagrams were popularized in Great 
Britain by Ebsworth (2) and sometimes are referred to as Ebsworth 
diagrams. 

Arthur Atwater Frost 0909-) was a professor of chemistry at Northwestern 
University. He is best known for his work in chemical kinetics and 
molecular quantum mechanics. 

A free energy - oxidation state diagram contains all the information 
of a Latimer diagram but in a form which is more easily 
comprehensible for qualitative purposes, The slope of a line segment 
connecting any two points, !:1Go/t1n, is just the potential for the reduction 
half-cell connecting the two species. Thus we can see qualitatively, for 
example. that EO is positive for the reduction of NOg- to NH4+ in acid 
solution but is negative for the reduction ofNOg' to NH3 in basic solution. 

Species corresponding to minima, e.g., N2(g), N14+ (acid solution), 
N02-, and NOg" (basic solution), are expected to be thermodynamically 
stable since pathways (at least from nearby species) are energetically 
downhill to these points. Conversely. points that lie at maxima are 
expected to be unstable since disproportionation to higher and lower 
oxidation states will lower the free energy of the system. Thus, for 
example, the disproportionation of N204 to N02" and NOg" is highly 
exoergic in basic solution. The point for N204 in acid solution is not a 
maximum, but does lie above the line connecting HN02 and NOg"; thus 
disproportionation is spontaneous in acid solution as well. 
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Firure 1.8 Free energy - oxidation state diagram for the nitrogen oxidation 
states in acid (solid line) and basic (dashed line) solutions. 

The Biochemical Standard State 

Oxidation-reduction reactions play important roles in biochemistry 
and half-cell potential data are often used in thermodynamic 
calculations. The usual standard reduction potentials tabulated in 
chemistry books or used in Latimer diagrams or free energy - oxidation 
state diagrams refer, of course, to 1 M standard states and thus to pH 0 
or pH 14, depending on whether we choose to balance the half-cell 
reactions with H+ or OH" ions. Because life rarely occurs in strongly 
acidic or strongly basic solutions, however, neither of these choices is 
convenient for biochemical purposes, and biochemists usually redefine 
the standard states of'Hr and OH- as pH 7, i.e., [H+]O =[OH-]O =10-7 M. 

Biochemical standard free energy changes, standard potentials, 
and equilibrium constants are usually distinguished from the 
corresponding chemical standard quantities by writing't1G', E', or Kin 
place of t1Go. EO, or K. A collection of biochemical standard potentials for 
some half-cell reactions of biological interest is given in Table A.5. 

With the standard states of Hr and OH" defined as 10-7 M, we must 
be careful to recognize that the activities of these species are no longer 
even approximately equal to their molar concentrations. The activity of a 
solute i is defined (neglecting nonideality) as 
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a; =CilCio 

so that when Cia = 1 M, OJ = Ci. But when Ct = 10-7 M, at = 107 Ci. 
Consider the Nernst equation for the hydrogen electrode: 

E =E>-HT..ln (oHaf
F OH' 

With H2(g) at unit activity, this expression can be written 

E =E> + HT.. In OH' 
F 

Using the chemical standard state and EO = 0.00 V, we have 

E = HT..ln [H+]
F 

With the biochemical standard state, the corresponding expression is 

E = E' +Bf In (107[H+]) (1.24) 

For equal [H+], the two equations must give the same potential; 
subtracting one equation from the other thus gives 

E' =_HT..ln 107 

F 
or E' = -0.414 V at 25°C. Similarly, for a half-cell reaction 

A + m H+ + n e- --+ B 
E' and EO are related by 

E' =EO - mB..T.ln 107 

nF 
or, at 25°C, 

E' = EO - 0.414 m l n. 

Similar relations can be derived between liG' and liGo and between 
K' and K (see Problems). For an equilibrium reaction 

A+m H+ --+ B 

we find that 

K = 1O-7mK (1.25) 

liG' = liGo + mRT In 107 (1.26) 

or, at 25°C, 

liG'IkJ mol-l = liGo + 40.0 m 

Conversion back and forth between chemical and biochemical 
standard states is straightforward as long as the reactions involve H+ or 
OH- in clearly defined roles and the necessary pKa data are available. 

11.3 Some Uses of Standard Potentials 

Example 1.5 Given the biochemical standard potential for the 
conversion of acetate ion and C02 gas to pyruvate ion, 

CH3C02-(aq) + C02(g) + 2 Ht(aq) + 2 e- --+ CH3COC02-(aq) + H20(l) 

E' = -0.699 V, compute the chemical standard potential for the 
analogous process involving the neutral acids. The pKa's of 
acetic and pyruvic acids are 4.76 and 2.49, respectively. 

The biochemical standard free energy change for the half-cell 
reaction is liG' = -nFE' = 134.9 kJ mol-l; converting to the 
chemical standard state using eq (1.26), we have 

CH3C02- + C02 + 2 H+ + 2 e- --+ CH3COC02- + H2O ,(i) 

-with liGo = +55 kJ mol-l. The acid ionization steps are 

CH3COOH --+ CH3C02- + H+ (ii) 

CH3COCOOH --+ CH3COC02- + H+ (iii) 

with liGo = -2.303 RT PKa = 27.2 and 14.2 kJ mol-l, respectively. 
Adding eqs (i) and (ii) and subtracting eq (iii), we have 

CH3COOH + C02 + 2 H+ + 2 e- --+ CH3COCOOH + H20 

andliOO = 55.0 + 27.2-14.2 = 68.0 kJ mol-l,E> =-O.352V. 

Unfortunately, it is not always clear exactly how many H+ or OH
ions are involved in a half-cell reaction. The problem is that many 
species of biochemical interest are polyelectrolytes having weak acid 
functionalities with pKa's near 7. For example, the pKa ofH2P04- is 7.21, 
80 that at pH 7, [HP042-]1[H2P04-] = 0.62. When phosphate is involved in a 
half-cell reaction, it is often bound (esterified) to give a species with a pKa 
similar but not identical to that of H2P04-. Thus the exact number of 
protons involved in the electrode process is a complex function of pH 
involving several sometimes poorly known P.Ka's. 

The problem is somewhat simplified by specifying the standard 
state of inorganic phosphate as the pH 7 equilibrium mixture of H2P04
and HP042- with a total concentration of 1 M. Phosphate esters and 
other weak acids are given similar standard states. Calculations based 
on biochemical standard potentials then give unambiguous results at 
pH 7, but because the number of protons involved in a half-cell reaction 
is ambiguous and pH-dependent, it is difficult, if not impossible, to 
correct potentials to another pH. 

Example 1.6 Calculate the biochemical standard free energy 
change and equilibrium constant for the reaction of 3
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phosphoglyceraldehyde with nicotinamide adenine 
dinucleotide (NAD+) and inorganic phosphate to give 1,3
diphosphoglycerate. Estimate the chemical standard free 
energy change and equilibrium constant. 

The half-cell potentials from Table A.5 are 

RCO~32.+ 2 H+ + 2 e' -+ RCHO + HP042- E' = -0.286 V 

NAD+ + H+ + 2 e- -+ NADH E' = -0.320 V 

where R =CHOHCH20P032. and all species are understood to 
be pH 7 equilibrium mixtures. The cell reaction is 

RCHO + HPO.2- + NAD+ -+ RC02l'032-+ H+ + NADH 

and the standard cell potential at pH 7 is 

E =(-0.320)- (-0.286) =- 0.034 V 

The free energy change and equilibrium constant at pH 7 are 

lJ.G' =-nFE'
 

lJ.G =+6560 J mol-l (6.56 kJ mol-I)
 

K =exp(-lJ.G'/RT>
 

so that 
K =0.071 =	 aRCO,po,,2- aH+ aNADH 

aRCHO aHPO.2- aNAD+ 

or 

K _ [RCO~032-](107[H+]}[NADH] 

- [RCHO][HP042-)[NAD+] 

The cell reaction involves four different sets of phosphate 
pKa's. If they are similar, the corrections will approximately 
cancel; thus we use eqs 0.25) and (1.26) obtain estimates of K 
and !:>Go; 

K"'7.1x1o-9 

!:>Go '" 46.6 kJ mol-I 

This result shows one reason for the use of a special standard 
state for H+ and OH' in biochemistry. The reaction of NAD+ 
with 3-phosphoglyceraldehyde appears to be hopelessly 
endoergic under chemical standard conditions. The values of 
lJ.GO and K thus are misleading since at pH 7 the equilibrium 
constant is not so very small and significant amounts of 
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product are expected, particularly if the phosphate 
concentration is high compared with the other species. 

Potential· pH Diagrams 

Chemists interested in reactions at pH 0 or pH 14 or biochemists 
willing to stay at or near pH 7 are well served by tables of half-cell 
potentials, Latimer diagrams, or free energy - oxidation state diagrams. 
For systems at other pH values, the Nernst equation gives us a way of 
correcting potentials or free energies. Consider again the general half
cell process 

A+mH++ne' -+ B 

with potential 

E=EO-R.X.ln~
nF aAt.aH+yn 

When the A and B activities are equal, we have 

E =EO - 2.303~ pH 

Thus a half-cell potential is expected to be linear in pH with a slope of 
~9.2 (mIn) mV per pH unit at 25°C. Electrode processes involving a 
weak acid or weak base have potential - pH variations which show a 
change in slope at pH =pKa. For example, the reduction of N(V) to 
N(lll) in acid solution is 

N03' + 3 H+ + 2 e" -+ HN02 + H20 

so that the E us. pH slope is -89 mV pH'I. In neutral or basic solution, 
the process is 

I
NOs-+ 2 H+ + 2 e- -+ N02- + H2O
 

or
 

N03' + H20 + 2 e' -+ N02- + 20H

, so that dE/dpH = -59 mV pH-I. The N(V)IN(Ill) half-cell potential is 
plotted us. pH in Figure 1.9. Plots of the half-cell potentials of the! N(III)IN(O) and N(O)IN(-III) couples are also shown in Figure 1.9, 
together with the OVH20 and H201H2 couples. 

The significance of the 02ffi20 and H201H2 couples is that these 
define the limits of thennodynamic stability of an aqueous solution. Any 
couple with a half-cell potential greater than that of the OVH20 couple is 
in principle capable of oxidizing water. Similarly, any couple with a 
potential less than (more negative than) that of the H201H2 couple is in 
principle capable of reducing water. As it happens, there are many 
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species which appear to be perfectly stable in aqueous solution which are 
part of couples with half-cell potentials greater than that of the OWH20 
couple or less than that of the H20/H2 couple. This is a reflection, 
however, of the intrinsically slow 02/H20 and H20/H2 reactions rather 
than a failure of thermodynamics. The reactions do not occur because 
there is a very large activation barrier, not because there is no overall 
driving force. 

Predominance Area Diagrams 

We see in Figure 1.9 that nitrous acid and the nitrite ion are in 
principle capable of oxidizing water and are thus thermodynamically 
unstable in aqueous solution. Although this instability is not manifested 
because the reactions are slow, it raises the related question: What is the 
thermodynamically most stable form of nitrogen at a given pH and 
electrode potential? Referring to the free energy - oxidation state 
diagram, Figure 1.8, we see that for both acidic and basic solutions the 
points for N(-!) and N(-Il) lie above the line connecting N(O) and N(-III); 
these species thus are unstable with respect to disproportionation. 
Similarly, the points for N(l), NO!), N(III), and N(IV) all lie above the 
N(O) - N(V) line, so that these species are also unstable. The existence of 
any of these species in aqueous solution therefore reflects kinetic 
stability rather than thermodynamic stability. In fact, only NOg-, NIls, 
NH4+, and N2 are thermodynamically stable in aqueous solution. 
Furthermore, according to thermodynamics, NOg- is unstable in the 
presence of NH4+ or NHg. One way of expressing the conclusions 
regarding thermodynamic stability is by means of a predominance area 
diagram, developed by Pourbaix (3,H5) and thus commonly called a 
Pourbaix diagram. 

Marcel Pourbaix (1904-) was a professor at the Free University of 
Brussels and Director of Centre BeIge d'Etude de la Corrosion. 

A Pourbaix diagram is a potential - pH plot, similar to that of 
Figure 1.9, in which regions of thermodynamic stability are identified. 
Lines separating regions represent the potential and pH at which two 
species are in equilibrium at unit activity. Pourbaix diagrams usually 
also include the region of water stability. The Pourbaix diagram for 
nitrogen is shown in Figure 1.10. We see that in most of the potential 
pH area of water stability the most stable form of nitrogen is N2(g). At 
low potential and low pH, NH4+ is most stable and at low potential and 
high pH NHg is most stable. Nitrate ion is stable in a narrow high
potential region above pH 2. Below pH 2, NOg- is in principle capable of 
oxidizing water, though the reaction is so slow that we normally do not 
worry about the decomposition of nitric acid solutions. 
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Figure 1.9 Potential- pH diagram FilfUre 1.10 Predominance area 
showing the variation in half-cell diagram (Pourbaix diagram) for 
potentials with pH for the nitrogen in aqueous solution. The 
N(III)/N(O), N(V)/N(III), and labeled regions correspond to 
N(O)IN(-III) couples. Note changes areas of thermodynamic stability 
in slope of the first two lines at pH for the indicated species. Water is 
g.14 (the pKa of HN02) and of the stable between the dashed lines 
third line at pH 9.24 (the pKa of showing the 02/H20 and H20/H2 
NH4 +). Also shown (dashed lines) couples. 
are the potentials of the 02/H20 
and H20/H2 couples. 

Pourbaix diagrams for kinetically stable systems like the oxidation 
states of nitrogen are not particularly useful. Most of the interesting 
chemistry involves species which are thermodynamically unstable and 
therefore do not appear on the diagram. For more labile redox systems, 
on the other hand, where thermodynamic stability is more significant, a 
Pourbaix diagram can be very useful in visualizing the possibilities for 
aqueous chemistry; we will see an example of this kind in Chapter 7. 

1.4 MEASUREMENT OF CELL POTENTIALS 

In order to obtain cell potentials which have thermodynamic 
significance, the potential must be measured under reversible 
conditions. In thermodynamics, a reversible process is one which can 
be reversed in direction by an infinitesimal change in the conditions of 
the surroundings. For example, the direction of a reversible chemical 

. - N03-(aq) 

, __-- --
---- -t-. ----

NH4+(aq) 

-1.0 I . • . • . • . • .•• . • • • 
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reaction might be changed by an infinitesimal increase in the 
concentration of a reactant or product. Similarly, an electrochemical 
cell is reversible if the direction of current flow in the external circuit 
can be reversed by an infinitesimal change in one of the concentrations. 
Alternatively. we can think in terms of an operational definition of 
electrochemical cell reversibility: An electrochemical cell is regarded as 
reversible if a small amount of current can be passed in either direction 
without appreciably affecting the measured potential. 

The words "small" and "appreciable" are ambiguous; the meaning 
depends upon the context of the experiment. A cell which appears 
reversible when measured with a device with a high input resistance 
(and thus small current) may appear quite irreversible when measured 
by a voltmeter with a low input resistance. There are a number of 
causes of irreversible behavior in electrochemical cells which are 
discussed in more detail in Chapter 5. Irreversible behavior usually 
results from an electrode process having slow reaction kinetics, in the 
electron transfer process itself, in a coupled chemical reaction, in the 
delivery of reactants to the electrode, or the removal of products from the 
electrode. For the purposes of discussion of cell potential 
measurements, however, we can think of an electrochemical cell as 
having an internal resistance which limits the current which can be 
delivered. Strictly speaking, in any reasonable model the resistance 

:1 would be nonohmic, i.e., current would not be linear in potential. We 
! can, however, use a simple ohmic model to show one of the consequences 

of irreversibility. 
Consider an electrochemical cell with an internal resistance Rlnt 

connected to a voltage-measuring device having an input resistance 
Rmeter as shown in Figure 1.11. If we could draw zero current, the 
voltage across the cell terminals would be the true cell potential Ecell. In 
practice, however, we draw a current 

i = Eoell
 
R,n t + Rmeter
 

and actually measure a voltage
 

E = iRmeter 

Combining these expressions. we get 

E = EoellRmeter 
Rjnt + Rmeter 

If the measured voltage is to be a good approximation to the cell 
potential, we must have Rmeter »Rint. Our perception of the 
reversibility of a cell thus depends on the measuring instrument. 

( 
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potential measurements. L J
 

For cells having a high internal resistance (>10 6 0 ) another 
practical problem may arise even if a voltmeter is available with a high 
input resistance. In very high resistance circuits, leakage of current 
between the meter terminals becomes critically important. Dust, oily 
films, or even a fingerprint on an insulator can provide a current path 
having a resistance of 107 - 109 O. This resistance in parallel with the 
meter (as shown in Figure 1.11) results in an effective meter resistance 
equal to the parallel combination of the true meter resistance and the 
leakage resistance, 

--L =~ + ---1..
Reff R meter Rleak 

which may be several orders of magnitude less than the true meter 
resistance and even comparable with the cell internal resistance. 

The problem of leakage resistance is generally encountered for any 
cell which has a high internal resistance and thus tends toward 
irreversibility. In particular the glass electrode commonly used for pH 
measurements has a very high resistance and is prone to just such 
leakage problems. Careful experimental technique with attention to 
clean leads and contacts is essential to accuracy. 

Potentiometers 

The classical method of potential measurement makes use of a 
null-detecting potentiometer. A potentiometer, shown in Figure 1.12, 
involves a linear resistance slide wire R calibrated in volts, across which 
is connected a battery E; the current through the slidewire is adjustable 
with a rheostat R '. With a known potential source E s (often a Weston 
standard cell) connected to the circuit, the slidewire is set at the 
potential of the standard cell and the rheostat is adjusted to give zero
current reading on the galvanometer G. The potential drop between A 
and the slidewire tap is then equal to Es• and, if the slidewire is linear in 
resistance. the voltage between A and any other point on the slidewire 
can be determined. The switch is then thrown to the unknown cell, Ex, 
and the slidewire adjusted to zero the galvanometer. The unknown 
potential can then be read from the slidewire calibration. 
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Figure 1.12 A potentiometer circuit. Ex 

Reversible cell potentials measured with a potentiometer are usually 
accurate to ±0.1 mVand with care can be even better. The apparatus is 
relatively inexpensive, but the method is slow, cumbersome, and 

I:I[ requires some technical skill. Furthermore, although in principle the 
potential is read under zero current conditions, some current must be!I 
drawn in order to find the zero. The current is small, typically on the 
order of 10-8 A with a sensitive galvanometer, but may be large enough to 
cause serious errors for a cell with high internal resistance. 

Electrometers 

With the development of vacuum tube circuitry in the 1930's, d.c, 
amplifiers with very high input impedances became available. Such 
devices, called electrometers, are particularly well suited to 
measurement of the potentials of cells with high internal resistance. 

A number of different designs have been used for electrometer 
circuits, but one which is particularly common in electrochemical 
instrumentation is the so-called voltage follower shown in Figure 1.13. 
A voltage follower employs an operational amplifier, indicated by the 
triangle in the figure. The output voltage of an operational amplifier is 
proportional to the difference between the two input voltages with very 
high gain (> 104 ). In a voltage follower, the output is connected to the 
negative (inverting) input. Suppose that the output voltage is slightly 
greater than that at the positive input. The difference between the inputs 
will be amplified, driving the output voltage down. Conversely, if the 
output voltage is low, it will be driven up. The output is stable, of course, 
when the output and input are exactly equal. Since the input impedance 
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is high (> 1010 0), a very small current is drawn from the cell. Since the 
output impedance is low (ca. 10 0), a voltage-measuring device such as a 
meter or digital voltmeter can be driven with negligible voltage drop 
acrosS the output impedance of the voltage follower. Direct-reading 
meters typically are limited to an accuracy on the order of 0.1% of full 
scale (±1 mV for a full-scale reading of 1 V), but the accuracy can be 
improved considerably by using an electrometer in combination with a 
potentiometer circuit. 

Figure 1.13 An operational 1 
amplifier voltage follower. T 

1.5 REFERENCE AND INDICATOR ELECTRODES 

The standard half-cell potentials of all aqueous redox couples are 
given with respect to the hydrogen electrode, the primary reference 
electrode. Unfortunately, however. the hydrogen electrode is awkward 
and inconvenient to use, requiring hydrogen gas and a specially 
prepared platinum electrode. The platinum surface is easily poisoned 
and other electrode processes compete with the H+/H2 couple in 
determining the electrode potential. For these reasons, other electrodes 
are more commonly used as secondary references (F1). 

Reference Electrodes 

A practical reference electrode should be easily and reproducibly 
prepared and maintained, relatively inexpensive, stable over time, and 
usable under a wide variety of conditions. Two electrodes-the calomel 
and silver-silver chloride electrodes-are particularly common, meeting 
these requirements quite well. . 

The calomel! electrode is shown in Figure 1.14 and represented in 
shorthand notation as follows: 

CI-(aq)IHg2C12(s)IHg(l) 

1 Calomel is an archaic name for mercurous chloride, Hg2C12. 
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Figure 1.14 Reference electrodes. (a) Saturated calomel electrode (b) 
Silver-silver chloride electrode. 

The half-cell reaction is 

Hg2CI2(S) + 2 e- -+ 2 Cliaq) + 2 Hg(l) EO = +0.2682 V 

The standard potential, of course, refers to unit activity for all species, 
including chloride ion. In practice it is often convenient to use saturated 
KCl solution as the electrolyte with a few crystals of solid KCl present in 
the electrode to maintain saturation. In this way the chloride ion 
concentration is held constant from day to day and it is not necessary to 
prepare a solution of exactly known concentration. The potential of the 
saturated calomel electrode (abbreviated s.c.e.) equipped with a saturated 
KCI salt bridge is 0.244 V at 25°C. Because the solubility of KCl is 
temperature dependent, there is a significant variation in potential with 
temperature, -0.67 mV K-l. When this is a problem. 0.1 M E:Cl can be 
used as the electrolyte; the potential and temperature coefficient then are 
0.336 V and ~.08 mV KI, respectively. . 

The silver-silver chloride electrode is also shown in Figure 1.14. Its 
shorthand notation, 

Cl-(aq)IAgC1(s)IAg(s) 

leads to the half-cell reaction 

AgCI(s) + e- -+ Ag(s) + Cl(aq) EO =+0.2223 V 

The Ag/AgCI electrode normally is used with 3.5 M KCl solution and has 
a formal half-cell potential of 0.205 V and a temperature coefficient of 
-0.73 mV KI. The Ag/AgCl electrode is operationally similar to the 
calomel electrode but is more rugged; AgCl adheres very well to metallic 
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silver and there is no liquid mercury or Hg2Cl2 paste to deal with. The 
Ag/AgCl electrode is easily miniaturized and is thus convenient for 
IIl8DY biological applications. 

Since K+ and Cl- have nearly the same ionic conductivities, liquid 
junction potentials are minimized by the use of KCl as a salt bridge 
electrolyte (see Sect. 3.4). Both the calomel and Ag/AgCl electrodes are 
normally filled with KCl solution, but there are occasions when other 
electrolytes are used. This matter is discussed further in Sect. 4.2. 

Indicator Electrodes 

If one of the electrodes of an electrochemical cell is a reference 
electrode, the other is called a working or indicator electrode. The latter 
designation implies that this electrode responds to (indicates) some 
specific electrode half-reaction. At this point, it is appropriate to ask 
what determines the potential of an electrode. Consider a solution 
containing FeS04 and H2S04 in contact with an iron wire electrode. If 
we make a cell by adding a reference electrode, there are at least three 
electrode processes which might occur at the iron wire: 

Fe2+ + 2 e' -+ Fe(s) EO =~.44 V 

8042. + 4 H+ + 2 e- -+ SOiaq) + 2 H20 EO =0.16 V 

H+ + e- -+ ~ H2(g) EO =0.00 V 

What then is the actual potential of the iron wire electrode? We first note 
that in order to have a finite reversible potential at an electrode, all the 
participating species must be present in finite concentration so that 
appreciable current can be drawn in either direction. Thus, as we have 
defined the system with no sulfur dioxide or gaseous hydrogen present, 
only the first electrode reaction qualifies and we might guess that the 
potential should be determined by the Fe2+lFe couple. This is the right 
answer but for the wrong reason. Suppose that we bubbled some 
hydrogen gas over the iron wire electrode or added a little sodium 
sulfite-what then? There is another way to look at this system: 
according to the half-cell potentials, the iron wire should be oxidized 
spontaneously by either H+ (AGO =-85 kJ mol·1) or by 8042-(AGO =-116 kJ 
molJ), That neither reaction occurs to any appreciable extent is because 
the reactions are very slow. Just as these homogeneous reactions are 
very slow, the electrochemical reduction of S042. or H+ at an iron 
electrode is slow. If one electrode reaction is much faster than other 
possible reactions, only the fast reaction will contribute to the potential
the slower electrode processes will appear irreversible under the 
conditions where we can measure the potential due to the faster process. 
Thus in the example, we eXfect the potential of the iron wire electrode 
will be determined by the Fe +/Fe couple with 
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E =E' - MIn ---.L
2F aFe2• 

or, at 25°C, 

EN = -0.440 - 0.0296 pFe 

In other words, the iron wire electrode acts in this case as an indicator 
of the Fe2+ activity. 

Although it is difficult to predict the rates of electrode processes 
without additional information, there are a few useful generalizations. 
First, electrode processes which involve gases are usually very slow 
unless a surface is present which catalyzes the reaction. Thus a surface 
consisting of finely divided platinum (platinum black) catalyzes the 
reduction of H+ to H2, but this process is slow on most other surfaces. 
Second, as a general rule, simple electron transfers which do not involve 
chemical bond breaking, e.g., Fe3+ + e" -+ Fe2+, are usually fast 
compared with reactions which involve substantial reorganization of 
molecular structure, e.g., the reduction of sulfate to sulfite. 

What then should we expect if the components of two reversible 
couples are present in the cell? Consider, for example, a solution 
containing Fe"3+, Fe2+, 13", and 1-. Both half-cell reactions, 

Fe3+ + e- -+ Fe2+ E' = 0.771 V 

Ia- + 2 e- -+ 3 1- E' = 0.536 V 

are reversible at a Pt indicator electrode. If both couples are reversible, 
the electrode potential must be given by both Nemst equations 

D'11 a",_2.
E =EOFe3+/Fe2. _.I.LL In --.J.:.L..

F aFe3• 

E =EO'Wf-M In (ad
2F aI3 

The Fe3+lFe2+ half-cell reaction thus proceeds to the right and the 13"/1
half-cell reaction proceeds to the left until both half-cells have the same 
potential. In other words, there is a constraint on the activities of the 
four species 

EOFe3+/Fe2. - E04"/f =HI In (aI3XaFe2·f 

2F (ar}"3{aFe3+f 

The argument of the logarithm is just the equilibrium constant 
expression for the homogeneous reaction 

2 Fe3+ + 3 I" ~ 2 Fe2+ + Ia
and indeed in most cases, equilibration occurs via the homogeneous 
reaction. Frequently this means that one of the components of the 
mixture is consumed (reduced to a very low concentration). It is then 
most convenient to compute the potential of the indicator electrode from 
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the activities of the survivors, but the other couple remains at 
equilibrium and the concentration of the minor component can be 
calculated. All this, of course, is precisely what is happening in a 
potentiometric titration and we will return to calculations of this kind in 
11.7. 

1.6 ION-SELECTIVE ELECTRODES 

The potential of a AglAgCl electrode depends on [Cl-] and so we 
might think of the AgIAgCl electrode as an indicator electrode, the 
potential of which is a measure of In[Cl-], or pCl. We could easily set up 
an electrochemical cell to take advantage of this property. Suppose that 
we-have two AglAgCl electrodes, one a standard reference electrode with 
KCl solution at unit activity, the other in contact with a test solution 
having an unknown Cl:' activity. The cell can be represented 
schematically by 

AgIAgCl(s)IKCl(aq,aO)IICI"(aq)IAgCl(s)IAg 

At the left-hand electrode, the half-cell reaction is 

Ag(s) + Cl-(aq,aO) -+ AgCl(s) + e-

and at the right-hand electrode, the process is 

AgCl(s) + e- -+ Ag(s) + Cl'(aq) 

so that the overall cell reaction is 

Cl'(aq.c") -+ Cl-faq) 

In other words the cell "reaction" is simply the dilution of KCl. The 
potential of the cell is given by the Nemst equation: 

E =E' _MIn -!L 
F aO 

or, since Eo = 0 and aO = 1, the cell potential at 25°C is 

EN = +0.0592 pCl 

This arrangement would work well as a technique for determination of 
unknown Cl- activities. However, the Ag/AgCl electrode is not 
particularly selective. It will respond, for example, to any anion which 
forms an insoluble silver salt (e.g., Br or SCN-). 

Glass Membrane Electrodes 

It would be nice to have an indicator electrode which would respond 
to only one specific ion. This could be accomplished if we had a 



37 Electrode Potentials36 

membrane permeable to only one species. A membrane with perfect 
selectivity is yet to be found, but there are quite a number of devices 
which come close.! There are several approaches to membrane design, 
and we will not discuss them all. The oldests membrane electrode is the 
glass electrode, which has been used to measure pH since 1919 (4) but 
properly understood only relatively recently. The electrode, shown in 
Figure 1.15, consists of a glass tube, the end of which is a glass 
membrane about 0.1 mm thick (and therefore very fragile!). Inside the 
tube is a Ag/AgCI electrode and 1 M HCI solution. The glass electrode is 
used by dipping it into a test solution and completing the electrochemical 
cell with a reference electrode. 

The glass used in the membrane is a mixture of sodium and 
calcium silicates-Na2SiOa and CaSiOa-and silicon dioxide, Si02. The 
silicon atoms tend to be four-coordinate, so that the glass is an 
extensively cross-linked polymer of Si04 units with electrostatically 
bound Na+ and Ca2+ ions The glass is weakly conductive, with the 
charge carried primarily by the Nat ions. (The Ca2+ ions are much less 
mobile than Na+ and contribute little to the conductance.) The glass is 
also quite hygroscopic and takes up a significant amount of water in a 
surface layer perhaps as much as 0.1 urn deep. In the hydrated layers 
(one on either side of the membrane) there is equilibrium between H+ 
and Naf electrostatically bound to anionic sites in the glass and in 
solution. 

H+(aq) + NarIgl) ~ Httgl) + Natfaq) (1.27) 

If the concentration of Hrfaq) is low, this equilibrium shifts to the left; 
Na + from the interior of the glass tends to migrate into the hydrated 
region to maintain electrical neutrality. Hydrogen ions on the other side 
of the glass penetrate a little deeper into the glass to replace the Na" ions 
that have migrated. This combination of ion migrations gives sufficient 
electric current that the potential is measurable with a high-impedance 
voltmeter. Since the H+ ions are intrinsically smaller and faster moving 
than Nat, most of the current in the hydrated region is carried by H+ 
and the glass electrode behaves as if it were permeable to H+ and thus 
acts as an indicator electrode sensitive to pH. 

In a solution with low [H+] and high [Na+], NaOH solutions for 
example, the Na- concentration in the hydrated layer of the glass may be 
much greater than the H+ concentration, and Nat ions then carry a 

1 See books by Koryta (All), Vesely, Weiss, and Stulik (D'l I), and by Koryta and 
Stulik (014) for further details. 
2 The first membrane potential was discovered by nature eons ago when animals 
first developed nervous systems. A nerve cell wall can be activated to pass Na" ions 
and so develop a membrane potential which triggers a response in an adjacent cell. 
Chemists were slower in appreciating the potential of such a device, but we are 
catching up fast. 
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Figure l.Ui (a) pH-sensitive glass electrode; (b) schematic view of the glass 
membrane. 

significant fraction of the current; the potential developed across the 
membrane then is smaller than might have been expected. For this 
reason, glass electrodes do not give a linear pH response at very high pH, 
particularly when the alkali metal ion concentration is high Glass 
electrodes respond with virtually perfect selectivity to hydrogen ions over 
the pH range 0-11. Above pH 11, response to alkali ions becomes 
important with some glasses and such electrodes become unusable 
above pH 12. 

We will see in Section 3.4 that the potential across a glass 
membrane can be written 

Emernlrane =constant +RJ In(aH + kH,N BaN B) (1.28) 

where aH and aNa are the activities of Hffaq) and Nartaq) and kH Na is 
called the potentiometric selectivity coefficient. The selectivity coefficient 
depends on the equilibrium constant for the reaction of eq (1.27) and on 
the relative mobilities of the H+ and Na" ions in the hydrated glass. 
These properties depend on the composition and structure of the glass 
and can be controlled to some extent. Thus some glass electrodes now 
available make use of glasses where lithium and barium replace 
sodium and calcium, giving a membrane which is much less sensitive 
to sodium ions, allowing measurements up to pH 14. Corrections for 
Na+ ions may still be required, however, above pH 12. 
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Because of the importance of the hydration of the glass surface, 
glass electrodes must be conditioned before use by soaking in water or an 
aqueous buffer solution. The glass surface is dehydrated on prolonged 
exposure to nonaqueous solvents or to aqueous solutions of very high 
ionic strength. Nonetheless, glass electrodes can be used (e.g., to follow 
acid-base titrations) in alcohols or polar aprotic solvents such as 
acetonitrile or dimethyl sulfoxide provided that the exposure is of 
relatively short duration. 

Glasses containing about 20% Al20 a are significantly more 
sensitive to alkali metal ions and can be used to produce electrodes 
which are somewhat selective to specific ions. Thus a Na20 - Al20a 
Si02 glass can be fabricated which is selective for sodium ions (e.g., 
kNa,K = 0.001). Although these electrodes retain their sensitivity to 
hydrogen ion (kNa H = 100), they are useful in neutral or alkaline 
solutions over the pNa range 0-6. 

Other Solid Membrane Electrodes 

Rapid progress has been made in recent years in the design of ion
selective electrodes which employ an insoluble inorganic salt as a 
membrane. For example, a lanthanum fluoride crystal, doped with a 
little EUF2 to provide vacancies at anionic sites, behaves like a 
membrane permeable to F- ions. The only significant interference is 
from OH- ion. F- and OH- are almost exactly the same size, but other 
anions are too large to fit into the F- sites in the crystal. The LaFa 
crystal, together with a solution of K.F and KCl and a Ag/AgCl electrode, 
gives a fluoride ion-selective electrode usable in the pF range 0-6. 

Other solid membrane electrodes make use of pressed pellets of 
insoluble salts such as Ag2S. In this case, Ag+ ions are somewhat 
mobile in the solid, so that a Ag2S membrane can be used in a Ag+
selective electrode. Other metals which form insoluble sulfides could in 
principle replace a Ag+ ion at the surface of the membrane, but in 
practice only Hg2+ is a serious interference. Since Ag+ can move in 
either direction through the membrane, either away from a source of 
Ag" or toward a sink-a source of S2--the Ag2S membrane electrode 
can be used either for measurement of pAg or pS in the range 0 to 7. 
Other solid membrane electrodes are commercially available for Cl-, Br, 
1-, CN-, SCN-, NH4+, Cu2+,Cd2+, and Pb2+. 

Liquid Membrane Electrodes 

By replacing the glass or inorganic crystal with a thin layer of a 
water-immiscible liquid ion exchanger, another type of ion-selective 
electrode may be constructed. For example, by using the calcium salt of 
an organophosphoric acid in an organic solvent as the liquid ion 
exchanger and contacting the ion-exchange solution with the aqueous 
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test solution through a thin porous membrane, a membrane system 
permeable to Ca2+ ions (and to some degree to other divalent ions) is 
obtained. On the inner side of the membrane is a Ag/AgCl electrode 
with CaCl2 aqueous electrolre. Thus a membrane potential 
proportional to In([Ca2+]out/[Ca +lin) is developed. Liquid membrane 
electrodes are commercially available for Ca2+, K+, Cl", NOa-, CI04-, and 
BF4-' 

Other Types ofSelective Indicator Electrodes 

By surrounding the glass membrane of an ordinary glass electrode 
with a dilute aqueous solution of NaHCOa which is separated from the 
test solution by a membrane permeable to C02, an electrode responsive to 
dissolved C02 is obtained. This technique, where an ion-selective 
electrode is converted to respond to some other species by interposition of 
a reaction system involving ordinary chemica) reactions, is extendable to 
a wide variety of applications. Electrodes are commercially available for 
dissolved NHa and N02, as well as for C02. 

By incorporating an enzyme in a membrane, this approach can be 
extended to the detection of many other species. For example, a urea
sensitive electrode can be constructed by immobilizing the enzyme 
urease in a thin layer of polyacrylamide on a cation-sensing glass 
electrode. The electrode responds to NH4+, produced by the urease
catalysed hydrolysis of urea. Similarly, by coating a glass electrode with 
immobilized L-amino acid oxidase, an electrode is obtained which 
responds to L-amino acids in solution. Clearly, the field of ion-selective 
electrodes is large, and, more significantly, is growing rapidly.I There 
are literally thousands of potential applications in chemistry, 
biochemistry, and biology which await an interested investigator. 

1.7 CHEMICAL ANALYSIS BY POTENTIOMETRY 

There are a number of analytical methods based on measurements 
of electrochemical cell potentials (7,B,D2,D6,D7,DlO,Dll,D13,D14). For 
convenience these can be divided into two groups: those which 
determine concentration (or activity) directly from the measured 
potential of an electrochemical cell; and those in which the potential of a 
cell is used to determine the equivalence point in a titration. Both types 
have some important advantages which will become apparent as we 
discuss them. 

I For a good review, see Murray (5). The field is reviewed every two years in 
Analytical Chemistry, e.g., by Janata in 1992 (6). 
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Direct Method. 

The measurement of pH using a glass electrode is by far the most 
common of all electroanalytical techniques (9,D7,D10) and is also 
characteristic of direct determinations using cell potentials. A typical 
electrode arrangement for pH measurements is as follows: 

Ag(s)/AgC1(s)IKCl(1 M)IIH+(aq)lglassIHCl(1 M)IAgC1(s)IAg(s) 

i.e., a solution in which a Ag/AgCl reference electrode and a glass 
electrode are immersed. The half-cell reactions, 

Ag(s) + Cl-(l M) ~ AgCl(s) + e-

AgCl(s) + e- ~ Ag(s) + Cl-(1 M) 

lead to no net change so that the overall cell reaction is the nominal 
transfer of H+ from the test solution to the 1 M solution inside the glass 
membrane 

H+(aq) ~ H+(aq, 1 M) 

The free energy change for this process is 

AG=RTln-1
aH+ 

so that the cell potential is 

E - B.T..ln ea-F 
or, at 25°C, 

EN =-0.0592 pH 

Thus the cell potential is directly proportional to the pH of the test 
solution. In practice, this may not be exactly true because of a liquid 
junction potential at the salt bridge linking the reference electrode to the 
test solution and a small potential intrinsic to the glass electrode. Thus 
buffers of known pH are used to calibrate the pH meter so that the pH is 
determined relative to a standard rather than absolutely. 

Most of the commercial ion-selective electrodes can be used directly 
to determine pX = -log ax, just as the glass electrode is used to measure 
pH. Two general procedures are used commonly. 

(1) Calibration curve. The potential of a given cell can be 
measured with standard solutions and a potential vs. concentration 
curve constructed. The concentration of an unknown may then be read 
from the calibration curve given the potential of the unknown. When 
this method is used, it is important that the unknown solution have the 
same ionic strength as that of the standards so that the activity 
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coefficients remain constant. The concentrations of other species, such 
.s complexing agents, should also be identical. 

(2) Standard addition method. By first measuring the potential 
of an unknown solution and then adding a known amount of the 
.ubstance detected, the incremental response of the voltmeter in effect 
calibrates the scale. The advantages of this procedure are that the 
concentration is determined without the tedium of a calibration curve, 
and more important, calibration is obtained on the same solution under 
the same measurement conditions, possibly avoiding some systematic 
errors. On the other hand, if the calibration curve was not linear, the 
knOwn addition method would introduce a large uncorrectable error. 

As a rule, the calibration curve method is preferable if many 
analyses are to be done. If only a few analyses are to be performed, the 
known addition method is usually faster. In either case, themethod 
should have been carefully investigated to ferret out systematic errors. 

Example 1.7 100 mL of a solution containing an unknown 
concentration of fluoride was analyzed using a fluoride ion
selective electrode and a Ag/AgCI reference electrode. The cell 
potential was -97 mV at 25°C. After addition of 10 mL of 2.00 x 
10-3 . M F- standard solution, the potential was -70 mV. What 
was the original concentration of fluoride? If the potentials are 
accurate to ±0.5 mY, what is the uncertainty in the 
determination? 

The Nernst equation gives the cell potential 

E =E>-BI..ln...L-Eref
F aF' 

so that
 

-0.0970 ± 0.0005=E>- 0.0592 pFo - Erer
 

-0.0700 ± 0.0005=E>- 0.0592 pFl - Erer 

Subtracting, we get! 

pFo- pFl =(0.0270± 0.000TVO.0592 =0.456 ± 0.012 

pFo - pFl =log(al/ao) 

Assuming that we can replace the activities by molar 
concentrations, we have 

[F-hl[F-Jo =antilog(0.456)=2.86 ±0.08 

The difference, [F-J - [F-Jo, corresponds to the number of moles 
of'F: added. 

1 In addition or subtraction, Z =x ±y, the errors propagate as sz2 =sx2 + Sy2. 
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[F-h -[F-]o =(2.00 x 10-3mol L-1X10 mUllO mL) 

[F-h - [F-]o=0.181 x 10-3 mol L-l 

Substituting [F-h =(2.86 ±0.08)[F-]0,we obtain 

[F-]o (2.86±0.08-1) =0.181 x 10-3. 

or! 

[F-]o =(9.7 ±0.4) x 10-5 M 

Notice that in the example above, the fluoride ion concentration was 
determined to approximately 4% expected accuracy. Such accuracy is 
characteristic of direct methods. For concentrations of chemical species 
above 10-4 M, there are usually methods (such as the titration methods 
discussed below) which are capable of considerably greater accuracy. 
But for very low concentrations, a direct electrochemical measurement 
may well be the most accurate method and frequently is the only method 
available. 

Titration Methods 

Potentiometric methods can be adapted to the detection of the 
endpoint of a titration. If either the titrant or the substance titrated is 
detected at an indicator electrode, a plot of the cell potential vs. the 
volume of titrant shows a sharp increase or decrease in potential at the 
endpoint. pH titration curves of acids and bases are familiar examples 
of this method. 

Other ion-selective electrodes can be used to determine titration 
curves. For example, organic thiols may be determined by titration with 
silver nitrate standard solution where the silver ion concentration is 
monitored with a Ag+-selective electrode. The titration reaction is 

Ag+(aq)+ RSH(aq) --+ H+(aq) + AgSR(s) 

Typical solubility-product constants of silver thiolates are less than 10-16; 
thus the silver ion concentration prior to the endpoint is very low and 
rises rapidly when the endpoint is passed, so that a sharp break in 
potential is obtained. 

In many cases, nonselective indicator electrodes can be used to 
monitor a titration and to detect the endpoint. 

Example 1.8 Compute the titration curve for the titration of 25 
mL of 0.01 M FeS04 in 1 M H2S04 with 0.01 M Ce(S04)2 using a 

1 In multiplication or division, Z = xy or Z = x/y, errors propagate as (sz/z)2 =(sx/x)2 
+ (Sy/y)2. 
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Pt indicator electrode and a saturated calomel reference 
electrode. 

Both the titrant and the sample form reversible couples at the 
platinum electrode with formal potentials: 

Fe3++ e- --+ Fe2+ F;O' =0.68 V 

Ce4+ + e- --+ Ce3+ F;O' =1.44 V 

The titration reaction is 

Fe2++ Ce4+ --+ Fe3+ + Ce3+ 

We first compute the equilibrium constant for the reaction.
 
Consider the hypothetical cell (not the one being measured in
 

- the experiment) in which the two half-cells are the Fe3+lFe2+
 

couple and the Ce4+/Ce3+ couple; the formal cell potential is
 
1.44 - 0.68 =0.76 V. Thus we have l!1Go =-FEo =73 kJ mol-! 
which corresponds to an equilibrium constant K = exp(
l!1GoIRT) =7.0 x 1012 . The reaction will go to completion if the 
rate is fast enough. 

Up to the endpoint, the potential of the Pt electrode will be 
determined by the Fe3+lFe2+ couple. The potential of the cell is 

° D'11 [Fe2t-]E =E Fe8+lFeZ+ - .u...L.ln--- E_ 
F [Fe3+] 

[Fe2t-]
E =0.68- 0.0592Iog-[-]- 0.244 

Fe3+ 

Consider the situation when 10 mL of titrant has been added. 
Since we have added (0.01 L)(O.Ol mol L-l) =10-4 mol ofCe4+, 
there then must be 1 x 10-4 mol Fe3+ and 1.5 x 10-4 mol Fe2+ 

must remain. The concentration ratio then is [Fe2+]/[Fe3+] = 
1/1.5 and the cell potential is E =0.45 V. 

At the equivalence point, [Fe3+] =[Ce3+] ... 0.005 M and the 
equilibrium constant expression gives [Fe2+] =[Ce4+] =1.9 x 
10-9 M. The Fe2+lFe3+ concentration ratio is 3.8 x 10-7 and the 
cell potential is E =0.82 V. 

Beyond the endpoint, virtually all the Fe2+ has been 
oxidized; 2.5 x 10-4 mol of Ce3+ has been produced by the 
titration reaction and excess Ce4+ is being added. The cell 
potential is given by 

E =E°Ce"/e 3, _RT In [Ce3+1_ E 
e F [Ce4+] see 



46 Electrode Potentials44 

1.25 r iii iii iii iii iii iii I •• U • I •• U .~ 

EIV 

1.00 

0.75 

0.50 

Fiaure 1.16 Titration curve 
for titration of 0.01 M FeS04 0.25 U • U ••• iii , , U 'ii" U •• U • U • U U ••• U , 

with 0.01 M Ce(S04l2 in 1 M 0 
H2S04. 

I: 

[Ce3t]
E = 1.44- 0.0592 log[-~] - 0.244

Ce4+ 

When 30 mL of titrant has been added, there will be 0.5 x 10-4 

mol of Ce4+ present in excess. The Ce3+/Ce4+ concentration 
ratio is 2.510.5 and the cell potential is E =1.15 V. 

Carrying out several such calculations, we can sketch the 
titration curve shown in Figure 1.16. 

1.8 BATIERIES AND FUEL CELLS 

Throughout most of the nineteenth century, electrochemical cells 
provided the only practical source of electrical power and a great deal of 
effort was devoted to the development of inexpensive, efficient power cells 
and storage batteries.l When steam-powered electrical generators came 
into use in the 1880's and electrical power began to be widely distributed, 
electrochemical power cells started into a long decline. In the recent 
past, galvanic cells have been used mostly as small portable power 

1 A battery is a collection of two or more cells connected in series so that the battery 
potential is the sum of the individual cell potentials. 
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sources (e.g., cells used in flashlights, children's toys, etc.) or as portable 
energy storage systems (e.g., automobile batteries). 

Interest in electrochemical cells as power sources has revived 
recently (10,11) as society has become more concerned for the 
environment and as fossil fuels have become scarcer and more 
expensive. Electric-powered automobiles offer the hope of substantially 
reduced environmental pollution and direct conversion of fossil fuel 
energy into electrical energy via an electrochemical cell could in 
principle be achieved with much greater efficiency than is possible with 
a heat engine. In this section, we will review briefly the operation of 
80me electrochemical cells which convert chemical energy into 
electrical energy. For further information, see books by Mantell (G2), 
Angrist (04), Bagotzky and Skundin (G5), Pletcher (06), or Ventatasetty 

(G9)~Electrochemicalcells can be divided into two classes: pri~ry cells, 
which are intended to convert chemical energy into electrical energy, 
and secondary cells, which are intended to store electrical energy as 
chemical energy and then resupply electricity on demand. A flashlight 
cell is used until all the chemical energy has been converted to electricity 
and is then discarded. A fuel cell in a spacecraft converts hydrogen and 
Oxygen to water, extracting the energy as electricity. We usually do not 
attempt to recharge a flashlight cell and the fuel cell would not normally 
be run backwards to regenerate H2 and 02 gases. A storage battery, on 
the other band, is intended to store electrical energy. Discharging and 
recharging are equally important parts of the operational cycle. The 
difference in function leads to differences in design. 

We first consider three common primary cells which have a family 
resemblance, all having a zinc anode (12). 

The ''Dry Cell" 

The so-called "dry cell" used to power flashlights is descended from 
a cell invented by Georges Leclanche in 1868 and is sometimes called a 
Leclanche cell. The cell, which can be represented schematically by 

Zn(s)fZn2+(aq),NH4CI(aq)IMn02(s ),Mn203(S)IC(s) 

is shown in Figure 1.17. The carbon rod cathode is surrounded by a 
thick layer of Mn02 (mixed with a little graphite to improve the 
conductivity). A paper barrier separates the Mn02 from the aqueous 
electrolyte (which is gelled with starch or agar so that the cell is "dry") 
and the zinc anode which forms the cell container. A newly prepared 
cell has an open circuit potential of about 1.55 V, but under load the cell 
potential decreases to 1.3-1.5 V. The cell reaction 

Zn(s) + 2 Mn02(S) + H20 ~ Zn(II) + Mn203 + 20H-(aq) 
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FiIfUl"e 1.17 Construction of the 
ZnIMn02 dry cell. insulating disk 

leads to an increase in pH which is buffered by the NH4Cl. The cell 
reaction is only partially reversible, so that dry cells are not readily 
recharged. The exact nature of Zn(lI) depends on the pH and NH4 CI 
concentration. It may be precipitated as a hydroxide or oxychloride or 
remain in solution as an ammine complex. On diffusion into the Mn02 
phase, however, precipitation as ZnO-Mn20a occurs. There is some 
evidence that formation of this phase is responsible for the irreversibility 
of the cell. ZnlMn02 dry cells have a relatively short shelflife because of 
diffusion processes which amount to an internal short circuit. Because 

l~: I 

l' the cells are inexpensive, however, they have been widely used. 
-II Because of the large market for this kind of cell, a considerableI, 

effort has been expended on improvements of the Leclanche cell. When'iii 
NH4CI is replaced by KOH as the electrolyte, the cell reaction is!i 

1·,1 , 
, transformed to 

Zn(s) + 2 Mn02(S) + H20 ~ Mn20a(S) + Zn(OH)2 

Because the electrolyte is not gelled and is more corrosive than NH4CI, 
there are some packaging problems, the solutions to which increase the 
cost of the cell. However, the shelf life of an alkaline cell is much longer 
than that of the Leclanche cell, and the alkaline ZnlMn02 cell turns out 
to be well adapted to applications where a steady low-level drain of power 
is required, a situation where polarization of the traditional dry cell 
would lead to degradation of performance. 

The Mercury Cell 

One of the few commercially important cells which does not have 
nineteenth century origins is the alkaline zinc/mercury cell, developed 
for the U. S. Army during World War II. The cell, 
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Zn(Hg)IZn(OH~(s)IKOH(aq),Zn(OH)42-(aq)IHgO(s)IHg(1) 

bas an open-circuit potential of 1.35 V and is very widely used to power 
transistor radios, watches, hearing aids, etc. Unlike the Zn/Mn02 dry
cell, the electrolyte is not consumed by the Zn/HgO cell reaction 

Zn + HgO + H20 ~ Hg + Zn(OH)2 

and as a result, the cell potential is much more constant during 
discharge. Accordingly, mercury cells have often been used to provide a 
voltage reference in electronic instrumentation. 

The cell is constructed with a mercuric oxide cathode (mixed with a 
little graphite to improve conductivity) pressed into the bottom of a 
nickel-plated steel case. Upon discharge, this layer becomes largely 
liquid mercury. The alkaline electrolyte is contained in a layer of 
adsorbent material and the zinc amalgam anode is pressed into the cell 
top. In addition to the relatively constant potential, mercury cells have a 
long shelf life and a high energy-to-volume ratio. The major 
disadvantages are that power output drops precipitously at 
temperatures below about 10°C. and that disposal presents 
environmental problems. 

The Silver Cell 

A close relative of the mercury cell is the ZnJAg202 cell: 

Zn(s)IZn(OHMs)IKOH(aq),Zn(OH)42-(aq)IAg202(S)!Ag(S) 

This cell has many of the advantages of the mercury cell although the 
potential is less constant during discharge. The silver cell has a higher 
voltage than the mercury cell, about 1.5 V, and thus has a somewhat 
higher energy-to-weight ratio. It also operates successfully at 
significantly lower temperatures. Applications have been largely in 
situations where a very small, highly reliable cell is required, for 
example, in hearing aids and watches and in the guidance systems of 
rockets. 

Fuel Cells 

When hydrogen or a hydrocarbon fuel is burned in a heat engine, 
the heat of the combustion reaction is partially converted to work. The 
efficiency of the engine can be defined as the ratio of the work done on 
the surroundings (-w) to the heat evolved in the chemical reaction (-q): 

Efficiency =w/q 

The maximum theoretical efficiency of the process is limited. For an 
engine operating with a Carnot cycle (isothermal compression at Tl, 
adiabatic compression to T2, isothermal expansion at T2, and adiabatic 
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expansion back to Tl), it can be shown that the maximum efficiency is 
determined by the temperature limits between which the engine 
operates: 

Efficiency =(T2 - Tl)/T2 (1.29) 

In practice, efficiencies are considerably less than theoretical because of 
friction and heat loss. 

In contrast to a heat engine, the work obtained from an 
electrochemical cell is equal to -I!lG for the cell reaction. Using the 
definition above, the efficiency is 

Efficiency =.AG. =1-Xt,£
MI Mf 

(1.30) 

When I!lH and I!lS are of opposite sign, the "efficiency" of an 
electrochemical power cell, based on the w/q criterion, is greater than 1. 
When Mf and I!lS are both negative (the more common situation), the 
efficiency decreases with increasing temperature but is usually much 
greater than that of a heat engine. This is hardly a new idea. Ostwald 
pointed out this difference in maximum efficiencies in 1894 (13) and 
suggested that electrochemical fuel cells should be developed to replace 
heat engines. 

Example 1.9 Compute the maximum efficiency and the 
maximum work when one mole of H2(g) reacts with 02(g) to 
produce H20(g) (a) in a Carnot engine operating between 600 K 
and 300 K, and (b) in an electrochemical cell operating under 
standard conditions at 298 K. 

The standard enthalpy of formation of H20(g) is -242 kJ mol-I. 
According to eq (1.26), the maximum efficiency is 50%, so that 
the maximum useful work, assuming that Mf is temperature 
independent, is 121 kJ mol-I. 

The standard free energy of formation of H20(g) is -229 kJ 
mol-J, and all this energy is theoretically convertible to 
electrical work. The efficiency then is (229/242) x 100% =94.6%. 

Friederich Wilhelm Ostwald (1853-1932) was Professor of Physical 
Chemistry at the University of Leipzig. Together with Arrhenius and 
van't Hoff, Ostwald is regarded as one of the founders of physical 
chemistry. His laboratory at Leipzig spawned a generation of physical 
chemists. Sir William R. Grove 0811-1896) was a barrister by 
profession, but he maintained an active scientific career on the side. He 
is remembered for his work on galvanic cells and as a founder of The 
Chemical Society of London. 

'1.8 Batteries and Fuel Cells 

The Hydrogen-Oxygen Fuel Cell 

The hydrogen-oxygen fuel cell could hardly be simpler in concept. 
The half-cell reactions 

H2(g) ~ 2 H+ + 2 e

~ Oig) + 2 H+ + 2 e- ~ H20 

or
 
Hig)+20H- ~ 2H20+2e


~ 02(g) + H2O + 2 e" ~ 2 OH

swn to the formation of water 

H2(g) + ~ 02(g) ~ H2O 

and give a standard cell potential of 1.229 V. The HV02 system was 
studied very early in the history of electrochemistry (see Section 1.1) and 
the hydrogen-oxygen fuel cell was first described by Grove in 1839 (14). 

While it is relatively easy to construct a hydrogen-oxygen fuel cell in 
the laboratory, it is very difficult to extract much power. The major 
problem is that both half-cell reactions are very slow on most electrode 
surfaces. The H2/H+ reaction is relatively rapid on finely divided 
platinum or palladium surfaces (and fairly fast on other precious 
metals), but platinum is not a practical option for large-scale 
commercial use. The reduction of oxygen is an even more serious 
problem, as this rate is quite slow even on precious metal electrodes. 

The H2-02 fuel cell remained a gleam in the eye of electrochemists 
(and an occasional laboratory curiosity) until the U.S. space program 
developed a need for a lightweight, efficient, reliable, nonpolluting 
energy source for use on spacecraft. With a need defined and a 
customer willing to pay development costs, several companies began
work on the problem. 

The operation of a H2-02 fuel cell is limited by the slow rate of the 
electrode reactions and by ohmic heating of the electrolyte solution. The 
rate problem can be attacked by increasing the electrode surface area 
and by increasing the temperature. While the reactions do go faster at 
higher temperatures, eq (1.30) predicts a decrease in theoretical 
efficiency with increasing temperature (Mf and I!lS are both negative), 
so that a compromise is involved. Increasing the surface area is an 
effective strategy provided that the increased surface can be contacted by 
both the gas phase and the electrolyte solution. 

The solution to the problem of the H2-02 fuel cell in general has 
involved the use of electrode materials such as porous graphite with a 
small amount of precious metal catalyst imbedded in the pores. The 
interface between the H2 and 02 gas phases and the aqueous electrolyte 
phase occurs within the body of the porous electrode. In order to reduce 
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ohmic heating of the electrolyte solution, most successful fuel cells use a 
thin film of solution or in some cases a thin film of an ion exchanger 
between the porous anode and cathode. 

Cells Using Other Fuels 

While the greatest development efforts thus far have been on the H2
02 fuel cell, large-scale technological applications of fuel cells depends 
on the use of other, more readily available fuels, such as carbon (coal), 
hydrocarbons (petroleum or natural gas), or carbohydrates (plant 
material), Research directed to the development of such fuel cells began 
in Germany during World War II and has continued, mostly in Europe, 
since then. While there has been significant progress and pilot-plant. 
scale fuel cells have been built, the processes are not yet competitive with 
traditional steam-powered turbines. For more details on fuel cells, see 
Bockris and Srinivasan (G1), Pletcher (G6), or reviews by Eisenberg (15) 
or Cairns (16). 

Storage Batteries 

Energy storage cells (secondary cells) have somewhat different 
requirements than primary energy conversion cells. A storage cell 
must be capable of many charge/discharge cycles with high energy 
efficiency; thus there must be no irreversible side reactions or processes 
which convert components into unusable forms. Because storage cells 
are mostly used in situations requiring a portable power source, the 
energy available per unit weight should be as large as possible. A 
common figure of merit applied to storage cells is the energy density, 
expressible in units of J g-I or kWh kg-I (1 kWh =3600 kJ). 

By far the largest use of storage cells at present is in automobile 
batteries. Here the major requirement is that the battery be capable of 
delivering high power for a relatively short time (to start the engine). 
Storage cells are also used to power many small appliances. A 
potentially important application of storage cells is in powering electric 
cars and trucks. Electrically powered vehicles were popular in the 
period around World War I but did not successfully meet the competition 
of the internal combustion engine. With society's recently acquired 
awareness of the environmental damage of automobiles, there has been 
a revival of interest in electric cars and in efficient light-weight batteries 
to run them. Another potentially important application of storage cells 
is as load-leveling devices at power generating stations. 

11.8 Batteries and Fuel Cells 

The Lead-Acid Storage Battery 

The lead-acid cell (17), familiar because of its use in automobile 
.torage batteries, was invented by Plante in 1859. The cell can be 
represented by 

Pb(s)IPbS04(S)IH2S04(aq)IPbS04(S),PbOis)IPb(s) 

The half-cell reactions are 

Pbts) + S042-(aq) ~ PbS04(S) + 2 e' 

Pb02(S) + 4 H''(aq) + S042-(aq) + 2 e- ~ PbS04(S) + 2 H2O 

80 that the overall cell reaction is 

Pb(s) + PbOis) + 2 H2S04(aq) ~ 2 PbS04(S) + 2 H20 

When the acid concentration is greater than about 2 M, the formal cell 
potential is about 2 V; thus a 12-V battery requires six cells. Both the 
lead sponge used as the anode material and the lead dioxide cathode 
(mixed with an "expander" such as BaSO, to increase the surface area) 
are packed into lead grids which provide the electrical contacts. When 
the battery is discharged, nonconducting PbS04 is formed at both the 
anode and cathode and the internal resistance of the cell increases. 
Some recovery of cell efficiency occurs as the H2S04 electrolyte diffuses 
into the PbS04 cake and reaches unreacted Pb or Pb02. The rate of 
recovery is thus tied to the diffusion rate and is much slower at low 
temperatures. Since the density of PbS04 is less than that of either lead 
or Pb02, excessive discharge would rupture the lead grids. Thus a lead
acid battery is normally operated so that only 20-30% of the theoretically 
available energy is withdrawn before recharging. Since discharge of the 
cell reduces the concentration of sulfuric acid, the density of the H2S04 
electrolyte solution provides a convenient measure of the state of charge
ofthe battery. 

Given the half-cell potentials, recharging a lead-acid battery should 
result in generation of H2 (instead of reduction of PbS04 to Pb) and 02 
(instead of oxidation of PbS04 to Pb02). Fortunately, these processes are 
very slow at lead electrodes and thus are operationally irreversible. 
However, when the battery is fully charged, H2(g) and 02(g) production 
may occur if the charging potential is high enough. Since gas evolution 
tends to dislodge PbS04 from the grids, this is undesirable and thus 
regulation of the voltage of a battery charger is required.. 

Lead-acid storage batteries have undergone many generations of 
engineering improvement and are now reasonably efficient and reliable. 
Because of the low internal resistance, the lead-acid cell is capable of 
impressive bursts of power (up to about 10 kW for a few seconds), and 
can be charged and discharged for years. The principal disadvantage is 
weight. Electric vehicles powered with lead-acid batteries thus must 
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devote a large fraction of their load-carrying capacity to batteries, aI restriction which has severely limited development. 

I
Example 1.10 Compute the theoretical maximum energy 
density for a lead-acid cell, taking into account the weight of 
reactants in the cell reaction and neglecting the cell housing 
and electrolyte solution. 

I 

The electrical energy delivered at 2 V is 

Welec = nFE = 386 kJ moPII 
I'I The weight of one mole of the reactants (Pb, Pb02, and 2 H2SO4) 
11 is 642.5 g, so that 

Energy density =(386 kJ mol-1)/(642.5 g mol-I) =601 J g-1 II 

I,
If or 0.17 kWh kg-I. Because the cell is usually not more than 30%
 
)1 discharged and the neglected weight is substantial, the
 

practical energy density is in the range 80-200 J g-1.
 

I
, 

Gaston Plante (1834-1889) was Professor of Physics in Paris; he is best 
known for his work on storage batteries. Thomas Alva Edison (1847
1931) was a prolific inventor whose persistence made up for his lack of 
formal scientific training. Although Edison acknowledged a debt to 
Michael Faraday for his electrical and electrochemical inventions, his 
approach was less one of pure reason than an exhaustive trial of every 
possible solution to the problem at hand. 

i' 

I'
'i 
JI 

'i 
The Edison Cell "

~ ): 

The alkaline iron-nickel cell can be represented as 

Fe(s)INi02(S),Ni304(S)IKOH(aq)IFe304(s)IFe(s) 

The half-cell reactions 

3 Ni02(S) + 2 H20 + 4 e- -+ Ni304(S) + 4 OH-(aq) 

3 Fe(s) + 8 OH-(aq) -+ Fe304(S) + 4 H20 + 8 e

combine to give the overall cell reaction 

6 Ni02(S) + Fe304(s) -+ 3 Fets) + 2 Ni304(S) 

This cell was perfected by Edison in 1910 as a power source for electric 
vehicles. The nominal cell potential is about 1.37 V but varies 
considerably with the state of charge of the cell. Since the electrolyte is 
not consumed in the cell reaction, a relatively small volume is required 
and the cell can be more compact and lighter in weight than a lead-acid 
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cell. The theoretical maximum energy density is about 1300 J g-1 (0.36 
kWh kg-I), which compares favorably with most other storage cells. The 
Edison cell has several other advantages: the basic solution is less 
corrosive than the concentrated acid used in a lead battery; the electrode 
assemblies are more rugged and less susceptible to damage by complete 
discharge or overcharging. However, the smaller cell potential requires 
more cells per battery than a lead-acid cell and, because nickel is more 
expensive than lead, the initial cost is greater. On the other hand, an 
Edison cell has a much longer service life than a lead-acid cell and so 
may be cheaper in the long run. Edison cells were used extensively in 
the heyday of the electric car and are quite well suited to that purpose. 
Because of its greater internal resistance, however, the Edison cell 
cannot match the lead-acid cell for peak power production and thus is 
not as satisfactory for turning starting motors on internal combustion 
engines. 

The Nickel-Cadmium Cell 

This cell (18) is a first cousin to the Edison cell, with iron and Fea04 
replaced by cadmium and Cd(OH)z. The cell, which has a nominal 
potential of 1.25 V, has many of the advantages and disadvantages of the 
Edison cell. It is intrinsically more expensive and has a lower energy 
density, but it has found an important niche in small rechargeable 
batteries used in transistor radios, tape recorders, pocket calculators, 
etc. 

The Sodium-Sulfur Cell 

The traditional energy storage cells discussed above employ 
moderately active metals and aqueous solutions. There have been many 
attempts to develop cells based on the much more exoergic reactions of 
the alkali metals. A successful cell based on the reaction of lithium or 
sodium with fluorine or oxygen would combine high cell potential with 
light weight, but there are some obvious technical problems in building 
such a cell. A promising system with somewhat less severe problems is 
based on the reaction of sodium and sulfur 

2 Na + 8 -+ 2 Nat + 8 2

The cell is operated at 300°C with both sodium and sulfur in the liquid 
state. These two phases are separated by a ~-alumina (NazO·llAlzOa) 
membrane which is very permeable to Nar at high temperature. Liquid 
sulfur supports the ionization of Na28. An inert metal such as 
molybdenum is used to contact the conducting phases and the cell can be 
represented as 

Mo(s)INa(l)IN a +(~-alumina)IN az8(s),8(l)IMo(s) 
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The cell voltage is about 2 V, depending on the state of charge, and the 
theoretical maximum energy density is about 5000 J g-1 (1.4 kWh kg-I). 
The major problem with the cell is the membrane. Na atom diffusion 
into grain boundaries in the [3-alumina membrane causes short circuits 
and structural failure. The sodium-sulfur cell is probably not practical 
for electric vehicles (heating the cell to 300°C before operation is one 
problem), but as a power plant load-leveling device it has some promise. 
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PROBLEMS 

An electrochemical	 cell is formed by placing platinum electrodes1.1 
in separate beakers, connected through a salt bridge. One beaker 
contains a solution of FeS04, Fe2(S04)3, and H2S04 (all 0.01 M); the 
other beaker contains KMn04, MnS04, and H2S04 (all 0.01 M). 
(a) Using standard notation, write a representation of the cell. 
(b) Write the half-cell reactions. 
(e) Write the cell reaction. 
(d) Compute the standard potential of the cell. 
(e) Compute the actual potential of the cell (neglect activity 
coefficients, but take account of the second ionization of H2S04, 
Jll(a2 =1.99). 
(f) Compute the standard free energy change for the cell reaction 
and the corresponding equilibrium constant. 

1.2	 Calculate the potential of each of the cells (ignore activity 
coefficient corrections, but note that one of the half-cells is a 
standard reference electrode): 

(a) Zn(s)IZnS04(O.01 M)IIKC1(satd)IHg2CI2(S)IHg 

(b) Pt1FeC13(O.01 M), FeCI2(0.002 M)IIKCI(3.5 M)IAgCI(s)IAg 

(e)	 PtICrCI3(0.1 M), K2Cr207(O.001 M), HC1(O.OOI M)II
 
KCI(3.5 M)IAgC1(s)IAg
 

1.3	 Use the data of Table A.4 to construct a free energy-oxidation state 
diagram for manganese in acidic solution. Given that the 
solubility product constants for Mn(OH)2 and Mn(OH)3 are, 
respectively, 2 x 10-13 and 4 x 10-43, construct a free energy-oxidation 
state diagram for manganese in basic solution. 

1.4	 Given that the standard potential of the half-cell 

S042-(aq)IPbS04(s)IPb(s) 

is -0.356 V, estimate the solubility-product constant of PbS04. You 
will need more data; see Table A.4. 

1.5	 If the standard potential for the reduction of Sb205(S) to SbO+ in 
acid solution is +0.60 V and the standard potential for the reduction 
ofSb205 to Sb203(S) in basic solution is -0.13 V, what is the solubility 
product constant, Ksp =[SbO+][OH-]? What is the pH ofa saturated 
solution ofSb203 at 298 K? 
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1.6	 Devise general derivations of eqs (1.24), (1.25), and (1.26) I 

1.7	 A silver electrode is immersed in 100 mL of 0.1 M KCI, and the 
solution titrated with 0.2 M AgN03 solution. The potential is o.z 
determined us. a standard Ag/AgCI electrode (with 3.5 M KCI 
electrolyte). Calculate the cell potential when 1, 10, 30, 45, 50, 55, 
and 70 mL of the silver solution has been added. The solubility 
product constant of AgCI is 2.3 x 10-10. Neglect activity coefficients. 0.1 

Plot the calculated potential us. volume oftitrant. 

1.8	 Overman (Anal. Chern. 1971,43, 616) found that an iodide-selective 
electrode can be used in the determination of Hg2+ by titration with Fi~ure 1.18 Titration of 0.0 

Hg + with NaI with potentiala standard NaI solution. When he titrated 50 mL of unknown HgZ+ 
measured by an iodidesolution with 0.0100 M NaI, he obtained the titration curve shown sensitive electrode. Reprint

in Figure 1.18. What was the concentration of mercuric ions in the ed with permission from R. -0.1 ,=. I , I , I • I I I 

original solution assuming that the titration reaction produced F. Overman, Anal. Chern. 1.1 1.2 1.3 1.4 1.5insol uble HgIz? This titration procedure worked for Hgz + 1971,43,616, copyright 1971 
American Chemical Society. Vol. 0.0100 M NaI/mLconcentrations down to about 5 x 10- 6 M, but at lower 

concentrations, endpoints were found which corresponded to ratios 
of iodide to mercury of more than 2:1. Why? about 0.015 M Nat, while the external concentration is about 0,15 M 

Na +. Assuming that all the power is used for such pumps and 
1.9	 The cell that they have an overall efficiency of 50%, calculate the total flux of 

Na" out of the brain cells per second. Assuming that the brain hasCdICd2+(0.00972 M)IICd2+(0.00972M),CN-{O.094 M)ICd. 
108 cells and that each nerve impulse results in an uptake of 10-11 

has a potential of -0.4127 Vat 25°C. If the only significant reaction mole of Nat, estimate the firing rate of the brain cells. 
between Cd2+ and CN- is the formation of Cd(CN)42-, what is the 
equilibrium constant for the formation of the complex ion? L12 In the Krebs citric acid cycle, nicotinamide adenine dinucleotide 

(NAD+) acts as an electron acceptor in three separate steps: (1) in 
LI0	 The quinhydrone electrode is sometimes used to measure pH. the conversion of isocitric acid to a-ketoglutaric acid; (2) in the 

Quinhydrone is an easily prepared, slightly soluble, equimolar conversion of a-ketoglutaric acid to succinic acid; and (3) in the 
mixture of benzoquinone and hydroquinone. The reduction of the conversion of malic acid to oxaloacetic acid, From the data given in 
quinone is reversible on platinum: Table A.6, compute (a) the cell potential of each of these processes; 

(b) the standard free energy changes; and (c) the equilibriumC6H40z + 2 H+ + 2 e- ~ C6Rt(OH)2 E" =+0.700 V constants (all at 25°C, pH 7).
 
In practice, an unknown solution is saturated in quinhydrone and
 
the potential measured with respect to a saturated calomel L13 From data given in Table A.4, compute
 
electrode.	 (a) !',.Go for the oxidation of Be- by HzOz. 
(a) Show that the potential of the quinhydrone electrode gives the (b) !',.Go for the oxidation of HzOz by Brz.
 
pH directly. (c) !',.Go for the disproportionation of HzOz to HzO and Oz.
 
(b) Suppose that a cell potential of +0.160 V is measured us. s.c.e. (d) Knowing that solutions of hydrogen peroxide are stable for long 
What is the pH of the solution? periods of time, what do you conclude? 
(c) The quinhydrone electrode is not usable above pH 9. Why? (e) Assuming that the reactions described in parts (a) and (b) above 

are relatively fast, predict the effect of a trace of KBr on a hydrogen 
ill	 The adult human brain operates at a power of about 25 W. Most of peroxide solution. 

the power is used to operate "sodium pumps" in the nerve cell 
membranes, which maintain the internal ionic concentration at 

1.0 
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1.14	 From data given in Table A.4, compute the standard free energy of 
disproportionation for the following reactions: 

2Cu+ ~ Cu2++Cu 

3 Fe2+ ~ 2 Fe3++ Fe 

5 Mn042- + 8H+ ~ 4 Mn04- + Mn2++ 4 H20 

Can you generalize from these results to obtain a criterion for the 
stability of a species toward disproportionation based on half-cell 
potentials? 

1.15	 The potential of a glass electrode was 0.0595 V us. s.c.e. when the 
electrodes were immersed in a pH 7.00 buffer solution and 0.2598 V 
when immersed in a solution of unknown pH. 
(a) Calculate the pH of the unknown solution. 
(b) If a possible junction potential introduces an uncertainty of 
±0.0005 V in comparing the potentials of the known and unknown 
solutions, what is the uncertainty in the pH of the unknown? 

1.16	 A sodium ion-selective electrode developed a potential of 0.2631 V 
us. s.c.e. when immersed in 25.00 mL of an unknown solution. 
After addition of 5.00 mL of a 0.0100 M Nat standard solution, the 
potential decreased to 0.1921 V. 
(a) Calculate the sodium ion concentration in the unknown 
solution. 
(b) If the uncertainty in the potential measurements was ±0.0005 
V, what was the uncertainty in the sodium concentration of the 
unknown? 

L17 The potential of a glass electrode in contact with a solution with 
. [Na+J =0.10 M is -0.450 V at pH 8.00, -0.568 V at pH 10.00, and -0.690 
V at pH 13.00. 
(a) Compute the potentiometric selectivity coefficient, kH,Na. 
(b) At what solution pH would the apparent pH (computed 
assuming pH linear in potential without correction) be too low by 
0.05 pH unit? 

1.18	 The silver-zinc cell, 

Zn(s)IZnO(s)IKOH(aq,40%),K2Zn02(aq)IAg20(s)IAg(s) 

has had limited application in storage batteries. 
(a) Write the half-cell reactions and the overall cell reaction. 
(b) If the cell potential is 1.70 V, what is the maximum possible 
energy density? 

"2 THE ELECTRIFIED
 
INTERFACE
 

In the last chapter, we focused on the equilibrium potential 
developed by an electrochemical cell. We relied on thermodynamics and 
paid no attention to the molecular details. We shall now look more 
closely at the interface between an electrode and an electrolyte solution. 
Virtually any surface in contact with an electrolyte solution acquires a 
charge and therefore an electric potential different from that of the bulk 
solution. There are four ways in which a surface may acquire a charge: 
(1) imposition of a potential difference from an external potential source; 
(2) adsorption of ions on a solid surface or on the surface of a colloidal 
particle; (3) electron transfer between a metallic conductor and the 
solution; and (4) for micelles, biological macromolecules and 
membranes, ionization of functional groups such as carboxylate, 
phosphate, or amino groups. Surface charge effects are particularly 
important in biological systems. The surface-to-volume ratio of a 
biological cell is large and most biochemical reactions occur at or near 
the surface of an immobilized enzyme. 

We begin in §2.1 with the development of a mathematical model for 
a charged interface. We digress slightly in §2.2 . §2.4 to a discussion of 
the effects of charged surfaces on the equilibrium and dynamic behavior 
of interfacial systems. Returning to electrodes in §2.5, we consider the 
phenomena of electrocapillarity and double-layer capacitance. The ideas 
developed in our discussion of charged surfaces can be extended to the 
interaction of small ions in solution, and we conclude this chapter with 
a discussion of the Debye-Huckel theory of ionic activity coefficients. 

2.1 THE ELECTRIC DOUBLE LAYER 

A charged surface in contact with an electrolyte solution is expected 
to attract ions of opposite charge and to repel ions of like charge, thus 
establishing an ion atmosphere in the immediate vicinity of the surface. 
Two parallel layers of charge are formed-the charge on the surface 
itself and the layer of oppositely charged ions near the surface. This 

;; I ~ 
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structure is called the electric double layer. For reviews of double layer 
theory, see Grahame (1), Parsons (2), Mohilner (3), or Reeves (4). 

Helmholtz considered the problem of a charged surface in contact 
with an electrolyte solution in 1871 (5). He assumed that a layer of 
counter ions would be immobilized on the surface by electrostatic 
attraction such that the surface charge is exactly neutralized. In the 
Helmholtz model, the electric potential falls from its surface value, <1>0. to 
zero in the bulk solution over the thickness of the layer of counter ions. 
This behavior is shown schematically in Figure 2.1. 

Later, Gouy (6) and Chapman (7) pointed out that ions are subject to 
randern thermal motion and thus would not be immobilized on the 
surface. They suggested that the ions which neutralize the surface 
charge are spread out into solution, forming what is called a diffuse 
double layer. According to the Gouy-Chapman model, the potential falls 
more slowly to the bulk solution value, as shown in Figure 2.1. 

In 1924, Stem (8) observed that neither the Helmholtz model nor the 
Gouy-Chapman model adequately accounts for the properties of the 
double layer and suggested that the truth lies in a combination of the two 
models. Thus some ions are indeed immobilized on the surface (the 
Helmholtz layer), but usually not enough to exactly neutralize the 
charge; the remainder of the charge is neutralized by a diffuse layer (the 
Gouy layer) extending out into the solution. This model is also pictured 
schematically in Figure 2.1. 

In the following sections. we shall work through some of the details 
of the Gouy-Chapman theory, as modified by Stern, and discuss some of 
the implications. 

( 

§2.1 The Electric Double Layer 

.--
Hermann Ludwig Ferdinand von Helmholtz (1821-1894) was trained as a 
ehysician and held chairs in physiology and anatomy at the Universities 
of Konigsberg and Heidelberg. His interest in physics led to an 
appointment as Professor of Physics at the University of Berlin. 
Helmholtz made pioneering contributions in thermodynamics, 
physiological acoustics and optics, hydrodynamics, electrodynamics, and 
epistemology. It should be recalled that Arrhenius' theory of electrolyte 
solutions was put forward in 1887; in 1879 ions were thought to occur only 
in rather special circumstances; the Helmholtz layer was such a special 
case. Louis-Georges Gouy (1854-1926) was Professor of Physics at the 
University of Lyons. His contribution to the theory of the electric double 
layer was an extension of his interest in Brownian motion. David L. 
Chapman 0869-1958) was a Fellow of Jesus College, Oxford. Most of his 
scientific work was on gas-phase reaction kinetics. Otto Stern (1888-1969) 
was Professor of Physics at the Universities of Frankfurt, Restock, and 
Hamburg and moved to the Carnegie Institute of Technology in 1933. 
Stern is remembered primarily as the father of molecular beams 
research. 

Gouy-Chapman Theory 

The immediate goal of a theoretical description of the electrified 
interface is the derivation of an equation giving the electric potential <1> 
as a function of the distance from the surface. 

The electric potential at any point in the solution is related to the net 
charge density at that point by a fundamental relationship derived from 
electrostatics and known as Poisson's equation: 

'112<1> :: _ L (2.1)
££0 

In eq (2.1), e is the dielectric constant of the medium and £B is a constant 
called the permittivity of free space (£0 :: 8.854 x 10- 12 C J-1m-l). The 
operator '112 is, in Cartesian coordinates, 

2 i i fJ2 
V =-+-+ax 2 dy2 fJz2 

and in spherical polar coordinates, 

2
0 _ 1 fJ ( 2 fJ ) 1 a (. .<>. fJ ) 1 iv - -- r - + SIn lJ - + -~-"--:--

r2 fJr fJr r2 sin ~ fJ~ fJ~ r2 sin~ acp2 
The space charge density p is related to the concentrations and charges 
of the ions in solution and can be expressed as 

p :: I «t«; (2.2) 
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where p has units of C m-2 , Zj is the charge on ion i, C; is the 
concantrationt of ion i in mol m-3, and F is the Faraday constant. 

Equations (2.1) and (2.2) could be combined to obtain a relation 
between ionic concentration and the electric potential. However, since 
neither of these quantities is known, we need yet another relation to 
achieve our initial goal. To obtain the necessary link, we recall the 
Boltzmann distribution law 

N, ( E, -En)"'-'--A. = exp • v 

No kT 

which gives the equilibrium ratio of the number Nl of particles having 
energy E 1 to the number No with energy Eo. In the equation, k is 
Boltzmann's constant (the gas constant divided by Avogadro's number, k 
=R INA), and T is the absolute temperature. The Boltzmann equation is 
applied here to calculate the relative concentrations of ions at positions 
of different electrostatic potential energy. The electrostatic potential 
energy of an ion with charge zje,2 located at a point where the electric 
potential is <I>, is given by 

E; = zie<I> 

Since the zero of electric potential is arbitrary, we will choose the 
electric potential of the bulk solution (far from the surface) as zero; thus 
the electrostatic potential energy of ions in the bulk solution is also zero. 
The Boltzmann equation may then be written as 

N ( z'eC1> 1~ = exp --'-
Nio kT 

where N; is the number of ions of type i (per unit volume) at the point in 
the solution where the potential is <1>, and Njo is the number of these ions 
per unit volume in the bulk solution. Converting the N'e to molar 
concentration units, and noting that elk =FIR, we can rewrite the 
Boltzmann equation as 

ilL = exp (- Zi 
F C1> 1	 (2.3) 

Cia RT 

Notice that eq (2.3) predicts that a positive potential (due to a positive 
surface charge) would result in lower concentrations of positive ions (z, 
> 0) near the surface than in the bulk solution and higher 
concentrations of negative ions near the surface. 

Combining eqs (2.2) and (2.3), we have 

1 In this and subsequent chapters we will mostly use concentration units of mol m· 3 
(rnM), The major exceptions to this rule are t.hose cases where the concentration is 
an approximation to an activity referred to the 1 M standard state. 
2 The electronic charge e is taken as a positive constant, e = 1.602 x 10. 19 C; Zi then 
includes both the magnitude (in units of e) and the sign of the charge on ion i . 
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p =L ziFCio exp (-ZiF<I» (2.4) 
i RT 

and finally, substitution of eq (2.4) into eq (2.1) gives the Poisson
Boltzmann equation: 

V2<I> =_L L «c: exp (-ZiF<I» (2.5) 
££0 i RT 

The solution to this differential equation is the potential as a 
function of the position in the solution. In order to proceed further, we 
must specify the geometry of the problem and decide upon the method of 
solution. Integration of eq (2.5) is not a trivial exercise for any choice of 
geometry because of the sum of exponential terms. There are two 
methods which may be used in dealing with the summation: (1) a 
general, but approximate, solution obtained by expanding the 
exponential terms in a power series, and (2) an exact, but limited 
solution obtained by making a specific assumption about the nature of 
the electrolyte so that the summation can be eliminated. 

Solutions ofthe Poisson-Boltzmann Equation 

An exponential can be approximated by the power series 

exp(-u) = 1 - u + 1 u 2 + ... 
2 

Thus, for zi<I> «RTIF, eq (2.5) can be written 

V2<I> = _ L L ZiCi°[1- ziF<I> + 1 (Zi F<I»2 + ...J 
££0 i RT 2 RT 

The first term in the sum vanishes since the bulk solution is electrically 
neutral. Retaining only the second term, we have 

V2<I> 2C1> 
= F L Z~Cio (2.6)

£eoRT i ' 

A convenient measure of the influence of electrolytes in problems like 
this is the ionic strength, defined by 

1=	 1 L Z?Cio (2.7) 
2 i 

Thus eq (2.6) can be written as 

V2<I> = F 
2I<I> 

eeoRT 
or, lumping all the constants together to define a new parameter 
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xA = £EQRT (2.8)V

F 2] 

we have the linearized Poisson-Boltzmann equation 

V2
<I> =~ (2.9)

xl 
Let us assume that we are dealing with a surface in the y-z plane; it 

is reasonable to assume that the potential <I> is a function only of the 
distance from the surface x, so that eq (2.9) becomes 

d2 <I> = <I>(x) 
dx2 xl 

Differential equations of this form have the general solution 

<I>(x) =A exp(-xIXA) + B exp(xlxA) 

where A and B are constants of integration to be determined from the 
boundary conditions. Since in our problem, <I> -+ 0 as x -+ 00, we see that 
B must be zero. 

The other constant A is the potential at the surface (x =0) provided 
that the theory is adequate right up to the surface. However, the distance 
of closest approach to the surface must be at least as large as the ionic 
radius. If there are ions at this closest approach distance, then their 
position in space is more or less fixed and the assumption of random 
thermal motion will fail at very short distances. If this first layer of ions 
is essentially an immobilized Helmholtz layer, then we expect that the 
potential will drop more or less linearly from the surface potential <I>s to 
the value <I>a at the outer surface of the Helmholtz layer. We assume 
then that eq (2.9) applies to the outer or diffuse region (the Gouy layer). If 
a is the thickness of the immobilized Helmholtz layer, then the potential 
will be given by 

<I>(x) =<I>8 (1-}) + <I>o (}) x < a (2. lOa) 

a-x
<I>(x) =<I>a exp -- x>a (2.ioi» 

XA 

The validity of eq (2.10b) depends on the correctness of eq (2.9) and the 
assumption that z<1> «RTIF. Since RTIF = 25.7 mV at 25°C, <I>a 
apparently must be less than about 0.0261z volts. 

If, instead of a planar surface, we consider the surface of a sphere 
(e.g., a macromolecule) and assume that the potential depends on the 
radial distance r from the center of the sphere but not on the angles l} or 
<jl, the solution to eq (2.9) is 
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<I>(r) =<I>o ('::-) exp ax~ r (2.11) 

wher~ <I>a is the potential at the outer surface of the Helmholtz layer (r = 
a). Notice that this result differs from eq (2.lOb) by the factor (air). 

If we restrict our attention to a symmetrical electrolyte such as 
Na.Cl or MgS04, eq (2.5) can be integrated without approximations to 
obtain (see Problems) 

[exp(zF<I>(x)/2RTl - l][exp{zF<I>0/2RTl + 1] ......r( ).1] (
~~---'--_"":""----'~----'---'---------='------'-----~ = eA}Jl a - x 1XA 2.12) 
[exp(zF<I>(x)/2RTl + l](exp{zF<I>al2RTl - 1] 

Equation (2.12) reduces to eq (2.10b) in the limit where zF<I>a «RT. 
Now that we have solutions to the Poisson-Boltzmann equation, let 

ue examine some of the consequences. First, we look at the shape of the 
solutions represented by eq (2.12). In Figure 2.2 are plotted <I>(x)/<I>a VS. (x 
_ a)lxA for <I>a = 0.01 and 0.1 V, assuming that z = 1 and T = 298 K. The 
curve for <I>a =0.01 V is indistinguishable from the simple exponential 
dependence predicted by the approximate solution, eq (2.10b). Indeed, 
even for <I>a =0.1 V, deviations from the approximate solution are not as 
grea.t as we might have expected. 
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Figure 2.2 Electric potential Figure 2.3 Concentrations (relative 
ca lculated from eq (2.12) as a to bulk solution concentration) as a 
function of distance from the surface function of distance from the surface 
for <1>0 = 0.1 and 0.01 V. The points on for a 1:1 electrolyte and <1>0 = 0.003 V 
the <1>a = 0.01 V curve are calculated (dots), 0.01 V (dashes), and 0.03 V 
from eq (2.10b). (solid line). 
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The concentration ratios C+(x)/co and C_(x)/co are plotted as 
functions of (x - a)lxA for several values of <I>a in Figure 2.3, assuming a 
1:1 electrolyte (such as NaCl) and 298 K. Notice that the concentrations 
are quite different from the bulk values for large values of <I>a at small 
distances. 

Thickness of the Ion Atmosphere 

Consider now the parameter XA, defined by eq (2.8). Values of XA are 
given in Table 2.1 for several concentrations of electrolytes of different 
types, calculated assuming a temperature of 25°C and the dielectric 
constant of water (e =78.54). Judging from the plots of Figures 2.2 and 
2.3, XA can be regarded as a measure of the thickness of the ion 
atmosphere at the charged surface.I As we see in Table 2.1, this 
thickness depends strongly on the concentration and charge type of the 
electrolyte, varying from hundreds of water molecule diameters in dilute 
solutions to a distance on the order of one water molecule diameter in 
concentrated solutions of highly charged ions. 

Table 2.1 Ion Atmosphere Thickness 
-

xA/nm 

C/mM 1:1 1:2 1:3 2:2 2:3 

0.1 30.4 24.8 21.5 15.2 7.8 

1.0 9.6 7.8 6.8 4.8 2.5 

10.0 3.0 2.5 2.15 1.52 0.78 

100.0 0.96 0.78 0.68 0.48 0.25 

Relation ofSurface Potential to Surface Charge Density 

We turn now to the relationship between the potential <I>a and the 
net charge on the surface. If the system as a whole is electrically 
neutral, then the net surface charge ti.e., charge on the surface adjusted 
for the charge of the Helmholtz layer) must be exactly balanced by the 
space charge in the Gouy layer. If o is the net surface charge density (in 
C m-2), then, for a planar surface, 

cr=- f.~ p dx 
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Substituting for p from eq (2.1), we can carry out the integration: 

cr=EEo1r hdx=EEo~t 
dx2 dx 

Since the derivative vanishes at the upper limit, we have 

cr=-EEo(~} 
dx %=a 

Differentiation of eq (2.lOb) and evaluation of d<I>/dx at x = a gives 

o =EEo<I>a (2.13)
XA 

A more complex expression results if we use eq (2.12) to evaluate d<I>ldx 
(see Problems), but it reduces to eq (2.13) in the limit thatzF<I>a «RT. 

Example 2.1 Compute the potential at a charged surface in 
contact with 0.01 M (10 mol m-3) KCI solution if the charges, +e, 
are spaced about 5 nm apart so that the average area per 
charge is 25 nm2. 

We can rearrange eq (2.13), putting o in units of electronic 
charges per square nanometer and XA in units of nanometers. 
Taking E= 78.5, we have 

<I>a = 0.230 XAcr 

If o = 0.04 e nm- 2 and XA = 3.0 nm, then 

<I>a = (0.230XO.04X3.0) = 0.028 V 

Weaknesses of the Gouy-Chapman Theory 

The theory as we have presented it can lead to absurd predictions. 
Consider the case of aIM NaCI solution in contact with a surface with 
<I>a = 0.1 V. According to eq (2.3), the concentration of chloride ions at the 
surface ti.e., at the outer surface of the Helmholtz layer) is 49 M! This 
corresponds to approximately 30 chloride ions per cubic nanometer
very nearly a closest packed layer of chloride ions. The ion-ion repulsion 
in such a structure would be far greater than the attraction to the 
positive surface and thus the prediction is ridiculous. This absurdity 
points up the major weakness in the theory: we take account of 
electrostatic interaction between ions in solution and the charged 
surface, but neglect interactions between ions. This is a reasonable 

1 In the context of Debye-Huckel theory (Section 2.6), XA is called the Debye length 
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approximation in dilute solutions, but leads to gross errors in more 
concentrated solutions. 

There are several less serious problems. We have tacitly assumed 
that the' charge density p is a smoothly varying continuous function of 
the distance from the surface. While this is not true on an 
instantaneous microscopic level, this apparent weakness is not so bad if 
we regard the results as representing a time average where, through 
thermal motion of the ions, the charge is blurred more or less smoothly 
over the solution. A more serious defect results from the use of the bulk 
dielectric constant of the solvent in calculating electrical forces over 
short distances; since the water dipoles are oriented around ions or at 
the charged surface, the local properties are expected to be quite different 
than those of the bulk liquid. 

In summary, the Gouy-Chapman treatment of the diffuse double 
layer should not be relied upon to give quantitatively accurate 
predictions for concentrated electrolyte solutions or for high surface 
charge densities or surface potentials. The theory is very useful, 
however, as a means of gaining a qualitative understanding of 
phenomena which are affected by the electrified interface. While the 
Gouy-Chapman approach continues to be used as a starting point for 
theoretical treatments of charged surfaces, some theorists have turned 
to molecular dynamics calculations where the motion of ions near a 
charged surface is followed in a computer simulation; potential and 
concentration distributions are then obtained by averaging over time. As 
it turns out, the qualitative results of the computer modeling studies are 
in good agreement with the insights obtained from Gouy-Chapman 
theory. 

In the next few sections we will consider some important 
applications of the ideas obtained from Gouy-Chapman theory. In light 
of the weaknesses just discussed, we should not hope for high accuracy, 
but will be content with qualitative or, at best, semi-quantitative 
explanations of the phenomena discussed. 

2.2 SOME PROPERTIES OF COLLOIDS 

Particles in colloidal suspensions te.g., gold or ferric oxide sols) 
generally have electrically charged surfaces due to adsorption of ions. 
Macromolecular colloids such as proteins also have charged surfaces 
resulting from ionized functional groups. In general, therefore, 
colloidal particles have ion atmospheres. In this section we shaIl 
examine some of the characteristics of such particles which may be 
understood in terms of their electrified interfaces with the liquid 
solution. 
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The Stability ofColloids 

We first ask why large particles such as proteins should be stable in 
soluti'on. Atoms or small molecules are subject to so-called London 
forces, which give rise to a van der Waals potential energy of interaction. 
London forces are short-range; the van der Waals energy varies with 
with internuclear separation as r 6 for interactions between atoms, but 
the situation is more complicated for macromolecules. One must 
consider the van der Waals attraction of each atom in one molecule for 
every atom in the other molecule. Some complicated integrals arise and 
we shall not go into the details of the calculation.1 The result for 
spherical particles of radius a is (10) 

UiR) =_..l1-[8a 2
(R + a) + 2ln R(R + 4a)] (2.14) 

12 R(R + 2a)2 (R + 2a)2 

where R is the distance between the particle surfaces. The parameter A 
is essentially empirical and usually is on the order of 10-19 to 10-20 J. The 
multiple attraction of the many atoms in a macromolecule results in the 
van der Waals energy falling off with distance much more slowly than 
might have been expected. With relatively long-range attractive forces, 
uncharged particles are expected to associate and eventually precipitate 
from solution. 

So what keeps them apart? The free energy change, tJ.G =ill - TtJ.S, 
governs the equilibrium behavior. We would expect that tJ.S for 
coagulation would be negative, but for a relatively small number oflarge 
particles, the entropy term should be negligible and we must look for an 
explanation in the enthalpy term. Short-range repulsion sets in when 
the electron clouds overlap, but by the time this interaction is important, 
van der Waals attraction has already coagulated the particles. 

If the two particles are electrically charged, then electrostatic 
repulsion will give a positive contribution to the potential energy of 
interaction, which rises exponentially as the particles approach one 
another. Notice, however, that according to eq (2.11) the distance 
parameter XA determines the range of the potential and thus of the 
electrostatic repulsion. If XA is very small, the diffuse layer is very 
compact and the particle's charge is shielded up to very short distances. 
In other words, when the ionic strength is high, the particles can 
approach quite closely before the electrostatic repulsion becomes 
significant, and by that time the van der Waals attraction may be quite 
large. 

We expect therefore that when the ionic strength is increased, the 
double-layer thickness will decrease and the coIloid will precipitate. 
This "salting-out" effect is commonly observed experimentally. 

I See Shaw (9) for further discussion of this problem. 
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The calculation of the electrostatic repulsion between two particles, 
each of which has an ion atmosphere. is very difficult. All the 
difficulties attending Gouy-Chapman theory remain, of course, and the 
question of what happens when the two ion atmospheres begin to 
interpenetrate adds an important additional complication (9). Several 
attempts have been made and we will quote only one result. If it is 
assumed that a »XA, that the surface charge density on the particles is 
constant, and that the surface potential adjusts with the ion atmosphere 
as the particles approach, the repulsive contribution to the potential 
energy is (11) 

21ta3 2 (~U,J..r) =- JL..ln [1- exp -RJXA)J (2.15) 
(l + a/XA)2 EEO 

The total potential energy is the sum of the attractive and repulsive 
contributions given by eqs (2.14) and (2.15), respectively. 

To get a feel for the nature of these equations, the total potential 
energy is plotted as a function of distance between the particles in Fif<:re 
2.4, where we have assumed particles with radii of 50 nm, A = 5 x 10- 0 J, 
and E =78.5. The energy is given in units of kT (T =298 K). Since kT is a 
measure of the amount of thermal energy available, such a scale 
permits a rough judgment on the significance of a barrier to 
coagulation. 

Figure 2.4a suggests that particles with a surface charge density of 
0.01 e nm-2 should coagulate quickly when the electrolyte concentration 
is sufficiently high that the ion atmosphere is only 5 nm thick. When the 
thickness is 10 nm, there is a small barrier to coagulation (about 3.5 kT), 
and coagulation would be expected to occur fairly rapidly (e-3.5 = 0.03). 
When the ion atmosphere is 15 nm thick, the barrier is about 36 kT and 
coagulation should be much slower (e-35 = 2 x 10-16) and when the ion 
atmosphere is 20 nm thick, the barrier is even greater. Figure 2.4b 
show's that coagulation is very sensitive to surface charge density with 
no barrier at all for 0" = 0, a small barrier for 0.01 e nm- 2, and barriers of 
33 kT and 96 kT for 0" = 0.015 and 0.02 e nm-2, respectively. 

According to eqs (2.8), (2.14), and (2.15), the potential energy also 
depends on the temperature and the dielectric constant of the medium 
as well as the size of the particle. We expect that salting-out should 
occur at lower ionic strength when either the dielectric constant or the 
temperature is reduced. Since the surface charge of a protein, for 
example, depends on the number of free carboxyl or amino groups 
present and thus on the pH of the medium, protein solubility is strongly 
pH dependent. going through a minimum at the isoelectric pH. Since 
protein solubilities are such intricate functions of ionic strength, 
temperature, dielectric constant, and pH, it is not surprising that protein 
mixtures can frequently be separated by selective precipitation 
techniques. 
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Figure 2.4 Potential energy of interaction (in units of kT) as a function 
of separation for two spherical particles of radius 50 nm; (a) a = 0.01 e 
nm·2~1 =5,10,15, and 20 nm; (b) XA =10 nm, a = 0, 0.01, 0.015, and 0.02 
e nm . 

When salting-out occurs at electrolyte concentrations of 0.1 M or 
less, the effect is largely independent of the nature of the electrolyte and 
depends primarily on the ionic strength. Many proteins remain in 
solution under these conditions but are precipitated if much higher salt 
concentrations are used. Proteins are protected from coagulation in part 
by a solvation sheath of water molecules. When high concentrations of 
salt are used, the activity of water is reduced significantly by the 
solvation of the added salt. Thus in effect the surface of the protein is 
dehydrated and coagulation is facilitated. Under these conditions, the 
salting-out effect depends strongly on the nature of the added salt since 
some salts tie up more water than others. Protein and polymer chemists 
sometimes refer to the lyotropic series of cations and anions, which show 
decreasing salting-out effects: 

Mg2+ > Ca2+ > Sr2+> Ba2+ > Li+ > Na+ > K+ > NH4+ 

S042-> o- > N03- > 1-> SCN-

Salts with low solubility such as CaS04 are of little use in salting-out, of 
COurse; the most commonly used precipitants are very soluble salts with 
a component high on the lyotropic series, such as ammonium sulfate or 
magnesium chloride. 

http:�.�.�~:.:~_�
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Surface pH 

We have seen that ions are either concentrated in or excluded from 
the double layer, depending on the relative charges. This conclusion 
applies to hydrogen and hydroxide ions as well, so that the pH at the 
surface of a charged particle will be different from that of the bulk 
solution. According to eq (2.3), the concentration of H+ ions at the 
surface is given by 

(H+]swface = (H+]O exp (-~~) (2.16) 

or, converting to pH and setting T = 298 K. 
pHsurface = pHo + 16.9 <I>a (2.17) 

Thus a surface potential <I>a = 59 mV would result in an increase in 
surface pH by one pH unit. 

When the pH is less than the isoelectric point of a protein, the 
surface is positively charged (due to -NH3+ groups), and the surface pH 
should be higher than that of the bulk solution; above the isoelectric pH, 
the surface is negatively charged (because of -C02" groups), and the 
surface pH should be less than the bulk pH. Thus, to a degree, the 
surface pH on a protein tends to be self-buffered toward the isoelectric 
pH. While singly charged ions such as H+ or OH- can be significantly 
more (or less) concentrated near a charged surface than in bulk 
solution, such effects are even more dramatic for multiply charged ions. 
Thus eq (2.3) suggests that a surface potential <I>a = -59 mV would result 
in a concentration magnification of 100 for Mg2+ and 1000 for AI3+. 
Although we must be cautious about quantitative predictions from Gouy
Chapman theory, the qualitative effect is real and has important 
consequences, for example, in the action of metal ions as co-factors in 
enzymatic reactions. 

Example 2.2 A dodecylsulfate micelle contains about 100 
dodecylsulfate ions and has a radius of about 2 nm. Compute 
the surface charge density, the surface potential, <I>a' and the 
difference between the surface pH and the pH of the bulk 
solution. Assume an ionic strength of 100 mM. 

The surface charge density is
 
19


o = _ (100X1.6 X 10- C) = _ 0.32 C m·2 
(41tX2 x 10.9 m)2 

The surface potential derived using the linearized Poisson
Boltzmann equation (see Problems) is 
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<I>a = .J:L ----1l 
E£() 1 + a/xA 

so that with XA = 0.96 nm and a =2 nm,
 
a =0.65nm
 

1 + a/XA 

and 

<I>a = (- 0.32 C m·lXO.65 x 10-9m) _ 0.30 V 
(78.5X8.85 x 10.12 C2J.lm·l) 

which is rather too large to justify use of the linearized 
poisson-Boltzmann equation. Ignoring this problem, eq (2.17) 
predicts 

pHsurface - pHo = - 5.1 

While this result is doubtless an overestimate, it is in 
reasonable qualitative agreement with the following 
experimental result. When lauric acid is added to a solution of 
dodecylsulfate micelles, the long-chain carboxylic acid 
molecules are included in the micelles. A pH titration of the 
carboxylic acid yields an apparent pKa (the pH of the half
neutralization point) of about 7 under these conditions. Since 
the pKa oflauric acid is about 4.8, the surface pH is apparently 
about 2.2 pH units lower than that of tile bulk solution. 

2.3 ELECTROKINETIC PHENOMENA 

Four rather peculiar effects, known as the electrokinetic 
phenomena, tum out to be relatively easily understood in terms of our 
theory of the diffuse double layer (l2,B8). These effects arise from the 
motion of an electrolyte solution past a charged surface. 

The Phenomena 

Consider an electrolyte solution flowing through a capillary as 
shown in Figure 2.5. Since in general there is a surface charge on the 
capillary walls due to adsorbed ions, there will be a diffuse space charge 
in the solution adjacent to the walls. As the solution flows through the 
capillary, some of the space charge is swept along with it and, if 
electrodes are provided at either end of the capillary, a current, called 
the streaming current, can be measured between them. 
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Figure 2.5 (a) Apparatus for measuring the streaming current or 
streaming potential. (b) Ions moving in the capillary; with adsorbed 
anions, positive space charge is swept along by solution flow. 

If, on the other hand, we replace the ammeter with a voltmeter, 
essentially no current flows and ions swept through the capillary 
accumulate at one end, producing an electric potential difference across 
the capillary, called the streaming potential. If the experiment starts 
with a homogeneous solution, the streaming potential grows with time 
until it is big enough that electric migration of ions upstream exactly 
cancels the flow of ions downstream. 

The two effects, streaming current and streaming potential, may be 
jointly expressed by one phenomenological equation: 

, i = uID.? + U2t1<J>	 (2.18) 

Thus, when current i is allowed to flow without impedance in the 
external circuit, t1<J> = 0, and the current is proportional to the pressure 
difference t1P which generates the liquid flow. However, when the 
current is zero (e.g., because of high external impedance or slow 
electrode kinetics), then a potential difference t1<J> is observed which is 
proportional but opposed to the pressure difference. 

A related effect may be observed if, instead of applying a pressure 
difference, we impose a potential difference between the two electrodes. 
Now in the bulk solution, positive ions move toward the negative 
electrode and negative ions toward positive electrode. There is little drag 
on the bulk solution, which has zero net charge. Near the surface, 
however, the space charge is acted on by the field, tending to drag the 
solution along with it. If the cylindrical shell of solution near the 
capillary walls moves, then viscous drag will pull the solution in the 
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center of the capillary along as well. The effect of liquid flow under the 
action of an electric potential difference is called electroosmosis. 

If we carry out an electroosmosis experiment and allow flow to 
contihue such that a pressure difference is built up, the flow will 
eventually slow and come to a halt as the pressure opposes and finally 
cancels the effect of the field. The relation of this steady-state 
phenomenon, called the electroosmotic pressure, to electroosmosis is 
analogous to the relation of streaming potential to streaming current. 
Electroosmosis and electroosmotic pressure may be expressed by the 
phenomenological equation 

j = u3D.? + U4t1<J>	 (2.19) 

where j is the flux ofliquid through the capillary (in m3s· I ). Thus, in the 
absence of a pressure difference, the flux is proportional to the electric 
potential difference t1<J>. When the flux goes to zero, the pressure 
difference is proportional but opposed to the electric potential difference. 

The Zeta Potential 

Electrokinetic effects arise because of motion of the diffuse layer of 
ions in solution relative to the solid surface. We might guess that the 
Helmholtz layer is stationary and that the Gouy layer moves with the 
bulk solution, but this is an oversimplification. The behavior is as if 
there were a slipping surface located in the diffuse part of the ion 
atmosphere. The potential at the slipping surface is given the symbol C 
(zeta) and is called the electrokinetic potential (or simply the zeta 
potential). 

In a quantitative treatment of the electrokinetic effects, the 
appropriate form of the V2 operator in the Poisson equation depends on 
the geometry of the problem. Thus for the symmetry of a capillary tube, 
cylindrical coordinates (r, ~, and z) should be used. If we can assume 
that <J> depends only on the distance from the capillary wall, then we can 
neglect terms in d<J>/d~ and d<1>/dz and eq (2.1) can be written as 

p(r)=-~°t-(r:l	 (2.20) 

Ifwe assume that a, the radius of the capillary, is much larger than the 
diffuse layer thickness XA, then we need not rederive an equation for the 
potential but can use the result obtained for a planar surface, 

<J>(r) =Cexp[(r - a)/xA]	 (2.21) 

where the coordinate r is measured from the center of the capillary. We 
have assumed that a /XA is large enough that the potential in the center 
of the capillary is nearly zero. 
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Calculation ofthe Coefficients 

The coefficients in eqs (2.18) and (2.19) can be computed rather 
easily using the Gouy-Chapman model. The coefficient Cli is the current 
per unit pressure difference when the potential difference is zero. Since 
the current results from sweeping space charge of charge density p(r) 
along with the flowing solution, which moves with velocity v(r), it must 
be given by the integral 

i ::: La v(r) p(r) 2xr dr (2.22) 

Substituting <I>(r) from eq (2.21) into eq (2.20) and differentiating, we 
obtain the charge density 

p(r):::- ££~ (1 + L) exp{r-a) (2.23) 
1'XA XA XA 

When a fluid of viscosity 11 flows througha cylindrical tube of radius a, 
the velocity is given as a function ofr-by Poiseuille's equation, 

a 2-r 2 
v(r):::M'-- (2.24) 

4T)L 

where !J.P is the pressure difference over the length L of the tube. 
Substituting eqs (2.23) and (2.24) into eq (2.22) and integrating, we get 

i = 1t£EO("M' [2a2- 4xl (-'L-1) + (a2_ 4xl) exp (_-'L)~ 
2~ ~ ~~ 

But since a »XA, the last two terms are negligible and 

Cli :::--L = 1ta 2££0(" (2.25) 
M' 11L 

The coefficient Cl2 is the current per unit potential difference when there 
is no pressure difference across the capillary. Under these conditions 
the current and potential difference are simply related by Ohm's law, i = 
!J. <I>/R. The resistance R of a cylinder of radius a, length L, and 
resistivity p is R =pL/1ta 2 , so that the current is 

i ::: 1ta2 !J.et>/pL 

and the coefficient is 
. 1ta 2 

Cl2 = _l_ =: -- (2.26) 
!J.et> pL 

Similar calculations (see Problems) give 

( ( 
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1ta 4 
(2.27)Cla = 811L 

and· 
Cl4 =Cli (2.28) 

This last result turns out to be more general than we might have 
expected from our rather simple calculation. Indeed, the electrokinetic 
effects can be treated by the methods of nonequilibrium thermodynamics 
with the completely general result that Cli = <X4 independent of the size or 
shape of the holes through which the solution flows.! 

Let us restate the four electrokinetic effects in terms of the 
phenomenological equations 

i =ClIM' + Cl2!J.et> (2.18) 

j =Cl3M' + <X4!J.et> (2.19) 

The streaming potential is the potential difference per unit pressure 
difference at zero current, and thus may be expressed quantitatively as 

Streaming potential =(~) =_Cli = Eeo~ p (2.29)
!J.P i=O Cl2 11 

where ~ is the zeta potential, p is the resistivity, and 11 is the viscosity of 
the solution. The streaming current is the electric current per unit flux 
at zero potential difference: 

Streaming current =I~) = Cli ::: _ 8eeo~ (2.30)
\.i ,M'=O OJ a 2 

The electroosmotic pressure is the pressure difference per unit electric 
potential difference at zero flux and may be expressed as 

Electroosmotic pressure = (!J.P) =_ Cl4 = 8eed; (2.31) 
!J.<I> j =0 Cla a 2 

The electroosmotic flow is the flux per unit electric current at zero 
pressure difference: 

Electroosmotic flow ::: (~) = ~ = _ EEo~P (2.32) 
l61'=0 Cl2 11 

Comparing these results we see that more remarkable conclusions 
have been obtained: the streaming potential, eq (2.29), is just the negative 
of the electroosmotic flow, eq (2.32); the streaming current, eq (2.30), is the 

1 This result is an example of Onsagor's reciprocal relations (3). For further 
discussion, see Bockris and Reddy (B8). 
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negative of the electroosmotic pressure, eq (2.31).1 These equalities are 
also obtained from nonequilibrium thermodynamics and are thus quite 
general, independent of the nature of the holes through which the liquid 
flows. . 

Notice that the streaming potential and electroosmotic flow are 
predicted to be completely independent of the dimensions of the capillary 
tube. Indeed, it can be shown that the results we have obtained for a 
cylindrical capillary are independent not only of the dimensions, but also 
of the shape of the holes through which the liquid flows, provided only 
that (1) the flow is laminar ii.e., nonturbulent), and (2) that the radii of 
curvature of the pores through which the liquid flows are much larger 
than the thickness of the double layer. 

The electroosmotic pressure and the streaming current, on the 
other hand, depend on the radius of the capillary, and in general, on the 
average pore size when flow is through a porous plug or membrane. 

Example 2.3 Compute the streaming potential expected 
when a solution having p = 1 nom, E = 78.5, and 11 = 10-3 Pa-s 
flows through a capillary tube with zeta potential ~ = -100 mV 
under the influence of a pressure difference of 1 bar (l05 Pa). 

Substitution into eq (2.29) gives 

S.P. = (78.5X8.85 x 10-12 C2J-1m2X~.1 VX1n-mY(l0-3 Pa-s) 

S.P. =-7.0 x 1O-8 V Pa-1 

Thus
 

M) = (S.P.)M>= -7.0 x 10-3V (-7.0 mY)
 

Example 2.4 Compute the streaming current expected when 
a solution with E =78.5 flows through a bundle of capillaries of 
radius 0.1 mm and zeta potential -100 mV with a total flow of 
0.1 cm3s·1. 

Substitution into eq (2.28) gives 

S.C. = -8(78.5)(8.85 x 10-12 C2J-1m2)(~.1 V)/(10 4 m)2 

S.C. =5.6 x 10-2 C m-3 

1 These results are the more surprising since it would appear that the four quantities 
should have different units. However, the apparent units of the electroosmotic flow, 
(m 3s- I)/(C s·I), reduce to m3C-I and the apparent units of the streaming potential, V 

m3C·I.Pa-\' also reduce to Simila~ly, the apparent units of the streaming current, 
(C s: }/(m3s-I), and the electroosmotic pressure, Pa V-I, both reduce to C m- . 
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or, withj = 10-7m3s·I , 

i = (S.C.)j =5.6 x 10-9 A (5.6 nA) 

Zeta Potentials at Glass-Water Interfaces 

Glass-water interfaces appear to acquire a double layer through 
selective adsorption, usually of OH- ions. The surface potential therefore 
is usually negative and eis typically on the order of -150 mV in dilute 
solutions. The zeta potential is strongly dependent on the electrolyte 
concentration, however, with typical results shown in Figure 2.6. 

0.0 

-.-._ .•. _. KOH 
Figure 2.6 The zeta potential at elV
 
a glass-aqueous solution inter

face as a function of electrolyte
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 ...~- ,-'mined by measurement of the -0.1
 
electroosmotic flow through a
 ...... -: 
capillary tube. The lines
 
represent smooth curves drawn
 
through data points rather than _._-_::::::::::::::::::>., .. 
fits of data to a theoretical
 
equation. Reprinted with per

mission from A. J. Rutgers and
 -0.2
M. de Smet, Trans. Faraday -6 .sSoc. 1945,41, 758, copyright 1945
 
Royal Society of Chemistry.
 

The dependence of e on the concentration of electrolyte is a 
complicated combination of at least three effects. Equation (2.13) tells us 
that the surface potential is proportional to the surface charge density o. 
It is also proportional to XA and thus proportional to 1/VC. In addition, if 
the slipping plane is located at a distance x into the diffuse layer, then e 
is less than the surface potential by the concentration-dependent factor 
exp(-xIXA): 

e=<1>a exp (_..L) = OXA exp (_..L)
XA EEo XA 

Thus we would expect eto depend on the concentration of electrolyte 
according to 

e== 0 exp (-pVC) (2.33) 

-4 -3 -2 

log C 
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where ex and P are constants. If (1 is independent of electrolyte 
concentration, then S should be a monotonic decreasing function of C. 
The situation is somewhat more complicated if the surface charge 
density is affected by changes in electrolyte concentration. In Figure 2.6, 
we see that the zeta potential is larger for KOH solutions than for the 
other electrolytes, presumably because (1 is more negative for these 
solutions (hydroxide ions are preferentially adsorbed). Indeed, there is a 
minimum in the sus. 10g(C) curves for KOH solutions which reflects a 
balance between (1 increasing with increasing concentration and XA 
decreasing. This interpretation is supported by the behavior of HN03, for 
which the zeta potential falls more rapidly with increasing 
concentration, presumably because of surface charge neutralization. 

Sometimes more positive ions are adsorbed on the negative surface 
than are required to neutralize the surface charge, in effect reversing 
the sign of the zeta potential. The origin of the behavior is shown in 
Figure 2.7, and some typical data are shown in Figure 2.8. 
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<1>/<1>0 0.1 
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I,.:
/:":: 

, 
I,.:. AI eYOI : 
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0 1 2 3 -7 ~ -5 -4 -3 

10gCxlXA 

Figure 2.7 Reversal of zeta potential Figure 2.8 Zeta potential at a glass
by adsorption of ions. The upper aqueous solution interface us. 
curve shows the normal behavior concentration for (a) KNOa, (b) 
with l1> falling exponentially through Ca(NOa)2, and (c) A\(NOa)3, 
the ion atmosphere. The lower curve determined by electroosmotic flow 
shows the behavior expected when through a glass capillary. Reprinted 
oppositely charged ions are adsorbed with per-mission from A. J. Rutgers 
on the surface forming a "triple and M. de Smet, Trans. Faraday 
layer" and reversing the sign of the Soc. 1945,41, 758, copyright 1945 
zeta potential. Royal Society of Chemistry. 
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2.4 ELECTROPHORESIS AND RELATED PHENOMENA 

The electrokinetic phenomena involve stationary solid phases, the 
effects arising because of motion of the electrolyte solution past the 
electrified interface. Several related phenomena arise when the 
interface is also free to move. 
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The Electroviscous Effect 

The viscosity of a colloidal solution is very sensitive to the ionic 
strength of the medium. For example, the relative viscosity of a solution 
of soluble starch, plotted in Figure 2.9, drops dramatically with 
increasing electrolyte concentration (15). The effect has two causes: (1) 
XA is large at low ionic strength; the thick ion atmosphere increases the 
effective hydrodynamic size of the colloid and thus increases the viscous 
drag when the molecule moves in solution. (2) Electrostatic repulsion of 
charged functional groups results in an extended conformation of the 
starch molecule. When the ionic strength is higher, intergroup 
repulsion is shielded by the ion atmosphere and a more compact 
conformation is adopted. Again the effective hydrodynamic volume is 
reduced and the solution viscosity is lower. The first effect can be treated 
theoretically but it is usually considerably smaller than the second. 
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Sedimentation Potential 

When colloidal particles move through an electrolyte solution under 
the influence of gravity (as, for example, in an ultracentrifuge), the 
particles may leave some of their ion atmosphere behind, especially if 
the diffuse layer is very thick (low ionic strength). Thus charge 
separation may accompany sedimentation, leading to the development of 
an electric potential gradient along the length of the sedimentation tube. 
The phenomenon is thus analogous to the streaming potential discussed 
above. A sedimentation potential is generally an unwanted complication 
in an ultracentrifugation experiment. To reduce the magnitude of the 
effect, ultracentrifugation is usually carried out in high ionic strength 
media so that the diffuse layer is relatively compact and charge 
separation is minimized. 

Electrophoresis 

If an electric field (or potential difference) is applied across a 
solution containing charged particles, the particles are accelerated, 
rapidly attaining a terminal velocity where the electrical force is exactly 
balanced by the frictional retarding force as the particles move through 
solution. The phenomenon of electrophoresis is characterized by the 
electrophoretic mobility, u, defined as the velocity per unit electric field 
strength: 

Ivl (2.34)u=IEI 

If v is expressed in m s-l and E is in Y rrr l, u apparently must have 
units of m2y -1s-1. Typical mobilities of ordinary small ions in aqueous 
solution are on the order of 5 x 10-8 m2V-1s-1; proteins generally have 
mobilities in the range (0.1-1) x 10-8 m2V-1s- 1. Although the phenomenon 
of electrophoresis can be understood qualitatively as the motion of 
charged particles in an electric field, the details of the motion depend 
upon the nature of the ion atmosphere surrounding the particles. 

Consider first the motion of a small spherical particle of radius a 
through a medium of viscosity n. According to Stokes' law, the viscous 
force opposing the motion is 

F vise =- 61tTlav (2.35) 

where v is the velocity of the particle. On the other hand, the electrical 
force propelling the particle through the solution is 

Felee =QE 
where Q is the charge on the particle and E is the electric field strength. 
If the surface charge density is o, then the total charge on the particle is 
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Q :::: 41ta 2a . For a spherical particle moving through solution, the 
effective charge density is related to the zeta potential, 

a =EEO~ (1 + .JL)
a XA 

combining these expressions, we have the electrical force on the 
particle: 

Fe.ec =41taEEo~E (1 + f4) 
When the particle reaches terminal velocity, the acceleration is zero, and 
according to Newton's second law, the resultant of forces must be zero. 
Thus we have 

47ta££ol;E (1 + ~) - 6xaTl v =0 

The electrophoretic mobility then is 

Ivl 2EEO~ (2.36)u=IEI=3Tl 

where we have assumed that a «XA. Equation (2.36) thus represents a 
limiting result for small spherical particles. When a/xA approaches 
unity, the mobility should increase; however, the variation is more 
complicated than we might expect from this approach. 

We can obtain an estimate of the electrophoretic mobility for large 
values of a/XA by the following analysis. Suppose that the particle is very 
large compared with the size of its ion atmosphere. We then regard the 
surface as approximately planar and consider the relative motion of the 
solution past the surface. The calculation, which is very similar to that 
for the electrokinetic coefficient 04, gives 

u = EEO~ (2.37) 
Tl 

which should be the limiting value for a very large particle. 
Charged particles of intermediate size distort the electrical lines of 

force and a more sophisticated approach is required. More exact 
calculations have shown that the electrophoretic mobility is (as we 
might expect) a function of the size, shape, and orientation of the 
particles. The mobility is, however, generally found to be proportional to 
the dielectric constant and to the zeta potential, and inversely 
proportional to the viscosity. The electrophoretic mobility is sometimes 
written as 

fEEO~ (2.38)U = -Tl 
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where f is a unitless quantity which depends upon the geometrical 
factors. For spherical particles, f varies smoothly from 2/3 for a < XA to 1 
for a > 100 XA. 

Example 2.5 Estimate the electrophoretic mobility of a 
particle of radius 3 nm and zeta potential 20 mV in a solution 
with e =78.5, 11 =10-3 Pa-s, and ionic strength 1 roM. 

For 1 mM ionic strength, XA =9.6 nm, so that a1xA =0.31 and f '" 
2/3; eq (2.38) gives u =9.3 x 10-9 m2s·1V-1. This mobility is typical 
for charged macromolecules (see §3.3). 

Practical Electrophoresis 

Although eq (2.38) does not explicitly include the thickness of the 
diffuse layer, XA, the zeta potential depends on XA (or C) as shown by eq 
(2.33) and the geometric factor f depends on alxA. Thus the 
electrophoretic mobility is expected to decrease with increasing ionic 
strength of the electrolyte solution. The mobility is also proportional, of 
course, to the surface charge density on the moving colloidal particle 
and, for a protein, is expected to be pH dependent, even at constant ionic 
strength; indeed, the mobility is expected to go to zero at the isoelectrie 
pH. Because of the dependence of the electrophoretic mobility on ionic 
strength and pH, a mechanism for control of protein mobilities is 
available which is used in practical separation techniques. 

In our discussion thus far, we have tacitly assumed that 
electrophoresis experiments are done on a suspension of colloidal 
particles in liquid solution, and, indeed, the early experiments were. 
Thus, in classic experiments done in the 1930's, Tiselius found that 
electrophoretic mobilities of protein molecules in solution could be 
measured by a moving boundary method (16). Tiselius' apparatus was 
essentially a U-tube, shown in very simplified form in Figure 2.10. The 
U-tube was constructed so that the solution of the colloid could be placed 
in the bottom of the tube and solvent (containing electrolyte) layered on 
top on both sides. Electrodes were then mounted in the two ends of the 
U-tube and a high voltage applied. When the protein molecules 
migrated in the solution, the boundary between the two regions of the 
solution remained intact and was seen to move with a velocity which 
was easily related to the electrophoretic mobility of the protein. To 
minimize convective mixing of the solutions and blurring of the 
boundary, it was necessary to very carefully thermostat the U-tube, and, 
since the rate of change of the density of water with temperature is 
smallest near the density maximum (4°C), best results were obtained 
when the system was thermostated at about 2-3°C. In practice, the 
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Figure 2.10 Moving boundary method 
for measurement of electrophoretic 
mobilities. (a) Initial condition with 
protein solution layered at the bottom of 
the U-tube. (b) After passage of current, 
boundary between the colloid and 
electrolyte solutions has moved. (a) (b) 

boundary was observed by measurement of the refractive index. Fairly 
complex mixtures can be separated by means of Tiselius' 
electrophoresis techniques. 

Arne W. K. Tiselius (1902-1971) was a Professor at the University of 
Uppsala with research interests in biophysical chemistry. He received 
the Nobel Prize in Chemistry in 1948 for his work on electrophoresis. 

A great advance in the utility of electrophoresis came with the 
marriage of electrophoretic migration with paper chromatography. By 
using a solid support of filter paper, most of the problems associated 
with convective mixing in solution can be eliminated and diffusive 
blurring of the zone boundaries can be reduced as well. Even further 
improvement can be obtained if a more homogeneous solid support such 
as starch gel or cellulose is used in place of the paper. 

The manifold of electrophoresis techniques now available, 
including a host of procedures for detecting the protein molecules, goes 
far beyond the space available here. Several rather long chapters would 
be required to do the subject justice, and the reader is referred to a more 
specialized text (17-19) for further details. 

2.5 ELECTRODE DOUBLE-LAYER EFFECTS 

Unlike a protein molecule where the surface potential and the ion 
atmosphere are a response to the solution pH and ionic strength, the 
potential of an electrode, and thus the nature of the double layer, can be 
controlled by external circuitry. This control permits quantitative 
experimental studies of double-layer effects. In this section, we will 
discuss two effects which have important consequences in 
electrochemical experiments to be described in subsequent chapters. 
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Electrocapillarity 

The interfacial tension (surface tension) at an electrode-solution 
interface turns out to be a function of the electrode-solution potential 
difference. When the electrode is a rigid solid, the effects of interfacial 
tension are difficult to discern, but when the electrode is nonrigid, a 
mercury drop for example, the effects are more obvious. In a dropping 
mercury electrode, mercury is allowed to flow through a fine-bore 
capillary immersed in the electrolyte solution. A mercury drop forms at 
the end of the capillary and grows in size until it becomes too heavy to be 
supported by the interfacial tension.! Thus changes in interfacial 
tension are reflected in changes in the maximum mercury drop size, or 
if the flow through the capillary is constant, in the lifetime of a mercury 
drop. 

Consider a mercury drop attached to a mercury-filled capillary and 
suspended in an electrolyte solution. If a second electrode is provided, 
we can change the mercury-solution potential difference and thus 
induce a positive or negative charge on the mercury drop by passing a 
small current through the external circuit. Similarly, we can change 
the drop size by allowing mercury to flow through the capillary. 
Expansion of the drop involves an increase in surface area and thus 
work is done against the interfacial tension, dw = ydA. Similarly, 
electrical work is done when the drop is charged, dw = e!»dQ. Thus at 
constant temperature, pressure, and composition, the change in Gibbs 
free energy is 

dG = ycIA + <1> dQ 

This expression can be integrated 

G=yA+<1>Q 

and redifferentiated 

dG =y cIA + A dy + <1> dQ + Q de!» 

Subtracting the two expressions for dG leaves a form of the Gibbs
Duhem equation, 

o=A dy + Q d<1> 

Introducing the surface charge density, (J =QIA, we have 

(Oy) =-0 

d<I> T,P 

Substituting for (J from eq (2.13) gives 
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(Or ) __ ~ 
0<1> T,P  XA 

(2.39) 

lntewation of eq (2.39) gives 

e e!»2
y=Yo-~

2xA 
(2.40) 

A plot of interfacial tension vs. cell potential should be parabolic with a 
maximum when the electrode-solution potential difference is zero. 

If mercury flows through the capillary with constant rate u (mass 
per unit time), then the mass of the drop after time tis m = ut. The 
gravitational force (weight), corrected for the buoyancy of the solution, is 

F =utg(l- dldHg) 

where d and dHg are the densities of the solution and mercury, 
respectively, and g is the gravitational acceleration. The surface tension 
force holding the drop to the capillary is 

F =21trcY 

where rc is the radius of the capillary bore. These two forces are in 
balance the instant before the drop falls from the capillary (t = td). Thus 
iftd, u, d, and re are measured, the interfacial tension can be computed 

y =utcJ8 (1- dldHg) (2.41) 
21trc 

Some typical data. from the work of Grahame (1) are shown in Figure 
2.11 for several aqueous electrolyte solutions of equal ionic strength. 

The curves of Figure 2.11 show the qualitative behavior predicted by 
eq (2.41). However, the simple theory predicts identical curves for all 
electrolytes of equal ionic strength. The curves of Figure 2.11 coincide at 
negative potentials but show rather different behavior near zero or at 
positive potentials. When the mercury drop is positively charged, anions 
are expected to be concentrated near the electrode surface, and the 
different behavior suggests specific interactions of the various anions 
with the surface. The "soft" bases like 1- and SCN-- apparently interact 
more strongly than the "hard" bases like OH-, CI-, and N03-. Since 
mercury can be thought of as a soft acid, the interaction most likely 
involves some degree of chemical bond formation and we say that the 
anions are chemically adsorbed on the mercury surface. When the 
potential is made sufficiently negative, anions are desorbed and all 

David C. Grahame (1912-1958) was Professor of Chemistry at Amherst 
College. He is remembered for his exceedingly careful and thorough 
studies of the electric double layer. 

1 The dropping mercury electrode is discussed in more detail in Chapter 4. 
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Figure 2.11 Interfacial tension of mercury in contact with various 
aqueous electrolyte solutions. The potential scale is adjusted so that zero 
potential occurs at the electrocapillary maximum for a capillary-inactive 
electrolyte. Reprinted with permission from D. C. Grahame, Chern. Rev. 
1947,41,441, copyright 1947 American Chemical Society. 

curves merge together, suggesting that cations (at least Na", K+, and 
Ca2+) do not specifically interact with the mercury surface, even when it 
is highly negatively charged. 

It is commonly observed that the drop time of a dropping mercury 
electrode depends on potential, usually varying by a factor of 2 or more 
over the experimentally accessible range. More complex behavior is 
sometimes observed when surfactants are adsorbed on the electrode 
surface. Since adsorption is often potential dependent, very rapid 
changes in interfacial tension (and thus drop time) with potential are 
sometimes observed. 

Double-Layer Capacitance 

When the potential applied to an electrode immersed in an 
electrolyte solution is decreased from zero, the surface charge becomes 
negative and the net space charge of the double layer must increase to 
maintain overall electrical neutrality. Similarly, an increase in 
electrode potential must induce a net negative space charge. From the 
point of view of the external electric circuit, the double layer thus 
behaves as a capacitor, serving to store electric charge. 

Capacitance is defined as the ratio of charge stored to vol tage 
applied, or, more appropriately in this case, as the derivative (the 
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Figure 2.12 Capacity of a
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differential capacitance) 

C=dQ (2.42) 
d<1> 

Ifwe take C to be the capacitance per unit area (the capacity), then we 
can replace Q by the surface charge density c. Consider first the 
capacity of the Gouy layer, Ce. Differentiating eq (2.13), we obtain 

CG = ££0 (2.43)
XA 

A more exact calculation (see Problems) shows that Co is a function of 
<1>a and that eq (2.43) represents the minimum capacity. Minima are 
observed experimentally and provide a way to determine the potential of 
zero charge for an electrode (20). The capacity vs. potential curves for 
some aqueous sodium fluoride solutions are shown in Figure 2.12. 

Example 2.6 Compute the Gouy layer capacity for a solution 
ofa 1:1 electrolyte with concentrations of 0.001, 0.01, and 0.1 M. 

The double-layer thicknesses for these concentrations are 
(Table 2.1) 9.6, 3.0, and 0.96 nm. Assuming the dielectric 
constant of pure water (e =78.5), eq (2.43) gives 

Ce = 0.072, 0.23, and 0.72 F m-2 

for 0.001,0.01, and 0.1 M solutions, respectively. 
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The curve for 0.001 M NaF solution in Figure 2.12 goes through a 
minimum of about 0.06 F m-2, in excellent agreement with the value 
computed in Example 2.6 considering the simplicity of the theory. 
However, the minimum capacity of the 0.01 M NaF solution is about 0.1 F 
m- 2 and for 0.1 M NaF the observed capacity at the electrocapillary 
maximum is only 0.2 F m-2, rather less than the computed values, 0.23 
and 0.72 F m-2. Furthermore, the capacity minimum at <1> = 0 nearly 
disappears for concentrated solutions. The reason for these apparent 
discrepancies is not hard to find: we have neglected the effect of the 
immobilized ions and solvent dipoles on the surface which comprise the 
Helmholtz layer. These also contribute to the capacity. From the point of 
view of the external circuit, these two contributions-CH for the 
Helmholtz layer and Ca for the Gouy layer-behave like capacities in 
series. Thus the total observed capacity is given by 

lIC = lICH + l/Ca 

or 

C = CaCH (2.44) 
Ca+CH 

For dilute solutions, the capacity of the diffuse layer Ca is small 
compared with the more or less constant Helmholtz layer contribution, 
so that C"" Ca. When the diffuse layer becomes more compact and its 
capacity becomes large compared with that of the Helmholtz layer, then 
the latter contribution should dominate. Indeed, it is found that at zero 
potential the double-layer capacity initially increases with concentration 
and then levels off. In the case of NaF solutions in contact with 
mercury, the Helmholtz contribution to the double-layer capacity at <1> =0 
appears to be approximately 0.29 F m-2. 

2.6 DEBYE-HOCKEL THEORY 

In 1923 Debye and Huckel (21) found a way to calculate ionic activity 
coefficients for dilute electrolyte solutions. The basic idea of the theory is 
that, just as in the case of the charged surfaces we have been 
considering, individual ions possess an atmosphere of ions of opposite 
charge. By calculating the electrostatic free energy of interaction of an 
ion with its atmosphere, an estimate of the activity coefficient can be 
obtained. Debye-Huckel theory starts with the Gouy-Chapman 
description of the ion atmosphere derived from the linearized Poisson
Boltzmann equation. 

§2.6 Debye-Huekel Theory 

Peter J. W. Debye 0884-1966) was one of the outstanding physical 
chemists of this century. At one time or another, he held chairs at the 
Universities of Zurich, Utrecht, Gottingen, Leipzig, and Berlin, finally 
coming to rest at Cornell University during World War II. His 
contributions to electrolyte theory were largely made during his tenure at 
the Eidgenossische Technische Hochschule in Zurich in the 1920's. Erich 
Huckel (1896-1980) was a student of Debye's; their collaboration continued 
through most of the 1920's, whereupon Huckel went on to become a pioneer 
in quantum chemistry. 

Calculation ofan Ionic Activity Coefficient 

We begin by outlining the thermodynamic part of the argument. 
The chemical potential of a species i is given by 

Ili = Ilt + RT In at (2.45) 

where Ilio is the chemical potential of i in its standard state, and at is its 
activity. If the standard state is an ideal 1 M solution.! then in an ideal 
solution, the activity is identical with the molar concentration. 
Assuming that the standard state chemical potential is unaffected by 
considerations of nonideality, the chemical potential in the hypothetical 
ideal solution is 

lli(ideal) =Ilio + RT In C; 

If we now assume that the departure from ideality is due entirely to 
electrostatic interactions of the ion with its surroundings, then the 
electrical contribution to the chemical potential is 

Ili(elec) =Ili - Ili(ideal) 

Ili(elec) =RT In a; - RT In C; 

and, since the ratio of the activity to the concentration is the activity 
coefficient, 

Yi =ail C; (2.46) 

we have 

Ili(elec) = RT In Yi (2.47) 

Thus if we can calculate the electrostatic contribution to the chemical 
potential of an ion, we will have the activity coefficient. 

Consider an ion of charge zte surrounded by its ion atmosphere and 
suppose that the electric potential at the surface of the ion is <1>. We now 

1 The standard state in most treatments of activity coefficients is the 1 molal ideal 
solution. Since most practical work employs the molar concentration scale, we shall 
use the 1 M standard state here. The penalty for this choice is that most data 
tabulations must be converted to molar concentration units. 



92 
93 

The Electrified Interface 

consider the hypothetical process of reversibly charging an initially 
uncharged ion up to its actual charge zie . The work done in this 
charging process is the change in the Gibbs free energy, which in this 
case is the electrical contribution to the chemical potential: 

r~ 
Ili(elec) =Jo <1> dQ	 (2.48) 

where <1> is the contribution to the potential from the ion atmosphere. 
Notice that this chemical potential has units of energy per ion; we will 
convert to a molar basis later. 

For a spherical particle of radius a, the surface potential <1>a is 
related to the surface charge density o by (see Problems) 

<1>	 - qa 
a - ££0(1 + a/xA) 

where e is the dielectric constant of the medium and XA is the thickness 
of the ion atmosphere (called the Debye length in this context). IfQ is the 
total charge on the ion, the surface charge density is 

o=-.!L 
4rra 2 

We then have 

<f)a=~-_l (2.49)
41t£Eoa (1 + a/xA) 

For the thermodynamic calculation, we need the potential at the ion site 
due to the ion atmosphere. Equation (2.49) contains contributions from 
both the ion atmosphere and the central or test ion. However, the latter 
contribution is easily computed: 

.	 Q 
<f)cenlra.l(a) = -- 

41tEE~ 

Subtracting this from eq (2.49), we have the ion atmosphere contribution 
to the potential at the central ion: 

<1>atm(a) = - ~----.-L
41t£Eo a + XA 

Substituting this expression in eq (2.48) and integrating, we have 

Ili(elec) =__l l_i z

;e QdQ 
41tE£0a + XA o 

Zi~2 __l_ 
Ili(elec) = - 81tEEo a + XA 

§2.6 Debye-Huckel Theory 

Finally, we substitute this expression into eq (2.47), solving for In 'Ii. In 
doing so, we also multiply by Avogadro's number! to convert to a molar 
basis: The resulting equation is 

z:Ze 2 1
In 'Ii = ' --	 (2.50)

81t££okT a + XA 

Mean Ionic Activity Coefficients 

Unfortunately, there is no way of obtaining single ion activities or 
activity coefficients from experimental measurements. Thus we must 
pause for a moment to deduce the relationship between the single ion 
activity coefficients calculated with the Debye-Huckel theory and the 
activity coefficients which are actually measurable. 

Consider an electrolyte, which, on dissolution of one mole, gives VI 
moles of cations and V2 moles of anions. We define the mean chemical 
potential of the electrolyte as 

VIllI + V~2Il±=-=--=----''''--=-	 (2.51)
VI + V2 

where Il± is related to the mean activity l1± by 

Il± = Il±°+ RT In a±	 (2.52) 

Substituting the analogous equations for the single ion chemical 
potentials, eq (2.45), into eq (2.51) gives 

Il± = l(VIIlIO + V21l2°) + RTln (alVIIv at/V) (2.53)
V 

where V = VI + V2· Comparing eqs (2.52) and (2.53), we see that the mean 
ionic activity is related to the single ion activities by 

vv» v,)v
a± =a l a 2	 (2.54) 

Since a± = C±'I±, al = Cm, and a2 = C2"'12, eq (2.54) implies the following
relationships: 

V VI V2
a± = a l a 2	 (2.55a) 

v _ C V1 C V2C ± - I 2	 (2.55b) 

"'I: = 1:1 "'I{2	 (2.55c) 

But, since CI = VIC and C2 = V2C. C± is not the ordinary molar electrolyte
concentration C, but is 

Multiplication by Avogadro's number is equivalent to conversion of the gas 
constant in the denominator to Boltzmann's constant. 
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c.=C (V{I v;2)l/V (2.56) 

Example 2.7 Determine the relationship between the mean 
ionic concentration C± and the ordinary molar concentration C 
for binary electrolytes with ionic charges from 1 to 4. For a 
symmetrical electrolyte 0:1, 2:2, etc.), vI =V2 =I, v =2. Thus 

(Vlv 1v2'2)lIv =-..[l;;l =1 

and C± =C. For a 1:2 electrolyte, V+ =2, v: =1, v =3 and 

(Vlv 1v2'2)]/V=:'122 x 1 =1.587 

so that C± = 1.587 C. Similar calculations generate the 
following table: 

Electrolyte C±/C Electrolyte C±/C 

1:1 1.000 2:3 2.551 
1:2 1.587 2:4 3.175 
1:3 2.280 3:3 1.000 
1:4 3.031 3:4 3.536 
2:2 1.000 4:4 1.000 

We can now relate the mean ionic activity coefficient Y± to the 
computed ionic activity coefficients y+ and y_. Taking logs of eq (2.55c) we 
have 

v In(Y±) =vlln(YI) + V2 In(12) 

and, substituting eq (2.50) into this expression, we have 
2In Y± =_ e 2 __1_ V1Z12+ V',jt2

81t££okT a + XA VI + V2 

But, since I VIZI' = IV2Z21 the third factor on the right reduces to IZIZ21, 
and we are left with 

e 21 zlZ21 _1In Y± =_ 
81t££okTa + XA 

Recalling that XA is inversely proportional to the square root of the ionic 
strength, eq (2.8), we can rewrite this expression in terms of the ionic 
strength: 

§2.6 Debye-Hiickel Theory 

1 A IZ}Z21 VI (2.57)og Y± = -1-'-+--=B'-=a--=(J=

In eq' (2.57), A and B are constants, I is the ionic strength in 
concentration units of mol VI, and we have converted to common logs. 
Inserting the values of the constants and assuming a temperature of 
25°C and the dielectric constant of water (78.54), we can write 

- 0.5092lzIZ21 VI (258)1ogy± -- . 
1 + 3.29a(J 

In eq (2.58), the ionic strength and 1ZIZ21 are known for any given 
electrolyte solution. The parameter a (in nm) entered the theory as the 
ionic radius. However, in going from single ion activity coefficients to 
mean ionic activity coefficients, it has lost its simple meaning, and 
should to be regarded as a parameter adjustable to fit the theoretical 
activity coefficients to experiment. 

At low ionic strength, the second term in the denominator of eq 
(2.58) can be neglected compared with unity and we have the limiting 
form of Debye-Hiickel theory: 

log Y± =- 0.50921ZlZ2' VI (2.59) 

Equation (2.59) contains no adjustable parameters and thus is an 
absolute prediction of the activity coefficients. 

Experimental Determination ofActivity Coefficients 

Thermodynamic quantities such as enthalpies or free energies of 
formation, half-cell potentials, acid-base dissociation constants, 
solubility product constants, complex formation constants, etc., are 
generally determined as functions of concentration and extrapolated to 
infinite dilution. Since activity coefficients approach unity at infinite 
dilution, these tabulated quantities refer to ideal solutions. Once the free 
energy change for an ideal solution process is known, comparison with 
values of I1Go determined for finite concentrations can yield the activity 
coefficients. 

The activity of the solvent or of a volatile solute can be determined 
from vapor pressure measurements and the activity coefficients 
computed from the departure of the measured pressure from ideal 
behavior-Raoult's law or Henry's law. Solute activity coefficients can 
also be determined from freezing point or osmotic pressure data. A text 
on physical chemistry should be consulted for further details on these 
methods. 

In a cell potential measurement, the potential is given by the Nemst 
equation, eq (1.18). With 

a l =CiYi 
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the Nemst equation can be written in the form 

E + ~~ InF(Ci) =Eo-~InF(Yd 

If the concentrations Ci and the cell potential E are known, the left-hand 
side of this expression can be plotted, usually vs. the square root of ionic 
strength. Extrapolation to [ = 0 gives the standard cell potential EO and, 
knowing this quantity, the activity coefficients can be determined, 

Example 2.8 Consider the cell 

PtIH2(g)IHCl(aq)IAgC1(s)IAg 

with cell reaction 

2 AgC1(s) + H2(g) ~ 2 Agts) + 2 Httaq) + 2 Cl'(aq) 

The potential is given by 

E = Eo _ RT In [H+]2[Cl,]2 RT In (nd?(Ycd 
2F PH2 2F 

where we have assumed ideal behavior for H2(g). Since 

y±2 = m+ YCI' 

the Nernst equation can be rearranged to
 

[H+]2[Cl-]2
 
F(1) =E + IJ:.rIn =ED - 2K£ In y±

2F PH2 F 

The left-hand side of this expression, F(1), is plotted vs. Vi in 
Figure 2.13a. Extrapolation to [ = 0 yields EO = 0.2224 V. 
Subtraction of EO from each value of F(l) and rearrangement 
gives 

FrEO -F([)] 
y± = exp 2RT 

The values of y± are plotted vs. Vi in Figure 2.13b along with 
values computed from eq (2.59). 

Activity coefficients can also be determined from measurements of 
the solubility of a slightly soluble salt as a function of ionic strength. 
Consider the solubility equilibrium for a salt MmAn 

MmAn(s) ~ m Mn+ + n Am-

The solubility equilibrium expression is 

K sp =aMm aAn =a±v 

or 
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1.0 
(b)F(l)N ~ (a) J y± ~ -, 

o.zjo 

0.9 

0.225 

0.8 
0.0	 0.1 0.2 0.0 0.1 0.2 

[1/2 [1/2 

Figure 2.13 (a) Corrected cell potential F(n for the cell of Example 2.8 as 
a function of the square root of ionic strength. The solid line corresponds 
to a least-squares fit of the data to a parabola. (b) Mean activity 
coefficients, "f±, computed from the cell potentials. The solid line 
corresponds to activity coefficients computed using eq (2.59). Data from 
Harned and Ehlers (22). 

Ksp = (C±y±)V 

where v = m + n. If the solubility is measured at several ionic strengths, 
adjusted with an electrolyte which has no ion in common with the 
slightly soluble salt, Ksp can be determined by extrapolation to zero ionic 
strength and, knowing Ksp , the mean ionic activity coefficients y± can be 
computed for each solution. 

Some data from such a study (23) are shown in Figure 2.14 for the 
1:1electrolyte, 

[Co(NH3MC204)] [CO(NH3)2(N02MC204)] 

the 1:2 electrolyte, 

[Co(NH3MC204)12(S206) 

and the 3:1 electrolyte, 

[CO(NH3)6] [Co(NH3)2(N02)2(C204)]3 

For the data shown, extending up to ionic strengths of about 0.01 M, the 
agreement with theory is seen to be quite good, probably within 
experimental error. 
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At higher ionic strengths, the plots begin to curve. In most cases. 
plots of activity coefficients us. ionic strength go through minima and 
the activity coefficients increase with concentration at high ionic 
strength. Examples of this behavior are shown in Figure 2.15 for HCI. 
KCI, CaCI2, and LaCI2. Even for the two 1:1 electrolytes, the behavior in 
concentrated solutions is rather different. 

Inclusion of the parameter in the denominator of eq (2.58) helps the 
theory match experimental results to somewhat higher ionic strengths, 
but it cannot ever produce a minimum in the activity coefficient - ionic 
strength curve. Some experimental data for NaCI solutions are 
compared with theoretical predictions from eqs (2.58) and (2.59) in 
Figure 2.16. In fitting these data, the parameter a was taken to be 0.397 
nm. With inclusion of the adjustable parameter, Debye-Huckel theory 
activity coefficients fit the experimental data up to an ionic strength of 
about 0.04 M. Beyond this the one parameter can no longer fit the data by 
itself and some further development is necessary. 
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log y± y± 
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Figure 2.14 Activity coefficients Figure 2.15 Mean ionic activity 
computed from the solubilities of (a) coefficients for several electrolytes at 
1:1, (b) 1:2. and (c) 3:1 electrolytes at 25°C. Data from Robinson and Stokes 
15°C in pure water (crosses) and in (B9). 
solutions with ionic strength adjusted 
with NaCI (diamonds) and KN03 
(squares). The straight lines 
correspond to eq (2.59) (with the 
coefficient adjusted for the different 
temperature). Data from Bronsted and 
LaMer (23). 
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Figure 2.16 Mean ionic -0,10
activity coefficients of \.,
NaCI solutions. Points are \~... 
experimental data (B9).
 
The solid line is calculated "~. 0
 

-0.15 -,_ .6.0from eq (2.59), the dashed , :<>-'0line from eq (2.58), and the 
", ~~ dotted line from eq (2.70). ,,The parameter a in eqs 

-0.20(2,58) and (2.70) was taken 
to be 0.397 nm and ns in eq 0.0 0.5 1.0 1.5 
(2.70) was 3.5. ]112 

Conversion to Other Concentration Scales 

Comparison of activity coefficients appropriate to the molar 
concentration scale with literature values given for molal 
concentrations or mole fractions can be confusing. As an aid to 
conversion, we give here the necessary equations. The details of the 
derivations are given by Robinson and Stokes (B9). 

Molal concentrations, m , are defined as the number of moles of 
solute per kilogram of solvent. Conversion to molar concentrations C is 
as follows: 

C= md (2.60)
1 + mMs/lOOO 

m= C (2.61)
d-CMs/1000 

where MB is the solute molecular weight and d is the solution density. 
If an electrolyte of molality m ionizes to VI cations and V2 anions, 

then the mole fractions Xi are 

Xi = Vim (2.62a) 
vm + 1000/MA 

Where V =VI + V2, and MA is the molecular weight of the solvent. In 
terms of molar concentrations, the mole fractions are given by 
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x. - ViC (2.62b) 
1- vC + 1000 d/MA - CMB/MA 

If the molal concentration scale is used, then the mean ionic 
activity is defined by eq (2.51) with 

a± = m±y±m 

The mean ionic activity coefficient y±m is related to the activity coefficient 
for the molar concentration scale by 

Ytm=~y± (2.63)
mdi, 

where do is the density of the solvent. If the mole fraction scale is used, 
the corresponding activity coefficients are 

X d + 0.001 C(VMA -MB 
(2.64)Yt = do Y± 

Solvent Activity 

The standard state of the solvent in an electrolyte solution is usually 
taken to be the pure solvent at 1 bar total pressure and 25°C. In simple 
treatments of solution equilibrium, it is usually assumed that the solvent 
activity is 1, but a more exact value is sometimes required. If the 
solution were ideal, the solvent activity would be equal to the mole 
fraction, but in solutions where the mole fraction of solvent is 
significantly less than unity, nonideality is usually sufficiently 
important that the mole fraction is a poor estimate of the activity. 

The most straightforward way to determine solvent activity is to 
measure the partial pressure of solvent vapor. We define the activity of 
the solvent in solution in terms of the chemical potential 

IlA = IlAo + RT In aA (2.65) 

where IlAo is the chemical potential of the pure solvent. When the pure 
solvent is in equilibrium with its vapor, 

IlAo =IlA(vapor) =IlAO(vapor) + RT In PAo 

where PA° is the equilibrium partial pressure.! When a solution is in 
equilibrium with vapor, we have 

IlA = IlA"(vapor) + RT In PA 

Subtracting these expressions gives 

12.6 Debye-Hiickel Theory J01 

IlA - IlA° = RT In .!!A.
PAc 

so that 

aA = PAl PAc (2.66) 

While the vapor pressure method is theoretically straightforward, it 
is usually rather inconvenient experimentally. Another approach to 
solvent activities is through solute activity coefficients. Consider the 
fundamental equation for the Gibbs free energy; 

dG = P dV - T dS + L u, dni 
i 

Integrating and redifferentiating, we have
 

G = PV - TS + L ~ ni
 
i 

dG = P dV + V dP - T dS - S dT + L (~ dnj + nj dJ.I.j) 
i 

Subtracting the two expressions for dG gives the Gibbs-Duhem. equation 

o= V dP - S dT + L ni dIli 
i 

which at constant temperature and pressure reduces to
 

L ni dJ.I.j = 0
 

If we have only two components, the solvent (A) and the solute (B), then 

nA dllA = - nB dllB 

Equation (2.65) gives IlA and a similar expression can be written for IlB. 
Differentiating and substituting into the Gibbs-Duhem equation gives 

nART d In aA = - nBRT d In aB 
But since 

os = y±C 
and 

nB=CV 
We have 

din aA = - CV d In(y±C) 
nA 

which can be integrated to give 
1 In very careful work, account must be taken of non ideality of the vapor phase as 
well. We ignore that complication here. 
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i
Y±C 

In aA = _....L CV d In(1±C) (2.67)
nA 

o 

where we have assumed a constant number of moles of solvent. With 
sufficient solute activity coefficient data, eq (2.67) can be integrated 
numerically to obtain the solvent activity. 

Beyond Debye-Huckel Theory 

Debye-Hiickel theory involves the calculation of the free energy 
associated with the formation of an ion atmosphere about ions in an 
electrolyte solution. There are details of the theory which leave much to 
be desired, but perhaps the greatest limitation is the implicit assumption 
that the formation of the ion atmosphere accounts entirely for deviations 
of the activity coefficients from unity. Clearly, the assumption must be a 
good one at high dilution because the limiting law form of Debye-Hucksl 
theory is essentially perfect. Yet we know that at higher concentrations, 
the activity coefficients begin to increase again. 

We can obtain a qualitative understanding of the behavior of 
electrolyte activity coefficients at high concentrations (and indeed derive 
a semiquantitative theory) from the following considerations.1 When a 
salt dissolves in water, the ions are solvated with several water 
molecules held rather tightly to the ions. We should regard those water 
molecules held in the solvation sheath of the ions as part of the ionic 
species rather than as "free" solvent; thus the concentration of "free" 
solvent molecules is lowered. This effect is very small in dilute solutions 
but is quite significant at high electrolyte concentrations. For example, 
in NaCl solutions, it appears from other experimental evidence that 
about seven water molecules are involved in solvation of the two ions. 
Thus in 0.01 M NaCl, about 0.07 mole of water per liter is removed from 
the free solvent. However, since the concentration of water is about 55.5 
M, this is quite negligible. In 1 M NaCl, on the other hand, 7 moles per 
liter of water is immobilized, leaving 48.5 moles of free water, a more 
significant change. 

Consider an electrolyte solution containing nA moles of solvent per 
mole of solute. The solute ionizes to give v 1 moles of cations with 
chemical potential III and V2 moles of anions with chemical potential 112· 
Apparently, the total free energy of the solution is 

G =nAIlA + VIllI + V21l2 

If we take into account the nS moles of solvent immobilized by the ions, 
we can also express the total free energy by 

G =(nA - nS)IlA + VIllI' + V21l2' 

1 See Robinson and Stokes (B9) for a discussion of other approaches to this problem. 
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where Ill' and 1l2' are the chemical potentials of the solute ions corrected 
for bound solvent. Both expressions for G should be correct, so that 
equating them gives 

• nSIlA + Vl(lll -Ill') + V2(112 - Ill') =0 (2.68) 

It is convenient to change (temporarily) to mole fractions as measures of 
the activities with activity coefficients 1lX and 12X. The chemical 
potentials then are 

IlA =IlAo + RT In aA 

III =Illo + RT In Xl + RTln YlX 

Ill' =Illo' + RT In Xl' + RT In nX' 
with similar equations for 112 and 1l2'. Substitution of these expressions 
into eq (2.68) yields 

nSIlA ° + Vl(IllO -Illo ') + Vi1l2° -1l2° ') 

RT 
X1'YIX X21{=- nS In aA - VI In ---v21n-- (2.69)x, x X' X1 11 2 12 

The mole fractions are 

Xl=~ 
nA +v 

Xi' = -----2l 
nA -ns+v 

where V= VI + V2. Thus we have 

Xl nA -ns+v X2
 
Xl' = nA+V =X2'
 

When the solute concentration is very small, nA is very large (we have 
assumed one mole of solute). Thus as the solute concentration 
approaches zero, XliX I' --+ 1, aA --+ I, all the activity coefficients 
approach I, and all the log terms on the right-hand side of eq (2.69) go to 
zero; thus the sum of standard state terms on the left-hand side of the 
equation must be zero, independent of the solute concentration. 
Rewriting eq (2.69) with the new information included, and using eq 
(2.55c) to convert the activity coefficient terms to mean ionic activity 
coefficients, we have 

nA -ns + v X X 
ns In aA + v In + VIn 1± =VIn 1± 

nA +v 
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We now convert back to the molar concentration scale. First we replace 
nA, the number of moles of solvent per mole of solute, by 

nA =1OOO..d._ MB 
CMA MA 

where MA and MB are the molecular weights of the solvent and solute, 
respectively, d is the solution density, and C is the molar concentration. 
Substituting e~ (2.64) for In y-xX and taking the Debye-Huckel result, eq 
(2.57), for In Yf " we obtain (after some algebra) 

A/z].Z2Ifl nSI I d-0.OO1C1:MB-MA(v-ns)] (270)Iog Y± =- .fT - og aA - og d	 . 
1 +BaY! v	 0 

The parameters A and B are given in eq (2.58) and the solvent activity is 
measurable, at least in principle. Thus a and ns are the only adjustable 
parameters. 

Equation (2.70) gives a very good fit to activity coefficients for 
concentrated solutions. Some typical results are shown in Figure 2.16 
for NaCI solutions. Best-fit values of the parameters a and ns for several 
electrolytes are given in Table 2.2. The values of ns, although not grossly 
out of line with solvation numbers obtained from other experimental 
approaches, are generally somewhat small and certainly should not be 
taken as reliable estimates of the degree of solvation. 

Table 2.2 Empirical Values of ns and a 

Electrolyte ns a/nm 

HCI 8.0 0.447 

HBr 8.6 0.518 

NaCI 3.5 0.397 

NaBr 4.2 0.424 

KCI 1.9 0.363 

MgCl2 13.7 0.502 

MgBr2 17.0 0.546 

From Robinson and Stokes (B9). 

References	 105 

REFERENCES 

(Reference numbers preceded by a letter, e.g. (B2), refer to a book listed in 
the Bibliography.) 

1 D. C. Grahame, Chem. Rev. 1947,41,441.

i R. Parsons, Modern Aspects ofElectrochemistry 1954, 1, 103.
 
3 D. M. Mohilner, Electroanalytical Chemistry 1966, 1, 241.
 
4:	 R. M. Reeves, Modern Aspects of Electrochemistry 1974,9, 239. 
5.	 H. von Helmholtz, Wied. Ann. 1879,7,337. 
6.	 L.-G. Gouy, Compt. Rend. 1909,149,654; J. Phys. 1910,9,457. 
7.	 D. L. Chapman, Phil. Mag. 1913,25.475. 
8.	 O. Stem, Z. Elektrochem. 1924. 30, 508. 
9.	 D. J. Shaw, Introduction to Colloid and Surface Chemistry, 3rd ed, 

London: Butterworths, 1980. 
10.	 H. C. Hamaker, Physica, 1937,4. 1058. 
11.	 R. Hogg, T. W. Healy, and D. W. Furstenau, Trans. Faraday Soc. 

1966, 62, 1638; G. R. Wiese and T. W. Healy, ibid., 1970. 66. 490. 
12.	 S. S. Dukhin and B. V. Deryagin, in Surface and Colloid Science, 

Vol. 7. E. Matijevic, ed, New York: Wiley-Interscience, 1974. 
13.	 L. Onsager, Phys. Rev. 1931.37. 405,38, 2265. 
14.	 A. J. Rutgers and M. de Smet, Trans. Faraday Soc. 1945,41, 758. 
15.	 H. G. Bungenberg de Jong, Rec. trau. chim. 1924.43, 189. 
16.	 A. Tiselius, Kolloid-Z. 1938,85, 129. 
17.	 M. Bier, ed, Electrophoresis, New York: Academic Press. 1959. 
18.	 L. P. Cawley, Electrophoresis and Immunoelectrophoresis, Boston: 

Little, Brown, 1969. 
19.	 D. J. Shaw, Electrophoresis, New York: Academic Press, 1969. 
20.	 R. S. Perkins and T. N. Anderson, Modern Aspects of 

Electrochemistry 1969, 5, 203. 
21.	 P. Debye and E. Huckel, Phys. Z. 1923,24, 185. 
22.	 H. S. Hamed and R. W. EWers, J. Am. Chem. Soc. 1932,54, 1350. 
23.	 J. N. Bronsted and V. K. LaMer, J. Am. Chem. Soc. 1924,46,555. 



106	 The Electrified Interface 

PROBLEMS 

2.1	 Derive eq (2.11). Hint: Use V2 in spherical polar coordinates and 
make the substitution c1>(r) = uir) I r, 

2.2	 Derive eq (2.12). Hint: With u = zFc1>IRT, show that eq (2.5) can be 
written 

V 2u = XK2 sinh(u) 

This expression is then integrated to obtain 

duldx = -(21XA) sinh(ul2) 

A second integration. followed by rearrangement, yields eq (2.12). 

2.3	 Use the exact solution to the Poisson-Boltzmann equation for a 
symmetrical electrolyte to show that the surface charge density, eq 
(2.13), is the first term of a power series: 

a=~[l +1(ZFc1>4)2 + ...]
XA 6 2RT 

2.4	 Use eq (2.11) to derive an expression for the surface charge density 
a at a spherical surface as a function of the surface potential <IIa , 
the radius of the sphere a, and the ion atmosphere thickness XA. 

2.5	 Derive eq (2.27) for the electrokinetic coefficient (13 by integration of 
Poiseuille's equation. 

2.6	 Derive eq (2.28) for the electrokinetic coefficient C4 by equating the 
electrical and viscous forces on a cylindrical volume of radius r 
and integrating to obtain v(r) and then integrating again to 
determine the flux. Hint: The electrical force on a volume element 
dV is dF = Ep(r)dV, where E is the field strength, E = - Ac1>IL, and 
p(r) is the space charge density. Integrate d<ll to obtain the force on 
the cylindrical volume. Use Newton's law of viscous flow to 
compute the viscous force. 

2.7	 Use the result of Problem 2.3 to show that eq (2.43) is actually the 
minimum on a C us. c1>a curve. 

2.8	 Consider an electrochemical cell with a planar electrode of area 1 
cm 2 and a double-layer capacity of Cd = 0.20 F m-2 in contact with 
an electrolyte solution. A reference electrode is placed in the 

problems	 un 

solution at a point such that the solution resistance between the 
electrodes is R s = 1000 n. Suppose that the electrode-solution 
interfacial potential is initially 0 V and that at time t = 0, the cell is 
polarized so that the electrode is at +0.1 V relative to the bulk 
solution. Neglecting charge transfer at the electrode and the 
variation of Cd with potential, compute: 
(a) the charge stored by the double layer at t = 00. 

(b) the initial charging current io 
(c) the time required for the charging current to fall to 0.01 io. 
Hint: The potential across the cell can be written E = iRs + QICd, 
where i = dQldt and Cd is the double-layer capacitance. 

2.9	 Butler and Huston (Anal. Chem., 1970, 42, 1308) used 
electrochemical measurements to obtain activity coefficients in 
mixed electrolyte solutions. Using solutions containing known 
concentrations of NaCI and NaF, they measured potentials of the 
following cells: 

AgIAgCI(s)INa+(aq),CI-(aq),F-(aq)INa+-selective glass electrode 

AgIAgCI(s)INa+(aq),CI"(aq),F-(aq)IF--selective electrode 
·f~'f- Na+-electrodeINa+(aq),CI-(aq),F-(aq)IF--selective electrode 
~~.;' 

\:'	 What combinations of activity coefficients were obtained from each 
of the three cells? 

2.10	 Using eq (2.67) and the Debye-Huckel limiting law, eq (2.59), derive 
an expression for the solvent activity at low electrolyte 
concentrations (assume constant volume). 

2.11	 Hamed and Geary (J. Am. Chern. Soc. 1937,59,2032) measured the 
potential of the cell 

PtIH2(g)IHCI(0.01 M), BaCI2IAgCI(s)IAg(s) 

at 25°C as a function of the BaCl2 concentration. The potential of 
the cell is given by the Nemst equation, corrected for activity 
coefficients: 

E = EO _RX In [H+][CI"] RT In ~ 
F PH2 F 

Potentials, corrected to the standard state pressure of hydrogen, 
are as follows: 

[BaCI2] 0.0 0.00333 0.00667 0.01333 0.02000 0.03000 
EIV 0.46411 0.45273 0.44529 0.43539 0.42864 0.42135 
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By a clever extrapolation procedure, the authors found that EO::: 
0.22234 V. Use these data to compute the mean ionic activity 
coefficient for HCI in BaCl2 solutions for the six concentrations 
given. Compute the ionic strengths of these solutions and use eqs 
(2.59) and (2.58) to estimate the activity coefficients [assume that a ::: 
0.447 run in eq (2.58)]. 

2.12	 The mean ionic activity coefficient of 1.00 molal KOH is 0.735. The 
solution density is 1.0435 g cmoS and the density of pure water is 
0.9971 g em-3. What is the molar concentration of KOH? What is the 
mean ionic activity coefficient on the molar scale? 

2.13	 At the half-neutralization point in the titration of 0.100 M acetic 
acid with 0.100 M sodium hydroxide, the concentrations of acetic 
acid and sodium acetate, by definition, are equal, and it isji customary to say that the pH equals the pKa of the acid. If,j1\: however, we take account of the activity coefficient of sodium 
acetate, estimating"i± with the Debye-Hfrckellimiting law, eq (2.59), 
by how much does the pH actually differ from pKa at the half
neutralization point? 

2.14	 Use the Debye-Huckel limiting law, eq (2.59), to estimate the 
potential of the FeS+/Fe2+ half-cell when [Fe(NOS)2] = [Fe(NOs)s] = 
[lINOs] = 0.002 M. 

3 ELECTROLYTIC 
CONDUCTANCE 

With	 this chapter we begin consideration of experiments where 
current passes through an electrochemical cell. We will focus first on 
the measurement of the conductance of an electrolyte solution under 
conditions where the electrode-solution interface can be ignored. The 
interpretation of conductance data will lead to consideration of the 

. contributions of individual ions to solution conductance and to 
conductance as a transport property related to diffusion. Finally we will 
CQIlsider membrane and liquid junction potentials which arise because 
of differences in ion transport rates. 

3.1 CONDUCTIVITY 

The resistance of any current-carrying device, whether it is a piece 
ofwire or an electrolyte solution, is defined by Ohm's law as the ratio of 
the voltage across the device to the current flowing through it, R = !:J.(J)/i. 
We are accustomed to think of resistance as a constant, dependent on 
temperature perhaps, but independent of the applied voltage and current 
flow; such a resistance is referred to as ohmic. Although some 
resistances encountered in electrochemistry are nonohmic and depend 
on voltage, it is usually a good approximation to consider the resistance 
of an electrolyte solution as ohmic. Resistance is an extensive property 
of the system since it depends on the size (and shape) of the current
carrying device. For a device of uniform cross-sectional area A and 
length L, we can define an intensive quantity called the resistivity, p: 

p=RA/L 

In discussing electrolyte solutions, it is more convenient to speak of 
the conductance, the reciprocal of resistance, and of the conductivity, K, 

the reciprocal of resistivity: 

K=LlRA	 (3.1) 

1(¥,j 
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The unit of resistance is the ohm a, so that resistivity has units of a-rn. 
The unit of conductance is the siemens (S), 1 S =1 a-I, so that the units of 
conductivity are S m-1. 

Example 3.1 Compute the conductivity of an electrolyte 
solution if the cell has parallel electrodes 1 cm2 in area spaced 
1 em apart and the resistance is 1000 n. 

Substituting numbers into eq (3.1), we have 

lC= a.01m =0.ln-1 m -1=0.lSm-1 

(1000 nxo.ooor m2) 

Before proceeding with an analysis of conductance data, we must 
give some attention to the measurement of the conductance (or 
resistance) of an electrolyte solution. Thi s is a nontrivial problem and 
we must first ask how the resistance of a solution can be measured at all 
without running afoul of the resistance and capacitance of the electrode
solution interfaces which are present whenever we put electrodes into 
the solution. Thus, we first consider the electrical equivalent circuit of 
an electrochemical cell. 

Electrochemical Cell Equivalent Circuit 

There is a theorem in electrical circuit analysis which states in 
effect that any two-terminal device may be represented (at least 
approximately) by some combination of potential sources, resistances, 
capacitances, and inductances. We saw in Chapter 1 that every 
electrode-solution interface is a potential source, and, in Chapter 2, that 
the electrode double layer behaves like a capacitance. The electrode
solution interface may also be thought of as having an impedance which 
represents the finite rate of mass transport and electron transfer at the 
electrode surface.! If we add to these the series resistance due to the 
solution itself, we can draw the electrochemical cell equivalent circuit 
shown in Figure 3.1; A<f)l and A<f)2 are the two electrode-solution potential 
differences, the difference between which is the equilibrium cell 
potential, E. C1 and C2 are the double-layer capacitances at the two 
electrodes, ZF1 and ZF2 are the faradaic impedances, and R is the 
solution resistance. Our goal is the measurement of R without 
interference from the other equivalent circuit parameters. 

1 This so-called faradaic impedance has both a resistive and a capacitive 
component; see §6.4. 

13.1 Conductivity m 

~ ~
 
Zl A<f)l A<f)2 Z2 

Figure 3.1 An electrochemical cell equivalent circuit. 

Ifwe were simply to attach an ammeter to the cell and measure the 
direct current, i, we might use Ohm's law to find the cell resistance 

Reell = (A<f)l - A<f)2)/i 

but we see from Figure 3.1 that the resistance thus obtained includes a 
contribution from the faradaic impedances. Even if we were able to 
separate the cell resistance into its components, there are other 

.problems. The resistive component of a faradaic impedance turns out to 
('be nonohmic, that is, it is not constant but depends on the potential; 
!urthermore, when a finite current is drawn, the cell potential does not 

J%have its equilibrium value. In any case, it is most convenient to use 
'j8entical electrodes and a homogeneous solution so that A<f)l =A<f)2 and 
the net cell potential is zero. We could pass current using an external 

'potential source, but then electrolysis would change the solution 
composition and there would still be problems with the faradaic 
impedances. 

The solution to these problems is to use alternating current in the 
resistance measurement. If we apply an a.c. voltage across the cell and 
measure only the a.c. component of the current, considerable 
simplification is obtained. Since we are only concerned with the 
alternating current which flows as a result of an applied sinusoidal 
voltage, the d.c. potential sources, A<f) 1 and A<f)2, can be ignored. 
Furthermore, the impedance of a capacitor toward flow of a sinusoidal 
current is lIooC, where 00 is the angular frequency (00 =2x times the 
frequency in Hz). If the capacitance of the electrode double layer is on 
the order of magnitude of 10 IlF and the frequency of the a.c. signal is 
1000Hz, then the impedance of the capacitor is 1I(2xX1000 s-1)(10-5 F) = 16 
Q. Faradaic resistances depend on the d.c. potential across the cell and 
are often much larger than the impedance of the double-layer 
capacitance. Referring to the equivalent circuit of Figure 3.1, we see that 
the path for a.c. current is primarily through the double-layer 
capacitance. Thus to a good approximation, the equivalent circuit of the 
cell may be reduced to a capacitor and resistor in series, as shown in 
Figure 3.2. The equivalent circuit capacitance C is the series equivalent 
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of the two double-layer capacitances, C =C1C2/(Cl + C2), and ~rial is used; the almost universal choice is platinum A fine layer 
equivalent circuit resistance R is nearly exactly the solution resistancfl~orphous platinum (platinum black) is usually deposited on the 

Figure 3.2 Equivalent circuit for large C R 
electrodes and alternating current. 0----11...-

~~ 
Measurement of Solution ResistanceL 

ctrodee so that ~he effective surface area is much larger than the 
parent .geom~tncal area and the double-layer capacitance is 
,.espon~mgly mcreased. The. electrodes must be rigidly mounted so 

-oft the dIstance. b.etween them IS constant. Referring to eq (3.1), we see 
It the conductivity depends not only on the measured resistance but 
p on the distance between the electrodes and the electrode area. Since 
fSe geometrical factors are not easily measured, it is customary to 
~rate a co~ductance ~ell by first measuring the resistance when the 

Development of the techniques for measuring solution 
uctivities occupied the last half of the nineteenth century (with 

The classical method for measurement of an unknown reSiS~lS filled Wlt~ a sol.utlon of ~own conductivity. In this way the cell 
R" involves the Wheatstone bridge (shown in Figure 3.3a). The brid tant, L/A, IS obtained expenmentally and the geometry need not be 
balanced by adjusting the variable resistance R s to zero su:ed .accurately. Tw? common conductance cell designs are 
galvanometer G. Analysis of the circuit then shows that the unkn wn m FIgure 3.4. See reviews b~ Shedlovsky and Shedlovsky (1) or by 'f 

resistance R" is given by er and Enke (2) for further details. 1 

'1 , 
(a) ··

" "
 
";. 'j:l
i:,( :":;i~".. '., vJ ?

~ 
~~1., 

Figure 3.3 Wheatstone bridge circuits. (a) Direct-current bridge fo 
measurement of resistance. (b) Alternating-current bridge for measuremen 
of the resistance and capacitance of an electrochemical cell. 

j 
The d.c. Wheatstone bridge must be somewhat modified! 

measurement of solution resistances as shown in Figure 3.3b. ~ 
battery is replaced by an audio-frequency oscillator (usually operati 
about 1000 Hz) and the galvanometer is replaced by an a.c. dete 
perhaps an oscilloscope or simply a set of earphones. The bridgt 
provided with an adjustable capacitor Cs so that both the capacitive j 
resistive parts of the impedance can be balanced. 

From our discussion 80 far, it should be clear that the design of 
conductance cell is of considerable importance. It is necessary to h 
relatively large electrodes in order that the double-layer capacitance 

" as large as possible. Since the chemistry of the electrode process sheI' not interfere with the conductance measurement, an inert electr 

t 
fR" =s, (R1/R2) 

(b) er elaborations as electronic instrumentation evolved), but the first , 
Irvations of the phenomenon were made by Erman in 1801 (3). In 

riments on the electrolysis of water (discovered by Nicholson and 
osc lisle in 1800), Erman found that the current increased with 

Figure 3.4 Two types of conductance 
cells. (a) Cell with electrodes 
rigidly mounted at a fixed 
separation; (b) an electrode assembly 
which can be dipped into a solution 
contained in a beaker. 

(a) 

Pt electrodes 

lead wires(b) 

insulating 
spacers 
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increasing salt concentration. This observation was confirmed by later 
workers and it became customary to define another quantity, called the 
molar conductivity to approximately factor out the concentration 
dependence. Molar conductivity is defined byl 

A =KlC	 (3.2) 

where C is the concentration in mol m-3, (l mol m-3 =10-3 mol L-l := 1 
roM). The units of A are S m2mol-1. 

Example 3.2 A 0.100 M solution of KCI, known to have a 
conductivity of 1.2896 S m-1, was found to have a resistance of 
89.3 n when placed in a conductance cell. What is the value of 
LIA? A 0.200 M solution of NaCI, measured in the same cell, 
gave R x =56.6 n. What is the conductivity of the solution? 
What is the molar conductivity? 

According to eq (3.1), 

LIA =1dl=(1.2896 S m-1X89.3 n) =115.2 m-1 

so that for the NaCI solution, 

1C = (115.2 m-1)1(56.6 Q) = 2.035 S m-1 

A = (2.035 S m-1)/(200 mol m-3) = 0.0102 S m2mol-1 

The molar conductivities of several salts are plotted as functions of 
concentration in Figure 3.5. The molar conductivity depends on 
concentration; the magnitude of the dependence varies from one salt to 

1:: I'	 another, but in every case the variation is greatest at low concentrations. 
Kohlrausch, who collected most of the early conductance data, tried 
various empirical equations to fit this concentration dependence. 
Finally in 1900 (4), he established that the limiting behavior for strong 
ti.e., completely ionized) electrolytes is 

A =A°- s fC	 (3.3) 

where A° is the molar conductivity extrapolated to infinite dilution and 
the slope s depends on the electrolyte and solvent. 

1 In the older literature" has units of a-lcm-l (or the whimsical units, mho cml), 

and A, with units of a·lcm2mol· l, is called the equivalent conductivity and defined 
as 1000lClzC, where C is the molar concentration and z =n+z+ =n_1z.,] is the number 
of equivalents per mole. The new definition is rather more straightforward, but of 
course leads to different numerical values; thus beware when using older 
tabulations of data. 

.1 Conductivity	 115 

Paul ErmaD (1764-1851) was Professor of Physics at the University of 
Berlin. His studies on electrical phenomena, although limited by the 
crude instruments available at the time, foreshadowed much of the 
nineteenth-century development of the physics of electricity and 
magnetism. Friedrich Wilhelm Kohlrausch (1840-1910) was Professor of 
Physics at G6ttingen, Zurich, Darmstadt, Wiirzburg, Strasbourg, and 
Berlin. He developed the a.c. methods for measurement of solution 
conductance and spent his career on experimental and theoretical studies 
of conductance. 

Ionic Conductivities 

If, at infinite dilution, the behavior of electrolytes is indeed ideal (i.e., 

~: 

.

\,..,e can neglect interionic interactions), and if electrolytes are completely 
~;'ioJlized, then the molar conductivity of an electrolyte should be the sum 
~> ofthe molar conductivities of the individual ions.! Ifone mole of the salt 
'~>ptC?duces v, moles of cations with molar conductivity A+° and v: moles of 
1anions with molar conductivity A- 0 

, then 

AO =v+~o + v-A..°	 (3.4) 

"~iThe molar conductivity of an individual ion cannot be measured directly, 
,t if eq (3.4) is correct, then subtracting the molar conductivities of NaCI 

0.05 
6-- NaCI .. KCI0.04 

.... 0-- BaCl2-a 
0-- LaCIs8 0.03 

C'l 

8 
00< 0.02 

Figure 3.5 Molar conductivi

ties of several salts at 298 K 0.01
 ........
1/8. the square root of
 
concentration. The dashed
 
lines represent the linear
 0.00
extrapolation to infinite 

0 10 ID 3) 40 50dilution using eq (3.3). Data
 
from (B9). (C/mol m·3) l/2
 

1 This idea, known as Kohlrausch's law of independent ionic migration, was first 
proposed in 1876. 
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and KCl, for example, should give the difference between the molal' 
conductivities of the sodium and potassium ions. 

AO(KCI) - AO(NaCI) =(149.8 - 125.4) x 10-4S m2mol·1 

AO(K+) - AO(Na+) = 23.2 x 10-4S m2moI-l 

Comparing KI and NaI, the difference is 23.8 x 10'4, and for KErOa and 
NaBr03, the difference is 23.3 x 10-4. Although there is a little scatter, the 
agreement is quite good. 

Transference Numbers 

When current passes through an electrolyte solution, it is carried in 
part by cations moving toward the cathode and in part by anions mOving 
toward the anode. The fractions of the total current carried by positive 
and negative ions are called the transference numbers 

t+ = v~~A (3.5a) 

L = v...AJA (3.5b) 

where, since 

vA+v-A...=A 

the transference numbers must sum to 1: 

t ; +L =1 

There are several experimental methods for the determination of 
transference numbers (5,B9), the most straightforward being the 
classical method introduced by Hittorf in 1853 (6). In Hittorfs 
experiment, current is passed through a cell such as that shown in 
Figure 3.6. In the two end compartments, electrodes are placed which 
show uncomplicated behavior in the experimental solutions. For 
example, if we wish to measure transference numbers in a solution of 
silver nitrate, we would use silver electrodes. At the cathode, silver ions 
are plated out when current flows; at the anode, silver ions go into 
solution. Now suppose that one Faraday of charge is passed through the 
cell. The current in the bulk solution is carried by Ag+ and NOa' ions 
with fractions t; and L, respectively. Thus t; moles of Ag+ must have 
gone from the anode compartment to the central compartment, and the 
same number from the central compartment to the cathode 
compartment. Meanwhile L moles of N03' must migrate from the 
cathode compartment to the central compartment and from the central 
compartment to the anode compartment. Thus the anode compartment 
loses t ; moles of Ag+ by transference but gains one mole of Ag+ by 
dissolution of the anode, for a net increase of 1 - t ; moles. There is of 
course a corresponding increase of L = 1 - t+ moles of N03". The cathode 
compartment has corresponding decreases in both Ag+ and NOa". 

er

Figure 3.8 Hittorf cell
 
for the determination of
 
transference numbers.
 

If the solutions in each of the three compartments are analyzed 
passing a known charge through an initially homogeneous 

1ution, the number of moles of Ag+ gained in the anode compartment 
d the number of moles of Ag+ lost in the cathode compartment can be 
culated. Dividing by the number of Faradays of charge passed gives 

e transference numbers. The cell must be designed to minimize 
nvective mixing and the experiment should be of relatively short 
ration to minimize diffusive mixing. Analysis of the central 

compartment solution should show no change in the concentrations and 
thus provides a check on the influence of convection and diffusion. 

A moving boundary method, analogous to that used by Tiselius to 
measure the electrophoretic mobilities of proteins (§2.4), has also been 
used to measure transference numbers. 

With transference numbers available, eqs (3,5) can be used to 
separate molar conductivities into the contributions of the positive and 
negative ions. If transference numbers are known over a range of 
concentration, they can be extrapolated to infinite dilution to obtain the 
infinite dilution ionic conductivities, A+° and A-0 

• 

Conductivity 

Johann W. Hittorf 0824·1914) was a professor at the University of 
Munster. He is best known for his measurements of transference 
numbers; his work played an important part in the formulation of 
electrolyte theory by Arrhenius in the 1880's. 
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A selection of molar ionic conductivities at infinite dilution is giveQ 
in Table A.8. These data can be used to compute the molar conductivities 
of a wide variety of electrolytes at infinite dilution. 

Example 3.3 Compute the molar conductivities of potassium 
chloride, hydrochloric acid, and barium chloride solutions at 
infinite dilution. 

I AO(KCl) = AO(K+) + AO(CI-)
 

AO = (73.5 + 76.3) x 10-4 = 149.8 x 10-4 S m2mol·l
 
'f, 
'j AO(HCl) = AO(H+) + N(CI-) 

A° =(349.8+ 76.3) x 10-4=426.1 x 10-4 S m2moI-l
 

AO(BaCI2) =AOCBa2+) + 2 AO(Cl')
 

AO =(127 + 2 x 76) X 10-4=279 x 10-4 S m2mol·l
 

With a table of molar ionic conductivities (B2,B9,H2,H3) such 8S 

Table A.8, we can also compute transference numbers. 

Example 3.4 Compute the infinite dilution transference 
numbers in solutions of KCl, HCl, and BaCl2. 

For KCl, 

t+O = N(K+)lAO(KCn = 73.51149.8 = 0.491 

L °=1- t+°=0.509 

for HCl, 

t+O = A°(H+)lAO(HCn = 349.81426.1 = 0.821 

Co =I-t+o =0.179 

and for BaCl2, 

t+o = AOCBa2+)lA(BaCI2) = 127.71280.3 = 0.456 

LO =I-t+o =0.554 

Ionic Mobilities 

It is sometimes useful to think of the transport of an ion in terms of 
its mobility. (We encountered the electric mobility in our discussion of 

Conductivity 

~ilJll'li ...ophore8i~ in §2.4.) The mobility of an ion is defined as the velocity
¥Jet unit electnc field strength, 

IVil
ui=IEI (3.6) 

To see how mobility is related to molar ionic conductivity, we start with 
Ohm's law, written in the form i = !!.(J)/R. If the potential difference 
,cross a conductance cell of length L is !!.(J), the field strength is E =
Af)/L. With eq (3.1) rearranged to R = L/AK, we have 

i =- !CAE (3.7) 

NoW consider 1 cubic meter of solution containing Ci moles of ions 
carrying charge ZiF coulombs mol- l and moving with an average 
velocity Vi· The contribution to the current density across the end of the 
cubicmeter is the product of these three factors: 

(i/A)i =CiZiFvi. (3.8) 

Combining eqs (3.7) and (3.8), we have 
KjEVi=---

CiZiF 
or. with eq (3.6), 

ui =_----.S. 
CilzilF 

Finally, with the definition of molar conductivity, eq (3.2), we have 

Ui =_....!!L (3.9) 
IZilF 

Thus ionic mobilities at infinite dilution can be obtained from molar 
ionic conductivities such as those given in Table A.8. 

Example 3.5 Compute the mobilities of the sodium and 
barium ions at infinite dilution. 

The ionic mobility of the sodium ion (z =1) is
 
u°(Na+) =N(Na+)lF =5.2 x 10-8 m2V-ls· l
 

The ionic mobility of the barium ion (z =2) is
 
uOCBa2+) =AO(Ba2+)l2F=6.6 x 10-8 m2V·ls·l
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FrictioruJl Coefficient. 

When an ion moves through solution, it is subject to a viscous drag 
force proportional to the ion's velocity, 

Fi =- li.vi 
where the proportionality constant fi is called a frictional coefficient. 
Under steady-state conditions, the ion moves at constant velocity so that 
the viscous drag force exactly cancels the electrical driving force, zie1l 
and the net force is zero: ' 

Fi =ziI!E- li.vi =0 

or 
IVil_lzile (3,10)ui=!EI- Ii 

or, using eq (3.9), 
7-Fe

1\ =L--. (3.11)
Ii 

Thus the motion of an ion through solution can be described equivalently 
in terms of molar ionic conductivities, ionic mobilities, or frictional 
coefficients. 

Stoke.' Law Radii 

Still another way of thinking about the rate at which ions move 
through solution is by imagining the ion to be a hard sphere of effective 
hydrodynamic radius rt and frictional coefficient given by Stokes' law: 

Ii. =61t11ri (3.12) 

Substituting eq (3.12) into eq (3.10), we solve for the Stokes' law radius ri: 

~ I~W ~~ 
61t11NAUi 

where we have replaced e by F/NA. 

Example 3.6 Compute the Stokes' law radii of Nat and Ba2+. 
The viscosity of water at 25°C is 0.890 x 10-3kg m-ls- l; inserting 
the mobilities from Example 3.5, eq (3.13) gives 

z(Na") =1.84 x 10-10 m (184 pm) 

r<Ba2+) =2.89 x 10-10 m (289 pm) 

( ( 

Conductivity l2I. 

Faster moving ions, of course, have smaller Stokes' law radii, and 
,wer ones have larger radii. While Stokes' law is not really valid for 
all ions in ordinary solvents.! Stokes' law radii do give a rough 

sure of the effective size of ionic species as they move through a 
.ution. Some Stokes' law radii, calculated as in Example 3.6, are 

pared with ionic radii from crystal structure data in Table 3.l. 
eral insights can be obtained from examination of these data. In the 
t place, it is hard to imagine a hydrodynamic radius being smaller 

the crystal radius of the same ion. Comparison of the radii of I', for 
ple, suggests that the Stokes' law radii are probably systematically 

derestimated, perhaps by about a factor of 2. However, within a 
ated series of ions, e.g., the alkali metal cations, the trends are 
Iresting. The crystal radii increase, as expected, in the series Li+ < 

+ < K+, but the Stokes' law radii go in the opposite direction. This 
t mean that the small, highly polarizing Li+ ion tightly binds a lot of 

,vent molecules which must move with the ion as a unit. The same 
. ct is seen in comparison of the alkaline earth cations Mg2+, Ca2+, and 

Table 3.1 Stokes' Law and Crystal Radii of Some Ionsa 

Ion rs/pm rclpm Ion rs/pm rclpm 

is- 238 00 OH- 47 119 
Na+ 184 116 F- 168 119 
K+ 125 152 ci- 121 167 

Mg2+ 348 00 Br 118 182 
Ca2+ 310 114 1- m 2D6 
Ba2+ 289 149 CI04' 136 226 
Al3+ 439 68 8042- ZU 2M 

a Crystal radii from Shannon (7). 

The three halide ions, Cl-, Br, and 1- all have about the same Stokes' 
law radii despite an increase in the crystal radii; this again is consistent 
with larger, less polarizing ions binding fewer solvent molecules or 
binding them less tightly so that fewer move as a unit. Comparing the 

1 The law was derived in 1845 by Sir George Stokes assuming a rigid sphere moving 
through a continuous medium; using Stokes' law for a charged deformable ion 
moving through a solvent of discrete dipolar molecules of size comparable to the ion 
must introduce some serious errors, 
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isoelectronic ions Nat, Mg2+, and Al3+ we see an even more dramatic 
effect which has the same qualitative explanation. Extending the 
comparison to F-, which is isoelectronic with Na" and has about the 
same crystal radius, we see that the solvation sheath is apparently 
greater for Na" than for F-, consistent with the idea that cations are 
rather more specifically solvated (formation of coordinate covalent 
bonds) than are anions (orientation of water dipoles andlor hydrogen 
bonding). 

From crystal structure data, OH- and F- would be expected to be 
nearly the same size, but the Stokes' law radius of OH- is 47 pm, mUch 
less than the radius of any other anion. A similar discrepancy is found 
for H+, which has a Stokes' law radius of 26 pm. Structural evidence 
suggests that Hrtaq) is better represented by H30+, which might be 
expected to have a Stokes'law radius comparable to Li+ or Na+, say about 
200 pm. The anomalously high conductivities of H+ and OH- in water 
can be understood if we recall that these water-related ions are part of 
an extensive hydrogen-bonded network involving solvent water 
molecules. A small shift in hydrogen bonds thus can move the charge 
from one oxygen center to another and several such shifts can move the 
charge much faster than any of the nuclei travel. Thus the conductivity 
is much higher than might have been expected from the size of the HaO+ 
orOH-ions. 

Theoretical Treatment ofConductivity 

Kohlrausch's discovery that molar conductivity varies as the square 
root of concentration, eq (3.3), attracted the attention of several 
theoreticians,1 most notably Onsager, who derived a conductance 
limiting law starting from the Debye-Huckel treatment of the ion 
atmosphere (8). Onsager's result can be written as 

A=Ao- IZ1Z21F 
2
Ao q _(IZ11+~21)F~ (3.14) 

121tE£(jXARTNA 1 + {(j 61tT\NAxA 

where XA is the ion atmosphere thickness, " is the solvent viscosity. ZI 
and Z2 are the positive and negative ion charges, and 

q = ZlZ2 
(Zl- Z2)(Z2t1 - Zlt2) 

where hand t2 are the transference numbers. When ZI =-Z2 (a 1:1 or 2:2 
electrolyte), q =1/2 and is independent of the transference numbers. The 
other parameters in eq (3.14) have their usual significance. Both 
correction terms in eq (3.14) are proportional to l/XA, which in turn is 
proportional to the square root of the ionic strength, eq (2.8), so that eq 
(3.14) matchs the fC dependence found by Kohlrausch. 

1 See Robinson and Stokes (89) for a review of the various approaches. 

13.1 Conductivity 

Lan Onsager (1903-1976) taught at Brown University in the early 1930's, 
later moving to Yale. He is best known for his work in nonequilibrium 
thermodynamics for which he received the Nobel Prize in 1968, but he 
made important contributions in many other areas of theoretical 
chemistry. 

The first term in the Onsager limiting law arises from the so-called 
ion atmosphere relaxation effect. When an ion is attracted by an electric 
field, it is also subject to an opposite force exerted by its ion atmosphere, 
which tends to restrain the ion and thus lowers its contribution to the 
solution conductance. The effect increases with the density of ions in the 
atmosphere, i.e., inversely proportion to XA. The second correction term 
results from the electrophoretic effect. When the ion in question moves 
through the solution, it tends to take its ion atmosphere with it, resulting 
in a viscous drag force opposing the motion, thus the dependence on 
viscosity. 

Like Debye-Huckel theory from which it is derived, eq (3.14) is a 
limiting law valid only at very low concentrations, usually less than 
O.OOlM. 

Example 3.7 Compute the limiting law slope for a plot of the 
molar conductivity of KCI (AO =149.8 x 10-4 S m2mol- l ) VB. fC 
assuming the dielectric constant and viscosity of pure water (e 
=78.54,11 =0.890 x 10-3 kg m-ls- l ) , and compare with the slope of 
the KClline in Figure 3.5. 

Inserting the values of the physical constants and T =298 K 
into eq (3.14), we have 

A =AO - (6.97 x lO-11)Ao/XA- (1.84 x 10-12)/XA 

Substitution of constants in eq (2.8) gives 

XA"1 =(1.04 x lOS) fC 
where C is in mol m-3. Substituting XA and AO, we have 

A = AO - (3.0 X10-4) fC 
which is in satisfactory agreement with the experimental 
result: 

A = AO - (2.7 x 10-4)fC 
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Effects ofFrequency and Electric Field Strength 

According to Onsager's description of ionic motion in an electrolyte 
solution, the motion of an ion is restrained by the attraction of its 
atmosphere. An ion atmosphere is not formed instantaneously since it 
requires the arrangement of many ions in or near a minimum potential 
energy configuration. The time required to configure an ion atmosphere 
is on the order of 1O·7/C seconds. Thus in a 1 mM solution, ionic motion 
is subject to an ion atmosphere relaxation time on the order of 10-7 s. If 
the a.c, potential applied across the conductance cell is in the radio. 
frequency range, above 10 MHz say, ions move faster than their 
atmospheres can be rearranged. Under these conditions, ionic motion 
escapes the retarding effect of the ion atmosphere and the measured 
conductivity is increased. This effect was predicted by Debye and 
Falkenhagen (9) and first observed by Sack (0) and is known as the 
Debye-Falkenhagen effect or the Sack effect. 

A related effect is observed when the a.c. potential across the 
conductance cell is very large and the electrode spacing is small. With 
an oscillating electric field on the order of 106 V m- l , an ion is 
accelerated to a sufficiently high velocity that it effectively escapes its ion 
atmosphere. That is, the electrical force on the ion greatly exceeds the 
retarding force of the ion atmosphere. The ion may leave behind some of 
the coordinating solvent molecules as well, so that its effective Stokes' 
law radius is smaller. For both these reasons, the conductivity increases 
for large electric field strengths. This effect was first observed by Wien 
(11) in 1922 and is called the Wien effect. 

Both the Debye-Falkenhagen and the Wien effects can be understood 
quantitatively by extensions of Onsager's theory of ionic motion (B5). 

Ultrasonic Vibration Potential 

When a high-frequency sound wave travels through an electrolyte 
solution, solvent molecules are forced into an oscillatory motion. Ions in 
the solution tend to move with the solvent but may lag a little behind. If 
the lag in cation motion is different from the lag in anion motion 
(because of different frictional coefficients), a small potential difference 
will develop at the frequency of the ultrasonic wave. If a pair of 
electrodes is placed in the solution with a spacing of half the wavelength 
of the sound wave, this potential can be detected. This effect was 
predicted by Debye in 1933 (2) but was not observed experimentally until 
after World War II. Debye originally suggested this experiment as a 
way of estimating the effective masses of the solvated ions. Subsequent 
experimental work showed that it is really the ionic partial molar 
volumes which are determinable, and there has been a substantial 
volume of work directed to this end. Work on ultrasonic vibration 
potentials has been reviewed recently by Zana and Yeager (13). 

13.2 Conductance Applications 

3.2 CONDUCTANCE APPLICATIONS 

The measurement and interpretation of conductance has given us 
many important qualitative insights into the properties of electrolyte 
solutions and has provided a means by which quantitative theories of 
electrolytes can be tested. Many of the experimental methods are now 
primarily of historical interest, at least for aqueous solutions, but some 
applications remain useful in our arsenal of techniques for extracting 
information from nature. 

Measurement of Dissociation Constants 

In the development of our understanding of electrolyte solutions in 
the late nineteenth and early twentieth centuries, conductance 
measurements provided much of the experimental evidence for ionized 
salts in solution. Conductance measurements played a particularly 

. important role in classifying acids, bases, and salts into strong 
electrolytes (i.e., completely ionized salts such as NaCI or strong acids 
such as HCI) and weak electrolytes (i.e., weak acids such as acetic acid). 
Thus strong electrolytes exhibit the linear dependence of A on fC which 
we have seen in 13.1. Weak electrolytes, on the other hand, typically have 
very small molar conductivities at moderate concentrations which 
increase rapidly as the concentration is reduced. 

In explaining the dependence of A on concentration, Arrhenius 
assumed that, for a partially dissociated electrolyte at low concentration, 
the fraction of the electrolyte which is dissociated is simply the ratio of 
the molar conductivity to the molar conductivity extrapolated to infinite 
dilution: 

n=NAO (3.15) 

Consider then the dissociation of acetic acid, 

HOAc + H20 ~ H30+ + OAc

with the corresponding equilibrium constant, 
s; )H:P+][OAc'] 

[HOAc] 

The individual species concentrations can be written in terms of the 
degree of dissociation, c, and the total acetic acid concentration C: 

[H30+] =[OAc-] =nC 

[HOAc] = (1- n)C 



127 126 Electrolytic Conductance 

Substituting these into the equilibrium constant expression, we have 

Ka=.si!:f:..
1- ex 

where C must have units of mol L-1 ifKa is to refer to the usual standard 
states. Using eq (3.15) to eliminate ex, we have 

s: JNAOfc (3.16) 
1-NAo 

This expression, which is known as Ostwald's dilution law, may be 
rearranged to 

CA = Ka(A°)2 (l/A)-Ka AO 

so that a plot of CA vs. VA should give a straight line with the slope and 
intercept yielding both the infinite dilution molar conductivity and the 
equilibrium constant. 

SV8nte A. Arrhenius (1859-1927) was a lecturer at the Technical High 
School of Stockholm and later director of the physical chemistry 
department of the Nobel Institute. Arrhenius is generally regarded as 
one of the founders of the discipline of physical chemistry and is 
remembered for his work on electrolyte solutions and on chemical 
kinetics. 

This method works well and many of the earlier acid-base 
equilibrium constants were obtained in this way. Easier ways of 
obtaining such data are now available, but it is sometimes useful to 

,',". remember that the conductance method exists. 

Example 3.8 In 1894, Kohlrausch and Heydweiller (14) 
measured the conductivity of extremely pure water, obtaining lC 

= 6.2 x 10-6 S m-1. Estimate the self-dissociation constant of 
water from this measurement. 

The sum of the molar ionic conductivities of Hrfaq) and OH-(aq) 
at infinite dilution is 

AO = N(H+) + N(OH-) =0.0549 S m2mol-1 

The ionic concentrations should be sufficiently low that we can 
substitute this value, together with x, in eq (3.2), and solve for C.
 

C =K!A
 

C = (6.2 x 10-6 S m- 1)1(0.0549 S m-2mol-1)
 

C = 1.13 X 10-4 mol m-3
 

13.2 Conductance Applications 

[H+]=[OH-] =1.13 x 10-7 mol L-1 

Keq =[H+][OH-] ... 1.3 x 10-14 

Determination ofElectrolyte Charge Type 

When new compounds are discovered and found to be electrolytes, 
determination of the charges carried by the positive and negative ions 
roay be an important part of the characterization. If the molar 
conductivity is determined at various concentrations, and a plot of A vs. 
lC constructed, the intercept, A 0 gives a hint of the charge type since the• 

conductivities of salts of a given type tend to fall within certain limits. 
The limiting slope gives a better indication, however, since it depends 
upon the charge type of the electrolyte; see eq (3.14). 

Conductometric Titrations 

One of the most generally applicable electroanalytical techniques 
consists of following a titration reaction conductometrically (15). 
Consider, for example, the titration of hydrochloric acid with sodium 
hydroxide. Initially, the conductance of the HCI solution is due to H30+ 
and CI- ions. As the titrant is added, the H30+ ions are replaced by Na", 
and, since the molar ionic conductivity of Na" is much less than that of 
H30+ (see Table A.8), the conductance of the solution falls. Beyond the 
equivalence point, on the other hand, excess NaOH is being added, and 
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since the OH' molar ionic conductivity is very large, the conductance of 
the solution rises agairi. The conductance of the solution is due, of 
course, to all the ions present. This sum is demonstrated graphically in 
Figure 3.7. In practice, a conductometric titration is carried out by 
adding aliquots of titrant, measuring the conductance and plotting the 
measured conductance vs.the volume of titrant added. The points can 
usually be fitted to two straight-line segments which intersect at the 
equivalence point. 

This technique can be extended to any titration reaction which leads 
to a change in the slope of the conductance vs. concentration plot at the 
equivalence point. Any ionic reaction which produces a precipitate, a 
gas, or any other nonelectrolyte is well suited for use in a 
conductometric titration. Although the technique is very general, there 
are practical limitations: (1) the change in slope at the equivalence point 
is often small; (2) the analyte and titrant concentrations usually must be 
greater than 0.001 M; and (3) nonparticipating electrolytes should be 
absent. 

3.3 DIFFUSION 

Ionic conductivity and electric mobility are measures of the rate of 
charge transport through solution under the influence of an electric 
potential gradient. Electrical conductivity is one of a class of physical 
properties called transport properties. Other transport properties 
include thermal conductivity (transport of heat energy under the 
influence of a temperature gradient), viscosity (transport of momentum 
under the influence of a velocity gradient), and diffusion (transport of 
mass under the influence of a chemical potential or concentration 
gradient). Because an understanding of diffusion will be particularly 
important in Chapters 4 and 5 and because electric mobility and 
diffusion can be related easily, we will digress for a few pages to a 
discussion of diffusion. 

Fick's Laws ofDiffusion 

Consider the motion of molecules or ions in a liquid solution. In the 
absence of electric or gravitational fields, the motion is simply a random 
thermal agitation where the particles respond to bumps they receive 
from their neighbors to go shooting off in one direction or another. 
Although classical mechanics would have us believe that the Newtonian 
equations of motion at least in principle govern this motion, in practice it 
is just as well to regard the motion as entirely random and 
unpredictable. If we focus on an individual molecule, we will see it 

i. 

13.3 Diffusion 

undergo a series of displacements in random directions and of random 
length. However, we are interested in the average behavior of a large 
number of molecules. Suppose that, in a time interval St, a p~rtfcle 
Illoves a distance axin the x-direction. The average displacement, \ax}, is 
zero because a molecule is as likely to go in the positive x-direction as in 
the negative. On the other hand, if we square the disp)ace~ents before 
averaging, the mean square displacement (in time St) \(Sx)2J is nonzero. 
Now consider a section of the solution where there is a linear 
concentration gradient in the x-direction, and focus on a small section of 
cross-sectional area A and length (along the x-axis) 2O.x. Divide this 
volume in half as shown in Figure 3.8, and suppose that the average 
concentration of particles in the left-hand volume is N 1 and in the right
hand volume N2 (particles per unit volume). Thus, since the volume of 
each element is Aox, the number of particles in the two volumes are 
NlAO.x and N2Aax, respectively. Now in time interval St, on the average 
half the particles will move to the right and half will move to the left. 
Thus the number crossing the central dividing plane from left to right 
will be lf2 N lAO.x and the number crossing from right to left l/2 NzA,.ax. 
Thus the net number moving across the barrier (from left to right) is 
1/2 (Nl - N2)Aax. Dividing by the time interval then gives the net rate of 
transfer: 

Rate = (NI-N~A ax (3.17)
2& 

Recalling our original assumption that the concentration gradient is 
linear, we can express the concentration difference, Nl- N2, in terms of 
the concentration gradient 

aNN1-N2=--ax ax 
Since N is apparently a function of both x and t, we have written the 
gradient as a partial derivative. Substituting this expression into eq
(3.17),we have 

N(x) 

Figure 3.8 Model for the 
mathematical description 
of diffusion. 
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Rate =_A(Bx)2 aN (3.18) 
2& ax 

The rate in eq (3.18) is the number of particles passing through a 
reference plane of cross-sectional area A per unit time. If we divide eq 
(3.18) by A and by Avogadro's number, we will have the flux J in moles 
per unit cross-sectional area per unit time 

ac
J=-D- (3.19) 

ax 
where the diffusion coefficient D is given by 

(~)2 
D= (3.20) 

2& 

m2s·1with SI units of . This relationship was first established 
empirically by Fick in 1855, and is known as Fick's first law ofdiffusion. 

Notice that eq (3.19) tells us that the flux is positive (a net flow of 
particles from left to right) only if the concentration gradient is negative 
(there are fewer particles on the right to begin with). Thus this simple 
equation contains the elements of the phenomenon of diffusion: flow of 
particles into regions of lower concentration. 

Adolf Eugen Fick (1829-1901) was Professor of Physiology at the 
University of Wiirzburg. Fick's work on diffusion was part of a wide
ranging effort to apply the principles of physics to physiology. 

Example 3.9 An integral form of eq (3.20) is sometimes used 
to estimate the distance a particle might diffuse in a certain 
time: 

{X~= 2Dt 

where {x~ is the mean-square displacement in the x-direction 
in time t. Estimate the distance a particle with D =10-9 m2s· l 

will travel in 10-6 s. 

(x~ =2(10-9 m2s-1X10-6 s) =2 x 10-15 m2 

Thus the root-mean-square displacement in the x-direction in 1 
us is 4.5 x lO-8 m (45 nm). In an isotropic solution, we would 
expect {x~ =(y~ =(z~ so that (r~ =3{x~ or 

(x~=6Dt 

Thus the total r.m.s, distance travelled in 1 us is 135 nm. 

§3.3 Diffusion lSI. 

Fick also discovered a second empirical law, which was later found 
to be derivable from the first law. Consider an infinitesimal volume 
element of unit cross-sectional area and thickness dx. The flux into this 
volume element is Jtx), and the flux out of the volume element is J(x + 
dx) =J(x) + (aJIdx)dx. The difference between the flux in and the flux out 
is the net increase in number of moles of particles in the volume element 
per unit time. Dividing this by the volume of the element dz, we have the 
time rate of change of the concentration ac/at. 

ac J(x) - J(x + dx) dJ 
at= dx =- ax 

Differentiating eq (3.19), we get 

a2cdJ
-=-D
ax ax 2 

so we are left with 

ac =_Dic (3.21) 
at ax2 

which is Fick's second law. This result, of course, is a second-order 
partial differential equation, which might not seem to be a particularly 
simple way of expressing what we know about diffusion. However, it 
turns out that the equation can be solved relatively easily for a wide 
variety of boundary conditions. 

Before we go on, it is instructive to write down the solution to eq 
(3.21) for a particularly interesting case. Suppose that we bring two 
solutions into contact at time t =O. In one solution the concentration of 
the diffusing species is Co and in the other solution, the concentration is 
zero; the initial interface is at x =O. We suppose that for t > 0, C ~ 0 as x 
~ 00 and C ~ Co as x ~ --. With these initial and boundary conditions, 
the solution to eq (3.21) is (see Appendix 4) 

C(x,t) = tco [1- erf{2@)] (3.22) 

The function erf('!') is called the error function and defined by the 
integral 

erf('!') =....2.... (IV e-u2 du (3.23) 
f1[ Jo 

The error function is a transcendental function like a logarithm or 
exponential function and is found in many mathematical tables. As 
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seen in Figure 3.9, the error function goes to zero as its argument goes to 
zero and approaches unity as its argument increases. The error 
function is an odd function of the argument, i.e., erft-v> =-erftV>. The 
derivative of an error function is an exponential function: 

13.3 Diffusion 

aC(0,t) nIi---=8.92 x lu-, 2.82 x 10", 8.92 x 10" mol m-4 
ax 

at t =1, 10, and 100 s. Substituting the concentration gradient 
into eq (3.19),we obtain the flux: J = 892, 282, 89.2 J.UI101 m-2s·1 

I (b)(aJII C·O 

--x o +x 
+x 

(c) 
Figure 3.10 (a) Initial distrib
ution of solute in a diffusion 
experiment. (b) Concentration 
profiles at successive times after 
beginning of diffusion. (c) Con
centration gradient at successive 
times after beginning of 
diffusion. o +x 

Relation ofDiffusion and Mobility 

We have seen that diffusion may be regarded as the net movement 
of particles in solution due to a concentration gradient. Another more 
general way of stating this is to say that particles will move in solution 
with a velocity proportional to the chemical potential gradient. This may 
be expressed mathematically as 

1 a~
Vi =----- (3.25)

tiNA ax 
where Vi is the average velocity of particles of type i, fi is the frictional 
coefficient, and NA is Avogadro's number. Suppose that the particles 

-x o 

-x 

t erf[ 'l'<x)] =~ exp(~) :
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Figure 3.9 The error 0.0
function. 

0.5 1.0 L5 V 2.0 

The concentration profile, given by eq (3.22), and the concentration 
gradient, computed using eq (3.24), are shown for various times in 

, ' 
'1,\

Figure 3.10. The results are as we would expect intuitively: thef t 

concentration gradient, which initially is a sharp spike at x = 0, broadens 
and decreases in height as time passes, i.e., as the solute diffuses into 
the right-hand solution. Since the flux of solute is proportional to the 
concentration gradient through eq (3.19>, Figure 3.l0c is equivalent to a 
plot of flux vs. distance at successive times. 

Example 8.10 Assuming D =10-9 m2s·1 and Co =0.1 M (100 
mol m-3 ), compute the concentration gradient and flux at the 
position of the original boundary 1, 10, and 100 s after the 
boundary is formed. 

Differentiating eq (3.22), using eq (3.24), we obtain 

. dC~,t) =~ex (_~) 
ax 2"1 rtDt P a» 

At x = 0, the exponential term reduces to 1. Substituting 
numbers, we obtain 

(3.24) 

, r:=;::x;x- 1 
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are ions so that the chemical potential depends not only on their activity 
but also on the electric potential. Thus we have! ' 

IJ.i =Ilio + RT In ai + ziFc1) (3.26) 

Differentiating eq (3.26) and substituting into (3.25), we have the Nema. 
Planck equation 

Vi =-t[kT dl:xaj +Zie~] (3.27) 

We now consider two limiting cases. First we assume that the 
activity is uniform, but the electric potential nonuniform. Equation (3.27) 
then becomes 

Vi =+~E 
fl 

where we have recalled that the negative gradient of the electric 
potential is the electric field strength, E =~c1)ldx. Dividing through by E, 
we have the mobility: 

U . -'vii -,zd e (328) 
& -IE!- fl . 

which is identical to eq (3.10). 
For the second limiting case, we assume that the electric potential 

is constant so that eq (3.27) contains only the first term on the right-hand 
side. If the concentration of species i is C; and the average velocity is Vi, 
then the flux Ji is CiVi or 

J; =_CjkT d In "j 
& fl dx 

Noting that the activity can be written ai = Crfi, we have 

rh =_B.T..[Ci dIn Ci + c, din 1i] (3.29)
fl dx dx 

and, if we assume that the activity coefficient is independent of x, either 
because the solution is dilute and nearly ideal or because of the presence 
of a homogeneous excess of some other electrolyte which mostly 
determines the activity coefficient, then the second term may be dropped 
and eq (3.29) becomes 

J; - ta: dCj 
.-- fl dx 

which is Fick's first law, with 

Di = kTlfi (3.30) 

1 This generalized chemical potential is sometimes called the electrochemical 
potential. 

13.3 Diffusion 

_Since the frictional coefficient occurs in both eqs (3.28) and (3.30), we can 
eliminate it to obtain a relation between the diffusion coefficient and the 
electric mobility, 

D· -.M...- u· -J1.I.. u· (3.31)
• -Izil e·-Izd F • 

Equation (3.31) is sometimes called the Einstein relation. Combining eqs 
(3.9) and (3.31) gives the connection between the diffusion coefficient and 
the ionic conductivity, the Nernst-Einstein equation, 

Di =.xI:....- At (3.32)zre 2 

Example 3.11 Compute the diffusion coefficients of Na" and 
Ba2+at 25°C in dilute solutions. 

At 25°C, the factor RTIF has the value 0.0257 V. Thus, using 
the mobilities computed in Example 3.6, we have 

U(Na+) =(0.0257 VX5.2x 10-8 m2V-1s-1) 

U(Na+) =1.34 x 10-9 m2s·1 

U(Ba2+) =(0.0257 VX6.6x 10-8 m2V-1s·1)/2 

U(Ba2+)=0.85 x 10-9 m2s- 1 

We now have three essentially equivalent measures of the transport 
properties of an ion in solution: the molar ionic conductivity A, the ionic 
mobility u, and the diffusion coefficient D. The three quantities are 
compared for Na", Mg2+, and A}3+ in Table 3.2. Notice that whereas A° 
increases with ionic charge, u" is nearly independent of charge and DO 
decreases with charge. This is a reflection of two effects; as the charge 
increases, the size of the solvation shell increases; each of these ions has 
a primary coordination of six water molecules, but with increasing 
charge, outer-sphere water molecules are also oriented about the ion. 
Thus a large aggregate such as A}3+ with its solvation sheath moves 
through solution more slowly than Nat and its smaller solvation sheath. 
The dependence of DO on ionic charge is thus qualitatively reasonable. 
When we look at the velocity of particles in a field, we expect the 
retarding effect of the solvation sheath to be opposed by a larger electrical 
force on ions with higher charge. Thus the two effects more or less 
cancel in the case of the mobilities. Conductivities, on the other hand, 
measure not only the velocity of ions in the field, but also the amount of 
charge carried and so increase with increasing charge. 
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Table 3.2 Comparison of Ionic Conductivities, Mobilities, 
and Diffusion Coefficients. 

Ion A°IS m2mol-1 uO/m2y-1s-l DO/m2s-1 

Nat 50 x 10-4 5.2 x 10-8 13.4x 10-10 

t. 
t 

Mg2+ 

Al3+ 

106x 10-4 
189x 10-4 

5.5 x 10-8 

6.5 x 10-8 

7.1 x 10-10 

5.6 x 10-10 

3.4 MEMBRANE AND LIQUID JUNCTION POTENTIALS 

As we noted in Chapter 1, in general there is a potential difference 
across the boundary between any two dissimilar phases. In this section, 
we will consider three cases of potentials arising across phase 
boundaries. 

Liquid Junction Potentials 
f 
" Consider the junction of two electrolyte solutions. The two solutions 

may be carefully layered or they may be separated by a fritted glass disk 
or an asbestos fiber. The system as a whole is not at equilibrium and 
mixing will eventually take place. The role of the glass frit or asbestos 
fiber is simply to slow the rate of diffusive mixing. If the rate of mixing 
is slow enough, we can regard the two solutions as essentially constant 
in composition and can deal with a steady-state model of the boundary 
between the two phases. 

Now consider what happens when the liquid junction is formed 
between phases a and ~ and diffusion is allowed to proceed. Suppose for 
the moment that a single electrolyte is present with concentrations en) 
e~. Since the diffusion coefficients of the anions and cations in general 
are not equal, one species is expected to diffuse more rapidly than the 
other. If, for example, the cations diffuse from the a-phase into the ~
phase more rapidly than do the anions, then a charge separation results 
and with it an electric potential difference which ultimately will oppose 
the continued diffusion of the two species at unequal rates. The steady
state condition then is diffusion of the two species at the same rate, but 
with the positive ions slightly ahead of the negative ions; see Figure 3.11. 

Consider now the more general case of a liquid junction between 
two electrolyte solutions of different compositions and concentrations. 
Suppose that the liquid junction has reached a steady-state condition, 
and consider a charge oQ which moves reversibly through a distance dx 
in the phase boundary region. There will be contributions to oQ from 

Membrane and Liquid Junction Potentials 

d 
I

d" 

. eo

,where Zi 

.,~!ilirection: 

, 

.lC8tions moving in the +dx direction and from anions moving in the -dr 

BQ =FL z: oni 

is the charge on ion i and oni is the number of moles of i 
JDoving from x to x + dz, If i is a cation, zt and oni will be positive, but if i 
is an anion, both quantities will be negative. The fraction of the charge 
carried by ion i (the transference number, ti ) then will be 

Fz' On'
ti::;~ 

8Q 

t=O t =1 t=3 t=5 
I 

:~----_._ _'(_.::---_._ 
, . 
. .. '" 

o.........nlL _ . __ ::"""

-- ------- -------------+ 
Figure 3.11 Diffusion of a 1:1 electrolyte solution in a tube. (a) 
Concentration profiles at several times; the solid lines represent the cations 
and the dashed lines represent the anions. (b) Corresponding concentration 
differences, C+ - C_. 

lini can be written 

t·oni =_I_OQ 
ziF 

In moving from x to x + de, ion i moves through a chemical potential
difference, given by eq (3.26): 

du, = RT d In a, + FZi d«1> 

where do is the electric potential difference across the distance dx. The 
total change in free energy then is 

OG = L du, oni 
i 
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or 

(3.33)so = [Bf t :: d In ai + t ti d<l>] l>Q 

However, since we assumed that charge transport through the phase 
boundary is reversible, SG must be zero; the bracketed expression must 
then be zero, independent of SQ. Furthermore, by definition 

L ti = 1 
i 

so that we can rearrange the bracketed expression in eq (3.33) to obtain 

d<l> = - R.X."'" .!L d In a'F L. z· , 
i ' 

We then integrate over the phase boundary to obtain 

~<I> =- EI. L ill ti d In ai (3.34)
F. z; , a 

Equation (3.34) is a general expression for the liquid junction potential, 
but the integral is generally intractable. To proceed further, we must 
build some simplifying assumptions into the model. 

When only one electrolyte is present and the two phases differ only 
in concentration, then it is reasonable to assume that the transference 
numbers are constant. When these are factored out, the integrals of eq 
(3.34) are easy and we obtain for a 1:1 electrolyte (Zl = 1, Z2 = -1) 

O'J1[ all all]~<I> =- a..L ti In.::J...- tz In .::2... 
Ii F af a¥ 

or if we further assume that a f =a~ =aa and a r=al =all, 

.&<1> =R.X. (tl - t2J In ~ (3.35)
F all 

Thus we predict that when two solutions, differing only in the 
concentration of a 1:1 electrolyte, are in contact the liquid junction 
potential is proportional to the difference in transference numbers of the 
positive and negative ions and to the log of the activity ratio. 

Example 3.12 Compute the liquid junctions potentials for the 
contact of 0.1 and 0.01 M KCI solutions and for the contact of 0.1 
and 0.01 M HCI solutions neglecting activity coefficient 
differences and assuming that the transference numbers are 
independent of concentration. 

13.4 Membrane and Liquid Junction Potentials 

Computing the transference numbers from ionic 
conductivities (Example 3.5), we have, for KCl, tl =0.491 and t2 = 
0.509, so that substitution in eq (3.35) gives (RTIF =25.7 mY) 

.&<1> = (25.7 mV)(-Q.018) In(O.I) = 1.1 mV 

For HCl, tl =0.821 and t2 =0.179, so that 

.&<1> =(25.7 mV)(0.642) In(O.I) =-38.0 mV 

To deal with the more generally interesting case where mixtures of 
several electrolytes are present, we must make an approximation to 
allow evaluation of the transference numbers. One approach to this 
problem, suggested by Henderson in 1907 (16), is to assume a linear 
concentration gradient for each ionic species. Thus if we define a 
dimensionless distance parameter x, scaled so that x ranges from 0 in 
phase a to 1 in phase 13, the concentration of ion i can be written 

C, =Cillx + Cia (I-x) 

!tWe will also assume that the activity coefficients are constant in the 
jphase boundary region, so that we can write 

aIn a; aIn Ci 
---=--

()x ()x 

Thus we have 

aIn ai 1 deid ln c, =--dx=--dx 
ax Ci ax
 

or since ac/ox =c!- Cr,
 

C·a_C·1l 
din ai = J dx c. J 

The transference number of ion i can be written in terms of the 
concentrations and mobilities: 

t. - IzilCiUi 
,-L IZj ICjuj 

j 

where we assume that the mobilities are independent of concentration 
and thus of x, Substituting the expressions for ti and d In(ai) into eq 
(3.34), we obtain 
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1 

M>=_Er L IZilui lcp-cp)1 ----.d.L
F	 . Zi I a s bxI 

I 0 

where 

a = LlzjluPt 
j 

and 

b =L IZjluj(C! -Cl) 
j 

The integral is readily evaluated: 

t ~=ln(a + bxll1 =~lnaill. 
Jo a + bx bob a 

Thus	 

L u~~il (CiP -Cia) lL uJzil C! ] 
A(J) = _ I!.I. i I In ....:.i _ (3.36) 

F ~uJzil(c!-Cia) ~uJzilCr 
I'I! 

Equation (3.36), sometimes called the Henderson equation, is a general 
(albeit somewhat approximate) result for liquid junction potentials. 
When a only a single 1:1 electrolyte is present, eq (3.36) reduces to eq 
(3.35). Another relatively simple situation can be set up experimentally. 
Suppose that only one cation is present and that it has the same 
concentration in both phases (e.g., NaCI in one solution,NaBr in the 
other). The prelogarithmic term in eq (3.36) then reduces to RT/F. 
Alternatively, if a single common anion is present, the prelogarithmic 
term reduced to -RT/F. Thus we have 

L uJzil Cp ]
lit!» = ±Er In --=i'-- _ (3.37) 

F L uJzil Ciali 

Example 3.13 Compute the liquid junction potential for the 
contact of 0.1 M HCI and 0.1 M xci solutions. 

Equation (3.37) can be used in this case since we have a 
common anion; since the concentrations are all 0.1 M, we have 

li<!> = _ RT In (U(H+) + u(Cnj 
F u(K+) + u(Cn 

3.4	 Membrane and Liquid Junction Potentials 

Using mobilities calculated as in Example 3.6 (and assuming 
these quantities to be independent of concentration), we have 

lit!» =- (25.7 mV) In (36.3 + 7.9) =-26.8 mV 
7.7 + 7.9 

Example 3.14 Compute the liquid junction potential for 0.1 M 
HCI and 0.1 M KCI solutions contacted through a saturated 
KCI (4.2 M) salt bridge. 

In this case, we must deal separately with two liquid junctions, 
one between the HCI solution and the salt bridge, the other 
between the salt bridge and the KCI solution. In the first case, 
we must use eq (3.36), but eq (3.35) will handle the second 
junction. Starting with the simpler case, we can use the 
method of Example 3.12 to obtain for the salt bridgelKCI 
junction: 

lit!» = (25.7 mVX-O.018) In(42) = -1.7 mV 

Inserting the mobilities (computed as above from the infinite 
dilution conductivities) and concentrations into eq (3.36), we 
obtain for the HClIsalt bridge junction: 

li<1> = +4.2 mV 

for a total liquid junction potential of +2.9 mY. 

Comparing the results of Examples 3.13 and 3.14, we see that the 
use of a saturated KCI salt bridge is expected to reduce the junction 
potential for 0.1 M KCI and HCI solutions by nearly a factor of 10. The 
secret, of course, is that the K+ and CI- ions, which have very nearly 
equal mobilities, carry most of the current at the salt bridge/solution 
junctions. The result is generally applicable. however, and explains in 
part the popularity of KCI as an electrolyte, particularly when liquid 
junctions are unavoidable. 

Donnan Membrane Equilibria 

In a system containing a semipermeable membrane, an interphase 
potential superficially like a liquid junction potential may develop. 
Suppose that two solutions, one containing an ordinary electrolyte with 
small ions and the other containing a solution of charged 
macromolecules and small courrterions, are separated by a membrane 
which allows the free passage of solvent molecules and small ions but 
which is impermeable to the macromolecules. At equilibrium. the 
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chemical potentials of the small ions and solvent! will be equal in the 
two phases. However, since the condition of electrical neutrality 
requires that the ionic concentrations be unequal in the two solutions, an 
electric potential difference must develop across the membrane. Unlike 
a liquid junction potential, however, the potential in this case does not 
depend on the relative mobilities of the ions and the system is in a true 
equilibrium state. The development of potentials across semipermeable 
membranes was first studied by Donnan in 1911 (17) and the 
phenomenon is usually referred to with his name. 

Frederick G. Donnan (1870-1956) was Professor of Physical Chemistry at 
the University of Liverpool and later at University College, London. 
Donnan was a student of Ostwald and played an important role in 
introducing the then new ideas of physical chemistry in Britain. He is 
best remembered for his work on membrane equilibria. 

Consider a 1:1 electrolyte in equilibrium across the membrane; 
equilibrium requires that the ionic chemical potentials be equal: 

~IP = ~ilJ 

or, since Ilt is the same for the 0: and ~ phases, 

RT In af = RTln ar ± F~et> 

where the upper sign applies to cations, the lower sign to anions and ~<1l 
= 4>p - 4>a. If the cation (i = 1) and anion (i = 2) equations are added, we 
get 

RT In afai' =RT In aral 
or 

a a p p
ala2 =a1a2 

which may be regarded as the condition of Donnan membrane 
equilibrium. If the activity coefficients in the 0:- and ~-phases are equal, 

i
t : we can also write 

efe; == ere! (3.38) 

Electroneutrality of the 0: phase requires: 

Cf == e; 
If the ~-phase also contains a macromolecule M with concentration CM 
and charge ZM, then the electroneutrality condition is 

ep+ZMCM=C! 

1 The equalization of the solvent chemical potential leads to the phenomenon of 
osmotic pressure. 

3.4 Membrane and Liquid Junction Potentials 

tJn general there also will be conservation relations governing the total 
.... number of moles of anions and cations. These relations, together with 
; the Donnan equilibrium expression, eq (3.38), can be used to compute the 
, individual concentrations. Since the activity of an ion is different in the 
tWO phases, a potential difference develops: r.,'" 

'.~,; 

~f1> = RT In af =_RT In a¥ (3.39) 
F af F al 

Example 3.15 Compute the Donnan membrane potential for a 
system initially containing 100 mL of 0.10 M RCI (phase 0:) and 
100 mL of 10-3 M macromolecules with ZM = 100 with 0.10 M Cl
counterions (phase ~). Electroneutrality requires: 

e? = e; e~ + 0.1 == ef
 
and conservation of potassium ions requires:
 

ef+C!=O.1
 
Substitution in eq (3.38) gives the quadratic equation
 

C113(0.1 + C1P)= (0.1- C11J)2
 

the solution to which is
 

C1P=0.033M
 
Thus
 

CIa =C2Q = 0.067 M 

C2P= 0.133 M
 
and
 

~f1> = (25.7 mV) In(2) =17.8 mV 

Ion-Selective Membranes 

Now that we have semiquantitative theories of the liquid junction 
potential and the Donnan membrane potential, we can tum to the 
operation of an ion-selective membrane such as the glass membrane of a 
H+-sensitive glass electrode which was discussed qualitatively in Section
1.5. 

We assume that the interior of the membrane is permeable only to 
Na + ions, but the inner and outer surfaces of the membrane are 
hydrated and can contain other cations, in particular H+. We can divide 
the system into five regions which we imagine as separate phases: 
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a outer electrolyte solution 
~ outer surface of the membrane 
y interior of the membrane 
~' inner surface of the membrane 
a' inner electrolyte solution 

The total membrane potential then has four contributions: 

I
 .1<11 = .1<11a~ + .1<11~y + .1<11yj3' + .1<11~'a' (3.40)
 

We will assume	 that the membrane surfaces are in equilibrium.E'\;	 with the adjacent electrolyte solutions so that the arguments used in 
discussing Donnan membrane equilibria can be used for the a-~ and po_ 
a' interfaces. If H+ is in equilibrium across the a-~ interface, then the 
H+ chemical potentials must be equal for the two phases: 

JlHO(a) + RT In aHa + F<1Ia =J..LHO(~) + RT In aH~ + F<1I~ (3.41) 

or 

A"" _ "" tbn _JlH(a) - J..LH(~) D'T' In a;j
u ....~ - ....a - ~p _ + &.LL 

F F aA 

Similarly for the ~'-a' interface 

.1<11 =JlH(a') - J..LH(W) + HI In all''A' 

a" F F aJ{ 

Since the a and a' phases are both aqueous solutions and the ~ and W 
phases are both hydrated glass, 

."f JlHO(a) =JlHO(a') and J..LHO(~) =JlHO(W)
"I 

Thus the standard state terms cancel when .1<11a~ and .1<1113'a' are added 
to obtain the solution/membrane surface contributions to the membrane 
potential: 

aaaJ{
.1<11a~ + M)f('W =RT In _H_ (3.42) 

F a~'aA 

On the other hand, the Na" ions are also in equilibrium between the 
outer membrane regions and the solutions. Thus for the a-~ interface, 

JlNaO(a) + RT In aNaa + F<1Ia =J..LNaO(~) + RT In aNa~ + F<1I~ (3.43) 

Subtracting eq (3.43) from eq (3.41) and rearranging, we have 

a~aa 
J..LHO(a) + J..LNaO(~) - J..LHO(~) -JlNaO(a) = RT In ~ 

F aHaa~Na 
but this is just the standard free energy change for the equilibrium 

Membrane and Liquid Junction Potentials 

Na+(a) + H+(~) ~ Na+(~) + H+(a)

,0 that the argument of the logarithm term is just an equilibrium 
constant expression 

K= a~a~a (3,44) 
a 6aa

11 Na 

By a similar argument, we can show that H+ and Na- ions at the W-a' 
interface are subject to the same equilibrium constant. 

a' W 
K =aHaNa (3.45) 

a~'a~~ 

We tum now to the interfaces between the surfaces and interior of 
, ". the membrane. The potential across the ~-y (or y-W) interface results 
t~~?from the difference in the mobilities of the H+ and Na- ions and should
'tbe given by the Henderson equation, eq (3.36). Since the mobilities of the 

anions inside the membrane are assumed to be zero, the prelogarithmic 
term simplifies. and we are left with 

.1<1161 = B:J:..lnlruHaA + UNaa~a] 
F uNaaJa 

where we have assumed that the activity of H+ ions in the interior of the 
membrane is zero and that the mobility of Nat ions is the same in the 
interior as at the surface of the membrane, Similarly, 

D'T' r UNnO 1 ].1<1116' =li.L In Na 
F LuHaA + UNaa~~ 

Thus the contribution to the membrane potential from the differential 
mobilities of the H+ and Na" ions inside the membrane is 

.1<11~ + .1<1116' = BI In [a~ + (UNa1uH) a~,a] 
F a~ + (UNa1uH) a~a 

Adding this potential difference to the contributions from the solution
membrane surface interfaces, eq (3.42), we get the total membrane 
potential, 

A"" -B:J:..1-	 , (346).u ....membrane lrOil+(UNaIUH)Ka~aJ.n 
F ail + (UNa1uH) Ka~a 

Where we have used eqs (3.44) and (3.45) to eliminate the activities of the 
H+ and Na" ions in the /3- and W-phases. We can define a parameter
called the potentiometric selectivity coefficient, 
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kH,Na = K(IlNa"lH)	 (3.47) 

which is a function of properties of the membrane-the Donnan 
equilibrium constant and the relative mobilities of Na" and H+. If the 
inner electrolyte solution (the a'-phase) is constant in composition, the 
denominator of the log term in eq (3.46) makes a constant additive 
contribution to the membrane potential. Incorporating kH,Na to simplify 
the expression further, eq (3.46) becomes 

~<1>membrane = constant + Rlln [aft + kH,Naa~a] (3.48) 

If the potentiometric selectivity coefficient were zero, then the membrane 
would respond exclusively to the H+ activity; the selectivity coefficient 
thus is a measure of the interference of Na" in the operation of the glass 
electrode. Although eq (3.48) was derived for the specific case of a glass 
membrane, models of other membrane systems lead to the same general 
result (D11,D14), which can be expressed by 

~<1>memb-ane = constant + Rlln [a i + 1kijaj ] (3.49) 

where species i is the principal diffusing species of interest and kij is the 
selectivity coefficient for j relative to i. 
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PROBLEMS 

(a) A conductance cell filled with 0.1 M KCI solution had a 
resistance of 24.96 n at 25DC. Calculate the cell constant (LIA) 
given that the conductivity of 0.1 M KCI is known to be 1.1639 S m-1 

at this temperature. 
(b) When the cell was filled with 0.01 M acetic acid, the resistance 
was 1982 n. Compute the molar conductivity of acetic acid at this 
concentration. 
(c) Using the molar ionic conductivities of H+ and CH3C02- from 
Table A.7, compute AD for acetic acid. 
(d) Compute the degree of dissociation a for 0.01 M acetic acid and 
estimate the acid dissociation equilibrium constant. 

3.2	 The molar conductivity of AgN03, measured at 25DC for various 
concentrations, is as follows: 

C/mM 0.0276 0.0724 0.1071 0.3539 0.7538 
lOONS m2mol-1 1.329 1.326 1.325 1.316 1.308 

Use these data to determine AD for AgN03. 

3.3	 Compute the Onsager limiting law slope for AgN03 and compare 
it with the slope of the plot obtained in Problem 3.2. 

3.4	 Compute the Onsager limiting law slope for BaCI2. 
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8.5	 What fraction of the total current is carried by K+ in a solution 0.10 
M in KCI and 0.05 M in HCI? 

The conductivity of a saturated silver iodate solution at 18°C is 13.0 8.6	 
x 10-4 S m- l when water with a conductivity of 1.1 x 10-4 S m- l was 
used to prepare the solution. The sum of the molar ionic 
conductances is AOCAg+) + A0003-) = 87.3 x 10-4 S m2mol-l at 18°C. 
What is the solubility of silver iodate at this temperature? You can 
assume that the species leading to the conductivity of the water do 
not interfere with the dissolution of AgI03 and that the 
conductivity contributions are additive. 

3.7	 The conductivity of a 0.0384 M solution of Cl2 was found to be 0.385 
S m- l at O°C. Given that the molar conductivity of HCI is 0.0250 S 
m 2mol- l at O°C. compute the equilibrium constant for the 
disproportionation of C12. 

CI2(aq) + H20 ~ Httaq) + Cltaq) + HOCI(aq) 

The ionization of HOCI is negligible under these conditions. 

8.8	 Compute the Stokes law radii, the ionic mobilities. frictional 
coefficients, and diffusion coefficients of Fe(CN)63. and Fe(CN)64-. 

3.9	 A potassium salt of an uncharacterized anion. An-, contains 
12.50% potassium by weight. Conductance measurements on 
some solutions of varying composition gave the following data 
(aqueous solutions at 25°C): 

Clg L-l 0.0250 0.0500 0.01000 0.200 0.500 

idS m- l 1.09 2.17 4.31 8.53 10.94 

(a) Compute the "equivalent weight" (MWln) and use this value to 
convert the concentrations to equivalents per cubic meter (nClmol 
m -3) and the conductances to "equivalent conductivities" (A/n) 
with units ofS m2equiv· l . 
(b) Plot Mn us. 'inC, determine the intercept and the slope. How 
does this slope differ from the slope of a plot of A us. YC? 
(c) Given the molar ionic conductivity of'Kt, 73.5 x 10-4 S m2moI-l, 

determine the transference numbers, t+ and L. 
(d) Suppose that the salt is a 1:1 electrolyte (n := 1). Does the slope 
obtained in part (b) agree with theory? Suppose it is a 2:1 
electrolyte? Is the fit better? A 3:1 or 4:1 electrolyte? 

&11
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Verify that eq (3.22) is a solution to Fick's second law, eq (3.21). 

Show that the diffusion coefficient of a spherical particle of radius 
r in a medium of viscosity 1'\ is D= kTI6ltT)r. 

1.12	 A simple calculation can show that the development of a central 
nervous system was essential to the evolution of large organisms. 
Suppose that a primitive fish swimming in a primeval sea at 25°C 
relied on the diffusion of information-carrying molecules to 
control body movement. Imagine that the information-carrying 
molecule was 10 om in diameter and that diffusion was through 
an essentially aqueous medium, 1'\ = 0.89 x 10-3 kg m·ls-l. Estimate 
the diffusion coefficient (see Problem 3.11). Now suppose that a 
predator bit the fish's tail. How long would it take for the 
information to reach the fish's head if the fish was 10 em long? 

1.18	 A solute diffuses through a long cylindrical tube of 2.00 mm 
diameter such that during each second 0.025 nanomol crosses a 
plane where the concentration gradient is 5.0 M mol. Compute the 
diffusion coefficient. 

8.14	 A solution of CUS04 was electrolyzed in a Hittorf apparatus with 
Cu electrodes. The electrode processes were 

anode: Cufs) -+ Cu2+ + 2 e-

cathode: Cu2+ + 2 e- -+ Cuts) 

The initial concentration was 0.1473 M. After passage of 1.372 x 
10-3 Faradays, the cathode compartment contained 30 mL of 0.1183 
M CUS04. Calculate the transference number of Cu2+ in the 
CUS04 solution. 

3.15	 Sketch conductometric titration curves for the following systems. 
Ignore the contribution to the conductivity from weak electrolytes 
or insoluble precipitates. 
(a) 0.01 M ammonia titrated with 1 M hydrochloric acid. 
(b) 0.01 M ammonia titrated with 1 M acetic acid. 
(c) 0.01 M silver nitrate titrated with 1 M hydrochloric acid. 
(d) 0.01 M silver nitrate titrated with 1 M potassium chloride. 
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3.16	 150 mL of a saturated solution of Ba(OH)2 was titrated with 1.00 t.t 
H2S04 and the resistance of the solution measured with a dip-tyPe 
cell. The following data were obtained: 

VollmL RIfJ. VollmL RIO. 

0.00 53 6.00 1080 

1.00 ea 6.30 2500I 
J	 2.00 84 6.50 1200,; 

3.00 100 7.00 350 

4.00 140 7.50 210 

5.00 zso 8.00 150 

5.50 400 8.50 110 

5.75 500 9.00 00 

Given that the cell constant is LIA = 104 m· l , compute the 
conductivity K for each point and plot K us. volume of acid. Locate 
the equivalence point and compute the concentration of Ba(OH~ in 
the saturated solution. Knowing the concentration of Ba(OH)2 and 
the conductivity of the initial solution, determine the molar 
conductivity ofBa(OH~. 

3.17	 Show that the Donnan membrane equilibrium condition for an 
electrolyte where the cations have charge ZI and the anions have 
charge Z2 is 

(~~rl = (~~r 
3.18	 A 0.01 M solution of a colloidal electrolyte NaX is placed on one 

side of a membrane which is permeable to Nar , but not to X-. 
Calculate the equilibrium distribution of ions if on the other side of 
the membrane there is placed a 0.025 M solution of Na2 S0 4. 
Assume equal volumes in the two phases. Calculate the electric 
potential difference across the membrane at, 298 K. 

( 

4 VOLTAMMETRY OF 
REVERSIBLE SYSTEMS 

In Chapter I, we considered cells in which chemical energy is 
converted to electrical energy. Beginning with this chapter, our focus 

,shifts to electrolysis cells, where electricity is used to induce chemical 
change. 

In an electrolysis cell, reduction occurs at the cathode and oxidation 
at the anode just as in a galvanic cell. However, the cathode and anode 
are negative and positive, respectively, in an electrolysis cell, seemingly 
opposite to the convention adopted for galvanic cells. Consider the 
Daniell cell (discussed in §1.1) 

ZnIZn2+(aq)IICu2+(aq)ICu 

When operated as a galvanic cell, the cell reaction 

Zn + Cu2+ ~ Cu + Zn2+ 

corresponds to oxidation of Zn and reduction of Cu 2+. The Zn electrode 
then is the anode and the Cu electrode is the cathode. When we measure 
the cell potential, we find that the Zn electrode is negative and the Cu 
electrode is positive. When an external potential source is attached and 
the direction of current flow is reversed, the relative polarities of the 
electrodes are unchanged-Cu is still positive and Zn is negative. 
However, the process taking place at the Zn electrode is now a reduction, 
so that this electrode is the cathode; Cu is oxidized, so that the Cu 
electrode is the anode. Strictly speaking, the designations anode and 
cathode refer to the direction of current flow. In order to avoid 
confusion, we will usually focus our attention on a single indicator or 
working electrode and will describe its role by saying that the current is 
anodic or cathodic, i.e., the electrode process at the indicator electrode is 
an oxidation or a reduction. We adopt the following sign convention for 
current at the indicator electrode." cathodic current is positive, anodic 
current is negative. 

lOur sign convention for indicator electrode current is the usual one among 
electroanalytical chemists, but many other electrochemists employ (and the 
International Union of Pure and Applied Chemistry recommends) the opposite 
convention with positive anodic current. 

];;] 
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When current flows through an electrochemical cell, it may be 
limited by any of the three steps: 

(1)	 conductance of the bulk solution; 
(2)	 transport of reactants to the electrode or products away from the 

electrode; or 
(3)	 the rate of electron transfer and / or chemical reactions coupled to 

the electron transfer step. 

Examples can be found where anyone of these steps is rate determining. 
In Chapter 3, we were concerned with cells designed so that step (1) was 
rate limiting. In this chapter, we consider cases where the mass 
transport step is slowest; we will assume that the solution conductivity is 
high and that electron transfer is fast and reversible and is not 

.~~ complicated by associated chemical reactions. We will consider cases 
where the current is limited by the rates of coupled chemical reactions 
or of electron transfer in Chapters 5 and 6. We will be concerned here 
with processes where the total charge passed is small, so that the bulk 
solution composition is essentially unchanged by electrolysis. In 
Chapter 7, we will consider experiments in which the bulk 
concentrations change during electrolysis. 

We begin with a study of the general problem of diffusion-controlled 
current. In §4.2, we digress to some practical matters such as 
instrumentation and the choice of solvents. In §4.3 and §4.4, we survey 
the host of electroanalytical methods which rely on diffusion control. In 
§4.5 and §4.6, we discuss polarography, historically one of the most 
important of the electroanalytical methods, and some of the many 
variations on the polarographic method. In §4.7 and §4.8, we examine 
the characteristics of rotating disk electrodes and microelectrodes, and 
finally in §4.9, we will look at some applications of the various methods. 

4.1 DIFFUSION-LIMITED CURRENT 

There are several mechanisms for transport of ions or molecules to 
an electrode surface: 

(1)	 diffusion (transport through a chemical potential gradient); 
(2) electric migration (transport through an electric potential gradient); 
(3) convection (transport through mechanical motion of the solution). 

Convection may occur either through gravity operating on a density 
gradient (natural convection) or through stirring of the solution or 
motion of the electrode (forced convection). 

In this section we will assume that diffusion is the only significant 
transport process and will restrict our attention to experiments in which 
precautions are taken to eliminate or reduce other transport 
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mechanisms. Thus the solution should not be stirred and the cell 
should be free of vibration. In addition, we will require that the ratio of 
electrode area to solution volume be small and that experiments be short 
in duration so that relatively little electrolysis takes place. This 
precaution will minimize local changes in concentration or local 
heating which could lead to density gradients and convective mixing. 
The solution should contain a large excess of an inert electrolyte (called 
a supporting electrolyte) to ensure that the double layer is very compact 
and that the electric potential is nearly constant throughout the solution, 
thus minimizing electric migration effects. 

Solution ofthe Diffusion Equation 

Our goal is an equation giving the current as a function of electrode 
potential for a relatively large planar electrode; the current will also be a 
function of time, the concentrations of electroactive species, the diffusion 
coefficients of these species, the electrode area, and the number of 
electrons transferred per molecule oxidized or reduced. We assume that 
the electrode process involves an oxidized species 0 and a reduced 
species R, both in solution, and that the process consists simply of the 
transfer of n electrons: 

O+ne- ~ R 

The species 0 and/or R may be charged but we will omit the charges for 
clarity. We will need to find the concentrations of 0 and R, CO(x,t) and 
CR(X,t), as functions of time and distance from the electrode. We define 
the problem by the following specifications: 

(1)	 The electrode is planar with surface area A and is sufficiently large 
that edge effects can be neglected. Only diffusion along the positive 
x-axis perpendicular to the electrode surface need be considered. 

(2)	 The solution is initially homogeneous, i.e., the initial concentrations 
of 0 and Rare CO(x,O) = Co· and CR(X,O) = 0 for x ~ O. 

(3)	 The electrolysis cell is large enough that the bulk concentrations of 
o and R are unchanged during the time of an experiment, i.e., 
CO(x,t) ---+ CO·, CR(X,t) ---+ 0 as x ---+ 00. 

(4)	 For every 0 molecule consumed, an R molecule is formed; in other 
words, the fluxes of 0 and R at the electrode surface are equal and 
opposite in sign: JO(O,t) =- JRW,t). 

(5)	 The electron-transfer reaction is very fast so that 0 and Rare 
always in equilibrium at the electrode surface with the 
concentration ratio given by the Nernst equation: 

e - CoW,!) _ nF (E - EO)	 (4 1) -----exp	 . 
CRW,t) RT 
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Since the reactant and product concentrations at the electrode 
surface obey the Nernst equation, we sometimes say that an 
electrochemically reversible system is nernstianJ Specification (1) tells 
us that we need to consider diffusion of 0 and R along the z-axis only. 
The diffusion problem is governed by Fick's second law, eq (3.21). Since 
we have two diffusing species, we must solve two diffusion equations: 

2 
aco =Do a Co 
at ax2 

2 
aCR =DR a CR 

at ax2 

Specification (2) represents the initial conditions imposed on the 
solutions to the differential equations, and specifications (3), (4), and (5) 
represent boundary conditions. 

The solution of two coupled partial differential equations might 
seem to be a formidable task, but it is really quite easy using the method 
of Laplace transforms.f The solutions to the differential equations are 
the concentrations of 0 and R as functions of x and t: 

Co(x,t) =Co. ~e + erf(xl2Yl5Qt} (4.2a) 
1 +~e 

CR(x,t) = Co. ~ [1- erf{xl2WRtlJ (4.2b) 
1 +~e 

where ~ = YDO/DR and erft'lf) is the error function, defined by eq (3.23) 
and plotted us. 'If in Figure 3.9. Since erftO) = 0, the concentrations at the 
electrode surface (x = 0) are given by 

~eCo(O,t) = Co·-- (4.3a) 
1 +~e 

CR(O,t) =Co· -~ (4.3b) 
1 + ~e 

Notice that CO(O,t)/CR(O,l) =e, as required by eq (4.1). The concentrations 
Co(x,t) and CR(X,t) are plotted us. x in Figure 4.1. 

1 Strictly speaking, eq (4.1) should include the activity coefficient ratio, 'Yo/m. but 
we will ignore this complication; thus the standard potentials used here are real1y 
formal potentials-see §l.3. 
2 The use of Laplace transform methods for the solution of differential equations is 
discussed, and eqs (4.2) are derived, in Appendix 4. See also Delahay (B1), Bard 
and Faulkner (812). and MacDonald (F5). 
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Current-Potential Curves 

The net current is proportional to the flux of 0 at the electrode: 

i =- nFAJO(O,t) (4.4) 

The flux is given by Pick's first law, eq (3.19), 

Jo(x,t) =-Do ~Co(x,t) 
ox 

Using eq (3.24) to differentiate eq (4,2a), we obtain 

r.r t) C YDohtt -x 2 
eI(Jo..X, =- 0 exp - 

I + ~e Wot 

Setting x = 0, we have the flux at the electrode surface 

JoCO,t) =- Co. fl5Ol1[i (4.5) 
1 + ~e 

Substituting eq (4.5) into eq (4.4), we have 

i =nFACo. fl5(]iti (4.6) 
1 + ~e 

Notice that the current is apparently infinite at zero time. This is an 
artifact which results from the inconsistent assumptions that CR(O,O) =0 
and that CO(O,t)ICRCO,t) is finite. We will derive a more accurate 
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description of the current, including the finite rate of electron transfer, 
in §6.3. In practice, eq (4.6) is accurate for reversible systems when t > O. 
Since the current computed in eq (4.6) involves electron transfer and is 
governed by Faraday's laws of electrolysis (§7.1), we sometimes refer to 
faradaic current when we want to distinguish it from other 
contributions to the net current such as capacitive charging current. 

When the electrode potential is large and negative, E «Eo, eq (4.1) 
tells us that 8 and Co(O,t) are very small. In this case, every 0 molecule 
that arrives at the electrode will be reduced. Making the potential more 
negative cannot make the current any larger because it is limited by the 
rate of diffusion of 0 to the electrode. Setting 8 = 0 in eq (4.6) then gives 
the limiting diffusion current: 

iD = nFACo·VDoI1tt (4.7) 

Equation (4.7) was first derived by Cottrell in 1903 (1) and is commonly 
called the Cottrell equation. 

Frederick G. Cottrell 0877-1948) is best known as the inventor of the 
electrostatic precipitator for removing particles from flue gases and as 
the founder of The Research Corporation. His contributions to 
electrochemistry were made during his graduate work with Ostwald at 
the University of Leipzig. 

Example 4.1 Compute the current for a one-electron 
reduction of a species with CO· = 1 mol m-3 (l mM) and Do = 
10-9 m2s·1 at an electrode with A = 10-6 m2 (l mm-) at times I, 
10, and 100 s after application of the potential. 

If we use SI units for all the quantities on the right of eq (4.7), 
we will get the current in amperes (A). In particular, A must 
be in m2 , CO· must be in mol m-3 , Do must be in m2s- 1, and t in 
s. Thus eq (4.7) gives 

io = 1.72 x 10-6 t-1I2 amperes 

so that io = 1.72, 0.54, and 0.17 J,LA at t = 1, 10, and 100 s. 

The potential dependence of the current is most clearly seen if we 
eliminate time and the other parameters of eq (4.6) by dividing by io 

.i: = ------.l..- (4.8) 
io 1 + ~8 

Rearranging and substituting for ~ and 8, we obtain a form which bears 
a superficial resemblance to the Nernst equation: 

( 
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E = EO _ B.T..ln ~!l.sL + B.T.. In iD - i (4.9)
nF DR nF i 

A plot ofi/iD us. E is shown in Figure 4.2. Because of the shape, current
potential curves like this are referred to as waves. Common examples of 
such curves are the polarographic waves discussed in §4.5, but similar 
curves arise in other experimental contexts. The first two terms on the 
right-hand side of eq (4.9) are usually lumped together to define a new 
parameter, called the half-wave potential: 

EJ/2=E'- RT In Do (4.10)
2nF DR 

Equation (4.9) then can be written as 

E = EJ/2+ B..T..ln iD -:- i (4.11)
nF l 

Equation (4.11) was derived by Heyrovsky and Ilkovic in 1935 (2) and is 
called the Heyrovskj-IlkoviC equation. 

Because of the term involving the diffusion coefficients, half-wave 
potentials are not standard potentials (or formal potentials), even for the 
electrochemically reversible processes we will be discussing. However, 
even if the diffusion coefficients differ by a factor of 2, E 1/2 will differ 
from EO by less than 10 mV (for n = 1, 25°C) and for many practical 
purposes, half-wave potentials measured from current-potential curves 
can be used as approximations to standard potentials. Some examples of 
such applications are discussed in §4.9. 

1.0 

i/iD 
0.8 

0.6 

0.4 

0.2 

Figure 4.2 Current-potential -0.0 
curve for reversible electron 
transfer and diffusion 0.2 -0.2 
limited current (n = 1). 

0.1 0.0 -0.1 
(E -El/2)N 
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Jaroslav Heyrovsky (1890-1967) was Professor of Chemistry at the Charles 
University in Prague. Heyrovskj's interest in electrochemistry began 
during his graduate work with Donnan at University College, London. 
On returning to Prague after World War I, he invented polarography 
and was responsible for many of the developments and elaborations of the 
polarographic method; in recoguifiou of this work, Heyrovsky was 
awarded the Nobel Prize in Chemistry in 1959. Dionyz nkovil: (1907
1980) was a student and colleague of Heyrovskj in Prague and later was 
Professor of Physics at the Komensky University in Bratislava. Ilkovie 
is best known for his pioneering theoretical work in electrochemistry. 

Example 4.2 Compute the electrode potential for i = 112 to and 
the potential difference corresponding to i =1/4 in and i =3/4 to . 

When i =112 in , 

(in -f)/i =1 

so that E =E1I2, hence the name half-wave potential. When i = 
1/4 in and 3/4 in, 

(in - i)/i =3 and (in - i)/i =1/3
 

Thus
 

E1I4 -E3/4 =RT.ln 9
nF 

or, at 25°C, 

El/4-E3I4 =56.SIn mV 

This property of a reversible wave was proposed in 1937 by 
Tomer; (3) as a quick indication of nernstian behavior and is 
called the Tomes criterion of reversibility. 

Diffusion Layer Thickness 

It is sometimes convenient to think in terms of a layer near the 
electrode surface in which the solution is depleted of electroactive 
material. We define the thickness of this depleted layer, XD, as the 
distance over which a linear concentration gradient would produce the 
same flux at the electrode surface as calculated from an exact solution to 
the diffusion equation. 1 The flux through a linear concentration 
gradient is 

1 This approach to diffusion problems is due originally to Nernst and we sometimes 
refer to the Nernst diffusion layer. 
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T ( t) _ D aCo(x,t)uO x, - -- 0 _-=---:....:.
ax 

JO<O,t) =-Do Co· - CO<O,t) (4 12) so . 
Substituting for CO(O,t) from eq (4.3a), we have 

Jo(O,t) =- Co. DolxD 
1 + ~e 

Comparing this expression with the flux obtained from the exact 
solution, eq (4.5), we obtain 

XD =Yrr.Dot (4.13) 

Note that the thickness of the diffusion layer increases as Vi for diffusion 
to a planar electrode in unstirred solution. 

The abscissa of the concentration vs. distance plots of Figure 4.1 is 
in units of xn. Notice that the concentrations are indeed linear in xlxn 
for a short distance from the electrode surface. The hypothetical linear 
concentration gradients (the dashed lines in Figure 4.1) correspond to 
extrapolation of this linear region to x =xn. We will use the concept of 
diffusion layer thickness in several problems discussed below. In effect, 
we will then assume that the concentration vs. distance gradients are 
linear and that CO(x) =CO· and CR(X) =0 for x> In. 

Mass-Transport Rate Constants 

The diffusion of species 0 to the electrode surface and its escape 
from the surface may be thought of as first-order heterogeneous 
processes governed by a mass transport rate constant soo: 

kDO 
O· ~ 00 

kDO 

where the net rate of delivery of 0 to the surface is 

Rate =kDoCO· - kDOCO(O) 

This rate has units of mol m·2s·1. If the concentrations have units of mol 
m·3 , the rate constant kDO must have units of m s·l, the 81 unit for a 
first-order heterogeneous rate constant. To put it another way, the rate 
we are describing is just (the negative 00 the flux of 0 at the surface, 

JO<O) = - kDO[CO* - Co(O)) 

Comparing this with eq (4.12), we get the relation between the mass 
transport rate constant and the diffusion layer thickness for planar 
diffusion 
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kDO = DoIxDo C4.14) 

It is sometimes convenient to write the diffusion current in terms of XDo 
or ktx» with eqs C4.13) and (4. ]4), cq (4.7) becomes 

io = nFACo*DoIxDo C4.15a) 

io = nFAkDoCO* C4.15b) 

10-9 m2s- 1 at tExample 4.3 Compute XD and kDO for Do = = I, 
10, and 100 s. 

'l' 
Substituting Do into eq C4.13), we have 

.tn/m = 6.60 x 10'~ it 
so that XD = 0.056, 0.177, and 0.560 mm at t = I, 10, and 100 s 
Substituting these values in eq C4.14), we find kDO = 17.9, 5.6, 
and 1.8 J.1.ID. s-l at the same times. 

General Current-Potential Curve 

The generality of eq C4.11) is restricted by our assumption that the 
bulk concentration of R is zero. The general problem with both 0 and R 
present is easily solved using Laplace transforms, but to illustrate the 
use of mass transport rate constants, we will follow a less rigorous route 
which nonetheless gives the correct result. 

When the electrode potential is sufficiently positive that every R 
molecule which arrives at the electrode surface is immediately oxidized, 
the current is again diffusion-limited and, by analogy with eq C4.15b), 
should be given by 

iDa = - nFAkDRCR* C4.16) 

where XDR is the diffusion layer thickness for R and the negative sign is 
required to preserve the sign convention. In general, the current is} .. 
proportional to the fluxes JoCO,t) or JRCO,t), 

t 
:1 

i = - nFAJd0,t) = nFAJRCO,t) 

and the fluxes can be written in terms of the hypothetical linear 
concentration gradients: 

JoCO,t) = - kDO [Co* - CoCO,t)] 

JRCO,t) = - kDR [CR* - CRCO,t)] 

Solving for CoCO,t) and for CRCO,t), we have 

i 

, 
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CoCO,t)= Co* - i/nFAkDO 

CRCO,t) = CR* + i/nFAkDR 

Solving for Co* and CR* from eqs C4.15b) and C4.16) and substituting into 
the expressions for the surface concentrations, we have 

CoCO,t) = iDe- i 
nFAkDo 

i-iDa 
CRCO,t) = nFAkDR 

If the Nernst equation is obeyed at the electrode surface, we have 

E = EO + l1:£ In CoCO,t) 
nF CRCO,t) 

fSubstituting the expressions for the surface concentrations gives 

E =EO + l1:£ In kDR +RT In iDe-i 
nF kDO nF t -ti; 

Jor 
D'I' it» - i

E = E]/2 + .il...L.ln -.-.- C4.17)
nF Z-lDa 

where El/2 is given by eq C4.10). The current-potential curve represented 
by eq C4.17) is shown in Figure 4.3. Notice that this curve is identical in 
shape to that derived from eq C4.11) and shown in Figure 4.2. Indeed, the 
only difference is a displacement of the curve along the current axis. 

When the solution contains two reducible species, 0 1 and 02, we can 
usually assume that they diffuse independently and that the electron
transfer processes do not interfere.1 If the half-wave potentials are 
separated by more than about 150/n mV, the composite current-potential 
curve will show two resolved waves. Figure 4.4 shows some composite 
voltammetric curves computed for C01* = C02*, CR1* = CR2* = 0, n1 = n2 = 
I, and E1f2(2) - Evil) = 0.1,0.2,0.3, and 0.4 mY. 

There is one case which is not covered by the general result, eq 
C4.16). When one member of the electrode couple is a solid coating the 
electrode, its activity at the electrode surface will be independent of 
potential; if the solid is pure, its activity is 1. The most obvious example 
of this situation is the reduction of a metal ion at an electrode of the 
same metal, e.g., Hg2+ reduced at a mercury cathode. In this case the 
analog of eq C4.17) is 

1 If one of the components of a couple is adsorbed or deposited on the electrode 
surface, this may not be a good assumption, but ordinarily the contribution to the 
current from each process can be computed from eq (4.17) independently and added 
to get the total current. 
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J E =EO + R:.r.ln Co. + R:.r.ln iv. - i (4.18) 

162 

'l( nF nF io
1q: 

ji When i =0. the last term of eq (4.18) vanishes and the Nemst equation is 

I 
recovered. Since Co· in this equation is an approximation to the activity, 
its units must be mol L-1. The current-potential curve represented by eq 
(4.18) is shown in Figure 4.5. Notice that the anodic current increases 
without limit as the potential becomes positive. 

l,'
i Diffusion to a Spherical ElectrodeI 

'f; In our discussion so far, we have assumed 

0.10.2
0.3

0.4 

/7r' 
~ 

diffusion to a planar 
electrode big enough that "edge effects" could be ignored. We haven't 
been very specific about what these edge effects are or what they might 
do the our results. The planar diffusion approximation would be exact if 
the electrode occupied the entire area of the end of a long tube, but in 
practice, the radius of a planar electrode is usually small compared with 
the radius of the cell. For a large electrode, most of the diffusion is 
normal to the plane of the electrode, but there is also a component 
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Figure 4.3 Voltammetric curve for 
a one-electron process where 
CO*/CR* = 7/3. 
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Figure 4.4 Voltammetric curves 
for a two-component system 
showing the effect of half-wave 
potential separation (IlEl/2 = 0.1, 
0.2, 0.3, 0.4 V). 
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Figure 4.5 Current-potential 
curve for reversible electron 
transfer where transport of 
o is diffusion limited but R 
is a solid on the electrode 
surface, n = 1, CO* = 1 mM. 
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normal to the hemispherical surface around the edge. When we discuss 
, microelectrodes in §4.8, we will have to come to grips with that problem. 
In the meantime, we can get some feel for the problem by considering 
diffusion to a spherical electrode where the geometry is three
dimensional, but we have only one radial coordinate to deal with. 

Consider a spherical electrode of radius ro where the potential is 
a sufficiently negative that every 0 molecule arriving at the electrode 

surface is reduced. In spherical symmetry, Fick's second law becomes 

aC(r,t) =D(ilC(r,t) + 2. dC(r,t») (4.19) 
at ar2 r ar 

where r is the distance from the center of the sphere. Given the initial 
and boundary conditions-s-Ctr.O) =C*, r > rO; C(ro,t) =0, t > o-the solution 
to the differential equation (sec Appendix 4) is found to be 

C(r,t) =C* [1- ';? (1- erf~ ~)]	 (4.20) 

The equivalent expression for planar diffusion, derived from eq (4.2a) by 
setting e=0, is 

C(X,t) =C* erf--k 
2 rOt 

and we see that, for ro/r '" I, r - rO =x, and the two expressions are 
identical. In other words, concentrations near the surface (r", ro) are 
nearly the same as computed assuming planar diffusion. 
Differentiating eq (4.20) and setting r =ro, we get the flux at the electrode 
surface 
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J(ro.t)=_D(aC(r,t)) =-c*{- fi2 +D)
::>r 'V 7ti ro 
U r=ro 

so that the limiting diffusion current is 

iD =nFADC* (~+-.1.) (4.21)
vreDt ro 

The time-dependent term is identical to eq (4.7), derived assuming 
planar diffusion, so that again we expect the current to decay as t-1I2 , 
For the sphere, however, we also have a time-independent term. Thus 
we expect the current to decay to a steady-state value rather than to zero. 
The relative importance of the two terms obviously depends on the 
electrode radius. Figure 4.6 shows a log-log plot of diffusion current 
density VD =iDIA) us. time for spherical electrodes with radii varying 
from 10 mm down to 1 IJ.m. For the largest electrode, the plot is linear up 
to 100 s ti.e., the current is proportional to t-1/2 and the steady-state 
contribution is negligible). For the 1 mm and 100 IJ.m electrodes, 
departure from linearity is noticeable after about 1 sand 10 ms, 
respectively, but for the smaller electrodes, the steady-state regime is 
entered very early in the experiment. Thus as the electrode radius 
decreases toward zero (the electrode approaches a point sink) the time
dependent current becomes negligible in comparison with the steady
state term. 

Spherical diffusion is apparently much more efficient than planar 
diffusion in delivering an electroactive species to the electrode surface. 
Although the details depend on electrode shape, the diffusion layer 
thickness XD always increases with time as current flows. For a large 
planar electrode, the area of the diffusion layer remains constant, so 
that the surface flux diminishes with time; but for a spherical electrode 
the diffusion layer area increases as (ro + XD)2; as it happens, the 
influence of diffusion layer thickness and area exactly cancel in the 
limit of zero electrode radius. For a large electrode or at short times, XD 
« ro and diffusion is approximately planar. But when the electrode is 
very small, spherical diffusion becomes important early in the 
experiment. As inhabitants of a spherical planet, we can readily 
appreciate the situation: on the ground, or even in a jetliner at 10,000 
meters, the earth's surface is pretty close to planar; but from a satellite, 
the round shape is much more obvious. 

For a planar electrode of finite size, the situation is analogous: so 
long as XD « ro, planar diffusion dominates and the current decays to 
near zero as t- 112 ; when the electrode is smaller, however, the 
contribution of edge diffusion is more significant and the current decays 
to a nonzero, steady-state value. 

§4.1 Diffusion-Limited Current 
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Figure 4.6 Diffusion
limited current density 
at spherical electrodes 
with ro = 1 IUD - 10 mm; 
note the decrease of the 
steady-state contribution 
with increasing radius. 
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4.2 ExPERIMENTAL TECHNIQUES 

Measurement and Control ofPotential 

Before World War II, voltammetry experiments were done with two 
electrodes, an indicator electrode, often the dropping mercury electrode, 
and a reference electrode, often the saturated calomel electrode. In 
Heyrovsky's polarography experiments (see §4.5), a d.c. ramp voltage 
was applied across the cell from a motor-driven potentiometer which 
was calibrated with a standard cell. The current was recorded as the 
voltage drop across a measuring resistor. Heyrovsky recorded the 
current with a damped galvanometer! which reflected a light beam onto 
a piece of photographic paper mounted on a drum which was rotated by 
the potentiometer motor. This device was later replaced by a strip-chart 
recorder. The two-electrode system works reasonably well for aqueous 
polarography where the solution resistance is low and the current is 
small. When nonaqueous systems are used or the experiment generates 
a larger current, iR drop in the solution and polarization of the 
reference electrode become serious problems. 

Beginning in the 1950's, most electrochemical experiments have 
been done with three electrodes and instrumentation built around a 
potentiostat. A common design based on an operational amplifier is 

! Because of the slow response time of the damped galvanometer, this instrument 
recorded the average polarographic current. Thus many early treatments of 
polarography discuss average currents rather than the current at drop fall. 
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~·. ~	 shown in Figure 4.7. A true reference electrode is used to measure the,'....dl. ,~~:	 

potential; a voltage follower (see §1.4) is attached to the reference 
electrode so that very little current is drawn in this part of the circuit. 
An auxiliary electrode then is used to pass the bulk of the current. The 
potentiostat works as follows: a control potential, equal and opposite to 
the desired potential of the reference electrode, is added to the actual 
reference electrode potential and the sum applied to the negative 
(inverting) input of the operational amplifier. The positive input is at 
ground potential (0 V) and, as we will see, the indicator electrode is also 
at 0 V. Suppose that the indicator electrode is to be at -1.00 V relative to 
the reference. Since the indicator electrode is at ground potential, the 
reference electrode should be at +1.00 V; thus the control potential 
should be -1.00 V. If the actual reference electrode potential is 0.99 V, the 
potential at the inverting input will then be -0.01 V and the output will be 
large and positive. A large current is then passed through the cell, 
increasing the potential of the solution relative to the indicator electrode 
and thus increasing the reference electrode potential. As the reference 
potential approaches 1.00 V, the input to the amplifier approaches zero 
and the output becomes less positive. At equilibrium, the output voltage 
applied to the auxiliary electrode will produce enough current to 
polarize the cell such that the reference electrode potential 

Potential~ 

Control R 
Inputs ~ I 

R 
R 

Reference
 
Potential 0 I I
 
Monitor
 

I 

Referenc 
Electrode 

Indicator 
Electrode Currentr Output 

Figure 4.7 Potentiostat circuit for control of indicator electrode potential 
in a three-electrode cell. Cell current is monitored with a current
follower circuit, and the reference electrode is protected from excessive 
current flow by an electrometer. 
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Figure 4.8 An operational - c1>in <%tout 
amplifier integrator circuit rprovides a voltage ramp signal. ~
 

exactly cancels the control potential. See Roe (4) for further details and 
more advanced designs. 

The current is measured by means of another operational amplifier 
circuit attached to the indicator electrode lead. Since the input 
impedance of the operational amplifier is high, the cell current must 
flow through resistor R2. However, the high gain of the amplifier 
produces an output voltage such that the potential at the inverting input 
is 0 V. Thus the indicator electrode is held at virtual ground and the 
output potential, -iR2, is proportional to the cell current. 

If the reference electrode is to be held at constant potential, a simple 
battery could be used to supply the control voltage. However many 
experiments require a potential which changes linearly with time. Such 
a linear ramp voltage is most commonly supplied by yet another 
operational amplifier circuit, which acts as a voltage integrator. This 
circuit, shown in Figure 4.8, again relies on a feedback loop which keeps 
the potential at the inverting input at virtual ground. Current from the 
battery flows through the resistor R. Because the amplifier input 
impedance is high, the current, dQldt. charges the capacitor C. If the 
input voltage, <%tin, is positive, the output will be negative and 
proportional to the charge on the capacitor: 

c1>out = - QIC 

Thus ifQ = 0 att = 0, 

c1>wt=-~ t i dt 
C Jo 

or, since i = c1>inIR, 

<Prot = _ c1>j n t 
RC 

Thus for a positive input, the output voltage is a negative-going ramp. If, 
for example, R =10 Mn, C = 10 ~F, and c1>in = 100 mV, then c1>inlRC =1 
mV s·l. The output of the ramp generator is applied to one of the inputs 
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of the potentiostat along with a constant potential source which sets the 
initial reference electrode potential. 

Still other control potentials can he added to program the reference 
electrode potential as required. Thus a triangular wave potential is used 
for cyclic voltammetry (§4.4), a sinusoidal a.c. potential for a.c. 
polarography (§6.4), and various kinds of voltage pulses for pulse 
polarography (§4.6). 

The three-electrode configuration avoids the problem of reference 
electrode polarization and somewhat reduces the measured iR drop in 
the solution. One way of further reducing solution iR drop is to locate 
the reference electrode junction as close as possible to the indicator 
electrode, often through use of a salt bridge with a long curved capillary 
tip as shown in Figure 4.12b (a Luggin prcbel.! Even then, iR drop often 
remains a problem and most commercial electrochemical instruments 
contain a circuit which partially compensates for iR drop by electrically 
subtracting an adjustable voltage, proportional to to the current, from 
the measured cell potential. 

Control ofCurrent 

In some experiments (e.g., chronopotentiometry; see §4.3), a 
constant current is passed through the cell, and the potential of the 
indicator electrode is monitored using a reference electrode. An 
operational amplifier circuit which performs this function (a 
galvanostat circuit) is shown in Figure 4.9. Since the operational 
amplifier input impedance is high, the cell current must flow through 
the resistor R. Feedback through the cell ensures that the potential at 
the inverting input is at virtual ground. Thus the potential drop across 
the resistor is equal to the battery potential and the cell current is 

i =!J.cJ>/R 

With the battery polarity as shown in Figure 4.9, the indicator electrode 
is the cathode; reversal of polarity would change the direction of current 
flow. In this circuit, the ultimate source of current is the battery; the 
function of the operational amplifier is to adjust the potential of the 
auxiliary electrode to keep the current constant. In experiments where 
the current is to be controlled as a function of time, the battery can be 
replaced by a potential program circuit as described above. 

Choice ofSolvent 

There is no single solvent which is ideal for all electrochemical 
work. The choice is often dictated by the solubility and reactivity of the 
materials to be studied. Reductions often produce a strongly basic anion 

1 Named after the glassblower who constructed the prototype. 
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Figure 4.9 Galvanostnt circuit for control of current through a cell. 

or radical anion which is rapidly protonated by a solvent like water or an 
alcohol. Oxidations often give an acidic cation or cation radical which 
reacts with a basic or nucleophilic solvent. The ubiquity of water as an 
impurity in other solvents makes the ease of solvent purification and 
drying an important consideration. See Mann (5) or Fry and Britton (6) 
for further details. Several common solvents are listed in Table A.B, 
together with some other parameters which merit attention: 

Liquid range. Generally, the greater the liquid range, the greater 
the flexibility in experiments. It is often useful to examine 
electrochemical behavior at low temperature if follow-up chemical 

. reactions are fast at room temperature or at higher temperature if 
electron transfer is slow. 

Vapor pressure. Since oxygen interferes with most 
electrochemical experiments, the apparatus is usually flushed with 

'~ nitrogen or argon. The purge gas may be presaturated with solvent, but 
' when the vapor pressure is high (e.g., CH2ClZ) it is difficult to maintain 

constant composition and constant temperature because of solvent 
evaporation. 

Dielectric constant. To obtain conducting electrolyte solutions, 
the solvent dielectric constant should be large. With a dielectric constant 
of only 2.2, p-dioxane is a poor electrochemical solvent and is usually 
used with 5-25% water added. Dimethoxyethane, tetrahydrofuran, and 
dichloromethane are only marginally acceptable; solution iR drop is 
usually a serious problem in these solvents. 

Solvent viscosity. Solvents of low viscosity will generally give 
electrolyte solutions with greater conductivities. On the other hand, 
because diffusion is faster in such cases, diffusion-controlled chemical 
reactions will also be faster. Thus it is sometimes found that an 
electrode process which is irreversible (because of a fast following 
chemical reaction) in a nonviscous solvent becomes reversible in a more 
viscous medium. 
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Voltammetry of Reversible SysteIllS 

Voltammetry and related electrochemical techniques require an 
excess of inert electrolyte to make the solutions conducting and to reduce 
the electrode double-layer thickness. In principle, any strong electrolyte 

}
~ 
J will satisfy these basic requirements, but there are other considerations 
l (6). 

In aqueous solutions, KCI and HCI are common choices since the 
liquid junction potentials with s.c.e. or Ag/AgCI reference electrodes can 
be eliminated. Aqueous solutions are usually pH-buffered and the.',J..;,. 
components of the buffer system often act as the supporting electrolyte. 

Clearly, the salt should not be easily oxidizable or reducible. The
f (.. accessible potential range at Pt and Hg electrodes is given in Table A.9 

for several electrolyte/solvent combinations. 
In low-dielectric-constant solvents, tetraalkylammonium salts are 

". ,', '.,"~I'~.'.'.. more soluble and are less easily reduced than alkali metal salts.('4 
1; Quaternary ammonium ions do not form tight ion pairs with anions. 

Thus R4N + salts are by far the most common choice, although 
tetraphenylphosphonium salts and lithium salts are sometimes used in 
organic solvents. When tetraalkylammonium ions are reduced, 
however, they form surface-active polymers which coat electrodes, foul 
dropping mercury electrode capillaries, and generally raise havoc with 
experiments. 

The choice of anion is less obvious. The simple halides, CI-, Br-, and 
1-, are relatively easily oxidized and often form tight ion pairs, so that 
they are frequently avoided. The most common choices-c-Cl'Oa-, BF4-, 
PF6-, and BP~--have delocalized charge, so that their salts are often 
soluble in organic solvents. Ion pairing usually is not severe and these 
anions are not easily oxidized or reduced at electrodes. 

Reference Electrodes 

In aqueous solutions, the calomel and Ag/AgCI electrodes are well 
characterized and give reproducible potential readings with a minimum 
of experimental difficulty. Unfortunately, there is no universally 
accepted reference electrode for use with nonaqueous solvents. There 
are two commonly used approaches. 

One school of thought is to use an aqueous s.c.e. with a salt bridge. 
The advantage is that the reference electrode is well understood and 
generally reproducible. There are some major disadvantages: an 
unknown liquid junction potential is introduced and water 
contamination through the salt bridge is difficult to avoid completely. 
Since the s.c.e. electrolyte is normally KCI, contamination by K+ and CI
ions can sometimes lead to problems. For example, a KCI-filled salt 
bridge in contact with a solution containing CI04- ions frequently leads 
to precipitation of KCI04, which is quite insoluble in organic solvents 
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and not very soluble in water. The precipitation usually takes place at 
the point of solution contact, often clogging the salt bridge and blocking 
current flow. One way of avoiding this particular problem is to replace 
the s.c.e. electrolyte with NaCl; NaCI04 is much more soluble. 

A second common approach is to use the Ag/Ag+ couple as a 
reference, dissolving a suitable silver salt in the same 
solvent/supporting electrolyte system used in the experiment and 
placing it in contact with a silver wire. The advantages of this approach 
are that the liquid junction problems and solvent and electrolyte cross
contamination problems are minimized. The disadvantage is that 
solvent evaporation from the reference electrode or change in the silver 
surface with time may lead La nonreproducible potentials. 

With many different reference electrodes in use, potential 
measurements from different laboratories are often difficult to compare. 
It is becoming standard practice in electrochemical studies of 
nonaqueous systems to use a standard reference couple of known (or at 
least commonly accepted) potential against which the reference 
electrode can be checked from time to time; potentials can then be 
reported relative to the standard couple or corrected to a common scale. 
Ferrocene, (CSHS)2Fe, is reversibly oxidized to the ferrocenium ion, 
(CSHS)2Fe+, at +0.08 V us. Ag/Ag+ in acetonitrile (7) and is the most 
commonly used potential standard. Ferrocene and ferrocenium salts 
are soluble in most nonaqueous solvents; in addition, the 
ferrocene/ferrocenium couple is relatively insensitive to solvation or ion
pairing effects and so provides an approximation to an absolute 
reference. 

Indicator Electrodes 

In §4.1, we assumed that the indicator electrode was planar and 
sufficiently large that we could ignore edge effects in solving the 
diffusion problem. Provided that the radius of curvature is large 
compared with the diffusion layer thickness, qualitatively similar 
results are obtained for cylindrical or spherical electrodes, indeed for 
any stationary electrode in an unstirred solution. Common designs for 
stationary electrodes include all three geometries;' planar (metal disk 
electrodes), cylindrical (wires), and spherical (hanging mercury drop). 

When the electrode is very small, edge effects dominate and steady
state currents are often obtained. Since the behavior of microelectrodes 
is qualitatively different, we will discuss them separately in §4.8. 

Two other indicator electrodes are commonly used in 
electroanalytical and mechanistic work The dropping mercury 
electrode (d.m.e.), shown in Figure 4.10, consists of a fine-bore capillary 

1 For reviews on electrodes, see Adams (8,C3), Galus (9), Dryhurst and McAllister 
(10), or Winograd (11). 
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through which mercury flows, forming a drop at the end of the capillary 
which grows until its weight exceeds the force of surface tension holding 
it to the capillary. Depending on the length and bore of the capillary, the 
pressure of mercury above the capillary, and the Hg-solution interfacial 
tension, the lifetime of a mercury drop can be anywhere from 1 to 10 s. 
The factors governing the drop time were discussed in §2.5. The current 
through a d.m.e.is time dependent, but because the solution is stirred 
when a drop falls, each new drop starts the experiment anew. If the 
current is measured just before the drop falls. experiments using a 
d.m.e. are essentially at constant time. We will discuss the operation of 
the d.m.e. in greater detail in §4.5. 

The rotating-disk electrode (r.d.e.), shown in Figure 4.11, consists of 
a flat disk, usually 1-3 mm in diameter, mounted at the end of an 
insulating rod which is rotated rapidly in the solution. The rotational 
motion stirs the solution so that the diffusion problem is reduced to 
transport across a stagnant layer at the electrode surface. Since the 
rotation speed is constant and the stirring effect is reproducible, an 
experiment using the r.d.e. is carried out under steady-state (i.e., time 
independent) conditions. We will discuss the operation of a r.d.e. in 
greater detail in §4.7. 

Cell Design 

The detailed design of electrochemical cells for voltammetric 
experiments depends on the technique and on the requirements of the 
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( 
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Figure 4.12 Examples of cells for voltammetric experiments: (a) H-c:ell 
for two-electrode polarography; (b) three-electrode polarography cell. 

chemical system being studied (12). Here we describe two common 
designs, shown in Figure 4.12, as representative examples. 

The so-called H-cell, shown in Figure 4.12a, is a popular design for 
aqueous polarography. A separate compartment for the reference 
electrode prevents contamination of the test solution by KCl. Provision is 
made for purging the test solution with nitrogen (or argon) gas before 
the experiment and blanketing the solution with inert gas during the 
experiment. The indicator electrode (here a dropping mercury 
electrode) is mounted through a stopper with a small hole for escape of 
the purge gas. This cell is easily adapted to a three-electrode 
configuration by contacting the pool of waste mercury with a tungsten 
wire and using this as the auxiliary electrode. However, because the 
reference and indicator electrodes are widely separated, iR drop can be a 
major problem with this cell. 

A somewhat more flexible design is shown in Figure 4.12b. Here a 
small glass cell body is clamped to a plastic top provided with ports for 
the electrodes and gas purge tube. The reference electrode is mounted in 
a salt-bridge tube which terminates in a Luggin probe situated as close 
as possible to the indicator electrode. The auxiliary electrode is typically 
a simple platinum wire and the purge tube is equipped with a two-way 
stopcock to permit gas to flow through or over the solution. The tip of the 
purge tube is sintered glass to disperse the gas into fine bubbles. Cells 
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like this are quite well suited to most voltammetric techniques and work 
well, provided that the solvent is not too volatile. The cell body can be 
fitted with a flow-through thermostat jacket for work away from rOom 
temperature and the entire experiment can be mounted in a glove box in 
the event that the analyte is very sensitive to air or moisture. 

When solvent volatility is a problem or when the sample is 
exceedingly sensitive to air or moisture, cells are often designed to be 
filled on a vacuum line so that the purge gas is unnecessary. 

4.3 A SURVEY OF ELECTROANALYTICAL METHODS 

Because the limiting diffusion current in a voltammetric 
experiment is proportional to the concentration of the electroactive 
material, such an experiment is potentially adaptable to chemical 
analysis, and for many years electrochemists have been busy developing 
instrumental methods for measuring concentrations of reducible or 
oxidizable species in solution. There are so many methods now available 
that the neophyte is often quite overwhelmed. Indeed, the very wealth of 
electroanalytical techniques has acted sometimes as a barrier to their 
use by other chemists. In this section we will attempt to reduce the 
mystery of electroanalytical methods to manageable proportions. 

If electron transfer is nernstian and the current is diffusion 
controlled, the current. and potential are related by eq (4.17) to three 
parameters: the half-wave potential E 1/2 and the cathodic and anodic 
diffusion currents io« and io«. The diffusion currents are related to the 
bulk solution concentrations of the participants in the electrode process, 
o and R, and to the mass-transport rate constants, kDO and kDR, by eqs 
(4.15b) and (4.16). The mass-transport rate constants depend on the type 
of indicator electrode used but in general are functions of time. Thus an 
electrochemistry experiment has four variables which may be held 
constant, varied, or measured: current, potential, time, and solution 
composition. 

Constant Time Experiments 

We will consider first those electroanalytical methods for which 
time is not an explicit variable, either because the experiment is carried 
out under steady-state conditions (using a microelectrode or an r.d.e.), 
because measurements are always made at the same times in repetitive 
experiments (using a d.rn.e.), or because the current is zero. In these 
cases, the kD'S are constant and it is convenient to lump the various 
terms ofeqs (4.15) and (4.16) together and write 
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iDc = 15oCO* 

io; =- 15RCR* 
where 

150 =nFAkDO 

15R =nFAkDR 

It is also convenient to let X be the mole fraction of the electroactive 
material in the oxidized form and C* be to the total concentration so that 

Co* =XC* 

CR* =(l - X)C* 

With these changes in parameters, eq (4.17) becomes 

ooXC* .E=EJ/2+ RIln -l (4.22) 
nF i + 15RO-X}C* 

Equation (4.22) describes the interrelationships of three variables: 
potential, current, and composition. These interrelationships are most 
easily visualized by thinking of a surface in three-dimensional space as 
shown in Figure 4.13.1 We can describe a number of electroanalytical 
techniques as excursions on this surface. 

1 This way of describing electroanalytical experiments is due to Reilley, Cooke, and 
Furman (13). 
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Potentiometric Titrations 

When the current is equal to zero, eq (4.22) reduces to the Nernst 
equation, which describes a potentiometric titration (see §1.7) in which 
the cell potential is measured as a function of added titrant, i.e., as a 
function of solution composition. The potentiometric titration curve 
corresponds to the zero current path across the surface of Figure 4.13 as 
shown in Figure 4.14. Of course, in a real case, the titrant and its 
reduced form (assuming that the titrant is an oxidizing agent) fonn 
another electrode couple, and beyond the endpoint it is this couple which 
determines the cell potential. Thus, to complete the titration curve, we 
would have to graft another similar surface onto Figure 4.13, so that 
when X approaches 1, the potential goes to some finite value rather than 
to infinity as implied by the single surface. 

inc 
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o 

Figure 4.14 The i = 0 path on the three-dimensional surface is the 
familiar potentiometric titration curve. 

Polarography and Steady-State Voltammetry 

Current measurements using a dropping mercury electrode 
(d.m.e.) are essentially constant time experiments. Since very little 
current is passed, little electrolysis takes place, so that the solution 
composition is constant. Thus a curve at constant X on the surface of 
Figure 4.13 is identical to the current-potential curve of Figure 4.2. 
When a d.m.e. is used, the voltammetric experiment is called 
polarography (or d.c. polarography to distinguish the technique from the 
variations discussed in §4.6 and §6.4) and the current-potential curve is 

(E -El/2)N 
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called a polarogram. The current on the diffusion-limited plateau, of 
course, is related to the bulk solution concentration. Polarography is one 
of the oldest electroanalytical techniques and, although it has been 
displaced by other methods for many analytical applications, it 
continues to be widely used. We will return to a more detailed 
discussion of the method in §4.5 and will give some examples of 
analytical applications in §4.9. 

Currents through a microelectrode or a rotating-disk electrode may 
be measured under steady-state conditions. A steady-state 
voltammogram thus resembles a polarogram and again is essentially 
the curve at constant X on the surface of Figure 4.13, i.e. the current
potential curve shown in Figure 4.2. 

Amperometric Titrations 

Imagine an excursion on the surface of Figure 4.13 where the 
current is measured as a function of composition, holding the potential 
constant. We expect to get a straight line terminating atX =1. Such an 
excursion would be obtained if the current were measured during a 
titration of the electroactive material. In practice, such a titration would 
be carried out using a d.m.e., a microelectrode or an r.d.e., so that again, 
the current would be measured at constant time ti.e., the drop time) or 
under steady-state conditions. The potential could be set so that either 
the analyte or the titrant is reduced (or oxidized) at the electrode. If the 
analyte is reduced, then the titration curve corresponds to a straight line 
going to zero at the endpoint; if the titrant is reducible, then a linearly 
increasing current is obtained, commencing at the endpoint. 

Amperometric endpoint detection is applicable to a wide variety of 
titration reactions (14). The titration does not have to involve a redox 
reaction, so long as either the analyte or titrant is electroactive. Thus, 
for example, we could monitor the Pb2+ concentration in a titration of 
Pb(N03)2 with Na2S04 to produce insoluble PbS04; the current would 
decrease to zero at the endpoint. 

Example 4.4 Show how the titration of Pb2+ with Cr2072
could be followed amperometrically. 

The titration reaction is 

2 PJ:>2+ + C~072- + H20 ~ 2 PbCr04(S) + 2 H+ 

The polarograms of Pb2+ and Cr2072- are shown schematically 
in Figure 4.15a. If we follow the titration with the potential set 
at -0.7 V, on the diffusion plateau of the Pb2+ polarogram, then 
the current will fall linearly during the course of the titration 
as the Pb2+ is used up. At the endpoint, the current should be 
near zero, but beyond the endpoint, the current should start to 
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rise again as the excess dichromate is reduced. The resulting 
titration curve is shown in Figure 4.15b, An alternative 
arrangement for the same titration would be to set the potential 
at -0.2 V so that dichromate is reduced but Pb2+ is not. The 
resulting titration curve would then show nearly zero current 
up to the endpoint with current increasing beyond. 

1.0	 r~)', CrtJil  ~ 
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Figure 4.15 (a) Polarograms of Cr2072- and Pb2+ and (b) amperometric 
titration curve for the titration of 25 mL of 0.001 M Pb2+ with 0.0015 M Cr2072
atE=-o.7V. 

Constant Composition Experiments 

We now consider experiments involving a stationary electrode 
where time is an explicit variable. We introduce the time dependence by 
writing the diffusion currents as 

it» = Ke;lft 

io« =-Kalft 

where for a planar electrode 

s; = nFACo*YDo/rr. 

s; = nFACR*yDRlrt 

Equation (4.17) then becomes 

RT I KclVi - iE = E 112 + - n -.:.----= 
nF i + KalVi 

o 4 8 ~ ffi 
Vol. K2Cr207 solution/ml, 

~ 
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or 

E = El/2 + MIn -,Kc:=--_L_'U_t	 (4.23)
nF iVi -«; 

The interrelationship of potential, current, and time (for fixed solution 
composition) given by eq (4.23) can also be represented by three
dimensional surface shown in Figure 4.16. A number of additional 
techniques can be understood as excursions upon this surface) 

Figure 4.16 Surface 
showing the relation
ship of current, poten
tial, and time for a 
constant composition 
experiment. Note that 
the surface begins at t 
> O. 

One technique which we found on the i - E - X surface-s
polarography-is found here as the current-potential curve at constant 
time. 

Chronoamperometry 

Perhaps the most obvious path to be followed on the surface is the 
constant potential curve where the current decays as 11ft. Since current 
is measured as a function of t ime, the experiment is called 
chronoamperometry (16). In practice, an experiment is done by stepping 
the potential applied to a cell from an initial value where negligible 
current flows to a final value well beyond the half-wave potential. The 

1 The description of electroanalyticnl techniques in terms of an i-E-t surface is due 
to Reinmuth (15). 
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current-time response is then recorded. According to ~7), a plot of i 
us. t-112 should give a straight line with slope nFACo·~ Do/re. Thus if the 
concentration and electrode area are known, the method provides a way 
of measuring diffusion coefficients. 

It is often found that such a plot deviates from linearity. There are 
two causes. When the potential step is applied, the electrode double layer 
capacitance must be charged. During the charging process, the change 
in applied potential is the sum of the potential across the double-layer 
capacitance and the ohmic potential drop in the solution 

li.el> =Q + ieR =Q + R dQ
C C dt 

The differential equation is easily solved to give 

Q =C 11<I> [1 - exp ~~] 

i =dQ =11<I> exp -t (4.24) 
C dt R RC 

Thus the measured current is the sum of the faradaic current, given by 
eq (4.7), and the capacitive charging current, given by eq (4.24). If the 
solution resistance isn't too high, the time constant, RC, will be short 
and the capacitive contribution to the current a short-lived transient 
early in the experiment. 

At long times, the diffusion layer may grow to a size comparable to 
the electrode dimensions. When this happens, the assumption of planar 
diffusion fails and the current has a time-independent component. For 
microelectrodes, eq (4.7) fails at rather short times; we will discuss this 
situation in more detail in §4.8. . 

An interesting variant on the technique is called double potential 
step chronoamperometry. Suppose that at time 1: after the application of 
the potential step, the potential is stepped back to the initial value. Any R 
which remains near the electrode then will be oxidized back to 0 and an 
anodic current should be observed which decays to zero as the R 
molecules in the diffusion layer are consumed. The current during the 
first stage of the experiment is given by the Cottrell equation, 

i =nFA Co*flJolitt, t < 1: (4.25) 

If we assume that the electron transfer is nemstian and that R is stable 
during the time of the experiment, it can be shown (see Appendix 4) that 
the current during the second stage is 

i::: nFACo·YDo/rc (yt~1: - kl (4.26) 

(
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the first potential step and again at time t2 after the second step. The 
ratio of the two currents will be 

iz 
i} ::: 

.tt: rA'V t; --\ '2-1: 

or iftl = 1:, t2 = 21:, 

~ 
i} 

= . rr-1'V 2 =- 0.293 

The current after the second step is smaller in magnitude than that 
after the first step since some R escapes into the bulk solution. This 
measurement provides a good indication of an uncomplicated reversible 
electron transfer. If the product R was consumed by a chemical 
reaction, for example, the current after the second potential step would 
be less than expected from eq (4.26), Ii~ill < 0.293 (see Example 5.7). 
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Figure 4.17 Applied potential
 
and current response for a
 
double potential step chrono

amperometry experiment.
 

Chronopotentiometry 

The curve followed on the surface of Figure 4.16 for constant 
(nonzero) current is shown in Figure 4.18. This experiment, where the 
potential is measured as a function of time at constant current, is called 
chronopotentiometry (16,17). In practice, a planar electrode is used and a 
constant current is switched on at zero time. The 0 molecules near the 
electrode are quickly reduced and the diffusion layer grows. The OIR 
ratio at the electrode surface decreases and the potential swings 
negative. Eventually, diffusion can no longer supply enough 0 to provide 

time 

Figure 4.17 shows the potentials and currents for such an experiment as 
functions of time. Suppose that the current is measured at time tl after 

I 
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the required current and the potential heads toward --. The time t 
required for this potential swing is called the transition time, 

fi=~i 

In reality of course the potential doesn't go to -00 since there is always 
something else in the solution reducible at a more negative potential 
(solvent, supporting electrolyte, etc.), but in general there will be a sharp 
change in potential at the transition time. 

When the diffusion equations are solved using the proper boundary 
conditions for the experiment (see Appendix 4), it is found that K c differs 
by a factor of 7tl2 from its value in a constant potential experiment, so 
that the transition time is given by 

fi = nFACo·~rrDol2i (4.27)
i 
f This expression was first derived by Sand in 1900 (18) and is sometimes 
>,'
>~~ called the Sand equation. The shape of the chronopotentiogram for a t-' 

nernstian process is given by eq (4.23), which can be rewritten as 

lIT. it-it
E =ETl4+ nF In-r (4.28) 

where E't/4 (= El/2) is the potential when t = t/4. Since the concentration 
of the electroactive species is proportional to fi, chronopotentiometry can 
be used for chemical analysis. 

A variation on this method, called current reversal chronopotentio
metry , is analogous to double potential step chronoamperometry. A 
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Firure 4.18 Chronopoten
tiometry follows a 0.2 
constant current path on 0.0 
the i . t - E surface. 
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cathodic current i is passed through the cell, reducing 0 to R. At time t1 
Oess than the cathodic transition time), the current is reversed and the 
R molecules remaining near the electrode are reoxidized. The potential 
then rises, as the OIR ratio increases at the electrode surface. When the 
diffusion layer is depleted in R, the potential goes to +-. IfR is stable in 
solution, the anodic transition time is exactly tl/3. Thus during the 
experiment, two thirds of the R molecules escape by diffusion and the 
remaining one third are reoxidized at the electrode during the current 
reversal phase IfR is consumed by a chemical reaction, of course, the 
second transition time will be shorter and in favorable cases the rate of 
the chemical step can be determined (see Example 5.8) 

4.4 CYCUC VOLTAMMETRY 

Another pair of voltammetric methods, linear potential sweep 
voltammetry and its extension, cyclic voltammetry, can be described as 
an excursion on the surface of Figure 4.16. These methods are very 
commonly used and need more than a brief introduction. 

Linear Potential Sweep Voltammetry 

If the current is measured as the potential is changed linearly with 
time, a current-potential curve is produced which corresponds to a 
diagonal excursion on the surface of Figure 4.16. The resulting curve, 
shown in Figure 4.19, is called a linear potential sweep voltammogram 
or peak polarogram The origin of the peak is easily understood. 
Consider a negative-going potential sweep; when the reduction potential 
of species 0 is reached, the current rises sharply as 0 near the electrode 
surface is reduced; the current then becomes diffusion-limited and 
begins to fall. When the potential is well past the half-wave potential, the 
current falls as 11ft as in a chronoamperometry experiment. 

Solution of the diffusion equations for the time-dependent boundary 
condition imposed by a rapid potential scan is complicated (19). For a 
reversible process at a planar electrode, the following integral equation 
is obtained (see Appendix 4); 

nFA ViI50 Co· = t i(t) de (4.29) 
1 + ~aCt) Jo ~t-t 

where ~ ="Do/DR and 

aCt) =exp nF(Ei - vt -E» 
RT 

where E; is the initial potential and v is the potential scan rate in V s-l. 
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Figure 4.19 Linear potential sweep voltamrnogram. (a) Path on i . E . t 
surface; (b) current potential curve. 

It is customary to define a dimensionless current function 

X(CJt) = i(CJt) 
nFACo·VJt1)oeJ 

where o = nFv / RT. In terms of the dimensionless function, eq (4.29) is 

l
ot 

_1_ _ X(z) dz (4.30) 
1 + ~e(t) 0 vat -z 

The current function can be computed by numerical integration of eq 
(4.30), and Nicholson and Shain (19) provide tables of the results. 

The peak current for a reversible process at a planar electrode is 
found to be 

ip = 0.446 nFACo* ynFvDo (4.31)
RT 

where the parameters are in SI units. The current peak is somewhat 
displaced from El/2, 

E p = E1I2 - 1.11 RTlnF (4.32) 

so that at 25°C, the peak potential is 28.5/n mV past the half-wave 
potential. (The half-peak potential comes 28.01n mV before El/2.) For a 
reversible process, the shape of the curve and the peak potential are 
independent of scan rate, but the peak current is proportional to .ffJ. 

§4.4 Cyclic Voltammetry 

Since the peak current is proportional to concentration, a linear 
potential sweep voltaromogram can be used for analytical purposes. 
However, there are experimental complications which reduce accuracy. 
Because of the changing potential, the capacitive charging current may 
be quite significant in a linear potential sweep experiment. The charge 
stored in the double-layer capacitance is 

Q = C,.,A!\<t> 

where Cd is the double-layer capacity in f m-2; thus the charging current 
is 

ic = dQldt = CdAv (4.33) 
'~"\ and this may be a significant fraction of the total current. 

Example 4.5 Compute the faradaic and capacitive currents 
for n =1, CO· =1 mol m-3 (l roM), DO =10-9 m2s·1, Cd =0.5 F m2, 
A =10-6 m2 (1 mm2), and T =298 K for v =0.1 and 10 V s-l. 

Substituting these parameters into cq (4.31), we get 

ip = 2.7 and 26.81lA 

for v = 0.1 and 10 V s·l, respectively. Substituting CeL A, and v in 
eq (4.33), we have 

,:~ ic = 0.05 and 5.0 IlA 
Thus at the slower scan rate, the capacitive current accounts 
for about 2% of the total current, but the fraction rises to about 
16% at 10 V s·l. If the concentration were lowered to 0.1 roM, 
the peak current drops by a factor of 10 but the capacitive 
current is unchanged. The total current then is 16% and 65% 
capacitive for v = 0.1 and 10 V s·l, respectively. For low 
concentrations and/or high scan rates, the capacitive current 
is a serious interference in linear potential sweep experiments. 

Comparing the results of Examples 4.1 and 4.5, we see that linear 
potential scan peak currents can be quite large. Because of this, ohmic 
potential drop in the solution is often a problem. Since the cell potential 
includes the solution iR drop and the iR drop varies as the peak is 
traversed, the indicator electrode potential is not linear in the applied 
potential. Thus the observed peak potential becomes a function of scan 
rate. In practice, the reversible peak potential usually can be extracted 
from experimental data by measuring the peak potential at several scan 
rates and extrapolating to v = 0, but the absolute peak current is more 
difficult to correct. 
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Cyclic Voltammetry 

The analog of double potential step chronoamperometry and 
current reversal chronopotentiometry is possible for linear potential 
sweep voltammetry. A triangular-wave potential is applied to the cell so 
that the indicator electrode potential is swept linearly through the 
voltammetric wave and then back. again as shown in Figure 4.20a. On 
the forward scan, the current response is just the linear potential sweep 
voltammogram as 0 is reduced to R. On the reverse scan, the R 
molecules near the electrode are reoxidized to 0 and an anodic peak 
results. The current-time curve, shown in Figure 4.20b, is usually folded 
at the switching point (the vertical dashed line in the figure) so that, in 
effect, current is plotted vs. potential. The resulting curve, shown in 
Figure 4.20c, is called a triangular-wave cyclic voltammogram. 

Detailed analysis of cyclic voltammetry also leads to integral 
equations which must be solved numerically (19). However, we can get a 
qualitative feeling for the experiment without a lot of mathematics. If 
the initial scan is carried far beyond the cathodic peak so that the 
diffusion layer is very thick and the cathodic current has decayed nearly 
to zero, then the concentration of R at the electrode surface is equal to 
Co· (within a factor of lDo/DR). Thus the amount of R available for 
oxidation on the reverse scan is the same as the 0 available on the 
forward scan and the current peak has the same shape and magnitude 
as on the forward scan, but reflected at E = El12 and changed in sign. 
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Figure 4.20 Cyclic voltammetry: (a) potential as a function of time; (b) 
current as a function of time; (c) current as a function of potential. 
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Fipre 4.21 Cyclic voltammogram Figure 4.22 Cyclic voltammogram 
for a reversible one-electron process showing the effect of multiple scans. 
showing the effect of the switching The first cycle is shown as a solid 
potential. The bottom curve shows line, the second as a dashed line, 
the expected anodic trace when the and the third as a dotted line. 
potential is negative long enough to 
completely polarize the electrode 
The dashed (current-time) curves 
show the response which would have 
occurred had the potential scan 
continued in the negative direction. 

When the switching potential is less negative such that the cathodic 
current is still significant at the switching point, the diffusion layer is 
thinner, the R concentration falls to zero more rapidly with distance 
from the electrode, and the resulting anodic peak is smaller. However, it 
turns out that, if the anodic peak current is measured from a baseline 
equal to the cathodic current which would have flowed at the time of the 
anodic peak had the potential scan continued in the negative direction 
(rather than from the zero current baseline), then the anodic-to-cathodic 
peak current ratio is exactly 1 (for a reversible process uncomplicated by 
capacitive current and iR drop). This result is shown schematically in 
Figure 4.21 with cyclic voltammograms computed using the numerical 
methods of Nicholson and Shain (19). 

Provided that the process is reversible and is uncomplicated by 
solution iR drop, E pc -E1/2 = -28.5/n mV and Epa -E1J2 = 28.5/n mV (at 
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Figure 4.23 Concentration profiles for 0 (solid lines) and R (dashed lines) at 
various points on a cyclic voltammogram. Concentrations computed using a 
digjtal simulation technique (see Appendix 5) for II = 1 V s-l. DO = DR = 5 x 
10- 10 m2s-1. 

25°C). Thus El/2 =(Epc + Epa)/2 and Epa -Epc =57,Oln mY, This peak 
separation is often used as a criterion for a reversible process.! 

1 Nernstian reversibility should not be confused with chemical reversibility 
evidenced by the appearance of a peak on the reverse sweep. 

§4.4 Cyclic Voltammetry 

Since the current direction is different for the two peaks, the sign of 
iR is also different so that ohmic potential drop in the solution increases 
the peak separation. Again, extrapolation to zero sweep rate allows 
corrections to be made. Since the sign of the potential sweep changes at 
the switching point, the sign of the capacitive current also changes. 
Thus a current discontinuity is usually observed at the switching point. 

The response on the second and subsequent cycles of a cyclic 
voltammogram is qualitatively similar to that of the first cycle but with 
current peaks somewhat reduced in amplitude. This effect is shown in 
Figure 4.22. The reason for this decrease is that the concentration 
profiles of 0 and R do not return to initial conditions at the completion of 
a cycle. This is most easily seen by following these concentration us. 
distance profiles over the course of the first cycle as shown in Figure 
4.23. Initially, CO(x) =CO· and CR(X) = O. As the cathodic peak is 
traversed, 0 is depleted at the electrode surface and the R which is 
formed diffuses away from the electrode (curves a-c of Figure 4.23). On 
the reverse scan, R is oxidized to 0 but there remains a region where Co 
< CO· and CR > 0 (curves d-f of Figure 4.23). On subsequent cycles, the 
response is as if the bulk concentration of 0 were reduced. On multiple 
cycles, a steady state is eventually roached with damped concentration 
waves propagating out into the solution. 

I;~ 

Adsorption Effects in Cyclic Voltammetry 

It is fairly common to find that one or both members of an electrode 
couple adsorb on the electrode surface. Although it can be an interesting 
subject in its own right, adsorption is usually an unwanted 
complication. Adsorption often can be reduced or eliminated by 
changing the solvent or electrode material. Adsorption effects in cyclic 
voltammetry are rather dramatic and are usually easy to recognize. We 
consider here one simple case. 

Suppose that 0 and R are both adsorbed on the electrode surface 
with surface concentrations rO and rR (with units mol m-2) and that the 
electrode process consists of the complete reduction of 0 to R on the 
forward sweep and the oxidation of R to 0 on the reverse sweep. The 
current then is not diffusion-controlled but is limited by the amount of 
adsorbed material. 

If the electron-transfer process is reversible. the surface 
concentrations are related by the Nernst equation, 

!""..Q(t ~ =exp n F[E(t) - E .• O] =S(t) 

rR(t) RT 

where Eso is the formal potential of the adsorbed couple and E(t) = E; 
ut. If the total surface concentration is constant, 

rO(t) + rR(t) = r* 
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the individual surface concentrations are time (and potential) 
dependent, 

r o(t) =	 9(0~ r!it) = -----.r!. 
1 + 9(t) 1 + 9(t) 

The rate of conversion of 0 to R is related to the current by 

----L. _ arO<t) _ arR(t) 
nFA - - -----at - -----at 

----L. _ _ ~ a9 _ nfl.!IL-----.6 
nFA - (I + 9f at - RT {I + 9f 

Thus the current is given by 

i = n 2F
2Ar *v 9 (4.34) 

RT {1+9f 
Equation (4.34) predicts a current peak at E = Eso (9 = 1) with peak 
current proportional to the number of moles of 0 and R adsorbed (AT*) 
and to the scan rate v. The peak is symmetrical on the potential axis, as 
shown in Figure 4.24, with a width at half-height, AEp = 3.53 RT /nF 
(90.61n mV at 25°C). When the sweep is reversed, v changes sign and the 
current is inverted so that the reverse sweep signal is the mirror image 
of that obtained on the forward sweep. 

In this extreme case, adsorption peaks are easily distinguished 
from ordinary diffusion-controlled peaks by the symmetric shapes and 
scan-rate dependence. The situation is more complicated when the 
solution species also participate in the electrode process and/or when 
only -one member of the couple is adsorbed. In these cases adsorption 
peaks may be seen along with the normal diffusion-controlled peaks. 
When only the substrate 0 is strongly adsorbed, the adsorption peak 
follows the diffusion-controlled peak (a postpeak): when R is adsorbed, 
the adsorption peak precedes the diffusion-controlled peak (a prepeak), 
See further discussion of adsorption effects in the context of 
polarography in §4.5. Many of these cases were examined in detail by 
Wopschall and Shain (20) and the interested reader is referred to their 
work and to a more complete discussion by Bard and Faulkner (B12). 

Derivative Cyclic Voltammetry 

Cyclic voltammograms are particularly useful in qualitative 
studies of electrode processes (we will see many examples of such uses 
in Chapter 5), but the technique is less well suited for quantitative 
measurement of potentials or currents. Because of the rounded peaks, 

§4.4 Cyclic Voltammetry 
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peak potential meaurements are usually good at best to only ±5 mV. 
Because of the contribution of capacitive charging current, the faradaic 
contribution to a peak current is difficult to measure accurately. The 
peak current for the reverse trace is particularly difficult to measure 
because of uncertainty in the location of the baseline (see Figure 4.21). 

One way around these problems is to record the first derivative of 
current with respect to potential as shown in Figure 4.25. Since the 
derivative curve crosses the baseline at the current peak, the peak 
potential can be read considerably more accurately, to ±0.1 mV in 
favorable cases. The contribution of capacitive charging current is more 
or less constant over a trace so that it has little effect on eli/dE. The 
derivative curve returns very nearly to the baseline after a peak. Thus 
the faradaic contribution to (dildE)Jleak, which is proportional to 
concentration, is easily and accurately measureable. Because the 
derivative curves return to the baseline and are somewhat sharper, 
resolution of closely spaced peaks is better than in a conventional cyclic 
voltammogram. 

There are some drawbacks to this method: (i) the instrumentation 
is necessarily more complex; (ii) distortions resulting from ohmic 
potential drop are still present and may even be amplified by 
differentiation; and (iii) the curves are somewhat more difficult to 
interpret qualitatively. Nonetheless, for quantitative work, first 
derivative presentation has significant advantages. See Parker (21) for 
further details. 

Although analog differentiation circuitry based on operational 
amplifiers is available, the signal-to-noise ratio is often poor. Parker (21) 

0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 
E/V 
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describes the use of a tuned amplifier to differentiate the current. 
Another way of differentiating the current in a cyclic voltammetry 
experiment is to modulate the applied potential with a small sinusoidal 
component and to detect the a.c. component of the current. This method, 
called a.c. cyclic voltammetry, is discussed in §6.4. 
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Figure 4.25 Reversible
 
cyclic v ol t a m m og r a m
 
(dashed curves) compared
 
with its first derivative
 
(solid curves).
 

Semi-derivatives and Semi-integrals 

Although differentiation of a linear scan voltammogram or cyclic 
voltammogram sharpens the signal shape and provides a means of 
accurately measuring the peak potential, in a sense, differentiation has 
gone too far and has produced a signal shape which is asymmetric in a 
way opposite to that of the cyclic voltarnmogram. Another method of 
signal-processing, called semi-differentiation, gives a much more 
symmetrical signal shape with peaks corresponding to the half-wave 
potential. 

Consider a time-dependent function, f(t), and the convolution 
integral, met) 

met) = ---.L t (f.:r) dt (4.35)
Vi Jo vt-t 

The convolution of m(t) is equivalent Lo the simple integral of (Ct), 

0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 
(E-El/2)N 
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---.L rmet) dt = r(Ct) dr 
Vi Jo vt-t Jo 

In other words, m (t) is mid-way between the function f(t) and its 
integral. Accordingly, met) is called the semi-integral of f, written 
formally as 

mit) = d·l/~t)IJ, (4.36) 
dt·1I2 

The semi-derivative of f then is 

e(t) = dm(t) = d1l~t) (4.37)
dt dt 1/2 

Thus, for example, if(Ct) = sin rot, 

met) = ~. sin(rot - 7rl4) 

e(t) = vro sin(rot + 7rl4) 

d1l2e(t) . df{t)
--- = rosm(rot + 7rl2)= rocos rot =-
dt~ dt 

Consider now eq (4.29), the integral equation leading to the current 
in a linear potential sweep experiment. If Ht) is the (now known) 
current, its semi-integral is given by the left-hand side of the equation. 
But this function, plotted vs. time or potential, has the same shape as a 
steady-state voltammetric wave, eq (4.8). Thus, if a steady-state wave is 
the semi-integral of a linear sweep voltammogram, the latter is the 
semi-derivative of a wave, and the semi-derivative of a linear sweep 
voltammogram has the shape of t.he first derivative of a steady-state 
wave, as shown in Figure 4.26. 

The semi-derivative curve clearly has advantages: it is more 
symmetrical than the cyclic voltammogram, and the peaks, which are 
sharper, occur at E = El/2. It is also less subject to interference from 
capacitive charging current than the cyclic voltammogram, though the 
removal of charging current effects is less complete than in a derivative 
cyclic voltammogram. Distortions from ohmic potential drop remain 
and, as for derivative cyclic voltammograms, are slightly exaggerated 
compared with simple cyclic voltammograms. 

Semi-differentiation of cyclic voltammograms was introduced by 
Goto and Ishii (22) and further developed by Oldham and coworkers 
(23,24). In practice, the current output of a potentiostat is processed 
through an active filter based on operational amplifier circuits. 
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Figure 4.28 Reversible cyclic voltammogram (b) and its semi-integral 
(a) and semi-derivative (c). 

4.5 POLAROGRAPHY 

The Dropping Mercury Electrode 

Shortly after World War I, Heyrovsky discovered that the dropping 
mercury electrode (d.m.e.) could be used to measure reproducible 
current-potential curves. The technique, which he named polarography, 
flowered in Heyrovsk;Y's hands and become the source of many of the 
subsequent developments in electroanalytical chemistry (25,D1,D4,D5, 
D12). 

In a classical d.m.e, such as that in Figure 4.10, mercury flows 
through the capillary by gravity and a drop grows until its weight 
exceeds the surface tension force holding it to the capillary. Depending 
on the length and bore of the capillary, the height of the mercury head 
above the capillary, and the mercury-solution interfacial tension (see 
§2.5), drop lifetimes can range roughly from 1 to 10 seconds using this 
arrangement. Modern dropping mercury electrodes are usually 
furnished with a drop dislodging mechanism and a timer so that drop 
times are constant and reproducible. A more recent innovation is the so
called static mercury drop electrode, where the mercury flow rate is 
controlled by a pump; this device will be discussed in §4.6. 

When a drop falls off the capillary, it stirs the solution so that each 
new drop begins life in contact with a nearly homogeneous solution. In 
effect the experiment is repeated over and over again. If the current 
through a d.m.e. is measured at the same time in the lives of successive 
drops (at the time of drop fall, for instance), we can think of the 
experiment being done at constant time. In ordinary polarography, the 

electrode potential is scanned slowly with time so that the potential is 
nearly constant during one drop life. Thus each successive drop 
measures the current at a slightly different potential and the current
potential curve, the polarogram, is generated. A major disadvantage of 
the d.m.e. is that mercury is much more easily oxidized than electrode 
materials like platinum or gold. The standard potential for the 
reduction ofH~"2+ to the metal is 0.8 V, but with even as weak a ligand 
as CI-, the oxidation shifts to ca. 0.24 V. Thus polarography is largely 
limited to the negative end of the potential scale and thus has been used 
mostly to study reduction processes.! 

An exact solution of the diffusion problem for a d.m.e. is not easy. If 
the electrode were simply a sphere, we could use the results we obtained 
in §4.1 for spherical diffusion. However, the electrode expands into the 
solution and this makes the problem considerably more complicated. 
Furthermore, the mercury drop is really not a perfect sphere but is 
slightly distorted and (more important) is shielded on one side by the 
capillary. Finally, the stirring which occurs when a drop falls is not 
complete and a rigorous model should take account of the resulting 
nonuniform concentration distribution. 

A simple approach to the problem of diffusion to the d.m.e. is to use 
the results of the planar diffusion problem with two multiplicative 
correction terms. The first correction accounts for the changing 
electrode area, the second for the expansion of the electrode surface into 
the solution. If we assume that the drop is a sphere of radius r(t) and 
that mercury flows through the capillary at constant rate u (mass per 
unit time), then the mass ofthe drop at time t after the previous drop fell 
is m =ut and the volume is 

V(t) = 4nr 
3 

= ui. 
3 d 

:.~ where d is the density of mercury. The drop area then is 
3 

A(t) =4nr2 =41t (fJtjr (4.38) 

The effect of the electrode expanding into the solution is to stretch the 
diffusion layer over a larger area, in other words to make XD smaller. 
The thinner diffusion layer results in a larger concentration gradient 
and thus in a larger flux and current. The net effect is as if the diffusion 
coefficient were increased by a factor of 7/3. 

Substituting eq (4.38) in eq (4.7) and replacing Do by (7/3)Do gives 

io =nF[41t {f:jt3
] Co· (~~or2 

1 The convention that cathodic current is taken as positive results from this feature; 
polarographic Currents are usually cathodic and much of the theory of voltammetry 
was developed with polarography in mind. 
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or, including numerical values for F and d (13.6 x 103 kg m-3 ), we have 

io = 706 nDo1J2Co·u'lJ3t 116 (4.39) 

io will have units of amperes (A) when Do is in m2s· I, Co· is in mol m·3 

(mM), u is in kg s·I, and tin s. Equation (4.39) was first derived by Ilkovij, 
in 1934 (26) and is usually called the Ilhouic equation. Ilkovie followed a 
somewhat more rigorous route than we did but did not deal with all the 
problems discussed above. Others have made serious attempts to solve 
the problem correctly but the complexity of the resulting equations is not 
wholly compensated by increased accuracy. The basic functional form of 
eq (4.39) remains unchanged in the more complete treatments, so we 
will not pursue the matter further. See, for example, Bard and Faulkner 
(B12) for further details. 

Since the current at a d.m.e. is related to that at a planar electrode 
by the same scale factors for most electrode processes, expressions such 
as eqs (4.10), (4.16), and (4.17), which were derived far linear diffusion to a 
stationary planar electrode, are also applicable to the d.m.e. 

,I 
One of the significant results of the Ilkovie equation is that, as 

shown in Figure 4.27, the current increases with time rather than 
decreasing as with a planar electrode. This means that the current at 
drop fall is the maximum current during the drop life. Furthermore, 
the time rate of change of the current, di/dt, decreases with increasing 
time and is at a minimum at drop fall. These considerations make the 

~ measurement of the current at or just before drop fall relatively easy and 
accurate. 

! 
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The favorable time dependence of the faradaic current for a d.m.e. 
has a price. Since the electrode area changes with time, the double-layer 
capacitance, which is proportional to the electrode area, is also time 
dependent. The charge stored in the capacitance is 

Q = CA~<I> 

where C is the double-layer capacity (capacitance per unit area). Since Q 
is time dependent, there must be a capacitive charging current 

ic = dQ/dt = C (dAldt) &<I> 

Differentiating eq (4.38), we obtain 

i = C 81t (--3.uL)2'J ["Jl3 &<I> 
c 3 41td 

ic = 0.00566 C u'lJ3 t-1I3 &<I> (4.40) 

Although &<I> also changes with time during the lifetime of a drop, the 
scan rate is normally much slower than in cyclic voltammetry 
experiments so that this contribution to capacitive charging current is 
negligible. The capacitive current is shown as a function of time in 
Figure 4.27, together with the total current. 

Example 4.6 Compute the faradaic and capacitive currents 
at t = 0.1 and 5 s assuming that u = 1 mg s-I, an electrode
solution potential difference of 1 V, and a double layer capacity 
of 0.1 F m-2. Assume a one-electron reduction with Do = 10-9 

m2s-1 and Co· = 1 mM (1 mol m·3). 

Substitution into eqs (4.39) and (4.40) gives 

io = (2.23 x 10-6) t 116 amperes 

ic = (4.66 x 10-8) t-113 amperes 

Thus io = 1.5 and 2.9 jlA at t = 0.1 and 5 s, respectively. At the 
same times, ic = 0.12 and 0.03 jlA. 

For millimolar solutions of electroactive materials, the maximum 
current occurs at the end of the drop life.! and this current is mostly 
faradaic. However, when the concentration of electroactive material is 
reduced, the capacitive current remains the same and the ratio of 
faradaic to capacitive current is smaller. The practical lower limit of 
concentration in polarography is about 10 11M since at that level the 
faradaic and capacitive currents are comparable in magnitude. 

I The frequency response of the current-measuring circuitry is usually too slow to 
catch the short-lived transient in the capacitive current at drop fall. 
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Example 4.7 Suppose that diffusion-controlled current flows 
at a dropping mercury electrodeuz = 1 mg s-l, t« = 5 s) for 10 
minutes and that 0 is reduced by one electron to R. If the cell 
contains 25 mL of 1 mM 0 (Do =10-9 m2s-1), what fraction of the 
o has been reduced? 

The charge passed during one drop can be determined by 
integrating eq (4.39): 

Q = io dt =~x 706 nYDo CO*u2l3t7/6f
Substituting the parameters, we have 

Q =1.25 x 10-5 C 

In 10 minutes, 120 drops fall and so the total charge 
transferred is 1.50 x 10-3 C. Dividing by the Faraday constant, 
we have 1.56 x 10-8 mol, which is 0.062% of the total 0 originally 
present. This result it; Lypical uf voltammetric techniques. The 
net amount of electrolysis is usually extremely small. 

Effects ofAdsorption on the Mercury Drop 

An important advantage of the d.m.e compared with solid 
electrodes is that each successive drop presents a clean surface to the 
solution. Thus products of the electrolysis or subsequent chemical steps 
do not accumulate at the electrode surface beyond the amounts produced 
during one drop life. The effects of adsorption are thus more 
reproducible on a d.m.e. than on solid electrodes and are usually easier 
to study and to understand.l 

Suppose that the product of the electrode process is adsorbed on the 
mercury surface such that the first monolayer is strongly adsorbed but 
subsequent layers arc either weakly held or not adsorbed at all. The 
electrode process then consists of two alternative reactions: 

o + n e- f:! Rad 

0+ n e- f:! Rsol n 

If the standard potential for the second reaction, where R remains in 
solution, is E2° and the free energy of adsorption is dGado, then the 
standard potential for the first reaction is 

1 The original work on adsorption effects in polarography was done by Brdi&a (27) 
in the 1940's. 
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E1° =E2° - dGado/nF (4.41) 

Thus, if dGado < 0, the two reactions are expected to be distinguished by 
different half-wave potentials. If the bulk concentration of 0 is small 
enough that less than monolayer coverage by R is achieved during one 
drop life, we expect a wave at E 1° with a limiting current given by eq 
(4.39). If the drop is completely covered before it falls, then we expect the 
current to be limited by the available adsorption sites. Excess 0 then 
remains unreduced at the electrode surface when the potential is in the 
vicinity of E1° and a second wave is observed at E2°. The total diffusion 
current of the two waves is limited by diffusion and is given by eq (4.39). 
The second wave, of course, is the expected one for a process 
uncomplicated by adsorption. The first wave is called an adsorption 
prewave. 

A very similar phenomenon occurs when the substrate 0 is 
adsorbed on the mercury drop (we assume that R is not then adsorbed). 
For low bulk concentrations of 0, the electrode will be partially covered 
and the electrode process will be 

Oad + n e- +2 R 

When Co· is big enough that complete coverage is achieved, direct 
electron transfer may be possible: 

080ln + n e- +2 R 

The potential of the first process will be more negative (if dGado < 0), but 
the main wave will occur only at higher concentrations. The more 
negative wave is called an adsorption post-wave. The appearance of 
adsorption pre-waves and post-waves are shown in Figure 4.28. 

Adsorption pre-waves and post-waves can be distinguished quite 
easily from ordinary electron-transfer processes. In addition to seeing 
the normal wave at higher substrate concentrations, heights of 
adsorption waves have a unique dependence on drop size and the 
variation of current during the drop life is different from the normal 
behavior. For further details, a specialized book on polarography should 
be consulted (Dl,D4,D5)... 

Polarographic Maxima 

Throughout this chapter, we have assumed that diffusion is the 
only transport process involved in delivery of electroactive material to the 
electrode. There are several circumstances, encountered most 
frequently with the dropping mercury electrode, where convection also 
makes a significant contribution to mass transport. As we will see, 
convective mass transport is usually important in a limited potential 
range, and, since convection necessarily increases the current, the effect 
is a maximum in the current-potential curve. 
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Figure 4.28 Polarograms for various substrate concentrations, CO·, where 
(a) the product R and (b) the reactant 0 are adsorbed on the mercury drop. 
The curves correspond to CO·/CO' =0.5, 1.0, 1.5, and 2.0, where CO' is the 
concentration leading to monolayer coverage at the time of drop fall. 

Three kinds of polarographic maxima have been identified (28). 
Type I maxima are the most conspicuous and thus most commonly 
recognized. The polarographic current, instead of increasing smoothly 
with potential through the wave, seems to go "haywire," often in the 
rising portion of the wave. Such erratic currents usually subside, often 
abruptly, on the diffusion-limited current plateau. Although the 
behavior appears erratic, it is usually quite reproducible. Type I 
maxima come about through variations in interfacial tension over the 
drop surface. These variations in turn reflect a variation in potential 
difference across the electrode-solution interface which arises through 
nonuniform current density over the surface of the mercury drop. The 
current density at the bottom of the drop is higher than at the "neck," 
where the drop is partially shielded by the capillary tube. Maxima of the 
first kind can be reduced by increasing the solution conductance (higher 
supporting electrolyte concentration), by decreasing the current (lower 
concentration of electroactive species), or by stabilizing the electrode
solution interface with a surfactant such as gelatin or Triton X-IOO 
(polyethylene glycol p-isooctylphenyl ether). 

A second kind of polarographic maximum can occur through 
motion within the mercury drop. If mercury emerges from the capillary 
fast enough, the new mercury will flow to the bottom of the drop and 
then up the sides. The drop may be thought of as growing longitudinally 
rather than radially. The circulation of mercury inside the drop will 

Sec. 4.5 Polarography 201 

tend to drag the surface layer along, thus leading to convective mixing of 
the solution. Type II maxima are less dramatic in their effect; the 
convective contribution to mass transport is only weakly potential 
dependent, and the effect may pass unrecognized in many cases. Type 
II maxima depend on the mercury mass flow rate u and are most easily 
recognized by a departure from the dependence of current on flow rate 
predicted by the Ilkovie equation. 

Type III maxima arise from nonuniform adsorption of surfactants 
which lead to variations in interfacial tension and thus to convective 
flow of solution in the vicinity of the mercury drop. Like Type I maxima, 
these effects can be reduced or eliminated by adding a competing 
surfactant. 

Polarographic maxima are more common in aqueous solution 
polarography than when organic solvents are used, presumably because 
the mercury surface is hydrophobic and therefore susceptible to 
surfactants in aqueous media, whereas many organic solvents are 
themselves somewhat adsorbed on the mercury surface. 

4.6 POLAROGRAPHIC VARIATIONS 

Since the introduction of polarography in the 1920's, many 
instrumental modifications have been developed to improve the form of 
the polarogram and to increase sensitivity andlor resolution. We will 
discuss five of these improvements in this section. 

Sampled D.C. Polarography 

The simplest modification to polarography is called sampled-d.e. or 
tast polarography. In this method, a voltage ramp is applied to the cell 
as in ordinary polarography, tbut instead of measuring the current 
continuously, it is measured for unly <! short time late in the drop life. A 
voltage proportional to the measured current is then applied to the 
recorder and held until the next current sample is obtained. The d.m.e. 
must be synchronized to the timing of the current-sampling circuitry so 
that the sample occurs at the same relative time during each drop life. 
Sampled d.c. polarography suppresses display of the current early in the 
drop life, when there is a large capacitive component, and focuses on the 
current late in the drop life, when the faradaic component is larger. 
This stratagem does nothing for sensitivity but does slightly improve the 
apparent signal-to-noise ratio, making polarograms somewhat easier to 
analyze. A typical sampled d.c. polarogram is shown in Figure 4.29b. 
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Pulse Polarography 

A weakness of both ordinary d.c. and sampled d.c. polarography is 
that these techniques allow faradaic current to flow during a time in the 
drop life when the capacitive current is large. A considerable 
improvement is possible with a technique called pulse polarography, 
introduced by Barker in 1960 (29). A series of voltage pulses is applied to 
the cell as shown in Figure 4.30; the drop time is synchronized to the 
pulses which increase in amplitude at a rate comparable to the ramp 
voltage used in ordinary polarography. The total current response from 
such a pulse train still has a large capacitive component, but this is 
largely suppressed by sampling the current for a short time late in the 
pulse life after the capacitive current has mostly decayed. The sampled 
current is converted to a voltage which is held and applied to the 
recorder until the next sample. The appearance of a pulse polarogram, 
Figure 4.29c, thus is virtually indistinguishable from a sampled d.c. 
polarogram. 

As we saw in the derivation of the Ilkovie equation, the current 
varies with time because of the time-dependent electrode area and 
because of the growth of the diffusion layer with time. In pulse

:1	 polarography, essentially no current flows until late in the drop life, so 
~. 
-,	 that the diffusion layer is much thinner at the time the current is 

actually measured. In particular, we expect the measured current to:r, 
depend on the times tl and tz (see Figure 4.30): 

iJ 
;~	 i oc tl2/3 t2,l!2 

Time t1 is the age of the drop when the current is measured (t1 thus: :r:; 
determines the drop area) and t2 is the time between application of the 

t, 
l'	 voltage pulse and current measurement (t2 thus determines the 
(.	 diffusion layer thickness). Suppose that the drop time is 5 s, that the 

pulse is applied in the last 50 ms of the drop life, and that the current is 
measured during the last 10 ms of the pulse. Then tI = 4.99 s, t2 = 0.04 s 
and 

tl2/3 t2- 1J2 =14.6 

In sampled d.c. polarography, t1 = tz = 4.99 s, so that 

tl213 t2-l!2 =1.31 

Thus the measured current in a pulse polarogram is about 10 times 
bigger than in a sampled d.c, polarogram. The capacitive contribution to 
the current is about the same in the two techniques so that the signal-to
noise ratio is improved by about a factor of 10 and detection limits are 
about 10'times lower. 
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Figure 4.29 (a) D.c., (b) sampled d.c., (c) pulse, and (d) differential pulse 
polarograms of 0.1 mM Cd(N03)2 in 0.10 M aqueous KCl. Potentials liB. 

s.c.e., drop time 2 s, scan rate 2 mY s-l, differential pulse height 10 mY. 
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Figure 4.80 Pulse train for pulse 
polarography: t1 is the drop time 
(0.5 ' 5 s), t2 is the pulse width 
(ca. 50 ms), and t3 is the current 
sampling time (ca. 10 rns). 
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Geoffrey C. Barker (1915· ) was a member of the scientific staff of the 
Atomic Energy Research Establishment, Harwell (England). He is best 
known as an innovative inventor of electrochemical instrumental 
techniques. He is credited with square wave polarography (which led to 
the development of differential pulse polarography), normal pulse 
polarography, anodic stripping voltammetry, and several other 
techniques. 

Pulse polarography gives current-potential curves which are 
qualitatively similar to those from sampled d.c, polarography when the 
reduced half of the couple is absent in bulk solution (as we have 
assumed above). When CR* "* 0, however, and anodic current flows at 
the initial potential, the situation is rather more complicated (30). The 
complications can be turned to advantage, however, and Osteryoung and 
Kirowa-Eisner (31) have described a technique, called reverse pulse 
polarography, in which the pulse sequence is virtually a mirror image of 
that shown in Figure 4.30, i.e., the "resting potential" is on the diffusion 
plateau of the wave and a series of positive-going pulses of linearly 
decreasing amplitude is applied. 

Differential Pulse Polarography 

Another pulse technique which is capable of good signal-to-noise 
ratios employs the pulse train shown in Figure 4.31. Small-amplitude 
voltage pulses are superimposed on a ramp voltage. Current is sampled 
twice during a drop life, once just before the pulse and again late in the 
pulse life. These currents are converted to analog voltages, subtracted, 
and applied to the recorder until the next drop. With this technique, 
called differential pulse polarography, a curve is produced which 
resembles the first derivative of the d.c. polarographic wave. In the limit 
that the pulse amplitude !lE goes to zero, the curve is exactly the first 
derivative, but then the signal goes to zero as well. Pulse amplitudes of 
5-50 mV are used in practice. If the differential current is plotted vs. the 
ramp voltage, the peak potential is displaced by -/iE/2 from Ell2; that is, 
a negative-going pulse (/';.E < 0) shifts the peak to more positive 
potentials, a positive-going pulse shifts the peak to more negative 
potentials. A typical differential pulse polarogram is shown in Figure 
4.29d. 

The differential pulse peak current is proportional to the bulk 
concentration of the electroactive species, just as the diffusion current in 
d.c. polarography. However, detection limits are much lower, down to 0.1 
11M or less in favorable cases. The improvement stems largely from 
suppression of the capacitive charging current. 
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J:tFirure 4.31 Pulse train, voltage 
and current pulses for different voltage

ial pulse polarography.
 pulse 

Because of the first derivative-like presentation of the output, the 
signal returns to the base line after a peak and successive current peaks 
for a multi-component system are somewhat better resolved than are d.c, 
polarographic waves. This effect is demonstrated in Figure 4.32, where 
differential pulse polarograms are plotted for a two-component system 
with COl'" = CO2"', CR1'" = CR2'" = 0, nl =n2 = 1, and Ml12 = 0.1, 0.2, 0.3, and 
0.4 V. Comparison with Figure 4.4 leaves little doubt that the analytical 
accuracy of differential pulse polarography is considerably better than 
that of d.c. polarography when several components give closely spaced 
waves. 
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Square Wave Polarography 

The time between pulses in differential pulse polarography (t1 in 
Figure 4.31) is set equal to the d.m.e. drop time. Thus the pulse repetition 
rate is on the order of 0.1-1 Hz. If the pulse repetition rate is increased to 
30 Hz, many pulses can be applied during one drop life and a scan over 
several hundred millivolts can be achieved during the lifetime of one 
drop. This approach is adopted in square wave polarography, where the 
positive- and negative-going pulses of Figure 4.31 are equal in width (t2 ::: 
t1/2). In effect, the potential applied to the cell is a square wave
modulated potential scan. If the square wave frequency is 30 Hz and 
successive pulses advance the d.c. potential by 5 mY, the d.c. potential 
scan rate is 150 mV s·l, comparable to typical scan rates in cyclic 
voltammetry. The current measurement strategy is the same as in the 
differential pulse technique: the current is measured at the end of 
successive positive-going and negative-going pulses, subtracted, and 
plotted as a function of the d.c. potential. The resulting square wave 
polarogram thus closely resembles a differential pulse polarogram (32). 

I
The instrumentation required for square wave polarography is 

rather more sophisticated; the potentiostat must have very good 
frequency response and the output must be stored in a computer or 
recorded on an oscilloscope since an ordinary strip-chart recorder would 
not be able to keep up with such rapid data collection. In practice, a 1 

1 microprocessor is used to generate the wave form (the d.c. scan would 
J 

then be a "staircase" rather than a ramp) and to collect the currentI 

signal. This arrangement allows the experiment to be repeated on 
several successive drops, adding the output signals to improve the

~ signal-to-noise ratio. 
Detection limits for square wave polarography are comparable to 

those of differential pulse polarography, on the order of 0.1 ~M in 
favorable cases, but the data acquisition time is substantially shorter. 

An advantage of the pulse techniques is that, for reversible couples, 
they work almost as well for stationary electrodes as they do for the 
d.m.e. In ordinary pulse polarography, the electrode spends most of its 
time at an initial potential where the current is very small; thus the total 
current passed is small and time is allowed for relaxation of the 
diffusion layer between pulses. Square wave polarography treats the 
d.m.e. as if it were a stationary electrode and so clearly will work just as 
well on a real stationary electrode. A short rest period between scans 
would, of course, be required to allow the diffusion layer to dissipate. 

The Static Mercury Drop Electrode 

An interesting recent technical advance in the design of dropping 
mercury electrodes is the so-called static mercury drop electrode 
(s.m.d.e.). In this device a larger bore capillary is used and mercury 
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flow is controlled with a pump. It can be used either to produce a 
stationary hanging drop or the pump can be pulsed on and off to 
simulate a d.m.e. Drop times can be as short as 0.1 s and as long as 
desired. Because of the larger bore capillary, drop growth occurs in 
about 50 ms, so that the drop is stationary and constant in area 
thereafter. Thus when a s.m.d.e. is used in sampled d.c, polarography, 
the current is measured on a stationary electrode, essentially 
eliminating the capacitive charging current. Furthermore, the current 
can be measured shortly after drop formation before the diffusion layer 
has been depleted. Bond and Jones (33) found that for sampled d.c, 
polarof:aphy using a s.m.d.e., detection limits are on the order of 0.1 ~ 
for Cd + and Ni2+, comparable to the performance of differential pulse 
polarography with a normal d.m.e. The pulse techniques provide no 
further enhancement in sensitivity with the s.m.d.e. 

The static mercury drop electrode has significant advantages for 
aqueous polarography. Unfortunately, however, it is often found to be 
unworkable in organic solutions. Because organic solvents are better at 
"wetting" mercury than water, there is a tendency for the solvent to 
creep inside the large-bore capillary, taking solutes with it and leading 
to contamination which is very difficult to remove. 

4.7 THE ROTATING-DISK ELECTRODE 

The dropping mercury electrode has many significant advantages 
not the least of which is the time-independence of a polarogram. We also 
have seen some limitations such as the relative ease of oxidation of 
mercury. One way around this limitation without sacrificing time
independence is to construct the electrode from an inert metal such as 
platinum and to use the electrode to stir the solution in some 
reproducible way such that the experiment is done under steady-state 
conditions. Several electrode designs have been tried in attempts to 
implement this strategy. For example, the so-called rotating platinum 
electrode has a small Pt wire attached to the side of a glass rod; the rod is 
rotated so that the electrode is swept through the solution. Reproducible 
steady-state current-voltage curves are obtained (34), but the theoretical 
hydrodynamic problem proves to be very difficult. Other similar 
approaches have included vibrating wires, rotating loops, and a variety 
of other devices. 

In recent years, the strategy of a moving electrode has focused in 
the rotating-disk electrode (r.d.e.). The r.d.e., which is shown in Figure 
4.11, may be of virtually any material, but platinum, gold, and glassy 
carbon are particularly common choices. 
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Hydrodynamics ofthe Rotating Disk 

As the electrode rotates, adjacent solution is pulled along by viscous 
drag and is thrown away from the axis of rotation by the centrifugal 
force. The expelled solution is replaced by flow normal to the electrode 
surface. The rotating disk thus acts as a pump which moves solution up 
from below and then out away from the electrode as shown 
schematically in Figure 4.33. 

~~~ 1 
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Figure 4.33 Schematic 
representation of solution flow at x 
a rotating-disk electrode. 

, \?1 
., I" The hydrodynamic problem can be solved to obtain the solution 
t velocity. In cylindrical coordinates---r, cp, and x-the components of the 

velocity are expressed as a power series in x: 

u; = ror[a (x/XH)-~(x/XHf-;b(x/XHr + ...J (4.42a) 

vq> = ror [1 + b (x/XH) + ~ a (x/XH)3 + ...J (4.42b) 

V;r = - v'WV[a(x/xHf-;(X/XHr-~ b (X/XH)4 + ...J (4.42c) 

where a = 0.510, b = -0.616, co is the angular speed in radians per second 
(21t times the rotation frequency in hertz), and XH is the hydrodynamic 
layer thickness parameter, 

XH = Yv/ro 

where v = rt/d is the kinematic viscosity of the solution. Since the units of 
the coefficient of viscosity rt are kg m-ls- l and the units of density dare 
kg m-3 , v has units of m2s- l (the same units as a diffusion coefficient) 
and XH is in meters. The x-component of the solution velocity is negative 
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(motion is toward the electrode) and increases in magnitude with 
increasing x/XH, approaching the limiting value, vx(oo) = -0.884 fiiii. 
When x = 3.6xH, Vx = 0.8 vx(oo) and this value ofx is taken as a measure 
of the thickness of the hydrodynamic layer, which tends to move with the 
electrode. For an aqueous solution with v ... 10-6 m2s- l, xH = 0.063 mm 
when ro = 250 rad s-l. The hydrodynamic layer is about 0.23 mm thick. 
under these conditions. Notice that this thickness decreases with 
increasing rotation speed-the solution can't keep up when the electrode 
rotates very rapidly. 

Equations (4.42) were obtained assuming that the radius of the disk 
is large compared with the thickness of the hydrodynamic layer. In a 
typical r.d.e. (see Figure 4.11), the electrode is 2 mm in diameter, but the 
disk as a whole (including insulation) is about 2 em in diameter. As a 
rule of thumb, we can accept hydrodynamic layer thicknesses up to 
about one tenth the disk radius, i.e., up to a millimeter or so. This 
imposes a lower limit on the rotation speed of about 10 rad s-l (ca. 100 
rpm). In practice there is an upper limit on the rotation speed as well. 
The hydrodynamic problem was solved assuming laminar flow over the 
electrode surface. For very rapid rotation speeds, solution turbulence 
sets in and the equations fail. In practice turbulence usually becomes a 
problem with ro > 1000 rad s-l (10,000 rpm). 

A surprising, but important, feature of the velocity is that the %

component is independent of rand cpo Thus the solution velocity 
perpendicular to the electrode is uniform over the electrode surface. At 
the surface only the cp-component is nonzero, reflecting the fact that 
solution on the surface moves with the rotating disk at angular speed co. 

Mass Transport to the Rotating Disk 

In an experiment using a rotating-disk electrode, material is 
transported to the electrode surface by a combination of diffusion and 
forced convection. The mass transport equation is obtained from Fick's 
second law by adding a term representing forced convection: 

ae = Die _V;r ae (4.43)
at ax 2 ax 

Because Vx is independent of r and we are only interested in transport to 
the electrode (along the x-axis), we need only a one-dimensional 
equation. One of the great advantages of the r.d.e. is that the experiment 
is done under steady-state conditions. Thus we can set ae/at = 0 and 
solve the simpler differential equation 

Die = V'" ae 
ax 2 ax 
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We take 0%. ~f(gi (;£/XH)2. an acceptable approximation for x1XH < 0.2 
and use the boundary condition C -+ C· as x -+ ee , Defining th~ 
dimensionless variable 

u = (a/D)lJ3 00112 y-1J6 x 

the differential equation can be written as 

d:c. = _ u2.dC. 
du 2 du
 

Setting C' = dC/du, we can integrate
 

('~=_r u2du 

leo' C lo 
In(C'/Co') = - u3/3 

or

~' de. = (.d.C.) exp (-u8(3)
du du 0 

;1> Integrating a second time, we have 

<Xx) = C(O) + (.dC.) exp (-u8(3) du (4.44)
du 0 0r 

We will need the derivative (dC/du)o in order to compute the flux at the 
electrode surface and the current. To evaluate it, we extend the integral 
limits to infinity and apply the boundary condition C(X) -+ C· as x -+ 00. 

The definite integral 

3-l/3f.-exp (-u 3f3) du =r (4/3) =0.893 

is called a gamma function. Thus 

C* - C(O) = 3113 r(4/3) (f")o 
or, returning to the physical variable, x 

C* - C(O) = 1.288(D/a)1I3 C1).1I2 v 1l6(f )o 
For small x, we can assume a linear concentration gradient 

(de.) = C* - C(O) 
dx 0 XD 
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where XD is the diffusion layer thickness. Combining the last two 
equations. we can solve for XD: 

XD = L288 (D/a )113 C1).1I2 v 1l6 

or, inserting a = 0.510, 

XD = 1.61 D1I3 C1).m v 1l6 (4.45) 

The ratio of XD to XH then is 

Xn/XH= 1.61 (D/v)1I3 

For an aqueous solution (D ... 10-9 m2s·1, Y ... 10.6 m2s·1) xo/xn» 0.16. 
consistent with the assumption that the linear form of eq (4.42c) could be 
used in eq (4.43). This result affords a considerable simplification in 
practical calculations on experiments using the r.d.e. The same result 
could have been obtained had we neglected the forced convection term in 
eq (4.43) and solved the simple equation 

D~=O 
dx2 

We will have recourse to this simplification in Chapters 5 and 6. 
Consider now the standard electrode process 

0+ n e- -+ R 

The flux of 0 at the electrode surface is given by 

Jo(O) =-Do(f)o 
or 

Jo(O) =-Do Co* - Co<O) 
XD 

As usual, the electrode current is 

i = - nFAJo(O)
 

i = nFA(DoIxD)[Co* - Co<O)]
 

When the electrode is sufficiently negative that Co(O) = 0, we have the 
limiting current, 

ts. = nFADOCO*/XD (4.46&) 

or. with the mass-transport rate constant, kn = DoIxn, 

ic = nFAknCo* (4.46b) 

Substituting eq (4.45), we have 

ti: = 0.62 nFACo*Do2/3 v- 1J6 (1)112 (4.47) 
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Benjamin G. Levich (1917-1987) was Chairman of the Theoretical 
Department of the Institute of Electrochemistry of the Soviet Academy of 
Sciences and a professor at the University of Moscow until 1972, when he 
applied to emigrate. He was allowed to leave for Israel in 1977, but soon 
moved to the United States, where he spent the next decade as Albert 
Einstein Professor of Science at the City Col1ege of New York. His 
contributions were mostly in the area of applications of hydrodynamics to 
problems in physical chemistry. 

Equation (4.47) was first derived by Levich in 1942 (35) and is usually 
called the Levich equation. Notice that eqs (4.46) are identical to eqs 
(4.15). The analogy with the planar diffusion problem is still more 
complete, however, since we recall that we used eqs (4.15a) and (4.16), , together with the Nernst equation, to derive the Heyrovsky-Ilkovie 
equation, eq (4.17), and this result is also valid for a reversible process atf the rotating-disk electrode. Since the flux ofR can be written 

JR(O) =kDR CR(O) 

the current can be expressed in terms of CR(O): 

i =nFAIlDR CR(O) 

Thus we can write 

iL-i _ kDO CoW)
 

-d i - kDR CR(O)
 
,j 

or, taking logs, using eq (1.45) to evaluate XDO and XDR, and assuming
;J~' 
~; nernstian behavior, we obtain the Heyrovsky-Ilkovie equation: 

RI iL-iE =E1I2 + In -. 
nF t 

.~.Ij• ,I where 
;-j, 
,/-.; 

.~, E I12=Eo_2Kl. In Do (4.48) 
3nF DR 

Current-potential curves for the r.d.e. thus look exactly like those for a 
planar electrode (Figure 4.2) at constant time, but half-wave potentials 
may be shifted slightly. 

Concentration profiles for a r.d.e. can be computed by numerical 
integration of eq (4.44) and are shown in Figure 4.34. The concentration 
gradient actually is quite linear over some distance from the electrode. 
Comparison with Figure 4.1 shows that the assumption of a linear 
concentration gradient is rather closer to the truth for the r.d.e. than for 
a stationary planar electrode. This of course means that results derived 
from a simplified linear concentration gradient model will be morc 
accurate for the r.d.e. than for the d.m.e. or a planar electrode. 

§4.7 The Rotating Disk Electrode 213 

1.0 I ' , , , I " ','! '::;:::::>"' " I 
CICo 

1.0 

XIXD 

Figure 4.84 Concentration 
profiles for diffusion to a 
rotating-disk electrode for 
Do =DR,E =Eo -17.8 mY. 
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Further details on the rotating-disk electrode can be found in the 
review by Riddiford (36) or in books by Albery (A6), Levich (C2), and 
Pleskov and Filinovskii (C7). 

Example 4.8 Estimate the diffusion layer thickness, mass
transport rate constant and limiting current for a one-electron 
reduction of 0 at a rotating-disk electrode for Do =10-9 m2s-1, v 
=10-6 m2s·1, as 0) increases from 10 to 1000 rad s-l. 

Substituting in eq (4.45), we have the diffusion layer thickness 

XD =(1.61 x 10.4 m slJ2) 0)-1/2 

so that for as 0) increases from 10 to 1000 rad s·l, XD decreases 
from 51 11m to 5.1 11m. The mass-transport rate constant, kD 
then increases from 20 to 200 11m s·l. The limiting current for 
an electrode of 1 mm diameter and Co· = 1 mM is, from eq 
(4.47), 

it. == (3.03 x 10.10 A-m)lxD 

Thus over the dynamic range of the r.d.e. (10 < (U < 1000 rad s·l) 
the limiting current ranges from 6 to 60 JlA. 

We see from Examples 4.6 and 4.8 that currents expected for a 1
mm r.d.e. are about a factor of ten larger than those expected for a d.m.e. 
This has advantages and disadvantages. Everything else being equal, 
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the larger current implies a bigger signal-to-noise ratio. However, it 
also implies a larger iR drop in the solution. Rotating-disk voltammetry 
generally is more susceptible to iR drop problems than is polarography. 

The Rotating Ring-Disk Electrode 

The hydrodynamics of the rotating-disk electrode can be turned to 
advantage by adding another electrode as a ring surrounding the disk 
electrode as shown in Figure 4.35. Solution which flows to the central 
disk electrode is then flung outward by centrifugal force and flows past 
the concentric ring electrode (see Figure 4.33). Thus the solution can be 
sampled electrochemically at the ring shortly after undergoing an 
electron-transfer process. Solution of the convective diffusion problem is 
messy and we will not go into the details. The key parameter is the 
collection efficiency, i.e., the fraction of disk electrode product which can 
be sampled at the ring. This parameter depends on the electrode 
geometry only, independent of rotation speed, diffusion coefficients, etc., 
and is typically on the order of 0.5. Thus if a species is reduced at the 
disk, about half the product can be reoxidized at the ring. If the disk 
product is involved in a chemical reaction, the collection efficiency will 
be less than theoretical and will then depend on rotation speed,t: 
approaching theory at faster speeds. 

Ii 

contact 
bushings 

Teflon 
insulation 

-r:
Figure 4.35 The rotating ring-disk 
electrode. ~ 
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The method is comparable in some respects to cyclic voltammetry 
(see §4.4) in that the products of electron-transfer reactions can be 
studied, but, because the transport equations can be solved more exactly 
(it is a steady-state experiment) and because the ring electrode potential 
can be controlled independently of the disk, the method is capable of 
greater flexibility. The main disadvantage of the method is economic: 
ring-disk electrodes are difficult to make and thus are expensive. Two 
indicator electrode potentials must be controlled using a so-called 
bipotentiostat, which is about twice as complicated (and four times as 
expensive) as an ordinary potentiostat. For further details, see the book 
by Albery and Hitchman (F2). 

4.8 MICROELECTRODES 

Beginning in the late 1970's, a lot of effort has been devoted to the 
development of microelectrodes, electrodes with dimensions on the order 
of 0.1-25 J.UD.. This effort has been motivated by the need for very small 
electrodes for in vivo biological studies, by the recurring problem of iR 
drop in conventional voltammetric experiments, and by the need for new 
methods capable of probing electrochemical processes on a very short 
time scale. Progress has been made along these lines, but meanwhile 
microelectrodes have been found to have other advantages, unlooked for 
when they were first conceived, and they have become important tools in 
the electrochemist's bag of tricks. 

Microelectrodes have been constructed in a number of different 
geometries, including inlaid microdisks, microcylinders, and 
hemispheres, as well as inlaid bands and arrays. For any geometry, the 
fabrication of a microelectrode is nontrivial, involving 
micromanipulation techniques and/or some of the microlithographic 
methods used in the fabrication of integrated circuits. Wightman and 
Wipf (37) describe some of these methods and provide references to the 
literature. A more recent paper by Baer, et a1. (38), describes improved 
methods for the construction of microdisk electrodes. By far the most 
common geometry has been the inlaid disk, and we will confine our 
attention to such electrodes. The construction of a typical microdisk 
electrode is shown in Figure 4.36. 

We begin with consideration of the diffusion problem in the context 
of potential-step chronoamperometry and then discuss the use of 
microelectrodes in cyclic voltammetry. Applications of microelectrodes 
in studies of homogeneous and electron-transfer kinetics will be 
discussed in §5.3 and §6.3. For further details, the reviews by Wightman 
and Wipf(37) and by Bond, Oldham, and Zoski (39) are recommended. 
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Figure 4.36 Cross-sectional view of a
 
microdisk electrode constructed using 4

mm glass tubing.
 

Diffusion to a Microdisk Electrode 

Our approach to voltammetry has been through insights gained 
from solutions to the diffusion equation assuming planar diffusion. 
Thus we have assumed implicitly that electrode dimensions are large 
compared with the diffusion layer thickness. In principle, this 
assumption fails for large electrodes at long times when the diffusion 
layer has grown very thick. Since convection usually limits experiment 
times to a minute or so, at which point XD is on the order of 0.5 mm (see 
Example 4.3), the failure is not serious in practice. When very small 
electrodes are used, the assumption of planar diffusion fails at much 
shorter times. 

Fi,ure 4.37 Schematic 
representation of the growth of 
the diffusion layer. For short 
times, diffusion is mostly 
normal to the electrode surface, 
but at longer times, the radial 
component becomes important 
and eventually dominates. 

§4.8 Microelectrodes 

When we include both the coordinate normal to the electrode 
surface, z; and the radial distance, r, measured from the center of the 
electrode, the diffusion equation becomes 

ac =D(a2c 2c) 
+ 1 ac + a 

at ar2 r ar az 2 

The boundary conditions imposed by the electrode geometry are 

C ~ C· as r ~ 00, Z ~ 00 

(ac) =0, r>ro; (ac) = _ j(r) ,rSro 
az z.,o az z=o nFD 

where ro is the electrode radius and j(r) is the current density at a 
distance r from the electrode center. The problem is closely analogous to 
the case of spherical diffusion which we examined in §4.1, but the 
equations are more complex and a closed-form solution is not possible. 
Solutions in the form of integral equations are possible, but not very 
enlightening; see Oldham and Zoski for a summary of this approach 
(40). 

Based on our experience with spherical diffusion, we can make a 
educated guess of how the diffusion layer will grow in a potential-step 
chronoamperometry experiment, Figure 4.37. Diffusion starts out 
normal to the electrode surface (tl), but as the diffusion layer thickness 
approaches the dimension of the electrode, a radial component becomes 
important (t2 - t4). Eventually the diffusion layer becomes hemispherical 
in shape, and the surface flux-and thus the current--reaches a steady 
state, i.e., hemispherical diffusion is able to keep up with the 
consumption of the diffusing species at the electrode surface. 

Soos and Lingane (41) showed that a modification to the Cottrell 
equation, analogous to eq (4.21), provides satisfactory agreement with 
experimental diffusion-controlled currents: 

in =nFADC· (~ + iL) (4.49)
J1tDt ro 

In eq (4.48), r is the electrode radius and b is an empirical constant tb = 1 
for a spherical electrode). For y7tDt «ro (short times or large 
electrodes), the correction term is negligible and the current drops as 
1/vt;-the diffusion layer is thin compared with the electrode radius so 
that diffusion is still nearly planar. At longer times, the correction term 
becomes important and the current begins to decay less rapidly-the 
radial component has begun to contribute and the diffusion layer has 
spread beyond the edges of the electrode. When Y7t.Dt » ro, the 
correction term dominates and the current becomes time-independent-
the diffusion layer has become hemispherical and the steady-state 
regime is reached. 
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Figure 4.38 Microelectrode ~ 

current in a chronoampero
metric experiment computed 
by digital simulation as a 
function of time. Inset: short 
time behavior compared with 
t· 1/2 current decay (dashed 
line); data from reference 
(42). 
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Heinze (42) used digital simulation techniques to test eq (4.49); he 
found that b is not quite constant, ranging from 1 at short times to 4/n at 

!:
;;' 

long times. Thus the steady-state diffusion current is 

'i
'; ,~ 

to =4nFAC*D =4nFC*Dro (4.50)
ltro 

which is smaller than the steady-state current predicted by eq (4.21) for a 
spherical electrode by a factor of x. Normalized currents computed by 
Heinze are plotted vs. Dt/r02 in Figure 4.38; the current approximates the 
steady-state value for Dt/r02 > 10. The inset in Figure 4.38 shows the 
response in the time range 0 < Dt/r02 < 0.1. For an electrode with ro =1 
mm, this corresponds to times up to about 100 s (D = 10-9 m2s· 1), the time 
of a typical chronoamperometry experiment, and we see that the 
computed response is very close to the t-1/2 current decay predicted by the 
Cottrell equation. For a microelectrode with ro = 1 um, the inset time 
scale extends only to 0.1 ms, so that, for an experiment lasting for more 
than a second, most of the time scale is in the steady-state region. 

Consider now the mass-transport rate constant kD, introduced in 
§4.1. The mass-transport rate constant can be obtained from eqs (4.15b) 
and (4.50): 

kD =4D/xrO (4.51) 

We will find this expression to be useful in our applications of 
microelectrodes in Chapters 5 and 6, but meanwhile it provides a useful 
insight. The diffusion layer thickness, XD, is less useful; we could obtain 
XD by combining eqs (4.15a) and (4.50): XD =nrol4, but this is a misleading 
result which we must immediately reject. The diffusion layer thickness 
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was introduced as the distance over which a linear concentration 
gradient would deliver the flux corresponding to in. Since the 
concentration gradient is far from linear here, the diffusion layer 
concept is too far from the truth to be useful. 

Example 4.9 Compute the steady-state diffusion currents, 
current densities, and mass-transport rate constants for the 
one-electron reduction of 1 mM 0 at electrodes with 1 11m and 1 
mm radii, assuming D = 10-9 m2s· 1. About how long does it 
take for the current to reach steady-state after application of 
the potential? 

The electrode areas are xr02 =3.14 x 10-12 and 3.14 x 10-6 m2; 
substituting into eq (4.50), we have 

to =0.096 and 96 nA
 

The current densities are
 

idA =123 and 0.123 A m·2 

Substituting into eq (4.51), we get the mass-transport rate 
constants are 

kD =1.27 x 10-3 and 1.27 x 10-6 m s·l 

Notice that the current is 1000 times larger at the 1-mm 
electrode, but the current density and mass-transport rate 
constant are 1000 times larger at the 1-llm electrode! 
Comparing this result with Example 4.8, we see that kD is 10

;'1;" 100 times bigger for steady-state diffusion to the I-11m electrode 
:~~' than under forced convection conditions at a rotating-disk
t'~ 

{~:r	 electrode. The current is close to steady-state for t > 10 r02/D. 
Thus we have 

tsteady.state ""0.01 s and 104 s 

For the 1 mm electrode, more than two hours is required to 
reach steady-state conditions. by which time convective mixing 
will long since have perturbed the experiment. 

The very small currents at a microelectrode have several 
experimental implications. First, and most obviously, the small 
currents require more sophisticated current-measuring equipment. 
Electrical pick-up and noise are problems and cells need to be carefully 
shielded. On the positive side, however, the reasons for using a three
electrode cell controlled by a potentiostat largely disappear when 
microelectrodes are used. Reference electrodes can easily handle 
currents up to a few nanoamperes without significant polarization so 
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that most steady-state microelectrode experiments are done using a two
electrode configuration, and, of course, with only two electrodes, a 
potentiostat is unnecessary. Eliminating the potentiostat removes a 
source of noise as well. 

Solution iR drop is a less serious problem than in experiments with 
conventional electrodes. Because the current is smaller, larger solution 
resistivities can be tolerated; thus supporting electrolyte concentrations 
can be reduced or nonpolar solvents like hexane can be used. When 
current flows between a very small electrode and a large remote 
electrode, the resistance is determined by the size of the small electrode 
and can be shown to be R =p/4ro, where p is the solution resistivity (43). 
For a microelectrode in the steady-state regime, io is proportional to rO, 
so that the ohmic potential drop reaches a minimum, independent of 
electrode size, 

iDR = nFC*Dp 

Oldham (44) has shown that iDR is also independent of electrode shape. 
For a one-electron process with C* = 1 mM, D =10-9 m2s-1, p =1 nom, the 
ohmic drop is about 0.1 mY. 

Another important consequence of decreased electrode area is a 
much smaller contribution of capacitive charging current. In 
chronoamperometry, the capacitive charging current is a transient 
response to the potential step, 

, , ic = ~: exp R-~d (4.24) 

where ~et> is the potential step, Cd is the double-layer capacitance, and R 
is the solution resistance. Since Cd oc A, the time constant for capacitive 
current decay, RC, decreases with electrode size so that the charging 
current transient is much shorter-lived for smaller electrodes. The 
accessible time scale thus is much shorter for microelectrodes. 

The attainment of a steady-state current, together with the removal 
of interferences from ohmic potential drop and capacitive charging 
current, make chronoamperometry a more accurate and more easily 
applied analytical technique when microelectrodes are used. 

Cyclic Voltammetry at a Microelectrode 

Figure 4.39 shows cyclic voltammograms of ferrocene using a 6 urn 
radius electrode for scan rates ranging from 10 mV s-l to 10 V s·l. Two 
features of these voltammograms are particularly notable. First, we see 
that, at the slowest scan rate, the reverse scan retraces the i-E curve of 
the forward scan and that the cyclic voltammogram has the shape of a 
steady-state voltammogram, i.e., like a sampled-d.c. polarogram or a 
rotating-disk voltammogram. As the scan rate increases, the reverse 
scan begins to deviate from the forward sweep, anodic and cathodic 
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Figure 4.39 Cyclic voltammograms
 
showing the oxidation of ferrocene in +
acetonitrile at a Pt microelectrode (rO
 
=6 IJ.m) for v = (a) 0.01, (b) 0.1, (c) 1.0
 
and (d) 10 V s·l. Reprinted with
 
permission from J. Heinze and M.
 
Storzbach, Ber. Bunsenges, Phys
 
Chern. 1986,90,1043.
 

peaks develop, and, at the fastest scan, the shape approaches that r: 

expected for cyclic voltammograms using macroelectrodes. Second, we 
notice that, for slow scans, the current is independent of scan rate, 
approaching the usual vv-dependence only when the peaks are well 
developed. 

This behavior is to be expected, given our results for 
chronoamperometry. For a microelectrode with ro = 6 urn, we would 
expect essentially time-independent current about 0.4 s after application 
of a potential step (assuming D = 10-9 m2s-1). In an experiment where 
0.4 s is a long time (cyclic voltammetry at 10 V s-l), the steady state is not 
reached and the voltammogram has a "normal" shape and the current 
increases as vv. When 0.4 s is a short time (cyclic voltammetry at 10 mV 
s -1), the steady state is reached early in the experiment and is 
maintained. Under steady-state conditions, the current depends only on 
the potential; it is independent of time and thus of scan rate and scan 
direction. Notice the absence of cathodic current on the reverse scan at 
0.01 and 0.1 V s-l. Apparently no ferrocenium ions remain near the 
electrode to be reduced; in the steady-state regime, the electrode product 
diffuses away rapidly and irretrievably. Thus steady-state cyclic 
voltammograms do not provide information about the chemical stability 
of a reduction or oxidation product. 

0.6 0.4 0.2 0.0 -0.2 
EIV 
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As in chronoamperometry, the transition from steady-state to time
dependence depends on the electrode area and the time scale. Heinze 
and Storzbach (45) employed digital simulation methods to investigate 
this transition in cyclic voltammetry. Their work is summarized in 
Figure 4.40, which shows a plot of maximum current density (steady
state or peak) in a linear potential-scan voltammogram as a function of 
scan rate v and the parameter W/ro. Each curve in the figure shows a 
steady-state limit where the current is independent of scan rate and a 
planar-diffusion limit where the current increases as YfJ (the plot of In i 
vs. In v has a slope of 1/2). From this correlation, Heinze and Storzbach 
concluded that the steady-state regime is reached for v < RTD/9nFr02. 
Thus for T= 298 K, D =10-9 m2s·1, n =I, steady-state current is expected 
for v < 3 V s-l for a J-um radius electrode. In principle, of course, steady
state conditions are achievable for macroelectrodes, but the scan rate 
would have to be very slow indeed: less than 3 IlV s-l (about 4 days for a 
I-V scanl) for a I-mm radius electrode. 

Microelectrodes have significant experimental advantages for 
cyclic voltammetry, but the details are somewhat different than for 
chronoamperometry. Cyclic voltammograms at fast scan rates with 
normal-sized electrodes are seriously distorted by ohmic potential drop; 
the cathodic peak is shifted by -ipcR and the anodic peak by +ipaR, and 
since i p cc YfJ, the distortion becomes very large at fast scan rates, 
imposing a practical upper limit of about 100 V s-l for millimeter-sized 
electrodes. With microelectrodes, peak currents are two to three powers 
of ten smaller and the interference of iR drop is small up to very fast 
scan rates. The improvement is demonstrated by the microelectrode 
cyclic voltammograms, obtained by Howell and Wightman (46) and 
shown in Figure 4.41, for anthracene in acetonitrile solution at scan 
rates ranging from 1000 to 10,000 V s·l. 
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Figure 4.41 Cyclic voltammo
~ grams of 2.22 mM anthracene
 

in CHaCN solution, 0.6 M in
 
E t 4 N C I 0 4, at a gold
 
microdisk electrode, r = 6.5
 
11m for scan rates ranginf.
 
from 1000 to 10,000 V s- ;
 
potentials us. Ag/AgCI04.
 
Reprinted with permission
 
from J. O. Howell and R. M.
 
Wightman, Anal. Chern. 1984,
 
56, 524, copyright 1984 -1.6 -1.8 -2.0 -2.8
 
American Chemical Society.
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:( The interference of capacitive charging current is quite different in 
chronoamperometry and cyclic voltammetry. In cyclic voltammetry, 

,~~	 charging of the double-layer capacitance makes a constant contribution 
to the current, given by eq (4.33), but the sign changes when the scan 
reverses; thus the negative-going and positive-going traces are 
displaced. The capacitive current is proportional to Cd and thus to 
electrode area. In the steady-state regime, the faradaic current is 
proportional to fA so that ie/if scales as fA, and capacitive charging 
current is usually of negligible importance. For faster scan rates where 
the current is time-dependent and scales as A, ie/if is independent of 
area and capacitive current again leads to a displacement of the forward 
and reverse scan curves, as seen in Figure 4.41. 

4.9 APPLICATIONS 

Applications of the voltammetric techniques discussed in this 
chapter have been extremely varied. For the purposes of discussion, 
however, we can roughly divide the applications into three groups: 

(1)	 Quasi-thermodynamic applications, where a half-wave 
potential, taken as an approximation to the standard potential, is 
used in correlations with theory or with other kinds of experimental 
data or in computation of thermodynamic quantities. 

(2)	 Analytical applications. Historically, analytical applications 
have been the most important and have provided the motivation for 
much of the development of voltammetric techniques. 

·2.2 -2.4 -2.6 
E/V 
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(3)	 Mechanistic studies, in which electrochemical data are used to 
deduce the mechanism of the electrode process or the reactions 
which occur following oxidation or reduction of a substrate. 

In this section, we will discuss some examples of the first two kinds of 
applications. Mechanistic applications will be discussed in Chapters 5 
and 6. 

'Standard"Potential/Electronic Structure Correlations 

The free energy change associated with the one-electron reduction 
of 0 to R can be written 

6Go =6GO(gas) + 66GO(solv) 

where 6GO(gas) is the free energy change for the gas-phase electron 
attachment process, 

O(g) + e- --+ R(g) 

and 

MGO(solv) =6GRO(solv) - 6GOO(solv) 
is the difference in solvation free energies of Rand 0 The free energy 
change is related as usual to the standard reduction potential, 

6Go =-F(EO + const) 

where the constant depends on the zero of the potential scale. If the gas
phase process involves no entropy change, then 6GO(gas) = -A, the 
electron affinity. The half-wave potential measured in a polarographic 
experiment can be written, using eq (4.10): 

E1I2=A_66GO(solv) RTlnDo_const (4.52) 
F F 2F DR 

If half-wave potentials are measured for a series of compounds using 
the same indicator and reference electrodes, the same solvent and 
supporting electrolyte, and the compounds are sufficiently similar that 
66GO(solv) and Do/DR may be assumed to be nearly constant, we might 
expect that EV2 will correlate well with changes in the electron affinity 
of the compounds. The electron affinity is expected to be related to the 
energy of the lowest unoccupied molecular orbital (the LUMO). 
Following a similar line of reasoning, we expect the oxidation potential 
to correlate with the energy of the highest occupied molecular orbital 
(the HOMO). 

The original work along these lines was done in the 1950's by 
Hoijtink (47) who found that an excellent correlation is obtained between 
polarographic half-wave reduction potentials for aromatic hydrocarbons 
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G. Jan Hoijtink (1925-1978) was Professor of Physical Chemistry at the 
Free University, Amsterdam and later at the University of Amsterdam 
and the University of Sheffield. Hoijtink was a pioneer in mechanistic 
organic electrochemistry and was one of the first to apply ideas from 
molecular orbital theory to electrochemistry and spectroscopy. 
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Figure 4.42 Correlation of half-wave potentials with Hiickel MO theory 
energies for (a) polarographic reduction of aromatic hydrocarbons in 2
methoxyethanol solution (potentials measured vs. the mercury pool 
anode) and (b) oxidation of aromatic hydrocarbons at a rotating platinum 
electrode in acetonitrile solution (potentials measured vs. s.c.e.). The 
numbers correspond to: (1) tetracene, (2) 1,2-benzpyrene, (3) anthracene, 
(4) pyrene, (5) 1,2-benzanthracene, (6) 1,2,5,6-dibenzanthracene, (7) 
phenanthrene, (8) naphthalene, and (9) biphenyl. Data from Streitwieser 
(48). 

and LUMO energies obtained from Huckel molecular orbital theory. 
Similar correlations are obtained between half-wave potentials for 
oxidations of aromatic hydrocarbons, measured with a rotating 
platinum electrode, and the HOMO energies obtained from Huckel 
molecular orbital theory. Some examples of such correlations are 
shown in Figure 4.42. (The energy scale of Figure 4.42 is in units of 13, 
the resonance integral parameter of Huckel MO theory; the zero is 
relative to a, the coulomb integral pararneter.) 

This approach has been used extensively in organic 
electrochemistry not only for aromatic hydrocarbons but for compounds 
with many different functional groups. In the first instance, the 
motivation was to test molecular orbital theory calculations and the 

-1.0 r I . I . 'ii i I ) I . iii . 'ii I 
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insights obtained from the calculations, but once the correlation is 
established, half-wave potentials for reductions or oxidations can be used 
to predict other chemical or physical properties which have been found 
to correlate with molecular orbital theory energies. A good review of this 
kind of work is given by Streitwieser (48). 

More recently, a similar approach has been used with 
organometallic systems. For example, it is well known that metal 
carbonyl complexes are stabilized by electron back donation from the 
metal into empty 7t* orbitals on the CO ligand. Thus when CO is 
replaced by a less strongly n-acidic ligand, a phosphite for example, the 
electron density on the metal is expected to increase and the molecule 
should be easier to oxidize and harder to reduce. Since n-back donation 
to a CO ligand puts electron density in a CO 7t* orbital, the infrared CoO

~,j stretching frequency is often taken as a measure of electron density onl(j',.,., the metal. Thus with two physical parameters allegedly measuring thef'*l same thing, the obvious thing to do is to see if they correlate.
ii': 

Example 4.10 de Montauzon and Poilblanc (49) have studiedlli' 
1f' the reduction potentials of a series of nickel carbonyl 
v i 

complexes, Ni(CO)4-n[P(OMe)3Jn, where n =0, 1, 2 and 3, inI '
THF solution using a d.m.e, and a Ag/Ag+ reference electrode. h~ 
In this series, the reduction potential becomes more negative 

.'uJj1 with increasing n, as expected. Similarly, the CoO stretching!Ii..	 frequency decreases with increasing n, again as expected. The;"j'
reduction potential is plotted us. CO stretching frequency in 

I 
I	 Figure 4.43a; a good (but somewhat nonlinear) correlation is 

•	 I
I obtained. 
I 

de Montauzon and Poilblanc also studied the correlation 
between El/2 and vCO for [Co(COhLh where L is a phosphine 
or phosphite ligand. The results are shown in Figure 4.43b. 
Taking either the phosphines alone or the phosphites alone, 
there is a good correlation between El/2 and vco, similar to that 
shown in Figure 4.43a. However, the reduction potentials for L 
= PPh3 and P(OMe)3 are identical, whereas the CoO stretching 
frequencies differ by 18 crrr I. Furthermore, the mixed ligands, 
Ph2P(OMe)3 and PhP(OMeh, show equal values of E1/2 but CoO 
stretching frequencies intermediate between the PPh3 and 
P(OMeh derivatives. The reason for this difference appears to 
be that both PPh3 and P(OMeh are strong a-donors but P(OMe)3 
is somewhat n-acidic. Thus P(OMeh, which feeds considerable 
charge density into the metal acceptor orbitals, also removes 
charge density from the metal n-donor orbitals. The CoO 
stretching frequency is particularly sensitive to 7t-electron 
density, and CoO stretching frequency shifts probably reflect 
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Figure 4.43 Correlation of polarographic half-wave potentials with CoO 
stretching frequencies for (a) Ni(CO)4_nLn" L = P(OMe)a and n = 0-3, 
and (b) lCo(CO)aLJ2 for L = (1) PMea. (2) PEta, (3) PMe2Ph, (4) PMePh2, 
(5) PPha. (6) P(OEt)a, (7) P(OMe)a, (8) P(OPh)a, (9) Ph2POMe, and (10) 
PhP(OMe)2· Reprinted with permission from D. de Montauzon and R. 
Poilblanc, J. Organomet. Chem. 1976, 104, 99, copyright 1976 Elsevier 
Science Publishers. 

changes in metal x-electron density rather than overall charge 
density. Thus half-wave potentials may be a better measure of 
gross charge density than CoO stretching frequencies. 

Stability Constants ofCoordination Complexes 

The voltammetric behavior of metal coordination complexes is 
determined in part by the kinetic stability or lability of the complex. For 
substitution-inert species such as CoOID or CrOll) complexes, electron 
transfer is often followed by rapid chemical steps. In more labile 
systems, it is often necessary to consider equilibria among several 
different species prior to electron transfer, with only the most easily 
reduced species participating in the electron-transfer step. We will 
discuss the general case in §5.3. If the system is sufficiently labile that 
the complexation steps can be assumed to be always at equilibrium, even 
at the electrode surface, we can deal with the expected behavior using 
the techniques we have developed in this chapter. 
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Consider an aquo metal ion, M(H20)m n+, 

reduced to the metal 
which is reversibly 

M(H2Q)mn+ + n e- t:Z M(Hg) + m H20 

and suppose that the metal ion forms a series of coordination complexes 
with the electroinactive ligand L: 

M(H2Q)mn+ +j L t:Z M(H2Q)m-jLf+ + j H20 

with overall formation constants 
~. =[M(H:p)".:i~n+] 

'J [M(H:Ph:+] [LY 
'if 

!~~# 
:t 
~.; 

Ji'

In 

i =- nFA L .!.i(0) 
jJ) 

where ~o =1. To keep the notation relatively compact, we will label the 
species 0, I, ... j ... m, so that Co is the concentration ofM(H20)mn+ and Cj 
is the concentration of M(H20)m.jL/l+. We suppose that these equilibria 
are very fast, so that the relative concentrations at the electrode surface 
are the same as in bulk solution Since the various complex species are 
rapidly interconverted, the electrode current is related to the total flux of 
all species at the electrode surface: 

i 
I 
1, 

~J) 

'" so that the current is 

The fluxes of the various species are determined by the concentration 
gradients. If knj is the mass transport rate constant for delivery of 
speciesj to the electrode, we can write 

.!.J{O) =- kDj [Cj* - CiO)] 

i 
In 

=nFA L kDj[Cj*-C/O)] 
j=O 

When the potential is sufficiently negative that reduction of the most 
easily reduced species is nearly complete, then all Cj<O) =°and the 
current is diffusion limited, 

m 

io =nFA L kDj C/ 
j=O 

Subtracting i from in, we have 
m 

iD-i =nFA L kDj C/O) 
j=O 

If the complexation steps are fast enough that they are at equilibrium 
even at the electrode surface, and if the free ligand concentration is 
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sufficiently high that CL is uniform throughout the solution, then we 
have 

CiO) =~jCo(o)CrJ 

Thus 

io 
m . 

i =nFACO<O) L kDj ~jCi (4.53) 
j=O 

Reduction of a metal complex at the d.m.e. produces metal atoms 
which dissolve in the mercury and diffuse into the interior of the drop 
with a flux 

JM(O) =kDM [CM* - CM(O)] 

where knM is the rate constant for diffusion of M in the amalgam; we 
assume that the concentration of metal in the interior of the drop, CM*, 
is negligible. This flux is also related to the electrode current, 

i =- nFAJM(O) =nFAkDMCM(O) (4.54) 

If we assume that the electron-transfer process is reversible, the 
concentration ratio CO(O)/CM(O) must be given by the Nernst equation 

CO<O) nF(E - EO) 
CM<0) =exp RT 

Using eqs (4.53) and (4.54), this ratio can be written 

Co(o) iD-i kDM --= x-
CM<O) L kDj~jCi i 

Combining the two concentration ratio expressions, we have 

E =EO + HI In kDM + I1.I In iD - i (4.55) 
nF L kDj~jCi nF i 

which is just the Heyrovsky-Ilkovic equation with 

El/ 2 =EO +.R.I In kDM - I1.I In L ~jCi (4.56)
nF kD nF 

where we have assumed that the complex species have nearly the same 
diffusion coefficients so that knj =kt» Since 

kDM=yDM 
kD Do 

the first two terms are just the half-wave potential in the absence of 
ligand, eq (4.10). The last term in eq (4.56) then represents the shift in 
half-wave potential as a function of ligand concentration. When the 
complexation steps are sufficiently well separated that, for a particular 
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range of free ligand concentrations, only two species have significant 
concentrations in the bulk solution, then one term, ~J-erJ, will dominate 
in the sum and we can simplify eq (4.56) to 

tiliV2::: - RT In ~jCi 
nF 

or 
"RTtiliV2::: - MIn ~j _J_In CL (4.57)

nF nF 

Equation (4.57) was first used by Lingane around 1940 and is sometimes 
called the Lingane equation. 

Example 4.11 Lingane (50) used eq (4.57) to analyze 
polarographic half-wave potential data obtained for Pb(II) in 
0.01-1.0 M NaOH solutions (of constant 1.0 M ionic strength). 
Figure 4.44 shows a plot of El/2 us. pOH. The slope of the 
straight line is 0.0799 ± 0.0015, which corresponds toj = 2.70 ± 
0.05. Lingane interpreted this result as indicating that Pb(II) 
in basic solution is HPb02- with the equilibrium 

Pb2+ + 3 OH- ~ HPb02- + H20 

preceding electron transfer. The deviation of j from the 
integral value of 3 was explained as arising from the use of 
OH- concentrations rather than activities in the plot. 
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Figure 4.44 Polarograph
ic half-wave potentials 
(us. s.c.e.) for Pb(Il) in 
KNOalNaOH solutions at 
25°C; data from reference 
(50). 
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Only a few complexation equilibria can be characterized using 
Lingane's approach. Even when equilibria are fast enough, it is often 
impossible to focus on just one step. When several equilibria are 
simultaneously important, the more complete expression, eq (4.56), must 
be used. Several graphical methods have been developed to fit half-wave 
potential data to an equilibrium model. One way of dealing with the 
problem is to write eq (4.56) as 

tiliv2=_ R T lnL ~jCi 
nF j 

and define the function FO(CL), 

. nFtili 
FriCL) =L ~jC£ =exp - ... 1/2 

j
'~ ':~, 

Since tilil/2 is measured, the function FO(CL) can be computed for each 
experimental point. The function then is decomposed to 

FO<CL)-1 2F l(CL)= = ~l + ~:zCL + ~aCL + ... 
CL 

A plot of Fl(CL) us. CL should give a curve with an intercept ~l at CL =O. 
Similarly defining F2(CL), 

Fl(CL)- ~l
FiCL) = = ~2 + ~aCL + ... 

CL 
we see that a plot of F2(CL) us. CL allows the determination of ~2 by 
extrapolation to CL =O. Graphical methods such as this are inherently 
inaccurate but have the advantage that the experimenter gets a good 
"feel" for the data, making it less likely that the data will be fitted to a 
model which they really do not support However, a nonlinear least
squares refinement of the data should follow the rough graphical 
analyses. See Crow (51) for further details and examples. 

Analytical Applications 

Polarography was the first partially automated instrumental 
analytical technique and the first technique capable of routine analysis 
at the submillimolar level; as such polarography had a tremendous 
impact on analytical chemistry and was widely used from the 1930's. 
With the development of competing instrumental methods with even 
greater sensitivity and specificity (e.g., atomic absorption 
spectrophotometry), analytical applications of polarography went into a 
decline in the 1960's. Classical d.c. polarography is limited to analyte 
concentrations in the 10 11M - 1 mM range, but the detection limits are 
lowered considerably with the pulse techniques (or the a.c. methods to be 
discussed in §6.4), which suppress the interference of the capacitive 
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charging current. The development of these techniques brought about a 
renaissance of analytical voltammetry in the 1970's (52). 
Electrochemical methods are now competitive with or preferable to 
spectroscopic methods for many analyses. Developments currently 
under way--e.g., the static mercury drop electrode and digital 
techniques to harness the power of microcomputers to electrochemical 
experiments-promise to keep analytical voltammetry competitive in the 
years to come (53,DI2). 

Polarographic methods have been developed for most of the 
common metal ions, including the alkali metals. Indeed, Heyrovsky' s 
first paper on polarography (54) reported the reduction of the alkali 
metal ions. Advantage is taken of the large hydrogen overpotential on 
mercury (see §6.2) so that well-defined waves are seen for the alkali 
metals in weakly acidic or basic aqueous solutions. Unfortunately, 
however, Nat, K+, Rbr, and Cs" all reduce at nearly the same potential so 
that polarography is unable to distinguish among them. (Lithium is 
sufficiently different that it can be determined in the presence of the 
other alkali metals.) 

Although the polarographic diffusion current is proportional to 
concentration, the proportionality constant includes the diffusion 
coefficient and the dropping mercury electrode parameters (mercury 
flow rate and drop time). Polarographic methods reported in the 
analytical literature usually include the so-called diffusion current 
constant, 

ID = iduz/3t 1/6C 

so that a reported procedure in principle can be used without calibration. 
As a practical matter, however, careful work should include the 
preparation of a calibration curve determined under the actual 
experimental conditions used in the analysis. Because of metal ion 
complexation and variations in activity coefficients, the half-wave 
potential and diffusion current constant are often strongly medi urn 
dependent. These parameters are given for Cu(Il), Pbfll), Cd(II), and 
Zn(1I) in several aqueous electrolyte solutions in Table 4.1. Copper(Il). 
for example, gives polarographic waves ranging over about half a volt, 
depending on the medium. In the presence of high chloride ion 
concentrations, which stabilize Cu(I), two waves are observed which 
correspond to the stepwise reduction of Cum). 

Polarographic analytical methods are often transferable with better 
sensitivity and/or better resolution to more modern techniques such as 
steady-state voltammetry and the various pulse techniques. 

One of the advantages of polarography and the other voltammetric 
methods is the ability to distinguish among and analyze simultaneously 
for several species. Resolution is particularly good with the differential 
pulse technique (see Figure 4.32). Since half-wave potentials are 
medium dependent, the solvent or aqueous buffer system used in a given 
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Table 4.1 Polarographic Data for Some Metal Ions 

El/2 (lD)8,b 

Medium Cu(II) PbOI) Cd(II) ZnO!) 

O.IMKCI +0.04(3.23) -0.40(3.80) -0.60(3.51) -1.00(3.42) 

IMKCI +0.04,-0.22 -0.44(3.86) -0.64 -1.02 
(3.39)C

j IMHN03 -0.01(3.24) -0.40(3.67) -0.59(3.06) d 
~, 
.~ 0.5MHzS04 0.00(2.12) e -O.59(2.6)c\ d 

IMNH3, -0.24, -0.50 -0.81(3.68) -1.33(3.82) 
1 MNH4Cl (3.75)C 

IMNaOH -0.42(2.91) -0.76(3.39) e -1.53(3.14) 

pH 4.5 bufferf -0.09(2.37) -0.48(2.37) -0.64(2.34) -1.23d 

pH 9.0 bufferf -0.12(2.24) -0.50(2.30) -0.64(2.34) -1.15(2.30) 

8 From Kolthoff and Lingane (Dl). Much more extensive tables
 
have been published by Meites (55).
 
b Diffusion current constant in units ~A mM-1(mg s-1)-213s-1/6.
 
Half-wave potential in volts VS. s.c.e.
 
CTotal diffusion current for double wave.
 
d Wave masked by hydrogen reduction.
 
e Insoluble.
 
f 0.5 M sodium tartrate buffer.
 

analysis is chosen to optimize resolution of the expected waves. In 
actual analytical work, it is usually necessary to separate the analytes 
from a complex mixture, leaving behind interfering species. IdealIy, 
this initial separation step should leave the analytes in a form that wilI 
give a well-resolved voltammogram. One general approach to this 
problem is to extract metal ions as chelate complexes soluble in a polar 
aprotic solvent. 

Example 4.12 A weakness of differential pulse polarography 
is that a single peak is obtained in analysis of solutions where 
the analyte is present in both oxidized and reduced forms. 
Thus, for example, a solution containing FeOI) and Fe(III) as 
aquo ions (or other complexes related by simple electron 
transfer) gives a single peak with peak current proportional to 
the sum of the Fet Il) and Fe(lII) concentrations. Leon and 
Sawyer (56) extracted iron into propylene carbonate, Fe(II) as 
the tris-4,7-diphenyl-l,10-phenanthroline complex and Fe(II1) 
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as the tris-8-quinolinato complex. These complexing agents 
are highly selective for Fe(II} and Fe(IIl), respectively. The 
differential pulse polarogram then shows well-separated 
reduction peaks for Fe(IIl) and Fe(II} at -0.55 and -1.25 V us. 
s.c.e., respectively, with peak currents linear in concentration 
in the 2 - 200 JlM range, thus achieving the higher sensitivity of 
the differential pulse method while at the same time resolving 
FefH) and Fe(IIl) into separate peaks. 

In the presence of ligands which form complexes with mercury, 
e.g., halides and pseudohalides (Cl', SCN-, etc.), an anodic polarographic 

i,!, ' wave is observed which corresponds to the oxidation of mercury: 

~ lj: 
$'{' . 
lf' 

Hg + P X- --+ HgXp2-p + 2 e-

If the formation constant of the mercury complex is large enough, the 
wave is shifted to a more negative potential and is resolved from the 
normal mercury oxidation process. Since the process relies on the 
diffusion of X- to the electrode surface, the limiting current is 
proportional to the bulk concentration of X-. Using sensitive techniques 

t 
(\
Ii 

such as pulse polarography or sampled d.c. polarography on a static 
mercury drop electrode, this wave provides a good way of determining a 
wide range of anions and other complexing agents. In addition, the 

~, 
~'i 
d 

wave shape and half-wave potential can be used to determine the 
stoichiometry of the process and to estimate the formation constant of 

j'j the mercury complex (see Problems). 
11 , 
.'1 Example 4.13 Kirowa-Eisner and Osteryoung (57) have 

reported a polarographic method for the determination of 
small concentrations of hydroxide ion which takes advantage 
of the mercury oxidation wave. The electrode process is 

Hg + 2 OH- --+ Hg(OHh + 2 e-

where Hg(OH}2 is a solution species at the very low 
concentrations formed in polarography. The half-wave 
potential is linear in pOH, varying from 0.150 to 0.117 V (us. 
s.c.e.) as [OR] increases from 10 JlM to 0.1 mM. With the static 
mercury drop electrode, the technique affords a nearly unique 
method for the determination of hydroxide ion in the 
micromolar concentration range; the detection limit is 0.3 JlM 
and a linear response is obtained up to 0.4 mM. Other species 
which form mercury complexes interfere, of course; thus Cl, 
for example, must be at least five times lower in concentration 
than OH-. 
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Figure 4.45 (a) Differential pulse polarograrns of 0.056 mM butyl 
mercaptan and 0.29 mM benzyl mercaptan in 0.2 M NaOH for 50 mV 
pulses and a negative-going potential scan. (b) Differential pulse peak 
currents for the -0.75 V peak (solid line) and for the ~.60 V peak (dashed 
line) as functions of concentration for benzyl mercaptan. Reprinted with 
permission from R. L. Birke and M. Mazorra, Anal. Chim. Acta 1980, 
118, 257, copyright 1980. Elsevier Science Publishers. 

Example 4.14 Polarograms of basic aqueous solutions of
 
thiols show anodic waves corresponding to the formation of
 
mercury thiolates,
 

Hg + 2 RS- -+ Hg(SR}2+ 2 e-

Birke and Mazorra (58) have shown that a variety of thiols give
 
differential polarographic peak currents linear in thiol
 
concentration over the range 0.1-100 JlM. Above 0.1 mM, two
 
peaks are observed (Figure 4.45a), with the total peak current
 
approximately continuing the calibration curve (Figure 4.45b).
 
This behavior is reminiscent of adsorption effects in d.c.
 
polarography (see §4.5) and Birke and Mazorra suggest that
 
insoluble Hg(SR}2 deposits on the electrode surface. At low
 
concentrations, less than monolayer coverage occurs, but above
 
about 0.1 mM, a multilayer structure is formed in two distinct
 
steps. The method shows good sensitivity when the medium is
 
0.1 M NaOH and the thiols are ionized. The sensitivity
 
decreases markedly when the pH is less than the thiol pKa.
 

0.056 mM BuSH 

0.1 0.2 0.3 0.4 

C/mM 
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Voltammetry is by no means confined to inorganic analysis. 
Voltammetric methods have been developed for many organic functional 
groups (59), for organometallics (60), for pharmaceuticals (61-63), and for 
compounds of biological interest (64,65,D9). The advent of 
microelectrodes has been particularly important for the development of 
methods for in vivo determinations of electroactive species in biological 
systems (66). 

Example 4.15 Albery and coworkers (67) have performed 
linear potential sweep voltammetric experiments with a 
carbon paste microelectrode, a AgIAgCI reference electrode, 
and a stainless steel auxiliary electrode implanted in the brain 
of a rat. It was hoped that oxidation peaks corresponding to 
catecholamines could be observed. (The catecholamines are 
intimately involved in the function of nerve cells.) Several 
oxidation peaks were observed as shown in Figure 4.46, and 
one of the goals of this research was the identification of the 
peaks. In vitro experiments showed that both catecholamines 
and ascorbic acid are oxidized at about the potential of peak 1 in 
the voltammogram. However, careful experiments in which 
catecholamines were injected into the rat's brain showed 
small shifts in the peak potential, whereas addition of ascorbic 
acid simply increased the peak size; thus peak 1 was assigned 
to ascorbic acid. Peak 2 was identified, after similar 
experiments, as corresponding to the oxidation of indoles 
(probably 5-hydroxyindoleacetic acid) and/or glutathione. 
Peaks 3 and 4 were not identified with certainty. Comparison 

!10 nA 

Figure 4.46 Voltammogram
 
obtained with a carbon paste
 
electrode in the striatum of a rat.
 
The current peaks have been
 
sharpened by electronic semidiff

erentiation. Reprinted with per

mission from R. D. O'Neill, R. A.
 
Grunewald, M. Fillenz, and W. J.
 
Albery, Neuroscience 1982, 7, 1945, 0.0
 
copyright 1982 Pergamon Press.
 

0.2 0.4 0.6 
EIV 
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of the in vivo and in vitro results suggest an ascorbic acid 
concentration on the order of 100 11M, and the resulting peak 
thus obscures the oxidation of much smaller amounts of 
catecholamines which might be present. 
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PROBLEMS 

4.1	 Show that eqs (4.2) are indeed solutions to the diffusion equations 
and that they satisfy the boundary conditions. 

4.2	 Derive eq (4.18) assuming diffusion of 0 across a linear 
concentration gradient of thickness XD. 

4.3	 Show that inclusion of the activity coefficient ratio in eq (4.1) leads 
to another term in the expression for E 1/2 

E 112 =E" - ..B.I... In !!sL + BI..ln Yo 
2nF DR nF 'YR 

4.4	 Use the standard potential for the FeS+lFe2+ couple, diffusion 
coefficients, estimated from the molar ionic conductivities of Fe3+ 

and Fe2+, and activity coefficients, estimated using the Debye
Huckel limiting law, to compute the half-wave potential for the 
reduction ofFe3+ to Fe2+ in 0.1 M KCl04 at 25°C. 

4.0	 A triangular wave signal (needed for potential control in cyclic 
voltammetry) can be generated using a voltage integrator such as 
shown in Figure 4.8. What kind of input signal would be required? 

4.6	 An alternative design for a potentiostat connects the reference 
electrode directly to the positive operational amplifier input, 
eliminating the need for a voltage follower. The potential control 
inputs are summed and applied to the negative input. Sketch the 
circuit diagram. How would the indicator electrode potential 
(relative to the reference) vary for a negative-going ramp as the 
potential control input? 

4.7	 The analysis of the performance of the operational amplifier 
circuits in Section 4.2 assumed infinite gain and infinite input 
impedance. In real circuits, the gain and input impedance are 
finite, typically 104-106 and 1-105 MO, respectively. Consider the 
effect of finite gain and input impedance for each of the following 
circuits: 
(a) Current follower (the current measuring circuit of Figure 4.7). 
Assuming that R2 =10 kn, estimate the minimum amplifier gain 
required to keep the indicator electrode within 0.1 mV of ground 
potential when the cell current is 0.1 mAo 
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(b) Potentiostat (Figure 4.7). Assuming that R = 100 kn, that the 
amplifier input impedance is 100 MO, the control potential is 1.00 
V, and the auxiliary electrode potential must be -2.00 V, what gain 
is required if the magnitude of the reference electrode potential 
differs from the control potential by no more than 0.1 mY. 
(c) Voltage ramp generator (Figure 4.8). Assuming that R =10 
MO, C =10 ~, <1lin =1.0 V, an input impedance of 10 Mil and a 
gain of 106, estimate the nonlinearity of the ramp; i.e., by how 
much does the potential scan rate differ when the output voltage is 
oV and when it is -1 V? 
(d) Galvanostat (Figure 4.9). Assuming the operational amplifier 
parameters of part (c), a control voltage of -1.00 V, resistance R = 
10 kil, and a maximum output voltage from the amplifier of 10 V, 
what is the maximum effective cell resistance? By how much 

~>	 would the current then differ from the nominal value? 
c. 

·;';~i 
~,_: 

4.8	 Assuming that reduced species R forms a monolayer on the 
electrode surface, what is the critical concentration below which 
only a polarographic adsorption pre-wave is observed iftd =4 s, U = 
1.78 mg s·l, DO = 10-9 m2s· 1, and each adsorbed R molecule 
occupies a surface area of 0.25 nm2? 

4.9	 In the polarogram of 0, which is reduced to R, the main reduction 
wave is preceded by an adsorption pre-wave. On the plateau 
following the pre-wave, the current is limited by the available 
surface area on the electrode. Assuming that the concentration of 
o is large, that only a monolayer of R is adsorbed, and that the 
potential is on the pre-wave plateau, prepare a plot of the current 
variation with time during the life of one drop; compare with 
Figure 4.27. 

4.10	 In a potential step chronoamperometry experiment, the observed 
current includes a contribution due to charging of the double
layer capacitance. Consider an experiment in which species 0 is 
reduced by one electron at a disk electrode 2 mm in diameter with 
a double-layer capacity Cd =0.5 f m-2 in contact with a solution of 
effective resistance R = 1500 n. Assume Co· = 1 roM, DO =10-9 

m2s- l and a potential step from E =Elf}. + 0.25 V to Elf}. - 0.25 V. 
(a) Compute and plot the faradaic current over the time range 0
20ms. 
(b) On the same graph plot the capacitive charging current and 
the total current. 
(c) In practice, how could the interference of capacitive charging 
current be avoided? 
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4..11	 The technique of chronoamperometry can be improved for 
analytical purposes by electronically integrating the current and 
recording charge us. time curves. The experiment is then called 
chronocoulomeiry. 
(a) Show that the chronocoulometric response for a reversible 
electrode process is 

Q= 2nFACo*fI5OfTit 

(b) One advantage of chronocoulometry over chronoamperometry 
is that the signal proportional to concentration grows with time 
rathen than decaying. However, the current contribution from 
double-layer charging is also integrated and thus contributes to 
the signal long after the capacitive current has decayed to zero. 
Use the data of Problem 4.10 to compute the faradaic and capacitve 
charges and the total charge and plot these us. t and it. 
(c) In practice, it is not difficult to separate the faradaic and 
capacitive contributions to Q. Describe how this would be done in 
reference to the data plotted in part (b). 

4.12	 What current should be used to obtain a chronopotentiometric 
transition time of 10 s if the concentration of electroactive material 
is 0.1 mM, the electrode is a disk of 1 em diameter, D =5 x 10-10 
m 2s- l and the electrode process is a one-electron reduction? 

4.13	 (a) Use eqs (4.29), (4.35) and (4.37) to derive an expression for 
semiderivative of the current as a function of time in a linear 
sweep voltammetry experiment. 
(b) How does the scan rate dependence of the peak signals in 
semi-integral and semi-derivative presentation compare with the 
peak current in linear sweep voltammetry? 

4.14	 A series of rotating disk voltammograms at varying rotation 
speeds gave the following half-wave potentials: 

roIrad s-l :D 00 100 an 500 

ElJ2N --D.699 --D.703 --D.707 --D.713 --D.724 

(8) Assuming that the electrode process is reversible and that the 
shift in half-wave potential is due to solution iR drop, determine 
the "true" value of E1J2. 

(b) If the limiting current for co =: 500 rad s·l is 42.0~, what is the 
effective solution resistance? 

Problems 243 

4.15	 The assumption of linear diffusion breaks down when the 
dimensions of the electrode are comparable to the thickness of the 
diffusion layer. Suppose that a chronoamperometry experiment 

. lasts for one second, and that the electroactive material has a 
diffusion coefficient DO =: 10-9 m 2s· l. What is the minimum 
diameter of the electrode if we require that the diameter be more 
than ten times the maximum diffusion layer thickness? 

4.16	 The diffusion-controlled current at a microelectrode does not 
decay to zero but reaches a time independent value. In a potential 
step chronoamperometry experiment, what electrode radius is 
required if the current is to fall to within 10% of its limiting value 
in 0.1 s. Assume a diffusion coefficient of 10.9 m2s·l. 

4.17	 The steady-state voltammogram of 1.00 mM A at 230 K, using a 
microdisk electrode with ro =5.0 urn, is shown in Figure 4.47. 
Compute the number of electrons n, the half-wave potential, E1J2, 
and the diffusion coefficient D. Some points read from the 
voltammogram are given in the table. 

EN: -D.12 -D.16 -D.20 -D.24 
UnA 0.003 0.020 0.1.27 0.448 
EN: -D.28 -D.32 --D.36 -D.40 

ilnA 0.676 0.725 0.732 0.733 

0.8 

ilnA 

0.6 

0.4 

0.2 

Figure 4.47 Steady-state 
voltammogram of A at 230 0.0 
K with a microdisk -0.1 -0.2 -0.3 -0.4
electrode. EIV 
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4.18	 (a) The resistivity of acetone containing 0.3 M Et4NPF6 varies 
from 0.75 Q-m at 298 K to 5.8 Q-m at 198 K. Compute the ohmic 
potential drop at the two temperatures for the steady-state 
voltammetry of 1.0 mM analyte (n = 1, D = 5 x 10-10 m2s- 1) at a I-11m 
radius microdisk electrode. 
(b) Compute the ohmic potential drop for the same system at the 
same electrode but for a rapid-scan voltammogram with u = 104 V 
s-l. 

4.19	 Peak currents in microelectrode voltammetry are given by eq (4.31) 
for fast scans and by eq (4.50) when the scan is slow enough that 
steady-state conditions prevail. Use Figure 4.40 to estimate the 
maximum scan rate u for which eq (4.31) is appropriate and the 
minimum scan rate for which eq (4.50) can be used. Assume n = 
1,D =4 x 10-10 m2s- 1, T =298 K. ro =10 um, 

4.20	 Huckel molecular orbital theory gives energies in units of a 
parameter p, the C-C bond resonance integral. Use the half-wave 
potential correlations shown in Figure 4.42 to obtain an estimate 
for p in units ofeV. 

4.21	 The pulse sequence for differential pulse polarography shown in 
Figure 4.31 gives current-potential curves like those of Figure 4.32. 
Suppose that the pulse sequence is rearranged so that positive
going pulses are superimposed on a negative-going ramp. Sketch 
the resulting current-potential curve. How is the peak potential 
related to the half-wave potential? 

4.22	 An anodic wave is observed for solutions containing halide ions or 
other species which coordinate HgflI). The wave corresponds to 
the process 

Hg+pX- ~ HgXp2-P + 2 e-

Show that the wave has the diffusion current, half-wave potential, 
and i - E shape given by 

io =- 2FAkDCX*lp 

OElJ2=EHg - ~~ In [pp~CXI2r--l] 

E =E - RT In [(iD)(2(iD- i)fl 
1/2 2F 2i io 

where PP is the overall formation constant for HgXp 2-P , ko is the 
mass transport rate constant (all diffusion coefficients are 
assumed equal). and Cx* is the bulk concentration of X-. Hint: 
Start with the Nernst equation for the Hg2+/Hg couple and 
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expressions for the current in terms of the flux of X- toward the 
electrode and the complex away from the electrode. 

4.23	 'Plot ius. E for mercury oxidation waves in the presence of a 
coordinating ligand X· assuming that p = 2 and p = 4; compare 
with the wave shape expected in the absence of ligands, Figure 4.5, 
and with a normal reversible two-electron wave. What are the 
differences? 

4.24	 Describe an experimental arrangement for an amperometric 
acid-base titration of hydroxide ion in aqueous solution, taking 
advantage of the anodic wave described in Example 4.13. What 
titrant should be used? At what potential should the current be 
monitored? Sketch the titration curve. 

4.25	 The diffusion current constants given in Table 4.1 are uniformly 
smaller for polarograms in tartrate buffer solutions than for the 
other media listed. Give a qualitative explanation for this 
phenomenon. 

4.26	 Using the data of Figure 4.44, estimate the equilibrium constant 
for 

Pb2+ + 3 OH- f:! HPb022- + H20 

The half-wave potential for the polarographic reduction of Pb2+ in 
acid solution is -0.388 V us. s.c.e. 

4.27	 Kirowa-Eisner, Talmor, and Osteryoung [Anal. Chern. 1981,53, 
581]. studied the polarographic oxidation of mercury in the 
presence of cyanide ion using pulse and sampled d.c. 
polarography on a static mercury drop electrode. A wave for 50.8 
11M cyanide is shown in Figure 4.48. Potentials were measured 
us. a Ag/AgCl (saturated KCl) reference electrode, E = 0.205 V, and 
a few points are given in the following table: 

EIV i/llA ElY i/llA 

-0.299 -0.0112 -0.250 -0.0963 

-0.282 -0.0321 -0.241 -0.1124 

-0.273 -0.0481 -0.228 -0.1284 

-0.266 -0.0642 -0.209 -0.1444 

-0.255 -0.0802 -0.000 -0.1605 
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-0.15 

i/~A 

-0.10 

-0.05 

0.00 I ." I • I I I I I 

Figure 4.48 Sampled d.c. 
I 

-0.4 -0.3 -0.2 -0.1 -0.0polarogram at a s.m.d.e.
 
for 50.8 ~ cyanide.
 EIV 

(a) Using the equations given in Problem 4.22, determine p and 
E 112 by plotting InUl)"2i)[2(iD - i)/iDY' vs. E for several values of p. 
(b) Use the half-wave potential found in part (a) to estimate the 
formation constant for the mercury(II) cyanide complex. 
(c) Polarograms for higher concentrations of cyanide had shapes 
which suggested formation of complexes with larger values of p, 
at least in the leading part of the wave. Measured diffusion 
currents, however, were linear in the bulk cyanide concentration 

I
I . over the range 0.003-10 mM. Explain why the diffusion current 
. , 

would correspond to a constant value of p when higher complexes 
are apparently formed in some instances. 

5 MECHANISMS OF 
ELECTRODE 
PROCESSES 

One of the most interesting applications of voltammetric techniques 
has been in the study of reactions initiated by oxidation or reduction at 
an electrode. In this chapter, we consider the mechanisms of electrode 
processes influenced by coupled homogeneous chemical reactions. In 
§5.1, we review some principles of chemical kinetics and discuss the 
kinds of reactions which may be initiated by electron transfer. In §5.2, 
we introduce some techniques of spectroelectrochemistry which can be 
used with voltammetric experiments to deduce mechanisms. In §5.3 
§5.5, we consider applications of the voltammetric methods introduced in 
Chapter 4 to several kinds of mechanistic problems. 

We will assume that the electron-transfer processes, per se, are 
nernstian. Irreversibility can be introduced using the methods of 
Chapter 6, but the results would complicate our study unnecessarily. 
For further details on these topics, see the monographs edited by Fry and 
Britton (C9) and Lund and Baizer (E7) and reviews by de Montauzon, 
Poilblanc, Lemoine, and Gross (1), Geiger (2) and Connelly and Geiger 
(3) on organometallic electrochemistry, and Zuman (4) and Hawley (5) 
on organic electrochemistry. 

5.1 INTRODUCTION 

Rate Laws and Mechanisms 

In conventional kinetic studies, the rate of a reaction is expressed in 
terms of a rate law, that is, an empirical equation which summarizes 
the dependence of the experimentally measured rate on the 
concentrations of reactants, products, catalysts and inhibitors. Thus, for 
example, the reaction 

2A+2B ~ D 

might be found to obey the rate law 

d[A] =_kw,[A] [B]2 
dt 

2,j7 
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The rate law tells us that the rate has been found to increase linearly 
with the concentration of A but to increase as the square of the B 
concentration. We refer to the exponents of [A] and [B] as the kinetic 
orders of the reaction in A and in B. Thus the reaction is first-order in A 
and second-order in B, third-order overall. Notice that the units of the 
rate constant k depend on the overall order. 

In electrochemical kinetic studies, rate information comes from the 
measured current i (in A = C s·l). By the simple expedient of dividing by 
i by nF, we have the rate in units of mol s·l. Thus unlike classical 
kinetic studies where the approach to the rate law is often through 
measured concentrations and integrated rate laws, electrochemical 
rates can be measured directly. Otherwise, however, the concept of 
empirical rate law, the methods used to determine kinetic orders, and 
the interpretation of kinetic information are very similar in conventional 
and electrochemical kinetics. 

The mechanism of a chemical reaction is made up of a series of 
elementary processes, i.e., uncomplicated single reaction steps in which 
the reactant and product species are exactly those specified. For an 
elementary process, the kinetic order in a chemical species is identical 
to the molecularity , i.e., the stoichiometric coefficient of that species in 
the step. Thus, given a mechanism, the rate law governing the rate of 
formation or disappearance of a chemical species can be written by 
inspection. For example, given the mechanism 

kl 
A+2B ~ C 

k2 
A+C ~ D 

the predicted rate laws for each of the species can be written: 
deAl 2 d[B] 2-=-kl [A][BJ -k2[A][C] -=-2kdA][B]

dt dt 

d~] = kl [A][B]2- k2 [A][C] d~J = k2 [A][C] 

Each occurence of the first step consumes one A and two B molecules; 
thus the contribution to d[B]/dt is twice the contribution to d[A]/dt; 
doubling the concentration of A should double the rate of the first step, 
but doubling [B] should increase the rate by a factor of four. Notice that 
the stoichiometry of the two steps requires 

[A]+ [C) + 2 [D] = [AJo [B] + 2 [C] + 2[D] = [B]O 

so that we have a constraint on the rate equations 

deAl + d[C] + 2 d[D] = d[B] + 2 d[C] + 2 d[D] = 0 
dt dt dt dt dt dt 

§5.! Introduction 

Thus there are only two independent rate equations. 
The empirical kinetic orders are related to the stoichiometric 

coefficients of the overall reaction only when the reaction takes place in a 
single elementary step. However, the kinetic orders do tell us the 
composition of the activated complex, the highest energy point on the 
reaction coordinate. Thus in this example, the empirical rate law tells 
us that the activated complex contains one A and two B's and is 
consistent with the mechanism we have written if the first step is rate
limiting. Thus C is apparently a short-lived intermediate. 

It is sometimes convenient to apply the steady-state approximation 
to mechanisms involving transient intermediates. Since C never 
increases to an appreciable concentration, its time derivative must be 
small. If we set d[C]/dt = 0, the rate expression above becomes an 
algebraic equation 

kl [A][B]2 - k2[A][C] = 0 

whence [C) = (kl/k2) [B]2. Substituting this into the d[D]/dt expression, 
we have 

d~] = k2 [A][C] = kdA][B]2 

which matches the empirical rate law with kobs = kl. 
One of the advantages of electrochemical kinetic studies using 

steady-state voltammetry is that all time derivatives can be set equal to 
zero-the entire reacting system is in a steady state. However, 
concentrations are functions of distance from the electrode so that the 
problem is not entirely trivial. 

Multielectron Processes 

In electrode processes, we sometimes write a step such as 

0+ n e- +Z R 

and treat it as if it were an elementary process. In fact, electrode 
processes rarely, if ever, involve the concerted transfer of more than one 
electron. Gas-phase electron attachment or ionization reactions always 
proceed in discrete one-electron steps. Even if the same molecular 
orbital is populated or ionized, electron repulsion will cause the two 
steps to occur at well separated energies. For electron-transfer reactions 
at an electrode-solution interface, solvation effects may bring the two 
electron-transfer steps closer together in energy, but only in exceptional 
cases would we expect the two steps to coincide. 

Electrode processes involving two or more electrons are analogous 
to rate laws for gas-phase reactions with overall kinetic orders of three 
or more: they provide evidence for mechanisms of two or more 
elementary steps. However, a process involving two one-electron steps 
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separated by a chemical step may be experimentally indistinguishable 
from a concerted two-electron transfer if the chemical step is very fast. 
In discussions of the mechanisms of electrode processes, we usually 
write the simplest mechanism consistent with the experiment at hand. 
If the process involves a chemical step which goes to completion in a 
time short compared with the characteristic time of the experiment, it is 
then reasonable to treat the process as if it involved a concerted transfer 
of more than one electron. It should be remembered, however, that an 
experiment with a shorter characteristic time may not be consistent 
with the simplified mechanism. 

Experimental Time Scales 

Each of the experimental techniques of electrochemistry has a 
characteristic time scale. In assessing the effect of a coupled chemical 
reaction on the experimental response, we must ask how the 
characteristic time of the reaction, say the half-life t1l2, compares with 
the characteristic time of the experiment. If the reaction time is very 
short compared with the experimental sampling time, the experiment 
will "see" the reaction at equilibrium. On the other extreme, if the 
reaction time is long on the experimental time scale, the reaction may 
have no discernible effect on the experimental response. When the 
reaction time lies within the experimental time scale, the experimental 
response will be sensitive to the rate of the chemical step and, at least in 
principle, the chemical rate constant will be determinable from the 
experiment. 

For techniques such as chronoamperometry, c h r o n o
potentiometry; and d.c. polarography, where the current or potential 
is measured at a well-defined elapsed time after the start of the 
experiment, the time scale is straightforward. The accessible time scale 
for d.c. polarography is essentially the range of drop times, 1-10 s. 
Chronopotentiometric and chronoamperometric experiments may last 
as long as 100 s with potentials or currents measurable about 1 ms after 
beginning the experiment. Thus the time scale for these techniques is 
roughly 1 ms - 100 s. In practice, however, there are severe problems 
with vibration or other departures from pure diffusion for experiments 
that last more than 10 s or so. 

In steady-state voltammetry using a microelectrode or rotating
disk electrode, the time scale is set by the residence time of a diffusing 
species at the electrode surface, on the order of (ax)2/2D, where ax = ro for 
a microelectrode or XD (0< l/Yro) for an r.d.e. Thus the time scale is set by 
the diffusion coefficient and the electrode size or rotation speed. Times 
range from 10-1000 ms for the r.d.e. down to 0.005-50 ma for 
microelectrodes. 

In cyclic voltammetry, the time scale is given by the range of the 
parameter RT/Fv, where v is the potential scan rate. The range of v is 
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roughly 0.02-100 V s-l for ordinary size electrodes, so that the accessible 
time scale is on the order of 0.2 - 1000 ms.:' With microelectrodes, scan 
rates may be as fast as 105 V s-l, extending the time 'scale down to less 
than a microsecond. 

Another way of looking at the effect of a chemical reaction on an 
electrochemical experiment is to compare the diffusion layer thickness, 
XD, with the characteristic distance from the electrode through which a 
reactant or product diffuses before the chemical reaction comes to 
equilibrium. This so-called reaction layer thickness is typically on the 
order of magnitude 

XR =VD/k 
where D is the diffusion coefficient and k is the first-order (or pseudo
first-order) rate constant for the chemical step. If the reaction layer is 
much thicker than the diffusion layer, XR» XD, the reaction is very slow 
and the effects of the reaction rate on the experimental response may be 
negligible. When XR « XD, the reaction comes to equilibrium very close 
to the electrode surface and the experimental response to the 
equilibrium mixture may again be independent of the rate of the 
chemical step. When XR and XD are comparable in magnitude, the 
experimental response is expected to depend critically on the rate of the 
chemical step. 

Chemical Reactions Initiated by Electron Transfer 

Consider an electron-paired molecule in which main group atoms 
obey the octet rule and transition metals (if any) obey the IS-electron rule. 
The electron added in a one-electron reduction usually occupies an 
antibonding molecular orbi tal.! The resulting radical anion may be 
stable on the time scale of the experiment, in which case the electrode 
process is chemically reversible. If the electron-transfer step is fast, the 
process will also be electrochemically reversible, i.e., nemstian. Often, 
however, the initially formed radical anion undergoes a rapid chemical 
transformation. There are three possibilities for the primary chemical 
step: 

(1) Cleavage of a chemical bond. The antibonding electron may 
weaken a bond to the point that the activation barrier to bond cleavage 
can be surmounted by thermally accessible energies. Bond cleavage will 
then be rapid. For example, one-electron reduction of an alkyl or aryl 
halide is followed by rapid loss of halide ion: 

fast 
RX + e- ~ RX:- ---t R· + X· 

1 Transition metal complexes often have empty essentially non bonding orbitals 
which can accommodate the added electron; somewhat different reactions then may 
occur, 



268 252 Mechanisms of Electrode Processes 

Similarly, organometallic molecules and coordination complexes often 
lose a ligand on reduction: 

fast 
MLn + e- ~ MLn7 ----+ MLn-l· + L-

In either case, an electron-deficient radical is formed which almost 
always undergoes a secondary reaction. Common follow-up reactions 
include further reduction, e.g., 

R- + e- ----+ R-

Generally speaking, further reduction occurs if the bond cleavage 
reaction is fast enough that the radical species is formed at the electrode 
surface. If the neutral radicals are formed less rapidly, but still fast 
enough that radical-radical encounter is likely, we expect dimerization: 

2R· ----+ R-R 

If the radical is formed more slowly and farther from the electrode, it 
may abstract a hydrogen atom from the solvent or supporting electrolyte, 

R·+SH ----+ RH+S· 

or react with a nucleophile, 

R· + Nu- ----+ RNu7 

Further reactions are expected from most of these secondary products. 
The general scheme accommodates many other apparently disparate 
electrode processes. Thus, for example, the two-electron reduction of 
dicobalt octacarbonyl can be understood in terms of the mechanism 

CQ2(CO)g + e- ----+ C02(CO)g7 ----+ Co(COk + Co(CO),. 

Co(CO),· + e- ~ Co(CO),

Here the metal-metal bond is broken in the primary step and the 
resulting radical is reduced in the secondary step. 

(2) Electrophilic attack. A radical anion generally is a strong 
nucleophile, highly susceptible to electrophilic attack. In protic solvents, 
the most readily available electrophile is often the hydrogen ion. Thus 
the first reaction step of unsaturated radical anions often is protonation. 
Anthracene, for example, undergoes an overall two-electron reduction to 
9,10-dihydroanthracene. The sequence of steps is 

Cl4HlO+ e- ~ C14H107 

Cl4li107 + H+ ~ C14Hll· 

Cl4lill· + e- ~ C14Hll

Cl4lill- + H+ ~ C14H12 
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The neutral radical produced by protonation of the anthracene anion 
radical is more easily reduced than anthracene itself, so that the second 
electron-transfer step is fast at the potential of the first step. Similarly, 
nitro compounds undergo a six-electron, six-proton reduction to amines: 

Ar-N02 + 6 H+ + 6 e- ----+ Ar-NH2 + 2 H20 

Depending on the relative rates of the protonation steps, the nitroso (Ar
NO) and hydroxylamino (Ar·NHOH) intermediates may be isolable. 

(3) Rearrangement. A radical anion can sometimes undergo a 
change in structure which reduces the energy of the molecule by better 
distributing the excess charge. If the rearranged radical is stable on the 
time scale of the experiment, reoxidation regenerates the starting 
compound in a different conformation, usually at a different potential 
than the reduction. Conformational rearrangement is probably a very 
common primary process; however, if the rearranged radical then 
undergoes bond cleavage or electrophilic attack, there may be no direct 
evidence of the rearrangement step in the experimental results. 

A similar analysis can be applied to electrode processes initiated by 
an oxidation step. The resulting electron-deficient cation radical may be 
stable, but more often will react by dimerization, by bond cleavage (this 
time the bond is weakened by removal of a bonding electron), by 
nucleophilic attack, or by rearrangement. See Alder (6) for an 
interesting discussion of electrophilie and nucleophilic substitution 
reactions initiated by electron transfer. We will discuss several other 
examples in §7.3 in the context of organic electrosynthesis. 

Example 5.1 Bond, Colton, and McCormick (7) studied the 
electrochemical oxidation of Mn(CO)3(dppm)CI (dppm = 
Ph2PCH2PPh2). Cyclic voltammograms of this species at a Pt 
electrode in acetonitrile solution (0.1 M Et4NCI04, 500 mV s-l, 
22°C and -35°C) are shown in Figure 5.1. At room 
temperature, the one-electron oxidation is nearly reversible, 
but a small reduction peak, matched by an oxidation on the 
second anodic scan, suggests some decomposition of the 
Mn(II) product. The cyclic voltammogram at -35°C shows 
complete chemical reversibility of the oxidation with no trace of 
the second electrode process. Half-wave potentials-i.e., ElJ2 = 
(Epa + Epc)/2---for the primary and secondary processes were 
found to be +1.44 and +0.98 V, respectively (us. Ag/AgCI in 
CH3CN). Very similar results were obtained in acetone 
solutions. Controlled potential electrolytic oxidation gave 
confusing results (see below) but chemical oxidation by NOPF6 
in CH2Cl2 gave a red compound which analyzed as 
[Mn(CO)a(dppm)CllPF6. When this compound was dissolved 
in acetonitrile, the red color slowly faded to yellow and the 
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+>
Figure 5.1 Cyclic voltarnmo s:: 
grams of Mn(CO)3(dppm)Cl Qj 

t:in acetonitrile solution at (a) ::s
22°C and (b) -35°C. In (a), the o 
dotted curve represents the 
first cycle and the solid curve 
the second and subsequent 
cycles. Reprinted with per
mission from A. M. Bond, R. 
Colton, and M. J. McCormick, 
Inorg, Chern. 1977.16, 155, 
copyright 1977, American 
Chemical Society. 
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solution showed a chemically reversible oxidation at +0.98 V 
with no trace of the +1.44 V oxidation. In another experiment, 
Mn(CO)3(dppm)CI was oxidized by NOPF6 in CHaCN at -35°C 
to give a dark green solution. When this was warmed to room 
temperature, the solution rapidly changed to red and then 
more slowly to yellow. 

Apparently, the red and green species are isomeric forms of 
[Mn(CO)3(dppm)Cl]+. Only two isomers are possible for these 
complexes, the facial (fae) and meridional (mer) isomers: 

o 0 
C CO C CI 

Cl*CO OC*CO 

t.P t.P 
fae- Mn( CO )idppm)CI mer-Mn(CO)idppm)Cl 

Since the starting material was known to be [ac, the green 
form of the Mn(II) complex, which is related to the Mn(l) 
starting material by reversible electron transfer, is presumably 
also fae. The red form must then be the mer isomer. Infrared 
spectra of the red Mn(II) complex and its reduced form were 
consistent with mer stereochemistry. 
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The results described above indicate that fa c
[Mn(CO)a(dppm)Cl]+ is rapidly converted-to the mer isomer at 
room temperature but only slowly at -35°C.' The mer
[Mn(CO)a(dppm)Cl]+, however, slowly oxidized acetonitrile (but 
not CH2CI2) at room temperature to produce mer
Mn(CO)a(dppm)Cl. (This reaction caused the controlled
potential electrolysis experiments to lead only to confusion.) 
The results can then be summarized by the following scheme: 

-e' 
fae-Mn(CO)idppm)CI. • fae-Mn(CO)g(dppm)CI+ 

+1.44 V !r.last 
-~ +

mer-Mn(CO)g(dppm)CI =- mer-Mn(CO)g(dppm)Cl 
<, +0.98 V ./ 

~ 
CHsCN 

Several additional points of interest should be noted. Whereas 
the fac» ~ mer: isomerization is fast at room temperature, the 
interconversion of the isomeric forms of the d6 Mn(I) species is 
very slow. Given the well-known kinetic stability of the 
isoelectronic Co(III) complexes, this suggests that the Mn(I) 
species are low spin. If we take the E 1/2 values to be 
approximations to the standard reduction potentials, the 
standard free energy change for the process 

mer + fac: ~ mer+ + fac 

tiGO =-0.46 For -44 kJ moP, corresponding to an equilibrium 
constant of 6 x 107 • The mer isomer is clearly the 
thermodynamically favored form of the Mntfl) species, and 
since it is normally obtained in preparative work, the [ac 
isomer is probably the favored form of the Mn(I) complex. 
(Rationalization of this result in terms of molecular orbital 
theory arguments is left to the reader as an exercise.) 

The spectroscopic results yield one further insight. High-spin 
d5 Mn(II) complexes are usually nearly colorless, whereas the 
Mn(II) complexes in this case were highly colored (the red 
merr and green [ac: isomers), indicating that the Mn(II) 
species are also low spin. 
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Standard Mechanistic Schemes 

In Example 5.1, the mechanism could be deduced from essentially 
qualitative observations-the lack of chemical reversibility in a cyclic 
voltammogram or the identification of secondary electrode processes. 
Mechanistic work often proceeds on the basis of just such qualitative 
arguments. Electrochemistry is capable of providing more quantitative 
information about rates if the measured currents or potentials are 
affected by the rates of the chemical steps. Although the details of the 
chemistry may vary enormously from one system to another, 
electrochemists have found that most electrode processes fall into one of 
a rather small number of mechanistic schemes. In general an electrode 
process consists of a series of electron-transfer steps, designated by the 
symbol E, and chemical steps, designated by C. In §5.3 - §5.5, we will 
discuss the effects of the following mechanistic schemes on 
voltammetric experiments: 

(1) Preceding Reaction (CE). The electroactive species 0 is in 
equilibrium with an electroinactive precursor Y: 

Yf:iO 
0+ e- f:i R 

(2) Following Reaction (EC). The electroactive product is 
converted to an electroinactive species Z: 

0+ e- f:i R 
R-+Z 

(3) Catalytic Reaction (EC'). A special case of the EC 
mechanism where the following reaction is the oxidation of R to 0 by an 
electroinactive species P: 

0+ e- f:i R 
R+P-+O+Q 

In this scheme, the reduction of P must be thermodynamically more 
favorable than that of 0, EOp/Q > EOO/R, but the electrochemical 
reduction ofP is too slow to be observable. 

(4) Following Reaction with Electroactive Product (ECE). 
The product of an electron-transfer step is converted to a species which 
is electroactive. There are two possibilities: 

(i) The product of the chemical step is 
mechanism): 

reducible (the EC~ 

01 + e- f:i Rl (El°) 

Rl -+ 02 
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02 + e- f:i R2 (E2°) 

If E is less than either El° or E2° and the Rl -+ 02 conversion is fast 
enough, the overall process may appear to involve two electrons. IfE 1° > 
E > E2°, the electrode process corresponds to the simple EC mechanism. 

(ii) The product of the chemical step is oxidizable (the ~C~ 
rnechanism): 

01 + e- f:i Rl (El°) 

Rl -+ R2 

02 + e- f:i R2 (E2°) 

When E is less than either El° or E2° this mechanism corresponds to a 
simple EC process, but with El° > E > E2°, R2 is oxidized to 02. Thus if 
the Rl -+ R2 conversion is fast enough, the current may approach zero. 

In either of the ECE variations, homogeneous disproportionation 
i', rnay be important: 

R2+ 01 f:i 02 + Rl 

These four mechanisms, or combinations thereof, cover most 
known electrode processes. 

While voltammetric techniques provide the first line of attack in 
studies of electrode processes, few successful investigations are confined 
to electrochemical methods. Victory in the mechanistic game goes to the 
scientist who is best able to piece together many bits of evidence from 
spectroscopic, synthetic, structural and/or kinetic studies, as well as 
from electrochemical work, to construct a mechanism capable of 
explaining all the results. The kinds of thought required are very 
similar to those involved in establishing mechanisms for ordinary 
homogeneous reactions. 

5.2 SPECTROELECTROCHEMISTRY 

The application of spectroscopic methods to electrochemical 
problems is rather broadly termed epectroelectrochemistry, A wide 
variety of techniques have be applied to study electrode surfaces and the 
electrode-solution interface, including X-ray surface scattering, X-ray 
absorption, surface-enhanced Raman, photoemission, Mossbauer, 
ultraviolet/visible and infrared reflectance spectroscopy. UV/visible and 
IR transmission spectrophotometry and electron spin resonance 
spectroscopy have played important roles in the identification of solution 
species generated by electrolysis. 

Space does not permit a discussion of all the above methods, and we 
will confine our attention here to methods for the detection and 
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identification of electrode products and the use of that information in. 
deducing mechanisms. For further details on these and other methods 
two recent monographs, edited by Gale (CI0) and Abruna (C'l l), ar~ 
recommended, together with general discussions by Bard and Faulkner 
(BI2) and Greer, Peat, Peter, Pletcher, and Robinson (BI3). 

Electron spin resonance 

In electron spin resonance spectroscopy (ESR, also known as 
electron paramagnetic resonance or EPR), the degeneracy of the electron 
spin energy levels is lifted by application of a magnetic field. A constant 
frequency radiation source, usually in the microwave region (v ... 9 GHz), 
is used and photons are absorbed when the magnetic field has adjusted 
the energy levels with a spacing hv; as shown in Figure 5.2a. Since only 
paramagnetic specie&-free radicals, radical ions, and certain 
transition metal complexes-s-have unpaired electrons, the observation of 
an ESR signal in a spectroelectrochemistry experiment can be taken as 
evidence for the formation of such a species in an electrode process. See 
reviews by Goldberg and McKinney (8), Compton and Waller (9), and 
Rieger (10) for further details and examples of the method. 

Most ESR spectrometers operate with a small-amplitude field 
modulation and detect absorption of photons by phase-sensitive detection 

~ 
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Magnetic Field, B Magnetic Field, B 
Figure 5.2 (a) Energy levels for an unpaired electron in a magnetic 
field, showing the ESR transition. (b) Energy levels for an electron 
interacting with a spin 1 14N nucleus showing the ESR transitions. (c) 
and (d) ESR absorption lines and first-derivative signals corresponding 
to the transitions in (a) and (b), respectively. 
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8t the field-modulation frequency; thus ESR spectra are usually plotted 
8Sfirst derivatives of absorption as shown in Figure 5.2c. ESR sensitivity 
is generally quite good; as little as 10-12 moles of a paramagnetic species 
can be detected when the spectrum consists of a small number of sharp 
lines. 

Because nuclear spin&-lH, 19F, 31p, 55Mn, 59Co, etc.-interact with 
the electron spin to split the energy levels, ESR spectra often exhibit 
JDore than one line, and the hyperfine splitting pattern can sometimes be 
used to identify the paramagnetic species. Thus for a radical species in 
which the unpaired electron interacts with a 14N nucleus (nuclear spin 
I = 1), the electron spin levels are split into three sublevels each, 
corresponding to mI = ±1 and O. Transitions are allowed which "flip" 
electron spins or nuclear spins, but not both at once; thus three ESR 
transitions are allowed and three lines are observed in the spectrum, as 
shown in Figure 5.2b,d. 

The first electrochemical application of ESR spectroscopy was in 
1958 when Austen, Given, Ingram, and Peover (11) showed that free 
radicals are produced in the one-electron reduction of anthracene, 
benzophenone, and anthraquinone in DMF solution. Samples were 
withdrawn from an electrolysis cell, frozen in liquid nitrogen and 
transferred to an ESR spectrometer where spectra of the frozen solutions 
were obtained. External electrolysis cells have been used frequently 
since 1958, but it is somewhat more convenient to link the two 
experiments more closely. The simplest approach is to mount an 
electrochemical cell immediately above or below the ESR sample tube 
(12). The solution is electrolyzed and allowed to flow through the sample 
tube either continuously or in batches. A cell designed for reduction 
processes is shown in Figure 5.3. This approach has several 
advantages, but the ESR-active products must have lifetimes on the 
order of minutes in order to be detected. Thus a more common approach 
is to use an electrolysis cell with the working electrode in the ESR 
sample tube (13). Continuous passage of current then builds up a 
steady-state concentration of paramagnetic products; radicals with 
lifetimes down to tens of seconds then become detectable. 

In most ESR spectrometers, the sample is contained in a tube or 
thin-layer cell mounted in a "cavity," a box with conducting walls in 
which a microwave standing wave is maintained. The spectrometer 
measures absorption of microwave power in the cavity. Molecular 
dipoles absorb microwaves to excite rotational motion (as in a microwave 
oven). In order to minimize this dielectric absorption of microwave 
power, the sample is centered on an electric field node of the standing 
wave and is generally less than 4 mm in diameter or thickness. 

This geometry imposes severe restrictions on the design of an 
electrochemical cell for use in an ESR spectroelectrochemistry 
experiment. A simple design, shown in Figure 5.4, places the working 
electrode in the cavity with the reference and counter electrodes in a 
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counter 
Luggin probeelectrode 

connectingto solution referencereservoir electrode 
~ 

ESRFil(11I'e 5.3 Extra muroa electro
samplelysis cell for ESR spectro

electrochemical experiment. tube 

larger chamber above. Although such cells work for many applications, 
there are some serious problems. Because of ohmic potential drop along 
the tube, most of the current flows at the tip of the working electrode. 
The current is usually small, on the order of a few j.lA so that the steady
state concentration of short-lived radicals is low. This problem can be 
partially solved by replacing the wire by a Pt gauze electrode in a thinj!,ft 

'I!	 layer cell. However, in a long thin cell with the reference electrode 
separated from the working electrode, there is very little control of the 
working electrode potential; indeed many workers simply eliminate the 

counter 
~ Luggin probeelectrode 
/'" connecting 
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t electrode 
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I I micro~wave 
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Figure 5.4 Intra muros electrolysis workingcell for ESR spectroelectrochemical 
experiment. electrode 

" 
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reference electrode. When the electrode process is simple with only one 
possible oxidation or reduction process, potential control is unimportant, 
but in more complex cases, the relation of the species generated to the 
electrode process may be tenuous. 

A great improvement in both the ESR and electrochemical aspects 
of the experiment is possible with a cell described by Allendoerfer (14) 
and shown in Figure 5.5. A helical coil of wire (6 mm diameter) is used 
as the working electrode; the reference electrode is connected through a 
Luggin probe extending inside the helix. The working electrode also 
serves as the inner cylinder in a coaxial cylindrical microwave cavity. 
Microwaves do not penetrate inside the helix so that only radicals near 
the electrode are observable. Because of the large electrode area (ca. 22 
cm3), a large current can pass, ESR sensitivity is good and the ESR 
signal is immediately responsive to the electrode process. 

(b) 

ESR activte' wire 
volume 

toil •1:: inactive 
~ volume 
0' 

Figure 5.5 Allendoerfer ESR spectroelectrochemical cell. (a) Cutaway 
drawing showing mounting of cell in a cylindrical cavity; the reference 
and counter electrodes (not shown) are mounted above the cavity, with a 
Luggin probe extending inside the helical working electrode. (b) 
Expanded view of the helical working electrode showing the ESR active 
volume. 

Example 5.2 Rieger, Bernal, Reinmuth and Fraenkel (12) 
studied the polarographic reduction of tetramethylammonium 
1,I,2,3,3-pentacyanopropenide in DMF solution containing 0.1 
M Pr3NCl04. Three one-electron waves were observed with 
half-wave potentials -1.75, -2.25, and -2.75 V us. Ag/AgCI04 (in 
DMF). Controlled potential electrolysis of the yellow solution at 
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the potential of the first wave resulted in a red solution which 
gave the ESR spectrum shown in Figure 5.6. The spectrum 
can be described as a 1:1:1 triplet of 1:4:10:16:19:16:10:4:1 nonets, 
consistent with hyperfine coupling to a single 14N nucleus (l = 
1, aN =2.64 G) and to four equivalent 14N nuclei (aN =0.76 G). 
Thus the reduction product is almost certainly the expected 
radical dianion, [(NC)2CC(CN)C(CN)2]2·. When the reduction 
was continued at the potential of the second polarographic 
wave, the ESR spectrum decreased in intensity and eventually 
disappeared. Continuing the reduction at the potential of the 
third wave, however, resulted in the appearence of another 
ESR spectrum, this time a 1:1 doublet of nonets. The nonet 
splitting was again 0.76 G, suggesting that the four terminal 
nitrile groups remained. The doublet splitting, 12.87 G, 
suggests that a hydrogen atom has replaced the unique nitrile 
group. These results are consistent with the mechanism: 

CN] - [CN] 2First wave: NchCN • e-. NchCN 
[ 

CN CN CN CN 

CN ] 2- [CN] 3Second wave: NchCN ~ NchCN 
[ 

CN CN CN CN 

j- cw
+H+ 

NCh c NJ 
[ 

CN CN 

Third wave: 
[
NCh c Nj - 2 [Nc h c N]2

CN CN CN CN 
Thus the trianion loses cyanide ion to generate a highly basic 
carbanion which abstracts a proton from the solvent. The 
resulting 1,1,3,3-tetracyanopropenide anion is then reduced to a 
dianion radical at the potential of the third polarographic 
wave. 
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Figure 5.6 (a) ESR spectrum

obtained on reduction of 1 mM
 
Me4N [(NC)2CC(CN)C(CN)2]

in DMF at a Hg cathode. (b)
 
"Stick spectrum" showing the
 
positions of the hyperfine
 
components. Reprinted with
 
permission from P. H.
 
Rieger, I. Bernal, W. H.
 
Reinmuth, and G. K.
 
Fraenkel, J. Am. Chern. Soc.
 
1963,85, 683, copyright 1963,
 
American Chemical Society.
 Magnetic Field/Gauss 

'. 01. 
~ 
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Example 5.3 Connelly and co-workers (15) have recently 
reported a cyclic voltammetrylESR study of the oxidation of a 
series of alkyne complexes, ArCr(COMRC2R'), Ar =116,C6Me6, 
R =R' =Ph, C02Et, C6H40Me, and R =Ph, R' =H. In all cases, 
a reversible one-electron oxidation was observed at ca. ~.24 V 
us s.c.e. in CH2Cl2 solution. ESR spectra of the oxidized 

(a) -l 
( 

I 20G I 

(b) ) 
f 

12~ 

Magnetic Field 0.2 0.0 ·0.2 -0.4 
EIV 

Figure 5.7 ESR spectra of (a) Figure 5.8 Cyclic voltammogram of 
[ArCr(CO)2(PhCCH))+ and (b) ArCr(CO)2=C=C(SiMeS)2 in CH2CI2 
[ArCr(CO)2(MesSiCCSiMeS)J+ in solution, v = 100mV s-l. Reprinted
CH2CI2 solution at room temp. with permiss-ion from N. G. 
erature. Reprinted with permiss Connelly, et aI., J. Chern. Soc .• 
ion from N. G. Connelly, et aI., J. Chern. Cornrnun.1992, 1293, 
Chern. Soc., Chern. Cornrnun. 1992, copyright 1992 Royal Society of 
1293, copyright 1992 Royal Society Chemistry.
of Chemistry. 
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solutions showed single-line spectra with four 5aCr satellites (l 
= 3/2, 9.5% abundance) and, in some cases, laC satellites with 
amplitudes consistent with the laC nucleus at one of two 
equivalent positions. The only exception was the PhC=CH 
cation which, as shown in Figure 5.7a, shows a 4.2 G doublet 
due to coupling to the alkyne proton. The Cr(O) complexes were 
prepared by the photochemical displacement of CO, 

hv 
ArCr(CO)a + RC2R' ~ ArCr(COMRC2R') + CO 

but attempted synthesis of the R = R' =MeaSi derivative gave 
not the expected alkyne complex but the vinylidene complex, 
ArCr(COh=C=C(SiMea)2. The cyclic voltammogram of the 
vinylidine complex, shown in Figure 5.8, exhibits a chemically 
irreversible oxidation, followed on the reverse sweep by a 
chemically reversible couple at about the potential expected for 
the alkyne complex. The ESR spectrum of the oxidized 
solution, shown in Figure 5.7b, is virtually identical to the 
spectra of the cations of the other alkyne complexes. 
Subsequent experiments with chemical oxidizing and 
reducing agents showed that conversion of the neutral alkyne 
complex to the vinylidene occurs only over the course of several 
minutes. The system thus is an example of a "square scheme" 
in which the oxidized and reduced forms of a couple have 
different stable conformations: 

-D
~ 1+ 

-e~1~ _ ~1~ 
oc...Cr"Cr" I ~c.,.. 

OC'" h~~C(SiMeah C ~C(SiMea)2 
oo 

tslow 
lfast 

.~ 1+ 

+ e' 
~1~ SiMea*,SiM"_O-
OC...Cr C'Cr C 

I /"OC'" I .........../"
 
C CC C o I 

SiMeao SiMea 
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Infrared SpectroBCOPY 

Absorption spectra in the infrared region, 650 -'4000 cm-l, arise 
through excitation of vibrational modes. For a diatomic molecule the 
vibrational frequency v is related to the bond stretching force constant k 
and the reduced mass u = mlm2l'(ml + m2) by 

v=~·f7i 
21t'V il 

Vibrational motion is quantized with energy levels, 

Ev =(v + 1/2) hv 

where h is Planck's constant and v is the vibrational quantum number 
(0, I, 2, ... ). The usual transition responsible for infrared absorption 
takes the molecule from the ground state (v = 0) to the first excited state 
(v = 1) and thus involves an energy difference h». 

Although the detailed vibrational analysis of a polyatomic molecule 
can be very complicated, in many cases, it is possible to think of the 
vibrations of particular bonds giving rise to infrared absorption signals. 
A vibration corresponding to the stretching of a strong bond between 
light atoms generally occurs at a higher frequency than the stretch of a 
weak bond, a bond between heavy atoms, or a bending motion. Mixing of 
vibrational modes-and the corresponding loss of identification with 
specific bonds-tends to be more extensive for modes of similar 
frequency. The higher frequency modes tend to be well separated and 
are not extensively mixed and therefore usually are assignable to 
specific bonds. 

The intensity of absorption is proportional to the square of the 
"transition dipole moment," which can be thought of as the 
superposition of the ground and excited vibrational state dipole 
moments. Vibrational modes with no change in dipole moment, e.g., the 
stretching modes in homonuclear diatomic molecules, have zero 
transition dipole moments and do not give rise to infrared absorption. 
The vibration of a bond between two atoms of different electronegativity, 
e.g., carbon and oxygen, generally has a large transition dipole moment 
and a strong absorption in the infrared. 

From this brief introduction, we see that the vibrational modes 
which are most useful for identification of the products of electrode 
processes are those which arise from the vibration of strong bonds 
between dissimilar light atoms. This means in practice that C-O, CoN, 
CoX, N-O, and N-X bonds (where X is a halogen) are the most useful 
infrared chromophores. The stretching frequencies of these bonds is 
often sensitive to changes elsewhere in the molecule so that a 
spectroelectrochemistry experiment can follow several species watching 
the same chromophore. 
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back plate 

Tefzel gaskets 

neoprene gaskets! , I I II 

Fipre 6.9 Expanded view of an optically-transparent thin-layer 
electrolysis (01TLE) cell; from reference (17). 

Several designs for optically-tranparent thin-layer electrochemical 
(OTTLE) cells have been reported (16), one of which (17) is shown in 
Figure 5.9. In this design, based on a conventional infrared cell, the 
working electrode is a gold microgrid, mounted between two Tefzel 
gaskets and contacted through a piece of platinum mesh. The front 
plate of the cell serves as the counter electrode and a fine platinum wire, 
mounted in the filling hole, is used as a pseudo reference electrode. 

Example 5.4 Zhang, Gosser, Rieger and Sweigart (18) 
reported a cyclic voltammetrylIR spectroscopic study of the 
oxidation of (mesitylene)W(CO)3 in CH3CN solution. Cyclic 
voltammograms such as that shown in Figure 5.10 show that 
the complex undergoes a chemically irreversible oxidation to 
form a product which is irreversibly reduced. Further work 
using a platinum microelectrode showed that the process 
remains chemically irreversible at scan rates up to 104 V s-l 
and at temperatures down to --45°C. Comparison of the cyclic 
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Figure 5.10 Cyclic voltammo .... 
s::gram of (mesitylene)W(CO)S, 1 
Q)

mM in CHSCN containing 0.1 M 1-0 

BU4NPF6 at 25°C, at a platinum 
1-0 
;j I5~ 

disk electrode, v = 0.4 V s·l. U
 

Reprinted with permission from
 
Y. Zhang, D. K. Gosser, P. H.
 
Rieger, and D. A. Sweigart, J.
 
Am. Chern. Soc. 1991, 113, 4062,
 
copyright 1992 American 1.0
 
Chemical Society.
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Figure 5.11 IR spectra obtained with an OTTLE cell containing 1mM 
(mesitylene)WCCO)s, 0.2 M BU4NPF6, in CHSCN at 238 K: (a) initial 
spectrum; spectra obtained during (b)-(d) oxidation and (dr-Ie) reduction. 
The entire sequence required about 10 minutes. Reprinted with perrniss
ion from Y. Zhang, et aI., J. Am. Chern. Soc. 1991, 113, 4062, copyright 1992 
American Chemical Society. 
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voltammograms with those of the chromium analog, known to 
undergo an irreversible two-electron oxidation, sugggested that 
the tungsten complex is oxidized by two electrons. The 
oxidation process was followed by monitoring the CO 
stretching bands in the infrared using an OTTLE cell, as 
shown in Figure 5.11. The bands at 1955 and 1870 em-I, due to 
(mesitylene)W(CO)a, decreased in intensity during oxidation 
and were replaced by new bands at 2113 and 2044 em-I. After 
passage of 2 Faradays of charge per mole of substrate, only the 
latter bands remained. The cell polarity was then reversed and 
the product reduced; the original bands grew in as the product 
bands decreased, and, after passage of 2 Faradays of reduction 
current, only the bands of (mesitylene)W(COh remained. The 
complete reversibility shown suggests that neither mesitylene 
nor CO ligands are lost in the oxidation. Similar results were 
obtained at room temperature, but the product decayed with a 
half-life of about 10 minutes to form (MeCN)aW(CO)a. These 
results suggested that the oxidation product was the 
acetonitrile adduct, [(mesitylene)W(CO)a(NCMe)]2+. 

To explain these results, the following mechanism was 
proposed: 

W -e- ~ W+ E1° =0.83 V 

k1 
W++S ~ WS+ 

k-1 

WS+ ~ WS2+ E2° =0.08 V 

where W = (mesitylene)W(CO)a and S = CHaCN. In other 
words, one-electron oxidation of the substrate forms a 17
electron intermediate which rapidly adds a solvent molecule to 
form a 19-electron species which is more easily oxidized than:	 
the starting material. On the reverse scan, reduction of WS2+ 
is followed by rapid ligand loss And spontaneous reduction of 
W +. The unique feature of this system is that both the 
association and dissociation steps are fast so that the oxidation 
and reduction peaks both correspond to two electrons. If K = 
k 11k_1 were very different from unity, one of the peaks should 
have shown a degree of chemical reversibility at fast scan 
rates. Digital simulation studies of the system showed that a 
good fit to the experimental cyclic voltammograms could be 
obtained fork1"" k-1 == 105 s·l. 
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5.3. STEADY-STATE VOLTAMMETRY 

AND POLAROGRAPHY 

One of the advantages of steady-state voltammetry using a 
xnicroelectrode or a rotating-disk electrode is that the diffusion 
equations, modified by the rates of coupled homogeneous reactions, can 
be solved in closed form. Since we can derive equations for current
potential curves, steady-state voltammetry provides a useful starting 
point for our study of electrode process perturbed by homogeneous 
reaction kinetics. 

Although the corresponding theory of homogeneous reactions in 
polarography is much less straightforward, the results are qualitatively 
similar and we will be able to extend the insights gained from the more 
exact theory of steady-state voltammetry to polarography. 

We will start with the general problem of codiffusion of two species 
interconverted by a homogeneous chemical reaction and derive some 
expressions which will be useful in discussions of steady-state 
voltammetry for the CE, EC, EC', and ECE mechanisms. The methods 
are very similar for microelectrodes and rotating-disk electrodes, in the 
end differing only in the interpretation of the parameters. 

Codi/fu.Bion ofTwo Reacting Speeie« 

In general, when a species X diffuses to the electrode without the 
complications of a homogeneous reaction, its flux at the electrode 
surface can be expressed by 

Jx(O) =-kD (Cx*- CXS)	 (5.1) 

where kD is the mass-transport rate constant, Cx* is the bulk solution 
concentration, and Cxs is the surface concentration. In this discussion, 
we will assume identical diffusion coefficients for all diffusing species. 
This assumption is for convenience rather than necessity. Expressions 
can be derived with different values of kD for each species, but the 
algebra becomes significantly more complex. 

In each of the kinetic schemes. two species are coupled by a 
chemical step, 

k i
 
Y ~ Z
 

k_I 

The steady-state diffusion equations for Y and Z are then modified to 

D V2Cy - klCy + k.lCZ =0	 (5.2a) 
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nV2Cz+klCy-k.lCZ=0 (5.2h) 

These equations can be solved by the introduction of new functions, C 
the total concentration of Y and Z, and C', which measures th~ 
departure of the Y-Z reaction from equilibrium, 

C = Cy + Cz (5.00) 

C =KCy - Cz (5.3b) 

where K =k1Ik.1' Substituting eqs (5.3) into eqs (5.2), we obtain the 
differential equations in C and C': 

V2C=O (5.4a) 

V2C' C'IXR2 (5.4b)= 

where XR, the reaction layer thickness, is given by 

XR = '../ k Dk1 + ·1 (5.5) 

Since 
Cy(x) = C(x) + C'(x) (5.00) 

I+K 

CzU)=KC(x) - C'(x) (5.6b) 
I+K 

the surface fluxes of Y and Z are 
_.--..::::-.:.~" JV- =_n(dCy(x») = __D...J(dC(x)1 + (dC'(x») 1 (5.7a)

\,,~~ ~ %-0 1 +Kl dx %_0 dx %-~ 

Jz.=_n(dCz(x») =_--.IL-[K(dC(X») _(dC'(X») 1 (5.Th)
'?"'{~~ ...dt' %-0 1 +K dx %-0 dx %-~ 

c\Jc, 

To proceed further, we must solve eqs (5.4) using the geometry and 
boundary conditions appropriate to rotating-disk electrodes and 
microelectrodes. 

Rotating.Disk Electrode. We found in §4.7 that the 
concentration gradient at a rotating-disk electrode is very nearly linear 
through the diffusion layer. Indeed, neglecting the forced convection 
term in eq (4.43) and setting V2 = d2/dx 2 in eqs (5.4), we find that the total 
concentration C is 

C(X) =Cs + (C'" - CS) (xIXD), O:!> x $ XD 

C(X) =C*. x > XD 
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~1Vbere C· =C(O) =Cy(O) + Cz(O), C· =Cx· + 9v* and XD is the diftUsion 
layer thickness given by eq (4.45). The concentration gradient then is 

dC(X») _ C· - C· 
( - XD (5.8)dx %=0 

Beyond the diffusion layer, we assume that the solution is homogeneous
 
with concentrations equal to the initial values and that the Y/Z reaction
 
is at equilibrium so that C'(x) = 0 for x > XD. The solution to eq (5.4b)
 
consistent with this boundary conditions is
 

C'(x) =C'· exp[(xD -xYxm - exp[-(xD -xYxR] , O:!>x :!>XD 
exp(xD'XR)- exp(-xD'XR) 

The first derivative, evaluated at the electrode surface, then is 

(dC'(x») =_~ (5.9) 
dx %=0 XR 

where
 

'_ tanh XD _ exp(xD'XR)- exp(-XD'XR) (510)
 
~-~ --~ .

XR exp(xD'XR) + exp(-xD'XR) 

an effective reaction layer thickness. Note that XR' -+ XR as XdXR -+ 

and XR' -+ XD as XdXR -+ O. Using eq (4.45) for XD, we can also write
 

~ = 1.61~t6,\/k1+k.1 

Substituting eqs (5.8) and (5.9) into eqs (5.7), we have the surface fluxes 

J.f=_D(dCy(x») =_--.IL-[C*-C.~] c r r ~}, 
~,~ %=0 1 +K XD XR' :...-- 

Jz.=_D(dCY(X») =_--.l2..-[KC*-C· +~] 
~~ %=0 1 +K XD XR' 

or, introducing the mass-transport rate constant 

kD=DlxD (5.11) 

and the kinetic parameter 

A= Xv/XR' (5.12) 

we have 

J.f =-~[C*-C· - AC·] (5.13a) 
I+K 

Jz· =-~[K(C*- CS
) + AC··] (5.13b) 

I+K 
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Figure 5.12a shows the kinetic parameter A. as a function of the 

272 

r.d.e. rotation speed 0) for (k1 + k.1) =1- 1()4 s-l. 

Microelectrodes. To solve eqs (5.4), we will 
diffusion so that the del-squared operator is 

V2_~ iJi 
- dr2 + r dr 

With the boundary conditions, C(r} ~ C·, C'(r} ~ 
concentration functions are found to be 

C(r} =C*-~(C· -C·) 

C'(r} =C'· r: exp r~r 

assume spherical 

0 as r ~	 -, the 

(5.14a} 

(5.14b} 

where ro is the electrode radius. The surface gradients of these 
functions are 

(de) =C· - C· 
dr r_". ro 

(~)	 =-C·(f-+f-)dr ,._". 0 R 

Substituting these in eqs (5.7), we obtain eqs (5.13), the same expressions 
for the surface fluxes as found for r.d.e. electrodes, but with different 
definitions for the mass-transport rate constant! 

kn =D1ro	 (5.15) 

and the kinetic parameter 
A. =XR + ro (5.16) 

XR 
, ' 

Figure 5.12b shows the kinetic parameter A. as a function of electrode 
radius ro for (k1 + k.1) =10 - 107 s·f. 

Dropping Mercury Electrode. Most of the conclusions we will 
draw regarding the effects of coupled homogeneous chemical reactions 
on steady-state voltammograms will apply qualitatively to polarography. 
Applying the correction for the expanding mercury drop to eq (4.13), we 
have an approximate expression for the diffusion layer thickness at the 
drop time 

A~ 
XD ""V 3	 Dtd 

1 Equation (5.15) applies to a spherical or hemispherical electrode; for an inlaid disk 
electrode, the mass-transport rate constant is kD = 4D1rcro· 

.. Sec. 5.3 Steady-State Voltammetry and Polarography	 278 

The mass-transport rate constant and kinetic parameter then are 

kD =1L ... V3D .	 (5.17)
XD 71rtd 

A. = El...	 (5.18)
XR' 

where td is the drop time, 

XD ... A /71C td(k1 + k J 
XR 'V 3 . 

and XR' is given by eq (5.10). Figure 5.12c shows the kinetic parameter A. 
as a function of drop time t« for (k1 + k.1) =0.1- 103 s,l. 

100 

A. 

10 

100 10000.1 1 10 1 10 
mlrads·1 ro/llm td/s 

Figure 5.12 The steady-state kinetic parameter A for a range of rate 
constants. kl + k.l. as a function of (a) r.d.e. rotation speed 01. (b) 
microelectrode radius roo and (c) d.m.e. drop time td. 

Note that the dynamic range for the d.m.e. is rather small, that for 
the r.d.e. is larger, and for microdisk electrodes very large indeed. This 
is mainly a reflection of the fact that the relevant time scales are 
proportional to td, 110), and lIro2 for the d.m.e., r.d.e., and microelectrode, 
respectively (see §5.1), and these parameters can be varied over about 
factors of 10, 100, and 104. The d.m.e. is sensitive to slower rate processes 
than the r.d.e. or a rnicroelectrode, again reflecting the difference in time 
scales: up to 10 s for a d.m.e., 1 s for an r.d.e., and 50 ms for a 
microelectrode. 
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We are now prepared to calculate steady-state current-potential 
curves for a variety of homogeneous reaction schemes.! 

Preceding Chemical Reaction 

When 0, the reactant in an electron-transfer step, is in equilibrium 
with an electroinactive species Y, the resulting CE mechanism can be 
written as 

kl 

Y ~ ° 
k-l 

O+e- ~ R 

When E «Eo, every °arriving at the electrode surface is reduced, but 
the current will depend on the rate and equilibrium constant of the 
preceding reaction step. If the reaction is very slow, the current i will be 
proportional to the equilibrium concentration of 0, but for a very fast 
reaction, i will be proportional to the total concentration of Y and O. 
Between these limits, the current may afford a measure of the rate 
constants. As we saw in §4.9, the half-wave potential can be used to 
determine the equilibrium constant if the y/o equilibrium is very fast, 
but we will see that, for slower reactions, E1I2 depends on the rate as well 
as the equilibrium constant. 

Identifying Z with 0, we can apply the results of the general 
codiffusion problem. Since Y is electroinactive, its surface flux is zero, 
and eq (5.13a) gives: 

C" = C*_C
s 

A 
Substituting this into eq (5.13b) gives 

JOs =- kD [C* - CS] =-kD [C· - CyS - COS] (5.19) 

which is consistent with the notion that the flux oro is related to the 
overall concentration gradient. From the definition of C', we can also 
write 

C'S =KCys - Cos 

Equating the two expressions for C'», and solving for CyS, we have 

Cys = C* - Cos(l - A) 
1 + A.K 

Substituting this into eq (5.19) gives 

1 For further discussion of kinetic studies using the r.d.e. electrode, see Albery (A6); 
essentially identical equations were derived for the microelectrode case by Oldham 
(19) 
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Jo. =_kD[AKC. - A,(l + Ir> Cd]
 
1 + AK
 

The current is then
 

i =FAkD [AKC. - 1..(1 + K) Cc!] (5.20)
1 +AX 

When the electrode potential is sufficiently negative that COs =0, we 
have the limiting current 

it. =FAkDC· [----lK.-l (5.21) 
1 + AKJ 

The current can also be written in terms of the flux of R, using eq
," rs.n, Assuming that CR· =0, we have 

,,',.~ 

\\ i = FAkDCRs (5.22) 

.~ Subtracting eq (5.20) from eq (5.21) and dividing by eq (5.22), we have 

:.:~.'.~::... iL ~ i = [A,(l + K)] Co;fl . l 1 + AK CR 

·v.Evaluating the surface concentration ratio using the Nernst equation 
and taking logs, we have the Heyrevsky-Ilkovie equation, eq (4.10) 

iL-i
E =E1I2-F

'0'" In "T" 
with 

BTl I+AKE1I2 =EO + F n A,(l +K) (5.23) 

The behavior of the CE reaction scheme can be characterized in 
terms so-called kinetic zones corresponding to limiting cases of eqs (5.21) 
and (5.23). When AX » 1, either because the reaction is very fast or 
because K is large, the current is limited by the rate of transport and is 
proportional to kn. When K is also large, the half-wave potential is 
unshifted from EO. In this case Y is really unimportant to the electrode 
process; the kinetic zone of pure diffusion control (DP) thus corresponds 
to the limit: 

DP: K> 10, AK> 10 

When K < 10 but AX > 10, the reaction is fast and equilibrium is 
achieved close to the electrode surface. The current is still diffusion 
limited, but the half-wave potential then depends on K and is more 
negative than EO: 
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E 112= EO + lIT.. In -..K..- (5.24)
nF l+K 

This modified diffusion-controlled zone (DM) is then characterized by 
the limits: 

DM: K < 10 < AX 

In the DM zone, half-wave potential data can be used to determine 
formation constants and formulas of complex ions as discussed in 
Section 4.9; eq (5.24) is a simplified form of eq (4.56). 

When K is small and the reaction is slow so that )J( is also small, 
the current is controlled by the rate of the A ~ 0 conversion, 

it. =nFAkDC*AX 

and the half-wave potential is shifted, 

E1I2 =ED-RI. In A 
nF 

This is the pure kinetic zone (KP) with limits: 

KP: )J( < 1/10, A< 1/10 

In the kinetic zone intermediate between pure diffusion and pure 
kinetic control, the intermediate kinetic zone (KI), the current and half
wave potential are influenced both by the rate of transport and by the rate 
of the reaction. The kinetic zones are summarized in Figure 5.13. 

2 i ' , i 0 , : , S , i • ; • : i ' • , i i 
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Example 6.6 Albery and Bell (20) employed r.d.e, voltammetry: 
to measure the rate of proton transfer from "acetic acid to water, 
taking advantage of the fact that the free acid is eiectroinactive 
and that the reduction of Hrfaq) is quasi-reversible at a 
platinum electrode. The electrode process is 

kl 
HOAc ~ Hrfaq) + OAdaq) 

k.l 

H+(aq) + e- ~ ~ H2(g) 

In order to partially compensate for reduction of H+(aq) from 
the dissociation of water, the experiment used two cells, each 
equipped with a rotating platinum disk electrode arranged in a 
bridge circuit such that the applied potentials and currents 
were identical when the bridge was balanced. One cell 
contained 0.005 M HCI in 0.1 M KCI, the other 0.02 M acetic acid 
in 0.1 M potassium acetate. The applied potential was adjusted 
to bring the cell current onto the limiting plateau. The rotation 
speed of the r.d.e. in the strong acid cell, Cl>H, was adjusted to 
balance the bridge, holding Cl>HA constant. Since the currents 
and electrode areas were identical, eq (5.17) gives 

.s: =kHCH* =kHACRA* ....M..-.. 
FA 1 +)J(
 

Using eq (5.11) for the mass-transport rate constants and eq
 
(4.45) for the diffusion-layer thicknesses, we obtain 

~ =(DHA)~3(Cl>HAl1l2 =~(1+-.L) 
kH DH Cl>H CRA* AK 

Since kl «k_l[acetate], Kvk 1 + k.1[acetate] '" YKk1. With eqs 
(5.5), (5.10) and (5.12),we obtain 

~) 1I 2 ={ PH )~~..QtL)[1 + ~(DHAIv)1I6](
COH \DHA \CHA 1.61 YKk1 

Thus a plot OfYCl>HA!Cl>H us. YCl>HA, such as shown in Figure 5.14, 
gives a straight line. The ratio of the slope to the intercept is 

slope _ lDHA/V)1I6 
intercept - 1.61 YKk1 

With separately determined values of DHA and v, Albery and 
Bell foundKkl =17.0 sol at 25°C. Thus withK =1.75 x lO-5, 

kl =9.7 x 105 s·l, k.l =5.5 x 1010 M-ls·l 

These rate constants are in good agreement with similar 
parameters determined by the temperature-jump method. 
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The effect of a preceding chemical step in d.c, polarography is 
qualitatively similar to that found for steady-state voltammetry. When 
klKtd « 1. the system is in the pure kinetic zone and the only time 
dependence of the current is through the change in electrode area; thus 
the current is expected to increase as td2l3. Since the time scale for d.c. 
polarography is so long. however. only relatively slow reactions will meet 
this requirement.

It was through these so-called polarographic kinetic currents that 
the voltammetric study of coupled chemical reactions began. The first 
theoretical work was by Brdieka and coworkers (21) in the 1940's, using 
both a reaction layer model (some aspects of which we have used above) 
and a more direct approach to solution of the modified diffusion 
equations (see §5.4). 

RudolfBrdi&a (1906-1970) was Heyrovsky's student in Prague and 
continued as his assistant until 1939. After World War II, Brdi&a was 
appointed Professor of Physical Chemistry at the Charles University and 
later headed the Physical Chemistry Institute of the Czechoslovak 
Academy of Sciences; he played a leading role in rebuilding Czech 
science after the war. Brdi&a was responsible for many of the early 
developments in voltammetric theory, including explanations of kinetic 
and catalytic polarographic waves and adsorption effects. 

Sec. 5.3 Steady-State Voltammetry and Polarography 

Following Chemical Reaction 

When R. the product of the electron-transfer step: is consumed by a 
chemical reaction. the resulting EC mechanism can be written as 

O+e- +2 R 

k1 
R +2 Z 

k-1 
When E «Eo, the current is limited by transport of 0 to the electrode 
surface and should not be affected by the following reaction. The 
limiting current then will be diffusion controlled and independent of the 
rate of the chemical step. However, ifR is consumed fast enough that its 
concentration at the electrode surface is significantly reduced. we expect 
a positive shift in the half-wave potential. 

Using the general results described above. it is easy to show that the 
half-wave potential is given by 

Ell2 =EO + B..T.. In A(1 +K) (5.25)
F A+K 

where K = k1/k_1 and the kinetic parameter Ais given by eq (5.12). (5.16). 
and (5.18) for r.d.e, microelectrode, and d.m.e. experiments. respectively. 
Since A~ 1. E 1/2 is shifted to positive potentials by an amount which 
depends on the homogeneous rate constant. 

If the R -+ Z reaction is completely irreversible. lJK =0 and eq (5.25) 
becomes 

E 112 =EO + Rl In A (5.26) 

At 25°C. we expect a shift of +59 mV for each 1O-fold increase in A. 
For rotating-disk electrodes. Figure 5.12a shows that A is 

proportional to fro for k greater than about 100 s-l so that a plot of ElJ2 VS. 
In co should be linear with a slope of RT/2F. If EO is known the rate 
constant can be computed from the shift. Rate constants down to about 1 
s·l can also be determined by fitting the curves of Figure 5.12a. 

Similarly for microelectrodes (Figure 5.12b). rate constants greater 
than about 10 s-l can be determined from shifts in the half-wave 
potential. For k greater than ca. 1000 s-l. an independent means of 
determining EO is required. 

The polarographic diffusion current and wave shape are not 
affected by a following reaction. According to (5.26). the half-wave 
potential is shifted by (RT/F) In A. where A=V(71d3) ktd. More detailed 
calculations by Kern (22) show that A="5.36ktd (a difference of only 4 
mV at 25°C from our approximate result). 
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Catalytie ReaetiOnll 

When the product of an electrode couple reacts with another 
solution species P to regenerate 0, the net effect is catalysis of the 
reduction of P by the OIR couple, the so-called EC' mechanism: 

0+ n e- (:! R 

k 
P+R --. Q+O 

If the reduction of P by R is spontaneous, then according to 
thermodynamics, P is more easily reducible than 0. The kinetic scheme 
requires that the reduction of P at the electrode be so much slower than 
the homogeneous redox reaction of R and P that the reduction of P at the 
electrode can be neglected. This might seem an unlikely situation, but it 
is actually rather common. For example, the electrolytic reduction of 
hydrogen peroxide is slow, but the homogeneous reaction of HzOz with 
Fe2+ is fast. Thus the electrode process when Fe3+ is reduced in the 
presence of HzOz is 

Fe3+ + e- (:! Fe2+ 
f"':! Fe2+ + ~ H202 + H+ --. Fe3+ + H2O 
I J' In effect, the Fe3+lFe2+ couple catalyzes the electrolytic reduction of
I I HzOz. These so-called catalytic currents were discovered by Brdieka andI ,I'

Tropp (23) in the 1930's; the theoretical model was developed (24) just:j' 
after World War II.I! If Co· « Cp·, we can assume pseudo-first order kinetics and

! ' identify ° and R with Y and Z, respectively, in the general scheme
! J 

discussed above. We set k_1 =k[Pl and kl =K =0; thus C' =-CR. Since 
J08 =- JR8 , we find that JO. =kDA.C's =-kDA.CR8 and C· =C». The 
current then is 

i = nFAkDA. (C· - COS) 

tt. = nFAkDA.CO· (5.27) 

Combining these expressions, we again recover the Heyrovsky-Ilkovic 
equation with ElIz = EO. 

For a slow reaction, A. ... 1 and the limiting current is unaffected by 
the coupled reaction. 

When the reaction is fast enough, say A. > 10, then A. = ro/xR (for a 
microelectrt~kbsf = XDlXR (for a r.d.e.), or A. = Y(77t13) ktd (for a d.m.e.), 
and kDA. :::! • The limiting current density then is independent of 
electrode size, rotation speed, or drop time (aside from the variation in 
drop area with drop time) and gives a measure of the rate constant, 
provided the electrode area and the diffusion coefficient are known. 
Alternatively, the limiting current can be measured in the presence and 
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absence of P; the ratio of these limiting currents is A. from which the rate 
constant can be extracted. 

For polaroflaphy with A.» 1, we expect a current enhancement 
factor of Y(71t13)td. An analysis specific to the d.m.e. by Birke and 
MarzlufT (25) gives a rather smaller factor, Y1.34ktd, though the 
dependence on rate constant and drop time are the same. Birke and 
Marzluff also give equations to correct for departure from pseudo-first
order conditions. 

For a catalytic process with A. » I, the limiting current in a steady
state voltammogram or polarogram is increased by a factor of A., i.e., by a 
factor proportional to the square root of the pseudo-first order rate 
constant k', Since k' = k[P], a means is provided for the analysis of 
electroinactive species such as H202 which react with electrode products 
such as FeS+. Numerous polarographic methods have been developed 
which take advantage of catalytic processes, and most of these should be 
extendable to steady-state voltammetry using r.d.e.'s or microelectrodes. 

Example 5.6 Birke and Marzluff (25) measured 
polarographic limiting currents for Cr(NHS)63+ in the presence 
of chlorite ion in NH4+/NHs aqueous buffer solution, 

Cr(lll) + e- (:! CrUD 

The catalytic reaction, 

4 Crfll) + CI02' + 4 H+ --+ 4 Cr(IIl) + CI- + 2 H20 

produces four Cr(lll) for each CI02- consumed. Thus k[CIOz-] 
= 4k '. The experimental data and the second-order rate 
constants derived therefrom are presented below (the drop time 
was 4.85 s). 

[Cr(III)]/mM [CIOz-]lmM it/i» k/1Q4 M-ls-l 

0.050 1.00 19.4 1.44 

0.075 1.00 20.4 1.59 

0.100 1.00 16.7 1.07 

0.050 0.50 14.6 1.63 

0.050 0.25 10.5 1.00 
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The BeE Mechanisms 

When the product of a chemical step following electron transfer is 
electroactive in the potential range of interest, the response of a 
voltammetric experiment can be rather interesting. The nature of the 
ECE mechanism depends on whether the product of the chemical step is 
reducible or oxidizable and on whether the half-wave potential of the 
second step is greater or less than that of the first step. The 
mechanisms can be written (for one-electron steps): 

EcE Mechanism: 01 + e- i:! R1 E 1° 
k 

R1 -+ 02 
02 + e- i:! R2 E2° 

EcE Mechanism: 01 + e- i:! R1 E 1° 
, k
 
r
 R1 -+ R2 
I 
j 02 + e- i:! R2 E2° 

For an ECE process with E 1° < E2° (case IA), 02 is reduced at 
potentials where R1 is formed and, if the chemical step is fast enough, 
the overall process will appear to involve two electrons. When E1° > E2° 
(case m), 02 is stable at potentials near E 10, and the process is 
indistinguishable from an EC mechanism. However, 02 will be reduced 
at more negative potentials, so that for E < E2°, case m is identical to 
case IA. 

Ii For an ECE process with E 1° < E2° (case lIA), R2 is stable at 
potentials where R1 is formed and the process is again indistinguishable 
from the EC mechanism. Case lIA can be distinguished from an EC 
process by reversal techniques (double potential step 
chronoamperometry, cyclic voltammetry, etc.) since the oxidation of R2 
would then contribute to the reversal current. When E1° > E2° (case 
lIB), 01 is converted to 02 via R1 and R2. The overall process then is 
neither an oxidation nor a reduction and, if k is large enough, the 
current may be nearly zero. 

In all of these cases, the homogeneous electron-transfer 
(disproportionation) reaction 

01 + R2 i:! 02 + R1 

may be important. The effect of this reaction depends on the case and on 
the technique involved. 

Sec. 5.3 Steady-State Voltammetry and Polarography 

For the EcE mechanism, we identify, R1 and 02 with Z and Y, 
respectively, in the general scheme and assume that only 01 has a non
zero bulk concentration so that C· =O. Using eqs (5.1) and (5.13), the 
fluxes are 

JOlS =- kD (COl· - COlS) 

JRlS =- kD AC's 

J02S =kD(CS + AC'S) 

JR2S =kDCR2s 

Since JRls = -JOl
s and JRl =-J02s, and the surface concentrations of 01 

and R1 and of 02 and R2 are related by the Nemst equations for the two 
couples, we have four equations in the surface concentrations: 

- AC's =(COl· - COlS) 

Cs + AC'S=- CR2S 

COlS/CRlS = 91 

C02s/CR2s =92 

Solving for the surface concentrations, we obtain 

Co~ =-.J!LC0 1• 
A+ 91 

B_ (A-I) C.CR2-( \1 J Ot1+92J\A+9 

The current is i =-FA (JOls + J02S) or 

i =FAkD [COl· - COlS + CR2S] 

Substituting the surface concentrations, we have 

i=FAkDC0 1. [--...1....- + A-I ] (5.28) 
A+ 91 (1 + 9J(A + 9J 

The limiting current for 91,92 « 1 is 

iL =FAkDC0 1• [2 - ~] (5.29) 

When the chemical step is fast, A. » 1, the process corresponds to a two
electron wave. When the reaction is slow, A=- 1 and we expect a one
electron wave. 

For the ECE mechanism, we identify R1 and R2 with Z and Y, 
respectively, and again assume that only 01 has a nonzero bulk 
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concentration so that C" =0, K =0. The fluxes are the same as in the 
first case except 

JR2s =kD(CS + AC'S) 

Jo2s = kDC02s 

The surface concentrations are found to be identical to those computed 
above, but the current is i = - FA (JOls + J02S) or 

i = FAkD [COl* - COlS - C02S] 

Substituting the surface concentrations, we have 

i =FAkDC * [__A_ - 82(A-l1 ] (5.30)0 1 
A+8l (1+8J{A+811 

When the electrode potential is sufficiently negative that 81 and 82 are 
both near zero, the current is diffusion limited and corresponds to one 
electron, independent of the rate of the chemical step. 

We now consider each of the four cases and assess the effect of the 
·1. homogeneous disproportionation process. 

Case IA. When El° < E2° for the ECE mechanism, 82 is very small 
whenever 81 is small enough that significant current flows. Thus eq 
(5.28) reduces to 

(2A-l) i =FAkDCO'* -
A+ 81 

which corresponds to a wave of shape given by the Heyrovsky-Ilkovic 
equation with it. given by eq (5.29) and El/2 by eq (5.26). Thus the 
apparent number of electrons is (2 - llA) and the wave is shifted to a 
more positive potential, as expected from the EC part of the mechanism. 
The disproportionation reaction 

01 +R2 ~ 02+ Rl 

has an equilibrium constant 
F(Et-E2°)

K =exp::......:::~-=...:..
RT 

and, for case lA, K «0. Consider the situation when E '" El°. The effect 
of the Rl ~ 02 reaction is to reduce the Rl concentration at the electrode 
surface, resulting in a positive shift of the half-wave potential and an 
increase in current (02 is almost entirely reduced to R2 at the electrode). 
When disproportionation is allowed, 02 is scavenged by Rl to produce 01 
and R2, but since there is very little 02 in solution, the effect on the 
current is very small. Voltammograms computed from eq (5.28) are 
shown in Figure 5.15a for A= 1,2, and 20. 

Sec. 5.3 Steady-State Voltammetry and Polarography 

Case m. When El° > E2° for the ECE mechanism, two waves are 
expected from eq (5.28). The first wave involves one electron and is 
indistinguishable from that given by an EC mechanism; the second 
wave has El/2 =E2° and n2 =1- llA. Although the disproportionation 
equilibrium constant is very large, the Rl ~ 02 reaction is only a second
order perturbation of the position of equilibrium, and the inclusion of 
disproportionation has a negligible effect on the current. Computed 
voltammograms are shown in Figure 5.15b. 

Curves showing napp as a function of the rate constant of the 
chemical step have been computed by Marcoux, Adams, and Feldberg 
(26) for cases IA and IB for various values of the equilibrium constant K. 
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Figure 5.15 Computed steady-state voltammograms for the ECE 
mechanisms for A ee 1, 2, and 20. (a) Case IA; (b) case IB; (c) case lIA; 
and (d) case lIB (the solid and dotted lines correspond, respectively, to 
infinitely slow and infinitely fast disproportionation equilibria). For 
cases IA and IIA, E1 ° =-0.4 V, E2° =0.0 V, and for Cases IB and lIB, El° 
=0.0 V, E2° =-0.4 V. 
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Case lIA. When E1° < E2° for the ECE mechanism, 91 » 92, and 
the second term of eq (5.30) will be close to 0 whenever the first term is 
significantly greater than zero. Thus case lIA is really just an Ec 
process as far as steady-state voltammetry is concerned. A one-electron 
wave is expected, which shifts to more positive potentials as the rate of 
the chemical step increases. The effects of disproportionation are 
completely negligible. Voltammograms, computed using eq (5.30) are 
shown in Figure 5.15c for A=1, 2, and 20. 

Case lIB. When E 1° > E 2° for the ECE mechanism and the 
potential is in the vicinity of E1°, we have 91 «92. We then expect a 
wave with n1 =1/A and half-wave potential shifted as expected for an EC 
process. A second wave is expected with E1I2 =E2° and n2 =1 - ItA (the 
total limiting current corresponds to one electron). When E1° > E > Ezo, 
the effects of disproportionation are very significant. Here 01 is reduced 
irreversibly to R1, which reacts to form Rz. At the electrode, Rz is 
oxidized and the net current is diminished. Disproportionation 
increases the efficiency of this process since any R2 which escapes from 

jj; the electrode is scavenged by 01, leading to a further decrease in theI current. Steady-state voltammograms, computed using eq (5.30) and by a ~i 
digital simulation method (assuming that the disproportionation 
reaction is infinitely fast), are shown in Figure 5.15d. 
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In practice, disproportionation reactions are not instantaneous 
(although homogeneous electron-transfer processes are often diffusion 
controlled). Thus experimental results for a given value of A would be 
expected to lie between the limits suggested by the curves of Figure 5.15d. 
Kinetic information, obtained from half-wave potential shifts or limiting 
current ratios, thus is at best semiquantitative for Case lIB. 

For Cases IE and lIB, the range of rate constants which can be 
estimated from limiting current ratios is quite wide. If we assume that 
the limit of accurate measurement of wave height ratios corresponds to 
0.1 < 1IA < 0.9, 00> A> 1.1), then Figure 5.12 suggests that rate constants 
in the range 1 - 1000 s-l are accessible with an r.d.e, 10 - 106 s·l for 
microelectrodes, and 0.1 - 10 s·l for the d.m.e. 

5.4 CHRONOAMPEROMETRY AND 

CHRONOPOTENTIOMETRY 

Having examined the CE, EC, EC', and ECE mechanisms from the 
point of view of steady-state voltammetry, we are now prepared to see 
how electron-transfer processes influenced by homogeneous chemical 
reactions behave when studied by chronoamperometry-current-time 
curves at constant potential-and chronopotentiometry-potential-time 
curves at constant current. 

Preceding Chemical Reaction 

Solution of the planar diffusion problem, using the homogeneous 
kinetics of the Y ~ 0 equilibrium as a boundary condition (see Appendix 
4), assuming equal diffusion coefficients, K « 1,1 and a potential 
sufficiently negative that CoCO) =0, results in the following equation for 
the current 

i=nFAC* YDKk l exp(Kk1t)[1-erfYKk1t] (5.31) 

This rather complex expression was first derived by Koutecky and 
Brdicka in 1947 (21). As we will see in §6.3, the same current function is 
obtained in the case of slow electron-transfer kinetics. Thus, the 
electrode response to a slow homogeneous reaction preceding electron

1 Since we assume the electron transfer process is nernstian and therefore infinitely 
fast, the current should be infinite at zero time due to the small amount of 0 initially 
present; for small K, this initial transient is of negligible importance after a few 
milliseconds. 
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transfer is closely resembles slow electron transfer though we will St 
that the two phenomena are easily distinguished. Current-time Curve 
for several values of Kk 1 are shown in Figure 5.16. For small Kk 1. tht 
current decays relatively slowly and extrapolation to zero time may be 
possible, 

i(O)=nFAC*YDKk l 

allowing determination of the rate parameter Yktf(. 

Following Chemical Reaction 

Reversal techniques such as double potential step 
chronoamperometry and current reversal chronopotentiometry are 
particularly appropriate to the study of chemical reactions which follow 
electron transfer. Since these techniques sample the concentration of 
the product of the electrode process a short time after it is formed, they 
lead to a straightforward measurement of rate. 
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Figure 5.17 (a) Theoretical working curves for double potential step 
chronoamperometry applied to the EC mechanism. The curves correspond to various 
values of tIt, where t is the time of the second potential step and t is the current 
measurement time after each potential step. (b) Kinetic plot for the rearrangement of 
hydrazobenzene followed by double potential step chronoamperometry: 1.0 mM 
azobenzene in 1.98 M HCI04 in 50% aqueous ethanol, t = 200, 300, and 400 ms. 
Reprinted with permission from W. M. Schwartz and I. Shain, J, Phys. Chern. 1965, 
69, 30, copyright 1965 American Chemical Society. 
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Sec. 5.4 Chronoamperometry and Chronopotentiometry 

In the case of double potential step chronoamperometry, the 
potential is stepped to a point where every' 0· molecule is reduced on 
arrival at the electrode. At time r, the potential is stepped to a point 
where every R is oxidized on arrival (see Figure 4,17). If the cathodic 
current is measured at time t after the first potential step and the anodic 
current is measured at time t after the second step (total time t + r), eqs 
(4.25) and (4.26) can be combined to give the ratio ialic: 

~a = _ «:kt,tlt) + ~ t (5.32) 
lc t + t 

where ep(kt,tlt) =1 when k =0, When a following chemical s~ consumes 
R, the function ep(kt,tlt) becomes smaller, approaching vtll.t+ t) as k 
increases. Determination of the function requires solution of the linear 
diffusion problem under the appropriate boundary conditions, a task 
accomplished by Schwartz and Shain (27). The function turns out to be 
an infinite series of hyperbolic Bessel functions which must be evaluated 
numerically. Schwartz and Shain provide a set of working curves, 
reproduced in Figure 5.17a, from which a value of kt can be read given 
the anodic-to-cathodic current ratio measured for certain values of tit. 
The experiment works best for kt '" 1 and for tit less than 0,5, 

Example 5.7 Schwartz and Shain (27) employed double 
potential step chronoamperometry to study the rate of the 
benzidine rearrangement of hydrazobenzene. Azobenzene 
undergoes a fast ECEC reduction to hydrazobenzene, 

o-N=N-Q :~:+. o-NH-NHO 
which undergoes acid-catalyzed rearrangement to benzidine 

o-NH-NHO H2NV-O-NH2
k. 

Hydrazobenzene is oxidized at about the same potential where 
azobenzene is reduced, but benzidine is electroinactive in this 
potential range. Thus the double potential step method could 
be used to monitor the amount of hydrazobenzene remaining at 
various times after formation. Anodic-to-cathodic current 
ratios were measured for tit = 0.1, 0.2, 0.3, 0.4, and 0,5 for 
various values of t, the switching time. Values of kt were read 
off the working curves, multiplied by tit to obtain kt, and kt 
plotted us. t as shown in Figure 5.17b for data obtained for t = 
200, 300 and 400 ms, [azobenzene] = 1 mM in 1.98 M HCI04 in 
50% aqueous ethanol solutions, The slope of this plot is the rate 
constant k = 23 s-l. Similar plots were obtained for other acid 
concentrations with rate constants ranging from 0,6 to 90 s-l. 
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Current-reversal chronopotentiometry is also applicable to the 
study of EC systems. In chronopotentiometry, a constant current is 
applied to the electrochemical cell and, when the electroactive material 
available near the electrode is no longer able to supply the required 
current, the potential swings to that of a new couple (e.g., the solvent Or 
supporting electrolyte). This transition time 't is proportional to the 
square of the concentration of the electroactive species, eq (4.27). In the 
current reversal technique, the current is reversed before the cathodic 
transition time is reached and an anodic transition is observed which 
corresponds to the reoxidation of R. IfR is consumed in a chemical step, 
the anodic transition time will be correspondingly shorter. 

Theoretical analysis of the EC reaction scheme for 
chronopotentiometry is straightforward using Laplace transform 
techniques, and this case is discussed in some detail by Bard and 
Faulkner (B12). It can be shown that the reverse current transition time 
't and the time of current reversal t are related by 

erf fli(t + 'tJ =2 erf flit (5.33) 

Solutions of this equation are plotted as 'tIt vs. kt in Figure 5.18. This plot 
serves as a working curve whereby measured values of 'tIt can be used to 
find kt, and knowing t, the rate constant k. 
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Sec. 5.4 Chronoamperometry and Chronopotentiometry 

Example 5.8 Testa and Reinmuth (28) used 
chronopotentiometry to measure the rate of hydrolysis of p
benzoquinone imine: 

O=Q=NH + H20.......i...-.-. 0=Q=0 + NH3
 

Since this reaction is relatively rapid, the imine cannot be kept 
in solution without rapid hydrolysis. To overcome this 
problem, the imine was produced in situ by the electrolytic 
oxidation of p-aminophenol: 

H0-o-NH2 - O=Q=NH + 2e-+2W 

A constant anodic current of 1.29 rnA was passed through a 
cell with a platinum electrode (A =12.6 cm2) for times ranging 
from 3 to 30 s; the current was then reversed and the amounts 
of imine and quinone in solution near the electrode measured 
chronopotentiometrically. Some typical experimental curves 
are shown in Figure 5.19. Notice that the ratio of the quinone 
transition time, 't2, to the imine transition time, 'tlo increases 
with increasing time of electrolysis. The ratio 't11t measured 
from a chronopotentiogram was used with the working curve 
of Figure 5.18 to determine a value of kt. Data for various 
electrolysis times gave a rate constant k =0.103 ± 0.003 s·l for 
the hydrolysis reaction in 0.1 M H2S04 at 30°C. The transition 
time corresponding to the quinone, 't2. provides an internal 
check on the experiment since the sum 't1 + 't2, should be 
exactly t13, independent of the rate of the chemical step. 

40 
tis I 1:2

Figure 5.19 Current-reversal sochronopotentiometric curves for the 
oxidation of p-aminopbenol (l mM in 
0.1 M H2 SO 4 solution) and the a:> 
hydrolysis of p-benzoquinone-imine; t 
is the time of anodic electrolysis, 1:1 10and 1:2 are the transition times 
corresponding to reduction of the imine 
and quinone. Reprinted with permiss o 
ion from A. C. Testa and W. H.
 
Reinmuth, Anal. Chern. 1960,32, 1512,
 
copyright 1960 American Chemical 0.8 0.6 0.4 0.2 0.0 -0.2
 
Society. EIV
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Catalytic Reactions 
,:f 
i' For the EC' mechanism r 0+ n e- +:2 R 

k 
R+P ~ O+Q 

the current is enhanced by the feedback of R to 0 and 
chronoamperometry provides a rather direct measure of the rate 
constant k. 

When the potential is stepped to a sufficiently negative value that 
CoCO) =0, the limiting current can be shown to be (29) 

it:=nFACo· [fIJ()lii exp(-k't) + YDok' erf Yk't] C5.34) 

or 
iljiD =exp(-k't) + fiiTi't erf Yk't (5.35) 

. ~ -[ 

where k' =kCp and iD is the unperturbed diffusion-limited current, eq 
(4.7). For short times, the error function is near zero, the exponential 
close to one, and tt. '" io. For long times, k't » I, the exponential 
approaches 0, the error function goes to 1, and eq (5.34) becomes 

4 

k' =10 
4 

i1iD 
~ 3 
'S 3 

bt
~ 

2 2 
KI#:.e 

es ..' '"-" 
1 1 ..' ..'IJ 
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Figure 5.21 Chronoarnperornetric 
curves for EC' process with k' = 0, 
Figure 5.20 Chronoamperometric 

response curve for catalytic 
0.1,1 and 10 s·l. electrode processes. 

2.0 2.5 

Sec. 5.4 Chronoamperometry and Chronopotentiometry 

iL(t ~ 00)=nFACo·Yk'D (5.36) 

independent of time. The predicted behavior is shown 'in Figure 5.20 for 
several values of k'. The current should decay at very long times since P 
is consumed and pseudo-first-order conditions no longer prevail; 
however, if Cp* » CO· and semi-infinite planar diffusion applies, the 
current may be constant for quite a long time. Thus if the rate constant 
is to be extracted, it is best to measure the current in the presence and 
absence of P and to compute it.no- In this way, k' =kCp can be 
determined without havi~to know the diffusion coefficient or electrode 
area. A plot of it/i» VS. Yk 't , shown in Figure 5.21, serves as a working 
curve for such an experiment. Figure 5.21 also serves as a reaction zone 
diagram with the pure diffusion (DP) zone defined by k't < 0.05, the pure 
kinetic (KP) zone by k't > 1.5, and the intermediate kinetic (KI) zone by 
0.05 < k't < 1.5. 

The ECE Mechanisms 

For the ECE mechanism, 

01 + e- +:2 R1 E1° 

k 
R1 ~ ~ 

02 + e- +:2 R2 E2° 

the solution of the diffusion problem is relatively straightforward for a 
large planar electrode if the homogeneous disproportionation step is 
ignored. Alberts and Shain (30) showed that the current-time response 
follows the Cottrell equation when the potential is stepped to E < E 10 

, E2°: 

i =nappFAC·YDhrt 

where 

nappln =2 - exp(-kt) C5.37) 

and n is the number of electrons involved in the individual electron
transfer steps. Feldberg and co-workers (31,32) have examined the effect 
of homogeneous disproportionation 

01 + R2 +:2 02 + R1 

on the current response in chronoamperometry using digital 
simulation techniques. They found that eq (5.37) is accurate for kt < 0.2. 
In case IA (E1° < E2°, K « 1), napp/n may be somewhat less that the 
value predicted by eq (5.37), and in case IE (E 1° > E 2°), it may be 
somewhat greater. In the later case, napp/n can be somewhat greater 
than 2 when kt '" 3. 
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For the EcE mechanism, 

01 + e- ~ R1 E1° 

k 
R1 ~ R2 

02+ e- ~ R2 E2° 

with E1° < E2° (case IIA), a potential step to E < E1°, E2° is expected to 
involve only one electron regardless of the rate of the chemical step and 
so should be independent of the existence of the homogeneous electron
transfer process. In case 1m (E1° > E2°), on the other hand, the Alberts
Shain theory predicts 

napp =exp(-kt) (5.38) 

but Feldberg and Jefti~ (32) find that for kt > 1, napp is significantly
Ii smaller than predicted by eq (5.38) when disproportionation is 
Ii considered and even becomes negative for kt > 2.5. Early in the 
II: experiment, the current is due mostly to the reduction of 01 to R1. Later 

when 01 is polarized at the electrode, the R2 oxidation dominates and the 
current becomes negative if the conversion of R1 to R2 is fast enough. 
Some computed working curves are shown in Figure 5.22. 

I: 
1.0 I ,a:a::c: i i J iii i i 

n app 

0.5 
I 
I Figure 5.22 chronoampII erornetric working curve 

~
~ 
!
1 

for Case lIA of the ECE 
mechanism: napp/n as a 

)1 function of log kt for (top 0.0 
to bottom) kdispC*/k = 0,11 0.1, 1, 10, and 

II'
00.
 

I: Reprinted with permission
 
I from S. W. Feldberg and
 

L. Jeftic, J. Phys. Chern.

Ii 1972,76, 2439, copyright -0.5 I I I I I I I I I I I
 
i'
 1972 American Chemical -2I: Society.t 
~' r 

-1 0 1 2 

loglO(kt) 
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Example 5.9 Alberts and Shain (30) used chronoampero
metry to study the reduction of p-nitrosophenol in 20% aqueous 
ethanol solutions buffered to pH 4.8. The electrode process 
consists of the two-electron reduction of the nitroso group to a 
hydroxylamine, dehydration to p-benzoquinoneimine and the 
reduction of the imine to p-aminophenol: 

HO-o-NO :~:: HO-o-NHOH 

H~NHOH • O-t=\-NH 
~ - H20 """'\.=.r 

O=Q=NH +2e·. H0-o-~NH2 
- +2H+ '\\ " 

The corrected datal are plotted in Figure 5.23 as iIFAC*D1I2 us. 
t- 1I2, along with curves, computed using eq (5.37) for k =0.4, 0.6, 
and 0.8 s-l. The data fit the curve for k = 0.6 s-l reasonably well; 
Alberts and Shain report k = 0.59 ± 0.07 s-l. The small 
discrepancy between theory and experiment is probably due to 
neglect of the homogeneous disproportionation reaction. 

3 Iii. , I • ii' ii' iii i , • , i ,,,,,,,,, ,,,* , ""CJ 2 ,
,, ,,-,,-,S ,,~ ,Figure 5.23 Chronoampero , 

""metric data for the r:: " 
:';::ireduction of p-nitroso "" 1phenol in 20% aqueous
 

ethanol solution, pH 4.8.
 ,,/"'/Reprinted with permission
 
from G. S. Alberts and I.
 
Shain, Anal. Chern. 1963, ""
 o .,..... , I , , , t , , , , , I , , , , I35, 1859, copyright 1963
 
American Chemical
 0.0 0.5 
Society 

I The experiment employed a hanging mercury drop electrode; the theory for a 
spherical electrode is considerably more complex than that for a planar electrode, 
although the qualitative effect is similar to that described by eq (5.37). The data 
plotted in Figure 5.24 have been corrected to correspond to a planar electrode. 

1.0 1.5 

(tls)-1I2 
2.0 
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5.5 CYCLIC VOLTAMMETRY 

For qualitative studies of homogeneous reactions coupled to an 
electron-transfer process, cyclic voltammetry is by far the most 
commonly used technique. It has the advantages of steady-state 
voltammetry in resolving a feature from each electrode couple as well as 
the advantages of the reversal technques of chronoamperometry and 
chronopotentiometry 80 that a single experiment often reveals the 
nature of the system. For quantitative measurements the other methods 
are often more accurate, but, with care, cyclic voltammetry can provide 
useful kinetic data. 

Preceding Chemical Reaction 

Based on the response of steady-state voltammetry and potential
step chronoamperometry to the CE mechanism, we can predict the 
qualitative appearance of a stationary electrode voltammogram or a 
cyclic voltammogram.. The relevant kinetic parameter is essentially the 
ratio of the chemical reaction rate to the scan rate u: 

A=~(kl~k.l)	 (5.39) 

For A > 10 and/or K > 10 (the DP zone), we expect a reversible cyclicI	 voltammogram with current peaks proportional to the equilibrium 
concentration ofO. In the DM zone (K < 10,.KYA > 10), the current peaks

j,	 will be proportional to the total concentration of Y and 0, but the peaks 
will shift to more negative potentials, as in steady-state voltammetry, eq /'! (5.19). In the KI or KP zones, we expect an increase in peak current and

'jf a negative shift of the peak potential with increasing A (decreasing scan 
rate). This case has been analyzed in detail by Nicholson and Shain (3;ll,

II) who showed that the shape of cyclic voltammograms depends on KYA. 
! . 

i
Curves of similar shape but different K will be shifted by amounts given 
by eq (5.19). Nicholson and Shain provide working curves which relate 
peak current ratios and peak potentials to the parameter XV A. Cyclic 
voltammograms for K =0.2 and A=25, 2.5, and 0.25 are shown in Figure 

! ! 

5.24. 
~ 

II 
~~ :	 

Folwwing Chemical Reaction 
~[ ! 

Cyclic voltammograms of a system perturbed by a following 
chemical reaction are expected to show smaller anodic current peaks 
when the lifetime of R is comparable to the scan time; the cathodic peak 
shifts to a more positive potential as the rate of the reaction increases. 

Cyclic Voltammetry 

Figure 6.24 Cyclic 
voltammograms at 
constant scan rate for 
the CE reaction scheme 
for K = 0.2 and A = 0.25 
(solid line), 2.5 
(dashes), and 25 (dots). 
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For an irreversible chemical step, the relevant kinetic parameter is 

A=lITk..	 (5.40) 
nF u 

Some computer-simulated cyclic voltammograms are shown in Figure 
5.25. As expected, the anodic peak disappears for A > 0.1. In favorable 
cases, the anodic-to-cathodic peak current ratio can be used to estimate 

Figure 6.25 Simulated 
cyclic voltammograms at 
constant scan rate for a 
chemical reaction 
following a reversible one
electron process with A = 
0.01 (solid curve), 0.1 
(dashed curve), 1.0 (dot
dash curve), and 10 (dotted 
curve). 
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Figure 5.28 (a) Ratio of anodic to cathodic peak currents for an EC 
I 

process as a function of k't. (b) Shift. of the cathodic peak potential as a 
f function of A for an EC process. Reproduced with permission from R. S. 

Nicholson and I. Shain, Anal. Chem. 1984,36, 706, copyright 1964,~d :: 
American Chemical Society.
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~.' " .
 the rate constant. A working curve, obtained from the work of Nicholson ,. :, ',:'" 

and Shain (33), is shown in Figure 5.26a (the parameter 't is the time 
required to scan the potential from the cathodic peak and the switching 

,:'"
point).

,..•.:".,1.,.I, As we might have expected from the results for steady-state 
voltammetry, the cathodic peak shifts to more positive potentials for very u 
fast following chemical steps. If the unperturbed peak potential isi: known, the peak potential shift can be used to estimate the rate constant. 

; I 
ill

A working curve, obtained from the work of Nicholson and Shain (33), is 
shown in Figure 5.26b. 

.
I 

F~ When the following reaction is second-order and involves anI I 
, 1 electroinactive species, an interesting experimental variation is possible. 

Consider the reaction scheme 

O+e- ~ R 

k 
R+X ~ y 

When k[X] is large, an anodic shift in the peak potential is expected. 
However, if less than a stoichiometric quantity of X is available, the 
reaction proceeds until X is exhausted, after which R remains 
unreacted. If k is sufficiently large, a shifted peak will precede the 
unperturbed current peak. The separation of this prepeak and the 
reversible peak then gives an accurate measure of the rate constant. In 

15.5 Cyclic Voltammetry 

order to resolve the prepeak, AEp must be more than about 80 mY. The 
working curve ofFigure 5.26b then gives A. ~ 260'or k[X]lv ~ 104 V-I. If[X] 
.1 mM and v =0.1 V s-I, we require k ~ 106 L mol-1s,l. 'The method thus 
is restricted to very fast rates, but, because the reversible peak provides 
an internal standard for the measurement of the kinetic shift, the 
results can be quite precise. Although the working curve of Figure 5.26b 
gives a qualitative indication of the shift, in practice digital simulation 
using conditions close to the actual experiment should be used to refine 
the determination. 

This effect was first discussed by Jensen and Parker (34) in the 
context of conventional cyclic voltammetry, but a considerable 
improvement in accuracy is obtained by using first-derivative (or 
semiderivative) presentation. Because the prepeak and reversible peak 
are better resolved in a first-derivative voltammogram, peak separations 
can be measured much more accurately. 

Example 5.10 Parker and Tilset (35) have studied the reaction 
of 9-phenylanthracene cation radicals (PA+) with 4
methylpyridine (Nu) using derivative linear sweep 
voltammetry. Sample results are shown in Figure 5.27 for 
[Nu]l[PA] concentration ratios of 0, 1/4 and 1/2. 

Although the overall stoichiometry of the reaction is 

2 PA+ + 2 Nu ~ PA(Nu)22+ + PA 

the rate-limiting step which influences the peak separation is 

PA+ + Nu ~ PA(Nu)+ 

Figure 5.27 Derivative linear-scan ~ 
voltammograms for the oxidation ~ 
of 1.00 mM 9-phenylanthracene in ;t; 
the presence of 4-methylpyridine 
(a, 0.0 mM; b. 0.25 mM; e, 0.50 mM) 
in CH3CN containing 0.10 M 
BU4NPF6, v = 0.1 V s·l. Reprinted 
with permission from V. D. Parker 
and M. Tilset, J. Am. Chem. Soc. 
1987,109, 2521, copyright 1987 0.4 0.6 0.8 1.0 1.2 
American Chemical Society. ElY 
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Comparison of the measured peak separation, 159 mV, with 
working curves obtained from digital simulation, led to the rate 
constant, k =4.6 x 107 L mol-Is-I. The peak separation-and 
thus the rate constant-were found to be virtually independent 
of temperature over the range, 0 - 20°C, 80 that the activation 
energy for the reaction is apparently near zero. 

Catalytic Reactions 

Linear scan voltammograms at a stationary electrode are closely 
analogous to potential step chronoamperograms for catalytic processes. 
The kinetic zone parameter is again 

A. =1U1L' (5.41) 
nF v 

where k' is the pseudo-first order rate constant. In the pure kinetic 
zone, defined by A. > I, the cyclic voltammogram reduces to a steady-state 
wave with limiting current given by eq (5.35), independent of scan rate, 
with ~'p/2 =E 1/2 equation. The reverse scan in cyclic experiments 
virtually retraces the current-potential curve of the forward scan. When 
the homogeneous rate becomes slower (or the scan faster) cathodic and 
anodic peaks develop and the half-peak potentials shift toward their 
unperturbed values (E1I2 ± 28.5/n mVat 25°C). Some representative 
curves are shown in Figure 5.28. 

4 i • , • ii' , , ii' i , , i 

3 
.s 
'§ 2 

~ 
.~ 1 
of 
til 
~Figure 5.28 Simulated o I.cyclic voltamrnograrns at 

constant scan rate for a 
EC' process with A = 0.01 
(solid curve), 0.1 (dashed -1 

",;;;r--"'=::--=--
curve), and 1.0 (dotted 0.2 0.1 -0.0 -0.1 
curve). (E - E1I2)N 
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§5.5 Cyclic Voltammetry 

The ECE Mechanisms 

Since the 011R1 and 021R2 couples are observed separately, cyclic 
voltammetry is a particularly powerful technique for the study of ECE 
processes, 

ECE Mechanism: 01 + e' +::! R1 E1° 

k 
R1 ~ 02 

02 + e- +::! R2 E2° 

ECE Mechanism: 01 + e- +::! R1 E1° 

k 
R1 ~ R2 

02 + e' +::! R2 E2° 

The relative size of the reduction (or oxidation) peaks thus usually can 
, give an indication of the magnitude of the rate constant for the chemical 

step. Examples of cyclic voltammograms for several values of the rate 

(a) (c) 

~ c: 
CIl 
1-0 
1-0 
~ (b)~ 

0.2 -0.0 -0.2 -0.4 -0.6 0.2 -0.0 -0.2 -0.4 -0.6 
E/V EN 

Figure 5.29 Cyclic voltammograrns computed by digital simulation for
 
case fA of the ECE mechanism. The rate parameter A. =0 (a), 0.025 (b),
 
0.25 (c), and 2.5 (d); E1° = -0.4 V, E2° = 0.0 V. 
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parameter A., given by eq (5.40), are shown in Figures 5.29 • 5.32. 
In case IA (the ECE mechanism with El° < E2°, Figure 5.29), the 

first negative-going scan shows only the 01 ~ Rl reduction. On the 
reverse scan, however, there are several features worth noting. The R1 
oxidation peak decreases in size and then disappears, as the rate of the 
chemical step increases; an oxidation peak due to R2 grows with 
increasing chemical rate. The current between these peaks is 
particularly interesting. When the rate is slow (Figure 5.29b), R1 
survives long enough to contribute a negative current in the region 
between El° and E2°. When the chemical step is faster, so that no R1 
survives when E > El°, but slow enough that most of the 02 is formed 
some distance from the electrode, diffusion of 02 to the electrode gives a 
net reduction current in the interpeak region (Figure 5.29c). In this 
case, the current on the positive-going scan is actually greater than that 
on the negative-going scan and the curves cross. When the chemical 
step is so fast that most 02 is formed near the electrode, it is reduced 
quickly, leading to a much larger cathodic peak and decreasing the 
interpeak current to near zero (Figure 5.29d). 

The disproportionation reaction 

(c) 

1:1 
CIl .... .... 
:;j (d)u 

0.2 -0.0 -0.0 -0.2 ·0.4 -0.6 
EIV 

Figure 5.30 Cyclic voltammograms computed by digital simulation for 
case IB of the ECE mechanism. The rate parameter A. = 0 (a), 0.025 (b), 
0.25 (c), and 2.5 (d); E 1° =0.0 V, E2° = -0.4 V. The solid lines were 
computed neglecting disproportionation. The dotted lines in (b) - (d) show 
the effect of infinitely fast disproportionaticn. 

-0.2 -0.4 -0.60.2 
ElY 

( 

i5.5 Cyclic Voltammetry 

01+R2 ~ 02+ Rl , . 

has K« 1 in case lA, so that 02 and Rl tend to scavenge one another. 
The principal effect of disproportionation on case IA cyclic 
voltammograms is to suppress the curve crossing seen for intermediate 
rates (32,36). Amatore, Pinson, Saveant, and Thiebault (37) have pointed 
out that disproportionation can have the opposite effect when the 
chemical step is exceedingly fast. If K is not too small and Rl is very 
short-lived, the disproportionation reaction may be pulled to the right 
(uphill energetically) to supply more 02 and Rl (which is quickly 
converted to 02). The effect is again to give a cathodic current in the 
interpeak region. 

In case m (the EcE mechanism with El° > E2°, Figure 5.30), the 
first negative-going scan shows cathodic peaks at both E 1° and E2°. The 

. height of the second peak approaches that of the first peak as the 
reaction rate increases. The reverse scan shows an R2 oxidation peak 
comparable in size to the 02 reduction; if the reaction is fast, little Rl 
remains to be oxidized, so that the Rl oxidation peak may be missing. 
Disproportionation has little effect on the first negative-going scan, but 
the Rl oxidation peak is somewhat smaller on the reverse scan. When 
the Rl ~ 02 conversion is not very fast (Figure 5.30b), the 

+>r:: 

C)~I """""~"'I(b) 

(a) 

0.2 -0.0 -0.2 -0.4 -0.6 0.2 -0.0 -0.6 
EN 

-0.2 -0.4 
ElY 

Figure 5.31 Cyclic voltammograms computed by digital simulation for 
case IIA of the ECE mechanism. The rate parameters and standard 
potentials are as described for Figure 5.29. 
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disproportionation reaction enhances the peaks due to the 02IR2 couple. 
In case IIA (the EcE mechanism with Elo < E2°, Figure 6.31), the 

01 reduction peak shifts toward positive potentials with increasing 
chemical rate and the Rl oxidation peak disappears as expected, since 
we have essentially an uncomplicated EC process for E < E2°. The ~ 
oxidation peak and (on the second scan) the 02 reduction peak grow with 
increasing chemical rate. As we found for steady-state voltammetry and 
chronoamperometry, disp.roportionation in unimportant for case IIA. 

In case 1m (the ECE mechanism with Elo > E2°, Figure 6.32), the 
first negative-going scan is significantly perturbed by the chemical step 
and by disproportionation. The chemical step converts Rl to R2, but R2 is 
oxidized when E > E2°. Thus the current drops more rapidly than 
normal after the 01 reduction peak when the rate is fast. This effect is 
enhanced by disproportionation as shown in Figure 5.32c and d (32). If 
the 01 reduction peak is smaller than normal on the first scan, it will be 
much smaller (perhaps not even detectable) on the second and~. ii] subsequent scans. The 02IR2 reduction/oxidation peaks grow with 
increasing rate (enhanced by the disproportionation reaction) and, for a 
fast reaction, appear as an unperturbed reversible couple. 
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"'I Figure 5.32 Cyclic voltammograms computed by digital simulation for 

case lIB of the ECE mechanism. The rate parameters and standard 
potentials are as described for Figure 5.30. The solid lines were 
computed neglecting disproportionation. The dotted lines in (b) - (d) show 
the effect of infinitely fast disproportionation. 
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Example 5.11 Hershberger, Klingler, and Kochi (38) used 
cyclic voltammetry to study the' oxidation of (Tl 5 
CH3C5H4)Mn(CO)2L (Mn-L). Cyclic voltammograms of the 
derivatives with L = NCCH3 and PPh3 (traces a and d, 
respectively, in Figure 5.33) are uncomplicated and apparently 
reversible with peak current ratios of 1.0 and normal peak 
potential separations. However, addition of PPh3 to a solution 
of Mn-NCCH3 results in a dramatic change (traces band c of 
Figure 5.33). On the first positive-going scan, the oxidation 
peak due to the substrate decreases in size and an oxidation 
peak due to the product, Mn-PPh3, appears. On the reverse 
scan, the product cation is reduced but the cathodic peak 
expected for the substrate cation is completely absent. 
Comparison of traces b and c of Figure 5.33 with traces bod of 
Figure 5.32 suggests that these results can be understood as an 
ECE process-the analog of case lIB, making appropriate 
allowance for the fact that the first step is an oxidation rather 
than a reduction. The mechanism can be written as follows: 

-e' 
Mn~NCCHs = [Mn-NCCHst 

~ V;lPPhs 

~~CH:PN 
-e' 

Mn-PPhs = [Mn-PPhst 
0.52 V 

As we have seen in Figure 5.32, the shape of a cyclic 
voltammogram for such a system is very sensitive to the rate 
constant k 1 and somewhat dependent on k 2 as well. 
Hershberger, et al., carried out a systematic investigation
using digital simulation techniques and were able to establish 
the rate constants: kl =(1.3 ±0.2) x 104 M-ls-l, k2 > 1()4M-ls'l. 

Since the disproportionation step is exoergic and fast (tJ.Go =-32 
kJ mol-t), it represents the propagation step of a homogeneous 
chain reaction initiated by oxidation of a few substrate 
molecules. Indeed, Hershberger et al. found that controlled 
current oxidation of Mn-NCCH3 in the presence of PPh3 
(continued until the potential approached 0.5 V) resulted in 
virtually quantitative yields of substitution product with the 
passage of less than 0.001 Faraday of charge per mole of 
substrate. Thus chain lengths in excess of 1000 are apparently 
attained. 
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Fipre 5.33 Cyclic voltammo

grams of Mn-L in acetonitrile
 
solution. (a-c) L =CHsCN with (a) (d)
 
no added PPhs, (b) 1 equivalent,
 
and (c) 9 equivalents of PPhs
 
added (d) L =PPhs. Reprinted with
 
perimillion from J. W.
 I 
Hershberger, R. J. Klingler, and J. 
K. Kochi, J. Am. Chern. Soc. 1983, 0.4 0.2 0.0 .{I.2 .(I.4106, 61, copyright 1983 American
 
Chemical Society. E/V
 

In the above example, the rate was found to be first order in 
nucleophile, suggesting a displacement or associative mechanism, as 
expected for nucleophilic substitution at a 17-electron center. In an ECE 
substitution process initiated by reduction of a transition metal complex, 
a formal 19-electron center is formed, and the substitution step might be 
expected to be dissociative. This expectation was confirmed in work on 
an analogous Mn(l) system, as described in the following example. 

Example 6.16 Sweigart and coworkers (39) used cyclic 
voltammetry to study the reduction of [(l1S-CH3CsH4)
Mn(NO)(CO)2]+ ([Mn-CO]+) in the presence of phosphines and 
phosphites. At 25°C, Mn-CO+ shows a chemically irreversible 
reduction at ca. -0.2 V (us. AglAgCl) as shown in Figure 5.34a. 
However the addition of an excess of a phosphine or phosphite 
(L), results in suppression of the primary cathodic current and 
the appearence of a chemically reversible couple at ca. -o.? V 
(Figure 5.34b), identical to that observed for an authentic 
sample of[Mn-L]+. At -65°C, the cyclic voltammogram of [Mn
CO]+ is chemically reversible whether or not a nucleophile is 
present, Figure 5.34d, and at intermediate temperatures, both 
the [Mn-CO]+ and [Mn-L]+ couples are observed, Figure 5.34c. 
Although the potential of the product couple varied slightly 

( 
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(.:p~ 

Jj (b). 12~ 
t: . 25°C 
:l 

Figure 5.34 Cyclic voltammograms of "(c) ~ 
1 mM [(T1s-MeCsH4)Mn(NO)(CO)2] 
PF6 in CH2CI2 containing 0.1 M • -43°C
B u 4 N P F 6 and (a) no added 
nucleophile, (b) - (d) 10 mM P(OEt)S. 
The indicator electrode was a 1-mm (d) ~ 
glassy carbon disk; v =0.5 V s-l. 
Reprinted with permission from C. C. ~65°C
Neto, S. Kim, Q. Meng, D. A.
 
Sweigart, and Y. K. Chung. J. Am. I I
 

Chern. Soc. 1993, 115, 2077, copyright 0.0 .{I.S -1.0
 
1993 American Chemical Society.
 EIV 

with nucleophile, at any given temperature, the relative 
magnitudes of the cathodic peaks were independent of 
nucleophile and of nucleophile concentration, suggesting that 
the rate-limiting step in the reaction is loss of CO. When L was 
a phosphine or phosphite. the cyclic voltammograms were also 
independent of CO pressure, suggesting that CO does not 
compete effectively with the stronger Lewis bases. When L was 
the weaker nucleophile AsPh3. the voltammograms were 
affected by CO pressure. Just as in the previous example, 
controlled potential electrolysis required much less than one 
Faraday per mole of substrate for complete conversion of [Mn
CO]+ to [Mn-L]+ and the substitution reaction could be initiated 
with a trace of chemical reducing agent. These results are 
consistent with the ECE mechanism: 

+e
[Mn-COt ~ Mn-CO 

. 2 V kI~CO 
k 2 L~
 

+ + e'
[Mn-L] ~ Mn-L 

-0.7 V 

II
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Digital simulation studies provided estimates of the rate 
constants, k1 =11 s·l at -43°C, k2 > 1()4 L mol- 1K-1. The 
activation parameters for the substitution step (MIt =72 ± 8 kJ 
mol-I, ~Sl = 90 ± 15 J mol- 1K - l ) are consistent with the 
dissociation of a ligand from a 19-electron complex. 

Similar electrocatalytic processes, related in general to case lIB of 
the ECE mechanism, have been found for a number of other organic (40) 
and organometallic (41) systems. 
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310 Mechanisms of Electrode Processes 

PROBLEMS 

5.1	 A CE electrode process studied by potential step 
chronoamperometry gave the current density - time curve shown 
in Figure 5.35. If the concentration of the precursor species is 1 
mM (I mol m-3 ), the diffusion coefficient is 10-9 m2s- 1, and the 
reduction is by two electrons, estimate k 1K for the reaction 
preceding electron transfer. 

0.55 ~' , , I ' , , I' • , I • iii • i 

jlA m-2	 J 

0.50 

0.45 

0040 

Figure 5.85 Potential-step O.~5 

chronoamperogram for a CE o 2 4 6 8 10 
process. tis 

5.2	 Potential step chronoamperometry is to be used to measure the 
concentration of an electroinactive analyte P through the catalytic 
intermediacy of a one-electron couple, OIR. 
(a) Because of vibration and convective mixing, the current 
cannot be trusted to remain diffusion-controlled for more than 10 
s. If the rate constant for the reaction ofR with Pis 2 x 105 M·ls·l, 
what is the minimum P concentration accessible to the analysis? 
Assume a diffusion coefficient D =5 x 10-10 m2s-1. , 
(b) What limiting current density would be expected at the 
limiting P concentration? If the available current measuring 
device can read down to 0.1 jlA with the accuracy needed for the 
analysis, what is the minimum electrode area needed? 
(c) In order to maintain pseudo-first-order conditions, it is 
necessary that Co· be at least 10 times smaller than Cpo What 

( 

problems	 311 

concentration of 0 should be used? What problems might be 
expected from this result? . 

5.3	 What requirements must be met in order that eq (5.23) reduces to 
the Lingane equation, eq (4.57)? 

5.4	 Assuming that the reduction of Pb(II) in basic aqueous solution 
actually proceeds via the mechanism 

HP02- + H20 ~ Pb2+ + 3 OH

p\)2+ + 2 e- ~ Pbts) 

.6 

as assumed in Example 4.10 and Problem 4.23, use the results of 
Problem 5.3 to estimate a lower bound for the rate of the 
homogeneous step. What conclusions can be drawn from the 
result of this calculation? 

(a) Show that the limiting current in a steady-state 
voltammmogram is unaffected by the kinetics of an EC process. 
(b) Using the methods of §5.3, derive eq (5.25) for the half-wave 
potential of an steady-state voltammogram for an EC process 

Show that the steady-state current for an EE process where both 
steps are assumed to be nemstian, i.e., 

O+e- ~ R1	 E1° 

R1 + e- ~ R2	 E2° 

is given by 

i =FACo*kD ( 2 + 82 ) 
1 + 82 + 8182 

where 81 and 82 are the nernstian concentration ratios for the 
first and second couples. 

5.7	 (a) Given the result of Problem 5.6, derive an expression for (iL 
tv: 
(b) IfE2° > E1°, a single wave is expected. Compute the half-wave 
potential. 
(c) Under what circumstances does the answer to part (a) reduce 
to the Heyrovsky-Ilkovie equation for a two-electron wave? 
(d) Compute E1I4 -E3/4 for E2° - E1° =0, 50, 100, and 200 mY. 
What value would be expected for a two-electron wave according to 
the Tornes criterion for reversibility? 
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5.8 The cyclic voltammogram shown in Figure 5.36 corresponds to an 
EC electrode process. Estimate the rate constant k. You need not 
correct for iR drop or for capacitive current. 

5.9	 Digital simulation of cyclic voltammograms for case IA of the 
ECE mechanism leads to the working curves for Ep - EO and 
iplip(O) shown in Figure 5.37, where ip(O) is the expected cathodic 
peak current for k = O. Both electrode processes involve one 
electron. 
(a) Why does the peak current increase by more than a factor of 
two? Give a qualitative explanation. Hint: What is the ratio 
CO(O)/CR(O) at the electrode surface at the potential of the peak 

'\
;
i	 current if the homogeneous rate is zero? 

(b) Why is there a small negative shift. in the peak potential before 
the expected positive shift? (See also Figure 5.26b.) 

5.10	 Cyclic voltammograms for an ECE process are shown in Figure 
5.38 for three different scan rates. 
(a) Identify each peak in the cyclic voltammograms with the 
reduction or oxidation of a species in the mechanism. • 
(b) Estimate the rate constant of the chemical step. You can 
assume that the electron-transfer steps are nemstian and that 
capacitive current and ohmic potential drop are negligible. 
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Figure 5.87 Theoretical working Figure 5.88 Cyclic voltammo
curves for cyclic voltammograms grams for an ECE process. The 
for case IA of the ECE mechanism: potential scan rate v is 100 mV s-l 
peak potential shift (dashed curve) (solid curves), 500 mV s-l (dashed 
and peak current (solid curve) v•. curves), and 2.5 V 8- 1 (dotted 
the kinetic parameter A=RTklFv. curves). 

5.11	 The concentration of an electrode-inactive oxidant P is to be 
measured by the enhancement of the limiting current in a 
voltammogram of 0, the reduced form of which reacts with P to 
regenerate O. HCo· =0.0100 mM, Cp· =1.00 mM,D =10-9 m2s·l, k 
= 1.0 x 105 M·ls·l, and the reaction stoichiometry is 1:1, what 
fractional current enhancement would be expected for: 
(a) a polarogram with td =5 s? 
(b) a steady-state voltammogram using a microelectrode with ro 
=1 j.UD.? 
(c) a steady-state voltammogram using a rotating-disk electrode 
with CJ) =100 rad s-l? 

5.12	 Suppose that the product of a one-electron reduction undeJoes an 
irreversible reaction, R ~ P, with a rate constant k =1000 s- . 
(a) By how much is the half-wave potential shifted in a steady
state voltammogram using a microelectrode with rO =1 J.UD? with 
ro =10 j.UD.? Assume D =10.9 m2s· l, T =298 K 
(b) Repeat the calculation of part (a) for a rotating-disk electrode 
with CJ) =10 rad s·l and 1000 rad s-l. 
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5.18 Microelectrode steady-state voltammograms for an ECE process 
l~J 

gave the results shown in the table. 

6 ELECTRON-TRANSFERrol~m it/nA i2lnA 

0.50 noso 0.116 KINETICS 
1.0 0.034 0.232 

2.0 0.037 0.463 

5.0 0.039 1.1.58 
10.0 0.039 2.316 

In Chapters 4 and 5, we discussed voltammetric experiments inwhere i I and i2 are the limiting currents following E 112(1) and':1 which the current is limited by the mass-transport rate and/or the rates, I- E 112(2), respectively (E 112(1) > E 1/2(2». Assuming that the of homogeneous reactions coupled to electron transfer. In this chapter,! t concentration of 01 wast.OO mM and both steps of the ECE process we turn to experiments where the current is influenced by the electron
involve one electron, compute the diffusion coefficient D and the transfer rate, beginning with a general discussion of electrode kinetics. 
rate constant for the RI --+ R2 reaction. In §6.2, we consider experiments where transport is fast and electron 

tranfer is rate-limiting. In §6.3, we consider voltammetric experiments 
where the rates of transport and electron transfer are both important. 
In §6.4, we turn to alternating-current experiments, which are best 
understood in terms of the faradaic impedance. 

6.1 KINETICS OF ELECTRON TRANSFER 

In order to focus solely on the electron-transfer process, we will 
assume that the solution is well stirred and that transport of electro
active material to the electrode is fast. Initially we will also assume .that 
the electrolyte concentration is sufficiently high that the diffuse part of 
the double layer is very thin and that the potential just outside the 
Helmholtz layer is essentially zero, i.e., equal to the potential of the bulk 
solution. This is not always a good assumption and we will have to 
correct it later. To the extent that our assumptions are correct, the 
concentrations of the electroactive species, 0 and R, will be essentially 
the same at the outer edge of the Helmholtz layer as in the bulk solution. 

Consider an electron-transfer process with a single elementary step 
, 

0+ e- f=! R 

Suppose that the rate of the forward reaction (the cathodic or reducti-on 
rate) is first-order in 0: 

cathodic rate =kcCo(O,t)
!t and that the reverse rate (anodic or oxidation rate) is first-order in R: 

anodic rate = kaCR(O,t) 

315 
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where ke and ka are heterogeneous rate constants with units of m s-l. If 
the concentrations have units of mol m-3 (mM), then the rates have units 
of mol m-2s-1, the same units as flux. Indeed, the difference between the 
cathodic and anodic rates is the net flux of 0 at the electrode surface and 
thus is proportional to the net current: 

i = FA[keCO(O,t) - kaCR(O,t)]	 (6.1) 

We assume that the temperature dependence of the rate constants 
ke and ka is given by 

- !!.Gc* 
ke=Zexp~	 (6.2a) 

- !!.Ga* ka =Zexp~	 (6.2b) 

where the !!.G*'s are free energies of activation. The pre-exponential 
factors Z can be estimated theoretically (1) but we will be content with 
noting that the Z's in eqs (6.2a) and (6.2b) must be equal to satisfy the 
principle of microscopic reversibility; otherwise, we will treat Z simply 

1 as an empirical parameter with units of m s-l. 
h Consider now the special case of equilibrium at the electrode. The 
L net current must be zero and the surface and bulk concentrationsI ~ 

I,;~: should be equal. Substituting eqs (6.2) into eq (6.1), taking logs and 
; :~~'~ rearranging, we have 
••11 In Cc/..Ot) = In ka,o = !!.Ge*- !!.Ga * < ,I	 (6.3)

CR(O,t) ke,o RT 

where ke.o and ka,o are the rate constants at zero current. The ratio of 
the reactant and product concentrations at equilibrium is given by the 
Nemst equation,

i
'ii

In Co* =F(Ee - EO) (64) 
CR* RT . 

where E e and Eo are the equilibrium and standard half-cell potentials, 
respectively. Combining eqs (6.3) and (6.4), we have 

!!.Ge*- !!.Ga*=F(Ee - EO) 

This expression is a statement of a familiar idea from chemical 
kinetics: as shown graphically in Figure 6.1, the difference between the 
forward and reverse activation free energies is equal to the standard free 
energy change for the reaction. The rates of the cathodic and anodic 
processes depend on the electrode potential. By varying the potential, we 
can change the free energies of 0 and R at the electrode surface. Thus 

I'f:';.	 the activation free energies must depend on the potential. The details of 
this dependence might be rather complicated, but for the moment we 

§6.1 Kinetics of Electron Transfer 

T 
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~ 

Figure 6.1 Free energy 
reaction coordinate diagram 
for an eIectron-tran sfer 
process. Reaction Coordinate 

will take a phenomenological approach and assume a simple linear 
relationship: 

!!.Ge *= !!.Go* + aF'(Ee - EO)	 (6.5a) 

!!.Ga *= !!.Go* - J3F(Ee - EO)	 (6.5b) 

where the parameters a and J3 = 1- a are, respectively, the cathodic and 
anodic transfer coefficients, and !!.Go* is the activation free energy for 
the process when E e = EO. We will assume that !!.Go* is a constant at 
constant temperature, characteristic of the electrode process. 
Substitution into eqs (6.2) then gives 

k k 
- CTF(Ee -

e,O= oexp RT 
EO) 

(6.6a) 

ka,o = ko exp /3F(E~ =EO)	 (6.6b) 

where 

ko =Z exp -!!.Gt	 (6.7)
RT 

When a net current flows through the electrochemical cell, the cell 
is not at equilibrium. The deviation of the half-cell potential from the 
equilibrium value is called the ouerpotential or oueruoltage, TI. 

E =Ee + TI	 (6.8) 

We assume that the form of eqs (6.5) is retained under nonequilibrium 
conditions so that the cathodic activation free energy changes by an 
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amount aF11 and the anodic activation free energy by an amount -~F11. 
The rate constants then differ from the equilibrium values according to 
the relations 

-aFrl
ke =ke,o exp RT (6.9a) 

~ 

~F11ka =kaoexp- (6.9b), RT 

Substituting these into eq (6.1) gives 

. [ - <XFr1 ~F11 ]
l = FA kc,oCo(O,t) exp RT - ka,oCR(O,t) exp RT 

or 

, t . . [CO(O,t) - aFrl CR(O,t) ~F11] (610)l =lO exp------exp-- . 
Co· RT CR· RT 

where io, the exchange current, is equal to the cathodic current (and to 
the negative of the anodic current) at equilibrium: 

. . F'A I.J"'. - aF(E,,-EO) (61 )
lO = lc,e = nt(~O exp RT . Ia 

I: 
f io=- ia,e =FAkcf;R. exp fW~; EO) «uu» 
~, 
:i;. 

.~~' 

If transport is really fast so that CO(O,t) = CO· and CR(O,t) = CR·, then eq 
(6.10) reduces to 

. . [ - <XFr1 ~F11]l =lO exp---exp-- (6.12)
RT RT 

which is called the Butler- Volmer equation after the two electrochemists 
who, in 1924 and 1930, respectively, contributed to its formulation (2) and 
experimental test (3). The current-potential curve predicted by eq (6.12) 
for a =0.4 is shown in Figure 6.2. 

John A. V. Butler 0899-1977) was a lecturer at the University of 
Edinburgh during the 1920's and 1930's. His interests shifted to 
biophysical chemistry after World War II. • 
Max Volmer (1885-1965), a student of Nernst, was a Professor at the 
Technical High School in Berlin and a leading figure in German 
electrochemistry before World War II. 
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The Transfer Coefficient 

Before going further, let us consider the significance of the transfer 
coefficients a and ~ (= 1 - a), which were introduced in order to separate 
the potential contributions to 6Ge:t and 6Ga:t. These parameters have 
taken an apparently significant role in eqs (6.9): a and ~ are seen to 
reflect the dependence of ke and k« on the overvoltage 11. Thus if a =0, ~ = 
1, the cathodic free energy of activation (and thus the cathodic current) 
would be independent of overpotential and all the variation of net current 
with potential would be through the anodic component. This situation is 
shown schematically in Figure 6.3a. In the opposite extreme, a = 1, ~ = 0, 
shown in Figure 6.3b, the anodic activation free energy and anodic 
current would be independent of overpotential. Ordinarily, the anodic 
and cathodic transfer coefficients are equal, a = ~ = 112, and the anodic 
and cathodic currents respond symmetrically to changes in 
overpotential as shown in Figure 6.3c.1 

In order to get a physical feeling for the significance of the transfer 
coefficients, let us consider an electron-transfer process at the molecular 
level, outlining a theory developed by Marcus (1). An electron transfer is 
like a charge-transfer transition in electronic spectroscopy. It occurs in 
a very short time and the various nuclei can be thought of as fixed in 
position during the transition (the Franck-Condon principle). Since 0 
and R generally have somewhat different structures, there is a barrier to 

1 Since a and ~ govern the symmetry of a current-potential curve, some authors refer 
to transfer coefficients as symmetry factors. 
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electron transfer associated with changes in bond lengths anti bond 
angles. This is shown schematically in Figure 6.4, where the free 
energies of 0 and R are plotted as functions of a generalized internal 
coordinate x which represents a composite of bond lengths and bond 
angles which change on going from 0 to R. The energy variation with x 
is assumed to be harmonic, so that we have 

Go =Go* + ~ k(x -xo)2 

~I~ 

O+e-4R 

(c) 

O+e-4R 

eJ 
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Figure 6.4 Free energy . 
reaction coordinate diagram Xo 
for an electron-transfer 
process, 0 + e- ~ R. Reaction Coordinate 

GR =GR* + ~ k(x - xr)'l 

where k is a composite force constant and GO* and GR* are the free 
energies of 0 and R in the conformations, represented by Xo and x-, just 
prior to and just after electron transfer. The transition state 
corresponds to the crossing of the GO and GRcurves, 

at =GO* + ~ k(x:t: - Xo)2 = GR* + ~ k(x:t: - xr)'l 

Rearranging and solving for x:t:, we have l2.vJV') 

Go* - GR*+ ~ k(x02 - xr2) =k(Xo - Xr)x:t: 

f:- 1 ( ) GO*-GR* ~~ 
X - 2" Xo + x; + k( '.

Xo-Xr 

Substituting this value ofx:t: back into the expression for G:t:, we have 

2 Gf:=!k(xo-xrf+!(GO*-GR*)+(GO*-GR*f (6.13)
 
e 8 2 + 2k(xo-xrf
 

The lead term is seen to be proportional to the energy required to 
reorganize 0 to the conformation of R (or vice versa), 

A. =~ k(xo -xr)'l (6.14) 

Ifwe take the free energy of 0 in bulk solution as zero, then GO* is 
the work required to bring 0 from bulk solution to the electrode and, if 
necessary, to affect any gross changes in conformation or coordination 
such that the small distortion represented by Figure 6.4 will suffice for 
electron transfer. Thus we have 

Xr 
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Similarly, there will be work Wr required to bring R from bulk solution to 
the electrode and affect any gross changes required before electron 
transfer. With the zero of free energy defined as above, the bulk solution 
free energy of R is F(E - EO). Thus 

GR* =Wr + F(E _EO) 

Substituting GO*, GR*, and Ain eq (6.13), we have 

~Gct =at-GO =m 
~Gc* =~I.. + iF(E _EO)+ ~(W&r) + [F(E- EO)::wo-wr}]2 (6.15a) 

~~ 
~Gat = Gt - GR = Gt -F(E _EO) 

r)]2~GQ* = }1..-iF(E _EO) + ~(wo8wr) )F(E -EO)-(wo- w (6.15b) 
~~ 41.. 

Thus when E =EO, the activation free energy is 

~Go* =1 A+ !(w -w)+ (wo-wrf (6.16)
4 2 0	 r 41.. 

I}i,If' ',,'i', According to eqs (6.5), the transfer coefficients are 

a= a(~Gc*) = 1+ F(E-EO)-(wo-Wr) (6.17a) 
~. d(FE) 2 21.. 

P=_a(~GQ*) = 1_ F(E -EO)-(wo- wr) (6.17b) 
a{FE) 2 21.. 

Thus the transfer coefficients, a and 13, are expected to be exactly 1/2 
when F(E _EO) and (Wo-wr) are small compared with the 
reorganization energy A.. Notice, however, that the transfer coefficients 
are not expected to be constant for large overpotentials. Several of the 
general references listed in the Bibliography (A1,A6,B1,B6,B7,B8,B12) 
give useful discussions of transfer coefficients and insights derived from 
somewhat different perspectives. 

Example 6.1 Cyc1ooctatetraene, CsHs, is a nonaromatic cy~lic 
polyene with a nonplanar "tub" conformation. The radical 

-,	 anion, CsHs, however, is planar or nearly so. The rate of 
electrochemical reduction in N,N-dimethylformamide solution 
was studied by Allendoerfer and Rieger (4) and by Heubert and 
Smith (5) using a.c. polarography (see §6A). 

§6.1 Kinetics of Electron Transfer 

(Y~[or
 
It was found the cathodic transfer coefficient is IX =DAD. Since 
the transfer coefficient is measured for E "" EO in a.c. 
polarography, eq (6.17a) suggests that wo »WR. This is 
consistent with the notion that the electron is transferred only 
after the ring is flattened and that the activation barrier is 
mostly due to the conformation change. Indeed, the enthalpy of 
activation for the electron-transfer process (32 kJ mol-t, 
determined by a.c. polarographic measurements of the 
electron-transfer rate as a function of temperature) is 
comparable to the estimated enthalpy of activation for bond 
isomerization, a process which goes through a planar 
transition state. 

Double-Layer Effects 

We have assumed in the discussion above that the potential drop 
'between the electrode and solution occurs entirely within the immobile 
Helmholtz layer and that a molecule or ion experiences no variation in 
potential as it approaches the electrode. This ideal situation is rarely, if 
ever, obtained and a correction is usually required. 

We showed in §2.1 that the concentrations of 0 and R at the outer 
surface of the Helmholtz layer (x =a) are 

- zaFC1>Q
Co(a) =Co" exp RT 

- z FC1> 
CR(a) =CR* exp ilT Q 

where Zo and z- are the charges on 0 and Rand C1>a is the potential at x = 
a (relative to the bulk solution). If C1>a is significantly different from zero, 
then we should use Co(a) and CR(a) in eqs (6.11) for the exchange 
current rather than the bulk concentrations Co * and CR * . 
Furthermore, the potential difference contributing to the activation free 
energy needs to be corrected by subtracting C1>a from Ee. Thus eqs (6.11) 
become 

- zaFC1> -	 -,r.JE - EO - C1> )io= FAkr{;o* exp a exp Ul"t e Q 

RT RT 

. F'AkJ' * - zrFC1>a 13F(Ee- EO - C1>a)
lO = n. IT--'R	 exp RT exp RT 



326 

,rj'j 
• i i 

1 
1 

f Electron-Transfer Kinetics
:I 324 

'jj The apparent exchange current given by eqs (6.11) then is related to the 
t1 

true exchange current by 

(iolapp = ioexp (a - ~o{4>a (6.18a) 

" II ' \ . -(~+Zr)F4>a
(tOlaR> =to exp (6.18b) 

or, since zo-zr =1 and a + ~ =I, 

(. \ . -(~zo + ozr)F4>a 
tOIBR> =to exp RT 

Thus the apparent electron-transfer rate constant determined using eqs 
(6.11) should be corrected by 

(pzo+ ozr)F4>a
k 0= (k)0 BR> exp RT (6.19) 

Equation (6.19) can also be obtained from eqs (6.15) by noting that the 
work required to bring 0 and R up to that point in the double layer where 
the potential is 4>a is 

Wo + Wr =(ZO + zr)F4>a 

Thus the correction to the activation free energy is 

l\Gcorrt = ~ (zo + zr)F4>a 

Since Zo - Zr =I, the difference in the work terms due to the double
layer effect is 

I,, . Wo- ui; =F4>a 

so that there may be a contribution to the transfer coefficients. For E = iii::.:"1"":
If'! EO, eq (6.17a) gives 
\~1 

1a =2- F4>,J4'A. (6.20):1 
I 

i~ The double-layer contributions to the exchange current and 
transfer coefficients depend on the sign and magnitude of the surface 
potential 4>a. 4>a is expected to go through zero at the potential of zero 
charge. Thus, for example, the potential of zero charge for mercury is 
about -0.43 V (vs. s.c.e.) so that 4>a is positive for an electrode potential E 
> -0.43 V. As we saw in §2.5, the potential of zero charge can be 
determined, at least approximately, by the maximum in the 
electrocapillarity curve (for liquid electrodes) or by the minimum in the 
double-layer capacitance vs. potential curve. 

The influence of the electric double layer on electron-transfer rates 
was discovered and explained theoretically by Frumkin (6) and the effect 
is usually referred to with his name. See also a review by Parsons (7). 

§6.1 Kinetics of Electron Transfer 

Aleksandr N. Frumkin (1895-1976) was Director o{ the Institute o{ 
Electrochemistry of the Soviet Academy of Sciences. Frumkin was a 
leading figure in twentieth-century electrochemistry; his contributions to 
the understanding of surface effects were particularly important. 

6.2 CURRENT-OVERPOTENTIAL CURVES 

The Butler-Volmer equation is often used in a strictly empirical 
way to analyze electrode kinetic data, summarizing the information in 
two parameters, the exchange current io (or exchange current density, io 
=iotA) and the transfer coefficient a. There are two ways of extracting 
these parameters from experimental data on well-stirred solutions. 
Both involve the analysis of current-overpotential curves. 

The Tafel Equation 

When the overpotential n is sufficiently large, IFrJ/RTI » 1, one of 
the exponential terms in eq (6.12) will be negligible compared with the 
other. For example, when the overpotential is large and negative, the 
anodic component of the current is negligible and we have 

'fF •• -aFT! 
~. t =toexp RT 

In i = (6.21)In io- c;:; 
or, at 25°C, 

log i =log io- 16.90 01\ 

Equation (6.21) is known as the Tafel equation. This logarithmic 
current-potential relationship was discovered empirically by Tafel in 
1905 (8), some years before the theory ofelectrode kinetics was developed. 

The Tafel equation suggests the means by which the exchange 
current and the transfer coefficient may be determined. If, for an 
equilibrium mixture of 0 and R, the current is measured as a function 
of overpotential and then plotted as log i vs. 11, a linear region should be 
found. Extrapolation of the linear portions of the plot to zero 
overpotential yields the log of the exchange current as the intercept; the 
slopes should be -16.90 a and 16.90 p. Such a plot is shown in Figure 6.5. 

The Tafel equation and Figure 6.5 suggest that the current 
increases exponentially with increasing overpotential. There must be a 
point at which the current becomes limited by the rate of transport and 
log i vs. 11 plots begin to flatten out. The point at which this happens 
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Figure 6.5 Tafel plot: -0.5
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~FI2.3RT = 10.14 V-I 200 100 o -100 -200 
and -aFI2.3RT =-6.76 
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depends on the efficiency of stirring and on the diffusion coefficients of 
the electroactive species but more critically on the electron-transfer rate. 
For slow electron-transfer processes such as the reduction of H+(aq) at a 
mercury cathode, the exchange current is so small that the rate of 
transport is rarely a problem. For faster processes, however, the Tafel 
plot approach may be impractical because, with increasing 
overpotential, transport limitation sets in before the linear Tafel region 
has been established. 

Julius Tafel 0862-1918) was an organic chemist, a student of Emil 
Fischer, and a professor at the University of Wunburg. Tafel was a 
pioneer in the application of electrochemistry to organic synthesis. 

The Charge-Transfer Resistance 

When the electron-transfer rate is too fast to be measured by the 
Tafel approach, all is not lost; the current-overpotential relationship for 
small 11 yields the same information. Returning to the Butler-Volmer 
equation, consider the limiting case of a small overpotential. If IFTJIRT I 
« 1, the exponential terms in eq (6.12) can be expanded in a power ~ries 

i =io[1-c;;; + ... - 1-~;  ...] 

Retaining only the first nonvanishing term, we have 

§6.2 Current-Overpotential Curves 

i =- Fio 11 (6.22)
RT 

Thus for small departures from equilibrium, the current is 
approximately linear in 11 and the electrode behaves as an ohmic 
resistance. The quantity 

Ret =RTIFio 

is called the charge-transfer resistance. The charge-transfer resistance 
is best determined by a.c. impedance measurements (see §6.4), but d.c. 
measurements can also be used. Determination of the exchange current 
from the charge-transfer resistance does not directly yield the transfer 
coefficient; however, according to eqs (6.lla) or (6.llb), the exchange 
current depends on one of the concentrations, Co or CR, and on the 
equilibrium potential. Furthermore, it is easy to show, by differentiation 
of eq (B.Ll.a) or (6.llb), using eq (6.4), that the exchange current varies 
with the equilibrium potential according to the partial derivatives: 

d In io) =1:. 13 (6.23a)
( dEe ea RT 

d In io) =_1:. (1 (6.23b)( ss, Co RT 

Thus measurement of Ret (and thus io) for a series of solutions with 
constant Co* and variable CR* (and thus variable E e ) allows the 
evaluation of (1. 

Example 6.2 Vetter and Manecke (9) studied the reduction of 
Mn 3+ to Mn2+ at a platinum electrode in a well-stirred 7.5 M 
sulfuric acid solution. A Tafel plot-log of current density, logj 
(j =iIA), us. E-is shown in Figure 6.6 for [Mn2+) =0.01 and 
0.001 M and [Mn3+) =0.01 and 0.001 M. At large overpotentials, 
two curves are found corresponding to the different Mn3 + 
concentrations but independent of [Mn2+). The curves branch 
at small overpotentials, E:= Eo = 1.5 V; the equilibrium 
potential depends on the Mn3+/Mn2+ concentration ratio, of 
course, so that the point of zero overpotential differs for the 
different curves. At large overpotentials, the current levels out 
to a transport-limited value. The linear regions of the two 
curves are separated by exactly one base 10 log unit, as 
expected if the rate of the cathodic process is first-order in 
[Mn3+). The slope of the linear regions corresponds to a 
cathodic transfer coefficient (1 =0.28. 
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'! ia ' Vetter and Manecke also determined exchange current
 
,j 

densities by measurement of the charge-transfer resistance
!l 
near equilibrium. A plot of their data, log io VB. Ee, is shown in 
Figure 6.7. The two lines correspond to constant Mn3 + 
(squares) and constant Mn2+ (diamonds) concentrations. The 

f;
it	 slopes of the lines lead to independent estimates of the transfer
 

coefficient using eqs (6.23), obtaining a = 0.29 and 0.23,
 
respectively, in satisfactory agreement with the results of the
 
Tafel plot method.
 

f!.." 

:'1	 Multistep Mechanisms 
11.	 " 

Thus far we have assumed that the electrode process is simply the 
addition of an electron to a single molecule of 0 to produce a single 
molecule of R. Consider a process with the stoichiometric half-cell 
reaction 

vo 0 + n e- ~ Vr R 

The concerted addition of two or more electrons in a single step is highly 
unlikely (see further discussion of this point in §5.1). In general, we 
expect that any electrode process "involving two or more electrons 
necessarily involves two or more elementary steps. If one of these steps 
is rate limiting, the rate laws should have the relatively simple forms: 

anodic rate =kaC;"'Co" 
cathodic rate = kcCRn.,Co"" 

where the n's are the orders of the reactions. Equations (6.11) then are 

• __ I:"AL-,", n...C n.. - a.F(Ee _EO) 
10 - rU'~(jVR 0 exp RT	 (6.24a) 

: I'f, i =nFAk-'"' n",C n. exp 13F(Ee-~)II	 (6.24b) 
,~	 0° UVR RT 
I' 
'; 

The net current is given by eq (6.10). Since the equilibrium potential 
depends on Co and CR through the Nernst equation 

C v.	 • s, =EO +BI.In~ 
nF CRY' 

io is really a function of only two independent variables, the two 
concentrations or E e and one of the concentrations. Differentiating eq 
(6.24a) or (6.24b), we have 

16.2 Current-Overpotential Curves 329 

-0 I' , , I ' , , i ' , , i ' , , i ' , , I -8.5 

(a) 

-7 .x
 
e;

.o~ i
s: -9.0a a

:§.a 
~ :=> 
~'50 

0	 ~ -9.5-.s	 t__ n.___ 

x 
<>-10 ' , , , ' , , , I , , , , , , , I , , , I -10.0 

0.6	 0.8 1.0 L2 L4 1.6 1.40 1.45 1.50 1.55 1.60 
EN EelV 

Figure 6.6 (a) Tafel plot (cathodic branch) for the Mn3+/Mn2+ coup'le in 
7.5 M H2S04 solution at 25°C. The upper points correspond to [Mn3+] = 
0.01 M, the lower f.:intB to [Mn3+]=0.001 M. (b) Exchange current density 
for the Mn3+/Mn + couple in 7.5 M H2S04 solution at 25°C. Reprinted 
with permission from K. J. Vetter and G. Manecke,Z. phys. Chem. 1960. 
195,270, copyright 1950 R. Oldenbourg Verlag. 

0 In iO) =1Zeo(o In Co) _ 11.F...
( oEe C. oEe Ca RT 

(oIn iO) =1Iao{o InCo) + 13F 
oEe C. oEe Ca RT 

From the Nernst equation, we have 

d In Co) ---!1..E...
( oE C. - vJlTe 

Combining the partial derivatives, we obtain 

(
o ln io)
ss, C. 

0 IniO)
( oEe C. 

= L(~-aJ	 (6.25a)
RT VO 

= L (nn ao + 13)	 (6.25b)
RT Vo 
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~ Similarly, the partial derivatives for constant Co are: 
i 

(
d ln io) =_L(nncr + a) (6.25c) 

aE" Co RT v

ft 
-'; 

or"

(dIn iO) =_L(~_~) (6.25d)
:J 

, 

es, Co RT v; 

Comparing eqs (6.25a) and (6.25b), we obtain a relation between the 
kinetic orders in 0 and the stoichiometric coefficients " 

i 

nco - nao =vain (6.26a) 

Equations (6.25c) and (6.25d) give a similar relation for the kinetic orders 
inR: 

nar - ncr =v,.In (6.26b) 

For a simple electron-transfer process with nco = nar = 1, ncr = nao = 0, Vo 
= v; = 1, and n =1, eqs (6.25) reduce to eqs (6.23). The stoichiometric 
coefficients are generally known. Thus if the exchange current is 
determined as a function of the equilibrium potential, holding one of the 
concentrations constant, the number of independent unknowns can be 
further reduced from four to two and, with luck, there may be only one 
set of parameters which fit the constraints and make chemical sense. 
For further details and examples, see Vetter (B7). 

Example 6.3 Vetter (10) studied the kinetics of the electrode 
couple 

Is + 2 e" ~ 3 1

using an a.c. bridge technique to measure the faradaic 
impedance. An a.c. potential (50-100 Hz, 10 mV peak-to-peak) 
was applied to the cell, which contained a small platinum 
indicator electrode (A = 0.3 cm2), a large Pt counter electrode (Ar = 16 cm2), and a HgIHgzS04 reference electrode. The electrolyte 
was 0.5 M H2S04 with variable amounts of iodine and 
potassium iodide. The exchange current density was 
computed from the measured faradaic impedance (see §6.4). 
The equilibrium d.c. potential was a function of the iodide and • 
triiodide ion concentrations as given by the Nernst equation: 

E=Eo+RTln[Ii] 
2F [I-P 

. §6,2 Current-Overpotential Curves 

0.16 
....... 
N 

S 
Figure 6.7 Exchange -< 0.14current density as a "'0 
function of equilibrium ::> 
potential for the 13'/1' .s 
couple in 0.5 M H2S04 

~ 0.12solution at 25°C. [1-] = 
~ 0.01 M, [13'] variable
 

(diamonds); [13 -] = s
 
0.0086 M, [I"] variable
 
(squares). Reproduced 0.10
 
with permission from
 
K. J. Vetter, Z. phys.
 
Chern. 1952,199, 285,
 
copyright 1952 R.
 
Oldenbourg Verlag.
 

Figure 6.7 shows a plot of CRT/F) Injo vs. the equilibrium 
potential for two sets of data, one with [1-] =0.01 M and variable 
IS- concentration, the other for [Is-] = 0.0086 M and variable [I']. 
The slopes of the two lines are +0.13 and +0.78 for the constant 
Is- and 1-concentrations, respectively. With n =2, Vo =1, and Vr 
= 3, eqs (6.25)and (6.26) give 

20.13 =-'3 ncr - a 
3 

nar - ncr =2 
0.78 =2 nco-a 

nco- nao=21 

There are five parameters and only four relations, but if we 
insist that the orders be integral or half-integral (or even third
integral). the only consistent set of parameters is 

nar=1 nao=O 

ncr = - 21 
nco =+21
 

a=0.21
 

Thus the rates of the anodic and cathodic processes are:
 

anodic rate =ka[I-] 

cathodic rate =kc[Js"]1I2[I' ]-l /2 

A mechanism consistent with these rate laws is 

0.50 0.55 0.60 0.65 0.70 0.75 

Ee/V 
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13- ~ 12+ 1

12 ~ 21 

2 (I + e- ~ 1-) 

where the last step is rate limiting. The small transfer 
coefficient is not surprising; eq (6.17a) suggests that a should 
be less than 1/2 when a lot of work is required to get 0 ready for 
electron transfer. The surface potential on platinum is 
probably positive in this experiment, so that eq (6.20) would also 
suggest a decrease in a from 112. 

Consider now an electrode process which consists of two electron
transfer steps, one of which is slow and rate limiting, the other of which 
is fast and can be assumed to be essentially at equilibrium: 

o +e- ~ I E10 

1+ e- ~ R E2° 

The standard potential for the overall two-electron process is 

E12° =(E10 +E2°)/2 

and the Nemst equation for the overall process gives the equilibrium 
RIO concentration ratio 

C'D - 2F(Ee - E 12°) 9 9 =o>..=exp =12 
Co RT 

where 

9 -.f'I.- -F(Ee-E1°) 9 -f.B..- -F(Ee-E2°)
1 - Co - exp RT 2 - CI - exp RT 

If we assume that E 2° > E 10, so that the intermediate is never 
thermodynamically stable, then two electrons will be transferred for 
each occurrence of the rate-limiting step. Suppose that the first step is 
rate limiting; the total current is twice the contribution of this step, 

i =2FA(kcCo -kaCI) 

with 

i,·	 - aF(Ee-El°) k a - aFrt • 
k c = k 0 exp ~~ = 091 exp RT 

k k ~F(Ee - E 1°) k 9·1\ ~Fr1 
Q = 0 exp RT = 0 1 exp RT 

where ex and ~ (= 1 - ex) are the transfer coefficients and ko is the 
standard electron-transfer rate constant. Since the second step is 

§6.2 Current-Overpotential Curves 

assumed to be in equilibrium at the electrode potential E = E e + 11, we 
have ' 

~_ -Fr1 
CI -92 exP RT 

Substituting CI, kc, and ka into the expression for the current, we have 

. = 2FAko(C a - ....::::..n...C'D exp --lW11 FrI ]l 091 exp	 aFrI exp-
RT 9/92 RT RT 

When 11 = 0, the net current is zero and the cathodic and anodic currents 
are equal to the exchange current io: 

io =2FAkOC091Q	 (6.27a) 

iio = 2FAko CR!9!92	 (6.27b) 

For 11 ,;; 0, the net current is given by 

. . [ - aFrt	 (1 + J3)FrI]
l = lO exp --- exp	 (6.28)

RT RT 

which has the form of the Butler-Volmer equation, but with aapp = a, 
~app = 1 + 13. We thus have the interesting result: For a two-electron 
process where the first step is rate limiting, the apparent cathodic and 
anodic transfer coefficients are expected to be approximately 112 and 312, 
respectively.! Notice that the exchange current in this case is a 
complicated function of the electron-transfer rate constant ko, the 
transfer coefficient a, and the standard potentials for the two steps, E 1° 
and E2°. The individual standard potentials are usually unknown, so 
that ko cannot be determined directly. 

The situation would be just reversed if the second step were rate 
limiting; the apparent cathodic and anodic transfer coefficients would be 
312 and 112, respectively. 

Example 6.4 Bockris, Drazic, and Despic (11) studied the rate 
of anodic dissolution of iron in 0.5 M FeS04, 0.5 M Na2S04. 
Figure 6.8 shows Tafel plots for the process 

Fe(s) ~ Fe2+ + 2 e

at pH 2.0, 3.1, and	 4.0. The slopes of the three lines are 
approximately equal and give 

1 Some authors use the term "transfer coefficient" to refer to these empirical 
"apparent transfer coefficients," reserving the term "symmetry factor" for the 
transfer coefficient of an elementary process. 
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J3appF =25 ± 3 V·l 
2.303[([' 

so that J3ap.,E =1.48 ± 0.18. Furthermore, the displacement of the 
lines at different pH values gives 

alog 111 =1.01 ±0.02 
apH 

suggesting that the process is first order in OH- (or -1 order in 
H+). The cathodic branch Tafel plot is more difficult to come by 
because of the interference of the reduction of'Hr. However. the 
data available suggested that <lapp = 0.5. These results are thus 
consistent with the mechanism 

Fe(s) + H20 ~ FeOH(surface) + H+(aq) + e

FeOH(surface) +:Z FeOH+(aq) + e

FeOH+(aq) + Hrtaq) +:Z Fe2+(aq) + H20 

with the second step rate limiting. Since FeOH+ IS In 
equilibrium with Fe2+.Co in eq (6.27a) must be replaced by 

Co =[FeOH+] =Kh [Fe2+]I[H+] 

where Kh is the equilibrium constant for the hydrolysis of Fe2+. 
Thus the exchange current is 

io =FAkoKh81Q [Fe2+]I[H+] 

consistent with the observed pH dependence. 

Kinetics ofHydrogen Evolution 

Probably the most thoroughly studied problem in electrode kinetics 
is the reduction of hydrogen ions. Hrtaq), to form H2(g). Some 
representative results are shown in Table 6.1. The mechanism has been 
the subject of some controversy over the years and the details are still 
imperfectly understood (B7,B8). Notice the enormous range of the 
exchange current density for different electrode materials. H2 evolution 
at a platinum electrode hasjo =10 A m· 2, whereas at a lead electrode.jo = 
2 x 10-9 A m-2. Furthermore. the apparent cathodic transfer coefficient 
varies from less than 0.5 to about 2.0. These features can be understood, 
at least qualitatively, in terms of a simple model. 

Consider the electrode process 

2 Httaq) + 2 e- ~ H2(g) 

§6.2 Current-Overpotential Curves 
SS5 

0 pH 2.0 

c pH 3.1 

• pH 4.0 
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:.::Figure 6.8 Tafel plots for
 
the anodic dissolution of
 ~ iron at pH 2.0, 3.1, and - -2 
4.0. Reproduced with per
mission from J. O'M. 
Bockris, D. Drazic, and 
A. R. Despic, Electro

,I"", '-4 ,I, ' chim, Acta 1961,4, 325.
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Table 6.1 Kinetic Parameters for Hydrogen Evolution 

Metala 

Pt (smooth) 

Pd 

Ni 

Au 

Fe 

Mo 

W 

Cu 

Cd 

Sn 

Hg 

Pb 

log(jo/A m·2) 
aapp 

1.0 

O~ 

-1.4 

-2.0 

-2.0 

-2.0 

-2.0 

-2.7 

-3.0 

-4.0 

-7.7 

-8.7 
a Metal in contact with 1.0 M HCI at 200C. 
(H2). 

1.5 

2.0 

0.5 

1~ 

0.4 

1.5 

1.5 

0.5 

0.3 

0.4 

0.5 

0.5 

Data from Conway 
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The mechanism is likely to involve reduction of hydrogen ions to give 
hydrogen atoms adsorbed on the electrode surface, step (i), The 
hydrogen atoms then migrate on the surface and form hydrogen 
molecules, step (iia), Altematively, if the mobility of hydrogen atoms On 
the surface is slow, H-H bond formation may be concerted with reduction 
of a second hydrogen ion near an adsorbed atom, step (iib), Finally, 
hydrogen molecules are desorbed from the surface, step (iii). 

M + Httaq) + eo ~ M-H (i) 

2 M-H ~ M·H2 (iia) 

M-H + H+(aq) + e- ~ M·H2 (jib) 

M·H2 ~ M + H2(g) (iii) 

If step (i) is rate limiting, the mechanism is analogous to the 
reduction of iodine with two parallel and identical rate-limiting electron
transfer steps. In the absence of double-layer effects, Cl == 13 == 1/2. The 
data given in Table 6.1 are consistent (though they are hardly conclusive) 
with step (i) being rate limiting for Pb, Hg, Sn, Cd, Cu, Fe, and Ni, 

If step (iib) is rate limiting, the mechanism is analogous to the 
oxidation of iron and we expect Cl '" 3/2 and 13 == 1/2. Step (iib) is probably 
rate limiting for Pt, Au, Mo, and W. 

This leaves Clapp = 2 for Pd as an anomaly. The mobility of hydrogen 
atoms in bulk Pd IS known to be unusually high so it may be that the 
reaction goes via step (iia) which is rate limiting. If this is the case, the 
expected rate law is somewhat different. If k e is the forward rate 
constant for step (iia) and CH is the surface concentration of adsorbed 
hydrogen atoms, the net current for a cathodic overpotential should be 

2i = 2FAkeCH

For T) and CH small, the electron-transfer step is nearly at equilibrium, 
so that the rates of the cathodic and anodic steps are nearly equal: 

kie[H+] = kiaCH 

or 

[H+] - aF(E - EO) k C 13F (E - EO)
k o exp RT == 0 H exp RT 

•Thus the surface concentration is 

[H+] F(E - ~)CH == exp RT 

and the net current is given by 

. 2FAk [H+'2 - 2F(E _EO)
l = c J exp RT 

§6.2 Current-Overpotential Curves 337 

or 

" - 2Frl
l =loexp-

RT 
Thus the apparent cathodic transfer coefficient for this mechanism is 
expected to be about 2, consistent with the results for Pd. 

A strong M-H bond is expected to make step (i) more favorable but 
hinder step (iia) or (iib), Conversely, a weak M-H bond would make step 
(i) slow and (iia) or (iib) fast. Thus we might expect a correlation 
between exchange current density and M-H bond strength which would 
distinguish between the two kinds of mechanism. The exchange 
current density for several metals is plotted as a function of the 
estimated M-H bond strength in Figure 6.9. The exchange current 
density increases with increasing bond strength in the series Tl - Co, 
presumably because step (i) of the mechanism above is getting faster, but 
is still rate limiting ti.e., slower than steps iia or iib), In the series Pt 
Ta, the exchange current density decreases with increasing bond 
strength, presumably because step (iia) or (iib) is rate limiting. 

2 

0 
C'l 

s 
-e

Figure 6.9 Exchange '0 -2
 
current density for H2
 ~ evolution from aqueous 0


solutions for various 
electrode materials as a 4
 
function of estimated M

H bond strength. Repro

duced with permission
 

•from S. Trasatti, J. Eleet -6 I£, . I I .• , . I • , • « I , . , , I , , , .11 

roanal, Chern. 1972,39, 100 150 200 250 300 350163, copyright 1972 Else

vier Science Publishers. M-H bond enthalpylkJ mol-1
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6.3 ELECTRON-TRANSFER RATES FROM VOLTAMMETRY 

In §6.1, we considered the case where current through a cell is 
limited only by the kinetics of the electron-transfer process and assumed 
that transport to the electrode surface is fast. In §4.1, we considered the 
opposite case, where electron transfer is fast and the current is diffusion 
limited. The real world, of course, often contains intermediate cases and 
we now consider the situation where the rates of mass transport and 
electron transfer are of comparable magnitude. 

The mathematical description of current-potential, current-time, ori 
~ ~.	 potential-time curves can become quite involved when the rates of 
.: transport and electron transfer are both important. For a rotating-disk 

electrode or a microelectrode, however, the current can be measured\.'	 
under steady-state conditions and the mathematics is relatively simple. 
We will treat the cases of steady-state quasi-reversible and irreversible 
voltammetric waves in some detail and, with this background, present 
the results of more complex calculations for potential step 
chronoamperometry, d.c. polarography, and cyclic voltammetry. 

Steady-State Voltammetry 

In §5.1, we found that the time scale for a rotating-disk electrode or 
a microelectrode operating under steady-state conditions is governed by 
the residence time of a diffusing species at the electrode surface. That 
concept is particularly illuminating when we consider current 
limitation by the rate of electron transfer. When a molecule spends very 
little time near the electrode surface, the electron-transfer rate must be 
fairly fast in order for current to flow. When the rate is slow, the 
electroactive species may have come and gone without having lost or 
gained an electron. For an r.d.e., the residence time decreases with 
increasing rotation speed-the solution is being pumped by the electrode 

~. faster. For a microelectrode, residence time decreases with decreasing 
I! electrode radius-the electrode is a small target from which it is easy to 
III 
:>' 
~.~	 

escape. Thus we expect the effects of slow electron transfer to be 
magnified as we increase the rotation speed of an r.d.e. or decrease the! 
size of microelectrode used in a steady-state voltammogrgm. 
Conversely, as we increase the residence time by slowing the r.d.e. 
rotation speed or changing to a bigger electrode. the voltammetric wave 
will appear to be more nearly reversible. 

As we have seen in §6.1, electron-transfer rate constants are 
functions of potential, so that when the electrode is made more negative, 
the electron-transfer rate increases (for a reduction process) and 
eventually becomes faster than the rate of transport. Thus at sufficiently 

§6.3 Electron-Transfer Rates from Voltammetry 

negative potentials, a diffusion-limited current is usually observed, even 
for electron transfers which are intrinsically slow, 

Since the rate process occurs entirely at the electrode surface, the 
rate problem to be solved is considerably easier than that of coupled 
homogeneous reactions dealt with in §5.3. We can focus on surface and 
bulk concentrations which are related by the mass-transport rates and 
connect the surface concentrations by the electron-transfer rates. 

One-Electron Processes. Consider the one-electron reduction of 
o to R, represented by 

ktx: k e knR 
0* f=! Os f=! Rs f=! R* 

kno ka knR 

where kno and knR are the mass transport rate constants and ke and k a 
are the electron-transfer rate constants given by eqs (6.9). The steady
state rate equations for the surface concentrations, COs and CRs, are 

dC
dt°

S 

= kDOCO* + kaCR
s
-(kDO + ke) Cd = 0 

dC S s;- = kDRCR* + keCos -(kDR + ka) CR = 0 

Assuming that the bulk concentration of R is zero, we solve these 
equations for COs and CRs; 

Cos= Co* (1 + kalkDR) (6.29a) 
1 + kalkDR + kJkDO 

CRs = Co* (kJkDO) (6.29b)
1 + kalkDR + kJkDO 

The net current is 

i = ie + ia = FA[keCos - kaCRS ] 

\~ 
~. Substituting for the surface concentrations, we have (for kno = knR = kn) 

i = FA ( kDCO* ) (6.30) 
1 + kalke + kDlk e 

When the electrode potential is sufficiently negative, the cathodic rate 
constant k e will be large compared with k a or kn and the current will be 
diffusion limited: 

in =FAknCo* 

Dividing io by i and rearranging, we have 

in - i = kn + ka 
i k e 
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Substituting for kc and ka using eqs (6.6) and (6.9), we obtain 
iD-i ~ a.F(E -K') F (E _EO) 
-.- = k exp RT + exp RT 

L 0 (6.31) 

When k[)lko is small (fast electron transfer), the first term on the right
hand side of eq (6.31) can be neglected and we get the Heyrovsky-Ilkovie 
equation, eq (4.11), with EU2 =EO (since we assumed soo =kDR). On the 
other hand, when electron transfer is slow, so that kn »ko, the first 
term dominates and we have a completely irreversible waue. Taking 
logs and rearranging, we get 

E =EJ/2 + ~ In iDi-i (6.32) 

where the half-wave potential is given by 

EJ/2=EO + ILrln ko (6.33)
~l aF kD 

; ~ 
In intermediate cases, 0.1 < kolkn < 10, the electrode process is ~.j..• referred to as quasi-reversible and the wave shape must be calculated 

using the full equation, eq (6.31). However. it is in this region that the.' , kinetic parameters are accessible from voltammetric measurements. 
"j... Figure 6.10 shows the transition of the current-potential curve from·f~·.·l

reversible to quasi-reversible to irreversible as the electron-transfer rate 
decreases. Figure 6.11 shows the shift in half-wave potential, EO - E1/2. 
and the width of the wave, EU4 - E3/4. as functions oflog kolkD and a. 
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~,l
 
;~
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I' 
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j' 

Figure 6.10 Plot of relative 
current in a steady-state 
voltammogram us. E
E 1/2(rev) for a reversible 
wave (dashed curve) and 
for kDlko = 0.1, I, 10. 100, 
and 1000, a = 0.5. 
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FilrU"l 6.11 Kinetic I 
diagram showing the ° shift in E 1/2 as a ~ 0.04 
function of the width 
of the wave; solid 0.1 
curves correspond to 
constant a and 
variable log kOlkD; -0.00 1.,....-. , , J , , , , I • , , , , 

dashed 
constant 

curves to 
log kOlkD 0.05 0.10 0.15 0.20 

and variable a. 

Thus if the reversible half-wave potential is known and E1J2 and E1J4
E3I4 are measured, the corresponding point on the diagram determines 
the kinetic parameters. 

For r.d.e. voltammograms, kn =Dlxn, where XD is a function of 
rotation frequency and is given by eq (4.45); thus 

kn =0.62 D2!3v-1J6Q)1/2 

For D =10.9 m2s-1, v =106 m2s·1, and Q) =10 - 1000 rad s,l, kn ranges from 
2.0 x 10.5 to 2.0 x 10-4 m s-l. Thus the experimentally accessible quasi
reversible region has 2 x 10-6 < ko < 2 x 10-3m s·l. 

For steady-state voltammograms using a microdisk electrode, kn is 
given by eq (4.51) 

kn =4D11tro 

where ro is the radius of the microdisk. For D =10.9 m2s·1 and r ranging 
from 0.25 urn to 25 um, we have 5 x 10.3 m s·l < ko < 5 x 10.5 m s-l. The 
experimentally accessible quasi-reversible region then has 5 x 10-6 < ko < 
5 x 10-2 m s-l. Note that the range extends to larger ko than with an r.d.e. 
Furthermore, since experiments are much less troubled by ohmic 
potential drop, microelectrode voltammetry is in principle the preferred 
technique for measurement of electron-transfer kinetics. In practice, 
however, electrode surface imperfections-poorly defined effective 
electrode radius-lead to a potentially large systematic error. 

In an experiment, a series of voltammograms is recorded using a 
range of microelectrodes of varying sizes. If ko is near the upper end of 

(E1J4 -E3/4)V 
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the range, the voltammogram will be essentially reversible for larger 
electrodes, and EO (El/2rev) can be determined. The shift in half-wave 
potential and increased width for smaller electrodes then can be used 
with Figure 6.11 to determine the kinetic parameters. Oldham, et al, 
(13), discuss other methods for extraction of EO and the kinetic 
parameters from microelectrode voltammograms and provide a more 
extensive set of correlation diagrams analogous to Figure 6.11. 

Example 6.5 Sweigart and coworkers (14) have used 
microelectrode steady-state voltammetry to measure the 
electron-transfer kinetic parameters for the reduction of Mn(p
CITPP)(DMSO)2+ (p-CITPP is the dianion of tetra-p
chlorophenylporphyrin) in DMSO solution. 

r;\
 
r.:
 Voltammograms for electrodes with diameters of 1,2,5, and 10i' 11m are shown in Figure 6.12. Note the shift in El/2 and 

increase is El/4 - ES/4 with decreasing electrode radius. EO 
was determined from the average of E pe and Epa in a 
conventional cyclic voltammogram. Analysis of these data 

' using the equivalent of Figure 6.11 gave ko =6 x 10-5 m s·l, a = 
0.60 at 25°C. 

Two-Electron Processes. Consider now the two-electron 
:;(1 reduction of 0 to R where we assume that, at least in principle, the 
;;..:' process occurs in two one-electron steps (an EE process): 

0+ e- ~ I 

1+ e- ~ R 

Following the same procedure as above, we can compute the steady-state 
surface concentrations of 0, I, and R as functions of the electron

I transfer rate constants k1e, kIa, k2c, and k2a, and the mass transport rate 
1;1. constant kD (assumed equal for all three species). Substitution into theIi expression for the net current 
~ 
;~ i = FA[k 1eCOs + (k2c - k 1a)CIS - k2aCRS]
 
;,!
 gives 

i =FAkDCO* [ 2 + 82+ knlka: ] <tJ.34)
(1 + 81+ kDlk lcl(1 + 82+ kD1ka:) - 81 

where 

81 =kJo. =exp FIE -E10) 82 =k:;n =exp F(E - E2°) 
k lc RT k'k RT 

§6.3 Electron-Transfer Rates from Voltammetry 

Figure 6.12 Steady-state voltarnmo
grams of Mn(p-CITPP)(DMSO)2, 2 
mM in DMSO with 0.1 M BU4NCI04 
at 25°C. Indicator electrodes were 1, 
2, 5, and 10 11m diameter platinum 
microdisks, v = 20 mV s·l, potential 
vs. AglAgCl; The thin dashed lines 
locate E 112. Reproduced with per
mission from Y. Zhang, C. D. Baer, 
C. Camaioni-Neto, P. O'Brien, and 
D. A. Sweigart, Inorg, Chern. 1991,30, 
1682, copyright 1991 American 
Chemical Society. 

k -k -a1F(E-E1°)
Ic - 1,0 exp RT 

.0.4 -0.6 
E/V 

10 11m 

5 11m 

211m 

111m 

-0.2 

k -k -a2F(E-E2°) 
2c - 2,0 exp RT 

Equation (6.34) is a bit complicated; let us consider some limiting cases. 
Case I. Assume that the first step is thermodynamically easier 

than the second, E2° < E1°. When E .. E1°, we should have (92 + kDlk2c) 
» 1, so that eq (6.34) simplifies to 

i = FAkDCO* 

1 + 91+ knlklc 

which is identical to eq (6.30) and represents a one-electron wave which 
may be reversible, quasi-reversible, or irreversible depending on the 
magnitude of kDlk Ic-

When E .. E2° < E1°, 81 will be very small and, if the first electron
transfer step is fast because of the large overpotential, kvlkle will also be 
small. Equation (6.34) then becomes 

i =FAkDCO* (1 + 1 )
1 + 82+ knlk'k 

which represents a one-electron wave in the vicinity of E2° which grows 
out of the one-electron limiting current of the first wave. Thus in Case I, 
we expect two essentially independent one-electron waves. 

Case II. When E2° > E1°, the intermediate I is thermodynamically 
unstable and, if the electron-transfer rates are fast enough, we expect to 
see a two-electron wave. Since E2° > E1°, we have 82 «81 whenever the 
current is nonnegligible. If kD is small compared with k1e and k2e (the 
reversible case), eq (6.34) reduces to 
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i =2FAkpCo· 
1 + 6182
 

or, with in =2FAknCo·, we have
 
to-t-.-=6182 

1 

which, on taking logs, is the Heyrovsky-Ilkovie equation with n =2 and 
E1J2 =(E1° + E2°)/2.

Either of the two electron-transfer steps could be rate limiting. 
Consider first the case where step one is slow and step two fast. For 82 
« 1 and kn/k2c « I, eq (6.34) becomes 

i = 2FAkpCo* 
1 + 6162 + kp/kl£ 

which is very similar to eq (6.30) except that the limiting current 
[1 corresponds to two electrons. There is an important difference, however. 11
 

In the reversible case (kn/k1c « 1), the Tornes criterion gives
 
[> 

i1.'f 

E1J4 - E3I4 = 56.51n mV 

or 28.2 mV for a two-electron wave at 25°C. But when the process is 
completely irreversible, we have 

E1J4 -E3I4 =56.5/a mV 

il or about 113 mV if a = 1/2. Thus the increase in width with decreasing
ill 

:1 electron-transfer rate constant (or increasing mass transport rate) is 
,'~ rather more dramatic than in the one-electron case. Computed waves 

for E2° - E1° =0.2 V and a = 1/2 are shown in Figure 6.13a for several 
values of kn/ko.

When step 2 is rate limiting, the wave shape is sensitive to the 
difference in potentials, E2° - E1° and the electron-transfer rate. If the 
separation is large compared with the kinetic shift, a single 
symmetrical two-electron wave is expected with a width of 

,	 E1J4 - E3I4 =56.5/0 + a) mV 

This is analogous to the two-electron process discussed in §6.2, where we 
found an apparent transfer coefficient of 3/2. 

When the kinetic shift is larger than the separation of standard 
potentials, a rather unsymmetrical wave results. If the second el~ctron
transfer step is intrinsically very slow, the current from the first 
electron transfer may be nearly limiting before the overpotential is big 
enough to provide a significant rate for the second step. The transition 
from a reversible two-electron wave to this unsymmetrical situation is 
shown in Figure 6.13b. 
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Figure 6.13 Plot of relative current in a steady-state voltammogram 118. E 
- EII2(rev) for a two-electron wave with a =0.5, El =-0.1 V, E2 =+0.1 V 
for (a) step one rate limiting with kp/ko = 0 (reversible, dashed line), 0.1, 
I, 10, 100, and 1000, and (b) step two rate limiting with kp/ko =0 
(reversible, dashed line), I, 10, 100, 1000, and 10000. 

-<:' 

<:t Criteria for Reversibility 

Two methods are commonly used to test for reversibility. The first, 
based on eq (4.11), uses a plot of E vs. In[(in - i)liJ, which should be linear 
with a slope of RTlnF if the process is reversible. Such a plot will not be 
linear if the process is quasi-reversible. An essentially equivalent check 
of reversibility is the Tornes criterion (see Example 4.2): for a reversible 
process the difference in potentials at which i =in/4 and i =3in/4 is 

E1J4 - E3/4 =(RTlnF) In 9 =56.51n mV 

at 25°C. These methods can lead to misinterpretation, however. If the 
process is completely irreversible, a plot of E vs. In[(in - i)liJ also gives a 
straight line but with slope RTIFaap p • An irreversible two-electron 
process where the first step is rate limiting with a = 0.5 is thus 
indistinguishable from a irreversible one-electron process. This 
ambiguity can be avoided, of course, if n is known from the measured 
wave height or from a coulometric experiment (see §7.2). 

A better method to check reversibility is to measure current
potential curves for different r.d.e. rotation speeds or microelectrode 
sizes (or different d.m.e. drop times-see below). Since the mass 
transport rate constant varies with rotation speed or electrode size (or 
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drop time), the ratio kDlko is affected. If the process is reversible, the 
shape of the curve is unaffected and the apparent half-wave potential is 
constant, but variations in El/2 will be found for quasi-reversible and 
irreversible waves. 

Potential Step Chronoamperometry 

In order to obtain the current-time response in a potential step 
experiment using a stationary planar electrode, the diffusion equations 
must be solved with the boundary condition 

i =FA[kcCO(O,t) - kaCR(O,t)]	 (6.35) 

-: 
where k e and ka are functions of the potential and are given by eqs (6.9). 

,,; The mathematics is fairly straightforward (using Laplace transforms, , see Appendix 4) and gives the surface concentrations 

!i Co(O,t) =Co* - ~(l_rr.).. ft») (6.36a) 
l+e AW 

CR(O,t) =~(l_{(Aft»)	 (6.36b) 
1+ e ')..W 

where we have assumed equal diffusion coefficients and CR* =O. As 
usual, the parameter e is 

e_ k a _ FIE-EO) 
- k - exp RT 

e 

and we have introduced the function 

((Aft) =AW exp(A2t)[l- erftAft)] (6.37) 

where 

A= ke + k a = ~(e-a + eP) 
~., ffl ffl	 ~~ 'j' 
I':;	 The current is obtained by substituting the surface concentrations, eqs 

(6.36), into eq (6.35), obtaining 

i =FAkeCo* (((Aft») (6.39) 
Afif • 

The functionJ(AY't), shown in Figure 6.14, varies from 0 to 1 with 
increasing Ait. In the limit of fast electron transfer and long times, Ait 
»l,{(AVt)/Afiii -+ 0 and eqs (6.36) reduce to eqs (4.3), which were derived 
assuming a nemstian electrode process. The significance of e9-(6.39) is 
clarified by considering two limiting cases. At short times, {(AVt) '" AfiE, 
and at t =0, eq (6.39) becomes 
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1.0 i ••• , i ' •• , i ' •• , I 4: R'l,a,."c'i";'" .", •• " 
F(Avt) 

,-...0.8 rll 

.~ 3 

0.6 

e ~ 
2 ....... ·
0.4 ···.".of 

Gl 
: -..........
::: 1 '.0.2 ..........................
 
.	 _-- . 

I •••• I I • , , , , • , , ,0.0	 o 1""'",,1.""'1,,1'11,1 

o 1 ')..vt 2 3 o 1 2 
tIs 

3 4 5 

Fi~ 8.14 
VB. 'Aft 
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i(O) =FAkeCO* 

so that the current is initially limited by the rate of electron transfer. 
When we make the overpotential sufficienUy negative that k e » ka , ').. ... 
kelffl and eq (6.39) becomes 

i =FACo*f15Trtt !tAft)	 (6.40) 

For a sufficiently negative overpotential or at long times, Aft» 1,!tAft) 
'" 1, and eq (6.40) reduces to the Cottrell equation, eq (4.7); the current is 
then diffusion controlled. 

Notice that eq (6.40) has the same form as eq (5.31) for the current 
limited by a homogeneous chemical step preceding electron transfer. As 
we remarked in §5.4, an electron transfer process preceded by a slow 
reaction behaves very much as if the electron transfer step itself were 
slow. However, we now see that the two phenomena are easily 
distinguished: the current for a CE process is independent of 
overpotential for EO -E greater than about 100 mV (where 0 is reduced 
immediately on reaching the electrode), but when the current is limited 
by slow electron-transfer kinetics, k e continues to increas with 
increasing overpotential. 

In an experiment, the potential is stepped to some negative value 
and the current measured as a function of time. With increasing time, 
Aft increases, and {(AVi) -+ 1. Thus for long enough time, current decay 
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jf 
curves are expected to be independent of the electron-transfer rate 
constant; of course, the current may be very small indeed when that 
happens. Figure 6.15 shows the kinds of results expected for systems 
differing only in electron-transfer rates. Notice that for very slow 
electron-transfer rates, it is possible to extrapolate the current to zero 
time and thus to determine the electron-transfer rate constant k c 
directly if the electrode area and the concentration of 0 are known. Note, 
however, that capacitive charging current may interfere at short times. 

Irreversible Polarographic Waves 

In §4.4, we corrected for the expanding mercury drop area by using 
an effective diffusion coefficient, 7D/3, in the equations derived for a ;,
planar electrode. That approach is less accurate for an irreversible•

J wave (although the right qualitative result is obtained). Meites and 
¥'l
:'i 
,I

Israel (15) have shown that the shape of an irreversible polarographic 

§6.3 Electron-Transfer Rates from Voltammetry 349 

When the transfer coefficient deviates from 0.5, cyclic voltammograms 
become asymmetric, as shown in Figure 6.16b.' Thus when a = 0.75, for 
example, the cathodic peak is sharper than the anodic peak as expected 
from the Butler-Volmer equation and Figure 6.2. 

Just as plots of E vs. In[(in - i)li] for voltammetric waves give 
straight lines for both reversible and completely irreversible processes, 
so plots of cyclic voltammetry peak currents vs. v1/2 are linear for both 
extremes. Such plots are not linear for quasi-reversible processes (A. '" 1) 
and so can be used (with care) for diagnostic purposes. The separation 
of the anodic and cathodic peaks, tlEp , increases with decreasing values 
of A. as shown in Figure 6.17, and this parameter can be used to obtain a 
rough measure of the electron-transfer rate constant; since tJ.Ep also 
increases with increasing v because of solution iR drop, such a 
measurement must be interpreted with caution. 

The effects of iR drop are significantly reduced by the use of 
microelectrodes. At fast scan rates, spherical diffusion negligible and 
cyclic voltammogram peak separations can be interpreted using the 
Nicholson approach. However, as we will see in Example 6.6, 
considerable care is required to get accurate kinetic parameters by this 
method. 
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Figure 6.16 Computed cyclic voltammograms for (a) A = 10, I, 0.1, and 
0.01, a = 0.5, and (b) A = 0.3 and a = 0.25 (dashed curve), 0.5 (solid curve), 
and 0.75 (dot-dash curve). 
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tl wave is given approximately by 

I E =EI/2 + 0.916~RT In id -:- i 
l 

H 

i.~.,;,t ..•.':
" . E =ED + HI.- In 1.35 koft~ 

1/2 «F YDa 
';i~ 

(6.41) 

(642) 
. 

'~ where t is the drop time. Since xn is proportional to YDot, eqs (6.41) and 
;~': (6.42) are functionally similar to eqs (6.32) and (6.33) for irreversible 
;:,~ steady-state voltammetric waves. Irreversible polarographic waves aret, 

thus qualitatively similar to the curves shown in Figure 6.10. Again, if 
EO is known, the shift in half-wave potential can be used to determine ko. 

'~.(,,
r'i ., 

Cyclic Voltammetry 

It is easy to predict the qualitative effect of slow electron transfer on 
a cyclic voltammogram from our experience with chronoamperometry 
and steady-state voltammetry. When ko decreases, a larger overpotential 
is required so that cathodic peaks broaden and shift to more negative 
potentials; similarly anodic peaks broaden and shift to more positive 
potentials. This expectation is fulfilled by calculations based on the 
mathematical model developed by Nichol son (16). The shape of a cyclic 
voltammogram is found to depend on the transfer coefficient a and on 
the dimensionless parameter 

A.=ko·/~
'V «or» 

where u is the potential scan rate. For A > 10, the voltammogram is 
essentially reversible, independent of ko and a, but for smaller values of 
A, peak shifts and broadening are expected as shown in Figure 6,16a. 
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c,1:	 Example 8.8 Safford and Weaver (17) have reported a careful 
study of the oxidation offerrocene, 3 mM in acetone (with 0.3 M 
Et4NPF6), propionitrlle or butyronitrile (with 0.3 M B1l4NPF6) 
using cyclic voltammetry at a 5-llm gold microdisk. 
Temperatures ranged from 198 to 298 K. The kinetic 
parameter A. varies with temperature through both ko andD, 

MItOJfT) =MI*(ko) - MfflD)/2 

so that the temperature dependence of D must be known in 
order to interpret cyclic voltammetry data. Safford and Weaver 
determined the diffusion coefficient of ferrocene from the 
steady-state current in a microelectrode voltammogram-see 
eq (4.50). The diffusion coefficient ranged from 2.0 x 10-9 to 2.8 x 
10-10 m2s- 1 in acetone, from 1.8 x 10-9 to 2.1 x 10-10 in 
propionitrile and from 8.7 x 10-10 to 9 x 10-11 in butyronitrile as 
the temperature changed from 298 to 198 K The separation of 
the anodic and cathodic peaks is increased by ill drop. Solution 
resistivities were found to vary with solvent and temperature: 
0.75 to 5.8 O-m in acetone, 1.0 to 9.2 in propionitrile, and 1.3 to 11 ' 
in butyronitrile from 298 to 198 K Voltammograms were 
computer-simulated using experimental conditions of 
temperature and resistance, and the computed peak 
separation was subtracted from the experimental values to 
obtain the kinetic contribution. A plot of this excess width is 
shown as a function of scan rate in Figure 6.18 for data 
obtained at 198 and 298 K in all three solvents. 
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Analysis of these data using curves similar to that in Figure 
6.17 gave the ko =0.055, 0.030, and 0.0095 m s-l at 298 K for 
acetone, propionitrile, and butyronitrile solutions, respectively. 
The temperature dependence led to activation enthalpies, Mit 
=19 kJ mol-1 for all three solvents. 

~,	 6.4 FARADAIC IMPEDANCE 
~i 

f
11 

Some of the best methods for studying the rates of electron-transfer 
"~	 reactions involve a.c, measurement of the faradaic impedance, the 

equivalent circuit parameter representing the barrier to current flow 
between electrode and solution (see §3.1). The faradaic impedance 
includes both the finite rate of electron transfer and the rate of transport 
of electroactive material to the electrode surface. Since (as we will see 
below) the current is expected to lag a bit behind the a.c, potential, the 
faradaic impedance is not purely resistive but has a capacitive 
component. The faradaic impedance acts in parallel with the double
layer capacitance Cd, and this combination is in series with the solution 
resistance R, as shown in Figure 3.1. In measurements of solution 
conductance, the cell is designed with large electrodes to maximize the 
double-layer capacitance and to minimize the faradaic impedance. Here 
we are concerned with the faradaic component and the opposite strategy 
is adopted. Low currents minimize the solution iR drop and small 
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electrodes tend to amplify the faradaic contribution. In practice, 
attention must be paid to the separation of the effects of solution 
resistance and double-layer capacitance from the measured impedance, 
but we will assume in this section that the faradaic impedance is 
measured directly. 

Resistive and Capacitive Components 

Suppose that the faradaic impedance is equivalent to a resistance 
Rs and capacitance Cs in series and that a sinusoidal current flows 
through the circuit: 

I(t) =10 sin cd (6.43) 

where co is the angular frequency (21t times the frequency in hertz). The 
potential drop is 

<1> =IRs + QICs
 

so that
 

~=R dL+L
dt B dt CB 

or 

~ =RBlow cos wt + Cl o sin wt (6.44)
dt B 

The solution to this differential equation can be written 
.~. 

<1>(t) =~<1> sin(wt + <p) + <1>dc 

so that 

~ =w~<1> cos (wt + <p) =w~<1> (cos wt cos <p + sin wt sin <p)
dt 

Equating the coefficients of sin wt and cos wt, we have 

w~<1> cos <p =co loRs 

w~<1> sin <p = loiCs 

so that the phase angle <p is given by 

cot <p =cos <pIsin <p =wRsCs $.45) 

and the faradaic impedance Zr is 

IZrl =~ =-v'R.2 + l/{wCs f 
10 (6.46) 
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Thus the magnitude of the faradaic impedance is given by the ratio of 
the amplitudes of the a.c. potential and a.c. current and the resistive and 
capacitive components can be separated if the phase angle is known. 

Solution ofthe Diffusion Problem 

For the electrode process 

O+e- ~ R 

the diffusion problem (see §4.l) can be solved with the periodic boundary 
condition 

10sin cd =-FAJO(O,t) =FA-fR(O,t) 

to obtain the following expressions for the surface concentrations (see 
Appendix 4): 

CoCO,t) =Co'" _ 101sin wt - cos cd) (6.47a) 
FAf2wDo 

CR(O,t) =CR'" + lolsin wt - cos cd) (6.4Th) 
FAY2wDR 

The surface concentrations undergo sinusoidal variations with 
amplitudes proportional to the current amplitude 10 and inversely 
proportional to fwD. Thus the amplitudes of the concentration 
variations decrease as the frequency or the rate of diffusion increases. 
Notice that the sinusoidal variation of CR(O,t) is 180 0 out of phase with 
CO(O,t); since 

sin wt - cos wt =f2 sin(wt - 7tl4) 

CR(O,t) lags 450 behind the current. 

Calculation ofthe Faradaic Impedance 

Driving these concentration variations leads to both dissipative 
(resistive) and reactive (capacitive) terms in the faradaic impedance. To 
see how these develop, we need to derive an expression for d<1>/dt for 
comparison with eq (6.44). Since the electrochemical system is assumed 
to be near equilibrium, T\ is very small and CO(O,t) '" CO"', CR(O,t) '" CR"'. 
Thus eq (6.10) can be expanded, retaining only first-order terms, to obtain 

let) == io(CO(O,t) CR(O,t) _ FT\(t») 
Co'" CR'" RT 

or 



355 354 Electron-Transfer Kinetics 

T!(t) == _RX(Co(O,l) _ CaCO,l) + I~t») 
F Co· CR· lO 

The time derivative ofT! can then be written: 

dT\ =R .dl. + A dC0 + A dCR (6.48)dt et dt po dt pR dt 

where Ret is the charge-transfer resistance 

Rct=drt =-~ (6.49)01 FlO 

and the other parameters are 

Po = drt = _...lIT.- (6.50a) 
oCo FCo· 

PR= drt =+ ~C• (6.50b)
OCR F R 

The time derivatives of 1, CO, and CR can be computed from eqs (6.43) 
and (6.47): 

.dl. =10 00 cos rot (6.51) 
dt 

dCo _ Iooo{cos rot + sin rot) (6.52a) 
dt - FAY2Doro 

dCR =+ loco{cos rot + sin rot) (6.52b) 
dt FA Y2DR00 

Combining eqs (6.48), (6.51) and (6.52), we have 

~ =(Ret + ~) loCO cos rot + Iocrfij)sin rot (6.53) 

where 

o-..l.(~-~) 
- FA Y2DR YWo • 

or, using eqs (6.50), 

0=.J1..I....( 1 + 1 ) 
F 2A CR·Y2DR Co·Y2Do 

(6.54) 

We can now identify the equivalent circuit parameters R s and Cs by 
comparison of eqs (6.44) and (6.53): 
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R s =Ret + o/fro (6.55) 

Cs = l/CJ"fW (6.56) 

or 

IZrl =·{ii.}+ 202/co (6.57) 

cot q> = 1 + Retfro/o (6.58) 

The faradaic impedance is seen to have two components: the charge
transfer resistance, which is inversely proportional to the exchange 
current~nd thus is a measure of the rate of electron transfer; and the 
term oY2/co, which relates to mass transport and contributes equally to 
the resistive and reactive parts of the impedance. This term is 
sometimes called the transport impedance or Warburg impedance to 
distinguish it from the kinetic contribution to the faradaic impedance. 
For a reversible charge-transfer process, the transport impedance 
dominates, oY2Ico »Ret, so that cot q> =1. Thus in a faradaic impedance 
experiment, q> = 45° is a criterion for reversibility. An immediate 
consequence of slow electron-transfer is a reduction of the phase angle. 

If the magnitude of the faradaic impedance, IZt!, and the phase 
angle q> are measured, eqs (6.57) and (6.58) can be used to separate the 
contributions from mass transport and charge transfer. Thus faradaic 
impedance measurements have been rather commonly used for 
determination of electron-transfer rate constants. 

..~. Example 6.7 A faradaic impedance experiment at 1 kHz (00 = 
2x x 103 rad sol), a disk indicator electrode with r = 1 mm, and a 
solution with CO· =CR· =1 roM, DO =DR =10-9 m2s· l, T =298 
K, gave q> = 35°. Compute the components of the transport 
impedance, the exchange current io, and the electron-transfer 
rate constant ko. Assume that the d.c. potential is very near the 
equilibrium value. What phase angle would be expected if the 
frequency were increased to 10 kHz? 

Substituting the concentrations, diffusion coefficients, electrode 
area and temperature into eq (6.54), we have 

0= 3.79 x 10308.112 

o/fW =4780 

Cs = 1ICJ"fW =3.33 ~ 

With q> =35°, cot q> =1.428, we have 

RetfW/o =0.428 

Ret =205 0 
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Using eq (6.49), we obtain 

io=1.26 x 10-4A 

and eq (6.11) with E = Ee gives 

ko = 4.1 x 10-4m s-l 

Increasing the frequency by a factor of 10 decreases the 
transport impedance, making the faradaic impedance more 
resistive and decreasing the phase angle. Since Ret and a are 
frequency-independent, eq (6.58) gives 

cot cp = 1 + 0.428 ffD = 2.353 

or cp =23". 

Direct measurement of the faradaic impedance for a system at 
equilibrium works well when both components of the system are 
chemically stable. There are many cases, however, where one of the 
components of the electrode couple is of limited stability so that a 
solution containing known amounts of 0 and R cannot be prepared. The 
general ideas of the faradaic impedance method can still be used; 
however, we start with a solution containing only 0 (or R) and apply a 
d.c, potential to adjust the O/R ratio at the electrode surface. This 
marriage of d.c, voltammetry and faradaic impedance methods can be 
applied using a variety of indicator electrodes, but the most common 
application has been with the dropping mercury electrode, a technique 
called a.c, polarography. 

A.C. Polarography 

In a.c. polarography, a small sinusoidal a.c, voltage is 
superimposed on the d.c. ramp voltage and the a.c. component of the cell 
current is measured using a lock-in detector so that the in-phase and 
out-of-phase current components can be determined separately.! In 
other words, the cell potential is modulated by an amount !!.E and the 
resulting current modulation 6i is measured. For small values of !!.E, 
the a.c. polarogram should approximate the first derivative of the d.c. 
polarogram (see Problems). The a.c. modulation voltage is typically in 
the audio-frequency range, ca. 10 Hz - 10 kHz, with an amplitude-of 5-10 
mY. In practice, the a.c. current oscillates with drop growth and 
dislodgement; the current is usually measured at maximum drop size, 
i.e., just before drop fall. 

1 Alternatively, the magnitude of the a.c, current and the phase angle can be 
determined. Fourier transform methods can also be applied to a.c, polarography. 
For further details on the theory and practice of a.c. polarography. see Smith (18). 
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We can derive the a.c. current - d.c. potential curve for a reversible 
process from the results of our discussion of the faradaic impedance. If 
the process is reversible, the charge transfer resistance is negligible 
and, according to eq (6.57), the faradaic impedance is 

IZfl =aY 21m 
In general the surface concentrations CO(O,t) and CR(O,t) will be very 
different from their bulk solution values. However, the sinusoidal 
variations are about mean values determined by the d.c. potential. Thus 
we can replace CO· and CR· in eq (6.54) by the mean values given by eqs 
(4.3), which we can rewrite in slightly more compact form in terms of 
the parameter 

' F(E -E]f2Je =exp ---=-------=-=
RT 

The mean surface concentrations (for CR· =0) are 

CO<O,t) = Co· ~ 
1 + e' 

CR(O,t)=Co. fi5(Ji5R 
1 + e' 

Substituting these expressions in eq (6.54) in place of Co· and CR·, we 
have 

IZ~ = RT (1 + e'f 
F 2ACo·YDom e: 

If the potential is 

E(t) =Edc + I::.E sin(rot) 

the a.c. component of the current will be 

I(t) =10 sin(wt + 7tl4) 

since cot cp =1 for Ret =O. The current amplitude is 

10= I::.E
Iz,l 

or 

t - F 2ACo· 'fliOO) I::.E ----..a: (6.59) 
0- RT (1 + e'f 

Although the problem can be formulated to account for the expanding 
spherical drop of the d.m.e., it is usually more convenient to make the 
required corrections empirically by determining the ratio of the a.c. to 
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d.c. currents, measured for the same drop time on the same solution. 
Using the Cottrell equation for to. we obtain 

!..9.. F f7t(;)i t:.E e' (6.60) 
io RT(l+eof 

The current at E = El/2 (e' = 1) is 

I _ F~CQ*fl5QO} t:.E 
p 4RTr: 

The shape of the current-potential curve can be seen more easily 
considering the ratio IIIp : 

L-~ 
t, -(1 + e'f 

The ratio can be inverted and written as 

t, j1 + e'f 
Y" 4e' 

or 

Ip-I j1-e'f 
I - 4e' 

Taking the square root and subtracting these equations, we have 

fi- yIp;1='W 
Taking logs, we obtain 

E =EJ/2± 2~T In [fi- VIp;I] (6.61) 

This equation describes the shape of an a.c. polarogram for a reversible 
system, shown in Figure 6.19. Implicit in the derivation ofeqs (6.59) and 
(6.61) has been the assumption that liE is small (5-10 mV in practice). At 
larger modulation amplitudes, the proportionality between peak current 
and liE breaks down and the peak potential is no longer equal to El/2. 

At low concentrations of electroactive material, the contribution of 
the double-layer capacitance is no longer negligible. However, beeause 
the resistive and capacitive components of the a.c. current are 90° out of 
phase, phase-sensitive detection of the a.c. signal can select the resistive 
component and almost wholly reject the contribution of the double-layer 
capacitive charging current. The sensitivity of a.c. polarography is 
therefore very good, comparable with differential pulse polarography. 
Even better selectivity for the resistive component, and correspondingly 
better analytical sensitivity, can be achieved with second-harmonic a.c. 
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polarography where the a.c. current at twice the modulation frequency is 
detected. Since the faradaic impedance is nonlinear, the second 
harmonic signal is quite large; the nearly linear double-layer capacitive 
contribution gives very little second harmonic current. The second 
harmonic a.c. polarographic curve resembles the second derivative of 
the d.c. polarographic wave. Just as the resolution of an a.c. or 
differential pulse polarogram is better than that of a d.c. polarogram, a 
further improvement in resolution is achieved in second-harmonic a.c. 
polarography. 

Example 6.8 Compute the ratio of the peak current 
amplitude for an a.c. polarogram to the d.c. diffusion-limited 
current. Assume a modulation amplitude of 5 mY, a 
modulation frequency of 1 kHz, and a drop time of 5 s. 

At the peak potential, e' = 1, so that eq (6.60) becomes 
I
....!!...=~ V1tCJ>t 
io 4RT 

Substitution of the numbers gives 

IoIiD = 15.3 
Since the a.c, signal can be amplified by a tuned amplifier, the 
signal-to-noise ratio for the a.c. polarographic peak current is 
expected to be very high. 
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So far we have assumed nernstian behavior in this discussion of 
a.c. polarography, but one of the most interesting applications of the 
technique is the measurement of electron-transfer rate constants. An 
a.c, polarogram will appear reversible when i wDo/ko «1. When the 
rate of electron transfer is slower or the frequency higher, the height of 
the a.c, polarographic peak is decreased and the peak broadens and 
becomes somewhat unsymmetrical. The current can then be expressed 
by 

I(CJlt) =10' sin(CJlt + cp) 

where 

10'=10G(CJ)[ex(1 + 1/a')~~) + p(l + a')~~~)] (6.62) 

0(0» =. / - - 2 (6.63) 

1 +(1 + Y2ID1'A.'f 

ex and pare the cathodic and anodic transfer coefficients, lois given by eq 
(6.59), 'A. is given by eq (6.38), 

'A.=~(a·-a + a'P)
W 

and we have again assumed equal diffusion coefficients for 0 and R. If 
we use eqs (6.36) for the surface concentrations, the bracketed term in eq 
(6.62) becomes 

1 + (ala' _ p)F('A.Yt) 
'),:(ii 

where F(A'It) is given by eq (6.37) and t is the d.m.e, drop time. The phase 
angle cp is given by 

cp =cot-1[1 + Y2OO.t'A.] (6.64) 

These equations are sufficiently complex that pictures are more useful 
in gaining a feeling for the behavior of the system. Thus a.c, 
polarographic currents computed using eqs (6.62) and (6.63) for several 
values of ko and ex are shown as functions of Edc in Figure 6.20. 

When the electron-transfer process is fast enough that the d.c. 
polarographic wave appears reversible, F('A. fi)1'A. (ii ... 0 and the u.rm in 
brackets in eq (6.62) reduces to 1. The function G(co) varies from 1 when 
fro/A « 1 to AHOO for high frequencies or slow rate constants. The 
predicted frequency dependence of the peak current for ex =0.5 is shown 
in Figure 6.21. Since 10 is proportional to lID, the a.c, current becomes 
frequency independent at high frequencies. Although this condition 
may not be experimentally attainable, it is often possible to extrapolate 
experimental data to infinite frequency where the a.c. current at E =E1I2 
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(the peak current for ex =0.5), scaled by the d.c. diffusion current, is given 
by' 

t!E-) =1- Y'Ttt/D AEko
liD _ 2RT (6.65) 

The electron-transfer rate constant can also be extracted from the 
phase angle. According to eq (6.64), cot cp is linear in Y2rorA.. Ifex =0.5, the 
peak current corresponds to a' = 1 so that eq (6.38) reduces to A =2ko'W. 
Thus a plot of cot cp vs. fro should have a zero-frequency intercept of 1 and 
a slope of YD/2/ko. 

Figure 8.20 Ac. current
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• • • -':]j2s·1, A= 10· g m =3.5 8AN 1 

mm 2, CO· = 1 roM, Q) = 100 0 -100 -200 
2500 s-l, and liE =5 mV. (Edc -E1/2)mV 

Example 6.9 Dietz and Peover (19) employed a.c. 
polarography to study the rate of reduction of trans-stilbene, 
2,4,6-trimethyl-trans-stilbene, and 2,4,6,2',4',6'-hexamethyl
trans-stilbene in N,N-dimethylformamide solutions. The 
phase angle cp, measured using an impedance bridge, is plotted 
as cot cp VS. 0)112 in Figure 6.22. Given diffusion coefficients, 
measured under the same conditions, the slopes of these plots 
were used with eq (6.64) to compute the electron-transfer rate 
constants, obtaining: 

trans-stilbene ko =1.2 x 10-2 m s-l 
trimethyl-trans-stilbene ko =5.2 x 10-3m s-l 
hexamethyl-trans-stilbene ko =1.8 x 10-3m s-l 
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Figure 8.21 Frequency dependence Fieure 6.22 Plots of cot lp VS. 001/2 

of the a.e. polarographic peak for a.e, polarographic currents 
current for ko =OD (dashed line) measured for trans-stilbene (0), 
and ko =0.01, 0.001, and 0.0001 m trimethyl-trans-stilbene (Q), and 
s-l. Other parameters are as in hexamethyl-trans-stilbene (0). Re
Figure 6.20. produced with permission from R. 

Dietz and M. E. Peover, Disc. Far
aday Soc. 1968,45, 154, copyright 
1968 Royal Society of Chemistry. 

Since the activation energies obtained by comparison of the 
above data with values determined at -20°C were about the 
same for trans-stilbene and the methyl derivatives (ca. 20 kJ 
moP), Dietz and Peover suggested that the reduction in ko with 
increasing methyl substitution is due to steric requirements on 
the orientation of the molecule at the electrode prior to electron 
transfer, i.e., to changes in the entropy of activation. Electron 
transfer to trans-stilbene is apparently possible for more 
different orientations than for the more hindered methyl 
derivatives. 

Coupled Chemical Reactions 

In principle it is possible to use a.c, polarography to measure the 
rates of many types of chemical reactions coupled to electron-transfer 
processes. The technique has not been as widely used as the reversal 
methods we have just discussed primarily because a.c. polarography is 
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not readily used in a qualitative way to characterize a system; 
quantitative measurements often grow out o( qualitative studies using 
the less precise methods. Nonetheless, for accurate rate constant 
measurements on a well-characterized system, particularly for very fast 
rates, a.c. polarography is the method of choice. 

In general, theoretical expressions for the a.c, polarographic 
current are extremely complex, involving integrals which must be 
evaluated numerically. Although this can be done, in practice it is 
usually much easier to measure the phase angle, which can be 
expressed as an analytical function of rate constants, potential and 
frequency. Furthermore, the phase angle is dimensionless and 
independent of electrode area and geometry. For an irreversible 
chemical step following electron transfer, it can be shown that 

cot cp = VIU	 (6.66) 

where 

v::: i2{;i + 1 + G+(klro) e' (6.67a) 
A 1 + e' 

U _ 1 + G_(klw) e' 
(6.67b) 

1 + e' 
with 

G±(klro) ::: (-./1 + (klw)2 ± klro )]/2 (6.68) 
1 + (klw)2 

and Ais given by eq (6.38). The effect of the added terms in G±(klro) is to 
produce a hump in the cot cp us. VOl plot at rolk == 0.39. If the electron
transfer rate is fast enough, this hump may be resolved and the rate 
constant of the chemical step can be determined quite simply. When the 
electron-transfer rate is slow enough to contribute a significant slope in 
the absence of the chemical step, however, the hump may be manifested 
only by a change in slope. 

Example 6.8 Moraczewski and Geiger (20) studied the 
reduction of {'T\4-cycloocta t et raene)-(TJ 5-cyc1open tadieny1)cobalt, 
(COT)CoCp, using the techniques of d.c. and a.c. polarography 
and cyclic voltammetry. 

Cyclic voltammograms of (COT)CoCp in DMF solution, shown 
in Figure 6.23, have two cathodic peaks (E1I2 :::-1.82 and -2.05 V 
us. s.c.e.), These reductions are assigned to the isomeric forms 
in which the cyclooctatetraene ligand is bound through the 1,3 
and 1,5 double bonds, respectively. Since the peak currents are 
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proportional to concentration, the peak current ratio gives the 
equilibrium constant 

K)l,5] 
[1,3] 

Thus K =3.3 at 298 K and 1.46 at 343 K (!JJIO =-13 kJ moll). On 
the reverse scans of the cyclic voltammograms, a single anodic 
peak is observed, apparently corresponding to the oxidation of 
the radical anion of the 1,3-isomer. Furthermore, on repetitive 
cycles, the cathodic peak due to the 1,3-isomer increases at the 
expense of the peak due to the 1,5-isomer until the cyclic 
voltammogram shows an apparently reversible pattern, 
centered at -1.82 V l with only a trace of the more negative peak 
remaining. Isomerization of neutral (COT)CoCp is quite slow 
but (COT)CoCp' seems not to exist at all as the 1,5-isomer. 
These results could be accommodated by either of the two 
schemes: 

e
(l,5-COTICoCp P (l,5·COT)coCp

!T slow e- !fast 

(l,3.COT)CoCp p (l,3-COT)CoCp-

Scheme I 

Figure 6.23 Cyclic voltammo
grams at a hanging mercury drop 
electrode (v = 19 V s·l) of 
(COT)CoCp in DMF solution at 
various temperatures. Reproduced 
with permission from J. 
Moraczewski and W. E. Geiger, J. 
Am. Chemi. Soc. 1981, 103, 4779, 
copyright 1981 American Chemical 
Society. 

U,5·COT)CoCp 

slow n e-~ 
ll,3.COT)CoCp p (l,3.COT)CoCp-

Scheme II 

298K 

+i~ 

328K 
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In scheme I, electron transfer to (l,5-COT)CoCp is presumed to 
be reversible but perturbed by very rapid Isomerization of the 
radical anion to the more stable 1.3-isomer. In scheme II, 
isomerization is presumed to be concerted with electron 
transfer. If scheme II is correct. the electron-transfer rate 
constant might be expected to be slower than normal. Indeed, 
a.c. polarograms show that the peak due to reduction of the 1,5
isomer is much smaller than that due to the 1,3-isomer. Plots 
of cot <p vs. {(jj were linear for both peaks for frequencies up to 
about 200 Hz (fro < 35 s1/2). Poor signal-to-noise ratios 
precluded work at higher frequencies. The slopes of the cot CI> 

vs. fro plots suggested that electron transfer to the l,5-isomer is 
about 10 times slower than to the l,3-isomer. 

It was later realized that, because of the limited frequency 
range, the a.c. polarographic result might be consistent with 
scheme I. Accordingly, the experiment was repeated using a 
fast Fourier-transform technique which permitted 
measurements at considerably higher frequencies (21). This 
work gave the cot <p vs. fro plots shown in Figure 6.24. The data 
for the 1,3-isomer give a good straight line with slope 
corresponding to an electron-transfer rate constant ko = 2.8 x 
10-3 m s·l. The l,5-isomer data, on the other hand, show 
considerable kinetic control at low frequencies; cot CI> 

asymptotically approaches the linear dependence on {(jj at high 

4 

Figure 6.24 Plots of cot ljl 
v s. {(jj for a.c. polaro
graphic currents measured 
for (COT)CoCp in DMF 
solution. The squares and 
circles correspond to th c 
1,3- and 1,5 isomers, 
respectively. The dashed 
line corresfonds to kO = 6 x 
10-4 m s>. Reproduced 
with permission from M. 
Grzeszczuk, D. E. Smith, 
and W. E. Geiger, J. Am. 
Chem. Soc. 1983,105,1772, 
copyright 1983 American 
Chemical Society. 
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frequencies. The data of Figure 6.24 can be interpreted in 
terms of an electron-transfer rate constant ko =6 x 10-4 m s-l, 
somewhat slower than the value for the 1,3-isomer, but with a 
following chemical step with rate constant k = 2000 s-l. 

These results suggest that electron-transfer rate constants in 
general must be viewed with caution. There is always the 
chance that a rate constant appears to be slow not because the 
electron-transfer step is slow, but because a very fast chemical 
transformation is coupled to electron transfer. 

AC. Cyclic Voltammetry 

A relatively recent technical development is the combination of the 
methods of a.c. polarography and cyclic voltammetry. A low-frequency 
triangular-wave potential, modulated by a higher-frequency, small
amplitude, sinusoidal signal, is applied to the cell and the a.c. current at 
the frequency of the modulation signal is measured. The method has 
most of the advantages of a.c. polarography but is not restricted to the 
dropping mercury electrode. Since stationary planar electrodes can be 
used, the method is more general and the detailed theory somewhat 
easier. Since double-layer capacitive charging current is less important 
than in conventional cyclic voltammetry, quantitative measurements 
are considerably easier. Bond, O'Halloran, Ruzic, and Smith (22) have 
shown that the theory of a.c. polarography can be used without 
significant modification provided that the triangular-wave frequency is 
much less than the sinusoidal frequency. Thus eqs (6.62) - (6.64) are 
valid for a.c. cyclic voltammetry. Unless the d.c, scan rate is very slow, 
however, eqs (6.36) cannot be used for the surface concentrations 
required in eq (6.62). Bond and coworkers used a digital simulation 
technique (see Appendix 5) to obtain these parameters, but an approach 
based on Nicholson's methods (16) would probably also work. 

For electron-transfer processes which are reversible or quasi
reversible on the cyclic voltammetry time scale, a.c. cyclic 
voltammograms show current peaks on both the cathodic and anodic 
scans. The magnitudes and potentials of the peak currents are sensitive 
to the electron-transfer rate constant ko and to the transfer coeffici~nt a. 
The latter parameter is particularly easy to measure by this technique. 
Since the current returns to zero following the peak, the zero of current 
is well defined and accurate peak current measurements are much 
easier than in conventional cyclic voltammetry. 

Ac. cyclic voltammetry is particularly well suited to the study of EC 
processes (23). The ratio of the a.c. current peaks on the forward and 
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reverse scans can be accurately measured and this ratio is very sensitive 
to the rate constant of the following chemical reaction. 
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PROBLEMS 

6.1	 Show that either eq (6.11a) or (6.11b) can be rearranged (with the 
help of the Nemst equation) to
 

io = FAkoCOlJCRlJ
 

6.2	 Derive an equation for the current, analogous to eq (6.30). for the 
case that CO· and CR· are both nonzero. 

6.3	 Derive eqs (6.23) from eqs (6.4) and (6.11). 

Show that the data discussed in Example 6.2 are consistent with6.4 
the simple mechanism 

Mn3+ + e' ~ Mn2+ 

when subjected to the more complete analysis of Example 6.3. 

Figure 6.25 shows a Tafel plot for the reduction of Httaq) in a 0.1 M 6.5 
solution of HCI at a nickel electrode in the presence of 1 bar H2(g) at 
20°C. 
(a) Determine the exchange current density jo and the apparent 
transfer coefficient. 
(b) Compute the electron-transfer rate constant ko. 

2 , , , •• i , , • , i • , • , I • , • ' .... 

1,...... 
C'l 

S 
<t: 0 

~ ,,o ,,- -1 ,,,,,, 
·2 I" 

Figure 6.25. Tafel plot for the	 -0.2 -0.4-0.0 -0.1 -0.3 
reduction of H+ at a nickel 

n,/Vcathode. 
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6.6	 Derive eqs (6.26) by an altemative route il;l which the derivatives 

(aIn io ) d (a In io ) 
aIn Co Ca an aIn CR Co 

are first computed. 

6.7	 Bockris, Drazic, and Despic (see Example 6.4) found that the 
exchange current density for the oxidation of iron depends on the 
concentration of Fe2+ according to ,	 aIn Liol _08 

aIn [Fe3t] - • 

Show that the mechanism discussed in Example 6.4 leads to 

aIn Liol =1- at2 
alnCo 

and thus is consistent withthe experimental result. 

6.8	 The exchange current for an EE reduction with E2°» E10 and the 
first electron-transfer step rate-limiting is given by eqs (6.27) and 
the net current is given by the Butler-Volmer equation with lJapp = 1 
+ P where 13 is the anodic transfer coefficient for the rate-linnting 
step. Derive analogous expressions for the case where the second 
electron-transfer step is rate-limiting. 

6.9	 Equation (6.33) gives the half-wave potential of an irreversible wave 
for kolkD «1. For quasi-reversible waves, E1/2 must be computed 
from eq (6.31). 
(a) Compute ElJ2 _EO for kn = ko. a = 0.5. 
(b) What is the maximum value of kolkn for which eq (6.33) gives ji 
E 112 - ~ correct to within 1 mV? 

,tI".

6.10	 The Tome§ criterion for a reversible one-electron wave is liE =E 1/4 
- E3/4 =56.51n mV at 25°C. 
(a) Compute liE for several values of kn1ko in the range 0.1 to 2 
using eq (6.31) (a =0.5) and plot liE us. log(kolkn). 
(b) A r.d.e. voltammogram gave a value of 11K = 75 mV after 
correction for solution iR drop. Ifv = 10.6 m2s·1, D = 10.9 m2s·1, and 
0) = 500 s·l, what is the approximate value of ko? 

6.11	 (a) Show that the chronocoulometric charge for a potential step 
experiment (see Problem 4.11) involving an electron-transfer step of 
finite rate is 
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Q= FACO*kcA.-2{exp(A.2t)[I- erftA.17)] + 2A.Ytlii - I} 

where A. is given by eq (6.38). Hint: Integrate eq (6.39) by parts. 
(b) For sufficiently long times, the first term in the bracketted 
expression goes to zero and Q becomes linear in 17. The linear 
region of a plot of Q vs. 17 can be extrapolated to t = 0 or to Q = O. 
Obtain expressions for Q extrapolated to t = 0 and for it 
extrapolated to Q = O. Describe how such data could be used to 
obtain the electron-transfer rate constant ko. 

6.12	 The following data were obtained for a potential step 
chronocoulometry experiment. The solution contained 1 mM 0 
which is reduced by one electron. and the potential step was to E = 
Em-SO mY. Assume tbatDo =10-9 m2s-1, a =0.5,A = 3.1 x 1O-6 m2 

'tIs 1 3 5 7 9 

Q/mC 1.13 2.10 2.78 3.33 3.81 

Plot Qvs. ft, extrapolate to Q = 0 and estimate the electron-transfer 
rate constant ko using the equations derived in Problem 6.11. 

8.18	 Derive expressions for the resistive and capacitive components of 
the faradaic impedance in terms of IZfl and cpo 

6.14	 (a) Show that eq (6.58) can be derived (within a multiplicative 
factor) by differentiation of the Heyrovsky-Ilkovie equation to obtain 
<ii/dE. 
(b) What is the width at half height of a reversible one-electron a.c. 
polarographic wave? 

6.15	 (a) Find the shape of a second-harmonic a.c. polarogram by 
computing d2i1dE2; prepare a plot of this function vs. Edc. 
(b) What is the width (between current extrema) of a reversible 
one-electron second-harmonic a.c. wave? 

6.16	 Given the time scales accessible to the various experimental 
techniques (§5.1), and assuming D = 10-9 m2s·1, v = 10-0 m2s·1, a = 
0.5, what is the fastest electron-transfer rate constant ko which 
could be measured for a simple one-electron reduction using: 
(a) Potential step chronoamperometry, (E _EO) = -0.2 V? 
(b) r.d.e. voltammetry? 
(c) a.c. polarography? 

6.17	 Derive eq (6.34) for the current in an irreversible EE process. 

7 ELECTROLYSIS
 

In this chapter we will be concerned with electrolysis experiments 
in which a significant fraction of the electroactive material is consumed. 
We begin in §7.1 with a discussion of some general aspects of electrolysis 
and proceed to analytical applications in §7.2. In §7.3 and §7.4, we 
explore applications of electrolysis to chemical synthesis, including 
examples from industrial chemistry. A short-circuited galvanic cell is a 
self-powered electrolysis cell. TIllS notion will give us a useful model for 
a discussion of corrosion in §7.5. 

7.1 BULK ELECTROLYSIS 

Volta's invention of the first practical source of electrical power in 
1800 stimulated a flurry of activity among scientists. Indeed, the ideas 
for many bulk electrolysis experiments can be traced to experiments 
done in the first decade of the nineteenth century. We have already 
mentioned the electrolysis of water by Nicholson and Carlisle. This 
work led to Erman's discovery that the conductivity of salt solutions 
depends on concentration. In another series of experiments following 
the Nicholson-Carlisle discovery, Cruikshank found that when a 
solution of a salt such as copper sulfate is electrolyzed, metallic copper is 
plated onto the negative electrode and no hydrogen is evolved (1). Many 
other important discoveries were made in the following years, and in 
1833 Faraday (2) summarized the quantitative aspects of electrolysis 
experiments in two statements which have come to be known as 
Faraday's laws of electrolysis: 

The weight of metal plated on the cathode during passage of 
current through a solution of the metal salt is proportional to: 
(l) the charge passed through the solution; and (2) the 
equivalent weight (atomic weighUoxidation number) of the 
metal. 
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William Cruikshank was Lecturer in Chemistry at the Royal Military 
Academy, Woolwich, from 1788 until 1804. Little is known of 
Cruikshank's life, but he made important contributions to early 
electrochemistry and to the chemistry of simple gases (he is credited with 
the discovery of carbon monoxide). 

In modem terms, we would say that one mole of electrons (one Faraday) 
will reduce one mole of Nat, one-half mole of Ca2+, or one-third mole of 
Al3+. Faraday's work not only put electrolysis on a quantitative basis but 
laid the groundwork for the more complete understanding of the role of 
electrons in chemistry which began to emerge 50 years later. 

&hauBtive Electrolysis 

When an electrolyte solution is subjected to electrolysis, either to 
separate a component of the solution or to oxidize or reduce a substrate, 
rather large amounts of electrical charge must be passed through the 

. cell. As we saw in Chapter 4 (Example 4.7), the net electrolysis at a 
~small electrode (e.g., a d.m.e.) in an unstirred solution is negligible, even 
. after several hours. Thus our first concern is to see how the current can 
be increased to obtain significant net electrolysis in a reasonable time. 

One obvious way to increase the current through an electrolysis cell 
is to stir the solution, thus increasing the rate ~'mass transport. In a 

.stirred solution, the diffusion layer thickness can be reduced to as little 
;as tens of microns. Suppose that the electrode process is 

O+ne- ~ R 

and that a linear concentration gradient in 0 is set up across a diffusion 
layer of constant thickness. If the potential of the working electrode is 
sufficiently negative that the concentration of 0 is zero at the electrode 
surface, then the current is given by eq (4.14b), 

i = nFAknCo· (4.14b) 

where kn = D/xn is the mass transport rate constant. The number of 
moles of 0 reduced is related to the charge transferred by 

dQdno=-
nF 

Since dQ = idt and dno =VdCo* (V is the solution volume), the change in 
bulk concentration on passage of current for a time interval dt is 

dCo* = - --.i..- dt 
nFV
 

Substituting eq (4.14b) for i, we have
 

dCo * = - AkDCo* dt 
V 

17.1 Bulk Electrolysis 

Integration of this expression gives 

CO*(t) = CO·(O) exp(-kt) (7.1) 
where 

k =knA/V (7.2) 

Thus we expect the bulk concentration C· to fall exponentially with a 
rate proportional to the rate of mass transport and to the ratio of the 
electrode area to the solution volume. Thus if the process is to be 
completed in minimum time, the general strategy for exhaustive 
electrolysis should include efficient stirring and a high area-to-volume 
ratio. Since the stirring must be particularly efficient at the working 
electrode surface, careful attention to electrode geometry is required for 
optimum performance. 

Example 7.1 Suppose that 250 cm3 of 0.1 M CUS04 is 
electrolyzed using a cathode of area 250 cm2 and an initial 
current of 5 A. How long will it take to remove 99% of the 
copper from solution? 99.99%? Assume that the cathode 
process is rate limiting. From eq (4.14b), we obtain the 
diffusional rate constant 

kn = i/2.FACO· 

Substituting the electrode area and the initial current and 
concentration, we have 

kn =1.04x 10-5 m s-1 

With the area-to-volume ratio of 100 m-1, eq (7.2) gives 

k = 1.04 x 10-3 s-1 

To reduce the copper concentration from 0.1 M to 0.001 M thus 
requires a time 

t = - [In(O.Ol))/k =4440 s (74 minutes) 

To reduce the concentration to 10-5 M amounts to another 
factor of 100 decrease in concentration and thus will require 
another 74 minutes or 148 minutes in all. 

Electroseparation 

Electrolysis is often used to separate the components of a mixture. 
For example, a desired metallic component might be plated out at the 
cathode or a nonmetal could be oxidized to a gas or deposited as an 
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insoluble oxide at the anode. Alternatively, we might try to selectively 
remove an impurity from solution by oxidation or reduction. 

The factors which govern the efficiency of electroseparations are 
important in both the analytical and synthetic applications of 
electrolysis. If another electrode process competes with the one of 
interest, then nonproductive current flows. Electrode side reactions lead 
to departures from a simple application of Faraday's laws and thus 
invalidate analytical procedures based on the proportionality of analyte 
consumed to charge passed. Side reactions also introduce unwanted 
contaminations in electrosynthetic methods and constitute an important 
waste of electrical energy in industrial applications. A useful measure 
of the significance of competing electrode processes is the current 
efficiency, defined by 

ep = n x moles of product formed (7.3) 
Faradays of charge passed 

where n is the numbers of Faradays consumed per mole of product 
formed. 

As a simple model for separation efficiency, we consider two 
couples, 

01 + nl e- -+ Rl 

02 + n2 e- -+ R2 

both involving solution species only. We assume that both are reversible. 
We then ask what separation between standard (formal) potentials is 
required in order for one species, say 01, to be 99.9% reduced to Rl 
without reducing 02 by more than 0.1 %. The Nernst equation can be 
written for the first couple as 

E =Elo + ..R..r..ln COl 
nlF CRI 

Defining Xl as the fraction in the reduced form 

X I = CRt 
CRI + COl 

the Nernst equation can be reformulated: 

E -El+--n--° RT 1 I-Xl (7.4a)-
nlF Xl 

and similarly for species 2, 

D'T' l- X 2E = E2° + ..ll..L In -- (7.4b)
n7F X 2 
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The fractions Xl and X2 are plotted us. potential in Figure 7.1 for a 
difference in standard potential, E1° - E2° = 0.20 V and nl =n2 = 1. It is 
fairly easy to prove (see Problems) that, when nl =n2, the optimum 
separation is achieved, ti.e., Xl -X2 is maximized) when 

E = (ElO + E2°)/2 (7.5) 

When this condition is met,X2 =I-Xl and 

El-E2° =.Kl....ln Xl (7.6)
2nF X2 

or, at 25°C, 

E 1 - E2° =.Q..ll83.10 g & 
n X 2 ... 

Thus for Xl/X2 =999 ii.e., Xl =0.999, X2 = 0.001), the difference in 
standard potentials must be 0.355/n V. 

In practice the situation is usually more complicated. Processes 
are rarely strictly nernstian when large currents are flowing, and if the 
interfering couple has very slow electrode kinetics, the potential 
separation can be considerably smaller than predicted from eq (7.6). If 
one or both of the couples involves deposition of a metal on the cathode, 
the activity of the plated metal initially may be proportional to the 
fraction reduced, but as a monolayer of atoms is formed on the cathode, 
the activity approaches unity, i.e., the electrode surface approaches the 
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property of the pure plated metal. In the limit of OR = I, the electrode 
potential is 

E :::; EO + :R.121n Co 
nF 

so that the electrode potential for small Co may be rather more negative 
than expected from eq (7.4a). 

Despite these complications, the simple model is useful in 
predicting electroseparation efficiencies when both couples have similar 
properties. Thus if both couples involve the deposition of a metal and 
they have similar rates, eq (7.6) gives a semiquantitative guide to the 
required difference in standard potentials. 

7.2 ANALYTICAL APPLICATIONS OF ELECTROLYSIS 

The electroanalytical techniques discussed in Chapters I, 3, and 4 
may be divided into two general classes: (1) titration methods where the 

~	 endpoint is detected electrochemically, e.g., potentiometric, 
conductometric, and amperometric titrations; and (2) methods in which 
little or no chemical transformation occurs and the electrochemical 
measurement gives a direct measure of concentration, e.g., direct 
potentiometry, polarography, chronopotentiometry, etc. Most analytical 
methods based on electrolysis are similar to titration methods in that the 
analyte undergoes a stoichiometric chemical transformation, but here 
the role of electrochemistry is to affect the transformation. The 
equivalence point of the transformation mayor may not be determined 
electrochemically. In some methods, the reaction is judged to be 
complete when the electrolysis current falls to zero, while other methods 
use an independent endpoint detection method (visual, 
spectrophotometric, potentiometric, etc.), 

We will discuss four general methods. Electrogrovimetry involves 
the controlled potential reduction of a solution of a metal salt which is 
terminated when the current falls to near zero; the analysis is based on 
the increase in weight of the metal-coated cathode. Thus electrolysis is 
used solely as a means of chemical transformation. Controlled potential 
coulometry also detects the endpoint by the decay of current to zero, but 
here the analysis is based on the net charge transferred. Constant 
current coulometry detects the endpoint by some method independent of 
the electrolysis process and bases the analysis on the net charge 
transferred. Finally, a technique known as stripping voltammetry uses 
electrolysis to deposit the analyte on an electrode surface (or in a 
mercury drop) and then determines the surface (or amalgam) 
composition by a voltammetric technique. 
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Electrogravimetry 

Although the first electroplating experiments were reported by 
Cruikshank in 1801, it was not until 1864 that Wolcott Gibbs adapted the 
techniques of electroplating to quantitative chemical analysis (3). 

, Nonetheless, electrogravimetry is the oldest of electroanalytical 
':~:~. techniques, having become well established by the end of the nineteenth 
l century. In electrogravimetric analysis, a solution of a metal salt is~' 

~,	 exhaustively electrolyzed, plating the metal onto a previously weighed 
cathode. The increase in weight of the cathode affords a direct 
determination of the metal content (4,D2). 

Oliver Wolcott Gibbs (1822-1908) taught at City College of New York from 
1849 until his appointment as Rumford Professor at Harvard in 1863. 
The following decade saw many contributions to the analytical chemistry 
of the platinum metals as well as the development of electrogravimetry. 
A curricular change at Harvard in 1871 effectively ended Gibbs' career 
as a research scientist. 

As an example of the technique, consider the electrogravimetric 
determination of copper. An acidic solution of a copper salt is 
electrolyzed using platinum electrodes. Metallic copper plates out on the 
cathode and we suppose that oxygen is produced at the anode. Thus the 
cell reaction is 

Cu2+(aq)+ H20 -+ Cuts) +t Oig) + 2 Hrfaq) 

The reversible potential of the cell is given by the Nemst equation 

E :::; E" _ :R.121 [H+]2 'fPO;,n 
2F [Cu2+] 

where E" = -0.889 V. When [H+] :::; 1 M, P(Q2) :::; 0.2 bar and [Cu2+] = 0.1 M, 
E :::; -0.91 V. For every tenfold reduction in the copper concentration, the 
equilibrium cell potential becomes more negative by about 30 mY. Thus 
when the Cu2+ concentration is reduced to 10-4 M:E :::; -1.00 V. Because 
the evolution Of02 is inherently slow, an activation overpotential of about 
0.4 V is required to give reasonable current; iR drop in the electrolyte 
solution is typically about 0.1 V so that an applied potential of (-1.0 - 0.4
0.1) :::; -1.5 V is required to deposit the copper. With this applied potential, 
we might expect hydrogen evolution since the standard potential for the 
decomposition of water is -1.23 V. Some hydrogen evolution may occur 
early in the experiment, but the exchange current density for reduction 
of H+ is about 200 times slower on a copper surface than on platinum. 
Thus hydrogen evolution is expected to be negligible once the cathode 
surface is coated with copper. 



379 378	 Electrolysis 

If the electrodeposition is carried out at constant cell potential (say 
1.5 V), the cathode potential will become more negative late in the 
experiment when the current density decreases. This effect results from 
the decrease in magnitude of the solution iR drop and anode 
overpotential with decreasing current. Thus some H+ may then be 
reduced. If copper is being plated out from a solution containing other 
reducible metal ions, the more negative cathode potential may lead to 
plating of other metals, such as lead. A positive gravimetric error would 
result. For this reason, electrogravimetry is normally carried out in a 
three-electrode cell (see §4.3) with the cathode potential controlled such 
that only the metal of interest is plated out. 

The nature of the metal deposit on the cathode in electrodeposition 
turns out to be critically dependent on the identity of the metal species in 
solution. It has been found that addition of complexing agents such as 
tartrate ion (for Cu2+) or cyanide ion (for Ag+) results in dense, lustrous 
deposits, relatively free of inclusions, which adhere well to the platinum 
cathode. 

Hydrogen evolution at the cathode is generally undesirable since 
hydrogen atoms tend to be included in the deposit, leading directly to a 

~ gravimetric error, but more important, the deposit is often flaky or 
.	 spongy and thus more prone to solvent or electrolyte inclusions or to loss 

of metal particles during washing. Hydrogen reduction can be 
suppressed either by buffering the solution to pH 5-6 or by controlling the 
cathode potential. 

If no more easily oxidizable species is present, water will be 
oxidized at the anode. In solutions containing halide ions, halogens will 
be produced at the anode. Complexing agents, added to improve the 
characteristics of the cathode deposit, are often oxidizable and may also 
contribute to the anode process. To one degree or another, all these 
processes are undesirable, either because of the production of large 
amounts of corrosive gases or the consumption of complexing agents or 
because the anode potential must be inconveniently high. Furthermore, 
if the anode products are reduced at the cathode, the current efficiency of 
the electrolysis is reduced. Thus it is common practice in 
electrogravimetry to add a species (called an anodic depolarizer) which 
is easily oxidized to an innocuous product. A common choice is 
hydrazine, added as the hydrochloride salt, which is oxidized to nitrogen 
gas: 

N2Hs+ ~ N2(g)+ 5 H+ + 4 e-

Hydroxylamine hydrochloride is also used, but the anode products then 
are a mixture of nitrous oxide, nitrous acid, and nitrate ion, some or all 
of which may be reducible at the cathode. 

Since electrogravimetry depends only on the completeness of 
electrolysis and on the increase in cathode weight for its success, 
current efficiencies of less than 100% can be tolerated. Cathode side 

(
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reactions have no effect on the results as long as they do not result in 
inclusions in the deposit or cause loss of metal on washing. Thus as 
long as the anode process does not produce a reducible metal, the two 
electrodes need not be isolated; indeed, the resistance of a membrane 
separating the anolyte from the catholyte would decrease the current 
and increase the analysis time. Cells for electrogravimetry then can be 
designed for maximum current with large electrodes and efficient 
stirring. A typical arrangement is shown in Figure 7.2. 

@ e 

Figure 7.2 Electrolysis cell 
for electrogravimetric deter
mination of metals. 

salt 
bridge 

stirring 
bar 

Electrogravimetry has been used most frequently in the analysis of 
copper-based alloys. By careful control of the cathode potential, the pH 
and concentration of complexing agents, Cu, Bi, Pb, and Sn can be 
successively plated from the same solution. For example, electrolysis at 
-0.30 V (vs. s.c.e.) of a solution, buffered to pH 5 and containing 0.25 M 
tartrate, deposits copper. Further reduction of the-same solution at -0.40 
V deposits bismuth, and at -0.60 V, lead. If the solution is then acidified 
with HCl and electrolysis continued at -0.65 V, tin is deposited. If the 
cathode is removed, washed, dried, and weighed at each step, the 
amount of each of the four metals in the original sample is determined. 

Like any gravimetric method, electrogravimetry works well only 
when accurately weighable amounts of the analyte are present in the 
sample. The techniques lacks the sensitivity required for trace metal 
analysis, but it may still be useful as the first step in the analysis of an 
alloy. After removal of the bulk constituents by electrolysis, the trace 
constituents can be analyzed by more sensitive electroanalytical
methods. 
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Constant Potential Couiometrie Analysis 

Electrogravimetric analysis uses the gain in weight of the cathode 
as the analytical sensor in determining the amount of metal ion in a 
solution. While the method works well for copper and certain other 
metals, it is limited to the analysis of metals which can be plated out and 
weighed. An alternative approach is to base the analysis on Faraday's 
laws of electrolysis. i.e., to measure the charge passed through the 
electrolysis cell. Thus exhaustive electrolysis of no moles of species 0, 

O+n e- ~ R 

should consume 

Q =nonF coulombs 

If Q is measured and n is known, no can be determined. The major 
limitation on this strategy is that the current efficiency must be very 
near 100%. That is. all the current passed through the cell must go to 
the reduction of 0; no electrode side reactions can be tolerated. Although 

~ the basis for coulometric analysis has been around since 1833, it was not 
. until 1938 that Szebelledy and Somogyi (5) suggested coulometry as a 
general analytical technique. Extensive work on perfection of analytical 
methods really began only after World War II. 

The requirement of 100% current efficiency generally means that 
the anode and cathode must be separated. If the product of the cathode 
reaction is a solution species. it must not be reoxidized at the anode and 
anode products must not be reduced at the cathode. Thus. with a few 
exceptions. coulometric methods employ cells in which the anode and 
cathode are separated by a salt bridge, membrane. diaphragm or some 
such barrier to prevent mixing of anolyte and catholyte. A typical cell 
design is shown in Figure 7.3. 

Until relatively recently. an electrochemical coulometer was used 
for the measurement of total charge passed in an electrolysis 
experiment. A coulometer is simply an electrolysis cell designed to 
operate at 100% current efficiency to give a weighable cathode deposit, a 
titratable solution product. or a gas. the volume of which can be 
measured using a gas buret. The ultimate device was (and for very 
precise work. still is) the silver coulometer. In this device, silver is 
deposited on the cathode which can be removed. washed, dried, and 
weighed. Other practical coulometers employed the electrolysis of water, 

2 H20 ~ 2 H2(g) + 02(g) 

to produce a mixture of hydrogen and oxygen gases. or the electrolysis of 
an aqueous acidic solution of hydrazine, 

NzHs+ ~ H+ + 2 H2(g) + Nz(g) 

to produce a mixture of hydrogen and nitrogen. In both the Hz/Oz and 
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the H2/N2 coulometers, 0.75 mole of gas is produced per mole of 
electrons, so that, at 298 K, 1 bar pressure, 0.193 mL of gas is obtained per 
coulomb of charge passed through the coulometer. If gas volumes can 
be measured with a precision of ±a.0! ml., a measurement of charge 
with ±a.l% precision would require passage of at least 50 coulombs. 

Nowadays, electronic instrumentation allows the measurement of 
much smaller charges with comparable precision and considerably less 
bother. There are two common approaches to the problem. The most 
straightforward arrangement is to record a current-time curve using a 
strip-chart recorder. Graphical integration of the current-time curve 
then gives the charge passed through the cell. This procedure works 
well but is tedious in routine applications. If such measurements are to 
be made frequently, it is more convenient to use an electronic coulometer 
built around a voltage integrator circuit similar to that used to generate 
a voltage ramp (see Figure 4.6). In the eoulometer circuit shown in 
Figure 7.4, the cell current is divided so that . 

icell=il+iz 

Because of the capacitive feedback loop, the potential at the inverting 
input of the operational amplifier is a virtual ground. 0 V. Thus the 
potentials across resistors R 1 and R2 must be equal: 

ilRl = iiR2 

With this relationship, we obtain
 

. . R 1 + R z

~ceIl =£2 R 1 
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Filfure 7.4 Electronic coulometer based on an 
operational amplifier integrator circuit. 

Since the input impedance of the operational amplifier is very large, the 
current i2 must produce a charge Qz on the capacitor C: 

. dQ2 
~2=-

,', dt 
But the potential at the output is proportional to this charge 

Q2 =CC1>out 

:F~us 

iz =- C d<1>wt ~ 
dt R 1 + R2 

Rearranging, we have 

ic:alldt = R 1~ Rz C dC1>(d 

and integration gives 

I
t 141Qcell = ic:alldt = Rl + R2 C dC1>(d 

o Rl 0 

or 

QcelI = R 1 + R z C<1>wt
R1 

By selecting appropriate values of Rl' Rz, and C, charges ranging from 
less than 1 ~C up to about 1 C are easily measured. The method requires 
accurately known resistances Rl and R z and capacitance C as well as 
an accurate potential measurement. 

§7.2 Analytical Applications of Electrolysis 

Controlled potential coulometric analysis (6,7) can be used in much 
the same way as electrogravimetry to determine reducible metal ions. 
Controlled potential coulometry at a mercury cathode' is a particularly 
attractive variation. The advantages are that competition from hydrogen 
reduction is negligible (because of the large overpotential) and that most 
metals dissolve in the mercury to form amalgams. 

The coulometric method has considerably greater scope than 
electrogravimetry. In particular, it is not limited to reduction of metal 
ions but can be used for any electrode process which can be operated at 
near 100% current efficiency. For example, controlled potential 
coulometry has been used to determine trichloroacetic acid. The 
reduction 

Cl:3CCOOH + H+ + 2 eo ~ Cl2CHCOOH + CI-

is sufficiently well separated from the reduction of di- and 
monochloroacetic acid that a mixture of these acids can be accurately 
analyzed, a feat impossible to contemplate with a pH titration. 

Coulometry is not limited to reductions-the analytical reaction can 
just as well occur at the anode. Thus controlled potential coulometry at 
a silver anode is a convenient method for the determination of halide 
ions or other species forming insoluble silver salts. In effect, the Ag+ 
generated coulometrically acts as a titrant for halides just as in the 
classical Volhard titration and its variants. 

Controlled potential coulometry is commonly used in mechanistic 
electrochemical studies to determine the number of electrons involved in 
an oxidation or reduction. Determination of n from a measured 
voltammetric diffusion current depends on a reasonably accurate value 
for the diffusion coefficient. When n might be either 1 or 2, D need be 
known only to ±10% or so to get a satisfactorily unambiguous result. 
When n is larger or when slow following chemical steps lead to other 
electroactive species, the results from voltammetry may be less 
satisfactory. A coulometric measurement gives a value for n which 
includes the effects of follow-up chemical reactions but it does not 
depend on the diffusion coefficient, electrode area, or other unknowns 
(other than the current efficiency), 

Example 7.2 An extreme case of voltammetric uncertainty 
arose in the polarographic reduction of picric acid. The 
diffusion current constant is 

ID =27 J.LA mM-l(mg s-1)-2'3s·1I6 

in 0.1 M aqueous HCl. Ifwe assure that D is about the same as 
for the 2+ metal ions of Table 4.1, comparison of the values of ID 
suggests that n is about 18 (but obviously with a large 
uncertainty). Since the overall reduction is expected to yield 
2,4,6-triaminophenol, 
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N02	 NH2 

02N*OH +lBH++IBe" - H2N-Q-OH+ 6 H20 

N~	 N~ 

n = 18 is a reasonable result. Lingane (8) determined n 
coulometrically in 1945 and found n =17.07. This result was 
confirmed by others but Meites (9) later showed that the value 
of n depends on the initial concentration of picric acid and on 
the HCl concentration. When the initial concentration was 
less than 0.1 roM and/or the HCl concentration is 3 M or more, 
coulometry gave the expected value, n =18. For higher picric 
acid concentrations and/or lower HCl concentrations, smaller 
values of n were obtained. Apparently, side reactions compete 
with protonation of radical intermediates. The dependence on 
total picric acid concentration suggests that a radical coupling 
reaction is important and Lingane suggested that the eventual 
product is a substituted hydrazobenzene, 

N02	 H2N OH NH2 
~ .'J 

2 02N-Q-0H+34W+34e' - t5-NH-NHQ-OH 

N02	 H2N + 24 H~ NH2 

~. F	 but other reactions must also be important since Meites found 
values of n less than 17 under some conditions. 

Constant Current Coulometry 

There are a number of coulometric methods which employ an 
electrolysis cell operated at constant current rather than constant 
working electrode potential. One might think: that such an arrangement 
could not work. Surely, the analyte would be quickly exhausted near the 
electrode and the potential would swing to begin consuming the solvent 
or supporting electrolyte. The result would be analogous to 
chronopotentiometry (§4.3), where a constant current is passed through 
an unstirred solution. Perhaps (we might reason) the method could be 
made to work if the current were so small that mass transport could 
keep up with consumption at the electrode, even when the analyte is 
nearly exhausted in the bulk solution. However, to make this approach 
work, the current would have to be small and the time required for 
electrolysis would then be impossibly long. 

There is a trick involved. Constant current coulometry invariably 
involves another electrode couple, the product of which reacts rapidly 
and stoichiometrically with the analyte. For example, suppose that we 
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want to determine Fe(II) coulometrically. A large excess of Ce(III) is 
added to the cell and a constant current is passed. Initially, the Fe(II) 
concentration is high enough that the oxidation 

Fe2+	 ---+ Fe3+ + e'":Ij«. 

is the major contributor to the current. However, as the Fe(II) 
concentration begins to drop, the potential swings positive and Ce(III) 
begins to be oxidized: 

Ce3+	 ---+ Ce4+ + e' 

However, Ce(IV) reacts rapidly with Fe(lI), 

Ce4+ + Fe2+ ---+ Ce3+ + Fe3+ 

so the effect is as if Fe(II) were oxidized directly. As the Fe(lI) 
concentration drops, more and more of the current is carried by the 
Ce(III) oxidation process. The net effect, nonetheless, is the oxidation of 
Fe(II), at least up to the point that the Fe(II) is entirely consumed. After 
the equivalence point, current continues to flow, of course, and the 
coulometer continues to run, clocking up the charge passed. Clearly, 
some means is required to note the time at which the last Fe(II) was 
consumed. 

A moment's reflection will show that the situation is exactly 
analogous to a titration in homogeneous solution of Fe(II) with Ce(IV) 
solution added from a buret. What is needed is a means of detecting the 
endpoint of the titration. In this example, the obvious solution is to add 
another pair of electrodes-an indicator electrode and a reference 
electrode--to the anode compartment of the electrolysis cell. If the 
potential of this pair is monitored, it should show a sharp positive swing 
when the last of the Fe(II) is consumed and the Ce(IV) concentration 
starts to increase. 

A constant current coulometry experiment is often referred to as a 
coulometric titration to emphasize the similarity to ordinary volumetric 
analysis. There is another analogy which should be pointed out. The 
overall process can be written (for a net reductionj

0+ n e- ---+ R 

R+A ---+O+B 

where A is the analyte and R is the internally generated titrant. This 
electrode process is identical to the EC' (catalytic) process discussed in 
§5.8. In the voltammetric context, we supposed that A was not reduced 
at the electrode because of slow electron transfer kinetics. Here the rate
limiting step is mass transport, but in either case, coupling of the OIR 
and AlB redox couples results in a catalytic current enhancement. 
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Figure 7.5 A simple circuit for 
constant current electrolysis. 
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Instrumentation for constant current coulometry can be quite 
simple. A satisfactorily constant current can be produced by connecting 
a high-voltage d.c, power supply across the cell in series with a 
resistance R as shown in Figure 7.5. The current through the cell is 

i=~ 
R + Rcell 

IfR is much larger than RcelJ. the current will be nearly independent of 
•	 the cell resistance and thus nearly constant. For example, if AC1» =500 V 

":and R =500 kn, then i =1 rnA when the cell is out of the circuit. When 
."E cell = -1 V and Rcen = 1 kQ, i =0.996 rnA, only 0.4% different. Variations 

~	 of Ecell and Rcell during electrolysis will cause similarly small changes 
in i. 

The charge passed through the cell generally is determined by 
r measuring the time between the application of current and the 
.appearence of the titration endpoint, Q =it. If 1% analytical accuracy is 
acceptable, a current variation on the order of a few tenths of a percent is 
tolerable. If more constant current is required, an operational 
amplified-based constant current source (a galvanostat) is the next step 
up in sophistication. A galvanostat circuit is shown in Figure 4.6, but 
this circuit is not well adapted to passage of large currents since the 
reference source supplies the current. A better high-current circuit is 
shown in Figure 7.6. Here the current is supplied entirely by the 
operational amplifier. As usual with operational amplifier feedback 
circuits, the potential at the inverting input is at virtual ground (0 V). 
Thus the potential across the resistor R must be equal to the battery 
potential A<I>, and the current through R must be i =A<I>/R. But since the 
input impedance of the operational amplifier is high, virtually all the 
current through R flows through the cell, independent of the cell's 
internal resistance and potential. Thus provided that Rcell is much less 
than the input impedance of the operational amplifier and i(R cell + R) is 
within the range of the operational amplifier output voltage, the circuit 
will supply a constant current. With the addition of a reference 
electrode, the working electrode potential can be monitored if desired. 
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Once we realize that constant current coulometry is equivalent to a 
titration, the possibilities open up in all directions. We have mentioned 
the electrochemical generation of Ce(IV), but many other oxidants can 
be produced. Thus Mn(III) or Ag(II) can be obtained by oxidizing 
Mn(lI) or Ag(1) solutions. Chlorine, bromine, or iodine can be generated 
from CI-, Br", or 1- solutions. The halogens are excellent oxidizing 
agents, but, because of their volatility, are relatively difficult to use in 
volumetric analysis. Similarly, reductants such as Cr(Il) or THIll) can 
be produced from Cr(lll) or Ti(IV), respectively. Coulometry is not even 
limited to generation of oxidants or reductants. Hydroxide or hydrogen 

~.	 ions can be produced by reducing or oxidizing water at a Pt electrode, so 
'(";: 
it¥	 that acid-base titrations are possible. Precipitation titrations using Ag(I) 

or Hg(1) can be done coulometrically as well. ;~ 
'~, 

Coulometric titrations have some significant advantages over 
.,;:~ volumetric methods. Wi': have mentioned the use of titrants which 

would be difficult to use under ordinary circumstances, but there are a 
number of other considerations. Since the titrant is generated internally 
and only in the required amounts, there is some' savings in expensive 
reagents; furthermore, no standardization of titrant is necessary. 
Coulometric methods are much more easily automated than volumetric 
procedures. Since charges on the order of microcoulombs are easily 
measured with precision, much smaller samples can be used in a 
coulometric titration than in the analogous volumetric method. See a 
review by Curran (10) for further details. 

Example 7.3 The standard analytical method for the 
determination of water in organic solvents employs a titration 
using the Karl Fischer reagent-a pyridine/methanol solution 
of iodine and sulfur dioxide. The reagent contains the 
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monomethyl sulfite ion (11), formed by the reaction of methanol 
with 802, pyridine acting as a proton acceptor: 

CH30H + 802 + CsHsN ~ CH30S02- + CsHsNH+ 

This species is oxidized by iodine in the titration reaction, 
which requires one mole of water per mole of iodine: 

CH30802- + 12+ H20 + 2 CsHsN ~ CH30S03- + 2 1-+ 2 CsHsNH+ 

Needless to say, Karl Fischer reagent is moisture sensitive and 
is difficult to use in normal volumetric analysis. Coulometric 
generation of iodine (or 13-) from KI affords a substantial 
improvement in the method. The endpoint is normally 
detected potentiometrically; the platinum indicator electrode 
responds to the 13-/1- couple. 

While potentiometric endpoint detection is probably most common 
in coulometric titrations, other electrochemical methods are often 
employed. One particularly simple method is called biamperometric 

~.	 endpoint detection. In this method, a small potential (10·100 mY) is 
.,	 imposed between two identical platinum electrodes, and the current 

through this circuit is measured. If both members of a reversible 
couple, 0 and R, are present in solution, a small current (typically less 
than 100 ~) will flow as 0 is reduced at the negative electrode and R is 
oxidized at the positive electrode. When either 0 or R is absent, no 
current flows. In the example of the Karl Fischer titration, the 13-/1
couple is reversible, so that current flows when both 13- and 1- are 
present. The CH30S03-/CH30S02- couple, on the other hand, is 
irreversible, so that the current is negligibly small up to the endpoint 
and increases more or less linearly with time beyond the endpoint. This 
approach is applicable when the titrant is added from a buret; the 
technique is then called a biamperometric titration. The name recalls 
the relation to amperometric tit.rations discussed in §4.3, and the 
presence of two polarized electrodes. The method is applicable whenever 
the titrant forms a reversible couple and the analyte an irreversible 
couple (or vice versa).! 

1 One of the earliest applications of the biamperometric method was in the titration of 
iodine solutions with standard sodium thiosulfate solution from a buret. The 82032
1S4062- couple is irreversible, so that a steadily decreasing current is observed up to 
the endpoint, with essentially zero current beyond. Such a titration was called a 
dead-stop titration, but this name is inappropriate when the titrant furnishes the 
reversible couple. 
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Stripping Voltammetry 

When a solution containing metal ions such as Pb2+, Cu2+, Cd2+. 
Zn2+, etc. is subjected to polarographic analysis, the reduced metal 
dissolves in the mercury drop as an amalgam. The process is reversible 
and if the potential is made anodic, the metal redissolves in the aqueous 
solution. In anodic stripping uoltammetry (12-14), a mercury electrode 
is made the cathode of an electrolysis cell. Current is passed for a few 
minutes through a stirred solution and metals are deposited in the~ electrode. The potential is then scanned and the anodic current 

.~ 
',<:1" measured, usually using the differential pulse technique. As the 

potential reaches the dissolution potential of each metal present, a peak 
is observed in the current-potential curve. The technique achieves very 
high sensitivity because, in the electrolysis step, metal ions are 
concentrated in the mercury electrode. In the most common form of 
anodic stripping voltammetry, a hanging mercury drop electrode is 
used. If the solution volume is 25 mL and the electrode volume is 5 ~, 
exhaustive electrolysis would increase the concentrations by a factor of 
5000. In practice, electrolysis is far from exhaustive (it would take too 
long), but a large concentration enhancement is achieved. Since 
ordinary applications of differential pulse polarography (see Sections 4.5 
and 4.8) have sensitivities down to less than 1 J.lM, a concentration 
enhancement on the order of 103 pushs the sensitivity limit down into 
the nanomolar range. Clearly the concentration enhancement could be 
even greater if the volume of the mercury electrode were smaller and 
electrolysis would be both faster and more complete if the electrode area 
were larger or if transport were more efficient. A rotating disk 
electrode, in which in which a thin film of mercury is deposited on a 
platinum or glassy carbon base, achieves this goal, pushing the 
sensitivity of the technique down to concentrations of 10-11 M! 

Since controlled potential electrolysis in the concentration step is 
not exhaustive, and differential pulse peak heights depend on a number 
of experimental parameters, anodic stripping voltammograms require 
calibration and careful reproduction of calibration conditions in the 
analysis. With attention to detail, anodic stripping voltammetry can be 
the method of choice for trace metal analysis. Sensitivity is usually 
competitive with atomic absorption spectrophotometry, and, because 
several metals can be determined in one differential puse voltammetric 
scan, the analysis can be quicker and easier. 

Even with care, however, anodic stripping voltammetry is not 
without some pitfalls. Unanticipated electrode processes sometimes 
occur during the electrolysis phase which lead to apparently anomalous 
peaks in the voltammetric scan. Ostapczuk and Kublik (15) traced one 
such peak, observed when solutions containing AgN03 were subjected to 
anodic stripping analysis, to hydroxide ion formed in the Ag+-catalyzed 
reduction of nitrate ion: 
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NOa- + Hi> + 2 e- -+ N02- + 2 OH-

The local increase in pH led to the precipitation of various metal 
hydroxides on the electrode. On the anodic scan, these gave rise to a 
mercury oxidation peak: 

Hg(1)+ M(OHh -+ Hg(OH)2 + M2++ 2 e-

Another source of trouble is the formation of intermetallic 
compounds in the mercury phase. Thus reduction of solutions 
containing gold and cadmium or zinc leads to the intermetallic 
compounds AuCd, AuaCd, and AuZn. These species oxidize at a 
different potential than cadmium or zinc amalgam, so that the normal 
cadmium and zinc peaks in thevoltammetric scan are smaller than 
expected and extra peaks are observed due to oxidation of the 
intermetallic compounds. 

The stripping voltammetry strategy has been most commonly used 
to concentrate metals in a mercury drop or thin-layer electrode, followed 
by anodic stripping. The same strategy can often be applied in reverse, 
depositing the analyte on the electrode surface in an oxidation step; the 

~analysis is then based on a cathodic stripping voltammetric scan. 
~-'J 

Example 7.4 Shimizu and Osteryoung (16) used a rotating 
silver disk electrode to determine traces of sulfide by a cathodic 
stripping technique. Anodic current was passed, holding the 
electrode at -0.4 V (us. s.c.e.) for 100-1000 s (co =260 rad s-l). A 
cathodic scan using differential pulse voltammtry then gave a 
well-defined peak corresponding to the reduction of Ag2S. The 
peak current was linear in the initial sulfide concentration 
over the range 0.01 - 10 J-lM. 

7.3 ELECTROSYNTHESIS 

There are enormous numbers of applications of electrolysis 
methods to chemical synthesis, both in inorganic and organic 
chemistry. Unfortunately, academic synthetic chemists have tended to 
ignore electrosynthetic methods, and the field has been developed mostly 
by specialists. This is partly due to a lack of equipment for large-scale 
electrosynthesis in most synthetic laboratories. but it is more often a 
result of unfamiliarity with electrochemistry on the part of synthetic 
chemists. Industrial applications have been relatively more important 
and it is no accident that research in electrosynthesis has been more 
common in industrial laboratories than in academia. In this section, we 
will discuss four representative organic electrosynthetic methods; in 

§7.3 Electrosynthesis 

§7.4, we will consider some specific examples of industrial 
electrosynthetic processes. An extensive secondary literature in 
electrosynthetic methods has developed and the reader is referred to one 
of the general references (EI-E8) for further details. 

Reductive Elimination Reactions 

Reduction of an organic molecule with a good leaving group 
generally leads to a neutral radical: 

+e- +e +BH 
RX - R· - R- - RH

-X' -B' 

Leaving groups include the halide ions (F-, CI-, Br, I-) and pseudohalides 
(CN-, SCN-, ete.) as well as ORo, SR-, NR2-, RS02-, etc. When R is an alkyl 
group, the ionization step may be concerted with electron transfer, i.e., 
the CoX bond is somewhat stretched and polarized before electron 
transfer and ionization is quickly completed after electron transfer. In 
these cases, the neutral radical is formed at the electrode surface and 
further reduction to the carbanion nearly always occurs immediately. 
The strongly basic carbanion usually abstracts a proton from any 
available source (solvent or supporting electrolyte). Electrolysis thus 
provides a means for replacement of halogens or other groups by 
hydrogen. Yields are usually quite good; for example, reduction of 
benzyl bromide in acetonitrile (Hg cathode, -2.1 V us. AglAgCI04, Et(NBr 
electrolyte) gives an essentially quantitative yield of toluene. 

When the initially formed radical anion is resonance-stabilized, the 
ionization step may be slow enough that the radical anion diffuses away 
from the electrode. Radical dimerization may then result. For example, 
reduction of 4-nitrobenzyl bromide in an aprotic solvent gives mostly 4,4'
dinitrobibenzyl (17): 

2 02N-o-ACH2Br + 2 ~." 02N-oACHrCH.-D-N02 
-2Br ~ 

Geminal dihalides, RCHX2, usually reducein two distinct steps to 
give RCH2X and then RCH3, presumably via the same mechanism as 
with alkyl halides. Vicinal dihalides reduce to olefins: 

+2 e" 
RCHX-CH2X RCH=CH2 

-2X' 

The reduction is stereospecific. Thus, for example, reduction of d,1-3,4
dibromobutane in DMF (Hg cathode, -1.1 V us. s.c.e., BU4NBF4 
electrolyte) gives 100% cis-2-butene. Reduction of the meso isomer under 
the same conditions gives trans-2-butene (18). 

With 1,3- and 1,4-dihalides, cyc1ization competes with proton 
abstraction. The detailed mechanism is unclear. It may be that two
electron reduction of one end of the molecule leads to a carbanion, 
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+2e
X-CH2CH2CHrX X-CH2CH2CH£
 

-X" 
which then displaces X- from the other end, forming a ring. However, 
there is some evidence to suggest that C-C bond formation is concerted 
with ionization of the halide ions and electron transfer. The product 
distribution depends on the reduction potential. Thus, for example, 
reduction of 1,4-dibromobutane at -1.75 V (vs. s.c.e.) in DMF solution 
gives 26% cyclobutane and 74% butane; under these conditions, step-wise 
reduction of the two C-Br bonds seems to occur with protonation 
competing successfully with cyclization (19). However, if the reduction is 
carried out at -2.3 V, the products are 90% cyclobutane and only 10% 
butane, suggesting that the concerted mechanism may be operative at 
the more negative potential. Electrochemical reductive elimination 
processes are particularly useful for formation of strained ring systems. 
Thus reduction of 1,3-dibromo-2,2-di(bromomethyl)propane gives first 
1,1-di(bromomethyl)cyclopropane and then, on further reduction, 
spiropentane (19): 

CH2Br 
CH2Br -I 2+e	 [>(

BrCH~C-CH2Br I - 2 Br' 
CH2Br CH2Br 

Reduction ofAromatic Compounds 

2" 
+e [Xl
-

- 2 Br" 

Most aromatic compounds, and especially those with electron
withdrawing substituents, form stable radical anions in polar aprotic 
media. However, in the presence of a proton source, the radical anion is 
protonated to form a neutral radical which is usually more easily 
reduced than the substrate. Thus reductions in protic media usually 
involve at least two electrons and two protons, In now-classical work, 
Wawzonek and Laitinen (20) showed that anthracene is reduced in 
aqueous dioxane to 9,10-dihydroanthracene via the ECEC mechanism: 

HH	 HH 

~ ~ ~ ~~~~
 
A A A +H+ ~ +H+ ~ 

H HH 
CCO

If the potential is controlled. reduction stops at this point since the 
isolated benzene rings are much more difficult to reduce than 
anthracene. Other aromatic hydrocarbons behave similarly; thus, 
naphthalene is reduced to 1,4-dihydronaphthalene and phenanthrene to 
9,10-dihydrophenanthrene. Pyrene can be reduced to 4,5-dihydropyrene 
and, at more negative potentials, to 4,5,9,10-tetrahydropyrene: 
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&9.... +2e"~ ,,_ 

I +2H+ 
A A 

&1~~ A 

~ A 

+2e"+2H+ &1 
When an electron-withdrawing substituent is present, the radical 

anion charge is largely concentrated on the substituent so that it is 
usually the site of protonation. Thus, for example, in aqueous media 

l,?"	 above pH 5, nitrobenzene is reduced by four electrons overall. The first 
steps form nitrosobenzene 

+ e" +H+. + e" 
Ph-N02 - [PhNOi!- - PhN(O)OH - PhN=O

-OH

but this species is more easily reduced than nitrobenzene so that further 
reduction occurs rapidly, yielding phenylhydroxylamine in weakly 
acidic to weakly alkaline solutions: 

+e" + H+ • +e-
PhN=O - [PhN=or - PhNOH - PhNHOH

I	 +H+ 

t 9 ]2 + W 
Ph-N-N-Ph - Ph-N:N-Ph[ b -OH" b 

When the solution is alkaline, protonation of the nitrosobenzene radical 
anion apparently is slow and this species dimerizes to give, after 
protonation and loss ofOH-, azoxybenzene, which can be isolated in high 
yield. Further reduction at low pH yields hydrazobenzene which 
rearranges to benzidine in strong acid: 

+4e-	 H+-O-O-
Ph-N=N-Ph - Ph-NH-NH-Ph - H2N 11. ~ NH2 

I +4H+ "" 
o -H2O 

At higher temperatures or in more strongly acidic media, PhNHOH 
rearranges to p-aminophenol. At low pH, and at a more negative 
potential, it can be reduced to aniline:'" 

H+ +2e
H ~ /) NH2 - PhNHOH - PhNHa+o-Q high +3H+ 

temperature 

In general, the reduction of nitro compounds thus can lead to a wide 
variety of products, and by judicious control of solution polarity, acidity, 
and temperature, high specificities can be achieved. 

The reduction of carbonyl compounds proceeds analogously. For 
example, benzophenone is reduced in neutral or alkaline media to 
benzhydrol 



894	 Electrolysis 

+e +H+ +e" 
Ph~=O [Ph2C=Or - Ph2COH - Ph2CHOH - +H+ 

At lower pH, benzophenone is protonated; the one-electron reduction 
product is reduced only at more negative potentials. Thus under 
controlled potential electrolysis, the neutral radical dimerizes to 
benzpinacol which undergoes acid-catalyzed rearrangement to the 
pinacolone: 

+ e'. H9 H+ <J 
Ph~=OH+ - Ph2COH - Ph2e-CPh2 - Phe-CPh3

I 

OH 

Arylalkyl ketones and aryl aldehydes behave similarly to diaryl ketones, 
affording good yields of the pinacol (or pinacolone) on reduction in 
solutions of moderate acidity. 

Reaetiom ofOlefin Radical Catiom 

When a unsaturated system is oxidized, the initially formed product 
~.	 is usually the radical cation when then may undergo proton loss, 

nucleophilic attack, rearrangement, or dimerization. Oxidation of an 
olefin in the presence of a nucleophile, for example, might lead to 
addition or dimerization: , , , I, I -e' [, I] + + Nu' -e'

. e-C-Nu Nu...e-C-Nuc::c - c=c 
I \ I \	 -+ Nu" I \I	 ~ \ 

\ J J I 
Nu-e-e-e-C-Nu 

I I I \ 
or to substitution, via proton loss, oxidation and nucleophilic addition to 
the allyl cation: 

I	 I I -e' , J I -e' [, I ,] + + Nu" I I , 
-c-c=c - .c-c=c - o-=c-=:C - -e-c=c 

I \ - H+ I \ I \ Nu \ 
Examples of all these routes can be found. Thus electrolysis of 
cyclohexene in acetic acid with Et4NOTs supporting electrolyte led to 
55% 3-acetoxycyc1ohexene and 12% trans,I,2-diacetoxycyc1ohexane (21). 
Oxidation of styrene in methanol solution containing sodium methoxide 
and NaC104 supporting electrolyte gave 64% 1,4-dimethoxy-l,4
diphenylbutane (22). 

Oxidation of conjugated olefins leads primarily to 1,2- or 1,4-addition 
via allylic radical/cation intermediates: 
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,~c.....~c... ~ 
, I 

['~~flrI I 

7:
" . [ '" ]+ " I I Nu,	 I + Nu' Nu I-e	 I 

-e-C-C=C - -e--o=c=:c _ -e-e=e-e- + -e-e-c.c! 
I,' I \ I I 1"\ 
Nu Nu Nu Nu 

Thus, for example, cyclopentadiene in methanol (with NaOMe) or acetic 
acid gives ca 50% 1,4-addition (1:1 mixture of cis and trans isomers) and 
6% 1,2-addition (primarily trans) (23). 

Oxidation of aromatic hydrocarbons in the presence of a 
nucleophile often leads to nuclear substitution: 

-e " + +NU- , H "[ -e '"H]+ -nn+
ArH - [ArH] - A~. - A\ _ ArNu 

Nu Nu 

but the substitution product is often more easily oxidized than the 
starting hydrocarbon, leading to reduced yields. Better results are 
obtained when the product is less easily oxidized. Thus, for example, 
oxidation of 1,4-dimethoxybenzene in methanol with KOH leads to a 75% 
yield ofquinone bisacetal (24): 

CH30 OCH3¢~ -2.. Q 
OCH3 CH300CH3 

Kolbe Hydrocarbon Synthesis 

The first important organic electrosynshetic reaction was 
investigated by Kolbe in 1843 (25). The reaction consists of the oxidation 
at a Pt anode of partially neutralized carboxylic acids in DMF or 
methanol solution. One-electron oxidation presumably gives an acyloxy 
radical intermediate, which rapidly loses C02 and dimerizes to the 
hydrocarbon product: 

_eO 
RCO£ - RC02" - R, + CO2 

~ 
R-R 

Yields vary from 50 to 90%, quite a bit higher than might be expected 
considering the reactions open to an alkyl radical; indeed, there is good 
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reason to believe that the radicals are adsorbed on the electrode surface 
and protected to some extent from the solvent (from which hydrogen 
abstraction might be expected). Three kinds of side reactions compete 
with radical dimerization: (1) In cases where radical rearrangement 
can occur, a variety of coupling products is obtained. Thus, for example, 
a l3,y-unsaturated acid leads to an allylic radical intermediate, 

R-CH=CH-CH2 • • R-Cm-CH=CH2 

and three coupling products are obtained: 

R-CH=CH-CH2-CH2-CH=CH-R 

CH2=CH-CHR-CHR-CH=CH2 

R-CH=CH2-CHR-CH=CH2 

(2) When the radical intermediate is secondary or tertiary, or substituted 
such that the carbonium ion is stabilized, further oxidation takes place: 

-e-
R·- R+ 

~ and the eventual products are derived from carbonium ion reactions. (3) 
.; In cases where the acyloxy radical is stabilized by conjugation (aromatic 

or a,l3-unsaturated acids), Kolbe products are not obtained, most likely 
because the acyloxy radical survives long enough to escape from the 
electrode surface. Thus benzoic acid gives benzene under Kolbe 

.conditions, presumably through loss of C02 and hydrogen abstraction 
-"from the solvent by the resulting phenyl radical. 

Adolf Wilhelm Hermann Kolbe (1818-1884), Professor of Chemistry at 
Marburg and Leipzig, made very important contributions in organic 
chemistry and to the development of the concept of radicals. However, he 
never accepted the idea of structural formulas and wrote some of the most 
vitriolic polemics in the history of science attacking Kekule, van't Hoff, 
and Le Bel. 

7.4 INDUSTRIAL ELECTROLYSIS PROCESSES 

Electrolysis has found many important applications in the 
chemical, metallurgical, and metal finishing industries. In this section, 
we will examine representative examples from four classes of industrial 
processes: 

(1) Electroplating and other metal finishing techniques; 
(2) Reduction of ores and purification of metals; 
(3) Production of inorganic chemicals; and 
(4) Electrosynthesis of organic chemicals. 
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In an industrial process, the object is t9 produce a chemical which 
has an economic value greater than the sum of .the costs of raw 
materials, energy, labor, and capital-in short, to make a profit. An 
inefficient process might be acceptable if the product is produced a few 
grams at a time but would be economically ruinous if thousands of tons 

:~~,;. 

'I

!
are needed. Thus several figures of merit are important in industrial 
electrochemistry. 

:'\, As in ordinary synthetic chemistry, percent yield measures the 
conversion of the limiting reagent to the desired product: 

m • ld moles of starting material converted to product 100% 
70 yte = .. x

moles of startmg matenal consumed 
.~, 

When a mixture of products is obtained, it is sometimes more useful to 
express the yield in terms of the product selectivity: 

% selectivity = moles of desired product x 100% 
total moles of all products 

In some processes, the overall yield may be high but only a fraction of 
starting material is consumed during one pass through the 
electrochemical cell. The unreacted starting material must then be 
separated from the product and recycled. The percent conuersion per 
pass is an important consideration since separation and recycling add 
to the cost of the process. 

In some electrochemical processes, electrode side reactions such as 
the production of hydrogen at the cathode or oxygen at the anode may not 
consume starting material or cause separation problems. Such side 
reactions draw current, however, and thus consititute a nonproductive 
use of electrical energy. Thus the current efficiency, cp, eq (7.1), is also an 
important figure of merit. 

Some industrial electrochemical processes use huge amounts of 
electrical energy, so that the energy consumption per ton of product is an 
extremely important consideration. If the potential applied to the cell is 
E, n Faradays are required to produce one mole of product, and the 
current efficiency is cp, then the energy consumption per mole is 

Energy consumption =nFE J mol-l 
cp 

If M is the molecular weight (g molJ) and we express electrical energy 
in kilowatt-hours (1 kWh = 3600 kJ), then the energy consumption per 
ton (1 metric ton =1000 kg) is 

Energy consumption = 0.278 nEE. kWh ton'! 
cpM 

Energy consumption may increase either because of low current 
efficiency (electrode side reactions) or because of energy losses in the 
electrochemical process (larger applied cell potential). The applied cell 
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potential includes the difference of the reversible half-cell potentials, Ee 
and Ea, the cathodic and anodic overpotentials, 11e and 11a, and the iR 
drop in the electrodes, leads, and electrolyte solution: 

E =Ee - Ea - IT\c I - I 1'1a I - i(Rso)n + RcircuiV 

Both the overpotentials and the iR drop increase in magnitude with 
increasing current. Thus the energy cost per ton of product must 
increase with the rate of production. Materials costs may be more or 
less independent of the rate, but the costs of labor and capital per ton of 
product almost always decrease with increasing rate. Thus the 
optimum current density in an electrochemical process is determined by 
a trade-off between energy costs on the one hand and labor and capital 
costs on the other. 

Electroplating 

An important application of electrodeposition is the plating of a 
layer of metal on an object to improve the appearance or to impart 
hardness or corrosion resistance. Metals commonly used in 

~ electroplating include Cr, Ni, Zn, Cd, Cu, Ag, Au, Sn, and Pb. Some 
., alloys such as brass (CU/Zn) and bronze (CU/Sn) also can be 

electroplated. 
The basic theory of electroplating is extremely simple. For example, 

to plate copper on a steel substrate, the object to be plated is made the 
.cathode in an electrolysis cell where a piece of copper is used as the 
anode. There are many subtleties, however, which must be considered 
in practice. Thus, in plating copper on steel, for example, we 
immediately recognize that the reaction 

Cu2+(aq)+ Fe(s) ~ Cuts) + Fe2+(aq) 

is spontaneous. To prevent the dissolution of iron from the substrate, the 
activity of Cu2+(aq) must be reduced by the addition of a complexing 
agent which coordinates strongly to Cu(II) but much less so than FeU!). 

In electroplating applications, it is usually desirable to deposit a 
layer of uniform thickness. This requirement is not difficult to meet if 
the substrate has a simple geometry. If there are holes or recesses, 
however, a uniform layer can be quite difficult to achieve. When a 
potential is applied across an electrolysis cell, the potential drop is the 
sum of several contributions: 
(1)	 the equilibrium anode-solution and solution-cathode potentials ti.e., 

the equilibrium cell potential); 
(2)	 the activation and polarization overpotentials at the anode and 

cathode; and 
(3)	 the solution ill drop. 
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Since the iR potential drop is proportional to the length of the 
current path, it will be smallest at that part of the cathode which is 
closest to the anode. Since the total cell potential is constant, this means 
that the cathodic overpotential will be greatest at that closest part of the 
cathode. The current density-and the deposited layer thickness-will 
be greatest, therefore, at exposed parts of the cathode. 

Electroplaters refer to the ability of a plating bath to deposit metal at 
hard to reach spots in terms of the throwing power of the bath.! The 
throwing power of a plating bath can be controlled (to some extent) in 
three ways: (1) by adding a large concentration of an inert electrolyte, 
the solution resistance is lowered and differences in iR drop to various 
points on the cathode surface are reduced; (2) by operating the bath 
under conditions where H2(g) evolution occurs at exposed points where 
the overpotential is large, the iR drop is increased locally, thus reducing 
the overpotential and slowing the rate of plating at these exposed points; 
(3) by adding a complexing agent, the electrode process is converted to 

MLxn++ n e- ~ M + x L 

It is generally found that complexing agents decrease the slope of a Tafel 
plot (log i vs. 1'1), so that current variations with overpotential are 
smaller. In addition, throwing power is usually found to be a function of 
temperature through the temperature dependences of the various rate 
processes involved. Plating baths with good throwing power usually 
have optimized all these parameters, most commonly through trial-and
error investigations. 

The nature of an electroplated metal deposit can be modified by the 
addition of organic additives to perform one or more of the following 
functions: (1) Wetting agents facilitate the release of bubbles of H2(g) 
from the surface, preventing the occlusion of hydrogen in the deposit 
and enhancing current density control by hydrogen evolution. (2) 
Levelers are preferentially adsorbed at surface dislocations and sharp 
corners and thus inhibit current flow at the points at which the current 
density would otherwise be highest. (3) Structure modifiers and 
brighteners change the nature of the deposited layer, perhaps changing 
the crystal growth pattern or reducing the crystallite size in the 
deposited layer. 

In most commercial electroplating operations, the current 
efficiency ti.e., the fraction of the current which produces the desired 
metal deposit) is high, 90% or better. The most notable exception is in 
chromium plating, where chromium is added to the bath as CrOa and 
the plating process is based on the six-electron reduction of Cr(Vl). Here 
Or(l l l) is an unwanted by-product, unreducible under normal 

I The concept of throwing power can be made quantitative by defining a standard 
test cell geometry; see Pletcher (G6) for further details. 
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experimental conditions.! The detailed electrode process is not well 
understood, but there are apparently several current-consuming side 
reactions. 

Organic polymer coatings can be applied to metal surfaces by a 
technique called electrophoretic painting, which is closely related to 
electroplating. The polymer to be deposited is solubilized with charged 
functional groups. In anodic electropainting, negatively charged 
groups, usually -C02-, cause the polymer molecules to move toward the 
anode, where water is oxidized to 02 and H+. The local decrease in pH 
leads to neutralization of the carboxylate groups and the polymer 
precipitates. In cathodic electropainting, positively charged polymers 
with -NH3+ groups are attracted to the cathode, where water is reduced 
to H2 and OH-, the ammonium groups are neutralized, and the polymer 
deposited on the surface. Electropainted polymer coatings adhere 
exceptionally well, apparently because of coordination of surface metal 
atoms by the polar functional groups. The technique is commonly used 
to impart corrosion resistance to automobile parts. 

For further details on electroplating and related techniques, see 
Pletcher (06) or Lowenheim (03). 

Anodization 

The electrochemical formation of a protective oxide layer on a metal 
surface is called anodization. The process is most commonly applied to 
.aluminum but sometimes also to copper, titanium, and steel. The metal 
object to be anodized is made the anode of an electrochemical cell and 
current is passed through an acidic electrolyte solution, so that the 
electrode process (for aluminum) is 

2 Al + 3 H20 ~ Al203(S)+ 6 H+(aq)+ 6 e-

The process is much like electroplating, although the cell polarity is 
reversed. 

The formation of the oxide layer involves a complicated electrode 
process which tends to be slow, requiring a large overpotential, 
particularly after a thin oxide layer is formed. For this reason, throwing 
power is not a problem in anodization; the oxide layer grows most 
rapidly where it is thinnest. 

Aluminum is anodized using sulfuric acid, chromic acid, or oxalic 
acid baths, depending on the nature of the surface desired. Anodized 
aluminum surfaces can be colored by adsorbing an organic dye on the 
surface. Alternatively, transition metals can be deposited in the pores of 
the oxide layer; colors then arise from interference effects. 

1 This is obviously a kinetic effect, not a result of thermodynamics. 
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Electrolytic Aluminum Production 

By far the most important electrometallurgical process is the 
production of aluminum from bauxite ore-hydrated aluminum oxide 
with silicates, iron oxides, and other impurities. Worldwide production 
of aluminum amounts to about 2 x 107 tons per year. Since the energy 
consumption is about 15,000 kWh ton- I (5.4 x 1010 J ton-I), aluminum 
production is the largest single industrial consumer of electrical energy. 

Since aluminum is quite an active metal, the traditional smelting
technique used for iron, 

F~03+3C ~ 2Fe+3CO 

will not work and electrolysis is the only practical method. Reduction of 
Al(III) from aqueous solution is also impossible since hydrogen would 
be evolved first even from strongly basic solutions. The solution to these 
restrictions was discovered in 1886 independently by Hall (in the United 
States) and Heroult (in France). The Hall-Heroult process makes use of 
the solubility of alumina in molten cryolite, Na3AIFe, to give a 
conducting solution from which aluminum metal can be obtained at the 
cathode on electrolysis. 

The bauxite ore is first treated with concentrated sodium hydroxide 
solution (caustic soda to the industrial chemist) under pressure to 
dissolve the alumina as NaAl(OH)4. Mter removal of the iron and 
silicate salts by filtration, hydrated Al203 is reprecipitated, filtered off, 
washed, and dried at 1200°C. 

Carbon Anode 

Alumina 
Insulation 

Molten Cryolite 
,,& Alumina 

Tap Hole 

Molten 
Aluminum 

Carbon Cathode 

Figure 7.7 Electrochemical cell used in the production of aluminum by 
the Hall-Heroult process. 
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The purified alumina is then added to a bath of molten cryolite at 
about 1000°C up to about 15 weight percent. The electrolysis bath, shown 
schematically in Figure 7.7, is constructed of steel with alumina 
insulation and uses carbon anodes. The cathode is molten aluminum 
(m.p, 660°C) contacted through steel-reinforced carbon at the bottom of 
the cell. Aluminum is removed from the cell from time to time. Small 
amounts of AlF3 and CaF2 are normally added to the cryolite to reduce 
the melting point and increase the conductivity. The exact nature of the 
species in the cryolite solution is unknown but it is likely that most of the 
aluminum is in the form of anionic oxyfluorides. The stoichiometry of 
the cathode process is 

AI203 + 6 e- -+ 2 AIm + 3 02

At the anode, carbon is oxidized to C02:
 

C(s) + 2 0 2- -+ C02(g) + 4 e-


Since 0.75 mole of carbon is oxidized per mole of aluminum produced, 
the preparation of carbon anodes from coal is an important subsidiary 
activity of an aluminum smelter. Since the anodes are consumed 
during electrolysis, they are constructed so that they can be gradually 
lowered into the cryolite melt to maintain an anode-cathode separation 
of about 5 em. The oxidation of the carbon anodes provides about half the 
free energy required for the reduction of AI203. 

The reversible cell potential in the Hall-Heroult process is about -1.2 
.V and since three Faradays of charge are required per mole of the 
aluminum, we would expect an electric power consumption of about 350 
kJ mol-1 (1.3 x 1010 J ton-I). This is only part of the power consumption. 
The anode process is slow and requires an overpotential of about 0.5 V to 
achieve a reasonable rate; iR drop in the electrodes and electrolyte adds 
another 2.5 V, so that the actual working cell potential is nearer -4.2 V. 
Added to this is the energy cost of heating the cell to 1000°C, purifying 
and drying the bauxite, and preparing the carbon anodes. As we noted 
at the outset, aluminum production is a very energy-intensive process. 

Charles M. Hall (1863-1914) set to work on development of an aluminum 
smelting process after graduation from Oberlin College. After his 
success in 1886, he founded a company which became Aluminum 
Corporation of America (Alcoa). Paul L. T. Heroult (1863-1914) went to 
work on the aluminum smelting problem on completion of his studies at 
Ecole des Mines in Paris (where he had studied with Henri Le Chatelier), 
He later developed electric furnace techniques for the production of steel. 

§7.4 Industrial Electrolysis Processes 

Other Electro1lU!taliurgicai Processes 

The production of lithium, sodium, and magnesium resembles the 
Hall-Heroult process in that electrolysis of a molten salt solution is 
employed. In these cases, chloride salts are electrolyzed and chlorine 
gas in an important by-product. Sodium, for example, is prepared by 
electrolysis of a NaCl/CaCI2 eutectic mixture at GOO°C. Chlorine is 
liberated at a graphite anode and sodium at a steel cathode. Sodium is a 
liquid at 600°C and is considerably less dense that the molten salt 
mixture, so that it floats to the top of the cell and is taken off into a 
reservoir. Some calcium is also produced, but this sinks to the bottom of 
the cell, where it is consumed via the equilibrium 

Ca + 2 NaCI ~ CaCl2 + 2 Na:i 
Less active metals can be produced by electrolysis of aqueous 

solutions. Thus about 10% of world copper production and half the zinc 
is via hydrometallurgical processes. Small amounts of chromium, 
manganese, cobalt, nickel, cadmium, silver, gold, gallium, thallium, and 
indium are also obtained from electrolysis of aqueous solutions. In 
general, ores are roasted to convert sulfides to oxides, 

2 MS + 3 02 -+ 2 MO + 2 S02 

and leached with sulfuric acid to separate the desired metal from 
silicates and aluminosilicates. The resulting metal sulfate solution is 
then purified, removing traces of less active metals, and then 
electrolyzed to plate out the desired metal on an aluminum or titanium 
cathode. The anode is most commonly lead or Pb02, with a little silver 
added to catalyze the generation of oxygen. 

Some metals obtained by conventional smelting techniques are 
purified electrolytically. Thus cobalt, nickel, copper, tin, and lead are 
frequently refined by anodic dissolution and deposition at the cathode of 
a cell. In the case of copper, which accounts for the largest aqueous 
electrorefining volume, common impurities are Fe, Co, Ni, Pt, Ag, Au, 
Zn, Pb, As, Sb, and Bi. The cell potential is controlled such that Pt, Ag, 
and Au do not dissolve at the anode and these metals eventually fall to 
the bottom of the cell and are found in the "anode slime". Sn, Pb, Sb, and 
Bi dissolve at the anode but form insoluble oxides or sulfates and so are 
also found in the anode slime. Fe, Co, Ni, Zn, and As dissolve and 
remain in solution but are not reduced at the cathode at the potential 
provided. The anode slime is collected from time to time and refined to 
separate the traces of precious metals. 
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Production ofChlorine and Sodium HydrtJ%ide 

Electrolysis of an aqueous sodium chloride solution produces 
hydrogen at the cathode, chlorine at the anode, and leaves a solution of 
sodium hydroxide; variations on this process are responsible for most of 
the world's production of chlorine and sodium hydroxide (caustic soda) 
and contribute significantly to the production of hydrogen.l In tonnage, 
this process is the largest electrochemical industry though aluminum 
production consumes more electric energy. 

Although the chlor-alkali industry has been in operation since the 
1890's, there have been some significant technical modifications to the 
process. These have consisted both in the development of better 
electrodes to reduce overpotentials and in changes in the overall strategy 
of the process. Three distinct approaches to the electrolysis of NaCI 
brine have been developed and all three are in current use. 

Cl 2 

.', 

-.17% NaCI50% NaCI ..I I 

NaCI 

H20 

'-Hg 

50% NaOH 

Figure 7.8 Schematic diagram of mercury cell used in the production of 
chlorine, sodium hydroxide, and hydrogen. 

The oldest technology divides the overall process into two parts by 
using a cell with a mercury cathode as shown in Figure 7.8. Since the 

1 Hydrogen is also produced from coal or natural gas as "synthesis gas" (a mixture 
of H2 and CO) or, when very high purity is required, from the electrolysis of water. 
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overpotential for H2(g) production on Hg is so high, the cathode process 
is the formation of sodium amalgam, . 

Nartaq) + e- -+ Na(Hg) 

The anode is titanium, coated with RU02, C0203, or other transition 
metal oxides to catalyze the evolution of chlorine gas, 

2 CI- -+ Clig) + 2 e-

Since the evolution of 02 is thermodynamically more favorable than that 
of CI2(g), the anode must have a high overpotential for water oxidation so 
as to prevent contamination of the Cl2 product. The reaction of sodium 
amalgam with water is thermodynamically favorable but is very slow, 
owing to the large overpotential for H2 production. Sodium amalgam is 
withdrawn from the cell at about 0.5% Na content, washed with water to 
remove NaCI and passed with water through a column packed with 
graphite impregnated with Fe, Ni, or some other catalyst. Hydrogen is 
then evolved and collected at the top of the column. Mercury and 50% 
NaOH solution emerge at the bottom of the column in quite pure form. 
The NaCI feedstock is typically 50% brine which has been treated with 
base to precipitate group II and transition metal hydroxides and 
reacidified to pH 4. The cell normally operates at about BO°C. 

The mercury cell technology produces high-purity products with 
little additional treatment required. However, there is a potentially 
serious problem of mercury contamination in the plant environment 
and in the wastewater effluent. Because Na" is reduced in the 
electrolysis step rather than H+, the cell potential-and thus energy 
consumption-is significantly higher than should be necessary (in 
principle) for the electrolysis of NaCI to form CI2(g) and H2(g). 

Beginning in the 1950's, environmental concerns prompted the 
development of another approach, the so-called diaphragm cell. In this 
method, the cathode material is steel gauze coated with a catalyst to 
reduce the H2 overpotential. An asbestos-based diaphragm is used to 
separate the anode and cathode compartments to prevent mixing of the 
hydrogen and chlorine gases and to somewhat-reduce mixing of the 
NaCI feedstock on the anode side with the NaOH solution of the cathode 
side. The arrangement is shown schematically in Figure 7.9. While this 
eliminates the mercury problem, the cell potential is still much larger 
than theoretical because of an iR drop of about 1 V across the 
diaphragm. This is not the only problem: (1) OR- diffusing into the 
anolyte reacts with Cl2 to form hypochlorite ion: 

Cl2 + 20H- -+ H20 + CIO-+ CI-

reducing the yield of Cl2; (2) when the anolyte pH goes up, the potential 
for formation of 02 at the anode becomes more favorable and 
contamination of the C!2(g) results; (3) to reduce the magnitude of 
problems (1) and (2), the catholyte cannot be allowed to exceed 10% in 
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NaOH concentration; (4) chloride ion diffusion from the anolyte to the 
catholyte results in a very considerable contamination of the NaOH 
solution; (5) to deal with problems (3) and (4), evaporation of the caustic 

H 2 Cl2 Cl 2, 
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metal I'Fil\ll"e 7.9 Schematic representation gauze asbestos steel
of electrodes in a diaphragm cell used anode diaphram gauzein the ehlor-alkali industry. cathode 

soda solution is required to bring the concentration up to 50% (the usual 
commercial form of caustic soda), at which point much of the NaCl 

.precipitates; and (6) precipitation of Ca(OH)2 and Mg(OHh in the pores of 
r ,~the diaphragm increases the iR drop with time; to minimize this 

problem, more rigorous brine purification is required than for the 
mercury cell. 

The upshot of all this is that the purity of the NaOH and Cl2 
products from a diaphragm cell is significantly lower and, because of iR 
drop in the diaphragm and the requirement of an evaporation step, the 
energy requirement is nearly the same as in a mercury cell. 
Furthermore, the use of asbestos introduces another potential 
environmental problem. 

The most recent technical development has been the introduction of 
chlor-alkali cells which incorporate an ion-exchange membrane in 
place of the asbestos diaphragm. With a cation-permeable membrane, 
diffusion of OH- into the anolyte can be drastically reduced, improving 
the yield and purity of C12. Electrolysis can be continued to produce 
somewhat more concentrated NaOH solutions, up to about 40%, so that 
much less evaporation is required to get to 50% commercial caustic soda; 
because very little Cl: gets through the membrane, Cl- contamination of 
the NaOH is much less serious, and finally, iR drop across the 
membrane is somewhat less than in a diaphragm cell (but still much 
greater than in a barrier-free mercury cell). 
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The major drawback of the membrane cell is that (at present) it is 
limited in size by the ability to produce and handle large sheets of cation
exchange membrane. To obtain the same product volume, more cells 
are required and therefore more plumbing and higher capital costs to 
the manufacturer. 

Other Inorganic Electrosyntheses 

Although no other electrolytic process approachs the volume of the 
chlor-alkali process, many other inorganic chemicals are produced 
electrochemically. 

Fluorine. Electrolysis provides the only source of elemental 
fluorine. An anhydrous mixture ofKF and HF (mole ratio 1:2, m.p. 82°C) 
is used as the electrolyte (K+ and HF2- ions) with carbon anodes and mild 
steel cathodes. The cell process 

2 HF -+ Hig) + F2(g) 

gives gaseous fluorine and hydrogen. Both gases are contaminated with 
HF which is removed and recycled by adsorption by solid KF. Fluorine is 
used in the nuclear industry to produce UF6 (used in gaseous diffusion 
isotope separation plants), for the production of SFe (a nonflammable, 
nontoxic gas of low dielectric constant used to prevent voltage breakdown 
around high-voltage electrical equipment), and for the production of 
fluorinated hydrocarbons. 

Chlorates, bromates, and perchlorates. Sodium chlorate is 
produced via electrolysis of sodium chloride solutions, taking advantage 
of an undesirable side reaction of the ehl or-alkali process. The 
electrolysis steps are the same, 

2 Cl- -+ Cl2+ 2 e

2H++2e- -+ H2 

In neutral or basic solution (pH> 6), Cl2 disproportionates: 
.,

Cl2 + 2 OH- -+ Cl- + CIO- + H20 

Hypochlorite ion also disproportionates: 

3 CIO" -+ CI03" + 2 Cl-

The last reaction is catalyzed by H+ and is slow in basic solution. When 
the pH is in the range 6-7, both disproportionation reactions are 
relatively slow. However, since the anode process consumes two OH" 
ions and the cathode process consumes two H+ ions, there is a 
substantial pH gradient across the cell and the rates of the various 
processes are strongly dependent on stirring and on flow patterns in the 
electrolyte solution. If hypochlorite ion is formed near the anode, it can 
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be oxidized in a complicated process which generates oxygen with the 
overall stoichiometry: 

6 CIO-+ 6 OH- ~ 2 ClOa-+ 4 Cl: + i <h+ 3 H2O + 6 e

In effect, CIO- catalyzes the anodic oxidation of water, reducing the 
current efficiency. This process is thus undesirable and must be 
suppressed. Efficient stirring of the solution will maintain pH control 
and thus reduce the rate of hypochlorite formation. In practice, the 
solution is cycled through a holding tank where the disproportionation 
reactions can proceed without the complications of the unwanted 
electrode processes. Other chlorate and bromate salts are produced by 
similar electrolytic methods. 

Electrolysis of sodium chlorate solutions at pH 0-1 results in 
oxidation to perchlorate: 

ClOa-+ H2O ~ CI04' + 2 H+ + 2 e

Hydrogen is evolved at the cathode. 
Manganese diodde. Purified pyrolusite provides Mn02 of 

•	 adequate quality for most chemical purposes. When Mn02 of higher 
.,	 purity is required (for Laclanche cells, for example, or for use as an 

oxidizing agent in industrial organic synthesis), it can be produced by 
the electrolytic oxidation of Mn(ll) in aqueous sulfuric acid solution at a 
graphite anode. Hydrogen evolution occurs at the cathode. 
, Potassium permanganate. Pyrolusite (impure Mn02) is used as 
a starting material in the production of KMnO". The ore is ground, 
slurried in 50% KOH, and air oxidized to manganate ion: 

2Mn02+02+40H- ~ 2 H20 + 2 Mn042

Impurities are filtered off and the manganate ion is oxidized at a nickel 
anode: 

Mn042. ~ MnO,,- + e-

The cathode process again is hydrogen evolution, although some Mn04
is lost to cathodic reduction. 

Potassium dichromate. Potassium dichromate is produced by 
electrolytic oxidation of CrtHl) in aqueous sulfuric acid solution, using a 
Pb02 anode; oxygen evolution is an important competing anodic process. 
Electrolytic production of er(Vn is mostly used in recycling Cr(Ill) 
residues from chromate oxidations in industrial organic synthesis or in 
conditioning chromate plating baths. As such, the scale is usually quite 
small. 

§7.4 Industrial Electrolysis Processes 

ElectrollYlllhelli. ofAdiponitrile 

The largest volume organic electrosynthetic process presently in 
use is the production of adiponitrile, a precursor to nylon, from 
acrylonitrile. The stoichiometric half-cell reactions are 

2 CH2=CHCN + 2 H20 + 2 e- ~ NC-(CH2)6-CN + 2 OH

2 H20 ~ Oig) + 4 H+ + 4 e-

which sum to the overall reaction stoichiometry 

4 CH2=CHCN + 2 H20 ~ 02(g) + 2 NC-(CH2)6-CN 

The actual mechanism of the reaction is considerably more complex and 
probably involves several parallel pathways. Some of the possible 
reaction pathways are shown in Figure 7.10. The major side reactions 
which must be minimized are the production of propionitrile (the 
monomeric reduction product) and trimers and higher polymers. 

CH~HC~,
CH2",CHCN CH2CHCN 

~~-!+e

yH2CHC~ I +wCH2",CHCN"" 
CH2CHC~t+H+ 

+H+ trimer, 
- etc..CH2CH2CN ~H2CHCN- yH2~H2CN
 

+SH I  ~~ I:~HCN
-s ++e 
CH2CH2CN"" ----~=---- yH2CH~N +SH 

+CHFCHCN CH2CHCN"" -s!+H+ 'l+w 
CH3CH2CN CH2CH~N 

I 
CH2CH~N 

Figure 7.10 Possible reactions occurring in the reduction of acrylonitrile. 

Monomeric product can be avoided if the initially formed radical 
anion either dimerizes or reacts with substrate acrylonitrile before it is 
protonated. This can be achieved if the pH (at least near the electrode 
surface) is kept quite high. Radical anion dimerization is most desirable 
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since this avoids the neutral radical, which is the most likely route to 
higher polymers. On the other hand, the pH cannot be allowed to get too 
high since acrylonitrile reacts with hydroxide ion to form ~

hydroxypropionitrile and bis-(2-cyanoethy1)ether. These considerations 
led to a definite strategy for the process: 
(1)	 The concentration of acrylonitrile should be as high as possible to 

promote dimerization; in practice an aqueous emulsion is used so 
that the aqueous phase is saturated, about 7% by weight. The 
organic phase is a mixture of acrylonitrile and adiponitrile. 

(2)	 The aqueous phase must be buffered to prevent reaction of 
acrylonitrile with base; in practice the emulsion contains about 15% 
Na2HP04. 

(3)	 The electrode surface pH should be high to prevent protonation of 
the initially formed radical anion. This can be achieved by 
adsorbing positive ions on the electrode surface (see §2.2); the 
industrial process uses the diquaternary ammonium ion, BU2EtN
(CH2)6-NEtBu~+. 

(4)	 Hydrogen evolution at the cathode must be suppressed so that the 
cathode material should have a large overpotential for H+ 
reduction; in practice, cadmium-plated steel is used. 
Oxygen is produced at a steel anode, spaced 2 rom from the cathodeI 

to reduce solution iR drop. Corrosion of the anode is a problem since 
deposition of iron on the cathode would promote hydrogen reduction and 

r a decrease in current efficiency. Additives are used to suppress anode 
dissolution and EDTA is added to scavenge transition metals before they 
plate out on the cathode. 

The two-phase mixture is cycled rapidly between the electrolysis 
cell and a reservoir. Solution is continually withdrawn from the 
reservoir for product isolation, removal of by-products and metal ions, 
and recycling of unreacted acrylonitrile. The overall process has about 
90% selectivity toward adiponitrile. The reversible cell potential is about 
-2.5 V; the overpotentials and solution iR drop are relatively small at the 
current density used (about 2000 A m-2) so that the working cell potential 
is about -3.8 V. 

Production ofLead Tetraalkyls 

Another major commercial electrosynthetic process is the 
production of tetraethyl- and tetramethyllead by the oxidation of a 

I About 100 anode-cathode pairs are used in the cell to allow for greater output. 

~; 
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Grignard reagent at a lead anode in a mixture of ether solventa.! The 
ti~C' anode reaction stoichiometry is ' 
it' 

4 RMgCl + Ph ~ R4Pb + 4 MgCI++ 4 e

At the steel cathode, Mg(II) is reduced: 

MgCI++ 2 e- ~ Mg(s) + CI-

and the magnesium is used to regenerate the Grignard reagent with 
excess alkyl chloride, 

RCI + Mg ~ RMgCI 

The electrolysis reactor contains many cell assemblies, arranged as 
concentric vertical tubes as shown in Figure 7.11; lead shot which acts 
as the anode is fed by gravity down the center tube. 

Lead Rod 
Electrode 

Lead Shot 
(anode) 

II I Polypropylene 
diaphram 

Figure 7.11 Cross-section Solution
of electrode assembly used 
in the electrochemical 
production of lead tetra Steel tube 
alkyls. cathode 

Careful control of reaction conditions is required since a 
hydrocarbon is produced if the alkyl chloride concentration is too high: 

.F 

RMgCI + RCI ~ R-R + MgCl2 

If the alkyl chloride concentration is too low, magnesium metal will 
accumulate on the cathode, eventually bridging the anode-cathode gap 
and shorting the cell. 

Solution flows from a reactor where the Grignard reagent is 
prepared into the electrolysis cell assemblies; the flow rate must be 
adjusted to ensure complete reaction of the Grignard reagent by the time 
the solution exits at the bottom of the cell. Excess alkyl halide is then 

I With the phase-out of leaded gasoline in the United States and Europe, this process 
has decreased in importance; tetraethyllead is still used as a motor fuel additive in 
much of the rest of the world. 
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stripped from the solution and recycled to the Orignard reactor, the 
MgCl2 is extracted with water, and the ether solvent is separated from 
the lead tetraalkyl, purified by azeotropic distillation and recycled to the 
Orignard reactor. 

Other Organic Electrosyntheses 

Although no other organic processes use electrosynthetic 
techniques at the scale of the adiponitrile or lead tetraalkyl processes, 
several other processes are in use. They fall into two categories: 
(1)	 Reduction of aromatic compounds in aqueous acidic solutions at a 

lead cathode. The initially formed radical anion is rapidly 
protonated; the resulting neutral radical is then reduced to a 
carbanion which adds another proton. For example, phthalic 
anhydride is reduced to 1,2-dihydrophthalic acid, pyridine is 
reduced to piperidine, and N-methylindole is reduced to N-methyl
2,3-dihydroindole. . 

" (2)	 Oxidations of organics with inorganic oxidants such as chromic 
acid, periodate, bromine, or hypobromite. These homogeneous 

-: ', reactions are coupled with a step where the oxidant is regenerated 
electrolytically. For example, anthroquinone is obtained from the 
chromic acid oxidation of anthracene and the Cr(lIl) is cycled 
through an electrolysis cell to regenerate the oxidant. 

7.5 CORROSION 

Corrosion is an important problem in all practical uses of metals
in automobiles, bridges, buildings, machinery, pipelines, ships, indeed 
in most of the works of man. Corrosion consists of the spontaneous 
oxidation of metals, usually by atmospheric oxygen but also by water or 
atmospheric pollutants such as 802. In simplest terms, we may think. of 
corrosion in terms of the metal oxidation half-cell reaction, 

M ~ Mn+ + n e

coupled with the reduction of oxygen 

02+ 2 HzO + 4 e- 4 40H

or the reduction of water
 

2HzO+2e- 4 H2+20H

The direction of spontaneous change and the thermodynamically 
most stable products will depend on the standard reduction potentials of 
M n+, Oz, and water, and on the pH, 02 partial pressure, and 

§7.5 Corrosion 

temperature. The equilibrium thermodynamics of a corrosion problem 
is most easily visualized in terms of a Pourbaix diagram (see §l.3). In 
the Pourbaix diagram for iron, Figure 7.12, we 'see that iron is 
susceptible to oxidation by water or 02 at all pH values. 
Thermodynamics thus tells us that corrosion of iron is inevitable in the 
wet, oxygen-rich environment in which we place our buildings and 
machinery. The questions then are: (1) How fast does the process occur? 
and (2) what can we do to make it slower? These questions lead us to a 
more detailed look at the kinetics and mechanism of corrosion 
processes. For further discussion of corrosion and the prevention 
thereof, see Uhlig and Revie (08). 

Figure 7.12 Predominance 
area diagram for iron. The 
dashed lines correspond to 
the H+(aq)/H2(g) and 
02(g)1H20 couples. 
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Rate ofDissolution ofa Metal in Water ... 
Consider the reaction of a metal with aqueous acid, 

M(s) + n H+(aq) -7 Mn+(aq) + (nl2) H2(g) 

We could study the rate of this reaction by classical techniques, e.g., by 
measuring the volume of H2(g) as a function of time. However, the half
reactions 

M(s) 4 Mn+(aq) + n e

2 H+(aq)+ 2 e- 4 H2(g) 

can be studied independently using the electrochemical techniques 
described in §5.2. If a piece of the metal were used as an indicator 
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electrode in a well-stirred solution and the current density measured as 
a function of potential, a current density vs. potential curve would be 
obtained similar to that of Figure 7.13. 

Cathodic current at negative potentials corresponds to the reduction 
of'Httaq) and, for E« EeH, is given by the Tafel equation, eq (5.21), 

·H ·H aHF{E-E H) 
logj =logjo e	 (7.7)

2.303RT 

where a H is the apparent cathodic transfer coefficient. Anodic current 
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Figure 7.13 Current density us. Figure 7.14 Tafel plot corresponding 
potential curve for iron in contact to the current density UB. potential 
with an aqueous acidic solution (pH curve of Figure 7.13. 
2, [Fe2+] = 1 mM) saturated with H2 
(1 bar partial pressure). 

at more positive potentials (E »EeM) corresponds to oxidation of the 
metal! and is given by 

log IjMI =log ~oMI + ~MF(E -EeM)	 (7.8)
2.303RT 

where ~M is the apparent anodic transfer coefficient. Consider now the 
point on thej-E curve wherej =O. Zero current corresponds to the point 
where the anodic and cathodic components o( the current are equal. At 

1 We assume that the experiment is done in an oxygen-free solution and that the 
anion is not electroactive. 
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the potential of zero current, the rate of reduction of Hr(aq) is exactly 
equal to the rate of metal oxidation. This, ofcourse, is just the situation 
which pertains when we immerse the metal in the acid solution and 
allow the reaction to proceed. The potential at zero current then 
corresponds to the metal-solution potential in the absence of 
electrochemical control circuitry and is called the corrosion potential, 
s.. 

The corrosion potential is easily obtained by equatingjH and IjM J, 

(aHEeH+ ~MEeM) + 2.303RT (logjoH_logUoMI) 
E- F (7.9) 

e -	 a H + ~M 

Substituting eq (7.9) into either eq (7.7) or eq (7.8) gives the corrosion 
current density at zero net current: 

1	 . = a Hlog UoMI + ~M logjoH aH~MF{EeH - EeM) (710)
ogje M + ( M) . 

a H + ~ 2.303RT a H + ~ 

Thus electrochemical kinetic methods can be applied to a study of 
the rate of corrosion reactions. Furthermore, given exchange current 
densities and standard potentials for the half-cell reactions of interest, 
we should be able to compute the corrosion potential and the rate of the 
corrosion reaction. 

Example 7.5 Compute the corrosion rate for metallic iron in 
contact with an aqueous acid solution, pH 2.00, P(H2) =1 bar, with 
[Fe2+) =0.001 M using the results of Bockris, Drazic, and Despic 
(see Example 6.4 and Problem 6.7) for the anodic dissolution of 
iron and the data of Table 6.1 for the cathodic reduction of H+(aq). 
We first use the Nernst equation to compute the equilibrium. half
cell potentials 

EeH =0.000 + (0.0592)10g[H+) =-0.118 V 

EeM =-0.440 + (0.0592/2)10g[Fe2+) =~.529 V 

According to Figure 6.9, log IjoM I =-2.2 at pH 3.1,0.5 M Fe2+, with 
~ =1.5. Extrapolation to [Fe2+) =0.001 M at pH 3.1 gives 10gljoM I 
= --4.4. Correcting this value to pH 2.0 with the observed pH 
dependence, we have log IjoM I =-5.5. The reduction of'Hstaq) at an 
iron electrode has 10gjoH =-2.0, a H=0.4 for pH O. CorrectingjoH to 
pH 2 using eq (5.25a), we have 

10 . H =_2.0 + (1- a 
H

) F Lilie --3.2 
es« 2.303RT 

Thus the Tafel lines corresponding to the reduction of Ht{aq) and 
the oxidation of iron under the specified conditions are 



416 Electrolysis 

10gjH=-3.2 - 6.76I.E + 0.118) 

log IjMI = -5.5 + 25.4(E + 0.529) 

These are plotted in Figure 7.14 and the total current density,jtot = 
jH _ IjM I, is plotted us. potential in Figure 7.13. The corrosion 
potential found from eq (7.9) is E c =-0.371 V and the corrosion 
current density from eq (7.10) isjc = 0.033 A m·2. The rate of the 
corrosion reaction thus is 

Rate =jclnF = 1.7 x 10-7 mol m-2s·1 

Such a rate seems very slow, but corrosion reactions need not be 
very fast to do their work; this corrosion rate corresponds to 300 g 
of metal dissolving per square meter per year. 

Reaction ofa Metal with Air-Saturated Water 

In most corrosion problems of practical interest, the aqueous 
solution (which might be just a thin film) is in contact with air and the 

~.;reaction of the metal with oxygen is generally much more important 
that the reaction with H+(aq) from the water. 

In principle, we should be able to use the model developed above to 
measure or predict oxygen corrosion rates. Since oxygen is a stronger 
oxidant than water by 1.23 V, the cathodic current density due to oxygen 

, r'eduction will almost always be larger than that due to water reduction. 
The oxygen reduction Tafel line will intersect the line for metal 
oxidation at a more positive potential and higher current density, thus 
giving a greater corrosion rate. The actual situation may be 
considerably less straightforward. 

There is relatively little electrochemical kinetic data available for 
the reduction of oxygen and the mechanism of the process is, for the 
most part, not understood. Even when reliable data are available for the 
electrochemical reduction of oxygen, they may not be relvant to the 
actual corrosion process. For example, in low pH solutions, the reaction 
of dissolved oxygen with Fe(II) is very much faster than the reaction 
with solid iron. The Fe(III) product, however, undergoes electron 
transfer at the metal surface quite rapidly. The overall reaction then is 
the sum of the homogeneous and heterogeneous steps: 

4 Fe2+ + 02 + 4 H+ ~ 4 Fe3+ + 2 H2O 

2 Fe3+ + Fe(s) ~ 3 Fez+ 

2 Fe2++4HzO2 Fe(s) + 02+4H+ ~ 

Thus the stoichiometry is identical to that of the direct reaction, 
although the mechanism is more complicated. 

§7.5 Corrosion 41'7 

..~ PCUlBivation 

Some metal&-most notably aluminum, chromium, and nickel
are essentially unreactive in air-saturated water despite a large 
thermodynamic driving force. Aluminum, for example, can be used in 
cookware despite an expected free energy of oxidation of -717 kJ mol-I, 
Metals are said to be passive when they corrode anomalously slowly. 
Many other metals, including iron, show passive behavior under some 
circumstances and "normal behavior" under others. It has been known 
since the eighteenth century that iron is attacked rapidly by dilute nitric 
acid but is essentially immune to attack by concentrated nitric acid. 
Treatment of iron with concentrated nitric acid imparts temporary 
corrosion resistance when the iron is immersed in dilute acid. Iron can 
also be temporarily passivated by electrochemical anodization. Whereas 
iron loses passivity in a matter of minutes, chromium and nickel show 
long-term passive behavior. 

.., 
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Figure 7.16 Anodic current

potential curve showing the
 II j
onset of passivation at the Flade
 
potential, EF.
 

The passivation of a metal can be demonstrated by a current
potential curve such as that shown in Figure 7.15. The experiment 
starts with a clean metal surface in contact with a stirred solution 
saturated in oxygen with the potential of the metal held sufficiently 
negative that no metal oxidation occurs. A positive-going potential scan 
then gives an anodic current as the metal begins to oxidize. Initially, the 
current increases exponentially as expected. Instead of a continued 
increase, however, the current levels off and then drops precipitously, 
perhaps by several powers of 10; the current remains very small until 

Potential
.'" 
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the potential becomes sufficiently positive to oxidize water. The potential 
of onset of passivation is called the Flade potential. The details of the 
mechanism of passivation-in particular, the sudden onset of the 
passive region at the Flade potential-are imperfectly understood. The 
Flade potential depends on the pH, usually according to 

EF = EFo - 0.0592 pH 

suggesting the formation of an oxide film by the process 

M + H20 -+ M·O + 2 H+ + 2 e

The Flade potentials (at pH 0) for iron, nickel, and chromium are, 
respectively, +0.6, +0.2, and -0.2 V, and these values correlate well with 
the apparent kinetic stability of the protective oxide film. The Flade 
potential of iron-chromium alloys decreases rapidly with increasing 
chromium content; E FO is about 0 V at 20% chromium. Thus the 
corrosion resistance of "stainless" steels is brought about through 
stabilization of the passivating oxide film. . 

In the case of main-group metals such as magnesium, aluminum, 
~ or zinc, the oxide film apparently grows into a layer of the metal oxide 
. and can be regarded as a separate phase. The passivity of such metals 

then depends on the slow rate of diffusion of water or oxygen through the 
oxide layer. Transition metals, on the other hand, show no evidence of a 
surface oxide phase and there is reason to believe that the passivating 
film is a layer of oxygen atoms chemisorbed to the metal surface, M-O. 
Coulometric experiments suggest that the passivating layer on iron is 4
5 oxygen atoms thick, but, because of surface roughness, this is an upper 
limit to the film thickness. There is some reason to suspect that the film 
contains both oxygen atoms and oxygen molecules. Uhlig (26) has used 
other thermodynamic data to estimate a potential of 0.57 V for the 
process 

F&-O-02+6H++6e- -+ Fe+3H20 

This is sufficiently close to the experimental value, EFo = 0.63 V to 
encourage belief in the model. If the passivating film is a layer of 
chemisorbed oxygen atoms and molecules, its success in protecting the 
metal from further oxidation must mean that the oxide film is lower in 
free energy than either the bare metal or a thin layer of the metal oxide 
phase. Thus, although thermodynamics says that complete conversion 
of the metal to metal oxide is spontaneous, the chemisorbed oxide layer 
represents a pronounced local free energy minimum on the pathway 
from metal to oxide. 

§7.5 Corrosion 

Differential Aeration 

Although ionic conduction across a passivating metal oxide .film is 
very slow, electronic conduction may be much faster. Thus even at a 
passivated metal surface, reduction of oxygen may occur provided that a 
source of electrons is available. Consider the experimental 
arrangement shown in Figure 7.16. Two initially identical pieces of 
metal are dipped into identical electrolyte solutions. Nitrogen is bubbled 
over one electrode and oxygen over the other and we suppose that the 
metal exposed to oxygen is passivated. If we connect the two electrodes 
by closing the switch, we have set up an electrochemical cell in which, at 
the left-hand electrode, metal is oxidized, 

M(s) -+ Mn+ + n e

and at the right-hand electrode, oxygen is reduced, 

02(g)+4H++4e- -+ 2 H20 

This overall cell reaction will almost always be spontaneous and the rate 
may be quite significant, despite the fact that the right-hand electrode is 
passivated. 

~02 

Figure 7.18 Experiment to
 
demonstrate corrosion
 
through differential aera

tion.
 

." 

This experiment gives an insight into one of the most troublesome 
Sources of corrosion, differential aeration. Ifa metal object is exposed to 
well-aerated water, it will often passivate, so that the rate of corrosion is 
negligible. If, however, part of the object is exposed to oxygen-deficient 
water, an electrochemical cell exactly like that of Figure 7.16 is set up. 
One can think of many situations where this might OCcur. For example, 
a metal piling in a river is exposed to well-aerated water near the 
surface but anaerobic mud at the bottom. The stagnant water trapped in 
a crevice in a metal object may have an oxygen concentration below the 
point required for passivation. Notice that in both these examples, the 
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surface area of metal exposed to aerated water is large, so that oxygen 
reduction may be quite rapid overall; the rate of oxygen reduction must 
be balanced by metal oxidation, often in a relatively small area. Thus 
corrosion by differential aeration is usually characterized by rapid 
dissolution of metal in very localized areas. Cracks in a metal structure 
are thus enlarged, pits deepened, imperfect welds destroyed, etc. 

Passive metal surfaces remain susceptible to corrosion in other 
ways as well. Although a passivating oxide layer behaves as if it were 
impermeable to oxygen or metal ions, it generally is either permeable to 
or is disrupted by halide ions. Thus metal passivity is usually lost when 
exposed to a solution containing chloride ions. The action of chloride 
ions tends to be localized, resulting in the formation of corrosion pits. 
Apparently chloride attacks thin or otherwise weak spots in the oxide 
layer, creating small anodic areas of active metal surrounded by large 
cathodic areas of passive metal. The mechanism thus is analogous to 
different aeration. Once the process starts, corrosion occurs primarily 
at the anodic sites and a corrosion pit forms and grows. 

Prevention of Corrosion	 ~ 

Perhaps the most common approach to the prevention of corrosion 
is to cover the metal surface with a protective coating, e.g., paint, plastic, 
ceramic, or an electroplated layer of a passive metal such as chromium, 
nickel, or tin. A mechanical barrier is effective, of course, only as long 
'as it remains a barrier. Bare Hwtal exposed by a scratch is susceptible to 
corrosion. Once corrosion begins at a breach in the protective layer, it 
often continues under the layer through the differential aeration 
mechanism, lifting the coating and eventually leading to massive 
damage. Differential aeration is particularly effective with damaged 
metal-plated surfaces since oxygen reduction can occur over the entire 
undamaged surface to balance the base metal oxidation at the point of 
damage.

Coatings can be made more effective by the addition of corrosion 
inhibitors. A corrosion inhibitor works by decreasing the rate of metal 
oxidation, by decreasing the rate of oxygen (or water) reduction, or by 
shifting the surface putential into the passive region. Thus rust
inhibiting paints often contain chromate salts which passivate the metal 
surface by making the surface potential positive. Other common paint 
additives are aliphatic or aromatic amines which appear to adsorb on 
the	 metal, slowing the metal oxidation half-reaction. Since inhibitors 
impart a resistance to corrosion over and above the effect of the physical 
barrier, small scratches do not usually lead to massive damage. 

Another way to protect a metal object from corrosion is to attach a 
sacrificial anode made of zinc, magnesium, or an aluminum alloy. In 
effect a short-circuited galvanic cell is produced where the protected 
object is the cathode (oxygen is reduced) and the more active metal is 

17.5 Corrosion 

oxidized. Consider, for example, the corrosion potential of zinc. Since 
~~	 

the reduction potential of zinc(II) is -0.76 V,' then (assuming similar 
kinetics) its corrosion potential will be about 0.3 V more negative than 
that of iron. Thus if the two metals are in electrical contact, the surface 
potential of iron will be more negative. According to Figure 7.14, a 0.3-V 
negative shift should reduce the rate of metal oxidation by about five 
powers of 10. 

As the name implies, sacrificial anodes do corrode and may have to 
be replaced from time to time. The ideal anode material has some 
passivity so that the rate of corrosion is low, but a completely passive 
anode would impart no protection at all; thus aluminum must be alloyed 
(with magnesium, for example) to increase its corrosion rate. Sacrificial 
anodes are commonly used to protect such objects as ship hulls, 
pipelines, and oil-field drilling rigs from environmental corrosion. 

Surface treatment with chromate imparts corrosion protection by 
making the metal surface anodic and hopefully passive. Contact with a 
sacrificial anode makes the protected surface cathodic and thus slows 
the rate of metal dissolution. Either of these approaches could be used if 
we add an inert electrode and control the surface potential with a 
potentiostat. This sounds like a strictly laboratory approach to the 
problem, but in fact potentiostatic control of corrosion is used in certain 

"f:: kinds of applications, e.g., in the protection of ship hulls.;'ii'\.,. 
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PROBLEMS 

7.1	 Show that the charge passed through an electrolysis cell of 
volume Vis 

Q(t) =nFVCO*(O) [1- exp(--kt)] 

where k is given by eq (7.2), CO*(Q) is the initial bulk concentration 
of 0 and the mass transport rate constant kD is assumed constant. 

7.2	 Repeat the calculation of Example 7.1 assuming that the solution 
is unstirred and that the current remains diffusion-controlled 
indefinitely. The diffusion coefficient ofCu2+ is ca. 7 x 10-10 m2s-1. 

7.3	 If the electrode surface area to solution volume ratio is large, 
density gradients usually lead to convective mixing so that the 
mass transport rate is often much greater than might be expected 
from diffusion alone and may remain more or less constant 
during an electrolysis. For example, radical anions are prepared 
for electron spin resonance study by electrolysis in a 0.2 mL cell 
equipped with a cylindrical working electrode 5 mm long and 1

~;	 mm in diameter. With a substrate concentration of 1 mM, a 
convection-limited initial current of about 10 J..LA is obtained. 
(a) How long will it take to reduce half the substrate? 
(b) Suppose that the radical anions produced decay by first-order 
kinetics with a half-life of 5 minutes. What is the radical anion 
concentration after electrolysis for 5 minutes? 10 minutes? 25 
minutes? 

7.4	 Show that the optimum conditions for an electroseparation 
process are achieved when the electrode jpotential is halfway 
between the standard potentials of the two couples (assuming that 
nl = n2). 

7.5	 Derive eq (7.6) given eqs (7.4) and (7.5). 

7.6	 What is the minimum charge passed through a silver coulometer 
if the charge is to be measured with a precision of ±O.1% if the 
cathode is weighed before and after electrolysis to ±0.1 mg? 

7.7	 An electronic coulometer is used in the controlled-potential 
coulometric determination of trichloroacetic acid. 
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(a) With Rl = 1 kn, R2 =1 MO, C =50 ~, the final output potential 
of the coulometer was 4.679 V. What charge was passed through 
the electrolysis cell? 
(b) If the volume of the Cl3CCOOH solution was 25 mL, what was 
the molar concentration? 

7.8	 The operational amplifier galvanostat circuit of Figure 7.6 is used 
to supply a constant current of 1 rnA through an electrolysis cell. 
(a) If the control battery supplies a potential of 1.00 V, what size 
resistor should be used in the circuit? 
(b) If the maximum output voltage of the operational amplifier is 
±to V, what is the maximum allowable cell resistance? 

7.9	 A constant current of 13.64 mA was used in a coul'Om.etric Karl 
Fischer titration of water in 5 mL of acetonitrile. The endpoint 
was obtained after 248 s. What was the water concentration? 

7.10	 Suppose that you have a constant current source which can 
deliver I, 2, 5, 10, 20, 50, or 100 rnA (±O.25%), an endpoint detection 

~ :" system and timer which is reliable to ±1 s, and a collection of 
pipets (1, 2, 5, 10,25, and 50 mL), each of which is accurate to ±O.02 
mL. You wish to do a coulometric titration of a solution where the 
analyte concentration is approximately 1 mM. What volume and 

~ .....	 current should be chosen if the analytical uncertainty must be 
less than 1.0% and it is desirable to use minimum sample size 
and do the titration in minimum time? Assume a one-electron 
oxidation is involved. 

7.11	 Unsaturated organic compounds can be determined by 
coulometric titration with bromine 

RCH=CH2 + Br2 ~ RCHBr-CH2Br 

where bromine is generated by oxidation of bromide ion and the 
endpoint is determined biamperometrically with two small 
platinum electrodes polarized by 100 mY. 10 mL ofa solution of an 
unsaturated acid was placed in a coulometric cell, sulfuric acid 
and potassium bromide was added and a constant current of 18.5 
mA passed. The current between the detector electrodes was 
measured as a function of time with the following results: 

tis 250 200 270 280 200 soo 
i/Il A o 6 15 24 34 43 

Problems 

What was the molar concentration. of the unsaturated acid? 
Assume mono-unsaturation. 

7.12	 Suppose that copper is deposited on a platinum electrode at a 
cathode potential of -0.30 V (V8. s.c.e.) and an initial current 
density of j = 100 A m-2• Early in the experiment, the electrode 

i	 surface is mostly platinum. If the exchange current density for 
the reduction of'Httaq) on Pt is 10 A m-2, (lapp =1.5, at pH 0, what is 
the initial current density contribution from hydrogen reduction if 
the pH is 1.0? What is the current efficiency of the copper 
reduction process? When the current density has dropped to 10 A 
m-2, the cathode is covered with copper. If the exchange current 
density for H+ reduction on copper is 2 rnA m-3, (lapp =0.5, at pH I, 
what is the hydrogen reduction current? What is the current 
efficiency for copper reduction? 

7.13	 An industrial electrolysis process has raw material costs of $1.00 
per kilogram of product and capital and labor costs of $5.00 per 
electrolysis cell per day (independent of whether any product is 
made). The cell potential (for i > 1 A) is 

E = Eo + Plog i + iR 

where P=1.0 V, R = 0.10 n, and Eo =1.50 V. The cost of electric 
power is $0.10 per kilowatt-hour. What is the optimum current 

~~.'l< per cell for minimum cost per kilogram of product? Assume that 
I~' 50 g of product is produced per Faraday of charge passed, that the 
fl' current efficiency is 100%, and that the plant runs 24 hours a day. 

What is the production per cell per day? What are the costs per 
kilogram for raw materials, capital and labor, and electrical 
energy? If the cost per kilowatt-hour doubled, what would be the 
optimum current? What would the total cost of product be? 

7.14	 Two common ways of protecting steel from corrosion are tin 
plating and zinc coating. Typical examples of this approach are 
"tin cans" and galvanized buckets. Discuss qualitatively the 
chemical reactions which would occur if pieces of tin-plated steel 
and zinc-coated steel were scratched to expose the steel and placed 
in a wet oxygen-rich environment. Indicate clearly where 
(relative to the scratch) each reaction would take place. 

7.15	 Consider the reaction of zinc with 1 M hydrochloric acid if [Zn2+J = 
1 M. The exchange current densities are 

joZn = 0.2 A m-2, !3Zn =1.5 

joH =1 x 10-6 A m-2, a.H =0.5 
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for [Zn2+] =1 M, pH 0, and 25°C, Assume that 

alog IjoZn IIi) log[Zn2+] = 0.75. 

(a) Compute the corrosion potential, Ee, the zinc corrosion rate in 
gm2s·1 and the rate of hydrogen gas evolution in mL m,2s, l 

(b) Corrosion chemists often express corrosion rates in units of 
mm year l , Given that the density of zinc is 7.14 g cm,3, convert 
the corrosion rates to units ofmm year l . 

~ 
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SYMBOLS AND UNITS12 
Table A.1 The International System (SO of Units 

Physical Quantity Unit Symbol 

Fundamental unita: 
Length meter m 
mass kilogram kg 
time second s 
electric current ampere A 
temperature kelvin K 

amount of substance mole mol 
luminous intensity candela cd 
Derived unit.: 
force newton N (kg m s-2) 

energy joule J (Nm) 

power watt W (J s-l) 

pressure 
electric charge 

pascal 
coulomb 

Pa(N m-2)
."

C (A s) 
electric potential volt V (J c-» 
electric resistance ohm n (V A-i) 

electric conductance siemens S (AV-i) 

electric capacitance farad F (C V-i) 

frequency hertz Hz (s-l) 

1::l~ 
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Table A.2 Values of Physical Constants 

Appendix 2 I Symbols and Units 

-
485 

Constant Symbol Value 

permittivity of free space ro 8.8541878 x 10-12 C2J-lm-l 

electronic charge e 1.602189 x 10-19 C 

Avogadro's number NA 6.02204 x 1023 molal 

Faraday constant F 96484.6 C mol-l 

gas constant R 8.3144 J mol-lK-l 

Boltzmann constant k 1.38066 x 10-23 J K-l 

Planck. constant h 6.62618 x 10-34 J s 

gravitational acceleration g 9.80665m s-2 

Table A.S List of Symbols 

Symbol Name Units 

a activity none 
a radius m 
A area m2 

Cj molar concentration, species i mol L-l (M) 
mol m-3 (mM) 

C differential capacity Fm-2 

d density kgm-3 

D; diffusion coefficient, species i m2s·l 

E energy J 
E cell potential V 

E 1/2 half-wave potential V 
E electric field strength V m-l 

Ii frictional coefficient, species i kg s·l 

F force N 

G Gibbs free energy J moP 
H enthalpy JmoP 

electric current A 

I 

Symbol Name 

iD diffusion-limited current 
it. limiting current 
1 ionic strength 
1 a,c, current amplitude 

ID diffusion current constant 

j volume flux 
j current density 
J molar flux density 
k rate constant 

kD mass-transport rate constant 
kij potentiometric selectivity coefficient 
K equilibrium constant 
L length 
m mass 
mj molal concentration, species i 
M molecular weight 
n number of moles 
nj kinetic order, species i 
N number of molecules 
p pressure 
q heat 
Q electric charge ... 

r,R radial distance 
ro microelectrode radius 
R resistance 
S entropy 
t time 
t, transference number, species i 
T temperature 

Units 

A 
A. 

mol L-l 

A 
mA mM- l 

(mg s-1)-213s-1I6 

m3s-l 

Am-2 

mol m-2s-l 

variable 
m s-l 

none 
none 
m 
kg 

mol kg-I 
g molal 

mol 
none 
none 

bar (l05 Pal 

J 
C 
m 
m 
n 

J moPK-l 

s 
none 

K 
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Table A.3 List of Symbols (continued) 

Symbol Name	 Units 

Ui mobility. species i m2V-ls- l 

u mass flow rate kgs-l 

U internal energy J mol-I 

v velocity m s-l 

V volume m3 

v potential scan rate V sol 

w work J 
% distance m 

%A ion atmosphere thickness m 
(Debye length) 

%D diffusion layer thickness m 

%H hydrodynamic distance parameter m 
.', 

%R reaction layer thickness m 

Xi mole fraction. species i none 

Zi charge, species i none 
QZ impedance 

a cathodic transfer coefficient none 

a degree of dissociation none 

ac electrokinetic coefficient variable 

a.13.'Y.a stoichiometric coefficients	 none 

a.13	 phase labels none 

13 anodic transfer coefficient none 

'Y surface tension Nm-l 

'l activity coefficient. species i none 
(molar scale) 

'Yim activity coefficient. species i none 
(molal scale) 

1•.:£ activity coefficient. species i none 
(mole fraction scale) 

1:r. mean ionic activity coefficient none 

Symbols and Units 

Symbol	 Nam~ 

e dielectric constant 

11 coefficient of viscosity 

11 overpotential 

" polar angle 
e exp[F(E - E°)/RTJ 
Ie conductivity 
A reaction zone parameter 
A molar conductivity 

J1 chemical potential 
v kinematic viscosity 
Vi moles of ion i per mole of salt 
Vi stoichiometric coefficient. species i 
X WOIDR)112 

p resistivity 
p space charge density 
G surface charge densi ty 
't , characteristic time 

current efficiency 
<p azimuthal angle. phase angle 
C!» electric potential 
CJ) angular frequency 

~ zeta potential 
.J 

Units
 

none
 
kg m-ls- l (Pa-s) 

V 
rad
 

none
 
Sm-l
 

none
 
S m2mol-l 

J mol-l
 

m2s· l
 

none
 
none
 
none
 
Qm
 

C m-3
 

Cm-2
 

s
 
none
 
rad
 
V 

rad sol 

V 
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>< ELECTROCHEMICAL 
z 
W 
0

DATA 
0 3cr: 

Table A.4 Standard Reduction Potentials at 25°C. 

Main group element.: 

Half-Cell Reaction EON 

2 H+ + 2 e- -...+ Hig) 

Li+ + e -...+ Li(s)
.', 

Na+ + e ---+ Na(s) 

K+ + e ---+ K(s) 

Rb+ + e- ---+ Rb(s) 
i .~ .. Cs- + e ---+ Csts) 

Be2+ + 2 e' ---+ Bets) 
Mg2+ + 2 e ---+ Mg(s) 

Ca2+ + 2 e' ---+ Cats) 

Ba2+ + 2 e- ---+ Bats) 

Al3+ + 3 e -...+ Al(s) 

COig) + 2 H+ + 2 e ---+ 

C02(g) + 2 H+ + 2 e ---+ 

CO(g) + H20 

HCOOH 

2 C02<g) + 2 H + + 2 e- ---+ H2C204 

Pb2+ + 2 e' ---+ Pbts) 
Pb02(S) + 4 H+ + 2 e -...+ p})2+ + 2 H20 

N03- + 3 H+ + 2 e- ---+ HN02 + H20 

N03- + 4 H+ + 3 e- -...+ NO(g) + 2 H20 

N03- + 10 H+ + 8 e- ---+ NH4+ + 3 H20 

PO(OH)3 + 2 H+ + 2 e- ---+ HPO(OH)2 + H20 

HPO(OH)2 + 2 H+ + 2 e- ---+ H2PO<OH) + H20 

0.0000 

-3.045 

-2.714 

-2.925 

-2.925 

-2.923 

-1.97 
-2.356 

-2.84 

-2.92 

-1.67 
-0.106 

-0.199 

-0.475 

-0.1251 

1.468 
0,94 

0,96 

0.875 

-0.276 

-0.499 

Electrochemical Data 

Half-Cell Reaction EON 

, 

HPO(OH~+ 3 H+ + 3 e- ---+ P(s) + 3 H2O 

Pts) + 3 H+ + 3 e- ---+ PHa 

AsO(OH>:J + 2 H+ + 2 e- -...+ As(OH>:J + H20 

As(OH>:J + 3 H+ + 3 e- ---+ As(s) + 3 H20 

As(s) + 3 H+ + 3 e- -...+ AsH3(g) 

Oig) + H+ + e- ---+ H02 

02(g) + 2 H+ + 2 e- ---+ H202 

H202 + H+ + e- ---+ HO· + H20 

H202 + 2H+ + 2 e- ---+ 2 H2O 

S2<)s2- + 2 e- ---+ 2 8042

8042- + H2O + 2 e ---+ 8032- + 20H

28042- + 4 H+ + 2 e- ---+ S20tr-- + 2 H2O 

2 S02<aq) + 2 H+ + 4 e- ---+ S2032- + H2O 

802<aq) + 4 H + + 4 e- ---+ S(s) + 2 H20 

8.&0&2- + 2 e- ---+ 2 ~2-

8(s) + 2 H+ + 2 e- ---+ H2S(aq) 

F2<g) + 2 e- ---+ 2 F

Cl04- + 2 H+ + 2 e- ---+ CIOg- + H2O 

CI03- + 3 H+ + 2 e- -...+ HCI02 + H2O 

Cl03- + 2 H+ + e- ---+ CI02 + H2O 

HCI02 + 2 H+ + 2 e- ---+ HOCI + H20 

2 HOCI + 2 H+ + 2 e- ---+ Cl2(g) + 2 H2O 

CI2<g)+ 2 e- ---+ 2 Cl: 

C12(aq) + 2 e- -...+ 2 CI

Br04- + 2 H+ + 2 e- ---+ BrOg- + H20 

2 BrOg- + 12 H+ + 10 e- ---+ Br2G) + 6 H20 

2 HOBr + 2 H+ + 2 e- ---+ Bril) + 2 H20 

Br2G) + 2 e- ---+ 2 Br 

Br2(aq) + 2 eo ---+ 2 Br 

IO(OH)s + H+ + eo ---+ 103- + 3 H20 

2103- + 12 H+ + 10 eo ---+ 12(S) + 6 H20 

-0.454 

-0.111 

0.560 

0.240 

-0.225 

-0.125 

0.005 

0.714 

1.763 

1.96 
-0.94 

-0.25 

0.40 

0.50 

0.08 

0.14 

2.866 

1.Wl 

1.181 

1.175 

1.701 
1.630 

1.35828 
1.396 
1.853 
1.478 

1.604 

1.0652 

1.0874 

1.60 

1.20 

~ ~~.~ 
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Table A.4 Standard Reduction Potentials at 25°C (continued) 

Main group element.: 

Half-Cell Reaction EON 

2HOI+2H++2e- -+ 12Cs) +2 H2O 1.44 

lis) + 2 e- -+ 2 I 0.5355 
I:r + 2 e- -+ 3 I 0.536 
12Caq) + 2 e- -+ 2 1 0.621 

TrtJllllition and poBt·trallllition elementB: 

Half-Cell Reaction	 EON 

V02+ + 2 H+ + e- -+ vQ2+ + H20 

V02+ + 2 H+ + e- -+ y3+ + H2O 

.>	 V3+ + e- -+ y2+ 

y2+ + 2 e- -+ V(s) 

C~2- + 14H+ +6e- -+ 2 Cr1+ + 7H2<) 

Cr1+ + e- -+ cr2+ 

Cr2+ + 2 e: -+ Cr(s) 

MnO.- + e- -+ MnO.2

MnO.- + 8 H+ + 5 e- -+ Mn2+ + 4 H20 

Mn02Cs) + 4 H+ + 2 e: -+ Mn2+ + 2 H2O 

Mn3+ + e- -+ Mn2+ 

Mn2+ + 2 e- -+ Mn(s) 

Fe3+ + e- -+ Fe2+ 

Fe(phen)3+ + e- -+ Fe(phen)2+ 

Fe(CN)63- + e- -+ Fe(CN)64

Fe(CN)6.- + 2 e- -+ Fe(s) + 6 CN

Fe2+ + 2e- -+ Fe(s) 

Co3+ + e- -+ Co2+ 

CO(NH3)6a++ e -+ Co(NHa)62+ 

Co(phen)33+ + e: -+ Co(phen)a2+ 

CO(C204)a3- + e- -+ CO(C20.)a·

1.000 

0.337 

-0.255 

-1.13 
1.38 

-0.424 

-0.90 

0.56 

1.51 

1.23 

1.5 

-1.18 

0.771 

1.13 

0.361 

-1.16 

-0.44 

1.92 

0.058 

0.327 

0.57 

Electrochemical Data 

Half-Cell Reaction EON 

Co2+ + 2 e -+ Co(s) -OZl7 
Ni02Cs) + 4 H+ + 2 e- -+ Ni 2+ + 2 H2O 1.593 
Ni 2+ + 2 e- -+ Ni(s) -02fJ7 
Ni(OH):z{s) + 2 e- -+ Ni(s) + 2 OH -0.72 
Cu2+ + e- -+ Cu+ 0.159 
CuCI(s) + e- -+ Cuts) + CI 0.121 
Cu2+ + 2 e -+ Cu(s) 0.340 
Cu(NH3).2+ + 2 e- -+ Cu(s) + 4 NHa -0.00 
Ag2+ + e- -+ Ag+ 1.980 
Ag+ + e- -+ Ag(s) 0.7991 
AgCI(s) + e- -+ Ag(s) + CI 0.2223 
Zn2+ + 2 e- -+ Zn(s) -0.7626 
Zn(OH42- + 2 e- -+ Zn(s) + 4 OH -1285 
Cd2+ + 2 e -+ Cd(s) -0.4025 
2 Hg2+ + 2 e- -+ HW+ 0.9110 
Hgr+ + 2 e- -+ 2 Hg(I) 0.7960 
Hi2Clis) + 2 e- -+ 2 Hg(1) + 2 CI 0.26816 

nata from Bard, Parsons, and Jordan (H13). 

." 
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Table A.6 Biochemical Reduction Potentials 

Half-Cell Reaction E'/V 

Reduction of(I carboxyl group to on aldehyde: 
1,3-diphosphoglycerate + 2 e- -0.286
 

-+ 3-phosphoglyceraldehyde + HP042

acetyl-CoA + 2 H+ + 2 e- -+ acetaldehyde + coenzyme A -0.412
 

oxalate + 3 H+ + 2 e- -+ glyoxalate -0.462
 

gluconate + 3 H+ + 2 e- -+ glucose -0.47
 

acetate + 3 H+ + 2 e- -+ acetaldehyde -0.598 

Reduction of(I carbonyl group to on alcohol: 
dehydroascorbic acid + H+ + 2 e- -+ ascorbate 0.077 
glyoxylate + 2 H+ + 2 e- -+ glycolate -0.090 

. hydroxypyruvate + 2 H + + 2 e- -+ glycerate -0.158 

"oxaloacetate + 2 H+ + 2 e- -+ malate -0.166 
pyruvate + 2 H+ + 2 e- -+ lactate -0.190 

acetaldehyde + 2 H+ + 2 e- -+ ethanol -0.197 
acetoacetate + 2 H+ 2 e- -+ ~-hydroxybutyrate -0.349 

.Cd,.boxylolion: 
pyruvate + C02(g) + H+ + 2 e- -+ malate -0.330 

a-ketoglutarate + C02(g) + H+ + 2 e- -+ iso-citrate -0.363 

succinate + C02(g) + 2 H+ + 2 e- -+ a-ketoglutarate + H20 -0.673 

acetate + C02(g) + 2 H+ + 2 e- -+ pyruvate + H20 -0.699 

Reduction ofa corbonyl group with formation ofan amino group: 
oxaloacetate + NH4+ + 2 H+ + 2 e- -+ aspartate + H20 -0.107 

pyruvate + NH4+ + 2 H+ + 2 e- -+ alanine + H20 -0.132 

a-ketoglutarate + NH4+ + 2 H+ + 2 e- -+ glutamate + H20 -0.133 

Reduction ofa carbon-carbon double bond: 
crotonyl-CoA + 2 H+ + 2 e- -+ butyryl-CoA 0.187 

fumarate + 2 H+ + 2 e- -+ succinate 0.031 

Electrochemical Data 

Half-Cell Reaction E'/V 

RBduction ofdisul/ftk: 
cystine + 2 H+ + 2 e- -+ 2 cysteine -0.340 
glutathione dimer + 2 H+ + 2 e- -+ 2 glutathione -0.340 
Other reductiontl ofbiochemical interest: 
02(g) +4 H+ + 4 e- -+ 2 H20 0.816 
cytochrome c (Fe3+) + e- -+ cytochrome c <Fe2+) 0.25 
FAD+ + H+ + 2 e- -+ FADH -O.al 
NAD+ + H+ + 2 e- -+ NADH -0.320 
2 H+ + 2 e- -+ Hig) -0.414 

Reduction potentials at 25°C, pH 7 standard state; data from H. A. Krebs, 
H. L. Kornberg, and K Burton, Erg. Physiol. 1967,49, 212. 

" 
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Table A.6 Some Formal Reduction Potentials Table A.8 Molar Ionic ConductivitiesI
 
EO'IV Ion AO Ion AO Ion AO 

. " 

~ ..... 

Couple 

Ag(l)lAg( 0) 

As(V)1As(lII) 

Ce(lV)/Ce(III) 

F e(llI)1Fe(II) 

Ag(l)/Ag(O) 

As(V)1As(III) 

Ce(IV)/Ce(III) 

Fe(lII)lFe(II) 
H(I)IH(O) 

Hg(II)lHg(l) 

Hg(I)lHg(O) 
Mn(IV)/Mn(II) 
Pb(Il)IPb(O) 

Sn(IV)/Sn(lI) 

Sn(Il)/Sn(O) 

1MHClO" 

0.792 

0.577 

1m 
0.732 

0.792 

0.577 

1.70 

0.732 
..{).005 

OJ1J7 

0.776 
1.24 

..{).14 

..{).16 

IMHCI 

0.228 

0.577 

1.28 

0.700 

0.228 
0.577 

1.28 

0.700 
..{).005 

0.274 

0.14 

- -

1MH2SQ" 

0.77 

1.44 

0.68 

0.77 

1.44 

0.68 

0.674 

"{).29 

- -

H+ 

Li+ 

Na+ 
K+ 

Cs+ 

NI!4+ 

(CH3)4N+ 

(C2I!s)4N+ 

(C3H7)4N+ 
Ag+ 
Mg2+ 
Ca2+ 

Sr2+ 
Ba2+ 

Cu2+ 

Zn2+ 

Cd2+ 

349.8 

38.7 

50.1 

13.5 

77.3 

13.6 
44.9 

32.7 

.23.4 
61.9 
106.1 

119.0 

118.9 

127.3 

107.2 

105.6 

108.0 

Pb2+ 
Mn2+ 

Fe2+ 

C02+ 

Ni2+ 

Al3+ 

Cr3+ 

Fe3+ 

OH· 

F
CI· 

Br 
1

CN· 

N02' 

N03' 

ClO3' 

139.0 

107. 

107. 

110. 

108. 

189. 

~1 

2D4. 

199.2 

55.4 

76.3 
78.1 

76.8 

78. 

72. 

71.5 

64.6 

103

10,,-

MnO,,

HC03

H2PO,,

HC02

CH3C02

C2I!sC02

C6HsC02· 
C032
80,,2

&A2
CrO,,2. 

HPO,,2

C20,,2

P3093
Fe(CN)63

40.5 

54.6 

62.8 
44.5 

36. 

54.6 

40.9 

35.8 
32.4 
138.6 

160.0 

174.8 

170. 

114. 

148.3 

250.8 

302.7 
Data from E. H. Swift and E. A. Butler. Quantitative 
Measurements and Chemical Equilibria. San Francisco: 
Freeman, 1972. 

Table A.7 Reference Electrode Potentials 

-
Electrode EO'IV (dE/dT)/mV K·l 

,. 
I 

I 

Hg2+ 127.2 CIO,, 67.4 Fe(CN>6'" 442. 

Conductivities from Robinson and Stokes (B9) and Dobos (R9) in units of 
10-" S m2moI-l, aqueous solutions at infinite dilution, 25°C. 

-'" 

Calomel (0.1 M KCD 0.336 ..{).08 

Calomel (1.0 M KCD 0.283 ..{).29 

Calomel (satd. KCD 0.244 ..{).67 

Ag/AgCl (3.5 M KCD 0.205 ..{).73 

Ag/AgCl (satd. KC!) 0.199 -1.01 
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Table A.9 Solvent Properties Table A.I0 Potential Range for .Some Solutions 

Solvent 
Liquid 

Range/OC 
Vapor 

Pressureb 
Dielectric 
Constant Viscosity 

Solvent Electrolyte 
Potential RangeN (us. s.c.e.) 

Pt Hg 
water 0 3.2 78.4 0..89 
propylene carbonate (PC) -49 to 242 0.0 64.4 2.5 

dimethylsulfoxide 19to 189 0.1 46.7 2.00 
(DMSO) 
N,N-dimethylformamide -roto 153 0.5 36.7 0.80 
(DMF) 

acetonitrile -44 to 82 11.8 37.5 0.34 

nitromethane -29 to 101 4.9 35.9 0.61 

methanol -98 to 65 16.7 32.7 0.54 
hexamethylphosphor- 7to233 0.01 3O.d 3.47d 

• amide (HMPA) 

"ethanol -114 to 78 8.0 24.6 1.08 

acetone -95 to 56 24.2 21).7 0.30 

dichloromethane -95 to 40 58.1 8.9 0.41 

trifluoroacetic acid -15 to 72 14.4 8.6 0.86 
tetrahydrofuran (THF) -1080066 26.3 7.6 0.46 
1,2-dimethoxyethane ~to93 10.0 72. 0.46 
(glyme, DME) 

acetic acid 1700118 2.0 6.2<1 1.13 

p-dioxane 12to 101 4.9 2.2 1.2 

a Data at 25°C from J. A. Riddick and W. B. Bunger, Organic Solvents,
 
3rd ed, New York: Wiley-Interscience, 1970.
 
b Vapor pressure in units ofkPa.
 
C Viscosity in units of 10-3 kg mols-I.
 
d 200C.
 

Propylene carbonate E!.4NClO" 1.7to-1.9 0.5to-2.5 
Dimethylsulfoxide NaCIO" 0.7 to-1.8 0.6to-2.9 

E!.4NClO" 0.7to-1.8 0.2to-2.8 
BU4NI -o.4to-2.8 

Dimethylformamide NaCIO" 1.6to-1.6 0.5to-2.0 

E!.4NC4 1.6to-2.1 0.5to-3.0 

E!.4NBF" -to-2.7 

B14ClO" 1.5to-2.5 0.5to-3.0 
B141 -{l.4to-3.0 

Acetonitrile NaCI04 1.8to-1.5 0.6to-1.7 

E!.4NClO" 0.6to-2.8 

E!.4NBF4 2.3 to -to-2.7 
BU4NI -{l.6to-2.8 

Bt1.4PF6 3.4to-2.9 
Acetone NaCIO" 1.6to

Et4NCI04 -to-2.4 
Dichloromethane B14NClO4 1.8to-1.7 0.8to-1.9 

B14NI 0.2to-1.7 -{l.5to-1.7 
1,2-Dimethoxyethane B14NCI04 0.6to-2.9 

Data from C. K. Mann, Electroanal. Chern. 1969, 3r'57. 
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Do 
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The method of Laplace transforms provides a powerful aid to the 
solution of differential equations.! The method is particularly useful in 
solving the coupled partial differential equations which are encountered 
in electrochemical diffusion problems. Here we will introduce the 
technique and demonstrate the method by deriving a few of the results 
quoted in the text. 

Laplace TrtmBformatiom 

The Laplace transform of a function F(t) is defined by 

(A.I)Its) = L-F(t) exp(-st) dt 

Not all functions possess a Laplace transform. Clearly, F(t) must be 
finite for finite t and F(t) exp(-st) must go to zero as t --+ -. The Laplace 
transformation can be thought of as an operation in linear algebra: 

Its) = L[F(t)] 

which is reversible by the inverse operation 
F(t) = L-l[fts)] 

The Laplace transformation is a linear operation, that is, sums or 
differences of functions are transformed as 

L[F(t) + G(t)] = /(s) + g(s) (A.2) 

Multiplicative constants are unaffected by Laplace transformation: 

L[a F(t)] = a Its)	 (A.3) 

1 F. E. Nixon, Handbook of Laplace Transformations: Tables and Examples, 
Englewood Cliffs, NJ: Prentice-Hall, 1960; R. V. Churchill, Modern Operational 
Mathematics in Engineering, 2nd ed, New York: ~cGraw-Hill, 1963; P. A. 
McCollum and B. F. Brown, Laplace Transform Tables and Theorems, New York: 
Holt, Rinehart, and Winston, 1965: M. G. Smith, Laplace Transform Theory, 
London. D Van Nostrand. 1966. 

Laplace Transform Methods 

The Laplace tranform of a constant is 

L(a) = als 

Functions of variables other than t behave as constants in the 
transformation 

L[H(x)] =H(x)/s 

The utility of Lapace transforms in the solution of differential equations 
is that the transform of a derivative is a simple function 

L[dF(t)/dt] =s /(s) - F(O)	 (A.4a) 

L[d2F(t )/dt2] =s2/(s) - s F(O) - (dFldt)o (A.4b) 

A short selection of Laplace transforms are found in Table All. 
Two properties of the Laplace transformation are sometimes useful 

in finding the inverse transform. The shift theorem allows the zero of s 
to be displaced by a constant: 

L-l[fts + a)] = F(t) exp(-Gt)	 (A.S) 

The convolution theorem is useful when the inverse transformation of 
f(s) cannot be found, but f(s) can be written as the product of two 
functions, /(s) = g(s)h(s), the inverse transforms of which can be found. 
If 

G(t) =L-lfg(s)] 

H(t) = L-l[h(s)] 

then 

L-1{g(s)h(s)] =J: G(t - t) H(t) dt	 (A.6) 

The specific solution to a differential equation depends on the initial 
and boundary conditions on the problem. The scrlution to a differential 
equation using Laplace transform methods in general follows the steps: 
(1)	 Transform the differential equation to remove derivatives with 

respect to one of the variables. An ordinary differential equation 
will then be an algebraic equation and a partial differential 
equation with two independent variables will become an ordinary 
differential equation. 

(2)	 Transform the initial and boundary conditions. 
(3)	 Solve the resulting system of algebraic equations or ordinary 

differential equations. using the transformed boundary conditions 
to evaluate constants. 

(4)	 Take the inverse transform to obtain the solution to the original 
differential equation. 
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Table A.ll Some Laplace Transforms 
Il~ 

F(t) f(.) F(t) ft.8) 

a (a constant) 

t 

t"-l 
(n -1)! 

'I; l/iii 
,n
it
:fi 2flli 
;;

ij
·t.

F(t) f(8), 

I 
exp(at) - exp(bt) 

a-b 

exp{at) erfW 

~. 
exp(at)[I- erfvat], 

1-exp(at)[l- erfvat] 

Ii L- exp(-l/4at) 
.~ z./1Cllt3 

:i --.L exp(-l/4at) 
~tl 
Jl 

(if 
'u 

1 - err(lflW) 

als 

8.2 

8·n 

8·1/2 

8-312 

sin at 
a 

a 2 + s2 

cos at 
8 

a 2 + 8 2 

sinh at 
--lL
8 2 - a 2 

cosh at 
-L
.2_a2 

expat 
---L 
8-a 

1 
(8 - a)(s - b) 

.fli 
-IS(8 - a) 

1 
-IS(-IS+ 4) 

.Ja
 
s (-IS + </Q)
 

exp (-Ys/a)
 

(l/vs) exp (-Ys/a)
 

(l/s) exp (-Ys/a)
 

Consider as an example the ordinary differential equation 
2F(t)

d = a2 F (t ) 
dx2 

with boundary conditions F(O) = 0, (dFldx)o = a. Taking the Laplace 
transform, using eqs (A.2) - (A.4), we have 

s2f(s) - a + a2f(s) = 0 

from which we obtain 

Laplace Transform Methods 

f{s) = -----.a. 
a 2+s 2 

The inverse transform from Table A.ll gives 

F(t) =sin at 

We really didn't need a fancy method to solve this problem, but other 
cases arise which are not quite so simple. 

Solutionll oft1ae Diffusion Equation 

Now let us apply Laplace transform methods to the solution of the 
one-dimensional diffusion equation 

aC(x,t) = D a2c(%,t) 
(A.7)

at (Jx2 

We can do step (1) of the solution procedure in general. Writing the 
Laplace transform of C(%,t) as c(x,s), the transformed diffusion equation 
is 

2 
s c(x,s) _ C(x,O) = D ac(%,s) (A.B)

(Jx2 

We need initial and boundary conditions to solve eq (A.B), and these differ 
from one problem to another. 

Derivation of eq (3.22). Let us start with the problem posed in 
§3.3. We considered a solution layered on pure solvent so that the initial 
condition was C = C* for x < 0, C = 0 for x > O. The boundary condition is 

, C -+ C* as x -+ -, C -+ 0 as x -+ +00. We will divide the problem into two 
regimes, - < x < 0 and 0 < x < +00, with the requirement that C(x,t) and 
J(x,t) be continuous at x = 0 for t > O. Thus for x > 0, we have 

2 

D ac(x,S) () 0----SC%,s =,. 
ax 2 

the general solution to which is 

c(x,s) =A(s) exp(-VsID) + B(s) exp(+VsIDx) (A.9a) 

where A(s) and B(s) are to be detennined from the boundary conditions. 
One of the boundary conditions requires c(x,s) -+ 0 as x -+ 00 so that B(s) = 
O.
 

For x < 0, eq (A.B) gives
 

D ic'(x,s) '() C* 0----s c X,s + = 
dX 2 



453 452 Appendix 4 

The general solution to this differential equation is 

c'(x,s) =C*ls + A'(s) exp(-YsIDx) + B'(s) exp(+YsIDx) (A.9b) 

The boundary condition requires c'(.x,s) -+ C*ls as x -+ - so thatA'(s) =O. 
We now apply the continuity restraints to determine A(s) and B'(s). IT 
C(O,t) = C(O,t), then c(0,s) = c'(O,s). Thus we have 

c(O,s) =A(s) 

c'(O,s) =C*ls + B'(s) 

so that 

A(s) - B'(s) =C*ls 

The equal fluxes at x =0 means that'f:~
,I 
.r ac(O,s) ac'(O,s)

--=--ji
,f ax ax 
:1 

Differentiating eqs (A.9) and setting x =0, we have 
J -YsIDA(s) = +YsIDB'(s) 

'ij't Thus r 
) . A(s) = -B'(s) =C*/2s 

.~118tions (A.9) then become 

c(x,s) =~exp(-v'tlxl} x>O 

j
r-

J c'(x,s) = c;- -~ exp (-n Ixl) x<O 

Taking the inverse transforms, we have 

C<X,t) =.Q!.[1- erf----.I.-] x>O 
2 2YDt 

C'(x,t) =C· -~[l-erf b] x<O 
2 2,Dt 

Since the error function is an odd function of the argument, i.e. erft-\jf) = 
-erft\jf), we see that these two functions are in fact identical: 

C(x,t) =~[1- erf .~]
2 2, Dt (3.22) 

Derivation of eqs (4.2). In typical electrochemical applications of 
the diffusion equation, the concentrations of the diffusing species are 
uniform at the beginning of the experiment, C(x,O) =C* and, at later 

Laplace Transform Methods 

times, approach the initial concentration at sufficient distance from the 
electrode, C(x,t) -+ C· as x -+ -. With the electrode as x =0, we need not 
consider negative values for x. Thus eq (A.B) is . 

2 
D ac(.x,s) s c<.x,s) + C* =0 

ax2 

The solution consistent with the boundary condition (at x -+ -) is 

c(.x,s) = c;- + A(s) exp (-VIx) <A.10) 

where A(s) must be determined by the boundary condition atx =O. Ifwe 
have two species, 0 and R, which are involved in an electrode process, 
each transformed concentration will have the form of eq (A.10). IT the 
initial concentrations are Co(.r,O) =Co*, CR(O,t) = 0, then eq (A10) gives 

co(.x,s)= Cf* +A(s) exp(-~x} (A.lIa) 

CR(X,s) = B(s) exp {-~J x} (A.Ub)
R 

For a reversible electrode process, the surface boundary conditions are: 
(1) the concentration ratio at x =0, governed by the Nernst equation 

Co(O,t) =e= nF(E - E") (A.12a)
CR(O,t) exp RT 

and (2) the continuity restriction 

JO<O,t) =- JR(O,t) 

or 

_ Do aCo(O,t) =DR aCR(O,t) (A.12b) 
ax ax 

The boundary conditions transform to 

co(O,s) =eCR(O,S) <A.13a) 

and 

-Do dcoW,s) =DR ikR(O,S) (A. 13b)
ax ax 

Differentiating co(x,s) and CR(X,S) with respect to x and setting x =O. we 
have on substitution in eq (A.13b), 

"sDo A(s) =- VSDR B(s) 
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or 

B(s)=-~A(s) (A.14) 

where 

~=1DoIDR 

Setting x = 0 in eqs (A.Il) and substituting in eq (A.13a) gives 

Co·/s +A(s) =eB(s) =- ~e A(s) 

so that 
Co·A(s) = 

s(l + ~e) 

Thus the transformed concentrations are 

co<x,s) = Co· [1- eXP(-Y87DOx)] 
S 1 + ~e 

(_) ~Co· exIl.-Ys/DRX)CR"",s =-- _.....:0....:_---':::........:.
 

S 1 + ~e 

Taking the inverse transform, we have 

CoC.x,t) =Co. ~e + erf(xl2WQt) (4.2a) 
.", .lI 1 + ~e 

CR(X,t) =Co. ~ [1- erf(xl2WRt)] (4.2b) 
1 + ~e 

Derivation of eq (4.20). The Laplace transform of eq (4.19) is 

D[o2c(r,s) 2. oc(r ,s)] scr,s-( ) C• = +-
or2 r or 

This differential equation can be converted to a more familiar form by 
the substitution 

vCr,s) =r c(r,s) 

2
• DO vCr,s)( ) - =S v r,s r C

or 2 

Remembering that the range of r is ro to 00, the solution analogous to eq 
(A.ID) is 

vCr,s) =~ + A(s) exp f-,~ (r-ro)1 
S l VD , 

Laplace Transform Methods 

Reverting to the transformed concentration function, we have 

rv« A(s) [ ..n: ~,c(r,s) =s.s + -r- exp - V1> (r-rolJ 
This expression is consistent with the boundary condition 

C(r,t) -+ C·, c(r,s) -+ C·/s as r -+ 00 

The surface boundary condition, 

C(ro,t) =0, t > 0 

transforms to c(ro,s) =O. Thus we find A(s) =-roC*/s and have 

c(r,s) =C; (1-~ exp [-f!i{r-rol]) 
Taking the reverse Laplace transform, we have 

C(r,t) =C* [1-~(1- erf;;)] (4.20) 

Derivation of eq (4.26). In double potential step 
chronoamperometry, the electrode is polarized for a time 1: at a 
sufficiently negative potential that Co(O,t) =0; the potential is then 
stepped to a positive potential so that CR(O, t - 1:) =O. This problem is 
easily solved using Laplace transforms by noting that eq (4.2b) gives the 
initial concentration distribution of R for the second potential step. Thus 
substituting eq (4.2b) with t =t and e=0 into eq (A.10), we have 

~Co· , ~ 
ca(x,s) = -s-[l- e12VEt)]+A(s) ex~-'V t; x)

R
where the transform variable s corresponds to (t - r), The boundary 
condition CR(O,t) =0 for t > t implies that ca(O,s)=O. Thus 

(cCo·/s) + A(s) =0 

so that 
." 

A(s) =- ~Co·/s 

We need the flux ofR at the electrode in order to calculate the current. 
Thus we compute the derivative with respect to x 

OCR(O,S) ~Co· ~Co· 
---=- +-

ox S "7tDRt VDRS 

and take the inverse transform to obtain 

OCR(O,t) SCo* ~Co* 

----"o.:-x- =- V7tDRt + ~"=rcD~R(~t=-=t'7) 
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Since the current is 

i = - nFAlJR acR(O,t) 
ax

;1 
we get

H 
i =nFACo·fI5OIi(---.L--~) t > t (4.26)

1t-t it 
111: 
-a 

Derivation of eq (4.27). In a constant current experiment suchIj; as chronopotentiometry, the flux of 0 at the electrode surface is constantn up to the transition time when Co(O,t) ~ 0 and the potential swings 
negative. Thus the boundary condition is 

Do acoCO,t) =--...L 
ax nFA 

Taking the Laplace transform, we have 

• Do «0<0,8) =---i.
.. ax nFAs
 

Differentiating eq (A10) and setting % = 0, we have 

-Dols/Do A(s) =---i.
_ : , nFAs 
.~folving for A(s) and substituting in eq (A10) with % =0: 

C·'coCO,s) =~_-l 
8 nFA8YsDo 

Taking the inverse transform, we get 

2ifi
Cd.O,t)=Co· - nFAYi1JO 

11r: 
;:~ 

Apparently, CoCO,t) goes to zero when 

nFA fil50 c« =2i"fi 

so that the transition time is given by 

it =nFA fiJJO Co·/2 i (4.27) 

Derivation of eq (4.29). For a linear potential scan experiment, 
the boundary conditions are similar to those used in deriving eq (4.2) 
except that the potential is' time-dependent. Thus we can proceed as 
before up through eq (A. 14), but A(s) cannot be so simply evaluated. We 
can write the transformed current as 

Laplace Transform Methods 

i(s) =nFADo (<<0(%,8» . 
ax %0'0 

Substituting eq (Alla) for co(x.s), we have 

i(s) =- nFA1sDo A(s) 

Solving for A(s), substituting into eqs (A.I I), and setting % = 0, we have 

coCO,s) = Co· i(8) 
s nFA lsDo 

CR(O,s) = i(s) 
nFA 1sDR 

We now use the convolution theorm, eq (A.6), with h(s) = i(S),g(8) = s·1I2 to 
obtain 

I it i(t) dt 
CoCO,t) =co·- nFA filJO 0 1t - t 

t 
I i(t) de1

CR<O,t) - nFA fiiJJi 0 1t-t 

For a nemstian process, the ratio of the surface concentrations is 

CoCO,t) =8(t) =e nF(Ei - vt - ED) 
CR<O,t) xP RT 

Substituting the surface concentrations into this expression and 
rearranging, we have 

t 
nFA Yi1JO Co· = i(t) de (4.29)1

1+ ;8(t) 0 1t-t .. 

where; ='iDo/DR. 

Derivation of eq (5.31). We are concerned here with the flux of 0 
at the electrode surface when Co(O,t) =0 and 0 is formed from Y in an 
equilibrium prior to electron transfer. We start with diffusion equations 
in Y and 0, similar to eqs (5.2) but including the time derivatives. With 
the new functions of eqs (5.3), we obtain the differential equations 

2
aC(x,t) :;:: D aC(X,t) 

at ax 2 
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2 
OC'(%,O =D aC'(%,t ) _ (hi + h.v C'(%,t) 

at d:t2 

We will assume that the equilibrium strongly favors Y so that K =hl/h' l 
«1. Taking Laplace transforms, we obtain simple differential 
equations which are readily solved to give 

c(x,s) =C·Is + A(s) exp -fi1i5% 

c'(x,s) =A'(s) exp -1(s + k.vlD % 

With eq (5.6b), the boundary condition, Co(O,t) =0, gives 

cd.O,s) =--K...-[C!.+A(s)] - -LA'(s) =0
1+K s 1+K 

Since Y is not electroactive, JY(O,t) = 0 and eq (5.6a) gives 

(a:t.0= -A(s) v'1i -A'(s) Vs ;}.I = 0 

Solving the simultaneous equations, we have 

~ A(s) = C· = _ A'(s) ~ Ii('l; + Kkl 

S(1 + ~ S ) K 'I s
K'ls + Kk l 

N:e~lecting K compared with 1 and assuming that K2s «Khl,1 the 
'transformed flux of 0 is 

k:/..O.s) =-~ W fKkl 
s + YKkls 

Taking the inverse Laplace transform and converting to current, we 
have 

i =nFAC· YDKk I exp (Kk lt)[I-erfYKk l t] (5.31) 

Derivation of eqs (6.36). Allowing for a finite electron transfer 
rate, the surface boundary conditions are 

Do dC'o(O,t) = _ DR aCR(O,t) = keCo(O,t)- kaCR(O,t) 
ax ax 

Transforming the boundary conditions, we again have eq (A.13b), but 
instead of eq (A.13a), we get 

1 This approximation is equivalent to neglecting the very small amount of 0 
initially present near the electrode: thus the result if only app roxirnat.e at short times 

Laplace Transform Methods 

o<:o(O,s)
Do hcCo(O,s) - hoCR(O,s) 

ax 
Thus, with Co(%,s) and CR(%,S) given by eqs (A.H), and B(s) =-x A(s), we 
have 

- lsDo A(s) =kc[Co·ls +A(s)] + ha~A(s) 

or 
heCo· 

A(s) =- lDose).. + m 
where 

A=hell Do + hallDR 

Substituting A(s) into eqs (A.H) with % = 0, we have 

cO<O,s) =Co· [1 he ] 
s lDo(A+~) 

CR(O,s) = heCo· 
lDR S(A +~) 

Taking the inverse transforms, we have 

CO<O,t) =Co· - keCo· l1 - exp(A2t )[ 1-erf(Afi)]}u»; 
heCo· (1-eXP(A2t}[l-erf(Afi)]}CR(O,t) =

Defining 

we have 

AlDR 

f(Afi) =Ai1tt exp(A2t)[1- erC(A'it)] 

CO<O,t) = Co. _ ~[I_t{M7)] 
1 + ~e Hii 

CR(O,t> = ~Co· [1_t{A'it)] 
1 + ~e Hit 

(6.36b) 

(6.36a) 

where we have used the relation kalke =e. 
Derivation of eqs (6.47). When the boundary condition is 

determined by a sinusoidal current 

I(t) =10 sin rot 
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the flux of 0 at the electrode surface is
 

_ Do acoCO,t) =_lQ... sin rot
 
ax FA
 

Taking the Laplace transform, we have
 

Do «0<0,s) =Is: ----1.ll
 
ax FA s2+ cJl 

Substituting the first derivative of eq (A.ll), evaluated at% =0, we get 

_ YsDo A. = Is: .-m 
FA 8 2 + cJl 

Solving for A(s) and substituting in eq (A.H) with % = 0, we have 

co(O,s) = Co· 10 [ CJ) 1 
s FAYDo ~(s2+m2}J 

The inverse transform of this function cannot be found in tables, so we 
.have recourse to the convolution theorem, eq (A.G), taking 

g(s) =-JaL- ~ G(t) =sin at 
s2+al

h(s) =!: ~ ll(t) =-.L 
Ti> fit 

:Thils 

L-l ~(s 2Q)+ m2l) = 0 ~ sin ro(t - t) dt[ i
t 

Using the trigonometric identity 

sin ro(t - t) = sin rot cos on - cos rot sin on 

the integral becomes~f 
~:~ ~ r.i, cos on dt _.CQU!lt r.i, sin on dt 

fit Jo it fit Jo it 
The factor of 11ft in the integrand represents a transient response to the 
application of the sinusoidal current which dies off to give a steady-state 
sinusoidal variation in the concentrations. Since we are interested only 
in the steady state, the limits on the integrals can be extended to infinity, 
obtaining 

Laplace Transform Methods 

i--!t cos on de = i- -!t sin~ dt = ~ 
Thus we have 

CO<O,t) =Co. Ip(Bin rot - cos rot) 
FA12CJll)o (6.47a) 

Equation (6.47b) for CR(O,t) results from a similar development. 

.... 
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-)(c 5 DIGITAL SIMULATION 
z 
w	 METHODSa. 
a. 
OIl( 

The theoretical description of an electrochemical experiment 
usually requires the solution of a set of coupled partial differential 
equations based on the diffusion equation. In experiments which 
include forced convection, such as r.d.e. voltammetry, a driving term is 
added to each equation as in eq (4.43). When a diffusing species is 
involved in a chemical reaction, reaction rate terms must be added to the 

l'" . equation describing its concentration. The set of equations often has 
time-dependent boundary conditions and can be devilishly difficult to 
solve. In some fortunate cases, such as those treated in Appendix 4, the 
use of Laplace transforms leads to closed-form analytical solutions, but 
more often solutions are obtained in terms of infinite series orf . intractable integrals which must be evaluated numerically. In the 

;.	 1~50's and 1960's, a great deal of effort was expended by theorists in 
obtaining mathematical descriptions of electrochemical experiments.~ 

l 

While the results provide an invaluable aid to understanding (we have
! quoted many of these results), one often finds that the theoretical results 

:1 available in the literature do not quite cover the experimental case at 
hand. If the problem seems to be of sufficient generality and interest, it 
may be worthwhile attempting an analytical approach. More often, 
however, electrochemists have turned to the digital computer to 
simulate experiments. The details of digital simulation are beyond the 
scope of this text, but a brief outline of the strategy is in order. For 
further details see reviews by Feldberg.! Maloy,2or Britz.3 

In general the problem to be solved involves equations of the form 
2 

ac D a C ki . ~ I dri- = - + inetic anUlor nvmg terms 
at dx2 

together with a set of initial and boundary conditions. The 
concentrations are functions of time and distance from the electrode and 

1 S. W. Feldberg, Electroanalytical Chemistry 1969,3, 199. 
2 J. T. Maloy in Laboratory Techniques in Electroanalytical Chemistry, P. T. 
Kissinger and W. R. Heineman, eds, New York: Marcel Dekker, 1984. 
3 D. Britz, Digital Simulation in Electrochemistry, Lecture Notes in Chemistry, Vol. 
23, Heidelberg' Springer·Verlag, 1981. 
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Digital Simulation Methods 

the general strategy in a digital simulation is to divide the time and 
distance axes into discrete elements of size at 'and ax, respectively. The 
first step in the development of a simulation program is to convert the 
differential equations into finite difference equations. 

Thus Pick's first and second laws, 

J(x,t) =-D ac(x,t) 
ax 

aC(x,t) M(x,t) 
--=--

at ax 
which describe the diffusional part of the problem, can be written in 
approximate form in terms of the finite differences, ax and lit: 

J(x,t) .. _ D C(x + ax/2,t) - C(x - fu12,t) 

ar 
C(x,t + at) - C(x,t) .. _ ---eJ(x,---+_0xI_2...:....,t:-)-_r/l....;,.(x_-_&fl-:,t....:..) 

lit	 ar 
Combining the two expressions, we have 

C(x,t + lit) =C(x,t) +.D&..[C(x + ar,t) - 2C(X,t) + C(x - ~,t)] (A.15) 
(axF 

If the spatial boxes, of equal width 8%, are labeled 1,2,3.. j ... and the time 
boxes of width lit, are labeled 1,2,3 ... k ... we can rewrite eq (A.15)as 

C(j,k+l) =C(j,k) + D[C(j+l,k) - 2C(j,k) + C(j-I,k)] (A.I6) 

where D =Df,t/(ax)2 is a dimensionless diffusion coefficient. Thus eq 
(A.I6) models the diffusion process as follows: during the time interval 
(,t, an amount DC(j,k) moves from boxj to each of the adjacent boxes. But 
meanwhile DC(j-l,k) and DC(j+I,k) move from the adjacent boxes into 
box j; the change in concentration in box j is the sum of these 
contributions. Clearly, we can't take more out o('a box than was there to 
begin with, so that we require D S 0.5. 

The net flux at the electrode (related to the current) is determined by 
the changes in concentrations in the j =1 box (adjacent to the electrode) 
which are required to satisfy the surface boundary condition. For 
example, for a reversible electrode process, the boundary condition 
corresponds to the surface concentration ratio CoiCR =6. specified by the 
Nernst equation. The equilibrium surface concentration of 0 can be 
written as 

Co(eq) =_6_[CoCl,k) + CR(I,k)] 
1+6 
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The net flux then corresponds to the difference between CoO,k) and the 
equilibrium surface concentration 

5Co(k) =Co(1,k) - 9CRO,k) =_SC'R(k) 
1+9 

The surface concentrations then are corrected to 

Co(1,k + 1) =Co(1,k) - 5Co(k) (A.17a) 

CR(1,k + 1) = CROok) + 5Co(k) (A.17b) 

Since the current is given by 

i =nFAJo(O) 

the simulation current is proportional to 5Co(k). 
In an experiment where the electrode potential is time-dependent 

(e.g., cyclic voltammetry), the potential (and thus the concentration ratio 
9) will be different for each time increment. If the simulated experiment 
involves two or more electron-transfer processes, these are handled 

. independently and the current contributions added to get the total 
current, Experiments with slow electron-transfer kinetics can be 
simulated by including Butler-Volmer electron-transfer rate equations 

~.	 in place of the above expression which assumes that equilibrium is 
attained instantaneously.~ If species A is consumed in a first-order chemical reaction, 

. ' A ~ B 
the contribution to the rate equations is 

aCB(X,t> = aCA(x,t) = kCA(X,t) 

at at 

l.	 In terms of the finite differences, these expression are 

CB(x,t + &) - CB(X,t) =_CA(X,t + &) - CA(X,t) = kCA(x,t) 

& & 
or, using the indicesj and k; 

CAV,k+l) =CAU,k) - kCAV,k) (A.18a) 

CBV,k+I) =CBV,k) + kCAV,k) (A.18b) 

where k =kBt is the dimensionless rate constant. In practice, k must be 
small (s 0.1) in order to accurately model the system; for a given value of 
k, this places a restriction on Bt. This restriction can be somewhat 
relaxed (k ::; 1) by using an analytical solution for the extent of reaction 
during a time increment, e.g., for a first-order process 

CAV,k+1) =CAV,k) exp (-k)	 (A.19a) 

Digital Simulation Methods 

CBV,k+1) =CBV,k) + CAV,k) [1- exp (-k)) (A.19b) 

Analytical expressions can be used for more complex reaction schemes, 
or, for still more complex schemes, the extent of reaction can be 
estimated using the modified Euler method.! 

For a cyclic voltammetry simulation, the time increment is 
determined either by the scan rate with v Bt .. 1 mV, or, when coupled 
chemical reactions are considered, by the rate constant. The number of 
time increments to be used in the simulation is determined by 

nt =t/&	 (A.20) 

where t is the total time of the experiment to be modeled. The size of the 
spatial increment is determined by 

fa = V"-D-&-/D-	 (A.2l) 

If the solution is isotropic at the beginninuf the experiment, the 
diffusion layer grows to a thickness of about 6~ Dt during the time of the 
experiment. Thus the number of spatial boxes required in the 
simulation is determined by 

~=&lDnt& 
or 

n", =6";o«,&X&f 
n", = 6VDnt	 (A.22) 

or nz ... 4 f1fi ifD =0.45. 
Even with the use of analytical expressions such as eq (A.19) to 

model the effects of chemical reactions, nt can be very large for schemes 
with fast reactions. Since computer execution time increases as the 
product of nt and n.r, there is a practical upper limit to rate constants. 
One solution to this problem is to use variable-width increments in the 
simulation. For very fast reactions, the reaction layer, %R, is thin and, in 
the simulation, most of the action takes place in the first few spatial 
boxes adjacent to the electrode. Thus some savinf in execution time can 
be realized if the size of the spatial boxes is allowed to increase with 
increasing distance from the electrods.s This approach leads to a 
different D for each box and a somewhat more complex diffusion 
algorithm. A still more efficient approach is to expand the time grid as 
well for boxes far from the electrode.f Thus boxes in which not much is 
happening are sampled less frequently. 

The overall structure of the simulation program then is as follows: 

1 D. K Gosser and P. H. Rieger, Anal. Chern. 1988,60, 1159. 
2 T. Joslin and D. Pletcher, J. Electroanal. Chern. 1974,49,171. 
3 R. Seeber and S. Stefani, Anal. Chern. 1981,53,1011. 
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(1)	 Set concentrations to initial values. 
(2)	 Correct each concentration in each box for the results of the 

chemical reactions using eqs (A.18) or (A.19). 
(3)	 Correct each concentration in each box for the results of diffusion 

using eq (A. 16). C 
>< 

ANSWERS TO 
Z(4)	 Change the concentrations in box 1 to satisfy the surface boundary w SELECTED PROBLEMS condition, e.g., using eqs (A.17) for a nemstian process; the changes a. 

correspond to the flux and thus to the current. a. 6«(5)	 Go to the next time increment and adjust time-dependent 
parameters such as the electrode potential. 

(6)	 Repeat steps (2) • (5) for the required number of time increments. 

U	 (a) PtIFe2+, Fe3+) I IMn04', Mn2+, H+IPt 
(b) Fe3+ + e- ---+ Fe2+
 
Mn04' + BH+ + 5 e- ---+ Mn2+ + 4 H20
 
(c) 5 Fe2+ + Mn04' + B H+ ---+ 5 Fe3+ + Mn2+ + 4 H20 
(d) E;O =1.51- 0.771=0.74 V 
(e) E =0.56 V 
(f) I1Go =--357 kJ mol,l, K =3 x 1062 

.', 1.2	 (a) 1.0662V 
(b)-o.607V 
(c)-o.76V 

1.4	 Ksp = 1.6 x 1Q-8
\ :.	 I 

1.5	 Ksp =4.5 x 10,18,pH =7.00 

1.7	 E =0.077,0.085,0.107,0.145,0.302,0.458,0.491 V 

1.8	 1.27 x 104M 

1.9	 K =9.8 x 1018 

."LlO	 (b) pH 5.0 

ill	 flux =2.2 x 10-3 mole Na" s·l; firing rate =2.2 s-l 

L12	 (a) E' = +0.043,+0.353,-0.154 V 
(b) 110' =-8.3,-ti8.1, +29.7 kJ mol-1 

(c) K =28, 8.6 x lOll, 6.2 x 10-6 

L13	 (a) I1Go = -130 kJ mol! 
(b) I1Go =-76 kJ mol'! 
(c) I1Go =-206 kJ mol! 

Ll4	 (a) 110° =-35 kJ mol-! 

467 
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(b) !lao =+234 kJ mol- 1 

(c) !lao =-458 kJ mol- 1 

L15	 pH =10.386±0.008 

L16	 [Na+] =(1.12 ±0.03) x 10-4M 

L17	 (a) kH,Na =7.8 x 10-12 

(b) pH 11.19 solution would give apparent pH 11.14 

LI8	 (a) Zn(s) + 2 OH- ---+ ZnO(s) + H2O + 2 e
Ag20(S) + H20 + 2 e- ---+ 2 Ag(s) + 2 OH
Ag20(S) + Zn(s) ---+ 2 Ag(s) + ZnO(s) 
(b) 1100 J g-l 

2.4	 c =££()eI>a(lfa + l/xA) 

2.8	 (a) o: = 2.0 ~C 
(b) io = 1.0 mA 
(c) t =0.092 s 

2.9	 (a) 'Y±(NaCl) 
(b) 'Y±(NaF)!y±(NaCl)
 
(c)y±(NaF)
 

ill	 'Y±<exptJ) =0.905, 0.875, 0.854, 0.826, 0.807, 0.786 
'Y±<eq 57) = 0.889, 0.847, 0.816, 0.769, 0.733, 0.690 
'Y±<eq 56) =0.903, 0.872, 0.851, 0.821, 0.800, 0.776 

2.12	 [KOHl =0.988 M, 'Y.t =0.742 

2.14	 E =0.767 V 

3.1	 (a) L fA = 29.05 m-l 

(b) A = 14.66 x 10-4 S m2moI-l 
(c) AO =390.7 x 10-4 S m2moI-l 
(d) a =0.0375, K =1.5 x 10-5 

3.2	 AO = 133.4 x 10-4S m2mol-1 

3.3	 sfcalc) =2.88 x 10-4 S m 1J2mol-312 

s(expt) =3.03 x 10-4 

3.4	 s =1.94 x 10-3 S ml12mol-3/2 

3.5	 0.203 

Appendix 6 Answers to Selected Problems 

3.6	 1.4 x 10-4 M 

3.7	 K= 1.6x 10-4 

3.8	 u =1.046 x 10"7,1.145 x 10-7 m2V-Is-I 

r = 274,334 pm
f = 4.60 x 10-12, 5.60 x 10-12 kg s-l
 
D =8.96 x 10-10,7.36 x 10-10 m2s-1
 

3.12	 D = 2.45 x 10-11 m2s-I, t ...6.5 years 

3.13	 D = 1.59 x 10-9 m2s-1 

3.14	 to«=0.366 

3.16	 [Ba(OH>2l= 0.0422 M, A = 411 x 10-4 S m2m.o1-1 

3.18	 [Na+]a = 0.0319 M, [Na+]p = 0.0281 M,!lel> = 3.3 mV 

4.4	 El/2 = 0.764 V 

4.5	 A square wave signal is required. 

4.7	 (a) Gain> 104 
(b) Gain > 4 x 104 
(c) Scan rate is 2 ppm smaller when output voltage is -1 V. 
(d) i = 100 ~, Rcell < 10 k.Q, nominal current correct to 0.001% 

4.8	 Co =0.14 mM 

4.12	 4.75~ 

4.14	 (a) E1J2 = -0.693 V , 
(b)R = 1480 n 

4.15	 Diameter greater than 0.5 mm 

4.16	 Electrode radius less than about 2.3 um 

4.20	 ~ '" 2.4 eV (Figure 4.42a), ~ >= 2.1 eV (Figure 4.42b) 

4.26	 ~ '" 4 x 1012 

4.27	 (a) p = 2, E1J2 = -0.258 V 
(b) ~ '" 1035 
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! 
5.1 k1K = 0.008 s-l 

! 
;ti 5.2 (8) CA> 10-6M 

(b) A = 1 cm2.I 
i! 5.7 (8) (iL- i)/i = 9i1 + 291)/(2 + 92)iI'

(b) El/2 = (E 1° + E 2°)/2 
(c) The Heyrovsky-Ilkovie equation is obtained when E2°» E1° 

:'1:' (d) E3I4 - E1I4 = 42.9, 33.8, 30.3, 28.5 mV for E2° - E1° = 0, 50, 100, 
i and 200 mY. The Tomes criterion for a reversible two-electron 
1{ wave gives 28.2 mY. 

5.8	 k = 0.8 s-l 

5.10	 (b) k = 1.0 s-l 

5.11	 (8) 60 
(b) 1.3 
(c) 5.1
 

.',
 

5.12	 (8) AElI2 = 17.8,61.6 mV 
(b) AE1I2 = 101.9,41.8 mV 

1 6.,2' i = nFA ( keCo*- kaCR* )
:i; 1 + ka/kD + kclkD~ft. 
,I: 
t
;~ 6.5	 jo = 0.0079 A m-2, <lapp = 0.58, ko = 2.2 x 10-10 m s-l 

'I

t 6.9 (8) E1I2-Eo =-24.7 mV 
(b) kolkD = 0.141 

I, ".~ 
". '. 

6.10	 (b) ko =2.1 x 10-4m s-l 

6.12	 ko = 5.8 x 10-5 m s-l 

6.13	 Resistive component: R, = IZfl cos <p
 
Capacitive component: l/wCs = IZrl sin <p
 

6.14	 (b) Width at half height = 90.6 mY. 

Answers to Selected Problems 

7.2	 t = 27.5 days 

7.3	 (8) 22 min 
(b) CB(t) = 0.10, 0.14, and 0.12 mM att = 

7.6	 126C 

7.7	 (8) 0.234 C 
(b) 48.5~ 

7.8	 (8) R = 1000 Q 
(b) Rcell < 9 kll 

7.9	 3.51mM 

5,10, and25 min 

7.10	 5-mL sample, 2 rnAcurrent give t = 241 s, uncertainty is ±O.6% 

7.12	 Hydrogen reduction current: j = 0.27 A m-2 on Pt (ell = 0.997),j = 1.9 
rnA m-~ on Cu (ell =0.9992) 

7.13	 Optimum current = 133 A 
Cost = (raw materials + capital and labor + energy) 
Cost = (1.00 + 0.84 + 0.91) = $2.75 per kilogram 
With doubled energy costs, optimum current = 91 A 
Cost = $3.57 per kilogram 

7.15	 (8) E = ~.73 V, Corrosion rate = 0.5 mg Zn m-2s- 1, Hydrogenc 
evolution rate = 0.18 mL m-2s- 1 

(b) Corrosion rate = 2.2 mm year1 

... 

6.15	 (b) Width between extrema = 

6.16	 (8) k os 10-5 m s-l 
(b) ko s 0.0002 m s·l 
(c) ko s 0.002 m s-l 

67.6 mY. 
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