


Computational Biology

Editors-in-Chief
Andreas Dress
University of Bielefeld, Bielefeld, Germany

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

Editorial Board
Gene Myers, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn,
Loudoun Country, VA, USA
Robert Giegerich, University of Bielefeld, Bielefeld, Germany
Walter Fitch, University of California, Irvine, Irvine, CA, USA
Pavel A. Pevzner, University of California, San Diego, La Jolla, San Diego, CA, USA

Advisory Board
Gordon Crippen, University of Michigan, Ann Arbor, MI, USA
Joe Felsenstein, University of Washington, Seattle, WA, USA
Dan Gusfield, University of California, Davis, Davis, CA, USA
Sorin Istrail, Brown University, Providence, RI, USA
Samuel Karlin, Stanford University, Stanford, CA, USA
Thomas Lengauer, Max Planck Institut Informatik, Saarbrücken, Germany
Marcella McClure, Montana State University, Bozeman, MO, USA
Martin Nowak, Harvard University, Cambridge, MA, USA
David Sankoff, University of Ottawa, Ottawa, Ontario, Canada
Ron Shamir, Tel Aviv University, Tel Aviv, Israel
Mike Steel, University of Canterbury, Christchurch, New Zealand
Gary Stormo, Washington University Medical School, St. Louis, MO, USA
Simon Tavaré, University of Southern California, Los Angeles, CA, USA
Tandy Warnow, University of Texas, Austin, Austin, TX, USA



The Computational Biology series publishes the very latest, high-quality research devoted to specific
issues in computer-assisted analysis of biological data. The main emphasis is on current scientific devel-
opments and innovative techniques in computational biology (bioinformatics), bringing to light methods
from mathematics, statistics and computer science that directly address biological problems currently
under investigation.
The series offers publications that present the state-of-the-art regarding the problems in question; show
computational biology/bioinformatics methods at work; and finally discuss anticipated demands regard-
ing developments in future methodology. Titles can range from focused monographs, to undergraduate
and graduate textbooks, and professional text/reference works.

Author guidelines: springer.com > Authors > Author Guidelines

For other titles published in this series, go to www.springer.com/series/5769

http://www.springer.com/series/5769


Ina Koch � Wolfgang Reisig � Falk Schreiber
Editors

Modeling
in Systems Biology

The Petri Net Approach



Editors
Prof. Dr. Ina Koch
Institute for Computer Science
Johann Wolfgang Goethe University
Frankfurt
Robert-Mayer-Straaße 11-15
60325 Frankfurt am Main
Germany
ina.koch@bioinformatik.uni-frankfurt.de

Prof. Dr. Wolfgang Reisig
Department of Computer Science
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin
Germany
reisig@informatik.hu-berlin.de

Prof. Dr. Falk Schreiber
Institute of Computer Science
Martin Luther University Halle-Wittenberg
Von Seckendorff Platz 1
06120 Halle
Germany
falk.schreiber@informatik.uni-halle.de

ISSN 1568-2684
ISBN 978-1-84996-473-9 e-ISBN 978-1-84996-474-6
DOI 10.1007/978-1-84996-474-6
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010936192

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:ina.koch@bioinformatik.uni-frankfurt.de
mailto:reisig@informatik.hu-berlin.de
mailto:falk.schreiber@informatik.uni-halle.de
http://www.springer.com
http://www.springer.com/mycopy


Foreword

This is a book that looks at the universe of theoretical biology and biological systems
analysis through an instrument that is a magnifying glass, and at the same time a
telescope. The toolbox enables the chiseling of the tiniest molecular details as well
as the embrace of the entireness of the world of living systems. And the elementary
tools in this box are of surprising simplicity: places, transitions and directed arcs.
Together with a concept of time and evolution this allows for concurrency, but not
for continuity. Describing a system, be it chemical or biological, in the abstract
automaton language of Petri nets can deliver a boring monotony or a fascinating
holography.

It depends on the ingenuity of the designer. The Petri net approach offers not
only the basic tools that Carl Adam Petri is said to have invented as a schoolboy,
but in addition many extensions and expansions of those ideas, so that it becomes
possible to combine quite a variety of modular elements (discrete, quasi-continuous,
stochastic, spatially expanded, topologically involved, time-delayed, dimensionally
separated, etc.) into one model without wreaking havoc in the abstract representation
of the whole living system that is being simulated.

The book presented here aims to meet a challenge that previously has been
largely avoided by the Petri net community. The community used to be content
with the demonstration that Petri nets were able to simulate quite a large number of
partial systems when their homogeneity permitted a rather restricted application of
the Petri net methodology. The proof of principle used to say that Petri net models
can simulate otherwise established theoretical descriptions. Here, the authors have
undertaken the daunting task of explaining the whole realm of theoretical systems
biology and of proving that it would all fit into the Petri net world. In this perspec-
tive, the Petri net world is extremely reductionist, condensed to a very limited ab-
stract set of tools and interactions, but this very reductionism can help to reintegrate
the perspective into a holistic picture.

This book will appeal to those who like to envisage life through a lens of
mathematical tools, incorporated into the methodology of computer represen-
tation. The author of this foreword, for biographical reasons not having be-
come a Petri net aficionado, can appeal only to the new generation of com-
putational biologists: Do learn biological theory, do apply Petri net methods,
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vi Foreword

and do show that this can yield rich harvests of interesting ideas. Use the
Petri net tools as an incentive to generate exciting hypotheses about living sys-
tems!

Jens Georg ReichBerlin
May 2010



Preface

Systems Biology is an emerging, multi-disciplinary field that has attracted increas-
ing attention over the last few years. The rapid development of new experimental
technologies in biology and medicine results in an enormous amount of biological
data not only on sequences and structures, but also on their dependencies and inter-
actions for many prokaryotes and eukaryotes. Thus, new data bases on gene expres-
sion, protein-protein interaction, and pathways have been developed. This quantity
of data allows scientists to investigate molecular cell processes in a large scale man-
ner. With the help of such newly available experimental data, many qualitative as
well as quantitative in silico models have been constructed in order to obtain new
insights into the behavior of biochemical systems, leading to a better understanding
of molecular processes.

The lack of computational methods to explore such experimental data has led
to an explosion of method development in this area. Methods in computational
systems biology cover discrete, continuous, and stochastic techniques. Many of
them are based on principles and algorithms which have been known for more than
20 years. The mathematical formalism of Petri net theory can encompass all of
these techniques. For about 15 years, Petri net models of biochemical systems have
been successfully developed, simulated, and analyzed. In the last five years, many
papers have been published applying Petri net theory to different types of biochemi-
cal systems which model gene regulation, signal transduction and/or metabolism in
biologically different application fields. This development provided the motivation
to produce a book which explains Petri net foundations and reflects the main appli-
cations of Petri nets in molecular biology.

Who Should Read This Book?

This book intends to provide a comprehensive overview on recent applications of
Petri nets in systems biology. The text has been designed to reach students, gradu-
ates, scientists with biological or medical background as well as with mathematical
or computer science background, and also lecturers. The book aims to enable the

vii



viii Preface

interested reader to enter the field of modeling biochemical systems using Petri net
concepts. The chapters have been divided into three parts, an introductory part,
a methodological part, and an application-oriented part. The three introductory
chapters comprise a general introduction on systems biology, biological founda-
tions, and Petri net basics. As far as possible, we have unified the mathematical
notations. We redraw the Petri nets in figures according to unifying drawing rules
suggested by Wolfgang Reisig. Additionally, exercises are provided for each chap-
ter, facilitating use of the book for lectures. Finally, cross references between chap-
ters, a glossary and an index help in navigating the content and finding information
quickly. We hope to spark interest not only in the application of Petri nets in mod-
eling biochemical systems, but also in the fascinating and challenging fields of
systems biology and of Petri nets.

How to Read This Book?

The book aims to introduce the latest research in Petri net applications in systems
biology, but also to provide the necessary foundations of Petri net theory and of
biochemical systems. The book can also be used as a textbook, as facilitated by the
problems and their solutions provided for each chapter.

The book is organized into three parts each consisting of three to six chapters.
The parts focus on theoretical foundations, basic modeling techniques, and special
applications, respectively. Each chapter is self-contained and can be used as a unit
of study. The first part introduces basic concepts. The second part discusses differ-
ent modeling techniques, reflecting different levels of abstraction. The third part is
dedicated to biochemical applications adopting a variety of different methods.

Part I introduces the field of systems biology, the foundations of biochemistry,
and Petri net basics. This part should be read by newcomers to that field, but may
be skipped, if the reader is already familiar with the foundations. Part I comprises
three chapters. The first, Chap. 1, gives a general introduction into systems biology,
also providing an overview of the main data resources, software tools, and visual-
ization techniques. The second, Chap. 2, introduces the main biological principles
of biochemistry comprising cell biology, metabolism, signal transduction, and gene
expression. Chapter 3 explains basic principles of Petri nets, giving the necessary
definitions and many examples.

Part II compiles basic Petri net modeling techniques for building and analyzing
biological models. It starts with Chap. 4 on discrete modeling, comprising the clas-
sical Petri net modeling techniques as well as special new methods developed for
application to biochemical systems. Discrete modeling techniques are particularly
important for systems biology because often quantitative data is not available. Thus,
a system’s behavior can only be explored on the basis of its topology. One focus
in the chapter concerns invariant analysis, which is in particular important for ana-
lyzing biochemical systems. Other special discrete modeling techniques have been
developed to handle gene regulatory networks, which are described in Chap. 5, and
with a special biological application in Chap. 12 in Part III.
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In cases where some quantitative data is additionally available, hybrid model-
ing techniques, which combine discrete and continuous modeling, become suit-
able. These methods are introduced in Chap. 6. Many biochemical processes fol-
low stochastic rules. Chapter 7 describes how stochastic systems can be modeled by
Petri nets.

For continuous modeling, we have to know a critical amount of quantitative (ki-
netic) data. Methods applied in continuous modeling are mainly based on solving
ordinary differential equation systems. These methods, which have been known for
many years, differ in accordance with the underlying kinetics. Thus, for modeling
enzymatic reactions, Michaelis–Menten kinetics is used, whereas for reflecting co-
operativity, Hill kinetics is applied. Both concepts and the underlying mass action
kinetics as well as their translation into Petri net formalism is explained in Chap. 8.

A new interesting application is fuzzy reasoning in Petri nets, which is introduced
in Chap. 9.

Part III covers special applications to biochemical systems with regard to the
type of the network according to its biological classification. Chap. 10 considers ap-
plications to metabolic networks, reflecting the relationship to stoichiometry-based
methods, in particular to the concept of elementary modes. We continue in Chap. 11
with modeling of signal transduction pathways. The following chapter considers
the modeling of gene regulation based on logical networks, and its conversion into
Petri nets, using logical regulatory modules applied to development in segments
of Drosophila embryos. Chapter 13 considers the modeling of feedback loops in
the circadian clock of mammals using the hybrid Petri net approach. Additionally,
Part III contains a special chapter on network prediction. The prediction of possible
network structures from experimental data is a very challenging approach. Chap-
ter 14 introduces such an approach using Petri net formalism.
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Chapter 1
Introduction

Ina Koch and Falk Schreiber

Abstract This chapter gives a general introduction into the field of systems bi-
ology and the motivation for using Petri nets in this field. We consider modeling
processes in the context of biological modeling approaches providing different ex-
amples. Starting from a general description of the purpose of a model and the mod-
eling process, we cover the range from qualitative to quantitative modeling. We
compile different modeling techniques at different abstraction levels, for example,
at discrete, stochastic, and continuous levels. In this context, we introduce Petri nets
and give the motivation for using Petri nets in particular for modeling biochemical
systems. We describe the first applications of Petri nets in biology and give a brief
overview of the progress made so far. Furthermore, we discuss the main public data
resources for systems biology, giving an overview of microarray data repositories,
protein–protein interaction databases, and pathway databases. Finally, we describe
methods and tools for the visualization of biochemical systems and Petri net models.
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4 I. Koch and F. Schreiber

1.1 Systems Biology

In biology, the science of living organisms, we want to understand life in its en-
tirety. We examine all living things at different levels of abstraction and description.
We are interested in distribution and classification, origin and evolution, structure
and function of biological species. In order to really understand life we have to
consider not only the single components, which are complicated enough, but also
their interactions, again at different levels of abstraction. We have to move from
the reductionist paradigm, where single components and single interactions have
been identified and characterized, to the holistic paradigm. Following the holistic
paradigm, components are not only pooled together, but rather integrated in such a
way that all these components form a biological system, which reflects the dynamic
behavior of life.

We can find different definitions of systems biology which express different as-
pects of the field. Instead of inventing a new one, representative for many others, we
give four of them:

1. A field that seeks to study the relationships and interactions between various
parts of a biological system (metabolic pathways, organelles, cells, and organ-
isms) and to integrate this information to understand how biological systems
function [134].

2. A hypothesis-driven field of research that creates predictive mathematical models
of complex biological processes or organ systems [133].

3. A discipline that aims at deciphering relationships between different parts of a
biological system with the goal of understanding and predicting the behavior of
the system as a whole [121].

4. Systems biology is a relatively new biological study field that focuses on the
systematic study of complex interactions in biological systems thus using a new
perspective (integration instead of reduction) to study them [382].

The change to a holistic paradigm is only possible if data about system compo-
nents and their interactions is available. The development of high-throughput data
collecting techniques, for example, microarrays, protein chips, yeast two-hybrid
screens etc., enables us to simultaneously interrogate cell components at any given
time. Based on this data and depending on the abstraction level, we can consider
various types of interaction networks, for example, protein–protein interaction net-
works, metabolic networks, signaling networks, transcriptional and gene regulatory
networks, etc. For an introduction into biology including the description of these
networks, see Chap. 2.

Kitano, one of the pioneers in systems biology, summarized in [193]:

To understand biology at the system level, we must examine the structure and dynamics
of cellular and organismal function, rather than the characteristics of isolated parts of a
cell or organism. Properties of systems, such as robustness, emerge as central issues, and
understanding these properties may have an impact on the future of medicine. However,
many breakthroughs in experimental devices, advanced software, and analytical methods
are required before the achievements of systems biology can live up to their much-touted
potential.
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For further reading on systems biology, see [11, 114, 186, 203, 290, 383].
Methodologically, we can divide the field of systems biology into experimental

(wet lab) and theoretical and computational (dry lab) systems biology. Our book
focuses on the theoretical and computational aspects in systems biology, and within
that field on the application of Petri net theory to solve biological questions in bio-
chemical networks. Before starting with the different aspects of Petri net modeling,
let us formulate some general thoughts on models and modeling.

1.2 Models and Modeling

First of all, what is a model? Which purposes should be served by a model? Math-
ematical logic models are based on sets of axioms, which are always valid in the
considered models. These models do not represent any reality outside of the axiom
system. Other models reflect the actuality, often in an abstract and simplified way
allowing for understanding, because actuality is too complex to be represented in its
entirety. In biology, we are also accustomed to working with model organisms. For
example, we use yeast and mouse as model organisms for humans in the wet lab
because data can be obtained more easily, but also to avoid ethical questions.

Thus, models should reflect known behavior, but can contain also hypotheses in
order to verify them. Models can be based on different levels of abstraction. For
example, to represent protein, DNA or RNA sequences we use sequences of let-
ters over a well defined alphabet. We describe chemical structures, e.g. metabo-
lites, as chemical structure graphs. Additionally, we depict the complex protein
structures by topological diagrams that are based on graph-theoretical descrip-
tions [209, 252]. For network visualization, we apply wireframe schemes which
also represent graphs. The underlying graphs of these descriptions can differ in the
definitions of vertices and edges and their labels depending on of the biochemical
network type. To represent dynamic properties, we apply different mathematical
concepts at different levels of abstraction, so logical formalisms for Boolean model-
ing, discrete formalisms for Petri net modeling, differential equations for modeling
continuous properties, and stochastic equations to express the stochastic properties
of chemical reaction networks.

Secondly, why is modeling useful? Experimental observations cover many sim-
ple and complex processes, ranging from isolated enzymatic reactions through tem-
poral processes in metabolic networks to patterns of gene expression and regulation.
In many cases, we can not intuitively predict the behavior of even simple systems
from experience. Thus, we also can not predict the behavior of complex dynamic
processes with sufficient precision solely from experience. Here, we should develop
a computational model, which can be easily modified. For example, we can easily
extend a model or knockout components and then simulate the network behavior.
Also, we can stretch or compress time scales. We can model quantities that are ex-
perimentally hidden.

Nevertheless, we have to keep in mind that models are not right or wrong at
all, only with respect to specific aspects of the reality. We are developing models
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for different purposes addressing different aspects of a complex system at different
levels of abstraction and, thus, resulting in different accuracies. To summarize these
thoughts, we cite Box [45]:

Essentially, all models are wrong, but some are useful.

Another advantage is that computer programs and special algorithms can be used
for several systems independently from the actually modeled system. Finally, it is
obvious that costs of modeling are much lower than for experiments. We can reduce
animal experiments, and there is no risk for real living systems.

The purpose of a model is to give answers to specific questions. Some crucial
questions regarding the model and the modeling process are the following:

• Is our knowledge about a network/pathway complete?
• How to decide whether the model is complete for the questions we want to ad-

dress?
• Is our model consistent?
• Which dynamic properties can we infer only from network topology?
• How is the scalability of our model?
• How can we combine different modeling methods into one unique model?

Regarding biology following questions can arise:

• What happens in the cell at molecular level?
• How are the cross-links between different pathways?
• How is cellular response to environmental changes and stress regulated?
• How do gene regulation and signal transduction influence the metabolism and

vice versa?
• How should a cell be treated to yield a high output of a desired product (Biotech-

nology)?
• Where should a drug operate to cure a disease?

The model has to predict the system’s behavior in such a way that we yield pre-
cise results or output according to a special input. In many cases, the system itself
might be treated as a black box.

To obtain this goal parts, structure, and relations of the object should be clear.
The function of an object is to make the model nearly realistic. The model should
exhibit a generality, that is, it should be applicable to many different objects and
processes. Finally, the model should also be as simple as possible, for example, for
the mathematical treatment.

1.2.1 Analysis of Models

The analysis of models generates a language or formalism that is able to describe
complex processes. After collecting data, usually investigations start with the or-
dering and classification of data, for example, by the creation of databases. So, we
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select prototypes for processes that are common in some organisms or for a special
cell type. We try to invent a systematics which covers the obtained knowledge. To
be unique in terminology and to get a sound notion for computer representations,
ontologies have been developed, for example, gene and gene product ontologies in
GO [16]. For systems biology, the Systems Biology Ontology (SBO) [339] is under
development.

For example, let us consider enzyme catalyzed reactions, for which a systematics
E.C. (Enzyme Commission)-number can be assigned [108]. Enzymes may have one
or two or more substrates and can catalyze different groups of reactions. Thus, we
name enzymes according to their specific function. For example, the enzyme pyru-
vate kinase is a transferase (E.C. 2.) that transfers phosphorus-containing groups
(E.C. 2.7.) with an alcohol group as acceptor (E.C. 2.7.1.). The full E.C. number is
2.7.1.40 and catalyzes the following reaction

ATP+ Pyruvate→ ADP+ Phosphoenolpyruvate (1.1)

We can classify complex processes according to their direction, dynamic behav-
ior, and abstraction level into reversible and irreversible, periodic and nonperiodic,
deterministic and stochastic processes.

Reversibility: Every single chemical reaction is, in theory, reversible. It depends on
the environmental conditions which direction is preferred, for example, on thermo-
dynamic parameters such as temperature and pressure or on the availability of an
enzyme. A reaction can be classified as irreversible if nearly all of its reactants are
used to form products. Then, it is very difficult, even under extreme conditions, to
reverse the reaction.

Periodicity: Periodic chemical reactions generate macroscopic patterns both in se-
quence and time. In nature, we know calcium oscillation as an important periodic
process that controls a wide variety of cellular mechanisms, and is often organized
into intracellular and intercellular calcium waves [353].

Determinism: Deterministic models produce the same output for the same starting
condition. If a deterministic system is known at one time then it is known for-
ever, that is, the system involves no randomness in the development of subsequent
states. According to the level of abstraction, we distinguish between discrete and
continuous deterministic models.

Stochasticity: Stochastic models are nondeterministic models. In stochastic sys-
tems, the development of subsequent processes is additionally determined by a ran-
dom element, which is caused by the fact that collisions in a system of molecules
take place in a random manner, leading to a probability distribution of system
states. The random element acknowledges that resulting subsequent system states
come from both, known and unknown causes.

Discreteness: In biology, discrete models consider the objects, for example, pro-
teins or genes, as countable amounts. Processes take place according to discrete
rules, that is, discrete objects react or will be translated as whole objects. In con-
trast, using continuous models we do not consider countable entities; we work
with concentration of objects and reaction rates that depend on substance concen-
trations.
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Other system-relevant categories include stability (stable or unstable), robustness
(robust or fragile), and activity (active or inactive).

Stability: Biological systems have to be stable, performing a certain function in a
specific changeable environment.

Robustness: Robustness is a crucial property of biochemical systems that enables
the organism to flexibly respond to environmental perturbations or other changes.
It is implemented in biological systems by redundancy, feedback loops, and struc-
tural stability [193].

Activity: It is characteristic of biochemical systems that parts of the system can be
active or inactive depending on other activated or nonactivated components of the
system. There are many possible mechanisms of activation and deactivation, for
example, proteins can be activated or deactivated by phosphorylation or dephos-
phorylation, respectively.

Adequateness: Modeling the (biological) reality, the adequateness of models has to
be considered. We have to translate the biological problem into a mostly mathemat-
ical model using a special mathematical formalism, which reflects those aspects of
system’s behavior we are interested in. So, we have always to find a compromise
between adequateness (reflection of reality) and handling (simplicity).

1.2.2 Model Development

We consider model development as an iterative process of model extension and
model verification with the aim of further improvement of the model. In particular,
during data collection, model development is subjective and selective. As modeling
people, we project our view and understanding of the biological problem onto the
model. Thus, we have to define the scope and model boundaries.

We have to formulate the biological problem in such a way that it fits into a
mathematical formalism. This is not easy, in particular for biology, because lan-
guages and thinking of biologists and mathematicians strongly differ. Moreover,
biological knowledge is often uncertain and can change rapidly, even during the
modeling process. Furthermore, the terminology is not unique. Thus, an object, for
example, gene or metabolite, can have different names. To structure and control the
vocabulary, various ontologies have been developed. For example, Gene Ontology
(GO) [16] defines genes and gene product attributes. For other ontologies, see, for
example, [26, 339, 364].

Usually, we start with a simple model, a sketch or a small set of chemical stoi-
chiometric reaction equations or Ordinary Differential Equations (ODEs). After val-
idation we extend the model, validate it again and so on, creating an iterative process
of model refinement and improvement and model validation. Model verification and
validation are crucial points in model development. We have to check whether the
model reflects known system properties and behavior. Can the model explain the
experimental observations? We have to carefully compare model results with ex-
perimental results. How we can achieve that? We solve the related (mathematical)
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problems. We try to define or estimate the parameters from experimental data, which
is a complicated process, where many methods have been developed [17]. Further,
we can check the model for consistency, applying different techniques such as T-
invariant analysis or elementary mode analysis, see Chaps. 4 and 10. Once we have
a verified and consistent model available, we are able to make predictions on the
system’s behavior, for example, by knockout analysis. But, we have to be aware that
in the end the experiment will determine the correctness of the model.

1.2.3 Model Composition

The structure of a system is defined by its variables, parameters, constants, and
boundaries. The boundaries define the interface to the surroundings of the sys-
tem. Variables, parameters, and constants define quantities of the system. Vari-
ables are modifiable quantities, for which the model establishes a relation. A quan-
tity with fixed value is called a constant, such as the Avogadro’s number NA =
6.02214179(30) × 1023 mole−1 that defines the number of molecules per mole.
A parameter is a fixed value for a certain considered state, but it can change when
the system switches to another state. The parameter value is changeable and depends
on measurements.

For example, in the formula of the Michaelis–Menten equation

v = Vmax[S]
KM + [S] (1.2)

v (reaction velocity) and [S] (substrate concentration) are variables, and Vmax (max-
imal velocity) and KM (Michaelis–Menten constant) are the parameters. For details
of Michaelis–Menten kinetics in this book, see Chap. 8.

It depends on the model, whether a quantity is a variable or parameter. For exam-
ple, enzyme concentration is mostly considered as a parameter, but it can become a
variable in a refined model that includes the dependence of enzyme concentration
from gene expression or protein degradation.

The set of variables, describing the system completely, form the state variables.
The dimension of a system is defined by the number of independent state variables.
Depending on the number of variables, we call a system underdetermined, if we
have too few variables, or if we have too many variables, then the system is overde-
termined and probably contradictory.

1.2.4 Dynamic Behavior

The dynamic behavior (kinetics) describes the changes of system states over time.
A system state is described by a set of variables at a given time point. One state
should contain enough information to predict the behavior in all future times. Each
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model defines what it means by the state of the system. A state can be represented
in different ways. Let us consider a simple monomolecular reaction:

A
k−→ B (1.3)

Deterministic processes with discrete change of system states in time can be
represented by Boolean models. They consider the presence or activity of B at time
t + 1 in dependence on the presence or activity of A at time t :

B(t + 1)= f
(
A(t)

)
(1.4)

For example, gene regulation can be expressed as a Boolean model, distinguishing
between the states where the gene is expressed (1) or not expressed (0).

Deterministic models with continuous change in time can be expressed by ODEs.
ODE-models consider concentrations, for example, of mRNA or of metabolites.
Then, in (1.3) the concentration of A decreases and of B increases in the time inter-
val dt

dB

dt
= k ·A (1.5)

Nondeterministic models exhibit a random component and consider discrete
changes of system states in time. They can be represented by stochastic models
using a current probability distribution of numbers of molecules. The probability of
transformation of molecule A into molecule B in a time interval dt is

P(a − 1, t + dt |a, t)= k ·A (1.6)

with a as number of molecules of type A.
When the values of all state variables remain constant in time the system resides

in a stationary state (or steady state or fixed point). Metabolic systems reach after a
sufficiently long time such a steady state, which can be regarded as an asymptotic
behavior. Oscillatory or chaotic regimes are other types of asymptotic behavior.

Petri nets represent a formalism that can work at all these levels of description.
Moreover, the combination of discrete and continuous modeling in one model is
possible using hybrid Petri nets.

In this book, Chaps. 4, 10, 11 consider discrete Petri nets. Chapters 5 and 12
describe applications using Boolean and Petri nets. Hybrid modeling is explained in
Chaps. 6 and 13. Continuous and stochastic approaches are discussed in Chaps. 7
and 8 .

Before considering Petri net applications to systems biology, let us say some
words on data resources that are necessary for the initial modeling step.

1.3 Data Resources

Similarly to the development of databases in bioinformatics, we could follow a rapid
increase of new databases for systems biology driven by the exhaustive effort for ex-
ploring biochemical systems using high-throughput technologies all over the world.
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Table 1.1 Repositories of
microarray gene expression
data

Name URL

ArrayExpress [292] http://www.ebi.ac.uk/microarray-as/ae/

GEO [46] http://www.ncbi.nlm.nih.gov/geo/

CIBEX [165] http://cibex.nig.ac.jp/index.jsp

For developing biochemical systems, data on chemical reactions, enzymes, gene
expression, proteomics, protein–protein interactions (PPIs) and on pathways is nec-
essary. In the following, we want to give a very brief overview of the main existing
data resources. We restrict ourself to five databases giving references for further
reading; for a review, see [287].

1.3.1 Repositories of Gene Expression Data

To store gene expression data and to provide a free distribution, the Microarray
Gene Expression Data (MGED) society [262] recommends the repositories given in
Table 1.1. These data repositories use standards developed by MGED, for example,
the Minimum Information About a Microarray Experiment (MIAME) [47] and the
Microarray Gene Expression Markup Language (MAGE-ML) [367].

ArrayExpress (version 9.5) contains a curated subset of more than 1,000 experi-
ments, 27,586 essays and 5,067 conditions. It answers queries for condition-specific
gene expression patterns and searches for biologically interesting genes/samples.

Gene Expression Omnibus (GEO) serves as a public repository for a wide range
of high-throughput experimental data including microarray-based experiments mea-
suring mRNA, miRNA, genomic DNA (arrayCGH, ChIP-chip, and SNP), and pro-
tein abundance, as well as non-array techniques such as serial analysis of gene ex-
pression (SAGE) and mass spectrometry (MS) peptide profiling. It also provides
online facilities for data browsing, querying, and retrieval.

CIBEX is another public database for microarray data using the MIAME stan-
dard. It covers more than 51 experiments, 93 arrays, and 1,771 hybridizations. For
further information, see [27, 44].

1.3.2 Protein–Protein Interaction Databases

Protein–protein interactions (PPI) are important for the systems-level understanding
of biological processes. Experimental methods have been developed to determine
and explore PPI. Thus, in the last years many databases of PPI have been created,
see Table 1.2.

The Protein Protein Interaction Database (BIND) is part of the BOND (Biomo-
lecular Object Network Database) database. BINDplus contains more than 200,000

http://www.ebi.ac.uk/microarray-as/ae/
http://www.ncbi.nlm.nih.gov/geo/
http://cibex.nig.ac.jp/index.jsp
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Table 1.2 Protein–protein interaction databases

Name URL

BINDplus [9] http://www.thomsonreuters.com/products_services/scientific/BINDplus

DIP [332] http://dip.doe-mbi.ucla.edu/dip/Main.cgi

MINT [425] http://mint.bio.uniroma2.it/mint/Welcome.do

STRING [366] http://string.embl.de/

pSTIING [286] http://pstiing.licr.org/

curated biomolecular interactions and complexes including more than 60,000
unique gene identifiers, 1,500 organisms, and 7,555 gene ontology terms.

The Database of Interacting Proteins (DIP) is another curated database of exper-
imentally determined interactions between proteins.

The Molecular INTeraction database (MINT) stores experimentally verified
protein–protein interactions. MINT contains more than 110,944 interactions of
29,213 proteins.

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is a
database of known and predicted protein interactions. The database currently covers
more than 2,483,276 proteins from 630 organisms.

pSTIING (Protein, Signalling, Transcriptional Interactions & Inflammation Net-
works Gateway) is a database of protein–protein, protein–lipid, protein–small
molecules, and ligand–receptor interactions, receptor-cell type information, tran-
scriptional regulatory and signal transduction modules relevant to inflammation, cell
migration, and tumor genesis. It is based on curated information from the literature,
biochemical experiments, functional essays and in vivo studies across human, rat,
mouse, fly, worm, and yeast.

1.3.3 Pathway Databases

Pathway databases are essential in systems biology. Over the last few years, many
pathway databases have been developed. Table 1.3 gives some important pathway
databases. One of the first pathway databases is KEGG (Kyoto Encyclopedia of
Genes and Genomes), the development of which started in 1995.

KEGG consists of several subdatabases of genes and proteins (KEGG GENES),
chemical substances (KEGG LIGAND), interaction and reaction networks (KEGG
PATHWAY), and hierarchies and relationships of various biological objects (KEGG
BRITE). It is still the largest pathway database, covering more than 94,339 path-
ways in KEGG PATHWAY, 4,490,246 genes in 99 eukaryotes + 826 bacteria +
61 archaea in KEGG GENES, 15,430 compounds, 8,903 drugs, 10,969 glycans,
7,907 reactions, 11,339 reactant pairs in KEGG LIGAND, and 21,479 hierarchies
in KEGG BRITE.

http://www.thomsonreuters.com/products_services/scientific/BINDplus
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://mint.bio.uniroma2.it/mint/Welcome.do
http://string.embl.de/
http://pstiing.licr.org/


1 Introduction 13

Table 1.3 Important
pathway and
pathway-containing databases

Name URL

KEGG [180] http://www.genome.jp/kegg/

REACTOME [176] http://www.reactome.org/

MetaCyc [57] http://metacyc.org/

EcoCyc [183, 184] http://ecocyc.org/

Other databases are specific for certain organisms. REACTOME is a curated
database of core pathways and reactions in human biology. The curated human data
are used to infer orthologous events in 22 nonhuman species including mouse, rat,
chicken, puffer fish, worm, fly, yeast, two plants, and E. coli.

EcoCyc and MetaCyc are databases of nonredundant, experimentally elucidated
metabolic pathways. EcoCyc contains data of metabolic pathways of the bacterium
Escherichia coli K-12 MG1655. MetaCyc covers data from different organisms. It
contains more than 1,200 pathways from at least 1,600 different organisms.

1.4 Visualization

The graphical representation of biological processes in general and of Petri nets rep-
resenting these processes in particular helps in understanding them and is essential
to make biological sense of much of the complex data. Such pictures of networks
are called network diagrams. A network diagram representing biological processes
or Petri nets consists of a set of elements (called nodes or vertices) and their connec-
tions (called arcs or edges) which usually have a defined appearance and are placed
in a specific layout.

Drawings of Petri nets as well as of biological networks have been done man-
ually for a long time. Typical examples can be found on posters, in textbooks on
biochemistry (e.g., [224]) and in information systems such as KEGG [180]. Such
drawings are often created manually long before their use by the end-user and pro-
vide a view of the data defined by the creator. Some navigation or even animation
of the dynamics of Petri nets may be supported in electronic systems, but the layout
of the network is fixed and hence this type of visualization is called static visual-
ization. Nowadays, automatic visualization and interactive exploration methods are
desired and dynamic visualization, that is the generation of a Petri net image or other
network diagrams on demand at the time it is needed, is that state-of-the-art.

1.4.1 Visualization Methods

There exist three main classes of algorithm for the automatic layout of networks:
force-directed methods [119], layered methods [380], and orthogonal methods [37].

http://www.genome.jp/kegg/
http://www.reactome.org/
http://metacyc.org/
http://ecocyc.org/
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The general idea of force-directed methods is to simulate a system of physical forces
such as spring or magnetic forces on the network and compute a distribution of the
objects with low forces/energy. Layered (also called hierarchical) algorithms, which
work for Petri nets and directed networks, consist of the following four phases: 1. re-
moval of cycles in the network by changing the direction of some edges temporar-
ily, 2. assignment of vertices to layers such that all edges have the same direction,
3. permutation of vertices within layers to reduce edge crossings, and 4. assignment
of coordinates to vertices and bend points of edges. Orthogonal methods place the
vertices of the graph on a grid and use horizontal and vertical segments to represent
the edges.

In addition to these main methods, a number of other layout techniques exist,
which are either infrequently used or relatively straight forward to implement, but
often unsatisfactory in their result. Examples are grid layout, which places all ver-
tices on a grid, circular layout which puts all vertices on a circle, visibility rep-
resentations which uses horizontal line segments for vertices and vertical ones for
edges, and matrix representations which shows the adjacency matrix of a graph.
It should be also noted that most layout algorithms consider vertices as uniformly
sized. To obtain good drawings of networks or Petri nets containing vertices of dif-
ferent size or shape, extended methods are necessary. Furthermore, most layout al-
gorithms have been developed for drawings in two dimensional space. However,
some methods can be easily extended to three dimensions such as force-directed
methods.

The question whether a layout of a network is a good one or not is an aesthetic
question and hard to answer. However, there are several commonly agreed aesthetic
criteria and quality measures which a good layout should fulfill, for example, a low
number of edge crossings, no vertex–vertex or vertex–edge overlaps, and empha-
sizing symmetries. Furthermore, there are several application specific requirements
to fulfill, for example, emphasizing the main direction or clustering of parts of a
Petri net if they belong together. There is always a trade-off between different cri-
teria, that is, fulfilling one criteria often prevents the layout method from attaining
another one.

Although some solutions for visualizing the dynamics or properties of Petri nets
have been proposed (e.g., [58, 201]), the layout of Petri nets is usually done with
standard algorithms as described previously. However, these automatic layouts have
drawbacks, such as that specific placement constraints are not taken into account
and that interactive network layouts with similar subsequent drawings are not suffi-
ciently supported. A recently proposed method [107, 344] could be adapted to Petri
nets to overcome these problems. For Petri net visualization tools, see Chaps. 6
and 8.

1.4.2 Systems Biology Graphical Notation

Networks in biology are often visualized in many different ways. However, uniform
network nomenclatures with a limited number of easily recognizable symbols are
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Table 1.4 Visualization tools
for biochemical networks Name URL

GenMAPP [86] http://www.genmapp.org/

VANTED [177] http://vanted.ipk-gatersleben.de/

BioLayout [110] http://www.biolayout.org/

Cytoscape [358] http://www.cytoscape.org/

CellDesigner [120] http://www.celldesigner.org/

common in many other areas such as engineering sciences and physics. Such strict
specification builds the basis for unlimited and unambiguous scientific communica-
tion. In biology, several attempts have been made to introduce such nomenclatures,
but none of them have been able to become a standard. Recently, all previous efforts
were combined within the framework of a consortium developing a uniform nota-
tion for the representation of biological systems: the Systems Biology Graphical
Notation (SBGN) [229]. SBGN comprises a small number of easily recognizable
elements (glyphs) and can be applied for the representation of various kinds of bi-
ological networks. It combines three languages, (1) Process Description, (2) Entity
Relationships, and (3) Activity Flow. They allow the representation of different lev-
els of granularity.

Process Description is the most detailed presentation of biochemical systems
which focus on the mechanistics of the underlying processes. It consists of entity
pool nodes, process nodes, connecting arcs, and some other elements. There is a
similarity between entity pool and process nodes of SBGN and places and transi-
tions of Petri nets, respectively, thus SBGN maps and Petri nets can be translated
into each other.

1.4.3 Visualization Tools

Several tools have been developed for editing and visualizing data of biochemical
systems (for comparisons, see, [204, 379]). Some databases, such as MINT, pSTI-
ING and STRING use their own visualization tools. Table 1.4 gives some examples
for visualization programs of biological network data.

GenMAPP visualizes maps of biological pathways and groups of genes. It also
provides programs to globally analyze gene expression or genomic data in the con-
text of pathway maps and gene ontology terms.

VANTED facilitates editing graphs, which may represent biological pathways
or functional hierarchies. Experimental datasets can be mapped onto the graph el-
ements, networks can be automatically, layouted and statistic functions for evalua-
tion of the data can be applied. The VANTED extension SBGN-ED also supports
all three types of SBGN maps.

Cytoscape visualizes molecular interaction networks and biological pathways,
and integrates these networks with annotations, gene expression profiles, and other
data.

http://www.genmapp.org/
http://vanted.ipk-gatersleben.de/
http://www.biolayout.org/
http://www.cytoscape.org/
http://www.celldesigner.org/
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BioLayout Express3D is another tool for the visualization and analysis of net-
works derived from biological systems. BioLayout has been designed for the visu-
alization of large network graphs in two- and three-dimensional space.

CellDesigner is a structured diagram editor for drawing gene-regulatory and bio-
chemical networks. CellDesigner uses standards for representing models of bio-
chemical and gene-regulatory networks. Networks are able to link with simulation
and other analysis packages through the Systems Biology Workbench.

1.5 Petri Nets in Biology

Petri nets were defined by Carl Adam Petri in his dissertation thesis in 1962 [299].
The graphical representation, together with the rules for coarsening and refinement,
and the application to chemical processes were already proposed in August 1939
by Petri [300]. The aim was to define a mathematical formalism for representing
and analyzing causal systems with concurrent processes. To represent concurrent
processes, two types of vertices were introduced, separating the active ones (the
transitions) from the passive ones (the places). Tokens as discrete objects implement
the dynamics in the system. The Petri net foundations are described in Chap. 3.

1.5.1 Motivation for Using Petri Nets

The motivation for using Petri nets to model biochemical systems comes mainly
from the fact that biochemical systems exhibit many concurrent reactions, similar
to concurrent processes in technical systems. The intuitive description of chemical
processes coupled with the possibility to simulate and analyze token movement,
representing substance or information flow in biochemical systems, facilitates the
idea to use Petri net formalism for systems biology.

Using a discrete representation allows us to explore the main aspects of the possi-
ble system’s behavior without any knowledge of kinetic data, on the basis of network
topology only. Moreover, possible system states can be analyzed, finding deadlocks,
traps, and siphons, which can be interpreted in a biological sense. The animation of
Petri net models provides additional insights into a system’s behavior. The pos-
sibility to involve time, while still working at a discrete level, offers interesting
facilities for estimating systems dynamics without kinetic data [308]. Finally, the
well-known stochastic and kinetic approaches can be easily involved into Petri net
formalism [208].

1.5.2 Petri Nets in Biology

The application to biochemical systems started with the papers in 1993 and 1994
by Reddy et al. [314] and by Hofestädt [162], respectively. Reddy et al. introduce
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a method of representation of metabolic pathways as Petri nets, and illustrate some
useful properties, for example, liveness, reachability, reversibility, fairness, and in-
variant properties. As an example, they model fructose metabolism as a Petri net.
Hofestädt describes the metabolic process depending on expressed genes as a Petri
net. He gives examples for modeling biosynthesis, protein biosynthesis, and cell
communication processes, considering the isoleucine biosynthesis in E. coli.

In the meantime, many very different applications have been published, rang-
ing from various types of Petri nets to many diverse biological applications. Thus,
colored Petri nets [124], hybrid Petri nets [253–255], continuous Petri nets [163],
stochastic Petri nets [141], and fuzzy Petri nets [410] have been applied to model
biochemical systems.

These techniques have been used to analyze metabolic systems, for example, for
modeling the glycolysis and pentose phosphate pathway (PPP) [162, 249, 314, 407],
the main carbon metabolism in Tuberosum solanum (potato) tubers [211], and oth-
ers. Signal transduction pathways, such as in apoptosis [153, 254], the pheromone
response [327], the filamentous and the HOG-pathways in Saccharomyces cere-
visiae (baker’s yeast), and the EGFR pathway [288] have been modeled. Also as-
sembly processes of complexes, for example, of the human spliceosomal subunit
U1 [190] and of the whole spliceosome have been modeled [41] as Petri net.

Gene regulatory networks have been considered in various papers [96, 253–255],
for example, the modeling processes in Duchenne Muscular Dystrophy [147]. The
use of Petri nets in medical applications plays a major role because, in particular,
for medicine there is a lack of in vivo and in vitro kinetic data due to experimen-
tal difficulties and ethical reasons. Moreover, in contrast to few kinetic data we have
lots of qualitative data which arise with the high-throughput technologies, for exam-
ple, huge amount of gene expression data. Thus, discrete modeling is particularly
of advantage to obtain at least some insights into possible system behavior. Exam-
ples for modeling systems of medical interest are the Petri net models of Duchenne
Muscular Dystrophy [147] and of iron homeostasis in humans [328].

Our book compiles many of these approaches providing an overview of recent
research activities in that field. We try not only to give an impression of the wide
range of applications, but also to explain them including their extensions of Petri net
techniques.

1.6 Problems

1.1 What is new about systems biology compared to classical biology?

1.2 What is the purpose of a model?

1.3 How can models be classified?

1.4 What are the differences between discrete, continuous, and stochastic model-
ing?
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1.5 Give examples for main data resources in modeling biochemical systems.

1.6 Why are Petri nets suitable to model biochemical systems and why, in particu-
lar, for modeling medical systems?



Chapter 2
Biochemical Fundamentals

Tiina Liiving, Syed M. Baker,
and Björn H. Junker

Abstract Living organisms are among the most complex phenomena in our world.
To describe, model, and simulate living organisms or at least parts thereof, formal
descriptions such as Petri nets are needed. As the focus of this book is the use of
Petri net theory in biology, the readership will be very diverse. Thus, this chapter is
meant to provide a general introduction to biology, especially those areas that will be
modeled with the use of Petri net approaches throughout this book. The experienced
biochemist might want to skip this chapter, but for computer scientists and readers
from similar fields this chapter contains important fundamentals.

2.1 Cell Biology

A cell is the smallest highly organized basic life form from which all living organ-
isms are built. Thus, a cell might be called the “building block of life”. The word
cell comes from the Latin word cellula which means small room. Each cell is self-
contained and self-maintaining and has its own set of instructions for carrying out
all of its activities.

Cells can be categorized in two main types, eukaryotic and prokaryotic, which
principally differ from each other by having or not having a membrane enclosed
nucleus. The names of the cell types indicate this property as in Greek karyose
means kernel, pro means before, and eu means true or good. Eukaryotic cells have
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membrane enveloped compartments called organelles. Only Bacteria and Archaea
have prokaryotic cells and all other organisms have eukaryotic cells.

2.1.1 Cellular Organization

All cells consist of a cytoplasm surrounded by a plasma membrane, also called
plasmalemma, as a border. The plasma membrane can be surrounded by a cell wall.
Cells of plants, algae, and fungi have cell walls, whose main contents are cellu-
lose or chitin. Prokaryotes have different cell wall composition than eukaryotes; a
bacterial cell wall is built up mainly of peptidoglycan and an Archae cell wall of pro-
tein. Animal cells and protozoans lack a cell wall, instead they usually have some
other type of covering. In most cases, animal and protozoan cells are surrounded
by an extracellular matrix, which has the same basic function as the cell wall, but is
more flexible. The extracellular matrix, which consists of the space between cells, is
filled with polysaccharides and proteins [221]. The cytoplasm contains membrane-
surrounded organelles, and the cytosol, which is the space between the organelles.
Membranes in prokaryotic and eukaryotic cells are very similar and are composed
of two layers of lipids into which the proteins are incorporated.

There is great variation in the size of a cell. It is organism and tissue specific
and also depends on the cell’s developmental stage. While most prokaryotic cells
are usually up to some micrometer in diameter, eukaryotic cells can reach up to
100 µm in diameter. A typical prokaryotic cell has a simple internal structure and no
membrane-surrounded organelles (see Fig. 2.1). It is thought that prokaryote cells
have to remain small in order to keep the metabolism and substance diffusion in high
rate. Metabolism of prokaryotes takes place largely in the cytosol and the substrates
can diffuse very quickly over the cell. Organelles in a typical eukaryotic cell are the
nucleus, mitochondria, the endoplasmatic reticulum, the Golgi apparatus, lysosomes
and peroxisomes. Usually cell organelles have flexible shape and size (about 1 to
5 µm in diameter). Some special organelles can be only found in plants, such as a

Fig. 2.1 Schematic structure of a typical eukaryotic (left) and prokaryotic cell (right). The eu-
karyotic cell contains the cytosol, which is surrounded by a plasma membrane and in turn contains
membrane-surrounded organelles. The typical prokaryotic cell does not contain differentiated or-
ganelles
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Fig. 2.2 Simplified structure
of a mitochondrion: two
membranes surround the
matrix, in which the main
metabolic steps occur. The
inner membrane forms folds
called cristae, which plays an
important role in ATP
synthesis

big central vacuole and plastids. In the next sections, the central role of mitochondria
and plastids will be discussed.

For a deeper understanding of cell biology, the reader might refer to detailed
textbooks [6].

2.1.2 Mitochondria

In any organism, energy is needed for most vital functions. Mitochondria are the
main place for energy production in all eukaryotic cells and there are usually sev-
eral hundred mitochondria in one cell. A mitochondrion is an approximately 0.5 to
1 µm long organelle, surrounded by two layers of membranes. The inner membrane
is usually folded, these folds are called cristae. Inside of mitochondria there is a
cytosol like compartment called the matrix.

The chemical reactions in an organism usually take place in the presence of
adenine triphosphate (ATP), which contains chemical energy in the form of co-
valent bonds between phosphates. ATP consists of one adenine, one ribose (sugar)
molecule, and three phosphate groups, which can be detached to provide energy
for other chemical reactions. Most of the ATP is generated in mitochondria; plant
cells are an exception, in which the ATP can also be produced in chloroplasts when
exposed to light. Nicotine adenine dinucleotide phosphate (NADP), which is a re-
ducing agent important for many metabolic reactions, is also produced in the mito-
chondrion.

Beside the production of ATP the mitochondria has many other functions in cel-
lular metabolism. Important metabolic pathways located in mitochondria are the
citric acid cycle and oxidative phosphorylation. Mitochondria participate in the
metabolism of several essential substances like amino acids, steroids, heme groups,
and iron-sulphur (Fe-S) clusters. Furthermore, heat production and storage of cal-
cium ions are regulated by mitochondria.

Figure 2.2 describes a very simplified picture of mitochondria.
For better understanding of the mitochondria and its functions, the reader is re-

ferred to recent review articles of [235].
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Fig. 2.3 Simplified structure
of chloroplast: a chloroplast
is surrounded with two
membranes; contain
chlorophyll containing
thylakoids, which form
granum; chloroplast stroma
usually contains plastoglobuli
and some starch grains

2.1.3 Plastids

Plastids are organelles exclusively found in the plant kingdom. Plastids are crucial to
plant functionality and develop from proplastids to generate different plastid forms.
Proplastids are generally much smaller than derived plastids and do not contain
pigments (e.g., chlorophyll). Several metabolic pathways take place only in plas-
tids, such as synthesis and storage of starch, and synthesis of some pigments (e.g.,
carotenoids). Undoubtedly, the most important function of plastids is the process of
photosynthesis, which takes place in special plastids, called chloroplasts. By pho-
tosynthesis, light energy is converted to chemical energy. Therefore in addition to
mitochondria, plastids are an important place for energy production in plants.

Depending on their morphology and function, plastids have the ability to differ-
entiate, or redifferentiate. Differentiation therefore depends on the developmental
stage of the organism, the specific tissue and on environmental impulses. Plastids
can be grouped to chloroplasts, chromoplasts and leucoplasts according to their
main functions and the accumulating of substances. Leucoplasts contain no pig-
ments and to this group belong amyloplasts (starch accumulation), elaioplasts (oil
accumulation), proteinoplasts (protein accumulation) and combinations of these.
Number and size of plastids in a plant cell are similar to mitochondria, that is,
up to several hundred plastids each with a size of some micrometers. Plastids are
surrounded by two membranes called the envelope.

In chloroplasts (see Fig. 2.3), photosynthesis takes place and therefore they are
present in all photosynthetic tissues and organs such as leaves, green stems, cotyle-
dons and hypocotyls, unripe fruits as well as seed coats and embryos. In one pho-
tosynthetic cell, there can be a few to hundreds of chloroplasts. Similar to mito-
chondria, in chloroplasts the inner membrane is folded forming structures called
thylakoids, to which chlorophyll is bound. Here, the process of harvesting light en-
ergy takes place. Inside of the plastids there is a cytosol like compartment called
stroma, in which the actual carbon fixation from carbon dioxide and synthesis of the
basic units for carbohydrate takes place.

Chromoplasts are red-, orange- and yellow-colored plastids containing relatively
high levels of carotenoid pigments. Carotenoids are located also in chloroplasts,
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where they play an essential role by stabilizing chlorophyll. Chromoplasts often de-
velop from chloroplasts, but may also be formed from proplastids and amyloplasts.

Amyloplasts are plastids specialized for storage starch accumulation and are
found in roots, tubers, seeds, and other storage tissues.

For further reading about plastids, we refer the reader to detailed
textbooks [40, 51].

2.2 Metabolism

Metabolism comprises the set of reactions that occur in living organisms for the
production and degradation of organic compounds needed for an organism’s vital
functions. Metabolism is essential for life and transforms the input substrates into
required products.

Metabolism can be divided into two categories: catabolism and anabolism.
Catabolism breaks down organic matter to harvest energy in cellular respiration and
also thereby can produce substrates for anabolic reactions. The chemical energy pro-
duced is in the form of ATP. Anabolism is the process of building new compounds
from the basic units, which requires energy input from the outside or from catabolic
reactions.

Cell metabolism is usually divided into primary and secondary metabolism. Pri-
mary metabolism can be defined as all of the processes essential for growth and
development of an organism. Primary metabolism is considered a complex net-
work of carbohydrate, fatty acid, protein and nucleic acid metabolic pathways and is
largely similar in all organisms. Carbohydrate metabolism and energy metabolism
may be called as a central metabolism, because they involve the production of basic
structures for the other metabolic pathways. Primary metabolism also supplies the
substrates for secondary metabolism. Secondary metabolism in contrast is a term
for pathways that produce metabolites not absolutely essential for survival of the
organism (see also Sect. 2.2.2).

2.2.1 Metabolic Pathways and Networks

The chemical reactions of metabolism are organized into metabolic pathways, in
which one chemical is transformed into another by the help of enzymes. Enzymes
are crucial to metabolism because they allow organisms to drive desirable but ther-
modynamically unfavorable reactions by coupling them to favorable ones and by
lowering the activation energy. Pathways may differ between organisms, but some
basic metabolic pathways are conserved between different organisms.

Many metabolic pathways are linear, that is, they begin with a specific sub-
strate and end with a specific product. Some pathways, such as the citric acid cy-
cle, are cyclic, that is, the end product can be again used for starting this specific
metabolic pathway. Metabolic pathways usually have several chemical reactions,
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which means they generate several intermediates (metabolites which are not end
product of the pathway) and the metabolic pathway can be connected to other path-
ways through these intermediates. Furthermore, pathways are connected to each
other as a metabolite from one pathway can be a substrate for the next pathway.
A collection of pathways is called the metabolic network, which is relatively dense
due to many connections between different pathways.

2.2.2 Metabolites

A metabolite is a small molecule produced within the cell and participating in
metabolic reactions. A primary metabolite is essential for growth, development,
and/or reproduction of an organism. Amino acids are primary metabolites being
the basis for proteins and relevant for many biochemical processes. Many impor-
tant primary metabolites belong to the class of sugars like glucose and fructose, or
contain sugar chains. A secondary metabolite has some other, less vital function.
Examples of secondary metabolites are antibiotics, pigments, and hormones.

2.2.3 Enzymes

As most chemical reactions are relatively slow, there is a need for catalysts. Enzymes
are proteins that catalyze (i.e., increase the rates of) chemical reactions without be-
ing consumed, and are therefore essential for metabolism. Almost all processes in
a biological cell need enzymes to occur at significant rates. Like all catalysts, en-
zymes work by lowering the activation energy (the energy that is required to activate
a process) for a reaction, thus dramatically increasing the rate of the reaction. Most
enzyme reaction rates are orders of magnitude faster than those of comparable spon-
taneous reactions.

Enzymes are selective for their substrates and speed up only up to a few reac-
tions. The set of enzymes produced in a cell determines which metabolic pathways
occur in that cell. Without enzymes, metabolism would neither progress through the
same steps, nor be fast enough to serve the needs of the cell. An enzyme-catalyzed
reaction starts by binding the substrate at a special place of the enzyme, called the
active site. The active site usually is shaped in a particular way to allow interactions
with the substrate, which results in binding of the substrate [212]. In many cases,
the substrate also changes shape slightly as it enters the active site. After the en-
zyme has catalyzed the reaction, the new product is released. Figure 2.4 describes
this process.

In a cell, chemical reactions can be regulated by several enzymes. Enzymes
that catalyze the same chemical reaction but differ in their amino acid sequence
are called isozymes (also isoenzymes). In some cases, slightly different enzymes
are formed from one gene, in this case the two proteins are called isoforms. Both
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Fig. 2.4 Basic working process of an enzyme. The substrate binds to the enzyme in a site called the
active site. After binding of the substrate, the enzyme catalyzes the reaction to create the product.
The product is then released from the active site

isozymes and isoforms may display different kinetic parameters and/or regulatory
properties. The parallel presence of isozymes/isoforms is needed to regulate the
cell metabolism according to the needs of a given tissue or organ and/or to meet
the needs of a developmental stage. Furthermore, different isozymes might be tar-
geted to different cell compartments (cell organelles or cell parts) and thus allow
compartment-specific regulation of the respective enzyme activity.

Enzymes can act alone or with the help of several factors, such as metal ions
or organic molecules (called cofactors). The velocity of enzymatic reactions is af-
fected by other molecules, environmental conditions, as well as the substrate and
product concentrations. These regulatory factors are called inhibitors or activators,
depending on the direction of the regulation (up or down).

2.2.4 Enzyme Inhibition

Molecules which bind to the enzyme and thereby decrease its activity are called
inhibitors. Inhibition can be reversible or irreversible, depending on the inhibitor.
The major role in regulation of synthesis may lay in reversible inhibition, in which
enzyme activity is the same after removal of the inhibitor. There are basically three
types of inhibition: competitive, noncompetitive and uncompetitive inhibition.

In competitive inhibition, the substrate has to compete with the inhibitor for bind-
ing to the active site. Commonly, the chemical structure of the competitive inhibitor
resembles the chemical structure of the substrate. The degree of inhibition of the
specific reaction in the cell depends on substrate and inhibitor concentrations. The
principle of competitive inhibition is outlined in Fig. 2.5.

In noncompetitive inhibition, the inhibitor binds to some place other than the ac-
tive site of the substrate in the enzyme and reshapes the enzyme in a way that the
active site for a substrate is changed, and thus the substrate can not bind to the en-
zyme (see Fig. 2.6). In other words, noncompetitive inhibition can be described as
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Fig. 2.5 Working procedure of competitive inhibition. In this type of inhibition, both the inhibitor
and the substrate compete for the same active site of the enzyme. Both of them have the capability
to bind with the enzyme in the active site. This creates a competitive environment between the
substrate and the inhibitor to bind with the enzyme

Fig. 2.6 Working process of noncompetitive inhibition. In this type of inhibition, the inhibitor
binds to some place other than the active site. This place is called the allosteric site. By binding to
the allosteric site, the inhibitor changes the structure and shape of the enzyme, so that the substrate
can no longer bind properly with the enzyme and thus reduces the maximum rate of the chemical
reaction

allosteric inhibition. Allostery (from the Greek “other site”) means that the regula-
tory binding site of the inhibitor and the substrate binding site (the active site) are
physically separate.

An uncompetitive inhibition means that the inhibitor binds to its regulatory site
in the enzyme after the substrate has bound to the active site forming an inactive
substrate-inhibitor-enzyme complex. For a deeper understanding of enzyme inhibi-
tion, the article [324] is suggested.
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2.2.4.1 Enzyme Kinetics and Activity

Enzyme activity describes the use of the substrate or the amount of formed products.
The SI unit for enzyme activity is katal (kat), which is the conversion of one mole
substrate into a new product in one second (mol s−1). The activity can also be ex-
pressed in enzyme units (U), which describe the amount of the enzyme that catalyzes
the conversion of one micro mole of substrate per minute (1 U= 1 µmol min−1).

1 U= 1

60
micro katal= 16.67 nano katal

The term enzyme kinetics refers to the study of the speed, also called rate or ve-
locity, of an enzyme-catalyzed reaction. Reaction velocity depends on the substrate
concentration as well as the environment, especially on temperature, pressure and
pH value of the surrounding medium. The velocity of enzymatic reactions describes
the speed of the reaction, which is composed of 3 steps: substrate binding to the
enzyme, the process of production of the new product, and release of the product.
The following equation describes this process in a simplified way:

E + S →ES →E + P

The equation describes an irreversible reaction in which E is the enzyme, S is the
substrate, ES is the enzyme-substrate complex, and P is the product.

The reaction velocity v is equal to the rate of formation of P or the rate of reduc-
tion of S. The following equation expresses the relationship between the reaction
velocity and the change of concentration of substrate and product with time.

v =−d[S]
dt

= d[P ]
dt

A graph of product concentration vs. time is given in Fig. 2.7. The time-
dependent behavior of the product concentration can be divided into three stages.

It is difficult to fit a curve to a graph of product as a function of time, as it
ignores the transient phase and assumes that the reaction is irreversible. Therefore,
the enzyme velocity is typically described as a function of substrate concentration
as depicted in Fig. 2.8.

The simple velocity function shown above can be described by the Michaelis–
Menten equation

v = Vmax[S]
Km + [S]

Km (Michaelis-constant) is (roughly) an inverse measure of the affinity, i.e. the
strength of binding between the enzyme and substrate. The lower the Km, the greater
is the affinity, which means that lower concentrations of substrate are needed to
achieve a certain velocity of the turnover of substrate (the amount of product pro-
duced per unit time). Km is measured as the substrate concentration at half of max-
imum velocity (vmax/2). Maximal velocity is the maximum rate of the reaction,
which occurs when the enzyme is completely saturated with substrate.
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Fig. 2.7 Time-course of product formation in a typical enzymatic reaction. The graph shows the
change of product concentration over time. With the passing of time, the rate of product accumu-
lation also increases. This product accumulation can be divided into three phases. At the start of
the reaction, the product concentration is relatively low (phase 1). Then for an extended period of
time, the product concentration increases in a nearly linear manner with time (phase 2). During the
last periods the enzyme is saturated, so the curve starts to level off (phase 3)

Fig. 2.8 Substrate
concentration versus reaction
rate of a typical enzymatic
reaction. Vmax is the maximal
possible reaction rate. Km is
the substrate concentration at
which the reaction reaches
1/2Vmax. This graph can be
described with the
Michaelis–Menten equation,
see text

Inhibition has an effect on the vmax and/or Km values. For competitive inhibition,
in the presence of an inhibitor, a higher substrate concentration is required to achieve
the same velocities that were reached in its absence. So while vmax can still be
reached if sufficient substrate is available, one-half vmax requires a higher [S] than
before and thus the apparent value of Km is larger than without inhibition . For
noncompetitive inhibition, enzyme molecules that have been bound by the inhibitor
are taken out of the reaction so that the reaction rate is reduced for all values of [S],
including vmax and one-half vmax, but Km remains unchanged because the active site
of those enzyme molecules that have not been inhibited is unchanged. For further
reading on enzyme kinetics, the reader is referred to a textbook [38].
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2.2.5 Central Metabolic Pathways

Central metabolic pathways are usually considered as pathways for the synthesis of
carbohydrates, proteins and fatty acids. These are essential pathways as they pro-
duce energy and metabolites which are the starting point for many further products.
Common central metabolic pathways are glycolysis, the citric acid cycle, the pen-
tose phosphate pathway, and fatty acid synthesis, each of which will be described in
detail below. Central metabolic pathways can be differently defined for plants and
animal cells, or for heterotrophic and autotrophic cells. Autotrophic cells can pro-
duce organic substances from nonorganic elements (e.g., photosynthesis in plants).
Heterotrophic organisms or cells can not produce organic substances from nonor-
ganic elements and are therefore dependent on autotrophs. Plants are mixotroph
organisms; they contain both, autotrophic and heterotrophic cells.

2.2.5.1 Glycolysis

Glycolysis is an essential part of energy generation in a cell and takes place in the
cytosol. Glycolysis is the metabolic pathway that converts glucose, which is the
main energy source of most of the organisms, into energy. The energy released in
this process is used to form the high energy compound ATP and the reductant NADH
(reduced nicotinamide adenine dinucleotide). In addition, the end product pyruvate
is a relevant starting point for many other metabolic pathways.

The overall process of all steps of glycolysis is:

Glucose+ 2 NAD+ + 2 Pi + 2 ADP

→ 2 pyruvate+ 2 NADH+ 2 ATP+ 2 H+ + 2 H2O

For a more detailed introduction into glycolysis, the reader might refer to the
review article of [305].

2.2.5.2 The Citric Acid Cycle

The citric acid cycle, also named tricarboxylic acid (TCA) cycle or Krebs cycle, is
important as an energy generator, and it is involved in the chemical conversion of
carbohydrates, fats and proteins into carbon dioxide and water. In eukaryotic cells,
the citric acid cycle takes place in the mitochondrial matrix. Pyruvate, which is the
end product of glycolysis, is transported from the cytosol into the mitochondrial ma-
trix. There it is transformed by the enzyme pyruvate dehydrogenase under addition
of Coenzyme A into acetyl-CoA and CO2. Coenzyme A carries a thiol group and
reacts with carboxylic acids to form thioesters, thus functioning as an acyl group
carrier. Acetyl-CoA is the primary substrate entering the citric acid cycle.

The citric acid cycle can be called the second step in respiration. The citric acid
cycle oxidizes acetyl-CoA to carbon dioxide, and produces energy carriers like ATP
and GTP (guanosin triphosphate, generated in animal cells) and molecules relevant
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to redox reactions, such as NADH. Beside that the intermediates of the citric acid
cycle have a big relevance as they are substrates for many other biosynthetic path-
ways, for example, the synthesis of several amino acids.

In a process called oxidative phosphorylation, the reducing equivalents that are
generated from TCA cycle activity are used by the electron transport chain to drive
the synthesis of ATP. For this, the protons and electrons from NADH are transported
at the mitochondrial inner membrane. The resultant potential across the membrane
is used to drive ATP synthesis.

2.2.5.3 The Oxidative Pentose Phosphate Pathway

The oxidative pentose phosphate pathway (OPPP) has the role to produce the re-
ductant NADPH and metabolic intermediates for several biosynthetic pathways in-
cluding synthesis of nucleotides, aromatic amino acids, and phenylpropanoids. In
most cells, the OPPP takes place in the cytosol, but in plants it is mainly localized in
plastids. In plants, NADPH is also synthesized by photosynthesis, the OPPP is only
essential for nonphotosynthetic cells.

The overall sum reaction of oxidative pentose phosphate pathway is:

3 glucose-6-phosphate+ 6 NADP+ → 6 NADPH+ 6 H+

+ 2 fructose-6-phosphate+ glycerinaldehyde-3-phosphate+ 3 CO2

For a better understanding of the role of OPPP, the review of [214] is suggested.

2.2.5.4 Fatty Acid Synthesis

Fatty acids are usually synthesized in the cytosol. However, in plants their syn-
thesis also takes place in the chloroplast stroma in photosynthetically active cells.
Fatty acids constitute an energy storage form, but also play an important role in cell
structure as a membrane compound. Storage lipids are formed by esterification of
glycerol with up to three fatty acids.

Fatty acids are synthesized from acetyl-CoA, which in eukaryotic cells is syn-
thesized in the mitochondrion, and thus has to be transported to the cytosol in order
to be available for fatty acid synthesis. This is achieved by exporting citrate to the
cytosol and cleaving it into oxalacetate and acetyl-CoA.

2.2.6 Metabolic Networks

The functions of a living cell are regulated by different networks of interacting bio-
chemical components. How these molecules are connected to each other and what
are their influences on the activity of each of the reactions under diverse physiologi-
cal conditions is a central issue in understanding cellular organization. As mentioned



2 Biochemical Fundamentals 31

Fig. 2.9 Schematic view of a
metabolic network. The
nodes in the network are the
metabolites and the edges
between them are the
enzymes. The figure was
created using the software
VANTED (Visualization and
Analysis of Networks
containing Experimental
Data) [177]

before, the metabolic pathways can be connected to each other and produce starting
substrates or intermediates for other metabolic pathways. All the pathways together
form a large metabolic network. This metabolic network comprises the chemical
reactions of metabolism as well as the regulatory interactions that guide these reac-
tions. Figure 2.9 shows a major component of the metabolic network in the model
plant Arabidopsis thaliana.

2.2.7 Regulation of Metabolism

A cell contains a large number of molecules. To ensure that every molecule is pro-
duced in the correct amounts at the time required, the cell must have a control device
for their production and consumption. Metabolism is regulated through several fac-
tors, which can be both source-based and environment-based (temperature, light).
In addition metabolism also depends on the developmental stage of the organism
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as well as the tissue function. This means that the current needs of the cell influ-
ences the metabolism. In the simplest case, the regulation of a metabolic reaction is
achieved by controlling two issues: (1) the availability of enzymes or (2) the activity
of the enzyme. More complicated mechanisms of metabolic regulation comprise,
but are not limited to, redox regulation, allosteric regulation, and feedback mecha-
nisms.

2.3 Gene Expression

Gene expression is the mechanism by which proteins are produced from DNA (de-
oxyribonucleic acid). The main role of DNA in the cell is the storage of long-term
information. DNA contains literally the information needed to construct and main-
tain all components of cells, as well as to mediate all regulatory processes. DNA is
a molecule composed of a chain of four different types of nucleotides (also called
bases) named adenine (A), thymine (T), guanine (G), and cytosine (C). DNA has a
double helix structure and each strand runs opposite to the other which makes them
anti-parallel. The backbone of the DNA consists of the sugar ribose and phosphate
groups.

Different parts of DNA chain have various roles. The DNA segments that carry
the genetic information are called genes. Other segments of DNA sequences have
structural purposes, or are involved in regulating the use of this genetic information.

The whole process of gene expression can be simply divided into two major
stages: transcription and translation (see Fig. 2.10).

2.3.1 Transcription

By transcription, RNA is generated from DNA. RNA is the abbreviation of ribonu-
cleic acid, which is a single stranded long chain of nucleotides. Instead of the base
thymine it contains the base uracil (U).

Transcription is the process of the transfer of genetic information from the
archival copy of DNA to RNA. The gene sequence is copied to produce a com-
plementary nucleotide RNA strand called messenger RNA (mRNA), as it carries a
genetic message from the DNA to the protein-synthesizing machinery (ribosomes)
of the cell.

Transcription is a highly regulated process which is guided by the enzyme RNA
polymerase. Transcription is regulated by transcription factors which suppress or
promote binding of the RNA polymerase onto a specific DNA sequence. Transcrip-
tion factors are short protein sequences and affect the transcription by binding to
DNA.

2.3.2 Translation

Translation is the second large stage in gene expression. In this stage peptides, that
is, amino acid chains, are created by decoding the information contained in the
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Fig. 2.10 Basic steps of gene
expression. This is divided
into two phases, transcription
and translation. In
transcription, double stranded
DNA is converted in to a
single stranded RNA. In
translation, the RNA enters
the ribosome, where it
encounters the
complementary codon of
tRNA (transfer RNA) that
carries the amino acid. Amino
acids then connect with each
other to create a peptide chain
which is called protein

mRNA. It is mediated by the ribosomes which are located in the cytosol. This pro-
cess uses an mRNA sequence as a template to guide the synthesis of a chain of
amino acids that form a protein. In this process, the tRNA (transport RNA) car-
rying one amino acid per molecule is transported to a protein complex called the
ribosome. In the ribosome, the tRNA binds specifically to a triplet of three mRNA
nucleotides, which is called the codon. This is mediated by the fact that each tRNA
contains an anticodon that matches a specific codon. The amino acids carried by the
tRNA are joined together as a chain according to the codon chain. The polypeptide
chain is converted into a three-dimensional, functional protein by specific folding
procedures aided by chaperones. Furthermore, different or identical proteins can
bind together to form protein complexes.

There are 43 = 64 different codon combinations possible with a triplet codon
of three nucleotides, but there are only 20 amino acids to code for. Thus, multiple
codons might be used to encode the same amino acid. Furthermore, in the mRNA
there is one start codon (AUG), which specifies the position where the peptide syn-
thesis starts, and three stop codons (UAA, UAG, or UGA), which specify the end of
peptide synthesis.
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2.3.3 Gene Regulation

While some housekeeping genes are expressed all of the time and in all cells, most
genes are turned on or off in a specific manner. These genes are specific to different
tasks and are only required at a specific time and in specific cell types. Furthermore,
some genes are expressed in certain tissues only at a certain developmental stage of
the organism.

For example, the arrival of a hormone may turn on (or off) certain genes in that
cell. So producing a protein at a wrong place or at a wrong time will disrupt the
whole mechanism. Genes are turned off by transcription factors if there is no need
for the protein that they encode or turned on when the environment changes and the
proteins are once again needed. These mechanisms prevent a waste of energy.

2.3.4 Gene Regulatory Networks

Gene (or genetic) regulatory networks (GRNs) regulate the interactions between
genes and more precisely the expression of genes in specific amounts and at a spe-
cific time and place. Very simplified, a GRN consists basically of a signaling path-
way, a target gene and gene products. The studies of GRN therefore are focused on
gene transcription to RNA, translation and protein formation as well as the interac-
tions of these processes and products.

GRNs can be divided into many types, but two of them are basic: transcription
factor network and gene expression network. The transcription factor network in-
volves the regulatory mechanism which affects the first step of gene expression: the
transcription of DNA into RNA. This network consist of transcription factor genes,
transcription factors, and of regulatory molecules which regulate the transcription
factor binding to a special DNA sequence called the promoter. The transcription fac-
tor network is regulated by external and cellular signals. Under gene expression, the
network is meant to produce the functional gene product. The mRNAs and proteins
are products of gene expression. These products can interact with each other as well
as with transcription factors and therefore belong to a gene regulatory network.

For further reading and understanding of GRNs and the challenges of investigat-
ing GRNs, there are several reviews like [13, 181] and [247].

2.4 Signal Transduction

A cell has to react to the changes taking place inside itself, in surrounding cells
and outside the organism. One of the most important functions of cell signaling
is to control and maintain a physiological balance (called homeostasis) within the
body. The reaction is controlled by handing over the signal to a receptor which leads
to reactions called signal transduction. Activation of different signaling pathways
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leads to diverse physiological responses, such as cell proliferation, cell death, cell
differentiation, and changes in metabolism.

Signals can be molecular as well as sensory in response to environmental changes
such as light, pressure and temperature. Molecular signals can be simple elements,
usually in the form of ions, complex inorganic as well as organic molecules. The
start signal is called the stimulus, effector or elicitor. The signals are received by
receptors specific to the signal and these receptors pass this message to a messenger.

There are many different signal transduction pathways which involve enzymatic
reactions to activate the correct response. Signaling pathways in cells interact with
each other, as there are many signals received at the same time. The signaling pro-
teins and secondary messengers inhibit or increase the signal transduction or gene
expression.

Signal transduction pathways are different depending on the signal and the re-
ceptor and usually consist of several steps of transferring the information. Usually,
one signal can mediate many reactions; this is called a signal-transduction cascade,
through which the response reactions can be regulated more precisely. In this pro-
cess, the signal is passed over from one signaling protein to another. Signal trans-
duction ends with a molecule which can activate the gene expression. This could be
a transcription factor, by which many genes can be activated at the same time.

The term signal transduction network refers to a complex of all reactions (includ-
ing interactions) in signaling from receptors to final targets that mediate the specific
gene expression.

One of the best known signaling transduction systems is the mitogen activated
protein kinase (MAPK) signaling pathway [85], which regulates many genes and
therefore is important for several cellular processes and development. The MAPK
functions as a cascade of kinases: one kinase phosphorylates (adds phosphate) the
next kinase in order to propagate the signal and the last kinase phosphorylates the
target protein.

In a cell there are four main groups of proteins involved in signal transduction:
protein kinases, protein phosphatases, guanosine triphosphatases, and adapter pro-
teins. Kinases and phosphatases regulate giving over the signal by adding or remov-
ing phosphate, respectively. The adapter proteins act as linkers or binders.

A clear understanding of the signal transduction pathways and the signal trans-
duction networks is hard to achieve, because there are many participants and
cross talk between the transduction pathways as well as between gene expres-
sion levels. The problem of understanding signaling pathways is well reviewed
by [102].

2.4.1 Hormones and Other Signaling Molecules

There are many internal and external signaling molecules, which belong to different
chemical groups. Hormones belong to signaling molecules, which are transported
from one cell to another. The main role of the hormones is to regulate the growth
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and development of an organism. Many hormones belong to the chemical group
of steroids, which is a very common group of signaling substances in mammals.
In plants, there are hormone like substances called phytohormones. Furthermore,
single elements like calcium or potassium play an important part of the cell signal-
ing system. Signaling with ions is usually based on changes in the cell’s electrical
potential and concentration of ions.

Most external signals can not penetrate the cell, these are typically large
molecules such as proteins, peptides and amines. Some signals which can penetrate
the cell are light, steroids, gases, some hydrophilic molecules, and ions.

2.4.2 Receptors

Receptors are proteins specialized to detect signals and are usually membrane
bound. Signals can enter the cell through the plasma membrane bound receptor pro-
teins, ion channels, diffusion, or by active transport through the plasma membrane
with the help of transport proteins.

The receptor usually gets modified by the signal and this conformation initiates
signal transduction. Receptors can generate a chemical signal inside the cell by in-
teracting with one or more proteins.

2.5 Problems

2.1 What is the role of mitochondria and plastids in a cell?

2.2 What is metabolism? Describe different categories of metabolism.

2.3 What is the role of metabolites and enzymes in a metabolic network?

2.4 How do enzymatic reactions take place?

2.5 What is described by the Michaelis-Menten equation?

2.6 What are common central metabolic pathways? Describe the role of central
metabolic pathways.

2.7 What are the processes that take place in a gene expression?

2.8 Describe in your own words the role that a receptor could play for metabolism.
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Chapter 3
Petri Nets

Wolfgang Reisig

Abstract This chapter introduces the basic notions and notations, as employed
in the rest of this book. This includes the distinct modeling of substances and reac-
tions, together with their logical connection. We explain the graphical representation
of Petri nets, as well as the “token flow mechanics”, representing dynamic behavior.
We show how sequential, alternative and concurrent occurrences of reactions are
modeled, including quantitative aspects of stoichiometric reactions. We present a
number of specific analysis techniques for Petri nets, including place invariants and
transition invariants, based on systems of linear equations. Further analysis tech-
niques such as traps and siphons exploit the graph-based structure of nets. The use
of Petri nets as a modeling- and analysis technique for biological process is illus-
trated by a fraction of the combined glucose and pentose phosphate pathway.

3.1 Introduction

In Sect. 3.2, we present the concepts of Petri nets, one by one, by means of an
evolving example. We finally arrive at a model of a nontrivial part of the glycolysis-
and the pentose phosphate pathway in erythrocytes. This example has been chosen
for readers not familiar with Petri nets at all, but familiar, to some extent, with
biochemical processes.

As Petri nets are an utterly intuitive formalism, engaging only a fairly small set
of concepts, this introductory example suffices for a good grasp of the principles of
Petri nets.

Section 3.3 explains the static structure of Petri nets and the general principles of
using distinguished components in adequate Petri net models of real systems.
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Based on Sect. 3.3, Sect. 3.4 describes how Petri nets are used to model dynamic
behavior.

A faithful model of a system can be used to predict properties of the system
from consequences drawn out of the model. Section 3.5 describes those techniques,
mainly based on linear-algebraic arguments.

Finally, Sect. 3.6 puts Petri nets into perspective of other modeling techniques
for systems biology.

3.2 An Introductory Example

We present the basic concepts of Petri nets, one by one, by means of a biologically
inspired example.

3.2.1 Models of Substances

Biological systems process chemical substances. In a Petri net model of such sys-
tems, a substance is depicted as a circle (called a place). For example, glucose is
a substance occurring in red blood cells; thus, a Petri net model of red blood cells
includes

where Gluc is just a shorthand for glucose. Likewise, ATP (adenosine triphosphate),
ADP (adenosine diphosphate) and G6P (glucose-6-phosphate) occur in red blood
cells, and are consequently depicted as

respectively.

3.2.2 Models of Reactions

Substances are processed in stoichiometric reactions. For example, Glucose and
ATP are turned into G6P and ADP. Stoichiometric reactions are usually written as
“equations”, for example,

Gluc+ ATP→G6P+ ADP (3.1)

for the above example. Here, all stoichiometric coefficients are equal to one, that
is, one mole of Gluc and one mole of ATP react to one mole of G6P and one mole
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of ADP. Such a reaction is in a Petri net depicted as a box (called a transition), for
example,

Hexokinase is the name of the enzyme that catalyzes this reaction. Here, we assume
that the enzyme is available in sufficient amount in the cell. In addition, a substance
required for a reaction is linked to the box by an ingoing arrow, such as

(3.2)

A substance occurring as a result of a reaction is likewise depicted, for example,

(3.3)

with an arrow going out of the box. The direction of arrows reflects the intuition
of substance flow, just as the direction of the arrow in (3.1). With (3.2) and (3.3),
we have seen the principles to represent equations such as (3.1): Just compose all
substances affected by the reaction. Thus, the Petri net representation of (3.1) is

(3.4)

3.2.3 Sequentially Composed Reactions

As a further, fairly trivial example, the reaction of phosphoglucose isomerase, that
is, the stoichiometric equation

GGP → F6P

is depicted in Petri nets as

(3.5)
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We observe that G6P, as produced in (3.4), is consumed in (3.5). Consequently,
(3.4) and (3.5) can be composed, resulting in

(3.6)

A graphical representation such as (3.6) not only gives structural information on
substances and reactions, but also provides quantitive aspects, as well as information
on states: In a state of the blood cell where one mole of Gluc and one mole of ATP
are available, (3.6) shows that eventually one mole of ADP and one mole of F6P
are produced. Information on states are represented as dots (called tokens) in places.
The state described above is in (3.6) depicted as

Hexokinase will occur in this state, yielding the intermediate state

and eventually the state
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Intuitively formulated, a reaction can occur if each arrow ending at the corre-
sponding box (transition) starts at a place that holds a token. Those tokens are re-
moved upon the reaction’s occurrence, and a new token is produced at each place
linked to the transition by an outgoing arrow.

3.2.4 Quantitative Aspects

Quantitative aspects are even more crucial in the example of the G6P_dehydroge-
nase reaction. Its stoichiometric equation reads

G6P+ 2 NADP+ → Ru5P+ 2NADPH.

This reaction requires two moles of NADP+ (nicotinamide adenine dinucleotide,
oxidized form) and produces two moles of NADPH (nicotinamide adenine dinu-
cleotide, reduced form). The corresponding Petri net representation is

(3.7)

(3.7) shows a state where the reaction may occur. Its occurrence results in

Intuitively formulated, an arrow is inscribed by the number of tokens “passing
through the arrow” upon the corresponding reaction’s occurrence.

3.2.5 Alternative Composition

On our way to integrate, all so far considered components into a description of a part
of the glycolysis and the pentose phosphate pathway, we observe that (3.5) and (3.7)
both require G6P as a resource for the occurrence of the corresponding reaction. The
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composition of (3.5) and (3.7) results in

(3.8)

In the depicted state, the token at G6P is a scarce resource, that can be consumed
either by Phosphoglucose_ isomerase, that is, t1, or by G6P_ dehydrogenase, t2.
Consequently, only one of these two reactions will occur, but not both of them.
Which one will eventually be chosen, is not represented in (3.8). The model de-
scribes nondeterministic choice in this respect.

3.2.6 Modeling the Interface

As we chose to model only a part of a pathway process, the model necessarily ex-
hibits an interface to the rest of the biological system. The interface consists of
chemical reactions that produce substances “from nowhere” and that dispose sub-
stances without leaving mark in the model. The Petri net model of interface reactions
is

respectively.

3.2.7 Putting it All Together

We have now seen all means necessary to understand an interesting part of the gly-
colysis and the pentose phosphate pathway in erythrocytes (red blood cells), as de-
picted in the net N1 of Fig. 3.1. As a new phenomenon, we see in N1 that sub-
stances [such as NADP+, NADPH, GSSG (oxidized gluathione) and GSH (reduced
glutathione)] may follow a cycle, that is, are repeatedly consumed and produced by
iterated occurrences of reactions.
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3.3 The Static Structure of Petri Nets

Section 3.2 has already shown all types of static components, as they can occur in
Petri nets. In this section, we just systematically repeat and generalize what they are
intended to be used in modeling concrete systems. Dynamic aspects will be detailed
in Sect. 3.4.

3.3.1 Places

A Petri net includes a set of places. Each place is depicted as a circle. Frequently, a
place is named, with different places carrying different names. In a Petri net model,
a place always represents a passive system component. Typically, a place is to store
items, to make items visible, or to represent a potentially reachable (local) state.
The example of Fig. 3.1 employs places to model (the presence of) signals. As
a signal is usually bound to a chemical substance, the structural similarity of the
substance/signal interpretation of places is very convenient.

3.3.2 Transitions

A Petri net includes a set of transitions. Each transition is depicted as a box. Fre-
quently, a transition is named, with different places and transitions carrying different

Fig. 3.1 Petri net N1, modeling a part of the glycolysis and the pentose phosphate pathway in
erythrocytes
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names. In a Petri net model, a transition always represents an active system compo-
nent. A transition typically produces, consumes, transports, or recombines passive
items. The example of Fig. 3.1 employs transitions to model chemical reactions.
Likewise useful are transitions that model the generation, combination and distribu-
tion of signals.

3.3.3 Arcs

Places and transitions of a Petri net are linked by directed arcs. Graphically, an arc
is depicted as an arrow. An arc never models a system component, but always an
abstract relationship between components. This relationship is frequently only in
the eye of the beholder. Typical examples include causal relationship, local vicinity,
immediate link. In the example of Fig. 3.1, an arc never links two places or two
transitions; in fact, an arc either starts at a place and ends at a transition, or vice versa
starts at a transition and ends at a place. This is neither coincidental nor coerced:
It is a structural regularity that inevitably arises whenever the modeling technique
of Petri nets is applied accordingly, that is, if passive and active components are
separated in a reasonable manner.

An arc may be given a weight, that is, an integer value. The role of arc weights
will become obvious later on.

3.3.4 Markings

A Petri net models the behavior of a system, as it proceeds stepwise from state to
state. A state of a system modeled as a Petri net N is a distribution of tokens on the
set P of places of the net, that is, a mapping

m : P →N

assigning each place p a number m(p) of tokens. In a graphical representation of a
Petri net, one usually depicts an initial state m0, drawing a black dot for each token.
As an example, the net N in Fig. 3.1 depicts an initial state m0 with

m0
(
NADP+

) = 2

m0(GSSG) = 1

m0(p) = 0 for all other places p

3.3.5 Static Net Structures

Summing up, a Petri net N can be written as

N = (P,T ,F,W,m0)
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with

• two finite sets P and T (“places” and “transitions”, respectively), constituting the
elements of N , that is, each element is either a place or a transition;

• a relation F ⊆ (P × T ) ∪ (T × P), the “flow relation” of N , including arcs,
shaped (p, t) or (t,p), (where p is a place and t is a transition);

• a mapping W : F →N, assigning each arc (x, y) an integer, its weight W(x,y);
• the initial marking m0 : P → N, assigning each place p its initial token load,

m0(p).

The graphical representation of N has been discussed in Sect. 3.2 already: Places,
transitions and arcs are depicted as circles, boxes, and arrows, respectively. Each
arrow is inscribed by its weight (with weight 1 usually not written explicitly). Each
place p is inscribed by m0(p) dots (“tokens”).

This completes the static structure of Petri net models. Dynamic behavior comes
on top of the static structure, and will be discussed in the sequel.

3.4 Dynamic Behavior of Petri Nets

A biochemical system evolves in a sequence of steps. A step converts a given state
into a new state upon the occurrence of a (chemical) reaction. A corresponding
Petri net models a state as a marking, and a step as an occurrence of a transition.
Sequences of steps describe the dynamic behavior of nets.

3.4.1 Enabled Transitions

A transition may be enabled in a given marking. At a marking m, in general more
than one transition t may exhibit the potential to occur. In technical terms, m enables
t iff each arc (p, t) from a place p to a transition t is weighted with a number
W(p, t) that does not exceed m(p). Shortly:

W(p, t)≤m(p) (3.9)

for each arc (p, t). As an example, the marking as given in (3.8) enables both tran-
sitions t1 and t2. In the net N0 of Fig. 3.1, the indicated marking only enables
t0 = generate_Gluc: This is due to the extreme case that no place p with an arc
(p, t0) exists. So, (3.9) is trivially fulfilled. Consequently, each marking enables t0.

3.4.2 Steps

To define steps, we start with a technicality: The arc weight W is extended to all
pairs (d, e) of elements of N , by

W(d, e)=
{

W(d, e), iff (d, e) ∈ F

0, otherwise
(3.10)



46 W. Reisig

Thus, W(d, e) = 0 in case there exists no arc from d to e. As an example,
in Fig. 3.1, W(Gluc,generate_Gluc) = 0. The idea of W(p, t) is to describe the
amount of tokens to be removed from a place p upon occurrence of transition t .
Correspondingly, W(t,p) is the number of tokens added to p upon t’s occurrence.

At a marking m of a net N , occurrence of an enabled transition t yields the
marking m′, defined for each place p of N by

m′(p)=m(p)−W(p, t)+W(t,p) (3.11)

As an example, occurrence of the (enabled) transition of (3.7) yields

Occurrence of generate_Gluc of Fig. 3.1 produces an additional token at Gluc.
For two markings m, m′ and a transition t of a net N , if m enables t and occur-

rence of t at m yields m′ according to (3.11), the triple (m, t,m′), usually written

m
t−→m′

is a step of N . As an example, the marking as indicated in (3.8) enables the tran-
sitions t1 and t2. Occurrence of t1 yields a token on Ru5p, as well as two tokens at
NADPH.

3.4.3 Step Sequences and Reachable Markings

Starting at the initial marking m0 of a Petri net N , it is worthwhile to consider steps

mi−1
ti−→mi (i = 1,2, . . .) of N and to compose them to step sequences

m0
t1−→m1

t2−→m2
t3−→ · · · tn−→mn.

A marking m is reachable from the initial marking m0 in N , if such a step se-
quence exists, with m=mn.

Step sequences are not the only way to represent behavior of a Petri net: Fre-
quently, it is useful to explicitly represent the independence of transition occur-
rences. Details will be provided in Sect. 3.5.9.

3.4.4 The Role of Infinity

Notice that the set of reachable markings of a net N is in general infinite, though
N has only finitely many places. As an example, the net in Fig. 3.1 has infinitely
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many reachable markings. This happens whenever the net has at least one place, p,
where the number of tokens may grow without bound. In Fig. 3.1, this is the place
Gluc. This in turn is due to the transition generate_Gluc. As discussed above, this
transition is enabled at each marking. Its occurrence adds a further token to Gluc.

The amount of substance or of signals in a component of a real biological system
has an upper bound, of course. So, one may expect its counterpart in a model, that is,
a place p, to correspondingly exhibit an upper bound for tokens. This contradicts the
above mentioned properties of Gluc. The reason for this mismatch is the artificial
interface given by the transition generate_Gluc. In the model N1 of Fig. 3.1, this
transition comes without any ingoing arcs, and thus may occur in every marking. In
the real world, the system is embedded into a larger environment, that would prevent
the corresponding chemical reaction to occur too often. This explains why the net
N1 provides a faithful model, in deed.

3.5 Analysis Techniques for Petri Nets

3.5.1 Important Properties

Models are made to support better understanding of a system. To this end, we com-
pute properties and draw consequences in the model, that would reflect interesting
properties of the system. Typical such properties of a Petri net model N concerns
questions such as

• Is the overall amount of tokens on N always the same?
• Can the initial marking be re-gained after some steps?
• Is it guaranteed that the initial marking will eventually be reached again?
• Is the token load on place p limited by a number, n, for each reachable marking?
• Is there always at least one token on one of the places p1, . . . , pn?
• Does each reachable marking enable at least one transition?
• Is it possible for each reachable marking to continue such that eventually transi-

tion t occurs?

Many of those questions can be solved, at least in part (i.e., with necessary or
sufficient conditions to answer them), by help of linear algebra: Each Petri net N

is assigned a matrix N , with numerical entries. This matrix gives rise to equational
systems

N · x = 0 and NT · x = 0

Here, NT denotes the transposition of the matrix N . (Literature frequently em-
ploys “C” instead of “N”.) Solutions of those equational systems provide nontrivial
insight into the behavior of N , and help answer the above question.

In order to construct the matrix N of a Petri net N , we have to assume an order
on the set of places, and on the set of transitions. The order is naturally given in
case the places are indexed, that is, named p1, . . . , pn, or are named a, b, c, . . . . If
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no such order is visible (such as in N1), it is usually given by the order of writing
the elements down. Choice of the order is entirely irrelevant. But once fixed, it
should be retained. In chemistry and biochemistry, this incidence matrix is called
“stoichiometry matrix”. The equation systems describe flux and substance balance
in the steady state.

3.5.2 The Linear Algebra of Steps

Now assume a Petri net N with places P = {p1, . . . , pk}, ordered along the indices
1, . . . , k. Then each marking M : P →N can be written as the column vector

M =
⎛

⎜
⎝

a1
...

ak

⎞

⎟
⎠

with ai =M(pi) for i = 1, . . . , k. Hence, the ith entry is the number of tokens on
the ith place (i = 1, . . . , k).

Correspondingly, we assign each transition t a column vector, t . From (3.11),

we can easily deduce that for each step m
t−→ m′, and each place p, the amount of

tokens added to p or removed from p, is W(p, t)−W(t,p), hence is independent
of m: The update at p is constant for all occurrences of t . So we can assign each
transition t and each place p the effect of t’s occurrence upon p; given by

t(p)=def W(t,p)−W(p, t)

for all places p. This defines the update vector t of t , given by

t =
⎛

⎜
⎝

t(p1)
...

t(pk)

⎞

⎟
⎠

Applying the usual addition of vectors, for a step M
t−→M ′ apparently holds

M ′ =M + t

3.5.3 The Matrix of a Petri Net

Now assume also the transitions t1, . . . , tl of a net N are ordered, for example, ac-
cording to their index. Together with the ordered places p1, . . . , pk (as discussed
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Fig. 3.2 A technical example
of a Petri net, N2

Fig. 3.3 Matrix N2 and
initial marking m0 of N2 in
Fig. 3.2

in 3.5.2), the vectors ti define the matrix N of N , defined by

N =def (t1, . . . , tl)=
⎛

⎜
⎝

z11 . . . zl1
...

...

z1k . . . zlk

⎞

⎟
⎠

with

zij =W(tj ,pi)−W(pi, tj )

(Literature frequently writes “C” instead of “N”.) By construction of this matrix,

for each step M
tj−→M ′ and each place pi holds:

M ′(pi)=M(pi)+N(i, j)

Figure 3.2 shows a small example of a Petri net, N1, based on the equation sys-
tem. Figure 3.3 shows its matrix N1, and its initial marking, m0. Entries with value
zero are skipped.

3.5.4 Place Invariants

We are now interested in solutions of the homogeneous linear equational system

NT · x = 0 (3.12)

where NT denotes the transposed matrix of N . A solution n= (n1, . . . , nk) of (3.12)
returns a number ni for each place pi (i = 1, . . . , k). For example, Fig. 3.4 shows a
solution i of (3.12) for the net N2 in Fig. 3.2. For reasons to become obvious later,
a solution of (3.12) is called a place invariant of N .
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Fig. 3.4 Solution i of
x ·N2 = 0, and solutions j1,
j2 of N2 · x = 0

Place invariants (P-invariants) n of a net N give rise to deep-rooted properties
of N . Those properties are based on the constant of n, defined as the number

n1 ·m0(p1)+ · · · + nk ·m0(pk)

that is, the sum of tokens on all places in the initial marking m0, where the tokens
on place pi are “weighted” by ni . For the example N2 of Fig. 3.2 with its initial
marking m0 and its place invariant i of Fig. 3.3, we get

iA ·m0(A)+ iB ·m0(B)+ iC ·m0(C)+ iD ·m0(D)

= 1 · 0+ 1 · 1+ 1 · 1+ 2 · 0= 2 (3.13)

Hence, the constant of i is 2.
The decisive aspect of a place invariant i is the observation that its constant re-

mains when in (3.13) the initial marking m0 is replaced by any reachable marking.
For example, in N2 of Fig. 3.2, the marking m with m(D) = 2 and m(p) = 0 for
all other places p is reachable. In fact, upon replacing m0 in (3.13) by m, we gain
1 · 0+ 1 · 0+ 1 · 0+ 2 · 1= 2.

The above observations are compiled in the following theorem.

Theorem 3.1 Let N be a Petri net with places p1, . . . , pk , and let n= (n1, . . . , nk)

be a solution of x ·N = 0. Furthermore, let c=def n1 ·m0(p1)+ · · · + nk ·m0(pk).
Then for each reachable marking m of N holds: n1 ·m(p1)+ · · · + nk ·m(pk)= c.

The reader may convince himself that the net N1 in Fig. 3.1 has three place
invariants. According to Theorem 3.1, they imply for each reachable marking m:

m(ATP)+m(ADP) = 1

m
(
NADP+

)+m(NADPH) = 2

2 ·m(GSSG)+m(GSH) = 2

In the biological interpretation, P-invariants correspond to substance conserva-
tion. For closed systems, a biochemical Petri net should be CPI.
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3.5.5 Transition Invariants

As a symmetrical counterpart to (3.12), we now consider solutions of the equational
system

N · x = 0 (3.14)

A solution m = (m1, . . . ,ml) of (3.14) returns a number mi for each transition
ti (i = 1, . . . , k). For example, Fig. 3.4 shows two solutions, j1 and j2 of (3.14) for
the net N2 in Fig. 3.2. For reasons to become obvious later, a solution of (3.14) is
called a transition invariant of N .

Transition invariants (T-invariants) give rise to behavioral properties. They are
based on the counting vector of step sequences

σ : m0
u1−→m1

u2−→m2
u3−→ . . .

un−→mn (3.15)

of a net N . Each ui is one of the transitions t1, . . . , tl . For example, with m0 the
initial marking of N in Fig. 3.2, and m1, . . . ,m6 obvious from context,

σ : m0
e−→m1

a−→m2
b−→m3

d−→m4
a−→m5

c−→m6 (3.16)

is a step sequence of N . With t1, . . . , tl the transition of a net N , the counting vec-
tor c = (c1, . . . , cl) of an occurrence sequence σ of N returns the number ci of
occurrences of ti in σ . For instance,

c= (2,1,1,1,1) (3.17)

is the counting vector of (3.16) (with the canonical order a, . . . ,e on the transitions).
An occurrence sequence such as (3.15) reproduces the initial marking, if

mn =m0. For example, (3.16) reproduces the initial marking. The following theo-
rem relates occurrence sequences that reproduce their initial marking with solutions
of N · x = 0:

Theorem 3.2 Let N be a Petri net and let m be a solution of N · x = 0. If m is
the counting vector of an occurrence sequence σ of N , then σ reproduces its initial
marking.

As an example, (3.17) solves N2 · x = 0: (3.17) is the sum j1 + j2 of the two
transition invariants j1 and j2 in Fig. 3.4. The net N1 in Fig. 3.1 has no transition
invariant: Occurrence of transition Hexokinase moves the token from ATP to ADP.
There is no way to move it back. Let N ′

1 be derived from N1 by deleting the two
places ATP and ADP. The net N ′

1 has two transition invariants, of which all other
transition invariants can be gained by linear combination. We leave details as an
exercise to the reader.

T-invariants are important for the analysis of biochemical Petri nets. First, the
Petri net should be CTI because a transition which is not member of at least one
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T-invariant does not contribute to the net behavior, and can, thus, be removed. Sec-
ond, T-invariants can be interpreted as basic pathways and should, therefore, have a
biological meaning. Otherwise, in most cases a modeling error could be the reason
for a wrong pathway, or, in rare cases, a new pathway was detected. Third, the tran-
sitions of a T-invariant and the places in between form a subnet exhibiting a specific
biological function. Thus, the computation of T-invariants provides an automatic
network decomposition. More details are described in Chap. 4. All these invariants
can be used to validate the model.

3.5.6 Traps

A trap of a Petri net N is a subset Q of the places of N , which is embedded into
N in a regular way: Each transition that removes tokens from some places of Q,
also contributes a token to Q. For example, the two places B and D of the net N2
of Fig. 3.2 form a trap: Transitions a, d and e remove tokens from B or D, but
each of them also contributes tokens to B or D. This structural regularity implies the
preservation of at least one token: If at least one place of a trap Q carries initially a
token, then at each reachable marking at least one place of Q has a token.

3.5.7 Syphons

Arguments on backward/forward symmetry imply the definition of syphons:
A syphon of a Petri net N is a subset Q of its places, where each transition that
contributes a token to Q also removes a token from Q. For example, the three
places A, B and D of Fig. 3.2 form a syphon: Occurrence of one of the transitions
a, b, d and e contributes a token to A, B or D. Each of the transition coincidently
removes a token from one of the places A, B or D. This structural regularity implies
the preservation of emptiness: Once empty, a syphon never again gains a token. The
term “syphon” refers to the French version of a bottle with gas under pressure.

3.5.8 The Marking Graph

The marking graph of a Petri net N has the reachable markings of N as its vertices,
and the (reachable) steps of N as its edges. Figure 3.5 shows the marking graph of
the net N2 in Fig. 3.2. The marking graph of N is infinite in case infinitely many
markings are reachable in N . In finite case, the graph can grow rather large, in fact
more than exponentially in the size of the net. A lot of properties of a Petri net N

can be decided by help of its marking graph, G:

• N terminates, that is, each step sequence eventually reaches a marking that en-
ables no transition: G is finite and cycle-free.
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Fig. 3.5 The marking graph
of the net N2 in Fig. 3.2

• N diverges, that is, each reachable marking enables at least one transition: At
each vertex of G starts an edge.

• N is live, that is, for each reachable marking m and each transition t , a marking
m′ is reachable from m that enables t : At each node of G, for each transition t

starts a path with a t-inscribed edge.
• N is weakly live, that is, to each transition t there exists a reachable marking m

that enables t : Each t is the inscription of at least one edge.
• N is bounded, that is, for some number b, no reachable marking has more than b

tokens at any place: G is finite.
• N is reversible, that is, the initial marking m0 is reachable from each reachable

marking m: G is strongly connected (i.e., each node is connected to each other
node along some path).

3.5.9 Concurrent Runs

As mentioned in Sect. 3.4.3 already, the step sequences and their representation in
the marking graph of a net N are complemented by means to explicitly represent
concurrent (i.e., mutually independent) occurrences of transitions. As an example,
the net N3 in Fig. 3.6 extends N2 of Fig. 3.2. it is easy to see that a marking M is
reachable in N3 with tokens on both places A and E. Hence, the transitions b, c and f
are enabled. Observe that b and c compete for the token at A: Only one of b or c will
occur. However, f will occur in any case. This gives rise to two different concurrent
runs, as depicted in Fig. 3.7. We refrain from formal arguments here, and appeal to
the reader’s intuition.

3.6 Petri Nets as a Modeling Technique for Systems Biology

Here, we provide evidence why Petri nets are a particularly good choice as a mod-
eling technique for systems biology.

Dynamic systems can be modeled in many different ways. For example, physics
models dynamic systems behavior as functions in n-dimensional spaces over real
numbers. One axis denotes the flow of time, all other axes represent the values
of variables, changing during the flow of time. Petri nets follow a fundamentally
different approach, emphasizing fundamentally different aspects.
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Fig. 3.6 Net N3, an
extension of N2 in Fig. 3.2

Fig. 3.7 Two concurrent runs of N3 (Fig. 3.6)

3.6.1 Discrete Steps

First of all, Petri nets describe dynamic behavior in discrete steps. We will not
launch into the discussion whether or not the “real” world proceeds continuously or
in discrete steps. A model is a matter of utility, not of truth. And it has become fairly
clear that the assumption of discrete steps decisively supports the understanding and
intuition of systems biology. Stoichiometric equations are the most successful de-
scription technique for processes of system biology. The level of abstraction taken
by Petri net models exactly corresponds with the level of abstractions of stoichio-
metric equations. In a nutshell, Petri nets allow to formulate causal relationships
among stoichiometric equations.

3.6.2 Local Cause and Effect

A discrete step of a system, and in particular a biological system, never affects the
entire system. It is rather the presence of some locally bounded objects (such as
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chemical substances) and conditions (such as temperature and pressure) that cause
a step. The effect of a step, mostly a relocation and composition of substances, is
likewise locally bounded. Petri nets emphasize this aspect, limiting the cause and
effect of a transition to its surrounding places.

Even more important, the scope of a place p is strictly limited to the transitions
in its vicinity, that is, those that deliver new tokens to p and those that remove given
tokens from p.

3.6.3 Invariance of Substance

A (bio-) chemical step relocates and recombines a given amount of substances. It
never “creates” material from nowhere, nor does it dispose of material. Place in-
variants allow to trace the flow of substances. Arc weights balance the amount of
substance as represented by a token. A place p not belonging to any place invariant
is a strong indication that the model may be wrong (or the place has links to the sys-
tem’s environment, i.e., the system is open.): The amount of substance as modeled
by tokens on p may increase or decrease without bounds. In this context, it is in-
teresting to observe that Petri nets are reversible: Given a marking m′ that has been
reached by occurrence of transition t , it is easy to recompute the previous marking

m, that is, the entire step m
t−→ m′. This means that substances neither arise from

“nowhere” nor disappear to “nowhere”.

3.6.4 Other Models of Dynamic Systems

Any other model of dynamic behavior fails to properly address at least one of the
above-mentioned aspects. As mentioned in the introduction text of this section, dif-
ferential equations model continuous behavior, but not discrete steps. Any formal-
ism that resembles programming languages and employs assignment to program
variables such as

x := f (y)

does not limit the scope of variables (that would correspond to places) at all: A vari-
able can be addressed everywhere in the model. Furthermore, such formalisms lack
of any means that correspond to the “preservation of amount” as available by place
invariants. An assignment statement is in general not reversible: The old value of x

is lost after executing, for example, the assignment statement x := 1.

3.7 References and Tools

Literature on Petri nets has reached formidable numbers. This applies, to some ex-
tent, also to applications of Petri nets in systems biology. We recommend the inter-
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ested reader the Petri net portal

http://www.informatik.uni-hamburg.de/TGI/GI-Fachgruppe0.0.1

This portal offers good facilities to trace specific aspects. Furthermore, it offers up-
to-date information on recent developments of software tools that support any effort
of modeling and analyzing systems by means of Petri nets.

3.8 Problems

3.1 Let N3 be the net of Fig. 3.6. Construct

1. the matrix N3,
2. some place invariants,
3. some transition invariants,
4. a trap,
5. a siphon, and
6. the marking graph

of N3.

http://www.informatik.uni-hamburg.de/TGI/GI-Fachgruppe0.0.1
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Chapter 4
Discrete Modeling

Andrea Sackmann

Abstract A discrete Petri net (PN) considers only discrete objects, that is, its mark-
ing is specified by an integer number of tokens distributed over its places. This
chapter deals with model development and qualitative analysis of discrete PNs. Lat-
ter lays emphasis on the net’s invariants. Caused by the special usage of P-invariants
representing an anticoincidence, read arcs appear in the net, here given as loops. In
order to nevertheless base a sound consideration on the set of T-invariants, they are
processed to built feasible T-invariants. Their examination aims at a validation of
the net’s structure. For this purpose, initially MCT-sets are built on the set of feasi-
ble T-invariants. Subsequently, they may be clustered in T-clusters aiming at gaining
knowledge about the involved components and their relationships. In-/dependency
of involved processes can be verified. The sets of T-invariants may additionally serve
as basis of theoretical knockout analyses as given for instance through the Mauritius
maps.

4.1 Modeling Concepts

As given above by definitions in Chap. 3, Petri nets (PNs) are directed bipartite
graphs with two types of nodes, namely places and transitions. A net is called di-
screte PN, if it deals only with discrete objects, that is, its tokens can be specified by
integer values. Representing biological components by places and biological (re-)
actions by transitions, the underlying directed graph of a discrete PN descriptively
identifies the interactions between the components. Here, one important advantage
of PNs takes effect, namely the inherent possibility of incorporating different levels
of abstraction within one net. Consequently, biological processes can be modeled
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Fig. 4.1 An example network modeling electrolysis of water, that is, 2 H2O→ 2 H2 + O2. The
net shown on the left (on the right) illustrates a marking before (after) firing of transition t0

even if the mechanisms of all contained subprocesses are not completely under-
stood. The resulting net may benefit the user comprehension as there are a lot of
tools for visual representation as well as for simulation of PNs. An animation of
the token flow may provide an intuitive understanding of the net’s dynamic behav-
ior. Furthermore, the firm mathematical foundation of a PN finally enables a well-
structured net analysis. In the following, a brief introduction of concepts required
for the net analysis is given.

In discrete modeling, two main branches may be distinguished, namely a qual-
itative and a quantitative approach. The qualitative discrete PN is constituted by
the underlying graph which describes the components’ interactions as mentioned
above. Including information which quantifies these interactions, for instance, by
specifying reaction rates, leads to a quantitative PN. Figure 4.1 depicts a small PN
as an illustrating example how a metabolic reaction can be directly translated into a
PN. Here, the reactants of a considered stoichiometric equation are the pre-places of
a transition representing the chemical reaction and its post-places give the reaction
products.

As outlined in Fig. 4.1, the stoichiometric coefficients define the arc weights and
therefore, the tokens represent the quantity of the biological species (e.g., in mole).
Figure 4.1 can be read as: two moles of water (H2O) are decomposed into two
moles of hydrogen (H2) and one mole of oxygen (O2), that is, 2 H2O→ 2 H2+O2,
representing the electrolysis of water. In the case that the necessary stoichiometric
data is available, whole biological networks may be translated into PNs. The inter-
ested reader is referred to a corresponding example [211] introducing the sucrose
breakdown pathway in the potato tuber as a PN model. In the following, a more ge-
neral case is considered by discussing purely qualitative nets. In biological context,
a huge amount of qualitative data is available for example, due to high-throughput
techniques. Thus, this data may serve as a basis for modeling corresponding PNs
even if not all biological mechanisms are understood in detail. After validating the
consistency of the qualitative PN model, the PN can be extended by further available
information of the biological system. Including for example kinetic data would lead
to a hybrid or continuous PN, see [129] and Chaps. 6, 8, 13. Additionally taking
into account temporal information or probabilities leads to time PN or stochastic
PN, respectively (cf. related work below and Chap. 7 of this book).

In order to translate the information about components’ interactions into subnets,
they may be considered as basic logical statements, that is, the components are con-
nected by logical operators such as implication, conjunction, disjunction, and nega-
tion (cf. [327]). A transition’s pre-places represent preconditions whose fulfillment
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Table 4.1 Basic logical operators symbols

Symbol Meaning

⇒ Implication (if. . . then)

¬ Negation (NOT)

∧ Conjunction (AND)

Symbol Meaning

∨ Inclusive disjunction (OR)

∨̇ Exclusive disjunction (XOR)

Fig. 4.2 An example
network representing a
disjunction coupled
implication. Transitions t1
and t2 are in conflict, in the
considered marking only one
of them can actually fire, that
is, ATP⇒ (ADP∧ P ) ∨̇
(cAMP∧ PP)

causes the transition’s firing. This process leads to the fulfillment of the transition’s
post-conditions. Following this modeling methodology, different substructures are
distinguished. Table 4.1 recaps the logic symbols which are used in the following.
Transition t0 shown in Fig. 4.1 represents a conjunction coupled implication, that
is, 2 H2O ⇒ (2 H2 ∧ O2). Note that several pre- as well as several post-places of
a transition are linked among each other with a logical AND (because of the tran-
sition firing rule). In contrast, several post-transitions of a considered place are in
static conflict and hence, represent a disjunction (i.e., logical OR). If they are en-
abled under the same condition and only one of them can actually fire, they are in
dynamic conflict.

In fact, transitions t1 and t2 shown in Fig. 4.2 are in dynamic conflict since
place ATP is their common preplace and marked with only one token. The tran-
sitions represent different possibilities of ATP utilization. While t1 represents a
hydrolytic dephosphorylation splitting off one phosphate group of ATP, t2 stands
for the synthesis of cAMP from ATP by adenylyl cyclase based splitting of two
phosphate groups. The marking shown in Fig. 4.2 results in a nondeterministic be-
havior of the net since the transitions represent an exclusive disjunction, that is,
ATP⇒ (ADP∧ P) ∨̇ (cAMP∧ PP).

A logical negation is represented by ¬p0 = p1 and vice versa p0 = ¬p1. Ex-
tending this concept to more than two conditions, that is, places, the corresponding
subnet represents an anti-coincidence since the coincident marking of these places
is excluded, see places p0, p1 and p2 in Fig. 4.3 for which it holds p0 ∨̇ p1 ∨̇ p2.
This anti-coincidence represents a form of mutual exclusion [271]. Depending on
firing of transitions t0, t1 and t2, the depicted token circulates between the consid-
ered places. Since the weighted sum of tokens over these places is constant (here
equal to 1), p0, p1 and p2 form a P-invariant (cf. (4.1) below). Note that a P-
invariant whose weighted sum of tokens is greater than 1 may contain subsets of
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Fig. 4.3 Subnet representing an anticoincidence of places p0, p1 and p2. The token shown at p0
circulates only between these places by firing of transitions t0, t1 and t2. Matrix C is the incidence
matrix of the net

places being marked simultaneously. Thus, not each P-invariant involves mutual ex-
clusion among all its places. From a technical point of view, the places forming an
anti-coincidence can be considered as a kind of switcher whose state is indicated
by the current location of the token. In the context of a biological application, the
corresponding places may represent different possible states of a considered compo-
nent (e.g., a protein in different modifications each given by one place). To preserve
the P-invariant structure in Fig. 4.3, adjacent transitions t3 and t5 are connected
via read arcs, represented here by a loop, that is, by a bidirectional arrow. In this
way, places p0 and p2 constitute preconditions of transitions t3 and t5 but their fir-
ing does not remove the token from p0 and p2 (firing of a transition is considered
to be a timeless process). With respect to the read arcs, the disjunction springing
from p0 (and p2, respectively) is not uniquely exclusive or inclusive. Namely, while
p0 ⇒ p1 removes the token from p0 by firing of t0 and thereby is exclusive, t0
remains enabled subsequent to p0 ⇒ p3, that is, the firing of t3. Taking this into
account, such a kind of disjunction is denoted by p0 ⇒ (p1 ∨̇ (p3 ∨p1)) and analo-
gously, p2 ⇒ (p0 ∨̇ (p4∨p0)). Note that ∨ represents an inclusive disjunction, that
is, may be realized either as OR or as AND (cf. Table 4.1).

Beyond translating basic logical statements into subnets, there are other ap-
proaches bringing together mathematical logic and PN structures, see, for instance,
the PN model construction based on Boolean networks as introduced in [374] and
described in Chap. 5.

4.2 Qualitative Analysis

The sections below give an overview about qualitative analysis approaches. Chap-
ter 14 points out a further approach concerning discrete models by dealing with
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the network structure. Generally, qualitative analysis provides knowledge on the
involved components and may expose novel information about their relationships.
Novel information that may be utilized in view of a prediction of the network be-
havior may be rather obtained out of a quantitative analysis. A qualitative one may
serve as a basis of a model validation by checking the consistency of a nets structure.

Here, the emphasis is put on the analysis of the net’s invariants. Hence, the anal-
ysis is mainly based on the topology of the PN, in particular given in the form of the
incidence matrix C, that is, the (k × l)-matrix giving at entry cij the token change
at place pi by firing of transition tj where k = |P | and l = |T |, see Chap. 3. How-
ever, as specified below, in special cases, additionally the marking of the net has
to be taken into consideration. The approach presented here does not take into ac-
count quantitative information (often the considered qualitative PNs are ordinary
ones, that is, all arcs are weighted with one). Therefore, the analysis is based on
the T-invariants’ support instead of examining the firing frequency of their involved
transitions (see Sect. 4.4 below). As it will be explained in detail below, for an analy-
sis approach based on T-invariants the considered PN should be transition-bordered,
that is, in case that any place of the net has no pre- or post-transition, these should
be included representing the interface of the modeled system to its surroundings.

The decision about dynamic net properties is usually based on its reachability
graph (i.e., the graph containing as nodes all markings which are reachable from
the initial marking by firing of transitions). Thus, it is computationally expensive to
decide about them. Nevertheless, it should be mentioned that generally, liveness and
reversibility are dynamic properties (defined in Chap. 3) which are considered to be
important in the context of biological models [211]. A net is live for an initial mark-
ing m0 if no transition is or will become (after any firing sequence) permanently
unfirable (a dead transition). A net is reversible if the initial marking is reachable
(via a firing sequence) from each reachable marking.

4.3 P-invariants

As introduced in [219] a P-invariant is defined as a vector y ∈ Nk (where k = |P |)
satisfying the equation

CT · y = 0 (4.1)

where C denotes the incidence matrix. A P-invariant represents a set of places over
which the weighted sum of token is constant. Hence, in metabolic networks they
are commonly used to model substrate conservations, see, for instance, [407]. As
discussed above, they may also be utilized in their function representing an anti-
coincidence. In any case, a requirement for a P-invariant to contribute to the net’s
behavior, is that it is marked in the initial marking. Concerning biological systems,
these tokens are typically placed in the P-invariants in a way that the initial mark-
ing represents an inactive state [327], or a state considered to be the physiologically
normal one [328], respectively.
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A PN in which all places are included in a P-invariant is called to be covered by
P-invariants (CPI), that is, it holds:

∀ places pj ∈ P ∃ P-invariant y: (y)j = 0. (4.2)

According to the P-invariant’s definition, the weighted sum of tokens in a PN hold-
ing the CPI property is constant.

A trap is a set of places, whose all output transitions are also input transitions
of that set. Thus, a trap will not be empty of tokens if it contains tokens in the
initial marking. The other way around, a nonempty set of places, whose all input
transitions are also output transitions of that set, is called a siphon.1 A siphon can
not be marked with tokens again once there are no tokens in that set. A trap is called
maximal if it is not a proper subnet of any other trap and a siphon is called minimal if
it does not properly contain any other siphon. In case that the maximal trap in each
minimal deadlock is sufficiently marked, that is, it contains a place which carries
sufficiently many tokens so that all its post-transitions are enabled, then no dead
states are reachable in the model [370]. A dead state is a state in which no transition
can fire anymore. Assuming that the only structural traps and siphons of a given
net are its minimal P-invariants (which should be sufficiently marked in the initial
marking as discussed above), then the net won’t reach a dead state since at least the
transitions of the P-invariant may fire.

Considering again the PN shown in Fig. 4.3, as mentioned above, places p0, p1
and p2 form P-invariant

y1 = (1 1 1 0 0 ).

In view of initial marking m0 = (1 0 0 0 0 ), y1 contains a token (initially placed
at p0) which may circulate among the places of the P-invariant. This net does not
hold the CPI property and contains no other trap or siphon than y1.

4.4 T-invariants

A T-invariant is defined as a vector x ∈Nl (where l = |T |) satisfying the equation

C · x = 0 (4.3)

with C denoting the incidence matrix (definition introduced in [219]). A T-invariant
reproduces a given marking by firing of all its contained transitions (each the re-
quired number of times). Thus, the minimal T-invariants are considered to represent
the basic behavior of a PN [152, 153]. Returning again to the PN shown in Fig. 4.3,
its three minimal T-invariants are given as x1, x2 and x3 with:

x1 = (1 1 1 0 0 0 0 )T ,

x2 = (0 0 0 1 1 0 0 )T ,

x3 = (0 0 0 0 0 1 1 )T .

1Note that some authors term a siphon as a deadlock, cf. [370].
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All of these T-invariants are nontrivial. A trivial T-invariant comprises two transi-
tions which represent a reversible reaction in the net (split into forward and back-
ward reaction each given by one of these transitions), cf. [211]. In the considered ex-
ample, all transitions are contained in an invariant. Generally, this property of a PN is
called covered by T-invariants (CTI). The support of an invariant x is given as the set
of transitions being included in the invariant, that is, supp(x)= {ti ∈ T : (x)i = 0}.
Therefore and analogous to (4.2), a net is CTI , iff:

∀ transitions ti ∈ T ∃ T-invariant x : (x)i = 0

⇐⇒ ∀ transitions ti ∈ T ∃ T-invariant x : ti ∈ supp(x). (4.4)

Holding the CTI property ensures that each process represented by a particular tran-
sition appears as a part of the basic behavior of the net (given in the form of T-
invariants). Thus, CTI is considered to be an important property in context of biolo-
gical PN application and analysis (cf. Chap. 10 of this book). In case that a PN turns
out to not fulfill the CTI property, the transitions not included in invariants should
be examined to check if there are, for example, unwanted token accumulations in
the net. Avoiding net behavior like that, the net architecture may be rearranged,2 so
that a net is built which is covered by T-invariants [208, 327].

4.4.1 Feasible T-invariants

Note that the connections via read arcs given by loops are not considered in the
incidence matrix and thus, they are not considered in calculating the invariants (cf.
definition in 4.3 of Chap. 3). There are approaches transforming PNs including loops
into pure ones but precondition for this transformation is an unequal weight of arcs
forming a loop [220], which does not hold for nets containing read arcs as the exam-
ple net presented in Fig. 4.3. Here, transitions t3 and t5 are consequently represented
as input transitions in the incidence matrix and the precondition given by places p0
and p2 are not taken into account, compare incidence matrix C as given in Fig. 4.3.
With regard to the calculation of T-invariants in PNs with read arcs, the concept of
feasible T-invariants is introduced [327]. Accordingly, a T-invariant is nonfeasible
iff one of its transitions is connected via a read arc with a place neither being marked
in the initial marking nor is marked by firing of another transition within the consid-
ered invariant. Thus, in the PN shown in Fig. 4.3, transition t3 is not affected by this
issue since p0 is marked in the initial marking. Whereas minimal T-invariant x3 is
nonfeasible (as a firing sequence in respect of given marking m0) since it contains
t5 without containing any transition providing empty p2 with a token, namely t1. In
order to get feasible T-invariants, the set of minimal T-invariants is processed. Ac-
cording to this approach [327], a processing step creates new invariants by joining a

2For example, a place-bordered net can’t be CTI. Therefore, it is demanded above that the net is
transition-bordered.
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nonfeasible one with all invariants containing transitions which provide token at the
critical place.

To summarize that in a well-structured way, consider a PN with l transitions, i.e.
|T | = l, with k places, that is, |P | = k, and with m minimal T-invariants xi , that is,
|X| = m. (xi)j denotes the j th entry of xi , that is, (xi)j refers to transition tj and
(m0)n refers to the initial marking of place pn. Then it holds:

a T-invariant xi is nonfeasible iff

∃j ∈ {1, . . . , l}: (xi)j = 0 with

∃n ∈ {1, . . . , k}: •tj � pn ∈ t•j : with (m0)n = 0 and

∀o ∈ {1, . . . , l} with •to � pn ∈ t•o : (xi)o = 0. (4.5)

Here, transition tj is connected via a read arc with place pn from which to is a post-
transition. Considered T-invariant xi contains tj but not to. In this case, add index
i of the nonfeasible invariant of (4.5) in a (formerly empty) set X−. Invariants xi

are combined with invariants xq each containing a transition tr providing a token
at place pn (see (4.5) and (4.6)). Count the number of newly generated feasible
T-invariants by c

for q = 1, . . . ,m: if ∃r ∈ {1, . . . , l} with
(•

tr � pn ∈ t•j
)

and
(
(xq)r = 0

):
c= c+ 1

xm+c = xi + xq

end for. (4.6)

Let X′ denote the resulting set of feasible T-invariants. X′ is built by applying (4.6)
to all i from (4.5), resulting in:

X′ = {
xi ∈X : i /∈X−}∪ {xm+d ∀d = 1, . . . , c}. (4.7)

Paraphrasing, X′ is the union of minimal (already feasible) T-invariants with newly
formed, that is, joint, (formerly non-feasible) T-invariants.

In a PN utilizing substructures such as P-invariants representing anticoincidences
as discussed above, the processing generating feasible T-invariants aims to bridge
the read arc connection which is not realized in the incidence matrix (which the
T-invariants’ calculation is based on). Thus, discussing such a PN in a biological
context, only the feasible T-invariants may represent pathways, or transduction paths
from a signal to a cell response, or a regulatory loop, respectively.

Note that CTI is a property which ensures that for all nonfeasible T-invariants
xi there is an invariant xq as given in (4.6) (which contains a transition providing a
token at the critical place pn), compare (4.4). In other words, the assumption that
a net is CTI leads to the fact that the set of all minimal T-invariants can be trans-
formed to a set of T-invariants which all are feasible (as denoted in the Equations
above). Furthermore, CTI implies that the considered net also is covered by feasible
invariants of set X′ as specified in (4.7). As mentioned above, CTI is an important
property for biological PN models. In case that it holds, each process represented
by a transition takes place in a feasible T-invariant.
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According to the processing given in (4.5), (4.6), (4.7), the minimal T-invariants
of the example net in Fig. 4.3 lead to the following feasible invariants:

x1 = (1 1 1 0 0 0 0 )T ,

x2 = (0 0 0 1 1 0 0 )T ,

x4 = (1 1 1 0 0 1 1 )T .

Because of their combinatorial generation, the number of feasible T-invariants may
increase exponentially (since a nonfeasible one generates a new one with each in-
variant providing a token at the critical place). One possibility to avoid redundant
information within the set of feasible T-invariants is the formulation of biologically
motivated restrictions. For example, in a PN which models the iron homeostasis
process [328, 329] it makes sense to delete feasible invariants containing more than
one (of four possible) ways of iron uptake.

4.4.2 MCT-sets

One important step of the net validation of a model is the examination of the invari-
ants’ set [152], that is, first ensuring that the PN is CTI, and afterwards checking
the biological plausibility of its invariants. However, the set of T-invariants which
have to be evaluated may be very big, determined by the size and density of the
considered PN. In case that the considered set is too big, manual inspection of each
T-invariant would be indefensible. Thus, there are concepts facilitating this inves-
tigation. As a first step, maximal common transition sets (MCT-sets) [327] pool
transitions which occur always together with each other in the considered set of
T-invariants. Let X denote this set of minimal (or feasible [328]) T-invariants x.
A support-oriented grouping leads to sets ϑ of transitions holding

∀x ∈X: ϑ ⊆ supp(x) ∨̇ ϑ ∩ supp(x)= ∅. (4.8)

Maximizing these sets maxt ϑ ⊆ T gives the MCT-sets. The set of resulting MCT-
sets constitutes a partition of transition set T where each non-trivial MCT-set (means
each with a cardinality >1) represents a functional unit as a kind of building block
of the net [327]. Note that the MCT-sets are not necessarily connected, that is, may
contain transitions which are not adjacent via places. Depending on the biological
context, the transitions which are contained in a MCT-set may stand for reactions
which show a similar regulation pattern. Their adjacent places may show an expres-
sion behavior similar to each other.

Returning to the example PN shown in Fig. 4.3, the MCT-sets built based on its
feasible T-invariants x1, x2 and x4 are listed in Table 4.2.
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Table 4.2 The MCT-sets of
the PN shown in Fig. 4.3 MCT-set Contained transitions

1 t0, t1, t2

2 t3, t4

3 t5, t6

4.4.3 T-clusters

A further approach facilitating the investigation of the T-invariants is their classifica-
tion into functionally distinct clusters, T-clusters [143]. In order to structure the in-
variants in a clear way, first a distance matrix D is calculated. The distance measure
dij for two T-invariants xi and xj is defined as dij = 1− s(xi, xj ) where the Tani-
moto coefficient [19] serves as similarity measure s(xi, xj ), that is, two T-invariants
xi , xj have the distance measure:

dij = 1− s(xi, xj )= 1− |supp(xi)∩ supp(xj )|
|supp(xi)∪ supp(xj )| . (4.9)

Obviously, the resulting distance matrix is symmetric. Considering again the PN
shown in Fig. 4.3 whose feasible T-invariants x1, x2, and x4 are given above. Ac-
cording to (4.9), the distances between those invariants are:

d12 = 1− 0

5
= 1, d14 = 1− 3

5
= 0.4, d24 = 1− 0

7
= 1.

Based on the resulting distance matrix, it is possible to cluster the feasible
T-invariants of a considered PN. The agglomerative, hierarchical clustering algo-
rithms used for this purpose, such as UPGMA, merge in each iteration the two most
similar objects (i.e., T-invariants, or already built clusters, respectively). In order to
determine the distance between two objects, several methods may be applied. Ac-
cording to the UPGMA method the distance Δkl between two clusters Ck and Cl is
given by the average distance of all possible pairs of their contained invariants, that
is, by the equation

Δkl = 1

|Ck| · |Cl | ·
∑

xi∈Ck,xj∈Cl

dij . (4.10)

Generally, the algorithm terminates when all T-clusters are joined in one cluster.
This way of binary clustering results in an ordered sequence of partitions, that is, in a
dendrogram. Here, the T-invariants, are located at the leaves of the dendrogram. The
more similar two of them are (means the more transitions are contained in both of
them), the more proximal their branches are located to each other. The dendrogram
can be cut at any level to yield different clustering, that is, partitions, of the data.
Different cluster validity measures are discussed in [143] to assess the quality of a
clustering partition. The measure showing the best results is the Silhouette Width.
Note that in the same work also different similarity measures and different clustering
algorithms are compared.
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Fig. 4.4 Dendrogram of the
three feasible T-invariants of
the PN shown in Fig. 4.3

Table 4.3 Three example PNs. Their transitions are grouped into MCT-sets according to (4.8).
The numbers of MCT-sets given here refer to real partitions of T , that is, includes all trivial MCT-
sets. The nets’ T-invariants are clustered according to (4.9) and (4.10)

Number of Discussed
T-clusters

Presented in

Transitions MCT-sets T-invariants

57 24 85 10 [328]

42 22 102 15 [329]

88 40 107 34 [147]

Since the Tanimoto coefficient and the UPGMA method provide the best results
in many cases, they are introduced here. A dendrogram of the of the PN shown in
Fig. 4.3 is given in Fig. 4.4. In a next step, invariants x1 and x4 would build one
cluster (with ≤60% accordance within this cluster since their distance is d14 = 0.4
as calculated above). Obviously, applying this method to a PN as small as the con-
sidered example PN (with three T-invariants) is not needful. Several applications to
greater PNs with more transitions and more invariants can be found in the litera-
ture, see Table 4.3 for a comparison of three PNs. These nets should illustrate how
the approach facilitates the analysis. For instance, instead of examining 85 objects
(invariants) characterized by 57 elements (transitions), after applying the approach
only 10 objects (T-clusters) characterized by 24 elements (MCT-sets) are consid-
ered. How many nontrivial MCT-sets are built depends on the density of the net.
The number of considered T-clusters is determined by the cut of the dendrogram
(see above). This cut can be chosen by the user since there is no exact method to
measure/get a “best” cut. Often several cuts should be examined.

On closer examination of the T-clusters, dependency and independency of the
different processes can be verified. For instance, for the PN shown in Fig. 4.3, the
T-clusters as given in Fig. 4.4 prove that the processes given by MCT-set 3 depend
on those of MCT-set 1. Processes given by MCT-set 2 are independent of both,
compare Table 4.2. Obviously, in case of such a small net these conclusions can be
drawn directly from the net. In greater models, the manual inspection is not feasible
anymore, compare the PNs instanced in Table 4.3.

4.4.4 Mauritius Maps

Furthermore, in silico knockout analyses are possible based on the T-invariants
by excluding several transitions and investigating the remaining invariants [327].
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For this purpose, the concept of Mauritius maps is introduced [147]. From a bi-
ological viewpoint, it is interesting to know which parts of a considered sys-
tem will be affected by the knockout of a certain piece, for example, a re-
action. Or, vice versa it can be examined which reactions should be knocked
out to achieve a desired system behavior. Such kind of analysis can be worked
out by an theoretical approach in order to save the corresponding biological
experiments or in order to point out future experiments. Here, the usage of
a Mauritius maps representation facilitates an exhaustive knockout analysis.
This approach visualizes the dependencies of T-invariants in terms of a bi-
nary tree. By knocking out one transition, it is directly visible which part
of the tree is affected and which part works independently of this knockout.
A formal definition of Mauritius maps as well as the application to the case
study (i.e., the gene regulation in Duchenne Muscular Dystrophy) can be found
in [207].

4.5 Related Work

Besides the approaches based on PNs, dedicated methods have been developed in
order to model and analyze biochemical pathways. An example for a well estab-
lished concept are the elementary (flux) modes [348] being defined as vectors x

satisfying the equation C · x = 0 with the incidence matrix C of the underlying
directed graph. This approach is predominantly (but not only, cf. [32]) applied for
analyzing metabolic networks considered to be in steady state in order to analyze
them using methods derived from convex algebra [302]. Closely related to the con-
cept of elementary modes are the extreme pathways introduced in [342]. Consid-
ering the solution space of the given system of linear inequalities, that is, the sys-
tems C · x = 0 and x ≥ 0, the solution space is given by the corresponding convex
polyhedron. While the extreme pathways are the edges of this cone, all elementary
modes lay on the surface of the cone, including all its edges [291]. Thus, the ex-
treme pathways are a subset of the elementary modes. The concept of elementary
modes corresponds to the one of minimal T-invariants [427]. Also in the analysis of
elementary modes, classification methods are introduced. However, contrary to the
T-clusters, the resulting classes do not necessarily represent partitions, that is, one
elementary mode may occur in several classes [298]. The knockout experiments
mentioned above in the context of Mauritius maps are closely related to concepts
as minimal cut sets (MCS) [196] being defined as a minimal set of structural in-
terventions repressing a certain functionality specified by a deletion task (in form
of elementary modes) [194]. Further remarks to elementary mode analysis can be
found in Chap. 10; a current review to the topic is given, for instance, by [397]. The
concept of MCT-sets is analog to partially coupled metabolic fluxes as introduced in
[53]. The analysis about in-/dependencies of several processes based on MCT-sets
and T-clusters can be compared with the flux coupling analysis, see, for example,
[217]. Later one takes into account the coefficient of the corresponding process, that
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is, in terms of Petri nets it is not based on the support vector but on the Parikh vector
dealing with the firing number of each considered transition.

The above discussed types of Petri nets are all considered to include no temporal
information and as mentioned, firing of transitions is considered to be a timeless
process. Please note that there are several different Petri net types containing time
concepts which are associated either with places or with transitions in form of time
durations or time intervals. General surveys may be found in [88, 409], and biolog-
ical applications, for instance, in [39, 308].

The analysis approach described above is mainly based on the nets’ invariants.
Please note that there are different approaches developed in order to decrease the
computational complexity of the invariants’ calculation, see, for instance, decom-
positions of PNs [423, 424].

4.6 Software

There are a lot of different tools for editing, animating and analyzing PNs. Re-
views can be found, for instance, in [63, 276, 295]. The PNs presented here were
edited by Snoopy, analyzed by Charlie and the clustering of their invariants per-
formed by the Petri net Invariant Analyser (PInA), all three tools freely available
via http://www-dssz.informatik.tu-cottbus.de/. The visualization of the dendrogram
is done by WiDa—Wilmascope for Distance Analysis being freely available via
http://nwg.bic-gh.de/wida.

4.7 Problems

4.1 Build a PN including the following information:

1. p0 is marked with one token
2. p0 ⇒ p1 ∨̇ (p2 ∨ p1)

3. p1 ⇒ p0 ∨̇ ((p3 ∧ p4)∨ p0)

4. p3 ⇒ p2

Include output transitions for p2 and p4.

4.2 Calculate the minimal P-invariants for the PN built in Exercise 1 and decide
about mutual exclusion. Calculate the minimal and the feasible T-invariants. What
are the resulting MCT-sets?

4.3 Consider the sub-nets each formed by a feasible T-invariant calculated in Ex-
ercise 2. They are given by the contained transitions together with their adjacent
places. Compare the resulting sets of places (each denoted e.g., by a binary vector
zi ∈ {0,1}5 indicating per entry the presence or absence of the corresponding place)
with the four statements listed in Exercise 1.

http://www-dssz.informatik.tu-cottbus.de/
http://nwg.bic-gh.de/wida
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4.4 Build a PN including the following information:

1. p0 ⇒ p1 ∨̇ p2
2. p1 ⇒ p0 ∨̇ (p3 ∧ p4)

3. p3 ⇒ p2

Include output transitions for p2 and p4 and input transition for p0.

4.5 For the PN built in Exercise 4: Calculate minimal P-invariants as well as mini-
mal and the feasible T-invariants. Calculate the sets of places affected by respective
transitions of the feasible T-invariants analog to Exercise 3. Compare the two built
PNs based on the analysis results.



Chapter 5
Modeling Genetic Regulatory Networks

Richard Banks, Victor Khomenko,
and L. Jason Steggles

Abstract Cellular systems are regulated by complex genetic control structures
known as genetic regulatory networks (GRNs). In this chapter, we present a range
of practical techniques for qualitatively modeling and analyzing GRNs using Petri
nets. Our starting point is the well-known Boolean network approach, where regu-
latory entities (i.e., genes, proteins and environmental signals) are viewed abstractly
as binary switches. We present an approach for translating synchronous Boolean
networks into Petri net models and introduce the support tool GNAPN which au-
tomates model construction. We illustrate our techniques by modeling the GRN for
carbon stress response in Escherichia coli and, in particular, consider how exist-
ing Petri net techniques and tools can be used to understand and analyze such a
GRN model. While asynchronous GRN models are considered more realistic than
their synchronous counterparts, they often suffer from the problem of capturing
too much behavior. We investigate how techniques from asynchronous electronic
circuit design based on Signal Transition Graphs (STGs) and Speed-Independent
circuits can be used to address this, by identifying and refining conflicting behav-
ioral choices within a model. We illustrate these techniques by developing an asyn-
chronous model for the lysis–lysogeny switch in phage λ.

5.1 Introduction

The development and function of cellular systems is controlled by complex net-
works of interacting genes, proteins and metabolites referred to as genetic regula-
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tory networks (GRNs) [43]. In order to be able to understand and investigate the
complex behavior of GRNs, various formal modeling techniques have been pro-
posed, ranging from simple qualitative approaches, such as Boolean networks, to
detailed quantitative approaches based on differential equations or stochastic tech-
niques. Some of these techniques are described in this book; see also [175, 182, 343]
for an overview. While quantitative models can provide detailed results about the be-
havior of a GRN, the current lack of quantitative data concerning reaction rates, and
the noise associated with such data, means that the application of these methods is
restricted in practice. For this reason, qualitative modeling techniques have emerged
as an important first approach to documenting and understanding GRNs.

In this chapter, we present a range of practical techniques for qualitatively mod-
eling and analyzing GRNs using Petri nets. We take as our starting point the syn-
chronous Boolean network approach [4, 43], where regulatory entities (i.e., genes,
proteins, and environmental signals) are viewed abstractly as binary switches which
update their state together. We describe a systematic process for constructing Petri
net models from such synchronous Boolean networks based on using logic min-
imization [48] to extract concise logical descriptions of the fundamental relation-
ships between regulatory entities in a GRN. Often the information about a GRN
can be incomplete, and we explain how our modeling approach is able to cope with
this by using the nondeterminism associated with Petri nets. Our Petri net modeling
approach is fully supported by a purpose built software tool GNAPN (Genetic Net-
works as Petri Nets) [24]. GNAPN fully automates the model construction process
and allows the resulting models to be exported in a variety of Petri net file formats,
making them amenable to the wide range of available Petri net analysis tools [301].

We illustrate our modeling approach by presenting a detailed case study in which
a GRN for the carbon starvation stress response in the bacterium E. coli [159, 323]
is modeled and analyzed. Using the detailed data provided in [323], we construct a
qualitative Petri net model capturing the synchronous behavior of the given GRN.
This Petri net is then validated and analyzed using PEP [296], a standard Petri net
tool. In particular, we explain how well-known Petri net analysis techniques, such as
model checking [79], can be used in a biological context, and consider performing
biologically inspired mutant analysis to gain insights into our model.

Historically, the synchronous update semantics for Boolean networks has been
favored in the literature, since the resulting models have deterministic behavior and
are therefore easier to analyze and understand. However, the assumption of syn-
chronous updates can be argued to be biologically unrealistic [123, 390], which
leads to reservations about the results obtained from such models. Hence, the asyn-
chronous semantics seems to be more appropriate. However, asynchronous models
tend to have too rich behavior, not all of which is realizable in practice. This be-
havior also tends to be highly nondeterministic, that is, (nonconverging) choices are
common when choosing the next state.

It turns out that many such choices can be resolved either by assuming that the
environment of the biological system is slow (i.e., the system always has enough
time to react to its changes), or by using knowledge of the relative speeds of chem-
ical reactions. Therefore, in practice the behavior has far less nondeterminism than



5 Modeling Genetic Regulatory Networks 75

such asynchronous models suggest. (This may explain why synchronous Boolean
networks, which are always deterministic, were often favored over asynchronous
ones, in spite of synchronous updates being biologically unrealistic.)

We consider how Petri net techniques from asynchronous circuit design [84]
can be used to develop realistic asynchronous models of GRNs. We introduce the
Petri net modeling formalism of Signal Transition Graphs (STGs) [75, 84, 325],
and describe associated techniques for developing Speed-Independent (SI) circuits
[84, 268]. In particular, we see how identifying choices within a model that vio-
late the SI property highlight candidate points for refinement. We explain how these
choices can be refined by adding information about the environment and relative
reaction rates to the model using a firing order enforcement transformation.

We illustrate our STG modeling approach by considering a case study in which
we develop an asynchronous model of the GRN controlling the switch between the
lysogeny and lysis cycles in phage λ [289, 311]. We begin by constructing an STG
model based on the Boolean network presented in [390]. We then refine it by finding
the points where this STG violates the SI property and appropriately resolving the
corresponding conflicts by making assumptions about the relative rates of reactions.
We also see how some violations of SI highlight the key stochastic choice between
lysogeny and lysis modes; this choice is not resolved and remains in the final model.
The case study makes use of the STG support tool PETRIFY [84] and demonstrates
its practical role in asynchronous model development.

The chapter is organized as follows. In Sect. 5.2, we introduce an approach for
systematically developing qualitative Petri net models of GRNs from synchronous
Boolean networks. We illustrate this approach with a case study which highlights
how Petri net techniques can be used to understand and analyze a synchronous
GRN model of the carbon stress response in E. coli. In Sect. 5.3, we consider
how techniques from asynchronous circuit design can be applied to develop real-
istic asynchronous models of GRNs. We illustrate these techniques by developing
an asynchronous GRN model of the lysogeny–lysis switch in phage λ. In Sect. 5.4,
we briefly consider related work and give pointers for further reading. Then, in
Sect. 5.5 we summarize the techniques and results presented in this chapter. Finally,
in Sect. 5.6 we provide some instructive exercises for the interested reader.

5.2 Synchronous Models of GRNs

In this section, we present an approach for constructing qualitative Petri net mod-
els of GRNs (see [373, 374]) and introduce the associated support tool GNAPN
[24, 374]. We take as our starting point a synchronous Boolean network (see [4, 43])
description of a GRN, and then extract from it a compact logical description using
logic minimization [48]. We then directly translate this logical description into ap-
propriate Petri net control structures which capture the GRN’s synchronous behav-
ior. We illustrate the above approach by modeling and analyzing the GRN underly-
ing the carbon stress response in E. coli [159, 323].
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Fig. 5.1 A simple example of a Boolean network with defining truth tables for the next-state
functions of the entities, where [gi ] represents the next state of entity gi

Recall that a Boolean network [4, 43] consists of a set of regulatory entities
{g1, . . . , gn} which can be in one of two possible states, either 1 representing the
entity is active (e.g., a gene is expressed or a protein is present) or 0 representing
the entity is inactive (e.g., a gene is not expressed or a protein is absent). The be-
havior of each entity gi is described by a Boolean next-state function, which, given
the current states of the entities that affect it (referred to as its neighborhood states),
returns the next state for gi .

As an example, consider the Boolean network in Fig. 5.1 which contains three
entities, g1, g2 and g3. The next state [gi] of each entity gi is defined by the corre-
sponding truth table.

A Boolean network can be semantically interpreted in two distinct ways [43]: ei-
ther synchronously, where all entities update their states together; or asynchronously,
where entities update their states independently. In this section, we focus on the syn-
chronous semantics and return to the asynchronous semantics in Sect. 5.3.

5.2.1 Constructing a Qualitative Petri Net Model

Given a set of truth tables defining the Boolean behavior of all the entities in a
GRN, we extract a compact representation of the regulatory relationships between
entities using well-known techniques from Boolean logic [48, 146]. The idea is
to consider the truth table for each entity and to extract two Boolean expressions,
one that specifies when the entity becomes active and one which specifies when it
becomes inactive.

As an example, consider the truth table for entity g1 given in Fig. 5.1. We can
see that the neighborhood states 00, 01, and 11 result in g1 being 1 in its next
state (where xy denotes the state g2 = x, and g3 = y). We can represent each state
as a Boolean term [146], using conjunction (logical and), where the variable gi

represents that an entity gi is in state 1, and the negated variable gi represents that
an entity gi is 0. So the neighborhood state 01 for g1 is represented by the term
g2g3. Applying this approach and then summing the derived terms using disjunction
(logical or) allows us to derive a Boolean expression in disjunctive normal form
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(DNF) [146] that defines precisely the conditions under which the entity is active.
Continuing with our example, we derive the following Boolean expression for g1:

g2 g3 + g2g3 + g2g3

(where the notation x, x + y and xy is used to represent the Boolean operators
not , or and and , respectively). In a similar way, we can derive an expression in
DNF that defines the conditions under which an entity is inactive (i.e., we group
together all those neighborhood states which result in the entity being inactive in
the next state). By applying this approach to each entity, we are able to construct a
logical description that completely specifies the functional behavior of a GRN. In
our example, we derive the following expressions defining the behavior of g1, g2

and g3, which we present as logical equations:

[g1] = g2 g3 + g2g3 + g2g3, [g1] = g2g3,

[g2] = g1g3, [g2] = g1 g3 + g1g3 + g2g3,

[g3] = g1, [g3] = g1.

The Boolean expressions derived above are often unnecessarily complex and can
often be simplified using logic minimization [48, 146]. From a biological point of
view, this simplification process is important, as it helps to identify the underlying
regulatory relationships that exist between entities in a GRN. For brevity, we omit
the full details of Boolean logic minimization here (we refer the interested reader
to [48]) and simply present the final minimized logical equations for our running
example:

[g1] = g2 + g3, [g1] = g2g3,

[g2] = g1g3, [g2] = g1 + g3,

[g3] = g1, [g3] = g1.

The Boolean expressions derived above compactly capture the behavior of a
Boolean network and provide a good basis from which to start constructing a Petri
net model of the underlying GRN. The approach we take is to represent the Boolean
state of each entity gi in a Petri net by the well-known technique (see, for example,
[65, 318]) of using two complementary places pi and pi , where a token on place pi

indicates the entity is active (i.e., gi = 1) and a token on place pi that it is inactive
(i.e., gi = 0). Note that the total number of tokens on places pi and pi will therefore
always be equal to 1. We then translate the logical equations derived for the GRN
into appropriate Petri net structures to implement the specified logical behavior.

In order to model the synchronous update semantics of a Boolean network [125]
within the asynchronous Petri net framework, we make use of a two phase commit
protocol to synchronize updates in the Petri net model. In phase one, each entity
decides what its next state will be and records this decision. When all the entities
have made a decision about their next states, the second phase of the protocol begins,
and the state of each entity is updated according to the recorded decisions. The
synchronous Petri net model construction is defined in Fig. 5.2.
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Synchronous Petri Net Model Construction:

1. Assume we have n entities in our model g1, . . . , gn. We add a place p0/done to our Petri net
model, and for i = 1, . . . , n, we also add places pi , pi , pi/on, pi/off, pi/start, pi/syn and pi/done.
Note that in the initial marking, either pi or pi (but not both) must contain a token, and pi/start
will contain a token, for i = 1, . . . , n. All other places must be unmarked.

2. Phase One:
Consider each logical equation [gi ] = T1+· · ·+Tm which defines when gi becomes active. For
each product term Tj , 1≤ j ≤m, add a transition ti/j to the Petri net model such that:
• place pi/start is an input place and places pi/on and pi/syn are output places of ti/j ;
• for each variable gk (respectively, gk) in Tj , add a read arc connecting place pk (respectively,

pk) to ti/j .

We now use the same approach to model the logical equation [gi ] = T1+· · ·+Tm which defines
when gi becomes inactive. We add a transition t i/j to model each product term Tj , 1≤ j ≤m,
using the same scheme as detailed above, but with pi/on replaced by pi/off as an output place
for the transition.

3. Phase Two:
• We add a transition to initiate the update process which has input places pi/syn, for i =

1, . . . , n, and one output place p0/done [see Fig. 5.4(a)].
• For each entity gi , we add four transitions to update the state of gi . These transitions are

shown in Fig. 5.4(b) and represent the four possible update scenarios:
– move token from place pi to pi ;
– leave token on pi ;
– move token from place pi to pi ;
– and leave token on pi .

• We add a transition to reset the control places which has input place pn/done and output places
pi/start, for i = 1, . . . , n [see Fig. 5.4(c)].

Fig. 5.2 Petri net construction method for synchronous Boolean networks

5.2.1.1 Phase One: Next State Decision

In the first phase of the update protocol, each entity gi in the model decides whether
it should be active or not in the next state. This decision is recorded using two
places, pi/on and pi/off, where a token on pi/on indicates gi is active in the next
state, and a token on pi/off that it is not. We model this decision process by using
the derived Boolean expressions (in DNF) that compactly capture the conditions
under which the entity becomes active or inactive. We directly translate each of
these expressions into a set of transitions in our Petri net model, using one transition
to represent each product term they contain. For each entity gi , we use an additional
place pi/start to indicate when a decision about the next state of gi is required, and
a place pi/syn to indicate when an update decision has been made. Clearly, when
all the synchronization places pi/syn have been marked, we know phase one of the
protocol is complete.

As an example, consider the Petri net fragment presented in Fig. 5.3, which mod-
els the decision process of entity g1 in our running example. Transitions t1/1 and
t1/2 record that entity g1 will become active in the next state if g2 is inactive or g3

is active, respectively. Note if both conditions are true then either transition can fire,
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Fig. 5.3 Transitions
modeling the decision process
for entity g1 (see Fig. 5.1)

leading to the same marking. Transition t1/1 records that g1 will become inactive
whenever g2 is active and g3 is inactive.

5.2.1.2 Phase Two: Synchronous State Update

When all the entities have made a decision about their next state, the second phase of
the protocol begins, and the state of each entity is updated according to the recorded
decisions. The Petri net structures needed to control this synchronous update are
depicted in Fig. 5.4. The idea is to use a place pi−1/done to indicate when entity
gi should be updated; after gi has been updated, place pi/done is marked, allow-
ing the sequential update of all entities. To initiate the process there is a transi-
tion which fires when phase one is complete and places a token on p0/done, see
Fig. 5.4(a). This phase performs a synchronized update step, in which the state
of each entity gi is updated in turn by placing a token on pi if place pi/on is
marked, or on pi if place pi/off is marked. The Petri net structure used for this
update consists of four transitions representing the four possible update situations
that can occur for an entity, as shown in Fig. 5.4(b). Once the state of entity gi

has been updated, a token is placed on place pi/done to indicate that the next en-
tity can be updated. When the last entity gn has been updated, place pn/done will
be marked, and the control transition depicted in Fig. 5.4(c) initiates a reset step
which remarks all the start places, allowing the whole update protocol to begin
again.

The modeling approach presented above has assumed that we start with a set of
complete and consistent truth tables which correctly describe the qualitative behav-
ior of the GRN in question. However, in practice it is rarely the case that a GRN is
fully understood, and indeed, this is one important reason for modeling such a sys-
tem. We therefore often find that the description provided is incomplete, in the sense
that information is missing about what happens in certain states, or inconsistent, in
that we have conflicting information. The result is that under certain conditions the
behavior of an entity may be unknown.

Such incomplete and/or inconsistent behavioral information can not be modeled
using standard synchronous Boolean network techniques. However, Petri nets are a
nondeterministic modeling formalism [318] able to represent unknown behavior by
incorporating all possible choices. The idea is to identify for each entity all the prob-
lematic states in which the next state is unknown, and then to include these states
when deriving Boolean expressions using logic minimization for both the active and
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Fig. 5.4 Petri net structures for synchronous state update: initiating synchronous update (a); up-
dating state of entity gi (b); and reset step (c)

inactive next state behavior. The result is a Petri net model in which any unknown
next state for an entity is modeled using two conflicting transitions representing a
choice between an active and inactive next state for the entity. We therefore allow
the model to exhibit both possible behaviors and rely on the nondeterministic choice
mechanisms of the Petri net model. Such nondeterministic models can still be an-
alyzed to provide meaningful results, since the Petri net tools are designed to cope
with nondeterministic choices. As more data becomes available for a GRN, the Petri
net model can be refined to reduce the amount of nondeterminism it contains, and so
Petri nets provide an interesting means of documenting the development of knowl-
edge about a genetic network. For a more detailed explanation and example of this
approach, we refer the interested reader to [374].

5.2.2 Tool Support

The Petri net modeling approach presented above is supported by a software tool
GNAPN (Genetic Networks as Petri Nets) [24], which completely automates the
model construction process. GNAPN was implemented using the Java program-
ming language and makes use of an auxiliary open source tool MVSIS [273] to
perform logic minimization. GNAPN is freely available for academic use, and can
be obtained from the project’s website http://bioinf.ncl.ac.uk/gnapn.

GNAPN takes as input a series of truth tables describing the logical behavior
of a GRN; these can be either directly supplied in an appropriate file format or
created using a provided GUI utility which allows the entities, network structure
and logical interactions in a GRN to be specified. Note that the tool is able to cope
with partial GRN descriptions following the approach described in Sect. 5.2.1. The
tool automatically constructs a Petri net model from the given logical description
based on either the synchronous or asynchronous (see Sect. 5.3) update semantics.
The resulting Petri net can be exported in a number of formats, including PNML
[144], PEP [296] and ASTG [83]. This enables the model to be investigated and

http://bioinf.ncl.ac.uk/gnapn
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Fig. 5.5 The GUI provided
by GNAPN to allow the user
to set key properties of the
Petri net model

analyzed using the wide range of tool support available for Petri nets (see, e.g.,
[301]). To aid the analysis process, GNAPN provides a GUI (see Fig. 5.5) which
allows the user to set the initial state of entities and facilitates the creation of mutant
models by allowing the state of one or more entities to be fixed (e.g., see the case
study given in the next section).

For formal analysis of the constructed Petri nets we used the model checking
capabilities of the PEP tool [296]. It accomplishes verification by constructing a
condensed representation of the set of all reachable markings of the Petri net.

5.2.3 Case Study: Nutritional Stress Response in E. coli

To demonstrate the modeling techniques, we have so far introduced, and to illustrate
the practical application of Petri net analysis techniques, we now present a case
study. We consider modeling and analyzing a simplified synchronous version of
the GRN responsible for the carbon starvation nutritional stress response in E. coli.
This case study is based on the comprehensive data collated in [323] and was first
presented in [373].

5.2.3.1 Constructing the Petri Net Model

The bacterium E. coli under normal environmental conditions, when nutrients
are freely available, is able to grow rapidly, entering an exponential phase of
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Fig. 5.6 The GRN for carbon starvation stress response in E. coli: the top-level view (top); and
the truth tables defining the Boolean behavior of Cya, GyrAB and TopA (bottom)

growth [159]. However, as important nutrients become depleted and scarce, the bac-
teria experiences nutritional stress and responds by slowing down growth, eventu-
ally resulting in a stationary phase of growth. This nutritional stress response mech-
anism is reversible, and E. coli resumes the exponential phase of growth as soon as
nutrients are available again.

The GRN underlying the stress response in E. coli to carbon starvation is shown
abstractly in Fig. 5.6 (adapted from [323], where they refer to entities which will not
be directly modeled as implicit entities). The network has a single input signal indi-
cating the presence or absence of carbon starvation, and uses the level of stable RNA
(ribosomal RNA and transfer RNA) as indicative of the current phase of E. coli, that
is, during the exponential phase the level of stable RNA is high to support rapid
growth, while under the stationary phase the level drops, since only a maintenance
metabolism is required [323]. The carbon starvation signal is transduced by the acti-
vation of adenylate cyclase (Cya), an enzyme which results in the production of the
metabolite cAMP. This metabolite immediately binds with and activates the global
regulator protein CRP, and the resulting cAMP.CRPcomplex is responsible for con-
trolling the expression of key global regulators including Fis and CRP itself. The
global regulatory protein Fis is central to the stress response, and is responsible for
promoting the expression of stable RNA from the rrn operon [159, 323]. Thus, dur-
ing the exponential phase high levels of Fis are normally observed, and the mutual



5 Modeling Genetic Regulatory Networks 83

repression that occurs between Fis and cAMP.CRP is thought to play a key role in
the regulatory network [323]. The expression of Fis is also promoted by high levels
of negative supercoiling being present in the DNA. The level of DNA supercoil-
ing is tightly regulated by two topoisomerases [159, 323]: GyrAB (composed of the
products of genes gyrA and gyrB) which promotes supercoiling, and TopA which re-
moves supercoils. An increase in DNA supercoiling results in increased expression
of TopA, which prevents excessive supercoiling. A decrease in supercoiling results
in increased expression of gyrA and gyrB, and the resulting high level of GyrAB acts
to increase supercoiling.

Using the data provided in [323], we were able to derive truth tables defining the
Boolean behavior of each regulatory entity in the stress response GRN for carbon
starvation. Following the approach in [323], the level of cAMP.CRP and DNA su-
percoiling are not explicitly modeled as entities, and they are therefore referred to
as implicit entities. As an example, the truth tables defining the behavior of entities
Cya, GyrAB and TopA are shown in Fig. 5.6.

The next step is to apply logic minimization to the truth tables we have derived
to extract Boolean expressions which compactly define the qualitative behavior of
each regulatory entity. This process is automated by the support tool GNAPN, and
the result is the set of logical equations presented below

[Cya] = Signal+ Cya+CRP, [CRP] = Fis,
[

Cya
]= Signal Cya CRP,

[
CRP

]= Fis,

[GyrAB] =GyrAB Fis+ TopA Fis,
[

GyrAB
]=GyrAB TopA+ Fis,

[TopA] =GyrAB TopA Fis, [SRNA] = Fis,
[

TopA
]=GyrAB+ TopA+ Fis,

[
SRNA

]= Fis,

[Fis] = Fis Signal GyrAB TopA+ Fis Cya GyrAB TopA+ Fis CRP GyrAB TopA,
[

Fis
]= CRP Cya Signal+ Fis+GyrAB+ TopA.

These equations can then be used to construct a Petri net model of the nutri-
tional stress response GRN for carbon starvation. We used GNAPN to automate the
model construction, and the result is a Petri net model that contains 45 places and
49 transitions (unfortunately, this model is too large to be drawn here).

5.2.3.2 Analyzing the Petri Net Model

Once we have constructed a Petri net model of a GRN, we may then validate and
analyze it using the wide range of tools available for Petri nets (see, for example,
[301]). In this case study, we consider using PEP [296], a general purpose Petri net
tool, and in particular, make use of model checking techniques [79]. Our aim is to
illustrate the range of analysis possible using available tools, from simple validation
tests to more in-depth gene knockout and overexpression analysis.
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Table 5.1 Simulation test results showing the model correctly switches from exponential to sta-
tionary growth phase (left) and vice a versa (right)

Signal CRP Cya GyrAB TopA Fis SRNA

1 0 1 1 0 1 1

1 0 1 0 1 0 1

1 1 1 1 0 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

Signal CRP Cya GyrAB TopA Fis SRNA

0 1 0 0 0 0 0

0 1 1 1 0 0 0

0 1 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 0

Model Validation We begin our analysis by validating that our Petri net model is
a reasonable representation of the GRN in question. The idea is to perform a range
of simple simulation tests on the model to ensure that it satisfies the basic behavioral
properties indicated by the literature. In the case of the GRN for the carbon stress
response in E. coli, this involves validating that the switch between the exponential
and stationary phases of growth [323] occurs correctly.

The first simulation test ensures the model correctly switches from the exponen-
tial to the stationary phase of growth when carbon stress is present. We initialize the
Petri net to a state representing the exponential growth phase (see [323]) and acti-
vate Signal to indicate carbon stress. The resulting simulation results are presented
in Table 5.1 (left), and show that the model correctly switches to the stationary phase
by entering an attractor cycle of period two in which entity SRNA remains inactive.
Similarly, we can check that the model correctly switches back from the stationary
to the exponential growth phase when carbon stress is removed. The corresponding
simulation results, presented in Table 5.1 (right), show that the model does correctly
return to the exponential growth phase.

Property Analysis After performing a range of validation tests to gain confidence
in the correctness of the model, we can now consider analyzing the behavior and
properties of the model in more detail. To investigate the behavior of the model, we
make use of the extended reachability analysis provided by the model checking tools
of PEP [144, 189]. For example, it appears from the literature that the entities GyrAB
and TopA should be mutually exclusive, that is, whenever GyrAB is significantly
expressed then TopA should not be, and vice versa. We formulate the following
constraints on places:

GyrAB+ TopA > 1, GyrAB/done= 1,

which characterize a state in which the mutual exclusion property does not hold
(the condition GyrAB/done = 1 is needed to ensure that only the states reached
after a complete pass of the two phase commit protocol are considered). The model
checking tool is able to confirm that no state satisfying these constraints is reachable
from any reasonable initial state, which proves that GyrAB and TopA are mutually
exclusive.

We can attempt to prove a similar mutual exclusion property for CRP and Fis
using the same approach. However, this time the model checking tool confirms that



5 Modeling Genetic Regulatory Networks 85

Table 5.2 Results of mutant analysis on the model

Entity Knock out Overexpressed Knock out(s) Overexpressed(s)

CRP Yes Yes Yes Yes

Cya Yes Yes Yes Yes

GyrAB No Yes No Yes

TopA Yes No Yes No

it is able to reach a state satisfying the constraint, proving that CRP and Fis are not
mutually exclusive in our model. In fact, the tool returns a witness firing sequence
leading to such a state, which can be simulated to gain important insight into why
this behavior can occur.

Mutant Analysis We complete our analysis by investigating how “fixing” the
state of a single entity affects the normal function of the model. This corresponds
to the experimental approach of creating mutants, in which genes are knocked out
or overexpressed, and is a useful analysis technique that can provide important in-
sights into a GRN. In order to create a mutant model, we fix the state of an entity
by treating it as an input to the model (e.g., as we do for Signal), and simply ig-
nore its corresponding behavioral definition when the model is constructed. The tool
GNAPN (see Sect. 5.2.2) provides a simple interface which allows mutant models
to be automatically constructed.

For the given GRN, we are interested in identifying situations in which SRNA
can be prevented from being active in the absence of carbon stress, and where SRNA
can become active in the presence of carbon stress. We therefore perform a series
of tests by first setting Signal, Fis and SRNA to be inactive, and then systematically
knocking out and overexpressing the remaining entities in turn. We can then repeat
this series of tests with Signal set to be active. The observed results of this analysis
are presented in Table 5.2, where ‘Yes’ indicates that SRNA was able to become
active, ‘No’ that this did not occur, and an appended ‘(s)’ indicates the presence of
carbon stress.

We see that when CRP or Cya are knocked out or overexpressed, SRNA is able
to become active regardless of the presence or absence of carbon stress. However,
when we knock out GyrAB with no carbon stress, SRNA does not become active.
This can be explained by noting that since GyrAB indirectly activates Fis via super-
coiling, TopA is allowed to reduce the amount of supercoiling without competition,
and so reduces the level of Fis. Meanwhile, the cAMP.CRP complex represses Fis,
and so overall SRNA is repressed.

Another interesting case is when carbon stress is present and we overexpress
GyrAB. One should note that under normal conditions when Signal is active, SRNA
should never become active. However, with GyrAB overexpressed, the level of super-
coiling can increase without being affected by the inhibitory effect of TopA, and so
Fis increases. This increased level of Fis also reduces the amount of the cAMP.CRP
complex, which in turn reduces the repression of Fis. As a result, SRNA is activated
under these abnormal conditions, which appears to be consistent with [323].
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5.3 Asynchronous Models of GRNs

In the previous section, we considered using Petri nets to model and analyze syn-
chronous Boolean network models of GRNs. Historically, the synchronous Boolean
models have been much favored by the biological community, since they result in
deterministic behavior which is simpler to understand and analyze. However, the
assumption that all entities update their state synchronously can be argued to be
biologically unrealistic [390], and this leads to reservations about the reliability of
results obtained from such models.

The asynchronous update semantics therefore appears to provide a more realistic
modeling approach. However, asynchronous models suffer from the problem of cap-
turing too much behavior, not all of which is realizable in practice. This behavior can
often be highly nondeterministic, resulting in many (nonconverging) choices when
selecting the next state. Thus, the asynchronous approach can result in a complex
model which is difficult to understand and analyze.

In fact, many of the choices present in an asynchronous model can be resolved
either by assuming that the environment of the biological system is slow (i.e., the
system always has enough time to react to its changes), or by using knowledge about
the relative speeds of chemical reactions. It therefore turns out that the behavior of
a biological system has much less nondeterminism than such asynchronous models
suggest. (This may explain why synchronous models were often favored over asyn-
chronous ones by the biological modeling community.) Therefore, the problem in
practice is to be able to identify the critical choices that arise in a model and to have
the appropriate kinetic knowledge to resolve them.

These considerations motivate us to use techniques from speed-independent (SI)
circuits [84] when asynchronously modeling GRNs. SI circuits are a subclass of
asynchronous circuits that work correctly (i.e., according to their specification) re-
gardless of the delays associated with logic gates. We follow the classical Muller’s
approach [268] which regards each logic gate as an atomic evaluator of a Boolean
function, with a delay element associated with its output (the wires are assumed to
have negligible delays). In the SI framework, no assumptions are made about the
gate delays (except that they are positive), that is, individual gates can be arbitrarily
slow/fast and even have variable unbounded delays. SI circuits tend to be deter-
ministic, though they can handle certain kinds of non-determinism using arbiters
[84]—special devices deciding which of two inputs arrives first (this proves to be
important from a biological perspective as illustrated in Sect. 5.3.3).

We therefore make the following important methodological assumption:

GRNs can be modeled by speed-independent circuits.

That is, if a GRN can not be qualitatively modeled by an SI circuit then either
its behavior is inherently nondigital or its corresponding model is incorrect and/or
misses some important information.1 Thus, SI techniques can provide important

1In particular, such systems in principle can not be modeled by synchronous Boolean networks,
which are deterministic by definition.
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insights into a model’s correctness and highlight key areas that need refining. We
will discuss this issue in detail later in this section.

It turns out that whether a circuit is SI or not almost always depends on its envi-
ronment, that is, a circuit can be SI in one environment and non-SI in another one.
That is, whether the circuit is SI or not can not be deduced solely from the structure
of the circuit! This suggests that traditional asynchronous Boolean networks lack
some important information (viz. the behavior of the environment). In Sect. 5.3.2,
we explain this phenomenon in more detail; there we demonstrate that a C-element
circuit is not SI in the most general environment that can at any time change the
value of any input, but becomes SI in a restricted environment.

In this section, we make a case for using another formalism, viz. Signal Tran-
sition Graphs (STGs) [75, 325], which allows one to capture in a natural way the
behavior of both the circuit and its environment. STGs are Petri nets in which transi-
tions are labeled with the rising and falling edges of circuit signals. They have been
used extensively for the design of asynchronous control circuits.

We investigate how the sufficient conditions ensuring that an STG can be im-
plemented by an SI circuit [84] can be interpreted in the context of GRNs. We ob-
serve that violations of these properties provide important insights into a model and
highlight areas which need to be refined. In particular, the violation of the output-
persistency (OP) condition [84] indicates the presence of choices that either require
further information to resolve or indicate some stochastic effects in the system that
have to be carefully documented. STGs provide a formal means of documenting and
refining this information, and thus provide a well-supported formal framework for
GRNs that allows realistic models to be incrementally developed and analyzed.

We illustrate our proposed approach by considering a case study in which we
develop and analyze an SI STG model of the GRN controlling the switch between
the lysogeny and lysis cycles in phage λ [289]. The case study makes use of the
STG support tool PETRIFY [84] and demonstrates its practical role in model devel-
opment.

5.3.1 Signal Transition Graphs and Speed-Independent Circuits

Signal Transition Graphs (STGs) [84] are a particular type of labeled Petri nets
developed specifically for modeling asynchronous digital circuits. The idea is to as-
sociate a set of Boolean variables, referred to as signals, with a Petri net to represent
the state of the actual digital signals (i.e., wires within a circuit or entities within a
GRN). The Petri net’s transitions are then labeled to represent changes in the state
of these signals; a transition label either has the form a+ to indicate a signal a goes
from 0 to 1, or a− to indicate the signal goes from 1 to 0. Thus, the underlying
Petri net specifies the causal relationship between signal changes and is intended to
capture the behavior of a system. Clearly, for an STG to correctly represent a circuit
one has to ensure that the labels a+ and a− are correctly alternated between for each
signal (the so called consistency condition [84]). In general, several transitions can
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have the same label, for example, a+; in such a case, these transitions are named
a+, a+/1, a+/2, etc.

Since the behavior of an STG is based on its underlying Petri net behavior, the
concepts of enabling and firing of transitions still hold. STGs are therefore amenable
to general Petri net analysis tools, but are also supported by a range of specific tools,
such as PETRIFY [83, 84]. These are able to analyze and optimize STGs, as well as
synthesize digital circuits from them. An STG can be represented graphically as a
labeled Petri net. However, a short-hand notation is often used, in which transitions
are simply represented by their labels, and nonmarked places with only one input
and one output transition are contracted (see Fig. 5.7(c) for an example).

The signals (i.e., entities) of an STG are partitioned into input, output and in-
ternal signals; the output and internal signals are collectively referred to as local
signals. The inputs are controlled by the environment of the STG (in the context
of biological systems, this could be either the actual environment of the organism,
or the other systems within the organism, whose outputs affect the behavior of the
system), and the outputs are controlled by the system itself and are observable by
the environment (e.g., they can be inputs of other systems within the organism).
Internal signals represent some auxiliary entities needed to produce outputs; like
outputs, they are controlled by the system, but they are not observable by the en-
vironment. The partitioning of signals is an important part of the modeling process
and represents key design decisions when developing an STG.

From a biological point of view, we can interpret STGs as follows. Signals are
used to represent the states of biological entities, and transitions are used to capture
changes in these states, for example, through chemical reactions or fluctuations in
protein concentration. In particular, the input signals from the environment can be
used to represent external factors such as temperature, or simply the output from
other subsystems in the organism, and the internal signals can be used to represent
any auxiliary biological entities that are required for the system to function correctly.
The output signals can therefore be interpreted as the result of these environmen-
tal factors and internal mechanisms, such as a changes in the concentration of key
proteins.

Intuitively, an STG represents a contract between the system and its environment,
and is interpreted in the following way. If an input signal transition is enabled, then
the environment is allowed (but is not obliged) to send this input, and vice versa,
the environment is not allowed to send inputs which are not enabled. If a local
transition is enabled, then the system is obliged eventually to produce this signal (or
it is eventually disabled by another transition), and vice versa, it is not allowed to
produce outputs which are not enabled. That is, an STG specifies the behavior of a
system in the sense that the system must provide all and only the specified outputs,
and that it must allow at least the specified inputs (in fact, it could optionally allow
more inputs, which means that it could work in a more demanding environment).

As an example, consider Fig. 5.7(a) which shows a commonly used component
in asynchronous circuit design called a C-element [84]. The C-element takes two
inputs a and b from the environment and produces a single output c back into the
environment, as defined by the truth table in Fig. 5.7(b). The C-element’s behavior
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Fig. 5.7 C-element (a); truth table for C-element (b); and STG representing the required behavior
of the C-element (c)

is specified by the STG shown in Fig. 5.7(c), in which the initial value of each sig-
nal is set to 0. It specifies that the system waits until the environment raises (in any
order) the inputs a and b (transitions a+ and b+), and then raises the output c (tran-
sition c+). (Observe that the environment is assumed not to reset the raised inputs
until c+ fires.) Then the environment resets (in any order) the inputs a and b (tran-
sitions a− and b−), and in response the system resets its output c (transition c−).
(Again, the environment is assumed not to raise the reset inputs until c− fires.)

In order for an STG to represent an SI circuit, it needs to satisfy the following
properties:

Boundedness: An STG has finitely many reachable states iff it is bounded, that
is, the number of tokens in each place can never exceed some bound k. Since a
digital circuit (or a Boolean network) can have only finitely many reachable states,
boundedness is taken as an implementability requirement.

Consistency: Consistency is a basic well-formedness property, stating that the
reachable signal values must be binary. That is, in every trace of the STG the tran-
sition labels for each signal a must alternate between a+ and a−, always beginning
with the same sign.

Output-persistency: Output-persistency (OP) property requires that if some local
signal becomes enabled, it can not be disabled by firing some other transition,
that is, there should be no choices involving local transitions. The rationale for
this is that once a signal becomes enabled, its voltage starts, for example, to rise
from 0 to 1. If the signal is disabled during this process, the voltage is pulled
down, resulting in a glitch. This glitch can be interpreted in different ways by the
logic gates listening to this signal, depending on whether the voltage has crossed
the threshold between 0 and 1 or not. Hence, the behavior of the circuit becomes
nondeterministic. Such a situation can be interpreted in biological terms as well,
with the voltage replaced by, for example, the concentration of some protein.
Visually, if OP is violated then there are two transitions with different labels in
the STG with at least one of them marked by a local signal, which share some
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preplaces and can be enabled simultaneously (unless both transitions are connected
to these shared preplaces by read arcs).
Identifying and understanding the choices within a model can provide important
insights into its behavior and correctness. Below, we consider several kinds of
choices that can arise and their implications for OP.

• A choice involving only inputs is not regarded as a violation of OP, and simply
models a non-deterministic choice in the environment.2 (For example, the envi-
ronment might nondeterministically decide either to rise the temperature above
normal, or to reduce it below normal.) That is, this choice does not have to be
implemented by the system itself.

• A choice between a local signal and an input constitutes a serious problem in
the model. Intuitively, the decision to fire the transitions involved in the choice
has to be made independently by the system and the environment, and so both
transitions can actually start firing, and only later the system senses the change
of the input and aborts the firing of a local transition. Such choices are the points
where the circuit’s behavior becomes nondigital,3 and hence the STG ceases to
be an adequate model of the circuit. In practice, such a choice often indicates an
implicit assumption about the slowness of the environment, and the input transi-
tion will never fire in this state. Alternatively, the model should be reconstructed
to allow for parallel firing of these transitions.

• A choice involving only local transitions can still be implemented in a speed-in-
dependent way (in spite of the violation of OP) using an arbiter [191]—a spe-
cial component that can handle the meta-stable behavior associated with such
a choice. In such a case, the behavior of the circuit becomes nondeterministic.
When modeling a biological system, the violations of OP that correspond to true
(e.g., stochastic) choices between local transitions, that can not be determinis-
tically resolved by the reaction rates, should be left in the model; however, any
such violation should be carefully investigated by the model designer and clearly
documented.

Note that arbitration should be used only for representing truly stochastic phenom-
ena, like the choice between lysogeny and lysis modes in phage λ (see Sect. 5.3.3).
Other violations of OP indicate that some important information is missing in the
model, for example, some assumptions about the environment’s behavior should
be made, or the reaction rates can be used to resolve the choice. Methodologically,
violations of OP are detected automatically, and if there are any, the user should ei-
ther document the associated stochastic choice or refine the model, as we illustrate
by an example in Sect. 5.3.3.

Complete State Coding (CSC): If the STG has two reachable states in which the
values of all the signals coincide but the values of the next-state function for some

2Only an abstraction of the environment can be included into the model; such abstractions are
often nondeterministic even if the environment itself is deterministic.
3Note that even though the circuit is constructed of logic gates only, such gates can exhibit a
nondigital behavior under certain circumstances.
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local signal are different, then these two states are said to be in a Complete State
Coding (CSC) conflict. The STG satisfies the CSC property if no two of its reach-
able states are in a CSC conflict.
An STG not satisfying the CSC property can not directly represent an SI circuit.
Intuitively, during its execution the system can ‘see’ only the values of its signals,
but not the marking of the STG. Hence, if two semantically different reachable
states with the same values of all the signals exist, the system can not distinguish
between them, and so can not know what to do next.
At the circuit level, CSC conflicts are resolved by inserting new internal signals
helping to distinguish between the conflicting states, in such a way that its ‘exter-
nal’ behavior does not change. (One has to take care to preserve the consistency
and other SI properties when inserting new signals.) Intuitively, insertion of a sig-
nal introduces additional memory into the circuit, helping it to trace the current
state.
In an STG modeling a biological system, CSC conflicts can be interpreted as a lack
of information about the internal workings of the system. That is, they indicate the
presence of some auxiliary internal entities (e.g., proteins) which are not visible to
the environment but help the system to accomplish its function. An STG with CSC
conflicts might be useful in some cases as a high-level view of the system (in such
a case, all the internal signals can be abstracted away to simplify the model), but
if a detailed description of the system is needed, the STG should satisfy the CSC
property.

Checking the properties discussed above is automated by the STG support tool
PETRIFY [84], and in the next section we show how to apply the developed theory
to modeling GRNs.

5.3.2 Refining Asynchronous Models of GRNs

In this section, we consider applying the techniques and tools from SI circuit design
to developing realistic asynchronous models of GRNs. We describe how a Boolean
network model of a GRN can be translated into an STG which satisfies the consis-
tency, boundedness and CSC properties. We then consider how such an STG can be
semi-automatically refined by identifying and removing OP violations.

To gain an initial insight into the proposed refinement methods, we consider
a small example based on the C-element. The behavior described by the STG in
Fig. 5.7(c) can be modeled by a Boolean network (i.e., circuit) whose behavior is
defined by the logical equation [c] = ab + c(a + b) (or equivalently, the truth ta-
ble in Fig. 5.7(b)). This model is SI in the intended environment, as specified in
Fig. 5.7(c). However, just by looking at the logical equation (i.e., the Boolean net-
work) it is impossible to say what were the assumptions about the environment; in
particular, there are environments where the behavior of this circuit becomes non-SI,
for example, if the environment, after raising a and b, resets either of them before



92 R. Banks et al.

The circuit-STG construction:

• Each signal (i.e., regulatory entity) gi is represented by two places, gi and gi , indicating whether
the entity is active or inactive, respectively. Exactly one of these places is marked at any time.

• Since we do not have any information about the environment’s behavior, it is taken to be the
most general (i.e., it can always change the value of any input). This is modeled for each input
signal gi by adding transitions g+i (consuming a token from gi and depositing a token to gi ) and
g−i (consuming a token from gi and depositing a token to gi ).

• For each local signal gi , the circuit computes the next-state value [gi ] of gi using the given
Boolean equation [gi ] = Ei (see Sect. 5.2.1). For each product term Tj in the minimized DNF
of Ei |gi=0 (where Ei |gi=b denotes the Boolean expression resulting from substituting gi by
b ∈ {0,1} in Ei ), we add a transition g+i /j which switches gi on. We add an arc from place gi

to g+i /j and an arc from g+i /j to place gi . For each gk (resp. gk) occurring in Tj , we connect
g+i /j to the place gk (resp. gk) by a read arc. We use a similar process to define the transitions
g−i /j which reset gi based on Ei |gi=1.

Fig. 5.8 Petri net construction method for asynchronous Boolean networks

Fig. 5.9 The circuit-STG for the circuit [c] = ab+ c(a + b) (a); a way to resolve choices in it by
assuming a slow environment (b); and the STG simplified using PETRIFY (c)

c+ fires. This illustrates that having an STG can be much more useful for analyzing
the system than simply having a Boolean network definition.

Any asynchronous Boolean network (i.e., circuit) can be converted into an STG
using the approach outlined in Fig. 5.8 [23, 65, 318]. The idea is that we define
a signal for each regulatory entity and then label the transitions in the model with
appropriate signal labels (i.e., g+i if the transition activates entity gi and g−i if it de-
activates it). Since the Boolean network does not provide any information about the
environment’s behavior, it is taken to be the most general (i.e., it can always change
the value of any input). Note that any STG that results from the above construc-
tion always satisfies the properties of consistency, boundedness and CSC [23]. The
above model construction process is fully automated by the support tool GNAPN.

Figure 5.9(a) illustrates this construction process for the C-element defined by
the logical equation [c] = ab + c(a + b). Note that the behavior of the resulting
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STG strictly includes the behavior of the initial model Fig. 5.7(c), since the infor-
mation about the behavior of the environment could not be retrieved from the logical
equation, and the most general environment was modeled. Using PETRIFY (an STG
tool developed specifically for asynchronous circuit design [83, 84]), we can auto-
matically detect that the resulting STG is not SI in this environment, as an output
c+ can be disabled by a− or b−, and similarly, c− can be disabled by a+ or b+.

If the circuit [c] = ab + c(a + b) was used to model a system that is perceived
to be deterministic, then some of this STG’s behavior is not realizable in practice.
Hence, the STG should be refined, so that it captures only the realistic behavior. The
candidate points for refinement are where the OP property is violated, for example,
due to conflicting choices involving a local transition. Such choices (unless they rep-
resent some truly stochastic phenomenon) have to be resolved either by making as-
sumptions about the environment, or by looking at reaction rates. Methodologically,
the points where the speed-independence is violated can be found automatically, but
the resolution of choices requires interaction with the user.

Formally, we denote an OP violation by t ⇀ t ′, meaning that a transition t can be
disabled by firing a transition t ′, where t and t ′ have different labels and t is labeled
by a local signal. One can see that for the STG in Fig. 5.9(a), we have OP violations
c+ ⇀ a−, c+ ⇀ b−, c− ⇀ a+ and c− ⇀ b+. This information is given to the user,
who now can suggest a way to resolve these violations. In this particular case, the
user might know that the environment is relatively slow, that is, if, say, a− and c+
are enabled simultaneously then c+ will fire first. Alternatively, the relative rates of
chemical reactions might determine which transition fires first. Of course, such rates
must be provided by the user, since there is no way a tool can work them out from
the STG or Boolean network. In practice, measuring reaction rates is a very effort-
consuming task, but our method addresses this problem (i) by giving information
about what rates have to be measured (in practice, few rates affect the qualitative
behavior of the GRN), and (ii) by requiring only relative rates (i.e., it is enough to
know that one reaction is faster than the other, rather than the absolute rates).

We use the following notation for the user-provided assumptions: we write t �→ t ′
to denote that whenever transitions t and t ′ are enabled simultaneously then priority
is given to t . (We assume that t and t ′ have different labels, at least one of these
transitions is labeled by a local signal, t and t ′ share some preplaces, and not all
of these shared places are connected to t and t ′ by read arcs.) In our example, the
slowness of the environment can be expressed as c+ �→ a−, c+ �→ b−, c− �→ a+,
c− �→ b+.

Such priority assumptions t �→ t ′ can be applied to the STG, resulting in a trans-
formed model which captures this information. The idea is to replicate the transition
with lower priority t ′ to capture each situation in which t is not enabled and t ′ can
safely fire. This firing order enforcement (FOE) transformation is formally defined
in Fig. 5.10.4

4One can show that safeness and consistency are preserved by the FOE transformation, as it can
only reduce the set of reachable markings. Moreover, though it does not preserve the CSC property,
it preserves the stronger USC property, see [23]. Since the STGs derived from Boolean networks
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The firing order enforcement (FOE) transformation:
Suppose t �→ t ′ has been assumed, and let p1, . . . , pk be the preplaces of t which are not preplaces
of t ′. If k = 0 then t is enabled whenever t ′ is, and so t ′ can be simply eliminated from the STG,
together with all the incident arcs, as in such a case it can never fire due to the assumption t �→ t ′.
Otherwise, t ′ is replicated k − 1 times, so that there are k copies (denoted by t ′1 = t ′, t ′2, . . . , t ′k)
of t ′ altogether. All these replicas are labeled by the same signal as t ′, and have exactly the same
connections. Furthermore, a read arc is added between t ′i and pi for each i = 1, . . . , k, where pi is
gj if pi corresponds to gj , and gj if pi corresponds to gj .

The FOE transformation guarantees that: (i) if t is enabled by some marking M then none of
t ′1, . . . , t ′k is enabled; and (ii) if t is not enabled by some marking M but t ′ is enabled by M in the
original STG, then at least one of t ′1, . . . , t ′k is enabled in the modified STG. That is, the choice is
resolved to favor t .

Fig. 5.10 A transformation for enforcing the priority assumption t �→ t ′

Our method allows for automatic application of user-given assumptions about the
environment and relative reaction rates to the STG, in order to refine its behavior.
In particular, it transforms the STG in Fig. 5.9(a) into the one in part (b) of this
figure, which, after simplification by PETRIFY, becomes the STG in part (c) of this
figure. The latter STG has less behavior than the STG in Fig. 5.9(a), and is SI.
Somewhat unexpectedly, it has more behavior than the initial model in Fig. 5.7(c).
This is explained by the fact that it poses fewer constraints on the environment (i.e.,
the system can actually cope with a more demanding environment than the one it
was intended for).

5.3.3 Case Study: Lysis–Lysogeny Switch in Phage λ

We now illustrate the introduced STG modeling techniques by developing an STG
model of the GRN responsible for the lysogeny-lysis switch in λ phage [289, 311].
Using the Boolean model presented in [390] as a starting point, we construct and
refine an STG model of this GRN, utilizing the support tools GNAPN [24] and PET-
RIFY [84]. The model is refined by finding the points where OP violations occur,
and then applying appropriate assumptions about the environment’s behavior and
relative reaction rates to resolve the associated hazards. Since the lysis-lysogeny de-
cision is a stochastic phenomenon, it is not resolved and remains in the final model,
which still turns out to be SI.

5.3.3.1 Model Construction

The temperate bacteriophage λ [289, 311] is an extensively studied virus which
infects the bacteria E. coli. After infection of the host cell, a stochastic decision

using the construction in Fig. 5.8 are always safe (i.e., every place can contain at most one token),
consistent and have USC [23], these three properties can be ignored when refining such models.
However, for the manually constructed STGs they have to be checked.
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Fig. 5.11 A high-level representation of the GRN of the phage λ switch (a); and the corresponding
logical equations which define the GRN’s behavior (b)

is made by phage λ, based on environmental factors, between two very different
methods of reproduction, namely the lytic and lysogenic cycles [390]. In most cases,
phage λ enters the lytic cycle in which it generates as many new viral particles as
the host cell resources allow. It then uses an enzyme to breakdown and lyse the
cell wall, releasing the new phage into the environment. Alternatively, phage λ may
enter the lysogenic cycle where it integrates its DNA into the DNA of the host
cell. In such a case, the genes expressed in the phage λ DNA, now a prophage,
synthesize a repressor which blocks the expression of other phage genes including
those involved in its own excision. As such, the host cell, now a lysogen, establishes
an immunity to external infection from other phages, and the prophage is able to lie
dormant, replicating with each subsequent cell division of the host.

A high-level pictorial representation of this GRN is presented in Fig. 5.11, along
with the corresponding logical equations describing the qualitative behavior of each
network entity [390]. Integration of the phage λ DNA into the host DNA requires
the presence of the integrase Int. Furthermore, the phage λ DNA remains integrated
unless the excisionase Xis is also present. Thus, integration and excision occurs
in both directions when both Int and Xis are present, and so the stochastic lysis-
lysogeny choice is qualitatively modeled as a nondeterministic one [390]. The signal
Intg is used as an output to indicate the status of this process, taking the value 1 if
the phage λ DNA is integrated and 0 if it is not integrated or has been excised. Both
Int and Xis are repressed by the phage λ repressor CI, which we regard as an input
since it is regulated outside the scope of this model. However, Int is also activated
by CII, itself under negative control from CI. This additional control of Int therefore
favors integration over excision [390].

From the Boolean network shown in Fig. 5.11, we are able to automatically con-
struct an STG describing the behavior of the phage λ circuit using GNAPN. We
define CI as an input signal from the environment, Intg as the output signal pro-
duced by the circuit, and CII, Int and Xis as internal signals which are invisible to the
environment. (As discussed earlier, this partitioning of signals is a decision which
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Fig. 5.12 STG model for phage λ, with the dashed arcs showing the FOE transformations that
capture the assumption of a slow environment (a); and resulting STG after simplification by PET-
RIFY (b)

must be made by the modeler.) Furthermore, we choose the initial state5 in which
the values of all signals except CI are 0. Note that we allow CI to oscillate freely to
represent the most general environment.

The resulting STG model is presented in Fig. 5.12(a). As explained in the previ-
ous section, STGs derived from circuits are bounded (in fact, safe), consistent and
have CSC, and these properties are preserved by the subsequent transformations.

5.3.3.2 Model Analysis and Refinement

We can now check the basic properties of our STG model by running it through
PETRIFY. It shows, as predicted by our theory, that the STG satisfies the bounded-
ness, consistency and CSC properties. However, it highlights that there is a number
of OP violations (resulting in nondeterministic behavior), which suggests the model
may contain some behavior that is not realizable in practice:

(1) Xis+ ⇀ CI+, (2) Xis− ⇀ CI−, (3) IntInt+ ⇀ CI+,
(4) Int− ⇀ CI−, (5) CII+ ⇀ CI+, (6) CII− ⇀ CI−,
(7) Intg− ⇀ Int−, (8) Intg− ⇀ Xis−, (9) Intg+ ⇀ Int−,
(10) Int+/1 ⇀ CII−.

These violations of OP indicate the areas of the STG which are candidates for
refinement by applying additional information about the environment’s behavior
or relative reaction rates. We proceed by considering OP violations (1)–(6) which

5Choosing a meaningful initial state is outside the scope of this paper; we just remark that typically
a biological system has cyclic behavior, and that any state on this cycle can be taken.
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involve conflicts between input and local transitions. Such conflicts can often be
resolved by assuming that the environment is slow enough to allow the circuit to
stabilize. We therefore apply the following FOE transformations to the model to
resolve these violations:

Xis+�→CI+,Xis−�→CI−, Int+�→CI+, Int−�→CI−,CII+�→CI+,CII−�→CI−,

which are also shown by dashed arcs in Fig. 5.12(a). Note that the support tool
GNAPN provides a utility to allow such FOE transformations to be automatically
applied to an STG model [24].

Interestingly, applying the above FOE transformations resolves also violation
(10), leaving only violations (7)–(9) in the new model. Violations (7) and (8) show
that excision (represented by the firing of Intg−) when Int and Xis are 1 can be
preempted if Int− or Xis− fires first, whilst violation (9) shows that integration (rep-
resented by the firing of transition Intg+) can be preempted if Int− fires first. These
remaining OP violations are at the heart of the lysis-lysogeny switch in phage λ

(which is a stochastic phenomenon in practice [390]), and so are not resolved. After
applying the FOE transformations, we can simplify the model using PETRIFY and
the result is the STG shown in Fig. 5.12(b).

The new STG in Fig. 5.12(b) is much less cluttered than the original one.6 as the
unrealizable behavior under the FOE transformations listed above has been stripped
away, making it significantly simpler to interpret and analyze using for example,
model checking [79]. Moreover, this simplified STG clearly separates into two com-
ponents, which capture the crucial mechanisms governing the lysis-lysogeny switch:

• Component 1 (left) involves the input signal CI and the internal signals CII, Int
and Xis. From the initial stable state, it waits for the environment to lower signal
CI indicating the absence of immunity, after which CII+, Int+ and Xis+ can fire
in any order. This component then waits for the environment to raise signal CI,
resulting in the firing of transitions Xis− and CII− (in any order), with the latter
followed by Int−, which returns the component to its initial state.

• Component 2 (right) is a simple flip-flop for signal Intg, which is controlled by
the values of the signals Int and Xis in the first component. Note that the only
connections between the two components are the read arcs between places of the
former component and transitions of the latter one, that is, the latter component
accesses the former one in the read-only fashion and hence does not affect its
behavior.

After Component 1 has raised Int, transition Intg+ is able to fire, representing the
integration of the phage λ DNA into the host cell. Once Component 1 has raised
both Int and Xis, Intg can freely oscillate, that is, there are no stable states in the
absence of immunity [390]. Similarly, once the environment has raised CI, Compo-
nent 1 executes Xis− concurrently with CII− followed by Int−; the outcomes of the
arbitrations between Intg+ and Int− and between Intg− and Int− or Xis− determine

6This is very typical, as the original STG contained a lot of (rather random) behavior which is not
realizable in practice.
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the stable state of signal Intg in the presence of immunity. These arbitrations exactly
correspond to the OP violations (7)–(9) still remaining in the STG in Fig. 5.12(b)
and involving only local transitions.

Observe that CII− ‘delays’ Int−, modeling that the presence of CII causes phage λ

to favor integration over excision; however, the latter is not a qualitative effect, and
can not in fact be formally derived neither from this STG nor from the equations
in Fig. 5.11(b) due to the arbitrary gate delays. In fact, one can see that CII can be
removed from the model, without affecting its qualitative behavior; indeed, its only
role is to change the probabilities involved in the stochastic choice made by phage
λ, and so it is no longer required once this stochastic choice has been qualitatively
modeled by a nondeterministic one.

5.4 Related Work

A number of formal techniques have been applied to modeling and analyzing GRNs.
These range from qualitative approaches, like Boolean networks, to more detailed
quantitative approaches based on differential equations or stochastic techniques
(see, e.g., the survey papers [175, 182, 343]). Petri nets have emerged as a natu-
ral framework in which to model GRNs both qualitatively and quantitatively (e.g.,
see [63, 149]). In this section, we present a brief overview of the literature in this
area, with the aim of providing a starting point for further reading.

One natural qualitative approach is to translate existing logical models for GRNs
into Petri net models as was done in this chapter. (Further details and case stud-
ies illustrating our approach can be found in [23, 24, 373, 374].) Chaouiya et al.
[65, 320] have developed a similar approach based on translating logical regulatory
graphs (a logical model similar to asynchronous Boolean networks [390]) into Petri
nets. This approach was used in [362] to develop an integrated model in which reg-
ulatory and biochemical pathways in the biosynthesis of tryptophan in E. coli were
modeled and analyzed.

In [22, 66, 67], these approaches were generalized to the multi-value case, where
the states of entities can take one of a discrete range of values [390]. In particular,
the use of high-level Petri net models was considered in [22, 66]. An interesting ap-
proach is presented in [81], where a high-level Petri net model is used in conjunction
with model checking to find GRN models that satisfy given behavioral constraints.

A range of quantitative modeling approaches have been considered for GRNs, for
example see the early paper [294] on the use of stochastic Petri nets. The use of hy-
brid Petri nets (HPN) for modeling GRNs has been considered extensively by Mat-
suno et al. (e.g., see [248]). They have presented a refined class of HPNs for mod-
eling biological systems, called hybrid functional Petri nets (HFPNs) [251, 255],
which allow the firing rates of transitions to depend on the corresponding values
held at input places.
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5.5 Summary

In this chapter, we have presented a range of techniques based on Petri nets for
qualitatively modeling and analyzing GRNs. We began by considering synchronous
Boolean networks and presented a systematic approach for translating such models
into Petri nets. This approach is supported by the tool GNAPN, which automates
model construction and facilitates model analysis. We illustrated the practical appli-
cation of our approach by modeling and analyzing the GRN underlying the carbon
starvation stress response in E. coli. This case study demonstrated how Petri net
tools can be used to validate and analyze GRN models. In particular, it detailed
the use of model checking to investigate the behavior of the GRN and carry out a
detailed mutant analysis by knocking out and overexpressing entities.

While asynchronous models appear to be more realistic than their synchronous
counterparts, they suffer from the problem of capturing too much behavior, limiting
their use in practice. We addressed this by applying techniques and tools from asyn-
chronous circuit design to develop realistic asynchronous models. Key here was our
methodological assumption that, given enough information, a GRN can be qualita-
tively modeled as an SI circuit. By using the STG modeling formalism to identify
violations of speed-independence (in particular, output-persistency violations), one
can highlight key areas of a model that either require refining or represent truly
stochastic effects within a GRN. Thus, STGs can be seen as providing a well sup-
ported formal framework for GRNs, that allows realistic qualitative asynchronous
models to be developed and analyzed. The practical application of these ideas was
illustrated with a detailed case study, in which an SI STG model of the GRN for the
lysis-lysogeny switch in phage λ was developed using the support tools GNAPN
and PETRIFY.

Further work to extend the ideas presented in this chapter and strengthen the
associated tool support is ongoing. One interesting area currently being investigated
is the application of STG techniques to synthetic biology [35]. Given that STGs were
developed to support the compositional construction of asynchronous circuits [84],
they appear to be ideally suited to designing artificial genetic control systems.

The basic Boolean network model can be extended to multi-valued networks
[390], where the Boolean state of entities is enlarged to a set of discrete values.
Our STG refinement approach can be applied to multi-valued networks in a num-
ber of ways, such as using several Boolean variables to represent a signal’s state or
reformulating the consistency rule on signal labels. Work is currently underway to
investigate these approaches (e.g., [22]).

5.6 Problems

The following simple exercises are aimed to help the reader familiarize themselves
with the techniques we have introduced.

5.1 Consider the Boolean network presented below:
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1. Following the approach detailed in Sect. 5.2.1, derive the logical equations that
define when the entities are active or inactive.

2. Using GNAPN, construct a Petri net that models the synchronous behavior of
the given Boolean network.

3. Using an appropriate Petri net tool (e.g., PEP), simulate the model from various
initial states and observe its behavior.

4. Finally, use model checking to verify whether or not A and C are mutually ex-
clusive (i.e., starting from any state in which they are not both active, they can
not both simultaneously become active).

5.2 Consider an asynchronous Boolean network which has inputs A, B , and out-
put C, where the behavior of C is defined by the logical equation [C] =A+B .

1. Using the circuit-STG construction presented in Fig. 5.8 construct by hand an
STG for this asynchronous Boolean network.

2. Identify the four OP violations that exist in this STG.
3. Suppose we assume that the environment is faster than the system in this case.

What effect will this have on the behavior of the STG?
4. Alternatively, suppose the environment is slower than the system (i.e., the system

always has the chance to react to changes in its inputs). Draw the refined STG
that will result from this assumption.
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Chapter 6
Hybrid Functional Petri Net with Extension
for Dynamic Pathway Modeling

Ayumu Saito, Masao Nagasaki, Hiroshi Matsuno,
and Satoru Miyano

Abstract Using elementary Petri nets, it is difficult to mixturely model the dis-
crete, continuous and other complicated events, for example, DNA, RNA and amino
acid sequence events. Therefore, Hybrid Functional Petri Net with extension (HF-
PNe) was introduced to overcome this difficulty and also to allow representation
of pathway models without loss of biological details. First, this book chapter ex-
plains how modeling with Petri net is done. After which, a full definition of HFPNe
is given, along with its relation to hybrid Petri net and other related Petri net ex-
tension. Finally, to demonstrate the elegance of HFPNe architecture in handling
complex pathway modeling, we chose a biological pathway that involves discrete,
continuous and sequence events (gene regulatory network of the cell fate determi-
nation in C. elegans). We provide the biological mechanisms of this network and
show how intuitively it could be modeled on HFPNe architecture using a software
tool, Cell Illustrator.

6.1 Introduction

Reddy et al. [314] and Hofestädt [162] have shown that the concept of Petri net is
very suited for modeling metabolic pathways. By following these pioneering works,
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Petri net and its extensions such as hybrid Petri net [10] have been applied for mod-
eling and analyzing gene regulatory networks, metabolic pathways, and signaling
pathways. The following are some of the reasons why such biological pathway mod-
eling is gaining attention in biology: once an in silico model is developed, it can be
easily updated with new biological discoveries and additional information. The con-
sistency of the model with new experimental data can be checked by simulation. In
silico mutant analysis can be also performed by modifying the wild-type model then
via simulation.

In modeling biological pathways with the concept of Petri net, we correspond
biological molecules in the cell to the places of Petri net such that the mark of a
place represents the molecular density or the number of the molecules in the cell.
Transitions of Petri net are used to describe the biochemical reactions among the
molecules and the changes of the molecules in the cell, for example, enzyme reac-
tions, protein phosphorylation, translocation of molecules in the cell. Dynamics is
put into the transitions. The molecules and reactions in a pathway are connected by
arcs which define the whole network structure of the pathway. For example, with hy-
brid Petri net, we can make a model that equips discrete genetic switches connected
with a system of ordinary differential equations for a cascade of enzyme reactions
in a metabolic pathway. Many studies have shown that most of the discrete and con-
tinuous events in pathways can be modeled with the concept of Petri net, and the
pathways can be analyzed with some Petri net analysis methods [94–97, 140, 147,
163, 210, 211, 230, 231, 248, 250, 251, 255, 266, 338, 398, 407].

Most of the dynamics of logical and quantitative relations in pathways may be
handled with hybrid Petri net and its extensions. However, less attention has been
paid to one of the most important entities in cells, “sequence information”, for ex-
ample, DNA and RNA base sequence, amino-acid sequence of protein, etc., which
are sources of molecules in pathways and whose changes may cause different sys-
tem behaviors and structures in pathways. Although abstraction is a key to system
modeling for simulation, it is also important for biology to organize the biological
knowledge and facts into the models precisely as much as possible. For example,
it is known that the gene mdm2 inhibits the gene p53. The biological mechanism
behind this abstractly described inhibition is that the complex of the p53 protein and
the MDM2 protein accelerates the ubiquitination of the p53 protein for its destruc-
tion. A precise dynamic pathway model for this inhibition is constructed in [96]
from the biological literature. Thus, for dynamic pathway modeling, we consider
that it is crucial that the details of biological mechanisms can be described without
loosing biological understandability and intuitions.

With this motivation, hybrid functional Petri net with extension (HFPNe) [274,
275, 277] was introduced to handle any kinds of objects based on the concept of
Petri net. Objects include sequences in addition to discrete and continuous numbers.
This architecture is implemented in a software tool namely, Cell Illustrator [59], and
in practice, with this software tool we can build HFPNe pathway models by using
its GUI and simulate them on it. One of the purpose of this book chapter is to give a
full definition of HFPNe and explain its relation to hybrid Petri net and other related
Petri net extensions. In Sect. 6.2, we give how the concept of Petri net is employed
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for biological pathway modeling. Section 6.3 gives the definition of HFPNe and its
related notions.

Then, in Sect. 6.4, we show how HFPNe modeling is guided and done by us-
ing a concrete biological pathway. As the biological pathway involving discrete,
continuous and sequence events, we consider a gene regulatory network of the cell
fate determination of gustatory neurons in C. elegans that forms a double-negative
feedback loop mediated by microRNAs (miRNAs). It is known that miRNAs play
important roles in this complex gene regulatory network. We provide the biological
mechanisms of this network and show how the HFPNe model of this network is
developed.

6.2 Pathway Modeling with Concept of Petri Net

6.2.1 Petri Net (PN)

We briefly begin with an informal definition of the original Petri net (PN) [319]. PN
is defined as a finite bipartite directed graph consisting of two kinds of nodes called
places and transitions, where no edge is allowed between places or between tran-
sitions. Multiple edges are allowed between the same pair of place and transition.
We denote the set of places by P and the set of transitions by T . Directed edges
between places and transitions are called arcs. A place can hold a finite number
of tokens and this nonnegative integer is called the mark of the place. A marking
M of P is a mapping M : P → N that assigns the mark (the number of tokens) to
each place, where N is the set of nonnegative integers. An arc is labeled with a non-
negative integer called the weight. By definition, a transition has input arcs coming
from some places (input places) and output arcs going out from the transition to
some places (output places). A transition with these arcs defines a firing condition
in terms of the marks of the places and the weights of the arcs. A typical firing con-
dition is that the weights of input arcs are used as thresholds, that is, a transition
can fire if, for each input arc, the mark of its input place is greater than or equal to
the weight of the input arc. After firing the transition, the marks of the places are
updated according to the weights assigned to the arcs. For example, for each input
arc, the mark of its input place is decreased by the weight of the input arc while for
each output arc, the mark of its output place is increased by the weight of the output
arc.

6.2.2 Representation of Biological Pathway

Biological pathways consist of biological entities such as DNA, mRNA, protein
in membrane, protein in nucleus, phosphorylated protein, protein complex, ligand,
receptor, etc., and biological processes such as transcription, translation, phospho-
rylation, degradation, translocation, binding, dissociation, inhibition, etc. When we
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make a biological pathway model with PN, we associate a biological entity with a
place and a biological process which is disabled. The connection structure of arcs
describes how biological processes are running with biological entities.

Figure 6.1 shows an example of signaling pathway, Fas ligand induced apoptosis
pathway. By receiving Fas ligands, this pathway sends out signals that ultimately
cause the DNA fragmentation that means the apoptotic death. Starting from Fas
ligand molecules at the left upper site, this pathway recruits several kinds of
molecules such as Fas-associating protein with death domain (FADD) , pro-

caspase 8 , etc., and it induces chains of biochemical reactions. These molecules
and their complexes and modifications are represented by places to which some ap-
propriate icons are attached. Biochemical reactions are represented by icons for

intuitive understanding: (binding), (degradation), (activation),

(translation), (cleavage), (translocation), (metabolic reaction), (DNA

cleavage), (DNA damage), (DNA repair), (general molecular reaction),

(unknown reaction), etc. Activated caspase 8 activates caspase 3 through two

pathways. One is a pathway via mitochondria. Caspase 8 cleaves Bcl-2 interact-
ing protein (Bid) and its COOH-terminal part translocates to mitochondria.
Then it triggers releasing cytochrome c that binds to apoplectic protease protease

activating factor-1 (Apaf-1) together with dATP and procaspase 9 , and

activates caspase 9 . The activated caspase 9 cleaves procaspase 3 and acti-

vates caspase 3 . The other pathway is a short cut from caspase 8 to procaspase 3
where caspase 8 cleaves procaspase 3 directly and caspase 3 is activated. Caspase 3

cleaves DNA fragmentation factor (DFF) in a heterodimeric factor of DFF40

and DFF45 . Cleaved DFF45 dissociates from DFF40, inducing oligomerization

of DFF40 that has DNase activity. The active DFF40 oligomer causes the in-
ternucleosomal DNA fragmentation. More details are found in [251], and the model
can be downloaded from [61].

6.2.3 Timed Petri Net (TPN)

For dynamic biological pathway modeling, the notion of “time” should be inevitably
included in Petri net. Timed Petri net (TPN) [319] is PN which counts time and
allows delay in firing. Namely, in addition to firing condition, each transition has a
nonnegative integer d called delay. The delay of a transition varies from transition
to transition. Since TPN follows the time x, the marking is parameterized with x

as M(x). The marking M(0) at time 0 is called the initial marking. For a place p,
we denote the mark of p at time x by M[p](x). Let t be a transition with delay d

and let ai1, . . . , aik be its input arcs with weights wi1, . . . ,wik and pi1, . . . , pik be its
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Fig. 6.1 Fas ligand induced apoptosis pathway represented by Cell Illustrator. By Fas ligands, the
pathway sends out signals that ultimately cause the self DNA fragmentation that means the apop-
totic death. Fas ligands, which usually exist as trimers, bind and activate their receptors by inducing
receptor trimerization. Activated receptors recruit adaptor molecules such as Fas-associating pro-
tein with death domain (FADD), which recruit procaspase 8 to the receptor complex, where it
undergoes autocatalytic activation. Activated caspase 8 activates caspase 3 through two pathways.
The complex one is that caspase 8 cleaves Bcl-2 interacting protein (Bid) and its C-terminal part
translocates to mitochondria where it triggers cytochrome c release. The released cytochrome c
bind to apoplectic protease activating factor-1 (Apaf-1) together with dATP and procaspase 9 and
activates caspase 9. The caspase 9 cleaves procaspase 3 and activates caspase 3. The another path-
way is that caspase 8 cleaves procaspase 3 directly and activates it. The caspase 3 cleaves DNA
fragmentation factor (DFF) 45 in a heterodimeric factor of DFF40 and DFF45. Cleaved DFF45
dissociates from DFF40, inducing oligomerization of DFF40 that has DNase activity. The active
DFF40 oligomer causes the internucleosomal DNA fragmentation, which is an apoptotic hallmark
indicative of chromatin condensation
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input places. We say that transition t is enabled at time x if M[pij ](x)≥wij for all
j = 1, . . . , k. Then, the transition t fires at x + d time and the marking is updated.

For any kind of molecule in the cell, we can represent its occurrences in cell with
a place so that molecular occurrences correspond to tokens on the place. TPN is
useful to directly model molecular processes with places and transitions.

6.2.4 Continuous Timed Petri Net (CTPN)

On the other hand, biological pathways such as biochemical reactions are approx-
imated as systems of ordinary differential equations instead of handling discrete
molecular interactions. For this purpose, continuous timed Petri net (CTPN) [319]
is a useful tool for modeling continuous features of biological processes. In order to
make the differences between TPN and CTPN, we call place and transition of TPN
as discrete place and discrete transition and those of CTPN continuous place and
continuous transition. CTPN counts time and the continuous place holds a nonnega-
tive real number as its token is called continuous token and can represent concentra-
tion of molecule. Different from TPN, the continuous transition does not have delay
and it fires continuously and consumes/produces continuous tokens in places con-
nected to the transition. Let t be a continuous transition in CTPN and let ai1, . . . , aik

be its input arcs connected to input places pi1, . . . , pik and a′i1, . . . , a
′
ik′ be its output

arcs connected to output places p′i1, . . . , p
′
ik′ . Each input arc aij has two nonnegative

real numbers weight wij and input speed sij , and each output arc a′ij ′ has a single

nonnegative real number s′ij ′ called output speed. The transition t fires continuously

as long as its firing condition on weights and marks is satisfied as in the case of
TPN. As firing, continuous token is removed from input place pij with speed sij
through arc aij and continuous token is added to output place p′ij ′ with speed s′ij ′
through arc aij ′ . The marking M(t) of CTPN is updated in this way.

More formal definitions are required for defining M(t) for TPN and CTPN and
they will be given in Section 6.3 in more extended form.

6.3 Hybrid Functional Petri Net with Extension

The purpose of this section is to define formally the notion of hybrid functional Petri
net with extension (HFPNe) that is an extension of Petri net which can deal with not
only discrete and continuous features but also any objects such as strings.

Genetic switches are easily modeled with discrete transitions while metabolic
pathways comprising cascades of enzyme reactions are more suited for continuous
transitions using Michaelis–Menten kinetics. If one wants to make a model consist-
ing of genetic switches and their regulated metabolic pathways [95], the notion of
hybrid system will be helpful.
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We start with hybrid Petri net (HPN) [10]. HPN is defined as a hybrid system
of TPN and CTPN with which we can make models having both discrete and con-
tinuous features. The original definition of HPN specifies that the input and output
speeds of a transition must be the same. Thus, it gives the “firing speed” of the tran-
sition. By the definition of HPN and CTPN, the speeds assigned to arcs are constant
numbers. These constraints may be rational when we analyze the systems behavior
mathematically. On the other hand, due to a practical requirement, hybrid dynamic
net (HDN) [99] removed the constant constraint on speeds so that the firing speed of
a transition can depend on the marks of its input places, that is, the speed is defined
by any function of the marks. But, the input and output speeds are kept the same.
Some drawbacks of this equality constraint on speeds are discussed with biological
examples in [251].

Hybrid functional Petri net (HFPN) [251] was introduced to resolve these in-
conveniences in biological pathway modeling. HFPN is defined by allowing any
functions to be assigned to the input and output speeds, weights, and delays in the
hybrid system of TPN and CTPN. Almost all biological pathways can be intuitively
modeled with HFPN to some extent. In order to include more complex biological in-
formation such as sequence information of DNA, mRNA, and protein in biological
pathway modeling, HFPN is further extended to hybrid functional Petri net with ex-
tension (HFPNe) [274, 275, 277]. HFPNe is a programming language with objects
rather than a hybrid system of discrete and continuous systems. In order to handle
“objects”, we introduce generic place and generic transition for HFPNe.

The definition of HFPNe requires a series of formal notions. In HPN, two kinds
of data types are used for places, that is, nonnegative integer (discrete) and non-
negative real number (continuous). For HFPNe, we use a more general framework
of types for places and transitions. The definition here is slightly different from the
originally defined one in [275], but the definition described below is given in a more
general way.

We define the set T of types as follows:

〈type〉 ::= boolean ‖ integer ‖ integer+ ‖ real ‖ real+ ‖
string ‖ pair(〈type〉, 〈type〉) ‖ list 〈type〉 ‖
object

(〈type〉, . . . , 〈type〉).

For each θ ∈T , we associate it with its domain D(θ) as follows:

1. D(boolean)= {true,false}.
2. D(integer)= Z (the set of integers).
3. D(integer+)=N (the set of nonnegative integers).
4. D(real)=R (the set of real numbers).
5. D(real+)=R≥0 (the set of nonnegative real numbers).
6. D(string)= S (the set of strings over some alphabet).
7. D(pair(θ1, θ2))=D(θ1)×D(θ2) (the pair of two domains).
8. D(listθ)=⋃

k≥0 D(θ)k (the list with the same domain).
9. D(object(θ1, . . . , θn))=D(θ1)× · · · ×D(θn) (the set of any domains).

We denote D∗ =⋃
θ∈T D(θ).
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For HFPNe, we newly introduce places and transitions which deal with D∗ and
these places and transitions are named “generic” while the names “discrete” and
“continuous” are used for places and transitions of HFPN.

Let P be a finite set of places. Each place is labeled with either discrete,
continuous, or generic. Place labeled with discrete (resp., continu-
ous, generic) is called discrete (resp., continuous, generic). We assign a type
τ(p) to each place p in P by a mapping called a type function τ : P → T which
satisfies the following conditions:

1. If p is labeled with discrete, then τ(p)= integer+.
2. If p is labeled with continuous, then τ(p)= real+.
3. If p is labeled with generic, it can be any type in T .

A marking of P is defined as a mapping M : P → D∗ such that M[p] is in
D(τ(p)) for p ∈ P . M[p] is called the mark of p. We denote by M the set of all
markings of P .

We define some notations which will be used for the definition of HFPNe. Let
Ddiscrete ={f | f : M → N}, Dboolean ={b | f : M → {true,false}, and
Dgeneric ={f | f :M →D∗}.

Consider f : ∏p∈P D(τ(p)) → R≥0. Note that the set M can be identified
with the set

∏
p∈P D(τ(p)). Let R be the set of all places labeled with contin-

uous and let Q = P − R. For an element v ∈ ∏
p∈Q D(τ(p)), let f [Q = v] :

∏
p∈R D(τ(p)) → R≥0 be the function defined by f [Q = v](v′) = f (v′, v)

for v′ ∈ ∏
p∈R D(τ(p)). We say that f is continuous if f [Q = v] is continu-

ous on
∏

p∈R D(τ(p)) for any v ∈ ∏
p∈Q D(τ(p)). Then, let Dcontinuous =

{f | f :M →R≥0 is continuous}.
Based on the above notations, we define HFPNe by introducing data types for

places by giving functions which depend on markings to determine the weight, de-
lay, and speed, etc. We embed the definition of HFPN into the definition of HFPNe
as follows:

Definition 6.1 A hybrid functional Petri net with extension (HFPNe)

H = (P,T ,A, τ,w,u, d)

consists of the following:

1. P is a finite set of places and T is a finite set of transitions. We assume
P ∩ T = ∅. Each place is labeled with either discrete, continuous, or
generic. Each transition is also labeled with discrete, continuous, or
generic. The transition and place are called discrete, continuous, or generic
according to its label.

For each transition t in T , there are two sets Inputt and Outputt of arcs. Arc
a ∈ Inputt is an edge from input place pa to the transition t called input arc.
Arc a′ ∈Onputt is an edge from the transition t to output place pa′ called output
arc. Each arc is labeled with either normal, test, or inhibitory, and they
are called normal, test, and inhibitory, respectively. We also say that
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Fig. 6.2 All names in HFPNe elements and their graphical representation. Biological images are
helpful for enhancing biological understanding of pathways modeled with HFPNe. These images
are used in Cell Illustrator

arcs (a and a′) are discrete (resp., continuous, generic) if transition t is discrete
(resp., continuous, generic). For graphical representation, we use the symbols in
Fig. 6.2. The labels of arcs, places and transitions satisfy the following rules:
a. The label of arc a′ ∈Onputt is normal.
b. For arc a ∈ Inputt with input place pa , the labels of arc a, place pa , and

transition t satisfies the connection rules in Table 6.1(a) and Fig. 6.3.
c. For arc a′ ∈ Onputt with output place pa′ , the labels of arc a′, place pa′ and

transition T satisfies the connection rules in Table 6.1(b) and Fig. 6.3.
We denote by PT and TP the set of input arcs and the set of output arcs of all
transitions, respectively. We also denote arc a in PT as a(p, t) by specifying
input place and transition. In a similar way, arc a′ in TP is denoted as a′(t,p) by
specifying transition and output place. The set A of arcs is given by PT ∪ TP.

2. The types of places are given by a type function τ : P →T .
3. For each input arc a ∈ PT , its activity w(a) is given by an activity function

w : PT →Ddiscrete ∪Dcontinuous ∪Dboolean which satisfies the following
conditions:
a. If a is discrete, w(a) is in Ddiscrete.
b. If w(a) is in Dcontinuous.
c. If a is generic, w(a) is in Dboolean.
For input arc a(p, t), w(a) is used as a function giving the threshold in discrete
and continuous cases and the condition in generic case which is required for
enabling the transition t .

4. For each arc c (c = a(p, t) ∈ PT or c = a′(t,p) ∈ TP), the update u(c) is given
by an update function u : A → Ddiscrete ∪ Dcontinuous ∪ Dgeneric which
satisfies the following conditions:
a. If c is discrete, u(c) is in Ddiscrete.
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Table 6.1 (a) Connection rules from input places to transitions.
√

means that the connection is
allowed and − means that the connection is not allowed. (b) Connection rules from transitions
to output places. Arc label is normal by definition.

√
means that the connection is allowed and

− means that the connection is not allowed. In Cell Illustrator, arc from discrete or continuous
transition to generic place is allowed if the type of generic place is consistent with transition

Label of arc a Normal

Label of transition t Discrete Continuous Generic

Label of place pa Discrete
√ − √

Continuous
√ √ √

Generic − − √

Label of arc a Test or inhibitory

Label transition t Discrete Continuous Generic

Label of place pa Discrete
√ √ √

Continuous
√ √ √

Generic
√ √ √

(a) Input arc pa
a−→ t

Label of arc a′ Normal

Label of transition t Discrete Continuous Generic

Label of place pa′ Discrete
√ − √

Continuous
√ √ √

Generic − − √

(b) Output arc t
a′−→ pa′

b. If c is continuous, u(c) is in Dcontinuous.
c. If c is generic, then u(c) is in Dgeneric such that u(c)[M] is in D(τ(p)) for

any marking M ∈M . u(c) is used as a function which will update the mark
of p.

5. For each discrete or generic transition t , the delay of t is given by a delay function
d : Tdiscrete ∪ Tgeneric→Dcontinuous, where Tdiscrete (resp., Tgeneric)
is the set of discrete transitions resp., generic transitions). The delay of firing on
marking M is given by d(t)[M].

We use the parameter x ≥ 0 for the time in HFPNe. Do not confuse t for transition
with x for time.

The initial marking I is a marking at time x = 0 and we denote the marking at
time x by M(x). The reserved marking Mr(x) at time x represents the amount of
“tokens” reserved for firing when firing conditions are satisfied. The mark of place
p at time x is denoted by M[p](x).
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We call M(x) (x ≥ 0) the behavior of H , that is, system state, starting at the
initial marking M(0)= I . Given the initial marking of HFPNe, the marking M(x)

and the reserved marking Mr(x) at time x are defined in the following way:
For time x = 0, M(0)= I by definition. We define Mr [p](0)= 0 if p is discrete

or continuous, and Mr [p](0)= null (the empty list) if p is generic. By convention,
let M̃(x) be M̃[p](x) = M[p](x) −Mr [p](x) if p is discrete or continuous and
M̃[p](x)=M[p](x) if p is generic.

Definition 6.2 For transition t at time x, we say that t is enabled at time x if the
following conditions are satisfied. Otherwise the transition is said to be disabled at
time x.

1. If t is discrete or continuous, then for all input arcs a(p, t) ∈ PT the following
conditions hold:
a. M̃[p](x)≥w(a)[M(x)] if a is not labeled with inhibitory.
b. M̃[p](x) < w(a)[M(x)] if a is labeled with inhibitory.

2. If t is generic, then for all input arcs a(p, t) ∈ PT the following conditions hold:
a. w(a)[M̃(x)] = true if a is not labeled with inhibitory.
b. w(a)[M̃(x)] = false if a is labeled with inhibitory.

Definition 6.3 If disabled transition t turns enabled at time x, we say that t is trig-
gered at time x and x is called the trigger time. If enabled transition t turns disabled
at time x, we say that t is switched off at time x and x is called the switch-off time.

Fig. 6.3 This diagram shows all the connection rules among all the places and transitions with
arcs. Both test and inhibitory arcs can be connected in all combinations of place type and transition
type but normal arcs have several limitations
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Definition 6.4 We define firing of discrete transition t . Assume that discrete transi-
tion t is triggered at time x. For each normal input arc a(p, t), the place p must be
discrete or continuous by definition. Then Mr [p] reserves α · u(a)[M(x)], that is,
α · u(a)[M(x)] is added to Mr [p], for the time y > x until x + d(t)[M(x)], where
α = {0,1}, if α = 0, reserve is disabled; otherwise, token is reserved. If t is still en-
abled at x + d(t)[M(x)], then at the same time x + d(t)[M(x)], M[p] is decreased
by u(a)[M(x)] and Mr [p] releases u(a)[M(x)], i.e., u(a)[M(x)] is decreased from
Mr [p]. Simultaneously, for each output normal arc a′(t,p′), M[p′] is increased by
u(a′)[M(x)] at time x+ d(t)[M(x)] by arc a′(t,p′). The time d(t)[M(x)] is called
the delay that is determined by the function d(t) of the mark M(x) at time x.

As we will describe in Definitions 6.5 and 6.6 below, the reservation is not per-
formed by generic or continuous transition. However, for the place p, there may be
another discrete transitions t1, . . . , t
 with input normal arcs a1(p, t1), . . . , am(p, t
)

which are triggered at time x. Then, each discrete transition ti tries to reserve
u(ai)[M(x)] from the same M[p] at time x for i = 0, . . . , 
, where a0 = a(p, t)

and t0 = t . We say that there is a conflict with p at time x if M[p](x) <∑

k=0 u(ai)[M(x)]. When a conflict occurs, some conflict resolution should be ap-

plied, for example, random selection of transitions, priorities on transitions, etc.
Even if some conflict resolution procedures among input transitions are applied

to a selected transition t , the place p of a(p, t) may be input places or output places
of another discrete/continuous/generic transitions. By this, M[p] and Mr [p], and
therefore M̃[p], may be changed, the conditions of “enabled” are not be necessarily
satisfied until the firing time x + d(t)[M(x)]. When t becomes disabled before x +
d(t)[M(x)], we say that a system error occurs with t .

Thus, triggered transition does not necessarily fire. If all of these actions succeed,
we say that t fires at time x + d(t)[M(x)]. A example of discrete firing mechanism
is shown in Fig. 6.4.

Fig. 6.4 A example of discrete firing
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Definition 6.5 We define firing of generic transition t . Assume that generic transi-
tion t is triggered at time x. For each input normal arc a(p, t), the place p can be
discrete, continuous and generic. For each output normal a′(t,p′), p′ can be also
any kind of places. If t keeps enabled until time x+ d(t)[M(x)], then M[p] at time
x + d(t)[M(x)] is updated to u(a)[M(x)] and M[p′] is updated to u(a′)[M(x)] at
time x + d(t)[M(x)]. We say that t fires at time x + d(t)[M(x)] if this action suc-
ceeds. If p is generic, it is always that Mr [p](x) = null. No change is added to
Mr [p] by arc a(p, t) if p is discrete or continuous.

In a similar way to discrete transition, if p is discrete or continuous, Mp and
Mr [p] have a possibility to be changed before x + d(t)[M(x)] by another tran-
sitions. Therefore, w(a)[M̃(y)] = true is not necessarily kept for y ∈ (x, x +
d(t)[M(x)]). As in the case of discrete transition, it should be reported as system
error. Since generic transition updates M[p] and M[p′] at time x + d(t)[M(x)],
there is a possibility of conflict with another transitions which use p and p′. Thus,
some conflict resolution should be applied or it should be reported as system error.

Definition 6.6 We define firing of continuous transition t . When continuous tran-
sition t is triggered, it starts firing and updates the marks of its connected places
continuously with the speeds determined by the update function u and the marking
M as long as it is enabled. Assume that continuous transition t is enabled at time x.
For each input normal arc a(p, t), the place p must be continuous by definition (see
Fig. 6.3). Then, the mark M[p] will be decreased through the arc a(p, t) with the
additional speed u(a)[M(x)] at time x. No change is added to Mr [p] by arc a(p, t).
For output normal arc a′(t,p′), the place p′ must be continuous by definition. Then,
the mark M[p′] will be increased through the arc a′(t,p′) with the additional speed
u(a′)[M(x)] at time x. No change is added to Mr [p′] by arc a′(t,p′).

As we have investigated in Definitions 6.4 and 6.5, we consider continuous
place p at time x. Continuous place p may be connected to some transitions
with input/output normal arcs. Then, let t1, . . . , ti be the continuous transitions
which are enabled at time x and have p as input place with input normal arcs
a1(p, t1), . . . , ai(p, ti). Since continuous transition has no delay in firing, we con-
sider continuous transitions t ′1, . . . , t ′j which have p as output place with output
normal arcs a′(t ′1,p), . . . , a′(t ′j ,p) and are enabled at time x. Then, the decreases
and increases through these input and output normal arcs are summed up to define
the derivative of M[p] at time x:

dM[p](x)

dx
=−

i∑

k=1

u(ak)
[
M(x)

]+
j∑

k=1

u
(
a′k

)[
M(x)

]
.

Starting from the time x = 0, we can solve the above equation (numerically) by
using the initial mark M(0) as the initial condition until one of the following events
occur if no system error occurs:

E1: A new continuous transition is triggered or some already enabled continuous
transition is switched off. This may change the definition of the equation.
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E2: Some discrete or generic transition is triggered or fires. This may change the
initial condition for solving the equation.

Thus, we can take a series of time points x0, x1, . . . such that E1 and/or E2 occur
at time xi and neither E1 nor E2 occurs in the time interval (left closed and right
open) (xi, xi+1). Then, we can define the equation for the time interval [xi, xi+1)

and solve it with M(xi) as the initial condition.

Cell Illustrator [59] has completely implemented this architecture for biological
pathway modeling and simulation with biologically intuitive GUI. In this software,
very common kinetics, for example, Mass Action, Hill, Michaelis–Mentens kinet-
ics and kinetics with noise, can be easily assigned (for part of then please refer to
Chap. 8.) The released version of Cell Illustrator does not support the complicated
generic type, that is, pair, list, and object.

6.4 Modeling MicroRNAs Double-Negative Feedback Loop
in Gustatory Neurons of C. elegans

This section discusses the importance of simulation and the necessity for modeling
continuous, discrete and generic biological pathways. Here, we illustrate it by using
the gene regulatory network of the cell fate determination in C. elegans.

ASE cells are a set of two ciliated neurons that are part of the amphid sensilla.
C. elegans has these two gustatory neurons in the left and right sides of the body
called ASEL (left) and ASER (right). ASE cells are differentiated from precursor
of ASE cells and the cell fate determination is regulated by a complex double-
negative feedback loop (DNFL) mediated by lsy-6 and mir-273 microRNA miR-
NAs [172, 174]. Figure 6.5 shows the mechanism of differentiation of ASE cells
based on the DNFL as follows. In addition to these miRNAs, an NKx-type home-
obox gene cog-1 and a zinc-finger transcription factor die-1 also play the key roles
in this regulation [62, 172]. The gradually expressed gene cog-1 promotes the dif-
ferentiation into ASER while die-1 promotes the differentiation into ASEL. For the
differentiation into ASER, the cog-1 and mir-273 miRNAs regulate the mRNAs in
the following manner. The cog-1 mRNA contains an lsy-6 complementary site in
the 3′ untranslated region [172]. In contrast, the die-1 miRNA contains two mir-273
complementary sites in the 3′ untranslated region [62]. Thus, the actions of cog-
1 and die-1 are inhibited under the abundance of lsy-6 and mir-273, respectively,
and differentiation into ASER and ASEL cells can not occur. In addition, die-1 pro-
motes the expression of lsy-6 and cog-1 promotes the expression of mir-273. Thus,
the loop of cog-1, mir-273, die-1, and lsy-6 forms the DNFL.

The die-1 protein in the cytoplasm activates the expression of gene lim-6 and
then the lim-6 protein migrates to the nucleus. After that, the lim-6 protein activates
the transcription of lsy-6. It also activates the expression of flp-4 and flp-20 and
suppresses that of gcy-5 and gcy-22. The lim-6 protein in the nucleus activates the
transcription of both lsy-6 and die-1.
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Fig. 6.5 Steps (1)–(4) forms the loop named double-negative feedback loop. The arrow with tri-
angle as its head denotes activation to its target and with rectangle denotes suppression. The in-
creased die-1 leads to the activation of lsy-6 (4) and the suppression of cog-1 (1) which subse-
quently reduces mir-273 (2). Lsy-6 could also be activated via another path (5). On the other hand,
the increased cog-1 leads to the activation of mir-273 (2) and the suppression of die-1 (3) which
subsequently reduces lsy-6 (and lim-6) (4)

The ASEL cell expresses gcy-6 and gcy-7, while the ASER cell expresses gcy-5,
gcy-22 and hen-1. In adult animals, gcy-6 and gcy-7 are suppressed by the cog-1
protein in the cytoplasm and are expressed only in the ASEL cell, whereas gcy-5,
gcy-22, and hen-1 are expressed only in the ASER cell. Moreover, flp-4 and flp-20
are only expressed in ASEL cells [174].

If the expression level of mir-273 is high, the reporter proteins of ASEL, that is,
flp-4, flp-20, gcy-6, and gcy-7, are upregulated and the reporter proteins of ASER,
that is, gcy-5, gcy-22, and hen-1 are not observed. In contrast, if the level of mir-273
is low, the results are completely reversed.

It is also known that lsy-2 is another key regulator that activates the transcription
of lsy-6 by transporting it from the cytoplasm to the nucleus [173].

All these mechanisms are compiled into an HFPNe model with only continuous
places and transitions as shown in Fig. 6.6. It involves the subcellular localization
information of the proteins, mRNAs, etc. In [331], by controlling the initial concen-
tration of lsy-2, we showed that the simulation results of this model and their mutants
in silico are consistent with biological observations of the cell fate determination of
gustatory neurons in vivo. The parameters of this HFPNe model and simulation re-
sults are available on the web site of Cell System Markup Language [61] and can be
simulated using Cell Illustrator [59].

Such continuous models of biological pathways are useful for understanding
the quantitative aspects of the mechanisms. Only logical regulatory relations given
above are not enough to clearly elucidate the behavior of the differentiation that is
affected by the amount of the initial expression of lsy-2. If the initial expression
of lsy-2 is lower, ASE is differentiated to ASER, and the expressions of mir-273,
gcy-5, gcy-22 and hen-1 are increased. Otherwise, ASE is differentiated to ASEL,
and the expressions of lsy-6, gcy-6, gcy-7, flp-4, and flp-20 are increased. Thus, the
continuous abstract of a biological pathway is helpful to understand the system.

On the other hand, with the recent advanced technology in biology, further details
behind the mechanisms in a cell can be observed. Since the interests of biologists
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Fig. 6.6 Continuous model of cell fate determination in C. elegans build on Cell Illustrator. In
Cell Illustrator, terms “entity”, “process” and “connector” are used for “place”, “transition” and
“arc”. The terms of components in this model are summarized in Fig. 6.2. In the above figure, for
example, the place for die-1 mRNA in the nucleus is attached its name “die-1 mRNA(N)” and its
variable “m4” holding its mark. For a transition, for example, the transition from “lim-6” to “die-1
mRNA(N)” is attached its name “die-1” and its kinetics “m1*0.1”. An arc is attached a name,
for example, “c84”. Default names place, transition, arc, are variable “e#”, “p#”, “c#”, and “m#”,
where # is a number. The inhibitory regulations from miRNAs are emphasized with thick arcs
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Fig. 6.7 A part of the HFPNe model of the cell fate determination using discrete, continuous, and
generic places and transitions. Generic places and transitions are rounded by red circles. Discrete
places and transitions are rounded by blue rectangles. Detailed kinetics and types of transitions in
p27, p35, p42, p43, and p54 are summarized in Table 6.2

are not only the density of some molecule at some location in the cell but also
the sequence information of the molecule, e.g. the copy number of some specific
RNA in the cytoplasm, it is inevitable to include both information to understand
the mechanisms. It is known that the gene die-1 has a SNP on one of the exons
which changes Methionine to Leucine [418]. Variations in miRNAs may also affect
the translational regulation quantitatively. Thus, we consider that dynamic pathway
modeling should deal with not only abstract continuous events but also discrete and
sequence involved events.

Figure 6.7 shows a part around the gene die-1 of the HFPNe model build with
Cell Illustrator that elaborates continuous, discrete and generic places and transi-
tions. In this model, the detailed sequence translation steps are extended to be mod-
eled. Updated kinetics in Fig. 6.7 are summarized in Table 6.2. The model in Fig. 6.6
is modified as follows: First, a generic place of type string is added with name
“die-1 DNA” that holds a single DNA sequence of die-1 (m13). The place “die-1
mRNA(N)” (m27) with icon is changed to a discrete place so that we can
count the number of copies of die-1 mRNA in the nucleus. The transition “p35”

with icon is a generic transition input arc c71 from “die-1 DNA” and output arc
c83 to “die-1 mRNA(N)” that replaces the continuous transitions die-1 in Fig. 6.6.
This transition represents the basal transcription from “die-1 DNA”. The transition

“p54” with icon transcripts “die-1 DNA” with the activation by continuous place
“lim-6” through arc c46. In order to observe and use the die-1 mRNA being pro-
duced, generic places named “intermediate die-1 mRNA(1)” (m4) and “interme-
diate die-1 mRNA(2)” (m25) are newly added and connected to transitions “p54”
and “p35” by arcs c85 and c86, respectively. The complete die-1 mRNA sequence

is stored in “die-1 mRNA sequence” (m26). Transition “p43” with icon is a
discrete transition which degrades “die-1 mRNA(N)” with the speed of m27*0.1.
Then “die-1 mRNA(N)” is translocated to the cytoplasm. This process is performed
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Table 6.2 The kinetics presentation of discrete and generic transitions. The row order in this table
corresponds directly to the flow of pathway in Fig. 6.7

by a discrete transition “p27” with icon with input arc c57 and output arc c63.
The number of copies of die-1 mRNA in the cytoplasm is represented by a discrete
place “die-1 mRNA(C)” (m23). On the other hand, we use a continuous place “die-
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1” (m18) for the die-1 protein. A generic transition “p42” with icon translates
“die-1 mRNA(C)” to the protein with an inhibition of “mir-273” (m22). The amino
acid sequence of die-1 protein is stored in “die-1 aa sequence” (m29). The amino
acid sequence being produced is represented by generic place “intermediate die-1
protein” (m28). The readers can refer to the web site [61] for the HFPNe model and
the details of the functions and parameters defined for transitions and arcs in the
HFPNe model.

6.5 Concluding Remarks

In order to carry out simulation, continuous or discrete models are easier to be built
than hybrid or higher models. Toy models are useful to understand the principles in
the dynamic systems as was shown in physics. However, for deeper understanding
of complex biological systems, we consider that more detailed descriptions of the
systems are at least needed but with intuitive biological understanding. Design prin-
ciples in biological systems are not yet well understood. Therefore, abstraction of
systems is premature at our current stage. Our approach with HFPNe is one direc-
tion towards this aim. In order to realize this for practice, we also developed Cell
Illustrator [59] that implemented HFPNe as a biological pathway modeling archi-
tecture.

The available analysis to elementary Petri nets, for example, reachability anal-
ysis and invariant analysis, can not be directly applied to our high level Petri net.
Instead, other approaches are developing by using model checking [231] and data
assimilation based approaches [278, 281, 386].

Moreover, for simulation oriented ontology, we developed both Cell System On-
tology (CSO) [171] and Cell System Markup Language (CSML) [61] as description
languages for dynamic pathway models. A database containing dynamic pathways
written in CSML was also developed [279] to the contents rich biological pathway
database named TRANSPATH [215]. An introductory textbook on pathway model-
ing is also published [280]. We do not think that any single concept is enough for
dynamic pathway modeling but the concept of Petri net has a very high affinity for
biological pathways.

6.6 Problems

6.1

1. Create the same plots in Fig. 6.4, when the delay of Fig. 6.4 in the transition t1
is changed to 3.

2. When will the token number of p2 becomes 4, if the speeds of p1 to t1 and t1
to p2 are changed to 1 and 2, respectively?
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6.2 List three suitable biological events that can utilize discrete, continuous or
generic elements in HFPNe.

6.3 Find the DNFL components (1)–(5) shown in Figs. 6.5 and 6.6. The same
model can be accessed via http://www.csml.org/models/csml-models/ase-cell-fate-
simulation/.

6.4 Compare the simulation results of model having continuous elements only and
model having continuous, discrete and generic elements. These models can be ac-
cessed via http://www.csml.org/models/csml-models/ase-cell-fate-simulation/. Pay
attention to the difference in simulation results of highlighted elements in Fig. 6.7.

6.5 Signal transduction pathways, gene regulatory networks and metabolic path-
ways modeled in HFPNe are registered in http://www.csml.org/models/csml-
models/. Select a few models and launch them using CIOPlayer (or CIO) to fur-
ther your knowledge of HFPNe.
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Chapter 7
Stochastic Modeling

Ivan Mura

Abstract This chapter provides an introduction to the concepts underlying the
stochastic modeling of biological systems with Petri Nets. It introduces a timed
interpretation of the occurrence of transitions in a net that suites the randomness
observed in biochemical reactions occurring in living matter. Thanks to the founda-
tional work of Gillespie in the 70s, this randomness can be easily accounted for
by the representative power of Stochastic Petri Nets. The chapter illustrates the
Stochastic Petri Net model specification process, the possibilities of analytical and
numerical evaluation of model dynamics as well as the basic concepts underlying
the simulative approaches, through the application to simple instances of biologi-
cal systems to help the reader familiarizing with this discrete stochastic modeling
formalism. Additional examples of larger scale models are presented, and exercises
suggested to consolidate the understanding of the main concepts.

7.1 Introduction

The intuitive graphical formalisms of Petri net coupled with the considerable
amount of theoretical results supporting their analysis has greatly favored the spread
of this modeling formalism in various scientific and technical fields, among them
being Systems Biology.

Because Petri net easily lend themselves to represent state/transition models,
there is quite an immediate mapping between reaction oriented descriptions of bi-
ological systems and places, arcs and transitions. However, describing a biological
system through a set of reactions is far from being a complete specification of a sys-
tem in quantitative terms, as the exact dynamics of how the transformations occur
is still to be defined. As a result, it is possible to build a Petri net that encodes the
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information described in a set of reactions, but then the issue still remains of how the
transitions modeling the reactions fire over time, whether there is a specific order to
be imposed on possible simultaneous firings, and more generally how to deal with
concurrency.

Providing an answer to the questions above requires a further step of interpre-
tation of a Petri net model, and different interpretations are in fact possible. The
choice among them depends on the level of abstraction at which we intend to study
a biological systems, but also on the amount of information that is available. As
already presented in previous chapters of this book, a discrete interpretation is pos-
sible, as well as a continuous one. This chapter deals with a specific subcase of the
discrete interpretation, namely that one in which the transitions firings are timed,
and the firing times are random variables.

This interpretation leads us to consider the class of Petri nets that we call here
Stochastic Petri net (SPN, hereafter). An important remark here is about terminol-
ogy: the SPN acronym was initially proposed for a specific stochastic extension of
Petri net [267], and other variants have taken different names: Generalized Stochas-
tic Petri net [243], Stochastic Activity Networks [260], Stochastic Reward Nets
[269], Stochastic Well-Formed Colored Nets [73], just to mention some of them.
In this chapter, we shall use the generic acronym SPN to refer to Petri net for which
the occurrence times of transition firings are random variables following a nega-
tive exponential distribution (cumulative density function F(t)= 1− e−λt , t ≥ 0,0
elsewhere, λ > 0). As long as the allowed distributions are restricted to this type, the
time-dependent evolution of an SPN model can be analyzed through the solution of
its underlying Continuous-Time Markov Chain.

Various tools were developed for the SPN variants mentioned above, to provide
graphical user interfaces and analytical and simulation support to model definition
and solution, see the Related Work section at the end of this chapter for a list of some
of them. Several of these proposals originated from attempts to limit the sometime
cumbersome graphical notation of basic Petri nets, with the addition of more expres-
sive modeling constructs. Quite interestingly, apart few exceptions as in the case of
[140], there has been no application of such advanced Petri net modeling tools in
the research communities of biologists.

The SPN formalism is still based on a discrete state-space modeling approach,
hence it has the expressive power to capture the discrete molecular dynamics of
the system. Various applications to biology exist in the literature, see the Related
Work section of this chapter, and they all date to the last decade. This recent deploy-
ment of SPN models in system biology is due to the growing interest being paid to
the important results produced by Gillespie in mid 70s [130, 131] about stochastic
molecular dynamics. Before then, dealing with the evolution of a biological system
at the molecular level was considered to be infeasible apart for toy models of very
simple systems, because tracking the state of each molecule in terms of its posi-
tion and speed is indeed a complex task, both in mathematical and computational
terms. Hence, for a long time the preferred modeling approach has been the one that
abstracts discrete state variables representing number of molecules into continuous
variables that account for concentration of molecules. Gillespie proved that there
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exist a lower-level abstraction that is able to account for the behavior of individual
molecules, but that do not require dealing explicitly with their positions and speeds.
Moreover, this abstraction is mathematically and computationally approachable as
it allows exploiting the vast repertoire of methods and tools developed for Markov
processes. The formulation of stochastic molecular dynamics proposed by Gillespie
nicely fits into the expressive capabilities of the SPN modeling approach.

7.2 Basic Concepts

This section introduces the fundamental concepts upon which the stochastic model-
ing of biological systems is based on. First, it presents the results obtained by Gille-
spie in mid 70s about the stochastic kinetics of chemical systems, which provide
the theoretical ground for most of the stochastic modeling research conducted today
in the systems biology domain. Second, it introduces the SPN modeling formal-
ism through some simple examples of biological systems, taking care of discussing
how and when the specific interpretation of transition firing in SPN models matches
with the conditions prescribed by Gillespie for a sound modeling of randomness in
reaction occurrence times.

7.2.1 The Theoretical Basis of Stochastic Molecular Dynamics

The results provided in Gillespie’s first two papers of 1976 [130] and 1977 [131]
stem from a precise characterization of the stochastic behavior of chemical systems
in terms of the probability of the occurrence of a reaction.

In the following, we shall consider a biochemical system composed of N species
and M reactions. We model the state of such system with a vector x whose
component xi ∈ N represents the number of molecules of chemical species i,
i = 1,2, . . . ,N . Then, the evolution of the system can be modeled by a time-indexed
sequence of states, which we denote as {xt }t≥0. In the interpretation we consider in
this chapter x is a random vector and {xt }t≥0 is a stochastic process, probabilisti-
cally moving from one state to the other in continuous time.

The interpretation given above does not restrict {xt }t≥0 to be a stochastic process
of a specific type. The most crucial point of Gillespie’s work was to show that,
for many instances of biological systems, {xt }t≥0 can be a very simple process, as
pointed out by the following result:

For every reaction j , j = 1,2, . . . ,M in the system, if x is the state of the system at time t ,
t ≥ 0, the probability that a reaction of type j occurs in the next infinitesimal time interval
t + δt can be expressed as aj (x) · δt , where the only dependence of aj (x) on t is through
the state vector x.

Functions aj (x) are called propensity functions. The property stated above implies
that, in every state of the system and for every reaction j , j = 1,2, . . . ,M the time
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to the next occurrence of reaction j is a random variable following a negative ex-
ponential distribution. This allows describing the evolution of the system over time
from an initial state, through a simple system of first order linear differential equa-
tions, known as the Chemical Master Equation (CME, hereafter). In probability the-
ory, the CME describes the evolution of a Continuous-Time Markov Chain (CTMC,
hereafter), whose state space corresponds to the set of possible states of the chemi-
cal system, and whose transitions correspond to the occurrence of reactions. A rich
set of exact analysis techniques for both transient (time-dependent) and steady-state
analysis of CTMC exists [98], which can be exploited to investigate the dynamic
evolution of a biochemical system.

Gillespie took care of demonstrating that this fundamental property holds indeed
of non-trivial biochemical systems. He did not define directly the borders of its ap-
plicability, but rather identified a set of sufficient conditions that ensure the validity
of his results. Specifically, Gillespie introduced the following two hypotheses:

Hypothesis 1 The chemical system is under thermal equilibrium conditions.

Hypothesis 2 The chemical system is such that, at any time t , the concentration of
each species is homogeneous in the reaction vessel (i.e., does not depend on space).

It is important to notice that the homogeneity described in Hypothesis 2 is in fact
achieved if nonreactive collisions are much more frequent than reactive ones, which
ensures diffusion processes proceed at much higher rate than any reaction in the
system. Another major hypothesis was introduced for bimolecular reactions:

Hypothesis 3 In a bimolecular reaction, the time to the occurrence of the reaction
is largely determined by the time to the reactive collision whereas the time necessary
for the chemical transformation of the colliding species into the reaction products
is negligible.

If a system satisfies Hypotheses 1, 2 and 3, then we can rely on Gillespie’s results,
the same as to say that the evolution of the state of the system over time is described
by a CTMC whose transition rates from any state x are given by the propensity
functions aj (x), for any j .

Gillespie analytically computed the propensity functions aj (x) for some tem-
plate reactions, assuming that the molecules are approximately spherical. For in-
stance, when this is true, function aj (x) for a bimolecular reaction A + B → C

turns out to be as follows:

aj

(
x
)= V −1πrAB

√
8kT

πmAB

· xA · xB (7.1)

where xA and xB are the number of molecules of A and B in current state of the
system x, V is the volume of the reaction vessel, rAB is the distance between the
geometrical centers of two reactant molecules A and B at which the reaction hap-
pens, k is the Boltzmann’s constant, T is the absolute temperature and mAB the
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reduced mass defined as mAB = mAmB/(mA +mB), mA and mB being the mass
of molecule A and B , respectively. Notice that the propensity function (7.1) is in
the form aj (x) = kj · fj (x), that is the product between a constant and a function
of x. The constant kj is called the rate constant of the reaction and it accounts for
the physical and chemical properties of the reactant species and of the reaction en-
vironment, whereas the form of function fj (x) only depends on the reaction type
(bimolecular, in this case) and on the stoichiometry. As heavy biochemicals species
usually feature complex shapes, the spherical assumption is rarely justified. How-
ever, the rate constants appearing in propensity functions may still be determined
from the outcomes of wet-lab experiments that measure the kinetic characteristics
of reactions. The propensity function aj (x) of a dimerization reaction A+A→A2
takes the following form:

aj

(
x
)= kj ·

(
xA

2

)
(7.2)

whereas that one of a monomolecular reaction A→ B will be in the form aj (x)=
kj · xA.

The fundamental property may also hold of systems that do not satisfy the set
of Hypotheses 1, 2 and 3, as it seems to be proved by the successful validation of
many stochastic models of biochemical systems against experimental data. How-
ever, Gillespie’s results only allow us taking it for granted for systems that are well-
mixed, under thermal equilibrium, and only for specific types of chemical reactions,
often termed elementary. In this context, an elementary reaction is one that does not
abstract any intermediate species. There are only two types of elementary reactions,
namely:

1. Monomolecular reactions, where a molecule of species A transforms itself into
a set of reaction product molecules.

2. Bimolecular reactions, where a molecule of species A and a molecule of species
B , where species B may be the same as species A, bind to generate a new
molecule.

Examples of reactions of type (1) reactions include the isomerization A→ B ,
and the split of a molecule into sub-molecules A→ B + C. Examples of type (2)
reactions include complexation A+B → C, and, as a special case, the dimerization
A+ A→ A2. Any reaction that involves more than two reactant molecules is not
elementary. A simple statistical argument shows that the likelihood of more than
two molecules simultaneously colliding in a reaction vessel is infinitesimal, and any
reaction involving more than two reactant molecules, such as A + B + C → D,
must occur indeed as a sequence of consecutive bimolecular reactions, for instance
A+B →E, E +C →D.

7.2.2 SPN Modeling of Stochastic Molecular Dynamics

Being an abstract modeling formalism, Petri nets do not refer per se to any specific
aspect of the biological domain, but rather a meaning has to be associated by the
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modeler to places, tokens and transitions, and the same applies to SPNs. However,
a natural interpretation of Stochastic Petri net elements can be considered when
modeling biological phenomena at the discrete molecular level, as we are going to
describe in this section.

Let us assume that we are interested in modeling a biochemical system com-
posed by N biological entities, the abundances or the state of which are modified
by the occurrence of M reactions. Here, biological entity means a chemical or bio-
chemical species, as well as more complex entities, such as ribosomes, receptors,
genes. Similarly, the word reactions is used to indicate any event that can change
the multiplicity or the state of entities. Thus, the transfer of a methyl group onto a
residue, the degradation of a messenger RNA, the binding of a ligand to a recep-
tor and the translocation of a transcription factor molecule from the cytoplasm into
the nucleus, are all examples of what we summarily call here reactions. As SPN
models allow us to freely select the abstraction level, all of these different scenarios
can be easily encoded. We also assume that the system we want to model satis-
fies Gillespie’s hypotheses for stochastic molecular kinetics, so that the occurrence
times of reaction j are random variables following a negative exponential distribu-
tion whose state-dependent parameter is specified by a propensity function aj (x),
j = 1,2, . . . ,M .

An SPN model of this generic system is built as follows:

1. A place is added to the model to represent each of the various states of biochem-
ical entities that we are interested in distinguishing. If the activity of a protein
A is different from that of its phosphorylated form A−P , then we may want to
use two distinct places in the Petri net to be able to keep track of the respective
amounts and activity of A and A−P as the model evolves.

2. A transition is added to the model to represent each of the various reactions. The
transition firing time is chosen to be a random variable distributed as the negative
exponential distribution of parameter aj (x), where x is the vector marking of the
SPN model.

3. Each transition is connected to input (resp. output) places by arcs according to
the reactant (resp. products) it consumes (resp. produces).

4. Stoichiometry of reactions is straightforwardly represented by associating posi-
tive integer weights to arcs.

5. Tokens are assigned to places—to provide the initial marking of the SPN—
according to the initial number of molecules of the species or of the entity repre-
sented by the place. Notice that, apart from the cases in which there are a few of
them, tokens are not graphically depicted.

The graphical notation of SPN does not differ from the basic Petri Net one. The
distinguishing characteristics of SPN are indeed observed when the dynamics of
marking evolution are considered. The enabling of transitions is subject to the stan-
dard rule described in Part I of this book, that prescribes that a transition is enabled
if each input place holds a number of tokens greater or equal to the weight of the
connecting arc. Let us now describe the firing of SPN transitions through some
models of biological examples. Suppose we are building an SPN model of the sim-

ple reaction A
k→ B , where k is the rate constant of the reaction, and consequently
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Fig. 7.1 SPN model of the monomolecular reaction A
k→ B . Tokens in place A and B represent

the number of molecules of species A and B , respectively, whereas transition t models the reaction
that transforms one molecule of A into one molecules of B . The firing rate of t is, according to the
mass-action law, proportional to xA, the amount of reactant

a(x)= k · xA is the propensity function computed as per Gillespie. Let us also as-
sume that the initial state of the system is one in which xA = 2 molecules of species
A and xB = 0 molecules of species B are present at time t = 0. The modeling steps
1–5 listed above would result in the two places, single transition SPN shown in
Fig. 7.1.

The exponential rate associated to a transition expresses the speed at which the
modeled reaction occurs. In the initial marking of the net in Fig. 7.1, transition t is
enabled because its input place A is marked. A firing time τ1 is thus chosen for t ,
drawn from the negative exponential distribution of parameter k · xA = 2k, and a
clock starts to countdown from τ1 to 0. When the clock reaches 0, transition t fires
and the marking of the net is changed from xA = 2, xB = 0 to xA = 1, xB = 1.
After the firing, transition t is still enabled, but its rate has now become k · xA = k.
Consequently, its new firing time τ2 will be selected from an exponential random
variable different from the one out of which τ1 was sampled. Again, a clock is set
to countdown until the new firing time, that is, τ1 + τ2 is reached. At that time, the
marking of the net is changed to xA = 0, xB = 2, where no transitions are enabled
anymore and the evolution stops.

It is interesting to notice that the marking-dependent firing rate of SPN transi-
tions can be interpreted as being a result of the maximal parallelism of molecular
transformations. Indeed, in the example above, in the initial marking of the SPN
each of the two molecules of A is being transformed into one molecule of B at the
same time. Because these two reactions are independent from each one and both re-
actions happen in a time that is exponentially distributed with parameter k, the time
to the occurrence of the first of them is a random variable distributed as the mini-
mum between the times of the reactions, which is again1 a negatively distributed one
with parameter 2 · k. More generally, the rate constant is multiplied by the number
of simultaneous copies of the reactions that take place in parallel, which is indeed a
simple way of modeling chemical reactions obeying the mass-action law. A similar

1The very useful closure property of statistically independent negative exponential random
variables under the minimum operator is easily demonstrated. Suppose X and Y are nega-
tive exponential random variables of rate λX and λY , respectively, and let the random vari-
able Z to be defined as Z = MIN{X,Y }. Then, the cumulative density function FZ(t) of
Z can be computed as FZ(t) = P[Z ≤ t] = 1 − P[Z > t] = 1 − P[MIN{X,Y } > t] = 1 −
P[X > t,Y > t] = 1 − P[X > t]P[Y > t] = 1 − e−λX e−λY = 1 − e−(λX+λY ), which is the same
as to say that Z is distributed as a negative exponential random variable of parameter λX + λY .
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Fig. 7.2 SPN model of the bimolecular reaction A+ B
k→ C. Each firing of transition t models

the occurrence of the bimolecular reaction. According to the incoming and outgoing arcs, at each
firing one token is removed from both places A and B and one is added to place C. Notice that, for
t to be enabled to fire, both places A and B have to hold a non-zero number of tokens

argument explains the marking-dependent form of the transition rate of bimolecu-

lar reactions. Suppose we are building an SPN model of the reaction A+ B
k→ C,

where the initial state of the system is xA = 3, xB = 2 and xC = 0. By applying the
modeling steps 1–5 we obtain the SPN model shown in Fig. 7.2.

In the initial marking of the model, there are six several independent ways in
which the bimolecular reaction can occur, each one associated to one specific selec-
tion of the pair of molecules A and B that react. Thus, the rate associated to transi-
tion t in the initial marking is k · xA · xB = 6k. After the firing, the marking of the
SPN model in Fig. 7.2 is changed to xA = 2, xB = 1, xC = 1, and the subsequent fir-
ing of transition t will occur at a rate that is k · xA · xB = 2k. Again, the parallelism
intrinsically present in our interpretation of the system results in a mathematical
form of the transition rates that nicely matches the deterministic mass-action law.

Let us now consider a more complex system, where molecules of a substrate
species S are transformed into molecules of a product species P by the action of
an enzyme E following a Michaelis–Menten reaction scheme, as described in more
detail in Chap. 8.

Assuming we do not want to abstract the intermediate species formed by the
enzyme-substrate complex, the set of biochemical reactions included in our sys-

tems are the following ones: S +E
kon−→ S :E, S :E koff−→ S +E, S :E kcat−→ P +E.

Our SPN modeling procedure described in steps 1–5 produces the model shown in
Fig. 7.3. In the SPN model on Fig. 7.3, tokens contained in place S : E represent
molecules of the complex enzyme-substrate. One token is added to place S : E at
each firing of transition ton, which is modeling the bimolecular binding reaction be-
tween molecules of species S and molecules of species E. Each molecule of the
complex may undergo catalysis producing one molecule of the product species P

and releasing back the enzyme molecule. This transformation is modeled by transi-
tion tcat. Moreover, each molecule of the complex may also spontaneously unbind
back into its constituent molecules, as modeled by transition toff. We use this exam-
ple of competition between reactions (unbinding and catalysis) to explain the way
competition among conflicting transitions is handled in SPN models.

Let us consider the fate of a molecule of enzyme-substrate in the system. Whether
it will unbind or rather undergo catalysis is determined according to the rates of the
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Fig. 7.3 SPN model of an enzymatic reaction. The two transitions ton and toff model the fast
binding-unbinding of the enzyme E to the substrate S, whereas transition tcat represent the catalysis
steps. Given a nonzero initial amount of tokens in places E and S, the network dynamics moves the
tokens from place S to place P , modeling the transformation of substrate molecules into product
ones. Notice that the number of tokens in place E plus the number of tokens in place S : E stays
constant as the net marking evolves, as the number of enzyme molecules is not changed by the
enzymatic reaction

two possible reactions. If the catalysis occurs to happen at a slower rate than the
unbinding (this is usually the case), the enzyme-substrate molecule will have more
chances to break into its constituent molecules. This rate-dependent dynamics gets
faithfully encoded into the marking evolution of the SPN. As soon as one token
reaches place S : E, the two transitions toff and tcat get both enabled. This means
that both of them may happen, but only either of them will happen. The selection
of which one will occur is determinated by the result of the random selection of
firing times. More, precisely, both transition draw a random time for their firing
according to the firing rates they have in current marking of the net, and the one
that has drawn the minimum firing time is selected for firing. This way of handling
concurrent firings in SPN models is called race policy, and extends itself naturally
to more general cases where multiple transitions are involved.

It is interesting to make some quantitative considerations about the result of the
race policy application. In the example we are considering, the firing rates of tran-
sitions toff and tcat are respectively koff · xS:E and kcat · xS:E . The likelihood that the
value of a random variable distributed as the firing time of toff exceeds the value of
a random variable distributed as the firing time of tcat is easily computed with some
basic maths, and is given by pcat = kcat/(koff + kcat). This expression is the prob-
ability that, every time a competition among a catalysis and an unbinding reaction
occurs, the catalysis reaction occurs first, whereas poff = 1− pcat is the probability
that the unbinding occurs first. Because kcat < koff in Michaelis–Menten enzymatic
transformations, we have that pcat < poff, and thus, each time a competition between
the two reactions occurs, the unbinding has a higher chance to occur with respect to
the catalysis. However, in the long run there will be instances of this race that will
be won by the catalysis reaction, which ensures the enzymatic reaction proceeds
toward the accumulation of the molecules of the product species P .
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Fig. 7.4 SPN model of an
abstract enzymatic reaction,
in which an equivalent
product production rate has
been mathematically worked
out as a function of the
substrate and enzyme
concentration. Notice that the
Michaelis–Menten firing rate
of transition tMM will vary at
each firing

7.2.3 Beyond Pure Mass-Action

The Michaelis–Menten system provides a useful example to discuss how modeling
abstractions that go beyond the pure mass action can be accounted for with the SPN
formalism. It is indeed obvious that a flexible selection of the level of abstraction is
welcome when modeling biological systems. In some cases, the details of molecular
interactions may not be known and may even not be observable, whereas in many
other cases we may not want to include all the available knowledge to limit the size
of the models being built.

When dealing with an enzymatic transformation, both the considerations above
may apply. Specifically, on one side the rates kon/koff of binding/unbinding between
enzyme and substrate are typically not known, and only the kcat rate can be experi-
mentally measured. On the other hand, an elegant, abstract model exists whose dy-
namical properties have been mathematically investigated and are known to provide
a very good approximation of system behavior. This model is built by abstracting
the intermediate species formed by the complexation of the substrate S and the en-
zyme E. An SPN model that incorporates such an abstraction is shown in Fig. 7.4.

Transition tMM is now modeling a direct transformation of the substrate
molecules S into molecules of the product species P . The two parameters Vmax
and Km characterize the effectiveness of the enzyme in transforming the substrate,
and can be determined experimentally. Notice that the number of tokens in place E

is not affected by the firing of tMM, as this model is indeed abstracting the direct
participation of the enzyme molecules into the reaction. The presence of the enzyme
is still necessary, but whether one or more tokens are present in place E does not
appear to make any difference for the evolution of the net. Obviously, the reaction is
indeed dependent on the enzyme concentration, but this dependency is captured in
the rate, through parameter Km. This is a good approximation when the enzyme E

is much less abundant than the substrate S, as it usually happens. In this case, most
of molecules of E are bound to molecules of S and the enzymatic reaction proceeds
at a rate that is almost completely determined by the abundance of the substrate.
This situation is exactly the one captured by the model in Fig. 7.4.

It is worthwhile commenting on whether this abstract reaction meets the nec-
essary conditions that Gillespie defined for stochastic kinetics. In other words, how
accurate is the assumption that each occurrence time of the reaction S+E→ P +E
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Fig. 7.5 Abstract SPN model
of a cooperative gene
activation phenomenon,
modeled through a Hill rate
function of transition ttransc.
The number of tokens in
place TF affects the rate of
firing of transition ttransc in a
nonlinear way

in the model in Fig. 7.4 is a random variable following a negative exponential distri-
bution? This point is quite delicate and requires careful treatment. From a quantita-
tive point of view, it is obvious that an approximation is entailed when we make the
abstraction that brings us from the SPN in Fig. 7.3 to the one in Fig. 7.4. Indeed, if
we assume that all reactions in the model in Fig. 7.3 are elementary, that is we can
justifiably assume a negative exponential distribution of the reactions times, then it
follows that using exponentially distributed firing times in the SPN in Fig. 7.4 would
introduce an approximation. Replacing a sub-model of exponential transitions with
a single aggregate one does not preserve in general the stochastic characteristics of
the event occurrence times. Thus, this abstraction is only valid when certain assump-
tions are met. For instance, it can be shown that when the catalysis is the rate limiting
step of the enzymatic transformation, then the abstract model shown in Fig. 7.4 is
a very accurate model that can replace the more detailed one in Fig. 7.3. Indeed, in
this case the time to the production of each molecule of product species P is given
by the sum of the short times spent in the binding/unbinding plus the time neces-
sary for the catalysis reaction. Because the latter one is much slower, its stochastic
characteristics largely determine those of the overall sum of reaction times.

SPN models that include general rate functions on transitions can account for
other common features of biological networks. For instance, the Hill dynamics is
usually employed to abstract mechanisms of cooperativity. Consider a gene G that
to be transcribed needs the binding of a dimer or a tetramer of a transcription factor
TF to the promoter region. Consider the simple SPN model in Fig. 7.5, where tokens
in place TF are not shown for the sake of clarity.

The rate of transition ttransc in Fig. 7.5 is a shorthand notation for the Hill func-
tion, which is defined as follows:

Hill(n, x)= Q · xn

Kn
m + xn

(7.3)

This function expresses the regulation effect of the transcription factor T on the tran-
scription rate. More generally, it can be used to express the dependency of a reaction
rate from an activator species whose effect gets amplified through cooperativity. The
parameter n is called Hill coefficient and is related to the cooperativity factor, that
is the number of molecules involved in the cooperative effect. The two parameters
Q and Km are usually experimentally determined and they are analogous to those
for Michaelis–Menten enzymatic reactions. Indeed, in the case when n= 1, no co-
operativity, the Hill function reduces to the Michaelis–Menten kinetic rate. Another
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form of the Hill function exists, which accounts for negative regulation, that is, re-
pression, and is given by HillNeg(n, x) =Q/(Kn

m + xn). Hill functions provide a
sigmoidal form of the transition rate as a function of the driving species and allow
modeling complex non-linear behaviors in a very compact way.

7.3 Methods to Determine SPN Evolution

In a well-defined SPN model, the firing of enabled transitions according to the race
policy determines the subsequent markings of the net. Thus, an SPN model can be
studied to determine the evolution of its marking from the initial one. Because SPN
models encode the concept of firing time, we are obviously referring to the marking
of the net at a certain time, and due to the randomness of the firing times, we are
more precisely talking about the probability distribution of markings over time.

Since the focus of this chapter is on quantitative evaluation of SPN models of
biological systems, we will not be dealing with structural checks of models. It is
however important to notice that some of the analysis techniques defined in Part I
of this book are still applicable to SPN models, provided that the information about
time is disregarded. Indeed, the fact that firing time distributions span over the whole
(0,∞) subset of real numbers ensures that any sequence of transition firings that is
possible to happen in the untimed version of an SPN is also possible in the SPN
timed version, although with low probability. Therefore, the reachability set of the
untimed and timed version of the SPN are exactly the same. The analysis techniques
based on T-invariants and P-invariants are thus applicable for checking properties of
the SPN evolution, and also provide very useful tools for model debugging.

The quantitative evaluation of SPN models is based on the analysis of the
discrete-state continuous-time stochastic process governing the evolution of the
marking, which we denoted with {xt }t≥0. The reachability set RS(M) of an SPN
model M defines the set, not necessarily finite, of possible model markings. For any
time t ≥ 0 and x ∈ RS(M), we denote by P [x, t] the probability that at time t the
marking of the SPN model is x. The marking probability distribution at time t ≥ 0
is the vector that collects probabilities P [x, t] for all x ∈ RS(M). At time t = 0
the marking of SPN model M is x0 ∈ RS(M) (the initial marking) and the marking
probability distribution vector entries are all 0 except for P [x0,0] that is equal to 1.

Given that the evolution of the model starts in a defined marking, the problem to
be solved to quantitatively determine the evolution of the model is the one of calcu-
lating the conditional probability P [x, t | x0,0], that is the probability that the SPN
marking is x at time t > 0 given that it was x0 at time t = 0. Measures of interest
for the system, such as the likelihood of reaching a certain states within a certain
time, the average number of molecules of a species in a given time window, the
rate of occurrence of certain reaction event, can all be estimated from the marking
probability distribution of an SPN model of the system.

Obtaining a probability distribution over the possible states of a stochastic pro-
cess is in general a complex task. However, because of the specific choice of transi-
tion firing time distribution in SPN models, the stochastic process of marking evo-
lution is a Markov chain, and a vast repertoire of analysis techniques exist for this
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class of stochastic processes. The two following types of analysis are commonly
used when evaluating the probability distribution of markings of an SPN model:

• Time-dependent, also called transient analysis, which aims at evaluating the mea-
sures of interest at given time points or time windows, and is mostly based on the
marginalization of the marking probability distribution.

• Time independent, also called steady-state analysis, which looks at equilibrium
measures and is based on the limiting probability distribution of the marking, that
is, limt→+∞P [x, t | x0,0].
Transient analysis of an SPN model M can be used to determine time courses of

modeled biochemical species. For instance, suppose we are interested in the average
number of molecules of a biochemical species A at a discrete set of time points
t1, t2, . . . , tn, which we denote by E[A]ti , i = 1,2, . . . , n. These measures can be
computed from the marking distribution probability as follows:

E[A]ti =
∑

x∈RS(M)

P
[
x, t | x0,0

] · xA (7.4)

Given that we have available the whole marking probability distribution, more in-
sights can be obtained into the modeled system by not restricting the evaluation to
the average values. For instance, we can compute the variance of the number of
molecules of species A at time t , which we denote by Var[A]t as follows:

Var[A]ti =E
[
A2]

t
−E2[A]t =

∑

x∈RS(M)

(
P

[
x, t | x0,0

] · x2
A

)−E2[A]t (7.5)

Another measure that is often of interest is the rate of occurrence of a given
reaction j at a given time instant t , which we denote by rj,t , computed as follows:

rj,t =
∑

x∈RS(M)

P
[
x, t | x0,0

] · aj

(
x
)

(7.6)

Weighting propensities by the marking probability distribution as in (7.6) provides
the instantaneous rate of reaction j , that is the effective rate of the reaction at time t ,
which takes into account the probabilities of the SPN model to be in the various
markings in which the transition modeling the reaction is enabled. From rj,t , with
some additional calculation, it is possible to obtain the average number of times
reaction j occurs in a given time interval [t1, t2], which we denote as Nj,t1,t2 as
follows:

Nj,t1,t2 =
∫ t2

t1

rj,t dt (7.7)

The steady-state analysis of an SPN model can only be applied to models whose
marking probability distribution possess an equilibrium distribution. Whether or not
an SPN model M has a steady-state marking probability distribution depends on
some properties of the stochastic process {xt }t≥0, which has to be ergodic . The
precise definition of ergodicity is beyond the scope of this chapter, the interested
reader can see for instance [98]. Informally, if for any two markings x1, x2 ∈ RS(M)
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there exist a sequence of transition firings such that x1 is reachable from x2 in
an average finite time and vice versa, then the stochastic process underlying SPN
model M is ergodic. Notice that such condition excludes from having a steady-state
marking distribution all SPN models that have absorbing markings, that is, markings
that once reached can not be left. Those places with absorbing markings correspond
to traps.

For SPN models that have a steady-state marking probability distribution, the
limt→+∞P [x, t | x0,0] provides a time-independent distribution, denoted as Π(x),
which apart from being independent from time, is also independent from the initial
state. Indeed, in the long run the bias induced by the choice of the initial marking is
removed. Distribution Π(x) provides the probability of finding, at a random obser-
vation time under equilibrium conditions, the SPN model in marking x. Therefore,
the definitions provided in (7.4), (7.5) and (7.6) are still valid at steady-state pro-
vided that the transient marking probability distribution is replaced by the steady-
state one. Computing the average number of occurrences of a reaction j over a
given interval [t1, t2] in steady state only requires multiplying the steady-state rate
of reaction j by the interval width.

Obviously, calculating the steady-state probability through its limit definition
would be totally impractical. As we show in the following, there are much more
efficient ways of doing it. In the next sections, we present the methods available to
calculate or approximate the marking probability distribution of an SPN model M.

7.3.1 Analytical and Numerical Approaches

Analytical approaches to the computation of the marking probability distribution of
SPN models of biological systems are based on the explicit solution of the CME,
a set of linear differential equations that describe the evolution of the marking oc-
cupation probabilities over time. The CME includes one equation for each possible
marking of the model, which already suggests that this approach has limited applica-
bility. Very few SPN models that have large or infinite sizes of their reachability set
are indeed amenable to this type of analysis. However, there are notable exceptions,
and closed-form for the CME solution can be obtained. We will see some examples
in the following. For models that resist to the exact analytical solution (the majority
of models of interest), but for which the reachability set is of finite size, the solution
to the CME can be computed through numerical algorithms (either exact or approx-
imate). Again, the size of the reachability set determines the limits of applicability
of this approach. Presently, this limit is set to about 105–106 distinct markings (with
some larger values for particular models), a number that is easily reached by models
of biological systems including many copies of the same biochemical species.

7.3.1.1 Transient Analysis

Let us consider a very simple biological system, where molecules of a species A

cross the membrane between two compartments, say cytoplasm and nucleus. We can
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Fig. 7.6 SPN modeling molecules of species A crossing a membrane. The membrane itself is not
explicitly represented in the model, which only captures the time necessary for crossing it with the
firing of transition tin. To distinguish molecules of species A that are outside the membrane from
those that are inside the membrane and additional place, An is included in the model. Indeed, be-
cause tokens in SPN models do not carry any qualifying attribute, this additional place is necessary
to keep track of their state, in this case the compartment they are enclosed in

build a very simple SPN model M of this phenomenon, as the one shown in Fig. 7.6,
where tokens contained in place Ac and An represent molecules of species A in
the cytoplasm and in the nucleus, respectively. Transition tm models the membrane
crossing, at a rate km · xAc that is determined by a pure mass action kinetics.

Let as assume that there are initially xAc = N molecules of species A in the
cytoplasm and no molecules of A in the nucleus at time t = 0. We want to deter-
mine the average number of molecules in the nucleus at time t > 0. To this, we can
compute the conditional marking probability distribution at time t given the initial
state at time t = 0, and then use (7.4) to compute the average value of the number
of molecules in the nucleus. There are N + 1 possible markings for the model in
Fig. 7.6, which define the reachability set RS(M)= {(N − i, i) | i = 0,1, . . . ,N}.

We start our analytical calculation of the marking probability distribution by ob-
serving that each molecule of A is crossing the membrane independently from the
other ones, that is the overall phenomenon is the result of the superimposition of
the single contributions given by each molecule. This implies that the single SPN
model shown in Fig. 7.6 is indeed equivalent to a set of N identical simpler SPN
models structurally equivalent to the one in Fig. 7.6 where place Ac contains ex-
actly one token. Let us consider one instance M

′ of these simpler SPN models.
Only the two markings (1,0) and (0,1) are possible for the model, the reachability
set RS(M′) has thus cardinality 2. The only possible transition among markings is
the one that brings the model from (1,0) to (0,1), occurring at a rate km. The time
to the transition follows the negative exponential distribution of rate km. The condi-
tional probability of M

′ to be in marking (1,0) at time t > 0, given that the model
is in marking (1,0) at time t = 0 is equal to the probability that the transition tm has
not fired yet at time t , that is

P
[
(1,0), t | (1,0),0

]= e−kmt (7.8)

whereas the conditional probability P [(0,1), t | (1,0),0] is equal to 1−P [(1,0), t |
(1,0),0] = 1− e−kmt . Therefore, at any time t > 0, the conditional marking proba-
bility distribution over RS(M′) is given by the vector (e−kmt ,1− e−kmt ). Because of
the independence among subnets, we can easily compute the conditional marking
probability distribution for the original model M, observing that the probability of
being in marking (N − i, i) at time t > 0 is exactly the probability that i molecules
out of the N initially present in place Ac have moved to place An. Which molecules
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have moved and which have not is actually not important, as we are not interested
in distinguishing them. The fact that exactly i molecules have moved is accounted
for by a probabilistic choice expressed through a binomial distribution, as follows:

P
[
(N − i, i), t | (N,0),0

]=
(

N

i

)
(
1− e−kmt

)i · (e−kmt
)N−i

,

i = 0,1, . . . ,N (7.9)

The vector (P [(N,0), t | (N,0),0],P [(N − 1,1), t | (N,0),0], . . . ,P [(0,N), t |
(N,0),0]) provides the transient marking distribution probability of the model M.
According to (7.4), the average number of molecules in the nucleus at time t , which
we denote by E[An]t is therefore analytically calculated as follows:

E[An]t =
N∑

i=0

P
[
(N − i, i), t | (N,0),0

] · i

=
N∑

i=0

(
N

i

)(
1− e−kmt

)i · (e−kmt
)N−i · i (7.10)

which can be simplified to N · (1− e−kmt ). Notice that the value computed in (7.10)
is the average value of a binomial distribution of parameters N,1− e−kmt . Its vari-
ance Var[An]t is given by N · (1− e−kmt ) · e−kmt .

Thus, for model M we can relatively easily compute the transient marking dis-
tribution probability. However, this is possible only because of the simplicity of the
model and the independence among the events that change the state of the differ-
ent molecules. In general, calculating the transient marking distribution probability
through the analytical approach requires manipulating the CME of the stochastic
model, through a process that we now describe using again model M as an example.

One formal way of representing the transitions among markings in model
M is through the infinitesimal generator matrix QM, a squared matrix of size
(N + 1)× (N + 1), where N + 1 is the cardinality of the reachability set RS(M).
The infinitesimal generator matrix QM = ‖qM

x′,x′′ ‖ is as follows:

∥∥qM

x′,x′′
∥∥=

⎧
⎨

⎩

x′Ac
· km if x′ − x′′ = (1,0)

−x′Ac
· km if x′ − x′′ = (0,0)

0 otherwise
(7.11)

Matrix QM allows writing in a compact form the CME that governs the transient
conditional marking probability distribution P [(N − i, i), t | (N,0),0]. Let us de-
note by Pt |0 the vector of conditional marking probabilities at time t > 0 for the
model, and by P0 the initial marking probability distribution at time t = 0, that is,
the vector that assigns probability 1 to the initial marking and 0 to each other mark-
ing of the model, so that we can write the CME as follows:

d

dt
P t |0 = P t |0 ·QM, P 0|0 = P0 (7.12)

Equation (7.12) consists of a set of linear differential equations, one for each mark-
ing of the model. These equations and are also called the Chapman–Kolmogorov
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Fig. 7.7 SPN model for cytoplasm-nucleus shuttling. The two transitions tin and tout model, re-
spectively, the addition of one molecule of A and the removal of one molecule of A from the num-
ber of molecules of A that are inside the nucleus, represented by the tokens in place A. Because
the model is not explicitly considering the number of molecules in the cytoplasms, the incoming
rate of molecules of A stays constant, as modeled by the zero-order firing rate of transition tin. This
corresponds to assume that the concentration of A in the cytoplasm stays constant, unaffected by
the shuttling process

forward equations. Because (7.12) is formed by linear differential equations, a gen-
eral solution formula is available, and the vector of functions Pt |0 can be calculated
as follows:

Pt |0 = P0 · eQM·t (7.13)

The expression eQM·t in (7.13) is the matrix exponential of QM · t . The exponential
of a squared matrix M is defined as the following sum:

eM =
∞∑

i=0

Mi

i! (7.14)

Formula (7.13) provides a general solution for the transient marking distribution
probability, however at the expense of computing the matrix exponential of the in-
finitesimal generator matrix. Various algorithms exist for this purpose, which are
implemented, for instance, by the tools R, Maple and Mathematica. Moreover, most
tools for SPN modeling and evaluation implement a very efficient algorithm known
as randomization [145] to compute the transient marking distribution probability,
which again is based on a numerical approximation scheme for solving (7.13). It is
important to remark that the approximation is entailed by the necessary truncation
of the infinite series in (7.14), and that very accurate solutions can be however ob-
tained for models that have large (but finite) cardinalities of the reachability set, up
to 105 and in some cases, depending on the sparsity of the infinitesimal generator
matrix, up to 106 distinct markings.

7.3.1.2 Steady-State Analysis

Let us now consider another simple biological system, in which protein A crosses
the nuclear membrane at a constant rate kin, and molecules of A that are in nucleus
cross-back the membrane at a rate kout, proportional to the amount of proteins in the
nucleus as per the mass-action law. We are interested in determining analytically the
steady-state average and variance of the number of molecules of A that are in the
nucleus. The SPN model M shown in Fig. 7.7 captures the two processes that affect
the number of molecules of species A in the nucleus (represented by the number
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of tokens in place A), namely the translocation from the outside of the nucleus to
the inside (transition tin) and the opposite movement (transition tout). Let us assume
that at time t = 0 no molecules of species A are in the nucleus. Because we are
interested in the equilibrium value of the number of molecules, we must first ask
ourselves whether model M has a steady-state marking probability distribution. The
set of possible markings is infinite, and consists of all natural numbers, each one
corresponding to a possible value of the amount of molecules of protein A. The
model can move away from the initial marking through a firing of tin, and come
back to it through one or multiple firings of transition tout, and the same applies for
any other possible marking. Moreover, the fact that the rate of transition tout grows
linearly with the number of tokens in place A ensures that the model will return to
the initial marking in an average finite time. These considerations informally justify
our believe that model M has a steady-state distribution of the number of tokens in
place A.

To calculate the steady-state probability distribution vector of the number of
molecules in place A, which we denote by Π = (Π(0),Π(1),Π(1), . . .), we start
from the CME equation given by (7.12), and we impose the equilibrium condition,
which entails setting to zero the left-hand side, that is the derivative of the marking
probability distribution, so that we obtain the following simpler system of linear
equations:

0=Π ·QM (7.15)

The steady-state marking distribution probability for model M is a solution to (7.15).
However, it is immediate to notice that (7.15) has multiple solutions (for instance,
the null vector 0 is a trivial one), hence we add to the linear system the following
normalization condition for a probability measure

∑∞
i=0 Π(i)= 1.

By manipulating algebraically the infinite set of equations described in matrix
form by (7.15) we can explicitly calculate the steady-state probability distribution,
as we explain the following. Let us first describe the entries of the infinitesimal
generator matrix QM = ‖qM

i,j‖, i, j ≥ 0, which are as follows:

∥∥qM

i,j

∥∥∥∥=

⎧
⎪⎪⎨

⎪⎪⎩

kin if i = j − 1
j · kout if i = j + 1
−kin − i · kout if i = j

0 otherwise

(7.16)

Let us start with the equation for marking 0, which is as follows:

0=−Π(0)kin +Π(1)kout (7.17)

From (7.17), we obtain that Π(1) = Π(0)kin/kout. The linear equation for the
steady-state probability Π(1) of marking 1 is as follows:

0=Π(0)kin −Π(1)(kin + kout)+Π(2)2kout (7.18)

From (7.18) and (7.17), we obtain Π(2)=Π(0)(kin/kout)
2/2. The equation for any

other marking i, i ≥ 2 is as follows:

0=Π(i − 1)kin −Π(i)(kin + i · kout)+Π(i + 1)(i + 1)kout (7.19)
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and it easy to check that the substitution process allows obtaining each Π(i), i > 2
as a function of Π(0), as follows:

Π(i)=Π(0)
1

i!
(

kin

kout

)i

(7.20)

From the normalization condition we can obtain the value of Π(0), as follows:

Π(0)+
∑

i≥1

Π(0)
1

i!
(

kin

kout

)i

= 1 �⇒ Π(0)=
[

1+
∑

i≥1

1

i!
(

kin

kout

)i]−1

�⇒ Π(0)= e−kin/kout (7.21)

Hence, we can calculate E[A], the average steady-state number of proteins in the
nucleus as follows:

E[A] =
∞∑

i=0

e−kin/kout
1

i!
(

kin

kout

)i

· i = kin

kout
(7.22)

The result in (7.22) is well-known one. It turns out from the Poisson steady-state
distribution of the number of molecules in the biochemical system modeled by the
SPN in Fig. 7.7, and can be obtained from a deterministic continuous model based
on ODEs of the same system. The steady-state variance Var[A] of the number of
molecules of A, which can not be determined through a deterministic model, is
again given by Var[A] = kin/kout.

The purpose of this detailed modeling is to show that an analytical solution ap-
proach can be viable even for SPN models whose cardinality of the reachability
set is infinite. Of course, in this particular example, the analytical treatment was
greatly simplified by the simple structure of the CME, which allows solving the
linear system in (7.15) by a straightforward substitution procedure. In the general
case, provided that the size of the reachability set is finite, the solution to (7.15) can
be carried out numerically. Many stable implementations of algorithms from linear
systems exist, which can take advantage of sparseness or regularity properties of the
infinitesimal generator.

It is worthwhile noticing that the possibilities of analytical and numerical solu-
tion of SPN models go well beyond the current capabilities of automated tools to
support them. For instance, no general purpose tool for SPN is supporting the an-
alytical derivation of the steady-state marking probability distribution for models
that have an infinite cardinality of the reachability set. This is because checking the
applicability of the analytical or numerical solution requires the identification of
specific structural properties, a task that can hardly be automated.

The importance of analytical and numerical solution approaches lies in the qual-
ity of the results they can produce. The explicit availability of the exact (or of a
reliable estimation) of the marking probability distribution allows calculating many
measures of interest with the finest possible accuracy. However, these approaches
in general have to cope with the state-explosion problem, namely the exponential
growth of the reachability set cardinality. As we saw in the example above, even
extremely small SPN models may have infinite reachability sets, and more complex
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models easily turn out to be intractable with these approaches. When analytical and
numerical solutions are out of reach, simulation becomes the tool of choice, as we
are going to explain in next section.

7.3.2 Simulation Approaches

As we saw in Sect. 7.3.1, directly attacking the analytical solution of the CME is
a nontrivial task, which can be done only when the set of reactions is very small
or it results in some structural property of the CTMC that can be exploited to sim-
plify the mathematical treatment. Alternatively, the CME solution can be numeri-
cally approximated through the randomization method, but for this approach to be
applicable the state space of the underlying CTMC must be finite and of limited
size. A totally different way of computing the transient state probability distribution
function described by the CME is through the computer-assisted generation of re-
alizations of the stochastic process {xt }t>0 ruling marking evolution, which can be
done through a simulative approach.

Simulation is a powerful technique that allows estimating measures of interest of
an SPN model without calculating explicitly the marking probability distribution.
The basic idea of SPN simulation is to generate possible evolutions of the marking of
the model. Starting from the initial marking x0 of the net, it is possible to determine
which transition firing event will happen next in the model, and at what time. Thus,
the next future marking of the SPN is chosen by updating the initial marking with
the respective changes of tokens in the input and output places of the transition
that was selected for firing, and the process repeats. In this way, a simulation of an
SPN model determines a sequence σ of pairs (xti , ti ), i = 0,1, . . . , where xti is the
marking of the system at time ti , and ti is the time at which the SPN model reaches
that marking. The sequence σ is called a history or a trace of model evolution.

An efficient and exact simulation algorithm for studying biological systems de-
scribed by a CME was proposed by Gillespie in the already mentioned paper [130],
and is known as the Stochastic Simulation Algorithm (SSA, hereafter). The suc-
cess of SSA for the study of biochemical systems dynamics is well demonstrated
by the huge number of studies, papers and computational tools based on it that have
appeared since the original publication. The main reasons for this widespread accep-
tance stem from the simplicity of the SSA, which easily lends itself to straightfor-
ward (though not necessarily optimized) implementations, and from the clear link
that is maintained with the intuitive descriptive language of chemical reactions.

The SSA algorithm provides a computational scheme for generating realizations
of the Markovian stochastic process described by a CME. The SSA is exact, in the
sense that it generates only possible realizations of a CTMCs with correct probabil-
ity. The exactness we are talking about here has in fact nothing to do with whether
Hypotheses 1, 2 and 3 are valid or not for a biochemical system. Assuming that these
hypotheses hold of a biochemical system described as a set of reactions, the SSA
provides a way to explore the dynamic evolution of the system, without requiring
any additional assumption and without introducing any further approximation.
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We then assume that the firing times of each transition trj , j = 1,2, . . . ,M in
the SPN model follow a negative exponential distribution whose parameter is deter-
mined by the propensity function aj (x), and that νj is the marking change vector,
that is, the column of the SPN incidence matrix that specifies how many tokens are
removed from the input places and how many tokens are added to the output places
of transition trj , j = 1,2, . . . ,M . Then, the following steps describe the core of
the direct method algorithm proposed by Gillespie in 1976 to generate traces of the
form σ = (xti , ti ), i = 1,2, . . . for the evolution of the SPN over time.

(0) t = 0;
(1) x = initial marking of the SPN model;
(2) Out(x,0);
(3) while (TRUE) do
(4) a0(x)=∑

j aj (x);
(5) u=Uniform[0,1];
(6) τ =− ln(u)/a0(x)

(7) v =Uniform[0,1];
(8) j =Min{h |∑h

i=1 ai(x)≥ v · a0(x)}
(9) t = t + τ ;

(10) x = x + νj

(11) Out(x, t);
(12) endwhile

As specified in step (6), the time τ to the next reaction is an exponential random vari-
able of mean 1/a0(x), where a0(x) is the total propensity, calculated as per step (4).
The sample of the negative exponential random variable is computed through the
cumulative function inversion method using a [0,1] uniform random number gen-
erated at step (5). The probability that next transition to fire is trj , j = 1,2, . . . ,M

is aj (x)/a0(x), and step (8) selects the index of the transition to fire according to
their weighted propensities. Step (2) outputs the initial marking of the SPN model at
time 0, and step (11) outputs each subsequent pair (x, t) generated by the simulation
algorithm. The while loop would continue forever until a termination condition is
added, which normally is given either in terms of a bound on the simulation time,
or a bound on the number of firings.

The SSA scheme has given rise to a family of computationally efficient al-
gorithms for simulating CTMCs that represent the evolution of a set of coupled
biochemical reactions. These algorithms are much more efficient than the general
event-driven simulation algorithms, which also apply to CTMCs. A first variant of
the direct method algorithm was already proposed by Gillespie in 1976, called the
first reaction method. According to the first reaction simulation algorithm, at each
simulation cycle one uniform random number is selected for each of the enabled M

transitions, and which reaction is to fire is determined by the minimum of the pu-
tative firing time (straightforward race-policy). Obviously, this approach is costlier
than the direct method in computational terms, because at some steps may require
generating several random numbers, however it saves the cost of computing the sum
in step (8) of the direct method algorithm. A more efficient version was proposed in
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2000 by Gibson and Brucke [127], called the next reaction method. In the next reac-
tion algorithm, the putative times of the enabled transitions are saved in an indexed
binary tree so that the minimum is always at the top. Moreover, a dependency graph
is used to keep track of the coupling (in other terms, of dependencies) among transi-
tion firing times to determine when putative times in the tree have to be re-sampled.
Other variants were produced in 2004 (modified direct method, [55]) and in 2006
(sorting direct method, [256]).

A direct inspection of the simulation trace provides the input data to estimate the
measures of interest. For instance, if we were interested in determining the number
of molecules of a species A at time t > 0, we would need to focus on the element
of the trace whose time τ is the larger one such that τ ≤ t , and extract the value xA

from the marking xτ . Hence, a simulation approach circumvents the state-explosion
problem that plagues the analytical and numerical approaches by looking at a single
realization of the marking stochastic process {xt }t≥0.

As the firing of transitions is determined by the pseudo-random number sequence
generated during simulation, different simulation runs starting with different seeds
of the random number generator lead to different simulated traces of the model.
Therefore, when using simulation to estimate measures of interest of an SPN model,
multiple runs are necessary. Suppose for instance that we are interested in determin-
ing the average value of the number of molecules of species A at a certain time
point t > 0. Each simulation trace only provides a single sample of the value xA at
time t , and multiple simulation traces are to be obtained to determine the distribu-
tion over the possible values of the number of molecules of A. Therefore, a number
N of simulation is to be performed, each one providing a sample xA,i of the num-
ber of molecules at time t , i = 1,2, . . . ,N , and the average value E[A]t is to be
determined by averaging the samples as follows:

E[A]t =
N∑

i=1

xA,i

N
(7.23)

A different approach can be used when we are interested in steady-state mea-
sures. In this case, a single simulation run can be used to collect multiple samples.
Care must be put in ensuring that simulation has indeed reached an equilibrium
behavior and that the biasing effect of the initial marking has been eliminated.

A crucial point here is the determination of how many samples are necessary to
compute a reliable estimation of the measure of interest. This matter is very impor-
tant and has been studied with great attention. The interested reader may see [8] for
a more complete treatment of the topic, here we just provide the basic guidelines
on how to proceed in obtaining reliable estimates. Again, statistics supports us in
this task. From the samples, besides the estimation of the average value, it is possi-
ble to compute the sample variance, which provides an indication of the spread of
the distribution of the number of molecules of species A at time t . Intuitively, the
larger the variance, the wider is the set of possible values of the molecules of A at
time t . Consequently, the number of samples required to provide statistically mean-
ingful estimations of the measure of interest grows with the variance. Operatively,
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together with the estimated averages it is common practice in simulation to cal-
culate confidence intervals for the estimations. Confidence intervals are computed
for selected confidence levels, usually 95%, 98% or 99%. A confidence interval
[Ẽ[A]t − δ, Ẽ[A]t + δ] estimated for the estimated average Ẽ[A]t at the confidence
level 95% indicates that the exact value E[A]t (which is indeed unknown) is within
an interval centered at Ẽ[A]t and of amplitude δ with probability 0.95. The ampli-
tude of the confidence level is proportional to the squared root of the sample vari-
ance (the standard deviation), and inversely proportional to the squared root of N ,
the number of samples. Therefore, increasing the number of samples reduces the sta-
tistical uncertainty expressed by the confidence interval width. A standard approach
commonly used in stochastic simulation is to generate enough samples to reduce the
relative width of the confidence interval to 10% of the estimated value. The selec-
tion of the confidence level also affects the width δ of the confidence interval. For a
given number of samples, the higher the confidence level, the larger δ.

Finally, we want to attract the attention of the reader to the basic concept of statis-
tical independence of the samples. When computing statistics of measure of interest,
the various samples used must be collected in a way to guarantee their statistical in-
dependence. Let us observe that any two pairs (xti , ti ) and (xtj , tj ), tj > ti , from the
same simulation trace σ are in fact not independent, because there is clearly a corre-
lation between the fact that at time ti the marking of the SPN model was xti and the
fact that later at time tj the marking is xti . Intuitively, this correlation decreases as
the distance in time between the two samples increases. Therefore, spacing enough
observations of the marking allows collecting multiple samples from inside the same
simulation run. This is important when we are interested in evaluating steady-state
values of the measure of interest. Instead, when we want to collect samples from the
transient behavior of a model, different simulation runs must be used, each one fed
by a distinct sequence of pseudo-random numbers.

7.4 Examples of Modeling and Evaluation

This section provides a few examples of SPN models of biological systems, to help
the reader fixing the most important concepts about model specification and evalua-
tion and to provide further hints on the modeling capabilities of the SPN formalism.

7.4.1 A Biochemical Oscillator

A very simple and well known chemical system is the auto-catalytic one known
as Lotka–Volterra, whose formulation was first proposed by Lotka and then inde-
pendently modeled by Volterra [236]. This system is interesting because it shows
how even simple SPN models of biological systems can give raise to unexpectedly
complex behaviors.
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Fig. 7.8 SPN model for the Lotka–Volterra auto-catalytic system. According to the standard
graphical notation of SPN models, small dashes and an integer are depicted on those arcs that
have a weight different from 1. Molecules of A are produced through a self-catalytic process rep-
resented by the firing of transition tA. Each firing of transition tA consumes one token from place
A and deposits two tokens in place A, with a net production of one new molecule. Firing of tA is
disabled if the number of tokens in place A reaches 0. Similarly, transition tAB models the self-cat-
alytic production of molecules of B , which consumes one token from place A and from place B to
produce a net increase of one token in place B . Again, if the number of tokens of either places A

or B becomes 0, the transition gets disabled

The system consists of only two species A and B . Species A is produced through
an auto-catalytic reaction of the form A→ 2A, whose rate constant is kA = 20.0,
whereas species B is produced by an auto-catalytic reaction in which one molecule
of B converts one molecule of A into another molecule of B , in a bimolecular reac-
tion of the form A+ B → 2B , whose rate constant is kAB = 0.01. Each molecule
of species B is degraded at a rate kB = 10.0. We assume that Gillespie’s hypothe-
ses about thermal equilibrium, fast diffusion and speed of bimolecular reactions are
satisfied by the Lotka–Volterra system, so that an SPN model of the system will
provide an accurate representation of system dynamics.

The SPN shown in Fig. 7.8 models the Lotka–Volterra system described above.
Notice the usage of the weight equal to 2 on the output arcs of transitions tA and
tAB , which models the stoichiometry of reactions A→ 2A and A+B → 2B .

We assume that the initial marking of the net at time t = 0 is (xA = 100, xB =
100). The set of possible markings of the SPN model is infinite, as there is not a
limit on the number of molecules of species A and B in the system. Also, there
is not an obvious structure of the infinitesimal generator of the stochastic process
underlying the model that makes it possible to compute analytically the transient
marking probability distribution. Therefore, we resort to simulation to estimate the
measures of interest. To grab an idea about the SPN marking evolution, we first
inspect the evolution of the number of molecules of B , as produced by a single run
of simulation. The measure xB , that is, the number of tokens in place B , in the time
window [0,32] is plotted in the chart shown in Fig. 7.9.

The chart demonstrates a very interesting oscillating behavior of the number of
molecules over time. Around 60 oscillations cycles are completed in the considered
time window. Moreover, at t ≈ 31.1 the oscillations stop abruptly, because the num-
ber of molecules of species B becomes 0, and transition tAB can not be enabled
anymore. A chart of the number of molecules of species A would also show a sim-
ilar behavior. In this case as well, should the number of molecules of A reach 0,
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Fig. 7.9 Simulated number
of molecules of species B .
Time is over the horizontal
axis, simulated number of
molecules on the vertical one.
The oscillations stop at
around 31.1 time units.
Notice that the frequency of
oscillation appears to show
much less variability than its
amplitude

Fig. 7.10 Extinction
probability of species B over
time, as obtained with 2,000
simulation runs at a
confidence level of 95%. The
average simulated value is not
shown, only the upper and
lower limits of the confidence
intervals for the simulated
measure. Extinction is very
likely (≥0.95) after 25 time
units

transition tA would not fire anymore. However, if B is the first species to reach 0, tA
would continue to be enabled, and xA would grow continuously during simulation.

This behavior is constantly shown across different simulation runs, with the no-
table difference that the time at which oscillations stop is random. From model
simulation, we can also estimate the probability that the oscillation stops within a
certain time, that is we can compute the distribution of species B extinction time.
We show in Fig. 7.10 the upper and lower extremes of the confidence interval (95%
confidence level) for the distribution of the extinction time of species B , computed
through 2,000 runs of simulation.

As it can be observed from the plot in Fig. 7.10, the probability of species b get-
ting extinct before t = 25.0 is fairly high, around 0.95, which tells us that the sim-
ulated trace in Fig. 7.9 is indeed an unlikely one, as the oscillation stops at around
t = 31.0. It is interesting to observe that the finite duration of the oscillations is a
property that can not be studied through a continuous deterministic interpretation of
the set of reactions defining this instance of the Lotka–Volterra system [161].
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Fig. 7.11 SPN model of the gene→mRNA→protein synthesis chain. Transition ttrsc models the
transcription process. It adds tokens to the place M , whose marking represents the number of
mRNA molecules. Molecules of mRNA are removed from place M by the firing of transition
tmdeg, modeling mRNA degradation. Transition ttrsl models the translation of mRNA molecules
into protein molecules, whose number is given by the number of tokens in place P . Transition
tpdeg models protein degradation. The number of tokens in place M at steady-state follows a
Poisson distribution of parameter ktrsc/kmdeg. Under equilibrium conditions, the average trans-
lation rate is ktrslktrsc/kmdeg, and thus the average number of tokens in place P is given by
(ktrslktrsc)/(kmdegkpdeg)

7.4.2 A Protein Synthesis Network

Let us now consider a different example system, which consists of a gene expres-
sion network. We consider a gene G coding for protein P . The synthesis chain
gene→mRNA→protein can be modeled by the SPN model shown in Fig. 7.11,
where place G contains exactly 1 token, modeling the gene, and tokens contained
in places M and P (initial marking set to 0) represent molecules of mRNA and pro-
tein P , respectively. Transition ttrsc and ttrsl model the gene transcription process
and the mRNA translation process, respectively, whereas transition tmdeg and tpdeg

represent the degradation of mRNA and of protein molecules, respectively.
We assume that at time t = 0 no molecules of mRNA and protein are present

and we are interested in computing the number of protein molecules at equilibrium.
This can be done fairly easily through analytical considerations. Indeed, notice that
the sub-model consisting of places G and M and of transitions ttrsc and tmdeg is
structurally equivalent to the one shown in Fig. 7.7. Therefore, the number of mRNA
molecules will follow in equilibrium a Poisson distribution of parameter ktrsc/kmdeg.
This means that, in steady state, the average number of mRNA molecules is given
by the Poisson distribution average value, which is again ktrsc/kmdeg. In turn, this
implies that the average rate of firing of transition ttrsl is ktrslktrsc/kmdeg, and thus, the
steady-state average number of protein molecules in given by ktrslktrsc/(kmdegkpdeg).
The rate constant values for the SPN model in Fig. 7.11 are as follows: ktrsc =
0.09, kmdeg = 0.01, ktrsl0.05, kpdeg = 0.009, which result in a number of steady-
state protein molecules ktrslktrsc/(kmdegkpdeg)= 50.
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Fig. 7.12 SPN model of cooperative repression. A reversible dimerization process of molecules
of protein P is modeled by transitions tdim and tudim. Notice the usage of non-unitary weights on
the incoming and outgoing arcs of place P . Two tokens are removed from place P at each firing
of transition tdim, and two tokens are added to P at each firing of transition tudim. Tokens in place
P2 represent molecules of the dimer, which can bind the gene and suppress transcription. This
reversible binding is modeled by the pair of transitions trep and tfree

7.4.3 A Gene Regulatory Network

Let us now consider a gene regulation mechanism for the example system modeled
above, where the synthesis of protein P is negatively regulated by a dimer P2 of the
same protein. The dimer works as a repressor, binding to a DNA region close to the
gene and contrasting its transcription. This example is a slight adaptation of the one
found in [15] for the regulation of protein cI in phage λ.

In the SPN model in Fig. 7.12, molecules of protein P dimerize through a re-
versible reaction (transitions tdim and tudim) to form molecules of a stable dimer
species represented in the model by tokens contained in place P2. Notice the integer
weights assigned to the input arc to transition tdim and the output arc of transi-
tion tudim to correctly account for the molecule number change in dimerization and
undimerization events. The dimer molecules can reversibly bind DNA (transitions
trep and tfree) repressing the gene. The state of the repressed gene is represented by
the presence of a token in place Q. Apart from place G, all places of the SPN model
are initially empty.

The dimerization process modeled by transition tdim results in a reduction of
the effective rate of firing of transition ttrsc and the model in Fig. 7.12 reaches an
equilibrium between protein production and protein degradation different from the
one we estimated for the model in Fig. 7.11. Figure 7.13 shows the simulated tran-
sient average levels of protein P over the time window [0,2000] for three different
sets of rate constant values, all sharing the same values ktrsc = 0.09, kmdeg = 0.01,
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Fig. 7.13 Simulated time courses for the time-dependent number of protein molecules in the gene
regulation network of Fig. 7.12, for three different set of model parameters. The number of simu-
lation runs is 10,000; confidence intervals, computed at 95% confidence level, are extremely small
and therefore not shown in the plots for the sake of readability. In set NO-REP, the dimerization
process is suppressed, and thus the amount of protein molecules reaches the predicted steady-state
level ktrslktrsc/(kmdegkpdeg)= 50. In set REP-SET1, the gene repression effect is able to bring down
the equilibrium level of protein P to around 18 molecules. This same equilibrium value is achieved
by the model with set REP-SET2, in which the dimerization process proceeds ten times faster. As
a result the gene expression is controlled in a more efficient way, and the transient peak of the
number of protein molecules visible in the plot for set REP-SET1 disappears

ktrsl = 0.05, kpdeg = 0.009 (no change with respect to the model in Fig. 7.11), and
krep = 0.05, kfree = 0.9. The simulation results are obtained with 10,000 runs of
simulation, and the confidence intervals, computed at a confidence level of 95%,
are within 0.5% of relative width (not shown for the sake of clarity). A first set
(plot NO-REP), with no repression, reaches the expected steady-state level of pro-
tein equal to 50 molecules. In a different rate constant assignment (set REP-SET1),
we use the values kdim = 0.0001 and kudim = 0.0005, whereas in the third one (set
REP-SET2) we use kdim = 0.001 and kudim = 0.005. As it can be observed from
Fig. 7.13, both REP-SET1 and REP-SET2 result in a reduction of the steady-state
level of protein P . Moreover, because the ratio kdim/kudim does not change between
the two sets, the equilibrium level of the dimer is the same in the two simulated time
courses, and consequently the equilibrium level of protein P is also the same. The
difference is in the speed with which the steady-state level is reached, as well as in
the profile of the time course, which achieves a peak in the plot for REP-SET1 (slow
repression) not visible in the plot for REP-SET2.

7.5 Related Work

Application of the Petri nets modeling formalism to the study of biological systems
only started in recent years, but it already generated a variety of different areas of
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active research. Modeling studies based on the quantitative evaluation of various
timed variants of Petri nets have also been appearing. The first works exploiting the
representative power of Stochastic Petri nets date to the end of the 90s. The work
in [140] is more a kind of advertisement for the existence of an intuitive graphical
modeling tool that can represent both structure and stochastic dynamics of biolog-
ical networks. In [141], the same authors present a more detailed application case
dealing with a genetic regulation network.

The appearance of these works basically stem from the fruitful combination of
Gillespie’s formulation of stochastic kinetics to a well-developed core of Petri net
research results already available at that time. Indeed, the computer science and en-
gineering research communities had been working on Petri net since the mid 70s,
building up a consistent body of knowledge about analytical and simulative ap-
proaches to the evaluation of SPN models. For instance, the two research works
mentioned above [140, 141], exploited the modeling and simulation capabilities of
the stochastic activity networks tool Möbius [77], whose first releases were already
available in mid 80s. Other popular SPN tools developed outside the systems bi-
ology community are the Stochastic Petri Net Package [76] and GreatSPN [74].
Another tool supporting the Petri net modeling formalism, which has a good record
of applications to the modeling and evaluation of biological systems is the Snoopy
tool [154].

The work in [369] proposes another application of SPNs to the modeling of the
Escherichia coli stress circuit, and [399] presents the modeling and evaluation of
the estrogen production pathway, again using the Möbius tool. In [21], the authors
use colored stochastic petri nets to model dynamics of epidemic diseases spread.

The publications in [149, 295] are the first surveys about possible applications
of Petri net to systems biology, covering both qualitative and quantitative analysis
opportunities. This type or papers demonstrate the growing maturity of this new ap-
plication field, which leads to the development of original approaches, seeking for
extensions of the representative power, definition of model refinement approaches
and attempting to combine both structural analysis and dynamic evaluation, clearly
a must in a domain were the complexity of systems can easily overcome the capa-
bilities of modeling tools.

The work in [244] uses Petri net models at various levels of abstraction for re-
constructing the plausible regulatory networks of the plasmodium Physarum poly-
cephalum, and employs simulation to incrementally validate (or disprove) candidate
models against experimental data coming from various mutants. In [154], an attempt
to reconciliate the qualitative and quantitative (discrete and continuous) modeling
paradigms in Petri net is presented, using the classical example provided by the
ERK/MAPK pathway. This paper shows well how the debate about the respective
merits/disadvantages of diverse modeling approaches is received in the Petri net
community. In [270], the authors deal with the protein interaction network that reg-
ulated cell-cycle in yeast Saccharomyces cerevisiae, and explain how it is possible
to augment the predictive capabilities of continuous deterministic models expressed
as systems of ordinary differential equations by translating them into SPNs, with an
informal, semi-automatic mapping process. That work makes clear the need for tran-
sition rates that go beyond pure mass-action, as a way to encode into SPNs arbitrary
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abstractions. A further extension, which will push the modeling formalism outside
the class of SPNs, is the one advocate by [156], which calls for both nonmass action
transition rates as well as additional firing distributions types. This last extension
greatly extends the expressivity of models, but of course precludes any possibility
of analytical treatment, leaving simulation as the only technique of choice.

7.6 Summary

We presented in this chapter a practical and concise introduction to the concepts un-
derlying the stochastic modeling of biological systems with Petri net. The stochastic
modeling approach has been gaining momentum after the widespread acceptance of
the important contribution provided by Gillespie, thanks to which the Stochastic
Petri net modeling formalism has found a novel application field.

Through some simple examples of biochemical systems, we described in this
chapter the SPN model specification process, in terms of a direct mapping between
entities and their states into places, reactions and kinetic rates into arcs and transi-
tions, stoichiometry into arc weights. We also took care of discussing how and when
the stochastic interpretation of the firing in Stochastic Petri net can be reconciled
with the stochastic kinetics model proposed by Gillespie, a topic often disregarded.

The most relevant approaches for Stochastic Petri net models evaluation have
been presented. Analytical and numerical evaluation of models in terms of their
transient and steady-state marking probability distribution were described, to pro-
vide examples of the existing exact analysis opportunities. Then, we introduced the
Stochastic Simulation Algorithm, which has become a de-facto standard in simula-
tion approaches for biological systems. The logic of simulation and the principles
underlying statistical aggregation of simulation samples have been presented.

Additional examples of larger scale models have been defined and evaluated at
the end of the chapter, to consolidate the understanding of the main concepts and
provide further hints on the representative power and analysis tools made available
by the Stochastic Petri net modeling formalism.

7.7 Problems

We propose in this section some SPN modeling and evaluation exercises to help the
reader putting into practice the concepts introduced in the chapter.

7.1 Consider a biochemical species A that can be in two different states, active
and inactive. Inactive molecules of A become active at a rate kon, whereas ac-
tive molecules of A revert to the inactive state at a rate koff. The total amount of
molecules of A stays constant, and is A0. Define an SPN model for this system.

7.2 Consider the following additional information for the system in Exercise 1.
Activation of A is caused by the addition of a phosphate group by a kinase KA, and
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deactivation of A is caused by the removal of a phosphate group by a phosphatase
PA. Define an SPN model that includes this information.

7.3 For the SPN model built in Exercise 1, determine analytically the average and
variance of the number of active molecules of species A at equilibrium. Hint: follow
the same steps used to calculate (7.22).

7.4 For the SPN model in Fig. 7.11, determine new values of the rate constants for
transitions tmdeg and ttrsl so that the average number of proteins at steady state is still
50, but the average number of mRNA molecules is 5.

7.5 Evaluate, by simulation, the variance of the steady-state number of proteins in
the example model worked out in Fig. 7.11 and the modified one defined in Exer-
cise 4.

7.6 Modify the example provided in Fig. 7.12 to account for another additional neg-
ative feedback loop exerted by tetramers P 4 of protein P . Add a reversible tetramer-
ization reaction P 2→ P 4, and a reversible binding between P 4 and G.

7.7 Evaluate by simulation the equilibrium level of protein P in the modified model
worked out in Exercise 6. Compare it with the result of the original example model
in Fig. 7.12. Assume that the rate constant for the tetramerization reaction P 2→ P 4
is 2kdim, whereas the rates of the reverse reaction P 4 → P 4 is the same as kudim.
Finally, consider a different rate constant value assignment where the rate of DNA
binding of the tetramer is 5krep, whereas the unbinding rate value is the same as kfree.



Chapter 8
Quantitative Analysis

Jörg Ackermann and Ina Koch

Abstract The final aim of modeling biochemical processes is to gain a theoretical
model which explains and predicts the dynamic behavior of the system in terms of
quantities. The limitation of this type of modeling lies rather in the lacking of nec-
essary kinetic data than in the mathematical concepts which are mostly based on
coupled ordinary differential equations (ODEs). Whereas kinetic data can be found
for some reactions, for the vast majority of pathways kinetic data have not been
identified. For many biochemical processes, it still is a task to produce significant
experimental data. Continuing efforts in well-designed experiments and data anal-
ysis have made kinetic data available for some pathways and some organisms, and
with these data at hand quantitative methods become more and more useful. All
quantitative methods, applied in modeling of biochemical processes, can easily be
adapted to the Petri net formalism. The Petri net formalism offers the advantage
of a combination of methods of classical systems biology with discrete Petri net
modeling techniques, including an intuitive description of biochemical networks.

The aim of this chapter is to provide an introduction to basic methods for quan-
titative modeling of biochemical networks and a description in terms of the Petri
net formalism. This includes for example, the classical principles of chemical re-
action kinetics, the mass action, steady-states, stability and bifurcation analysis,
Michaelis–Menten kinetics, and Hill kinetics. Moreover, we provide extensive ref-
erences for further reading and give references to standard tools in this field.
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8.1 Introduction

Quantitative modeling plays a crucial role for the interpretation of experimental data
in biology. Petri net formalism is classically applied to qualitative analysis and con-
siders discrete entities called tokens. Quantitative analysis in system biology, on the
other hand, is based on reaction rates and continuous concentrations. To convert
Petri nets to quantitative models, tokens have to carry real number values and repre-
sent concentrations. Transitions have to describe the conversion of concentrations of
substances at the pre-places to concentrations of the products at the post-places. The
firing rules are no longer simple discrete events, but contain functions to describe
chemical reactions. Depending on the kinetic model various functions for reaction
rates have to be applied. Petri net formalism does not provide new kinetic concepts,
but is useful through the possible combination of discrete with continuous modeling
at different levels of abstraction as applied in hybrid Petri nets, see Chaps. 3 and 6.

In the modeling of biological systems, Michaelis–Menten kinetics and Hill ki-
netics are of great importance to describe enzymatic reactions and allosteric effects,
respectively. Both of these kinetic concepts are based on the law of mass action.
The derivation of the corresponding coupled differentiation equations is known for
many decades, and their concepts are described in detail in many textbooks, for fur-
ther reading see textbooks by Atkins [18], Voet and Voet [405], and Stryer et al.
[378]. For numerical treatment of large reaction systems and parameter identifica-
tion, see [91, 203, 376]. Since mathematicians and computer scientists are usually
not very familiar with chemical reaction kinetics, we start with the description of the
concepts of kinetics for biochemical systems providing the translation to the Petri
net formalism. Let us first consider the Law of Mass action and molecular reaction
types.

8.2 Mass Action

Chemical reactions describe the conversion of chemical substances which are called
reactants, educts, or substrates in case of catalyzed reactions. The resulting chem-
ical substances are the products. Reactions can take place spontaneously, in which
case they are called to be exothermic. Otherwise, reactions are endothermic. Ac-
cording to the number of participating reactants two fundamental types of chemical
reactions can be distinguished, unimolecular reactions and bimolecular reactions.

The Law of Mass action states that the rate of conversion of masses in generic
chemical reaction is proportional to the product of the masses of the reacting sub-
stances. For a generic reaction

mA+ nB
k−→ C, (8.1)

with reactants, A and B , and stoichiometry coefficients, m and n, the reaction rate
is given by

r = k[A]m[B]n, (8.2)
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where r denotes the reaction rate, [A] the concentration of Substance A, and k the
reaction constant.

Mass action describes the behavior of reactants and products in an generic chem-
ical reaction as an equation where the velocity or rate of a chemical reaction is
directly proportional to the concentration of the reactants. It offers the advantage of
well-developed rigorous methods and powerful numerical tools at hand. When com-
ing to biochemical reaction, either in vivo or in vitro, the modeler must be aware that
essential effects may result from the low number of copies of proteins, and that such
effects are ignored in an approach based on mass action kinetics.This law is useful
to obtain the correct equilibrium equation for a broad range of types of reactions. In
the case of dynamic studies, however, the expressions for the rate is applicable to
elementary reactions only. The following elementary reaction types can be distin-
guished.

8.2.1 Zero-Order Reactions

The simplest type of reactions are zero-order reactions in which the reaction rate
does not depend on the concentrations of reactants. Such type of reactions are used
to model the synthesis from a null species or to add a source species to the system

NULL−→ B. (8.3)

The reaction rate is constant and the reaction rate coefficient k is given in units
of mole litre−1 second−1. In the case that a null species with constant concentration
is explicitly modeled, the reaction rate coefficient k must be defined in units of
second−1.

8.2.2 First-Order Reactions or Unimolecular Reactions

The first-order or unimolecular reaction describes the elementary conversion of an
unstable molecule of type A to a molecule of type B

A−→ B. (8.4)

The conversion may stand for various complex processes, as for example, chem-
ical modifications or structure changes, whose details are intentionally ignored or
unknown. The molecule may have become unstable because temperature or pH-
value of the environment have changed, or the reaction may be part of a larger re-
action system which produces unstable molecules of type A. The classical example
of a first-order reaction is radioactive decay. The reaction rate is proportional to the
concentration [A] of the reactant and the reaction rate coefficient k is given in units
of second−1.
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The conversions of the individual molecules of type A are not synchronized.
Instead, the transition of a molecule of type A to a molecule of type B is independent
of other transitions and takes place with a certain fixed probability. We do not want
to distinguish individual molecules of type A and type B and, instead, count only
the number of molecules of type A and number of molecules of type B , denoted in
the following by integers NA and NB , respectively. On the description level of the
counts NA and NB , the conversion of each individual molecule of type A and B

according to (8.4) represents a Markov process

NA −→ NA − 1, (8.5)

NB −→ NB + 1. (8.6)

Since the conversion of each individual molecule of type A is not influenced
by the conversion of other molecules in the system this process occurs with high
probability if NA is high and with low probability if NA is low. Quantitatively, the
transition probability for the Markov chain above can be written as

P(A,B)→(A−1,B+1) = kNA, (8.7)

where k is a positive and real constant. Consequently, during a small time period δt

the average change of the numbers NA and NA, respectively, is described by

δNA = −kNAδt, (8.8)

δNB = +kNAδt. (8.9)

In chemical reactions, a huge amount of molecules is participating, for example,
one gram of matter contains up to 1023 particles. The unit for substance amount
is mole which is defined as the number of atoms contained in 12 gram of the iso-
tope 12C. The Avogadro number NA = 6.02214179(30)×1023 gives the exact num-
ber of elementary entities in one mole [232].

The absolute number of individual protein inside a living cell may be below thou-
sand copies. This number is far less than the Avogadro number mentioned above.
Global cytoplasmic concentrations are found to range from 0.04 (formin Cdc12p)
to 63 micromolar (actin). The proteins are not homogeneously distributed in a cell
but concentrate up to 100 times in contractile rings and 7500 times in spindle pole
bodies at certain times in the cell cycle [164, 419].

To derive equations valid for arbitrary dimension of the reaction chamber, we di-
vide the equations by the volume V of the system. The limes of infinitesimal small
time period δt yields a system of ordinary differential equations for the concentra-
tions [A] =def NA/V and [B] =def NB/V

d[A]
dt

= −k[A], (8.10)

d[B]
dt

= +k[A]. (8.11)
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Fig. 8.1 The Petri net representations for (a) a unimolecular reaction corresponding to (8.4),
(b) a bimolecular reaction corresponding to (8.13) and (8.14), and (c) an equilibrium reaction cor-
responding to (8.18). Equilibrium reactions are represented by two transitions, one for the forward
and one for the reverse reaction

Concentrations are given in units mole/liter (also molar or M), denoting the number
of molecules (in units of NA) in one liter of solution. Values for concentrations are
typically given in mM (millimolar, one thousandth of a molar), µM (micromolar,
one millionth of a molar), and nM (nanomolar, one billionth of a molar). Values for
the reaction rate constant k are in the order of fractions of a second up to several
minutes depending on whether, for example, a combustion process or a complex
biochemical reaction is modeled. Commonly, the notation

A
k−→ B (8.12)

is understood as a synonym for the ODE system (8.10)–(8.11), where k defines the
rate constant coefficient for the speed of the chemical reaction.

Typical rate constants coefficients k of biochemical processes vary over a broad
range. For example, in RNA folding processes, individual stem loops form on the
microsecond time scale at physiological temperatures and folding of tRNA proceed
with a time constant of about 0.1–1 s, whereas a folding of long RNA strands via
multiple kinetic intermediates or via traps of misfolded three-dimensional structures
can be surprisingly slow (several minutes) [388]. For the Petri net representation of
a unimolecular reaction, see Fig. 8.1.

8.2.3 Second-Order Reactions or Bimolecular Reactions

Second-order or bimolecular binding reactions

A+B
k−→ C (8.13)

or

2A
k−→ C (8.14)

describe interactions between two entities of different type or of the same type in a
reaction system. The reaction rates are then proportional to the concentrations of the
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two reactants, r ∼ [A][B], or to the square of the concentration of the one reactant,
r ∼ [A]2, respectively.

The reaction (8.13) is equivalent to the system of ODEs

d[A]
dt

= −k[A][B], (8.15)

d[B]
dt

= −k[A][B], (8.16)

d[C]
dt

= +k[A][B], (8.17)

where the kinetic rate constant coefficient k now is given in units of litre mole−1

second−1. A typical value for the rate constant is for example, k = 108 litre mole−1

second−1 for RNA-polymerase or reverse transcriptase reaction [36]. Note that, bi-
molecular reactions result in a nonlinear system of ordinary differential equations
and, hence, are responsible for complex behavior as for example, explosion, oscil-
lation, bifurcation, waves or spatiotemporal pattern formation. Unimolecular and
bimolecular reaction terms are the elementary reaction types to model any mass
action reaction system. For the Petri net representation of a unimolecular reaction,
see Fig. 8.1.

8.2.4 Reversible Mass Action or Equilibrium Reactions

In principle, each chemical reaction is reversible. Whether the reaction prefers a
conversion of mass to one direction or the reverse direction depends on its thermo-
dynamic parameters. A reversible reactions can be equivalently described by two
separate reactions or by a single “for and back” reaction.

In the notation of a single “for and back” reaction a bimolecular reaction going
in forward and reverse direction is given by

A+B
kf−−⇀↽−−
kr

C, (8.18)

and yields the equation system

d[A]
dt

= −kf [A][B] + kr [C], (8.19)

d[B]
dt

= −kf [A][B] + kr [C], (8.20)

d[C]
dt

= +kf [A][B] − kr [C]. (8.21)

Starting with initial concentrations of species A, B , and C the reaction will go on
until a kind of equilibrium, which is called steady-state, is reached. At steady-state
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the derivation of the concentration with respect to time becomes zero, that is,

d[A]
dt

= d[B]
dt

= d[C]
dt

= 0. (8.22)

Inserting this condition in the ODE above leads to the definition of the equilib-
rium constant

Kd =def
kr

kf

= lim
t→∞

[A]t [B]t
[C]t . (8.23)

The equilibrium constant, Kd , has the unit of a concentration and determines
whether the reaction tends more toward the reactants or the products of the reaction.
The range of typical values of Kd is 10−8 M to 10−11 M. By mass conservation, the
relations follow

[A] + [C] = [A]0, (8.24)

[B] + [C] = [B]0, (8.25)

where [A]0 and [B]0 are the initial concentrations of the two binding partners. We
apply the mass conservation condition to eliminate [A] and [B] from the equilibrium
equation (8.23):

Kd = [A][B]
[C] = ([A]0 − [C])([B]0 − [C])

[C] . (8.26)

This leads to the quadratic equation

[C]2 − [C][Kd + [A]0 + [B]0
]+ [A]0[B]0 = 0 (8.27)

with the solution

[C]s = Kd + [A]0 + [B]0
2

−
√(

Kd + [A]0 + [B]0
2

)2

− [A]0[B]0. (8.28)

The fraction of bound species A, given by [C]s/[A]0, is plotted versus [B]0 in
Fig. 8.2 for Kd = 10−9 M and [A]0 = 10−10 M. For growing concentration of the
binding partner, [B]0, the fraction of bound species increases and becomes 50%
when [B]0 is around the value of Kd .

8.2.5 Example: A Simple Predator Prey Model

Motivated by the oscillatory fish catches in the Adriatic, in 1926 Volterra pro-
posed a model system for the predation of species by another. Motivated origi-
nally by a problem in population dynamics this system—well-known as Lotka–
Volterra model—nowadays serves as general model system for oscillatory behav-
ior. The classical example for oscillatory behavior in chemical systems, however,
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Fig. 8.2 Fraction of bound
species A versus initial
concentration [B]0. The
initial concentration of
species A is set to the
constant value
[A]0 = 10−10 M. The
equilibrium constant
(Kd = 10−9 M) is shown as a
vertical line. The fraction of
bound species A becomes
50% when the initial
concentration of the binding
partner [B]0 becomes equal
to Kd

is the Belousov–Zhabotinsky reaction which has been demonstrated in a vast num-
ber of classroom lectures. Predator-prey interaction in simple biomolecular reaction
systems have been studied as well [1, 411].

The Lotka–Volterra model consists of a prey species A which, in absence of
predation, grows uncontrolled by an autocatalytic self-replication

A
kA−→A+A. (8.29)

Such a reaction leads to an exponential growth and is, of course, a strong approx-
imation for the replication of fishes, because in real life space and resources of food
would present upper limits for the concentration of the prey. As long as the dynamic
of interest is not influenced by such upper limit, the approximation of the replication
by such a simple reaction is well satisfied. More complicated Lotka–Volterra mod-
els with resource limitations are well studied, see [272] and literature therein. For a
formal definition of a self-reproducing system using Petri nets, we refer to [359].

The predator species B is able to feed on the prey for its own reproduction

B +A
kAB−→ B +B, (8.30)

but will die if no prey is available

B
kB−→ . (8.31)

The kinetic parameters kA, kAB , and kB are positive constants. For known kinetic
parameters, the dynamics of the concentration is readily determined by a system of
ODEs

d[A]
dt

= kA[A] − kAB [A][B],
d[B]
dt

=+kAB [A][B] − kB [B].
(8.32)
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A conventional abbreviation is to write such an ODE in the form

d[A]
dt

= fA

([A], [B]) and

d[B]
dt

= fB

([A], [B])
(8.33)

with

fA

([A], [B])=def kA[A] − kAB [A][B]
and

fB

([A], [B])=def kAB [A][B] − kB [B].
Introducing further a concentration vector �x with component x1 = [A] and

x2 = [B] as well as a rate vector �f (�x) with components f1(�x)= fA([A], [B]) and
f2(�x)= fB([A], [B]) we yield the general form

d �x
dt
= �f (�x)

. (8.34)

8.2.6 Steady States

In general, it is substantial for any reaction system to learn as much as feasible
about the variety of dynamics the system is able to show. In this context, the steady-
state analysis represents an essential method. Steady states (or fixed points) are the
solutions of the algebraic equation

�f (�x)= 0 (8.35)

and define values of the concentration at which their time derivation becomes zero
in (8.34). For the predator-prey model above, the steady-states are easily computed,
see Problem 8.6.2. The trivial fixed point is [A] = [B] = 0, and a second fixed point
is reached for [A] = kB/kAB , and [A] = kA/kAB . In the following, such singular
points are denoted by a lower index s, as for example, �xs .

8.2.7 Stability Analysis

Dynamically the systems may remain stable at the steady-state concentration �xs or
otherwise may be driven away from it by an arbitrary small perturbation δ�x, see
Fig. 8.3. Linearization of (8.34) about the singular points �x = �xs reads

d(�xs + δ�x)

dt
= �f (�xs + δ�x) .= �f (�xs

)+ J
(�xs

)
δ�x (8.36)
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Fig. 8.3 Response to a perturbation from steady-states sketched in the phase plane of concentra-
tions. Left part: A perturbation from a stable steady located at [A] = [B] = 1 decreases with time
and the concentrations relax to the steady-state again. The steady-state is an attractor. Right part:
A perturbation from an unstable steady at [A] = [B] = 1 increase with time. The steady-state is
repulsive. The concentrations will not go back to this state. Instead, the concentrations will either
end up in another (stable) steady-state or otherwise will increase to infinity

with the Jacobian matrix J(�xs) =def [∇�x �f (�x)]�x=�xs
. Note that, by definition (8.35)

the rate vector �f (�x) is equal to zero at �x = �xs yielding

dδ�x
dt

= J
(�xs

)
δ�x. (8.37)

This ODE describes the response of the dynamical system to a small perturbation
δ�x, and the formal solution is given by

δ�x(t)= eJ(�xs)t δ�x0. (8.38)

Obviously, we would be able to find an initial perturbation, δ�x0, which grows
exponential with time if and only if the Jacobian matrix has at least one positive real
eigenvalue. The trivial steady-state of the Lotka–Volterra model (8.32) is unstable,
whereas the nontrivial steady-state is neutrally stable, see Problem 8.6.2.

The continuous rate equations for the Lotka–Volterra model have two steady-
states: one trivially fixed, unstable, and a second, neutrally stable steady-state. The
neutrally stable steady-state gives rise for a limit cycle. Limit cycles are closely
connected to a Hopf bifurcation. The Hopf bifurcation plays an exceptional role
for dynamical systems and describes a parameter value at which the Jacobian of
the linear equation (8.36) has purely imaginary eigenvalues, see Problem 8.6.2. The
connection of such a bifurcation to limit cycle solutions was formulated by E. Hopf
in 1942. Let

dx

dt
= �f (�x, ν

)
(8.39)

be a second-order autonomous system of differential equations which has a singu-
lar point xs(ν) for each value of the real parameter ν. Suppose that the linearized
(Jacobian) matrix J(ν) of (8.39) about the singular point, xs(ν), has purely imagi-
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Fig. 8.4 Sketch of a limit
cycle in the phase plane of
concentrations. The limit
cycle emerges by a
perturbation from the
neutrally stable steady-state at
[A] = [B] = 1 and converges
to a stable periodic orbit

nary eigenvalues ±iω for ν = ν0. If the Jacobian matrix (family) J(ν) decomposed
in the form

J(ν)= J(ν0)+ (ν − ν0)K(ν) (8.40)

fulfills the condition

Tr K(ν0) = 0, (8.41)

then there exists a periodic solution of (8.39) for ν in some neighborhood of ν = ν0
and �x in some neighborhood of �x = �xs with an approximate frequency ω/(2π).

For the majority of reaction systems of practical interest, the number of steady-
states as well as their stability depends on the values of the kinetic parameters.
Identification and characterization of critical parameter values at which the char-
acteristics of the system (as the number of steady-states or their stability) changes
instantaneously is the task of bifurcation analysis [72]. There exists a whole bunch
of different bifurcation types. An example is a saddle point bifurcation point at
which two steady-states collide and annihilate each other. At a pitchfork bifurcation
two steady-states emerge from one steady-state, and at a transcritical bifurcation a
steady-state loses its stability. Obviously, the knowledge of the bifurcation points
of a system is very helpful. A detailed discussion of the rich variety of bifurcation
types is out of the scope of this contribution.

Interacting entities in real-life systems, as population of animals, organs, cells,
proteins, DNA, RNA, etc., are always countable and discrete. Usually, the num-
ber of individuals is huge and an description in term of concentrations and mass
action kinetics is well satisfied. Nevertheless, there exist fundamental differences
between continuous and discrete models. Concerning the stability of the Lotka–
Volterra model this can easily be demonstrated.

The dynamical behavior of the discrete model is characterized by the time evo-
lution of the probability distribution P(A,B, t) to find A individuals of prey and B

individuals of predator at time t in the system. Instead of a system of ordinary dif-
ferential equations (8.32) for continuous concentrations we have to solve a Master
equation for the probability P(A,B, t), see Problem 8.6.3.
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The neutral stable steady-state observed for the continuous system vanishes in the
discrete model, see Problem 8.6.3. Nevertheless, the discrete system shows oscilla-
tions in analogy to the continuous model. The “limit cycles” of the stochastic model
are, however, no stable trajectories because stochastic fluctuations cause transitions
from one trajectory to neighboring ones. Because of the stochastic fluctuations there
is no hope for the predator to survive. Once, by change, the prey has died out the
system will end in the only possible steady-state, A = B = 0. Note that, stability
analysis of continuous systems predicts a limit cycle behavior, which is also very
helpful for the discussion of a more realistic discrete model.

In nature, the conception of space plays a crucial role and a prey can often sur-
vive by wandering to regions where the predator can not follow so quickly. This is
an effect observed only for discrete systems, because no regions with zero predator
exist in continuous models. Similar effects as reaction waves, complex pattern for-
mation, and stochastic resonance play a crucial role for spatially extended systems,
but will not discussed here; for further reading, see [150].

8.2.8 Spatial Instability

Reactions systems are applied to model a broad diversity of interacting systems.
Such interactions of entities are above assumed to take place in well-mixed and ho-
mogeneous environments. On the microscopic level the process of mixing is driven
by the random walk of the particles. The appropriate method to describe the ran-
dom walk of particles on the abstraction level of mass action kinetics is the classical
partial differential equation for diffusion:

∂ �x
∂t
= �f (�x)+∇�r

( �D∇�r �x
)
, (8.42)

where the concentration vector, �x, is a function of time, t , and space, �r . The diffu-
sion matrix, �D, may be a function of �x and �r . A sophisticated way to derive this
equation is the Fokker–Plank equation [122] using a probability density function
with a Markov process that describes the random walk movements of the particles.
If the diffusion is very fast on the time scale of reactions, the concentration vector, �x,
becomes independent from the spatial dimension, �x(t, �r)= �x(t), and the reaction-
diffusion equations above will be reduced to the ODE (8.34).

Diffusion is usually considered as a stabilizing process. Under certain condi-
tions, however, a reaction system which in the absence of diffusion would tend to
a linear stable steady-state may show spatial inhomogeneous patterns evolving by
diffusion driven instability. The idea is that, the linearized system is stable against
any homogeneous perturbation, δ�x(t), but is unstable to perturbation, δ�x(t, �r), with
given spatial (periodic) modulation. Such a Turing mechanism can be shown for var-
ious reaction systems including many activator-inhibitor systems and the Belousov–
Zhabotinsky-reaction. There exists a rich variety of complex and beautiful spatial-
temporal patterns evolving for reaction systems. A prominent example is the simple
system studied by Pearson [293] in which a Hopf bifurcation interacts with a Turing
instability.
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There exist numerous methods to treat reactions in compartmented systems. One
approach is the direct numerical solution of the reaction–diffusion equation with
continuous space, time, and concentration by applying finite element or finite vol-
ume methods. The coupled map lattice simulates continuous concentration on a dis-
crete grid of space and time points [415], whereas delay differential equations are
often used to model the transport of substances or pharmaceutical agents from one
body part to another. Cellular automata with discrete time, space, and concentra-
tion represent a classical method connected to complexity theory, Turing machine,
dynamic systems, and self-replicating systems.

8.3 Michaelis–Menten Kinetics

Michaelis–Menten kinetics developed by Leonor Michaelis and Maud Menten [261]
describes the kinetics of enzyme-catalyzed reactions which do not exhibit allosteric
effects, such as cooperativity. It is based on mass action kinetics under two as-
sumptions. First, the Michaelis–Menten model applies when a meta-stable enzyme–
substrate complex is formed, and the concentration of this enzyme–substrate com-
plex changes much slower than those of the substrate and product. The enzyme-
catalyzed reaction is described by

E + S
k1−−⇀↽−−
k−1

ES
k2
⇀ E + P, (8.43)

where E stands for enzyme, S for substrate, ES for the enzyme–substrate complex,
P for product, and k1, k−1, and k2 for the rate constants. For the corresponding Petri
net, see Fig. 8.5.

According to mass action, see Sect. 8.2, we can formulate the following differ-
ential equations for the concentration changes of each component over time t

d[S]
dt

= −k1[E][S] + k−1[ES], (8.44)

Fig. 8.5 The continuous Petri net representing (8.43). Places depicted by concentric cycles de-
scribe concentrations, and the firing rules of the transitions depicted by two concentric rectangles
correspond to the underlying differential equations
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d[E]
dt

= −k1[E][S] + k−1[ES] + k2[ES], (8.45)

d[ES]
dt

= +k1[E][S] − k−1[ES] − k2[ES], (8.46)

d[P ]
dt

= +k2[ES] = v0, (8.47)

where [X] denotes the concentration of a component X. The catalytic rate, v0, de-
pends on the concentration of the enzyme–substrate complex.

The second assumption is that a quasi steady-state approximation (QSSA) is
valid. The QSSA states that the concentration of the enzyme–substrate complex
ES remains constant even if the concentrations of substrates and products vary.
Consequently, the rates for formation and breakdown of [ES] have to be identical

k1[E][S] = (k−1 + k2)[ES]. (8.48)

A Michaelis–Menten constant, KM , is defined by

[E][S]
[ES] =

(k−1 + k2)

k1
=KM. (8.49)

This constant characterizes enzyme–substrate interactions and the activity of
the catalytic function. When the concentration of substrate reaches the Michaelis–
Menten constant half of the active sites of the enzyme are filled, that is, KM is a
measure for substrate concentration required for a substantial catalytic activity. By
mass conservation, it follows that the total enzyme concentration [E]T is identical
to the sum of concentrations of free enzyme [E] and the concentration of enzyme
substrate complex [ES]

[E]T = [E] + [ES]. (8.50)

Inserting (8.50) and (8.49) into (8.48) and some algebra yield

[ES] = [S][E]T
KM + [S] . (8.51)

For the catalytic rate, v0, in (8.47), we get

v0 = k2[ES] = k2[E]T [S]
KM + [S] . (8.52)

The catalytic rate, v0, reaches its maximal value, vmax = k2[E]T , when the con-
centration of substrate [S] is given in excess ([S] " KM ). In terms of vmax, the
Michaelis–Menten-equation appears in the well-known form

v0 = vmax
[S]

KM + [S] . (8.53)
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8.3.1 Enzyme Kinetics with Inhibitors

Many medical and biotechnological applications are interested in inhibiting spe-
cific enzymes and knocking out selected reactions. Examples are penicillin, which
covalently modifies transpeptidase, and methotrexate, which inhibits dihydrofolate
reductase. Since the rate of dissociation of the enzyme–inhibitor complex is sig-
nificantly greater than zero the inhibition of dihydrofolate reductase by methotrex-
ate is called a reversible inhibition. In contrast, the covalent binding of penicillin
to transpeptidase is denoted as irreversible inhibition. According to mechanism of
inhibition, reversible inhibitors can be classified into three types: competitive, un-
competitive, and noncompetitive (or mixed). In the following, we briefly explain
the three types of inhibition and present the corresponding Michaelis–Menten equa-
tions, for a derivation of the formulas and more details see [405].

In the case of a competitive inhibition, the substrate and inhibitor are structurally
very similar and compete for the same binding site. Only enzyme–substrate com-
plexes, ES, and enzyme–inhibitor complex, EI , can emerge but higher order com-
plexes like an enzyme–substrate–inhibitor complex, ESI , can not be formed, see
Fig. 8.6. As for the Michaelis–Menten kinetics above, we apply the QSSA

kI = [E][I ]
[EI ] , (8.54)

where kI denotes the equilibrium concentration for the reversible binding of the in-
hibitor, I , to the enzyme. The enzyme–inhibitor complex EI is, of course, catalyti-
cally inactive. Accounting for the enzyme–inhibitor complex the mass conservation
(8.50) now reads

[E]T = [E] + [EI ] + [ES]. (8.55)

Inserting the QSSA (8.49) for the enzyme–substrate complex as well as Equation
8.54 for the enzyme–inhibitor complex yields (Problem 8.6.4)

v0 = vmax
[S]

αKM + [S] , (8.56)

with

α = 1+ [I ]
kI

. (8.57)

In case of an uncompetitive inhibition, the inhibitor binds only to the enzyme-
substrate complex. A catalytically inactive enzyme-substrate-inhibitor complex
arises, but no enzyme–inhibitor complex will be formed, see Fig. 8.7. The QSSA
for binding of the inhibitor gets the form

k′I =
[ES][I ]
[ESI ] (8.58)
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Fig. 8.6 Competitive inhibition: Either an enzyme-substrate complex or an enzyme–inhibitor
complex can be formed, because substrate and inhibitor bind to the same binding site of the enzyme

Fig. 8.7 Uncompetitive inhibition: The inhibitor binds directly to the enzyme-substrate complex,
but not to the free enzyme

leading to (see Problem 8.6.4)

v0 = vmax
[S]

KM + α′[S] , (8.59)

where

α′ = 1+ [I ]
k′I

. (8.60)

In the noncompetitive or mixed inhibition both, the enzyme–inhibitor complex
and enzyme-substrate-inhibitor complex, are formed. Both binding steps are as-
sumed to be in a quasi steady-state, each with its individual dissociation constant,
see Fig. 8.8.

Combining the corresponding QSSAs with mass conservation gives (Prob-
lem 8.6.4)

v0 = vmax
[S]

αKM + α′[S] . (8.61)
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Fig. 8.8 Noncompetitive inhibition: The inhibitor can combine with either the enzyme or the
enzyme-substrate complex

8.4 Hill Kinetics

In a bimolecular reaction, one species may have several binding sites. In some cases,
the binding of a ligand to a binding site induces a change of the tertiary structure.
The new tertiary structure may present the binding sites more accessible for the
binding of ligands and hence, may be advantageous for the binding of further lig-
ands to free binding sites. Whereas the binding of the first ligand may be slow the
binding of a second, third etc. ligand can become much faster. Such an effect is
called cooperative binding. The Hill equation is a classical method [160] to describe
cooperative binding.

A prominent example of a structure with several binding sites is the streptavidin
molecule which consists of four identical subunits and binds four biotin molecules.
The binding of biotin to streptavidin is the strongest noncovalent reaction known on
nature and plays an exceptional role in medical diagnostics. The cooperativity of the
binding of biotin to streptavidin is a disputed question in literature, for example, see
[138, 336]. The qualitative Petri net model is depicted in Fig. 8.12. In the following,
the biotin binding by streptavidin serves as an illustrative example to demonstrate
how cooperative binding can be modeled.

8.4.1 Neutral Binding

Let us assume that the binding of biotin to a binding site of streptavidin is inde-
pendent of the number of biotin already bound to the streptavidin molecule. Conse-
quently, we can ignore the aggregation of binding sites to the tetrameric structure of
an streptavidin molecule and, hence, a reaction

A+B
kf−−⇀↽−−
kr

C (8.62)
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Fig. 8.9 Microscopic binding reaction of biotin B to a binding site A of streptavidin. The species
C denotes the complex of the binding site and biotin. Upon binding of biotin, the tertiary struc-
ture of the binding site changes significantly. The two different structures of the binding site are
indicated by a square and a circle, respectively. This notation has nothing to do with the graphical
representation of places and transitions in Petri nets

determines the steady-state of free binding sites A, biotin B , and bound sites C, see
Fig. 8.9. The steady-state concentration satisfies the condition

[A][B]
[C] =KA, (8.63)

where the microscopic dissociation constant KA is defined by

KA =def
kr

kf

. (8.64)

The mass conservation condition

[A] + [C] = [A]0 (8.65)

can be applied to transform the steady-state condition (8.63) into

[A]0 − [A]
[A] = [B]

KA

(8.66)

or

1− Y

Y
= [B]

KA

, (8.67)

where Y is the fraction of free sites

Y =def
[A]
[A]0 . (8.68)

For initial biotin given in excess, for example, [B] ≈ [B]0 " [A]0, we get the
Hill function for neutral binding

ln

(
1− Y

Y

)
= ln [B]0 − lnKA. (8.69)

Consequently, for neutral binding the Hill curve approaches a straight line with
slope 1 and crosses the y-axes at y =−log10(KA), see Fig. 8.10.

Alternatively, we may consider a mixture of streptavidin and biotin in which
we may find streptavidin molecules with no (S), one (S1), two (S2), three (S3), or
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Fig. 8.10 Hill curve for
neutral binding. The
microscopic dissociation
constant is set to
KA = 10−12 M, and the
initial concentration of
streptavidin is set to the value
[A]0 = 10−10 M. The fraction
of free binding sites, Y , is
computed via solution (8.28).
For initial concentration of
biotin in excess
([B]0 " [A]0), the Hill curve
approach a straight line with
slope 1 and crosses the y-axes
at y =−log10(KA)= 12

Fig. 8.11 The binding of biotin to streptavidin. The tetrameric streptavidin consists of four sub-
units each of which can bind one biotin. The binding of a biotin may induce a change of the tertiary
structure of streptavidin. The different structures of the binding site are distinguished by squares
and circles, respectively. The new structure (circle) may favor the binding of biotin. In this case,
the process is called to be cooperative, and the parameters αi are greater than one

four (S4) biotin molecules bound to it, see Fig. 8.11. Since S has four free active
sites the molecular on-rate for the binding of one biotin molecule is four times the
microscopic on-rate constant kon. Analogously, the pre-factors for the on-rate of S1,
S2, and S3 are three, two, and one, respectively. The steady-state condition reads

4[S]b
[S1] =

3α1[S1][B]
2[S2] = 2α2[S2][B]

3[S3] = α3[S3][B]
4[S4] = koff

kon
=KA. (8.70)

The factors, α1, α2, and α3, are introduced to account for variations of the micro-
scopic binding rates due to possible differences in the three-dimensional structures
of S, S1, S2, S3, and S4, respectively. No cooperativity corresponds to the choice
α1 = α2 = α3 = 1, whereas the case αi < 1, i = 1,2,3 describes negative regula-
tion. Cooperative binding is given for all factors αi, i = 1,2,3, greater than one.
The steady-state condition leads to

[S1] = 4[S][B]
KA

, [S2] = 6α1[S][B]2
K2

A

,

[S3] = 4α1α2[S][B]3
K3

A

, [S4] = α1α2α3[S][B]4
K4

A

.

(8.71)
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Fig. 8.12 The qualitative Petri net model for binding and dissociation of biotin to the tetrameric
streptavidin. The Hill constant, nH , corresponds to the weight of the edges connected to the place
biotin. A Hill constant greater than one corresponds to cooperative binding

The fraction of free sites is given by

Y = 4[S] + 3[S1] + 2[S2] + [S3]
4[S]0

= [S]
[S]0

(

1+ 3[B]
KA

+ 3α1[B]2
K2

A

+ α1α2[B]3
K3

A

)

and the fraction of saturated sites by

1− Y = [S1] + 2[S2] + 3[S3] + 4[S4]
4[S]0

= [S]
[S]0

[B]
KA

(
1+ 3α1[B]

KA

+ 3α1α2[B]2
K2

A

+ α1α2α3[B]3
K3

A

)
.

The choice, α1 = α2 = α3 = 1, leads, of course, to the Hill function for neutral
binding

1− Y

Y
= [B]

KA

.

8.4.2 Cooperative Binding

Co-operative binding is given for all factors αi with i = 1,2,3 greater than one. In
this case, we may find a concentration range

KA

α
# [B] # KA

α2/3

in which the fraction of free sites is well approximated by

Y ≈ [S]
[S]0 ,
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Fig. 8.13 Hill plot for the
binding of
Streptavidin–ATTO532 to
mouse-anti-human-IgG-bi-
otin. The fit of the
experimental data to a straight
line gives a Hill coefficient of
nH = 1.67± 0.09 which is
significantly greater than one
and, hence, indicates
cooperativity of binding

whereas the fraction of bound sites is dominated by

1− Y ≈ [S4]
[S]0 .

Inserting the steady-state concentration (8.71) gives

1− Y

Y
= [S4]
[S] =

α3[B]4
K4

A

or the Hill equation for (ideal) cooperativity

ln

(
1− Y

Y

)
= 4 ln

([B])− 4 ln (KA)+ 3 ln (α).

The general form of the Hill equation is given by

ln

(
1− Y

Y

)
= nH ln

([B]0
)−C,

where any Hill coefficient nH > 1 indicates cooperative binding [54, 139]. Fig-
ure 8.13 shows a typical experimental Hill plot.

8.5 Tool Support

Coming to quantitative modeling life can become complicated for nonexperts in-
tending to construct a self-made model. There is a rich variety of knowledge to
learn about dynamical systems, numerical implementation of stiff system, kinetic
data, bifurcation analysis, network construction, databases, and many more. The
way to approach a model depends on the background of the scientist (mathematical,
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Table 8.1 List of kinetic modeling software packages

Name Web link

GEPASI http://www.gepasi.org/

Virtual Cell http://www.nrcam.uchc.edu/

Jarnac/JDesigner http://sbw.kgi.edu/

COPASI http://www.copasi.org/

E-Cell http://www.e-cell.org/

ProMoT/DIVA/Diana http://www.mpi-magdeburg.mpg.de/

SBW http://www.sys-bio.org/

PyBioS http://pybios.molgen.mpg.de/

XPP-Aut http://www.math.pitt.edu/~bard/xpp/xpp.html

CellDesigner http://www.celldesigner.org/

CellWare http://www.bii.a-star.edu.sg/achievements/applications/cellware/

CellIllustrator http://www.cellillustrator.com/

Dizzy http://magnet.systemsbiology.net/software/Dizzy/

Dynetica http://www.duke.edu/~you/Dynetica_page.htm

Pasadena Twain http://sbw.sourceforge.net/sbw/software/

PLAS http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html

JSim http://nsr.bioeng.washington.edu/jsim/

SB Toolbox http://www.sbtoolbox.org/

PLmaddon http://www.sbi.uni-rostock.de/plmaddon/

MathSBML http://sbml.org/Software/MathSBML

Cellerator http://www.cellerator.org/

SBRT http://www.bioc.uzh.ch/wagner/software/SBRT/

BIOSPICE http://biospice.sourceforge.net/

Berkely Madonna http://www.berkeleymadonna.com/

Calcium3D http://personales.unican.es/gila/bbva.html

Chemesis http://krasnow.gmu.edu/CENlab/software.html

CKS http://www.almaden.ibm.com/st/computational_science/ck/

Dynafit http://www.biokin.com/dynafit/

Genesis/Kinetikit http://www.cns.atr.jp/~doi/GENESIS/index.html

KINSIM/FITSIM http://www.biochem.wustl.edu/cflab/message.html

WebCell http://webcell.kaist.ac.kr/

For many more see http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

biologa, from computer science, chemical, pharmacological, physical, or medical).
The best way is to start with a small network of reactions and some basic under-
standing of the fundamental principles. The next step should be the construction of
a simple fundamental Petri net model using some Petri net tool, one can find, for
example, at [301]. The automated construction of reaction networks from experi-

http://www.gepasi.org/
http://www.nrcam.uchc.edu/
http://sbw.kgi.edu/
http://www.copasi.org/
http://www.e-cell.org/
http://www.mpi-magdeburg.mpg.de/
http://www.sys-bio.org/
http://pybios.molgen.mpg.de/
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.celldesigner.org/
http://www.bii.a-star.edu.sg/achievements/applications/cellware/
http://www.cellillustrator.com/
http://magnet.systemsbiology.net/software/Dizzy/
http://www.duke.edu/~you/Dynetica_page.htm
http://sbw.sourceforge.net/sbw/software/
http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html
http://nsr.bioeng.washington.edu/jsim/
http://www.sbtoolbox.org/
http://www.sbi.uni-rostock.de/plmaddon/
http://sbml.org/Software/MathSBML
http://www.cellerator.org/
http://www.bioc.uzh.ch/wagner/software/SBRT/
http://biospice.sourceforge.net/
http://www.berkeleymadonna.com/
http://personales.unican.es/gila/bbva.html
http://krasnow.gmu.edu/CENlab/software.html
http://www.almaden.ibm.com/st/computational_science/ck/
http://www.biokin.com/dynafit/
http://www.cns.atr.jp/~doi/GENESIS/index.html
http://www.biochem.wustl.edu/cflab/message.html
http://webcell.kaist.ac.kr/
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
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Table 8.2 List of visualization tools

Name Web link

BioTapestry http://www.biotapestry.org/

BioUML http://www.biouml.org/

CADLIVE http://www.cadlive.jp/

Cytoscape http://www.cytoscape.org/

Edinburgh Pathway Editor http://www.bioinformatics.ed.ac.uk/epe/

GenMAPP http://www.GenMAPP.org

Kohn Interaction Maps http://discover.nci.nih.gov/mim/

NetBuilder http://strc.herts.ac.uk/bio/maria/NetBuilder/

PathVision http://www.PathVisio.org

PNK 2e http://page.mi.fu-berlin.de/trieglaf/PNK2e/index.html

VisANT http://visant.bu.edu/

Table 8.3 List of XML based standards

Name Web link

BioPAX—Data exchange format for pathway data http://www.biopax.org/

CellML—Cell Markup Language http://www.cellml.org/

PSI-MI—Proteomics Standards for Molecular Interactions http://www.psidev.info/

MATHML—Mathematical Markup Language http://www.w3.org/Math/

MIRIAM—Minimal Information Required In Annotation
of Models

http://www.ebi.ac.uk/miriam/

SBML—Systems Biology Markup Language http://sbml.org/

mental data is still a great challenge. Consequently, simulating a self-made Petri net
model and observing its basic behavior is advisable for the alignment of the struc-
ture of the model with the intention and idea of the user. In most cases, this intuitive
and easy avenue is recommendable to avoid drawbacks in later stages of the task.

When feeling comfortable with the hopefully still simple model, the straight
way to proceed is to select a standard tool and to transfer the net structure of
the Petri net model to a kinetic model. There is a whole bunch of software pack-
ages available, but important aspects as for example, systems requirements, func-
tionality, portability, capabilities of the user interfaces, reliability and compati-
bility have to be considered. A comparative review of 12 software packages for
kinetic modeling of biochemical network can be found in [14]. For nonexpert
users, this review identifies GEPASI as the best choice, and environments such as
Jarnac/JDesigner and Virtual Cell are preferable for large-scale modeling and multi-
compartmentalization, respectively. Table 8.1 compiles some references to other
software packages.

After having gained some experience with numerical simulation, the user may
like to read more about the background. Here, numerous textbooks are avail-

http://www.biotapestry.org/
http://www.biouml.org/
http://www.cadlive.jp/
http://www.cytoscape.org/
http://www.bioinformatics.ed.ac.uk/epe/
http://www.GenMAPP.org
http://discover.nci.nih.gov/mim/
http://strc.herts.ac.uk/bio/maria/NetBuilder/
http://www.PathVisio.org
http://page.mi.fu-berlin.de/trieglaf/PNK2e/index.html
http://visant.bu.edu/
http://www.biopax.org/
http://www.cellml.org/
http://www.psidev.info/
http://www.w3.org/Math/
http://www.ebi.ac.uk/miriam/
http://sbml.org/
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able. For mathematicians, the textbooks by Murray [272] and Haken [148] pro-
vide good introductions, including many references for further reading. If the nu-
merics behind the simulation is of interest the book by Deuflhard and Borne-
mann [91] will be helpful. Within this book, you will find references to the pack-
ages LARKIN, PARKIN, MACRON, and FEM for chemical reaction kinetics, pa-
rameter identification, polymerization reaction kinetics, and spatial extended re-
action systems, respectively. For detailed kinetic models of metabolic processes,
we refer to the introductory review by Steuer and Junker [376], and for signal
transduction to the book of Klipp et al. [203]. Numerous curated models can be
found at http://www.ebi.ac.uk/biomodels-main/. Experimentally determined kinetic
data of bimolecular reaction described in the literature are available via databases.
A review of these databases, however, is out of the scope of this contribution.
Useful sources are KDBI (http://bidd.nus.edu.sg/group/kdbi/kdbi.asp) and IntAct
(http://www.ebi.ac.uk/intact). We also refer to the yearly database issue of the jour-
nal Nucleic Acids Research for further reading.

Continuing development and evolution of the model may raise awareness of
topics as presentation, visualization, and publication. Then the list of links in Ta-
ble 8.2 are worth to be visited. Cooperations between modelers become much
easier if the standards in system biology are followed [200], see the links in Ta-
ble 8.3. A further list of links to systems biology tools and resources can be found
at http://www.sbi.uni-rostock.de/sbresources.html.

8.6 Problems

8.6.1 Continuous Versus Discrete Modeling

8.1 Give the main differences between discrete and continuous modeling?

8.2 How do you decide which modeling type you want to apply?

8.3 Give the stoichiometric equation system and the continuous Petri net for the
following set of ODEs:

dA

dt
= +k2[C] − k3[A][B]2 + k4[E],

dB

dt
= +k1[C] − k3[A][B]2 + k4[E],

dC

dt
= −k1[C] − k2[C],

dD

dt
= +k2[C],

dE

dt
= +k3[A][B]2 − k4[E].

http://www.ebi.ac.uk/biomodels-main/
http://bidd.nus.edu.sg/group/kdbi/kdbi.asp
http://www.ebi.ac.uk/intact
http://www.sbi.uni-rostock.de/sbresources.html
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8.6.2 Stability Analysis of the Continuous Lotka–Volterra Model

8.4 For the bifurcation analysis of the Lotka–Volterra model, it is advantageous to
non-dimensionalize the system. Introduce a new time scale, τ , and scaled concen-
trations, a and b, to transform the ODEs (8.32) into the form

da

dτ
= a(1− b),

db

dτ
= νb(a − 1).

(8.72)

How does the bifurcation parameter, ν, depends on the kinetic parameters of ODE
(8.32)?

8.5 Find all steady-state concentrations, a and b, at which the right-hand side of
ODE (8.72) becomes zero.

8.6 Compute the Jacobian matrix

J(a, b)=def

⎛

⎝
∂fa(a,b)

∂a
∂fb(a,b)

∂a

∂fa(a,b)
∂b

∂fb(a,b)
∂b

⎞

⎠ (8.73)

for ODE (8.72).

8.7 Compute all eigenvalues and eigenvectors of the Jacobian for the trivial steady-
state concentrations, a = b= 0. Is the trivial steady-state locally stable or unstable?

8.8 Compute all eigenvalues of the Jacobian for the nontrivial steady-state concen-
trations, a = b= 1. Is this steady-state locally stable or unstable?

8.6.3 Stability Analysis of the Discrete Lotka–Volterra Model

8.9 In a stochastic Lotka–Volterra, the number of individuals of the two species,
prey and predator, are integers, denoted in the following by A and B , respectively.
The multiplication of prey is described by a Markov process

A−→A+ 1, (8.74)

which increases the number of prey by just one. Since each individual of prey has its
own sporting change of replication the probability for this transition is proportional
to the number of prey A

P(A,B)→(A+1,B) = kAA. (8.75)
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A death process decreases the number of predators by one

B −→ B − 1. (8.76)

Sad news for the predator is that, each of them can die and the reduction of predator
occurs with a probability proportional to the number of predator

P(A,B)→(A,B−1) = kBB. (8.77)

The predator eating prey gives rise to transition

B −→ B + 1, (8.78)

A −→ A− 1. (8.79)

The predator is always hungry and eats whenever he meets a prey. He does not
hunt actively but the prey, on the other side, is not very bright and unable to avoid
the predator. Individuals of both species meet just by change. The probability for
a unilaterally advantageous rendezvous is proportional to the number of different
pairs of individuals of predator and prey, that is, proportional to the product AB

P(A,B)→(A−1,B+1) = kABAB. (8.80)

The parameters kA, kB , and kAB are positive constants. This stochastic model is the
analogous to the rate equations stated above [148].

8.10 Sketch the possible stochastic transitions of the Lotka–Volterra model in a
discrete phase plane of number of predators versus number of preys.

8.11 Formulate the Master equation for the time evolution of the probability
P(A,B, t) to find A individuals of prey and B individuals of predator at time t

in the system.

8.6.4 Michaelis–Menten Kinetics

8.12 Give the single steps of the derivation of (8.56) for competitive inhibition,
of (8.59) for uncompetitive inhibition, and of (8.61) for noncompetitive inhibition.



Chapter 9
Fuzzy Modeling

Lukas Windhager, Florian Erhard,
and Ralf Zimmer

Abstract Petri nets are very well suited for the representation of biological
systems. Biological entities like proteins, metabolites, genes etc. can be defined
as places; biochemical reactions, regulatory effects, modifications etc. can be
defined as transitions. This 1 to 1 correspondence of molecules/reactions and
places/transitions allows a very intuitive setup of a computational model framework.
In this chapter, we will show how, additionally, the current states of biological en-
tities and the reaction effects can be defined in a very intuitive and natural way
using elements taken from fuzzy logic theory. Often exact data or detailed knowl-
edge about concentrations, reaction kinetics or regulatory effects is missing. Thus,
computational modeling of a biological system requires dealing with uncertainty
and rough information provided by qualitative knowledge and linguistic descrip-
tions. The Petri net and fuzzy logic (PNFL) approach allows natural language based
descriptions of entities as well as (if-then) rule based definitions of reaction ef-
fects, both of which can easily and directly be derived from qualitative (linguistic)
knowledge. PNFL bridges the gap between qualitative knowledge and quantitative
modeling.

9.1 Introduction

Knowledge about biological entities and of most kinds of biological data is typically
imprecise and incomplete. This is caused by the size, time-scale and complexity of
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Fig. 9.1 A simple feed-forward motif. Bottom: A signal affects the concentration of a cofactor,
while the concentration of a product is affected by both signal and cofactor. Top: The experimental
data was simulated using a simple system of ODEs with mass-action kinetics, normal-distributed
noise and three different decay rates for the signaling molecule. The reaction of the system after
the addition of the signaling molecule is investigated. Dotted, dashed and solid lines indicate the
measurements of the three different simulated experiments. Concentration (range axis) and time
(domain axis) have arbitrary units

biological systems and processes (biological noise) and by the inexactness of mea-
surements, postprocessing methods or other kinds of technical noise. So when con-
sidering biological data one typically works with average values characterized by
smaller or larger variances. And most of the time, some kind of best guess (e.g., me-
dian) is considered as the truth, for example, as the true concentration of a protein.
Often enough, one not even knows the correct scales of biological data or has only
a rough idea about the concentrations or other properties of biological entities. In
addition to the uncertain data, scales and exact quantities may not even be of great
importance in a biological system.

Let us consider a small exemplary system consisting of three proteins (Fig. 9.1).
The apparent information of the experiment consists of the measured concentrations
during the observed time interval. However, the crucial point is to get an idea of the
qualitative behavior of the system. The knowledge that can be deduced from this
experiment is that the concentration of a cofactor started to increase after a signal
was inserted into the system. And only when both signal and cofactor are present,
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Fig. 9.2 Discretization of concentrations. Left: The (normalized) state-space of possible protein
concentrations can be divided in sharp intervals, that is discretized by ordinary sets low, medium
and high. A specific concentration, for example, 0.75, is assigned to a single set. Right: An inexact
or fuzzy discretization can be done by defining fuzzy sets spanning the state space (universe of
discourse). The degree of similarity of a specific concentration to a fuzzy set is indicated by the
height of the according function curve

they induce the creation of the product. As soon as the signal is decayed, cofactor
and product are decayed too until they reach a low concentration.

Such inexact quantitative knowledge and certainly the fact that humans do not
reason in numbers lead to a more qualitative point of view of biologists and bioinfor-
maticians. Typically, reasonable descriptions of knowledge explicitly or implicitly
include or refer to discrete (and not continuous, real-valued) description of objects.
And consequently, processes or dependencies are also described in natural language
terms, which depend on the discrete description of the current states of biological
objects. This is the very idea behind modeling systems with Petri nets and fuzzy
logic [416].

It seems quite promising to develop a computational approach which is able to
deal with uncertainty and rough information provided by qualitative knowledge and
descriptions. The first step is to find a suitable mathematical or technical represen-
tation of discrete, inexact natural language terms. Let us assume the state space of
possible concentrations of proteins is normalized to the interval [0,1]. It could be
divided into three distinct intervals [0,0.25), [0.25,0.75) and [0.75,1] such that
concentrations within the borders of these intervals are then characterized by the
terms low, medium and high (Fig. 9.2). But for example, defining the set of highly
concentrated proteins as “the set of proteins present at a level of more than 0.75” is
unsatisfactory as this strict border is artificial. It is difficult to argue, that a protein
present at 0.750 is highly concentrated while it would not be highly concentrated
at a level of 0.749. Therefore, it is not advisable to use classic (or discrete) sets as
representatives of linguistic terms. It would be much more natural to define these
sets with fuzzy borders.

The notion of fuzzy sets was introduced in the 1960s and the associated the-
ory of fuzzy logic is well established and intensely used in many engineering
applications [422]. Elements are not seen as being either part of a fuzzy set
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Fig. 9.3 If-then rules describe processes. Linguistic or “natural language” descriptions of (ob-
served) processes can easily be reformulated to if-then sentences which serve as rule systems for
a fuzzy logic based modeling. The behavior of the feed-forward motif observed in the three exper-
iments can be described with two rule sets defining the effects of the two transitions indicated in
Fig. 9.1. For the sake of simplicity, only two fuzzy sets are used for the discretization of the state
space

or not (membership-value 1 or 0) but instead they are defined as being similar
to elements described by a fuzzy set. The similarity is quantified by assigning
a (membership-)value from 1 (equal) to 0 (dissimilar). For example, using fuzzy
sets it is possible to define a concentration of 0.75 as “a rather high concentration”
by defining the degree of similarity to the fuzzy sets medium and high as 0.5 each.

As the current states of entities are defined by linguistic terms implemented as
fuzzy sets, the mathematical representation of processes in our framework has to be
able to operate with fuzzy sets. Fuzzy logic systems are collections of simple if-then
rules, which take a number of fuzzy sets as inputs (premises) and create fuzzy sets
as outputs (conclusions). Such if-then rules can be derived from natural language
descriptions of processes or dependencies in a straight-forward way; and vice versa,
such rule sets can be easily interpreted by a human reader (Fig. 9.3).

In Sect. 9.2, we will give a theoretical introduction to fuzzy sets and fuzzy rea-
soning and show how fuzzy logic based inference is used in a Petri net context.
First, an introduction to ordinary logic based reasoning is given in Sect. 9.2.1 and
justified by the modus ponens. After defining the concept of a fuzzy set and of ap-
propriate set theoretical operations in Sect. 9.2.2, we generalize the ordinary logic
based reasoning to fuzzy logic based reasoning (Sect. 9.2.3). This subsection ends in
the definition of fuzzy logic systems, which allow inference using natural language
based rule systems and which are then embedded as functions in the Petri net con-
text (Sect. 9.2.4). The definition of a Petri net with fuzzy logic (PNFL) discloses how
fuzzy logic based inference is used to allow the simulation of (biological) systems.

9.2 Methods and Concepts

Before introducing fuzzy sets, we will first go through some aspects of ordinary
logic reasoning which will then be generalized to fuzzy logic reasoning. This the-
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oretical foundations justify the rule bases of fuzzy logic systems which are used in
our framework [222, 257, 263].

9.2.1 Ordinary Logic Reasoning

We want to use rule bases to define the dynamics of a system, that is, to derive the
new state of an entity from a given set of states of other entities. Those rule bases
are given as linguistic if-then sentences. To implement such sentences in a com-
putational framework, they have to be converted to (mathematical) functions first.
These functions have to map several specified input sets to a single, specified output
set. In the following section, we will show how such functions can be derived for
ordinary sets using ordinary relations and logic implication and that the conclusions
are backed by the modus ponens.

9.2.1.1 Modus Ponens

Definition 9.1 One of the most important inference rules in traditional propositional
logic is the modus ponens

Premise 1 (Fact) x is A

Premise 2 (Rule) if x is A then y is B

Conclusion y is B

which allows to derive a conclusion from given (combined) propositions.

If both premises are true, that is, the fact is true (“x is actually A”) and the rule
is valid, then it can be logically concluded that the consequent must also be true
(the argument is sound). If one or both of the premises are false, the modus ponens
does not apply. We want to emphasize that false premises do not imply that the
conclusion has to be false as well. Modus ponens does not allow any deductions
from false premises.

9.2.1.2 Ordinary Relations

Definition 9.2 A (two-valued) relation R ⊆X× Y contains pairs (x, y) which are
in some kind of relation described by R, that is, (x, y) fulfill conditions defining the
relation.

E.g. let G = {g1, g2, g3} be a set of gene products and C = {c1, c2} be
a set of cell compartments. Then a relation R ⊆ G × C may describe that
certain gene products can be found in certain cell compartments only: R =
{(g1, c1), (g2, c2), (g3, c1), (g3, c2)} where R contains an element (gi, cj ) if and
only if gene product gi can be found in compartment cj .
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Definition 9.3 Let R ⊆ X × Y be a relation, then the image R[M] of the relation
with respect to the set M ⊆X is defined as

R[M] = {
y ∈ Y

∣∣ ∃x ∈X : (x, y) ∈R ∧ x ∈M
}

(9.1)

and contains all elements y ∈ Y which are in relation to an element x ∈M .

We want to point out that a set as well as a relation and its image can be repre-
sented by indicator functions

IM :M →{0,1}, x �→
{

1 if x ∈M

0 else

IR :X× Y →{0,1}, (x, y) �→
{

1 if (x, y) ∈R

0 else

IR[M] : Y →{0,1}, y �→
{

1 if ∃x ∈X : (x, y) ∈R ∧ x ∈M

0 else

(9.2)

An equivalent definition of R[M] can be given by using indicator functions instead
of logical notations

IR[M](y)= sup
{
IM(x) · IR(x, y)

∣∣ x ∈X
}

(9.3)

which yields IR[M](y)= 1 if and only if there is an x ∈M which is in relation R to
the given y ∈ Y and zero otherwise. The supremum (sup) of a set of real numbers
is the smallest real number that is greater or equal to every number in this set. In
contrast to the greatest element of a set, the supremum is not necessarily part of the
set.

9.2.1.3 Logic Implication

An implication x ∈ A → y ∈ B for A ⊆ X and B ⊆ Y can be defined using the
following relation:

RA→B =
{
(x, y) ∈X× Y

∣∣ x ∈A→ y ∈ B
}= (A×B)∪ Ā× Y (9.4)

The image with respect to the set A is RA→B [A] and its indicator function is defined
as

IRA→B [A] : Y →{0,1}, y �→
{

1 if ∃x ∈A and (x ∈A→ y ∈ B)

0 else
(9.5)

or equivalently

IRA→B [A] : Y →{0,1}, y �→ sup
{
IA(x) · IRA→B

(x, y)
∣
∣ x ∈X

}
(9.6)
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The definition of the indicator function has the structure of a modus ponens with first
premise (fact) x ∈A, second premise (rule) if x ∈A then y ∈ B and the conclusion
y ∈ B . Obviously, IRA→B [A] indicates the set of all sound conclusions deduced by
modus ponens. Therefore, it can be seen as a mapping of the input set A to the output
set RA→B [A] ⊆ B with respect to the given implication rule. This functions allows
a general statement about conclusions of the rule. It is suited to answer the question,
which conclusions are possible, given an unspecified element of X as premise (i.e.,
independent from a specific premise x′ ∈X).

We need to answer the question, which conclusion can be derived from a specific
input x′ ∈X. This is easily done by restricting the image to the singleton set {x′}:

IRA→B [{x′}] : Y →{0,1}, y �→ sup
{
I[{x′}](x) · IRA→B

(x, y)
∣∣ x ∈X

}

⇐⇒ y �→ IRA→B

(
x′, y

)
(9.7)

The resulting set RA→B [{x′}] then contains all valid conclusions given a specific x′.
Obviously, this conclusion is still backed by the modus ponens if x′ ∈ A, that is,
the argument is sound. But unfortunately, a serious problem arises when applying
this type of inference to any x′ ∈ A: the implication operation evaluates to truth
whenever a false antecedent is given (independent of the consequent). Therefore,
IRA→B [{x′}] will always yield 1 (true) if x′ ∈ A is chosen. In this case the argument
is not sound, as the modus ponens does not apply. Although the deduction is still
(logically) correct, it violates common sense and is not desired in any practical ap-
plication. It violates the cause and effect assumption, as here noncause leads to
anything. We will point out a practical solution to this problem in Sect. 9.2.3 when
considering fuzzy implication.

In the next sections, we will introduce a more formal definition of fuzzy sets,
define operations on fuzzy sets and extend the relations and implications introduced
above to finally define the rule bases working on fuzzy sets.

9.2.2 Fuzzy Sets

Definition 9.4 A fuzzy set μM defined over a universe of discourse X is a function
μM : X → [0,1] which assigns to each element x ∈ X a degree of membership
μM(x) to the fuzzy set μM . The set of all fuzzy sets over X is denominated F(X).

If μM(x) ∈ {0,1} for all x ∈X, then μ is the indicator function of a classical, or
crisp, set M ⊆X.

Definition 9.5 The process of mapping a crisp point x to [0,1] using a fuzzy set
μM is called fuzzification and μM can be called a fuzzifier.

In most cases, the universe of discourse is the set of real numbers X =R or any
interval on R. Then μ is a real-valued function and can be displayed as in Fig. 9.2.
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Typically, fuzzy sets describe linguistic terms like “nearly inactive”, “at an average
level” or “close to 100” and describe either an imprecise value or interval. Such
fuzzy sets should be convex, that is, they should monotonically increase(decrease)
when converging(diverging) to(from) a specific value or a specific interval, for ex-
ample, when “getting closer to 100” or “leaving the average level”. The most com-
monly used convex functions for fuzzy sets are triangular, trapezoidal or Gaussian
functions. The choice of number, shape and parameters of fuzzy sets (e.g., median
and standard deviation of a Gaussian) define the context and user dependent setup
of the fuzzy model.

One of the greatest advantages of a discretization of a state space (universe of
discourse) using fuzzy sets compared to the use of crisp sets is the fact that it is
meaningful to overlap fuzzy sets. This allows us to express that for example, the
expression of a gene is “somewhere between its normal level and its overexpressed
state” instead of having to define it either as overexpressed or not (as both at the
same time would be contradictory).

9.2.2.1 Operations on Fuzzy Sets

T-norms and T-conorms The classical logic assumes that propositions are either
true or false, but not both true and false. In fuzzy logic, there is a gradual transition
from truth to falsehood. Therefore, functions like the conjunction and disjunction
have to be extended to operate on the unity interval w∧,w∨ : [0,1]2 → [0,1] and
the most basic requirement for such “fuzzy” conjunction and disjunction functions
is to yield the same results as their classical counterparts when provided with either
0 or 1. Candidates for such conjunction and disjunction functions are T-norms (trian-
gular norms, denoted t (. . . ) or �) and T-conorms (denoted s(. . . ) or ◦), respectively.
The most commonly used T-norms are

minimum t (α,β)=min{α,β}
Lukasiewicz-T-norm (bounded product) t (α,β)=max{α + β − 1,0}
(algebraic) product t (α,β)= α · β

Examples for commonly used T-conorms are

maximum s(α,β)=max(α,β)

Lukasiewicz-T-conorm (bounded sum) s(α,β)=min{α + β,1}
algebraic sum s(α,β)= α + β − α · β

All T-norms and T-conorms are commutative, associative and monotone, while addi-
tionally T-norms fulfill t (α,1)= α and T-conorms fulfill s(α,0)= α (see Fig. 9.4).

Union, Intersection and Complement of Fuzzy Sets The intersection of fuzzy
sets can be derived from the respective definition for classical sets. An element x is
in the intersection of two classical sets A and B if it is member of both sets:

x ∈A∩B ⇐⇒ x ∈A∧ x ∈ B (9.8)
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Fig. 9.4 Operations on fuzzy sets. (a) Two fuzzy sets μA and μB are defined with triangular and
trapezoidal shape, respectively. A (crisp) point x is fuzzified by μA, that is, μA(x) is calculated
using the triangular function. (b) The intersection μA∩t B (x) using the minimum T-norm. (c) The
union μA∪sB(x) using the maximum T-conorm. (d) The complement of μA

The intersection of two fuzzy sets μA and μB with respect to a T-norm t can then
be defined as fuzzy set μA∩t B with

μA∩t B(x)= t
(
μA(x),μB(x)

)= μA(x) � μB(x) (9.9)

Analogously, an element x can be in the union of two classical sets A and B:

x ∈A∪B ⇐⇒ x ∈A∨ x ∈ B (9.10)

And the union of two fuzzy sets μA and μB with respect to a T-conorm s can be
defined as fuzzy set μA∪sB with

μA∪sB(x)= s
(
μA(x),μB(x)

)= μA(x) ◦μB(x) (9.11)

The complement of a fuzzy set is derived from the definition x ∈ Ā⇔¬(x ∈A) for
classical sets and corresponds to the fuzzy set μĀ(x)= 1−μA(x) (see Fig. 9.4).

9.2.3 Fuzzy Logic Reasoning

The use of fuzzy sets in logic reasoning leads to an extension of the classical modus
ponens. This extension facilitates to reason with gradual truth values, that is, to infer
conclusions from vague, imprecise knowledge.
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9.2.3.1 Generalized Modus Ponens

Definition 9.6 In fuzzy logic, the modus ponens is extended to the generalized
modus ponens

Premise 1 (Fact) x is A∗
Premise 2 (Rule) if x is A then y is B

Conclusion y is B∗

The generalized modus ponens applies as long as there is a nonzero degree of
similarity between the fuzzy set A∗ of premise 1 (fact) and the fuzzy set A of the
antecedent of premise 2 (rule), and as long as there is a nonzero similarity between
the fuzzy set B of the consequent of premise 2 and the fuzzy set B∗ of the con-
clusion. If additionally the degrees of truth of the premises are nonzero, a nonzero
degree of truth for the conclusion can be deduced. In general, it holds that the higher
the degree of truth of the premises, the higher the degree of truth of the conclusion
is. When A,A∗,B,B∗ are considered to be ordinary sets with A=A∗ and B = B∗
the generalized modus ponens reduces to the modus ponens.

9.2.3.2 Fuzzy Relations and Implication

A fuzzy set is a generalized ordinary set and analogously a fuzzy relation can be
seen as a generalized ordinary relation. A two-valued fuzzy relation μR assigns a
degree of membership to each pair (x, y) ∈X×Y reflecting the strength of relation
between x and y. Obviously, such a fuzzy relation can be defined as a fuzzy set with
universe of discourse X× Y .

The image of a fuzzy relation μR : X × Y → [0,1] with respect to a fuzzy set
μM :X→[0,1] is defined as a fuzzy set

μR[μM ](y)= sup
{
μM(x) � μR(x, y)

∣∣ x ∈X
}

(9.12)

with Y as universe of discourse and � as an intersection of fuzzy sets using a T-norm.
The image of an ordinary relation (9.3) is a special case of this fuzzy set with the
product as T-norm. For the sake of brevity, we will omit the notation of [μM ] in the
following.

Implication The fuzzy implication relation μA→B(x, y) measures the degree of
truth of the implication x ∈ A → y ∈ B and the image of this fuzzy implication
relation with respect to the (premise) fuzzy set μA∗ is

μB∗(y)= sup
{
μA∗(x) � μA→B(x, y)

∣∣ x ∈X
}

(9.13)

which has the structure of a generalized modus ponens. The right-hand side of
this equation defines the degree of truth μB∗(y) of a conclusion y ∈ Y depend-
ing on an uncertain fact μA∗(x) and an uncertain rule μA→B(x, y). As mentioned
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in Sect. 9.2.1.3, we want to derive a conclusion from a specific x′ ∈X. In ordinary
logic, this is done by restricting the image to the set {x′}. In fuzzy logic, this re-
striction is performed by specifically defining μA∗ as a fuzzifier for x′, for example,
μA∗(x)= 1 for x = x′ and μA∗(x)= 0 otherwise. Such a μA∗ is called a singleton
fuzzifier.

In general, the fact μA∗ can be used to reflect our uncertainty about a crisp point
x′ ∈X, which could for example be a measurement of a parameter of any type (e.g.,
a concentration). Therefore, one could choose μA∗ to have its maximum at the ob-
served value x′ and could choose a wider support if the uncertainty about x′ is large
and a small support otherwise. The choice of μA∗ influences the interval containing
a possible supremum of (9.13). Notice that the supremum can be different from the
actual parameter x′.

Singleton fuzzification is widely used as it leads to a tremendous reduction in
computational cost due to the disappearance of the supremum operation:

μB∗(y) = μA∗
(
x′

)
� μA→B

(
x′, y

)

= 1 � μA→B

(
x′, y

)

= μA→B

(
x′, y

)
(9.14)

So in the case of singleton fuzzification the degree of truth of y is deduced by an
uncertain rule from a (certain) measurement x′.

To evaluate (9.13), one has to choose a meaningful membership function for
μA→B(x, y). A possible candidate could be derived from the logical equivalence
(p→ q)⇔ (¬p ∨ q) by using a T-conorm:

μA→B(x, y)= μĀ∪sB
(x, y)= s

(
1−μA(x),μB(y)

)
(9.15)

But this choice would cause the same problem as mentioned in Sect. 9.2.1.3, that
is, yielding nonzero results although the antecedent μA(x) is zero. Diverging from
the standard definition of implication in propositional logic, a T-norm evaluates to
zero if any of its arguments is zero. The monotonicity of T-norms assures that the
higher the degrees of truth of its arguments are, the higher the degree of truth of
the result is. Thus, a T-norm can be seen as an extension of an implication opera-
tion which preserves cause and effect, and therefore it is reasonable to choose one
as fuzzy implication operator. Using the two most common T-norms minimum and
product, one could derive the following membership functions for the fuzzy impli-
cation:

μA→B(x, y)=min
{
μA(x),μB(y)

}

μA→B(x, y)= μA(x) ·μB(y)
(9.16)

Until now, we only considered two-valued (fuzzy) relations, which only allow
implications from a single antecedent to a single consequent. The extension to mul-
tiple antecedents is straightforward by replacing the single element x by a vector of
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elements x̄ ∈X1 ×X2 × · · · ×Xn. Equation (9.13) then extends to

μB∗(y)= sup
{
μĀ∗

(
x̄
)
� μĀ→B

(
x̄, y

) ∣∣ x̄ ∈X1 × · · · ×Xn

}

= sup
{
μA∗1×···×A∗n

(
x̄
)
� μA1×···×An→B

(
x̄, y

)

∣∣x̄ ∈X1 × · · · ×Xn

}
(9.17)

where μA∗1×···×A∗n(x̄) is the cartesian product realized by combining μA∗1 (x1),

. . . ,μA∗n(xn) by T-norms to μA∗1 (x1) � · · · � μA∗n(xn) leading to

μB∗(y)= sup

{
n⋂

i=1
t
μA∗i (xi) �

n⋂

i=1
t
μAi

(xi) � μB(y)

∣∣ (x1, . . . , xn) ∈X1 × · · · ×Xn

}

= sup
{
μA∗1 (x1) � · · · � μA∗n(xn) � μA1(x1) � · · · � μAn(xn) � μB(y)

∣∣ (x1, . . . , xn) ∈X1 × · · · ×Xn

}
(9.18)

which in case of singleton fuzzification reduces to

μB∗(y) = μĀ→B

(
x̄′, y

)=
n⋂

i=1
t
μAi

(
x′i

)
� μB(y)

= μA1

(
x′1

)
� · · · � μAn

(
x′n

)
� μB(y) (9.19)

Keep in mind that this image of the fuzzy implication relation μA→B(x̄, y) is it-
self a fuzzy set with Y as its universe of discourse. Equation (9.18) or its reduced
form (9.19) deduce a valid conclusion from a given explicit premise x̄′ backed by
generalized modus ponens. Due to the choice of a T-norm as implication operator,
the problem of an unsound argument as a result of a false premise disappears.

9.2.3.3 Fuzzy Logic Systems

We have seen how a fuzzy implication relation can be used to map a set of an-
tecedents to a consequent, that is, how a conclusion can be derived from a set of
premises using a single rule of the form if x̄ ∈ Ā then y ∈ B . In practice, one typi-
cally wants to derive a single result from a set of rules which define consequents for
different (or each) combinations of antecedents.

If a conclusion should be derived from several rules, the individual results have
to be combined appropriately. The image of a set of fuzzy implication relations is
the disjunction of their individual images using a T-conorm:

μB∗(y)=
m⋃

j=1
s
μB∗j (y)=

m⋃

j=1
s

sup
{
μĀ∗j

(
x̄
)
� μĀj→Bj

(
x̄, y

) ∣∣ x̄ ∈X
}

(9.20)
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which can be further reduced when using singleton fuzzification to

μB∗(y)=
m⋃

j=1
s
μB∗j (y)=

m⋃

j=1
s

(
n⋂

i=1
t
μAj,i

(
x′i

)
� μBj

(y)

)

(9.21)

Definition 9.7 A fuzzy inference engine is a function X1 × · · · × Xn → F(Y )

which maps a vector of crisp inputs x̄ ∈ X1 × · · · × Xn to a conclusion fuzzy set
μB∗(y) ∈ F(Y ). The mapping is specified by a fuzzifier, a set of rules (fuzzy rule
base)

Rj : IF x1 is Aj,1 AND x2 is Aj,2 and . . . and xnj
is Aj,nj

THEN y is Bj

where nj is the number of premises of rule j and Aj,i specifies the fuzzy set of
premise i in rule j , and the definition of a T-norm and T-conorm for conjunction
and disjunction operations.

The most common combinations of disjunction and conjunction are (bounded)
sum-product and max-min:

μB∗(y)=min

{
m∑

j

(

μBj
(y) ·

nj∏

i

μAj,i

(
x′i

)
)

,1

}

μB∗(y)= max
j∈{1,...,m}

{
min

{
μAj,1

(
x′1

)
, . . . ,μAj,nj

(
x′nj

)
,μBj

(y)
}}

(9.22)

A fuzzy inference engine maps a (crisp) vector x̄′ of premises to a conclusion
fuzzy set μB∗(y) which assigns a degree of truth to every possible y ∈ Y . Often, one
is interested in a single (crisp) representative ȳ from the set of possible solutions Y ,
which should correspond to some kind of “most typical” solution. The process of
deriving such a single, crisp value is called defuzzification.

Definition 9.8 A defuzzifier is a function F(Y )→ Y which maps a fuzzy set μ ∈
F(Y ) to a single, crisp value ȳ ∈ Y .

As for fuzzification, again there exist a wide variety of different defuzzification
strategies. We will introduce only two of them, the centroid defuzzifier and the height
defuzzifier.

The centroid defuzzifier computes the centroid (center of gravity) ȳ of the con-
clusion fuzzy set μB∗ :

ȳ =
∫
Y

y ·μB∗(y) dy
∫
Y

μB∗(y) dy
(9.23)

Using ȳ as the representative of the conclusion is quite intuitive. It can be seen as
the mean or expected conclusion. However, it is quite expensive to compute. The
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height defuzzifier uses the centroids of each individual rule conclusion to determine
the defuzzified value of the full result:

ȳ =
∑m

j=1 ȳj ·μB∗j (ȳj )
∑m

j=1 μB∗j (ȳj )
(9.24)

Notice that when using height defuzzification the single rules do not need to be
combined to μB∗(y) using a T-conorm, as the defuzzified value can be computed
directly from the individual rule conclusions. Typically, the center of gravity ȳj of
each single conclusion is known before, so the main computational effort reduces
to the evaluation of each μB∗j (ȳj ). From (9.19) (or more generally (9.18)) and the
definition of T-norms, it is obvious that the center of gravity of any μB∗j equals
the center of gravity of μBj

of the according succedent fuzzy set and thus is not
influenced by the parameters x̄′.

Definition 9.9 A fuzzy logic system (FLS, also called fuzzy logic controller) is a
function f :X1×· · ·×Xn → Y which maps a vector of crisp input values to a crisp
output via a fuzzy inference engine (including a fuzzifier) and a defuzzifier.

The fuzzy inference engine is defined by a set of if-then rules. Each crisp input
xi is discretized by the fuzzy sets used in the premises of the rule set. The evaluation
of the inference engine for a given input x̄′ yields a fuzzy set μB∗(y) which is then
defuzzified to a single crisp output ȳ (Fig. 9.5).

A fuzzy logic system can be represented as a single formula. Using the product
as T-norm and height defuzzification, the according fuzzy logic system is defined
as:

ȳ = f
(
x̄
)=

∑m
j=1 ȳj ·∏nj

i μAj,i
(x′i )

∑m
j=1

∏nj

i μAj,i
(x′i )

(9.25)

As stated in the introduction, the main idea of our Petri net with fuzzy logic approach
is to allow a discrete, natural language description of objects and a rule based defi-
nition of processes. It was shown how this can be achieved using the mathematical
framework of fuzzy sets and fuzzy logic based reasoning. We have motivated the
fuzzy discretization of states and derived the validity of fuzzy reasoning from basic
assumptions of propositional logic. Finally, the whole process of discretization and
reasoning was condensed to a simple, single function—a fuzzy logic system.

9.2.4 Application to Petri Nets

Petri nets with their elements (places, transitions and arcs) are used for the visual-
ization and definition of models of biological systems. Objects within such systems,
biological entities like proteins, genes, RNA or metabolites but also more abstract
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Fig. 9.5 A schematic representation of a fuzzy logic system. Crisp inputs x1 and x2 are fuzzified
by the premises of the given rules. For each rule, a single conclusion fuzzy set μB∗1 and μB∗2 is
derived by a minimum T-norm. Those conclusions are then combined to the final concluding fuzzy
set μB∗ using a max T-conorm. As a last step, μB∗ is defuzzified using the height defuzzification.
The centers of gravity ȳ1 and ȳ2 are those from the conclusion fuzzy sets μB∗1 and μB∗2 , that is,
known beforehand. Notice that μB∗ does not need to be computed explicitly when using height
defuzzification. Here, it is shown for the sake of completeness

entities like the accessibility of a promoter region, external influences etc., are vi-
sualized as places within the Petri net. Possible processes within the system, like
creation, transport, conversion, degradation of objects or, generally, state-changes
of biological or abstract objects are realized by transitions [271].

Every entity can be described using linguistic terms, like highly concentrated,
rather active or fully accessible. Such terms can be formalized using appropriately
defined fuzzy sets and the state of an entity can be described by defining degrees of
similarity to these fuzzy sets. Using the same approach, uncertain measurements can
be described by mapping their (crisp) value to fuzzy sets (fuzzification). A defuzzi-
fication technique can then be utilized to derive continuous, real-valued numbers as
the most typical representatives of the fuzzy sets, which in turn are then stored on
according places in the Petri net. Fuzzification and a subsequent defuzzification can
be seen as a type of filtering for uncertain measurements.

The defuzzified values are representatives of the inexact linguistic terms used to
describe knowledge and measurements and one should keep in mind that they are
not exact, definite results.
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The real-valued numbers stored in places are used as (crisp) inputs to fuzzy logic
systems which in turn generate (crisp) real-valued outputs. Each fuzzy logic system
discretizes the crisp inputs from places according to its definition, that is, according
to the premises of its rule base.

Definition 9.10 A Petri net with fuzzy logic (PNFL) is an instance of a hybrid func-
tional Petri net defined as a 6-tuple PN = (P,T ,A,F,W,M0) where

P = {p1,p2, . . . , pm} is a finite set of places
T = {t1, t2, . . . , tn} is a finite set of transitions
A⊆ P × T ∪ T × P is a set of arcs
F = {f0, f1, . . . , fs} is a finite set of functions fi :R∗ →R

including the zero function f0 :R∗ → 0
W :A→ F is an assignment of a function fi ∈ F to an arc
M0 : P →R is the initial marking

with P ∩ T = ∅. For a general definition of a Petri net, see Chap. 3.

The values of all places connected as inputs to a transition can be used as ar-
guments for the functions assigned to the arcs. A function assigned to an output
arc (tj → pi) defines the amount added to pi whenever transition tj fires, while
a function assigned to an input arc (pi → tj ) defines the consumption from pi . In
most cases, these functions are fuzzy logic systems, but to keep a PNFL as flexible
and user-friendly as possible, we allow the assignment of arbitrary functions to arcs.
Where appropriate, the zero function f0 ≡ 0 can be assigned to input arcs, i.e. the
content of the adjacent place is not changed during firing, while its value can still be
used in premises of other fuzzy logic systems. Such arcs are often called read arcs or
test arcs. Read arcs reflect the fact that many biological processes are influenced by
(biological) entities which are themselves not affected by the process, for example,
the pH-value (seen as an abstract entity) of the cellular environment of an enzyme
may affect its conversion rate while it may not be affected by the enzymatic reaction.
The order of firing transitions is determined by firing rules. A PNFL does not im-
pose any restriction to the type of such firing rules, that is, they can be chosen freely
according to the modeling intention. Examples for firing rules are the random firing
rule (transitions are randomly chosen) or stochastic firing rules based on the Gille-
spie algorithm [130], which preferably fire transitions according to the attributes of
adjacent places. A PNFL for the feed-forward motif is presented in Fig. 9.6, speci-
fying the according definition of the 6-tuple PN = (P,T ,A,F,W,M0).

9.3 Results

9.3.1 Design Principles

In this section, the design process leading to a PNFL model is highlighted on the
example of the already introduced feed-forward motif. The four noisy simulated
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Fig. 9.6 An example Petri net with fuzzy logic (PNFL) representing the feed-forward motif. The
two fuzzy logic systems FLSC(S) and FLSP (S,C) calculate new states for C and P whenever the
according transitions fire. Neither signal nor cofactor are consumed or modified by the activation
reactions, still they are directly influencing them. Thus, the input arcs of this system are read arcs,
that is, the zero-function f0 is assigned to them. Initially, all concentrations of this system are low
and the model is in a steady state. To simulate the reaction of the feed-forward loop on signal
molecule concentrations changes, one assigns experimental measurements to the signal place and
then fires the transitions. Examples for resulting time courses are given in Figs. 9.7 and 9.8

time courses of the concentration of the signal are used as inputs to the system. The
time courses of concentrations of cofactor and product are to be deduced by the
PNFL model. In practice, there are two basic design principles for a PNFL which
specify the roles of transitions in the model.

9.3.1.1 Semi-Discrete Modeling

The first is similar to boolean networks (or, generally, discrete multi-valued logic
networks). In boolean networks, starting from the current states of its entities at time
point ti , the following states at time point ti+1 are deduced using rule bases (truth
tables), that is, the current state SA(ti) of an entity A is replaced by a state SA(ti+1)

which might be independent from the old state. Whenever applied, the functions of
this system define the new state of an entity.

Following this definition, the firing of a transition in a semi-discrete PNLF should
lead to a replacement of the marking of a place, that is, define a new state. The state
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Fig. 9.7 Semi-discrete modeling. [P ]O and [C]O indicate functions that completely remove the
markings from the according places. [P ]N and [C]N are fuzzy logic systems that define the new
markings. f0 is the null function, that is, the marking is not changed (read or test arcs). The very
simple rule sets lead to a behavior that is qualitatively similar to the experimental measurements in
Fig. 9.1. Signal (black) is used as input, cofactor and product are simulated (gray and light-gray).
Root mean square deviation (RMSD) is about 0.09

of an entity in PNFL is described by a fuzzy discretization, that is, the degrees of
membership to several fuzzy sets (Fig. 9.7).

To keep the rule bases as simple as possible, all concentrations were fuzzified
using two triangular fuzzy sets low and high only. Using the boolean network like
design principle, we obtain two fuzzy logic systems, one for each transition in the
network. The induction of the cofactor is influenced by the concentration of the
signaling molecule only and can therefore be described by two rules, while the in-
duction of the product is influenced by both cofactor and signaling molecule and is
described by four rules. Due to the simplicity of this model, the rules can easily be
adjusted manually. The conclusion of a single rule is either low or high; the conclu-
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sion of a rule base is therefore a fuzzy set combined from (weighted) fuzzy sets low
and high. The new state of an entity is then defined as the defuzzified value of this
conclusion.

9.3.1.2 Semi-Continuous Modeling

The second design principle is similar to systems of ordinary differential equations
(ODEs). ODEs define the change �[A] of an entity A during a time interval. The
new state (value) [A](ti +�t)= [A](ti )+�[A] of the variable hereby depends on
the old state. Whenever applied, the functions of this system define a change of the
old state of an entity (Fig. 9.8).

Following this definition, the firing of a transition in a semi-continuous PNFL
changes the marking of a place by adding a positive or negative number.

The premises of the rule bases are still based on the two-valued discretization
(low and high) of the current concentrations. However, the conclusions now define
concentration changes and therefore do not correspond to the fuzzy sets low and
high. Instead, they can be chosen from several singleton fuzzy sets with centers of
gravity distributed across [−1,1] in 0.1 valued steps. As we use height defuzzifica-
tion, the shapes of the conclusion fuzzy sets are unimportant, as only their centers
of gravity are used in the calculations. In this setting, the concentration of an entity
is defined by two fuzzy logic systems. One defines the increase in concentration
caused by high levels of effector molecules, the other causes a self-degradation de-
pending on the current concentration level. To derive those conclusions minimizing
the root mean square deviation an optimization technique can be applied,for exam-
ple, a genetic algorithm mutating the conclusions. Keep in mind that the choice of
number, shape and location of fuzzy sets is user and application dependent. We just
state some exemplary values here.

The semi-continuous modeling approach for a PNFl can be compared to the hy-
brid modeling approach as described in Chaps. 6, 13. There, the functions assigned
to input and output arcs define the modifications of tokens. One could, for example,
assign differential equations to the arcs and thereby approximate or mimic an ODE
system. Keep in mind that a PNFL can be seen as an instance of a hybrid Petri net
where fuzzy logic systems are used to define transition effects. For more details on
continuous modeling approaches, see Chap. 8.

9.3.2 PNMA

The Petri Net Modeling Application (PNMA) is a software platform developed in
Java for modeling, simulation and parameters estimation of Petri nets. It is possi-
ble to graphically create Petri nets in a rich user interface, which incorporates all
the functionalities, the user is nowadays accustomed to. Models, together with their
simulations and parameter optimization procedures, as well as results can be orga-
nized in a project management system.
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Fig. 9.8 Semi-continuous modeling. �[C] and �[P ] are the sum of two fuzzy logic systems
each and define the change of markings. Due to the definitions of the conclusion singleton fuzzy
sets these changes are in the interval [−1,1]. Only the two fuzzy logic systems defining �[P ] are
shown. The resulting time courses are very similar to the experimental with an RMSD of about 0.06

PNMA’s user interface provides sophisticated graphical editors for Petri nets that
allow to customize the appearance of places, transitions, cells etc., to define the arc
functions and to even visualize the progress of simulations directly on the Petri net.
Assistants can be used to intuitively create Petri nets built of modules. Tokens of the
Petri net can be visualized in various way, for example, in tabular form, directly on
the Petri net view or in time course plots. Also, the fuzzy logic components such as
fuzzy sets with their membership functions or fuzzy rules can graphically be edited.

PNMA implements Petri net with fuzzy logic (PNFL) in an extended way: In-
stead of only allowing real numbers as markings of places, objects of any Java class
are allowed. Accordingly, any Java method can be inscribed on an arc to manipulate
markings when firing a transition. For simulation, PNMA exploits the Java compiler
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to generate an efficient bytecode version of each transition. Once the fuzzy sets and
rule system is defined in PNMA’s user interface, fuzzy functions are compiled as
well and can thus directly be used on arcs.

The order of firing transitions is determined by various available firing rules.
The most basic firing rule determines all enabled transitions at each step and fires
them in a random order, skipping disabled transitions. The simultaneous firing rule
used by PNFL fires all enabled transitions at each step, without writing results to
output places, that is, all transitions fire under the same condition in a single step.
After each transition has calculated its results, they are written to output places and
conflicts are resolved appropriately.

Stochastic firing rules, for example, based on the Gillespie algorithm [130], pro-
vide another prominent way of simulating Petri nets. They assume a well-mixed
system of molecules in which many nonreactive collisions of the molecules oc-
cur until eventually some colliding molecules react. Molecular numbers are stored
as marking on places and a reactive collision corresponds to a firing transition. In
such Petri nets (originally termed reaction networks), the Gillespie algorithm cre-
ates trajectories of molecular populations according to laws of stochastic chemical
kinetics. Tau-leaping [56], hybrid methods [312] and other variants overcome cer-
tain drawbacks of the original Gillespie algorithm that is quite inefficient in models
with large populations of molecules, high numbers of transitions or multiscale mod-
els. The Java library FERN [112] implements the state-of-the-art algorithms and is
integrated in PNMA.

In contrast to PNFL, simulation of stochastic chemical kinetics is a very fine
grained way of modeling biological system, since basically each molecule is repre-
sented as a token. The proposed functional hybrid Petri nets are able to model both
PNFL and stochastic chemical kinetics and it is in principle even possible to create
models of mixed granularities. In addition, the Petri net implementation of PNMA
can also handle spatial models, where not only temporal dynamics are considered,
but also the interactions of components across spatial dimensions.

9.3.3 Parameter Estimation

In most cases, modeling of biological networks is a reverse engineering problem:
Experimental data determine the desired simulation results and the task is to find
the model and its parameterization that is able to reproduce these data. In the case
of PNFL, these parameters are fuzzy rule definitions. This reverse engineering can
be reduced to an optimization problem: Given a similarity function for simulation
results and experimental data, the task is to minimize this function with respect to the
model parameters. Such a function is, for instance, the root mean square deviation
(RMSD):

RX(Y )= 1

N

N∑

i=1

(Xi − Yi)
2 (9.26)
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where X is the list of the N experimental data points and Y is the simulated data and
as such determined by the model and its parameters. Each parameter combination
P results in a vector YP of simulated data and thus in a similarity value R(YP ). The
task is to find the best that is, minimal value of R(YP ) for all parameter combina-
tions P . In PNFL, P is for instance a choice of conclusions for predefined fuzzy
rules for each transition. Note that in this case, the parameter search space (i.e., the
set of all possible parameter combinations) is finite, which is not the case if for in-
stance rate constants are used instead of fuzzy logic systems. However, the search
space can still be very large: Consider a transcription factor regulatory network of
10 genes and assume, for simplicity, that each gene is regulated by exactly two of
the other genes and only the two fuzzy sets inhibition and activation are allowed as
conclusions. If each transcription factor concentration is only modeled as fuzzy sets
low and high, 24 parameter combinations are possible for a single fuzzy function.
Thus, for the network’s ten fuzzy functions, there are 240 possible combinations,
which prohibits a full enumeration of the parameter search space to find the best
R(YP ).

As indicated, minimization of R(YP ) with respect to P is a hard problem and
is usually done using heuristic techniques like genetic algorithms or simulated an-
nealing [136, 192]. Briefly, these heuristics perform walks on the parameter search
space attempting to walk towards the global minimum. At each step (also called
move), the objective function is evaluated to assess the usefulness of the last move.
The methods vary in many ways, for example, which moves are allowed and how to
handle bad moves. The most promising approaches combine elements of different
techniques in order to find this minimum more quickly and reliably. Furthermore,
it is of great importance to integrate as much available data as possible into the
optimization procedure to keep the parameter search space tractable.

Thus, a general parameter estimation framework has to fulfill high standards in
flexibility and efficiency. PNMA provides a very powerful system for optimization
that allows the user to include various types of data and to customize the optimiza-
tion procedure itself. The optimization workflow can be specified using a Petri net.
Hence, PNMA does not only use its Petri net implementation for modeling biolog-
ical systems, but also to allow the user to graphically compose full-fledged opti-
mization programs. Several building blocks are provided to create for example, a
simulated annealing procedure in a straight forward way (see Fig. 9.9) and, using
the plugin system, additional modules for this graphical programming can easily be
integrated.

9.3.4 Application

The DREAM challenge [242] is a scientific initiative to assess the power of different
methods to infer biological meaningful networks from experimental data. In each
challenge, data is provided and scientists are invited to infer the underlying networks
with their favorite method. So far, four challenges have taken place, each consisting
of three to five subchallenges.
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Fig. 9.9 A simple optimization program. Conclusions of the rule system of fuzzy function ac-
tivateProduct of the feedforward motif (see Fig. 9.7) are estimated in a simulated annealing-like
manner. Place P1 always contains the currently best estimate for all conclusions of activateProduct
and P2 its RMSD. P3 contains the next guess for the conclusions and P4 its RMSD. Transition T1
generates a next guess by randomly flipping the conclusions of some rules (e.g., from fuzzy set
low to high). T2 and T3 evaluate R(YP1 ) and R(YP3 ), respectively, by starting a simulation of the
model Petri net and comparing its results to experimental data. T4 compares the scores and decides
if the token on P1 remains unchanged or gets replaced by the token from P3. A classic simulated
annealing would be: If P4 > P2 → replace, otherwise replace with probability exp(−P4−P2

T
). T is

the temperature on place P5 and is decreased during the optimization by transition T5 to disfavor
bad moves in the late steps of the optimization

The DREAM4 In Silico Network Challenge goal is to reverse-engineer regula-
tory networks of 10 genes and 100 genes, respectively. For each of these networks,
that are known to be subnetworks of gene regulation in E. coli or S. cerevisiae, four
kinds of data sets have been generated in-silico. Only the generated data is published
and neither the network topology nor the exact parameterization of the in-silico net-
work. The goal is to infer the network as a list of confidence ranked interactions
between the genes. The data sets are:

1. Knock-down data: Steady state levels of wild-type and heterozygous knock-
down strains for each gene are given. A knock-down strain is simulated by cut-
ting the expression rate of the knocked-down gene in half.

2. Knock-out data: Similarly to the knock-down, steady state levels are given for
strains with completely disabled expression for each gene.

3. Time series data: 21 measurements of the network’s simulation are given after
recovering from an external perturbation. It is unknown, which genes have been
perturbed. For the networks of size 10, size 50 and size 100, 4, 23 and 46 time
courses of different perturbations are provided.

4. Multifactorial data: Some of the genes’ kinetic parameters are slightly altered
and steady state levels are given.

Random noise has been added to all data types to mimic experimental variances and
inexact measurements.
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Since the data provided is not collected by experiment but simulated in-silico,
it is obvious that a computational model consisting of the given number of genes
(10 or 100) actually exists that can reproduce all given data (disregarding the noise).
In real wet-lab applications, this assumption does not hold true, as the number of
involved genes is usually not really known and side effects are possible. But also
when considering in-silico experiments, most probably there is not a single model
that can explain the data [241] but a multitude of them.

Of course, the network and its parameters are unknown. An optimization pro-
gram can be used to infer the network, which typically involves repeated simulation
with varying parameters and comparing the outcome to the reference. This can be
a time consuming task even for the size 10 network. For both, efficient parameter
estimation and meaningful predictive power, a simple model is required. A lot of
parameters are hard to estimate and tend to overfit given data. However, the model
must be complex enough to represent the key aspects of the real system. We propose
that fuzzy logic as a basis of modeling biological systems with Petri nets can help
to walk the fine line between oversimplification and data overfitting.

Using semi-quantitative methods like fuzzy logic to handle the dynamics and
introducing prior knowledge are potent means to restrict the search space, most no-
tably, fuzzy modeling often allows to completely dispose continuous parameters, as
indicated above. Our method for network reconstruction is to simulate all given ex-
perimental conditions (knock-down, knock-out, perturbations, multifactorial) with
PNFL and derive a total score (e.g., by evaluating the RMSD) by comparison to the
reference data. Using a heuristic optimization procedure based on a combination of
genetic algorithms and simulated annealing, the optimal network topology and its
parameters are inferred.

The results of the DREAM4 challenge give an impression of the power of our
approach: All of the PNFL derived models we sent in scored well above our com-
petitors. How well PNFL works for experimentally derived data must still be eluci-
dated but our success in the DREAM4 challenge strengthens our point that a Petri
net with fuzzy logic is an appropriate model for biological systems.

9.4 Related Work

9.4.1 Common Network Motifs and Cell Cycle Model

Bosl [42] showed the suitability of fuzzy logic based models to describe well known
and typical biological motifs by examining several small networks. These simulated
networks contained representatives of positive and negative feedback loops, feed-
forward motifs, single input motifs as well as classical chemical reaction kinetics.
All dynamics were derived from natural language descriptions of those motifs, as
they could for example be found in publications. In addition to the simple motifs,
an oscillating model of the mammalian cell cycle was built which demonstrates
the ability to reproduce complex behavior. Cell growth is integrated into this model
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seamlessly using the same fuzzy logic framework as used for protein dynamics. This
shows the flexibility of the framework and its ability to model dynamics on several
levels.

9.4.2 Comparison of Fuzzy Logic to Multi-Class Discrete Logic

A comparison of fuzzy logic to discrete (ordinary) logic based modeling was done
by Aldridge et al. [7] on a model of a signaling pathway downstream of TNF, EGF
and insulin receptors in human colon carcinoma cells. They predicted concentra-
tion changes of downstream molecules as a response to different stimuli, that is, a
treatment with several different combinations of concentrations of TNF, EGF and
insulin. Time series data of downstream molecules were collected experimentally
and compared to the fuzzy logic and to the discrete logic based simulations. The
set-based discretizations and rule bases had been manually adjusted and the same
rule systems were used for fuzzy logic as well as for discrete logic based modeling.
Keep in mind that ordinary sets can be used as premises and conclusions in fuzzy
logic systems, as they are special cases of fuzzy sets. The fuzzy logic system showed
an improved fitness which is caused by the soft transitions between states and the
ability to adopt and stay in intermediate states. Additionally, Aldridge et al. reduced
both the fuzzy logic as well as the discrete logic to two-states models (the latter is
similar but not identical to a boolean model) and optimized the parameters of the
system using a global nonlinear least squares regression. Both models were then
compared to a true boolean model. Again, in this setup the two-state fuzzy logic
performed better than its two-state discrete model counterpart, while both models
had a better fitness than the boolean model.

9.4.3 Classification of Gene Expression Data

There is a wide range of applications for fuzzy logic in computational biology. It is
not only suited for modeling and simulation of networks but for example also used
for applications like classification of gene expression data. Schaefer et al. [340] use
FLSs to classify three independent data sets of cancer patient biopsy samples. For
each data set, the top fifty significant genes were considered for training and testing
of the fuzzy classifier. This example is suited to elucidate the curse of dimensional-
ity every rule based system suffers from. Even if only two fuzzy sets would be used
to describe the expression of a gene (low and high expression) a single FLS using
50 genes as premises contains a rule base consisting of 250 ≈ 1015 different rules.
The evaluation of such a FLS is clearly prohibitive due to computational require-
ments. This problem could be solved by realizing the classifier as a combination of(50

2

)= 1225 FLSs with two premises each only, that is, a FLS is created for each
pair of genes. Each of these FLS classifies a sample based on two genes only and
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the classification of the sample in total is therefore based on
(50

2

)
single classifi-

cations.
(50

2

)
fuzzy logic systems with two premises discretized by two fuzzy sets

lead to 4 · 1225= 4900# 250 rules which are computationally tractable. It is quite
intuitive that not all of the 1225 gene pair expressions levels are suited to distin-
guish between the considered classes. Therefore, the number of FLS can be reduced
further without decreasing the classification accuracy significantly. The fuzzy clas-
sifier performs well with accuracy levels comparable to a nearest neighbor classifier,
where the latter is well suited for gene expression classification.

9.5 Summary

The adaption of fuzzy sets for representing states of entities and fuzzy logic based
reasoning for describing processes can be used to model biological systems. Fuzzy
sets capture the typically inexact, qualitative knowledge about biological entities
and are well suited to represent limited and/or incomplete knowledge, inexact mea-
surements as well as error prone data. Due to the fact that they can stand for arbitrary
properties, it is possible to uniformly represent all types of external and internal fac-
tors influencing a system. Fuzzy sets can be designed freely by a user according to
his needs. Fuzzy logic systems allow the formulation of biological processes using
simple yet powerful rule systems, which can be formulated using natural language.
Therefore, hypotheses concerning the behavior of entities or influences between en-
tities can be translated directly into executable systems. The representation using
Petri nets clearly visualizes entities, processes and dependencies within a biological
system. A Petri net and fuzzy logic based system can easily be outlined in a pen-and-
paper style by creating drafts of entities and their dependencies and describing the
desired properties and effects of dependencies and influences in natural language.

9.6 Problems

9.1 Fuzzification
Two fuzzy sets inactive and active are specified by a set of point coordinates

each:

inactive · · · [(−1,0), (0,1), (1,0)
]

(9.27)

active · · · [(0,0), (1,1), (2,1), (3,0)
]

(9.28)

Draw a sketch of these fuzzy sets in a coordinate system. Fuzzify the crisp numbers
0.5, 0.75, 1, 1.5. Notice that in some cases the crisp numbers differ while their fuzzy
discretizations can not be distinguished.
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9.2 Defuzzification
Defuzzify the fuzzy discretizations derived in Exercise 9.1 using the height de-

fuzzification. Notice that the defuzzified numbers may differ from the original num-
bers.

9.3 Implication
An input vector x̄ = (0.5,0.75) and a rule system are given:

IF x1 is inactive AND x2 is inactive THEN y is inactive (9.29)

IF x1is inactive AND x2 is active THEN y is active (9.30)

IF x1 is active AND x2 is inactive THEN y is active (9.31)

IF x1 is active AND x2 is active THEN y is active (9.32)

Sketch the conclusion fuzzy sets as in Fig. 9.5. Derive the formula for the fuzzy
logic system using a product t-norm, sum t-conorm and height defuzzification. Cal-
culate ȳ.

9.4 Create a PNFL
Create a complete Petri net with fuzzy logic based on a very short description of

a small, well-known biological motif (negative-feedback loop):
“The basal transcription of X is completely inhibited by the active form of Z.

X itself is a transcription factor that is necessary for the creation of Y . The inhibitor
Z can only be found in its active state in the presence of Y .”

To create the PNFL, first draw a Petri net representing the dependencies between
the given entities. Then define fuzzy sets that discretize the possible states of the
entities and convert the given description to collections of if-then rules. Choose
t-norm, t-conorm and a defuzzification strategy. Derive the formulas for the resulting
fuzzy logic systems.
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Chapter 10
Topological Analysis of Metabolic
and Regulatory Networks

Stefan Schuster and Björn H. Junker

Abstract The theoretical apparatus of Petri nets has been widely used for visu-
alizing metabolic and regulatory networks and for describing their properties and
behavior in a quantitative way. In this chapter, the theoretical basis, algorithmic is-
sues and biological applications of using Petri nets in that field are reviewed, in par-
ticular, in view of topological (structural) analyses. Several useful notions such as
T-invariants, P-invariants, and Maximal common transition sets are explained. The
correspondence between several of these concepts and similar concepts in tradi-
tional biochemical modeling, such as between minimal T-invariants and elementary
flux modes, is discussed. The presentation is illustrated by several hypothetical and
biochemical examples. A larger running example is taken from sucrose metabolism
in plants. For this, an important difference in functioning between monocotyledon
and dicotyledon plants is explained. Algorithms and software tools for determining
structural properties of Petri nets are briefly reviewed.

10.1 Introduction

The theoretical analysis, modeling and computer simulation of metabolic and reg-
ulatory networks is an integral part of Systems Biology (cf. [157, 205, 290, 414]).
These approaches have manifold applications in biotechnology, medicine and other
fields. As described in other chapters in this book, various properties of, and phe-
nomena occurring in, such networks are worth being studied, such as the dynamic
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behavior, optimality properties, stability and robustness. For many of these studies,
a rather detailed knowledge of parameters is necessary. For example, to perform
dynamic simulations (e.g., of oscillations), usually many kinetic parameters must
be known. This information is not often available completely, all the more when
these parameters change in time, such as enzyme concentrations. For signal trans-
duction and gene regulatory networks, measuring kinetic parameters is particularly
difficult. Therefore, it is of interest to restrict the analysis, at least at the outset, to
phenomena that are independent of imperfectly known parameters. And even if they
were known, it is worthwhile starting the analysis by studying the invariants of the
system because this provides a basic understanding, which is very helpful at later
stages of the analysis [157, 291, 316]. Moreover, certain properties such as basic
routes in signaling systems can only be derived by appropriate tools, which differ
from dynamic simulation [327, 351].

In metabolic and regulatory systems, the structural (network) properties are prac-
tically invariant since these are given by the stoichiometry of the reactions in-
volved, which is constant in most cases. Sometimes, variable stoichiometries are
observed, such as the number of protons needed to produce one mole of ATP by
H+-ATPase [414]. However, this results from a higher-level description of that en-
zyme. If the elementary steps are considered, stoichiometry is constant.

About two decades ago, the search for methods to analyze invariants of intra-
cellular networks led to the development of an entire field of research—the topo-
logical analysis, also called structural analysis or network analysis [157, 170, 290].
A subfield is called metabolic pathway analysis or constraint-based modeling
[291, 355, 397], in which the structure of pathways (routes) going through the sys-
tem is detected and/or optimal flux distributions are calculated. Network analyses
of other systems, such as sociological networks and electrical circuits, have a long
tradition. They are still flourishing and rapidly growing fields, for example, with
respect to social networks [118], the Internet [421], and car traffic [394]. From a
relatively scarce amount of input information, multitudinous, far-reaching conclu-
sions can be drawn. For example, the robustness of networks against failure of, or
attacks on, particular constituents can be predicted [33, 170, 375]. In the networks
under study in this chapter, this concerns the robustness against knockout mutations
or enzyme deficiencies.

Since metabolic systems can be regarded as networks (as can be seen on the
well-known Boehringer charts decorating many biochemistry labs), it is tempting
to describe them as graphs in the sense of graph theory. Graphs consist of nodes
and edges, which might represent metabolites and reactions, respectively. However,
this is difficult due to the presence of bi- or multimolecular reactions, which would
require that one arc could link three or more nodes. As a simple, yet instructive bio-
chemical example, consider a system describing the pathway by which sucrose is
converted to starch in higher plants (Fig. 10.1). The topological properties of simpler
versions of that network have been analyzed earlier for the case of the potato tuber
[211, 322]. Note that besides the ubiquitous ATP-dependent phosphofructokinase
(PFK) in plants there additionally is a pyrophosphate-dependent phosphofructoki-
nase (PFP) that uses pyrophosphate rather than ATP as phosphate donor [259].
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Fig. 10.1 Reaction scheme representing the pathway of sucrose-to-starch conversion in storage
tissue of monocotyledon and dicotyledon plants. For clarity, most reversible reactions are shown in
their predominant direction only. Metabolites treated as external (for definition, see Sect. 10.2) are
boxed. The representation somewhat differs from that normally used for Petri nets in that reaction
numbers are encircled rather than boxed. Reactions 17 and 18 (dashed lines) are present in the ex-
tended model (monocotyledons) only (cf. [82]). Enzyme numbers with names and abbreviations:
1, sucrose synthase (SuSy); 2, UDP-glucose pyrophosphorylase (UGPase); 3, fructokinase (FK);
4, hexokinase (HK); 5, invertase (Inv); 6, nucleoside diphosphokinase (NDPK); 7, hexose phos-
phate transporter (HexPT); 8, plastidial ADP-glucose pyrophosphorylase (pAGPase); 9, plastidial
starch synthase (pStSy); 10, ATP/ADP translocator (AATL); 11, lumped reaction of lower glycol-
ysis (Glyc); 12, pyrophosphate-dependent phosphofructokinase (PFP); 13, ATP-dependent phos-
phofructokinase (PFK); 14, plastidial pyrophosphatase (pPPase); 15, phosphate transport (PT);
16, lumped reaction of ATP consumption (ATPcons); 17, cytosolic ADP-glucose pyrophosphory-
lase (AGPase); 18, ADP-glucose transporter (ADPGT). Abbreviations of metabolites: ADP, adeno-
sine diphosphate; ADPG, adenosine diphosphate glucose; ATP, adenosine triphosphate; FBP, fruc-
tose-1,6-bisphosphate; Fru, fructose; Glc, glucose; HexP, hexose phosphates; P, phosphate; PP,
pyrophosphate; Pyr, pyruvate; Sta, starch; Suc, sucrose; UDP, uridine diphosphate; UDPG, uridine
diphosphate glucose; UTP, uridine triphosphate. The small letter “p” in front of a metabolite name
indicates the plastidial pool of this metabolite

Examples of bimolecular reactions in that scheme are sucrose synthase and in-
vertase. By a simple graph-theoretical analysis, one can easily deduce that there
is a route from sucrose to pyruvate. However, the exact overall stoichiometry
(net reaction equation) is difficult to derive because the fate of the byproducts
of the bimolecular reactions (e.g., fructokinase), which may give rise to prod-
ucts being co-substrates further down in the pathway must be taken into ac-
count.

There are even cases where connected routes do not imply a steady-state mass
flow. An illustrative example is the conversion of even-chain fatty acids into sugar
[89, 412]. It is well known that sugar in the human diet can be converted into
fat. It is not so easy to decide, by inspecting the biochemical network, whether
the opposite transformation is feasible, at least for the major constituents of lipids,
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even-chain fatty acids. Due to the irreversibility of some reactions (e.g., pyruvate
dehydrogenase), the pathway exactly reverting the conversion pathway from sugar
to fatty acids is infeasible. However, there is another connected route running via
the tricarboxylic acid cycle (cf. [378]). Importantly, it can be shown mathemati-
cally that, in most animals including humans, this route can not carry a steady-
state flux [89, 412] because not every metabolite (e.g., oxaloacetate) is balanced
with respect to production and consumption although there are producing and con-
suming reactions for each of these. In contrast, green plants, fungi, nematodes and
many bacteria are capable of converting fatty acids into sugar, via the glyoxy-
late shunt, which is absent from most animals (cf. [378]). This example shows
that simple graphs are generally insufficient to describe stationary flux distribu-
tions (cf. [199]). Nevertheless, for other investigations, for example, in analyz-
ing the flow of radioactive tracer, methods based on simple graphs are appropri-
ate.

An appropriate way of coping with mass balance in metabolic networks is pro-
vided by Petri nets (for a definition, see the introductory chapter on Petri nets in
this book). They are bipartite graphs with two types of nodes, called places and
transitions. In metabolic systems, places represent metabolites and transitions stand
for reactions. Thus, bimolecular reactions can be described properly (cf. [63, 208]).
Petri nets involve the stoichiometry by weighting the arcs by the stoichiometric co-
efficients. Early papers applying Petri nets to metabolic systems were published by
Hofestädt [162] and Reddy et al. [315]. Later, many other papers (some of them
reviewed in this chapter) followed. Sometimes, bipartite graphs are used without
calling them Petri nets (e.g., [170, 426]).

In the field of Petri net theory, the interest in structural properties started rela-
tively early. Notably the definition of T-invariants and P-invariants [219] (cf. [370])
was a remarkable milestone (see Chap. 3: P- and T-invariants). Intuitively speaking,
T-invariants are flux distributions that allow the network to be at a stationary state.
P-invariants are linear combinations of variables (e.g. substance concentrations) that
remain constant in time. Note that this constancy property of P-invariants holds in
all dynamic regimes (oscillations etc.) and is trivially fulfilled when the system is
at steady state. Later, other invariants in Petri nets have been defined and investi-
gated, such as the Maximal common transition sets (MCT-sets, [327], see Chap. 4).
In this chapter, these structural properties will be reviewed and relevant biological
applications will be discussed.

10.2 T-invariants

10.2.1 Modelling Steady States

The time behavior of biochemical and regulatory networks can, under certain sim-
plifying conditions such as spatial homogeneity, be described by the ordinary dif-
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ferential equation system

dX

dt
=NV (10.1)

where X and V denote the vectors of concentrations and net fluxes, respectively, N

stands for the incidence matrix of the net and t denotes time. The fluxes correspond
to the flow of tokens per time in Petri nets. In addition to the usual places in Petri
nets, input and output places can be defined, in which the token reservoir is inex-
haustible and, thus, assumed to be unaffected by token flow. Therefore, these places
do not enter the equation system (10.1). In metabolic networks, they correspond to
the external metabolites. In contrast, internal metabolites (places) do enter (10.1).

Metabolic networks often attain, after some initial transient period, a stationary
state. Equation (10.1) can then be simplified to the algebraic equation system:

NV = 0 (10.2)

because the concentrations do not then change in time. This equation is isomorphic
to (4.3) in Sect. 4.4 (“Transition invariants”), which defines the T-invariants in Petri
nets.

A T-invariant (transition invariant) is a vector with the property that if each transi-
tion fires as many times as the corresponding entry of the vector indicates, the origi-
nal marking is regained. These vectors are the solutions of (10.2). Thus, T-invariants
correspond to flux distributions in reaction networks at steady state [354, 407].

Since Petri nets usually include irreversible transitions only, all components of a
T-invariant must be non-negative. Such invariants are called true T-invariants. Very
often, the net direction of all biochemical reactions in a given system is known, that
is, whether the forward or reverse reaction step is faster. This knowledge is avail-
able, for example, when the reaction is irreversible or fulfills a defined biochemical
function. In this case, the orientation of all reactions can be chosen in such a way
that their (net) fluxes are nonnegative. Then only steady-state flux distributions cor-
responding to true T-invariants are relevant. There are many cases, though, where
the net direction is not fixed for all reactions. For example, the net flux though
isomerase reactions can change direction upon changing physiological conditions
(cf. [378]). Usually, for each of these reversible reactions, a forward transition and
backward transition are included separately into the Petri net.

10.2.2 Minimal T-invariants and Elementary Modes

The set of all T-invariants of a network forms a linear vector space. If I1 and I2
are invariants, also the linear combination λ1I1+ λ2I2 (with λ1, λ2 being real num-
bers) are invariants of the net (cf. [318]). The solution space of the algebraic equa-
tion (10.2) is infinite, which is a motivation to search for a unique set of basic vectors
in that space. For obvious reasons, it is convenient to find a set of vectors that are
as simple as possible. An analogy to Fourier analysis can be drawn. Complicated
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sounds can be decomposed into pure harmonics. Likewise, all T-invariants can be
written as a linear combination of minimal T-invariants [219] (for their definition,
see Sect. 4.4 “Transition invariants”). However, in contrast to Fourier analysis, the
coefficients in the linear combination must be nonnegative in order not to violate the
irreversibility constraint for transitions.

Independently of the developments in Petri net theory, the concept of elemen-
tary flux modes was introduced in metabolic network analysis [346, 349], based on
earlier attempts in theoretical chemistry by Clarke [78]. Intuitively speaking, an el-
ementary flux mode is a minimal set of enzymes that could operate at steady state
and complies with the directionality of irreversible reactions. That means that no
other flux distribution at steady state is a proper subset of an elementary mode.

To decompose flux distributions into such simplest relevant routes helps one bet-
ter understand the behavior of biochemical systems. The concept has been applied to
numerous biochemical systems that are relevant in biotechnology and medicine. For
example, elementary modes in carbon fixation in green plant seeds [356], in methy-
lotroph bacteria [403], in cyanophycin production by recombinant strains of bacteria
[92] and in the conversion of fatty acids into sugar [89] have been analyzed. There is
a close similarity between minimal T-invariants and elementary modes [354, 407].
The concept of elementary modes is somewhat more general because reversible re-
actions need not be decomposed. This saves the effort of discarding cyclic minimal
T-invariants within one and the same reaction. Algorithms for computing minimal
T-invariants and elementary flux modes have first been developed in parallel. Inter-
estingly, they show some similarities (see Sect. 10.3).

We now return to our biochemical example (Fig. 10.1). The pathway by which
sucrose is metabolized to starch in the potato tuber has been reported to yield 12
minimal T-invariants [211]. This number results from a few sub-pathways that can
be present in different combinations in the T-invariants. To concentrate on the main
metabolic process mediated by this network, that is, the conversion of sucrose to
starch, we simplified the system by (a) combining the hexose phosphates (glucose
1-phosphate, glucose 6-phosphate, and fructose 6-phosphate) into one pool (as has
been done earlier by Rohwer and Botha [322]), (b) omitting sucrose phosphate syn-
thase and -phosphatase, and (c) treating sucrose synthase irreversible in the direction
of sucrose cleavage. As a result, no futile cycles can be detected. They have been
studied in-depth earlier [211, 322]. The remaining, relative simple metabolic net-
work is complicated enough that the pathways across the system can not easily be
seen by inspection. Sucrose, pyruvate and starch are here considered as external
metabolites. It is often not easy to decide whether cofactors should be treated to be
internal or external. The rule of thumb is that they should be set to external status
if they participate not only in the reactions included in the model but also in non-
negligible other reactions, because then, their mass balance can not be described by
the system equations of the model. In contrast, if the network under study is large
enough to balance them, they can be treated to be internal. This is the case here for
ATP, ADP and pyrophosphate. As starch is a polymer of glucose, we count the mole
number of starch in hexose units.

Computation of the T-invariants with the program METATOOL [406] (http://
pinguin.biologie.uni-jena.de/bioinformatik/) reveals that the simplified network as

http://pinguin.biologie.uni-jena.de/bioinformatik/
http://pinguin.biologie.uni-jena.de/bioinformatik/
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Table 10.1 Minimal T-invariants of the model describing sucrose metabolism in plantsa

Number List of enzymes Overall stoichiometry

1 Inv, FK, PFK, Glyc, HK, HexPT, pAGPase,
pStSy, PT, pPPase, AATL

Suc= 2Pyr+ pSta

2 4*SuSy, 4*UGPase 4*FK, 5*HexPT,
5*pAGPase, 5*pStSy, 5*AATL, 5*pPPase,
5*PT, 7*PFK, 4*PFP reserve, 3*Glyc,
4*NDPK

4Suc= 6Pyr+ 5pSta

3 5*Inv, 5*FK, 5*HK, 2 HexPT, 2*pAGPase,
4*AGPase, 4*ADPGT, 6*ptStSy, 2*AATL,
2*pPPase, 2*PT, 4*PFP, 4*Glyc

5Suc= 8Pyr+ 6pSta

4 2*SuSy, 2*UGPase, 2FK, HexPT,
pAGPase, 2*AGPase, 2*ADPGT, 3*pStSy,
AATL, pPPase, PT, PFK, Glyc, 2*NDPK

2Suc= 2Pyr+ 3pSta

5 5*SuSy, 5*UGPase, 5*FK, HexPT,
pAGPase, 7*AGPase, 7*ADPGT, 8*pStSy,
AATL, pPPase, PT, 2*PFP, 2*Glyc,
5*NDPK

5Suc= 4Pyr+ 8pSta

aThe minimal T-invariants numbered 1 and 2 apply to dicotyledons. In the extended model appli-
cable to monocotyledons, all five minimal T-invariants are valid. For abbreviations, see legend to
Fig. 10.1

depicted in Fig. 10.1 yields two minimal T-invariants only, given in the upper part
of Table 10.1. Both can be easily interpreted in biochemical terms: they describe the
formation of starch from sucrose and differ in that the first uses the enzyme invertase
to cleave sucrose, while the second uses sucrose synthase for that purpose. A con-
sistency check can be made by counting carbons in the overall stoichiometries. By
taking into account that sucrose, pyruvate and (one monomer of) starch include 12,
three and six carbons, respectively, the results are indeed consistent.

The elementary modes (minimal T-invariants) can be used to determine the max-
imal molar yield (product : substrat ratio). While T-invariant 1 generates only one
mole of starch (counted as hexose monomer) per mole of sucrose, T-invariant 2
is slightly more efficient by producing 5 moles of hexose units in starch from 4
moles of sucrose. It can be shown mathematically that the flux distribution allowing
the maximum yield with respect to a given substrate-product pair always coincides
with an elementary mode [349]. Thus, 5 : 4= 1.25 is the maximum yield possible
by this network. The ability to use sucrose synthase (in the reverse direction) to
cleave sucrose is an advantage of plants over many other organisms such as animals
and yeasts, which exclusively use invertase to cleave sucrose into fructose and glu-
cose. Sucrose synthase, in contrast, gives fructose plus glucose-phosphate, so that
one ATP for phosphorylation is saved. Thus, green plants show both a higher redun-
dancy and a better ATP economy in sucrose degradation than other organisms. The
pathways described above for the potato tuber are characteristic for one of the two
large groups of flowering plants, the dicotyledons (their seedlings typically have
two cotyledons, that is, leafs of the seedling). The other group, the monocotyle-
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dons, exhibit an alternative route of starch synthesis: they possess a cytosolic form
of the enzyme ADP-glucose pyrophosphorylase, and an ADP-glucose transporter
in the plastidial membrane (cf. [82]). When these two reactions are included in
the metabolic network described in Fig. 10.1, the system gives rise to five mini-
mal T-invariants (Table 10.1). Apart from the two T-invariants of the basic model,
there are three T-invariants making use of the two additional reactions. While in
T-invariants 4 and 5, sucrose synthase is used to cleave sucrose, the way via inver-
tase is taken in T-invariant 3. The yield of starch per sucrose in the new T-invariants
is 1.2, 1.5, and 1.6 for T-invariants 3, 4, and 5, respectively. Thus, the latter two are
higher than with the plastidial AGPase alone. This effect can be explained by the fact
that the energy-rich compound pyrophosphate produced by the cytosolic AGPase
can be directly recycled in the UGPase reaction, while the pyrophosphate in the
plastid can only be cleaved by pyrophosphatase and transported back to the cytosol,
thereby loosing its function as a donor of chemical energy. Interestingly, the cytoso-
lic AGPase always appears together with the plastidial AGPase, but never alone, in
a flux ratio of 2:1 (T-invariants 3 and 4) or 7:1 (T-invariants 5). This is an effect of
stoichiometric constraints that arise from balancing the cofactors. At first sight, this
might not seem biologically significant as many other cofactor-metabolizing reac-
tions are not included in the model. However, there is evidence from which it might
be concluded that these ratios are close to those observed in vivo. First, the activity
ratio of cytosolic versus plastidial AGPases has been shown to be in the range of
5:1 to 20:1 [82]. Furthermore, mutations in the cytosolic route had a major impact
on starch synthesis (summarized in [82]). Unfortunately, there are no experimental
flux ratios between cytosolic and plastidial AGPases available to date. The network
shown in Fig. 10.1 is worth being analyzed further in the future. For example, it
would be of interest to compute the ATP balance in each pathway and compare it to
experimental values.

10.2.3 Clustering of T-invariants

As the number of minimal T-invariants grows rapidly (usually exponentially) with
network size, the problem arises how to handle and interpret such large sets. Inde-
pendently of each other, two groups in France and Germany have, therefore, pro-
posed methods for clustering elementary modes and minimal T-invariants, respec-
tively [142, 143, 297, 298]. In both approaches, the similarity between invariants is
analyzed. Grafahrend-Belau et al. [142, 143] first translate each minimal T-invariant
into its binary pattern (support vector). Such patterns had also been used and called
activity sets by Nuño et al. [285]. Then the Tanimoto similarity coefficient and,
from that, a distance between any two given minimal T-invariants are computed.
This allows one to derive clusters of minimal T-invariants, the T-clusters (see also
Chap. 4).

Pérès [297] took into account the signs of the components in the elementary
modes. In her method, all elementary modes are compared with each other. Two
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integer threshold values have to be prescribed, s and τ . All elementary modes that
share more than s common reactions of the same direction (called common motifs)
are grouped into one cluster. Thereafter, clusters are merged if their common mo-
tifs share more than τ common reactions. Thus, the clustering is performed with-
out using a distance measure. The method was applied to part of mitochondrial
metabolism, and the clusters could indeed be interpreted in biochemical terms [298].

10.3 P-invariants

10.3.1 Definition and Biochemical Interpretation

P-invariants (place invariants) are vectors, Y , with the property that multiplication
of these vectors with any marking that can be reached from a given initial marking
gives the same result. With M0 being the initial marking and M some arbitrary
marking, the relation YT ·M = YT ·M0 defines a P-invariant. Algebraically, these
vectors are solutions of the equation

YT N = 0 (10.3)

(see (4.1) in Sect. 4.3, “Place invariants”).
In biochemical networks, P-invariants describe conservation relations for metabo-

lites. For example, the biochemical network N1 in Sect. 4.3 “Place invariants”
involves the P-invariants ATP + ADP = const.,NADP+ + NADPH = const. and
2GSSG + GSH = const. (cf. [378]). Then, also any superposition of these, say
2ATP+2ADP+3NADP++3NADPH = const., is a P-invariant. Usually, invariants
are chosen so as to involve the smallest integer coefficients, and they are decom-
posed into the minimal terms (such as ATP+ ADP= const.).

In order to describe the conservation of atom groups within molecules, the coef-
ficients in the conservation relations must be nonnegative. Thus, only nonnegative
conservation relations are relevant (also called semi-positive since at least one coef-
ficient must be positive) [345, 347]. In a closed system, that is, a system without ex-
ternal substances, always one strictly positive conservation relation holds, in which
the conservation quantity represents total mass. By “perturbing” the coefficients of
this relation in all directions of the null-space of N , it can be shown that the number
of linearly independent semi-positive conservation relations in any closed system
equals the dimension of that null-space [345].

When there is a positive linear combination that permanently increases or de-
creases in time, the system is called superconservative or subconservative, respec-
tively [111]. The terms conservative, superconservative and subconservative are also
used for Petri nets. The program INA developed by Starke and coworkers in Berlin
(http://www2.informatik.hu-berlin.de/~starke/ina.html) determines whether a Petri
net has one of these properties. It is worth noting that these three cases do not cover
all networks (cf. [345]). In fact, biochemical systems are usually open systems with

http://www2.informatik.hu-berlin.de/~starke/ina.html
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Table 10.2 P-invariants of the network shown in Fig. 10.1. For the dicotyledon (a) and the mono-
cotyledon (b) models, all P-invariants are the same, except for P-invariant 4a

Number List of metabolites (sum= constant)

1 UTP + UDP + UDPG

2 pADPG + pATP + pADP

3 UTP + HexP + pHexP + P + pP + 2 PP + 2 pPP + 2 FBP + pATP + ATP

4a −UTP − HexP − pHexP − P − pP − 2PP − 2pPP − 2FBP − pATP + ADP

4b −UTP − HexP − pHexP − P − pP − 2PP − 2pPP − 2FBP − pATB + ADP + ADPG

3 + 4a ATP + ADP

3 + 4b ATP + ADP + ADPG

aFor abbreviations, see legend to Fig. 10.1

an input and output of mass. This mass transfer is described by a flux between ex-
ternal metabolites. Therefore, these systems may, depending on conditions, have a
positive or negative mass balance.

Many regulatory networks, by contrast, can be written such that they are con-
servative. Examples for superconservativity are provided by systems of prebiotic
evolution, in which nucleic acids accumulated more and more. Interestingly, the
chemical organizations [93] allow both for conservativity and superconservativity.

The test for conservativity [345] has attracted renewed interest with the advent
of online databases of reconstructed metabolic networks. Often, information in such
databases is prone to errors. To check the stoichiometric consistency and complete-
ness of a network, it is worthwhile running a test for conservativity [126]. This show
whether, in principle, the network complies with the condition of mass conservation.

A complete set of linearly independent P-invariants of the metabolic network
shown in Fig. 10.1 are listed in Table 10.2. The sum of all uridine-containing
metabolites is constant (P-invariant 1) because synthesis or degradation of the uri-
dine residue is not included in the model. A similar reasoning can be applied to the
plastidial adenosine residues in the metabolites of P-invariant 2. P-invariant 3 is a
sum of phosphate groups. However, this is not the sum of all phosphate groups in the
system but only of those that can be cleaved off from metabolites. Therefore, ATP
enters that P-invariant with the factor of unity although it contains three phosphate
groups. FBP and PP are counted twice as they can release two phosphate groups
each.

Interestingly, P-invariant 4 (versions a and b corresponding to the dicotyledon
and monocotyledon models, respectively) involves negative coefficients. This is be-
cause the program METATOOL computes the P-invariants only by (10.3) without
taking into account non-negativity conditions. In the system under study, it is easy
to convert the P-invariants so that those conditions are satisfied. We can sum up
P-invariants 3 and 4 (Table 10.2). The resulting invariants are easy to interpret as
conservation of the adenosine moiety in the cytosol. In more complex networks,
such linear combinations are not so easy to perform. It is then sensible to use spe-
cific algorithms for computing semi-positive P-invariants (see Sect. 10.3.2).
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Table 10.3 Concepts from Petri net theory and their counterparts in the modeling of biochemical
systems

PN theory Biochemical modeling

T-invariants Steady-state flux distribution, flux modes

True T-invariants Non-negative steady state flux distribution

Minimal T-invariants Elementary flux modes

P-invariants Conservation relations

True P-invariants, semi-positive P-invariants Semi-positive conservation relations

Conservative, subconservative and Conservative, subconservative and

Su(pe)rconservative Petri nets Superconservative systems

Maximal common transition sets Sets of partially coupled reactions

Deadlock False equilibrium

As outlined in Sects. 10.2 and 10.3, several concepts in Petri net theory have
counterparts in “traditional” biochemical modeling. Table 10.3 gives an overview
of the parallel concepts (see also [354, 427]). There are a number of other concepts
such as trap, siphon, deadlock, and liveness, which have not been considered in-
tensely in biochemical modeling so far. Some preliminary ideas of how to use them
for modeling biochemical networks have been presented [427]. It is certainly worth
using those concepts more extensively.

10.3.2 Algorithms and Software Tools for Computing Minimal
Invariants

All the algorithms for both, P- and T-invariants, have to solve linear algebraic equa-
tion systems using Integer Linear Programming (ILP) or related methods, for which
many algorithms exist. For Petri nets, one algorithm is that for computing min-
imal P-invariants (without originally dealing with biological networks) presented
by Colom and Silva [80]. It involves row operations on the incidence matrix aug-
mented with an identity matrix, thus computing consecutive tableaux like in the
Gauss-Jordan method. In the course of the algorithm, care has to be taken to elim-
inate duplicate and non-minimal T-invariants. Colom and Silva [80] proposed two
alternative tests to do so. By transposition of the incidence matrix, that algorithm
can be used also for calculating minimal T-invariants.

A number of software tools for computing structural properties of Petri nets
such as minimal P-invariants and T-invariants have been developed. Examples
are INA ([371], http://www2.informatik.hu-berlin.de/~starke/ina.html), CPN-AMI
(http://move.lip6.fr/software/CPNAMI/) and the Petri Net Toolbox of MatLab (The
MathWorksTM). A list (including web links) of these and several other packages
has been compiled in the “Petri Nets World” archive (http://www.informatik.uni-
hamburg.de/TGI/PetriNets/).

http://www2.informatik.hu-berlin.de/~starke/ina.html
http://move.lip6.fr/software/CPNAMI/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
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An algorithm for computing elementary flux modes based on methods from con-
vex analysis was presented by ourselves [350] and implemented in the program
METATOOL [302], independently of Petri net theory. It shares several features with
the Colom-Silva algorithm, for example, the row operations on the incidence matrix
augmented with an identity matrix. However, elementary modes are allowed to in-
volve reversible reactions. This is considered by partitioning the stoichiometry ma-
trix into “reversible” and “irreversible” parts. Thus, the elementary-flux modes algo-
rithm saves much memory space during the computation, because it uses reversible
reactions explicitly. Moreover, the test for eliminating non-minimal and duplicate
T-invariants (flux modes) is different (for a more detailed comparison, see [351]).
METATOOL also involves routines for determining other properties such as the
left and right null-spaces of the stoichiometry matrix and the enzyme subsets (see
Sect. 10.4).

For the entire algorithm for computing elementary modes, an alternative has been
proposed [402]. This computes a basis of the nullspace first and then combines these
vectors to give the remaining elementary modes. This algorithm empirically shows a
higher performance on metabolic networks, although it is unclear so far whether this
holds for all types of networks. The current version METATOOL 5.1 [406] involves
the Urbanczik–Wagner algorithm [402] and a very efficient minimality test based
on determining the rank of a submatrix of the stoichiometry matrix, as devised by
Klamt et al. [197].

There are a number of alternative programs for computing elementary modes,
such as EFMTool [387] and CellNetAnalyzer [198]. With the latter, also semi-
positive conservation relations and many other properties can be determined, both
for metabolic and signaling networks.

10.4 Other Topological Properties

Sackmann et al. [327] introduced the concept of Maximal common transition sets
(MCT-sets). An MCT-set represents a maximal set of transitions that always operate
together. In other words, two transitions belong to the same MCT-set, if and only if
they participate in exactly the same minimal T-invariants (see Chap. 4). Each Petri
net can be decomposed into MCT-sets, that is, disjoint subpathways, which can be
interpreted as building blocks of the net. Earlier, the concept of enzyme subsets had
been introduced [302]. Their definition is stricter: Two reactions in a biochemical
pathway belong to the same enzyme subset if they always operate together and do so
in fixed flux proportions. Importantly, neither the transitions belonging to one MCT-
set nor those belonging to one enzyme subset need to be adjacent to each other, that
is, these sets need not be connected [147, 302]. For all steady-state analyses (for
example, for detecting routes in the form of minimal T-invariants), all transitions
belonging to the same enzyme subset can be lumped into one overall transition. This
usually reduces both the numbers of transitions and of places. Moreover, finding
such subsets can help make predictions about genetic regulation because the genes
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Fig. 10.2 Example network
in which an MCT-set is not an
enzyme subset. Note that the
arrow leading from S2 to t4 is
weighted by the factor 2

corresponding to the enzymes within one enzyme subset (or likewise one MCT-set)
are likely to be regulated coherently [317, 352].

A constant ratio of fluxes is not required for MCT-sets. Thus, all enzyme subsets
correspond to MCT-sets, while the opposite is not true. An example is shown in
Fig. 10.2. Note that in that example system, two molecules of S2 are consumed
when transition t4 fires. Thus, transitions t1 and t4 alone can not maintain a steady
state. Transition t3 must fire as well to refill S2. In addition, transition t2 may be
operative. Its flux must then have a counterpart as part of the flux through transition
t3 to guarantee a steady state. Thus, transitions t3 and t4 form an MCT-set because
they are always operative together. However, their fluxes need not be proportional
to each other. In fact, in this system, each reaction constitutes an enzyme subset on
its own. The flux vector can be written as

V =

⎛

⎜⎜
⎝

a

b

a + 2b

a + b

⎞

⎟⎟
⎠ (10.4)

with a and b being positive values depending on the kinetic parameters. Burgard
et al. [53] presented an approach called “Flux Coupling Analysis”, which can be
considered as a generalization of the concept of enzyme subset. Within that ap-
proach, “partially coupled reactions” are defined such that if one of these carries a
steady-state flux, also the other do so, yet without a fixed flux ratio. Thus, an MCT-
set is equivalent to a set of partially coupled reactions. In the terminology of Flux
Coupling Analysis, an enzyme subset is a set of fully coupled reactions.

10.5 Related Work with Concrete Biological Examples

Extensive work on application of Petri net theory to biochemical and regulatory sys-
tems has been done by Ina Koch and Monika Heiner and their groups. For example,
Heiner et al. [153] applied that theory for the modeling of apoptosis (programmed
cell death). The model gives rise to 10 minimal T-invariants, which can be classified
according to the biochemical stimulus. Koch et al. [211] modeled sucrose utiliza-
tion in the potato tuber. The net under study, which is related to the one shown in
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Fig. 10.1, gives rise to 12 non-trivial minimal T-invariants. In three of these, su-
crose is cleaved by sucrose synthase (used in the reverse direction) and in the other
12, by invertase. In both cases, the resulting hexoses can go into glycolysis and/or
starch synthesis. Several of the invariants involve futile cycles, which permanently
hydrolyze ATP and may play a role in regulation.

Sackmann et al. [327] used a Petri net approach to study the mating pheromone
response pathway in Saccharomyces cerevisiae as a case study (see also [143]). The
study had a strong focus on the analysis of invariants. Some of the computed P-
invariants represent the switching behavior of compounds between their activated
and inactivated forms. Moreover, MCT-sets (which were defined in that paper) and
minimal T-invariants were computed. The latter correspond to the known signal
flows through the net. Sackmann et al. [328] analyzed the homeostasis of iron in hu-
mans. The 85 feasible minimal T-invariants computed were grouped into ten clusters
by the UPGMA method. Grunwald et al. [147] modeled gene regulatory processes
relevant for the Duchenne muscular dystrophy. Simão et al. [362] studied tryptophan
synthesis in E. coli. They took into account two types of regulatory feedbacks: the
direct inhibition of the first enzyme of the tryptophan pathway by its final product,
and the transcriptional inhibition of the Trp operon by the Trp-repressor complex.

Recently, Petri net approaches have been used to analyze the regulation of alter-
native splicing. RNA splicing is a process by which parts of mRNA molecules (in-
trons) are sliced out and the remaining parts (exons) are sealed together (cf. [178]).
The term alternative splicing refers to the situation where different sets of introns,
or introns of different length, are clipped out depending on developmental stage, tis-
sue, disease etc. Splicing is performed by a large ribonucleoprotein complex, called
the spliceosome. This complex is assembled in a cascade of binding and modifica-
tion processes (cf. [321]). Kielbassa et al. [190] analyzed the assembly of the U1
snRNP subunit of the spliceosome. The Petri net model is covered by 19 minimal
T-invariants. One of them can be considered as predominant, it describes virtually
the entire assembly pathway. For that network, also the MCT-sets have been com-
puted. Their number is 42, with 14 of them containing more than one transition. The
results point to the importance of the stability of complexes during the maturation
pathway. It was demonstrated that complexes that dissociate too fast, hinder the for-
mation of the complete U1 snRNP. In consequence, it was concluded that only a
long contact time of spliceosomal factors ensures the formation of the complete U1
snRNP complex, in accordance with Rino et al. [321].

The assembly of an entire spliceosome has recently been analyzed by Bortfeldt
et al. [41]. The network consists of 161 transitions and 140 places. All reactions are
part of at least one of the 71 resulting minimal T-invariants. These define pathways,
which are in good agreement with the current knowledge and known hypotheses on
reaction sequences during spliceosome assembly. The complexity of the network
was further increased by two switches, which introduce alternative routes during
formation of the A-complex in early spliceosome assembly and upon transition from
the B-complex to the C-complex. By compiling known reactions into a complete
network, the combinatorial nature of invariant computation leads to pathways that
have previously not been described as connected routes, although their constituents
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were known. T-clusters divide the network into modules, which were interpreted as
building blocks in spliceosome maturation [41].

10.6 Conclusions

Metabolic and regulatory networks play an enormous role in living cells. They form
a bridge between the genotype and phenotype. They are more complicated than
graphs (in the sense of graph theory) in which reactions would correspond to arcs
and metabolites would correspond to vertices. Due to the presence of bimolecular
and higher-molecular reactions, there should be arcs connecting more than two ver-
tices. Mathematically, metabolic networks are a sort of hypergraphs (cf. [199]). An-
other option is to describe them by bipartite graphs, in which the two types of nodes
correspond to reactions and metabolites. This is realized by Petri nets (cf. [63, 208]).
Analyzing topological properties of such nets allows one to derive far-reaching con-
clusions from a rather limited set of input information (stoichiometry and reversibil-
ity).

However, Petri nets are not the only tool used for representing, simulating and an-
alyzing biochemical networks. Many authors use graphical representations as usual
in biochemistry textbooks and ordinary differential equations for dynamic simula-
tion. When the analysis is restricted to steady states, the differential equations can
be simplified to algebraic equations. These can be analyzed by various methods, for
example, from matrix algebra. An advantage of using Petri nets is the visualization
of the flow of tokens by appropriate simulators (see the “Petri Nets World” archive).
To some extent, it can be considered a matter of taste whether Petri nets or other
appropriate methods are used. The computation of T-invariants or, alternatively, of
elementary modes, correctly takes into account the condition of mass balance. It
is important that connectedness of a network does not necessarily imply a steady-
state flow. To make a distinction between (a) paths (connected routes) in the sense
of graph theory and (b) routes that are capable of carrying a net flux at stationary
states, a distinction in terminology is useful. The term “pathway” should be used for
(b) only (cf. [304]).

In regulatory networks, the steady-state condition is not as important as in
metabolic networks. Often, signals are transmitted by pulses along certain routes,
that is, by nonstationary processes [158]. On the other hand, averaged over longer
periods, also regulatory networks are at steady state because they must regenerate
before they can transmit the next signal (cf. [32]). Another difference to metabolic
networks is that information flow is more important than mass flow. Although mass
balance must be satisfied as well, this is not as useful a criterion as in metabolic
networks to derive interesting properties (cf. [428]). Therefore, the observation that
minimal T-invariants often describe interesting signaling routes [147, 327, 328] can
be considered a proof of principle while it is not completely understood theoretically
so far. Klamt et al. [195] have translated signaling systems into interaction graphs,
that is, directed graphs with signed arcs. Signalling paths in such graphs can then
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be determined by computing elementary modes, although classical graph theoreti-
cal algorithms (e.g., depth-first search) perform that task faster. Recently, we have
shown that a sound theoretical basis can be given for the special case of enzyme
cascades [32].

In summary, we have shown here that the topological analysis of Petri nets is
extremely useful in analyzing metabolic and regulatory networks. By a running ex-
ample taken from sugar metabolism in plants, we have demonstrated that important
properties such as optimal yields, redundancy and conserved moieties can be de-
rived by analyzing T-invariants and P-invariants. By an overview of the literature,
we have shown that these techniques are widely used for a large variety of biological
systems.

10.7 Problems

10.1 Some metabolite is connected to n irreversible reactions (transitions) that ei-
ther produce that metabolite from external sources or consume it, leading to external
sinks. What is the maximum number of minimal T-invariants in this net upon varia-
tion of the number of transitions that produce that metabolite (with n fixed and the
remaining transitions consuming the metabolite)?

10.2 Determine the minimal T-invariants to

1. the net shown in Fig. 10.2 (to that end, consider which flux distributions are
feasible at steady state, or by which linear combinations the flux vector given in
Equation (10.4) can be obtained).

2. the net shown in Fig. 10.2 after replacing the factor 2 attached to the arrow lead-
ing from S2 to t4 by 1.

10.3 Assume that in the extended model describing sucrose metabolism in mono-
cotyledons (Fig. 10.1),

1. the enzyme phosphofructokinase (PFK)
2. the enzyme hexokinase (HK)

has been knocked out.

1. In which of the two cases more minimal T-invariants would drop out?
2. Assume that the system responds by using that minimal T-invariant still allowing

the highest starch-over-sucrose yield. In which case the yield would be higher,
and what would its value be?
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Chapter 11
Analysis of Dynamical Models of Signaling
Networks with Petri Nets and Dynamic Graphs

Simon Hardy and Ravi Iyengar

Abstract The static representation of biological interaction networks can be mis-
leading. All interactions do not occur simultaneously. On the other hand, differential
equations can represent a dynamical system, but the topology of the interactions is
not explicitly accessible from the calculations of system dynamics. To have a graph
representation of a dynamical system, we have developed the dynamic graph. We
used the Petri net representation of an ODE system and invariant analysis to identify
the main components of a signaling network and thus bridge the two formalisms.
The result is a method that can be used to analyze the dynamics of the network topol-
ogy. Its main feature is the highlighting of the function and interactions of regulatory
motifs in the emergence of a complex biological behavior. The example used here
is the Bhalla–Iyengar model of the MAPK/PKC signaling pathway in fibroblasts.
A property of this pathway is the ability to operate both in a monostable or bistable
regime. We show with dynamic graphs that both the topology and the kinetics of
this model are responsible for this behavior.

11.1 Introduction

The cell is in constant interaction with its environment. It senses extracellular
substances through molecular receptors which often triggers biochemical or mor-
phological responses. The mechanisms relaying extracellular information to spe-
cific control elements of the cell are grouped under the term signal transduc-
tion. The signaling network of the cell contains numerous components and many
pathways formed by successive biochemical interactions and activation events
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of biomolecules. An example of a signaling pathway is Ligand → Receptor →
Gprotein → Kinases → Transcription factor → DNA. Other effectors include
metabolic enzymes to alter metabolism, ion channels to alter cellular excitabil-
ity and cytoskeletal proteins to alter cell shape or movement. Along the way,
small intracellular signaling molecules called second messengers, such as cyclic
adenosine monophosphate (cAMP), calcium ions and diacylglycerol (DAG), can
be produced and then rapidly diffuse and transmit the signal. Signaling pro-
teins usually have active and inactive states and they can be activated by bind-
ing to other molecules or by posttranslational modifications like phosphoryla-
tion.

First viewed as isolated cellular signaling wires, intracellular signaling path-
ways are rarely simple unidirectional paths from the membrane receptors to their
targets [413]. Signaling pathways include bifurcation and integrator proteins that
spread or combine signals. Signaling loops are also present to provide dynamic
adaptation to stimuli. Several of these topological features have been linked to
regulatory properties. The complex cellular signaling networks discovered by bi-
ologists led to the hypothesis that they have not only transmittal functions, but
also information processing capabilities [238]. Hypothetically, the transformation
of biochemical information into cellular responses is achieved by small recurring
circuits in the network named regulatory motifs. Examples of motifs are positive
and negative feedback loops, feedforward loops, bifans, gates and switches [12].
These motifs were identified because their occurrence is statistically greater in bi-
ological networks than in randomly built networks. This was first demonstrated
in gene regulation networks [264, 361] and later confirmed for signaling net-
works [239].

Signaling networks are suitable systems for Petri net modeling. Like other bio-
chemical reaction systems signaling networks are intrinsically bipartite and binding
and enzymatic reactions have defined Petri net representations. Also, signaling net-
works are formed by sequences of signaling activation events and by the concurrent
actions of interconnected pathways. It is easy to represent the chain of activation
events—for example, an upstream active enzyme relaying the signal by activating
the next enzyme—with a graphical formalism that is appealing to biologists. Fur-
thermore, models of signaling networks can be analyzed qualitatively and quantita-
tively using Petri net theory methods presented in earlier chapters of this book.

The usual Petri net modeling methodology is to start with a qualitative model
and then iteratively perform analyses and add quantitative information [154, 211].
The first step of this process is to extract and build a model from the biology
literature. Second, qualitative analyses are done using the mathematical tools of
the Petri net theory. This provides a formal validation of the model, the analy-
ses results can be used to generate a structural portrait of the system and give
hints to key quantitative parameters [230, 327]. Third, stochastic and/or determin-
istic information about quantities and events can be added to the model to trans-
form the qualitative model into a quantitative one. This time-dependent model can
be represented with different Petri net extensions or with other mathematical for-
malisms and be analytically solved or numerically simulated. This type of model
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is the basis for a quantitative analysis of the behavior of biological system mod-
els.

The work presented in this chapter does not fit in this general framework. Rather
than using Petri nets to build a qualitative or a quantitative representation from ex-
perimental data, we present a computational method that uses Petri nets to analyze
an existing quantitative model. We will take the mathematical model of a signal
transduction network specified with ordinary differential equations (ODE), convert
it into a discrete Petri net model and perform invariant analyses to extract struc-
tural properties that are biologically meaningful for cellular signaling. Then, these
properties will serve to reconstruct the directed interaction graph of the model, also
known as the influence graph. By doing so, we bridge two important formalisms
for biological modeling: the dynamic representation of ODEs and the static rep-
resentation of graph theory. Once this bridge is established, it is possible to use
numerical data from a simulation run of the ODEs to create a dynamic representa-
tion of the interaction graph. The result is a dynamic graph. We refer to Chap. 8
from Ackermann for more information about ODE modeling of biological sys-
tems.

The main objective of this computational method is to analyze the dynamic be-
havior of biological systems at a higher level of abstraction. Instead of looking at
concentration variations over time, the focus of the analysis becomes the dynamic
of the regulatory motifs. As we have seen, the motifs are the building blocks of
signaling networks. Models with a complex behavior are bound to comprise many
motifs, stacked and/or nested. Understanding the interrelated dynamics of these mo-
tifs is a key to understanding the systemic properties emerging from the interactions
between hundreds of individual molecular components. In this chapter, the running
case study to illustrate the Petri net-based method for regulatory motif analysis is
the published ODE model of the mitogen-activated protein kinase (MAPK) 1,2/pro-
tein kinase C (PKC) system, a signaling pathway activated by the fibroblast growth
factor (FGF) and parameterized with experiments done with mouse NIH 3T3 fibrob-
lasts [34]. In this chapter, we refer to it as the Bhalla–Iyengar model. This model
was developed to study the interaction between a positive feedback loop (MAPK-
PLA2-PKC) and a negative feedback loop (MAPK-MKP1) and how a network that
can operate both in a monostable or bistable regime emerges from this special topol-
ogy.

11.2 Methods and Concepts

The motivation to develop a computational method connecting ODE models and in-
teraction graphs comes from the need to have a network view of a dynamic system.
The combination of the two formalisms gives rise to a new type of investigation: the
analysis of the dynamic of regulatory motifs with dynamic graphs. Many steps are
necessary to achieve this integration of graph theory and dynamical systems using
Petri nets. This approach is different from hybrid Petri net modeling as described
in the chapters by Miyano and Matsuno because two goals of the dynamic graph
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Fig. 11.1 Conversion of five ordinary differential equations representing a molecular binding re-
action and an enzymatic reaction into a discrete Petri net model

method are the reduction of the number of variables and the creation of a monopar-
tite representation. In this section, we describe each step, from ODEs to Petri nets
to graphs.

11.2.1 From Ordinary Differential Equations to a Petri Net Model

The relationship between ODEs and Petri nets is documented [49, 129, 248]. In
biological applications, the usual process is to use a validated Petri net model to
set up the structure of an ODE model or of a continuous Petri net. We use the
same relationship between the qualitative and quantitative representations, but to
do a reverse-engineering of a dynamic model. The variables on the left side of the
differential equations become places, and every unique rate term on the right side
becomes a transition. Figure 11.1 is an example of this conversion. This system of
five equations corresponds to one mass action reaction and one Michaelis–Menten
enzymatic reaction. Each variable representing the molecular specie A, B , AB, C

and D corresponds to a place. Each unique term, k1[A][B], k2[AB] and kcat[AB][C]
kM+[C] ,

corresponds to transitions t1, t2 and t3 respectively. If the term is negative in the
rate equation of a variable, then an arc from the associated place to the transition
representing this term is added. If the term is positive, then the arc goes from the
transition to the associated place. Read arcs represent the action of an enzyme if
the Michaelis–Menten formulation is used. Read arcs represent a reading relation
which denotes that the firing of transition will read the current value of the place
but without modifying its content. The arc connecting place AB and transition t3 in
Fig. 11.1 is a read arc. The interpretation of this representation is that the enzyme AB
participates in the reaction t3 as a catalyst but it is not modified by it. If enzymatic
reactions are modeled as two-step mass action reactions, then the Petri net model
should be free of read arcs.

The Petri net software Snoopy [155] has a conversion feature for importing
SBML model and automatically generating Petri net models (discrete or continu-
ous). The Systems Biology Markup Language is a generic format for various for-
malisms, not just ODE models. Thus, some information can be software tool specific
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Fig. 11.2 Petri net model generated from the ordinary differential equations of the Bhalla-Iynegar
model of the MAPK/PKC pathway

and be misinterpreted by other tools, despite their SBML compatibility. For that rea-
son, the result of the import of a SBML model with Snoopy should be inspected and
validated. We used Snoopy to import the SBML file of the Bhalla–Iyengar model
and the generated Petri net model was manually curated. In this model, most enzy-
matic reactions are modeled as two-step mass action reactions, but some are mod-
eled with the Michaelis–Menten formalism, hence there are a few read arcs in the
Petri net of the Bhalla–Iyengar model shown in Fig. 11.2.

Several biological models using differential equations are not pure ODE mod-
els. Some models might include logical statements. It is also usual to clamp some
variables to a certain value for modeling simplicity. This is almost always the case
for adenosine triphosphate (ATP) in signal transduction models, the major source of
energy in the cell. The underlying assumption is that the metabolic processes of the
cell are maintaining ATP at a constant level. These modeling implications must be
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individually dealt with for an appropriate conversion into a Petri net model. We give
more details on these special situations in Sect. 11.2.2.

11.2.2 From a Petri Net Model to an Interaction Graph

11.2.2.1 Interaction Graphs and Conservative Components

An interaction graph G = (V ,E) consists of a finite set V of vertices and a finite
set E ⊆ V × V of edges. The edge (x, y) ∈ E is a link between vertices x and y.
The vertices correspond to molecular species and an edge connects two vertices
if an interaction involves both species. The meaning of an edge in protein-protein
interaction graphs is that there is an experimentally confirmed direct interaction
between the two linked molecular species. Using graph theory and bioinformatic
data mining methods, structural information and unexpected distal relationships can
be extracted from large networks built from the literature or based on data from
high-throughput experiments. See [25, 237, 246] for recent reviews on this subject.
For our purpose, the interaction graph is an intermediary step to build the influence
graph of an ODE model. The first Petri net theory tool that we use to build the
interaction graph of the MAPK/PKC signaling pathway is the conservative invariant
analysis (also known as P-invariant analysis).

A conservative invariant analysis identifies the sets of places of a Petri net model
that respect a conservation property. Theses sets are called conservative compo-
nents. The conservation property states that the markings of such a set of places
form a linear combination that is always constant no matter what is the state of the
system (see definition in the chapter by Reisig). This Petri net conservation prop-
erty can be related to a modeling conservation property that is very common in
signal transduction models. It is a widespread practice to model the total concen-
tration of groups of signaling molecules as constant quantities. For most molecular
species, only the distribution between the different states of the molecular species
changes to reflect fluctuating levels of activity and not the total amount. For exam-
ple, MAPK can be sequentially phosphorylated by a kinase at two different amino
acid residues. This means that there are three different phosphorylation states for
MAPK: unphosphorylated, singly phosphorylated or dually phosphorylated. The
concentration distribution (or token distribution in the case of a Petri net model)
between the three variables changes during cellular signaling, but the sum of the
three concentrations remains constant because the synthesis and degradation of this
protein are not regulated by the signal and are more or less constant. Considering
this assumption, one can predict the result of the conservative invariant analysis of
a signal transduction model: every molecular species with a constant total concen-
tration are conservation components and the different activity states are identified
as the places of these components. The relationship between conservative invariants
and biochemical modeling concepts has already been discussed for metabolic mod-
els [407, 427], signaling models [327]. Furthermore, combined networks of gene
regulation and signal transduction have been explored using P-invariants [147].
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11.2.2.2 Building the Interaction Graph of the Bhalla–Iyengar Model

In the Petri net model of the MAPK/PKC pathway, a conservative invariant analysis
identified 19 P-invariants.1 This model is not completely covered by P-invariants.
This incomplete coverage means that some places are not part of any conserva-
tive invariant. It can be explained by the fact that in many signaling models, not
all molecular species have a conservation rule. This is the case for molecules with
a regulated production (or release) and degradation (or restoring) such as metabo-
lites, second messengers, ribonucleic acids (RNA) or particular enzymes. In the
Bhalla–Iyengar model, two molecular species have no conservation rule: MAPK
phosphatase 1 (MKP1) and MKP1 mRNA. The expression of the enzyme MKP1 is
controlled by the level of activity of MAPK. The elevation of MAPK in the nucleus
promotes the transcription of MKP1 mRNA, which eventually leads to an increased
synthesis of this phosphatase. For ODE modeling, it is sufficient to consider mRNA
transcription and protein synthesis as processes creating entities out of nothing be-
cause it does not affect the dynamic of the system. It is outside the boundaries of the
model. However, this does not respect the mass conservation law underlying every
biochemical systems. mRNAs are made of nucleotides and proteins are synthesized
from amino acids. The same reasoning applies to destruction processes. Macro-
molecules do not disappear into the void; they are degraded into smaller parts. For
a P-invariant analysis, it is thus desirable to take the mass conservation law into ac-
count and slightly modify the model. In the Bhalla–Iyengar model, the addition of
three places for nucleotides, amino acids, and degraded mRNAs is enough to com-
pletely cover the Petri net model with P-invariants. Note that this alteration is only
intended for invariant analysis. The stoichiometric relationship between the smaller
molecules and the macromolecule is not considered. Therefore, the modified model
can not be used with tokens for state space analysis without further modifications.

The modified model of the MAPK/PKC pathway has 21 P-invariants P ′, where
P ′ is a set of places. Each P-invariant is a vertex in the interaction graph shown in
Fig. 11.3. Edges between vertices are determined by the transition connectivity in
the Petri net model. Two conditions are used to evaluate the connectivity. An edge
links the vertices x and y if

1. P ′
x ∩ P ′

y = ∅; the P-invariants P ′
x and P ′

y have at least one place in common, or
2. ∃t : (W(p1, t) > 0∧W(t,p2) > 0)∨(W(p2, t) > 0∧W(t,p1) > 0), where p1 ∈

P ′
x , p2 ∈ P ′

y , t ∈ T and W : ((P × T ) ∪ (T × P)→ N); the places p1 and p2
from the P-invariants P ′

x and P ′
y are connected through transition t from the set

of transitions T . W is the multiset of arcs of the Petri net.

The second condition is necessary only if the Petri net model has read arcs.
The interaction graph of Fig. 11.3 contains all the edges that can be detected
in the MAPK/PKC model with these two conditions. The interactions between
P-invariants mean that (1) the two molecular species can form a complex or that

1Conservative invariant analysis was performed with the software Charlie, a companion tool of
Snoopy.
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Fig. 11.3 Interaction graph of the Bhalla–Iyengar model of the MAPK/PKC pathway

(2) one species is a catalyst for a reaction involving the second species. The interac-
tion graph, an intermediary representation of the structural information in the ODEs,
is now built. In the next section, it is transformed into an influence graph to include
the directionality of signal propagation.

11.2.3 From an Interaction Graph to an Influence Graph

11.2.3.1 Influence Graphs and Repetitive Components

An influence graph I = (V ,A,T ) consists of a finite set V of vertices and a finite
set A⊆ V ×V of arcs. The arcs (u, v) ∈A are directed edges going from the vertex
u to the vertex v. An arc is associated to an interaction type i from a set of types I

(T : A→ I ). The biological influence graphs that are built with the Petri net-based
computational method presented in this chapter have two types of interaction: ac-
tivation and inhibition. In biological terms, these interactions represent signaling
activation or inactivation of one molecular species by another. The underlying bi-
ological process can vary—phosphorylation, binding, etc.—but the perspective is
always the same: is the interaction promoting or impeding signal propagation. To
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assign directionality and interaction type to the edges of the interaction graph, a
repetitive component analysis (or T-invariant analysis) is done, not on the entire
Petri net model, but on subgraphs. These subgraphs are graphs formed by the places
of P-invariants and their connected transitions; they are specific to one molecular
species. This analysis identifies sets of transitions that are involved in an equal flow
property at steady state. This reveals the signaling segments of the model. A repet-
itive component is a set of transitions that if fired sequentially cause a return to
the initial state. This sequence may therefore be repeated. It is a cycle. In Petri
net models of signaling networks, repetitive components have been used to identify
functional units [327] and transduction activation components [230].

11.2.3.2 Building the Influence Graph of the Bhalla–Iyengar Model

There are 21 subgraphs to analyze in the Bhalla–Iyengar model. We exemplify
the process of identifying signaling segments with the subgraph of Ras, shown in
Fig. 11.4. In the Ras subgraph, there are 17 minimal T-invariants (including the
trivial ones). To identify signaling segments, all T-invariants having one or more
transitions in common are grouped together. For the Ras subgraph, this operation
generates 7 signaling segments. {t1, t2, t3, t4, t5, t6, t7, t9, t10, t11}, {t12, t13} and
{t22, t23, and t24} are among these segments. The interesting property of these seg-
ments is that at steady state, the cumulative flow is null for each segment indepen-
dently. Because kinetic rates and initial concentration values have not been consid-
ered so far, the identification of signaling segments does not find the steady state
solutions. What it does provide is the minimal grouping of the reactions that have
rates canceling each other out at steady state.

With the signaling segments, it is now possible to follow the propagation of a sig-
nal in the pathway. The starting point is the source of the signal. It is usually a single
variable in the ODE model that has an input function, for example a pulse, a step in-
crease or an oscillation. The source of the signal is also part of a P-invariant, which
is a vertex in the interaction graph. This perturbation causes changes throughout the
network revealing its dynamic behavior. In the model, the source of the signal is the
free ligand variable, associated with the PDGF vertex. This is the growth factor that
is added to starved cells in experiments. The procedure to create the influence graph
is to follow the signal in the Petri net model and mark the signal propagation onto
the interaction graph. Here is an example. The place of the free ligand is connected
to one signaling segment and the output place of this segment is part of the receptor
P-invariant (PDGFR). This propagation is depicted as an arc from the PDGF vertex
to the PDGFR vertex in the influence graph (see Fig. 11.5). From the place of the
receptor-ligand complex, the signal is transmitted to two other signaling segments.
One segment leads to the internalized receptor state. It is a signaling deadend be-
cause it is not connected to any other P-invariant. The other segment is connected
to the Shc P-invariant. This propagation is represented as an arc from the PDGFR
vertex to the Shc vertex. Note that it is impossible to go back to a segment that has
already been explored.
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Fig. 11.4 Subgraph of the Ras conservative component of the Petri net of the Bhalla–Iyengar Petri
model of the MAPK/PKC pathway

It is interesting to observe that some edges in the interaction graph are not rep-
resented in the influence graph: for example, the edge between the PDGF and Shc
vertices. This edge is present in the interaction graph because PDGF and Shc can be
in the same trimeric complex with PDGFR. However, this is a consequence of the
linear composition of two successive events: the binding of the ligand to the receptor
and then the phosphorylation of the kinase by the activated receptor. The tracking
of the signal propagation eliminates these interactions sharing a common interactor.
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Fig. 11.5 Influence graph of the Bhalla–Iyengar model of the MAPK/PKC pathway in which
PDGF is the source of the signal
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For the first interactions considered so far, we have assumed that the influence
type was activation. The signal could always propagate further down in the path-
way. However, when interactions are in opposition, for example, when the signal is
propagating in an opposite direction on a signaling segment, their interaction type
must be different. This is the case for the vertices GAP and GEF. The former is
inactivating Ras and the latter is activating it. These vertices are connected to the
Ras vertex through the same signaling segment, but they have opposite effects. For
that reason, one arc is of the activation type and the other is of the inactivation type.

Some vertices, like unregulated proteins, are left out of the propagation of the
signal. To include them in the influence graph, one has to verify the vertices from
the interaction graph that have not been visited by the signal. An example of this
kind of node is the unregulated phosphatase MKP2 in the Bhalla–Iyengar model. It
is possible to connect this vertex to the influence graph because of its connectivity
through a signaling segment in the Petri net model. The effect of MKP2 is to inac-
tivate MAPK by dephosphorylation. Since the signal is activating MAPK, the arc
from MKP2 to MAPK is of the inactivation type.

The influence graph of the Bhalla–Iyengar model is shown in Fig. 11.5. In this
subsection, we explained how to transform an interaction graph into an influence
graph by using structural information extracted from the ODEs using Petri net the-
ory. In the next, we introduce heuristic visualization rules to map simulation data
onto the influence graph in order to get a dynamic graph.

11.2.4 From an Influence Graph to Dynamic Graphs

Biologists are used to seeing a network of biochemical interactions as an influence
graph. However, the static aspect of this depiction can be misleading. These inter-
actions are dynamic. The activation of the different signaling components does not
occur exactly at the same time. Complex signaling networks usually have complex
dynamic behavior. With the dynamic graph, it is possible to represent the temporal
activity of the biochemical system on its topology by mapping the simulation data
onto the influence graph. The dynamic graph of a biochemical network is a graph in
which the color of vertices and edges represents the relative value of concentration
and flow at a specific simulation time step. The intensity of a color represents the
level of activity of a molecular species or of a reaction flow. It is thus possible to
analyze the signal propagation and the activity of the regulatory motifs. This is what
we call analysis of the topology dynamic.

The influence graph of a biological network is built from the Petri net model, thus
the vertices and edges of the graph are derived from the places and transitions of the
model. This same Petri net model was first generated from the ODE model, thus the
places and transitions are associated to the variables and rates of the mathematical
representation. By this linear association, the vertices and edges of the influence
graph can be traced back to the variables and rates of the ODE model. We exploit
these associations to transform an influence graph into a dynamic graph with simu-
lation data. Each vertex and edge of the dynamic graph is assigned a heuristic rule
that converts simulation data into colors.
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11.2.4.1 Activation Ratio Using P-invariant to Display Activity of Signaling
Components

For molecular species, a good indicator of the level of activity is the ratio be-
tween the quantity of molecules in an active conformation and the total quan-
tity for this molecular species. A heuristic rule can be based on this ratio.
For example, the molecular species of the small GTPase Ras is inactive when
it is bound to GDP and is active when it is bound to GTP. In Fig. 11.4,
the marking of all the places of the Ras P-invariant that contain the active
GTP-bound form (GTP_Ras, RGR, RGR_cplx1, RGR_cplx2, Raf_p_GTP_Ras,
MAPKK_Raf_p_cplx1, MAPKK_Raf_p_cplx2) can be summed and then divided
by the value of the P-invariant. The result of this operation is always between 0 and
1 and gives the relative activation value at any given time step. Equation (11.1) is the
general formula to compute the relative value of activation of a molecular species
with its P-invariant.

rt =
∑

Xj∈A wj ·m(Xj,t )
∑

Xj∈PI wj ·m(Xj,t )
(11.1)

where Xj is a place of the Petri net, A is the set of places identified as the active
conformations of a molecular species, PI is the set of places of the conservative
component, wj is the weight of place Xj in the P-invariant vector and m(Xj,t ) is
the marking of place Xj at time t . The next step is to convert this numerical value
into a color using a scale (i.e., white for 0, black for 1). For better visualization
results, it is also possible to adapt the color scaling to a smaller range if preferred.

11.2.4.2 Reaction Flow Ratio Using Maximum to Display Strength
of Interaction Between Signaling Components

For molecular reactions, a comparable ratio can be calculated. The sum of the flows
of the signaling segments linking two P-invariants is divided by the maximal value
reached by this sum during the simulation run. In this sum, flows in opposite direc-
tions have opposite signs. This ratio can be negative when the system is returning
to basal state. For example, consider the flow between the vertices Raf and MEK in
the influence graph. Raf is activated when it is bound to Ras and in turn, the com-
plex activates MEK by phosphorylation. Raf can also be phosphorylated by PKC,
thus becoming a more potent activator of MEK because of a lower dissociation con-
stant with Ras. In the model, unphosphorylated and phosphorylated Raf can form a
complex with GTP-Ras. Consequently, the two molecular complexes RGR (unphos-
phorylated Raf) and Raf_p_GTP_Ras (phosphorylated Raf) of the Ras subgraph in
Fig. 11.4 can activate MEK by phosphorylating two of its residues. As a result, there
are four signaling segments between the Raf and MEK invariants (2 complexes each
phosphorylating 2 residues). The sum of the rates of the transitions t18, t19, t24, and
t27 correspond to the global phosphorylation of MEK by Raf. This sum divided by
the maximum that this sum reaches during the simulation period is an example of a
heuristic rule for a flow ratio.
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The kinetic parameters and the initial conditions of the ODE models have been
ignored until the generation of a dynamic graph. This is why there is only one in-
fluence graph by pair of ODE model and source of signal. Two different influence
graph can be generated from the same ODE model by considering two different
sources of signal. However, the dynamic of this model depends not only on its
structure, but also on the set of parameters. Each set of parameters has its own
dynamic graph. Furthermore, each set of heuristic rules will create a different dy-
namic graph. The latter flexibility and tailoring are useful to compare the systemic
effects of different parameters such as different amplitude of signals or parameter
variations. For example, the denominator of the heuristic rule of an edge can be
set to the same value for different dynamic graphs to enable comparison between
them.

A single frame of a dynamic graph of the MAPK/PKC signaling pathway is
shown in Fig. 11.6. At that time step, the source of the signal returned back to
zero, but some downstream motifs are still active. The dynamic graphs of two sim-
ulations are available as supplemental material. Use the control buttons under the
figures to play the animations (http://pnbook.uni-frankfurt.de/). This concludes the
description of the Petri net-based methodology to generate dynamic graphs from
ODE models of signaling pathways (see Fig. 11.7 for summary). In the next sec-
tion, we analyze the signal propagation and the topology dynamic of the model.

11.2.5 Tool Support

The Bhalla–Iyengar model is available in the DOQCS database [363] at http://doqcs.
ncbs.res.in, accession number 4, in GENESIS format [404], Matlab format and
SBML format. This model was imported and simulated with Virtual Cell [234].
The Virtual Cell model, MAPK_Feedback_Bhalla, is available in the public domain
at http://www.vcell.org under the shared username sihar.

11.3 Results

With the Bhalla–Iyengar model and experiments, Bhalla, Ram and Iyengar identi-
fied a cellular mechanism that controls the transition from a bistable behavior to a
monostable behavior and that is dependent on the previous history of the cell [34].
A saturating stimulation of the cells with PDGF for 5 minutes induces a MAPK
response that is sustained for at least 45 minutes (bistable regime). However, if the
same cells are restimulated one hour later with a second saturating PDGF stimula-
tion, the activity of MAPK is transient and returns to basal levels in less than 30
minutes (monostable regime). The duration of the second response is dependent on
the dose of the first stimulation.

The Bhalla–Iyengar study contains many simulations. In this section, we ana-
lyze two of them that capture the main features of the dynamic behavior of the

http://pnbook.uni-frankfurt.de/
http://doqcs.ncbs.res.in
http://doqcs.ncbs.res.in
http://www.vcell.org
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Fig. 11.6 Frame of one dynamic graph of the Bhalla–Iyengar model of the MAPK/PKC pathway
50 minutes after stimulation
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Fig. 11.7 Process of building a dynamic graph from an ODE model using Petri net theory

MAPK/PKC system: a first simulation with a single saturating stimulation and a sec-
ond simulation with two saturating stimulations. We created the dynamic graphs for
the two simulations (see supplemental Figs. 1 and 2 at http://pnbook.uni-frankfurt.
de/). These representations show clearly the dynamics of this model as described
in the paper. A brief saturating stimulation lasting 5 minutes is enough to initiate
the PKC positive feedback loop that sustains the signal long after the stimulation
is removed. In this positive loop, a MKP1 negative feedback loop is nested. This
topology could have created an oscillatory system. Instead, the output of this topol-
ogy is a sustained signal that is deactivated when the negative loop reaches a certain
threshold. The reason for this delayed inactivation rather than an oscillation is that
the loops are operating at two different time scales: the positive loop is made of
fast, binding and enzymatic reactions while the negative loop is mostly dependent

http://pnbook.uni-frankfurt.de/
http://pnbook.uni-frankfurt.de/


11 Analyzing Regulatory Motifs with Petri-Net Based Dynamic Graphs 241

Fig. 11.8 Regulatory motifs of the Bhalla–Iyengar model of the MAPK/PKC pathway

on the slow processes of gene expression and protein synthesis. A second stimula-
tion, an hour after the first one, transiently activates MAPK because MKP1 levels
are already up. In other words, the negative regulators are already synthesized and
for that reason the same stimulation does not produce a prolonged response.

A network analysis of the influence graph of the Bhalla–Iyengar model reveals
more regulatory motifs than the two loops previously studied. Some of these new
motifs also play a role in the dynamic behavior of the model. We divided the mo-
tifs into four modules: a negative feedback loop between MAPK and cRaf (FBL1,
Fig. 11.8(a)), a feedforward motif (FFM) nested in the negative feedback loop be-
tween MKP1 and MAPK (FBL2, Fig. 11.8(b)), a 3-branch feedforward motif be-
tween PKC and cRaf (FFM1, Fig. 11.8(c)) and the PKC positive feedback loop
where the three other motif modules are nested (FBL3, Fig. 11.8(d)). Guided by the
dynamic graphs, we methodically analyzed the dynamic of these motifs when the
system is stimulated once. Then, we studied the motif lifetimes to analyze the model
dynamic with two spaced stimulations.
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11.3.1 Dynamic and Function of the Regulatory Motifs

The regulatory motifs of cellular signaling networks have information processing
capabilities. The analysis of their dynamic is essential to understand how a spe-
cific input signal can be transformed into a completely different output signal. Even
though they form an integrated system, the four motif modules of the Bhalla–
Iyengar model have distinct signal processing functions that we describe bellow.
The reaction flows and concentrations analyzed in this section were identified by
our methodology and they correspond to the values of the edges and nodes of the
dynamic graph.

11.3.1.1 Negative Feedback Loop 1: MAPK Inhibition of Upstream Activator
cRaf is Inconsequential

The motif FBL1 is a simple negative feedback loop: the output MAPK is inhibit-
ing the input cRaf [401]. This type of motif usually has a purpose of adaptation
to maintain the output response in a physiologically desired range. To measure the
activity of feedback motifs, a first place to look is the value of the rate of the feed-
back flow. In the motif FBL1, it is the inhibitory edge going from MAPK to cRaf.
It is identified as Flow 1 (flow numbers are indicated in Fig. 11.8). As expected,
this flow follows the activation pattern of MAPK by reaching its maximum around
20 minutes (Figs. 11.9(a) and 11.10(c)). A reasonable hypothesis is that the motif
FBL1 is causing the observed adaptation of active MAPK: after reaching its maxi-
mum, the level of active MAPK starts declining. This hypothesis is invalidated by
the comparison of the activation of cRaf with and without FBL1 (Fig. 11.9(b)).
The difference is negligible and consequently, the motif FBL1 seems inoperative.
This is explained by the fact that the phosphorylation of cRaf by MAPK is equally
balanced by its constant dephosphorylation by the phosphatase PP2A. This motif
might play a role for the MAPK pathway in other cell types or when it is activated
by other receptors—it can theoretically induce oscillations [187]—but this motif is
not involved in the cell memory property of mouse fibroblasts stimulated by PDGF
according to the Bhalla–Iyengar model.

11.3.1.2 Negative Feedback Loop 2: Phosphorylation of MKP1 and Increase
of Its Expression by MAPK Are Both Needed to Halt MAPK
Signaling

The motif FBL2 is a negative feedback loop with a feedforward motif nested inside
it: MAPK can activate MKP1 through two paths and then, MKP1 inhibits MAPK.
To understand the function of a FFM, one has to consider the dynamic of the con-
verging branches and the mechanism of signal integration. For example, both inputs
of the FFM might be necessary to activate the output; this type of FFM thus has a
logical AND function. Its opposite is a FFM with a logical OR function in which
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Fig. 11.9 Temporal activity of the negative feedback loop 1 (FBL1) between cRaf and MAPK.
(a) Flow 1: Phosphorylation of cRaf by MAPK; (b) cRaf activity with (dashed) and without MAPK
feedback (solid)

one path or the other can activate the output in parallel. There are also other FFM
architectures where the inputs are incoherent; one is activating the target and the
other is inhibiting it. Mangan and Alon studied the possibilities of this type of mo-
tif [240]. In the motif FBL2 of the Bhalla–Iyengar model, the FFM has a logical OR
function. MAPK directly phosphorylates MKP1, which reduces its ubiquitination
and degradation [50]. The expression of MKP1 is also transcriptionally regulated
by MAPK [381]. Consequently, both inputs cause an increase of the levels of the
phosphatase independently. However, their action is at different time scales. The
phosphorylation is much faster than gene transcription and protein synthesis. There
is a first phase of activation of MKP1 with a peak around 20 minutes corresponding
to the phosphorylation of existing MKP1 by MAPK (Flow 2) and then a second
phase of activation due to the late synthesis of MKP1 (Flow 3) and its subsequent
phoshorylation (Fig. 11.10(a)). The slow steady increase of the dephosphorylation
of MAPK by MKP1 (unphosphorylated and phosphorylated MKP1 can equally de-
activate MAPK) is due to the large amount of newly synthesized MKP1 pouring
into the cell during the first hour following the stimulation (Fig. 11.10(b)). Since
the FFM nested in the motif FBL2 is an OR gate and because the feedback flow
4 follows the temporal pattern of MKP1 synthesis, an early conclusion would be
that flow 2 is not required for the function of this motif. However, a selective dis-
abling of flows 2 and 3 shows that MAPK is permanently activated if the FFM
is not completely operational (Fig. 11.10(c)). The upregulation of the transcription
and synthesis and the downregulation of the degradation are both necessary for the
feedback loop to turn off the bistability. This might seem paradoxical: both branches
of the OR gate nested in the motif FBL2 must function for the overcoming of the
positive feedback by the negative feedback. This illustrates the additive amplitude
increase of some FFMs. The flow 2 or the flow 3 alone is insufficient to let the neg-
ative feedback reach the threshold where MAPK is irreversibly inactivated. This is
an important point in network biology: concurrent paths seem redundant, but in this
situation, their additive effect is needed to achieve to motif function.
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Fig. 11.10 Temporal activity of negative feedback loop 2 (FBL2) between MAPK and MKP1.
(a) Reaction flows of the two paths of the nested feedforward motif from MAPK to MKP1. Flow 2:
Phosphorylation of MKP1 by MAPK (solid, left axis), Flow 3: Synthesis of MKP1 (dashed, right
axis); (b) Reaction flow of the inhibition of MAPK by MKP1. Flow 4: Dephosphorylation of
MAPK by MKP1; (c) Control of the MAPK bistability duration in three different conditions:
with full feedforward motif (solid), without the flow 3 for when the IEG regulated transcription
of MKP1 is inhibited (dashed) and without the flow 2 for when MAPK can not regulate MKP1
degradation (dotted)

11.3.1.3 Nested Feedforward Motif 1: The Three Paths of the Motif
Participates in a Cumulative Amplification of the Signal

The motif FFM1 is a nested feedforward motif with three paths: PKC can ac-
tivate (1) cRaf directly by phosphorylation and indirectly through the activation
of Ras by (2) the upregulation of RasGEF and (3) the downregulation of Ras-
GAP. The first FFM with Ras as the output is an OR gate. RasGAP and RasGEF
have independent opposing effects. However, their coherent regulation by PKC
increases the amplitude of the output. Approximately 10 minutes after stimula-
tion, the GTP exchange by RasGEF (Flow 5) leaves its basal level and the rate
of GTP hydrolysis by RasGAP (Flow 6) decreases (Fig. 11.11(a)). This is when
PKC is activated by arachidonic acid (AA, Fig. 11.12(a)). This second Ras activa-
tion occurs after the first activation by the stimulation signal that is coming from
the receptor bound GEF Sos. These two phases of activation are observed on the
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Fig. 11.11 Temporal activity of the nested feedforward motif 1 (FFM1) from PKC to cRaf. (a) Re-
action flows of the three reactions controlling the levels of active Ras. Flow 5: Ras GTP exchange
catalyzed by RasGEF (solid), Flow 6: Ras GTP hydrolysis catalyzed by RasGAP (dashed) and
Stimulation signal: Ras GTP exchange catalyzed by Sos (dotted); (b) Reaction flow of the activa-
tion of cRaf by Ras. Flow 7: Binding of Ras and cRaf; (c) Decomposition of the cRaf activation
into its two components. Forward binding of Ras with cRaf (solid) and with phosphorylated cRaf
(dashed); (d) Reaction flow of the third path of the FFM1. Flow 8: Phosphorylation of cRaf by
PKC

binding rate of Ras with cRaf (Flow 7, Fig. 11.11(b)). Flow 7 is the cumulative
binding flow of Ras to unphosphorylated and phosphorylated cRaf. A closer look
at two components of this flow—the forward binding of Ras with the two cRaf
conformations—confirms that the latter activation is caused by the phosphoryla-
tion of cRaf by PKC (Flow 8, Figs. 11.11(c) and 11.11(d)). As previously noted,
this modification of cRaf increases its activity because the dissociation constant of
phosphorylated cRaf with Ras is lower than for its unphosphorylated counterpart.
This biophysical integration mechanism creates an amplifying FFM. The full am-
plification of FFM1 is needed to sustain the activity of the positive feedback loop:
MAPK is back to its basal level if either of the flow 5, 6 or 8 is disabled (data not
shown).
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Fig. 11.12 Temporal activity of the positive feedback loop 3 (FBL3) between MAPK and PKC.
(a) Flow 9: Binding of AA and PKC; (b) MAPK activity with PKC activity and the positive feed-
back (solid) and without (dashed). Traces were independently scaled

11.3.1.4 Positive Feedback Loop 3: MAPK and PKC Form a Timed Bistable
Switch

The last motif module of the Bhalla–Iyengar model is the motif FBL3. It is a pos-
itive feedback loop between PKC and MAPK. The three other motif modules are
embedded inside it. This loop functions as a bistable switch that can transform a
brief stimulation into a sustained response. Flow 9 shows that this loop becomes ac-
tive approximately 5 minutes after the PDGF stimulation; it reaches an active quasi-
steady state around 25–30 minutes; and slowly decreases thereafter (Fig. 11.12(a)).
Flow 9 is a binding flow: its value is the difference between the forward and back-
ward rates of the binding reaction. This means that if the flow value is 0, it is a steady
state, not necessarily an inactive state. The inhibition of a molecular species of the
loop, like PKC, breaks the loop and impedes the persistent activation of MAPK
(Fig. 11.12(b)). As discussed previously, the roles of the different nested motif mod-
ules inside the motif FBL3 vary. The motif FBL1 has a negligible effect. The motif
FBL2 is an antagonist of the positive feedback loop and the strength of FBL2 will
determine the outcome of the bistable switch. The motif FFM1 is an amplifier of the
positive feedback that is necessary to achieve bistability. Connecting the modules
together creates a signaling network that has the necessary complexity to reproduce
the experimental observations. A reduced dynamic graph, showing only the key
components and flows of the system is shown in the supplementary material.

The modularization of the Bhalla–Iyengar model in terms of regulatory motifs is
needed to thoroughly dissect its complex behavior and analyze the dynamic of its
topology. Next, we take a step further with this approach and define the lifetime of
motifs. This measure will highlight the history-dependency feature of the model.
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11.3.2 Lifetime of the Regulatory Motifs

Now that we gained an understanding of the inner mechanisms of the Bhalla–
Iyengar model from a modular analysis of its regulatory motifs based on dynamic
graphs, we will apply this knowledge to understand the dynamic behavior of this
system when subjected to two saturating stimulations each lasting 5 minutes, one
hour apart. Up to the second stimulation, the dynamic response of the simulated
system is identical to the one stimulation experiment as expected. The stimulation
sets the positive feedback loop into action with the help of the signal amplification
of a nested feedforward motif. The positive feedback sustains the signal long after
the initial stimulus is removed. This long MAPK activity initiates a slower negative
feedback loop driven by the transcription and the synthesis of the negative regulator
MKP and reduces its degradation by phosphorylation. When the second saturating
dose of PDGF is added, both the positive and negative feedback loops are already
active. This activity of the loops induces, after an identical stimulation, a different
response from the cell. This is why this system is history-dependent.

The reduction of the system and its behavior to its regulatory motifs pro-
vides the main components for the analysis of the dynamics of the system. The
level of activation at these signaling components is an indication of the activity
of the regulatory motifs. Fig. 11.13 shows the output of the four regulatory mo-
tifs of the MAPK/PKC model: MAPK* (FBL1), MKP1 (FBL2), cRaf*-RasGTP
(FFM1) and PKC* (FBL3). The MAPK activity profile shows the double activation
(Fig. 11.13(a)); the second stimulation induces a shorter response than the initial
stimulation. A new maximum of activity is reached for FFM1 with the second FGF
stimulation (Fig. 11.13(c)) because cRaf is simultaneously stimulated by the FGF
signal and the positive feedback loop signal coming from PKC. However, this higher
activity is not transmitted downstream, because MAPK is already saturated. The
second stimulation has also a minimal effect on FBL3 (Fig 11.13(d)): PKC* is be-
low its maximum by 5% when the second stimulating signal reaches this motif. The
most significant state difference for a regulatory motif is in FBL2 (Fig. 11.13(b)).
At the moment of the second stimulation, MKP1 synthesis is in progress, the levels
of MKP1 are already high and it has started to downregulate MAPK. The negative
regulation is overpowering the positive regulation and for that reason, the second
stimulation induces only a transient response. See the reduced dynamic graph in the
supplemental material to observe this behavior.

The regulatory motifs are functional modules useful to decompose a signaling
network and understand its complex dynamic behavior. It is a level of organization
above individual signaling components. Once the functions of the regulatory motifs
are understood, it is possible to represent the behavior of the system just by their ac-
tivity. We developed the concept of motif lifetime to display this information. When
the signal of the output signaling component of a motif is above 25% of its usual
maximal level, the motif is considered active. With this simple metric, the period
of activity of motifs can be determined. The lifetime of the four regulatory mo-
tifs of the Bhalla–Iyengar model is displayed in Fig. 11.14, where one can see that
the second stimulation occurs when the MKP1 loop (FBL2) is still active. A single
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Fig. 11.13 Outputs of the four regulatory motif modules with a first 5 minute stimulation at
0 min and a second one at 65 min. Concentrations of (a) MAPK* (FBL1); (b) MPK1 (FBL2);
(c) cRaf*-RasGTP (FFM1) and (d) PKC (FBL3)

Fig. 11.14 Lifetime of the
four regulatory motifs of the
Bhalla–Iyengar model.
Stimulations indicated by
short black rectangles

PDGF stimulation produces a MAPK response that is above the 25% threshold for
approximately 120 minutes. The second stimulation induces a shorter response of
40 minutes. From the lifetime of the motif FBL1, it is possible to see that the model
predicts that the monostable regime of these cells could last up to four hours after
the initial stimulation.
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11.4 Related Work

The relationship between the dynamics of a network and its topological organiza-
tion has been subject to debate. Studies using graph theory established profiles of the
signaling processing capabilities of network configurations [239] and characteriza-
tions of the robustness of a system [310] without any kinetic information. However,
Ingram et al. studied the dynamics of the bifan regulatory motif with mathematical
modeling and concluded that it is difficult to get insights into biological function
just by considering topology [169]. The theoretical analysis of the bifan motif and
of its filtering and synchronization properties was extended by Lipshtat et al. [233],
again using mathematical modeling. They also concluded that a thorough study of
the range of possible behaviors of a motif needed more than nodes and links alone,
emphasizing this statement for a network of coupled motifs. Dynamic graphs, based
on the simulation data of a mathematical model, are a step further in that direction.
Kinetic dynamic and topology are both needed to fully understand the behavior
observed in distant input-output relationships between components of cellular sig-
naling networks.

A previous attempt to connect differential equation modeling and graph theory
by Fages and Soliman demonstrated in [113] that an influence graph could be de-
rived from a system of ODEs using the Jacobian matrix, but dynamics were not
considered.

11.5 Summary

In this chapter, we described a new type of representation for dynamical systems: the
Dynamic Graph. Dynamic Graphs bridge two formalisms commonly used in com-
putational biology—differential equations and graph theory—with Petri net theory.
The transformation of an ODE model into an animated influence graph is done in
several steps. First, the mathematical model is converted into a Petri net model.
Second, an interaction graph is built with the results of a conservative component
analysis of this model. Third, the interaction graph is modified into an influence
graph with the results of a repetitive component analysis of subgraphs of the Petri
net model. Finally, the definition of heuristic visualization rules allows the mapping
of the simulation data, generated by the numerical simulation of the ODEs, onto the
influence graph. The result is a Dynamic Graph. We demonstrated the building pro-
cess of a dynamic graph with the Bhalla–Iyengar model and analyzed the dynamics
of its topology. The model was divided into four regulatory modules and functions
were assigned to each module. This model successfully explains the transformation
from a bistable to a monostable system. We have also completed a more detailed
analysis of this system with the dynamic graph approach and described the role of
the motifs that gives to this system its history-dependent characteristic.

Dynamic Graphs are an intuitive representation of the activity of a signaling net-
work. They are powerful tools to analyze the propagation of a molecular signal
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inside the cell and to grasp the formation of regulatory motifs as the signaling infor-
mation is processed by the cell’s pathways. They also enable a functional analysis
of complex cellular behaviors that are based on regulatory motifs instead of indi-
vidual signaling components. As biomodels are likely to become more complex,
Dynamic Graphs and dynamic topology analysis will become powerful tools for
computational biologists.

11.6 Problems

11.1 Transform the following ordinary differential equations into a Petri net model

d[Ligand]/dt =−k1[Ligand][Receptor] + k2[Receptor.act]
d[Receptor]/dt =−k1[Ligand][Receptor] + k2[Receptor.act]

d[Receptor.act]/dt = k1[Ligand][Receptor] − k2[Receptor.act]
− k3[Receptor.act][Kinase1] + k4[R.K1.complex]

d[Kinase1]/dt =−k3[Receptor.act][Kinase1] + k4[R.K1.complex]
d[R.K1.complex]/dt = k3[Receptor.act][Kinase1] − k4[R.K1.complex]

d[Kinase2]/dt = kcat1[R.K1.complex][Kinase2]/
(
Km1 + [Kinase2]

)

− kcat2[Phosphatase][Kinase∗2
]
/
(
Km2 +

[
Kinase∗2

])

d
[
Kinase∗2

]
/dt =−kcat1[R.K1.complex][Kinase2]/

(
Km1 + [Kinase2]

)

+ kcat2[Phosphatase][Kinase∗2
]
/
(
Km2 +

[
Kinase∗2

])

11.2 It is possible to distinguish two types of edge in the interaction graphs gen-
erated from a Petri net model even if this information is not used in the method
presented in this chapter.

1. Which characteristics of the Petri net model connectivity allow for this distinc-
tion? What is the biological interpretation for each type of connectivity?

2. Generate the interaction graph of the Petri net model of Question 11.1 above.
Divide the edges of this graph in the two types.

11.3

1. Some edges present in an interaction graph might not be in the influence graph
derived from it. How is this possible?

2. In the interaction graph of Question 11.2, which edges do not become arcs in an
interaction graph when the signal comes from the Ligand?

11.4 Can a Petri net with more than one P-invariant be covered by only one signal-
ing segment? Why?
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11.5 The following questions are based on the model of the JAK-STAT path-
way [420]. The Virtual Cell version of this model, JAK-STAT Yamada model, can
be found under the username sihar. A SBML file can be exported from the Virtual
Cell model and then read with Snoopy.

1. How many P-invariants do the Petri net of this model have? What is their biolog-
ical meaning?

2. Is the model covered with P-invariants? If not, what modifications would give it
this property?

3. What is the interaction graph of this model?
4. Which edges were not determined with the connectivity condition using the in-

tersection of conservative components?
5. How many T-invariants are there in the STAT subgraph? What are the signaling

segments of the STAT subgraph?
6. What is the regulatory motif of the model of this signaling pathway?
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Chapter 12
A Modular, Qualitative Modeling of Regulatory
Networks Using Petri Nets
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Abstract Advances in high-throughput technologies have enabled the delineation
of large networks of interactions that control cellular processes. To understand be-
havioral properties of these complex networks, mathematical and computational
tools are required. The multi-valued logical formalism, initially defined by Thomas
and coworkers, proved well adapted to account for the qualitative knowledge avail-
able on regulatory interactions, and also to perform analyses of their dynamical
properties. In this context, we present two representations of logical models in terms
of Petri nets. In a first step, we briefly show how logical models of regulatory net-
works can be transposed into standard (place/transition) Petri nets, and discuss the
capabilities of such a representation. In the second part, we focus on logical regula-
tory modules and their composition, demonstrating that a high-level Petri net repre-
sentation greatly facilitates the modeling of interconnected modules. Doing so, we
introduce an explicit means to integrate signals from various interconnected mod-
ules, taking into account their spatial distribution. This provides a flexible modeling
framework to handle regulatory networks that operate at both intra- and intercellu-
lar levels. As an illustration, we describe a simplified model of the segment-polarity
module involved in the segmentation of the Drosophila embryo.
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12.1 Introduction

Great advances in molecular biology, genomics and functional genomics open the
way to the understanding of regulatory mechanisms controlling essential biological
processes. These mechanisms interplay and operate at diverse levels (transcription
and translation of the genetic material, protein modifications, etc.). They define large
and complex networks, which in turn constitute a relevant functional integrative
framework to study the regulation of cellular processes. To assess the behaviors
induced by such networks, dedicated mathematical and computational tools are very
much required. In general, mathematical models for concrete regulatory networks
are defined as a unique whole, considering networks of limited sizes (up to few
dozens of components). This approach is not scalable and has to be modified as
networks are increasing in size and complexity. One main purpose of this chapter is
to present a compact, qualitative modeling framework to represent large regulatory
networks and analyze them.

We rely on a qualitative discrete framework for the modeling of regulatory net-
works, namely the generalized logical formalism, initially proposed by Thomas in
the 70s [389–392]. The logical formalism has been applied to a variety of regula-
tory networks comprising relatively large numbers of components (e.g., [330, 335]).
To tackle the modeling of networks encompassing hundreds of nodes or interacting
cells, we propose here to resort to modular modeling. In particular, in the case of
patterning in developmental processes, one has to consider patches of communicat-
ing cells. In such processes, modularity clearly arises, each intra-cellular network
defining a module. More precisely, in this chapter, we provide a convenient way to
define the modeling of interacting regulatory modules.

After defining the semantics underlying regulatory interactions (as opposed to
biochemical reactions that compose e.g., metabolic networks), the Sect. 12.2 gives
the basis of the logical formalism. In [65–67, 374], a standard (i.e., P/T) Petri net
representation of logical regulatory graphs have been proposed. This representation
is summarized and discussed in Sect. 12.3.

The rest of the chapter is dedicated to the specification of a framework that ad-
dresses module composition in the context of patches of communicating cells. In
Sect. 12.4, we show how, based on the logical framework, high-level Petri net repre-
sentation provides a very compact and efficient means to compose regulatory mod-
ules.

Finally, to illustrate the modeling framework delineated in Sect. 12.4, we show
the dynamical analyses (in particular expression pattern identification) for various
composition scenarios of a simple module, and of the segment-polarity module in-
volved in the segmentation of the Drosophila embryo.

12.2 Logical Modeling of Regulatory Networks

Regulation refers to the molecular mechanisms responsible for the changes in the
concentration or activity of a functional product. Such mechanisms range from



12 A Modular, Qualitative Modeling of Regulatory Networks Using Petri Nets 255

DNA-RNA transcription to post-translational protein modifications. In regulatory
networks, details on the precise molecular mechanisms that drive the regulation are
often abstracted, the semantics associated to the interactions mostly reduces to acti-
vatory or inhibitory effects. Among the diversity of frameworks used to model such
regulatory networks (see [175, 343]), one successful qualitative formalism is the
logical approach, initially developed by R. Thomas and coworkers [389–392]. The
logical formalism has been applied to model and analyze regulatory networks con-
trolling a variety of cellular processes from pattern formation and cell differentiation
(e.g., [258, 333–335]) to cell cycle (e.g., [115]). A software has been developed,
GINsim, which enables the definition and analysis of logical models [132, 283] (see
also Sect. 12.3.1). GINsim provides a number of exports of logical models among
which several exports into Petri net formats.

When considering regulatory networks, the semantics associated with the in-
teractions between components varies compared to that of, for example, reaction
networks: levels of regulators do not change during the regulatory process. At the
level of abstraction conveyed by the logical formalism, regulatory networks can be
viewed as influence networks. In terms of PNs, to represent such interactions, test
arcs provide a convenient solution. Moreover, in the case of an activation, the pres-
ence of an activator enhances the level of its target, but the absence of the activator
may also have an effect on the target, decreasing its level (and the other way around
for a repression). Such situations can be represented in PNs using inhibitor arcs that
allow a test to zero. However, the analysis methods based on the matrix representa-
tion of PNs are no more valid when using inhibitor arcs. Opportunely, when places
are bounded (their markings are limited), it is possible to replace inhibitor arcs by
adding new complementary places. Section 12.3 relies on these principles to define
a systematic translation of logical into Petri net models (see Part I, Chap. 3).

In the sequel, the definitions of logical regulatory graphs and their associated
transition graphs are given, further details might be found in [64, 282].

12.2.1 Logical Regulatory Graphs (LRGs)

A Logical Regulatory Graph (LRG) is a graph, where each node represents a regula-
tory component, associated with a range of discrete functional levels (of expression
or of activity). In most of the cases, the Boolean abstraction is sufficient (e.g., a gene
is expressed or not, a protein is active or not), but there are situations where more
than two levels are necessary to convey the functional role of a regulator that varies
when the concentration of its product crosses different thresholds. In particular, this
is the case when a product regulates several targets, these regulations possibly occur-
ring at distinct thresholds. This leads to the arcs of the LRG that represent regulatory
interactions. Finally, one needs to define the behaviors of the components submitted
to regulatory interactions. This is done by setting up logical functions that define
the target levels of the components (within the admissible ranges) for each possible
combinations of incoming interactions. The formal definition of LRGs is provided
below, and Fig. 12.1 p. 256 gives a simple example.
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Fig. 12.1 Example of an LRG. The regulatory graph is displayed in the higher level, with the
nodes denoting components and the arcs denoting interactions (arcs with normal arrows denote
activations, whereas arcs with blunt end denote repressions). The logical functions are then given
in the form of tables (one for each component), where each row corresponds to (a set of) state(s)
with the corresponding function values (∗ denotes one value among all possible values, 1–2 de-
notes value 1 or 2, etc.). For example, the table on the left defines the logical function KG0, which
only depends on the levels of G1, the sole regulator of G0. The IDD representation of each logical
function is given in the lower level (see Sect. 12.2.2 for explanations). For instance, G3 has two
regulators (G0 and G1), its logical function KG3 specifies that, when both regulator levels are
lower than 2, whatever the levels of the other components (which have indeed no effect on G3),
the target level of G3 is 0 (first row of the table defining KG3). The IDD representing KG3 en-
compasses the decision variables x0 and x1 (the levels of G3 regulators) and the case just described
is recovered by following the edges going out x0 and x1 labeled [0,1], which leads to a leaf labeled
0 (for readability, this leaf has been duplicated)

Definition 12.1 A logical regulatory graph (LRG) is defined as a labeled directed
multigraph1 R = (G ,E ,K ) where,

• G = {g1, . . . , gn} is the set of nodes, representing regulatory components. Each
gi ∈ G is associated to its maximum level Maxi (Maxi ∈ N

∗), its current level
being represented by the variable xi (xi ∈ {0, . . . ,Maxi}). We define x =def

(x1, . . . , xn) the current state, and S =def
∏

gi∈G {0, . . . ,Maxi} the set of all pos-
sible states.

1A multigraph is a graph with possibly several edges between a pair of nodes.
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• K = (K1, . . . ,Kn) defines the logical functions attached to the nodes specifying
their behaviors: Kj is a multi-valued logical function that gives the target level
of gj , depending on the state of the system: Kj :S →{0, . . . ,Maxj }.

• E is the set of oriented edges (or arcs) representing regulatory interactions. An
arc (gi, gj ) specifies that gi regulates gj (when there is no possible confusion,
i stands for gi ), that is, Kj varies with xi . A regulatory graph may contain self-
loops (an arc (i, i) represents a self-regulation of gi ).

For each gj ∈ G , Reg(j) denotes the set of its regulators: i ∈ Reg(j) if and
only if (i, j) ∈ E .

Several remarks follow from Definition 12.1.

Remark 12.1 It is clear that, to determine the target level of a component, only
the levels of its regulators are required (other components have no effect). In other
words, Kj can be defined on the restricted domain

∏
gi∈Reg(j){0, . . . ,Maxi}. For

example, in Fig. 12.1, since G1 is the sole regulator of G0, we could restrict the
domain of KG0 to {0, . . . ,MaxG1} (indeed, in the table defining KG0, we can verify
that the values of G0, G2 and G3 do not matter).

Remark 12.2 If gi ∈ Reg(j) and Maxi > 1 (gi regulates gj and is multi-valued), gi

may have different effects onto a component gj , depending on the current level of gi ,
leading to the definition of a multi-arc between gi and gj . Such a situation typically
happens when a component has a dual regulatory role, for example, activation at
low and repression at high concentrations.

Here, to avoid the cumbersome notations resulting from such multi-arcs, we as-
sume that all interactions are simple. However, it is straightforward to generalize
all the definitions introduced in this chapter to LRGs encompassing multi-arcs (see,
e.g., [282]).

Remark 12.3 The biologists often associate signs to the regulatory interactions, dis-
tinguishing between positive effect (activation or enhancing) and negative effect
(repression or silencing). However, the actual effect of an interaction on its target
may depend on the presence of cofactors; its sign may even change depending on
the context. In any case, the signs of interactions can be derived from the logical
functions K s. Moreover, a threshold θ associated to an interaction from gj to gi

with 1 ≤ θ ≤ Maxj indicates for which level of gj the interaction is active (i.e.,
when xj ≥ θ , (gj , gi) is active). This threshold can also be recovered from the func-
tion Ki : θ is the value for which there exists x ∈ S such that for x′ defined as
x′k =def xk,∀k = j and x′j =def xj + 1= θ , we have Ki (x) =Ki (x

′). For example,
in Fig. 12.1 the interaction from G0 to G1 is associated with a threshold 1 and a
positive sign; this is visible by comparing the first and third rows of the table defin-
ing KG1 (also the second and the fourth rows), where, for fixed values of the other
components, changing G0 level from 0 to 1 leads to a change in the target value of
G1 from 0 to 1. Whereas the interaction from G0 to G3 is associated with a thresh-
old 2 with a negative sign (determined by comparing second and third lines of KG3
table).
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Finally, it is worth noting that a set of logical functions Ki , i = {1, . . . , n},
fully defines an LRG encompassing n regulatory components. In particular,
for each i ∈ {1, . . . , n}, its maximum level is given by the maximum value
of Ki .

12.2.2 Logical Functions Representation Based on Decision
Diagrams

In [282], logical functions were represented by means of Reduced Ordered Multi-
valued Decision Diagrams (ROMDDs, referred to as MDDs in the following). This
representation, internally used in GINsim for efficiency purposes, facilitates the def-
inition of algorithms for the analysis of logical models (e.g., see the stable state de-
termination described in [282]). The use of MDDs also makes the definition of the
P/T net representation of logical models easier and more concise than that proposed
in for example, [65]. This representation, which is quite intuitive, is informally pre-
sented below.

Binary Decision Diagrams (BDDs) are a convenient data structure to repre-
sent Boolean functions [52]. A BDD is a rooted, directed, acyclic graph, en-
compassing decision nodes (labeled by a Boolean variable) and two leaves (also
called terminal-nodes) labeled respectively, 0 (false) and 1 (true). Decision nodes
have two successors (or children): the left (resp. right) outgoing edge represents
an assignment of the variable to 0 (resp. to 1). Most BDDs are ordered and
reduced, meaning that variables appear in the same order along all the paths
from the root, and that all isomorphic (equal) subgraphs are merged and nodes
having two isomorphic children are deleted (see Fig. 12.2 for an illustration).
This structure has been naturally extended to handle discrete multi-valued func-
tions, which are then represented by Multi-valued Decision Diagrams (MDDs),
where the decision nodes have as many children as the number of their possi-
ble values and the leaves (or terminal nodes) are labeled by the values of the
function [179]. The ordering and reduction rules defined for binary decision di-
agrams apply also to this multi-valued generalization (see [52] for further de-
tails). A path from the root to a leaf represents a (possibly partial) assignment of
the decision variables for which the function takes the value carried by the leaf
(see Fig. 12.2).

In the MDD representation of the function Ki of a regulatory component gi , the
decision variables are the variables associated to the regulators of gi , and the leaves
take their values in [0,Maxi], which denotes the integer interval {0, . . . ,Maxi}. Note
that the use of a MDD leads to a simplified expression of Ki , but the resulting
diagram and its complexity may vary depending on the ordering of the decision
variables [179].

Finally, it is possible to consider a compact representation of the usual MDD by
merging consecutive edges leading to the same child as explained hereafter.

Given gi ∈ G , for each decision variable xj that appears in the diagram of Ki ,
there are Maxj + 1 outgoing edges, implicitly labeled with the corresponding value
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Fig. 12.2 Decision diagrams representing logical functions. The Boolean function f1 (top part)
of the Boolean variables A,B,C, evaluates 1 (i.e., true) if A or B and C (∧ stands for and, ∨
stands for or); f1 can be equivalently defined by a truth table (where ∗ denotes all possible values,
here 0 and 1) and by a binary decision diagram. For instance, A,B,C all set to 0 (first line of the
table) corresponds to the path in the diagram following the leftmost edges going out A and B and
leading to the leaf 0, indicating that, for these assignments of A,B,C, the function f1 evaluates
to 0. The multi-valued function f2 (bottom part) evaluates to 0, 1 or 2, depending on the values
of the discrete variables A and B . Similarly, f2 can be defined by means of a table or a decision
diagram. For instance, in this diagram, the variable assignments A= 2 and B = 1 (last line of the
table) define the path comprising the rightmost edge going out A followed by the rightmost edge
going out B , leading to the value 2

in [0,Maxj ]. An alternative diagram can thus be considered by merging consec-
utive edges (i.e., labeled with consecutive values) towards the same child into a
unique edge, which is then labeled with the integer interval of these consecutive
values. Remaining edges are labeled by intervals containing a unique value for
the decision variable. Then, in the resulting diagram, each decision path Φ (from
the root node to a leaf labeled vΦ ∈ [0,Maxi]) corresponds to a set of assign-
ments of the regulators gj ∈ Reg(i) for which the value of Ki is vΦ (see Exer-
cise 12.1):

• If path Φ encompasses an edge going out the decision variable xj , the set of
assignments of xj is equal to the label [φj ,φ

′
j ]� [0,Maxj ] (called the Φ assign-

ment interval for xj ) of the edge going out the decision variable xj .
• If, along the path Φ , a decision variable xj does not appear (due to the simplifi-

cation of the MDD), it means that Ki (x)= vΦ does not depend on xj .

Such diagrams were introduced in [377] as a generalization of MDDs and re-
ferred to as Interval Decision Diagrams (IDD). Here, we deal with a specific class
of IDD, since our decision variables are discrete and bounded.

Remark that, because we have assumed that regulatory graphs do not encom-
pass multi-arcs, in this IDD representation, each decision variable has exactly two
children.

Figure 12.1 illustrates an LRG together with the functions K s represented by
means of IDDs. For a better readability, IDDs are often not fully reduced.
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12.2.3 State Transition Graphs Associated to LRGs

The behavior of a logical regulatory graph is defined by the logical functions intro-
duced in Definition 12.1. For any state of the system (i.e., a vector encompassing
the levels of all the regulatory components), these functions indicate the target level
of each component, that is the level to which it evolves. State Transition Graphs
(STGs) constitute a classical and convenient way of representing the behavior of
such systems. In these directed graphs, nodes represent states, and arcs represent
transitions between states that amount to update one component level (increasing or
decreasing it by one).

Definition 12.2 Given an LRG R = (G ,E ,K ), its full State Transition Graph
(STG) is a directed graph (S ,T ) such that:

• the set of nodes is the set of states S as defined above,
• T ⊆S 2 defines the set of transitions (arcs) as follows. For all (x, y) ∈S 2:

(x, y) ∈T ⇐⇒ ∃gi ∈ G s.t.

⎧
⎨

⎩

Ki (x) = xi,

yi = δi(x)=def xi + sign(Ki (x)− xi),

yj = xj ∀j = i.

Given an initial state x0, we further define the STG (S|x0 ,T|x0), which contains
all states reachable from x0:

• x0 ∈S|x0 ,
• ∀x ∈S|x0 , ∀y ∈S , (x, y) ∈T ⇒ y ∈S|x0 and (x, y) ∈T|x0 .

The updating function δi of a regulatory component gi , as defined above, speci-
fies the update of xi , the level of gi ; depending on the current state x of the network,
the value of δi(x) is either xi (no change, xi = Ki (x)), xi + 1 (increase by one,
xi < Ki (x)) or xi − 1 (decrease by one, xi > Ki (x)).

In Fig. 12.3 the full STG of the LRG of Fig. 12.1 is displayed, together with two
sub-graphs obtained for different initial states. Analyzing an STG, we can recover
important properties of an LRG, among which:

• Single point attractors or stable states (e.g., corresponding to stable expression
patterns) are nodes of the STG with no successor; in other words, they are states
in which all component levels are equal to the target value indicated by the logical
functions.

• Complex attractors (e.g., corresponding to oscillatory behaviors) are terminal
strongly connected components encompassing more than one node, that is, sets
such that all states are reachable from each other along directed paths, and there
is no outgoing transition; in other words, the system is trapped in such a set once
it has reached one of its state (see Exercise 12.2).

• Reachability of given attractors from initial conditions corresponds to the exis-
tence of path(s) in the STG.
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Fig. 12.3 State transition graphs corresponding to the LRG of Fig. 12.1. On top, the full STG,
encompassing all 36 states. Note that there are two stable states indicated as ellipse nodes:
(xG0, xG1, xG2, xG3) = (2,2,1,0) and (0,0,0,0). Other transient states are denoted as rectan-
gular nodes. The two graphs in the lower part of the figure correspond to sub-graphs of the full
STG for the initial states (0,0,1,0) (on the left) and (1,2,1,0) (on the right). Note that, for the
initial state (1,2,1,0), one stable state is lost

12.3 P/T Petri Net Representation

The Definition 12.3 below explicitly defines a P/T net associated to an LRG, using
the IDD representation of the functions Kis (as introduced in Sect. 12.2.1). Further
details, basic properties and applications of this P/T net representation of LRGs are
provided in [65] for the Boolean case, and in [66, 68] for the multi-valued one.

Definition 12.3 Given an LRG R = (G ,M ax,E ,K ), we define the correspond-
ing Multi-valued Regulatory Petri Net (MRPN) as follows:
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• For each gi ∈ G , two complementary places are defined, gi and g̃i , satisfying, for
all marking M :

M(gi)+M
(
g̃i

)=Maxi . (12.1)

• For each gi ∈ G , for each path Φ from the root to a leaf of the IDD represent-
ing Ki , at most two transitions are defined, one accounting for the increasing shift
(denoted t+i,Φ ), the second accounting for the decreasing shift (denoted t−i,Φ ) (this
simplifies when the leaf is associated with an extreme value, see below). Recall
that Φ defines assignment intervals of the levels of gj in Reg(i): xj ∈ [φj ,φ

′
j ],

with φj ,φ
′
j ∈ [0,Maxj ] and φj ≤ φ′j .

• Transitions t+i,Φ and t−i,Φ are connected to:
– place gj , j ∈ Reg(i), with a test arc weighted φj ,
– place g̃j , j ∈ Reg(i), with a test arc weighted Maxj − φ′j .

Transition t+i,Φ is further connected to:
– place gi , with an outgoing arc (increasing the level of gi ),
– place g̃i , with an incoming arc weighted Maxi − vΦ + 1 (ensuring that the

current level of gi is less than the focal value vΦ ) and an outgoing arc weighted
Maxi−vΦ (accounting for the decreasing by one of the current marking of this
complementary place).

Symmetrically, transition t−i,Φ is further connected to:
– place g̃i , with an outgoing arc (decreasing the level of gi ),
– place gi , with an incoming arc weighted vΦ + 1 (ensuring that the current

level of gi is greater than the focal value vΦ ) and an outgoing arc weighted vΦ

(accounting for the decreasing by one of the current marking).

From the definition above, it follows that, for all gi ∈ G and Φ a path in the
decision diagram associated to Ki , when vΦ = 0 or vΦ = Maxi (the value of the
Ki for this assignment of the regulators is extreme), only one transition is relevant.
Indeed, if vΦ = 0, transition t+i,Φ can be omitted as, by construction, there will never

be Maxi + 1 tokens in place g̃i . Similarly, if vΦ = Maxi , transition t−i,Φ can be
omitted as there will never be Maxi + 1 tokens in place gi . Moreover, for gj ∈
Reg(i), when φj = φ′j , from (12.1), it suffices to consider only one test arc (that
towards place gj for example).

Given an LRG R and an IDD representation of its logical functions, the Defini-
tion 12.3 uniquely specifies a P/T net. It can be shown that, given an initial state x0,
the STG (S|x0 ,T|x0) is isomorphic to the marking graph of the P/T net with the

initial marking defined as M0(gi)= x0
i and M0(g̃i)= 1− x0

i , for all components gi

(see proof in [68]). Hence, properties of an LRG can be derived from the analysis
of the marking graph of its P/T net representation.

The IDD representation of the logical function leads to more compact Petri nets
compared to those obtained by using decision trees or truth table representations
(as in [66]). Different orderings of the variables in the IDD may generate different
reductions. However, although the number of transitions may vary, it can be proved
that the resulting dynamics (the marking graphs) are identical [68].

Figure 12.4 illustrates this P/T net representation for the LRG of the Fig. 12.1.



12 A Modular, Qualitative Modeling of Regulatory Networks Using Petri Nets 263

Fig. 12.4 P/T net representation for the LRG of the Fig. 12.1. In each row, the IDD giving the
component logical function in displayed on the left, and the corresponding piece of P/T net is
displayed on the right. Test arcs are depicted as dotted lines. Paths in the IDD are indicated with
their respective transition(s), indicated by using the same color. For example, for G0, path Φ1
(in red) corresponds to the situation where the absence of G1 leads to a decrease of G0’s value,
represented in the P/T net by the transition in red t−0,Φ1

. For G1, path Φ3 gives rise to the two

transitions t−1,Φ3
and t+1,Φ3

(in blue), since it leads to the intermediate value 1
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12.3.1 Tools Support

GINsim is a software dedicated to the definition and analyze of regulatory networks
logical models [132, 283]. With the representation presented in Sect. 12.3 we can
also employ PN tools to analyze (larger) LRGs. GINsim has been equipped with
export functionalities generating files in the INA [166] format, PNML (Petri net
markup language) [306] and APNN (Abstract Petri Net Notation) [29].

In the case of the analysis of the segment-polarity system as defined in [335], the
reachability analysis of the expected patterns was performed using INA. We have
also assessed the high complexity of the STG of this model, using tools such as the
model-checking tool DSSZ-MC [101] and Tina [393].

12.3.2 Related Works

Related works include the representation of logical regulatory networks by means
of high-level Petri nets. In [66] a high-level PN representation of LRGs is defined,
encompassing one place and one transition for each regulatory component. The even
more compact representation defined in [81] enables the verification of the model
coherence under various hypotheses (accounting for observed biological behaviors
such as homeostasis, multistationarity, or even more specific temporal properties).

Based on similar principles as exposed in this section, Steggles et al. have defined
a Petri net representation of Boolean regulatory graphs [374]. However, to account
for Boolean networks as introduced by Kauffman [185] which are synchronously
updated (meaning that all components are updated at once), a two-phase method is
defined to ensure the synchronization of the updates. The first phase identifies all
components that are called to change their values, the second phase performs this
update synchronously.

Finally, the PN representation of regulatory networks as presented here, enables
the delineation of integrated models of regulated metabolic pathways, considering a
logical model of the regulatory level (a PN representation) linked to a classical PN
model of the metabolic part. In [362], this approach is illustrated with a qualitative
modeling of the biosynthesis of tryptophan (Trp) in E. coli.

12.4 Modules, Their Composition and High-Level Petri Net
Representation

The framework presented in this section deals with collections of spatially dis-
tributed abstract modules (nonnested) which may be cells, compartments in cells
or any subsystems that one wants to model separately. Each such module is defined
by a regulatory network with identified inputs. The regulation functions take into
account spatial configuration between modules.
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In a first step, we introduce Logical Regulatory Modules (LRMs) as LRGs
equipped with external input nodes and arcs. Then, we define how such modules
can be spatially located and interconnected in order to form a Collection of in-
terconnected Logical Regulatory Modules (CLRMs). Finally, given a collection of
logical regulatory modules, we define its high-level Petri net representation.

12.4.1 Interconnecting Logical Regulatory Modules

In what follows, a Logical Regulatory Module is defined as a uniquely identified
logical regulatory network associated with a set of input components that regulate
internal ones. Notice that no output nodes are defined because any internal com-
ponent may generate an external signal towards other modules; moreover, input
components are not effective regulatory components in that they do not introduce
any intermediary step in the signaling. These inputs are meant to combine (or inte-
grate) external signals from other modules. Functions σ in Definition 12.4 perform
such combinations by calculating the levels of the integrated signals, depending on
the levels of the corresponding individual incoming signals and on their attributed
weights. These weights, defined as real numbers on the interval [0;1], encode neigh-
boring relations, which in turn are defined when interconnecting the modules (see
Definition 12.5). Hence, at this stage, in order to define a logical regulatory mod-
ule, one has to specify the components that are likely to signal the module, and
how input signals are combined through the functions σ . If needed, both constraints
could be relaxed. In particular, postponing the specification of functions σ to the
actual connection of modules would be a straightforward extension of the current
framework.

Definition 12.4 Given Γ a domain of regulatory components, a Logical Regulatory
Module (LRM) M is a tuple (G ,E , γ, σ,K ), where

• G ⊆ Γ is the set of internal components;
• E ⊆ G × G is the set of internal interactions between internal components;
• γ ⊆ Γ is the set of input components;
• σ = {σv,g | (v, g) ∈E ⊆ γ × G } is a set of integration functions,

σv,g :
({0, . . . ,Maxv} × ]0;1])∗ → {0, . . . ,Maxg}

computing the combined level for all inputs v regulating g. Their arguments are
pairs (xv, dv) where each xv is the level of v in one neighbor, weighted by dv > 0;

• K is a set of logical functions defined on G giving, for each component g ∈ G ,
its target level in {0, . . . ,Maxg}, depending on the levels of its regulators. For an
internal regulator r (r ∈ G ) the level used to evaluate Kg is xr as usual, while for
an input regulator v (v ∈ γ ), the level used to evaluate Kg is the current value
of σv,g . We denote by args(Kg) the set of arguments of Kg .
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Fig. 12.5 A “toy” LRM M with: G =def {A,B,C}, E =def {(A,C), (C,B), (B,A)}, γ =def {B},
with, e.g., σB,C =def (yj , dj )j≥0 �→ round(max(yj · dj )), and K being defined on the right part
of the figure. The input node B is depicted as a gray node. We have args(KC)= {A,σB,C}

Figure 12.5 provides a simple example of an LRM. If σv,g ∈ args(Kg), then v is
an input regulator of g; in the pictures, this is denoted by an arc toward the node g.

An LRM can be viewed as an encapsulated regulatory network with input nodes
behaving as integrators of external signals of the corresponding components from
other modules. For example, for the LRM depicted in Fig. 12.5, the level of external
signal corresponding to B will be calculated as a weighted maximum over all the
levels of B in neighboring modules (i.e., having a nonzero weight). Hence, this
level can be evaluated only when the module is connected to other modules (see
Definition 12.5). Nevertheless, at this stage, it is possible to recover a fully defined
LRG, by setting the integration functions and specifying the behaviors of the input
components (for example, as having constant levels).

Notice that, like in the Fig. 12.5, it is not required that G ∩ γ = ∅. For example,
we may have g ∈ G ∩γ when the regulatory component g has both autocrine (acting
on the same cell) and paracrine effects (acting on neighboring cells). Then g ∈ G
accounts for the autocrine effect and g ∈ γ accounts for the paracrine effect (as in the
case of Wingless in the Drosophila segment polarity module depicted in Sect. 12.5).

We now proceed with collections of LRMs, which contain all the information
needed to interconnect LRMs through their input nodes. It simply consists in defin-
ing a set of LRMs and a topological relation between these LRMs that establishes
the actual connections between modules and allows the evaluation of the levels of
input components.

Definition 12.5 A Collection of interconnected Logical Regulatory Module
(or CLRM) is defined as a triplet (I,M,T), where:

• I⊂N is a finite set of integers (module identifiers);
• M = {(m,M ) | m ∈ I} is a set of LRMs, each being associates to an identifier

in I;
• T : I × I \ {(m,m) | m ∈ I} → [0;1], is a topological (or neighboring) relation

between modules in M; the values of T can be interpreted as weights associated
to external signals.

In a CLRM, one can define several copies of the same LRM (these copies are
distinguished by their identifiers). This is the case in Fig. 12.6 that shows a CLRM
encompassing three times the LRM of Fig. 12.5. Notice the dashed arcs that repre-
sent how each LRM signals its neighbors according to the topological relation.
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Fig. 12.6 A CLRM (I,M,T) encompassing three copies of the LRM M of Fig. 12.5, where:
I= {0,1,2}, M=def {(0,M ), (1,M ), (2,M )}, and T=def {(0,1) �→ 1; (1,2) �→ 1; (2,0) �→ 0}
completed to symmetry. Function σB,C in module 0 depends on the level of B in module 1 (the
sole connected module containing B) while σB,C in module 1 depends on the levels of B in both
modules 0 and 2 (which is depicted using dashed arcs)

Fig. 12.7 The LRG obtained from the CLRM of Fig. 12.6 with integration functions defined on
the right and logical functions on the bottom. If we choose σm

B,C as the maximal value of its argu-
ment levels (σm

B,C =max(xBn ·T(n,m))) as suggested in the caption of Fig. 12.5, then the logical
function of C0 is KC0 , and the logical function of C1 is KC1 . Now, if σm

B,C =min(xBn ·T(n,m)),
then, KC0 remains the same, but KC1 is replaced by K ′

C1
. Notice that KC2 is similar to KC0

(replace xA0 with xA2 ), moreover, KAi
and KBi

for 0≤ i ≤ 2 are exactly as in Fig. 12.5

Given a CLRM, the integration functions are expressible as logical terms. In-
deed, the topological relations are fixed and the values of the σ functions depend on
discrete bounded variables and take discrete bounded values. Hence, it is possible
to recover an LRG (a logical model for the whole set of modules). For example,
consider the CLRM in Fig. 12.6, its associated LRG is shown in Fig. 12.7.

12.4.2 High-Level Petri Net Representation

We first define a class of high-level Petri nets [202] especially crafted to our needs.
Intuitively, the main difference between such high-level Petri nets and the usual

P/T Petri nets is that now places may carry tokens that have a value. In our particular
case, these values will be pairs (i, v) where i is the identifier of a module and v the
level of one of the components of this module.
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Fig. 12.8 The marking depicted on the left represents the fact that, for module 0, xA = 1 and
xB = 0, and, for module 1, xA = 0= xB . For this marking, transition tA is enabled for the binding
β = (μ→ 0, xAμ → 1, xBμ → 0). Suppose δA(1)= 0 (δA being the updating function), the firing
of tA leads to the marking depicted on the right of the picture. This corresponds to a state change
in the biological system

In order to consume and produce tokens when a transition fires, arcs are labeled
with expressions involving variables; an empty label denotes the absence of arc.
At fire time, it is necessary to bind (i.e., to map) each such variable to a concrete
value so that the annotation on each arc can be evaluated to a collection of tokens.
A binding β is a function that maps variables to values. We denote β(expr) the
evaluation of an expression expr under the binding β .

More precisely, a high-level Petri net is a tuple (S,T , 
), where:

• S is the set of places, each place is allowed to carry structured tokens from N×N.
• T , disjoint from S, is the set of transitions.
• 
 : (S × T )∪ (T × S) defines the labeling of the arcs by expressions.

In general, a marking M of a high-level Petri net is a mapping associating to each
place s ∈ S a multiset over N×N representing the tokens held by s at M . However,
in our case, markings are always sets (in all evolutions, no token may be duplicated
in the same place). So, we assume that arc labels always evaluate to sets of tokens.

A transition t may fire at a marking M with binding β if there are enough tokens
in the input places of t : for all s ∈ S, β(
(s, t))⊆M(s). If so, t may fire and produce
a new marking M ′, where M ′ is M in which consumed tokens are removed and
produced tokens are added, that is, for all s ∈ S: M ′(s) =def (M(s) \ β(
(s, t))) ∪
β(
(t, s)), see Fig. 12.8.

Remark 12.4 For the sake of simplicity, Definition 12.6 below is valid only if mod-
ules do not overlap, that is, for (m,M ) and (n,N ) two LRMs in M, (M =N )⇒
(G m ∩ G n = ∅). This means that the set of all regulatory components is partitioned
and we can focus on the evolution of each species in the context of the set of (iden-
tical) modules it belongs to.

Let Kg be the logical function of g. As previously, we define the updating func-
tion δg(xgm) =def xgm + sign(Kg(· · ·)− xgm) where Kg is computed with the ap-
propriate arguments (including integration functions calls) as defined above.

Each internal regulatory component g ∈ G is modeled by a high-level Petri net
place sg that stores the numeric value of the corresponding level for each module m.
In order to model several modules (each having a unique identifier), each place holds
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tokens of the form (m,xg), where m ∈ I and xg is the level of g in module m. The
evolution of each regulatory component g ∈ G is implemented by a unique transition
tg that consumes the value of g in m (token (m,xg) from place sg), reads the values
of the regulators of g, and produces the new level δg(xgm) of g in m. Thus, transition
tg has all the necessary arcs to the places modeling g and its regulators.

Definition 12.6 Let (I,M,T) be a CLRM. We denote G =def
⋃

m∈I
G m the set of

components involved in the CLRM. The high-level Petri net associated to (I,M,T)

is (S,T , 
), defined as:

• S =def {sg | g ∈ G }
• T =def {tg | g ∈ G }
• For each g ∈ G , let m denotes the LRM such that g ∈ G m, the arcs attached to

each tg ∈ T are as follows:
– First, a pair of arcs allows to read and update the current level of g for module

M , whose identifier m is captured by a net variable μ:
– If σg,g /∈ args(Kg), there is one arc (sg, tg) labeled by {(μ,xgμ)} and one

arc (tg, sg) labeled by {(μ, δg(xgμ))}.
– Otherwise, there is one arc (sg, tg) labeled by {(μ,xgμ)} ∪ {(η, xgη ) | ∀η :

T(μ,η) > 0} and one arc (tg, sg) labeled by {(μ, δg(xgμ))} ∪ {(η, xgη ) | ∀η :
T(μ,η) > 0}; it means that the levels of g in all modules η in the neighboring
of m are read and only the level of g in m is updated.

– Then, for each g′ ∈ G m \ {g}, a test arc (sg′ , tg) is added to bind the parameters
of the logical and integration functions, with net variable μ capturing as above
the identity of module m:
– If (g′, g) ∈ E m and σg′,g /∈ args(Kg) (g′ is only an internal regulatory), this

arc is labeled by {(μ,xg′μ)}.
– If (g′, g) ∈ E m and σg′,g ∈ args(Kg) (g′ is both an internal and external

regulator), this arc is labeled by {(μ,xg′μ)} ∪ {(η, xg′η ) | ∀η : T(μ,η) > 0}.
– If (g′, g) /∈ E m and σg′,g ∈ args(Kg) (g′ is only an external regulator), this

arc is labeled by {(η, xg′η ) | ∀η : T(μ,η) > 0}.

For the collection in Fig. 12.7, we obtain the Petri net depicted in Fig. 12.9.

12.4.3 Implementation

A prototype of the construction presented above has been implemented on the top of
SNAKES toolkit [307]. SNAKES is a full featured Petri net library intended for quick
prototyping; it uses Python programming language [313] to express the various Petri
net annotations. Using this implementation:

• LRMs can be fully specified as Python classes.
• Arbitrary integration functions can be user-defined, some are predefined.
• CLRMs can be defined by composing LRM instances with arbitrary topologies.
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Fig. 12.9 The high-level Petri net representation of the CLRM of Fig. 12.7. A possible initial
marking may be M0 as given below the Petri net

• CLRMs topology can be drawn with automatic layout.
• All possible stable states of a CLRM can be computed.
• Reachable states from an initial one can also be computed, with extraction of the

reachable stable states.

12.5 Modeling Interconnected LRMs Using High-Level Petri
Nets

In this section, we illustrate the modeling of interconnected logical regulatory mod-
ules by means of high-level Petri nets. In a first step, we analyze nine cases of col-
lections of several copies of our toy LRM (as defined in Fig. 12.5). We show how
variations of the topological or the integration functions can affect the behaviors of
the whole model. Then we discuss the application of our framework to the model-
ing of the segment-polarity module involved in the segmentation of the Drosophila
embryo.

In both cases, the considered collection of modules is composed of copies of the
same LRM. This, indeed, will mostly be the case when modeling patches of identical
cells, but one should be aware that the proposed framework does not impose such a
restriction.

12.5.1 Interconnecting Occurrences of the Toy LRM

Let consider the toy LRM M as defined in Fig. 12.5. In this section, we analyze the
behaviors of a series of collections encompassing a number of occurrences of M .
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Fig. 12.10 The various topologies considered for 2-width tapes. On the left, the graphical view
showing the organization of the connections. Definitions on the right side rely on the assump-
tion that modules on the top line of the tape are numbered with consecutive even numbers, while
modules on the bottom line are numbered (following the same direction) with consecutive odd
numbers. All topologies considered here are symmetrical, the subscript k indicates the maximal
number of neighbors in the topology Tk in an extended grid (e.g., with the topological relation T4,
any module would have at most 4 neighbors)

All the considered collections are based on a tape of modules of width 2, with var-
ious lengths and topologies as depicted in Fig. 12.10. Each topological relation Tk

is called in such a way because modules may have neighbors in k directions. More-
over, we denote Toy(n, k) the CLRM containing 2 · n copies of M arranged using
Tk on a tape, as illustrated in Fig. 12.10.

All stable states of systems Toy(n, k) are such that the levels of the components
in each module are equal (components A,B and C all equal to 0 or all to 1). So, to
depict such a module stable state, we shall print a black and white grid, where black
(resp. white) positions correspond to modules whose components are all 1 (resp.
all 0), these positions respecting the topological relations of the modules. To sim-
plify the presentation, we have also considered initial states that can be represented
in this way.

Figure 12.11 shows the stable states that can be reached from chosen initial states.
We can observe variations in the number of reachable states (which correspond to
the size of the marking graph) and of reachable stable states; moreover, the stable
states themselves are different.

All these examples have been obtained using the integration function σB,C de-
fined as (yi, di)1≤i≤k → round(max(yi · di | 1≤ i ≤ k)) (i.e., σB,C evaluates to the
maximal value of B in neighboring modules; that is to say σB,C is 1 provided that
at least one neighboring module encompasses a component B which level is 1). We
may consider instead a function that returns 1 if at least two components B in the
neighboring modules are equal to 1, and return 0 otherwise. In this case, the be-
haviors of the collections might be rather different; in particular, the initial states
considered for Toy(3,4) and Toy(4,4) (Fig. 12.11, fourth and seventh rows) turn to
be stable.
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Fig. 12.11 Impact of the topological relation on the behaviors of the collections Toy(n, k), defined
on the LRM of Fig. 12.5. In each row, a different combination of values of n and k (i.e., different
number of modules and topological relation) is considered: on the left, the initial collection state is
depicted, that is, the initial state of each of its modules (black if internal A, B , C are all 1, white
if they are all 0), and on the right, the total number of reachable states is given and the reachable
stable states are depicted. The top-left module of each state is decorated with links showing the
directions of its potential neighbors, for example, in T(3,8), a module has possibly 8 neighbors
(see Fig. 12.10). This series of experiments shows that, for the same initial condition, a collection
of interconnected modules can behave differently, depending on the signaling capacities (expressed
here in terms of topological relations). For example, in the first collection T(2,4), the modules are
not able to signal along the diagonal, contrary to the collection T(2,8). In the first, the initial pattern
is stable, whereas it is not in T(2,8), which instead will stabilize in one of three other patterns.
The integration function σB,C considered here takes the maximal value of B over the neighboring
modules
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Fig. 12.12 Schematic illustration of the patterns of expression along the antero-posterior axis, in
the last step of the genetic hierarchy controlling the Drosophila segmentation: (top) the antero-pos-
terior axis; (middle) initial activation of En (Engrailed) and Wg (Wingless) by the pair-rule signals
in stripes of cells (here, we considered that six cells are sufficient to represent the different regions
of a parasegment, which includes the posterior part of a segment and the anterior part of the next
segment); (bottom) the consolidation and refinement of the parasegmental border by the action of
the polarity genes, which requires cell-cell communication

12.5.2 The Drosophila Segment-Polarity Module

Early development of the fruit fly embryo is an ideal, very well-studied system for
developmental biologists (see [128, 417] for good introductions to this topic). The
embryo is organized into a series of segments along its antero-posterior axis (from
the head to the tail). These segments will give rise to adult structures (legs, halteres,
wings, etc.). This organization is initiated by maternal morphogens, which control
few dozens of genes involved in the initial segmentation. These genes have been
split into several classes. The first classes, called gap, pair-rule and segment-polarity
modules, constitute a temporal hierarchical genetic system. Segment-polarity genes
are under the control of the pair-rule genes. Their patterns of expression define the
anterior and posterior parts of the segments and they are responsible for the stabi-
lization of the borders between embryonic segments (see Fig. 12.12). The segment-
polarity module involves about twenty genes, cross-regulations and intercellular sig-
nalings. It has been the subject of a wealth of theoretical modeling studies, in both
continuous (e.g., [87, 168]) and logical (e.g., [5, 69, 335]) frameworks.

In [335], a logical model is defined and analyzed, based on an intracellular in-
teraction network of a dozen of components, submitted to two external inputs (the
Wingless (Wg) and Hedgehog (Hh) signalings). Six copies of this module have been
interconnected in a stripe to allow the representation of the different gene expression
domains flanking the parasegmental borders (parasegments correspond to portions
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Fig. 12.13 Reachable states and reachable stable states for various configurations:
(1) σHh,Wg = σWg,Wg = σWg,En = σmax; (2) σHh,Wg = σWg,Wg = σWg,En = σmax≥1;
(3) σHh,Wg = σmax≥1 and σWg,Wg = σWg,En = σmax≥1/2. For each configuration, we have
indicated the total number of reachable state and drawn the reachable stable states. White squares
correspond to cells where all the component levels are zero; red squares correspond to cells
where xWg = 2 and xHh = xEn = 0; and green squares correspond to cells where xWg = 0 and
xHh = xEn = 1. Note that the expected wild-type pattern as shown in the lower part of Fig. 12.12,
with a Wg expressing cell (red) and an En expressing cell (green) flanking the border, is recovered
with topology T1 and with T2 if choosing σmax≥1

of two adjacent segments, see Fig. 12.12). The cells are numbered from 1 to 6, with
cell 3 denoting the cell just anterior to the border, cell 4 the cell just posterior to the
border (see Fig. 12.15). Connections between these cells are set up through Hh and
Wg signals, and in the wild-type case, these intercellular interactions are restricted
to neighboring cells. This fully defines the topological and integration functions of
our collection of six modules.

In [335], the whole logical regulatory graph encompassing the six interconnected
modules has been translated into its standard Petri net representation. This allowed
us, by using INA [166], to verify the reachability of expected stable states from
a given initial pattern set up by the pair-rule module (see Fig. 12.15). The proper
construction of the model, by correctly interconnecting the six modules was rather
cumbersome, justifying the development of a framework to support modular mod-
eling.

In the context of this chapter, we will rely on a very much reduced version of the
intracellular network. This reduced network has been obtained by the application
of a systematic reduction method defined in [284], which preserves the essential
dynamical properties (in particular the stable states). Our aim is not to give details
on the properties of the segment-polarity module but rather to illustrate the potential
of our framework. The LRM is depicted in Fig. 12.14.

We study the reachable stable states for a collection of six cells arranged on a
line as depicted in Fig. 12.15. The initial state (defined by the action of the previous
pair-rule module, as illustrated in Fig. 12.12) is specified in Fig. 12.15. We consider
two topological relations (or signaling distances) and three integration functions,
defined below.

• T1 defined such that T1(i, j)=def 1 if j = i + 1, T1(i, j) =def 0 otherwise, and
T(j, i)=def T(i, j) meaning that cells can only signal their immediate neighbors
(plain lines in Fig. 12.15).

• T2 defined such that T2(i, j)=def 1 if j = i + 1, T1(i, j)=def 1/2 if j = i + 2,
Tj (i, j)=def 0 otherwise, and T(j, i)=def T(i, j), meaning that cells can signal
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Fig. 12.14 A reduced version of the segment-polarity logical regulatory module (obtained from
the model of 12 components of Sánchez [335], applying the reduction method presented in [284]).
In this network, we kept the components exerting external signals (Wg and Hh) and the read-out
genes of the action of this regulatory network (En and Wg). The external signals (coming from
neighboring cells) are denoted by gray nodes. Rectangular nodes denote multi-valued components
(Wg) and ellipse nodes denote Boolean components. The logical functions of the three internal
components are given as logical rules

Fig. 12.15 A stripe of six cells with three cells accounting for the posterior region of a paraseg-
ment (cells 1, 2, and 3) and three cells accounting for the anterior region of the next paraseg-
ment (cells 4, 5, and 6), the parasegmental border being established between cells 3 and 4. In
each cell, the initial levels of the components are indicated; each cellular state is given as a triple
xWg, xEn, xHh. Plain lines denote where T1 and T2 are equal to 1 and dotted lines denote where
T2 is equal to 1/2 (in other words, these lines denote the signaling capacities between the cells)

their immediate neighbors (plain lines), but also their second neighbors, with a
lower weight (dotted lines in Fig. 12.15).

The integration functions we consider are:

• Maximum weighted level:

σmax =def (vi, di)1≤i≤k → round
(
max(vi · di | 1≤ i ≤ k)

)
.

• Maximum level of direct neighbors:

σmax≥1 =def (vi, di)1≤i≤k →max(vi | 1≤ i ≤ k, di = 1).
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• Maximum level for neighbors with weight at least 1/2:

σmax≥1/2 =def (vi, di)1≤i≤k →max(vi | 1≤ i ≤ k, di ≥ 1/2).

For example, let consider the initial state depicted in Fig. 12.15, topology T2
and σWg,Wg, which integrates the Wg signal acting on Wg. If σWg,Wg = σmax, the
value of the integrated signal is the maximal weighted level of Wg in neighboring
modules (including second neighbors), hence for the module 4, this value is 1: Wg
is 0 in both direct neighbors and in the second neighbor (module 2), Wg is 2 with
a weight equal to 1/2. If σWg,Wg = σmax≥1, the value of the integrated signal is the
maximal level of Wg in direct neighbors (weight greater than or equal to 1), hence
is the case of module 4 it evaluates to 0. Finally, if σWg,Wg = σmax≥1/2, the value
of the integrated signal is the maximal level of Wg in neighboring cells (direct or
not, that is, weight greater than or equal to 1/2 ), hence in the case of module 4, it
evaluates to 2.

Figure 12.13 shows the results for various combinations of these parameters.
When T1 is used, all neighbor signals have a weight 1, so we have σmax = σmax≥1 =
σmax≥2.

In [335], the model considered for the six cell stripe was based on the assumption
of short range Wg and Hh signals. Hence, to analyze the case of nkd loss-of-function
(naked cuticle is one of the segment-polarity genes), it was necessary to consider
a rewired network, accounting for the increased diffusion of Wg. In the framework
presented here, such a change would only consist in modifying the topological func-
tion.

12.6 Conclusions

In this chapter, we have presented a modeling framework combining the logical
formalism with Petri nets (PNs). The standard Petri net representation of logical
regulatory graphs, although not very legible, enables the use of existing PN analysis
tools such as INA. In this respect, GINsim provides export facilities to generate files
in the format expected by PN tools (e.g., INA [166]). Hence, a first advantage of
the PN representation of logical regulatory graphs is the possibility to analyze them
using existing PN tools.

A challenging problem arises when considering regulated metabolic networks.
PNs open the way to a qualitative integrated modeling of regulated metabolic path-
ways as proposed in [362], properly connecting PN models of the biochemical path-
way and the regulatory control (this being modeled as a logical regulatory graph
expressed in terms of a PN).

Developmental processes relate to cell differentiation and pattern formation. In
particular, in this chapter, we have delineated a framework that allows the modeling
of patches of communicating cells. To illustrate the potential of this framework, we
have considered the segment-polarity module involved in the segmentation of the
Drosophila embryo. In such processes, one has to consider connections of several
(intra)cellular regulatory networks. We propose to define these individual regulatory
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networks as logical regulatory modules (LRMs), identifying input signals they can
receive from the outside. Then, a collection of such modules (a CLRM) can be
defined, by setting up the number and type of LRMs, as well as the rules governing
their interconnections. From such a CLRM, a large logical regulatory network can
be recovered. This procedure could be easily implemented in GINsim.

More importantly, we have defined a compact and legible high-level Petri net
(HLPN) representation of a CLRM. Implementation of this construction has been
provided. HLPNs provide a flexible framework, which allows to easily model dif-
ferent configurations of a patch of cells as well as topological relations (e.g., the
range of a signal).

It is worth noting here, that the proposed framework allows the consideration
of other situations than communicating cells within a patch. For example, in large
regulatory networks, modularity arises from physical delimitation or cellular com-
partments (e.g., nucleus, cytoplasm) or from functional role. Recently, a modular
logical modeling of the budding yeast cell cycle has been delineated in [116]. In this
case, modules corresponding to regulatory networks with distinct functional roles
in the cell cycle control, have common components. Hence, while composing these
modules, one has to properly set up the logical rules of these common components.
Based on the methodology proposed in [116], the framework presented in this chap-
ter might be extended to handle overlapping modules.

Although modularity is now recognized as an important feature for large bio-
logical networks, little formal work and tool development support combination or
composition of regulatory networks (see [357] and references therein). In [357], the
authors address this question and distinguish between fusion, composition, aggre-
gation and flattening as distinct processes for building larger models from smaller
ones. The HLPN framework presented in Sect. 12.4 can be viewed as a model ag-
gregation, in that it is a reversible process (the modules are conserved). In terms
of modeling tools, it is worth noting that ProMoT, a tool that eases the definition
and edition of modular models, supports the logical formalism [265]. It is based on
principles that are quite similar to those presented in Sect. 12.4.

The main motivation to develop the framework proposed here is to study how
existing cellular processes are controlled. However, it could be useful in the field of
synthetic biology that aims at designing novel artificial biological systems (see [100]
and references therein). Indeed, synthetic biology relies on the concept of modular-
ity, by conceiving building blocks and combining them [2]. So far, synthetic biology
mainly designed intracellular gene networks, but synthetic multicellular systems in-
volving cell-cell communication emerged in recent years (see, e.g., [28]).

The complexity of regulatory networks dealt by modelers calls for the develop-
ment of original and efficient computational means. Here, we have defined a frame-
work that greatly facilitates the definition of models encompassing interconnected
regulatory modules. However, we still need to make progresses to analyze such large
models. Combining the logical and PN formalisms, as well as taking advantage of
the modular structure of the models should allow the development of more efficient
tools.
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12.7 Problems

12.1 Give the MDD representation of the function f2 given in Fig. 12.2 considering
the variables A and B in the reverse order (i.e., first B , then A). Transform the
obtained MDD into an IDD (labeling the edges with integer intervals, and merging
them when possible as explain in Sect. 12.2.2).

12.2 Consider the genetic regulatory network called repressilator as defined by
Elowitz and Leibler [109], which consists of three genes (denoted here A, B and C),
connected in a negative circuit (each component represses its successor in the cir-
cuit, and is repressed by its predecessor).

Assuming Boolean levels for A, B and C, all interaction thresholds are equal to 1,
and the components share the same logical rule: K (0) = 1 and K (1) = 0, that
is, if the repressor is at level 0 (absent), the regulated component target level is 1
(present), and the other way around. Draw the full STG of this model and verify
that it encompasses a unique complex attractor, reachable from any initial state.

12.3 Consider an LRG encompassing a component C regulated by A and B , both
positively auto-regulated, with MaxA =MaxB = 1 and MaxC = 2. The logical func-
tions KA, KB and KC are given by their MDD representations below (note that KA

and KB are the identity function). Give the logical expressions defining these three
functions (using the connectors ∧ and ∨ as in Fig. 12.2). Give the P/T representa-
tion of this LRG (verify that the autoregulations define transitions that are useless
since they are never enabled, see [68]).

12.4 Find another enabling binding for the high-level Petri net depicted in Fig. 12.8.
Which module is involved by this binding and what are the corresponding levels xA

and xB? Assume that δA(xA)= 1 and fire the transition accordingly.

12.5 Construct the high-level Petri net representation of the CLRM depicted in
Fig. 12.15, including the initial marking. Indications:

1. Start with determining the arguments of each regulatory function, separating in-
ternal and external regulators.

2. Draw each Petri net transition separately, together with the places for the needed
regulatory components.
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3. Merge these Petri net parts by collapsing the places that implement the same
regulators.

4. Add the initial marking, corresponding to the expression levels indicated
in Fig. 12.15.
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Chapter 13
A Case Study of HFPN Simulation: Finding
Essential Roles of Ror Gene in the Interaction
of Feedback Loops in Mammalian Circadian
Clock

Natsumi Mitou, Hiroshi Matsuno, Satoru Miyano,
and Shin-Ichi T. Inouye

Abstract Mammalian circadian clock is composed of two feedback loops, a Per-
Cry and Clock-Bmal loops. The role of Rev-Erb gene, which interconnects these
two feedback loops by the inhibition of Bmal from PER/CRY complex, has been
investigated through biological experiments as well as computational simulations.
However, for the role of Ror gene, which exerts contrary effect on the same tar-
get gene Bmal as the Rev-Erb, enough consideration has not been paid so far. This
paper first improves the previous hybrid functional Petri net (HFPN) model of the
circadian clock so that both of the Per-Cry and Clock-Bmal loops can participate
in the maintenance of the circadian oscillations. This improvement is incomplete,
however, because a fixed level of PER/CRY eliminates all the circadian oscilla-
tions. Although this problem can be resolved by the introduction of Ror into the
HFPN model, another inconsistency remains, Bmal oscillation is not abolished by
the knock-out of the Cry. Then we further incorporate a hypothetical path into the
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HFPN model, succeeding in eliminating this inconsistency while keeping comple-
mentary actions of two feedback loop.

Abbreviation of Biological Terms
Bmal: Bmal1 gene
BMAL: Bmal1 protein
Clock: Clock gene
CLOCK: Clock protein
Cry1: Cryptochrome 1 gene
Cry2: Cryptochrome 2 gene
Cry: combination of Cry1 and Cry 2 genes
CRY: Cry protein
Cyc: Cycle gene
CYC: Cycle protein
dClk: Drosophila Clock gene
dCLK: Drosophila Clock protein
Per1: Period 1 gene
Per2: Period 2 gene
Per3: Period 3 gene
Per: combination of Per1, Per2, and Per3 genes
PER: Per protein
Tim: Timeless gene
TIM: Timeless protein
Rev-erb: Rev-erbα gene
REV-ERB: Rev-erbα protein
Rorα: retinoic acid receptor-related orphan nuclear receptor α gene
RORα: retinoic acid receptor-related orphan nuclear receptor α protein
SCN: suprachiasmatic nuclei

13.1 Introduction

Circadian rhythms, which regulate physiology and behavior of living organisms, are
endogenous oscillations with a period close to 24 h. In mammalian case, they are
driven by a central circadian clock located in the suprachiasmatic nuclei (SCN) of
the hypothalamus [326, 341]. Recent molecular biological studies have disclosed
that the circadian rhythm of the SCN is generated at the level of the gene expres-
sion and protein synthesis [206]. Molecular bases of circadian rhythms including
the mammalian one is well summarized in the paper [103] that describes common
elements in the design of circadian oscillators over various organisms from bacteria
to mammal. Readers who are not familiar with the biology of circadian rhythms are
recommended to read this paper.

The central logic of the circadian clock is an autoregulatory transcriptional and
translational feedback loop that consists of negative and positive elements. The
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negative elements constitute an oscillation process whose product feeds back to
slow down the rate of the process itself, and the positive elements keep the os-
cillator from winding down through the activation of the product of the nega-
tive elements. In mammals, positive elements in circadian clocks are the proteins
CLOCK and BMAL (BMAL1), and negative elements PER (period) and CRY
(cryptochrome) [103]. The PER/CRY complex exert this repressive effect by bind-
ing to a complex of CLOCK/BMAL that activates Per and Cry gene expression.
This autoregulatory feedback loop is common over a diverse range of living organ-
isms from bacteria to plants, insects, and mammals. Besides, it has been revealed
that some eukaryotes have more sophisticated circadian clock, namely “interlocked
feedback loops” [151].

The interlocked feedback loop was firstly illustrated in the Drosophila circadian
clock [135]. Drosophila circadian feedback loop is composed of two interlocked
negative feedback loops: a Period (Per)-Timeless (Tim) loop, which is activated by a
complex of CYCLE (CYC) and Drosophila CLOCK (dCLK) proteins and repressed
by a complex of PER and TIM proteins, and a dClk loop, which is repressed by a
CYC/dCLK complex and derepressed by a PER/TIM complex. The mammalian cir-
cadian clock has a similar structure of Per-Cry and Clock-Bmal loops which corre-
spond to the Per-Tim and the Cyc-dClk loops in Drosophila, respectively, except that
Rev-Erb gene and its product are participate in bridging these two loops; PER/CRY
represses the transcription of Rev-Erb whose product REV-ERB represses the Bmal
transcription [309].

There have been many theoretical models of circadian clocks proposed for Syne-
chococcus [384, 385], Neurospora [225, 365, 368], Drosophila [20, 137, 226, 400],
and mammals [30, 31, 117, 167, 227]. All of these models employed differential
equations as a formalization method. Although a model with differential equations
allows us to use the existing computational tools such as Mathematica and MAT-
LAB, it is usually hard for biologists without mathematical background to use such
computational tools. In contrast, due to the graphical nature of its representation
method, Petri net is an acceptable formalization for such ordinary biologists, en-
abling them to understand computational models of biochemical networks smoothly.
Especially, hybrid Petri net-based method (Chap. 6 of this book and [248]) is a
promising formalization method, because this method not only inherits this graphi-
cal property of Petri nets, but also makes it possible to use continuous elements as
well as discrete elements.

Retinoic Acid-related Orphan Nuclear receptor α (Ror) is a gene that was iden-
tified as an essential gene for the circadian clock of mammals, whose regulation
is similar to Rev-Erb except that the gene product ROR activates Bmal (REV-ERB
represses Bmal) [3, 337]. The Rev-Erb and Ror exert contrary effects on the Bmal
expression; REV-ERB inhibits Bmal, but ROR activates it. Hence, the Ror plays an
important role in the interlocked feedback loops in mammals.

A computational model of the interlock feedback loop of mouse should include
the effects of Ror as well as Rev-Erb. However, in the models in [30, 228], only the
effect of Rev-Erb was described in an indirect manner, that is, just as an interaction
from CLOCK/BMAL to Bmal. In addition, the effect of Ror was not considered
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in these models. In the models in [31, 227, 255], the Rev-Erb interaction was ex-
plicitly described, but no description about the Ror interaction. Although the model
presented in [117] includes both of the Rev-Erb and Ror interactions, the difference
between Rev-Erb and Ror in the effect on circadian oscillations was not investi-
gated. Hence, the purpose of this paper is to investigate the roles of Rev-Erb and
Ror interactions in the oscillatory behaviors of the mammalian circadian clock by
means of computer simulations using hybrid functional Petri net (HFPN) [251]. The
HFPN can be treated as a special case of hybrid functional Petri net with extension
(HFPNe) (cf. Chap. 6) which has high potential for modeling various kinds of bi-
ological processes such as localization of molecules, molecular modifications, and
alternating splicing.

This paper starts with the construction of an HFPN model which consists of
basic 5 genes; Per, Cry, Rev-Erbα, Clock, and Bmal. Section 13.2 demonstrates this
construction in a step-by-step manner with presenting 3 simple exercises. Readers
can study the construction process of HFPN model through these exercises.

In Sect. 13.3, we first point out the problem in the previous HFPN model of [255]
in which the Clock-Bmal loop did not contribute to the oscillation maintenance of
circadian rhythms. A modification on this HFPN model through appropriate param-
eter choices enabled the Clock-Bmal loop to participate in the circadian oscillation.
However, a fixed level of PER/CRY in a simulation eliminated the circadian oscilla-
tions, indicating the incompleteness of this modification for the robust oscillations
with the interlocked model.

This incompleteness was resolved, in Sect. 13.4, by the introduction of Ror into
the HFPN model. However, a discrepancy in gene-knock-out still remains in this
Ror-introduced model; Bmal oscillation was not abolished by the disruption of Cry
gene. Then, we further introduced a hypothetical interaction “ROR excites the Bmal
expression when PER/CRY level are above a certain threshold” into the HFPN
model. This hypothetical path eliminated the inconsistency on the Cry disruption,
while keeping complementary actions of two interlocked loops; forced fixation of
PER/CRY or CLOCK/BMAL level did not abolish the circadian oscillation.

We further examined the availability of this HFPN model by simulating two bio-
logically confirmed facts in Rev-Erb deficient mouse; Bmal oscillation level staying
at higher level and a shorter period of oscillations.

13.2 Modeling Molecular Circadian Oscillator in Mouse
with Hybrid Functional Petri Net

Although hundreds of genes in mRNA levels are found to be oscillated in mam-
malian cells [90], the minimum set of genes that are responsible for the central
circadian clock regulation are now considered to be 5 genes, Period, Cryptochrome,
Rev-Erbα, Clock, and Bmal1.

This section first describes the regulatory interaction of these 5 genes along with
their biological functions. Afterwards, this regulatory interaction is modeled with
the HFPN with presenting some exercises that help readers to understand the con-
struction process of the HFPN model.
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13.2.1 Circadian Clock Oscillator with Five Genes

The genes that are involved in this intracellular system are called clock genes, which
include Per (Per1, Per2, Per3), Cry (Cry1, Cry2), Rev-Erb (Rev-Erbα), Clock and
Bmal (Bmal1) [103]. To make a model simple, Per1, Per2 and Per3 are combined
into single Per in the following discussion. Similarly, Cry1 and Cry2 are treated
together as Cry. Each mRNA produces a corresponding protein, PER, CRY, REV-
ERB, CLOCK or BMAL.

In the following, brief introductions of these 5 genes are given with the necessary
descriptions for the following discussion.

Per gene: Per (Period) is a gene, expressing high transcription level in daytime,
whose activity is initiated by the binding of CLOCK/BMAL heterodimer at the
E-box regulatory element that is located at the upstream of the Per.

Cry gene: Cry (Cryptochrome) gene has the same E-box regulatory element as Per,
so it is regulated by CLOCK/BMAL. CRY interferes the action of CLOCK/BMAL
after forming a complex with PER followed by the migration into the nucleus, thus,
resulting in the repression of Per, Cry, and Rev-Erb. In the Cry-deficient mouse,
constant low-level expression of Bmal was observed [360].

Rev-Erbα gene: Rev-Erb (Rev-Erbα) gene, which is peaking in daytime, is also
controlled by CLOCK/BMAL due to the existence of the E-box regulatory ele-
ment at its upstream position. REV-ERB inhibits the Bmal transcription. It was
reported that disruption of Rev-Erb caused the low level oscillation of Bmal rela-
tive to the normal mouse and the shortening of free running period in the activity
of mice [309].

Bmal and Clock genes: Bmal gene, whose transcription level peaks in the night,
expresses antiphase oscillation to Per. Clock keeps almost constant expression
through a day. BMAL and CLOCK form a heterodimer that induces the activa-
tion of Per, Cry, and Rev-Erb by binding to the E-box regulatory elements of
them.

Although we have conducted simulations on the HFPN model [255] that was con-
structed based on these biological facts of the 5 genes, the antiphase relationship be-
tween Per and Bmal could not be realized with this HFPN model. This inconsistency
has been resolved by the introduction of the hypothetical interaction “PER/CRY ac-
tivates Bmal transcription,” where PER/CRY represents a heterodimer of PER and
CRY [255]. Figure 13.1 is the resulting gene regulatory map of these 5 genes and
these products together with this hypothetical path.

13.2.2 Construction of an HFPN Model

Figure 13.2 shows an HFPN that models the part of Per-Cry interactions in the
genetic interaction map of Fig. 13.1. Construction of this HFPN model was made
based on the rules listed below. The firing speed of a continuous transition is given
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Fig. 13.1 Genetic interactions of 5 clock genes based on the biological facts and the hypothesis
that resolves the inconsistency of antiphase relationship between Per and Bmal [255]. Normal arc
represents molecular reactions such as transcription, migration, and complex formation. Dotted
arc represents the activation of a gene by a positive transcription factor: for example, PER/CRY
complex acts as a positive transcription factor which activates Bmal gene. Arc with short bar at its
top represents the repression of a gene by a negative transcription factor: for example, REV-ERB
protein acts as a negative transcription factor which represses Bmal gene

Fig. 13.2 An HFPN that
models Per-Cry interaction
process in Fig. 13.1

according to a simple arithmetic formula of either mX/a or (mX ×mY)/a, where
mX (mY ) is a variable representing the content of the input place of the transition,
and a is a constant by which the firing speed is controlled. For example, m2 in
Fig. 13.2, the content of continuous place PER, is increased at the rates of m1/5
and decreased at the rate of m2/7, where m1 is the content of continuous place Per
mRNA. The formula (mX × mY)/a represents the rate of a complex formation,
the formula “(m2 × m4)/10” found at continuous transition t11 in Fig. 13.2 is an
example of this.
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• Each substance such as mRNA and protein is corresponded to a continuous place.
• At each transition, we assign a function of a form as mX/10 to define the speed of

the corresponding reaction. For example, the translation speed of PER has been
determined by the formula m1/5, where m1 represents the concentration of Per
mRNA.

• Complex forming rate is generated using the formula of a form, mX ∗ mY/10.
For example, the formula m2 ∗m4/10 has been assigned at continuous transition
t11 as a complex forming rate of PER (m2) and CRY (m4).

• Continuous transition without outgoing arc is used to represent the natural degra-
dation rate of a substance such as mRNA, protein, and protein complex. For
example, as the degradation rates of Cry and its products, the formulas m3/5,
m4/10, and m5/15 have been assigned to transitions t8, t10, and t12, respectively.

• A test arc is used to represent a translation process because no consumption of
mRNA occurs in the translation process. In Fig. 13.2, there are two test arcs for
the translation processes of Per and Cry. A value that accompanies to a test arc
(0.5 in each of test arcs) represents the threshold of the mRNA; the translation
process continues during the period while the content of a continuous place rep-
resenting mRNA exceeds this threshold.

• Negative feedback loop can be modeled with an inhibitory arc, whose action
is controlled by the threshold value attached to the inhibitory arc. In Fig. 13.2,
two inhibitory arcs can be found, which are used to model feedback loops from
PER/CRY in the cytoplasm to the transcriptions of Per and Cry. During the pe-
riod while the content of PER/CRY place exceeds 1.6, both of these two inhibitory
arcs stop the firing of transitions t1 and t6 that represent the transcriptions of Per
and Cry, respectively.

Transitions t2 and t3 are used to model the provision of basal amount of Per and
Cry that are continuously produced in a cell.

The Per-Cry regulatory mechanism constitutes the negative feedback loop; the
product PER/CRY of Per and Cry inhibits the transcriptions of the Per and the
Cry themselves. However, more precisely, PER/CRY does not directly inhibit these
Per and Cry transcriptions, it interferes the action of CLOCK/BMAL that activates
the Per and the Cry. We extend the HFPN model of Per-Cry negative feedback by
adding Clock-Bmal regulatory interactions.

Up to now, two complex forming process, the PER/CRY process and the
CLOCK/ BMAL process, have been constructed with HFPN. One important gene,
Rev-Erb, remains to be modeled, which bridges these two complex forming pro-
cesses. That is, PER/CRY suppresses the transcription of the Rev-Erb when it is
activated by CLOCK/BMAL, and REV-ERB suppresses the transcription of Bmal.

All transcription-translation components of the 5 genes are ready to model in
the HFPN forms. A whole circadian HFPN model is complete to construct after
accomplishing the exercise below.
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13.3 Effect of the Two Interlocked Loops in Circadian Gene
Regulations in Mouse

13.3.1 A Problem of the Previous HFPN Model in an Oscillation
Maintenance

In a previous paper [255], we have analyzed oscillatory behaviors of the clock genes
based on the model of the mouse circadian clock shown in Fig. 13.3. As was shown
there, the HFPN model, when a hypothetical facilitatory interaction from PER/CRY
on Bmal transcription was assumed, successfully yielded stable rhythmic changes
in clock mRNA and protein levels. Most of the results were consistent with reported
results of biochemical experiments including proper phase relations among these
(Fig. 13.4). Abundance of mRNA and proteins of the clock genes shows stable os-
cillations. For example, the peaks of Bmal mRNA were found at the midpoint of
successive Per or Cry peaks. In addition, this model reproduced no rhythms when
Cry gene was completely eliminated, that is in Cry-deficient animals (Fig. 13.5).

However, as well as the reproduction of biochemical results, the previous simu-
lation also raised questions. Simulation results in Fig. 13.6 illustrate that, although
fixation of CLOCK/BMAL at a certain level did not influence on the rhythmic-
ity of Per and Cry, the CLOCK/BMAL and REV-ERB loop could not rescue the
rhythms when PER/CRY level was fixed at a constant. That analysis showed that
the oscillation could be brought about only by PER/CRY loop, leaving the other
loop CLOCK/BMAL and REV-ERB nonfunctional in terms of the maintenance of
oscillation.

13.3.2 Modification in Parameters for Constituting Interlocked
Loops

Close examination of system dynamics indicates a possible source of the remaining
problems. Although CLOCK/BMAL could switch on and off to allow the excitatory
effect on Per, Cry or Rev-Erb, its level was found to always be above the threshold
(Fig. 13.7). Accordingly, the starting model did not make use of the capability of
CLOCK/BMAL to turn the pathway on and off, since the CLOCK/BMAL level
stayed higher than the threshold and continuously linked to the rest of the system
at all time. This gave us a hint to improve the stability of the system: Since biolog-
ical system is made in such an efficient and economical way, could any interaction
have no role in the biological system? Why the molecular circadian system is com-
posed of the overlapping two loops, instead of one loop, if the one feedback loop
is sufficient for the system to oscillate? Although a biochemical study suggested
the BMAL level always above the threshold to be the case [223], we explored, by
the tools of Cell Illustrator [60, 274], the consequence of the presence of the two
complementary overlapping loops on the molecular circadian system of the mouse:
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Fig. 13.4 Oscillations of five clock gene mRNA and proteins in the starting model of Fig. 13.3

Fig. 13.5 Removal of Cry gene (Cry knock out) wiped out circadian rhythms in the starting model
of Fig. 13.3

One loop consists of the feedback pathway from CLOCK/BMAL to Per and Cry,
the other from CLOCK/BMAL to Rev-Erb.

In order to explore the possibility that the second loop through Rev-Erb func-
tions cooperatively to make the system more robust, together with the first loop, we
have adjusted parameters of CLOCK/BMAL threshold as shown Fig. 13.8, so as to
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Fig. 13.6 Although fixation of CLOCK/BMAL at a level still maintains circadian rhythmicity
(upper panel), constant level of PER/CRY could no longer sustain a rhythm (lower panel)

make the level of CLOCK/BMAL above the threshold during a part of the cycle
and below during the rest of the time. With the careful choice of the parameters,
CLOCK/BMAL loop became to be switched on and off within a cycle (Fig. 13.9).
Simulation with the help of Cell Illustrator under these condition showed that this
modified interlocked system is also able to generate and maintain the stable rhythms
of the system, as is shown in Fig. 13.10. These results demonstrated that the addition
of the functional second loop is compatible with the rhythmicity. Furthermore, this
model successfully predicted total loss of the rhythms in Cry knock-out animals.

However, the simulation results also showed that, even the two loops work to-
gether, a fixed level of PER/CRY eliminated the rhythmicity (Fig. 13.11), indicating
the loop via Rev-Erb alone could not sustain circadian rhythms. This might be due
to the simplification made on the excitatory effect of PER/CRY on Bmal. In the
starting model, whereas a constant high level of PER/CRY facilitated Bmal, it in-
hibits Per, Cry, Rev-Erb transcriptions, suppressing the rhythms. On the other hand,
a constant low level of PER/CRY is unable to stimulate Bmal transcription and Bmal
can not accumulate under these conditions enough to initiate rhythmic oscillations
of the clock gene components.
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Fig. 13.9 The level of CLOCK/BMAL crosses the threshold within a cycle in the interlocked
model

Fig. 13.10 The interlocked model also provides stable oscillations of both mRNA and proteins of
the clock genes, consistent with the experimental results

13.4 Function of Ror in the Interlocked Model

13.4.1 Introduction of Ror

As described in the previous section, a careful choice of parameters that make the
positive loop switching on and off was unable to make the loop via Rev-Erb com-
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Fig. 13.11 The CLOCK/BMAL through REV-ERB loop could not sustain the rhythmicity when
the other loop, the loop through PER/CRY, was blocked in this interlocked model (lower), while
rhythmicity survives the blocking the link at CLOCK/BMAL (upper panel)

plementary to the negative loop, as far as the oscillations were concerned. This was
due to two different roles assigned to one protein complex: PER/CRY suppressed
Per, Cry, Rev-Erb transcriptions and at the same time enhanced the transcription
of Bmal. Hence, we further introduced an element of the biological clock, namely
Ror [3, 337], shown in Fig. 13.12 to separate the distinct effects of PER/CRY and
examined if this assignment of Ror to the new indirect interaction improved the
stability of the system. Ror has been found in the SCN, but the functional roles of
Ror remains to be elucidated. Rev-Erb has attracted more interests than Ror, prob-
ably because inhibitory interaction on Bmal transcription seemed to be necessary
to obtain the observed inverted phase relation of Bmal in the clock system. The
Bmal level is low when the PER/CRY is high and high when PER/CRY low. So it is
reasonable to imagine that important interaction should be inhibitory exerted from
day-peak mRNA like REV-ERB. On the other hand, ROR tend to excite transcrip-
tion of Bmal, so it is hard to imagine that excitatory element induced inverted phase
of Bmal oscillation.
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Fig. 13.12 A second
interlocked model that
includes the pathway by
which Ror mediates
enhancement of Bmal

Figure 13.13 shows the HFPN model of Fig. 13.12. In this model, PER/CRY
complex exerts inhibitory influence on the transcription of Per, Cry, Rev-Erb
and Ror, and in turn, ROR facilitatory on Bmal independently of PER/CRY. In
other words, the second feedback loop now consists not only of Rev-Erb but
also of Ror. The delay component for the translation to ROR shown in the small
white box labeled ROR-delay of Fig. 13.13 was introduced on the following rea-
son.

When facilitatory and inhibitory effects act on at the same time, inhibitory in-
fluence surpasses facilitatory one and blocks the link completely. Hence, the same
phase of the oscillation and the same thresholds of ROR and REV-ERB did not in-
duce a rhythm in the Bmal level. Different thresholds, as in the case of Fig. 13.14,
where the threshold of ROR was set 2.4, whereas the threshold of REV-ERB 1.4, did
not solve the problem. On the other hands, addition of the delay component shown
in the small white box successfully reproduced consistent behavior of the rhythms,
which are shown in Fig. 13.15.

This system exhibited stable rhythms with appropriate phase relationship as
shown in Fig 13.16. For example, Bmal peaks were found at the midpoints between
two peaks of Per or Cry.

Moreover, this interlocked model with Ror added successfully produced com-
plementary salvation of the rhythms. The system keeps on oscillating when ei-
ther the CLOCK/BMAL or PER/CRY level was fixed at a constant level, as
shown in Fig. 13.17. Whereas negative feedback loop via PER/CRY maintain the
rhythms without the feedback through Rev-Erb and Ror, the second loop through
CLOCK/BMAL and REV-ERB and ROR, in turn, provide effective interaction caus-
ing oscillations of the clock genes even when the PER/CRY level was kept con-
stant.
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Fig. 13.14 Simulation results in the case of the different thresholds for ROR activation (2.4) and
REV-ERB (1.4) repression. Normal oscillation of Bmal is not obtained. The black portions in the
upper black-white bar represent the period when ROR activates Bmal, and the ones in the lower
bar the period when REV-ERB represses Bmal

Fig. 13.15 Simulation results in the case of delayed ROR compared with REV-ERB in phase.
Normal Bmal oscillation is obtained. Two black-white bars have the same meaning as the ones in
Fig. 13.14

Although most of the biochemical results were reproduced in this model, one
important biochemical characteristic still remained to be worked out. In this Ror-
included interlocked model of Fig. 13.12, deletion of Cry gene did no longer abolish
the rhythmicity, as shown in Fig. 13.18.

To resolve the discrepancy, a clue came from the report of genetic experi-
ments showing that in Cry-deficient mice, Bmal level was lower than in con-
trol mice [360]. This indicates that, Cry, either directly or indirectly, must be in-
volved in the enhancement of Bmal transcription, which is missing in the inter-
locked and Ror included model of Fig. 13.12. Implementation of this interaction
would solve the persistent discrepancies remaining in the model up to the present
point.
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Fig. 13.16 Simulation results of clock gene mRNAs and proteins by the simulation based on the
interlocked model with Ror of Fig. 13.12. They show stable rhythms, consistent with the biochem-
ical observation

13.4.2 Inclusion of a Hypothetical Path: ROR Excites Bmal Only
When PER/CRY Level Are Above the Threshold

In order to achieve elimination of the rhythm in Cry-deficient mice in the HFPN
model, we introduced a hypothetical path indicated by a test arc in bold in Fig. 13.19,
that represents the facilitatory effects of ROR exerting on Bmal transcription, which
become effective only when the PER/CRY level is beyond the threshold (in this
case 0.5). Although biochemical substrate of the interaction has not been identi-
fied, this modification resolved most of the remaining discrepancies in the circadian
system.

Computer simulation showed that this model reproduced rhythms of the clock
genes with proper phase relationship to each other (Fig. 13.20). In addition, forced
fixation of PER/CRY or CLOCK/BMAL level did not abolish the rhythms, making
the positive and negative loops complementary to each other of the circadian clock
system (Fig. 13.21). Furthermore, the model successfully reproduced arrhythmicity
of the Cry-deficient system, with the Bmal level sticking at a low value (Fig. 13.22).
All these characteristics are consistent with the biochemical experiments using Cry-
deficient mice.
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Fig. 13.17 Complementarity is maintained in the interlocked model with Ror of Fig. 13.12. Block-
ing of neither CLOCK/BMAL nor PER/CRY loop eliminates oscillation of the system

Fig. 13.18 In the interlocked model with Ror of Fig. 13.12, Cry deficiency do not abolish the
rhythms of Per and Bmal
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Fig. 13.20 Simulation results of clock gene mRNA and proteins of the modified interlocked model
with Ror of Fig. 13.19

13.4.3 Simulation for Rev-Erb Knockout Mice

It is noteworthy that the final modified interlocked model with Ror described above
(Fig. 13.8) successfully reproduced clock gene behavior not only in Cry knockout
mice but also in Rev-Erb knockout mice. The results of simulation when Rev-Erb
was deficient were shown in the lower panel of Fig. 13.23, which displayed a Bmal
oscillation whose level stayed higher and never became below the peaks in control.
Amplitude was also found smaller than that in control. This is observed fact in the
biochemical results [309]. Moreover, our model also explained a shorter period of
oscillation when Rev-Erb was deleted, as shown in Fig. 13.24 [309]. The modified
interlocking model with Ror exhibits a shorter period of oscillations, as compared
with that in the starting model. Black line indicate the Per in the starting model
and gray line in the modified interlocking model with Ror. This tendency was also
reported in a biochemical experiment. In other words, the present model indicates
that Rev-Erb contribute to the elongation of the period of the system oscillation.
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Fig. 13.21 Complementarity is maintained in the modified interlocked model with Ror of
Fig. 13.19

13.5 Conclusions

We have described an in-depth search for the critical missing component or inter-
action of the circadian clock of mice. Starting from the simple model (Fig. 13.3),
we employed two characteristic behaviors as guiding criteria to perform the ex-
ploratory analysis: complementarity of the positive and negative loop and total loss
of the rhythms in Cry deficiency. Since any components in the circadian system are
complicatedly intermingled, it is meaningless to single out one component as a crit-
ical element for the system behavior. However, our present analysis suggested that
often-neglected components are essential for the system to maintain its appropriate
behaviors.

To bring the circadian system into being, we found Ror plays a critical role.
Unless Ror is incorporated in the HFPN, the presence of two, positive and negative,
loop did not contribute to the robustness of the system. However, only with Ror in
the model, blockade of either loop does not abolish the oscillation.

This design of the system also predicts such observed properties as the inverse
phase relation of Bmal to Per or Cry level and higher level of Bmal in Rev-Erb
knockout mice. Moreover, efforts to comply the two criteria produced the model
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Fig. 13.22 The modified interlocked model with Ror reproduces abolishment of the rhythms in
Cry-deficient mice, as is demonstrated in biochemical experiments

also explains other characteristics behaviors of the circadian system, namely, higher
Bmal level in Rev-Erb deficient mice. The model also provides a suggestion that
Rev-Erb contributes to the longer period of oscillation. The present exploration of
system properties of circadian clock demonstrated the power and possibility of the
HFPN-based computational simulation into the understanding of the complex bio-
logical systems.

13.6 Problems

13.1 In the same way as the constructing process of Per-Cry HFPN model, add the
transcription, translation, complex formation, and degradation processes of Clock
and Bmal into the HFPN model of Fig. 13.2. Set the transition speeds and threshold
values of the HFPN according to the following comments for reactions.

• For the transcription and translation processes of Clock,
– the transcription speed is 0.3 and no basal production,
– the degradation speed of Clock mRNA is 1/5th of its concentration,
– the translation speed of CLOCK is 1/5th of its concentration,
– the degradation speed of CLOCK is 1/10th of its concentration, and
– the threshold value to activate the translation is 0.5.
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Fig. 13.23 Rhythms of Bmal in the mouse with Rev-Erb (black) and those in the Rev-Erb knock-
out mouse (gray). Upper illustrations shows the levels in the starting model of Fig. 13.3. Lower
illustration in the modified interlocking model with Ror depicted in Fig. 13.19. Lower panel shows
a Bmal rhythm staying higher than that in the control mouse

Fig. 13.24 Rhythms of Per in the mouse of the starting model in Fig. 13.3 (black) and those in the
modified model with the hypothetical interaction of ROR (gray). It is of note that the period of Per
in the modified model is found much longer than that in the starting model in Fig. 13.3

• For the transcription and translation processes of Bmal,
– the transcription speed is 0.9 and the basal production speed is 0.05,
– the degradation speed of Bmal mRNA is 1/5th of its concentration,
– the translation speed of BMAL is 1/5th of its concentration,
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– the degradation speed of BMAL is 1/10th of its concentration, and
– the threshold value to activate the translation is 0.5.

• For the complex formation process of CLOCK and BMAL,
– the speed of the complex formation of CLOCK and BMAL is 1/10th of the

product of these concentrations and
– the degradation speed of CLOCK/BMAL is 1/15th of its concentration.

13.2 Add an HFPN model of the Rev-Erb transcription and translation process into
Fig. 13.2, and thereafter, set transcription speeds and a threshold value according to
the following comments.

• For the transcription and translation processes of Rev-Erb,
– the transcription speed is 0.9 and the basal production is 0.05,
– the degradation speed of mRNA is 1/5th of the concentration of Rev-Erb

mRNA,
– the translation speed is 1/10th of the concentration of Rev-Erb mRNA,
– the degradation speed is 1/10th of the concentration of REV-ERB, and
– the threshold value to activate the translation is 0.5.

13.3 Describe the regulatory interactions of gene activation/inactivation by using
test and inhibitory arcs with thresholds values according to the following comments.
A value in parentheses of each sentence is a threshold value to be assigned to a test
or inhibitory arc.

• PER/CRY activates Bmal (2.0),
• PER/CRY represses Rev-Erb (1.6),
• REV-ERB represses Bmal (1.4),
• CLOCK/BMAL activates Per (0.5),
• CLOCK/BMAL activates Cry (0.5), and
• CLOCK/BMAL activates Rev-Erb (0.5).
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Chapter 14
Prediction of Network Structure

Annegret Wagler

Abstract For many aspects of health and disease, it is important to understand
different phenomena in biology and medicine. To gain the required insight, experi-
ments are performed and the resulting experimental data have to be interpreted. This
leads to the Network Reconstruction Problem, the challenging task to generate all
models that explain the observed phenomena. As in systems biology, the frame-
work of Petri nets is often used to describe models for the regulatory mechanisms
of biological systems, our aim is to predict all the possible network structures being
conformal with the given experimental data. We discuss a combinatorial approach
proposed by Marwan et al. (Math. Methods Oper. Res. 67:117–132, 2008) and re-
fined by Durzinsky et al. (Proc. of CMSB 2008, LNBI, vol. 5307, pp. 328–346,
Springer, Berlin, 2008) to solve this problem. In addition, we also present an algo-
rithm by Durzinsky et al. (J. Theor. Comput. Sci., 2009) that, based on these results,
generates a complete list of all potential networks reflecting the experimentally ob-
served behavior.

14.1 Introduction

Predictive models of biological systems and phenomena are of high scientific in-
terest and practical relevance, but not always easy to obtain due to their inherent
complexity. One fundamental question in this context is to detect the local mecha-
nisms of interaction starting from the experimentally observed global behavior of a
biological system, that is, to predict all the possible network structures being con-
formal with the given experimental data. This is the topic of this chapter.

Structure and function of the studied system can be probed by stimulating one or
several of its elements and by measuring a set of parameters as a function of time
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in order to see how this stimulation propagates throughout the system. The task is
to predict the network structure from such experimental time series data, that is, to
determine in which way the measured components interact with each other.

In practice, this is typically done heuristically, based on subjectively plausible in-
terpretations of the data. Mathematical approaches help here to rigorously interpret
the data with the help of a mathematical model and to state provable assertions on
properties.

Many different mathematical models and methods for their reconstruction have
been considered. For instance, Kholodenko et al. [188] use differential equation sys-
tems to describe the dynamics of gene regulatory networks based on a linear model
which is unraveled by measuring the effects of perturbations to the system. As a
discrete version of differential equations, Laubenbacher and Stigler [218] propose
an algebraic approach that models the observed phenomena in terms of a finite-
state polynomial model, which allows the use of algebraic tools to find the set of
all solutions. The outcome, however, depends on the chosen order of the parameters
and might claim an interaction between parameters which are in fact not coupled.
Krishna and Guo [213] describe a statistical method which estimates the likelihood
of one component effecting another one by Granger causality and generates a depen-
dency graph, which provides only the information which components are coupled,
but not how they interact.

All these approaches yield potentially incomplete information as neither network
elements are considered that are causally involved but have not been measured, nor
a certificate can be given that no other model can explain the phenomena.

The aim of this chapter is to present a combinatorial approach proposed by Mar-
wan et al. [245] and refined by Durzinsky et al. [105] for reconstructing models
of biological systems from experimental data, that overcomes these difficulties. In
particular, this approach also provides a certificate to detect whether the given data
do not suffice to find a coherent model of the studied biological system or phe-
nomenon. In this situation, additional elements are considered in the reconstruction
process that are causally involved but have not been measured. Based on these re-
sults, Durzinsky et al. [106] developed an algorithm that generates a complete list
of all potential models reflecting the experimentally observed behavior, using the
minimal number of additional elements.

To model the studied biological systems and phenomena, we use the framework
of Petri nets to benefit from the following advantages. First, Petri nets are a coher-
ent model to describe all different motifs that occur in biological systems (see Part I
Petri nets and the references in the portal mentioned therein [70, 71, 106, 208, 303]).
Second, the mathematical description of both the interactions in terms of network
structure and the dynamics in terms of state changes allows easy handling and as-
sembly of reaction chains. Finally, the graphical representation of Petri nets is often
used to model biological systems and processes, as it shows the structure and con-
nectivity of the parts of the systems directly.

We now describe the problem setting in a formally correct way. Recall that a Petri
net N is given by

N = (P,T ,F,W,m0)
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with the sets P of places and T of transitions, the flow relation F ⊆ (P × T ) ∪
(T ×P) providing arcs of the form (p, t) or (t,p), a mapping W : F →N assigning
weights to the arcs from F , and the initial marking m0 : P →N assigning each place
p its initial token load m0(p).

The places p ∈ P represent the set of studied components (as proteins or their
conformational states, enzymes etc.), the transitions t ∈ T their interactions (as
chemical reactions, activations, causal dependencies etc.).

Recall further that a marking m enables a transition t if each arc (p, t) from a
pre-place of t is weighted with W(p, t)≤m(p) tokens. The occurrence of t changes
the marking m to a marking m′ by consuming W(p, t) tokens from each pre-place
p of t and producing W(t,p′) tokens in each post-place p′ of t .

Markings stand for system states, and the dynamic behavior of a Petri net is
described step-wise, by converting states into new states upon the occurrence of
transitions, starting from the state corresponding to the initial marking m0.

For our purpose, it is convenient to associate with each marking m a state vector
x ∈ N

|P | with xp = m(p) for all places p ∈ P , and to express the occurrence of a
transition t with the help of its update vector. In addition, we consider, without loss
of generality, simple Petri nets only where no pair of place and transition is linked
in both directions (i.e., if there is an arc (p, t) ∈ F , then (t,p) ∈ F holds, and vice
versa). Therefore, we redefine the update vector of a transition t by rt ∈ Z

|P | having

rt
p =

⎧
⎨

⎩

−W(p, t) if (p, t) ∈ F,

W(t,p) if (t,p) ∈ F,

0 else

as its entries. Then the change from a state x to a state x′ by the occurrence of
transition t can be expressed as x+ rt = x′. Moreover, we can rewrite each Petri net
N = (P,T ,F,W,m0) by

N = (
G,x0) with G= (P ∪ T ,F,W)

where G is the associated network and x0 the state vector in N
|P | encoding the initial

marking. In mathematical terms, G= (P ∪T ,F,W) is a weighted directed bipartite
graph. A directed graph has a set of nodes (here the set P ∪ T of places and transi-
tions) and directed arcs in F linking its nodes. G is bipartite as its node set P ∪ T

is partitioned into two subsets, the set P of places and the set T of transitions, and
the arcs in F link a place p ∈ P exclusively with a transition t ∈ T (or vice versa).
Recall that we do not have any pair of place and transition linked in both directions.
The integral arc weights reflect the stoichiometric coefficients of the reactions.

Our aim is to predict the possible network(s) G= (P ∪ T ,F,W) for the studied
system, where the set P = {p1, . . . , pn} of these components is chosen which is
expected to be crucial for the observed phenomenon.

An experiment is performed by triggering the system in some state x0 (by ex-
ternal stimuli like the change of nutrient concentrations or the exposition to some
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pathogens), thereby generating an initial state x1 of the system.1 Then one observes
how the system reacts by changing its states according to the stimulus, thereby mea-
suring the values of the components in P at certain time points. Some measured data
are of a discrete nature, for example, a gene can be expressed or not, an enzyme can
be present or not, a protein occurs in one of its conformational states. If some mea-
sured data are continuous, for example, concentrations of certain metabolites, then
it is necessary to appropriately discretize the continuous data into finitely many dis-
crete states. For that, the chosen level of discretization has to be fine enough to
preserve all dynamic features of the time course (in particular, all local maxima or
minima of the values), but rough enough to be robust to noise in the experimental
data.

This yields a sequence x1, . . . , xk of (discrete or discretized) states reflecting the
time-dependent responses of the system to the stimulation in x1 denoted by

X
(
x1)= (

x0;x1, . . . , xk
)
.

Note that we also provide the state x0 as the starting point for the stimulation, which
will be needed later on.

As several experiments, starting from different initial states in a set Ini ⊆ Z
|P |
+ ,

may be necessary to describe the whole phenomenon, we use experimental time
series data of the form

X ′ = {
X

(
x1) : x1 ∈ Ini

}
.

We assume X ′ to be reproducible, thus we require X (xi1)=X (xj1) for xi1 = xj1 .

Example 14.1 As running example of this chapter, we will consider the light-
induced sporulation of Physarum polycephalum. The reconstruction process for dif-
ferent experimental settings exploring this light-induced sporulation is explained in
Durzinsky et al. [104].

The developmental decision of starving P. polycephalum plasmodia to exit the
vegetative plasmodial stage and to enter the sporulation pathway is controlled by
environmental factors like visible light [372]. One of the photoreceptors involved in
the control of sporulation Sp is a phytochrome-like photoreversible photoreceptor
protein which occurs in two stages Pfr and Pr . If the dark-adapted form Pfr absorbs
far-red light FR, the receptor is converted into its red-absorbing form Pr , which
causes sporulation [216]. If Pr is exposed to red light R, it is photoconverted back
to the initial stage Pfr , which prevents sporulation. Note that the changes between
the stages Pfr and Pr can be experimentally observed due to a change of color.

This experimental setting uses the set P = {FR,R,Pfr,Pr ,Sp} of studied com-
ponents. As we can deal for all components in P only with their availability, we
represent all (observed) states by vectors of the form

x = (xFR, xR, xPfr , xPr , xSp)
T

1We use super-indices to reflect the order of the states xj and to allow sub-indices for the entries

x
j
p in a particular component p.
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Fig. 14.1 A scheme
illustrating the stimulations
and the experimental
observations (dashed arrows
stand for stimulations, solid
arrows for the observed
responses of the system)

having 0/1-entries only. The above described behavior of the system can, therefore,
be represented by a scheme as depicted in Fig. 14.1. This scheme can be interpreted
as experimental time series data X ′ with initial states in Ini= {x0, x1, x4} and the
following sequences of measured states:

• X (x0)= (x0) as no sporulation occurs without stimulation (dark control),
• X (x1)= (x0;x1, x2, x3) as response to irradiation with far-red light at state x0,
• X (x4)= (x2;x4, x0) showing that sporulation can be suppressed by irradiation

at state x2 with red light.

Thus, the experimental setting is given by (P,X ′). The task is to find all net-
works G= (P ∪ T ,F,W) with P as set of places which are appropriate to explain
the experimentally observed behavior reported in X ′.

In the best case, two consecutively measured states xj , xj+1 ∈X ′ are also con-
secutive system states, that is, xj+1 can be obtained from xj by a single transition.
This is, however, in general not the case (and depends on the chosen time points to
measure the states in X ′). Typically, xj+1 is obtained from xj by a sequence

xj = y1, y2, . . . , yk+1 = xj+1

of some length k ≥ 1 using the transitions from a subset T ′ ⊆ T to change from an
intermediate state yl to yl+1, where the intermediate states are not reported in X ′.

In a network G fitting the experimental data, this can be interpreted as follows.
With G, an incidence matrix C ∈ Z

|P |×|T | is associated, where each row corre-
sponds to a place p ∈ P of the network, and each column to a transition t ∈ T . In
particular, we associate a transition t ∈ T with the corresponding column C∗t of C

having

cpt =
⎧
⎨

⎩

−W(p, t) if (p, t) ∈ F,

W(t,p) if (t,p) ∈ F,

0 else
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as entries.2 Note that C∗t corresponds exactly to the update vector of transition t .
That xj+1 is reached from xj by a sequence using the transitions from a subset
T ′ ⊆ T is, therefore, equivalent to obtain the state vector xj+1 from xj by adding
the corresponding columns C∗t of C for all t ∈ T ′:

xj +
∑

t∈T ′
C∗t = xj+1.

In terms of the incidence matrix C, the above equation can be rewritten as

xj+1 − xj = Cλ

where the vector λ ∈ Z
|T |
+ indicates which transitions are involved to obtain the

studied sequence. Hence, to fit the experimental data, a network G has to satisfy the
following definition.

Definition 14.1 A network G= (P ∪T ,F,W) with incidence matrix C ∈ Z
|P |×|T |

is conformal with X ′ if, for each x1 ∈ Ini and any two consecutive states xj , xj+1 ∈
X (x1), the linear equation system xj+1 − xj = Cλ has an integral solution
λ ∈ Z

|T |
+ .

In other words, a network G= (P ∪T ,F,W) is conformal with X ′ if T contains
appropriate transitions such that, for any pair xj , xj+1 of consecutively measured
states in X ′, state xj+1 can be reached from xj by an intermediate sequence using
transitions from T . This leads to the following problem.

Problem 14.1 (Network Reconstruction Problem) Given (P,X ′), generate all the
networks G= (P ∪ T ,F,W) being conformal with X ′.

In Sect. 14.2, we discuss two approaches for solving the Network Reconstruction
Problem, depending on the kind and quality of the given data, which both construct
the complete set of networks being conformal with the given data. We first outline
the principle ideas of a combinatorial reconstruction approach proposed by Marwan
et al. [245] and discuss the resulting difficulties. Then we present a refinement of
this approach for the case of monotone data which was developed by Durzinsky
et al. [105, 106] to overcome these difficulties.

In Sect. 14.3, we present the resulting algorithm for reconstructing conformal
networks from monotone experimental time series data from Durzinsky et al. [106],
including a formal pseudo code description.

Besides predicting the structure of the studied biological system in terms of con-
formal networks, it is also interesting to consider the dynamics of the studied sys-
tem. In Sect. 14.4, we discuss a stronger version of conformality also taking some

2In usual mathematical terms, the column of a matrix C indexed by t is denoted by C·t . As this
notion interferes with the notion •t of preplaces of a transition t , we here use C∗t instead of C·t .
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dynamic aspects into account, as suggested in Marwan et al. [245] and refined by
Torres et al. [395]. That way, we can rule out networks as appropriate models which
are conformal but not strongly conformal with the given data.

We finally summarize all these methods for solving the Network Reconstruction
Problem in Sect. 14.5, and discuss the practical impact of the presented results.

14.2 Methods to Predict Network Structures

We first outline the principle ideas of a combinatorial reconstruction approach pro-
posed by Marwan et al. [245] (see Sect. 14.2.1). Then we discuss more detailed a
refinement of this approach suggested by Durzinsky et al. [105, 106] for the case of
monotone data (see Sect. 14.2.2). The latter approach involves some ideas in order
to keep both the running time of the algorithm and the number of produced solutions
as small as possible.

14.2.1 A General Combinatorial Reconstruction Approach

We now outline the major steps of a reconstruction algorithm proposed by Marwan
et al. [245] for turning experimental data into a complete list of networks being
conformal with the phenomena observed.

Recall that the input (P,X ′) of the algorithm consists of the set P =
{p1, . . . , pn} of studied components and experimental time series data X ′ =
{X (x1) : x1 ∈ Ini}.

Typically, we have components of different types; we call p ∈ P an input
(resp. output) component if tokens in p can not be produced (resp. consumed)
by the system. All components subject to external stimulation are input compo-
nents, whereas output components reflect irreversible modifications of the system.
All other components p ∈ P are free and are required as intermediates to describe
the internal response of the studied system to the external stimulus. Accordingly, we
partition the set P into

P = PI ∪ PO ∪ PF

where PI (resp. PO , resp. PF ) is the subset of all input (resp. output, resp. free)
components. Recall further that we encode stimuli within the initial states x1 ∈
Ini (by setting the values of the components in PI accordingly), instead of using
interface reactions r ∈ Z

n+ with rp > 0 for p ∈ PI .
An initial step of the algorithm is to extract the observed internal responses from

the experimental data. For that, we define the set

D := {
dj = xj+1 − xj : j > 0, xj , xj+1 ∈X

(
x1), x1 ∈ Ini

}

(recall that the change from x0 to x1 within the sequence X (x1)= (x0;x1, . . . , xk)

corresponds to a stimulation, but not to a response of the system).
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In order to find the complete list of all networks G= (P ∪ T ,F,W) being con-
formal with X ′, we shall find the corresponding matrices C ∈ Z

|P |×|T | such that
each d ∈D has a representation of the form

Cλ= d

where the Parikh vector λ ∈ Z
|T |
+ indicates how often the columns of C are used in

order to represent d . The difficulty is that both, the matrix C and the vector λ, are
unknown.

The first step is to describe the set of potential reaction vectors (update vectors of
the potential transitions) which might constitute the columns of C. For that, capacity
bounds u for the number of tokens in each place of the network are required. In
biological systems, internal elements can be considered to be bounded, as the value
xp of any state refers to the measured concentration of the studied element, which
can only increase up to a certain maximum up . Indeed, many of the elements are
even binary (up = 1) to distinguish between the presence (xp = 1) and absence
(xp = 0) of the element p ∈ P only. For external elements p ∈ PI , the value x1

p in

an initial state x1 provides a natural upper bound up for the number of tokens in
place p for any system state (or the maximum of x1

p taken over all initial states x1,
if several time series data are considered simultaneously).

This shows that every column rt = C∗t of such a matrix C has to satisfy −u ≤
rt ≤ u, as all potential system states have to belong to the box

X = {
x ∈ Z

n : 0≤ xp ≤ up ∀p ∈ P
}
.

This can be refined by considering the different types of components, taking into
account that an input (resp. output) component can not be produced (resp. con-
sumed) by the system. Moreover, every nonnegative column rt would correspond
to a transition which produces substances without consuming something. As we en-
code stimuli within the initial state(s), we can exclude all vectors in Z

n+ from the
set of all potential reactions in order to consider for the reconstruction process only
vectors corresponding to internal reactions of the system.

Accordingly, we define the reaction space as

R =
⎧
⎨

⎩
r ∈ Z

|P | :
−up≤ rp ≤ 0 ∀p ∈ PI

0≤ rp ≤ up ∀p ∈ PO

−up≤ rp ≤ up ∀p ∈ PF

⎫
⎬

⎭
\Z

|P |
+

where, depending on the biological system, other constraints may be present and
restrict this set further. For instance, if P ′ ⊆ P is a P-invariant of the system, then∑

p∈P ′ rp = 0 follows for all vectors r ∈R.

Example 14.2 In order to apply the reconstruction approach to the experimental
time series data X ′ described in Example 14.1, we illustrate here how to built
the according reaction space. The experimental setting uses again the set P =
{FR,R,Pfr,Pr ,Sp} of studied components and we represent all (observed) states
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by vectors of the form x = (xFR, xR, xPfr , xPr , xSp)
T . As we can deal for all com-

ponents in P only with their availability, we have up = 1 for all p ∈ P . Due to the
experimental setting, we have a partition of P into PI = {FR,R}, PF = {Pfr,Pr},
P0 = {Sp}. As Pfr and Pr are two different stages of one photoreceptor protein, they
form a p-invariant P ′ = {Pfr,Pr }. Thus, we have

R =

⎧
⎪⎪⎨

⎪⎪⎩
r ∈ Z

5 :
−1≤ rp ≤ 0 ∀p ∈ PI

−1≤ rp ≤ 1 ∀p ∈ PF

0≤ rp ≤ 1 ∀p ∈ PO

rPfr + rPr = 0

⎫
⎪⎪⎬

⎪⎪⎭
\Z

5+

and, thus, the following vectors form the set R:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
FR −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0
R −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 0
Pfr −1 −1 0 0 1 1 −1 −1 0 0 1 1 −1 −1 0 0 1 1 −1 −1 1 1
Pr 1 1 0 0 −1 −1 1 1 0 0 −1 −1 1 1 0 0 −1 −1 1 1 −1 −1
Sp 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Recall that we exclude the two reaction vectors from Z
5+ equal to (0,0,0,0,0)T

and (0,0,0,0,1)T corresponding to the “empty” reaction and a spontaneous sporu-
lation without stimulation, respectively.

As next step, the idea is to represent the vector d by building all conic integer
combinations

d =
∑

rt∈R

λt r
t , λt ∈ Z+ (14.1)

of reaction vectors rt in R; we denote by Λ(d) the set of all integral solutions of
this linear equation system. For each vector λ ∈Λ(d), let

Rd,λ =
{
rt ∈R : λt = 0

}

be the (multi-)set of reaction vectors used for this solution λ.
The difficulty is that, in general, the system (14.1) has infinitely many solutions,

as we can extend any representation of d by an integral solution η = 0 of the homo-
geneous system

0=
∑

rt∈RH

ηt r
t , ηt ∈ Z+ (14.2)

where RH is the subset of all vectors r ∈R with rp = 0 for all p ∈ PI ∪ P0. We
denote the set of all homogeneous solutions η = 0 by Λ(0). As d = d + 0 holds,
every solution λ ∈ Λ(d) can be clearly extended by any homogeneous solution
η ∈ Λ(0) to a new solution λ + η ∈ Λ(d). However, not all conic combinations
of solutions λ ∈Λ(d) and η ∈Λ(0) are of interest for our purpose, as for instance
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Rd,λ ⊆Rd,λ+η and Rd,λ+η =Rd,λ+kη holds for all k ≥ 1. In particular, there are
only finitely many different sets Rd,λ, λ ∈ Λ(d) (as the finite set R has only a fi-
nite number of subsets). Nevertheless, the occurrence of homogeneous solutions
substantially increases the number of different representations for each d ∈D .

Example 14.3 We apply the above steps to the experimental time series data X ′
described in Example 14.1, again using vectors of the form x = (xFR, xR, xPfr ,

xPr , xSp)
T to represent system states.

Extracting the difference vectors from the sequences X (x1) = (x0;x1, x2, x3)

and X (x4)= (x2;x4, x0) of measured states yields:

d1 = x2−x1 =

⎛

⎜⎜⎜⎜
⎝

−1
0
−1
1
0

⎞

⎟⎟⎟⎟
⎠

, d2 = x3−x2 =

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟
⎠

, d3 = x0−x4 =

⎛

⎜⎜⎜⎜
⎝

0
−1
1
−1
0

⎞

⎟⎟⎟⎟
⎠

(recall that the stimulations x0 FR−→x1 and x2 R−→x4 are not subject to reconstruc-
tion).

In order to represent the difference vectors dj as conic combinations of vectors
in the reaction space R constructed in Example 14.2, we have to find all integral
solutions λ of the linear equation system (14.1) for dj and j ∈ {1,2,3}.

We start with d1 and observe that for its representation only vectors r ∈R can
be used with rR = 0 and rSp = 0. This yields the following minimal representations

d1 =

⎛

⎜
⎜⎜⎜
⎝

−1
0
−1
1
0

⎞

⎟
⎟⎟⎟
⎠
=

⎛

⎜
⎜⎜⎜
⎝

−1
0
0
0
0

⎞

⎟
⎟⎟⎟
⎠
+

⎛

⎜
⎜⎜⎜
⎝

0
0
−1
1
0

⎞

⎟
⎟⎟⎟
⎠
=

⎛

⎜
⎜⎜⎜
⎝

−1
0
1
−1
0

⎞

⎟
⎟⎟⎟
⎠
+ 2

⎛

⎜
⎜⎜⎜
⎝

0
0
−1
1
0

⎞

⎟
⎟⎟⎟
⎠

with Rd1,λ1 = {r7}, Rd1,λ2 = {r9, r19} and Rd1,λ3 = {r9, r11} using the numbering
of the reaction vectors from Example 14.2.

To represent d2, we can use vectors r ∈R with rR = 0 and rFR = 0, which yields
the minimal representations

d2 =

⎛

⎜⎜⎜
⎝

0
0
−1
1
0

⎞

⎟⎟⎟
⎠
+

⎛

⎜⎜⎜
⎝

0
0
1
−1
1

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜
⎝

0
0
−1
1
1

⎞

⎟⎟⎟
⎠
+

⎛

⎜⎜⎜
⎝

0
0
1
−1
0

⎞

⎟⎟⎟
⎠

with Rd2,λ1 = {r9, r22} and Rd2,λ2 = {r20, r21}.



14 Prediction of Network Structure 317

For d3, vectors r ∈ R with rFR = 0 and rFR = 0 are appropriate and yield the
minimal representations

d3 =

⎛

⎜⎜⎜
⎝

0
−1
1
−1
0

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜
⎝

0
−1
0
0
0

⎞

⎟⎟⎟
⎠
+

⎛

⎜⎜⎜
⎝

0
0
1
−1
0

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜
⎝

0
−1
−1
1
0

⎞

⎟⎟⎟
⎠
+ 2

⎛

⎜⎜⎜
⎝

0
0
1
−1
0

⎞

⎟⎟⎟
⎠

with Rd3,λ1 = {r17}, Rd3,λ2 = {r15, r21} and Rd3,λ3 = {r13, r21}.
Every minimal representation can be further extended by any solution of the

homogeneous system (14.2). As all vectors r in RH have to satisfy rp = 0 for all
p ∈ PI ∪ P0, we obtain:

RH =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝

0
0
−1
1
0

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝

0
0
1
−1
0

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Thus, there is exactly one homogeneous solution η using both vectors r19 and r21

from RH . Taking all combinations with different sets of used reactions into account
yields 6 different representations for d1, 4 different representations for d2, and 6
different representations for d3.

Note that, except for some pathological cases with |P | ≤ 2, there always exists
at least one solution of the linear equation system (14.1) for each d ∈D (see [105]).
The next step of the approach consists in combining the reactions used for the rep-
resentations of the single difference vectors to conformal networks.

By construction, selecting one solution λ ∈Λ(d) for each d ∈D and taking the
union of the corresponding sets Rd,λ yields the columns of an incidence matrix of a
conformal network. In order to encode which solution λi ∈Λ(d)= {λ1, . . . , λ|Λ(d)|}
has been selected for each d ∈ D , define a vector κ ∈ Z

|D|
+ with 1 ≤ κd ≤ |Λ(d)|.

Then

C(κ)=
⋃

d∈D

Rd,λκd

defines the incidence matrix of the network corresponding to the selected solutions
λκd

∈Λ(d) for each d ∈D . The complete list of all conformal networks is given in
terms of their incidence matrices by

C = {
C(κ) : κ ∈ [

1,
∣
∣Λ(d)

∣
∣]|D|}.

Remark 14.1 Note that each C(κ) indeed consists of the union of the selected sets
Rd,λκd

in the set-theoretic sense, hence C(κ) does not contain any equal columns
(and, thus, the resulting network G(κ) no two transitions having identical update
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vectors). That way, it may happen that C(κ) = C(κ ′) holds even for different se-
lections κ = κ ′. Hence, C may contain less different solution alternatives than the∏

d∈D |Λ(d)| possible selections.

Example 14.4 We apply the last step of the reconstruction approach to the data given
in Example 14.1. For that, recall from Example 14.3 that there are three difference
vectors d1, d2, d3 with the following different representations:

dj λi Rdj ,λi

d1 λ1 {r7}
λ2 {r9, r19}
λ3 {r9, r11}
λ4 = λ1 + η {r7, r19, r21}
λ5 = λ2 + η {r9, r19, r21}
λ6 = λ3 + η {r9, r11, r19, r21}

d2 λ1 {r9, r22}
λ2 {r20, r21}
λ3 = λ1 + η {r9, r19, r21, r22}
λ4 = λ2 + η {r19, r20, r21}

d3 λ1 {r17}
λ2 {r15, r21}
λ3 {r13, r21}
λ4 = λ1 + η {r17, r19, r21}
λ5 = λ2 + η {r15, r19, r21}
λ6 = λ3 + η {r13, r19, r21}

Thus, taking also the homogeneous solution η using the two vectors r19 and r21

into account yields 6 different representations for d1, 4 different representations for
d2, and 6 different representations for d3.

This leads to 6 ·4 ·6= 144 different selection vectors. For instance, the following
matrices and networks are associated with the combinations corresponding to κ =
(1,1,1)T and κ ′ = (2,2,3)T :

C(κ)=

⎛

⎜⎜
⎝

−1 0 0 0
0 0 0 −1
−1 1 −1 1
1 −1 1 −1

⎞

⎟⎟
⎠ , C

(
κ ′

)=

⎛

⎜⎜⎜⎜
⎝

−1 0 0 0 0
0 0 0 0 −1
0 −1 1 −1 −1
0 1 −1 1 1
0 1 0 0 0

⎞

⎟⎟⎟⎟
⎠



14 Prediction of Network Structure 319

Note that not all possible selections yield different networks as for some choices,
the reaction sets coincide (for instance, the matrix C(κ ′) from above already con-
tains both vectors from RH such that any combination of the selected inhomoge-
neous solutions with η results in the same network).

For the sake of minimality, it was proposed in [245] to take into acount only these
solutions in Λ(d) having an inclusion-wise minimal set Rd,λ of used reactions. This
leads to conformal networks also being minimal in the sense of involved reactions,
and helps to not artificially increase the total number of conformal networks.

Using in the above example only these minimal inhomogeneous representations,
there are 3 different representations for d1, 2 different representations for d2, and 3
different representations for d3 left which can be combined to 18 (minimal) confor-
mal networks (instead of 144 networks).

Remark 14.2 The homogeneous solution in the above example can be excluded
by another argument, too. It can be experimentally observed that no other change
between the two stages Pfr and Pr of the photoreceptor has been occurred than
reported in the time series data. Hence, the values of Pfr and Pr must not oscil-
late in potential intermediate states between two consecutively measured states xj

and xj+1. This excludes the homogeneous solution from the consideration. For the
same reason, both (inhomogeneous) representations λ1 and λ2 of d2 can be ex-
cluded. As any reconstructed network must use one of the representations of d2,
none of them is biologically meaningful in the sense that it truly reflects the ob-
served phenomenon.

This shows that this general reconstruction approach is not appropriate to pro-
duce biologically meaningful networks as soon as the intermediate sequences link-
ing two consecutively measured states of the experimental data are restricted.

14.2.2 An Approach for the Case of Monotone Data

We now turn to the case of experimental data where the network elements have been
measured so accurately that an oscillation of their values between two measured
states can be excluded a priori.

Definition 14.2 We say that the experimental data X ′ are monotone if for each x1 ∈
Ini and any two consecutively measured states xj , xj+1 ∈X (x1) the intermediate
states yl of the sequence xj = y1, y2, . . . , yk, yk+1 = xj+1 satisfy

• y1
p ≤ y2

p ≤ · · · ≤ yk
p ≤ yk+1

p for all p ∈ P with x
j
p ≤ x

j+1
p and

• y1
p ≥ y2

p ≥ · · · ≥ yk
p ≥ yk+1

p for all p ∈ P with x
j
p ≥ x

j+1
p .

In particular, the intermediate states of this sequence satisfy

y1
p = y2

p = · · · = yk
p = yk+1

p
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for all p ∈ P with x
j
p = x

j+1
p and belong to the box

X (d)= {
y ∈X : yp ∈

[
x

j
p, x

j+1
p

]
for all p ∈ P

}
.

Remark 14.3 Note that in the general case, we have monotonicity for the places
in PI ∪ PO as their values do certainly not oscillate (recall that the system can
neither produce a token in a place in PI nor consume a token from a place in PO ).
Here, monotonicity is also assumed for all places in PF . This is necessary if the
experimental observations show that the values of the places in PF do not oscillate
in potential intermediate states between two consecutively measured states. This
situation occurs if the measurements keep track of all local maxima and minima of
the time course for every single component.

For the case of monotone data, Durzinsky et al. [105] showed that the general
problem to represent a vector d ∈D can be refined as follows [105]. As the values
of the components can not oscillate in the intermediate states between xj and xj+1,
it suffices to represent the vector d = xj+1− xj using vectors r ∈R only which are
sign-compatible with d , that is, which belong to the following set

Box(d)=

⎧
⎪⎪⎨

⎪⎪⎩
r ∈ Z

n :
0≤ rp≤ dp if dp > 0

dp ≤ rp≤ 0 if dp < 0
rp=0 if dp = 0∑

p∈P ′ rp=0 ∀P ′ ∈P

⎫
⎪⎪⎬

⎪⎪⎭

where P is the family of all P-invariants P ′ ⊆ P of the system. Note that in this
setting, upper bounds up for the values |rp| are not required as we clearly have
|rp| ≤ |dp| ≤ |up| for all p ∈ P due to monotonicity.

In fact, Durzinsky et al. [105] showed that no homogeneous solutions have to
be considered in the monotone case and that the set Λ(d) consists of all integral
solutions λ of the system

d =
∑

rt∈R0(d)

λt r
t , λt ∈ Z+ (14.3)

using only vectors from

R0(d)= Box(d) \ {
r, d − r ∈ Box(d) : r ∈ Z

|P |
+

}
.

The reason is that none of the vectors d − r ∈ Box(d) with r ∈ Z
|P |
+ can be used

in any representation (as the vectors in r ∈ Z
|P |
+ are excluded from consideration

a priori as they correspond to interface reactions).

Example 14.5 The experimental time series data X ′ described in Example 14.1
satisfy the monotonicity property, as it can be experimentally observed that no other
change between the two stages Pfr and Pr of the photoreceptor occurs than reported
in the time series data.
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We now represent the difference vectors d1, d2, d3 reflecting the responses of the
studied system according to the above rules.

Recall that x2 − x1 = d1 = (−1,0,−1,1,0)T holds. We construct the sets
Box(d1) and R0(d

1) of reaction vectors and obtain:

Box(d1) Box(d1)∩Z
5+ R0(d1)

FR
R

Pfr
Pr

Sp

−1
0

−1
1
0

−1
0
0
0
0

0
0

−1
1
0

0
0
0
0
0

0
0
0
0
0

−1
0

−1
1
0

−1
0
0
0
0

0
0

−1
1
0

Using the reactions from R0(d
1) only yields the two representations

d1 =

⎛

⎜⎜⎜⎜
⎝

−1
0
−1
1
0

⎞

⎟⎟⎟⎟
⎠
=

⎛

⎜⎜⎜⎜
⎝

−1
0
0
0
0

⎞

⎟⎟⎟⎟
⎠
+

⎛

⎜⎜⎜⎜
⎝

0
0
−1
1
0

⎞

⎟⎟⎟⎟
⎠

with Rd1,λ1 = {r7} and Rd1,λ2 = {r9, r19} using the numbering of the reaction vec-
tors from Example 14.2. Note that the third representation from Example 14.4 is not
valid anymore as the involved reaction r11 does not belong to R0(d

1).
For x3 − x2 = d2 = (0,0,0,0,1)T , the sets Box(d2) and R0(d

2) are as follows:

Box(d2) Box(d2)∩Z
5+ R0(d2)

FR
R

Pfr
Pr

Sp

0
0
0
0
0

0
0
0
0
1

0
0
0
0
0

0
0
0
0
1

We have R0(d
2)= Box(d2) \ {r, d − r ∈ Box(d2) : r ∈ Z

5+} by construction, which
implies R0(d

2)= ∅ (as the reactions used for the representations in Example 14.4
are not present here). Hence, no representation of d2 is possible anymore.

For x0 − x4 = d3 = (0,−1,1,−1,0)T , the sets Box(d3) and R0(d
3) are as fol-

lows:

Box(d3) Box(d3)∩Z
5+ R0(d3)

FR
R

Pfr
Pr

Sp

0
−1

0
0
0

0
−1

1
−1

0

0
0
0
0
0

0
0
1

−1
0

0
0
0
0
0

0
−1

0
0
0

0
−1

1
−1

0

0
0
1

−1
0
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Using the reactions from R0(d
3) only yields the two representations

d3 =

⎛

⎜⎜⎜⎜
⎝

0
−1
1
−1
0

⎞

⎟⎟⎟⎟
⎠
=

⎛

⎜⎜⎜⎜
⎝

0
−1
0
0
0

⎞

⎟⎟⎟⎟
⎠
+

⎛

⎜⎜⎜⎜
⎝

0
0
1
−1
0

⎞

⎟⎟⎟⎟
⎠

with Rd3,λ1 = {r17} and Rd3,λ2 = {r15, r21}. The third representation from Exam-
ple 14.4 is not valid anymore as the involved reaction r13 does not belong to R0(d

3).
Note that all representations from Example 14.4 not occurring anymore contra-

dict the monotonicity for Pfr and Pr , as mentioned in Remark 14.2. Hence, taking
monotonicity into account decreases only the number of inappropriate solution al-
ternatives, while preserving all suitable solutions.

The ideas from [105] are generalized in [106] further as follows. Define the set

X ′
T =

{
xk ∈X

(
x1)= {

x0;x1, . . . , xk
} : x1 ∈ Ini

}∪ {0}
of terminal states in X ′ where no further reaction has been observed. Denoting by
T (xk) the set of transitions enabled at state xk , we have T (xk)= ∅ for all xk ∈X ′

T

due to the experimental observation, and thus none of the reconstructed networks
must contain a reaction from T (xk) for some xk ∈X ′

T . The impact is that we can
reduce, for each d ∈D , the set of considered reaction vectors further by excluding
all vectors from Box(d) enabled at any terminal state, that is, all vectors from the
set

RT (d)= {
r ∈ Box(d) : ∃xk ∈X ′

T with r ∈ T
(
xk

)}
.

Remark 14.4 The vectors in Box(d) ∩ Z
|P |
+ correspond to interface reactions pro-

ducing something without consuming any token. They can also be seen as reactions
being enabled at the special terminal state 0 (where no action can occur apart from
inputs to the system). Here, the set of vectors in Box(d)∩Z

|P |
+ is generalized to all

vectors in RT (d), and RT (d)= Box(d)∩Z
|P |
+ holds if and only if X ′

T = {0}.

Furthermore, in [106] it is established that also none of the vectors d − r with
r ∈RT (d) can occur in any representation of d .

Theorem 14.1 [106] For monotone data we have that, for all d ∈D , the set Λ(d)

consists of all integral solutions λ of the system

d =
∑

rt∈R(d)

λt r
t , λt ∈ Z+ (14.4)

using vectors from R(d)= Box(d) \ {r, d − r : r ∈RT (d)} only.
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As consequence, we deduce assertions for the existence and uniqueness of a rep-
resentation for d ∈D .

Lemma 14.1 For monotone data X ′, a vector d ∈D with d = 0 has

• a representation if and only if d ∈RT (d) holds;
• a unique representation if d ∈ RT (d) but RT (d) contains a vector r differing

from d in one component q ∈ P by one, i.e., for r = d + eq or r = d − eq .

Remark 14.5 Note that the first assertion is equivalent to require R(d) = ∅, as
d ∈R(d) holds whenever d is not enabled at any terminal state. In case of a unique
representation, we have R(d)= {d} and d has only itself as representation. In par-
ticular, this happens in the special case that d has a unique negative entry dq =−1,
as the vector d + eq has only nonnegative entries and is enabled at 0 ∈X ′

T .

Corollary 14.1 For monotone data X ′, there is a conformal network if and only if
none of the vectors in D is enabled at any terminal state in X ′

T . If all vectors have
a representation, then the vectors in D already represent a conformal network.

Corollary 14.1 implies an efficient feasibility test for both the existence of a rep-
resentation for d ∈D and a conformal network: whenever a vector d ∈D is enabled
at a state in X ′

T , the problem is not solvable with the considered set P of compo-
nents. This shows that some further components are involved in the studied system
which have not been taken into account yet. Marwan et al. [245] proposed to use
additional components in this situation.

We extend the component set accordingly by P ∪ PA where P still contains
the original places p1, . . . , pn and PA the additional places pn+1, . . . , pn+a . The
n-dimensional vectors xj ∈X ′ and d ∈ D have to be extended to vectors xj and
d of dimension n+ a, starting with unknown values for the additional components
(as those components were not subject to experimental observation). We use an
upper bound up = 1 for the capacity of each p ∈ PA (as we can only deal with the
availability of the additional components).

We next outline, how the values of the additional components have to be de-
termined according to [106]. More precisely, all the n-dimensional state vectors
xj ∈X ′ are extended to suitable (n+ a)-dimensional vectors

xj =
(

xj

zj

)

with zj ∈ [0,1]a (which then implies the corresponding extensions for the vectors
in D ). Hence, we extend the potential state space accordingly to

X = {
x̄ = (x, z)( ∈ Z

n+a : 0≤ x ≤ u,0≤ z≤ 1
}
.

For that, we interpret the experimental data X ′ = {X (x1) : x1 ∈ Ini} as a directed
graph D(X ′)= (X ′,AD ∪AP ) having the measured states xj ∈X ′ as nodes and
two kinds of arcs:
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• (xj , xj+1) ∈AD corresponding to measured differences if xj , xj+1 are consecu-
tive states in a sequence X (x1)= (x0;x1, . . . , xj , xj+1, . . . , xk} with j > 0,

• (x0, x1) ∈ AP corresponding to perturbations if the initial state x1 ∈ Ini of some
sequence is obtained by stimulating the system in some other state x0 ∈X ′.

The studied extensions xj of the states xj ∈X ′ correspond to labelings of D(X ′):

• if a = 1, to (0,1)-labelings, where label i is assigned to node xj if x
j

n+1 = zj = i

is selected for i ∈ {0,1};
• if a = 2, to (0,1,2,3)-labelings, where the labels are assigned to the four different

states (0,0)T , (0,1)T , (1,0)T , and (1,1)T ,
• if a ≥ 3, to labelings using similar encodings for all 2a different 0/1-vectors.

However, not every labeling L of D(X ′) is appropriate, as some resulting vector

d
j

might not have a representation, a state xk with xk ∈ X ′
T might have a suc-

cessor state, a state xj might have multiple successor states (recall that we assume
reproducible data X ′), or some stimulation changes more than the target input com-
ponent(s).

Definition 14.3 A labeling L of D(X ′) is valid if it satisfies the following condi-
tions:

• for each xk ∈X ′
T , also xk is a terminal state,

• none of the resulting differences d
j

is enabled at any terminal state,
• there are no two paths from one state to different terminal states, and
• any stimulation preserves the values on the additional component(s).

Due to [106], the validity of a labeling L is ensured as follows:

• If (xj , xj+1) ∈ AD and x̄j = x̄j+1, then x̄j
� x̄j+1 follows (to ensure that d̄j =

x̄j+1 − x̄j has a negative entry).
• If (xj , xj+1) ∈ AD with x̄j = x̄j+1 and xk ∈X ′

T , then x̄k + d̄j = x̄k + x̄j+1 −
x̄j ∈X .

• If there are two directed paths (xi, . . . , xk) and (xj , . . . , xl) in AD to different
terminal states xk = xl ∈X ′

T , then x̄i = x̄j .
• If (xi, xj ) ∈AS , then zi = zj .

This implies some rules for the additional states zj represented by a valid labeling.

Corollary 14.2 [106] For a valid labeling L of D(X ′), we have:

1. If (xj , xj+1) ∈ AD and xj < xj+1 or xj = xj+1 but zj = zj+1 holds, then
zj = 0, zj = zj+1 and zj+1 = 1 follows.

2. Let (xj , xj+1) ∈ AD and xk ∈X ′
T with xk + dj = xk + xj+1 − xj ∈X . Then

xj = xj+1 or zj = zj+1 implies zk = zj , zk = 1− zj+1 and zj = zj+1.
3. Consider two directed paths (xi, . . . , xk) and (xj , . . . , xl) in AD to different ter-

minal states xk, xl ∈X ′
T . If xk = xl or zk = zl then zi = zj holds.
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Remark 14.6 We obtain even stronger implications for up to two additional compo-
nents as Corollary 14.2 characterizes in that case the extensions as follows:

zj = 0, zj = zj+1, zj+1 = 1 ⇐⇒ zj
� zj+1

zj = zk, zj = zj+1, zj+1 = 1− zk ⇐⇒ zk + zj−1 + zj ∈ Box(1)

which can be observed by enumerating all combinations zk, zj , zj+1 ∈ Box(1).
For one additional component and (xj , xj+1) ∈ AD with xj < xj+1 resulting

in a positive difference vector dj , we can even directly derive x̄
j

n+1 = zj = 1 and

x̄
j+1
n+1 = zj+1 = 0 (as dj requires as unique extension a negative entry in the new

component).

We illustrate the construction of valid labelings with the help of an example.

Example 14.6 We reconsider the experimental time series data X ′ from Ex-
ample 14.1. The previous example showed that the difference vector d2 =
(0,0,0,0,1)T has no representation. This can now be verified with the help of
the feasibility test according to Lemma 14.1 and Corollary 14.1, as d2 is enabled at
the terminal state x0 of the sequence X ′(x4)= {x2;x4, x0}.

We extend the component set by one additional element Z and choose as upper
bound uZ = 1. The 5-dimensional vectors xj ∈X ′ and dj ∈D have to be extended
to appropriate vectors xj and d

j
of dimension 6.

As d2 has a unique extension d
2 = (0,0,0,0,1,−1)T by Remark 14.6, the ex-

tensions of the corresponding vectors from X ′ are fixed to x2
Z = 1 and x3

Z = 0.
As any stimulation effects input components only, the value of the additional el-
ement x4

Z equals the unchanged value of x2
Z = 1. Furthermore, we have x0

Z = 0
(as otherwise sporulation could occur without stimulation, a contradiction to the ex-
perimental dark control X ′(x0) = {x0}) and, thus, also x1

Z = 0. This leads to the
scheme in Fig. 14.2, using vectors of the form xT = (xFR, xR, xPfr , xPr , xSp, xZ)T .

For the sake of minimality (i.e., in order to avoid an unnecessarily large number
of network alternatives which are caused by artificial effects in the additional com-
ponents), we shall further consider only those valid labelings L of D(X ′) (resp. ex-
tensions of the states in X ′) with a minimal number of label changes (or, equiva-

lently, with a maximal number of resulting extensions d
j

of vectors dj ∈D having

d
j

pn+i
= 0 for all pn+i ∈ PA). In other words, the additional elements should only

be used during the reconstruction process if they are indeed required to explain an
observation.

In order to find all valid labelings of D(X ′) (and hence all suitable extensions
of the states in X ′) being optimal in this respect, Durzinsky et al. [106] proposed
to set up an integer linear program encoding all the above rules and having a suit-
able objective function. Then all feasible solutions of this program correspond to all
valid labelings of D(X ′), and the optimal solutions to the studied labelings with a
minimal number of label changes.

The reconstruction process has to be applied to every optimal valid labeling.
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Fig. 14.2 A scheme
illustrating the extended
experimental setting (dashed
arrows stand for stimulations,
solid arrows for the observed
responses of the system)

14.3 Results: A Reconstruction Algorithm

In this section, we outline the algorithm for reconstructing networks from monotone
experimental time series data presented in [106]. This algorithm combines all the
findings and results discussed in the previous section.

We first describe the input and the initial steps of the algorithm.

RECONSTRUCTION_FROM_MONOTONE_DATA

Input:
Set P of components and family P ⊂ 2P of P-invariants;
Monotone time series data X ′ = {X (x1), x1 ∈ Ini}.

Initialization:
Explore X ′ and determine

Set D := {dj = xj+1 − xj : j > 0, xj , xj+1 ∈X ′} of difference vectors;
Set X ′

T = {xk :X (x1)= {x0;x1, . . . , xk}, x1 ∈ Ini} of terminal states.

Feasibility Test:
IF no d ∈D is enabled at a state in X ′

T

Call CONSTRUCT_NETWORKS(X ′
T ,D).

ELSE
Call ADD_COMPONENT(X ′,X ′

T ,D).

The algorithm RECONSTRUCTION_FROM_MONOTONE_DATA takes as in-
put a set P of components together with a family P ⊂ 2P of subsets P ′ ⊆ P

corresponding to P-invariants, and experimental time series data X ′ = {X (x1),

x1 ∈ Ini} which are supposed to be monotone.
In an initialization step, it determines the set

D = {
dj = xj+1 − xj : j > 0, xj , xj+1 ∈X ′}
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of difference vectors and, in addition, the set

X ′
T =

{
xk ∈X

(
x1)= {

x0;x1, . . . , xk
} : x1 ∈ Ini

}

of terminal states in X ′ where no further reaction has been observed.
In a next step, we check for feasibility with the help of Lemma 14.1 or Corol-

lary 14.1: If no vector d ∈D is enabled at any terminal state in X ′
T , then no addi-

tional component is required and, hence, we can directly proceed with the subrou-
tine CONSTRUCT_NETWORKS. Otherwise, at least one additional component is
required and we call the subroutine ADD_COMPONENT to adjust the setting ac-
cordingly.

If the subroutine ADD_COMPONENT is called, we have to extend the compo-
nent set P = {p1, . . . , pn} by additional components as follows.

ADD_COMPONENT (X ′,X ′
T ,D)

Construct the directed graph D(X ′).

Set a := 1

REPEAT
Find the set L of all optimal valid labelings L of D(X ′)
in dimension a.

FOR ALL labelings L ∈L :
Determine D(L) := {d̄j : dj ∈D},
Determine X ′

T (L) := {x̄k : xk ∈X ′
T }.

IF ∃d̄j ∈D(L) with d̄j ∈ T (x̄) for some x̄ ∈X ′
T (L)

Set L :=L \ {L}
ELSE

Call CONSTRUCT_NETWORKS (X ′
T (L),D(L)).

Set a := a + 1
UNTIL L = ∅

The subroutine ADD_COMPONENT takes as input the experimental data X ′,
the sets of terminal states X ′

T and of difference vectors D . The subroutine first
determines the directed graph D(X ′) corresponding to D(X ′)= (X ′,AD ∪AP )

having the measured states xj ∈X ′ as nodes and two kinds of arcs:

• (xj , xj+1) ∈AD corresponding to measured differences
• (x0, x1) ∈AP corresponding to perturbations.

The extensions xj of the states xj ∈X ′ are determined according to Corollary 14.2
in terms of the set L of all valid labelings L of D(X ′) being optimal in the above
sense (i.e., with the minimal number of label changes).

For each optimal valid labeling L ∈L , the corresponding extensions

D(L) := {
d

j : dj ∈D
}
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and

X ′
T (L) := {

xk : dk ∈X ′
T

}

of difference vectors and terminal states are constructed.
We also assume monotonicity for the additional components (to further avoid a

large number of representations caused only by artificial effects due to the freedom
of the values in the additional components). For each L ∈L , we call the subroutine
CONSTRUCT_NETWORKS (X ′

T (L),D(L)) separately.
The subroutine CONSTRUCT_NETWORKS (X ′

T ,D) is called either with the
original sets X ′

T of terminal states and D of difference vectors, or from the sub-
routine ADD_COMPONENT for each feasible case of extended settings (X ′

T ,D)

resulting from an optimal valid labeling, where X ′
T contains the extended terminal

states and D the extended difference vectors. (This is possible as we assume mono-
tonicity also for the additional components and, thus, there is no need to distinguish
between the original and an extended setting in the reconstruction process.)

CONSTRUCT_NETWORKS(X ′
T ,D)

Let Co := ∅ and C := ∅.

Representation of difference vectors:
FOR ALL d ∈D :

IF (d has a unique representation by Lemma 14.1)
Let Co := Co ∪ {d} and D :=D − {d}.

ELSE
Determine R(d)= Box(d) \ {r, d − r : r ∈RT (d)},
Determine Λ(d)= {λ ∈ Z

|R(d)|
+ : d =∑

rt∈R(d) λt r
t }.

FOR ALL λ ∈Λ(d):
Determine Rd,λ = {rt ∈R(d) : λt > 0}.

IF Λ(d)= {λ}:
Let Co := Co ∪Rd,λ and D :=D − {d}.

Combination of matrices:

FOR ALL κ ∈ Z
|D|
+ with 1≤ κd ≤ |Λ(d)|:

Determine C(κ)= Co ∪ ⋃
d∈D Rd,λκd

,
Let C := C ∪C(κ).

RETURN C .

The reconstruction is performed in the subroutine CONSTRUCT_NETWORKS
as follows. For each d ∈ D , we first check whether d has a unique representation
with the help of Lemma 14.1.

If this is the case, we append d to the set of vectors Co which are used in any
conformal network, and remove d from D . Otherwise, we determine the set R(d)
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of reactions which can be used to represent d . We have

R(d)= Box(d) \ {
r, d − r : r ∈RT (d)

}

as only vectors from Box(d) can be used and all vectors r and d− r with r ∈RT (d)

can be excluded further by Theorem 14.1. (Note that the restrictions coming from
P-invariants of the system are obeyed in the construction of Box(d).)

In order to determine Λ(d), we have to find all λ ∈ Z
|R(d)|
+ with d =∑

rt∈R(d) λt r
t . For each λ ∈ Λ(d), we select the set Rd,λ = {rt ∈R(d) : λt > 0}

of used reactions. If d has only one representation Λ(d) = {λ}, we append Rd,λ

to the set of vectors Co which are used in any conformal network, and remove d

from D .
In order to combine the incidence matrices of the resulting conformal networks,

we first define a selection vector κ ∈ Z
|D|
+ with 1 ≤ κd ≤ |Λ(d)| for the difference

vectors which remained in D . For each κ ∈ [1, |Λ(d)|]|D|, we determine

C(κ)= Co ∪
⋃

d∈D

Rd,λκd

as the incidence matrix of the network corresponding to the selected solutions
λκd

∈ Λ(d) for each d ∈ D (recall that all reaction vectors required for differ-
ence vectors with a unique representation are collected in Co). We append C(κ)

to C and finally return C as complete list of all conformal networks w.r.t. X ′
T

and D).
In [106], it is shown that the above algorithm indeed solves the Network Re-

construction Problem as it reconstructs all networks which are able to explain the
observed phenomena.

Theorem 14.2 [106] Given the experimental setting (P,X ′), the Network Recon-
struction Algorithm generates all the networks G= (P ∪T ,F,W) being conformal
with X ′.

Note that all resulting conformal networks are minimal in the sense that only
effects have been taken into account which are indeed crucial to explain the observed
phenomenon. This avoids in fact to produce solutions which differ only due to some
artificial effects, caused by uncertainty of the experimental data.

We finally illustrate the steps of the reconstruction algorithm with the help of our
running example.

Example 14.7 As the experimental time series data X ′ described in Example 14.1
satisfy the monotonicity property, we can apply the above algorithm to reconstruct
the complete list of (minimal) networks being conformal with X ′.

As initialization step, the algorithm explores X ′ in order to extract the sets D =
{d1 = x2−x1, d2 = x3−x2, d3 = x0−x4} of difference vectors and X ′

T = {x0, x3}
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of terminal states as

d1 =

⎛

⎜⎜⎜⎜
⎝

−1
0
−1
1
0

⎞

⎟⎟⎟⎟
⎠

, d2 =

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟
⎠

, d3 =

⎛

⎜⎜⎜⎜
⎝

0
−1

1
−1

0

⎞

⎟⎟⎟⎟
⎠

, and

x0 =

⎛

⎜⎜⎜⎜
⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟
⎠

, x3 =

⎛

⎜⎜⎜⎜
⎝

0
0
0
1
1

⎞

⎟⎟⎟⎟
⎠

.

In the feasibility test, the algorithm detects that d2 is enabled at the terminal state
x0 and calls, therefore, the subroutine ADD_COMPONENT. Here, the component
set is extended by one additional element Z and the 5-dimensional vectors xj ∈
X ′ and dj ∈ D are extended according to the above rules. For that, the directed
graph D(X ′) is constructed (yielding the scheme shown in Fig. 14.1). As d2 has a
unique extension by Remark 14.6, we set d2

Z := −1 and, thus, x2
Z := 1 and x3

Z := 0.
Furthermore, we have x0

Z := 0 by x0 ∈X ′
T and d2 ∈ T (x0). As a stimulation does

not change values different from these of input components, this yields x1
Z := 0 and

x4
Z := 1. Hence, applying the rules yields a unique valid labeling (corresponding to

the scheme in Fig. 14.2) which is, thus, also optimal.
The algorithm calls the subroutine CONSTRUCT_NETWORKS with the fol-

lowing sets D of difference vectors and X ′
T of terminal states:

d1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−1
0
−1
1
0
1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, d2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
1
−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, d3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
−1
1
−1
0
−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, and

x0 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, x3 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0
0
0
1
1
0

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.

To find all representations for d1, the algorithm tests first for a unique representation.
As d1 does not satisfy the conditions of Lemma 14.1, the set R(d1) is determined:
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Box(d1) RT (d1) RT (d1) R(d1)

FR
R

Pfr
Pr

Sp
Z

−1
0

−1
1
0
0

−1
0

−1
1
0
1

−1
0
0
0
0
0

−1
0
0
0
0
1

0
0

−1
1
0
0

0
0

−1
1
0
1

0
0

−1
1
0
0

0
0

−1
1
0
1

−1
0
0
0
0
0

−1
0
0
0
0
1

−1
0

−1
1
0
1

Here, we use the notation RT (di)= {d− r : r ∈RT (di)\ {0}}. From R(d1)= {d1}
it follows that d1 has itself as unique representation, we append d1 to the set of
vectors Co which are used in any conformal network, and remove d1 from D .

For d2, the algorithm tests for a unique representation according to Lemma 14.1.
As d2 satisfies the conditions, we append d2 to Co and remove d2 from D .

To find all representations for d3, the algorithm tests again for a unique repre-
sentation. As d3 does not satisfy the conditions, the set R(d3) is determined as
follows:

Box(d3) RT (d3) RT (d3) R(d3)

FR
R

Pfr
Pr

Sp
Z

0
−1

0
0
0

−1

0
−1

0
0
0
0

0
−1

1
−1

0
−1

0
−1

1
−1

0
0

0
0
0
0
0

−1

0
0
1

−1
0

−1

0
0
1

−1
0
0

0
0
1

−1
0
0

0
−1

0
0
0

−1

0
−1

0
0
0
0

0
−1

1
−1

0
−1

0
−1

1
−1

0
0

0
0
0
0
0

−1

0
0
1

−1
0

−1

Then, the algorithm computes all representations of d3 using vectors from R(d3)

which yields the following three alternatives:

d3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
−1
1
−1
0
−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
−1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
1
−1
0
−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
−1
1
−1
0
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
0
−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Hence, after the representation step of the subroutine CONSTRUCT_NETWORKS,
we end up with Co = {d1, d2}, D = {d3}, and the above three alternative represen-
tations of d3. In the last step of the algorithm, Co is finally combined with the three
sets Rd3,λ, λ ∈ Λ(d3) to the incidence matrices of the three conformal networks
shown in Fig. 14.3 having one transition for each used reaction vector.

This algorithm effectively solves the problem to reconstruct all conformal net-
works using up to two additional elements, if the experimental data are monotone
(the running time of the algorithm exponentially grows for more than two additional
components as determining the optimal valid labelings is the most expensive step).

For nonmonotone data, applying the above approach would mean that only these
dynamical features of the studied system are taken into account which have become
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Fig. 14.3 The three reconstructed conformal networks

visible by the experimental observations. However, it is possible to adapt the original
approach from [245] along the lines from the previous algorithm and further ideas
from [105]. This should include to use monotonicity for all components where it
can be guaranteed and to consider terminal states in order to keep the potential
reaction sets R(d) as small as possible, and to discard homogeneous solutions from
the consideration.

14.4 Related Work

Besides predicting the structure of the studied biological system in terms of net-
works being conformal with given experimental data, it is also interesting to con-
sider the dynamic behavior of the studied system.

Petri nets describe dynamics in terms of reachability, by generating all possi-
ble sequences x0, . . . , xk of states which can be reached from an initial state x0 by
switching, in each state xj , one transition among all transitions enabled at xj in or-
der to reach xj+1. For states where at least two transitions are enabled, the decision
between the different alternatives is typically taken nondeterministically.

If, however, the underlying biological system shows a deterministic behavior as
a certain stimulation always results in the same response, additional activation rules
are required in order to force the switch from a state xj to its observed successor
xj+1 (see [395, 396], or [408] for more details).

For this purpose, priorities between the transitions of the network can be used to
determine which of the enabled transitions has to be taken. Note that these priorities
typically reflect the rate of the corresponding reactions where the fastest reaction
has highest priority. In [245], it is proposed to model such priorities with the help of
partial orders on the set T of transitions of the network G. Here, a partial order O

on T is a relation ≤ between pairs of elements of T respecting

• reflexivity (i.e., t ≤ t holds for all t ∈ T ),
• transitivity (i.e., from t ≤ t ′ and t ′ ≤ t ′′ follows t ≤ t ′′ for all t, t ′, t ′′ ∈ T ), and
• anti-symmetry (i.e., t ≤ t ′ and t ′ ≤ t implies t = t ′).
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In Torres et al. [397], it is shown that appropriate partial orders correspond to acyclic
orientations of a conflict graph C(T )= (T ,E), where each node represents a tran-
sition ti ∈ T and edges conflicts between pairs of transitions in the sense that

t t ′ ∈E ⇐⇒ ∃x with t, t ′ ∈ T (x)

holds. Let B ⊆ P be the set of places of the network G having bounded capacities
and uB be the capacity vector, where up is the maximum number of tokens allowed
for place p ∈ B . Further, recall that the set of pre-places of a transition t is •(t), and
let (t)•B denote the set of bounded post-places of t . Then the conflicts between pairs
of transitions can be characterized as follows.

Lemma 14.2 [396] In a network G= (P ∪ T ,F,W) with capacity vector uB , two
transitions t, t ′ ∈ T are in conflict if and only if

W(p, t)≤ uB
p −W

(
t ′,p

) ∀p ∈• (t)∩ (
t ′
)•
B

and

W
(
p, t ′

)≤ uB
p −W(t,p) ∀p ∈• (

t ′
)∩ (t)•B holds.

In the special case B = P and up = 1 for all p ∈ P , two transitions t, t ′ ∈ T

are in conflict if and only if •(t) ∩ (t ′)•B = ∅ and •(t ′) ∩ (t)•B = ∅. Based on these
characterizations, an algorithm to create C(T ) is discussed in Torres et al. [397].

Using this concept, we derive a stronger version of conformality with given data:

Definition 14.4 A network G= (P ∪T ,F,W) with incidence matrix C ∈ Z
|P |×|T |

and conflict graph C(T ) is strongly conformal with experimental time series data
X ′ if, for any two consecutive states xj , xj+1 ∈X ′, the linear equation system

xj+1 − xj = d = Cλ

has one integral solution λ ∈ Z
|T |
+ and the edges of C(T ) can be oriented in such a

way that t ≤ t ′ holds for all t ∈Rd,λ and t ′ ∈ T (xj )−Rd,λ.

Thus, a strongly conformal network does not only contain appropriate transitions
to reach xj+1 from the previously measured state xj in X ′, but uses in each inter-
mediate step this transition with highest priority.

If a biological system shows a deterministic behavior in the experimental data
X ′, then a conformal network G= (P ∪ T ,F,W) is not strongly conformal with
X ′ if for some pair of transitions in T , opposite priorities are required to fit the ex-
perimental observations. The impact of considering this stronger version of confor-
mality is, therefore, that we can rule out conformal networks which are not strongly
conformal to be appropriate models of systems with a deterministic behavior.

Example 14.8 Consider the three networks Gi = (P ∪ Ti,F,W) from Fig. 14.3
with

T1 = {t1, t2, t3}, T2 = {t1, t2, t4, t5}, T3 = {t1, t2, t6, t7}
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all being conformal with the experimental data X ′ described in Example 14.1. For
all three networks, we check the experiments x1 → x2 → x3 and x4 → x0.

In all three networks, T (x1)= {t1} holds and switching t1 indeed yields x2.
In the case of network G1, we obtain the following. T (x2) = {t2} holds and

switching t2 indeed yields x3. Furthermore, we have T (x4)= {t2, t3} and t3 is forced
to switch in order to reach x0, which requires that t3 > t2. As no other priority is
needed, G1 is strongly conformal with X ′.

In the case of network G2, T (x2) = {t2, t5} holds and t2 is forced to switch in
order to reach x3, which implies t2 > t5. On the other hand, we have T (x4) =
{t2, t4, t5} and t4, t5 have to switch in order to reach x0, which requires t4 > t2 and
t5 > t2. As opposite priorities for the pair t2, t5 are needed to simulate the experi-
ments, G2 is not strongly conformal with X ′.

For network G3, T (x2)= {t2, t7} holds and t2 is again forced to switch in order
to reach x3, which implies t2 > t7. We further have T (x4)= {t2, t6, t7} where t6, t7
have to switch in order to reach x0, which requires t6 > t2 and t7 > t2. As opposite
priorities for the pair t2, t7 are needed to simulate the experiments, G3 is not strongly
conformal with X ′ as well.

Hence, only one of the three conformal networks is strongly conformal and
explains the experimentally observed behavior in a suitable way. The remain-
ing network G1 is exactly the expected one, but comes here with the certificate
of being the unique explanation (which is not possible using heuristical reason-
ing).

14.5 Summary

We addressed in this chapter different ways to solve the Network Reconstruction
Problem, the challenging task to generate all models that explain the observed phe-
nomena. Using the framework of Petri nets to describe models for the regulatory
mechanisms of biological systems, this means to predict all the possible network
structures being conformal with the given experimental data.

In Sect. 14.2, we discussed two approaches for solving the Network Recon-
struction Problem, depending on the kind and quality of the given data X ′,
which both construct the complete set of networks being conformal with the given
data.

We first outlined in Sect. 14.2.1 the principle ideas of a combinatorial reconstruc-
tion approach proposed by Marwan et al. [245] for the general case, where no in-
formation is known on the intermediate states between two consecutively measured
states in X ′. Here, all possible changes of the values in the intermediate states have
to be taken into account which typically leads to a large number of conformal net-
works, even if homogeneous solutions are not considered for the sake of minimality.
In addition, it turned out that this approach is not appropriate as soon as the interme-
diate sequences linking two consecutively measured states of the experimental data
are restricted (Example 14.4 and Remark 14.2).
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In Sect. 14.2.2, we discussed the approach from Durzinsky et al. [105] for the
case of monotone data, where the network elements have been measured so ac-
curately that an oscillation of their values between two measured states can be
excluded a priori. This restricts the complexity of the problem as for the repre-
sentations of a difference vector d , exclusively reactions from the restricted set
R0(d) have to be used which can even be restricted further to R(d) by taking
terminal states into account. In addition, we have a feasibility test for the exis-
tence of a conformal network: the problem is not solvable with the considered
set P of components if and only if D contains a vector being enabled at a ter-
minal state. In this situation, additional nonobserved elements are required to pro-
vide us with a meaningful model. Thus, the additional elements help to construct
conformal networks. The drawback is that the total number of conformal networks
increases due to artificial effects caused by the freedom in the additional compo-
nents.

In order to avoid such effects, the reconstruction algorithm from Durzinsky
et al. [106] presented in Sect. 14.3 employs some further assumptions and condi-
tions in order to keep the number of those conformal networks as small as possible
which only show some artificial effects or can be ruled out with the help of a deeper
analysis of the experimental data. For that,

• reactions are excluded from the reconstruction process that are enabled in a ter-
minal state of X ′,

• if additional elements are required, only valid labelings with a minimal number
of label changes are considered, and

• monotonicity is also assumed for the additional elements.

The resulting conformal networks are minimal in the sense that only effects have
been taken into account which are indeed crucial to explain the observed phe-
nomenon (Example 14.7).

In Sect. 14.4, we further discussed a stronger version of conformality which also
takes some dynamic aspects into account, as suggested in Marwan et al. [245] and
refined by Torres et al. [395] and Torres and Wagler [396]. That way, we can rule out
further networks as appropriate models for the studied system which are conformal
but not strongly conformal with the given data (Example 14.8).

Thus, we conclude that the proposed approach provides a powerful tool for effec-
tively predicting network structures for biological systems. The art is, however, to
find suitable assumptions and conditions for the reconstruction process to exclude
as many artificial aspects as possible, but still generating all meaningful network
alternatives being (strongly) conformal with the given data.

14.6 Exercises and Solutions

Exercise 14.1 Explain why the difference vectors in Example 14.3 were repre-
sented using a subset of appropriate reaction vectors from the set R constructed
in Example 14.2.
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Exercise 14.2 Consider the different representations for the difference vectors
d1, d2, d3 presented in Example 14.4. Determine how many different networks out
of the 144 possible selections indeed occur. How many different networks remain if
the representations involving the homogeneous solution are discarded?

(Hint: start with the second question and then determine which variants of these
solutions can be obtained by reconsidering homogeneous solutions.)

Exercise 14.3 Which rules have been applied to obtain the valid labeling in Exam-
ple 14.6?

Exercise 14.4 Consider the difference vector d2 and its representation in Exam-
ple 14.7. First, construct the sets Box(d2), RT (d2), and RT (d2) explicitly to verify

that R(d2)= ∅ holds. Then, check for its extension d
2

that R(d
2
)= {d2} holds by

explicitly constructing the sets Box(d
2
), RT (d

2
), and RT (d

2
).

Exercise 14.5 Consider the extended difference vectors d1, d2, d3 ∈ Z
6 from Ex-

ample 14.7 and construct the set R(dj ) for each of them without taking the P-
invariant P ′ = {Pfr,Pr} into account. Discuss the effect on the number of resulting
reaction vectors and representations for the difference vectors as well as the number
of resulting conformal networks.

Exercise 14.6 Check the new network alternatives from Exercise 14.5 obtained by
dropping the P-invariant P ′ = {Pfr,Pr} for strong conformality.



Glossary

Here, we sum up what has been compiled in this book. Notions and notations pre-
sented here will be applied all over the rest of this book.

A. Static Structure

Petri net N = (P,T ,F,W,m0):

P finite set of places graphically: circles
T finite set of transitions graphically: squares
F ⊆ (P × T )∪ (T × P) flow relation graphically: arrows
W : F →N arc weight graphically: inscriptions
m0 : P →N initial marking graphically: dots (“tokens”)

Derived Notions for N :

E =def P ∪ T set of elements

For e ∈E:
.e=def {d | (d, e) ∈ F } pre-set of e

e. =def {d | (e, d) ∈ F } post-set of e

W :E ×E →N “extended arc weight” with

W(d, e)=
{

W(d, e), if (d, e) ∈ F

0, otherwise

B. Dynamics

m : P →N marking.
m enables t iff for all p ∈ .t W(p, t)≤m(p).

m
t−→m′ is a step iff

(a) m enables t , and
(b) for all p ∈ P m′(p)−W(p, t)+W(t,p).

σ :m0
u1−→m1

u2−→ · · · un−→mn is a computation of N iff mi−1
ui−→mi are steps (i =

1,2, . . . , n).

I. Koch et al. (eds.), Modeling in Systems Biology, Computational Biology 16,
DOI 10.1007/978-1-84996-474-6, © Springer-Verlag London Limited 2011

337

http://dx.doi.org/10.1007/978-1-84996-474-6


338 Glossary

A marking m is reachable in N iff some computation ends at m.
σ reproduces m0 if mn =m0.
The counting vector c : T → N of σ assigns each t the number of occurrences of t

(i.e., of indices i with ui = t) in σ .

C. Linear-Algebraic Representation

Assume any order on P and on T . Typically: along indices in P = {p1, . . . , pk},
T = {t1, . . . , tl}.
For m : P → T and t ∈ T let

m :
⎛

⎜
⎝

m(p1)
...

m(pk)

⎞

⎟
⎠ and t :

⎛

⎜
⎝

W(t,p1)−W(p1, t)
...

W(t,pk)−W(pk, t)

⎞

⎟
⎠

If t is enabled at m, then m
t−→m+ t is a step.

N : ( t1 . . . tk ) is the matrix of N .

D. Analysis Techniques

(a) i : P → Z is a place invariant of N iff i solves x ·N = 0.
Theorem 3.1 For each reachable m, i ·m= i ·m0.

(b) j : T →N is a transition invariant of N iff j solves N · x = 0.
Theorem 3.2 If j is the counting vector of a step sequence, it reproduces the

initial marking.
(c) A set Q of places is a trap iff Q. ⊆ .Q.

Observation A trap never runs empty.
(d) The marking graph of N has the reachable states and steps as vertices and edges.

Observation If finite, this graph decides termination, divergence, liveness,
weak liveness, boundedness and reversibility.
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of continuous transition, 113
of discrete transition, 112
of generic transition, 113
order enforcement, 93, 94, 97
speed, 285

First-order reactions, 155
Flux, 218
Flux coupling analysis, 221
FOE, see Firing order enforcement
Functional module, 247
Functional unit, 233
Futile cycle, 214
Fuzzification, 185
Fuzzy implication, 188
Fuzzy logic system, 182, 192–194
Fuzzy sets, 181, 185

G
Gates, 226
Gene expression, 11, 32
Gene regulation, 34, 230
Gene regulatory network, 34, 102
Generic place, 107
Generic transition, 107, 113, 117, 118
GENESIS, 238
Genesis/Kinetikit, 174
Genetic interaction, 285
GenMAPP, 15, 175
GEO, 11
GEPASI, 174
GINsim, 264, 276, 277
Glycolysis, 29
Glyoxylate shunt, 212
Golgi apparatus, 20
Graph theory, 210, 223
Graphical representation, 40
GRNs, see Gene regulatory network

H
Heterotrophic organism, 29
HFPNe model, 117, 119
High-level Petri net , HLPN, 253, 264, 265,

267–270, 277
Hill

coefficient, 173
constant, 172
curve, 170–172
equation, 169, 173
function, 170
kinetics, 153, 154, 169

Holistic paradigm, 4
Homogeneous solution, 317–319, 332, 334
Homogeneous system, 317
Hopf bifurcation, 162, 164
Hybrid dynamic net, 107
Hybrid functional Petri net, HFPN, 107, 108,

284
Hybrid functional Petri net with extension,

HFPNe, 101, 102, 106–108, 115,
117, 119, 284

Hybrid Petri net, HPN, 102, 107
Hybrid system, 107
Hypergraph, 223

I
INA, 217, 264, 276
Incidence matrix, 63, 219, 311, 317, 329
Indirect interaction, 295
Influence graph, 232, 233, 235, 236, 249
Inhibition, 25, 103

competitive, 25, 28, 167, 168
irreversible, 167
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Inhibition (cont.)
MAPK, 242
noncompetitive, 25, 28
reversible, 167
uncompetitive, 26, 167, 168

Inhibitor arcs, 255
Inhibitory, 108
Inhibitory interaction, 295
Initial concentration, 159
Initial condition, 114
Initial marking, 45, 47, 49–51, 104, 110, 309
Initial state, 261, 274, 310
Input arc, 103, 108
Input place, 103
Input speed, 106
Integer linear programming, 219, 325
Integration function, 271, 275
Interaction graph, 230–232
Interaction network, 273
Interface, 42
Intermediate state, 40
Interval Decision Diagrams, IDD, 256, 259,

262, 263
Invariant, 49, 37, 52
Invariant analysis, 231
Irreversible inhibition, 167
Isoenzymes or isozyme, 24
Isoforms, 24

J
Jacobian matrix, 162, 163
Jarnac/JDesigner, 174
JSim, 174

K
KDBI, 176
KEGG, 13
Kinetic dynamic, 249
Kinetic model, 175
Kinetic rate constant coefficient, 158
Kinetics, 118
KINSIM/FITSIM, 174
Kohn interaction maps, 175
Krebs cycle, 29

L
Labeling, optimal, 325
Labeling, valid, 324
λ phage, see Phage λ

LARKIN, 176
Lifetime, 247
Limit cycle, 163, 164
Linear algebra, 47, 48
Linear algebraic equation system, 219

Linear equation, 162
Linear equation system, 312
Logic minimization, 77, 83
Logical approach, 255
Logical formalism, 254, 255
Logical functions, 257, 258, 259
Logical modeling, 254
Logical operator, 60

conjunction, 60
disjunction, 60
implication, 60
negation, 60

Logical Regulatory Graph, LRG, 254–256,
259–265, 267, 274

Logical Regulatory Module, LRM, 265, 266,
268, 269, 272, 274, 277

Lotka–Volterra model, 159, 160, 162

M
MACRON, 176
MAPK, 227, 231, 236, 241–247
MAPK inhibition, 242
MAPK response, 248
MAPK/PKC model, 247
MAPK/PKC pathway, 225–241
Marking, 44, 45, 110, 268, 309
Marking graph, 52
Marking probability distribution, 132
Marking-dependence, 127, 128
Markov process, 156
Markup language, 264
Mass action, 114, 154, 155

kinetics, 165
reversible, 158

Mass conservation, 159, 166, 168
Mass transfer, 218
Master equation, 163
MATHML, 175
MathSBML, 174
MatLab, 219, 238
Mauritius maps, 70
Maximal common transition set, see MCT-set
MCT-set, 67, 69, 70, 221, 222
MDD, 258
Metabolic network, 30, 209, 218
Metabolic network analysis, 214
Metabolic pathway, 102
Metabolic reaction, 104
Metabolism, 23
Metabolite, 24
MetaCyc, 113
METATOOL, 214, 218, 220
Michaelis–Menten, 228, 229
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Michaelis–Menten (cont.)
constant, 27, 166
equation, 27, 167
kinetics, 106, 114, 153–155, 165

MicroRNA, 103, 114, 117
Microscopic dissociation constant, 170, 171
Minimal T-invariants, 213, 215, 216, 233
MINT, 12
MIRIAM, 175
Mitochondria, 20, 21
Mixotroph organisms, 29
Model, 5
Model checking, 81, 84
Model composition, 9
Model development, 8
Model validation, 84
Module, 264
Mole, 156
Molecular signal, 249
Monostable behavior, 238
Monotone, 319
Monotone data, 312, 319, 322, 323, 326
Monotone experimental time series data, 326
Monotonicity, 320, 322, 329, 332, 335
mRNA, 32, 103, 114–116, 231
Multi-valued decision diagram, 258
Multi-valued function, 259
Multi-valued logical formalism, 253
Multi-valued regulatory Petri net, MRPN, 261
Multigraph, 256
Mutant analysis, 85

N
Negative feedback loop, 227, 240, 242–244
Nested feedforward motif, 245
Net flux, 213
NetBuilder, 175
Network, 309

asynchronous Boolean, 86
Boolean, see Bolean network

conformal, 312, 319, 323, 334
diagram, 13
encapsulated regulatory, 266
endothermic, 154
gene regulatory, 34, 74, 81, 102
interaction, 273
metabolic, 30, 209, 218
reconstruction, 334
reconstruction problem, 307, 312–314,

329, 334
regulatory, 209, 218, 253–255, 264, 276
signaling, 225
strongly conformal, 333

Neutral binding, 169–171

Neutral stable steady-state, 164
Non-minimal T-invariant, 219
Noncompetitive inhibition, 25, 28
Nondeterministic models, 10
Nondeterministically, 332
Nonmonotone data, 331
Nucleus, 20, 103
Null-space, 217, 220

O
ODE model, 233, 236, 238, 240
Operations on fuzzy sets, 186, 187
Ordinary differential equation, ODE, 153, 156,

161, 213, 227, 228, 249
Oscillation, 158, 164
Oscillatory behavior, 159, 260
Output arc, 103, 108
Output place, 103
Output speed, 106

P
P-invariant, 63, 212, 217, 230, 231, 233, 237
P/T net, 261–263, 267
PARKIN, 176
Partial order, 332
Pasadena Twain, 174
PathVision, 175
Pathway, 223
Pathway databases, 12
Pathway modeling, 103
Penicillin, 167
PEP, 74, 80, 81, 83, 84, 100
Periodicity, 7
Perturbation, 162
Petri net, PN, 16, 37, 38, 43–56, 59, 103, 153,

165, 170, 174, 212, 223–226, 234,
237, 253, 276, 308, 334

continuous, 165
continuous timed, 106
discrete, 59
discrete model, 227, 228
elementary, 101
formalism, 153–154
high-level, 253, 264–270, 277
hybrid, 102, 107
hybrid functional, HFPN, 107, 284
hybrid functional with extension, HFPNe,

101–103, 106, 107, 284
library, 269
markup language, 64
model, 38, 42–47, 172, 229–231, 236
modeling application, 197
multi-valued regulatory, 261
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Petri net (cont.)
stochastic, 122
timed, 104
theory, 240
with fuzzy logic, 194, 195

“Petri Nets World” archive, 219, 223
Phage λ, 94

lysis–lysogeny switch, 94
lysogenic cycle, 95
lytic cycle, 95

Phosphorylation, 103
Phosphorylation of MKP1, 242
Photosynthesis, 22
Physarum polycephalum, 310
Pitchfork bifurcation, 163
Place, 40, 43, 45, 103, 108, 113, 309
Place invariant, 49, 50, 55
PLAS, 174
Plastid, 21, 22
PLmaddon, 174
PNFL, 194, 195
PNMA, 197
PNML, 264
Poisson distribution, 139
Positive feedback loop, 226, 227, 240, 245,

246
Posttranslational modification, 226
Potato tuber, 210, 214, 221
Predator prey model, 159
Prediction of network structure, 307, 308
Primary metabolism, 23
Probability distribution, 163
Prokaryotes, 20
ProMoT, 277
ProMoT/DIVA/Diana, 174
Propensity function, 123, 125
Protein–protein interaction databases, 11
PSI-MI, 175
pSTIING, 12
PyBioS, 174

Q
QSSA, 166, 168
Qualitative modeling, 253, 254
Quantitative analysis, 153
Quantitative methods, 153
Quantitative modeling, 154
Quasi steady-state approximation, 166

R
Race policy, 129
Randomization algorithm, 137
Rate constant, 125
Rate constants coefficients, 157

Reachability, 260, 332
Reachable states, 274
Reachable marking, 46, 47, 52
Reactants, 154
Reaction flow ratio, 237
Reaction rate, 154
Reaction space, 314
Reaction vector, 315, 321, 322
REACTOME, 13
Read arc, 65, 231
Receptor, 36
Reconstruction algorithm, 326, 329
Red blood cells, 38
Reduced ordered multi-valued decision

diagram, 258
Reductionist paradigm, 4
Regulation of metabolism, 31
Regulatory component, 256
Regulatory interaction, 255, 257
Regulatory modules, 249
Regulatory motif analysis, 227
Regulatory motif module, 248
Regulatory motif, 236, 242, 247, 248
Regulatory network, 209, 218, 253–255, 264,

276
Repetitive component, 232, 233
Repressilator, 278
Reserved marking, 110
Reversibility, 7
Reversible inhibition, 167
Reversible mass action, 158
Ribosome, 32, 33
RNA, 117, 231
RNA splicing, 222
Robustness, 8, 210
ROMDD, 258

S
Saccharomyces cerevisiae, 222
SB Toolbox, 174
SBRT, 174
SBW, 174
Second-order reactions, 157
Secondary metabolism, 23
Segment-polarity module, 273–275
Self-loop, 257
Self-regulation, 257
Semi-continuous modeling, 197, 198
Semi-discrete modeling, 195, 196
Semi-positive conservation relation, 217
SI circuit, see Speed-independent circuit
Signal propagation, 232
Signal transduction, 34, 230
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Signal transition graph, STG, 87, 260, 262, 264
boundedness, 89
complete state coding, 90
consistency, 87, 89
CSC, see complete state coding
OP, see output-persistency
output-persistency, 87, 89, 96
signal, 87

input signal, 88
internal signal, 88
local signal, 88
output signal, 88

Signaling component, 237
Signaling network, 225
Signaling pathway, 102, 104, 226
Simulation trace, 140
Singly phosphorylated, 230
Siphon, 37
SNAKES toolkit, 269
SNP, 117
Spatial instability, 164
Speed-independent circuit, 86
Spliceosome, 222
Sporulation, 310
Stability, 8, 288
Stable states, 260
State transition graph, 260, 261
State vector, 309
State, 40
Static net structure, 44
Stationary state, 10
Statistic average, 142
Steady-state, 48, 124, 133, 158, 161–163, 211,

220, 223
concentration, 170, 173
condition, 170, 171
flux, 212, 213, 221

STG, see signal transition graph, 260, 262, 264
Stochastic and/or deterministic information,

226
Stochastic model, 164
Stochastic Petri net, 122
Stochastic simulation algorithm, 140

direct method, 141
first-reaction method, 141
next reaction method, 142

Stoichiometric coefficients, 38, 154, 309
Stoichiometry, 215
Stoichiometry matrix, 48, 220
Streptavidin, 169–173
STRING, 12
Strongly conformal, 333, 335
Strongly connected components, 260
Subgraph, 233, 234

Substrate, 154
Superconservativity, 218
Switch-off time, 111
Switches, 226
Syphon, 52
System error, 112
System state, 9
Systems biology, 4
Systems Biology Graphical Notation, SBGN,

15
Systems Biology Markup Language, SBML,

175, 228, 229, 238

T
T-cluster, 68, 69, 70, 223
T-invariant, 51, 52, 64, 212, 213, 220–222, 233

feasible, 65
support, 65
trivial, 65

Tanimoto similarity, 216
Terminal state, 322–325, 327, 335
Test arcs, 255
Theoretical model, 153
Thermodynamic parameters, 158
Time series data, 319
Timed bistable switch, 246
Timed Petri net, TPN, 104, 107
Token, 40, 41, 44, 103, 110, 268
Topological analysis, 209, 210
Topology, 240, 249
Transcription, 32, 103
Transcription factor, 34
Transition, 39, 41, 43–48, 51, 52, 55, 103, 108,

262, 309, 312
Transition graph, 255
Transition invariant, 51
Translation, 32, 103, 104
Translocation, 103, 104
TRANSPATH, 119
Trap, 37, 52
Trigger time, 111
True T-invariants, 213
Truth table, 259
Tryptophan, 222
Turing instability, 164
Turing mechanism, 164

U
Uncompetitive inhibition, 26, 167, 168
Unimolecular reaction, 155, 157
Universe of discourse, 185
Unphosphorylated, 230
Update function, 109
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Updating function, 260
UPGMA, 222
Urbanczik–Wagner algorithm, 220

V
Valid labeling, 324, 327
VANTED, 15
Velocity of enzymatic reactions, 27
Virtual cell, 174, 238
VisANT, 175
Visualization, 13
Visualization tools, 175
Volterra, 159

W
Weakly live, 53
WebCell, 174
Weight, 103, 106

X
XML based standards, 175
XPP-Aut, 174

Z
Zero-order reactions, 155
Zinc-finger transcription factor, 114
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