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Preface

Knowledge of basic rules of operation of digital communication systems is a crucial
factor in understanding contemporary communications. Digital communication systems
can be treated as a medium for many different systems and services. Digital TV, cellular
telephony or Internet access are only three prominent examples of such services. Basically,
each kind of communication between human beings and between computers requires a
certain kind of transmission of digitally represented messages from one location to another,
or, alternatively, from one time instant to another, as it is in the case of digital storage.
It often happens in technology that its current state is a result of a long engineering
experience and numerous experiments. However, most of the developments in digital
communications are the result of deep theoretical studies. Thus, theoretical knowledge is
needed to understand the operation of many functional blocks of digital communication
systems.

There are numerous books devoted to digital communication systems and they are
written for different readers; simpler books are directed to undergraduate students spe-
cializing in communication engineering, whereas more advanced ones should be a source
of knowledge for graduate or doctoral students. The number of topics to be described
and the details to be explained grow very quickly, so some of these books are very thick
indeed. As a result, there is a problem of appropriate selection of the most important
topics, leaving the rest to be studied in more specialized books.

The author of this textbook has tried to balance the number of interesting topics against
the moderate size of the book by showing the rules of operation of several communication
systems and their functional blocks rather than deriving deep analytical results. Whether
this aim has been achieved can be evaluated by the reader. This textbook is the result of
many years of lectures read to students of Electronics and Telecommunications at Poznai
University of Technology. One-semester courses were devoted to separate topics reflected
in the book chapters, such as information theory, channel coding and digital modulations.
The textbook was first published in Polish. The current English version is an updated
and extended translation of the Polish original. To make this textbook more attractive and
closer to the telecommunication practice, almost each chapter has been enriched with a
case study that shows practical applications of the material explained in this chapter.

Unlike many other textbooks devoted to digital communication systems, we start from
the basic course on information theory in Chapter 1. This approach gives us some knowl-
edge on basic rules and performance limitations and ideas that are applied later in the
following chapters. Such an approach allows us to consider a digital communication sys-
tem in a top-to-bottom direction, i.e. starting from very general rules and models and
going deeper into particular solutions and details.
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Chapter 2 is devoted to protection of digital messages against errors. The basic rules
of this protection are derived from information theory. We start from very simple error
correction codes and end up with basic information on turbo codes and LDPC codes.
Error detection codes and several automatic request-to-repeat strategies are also tackled.

The subject of Chapter 3 is the baseband transmission. We show how to shape baseband
pulses and how to form the statistical properties of data symbols in order to achieve the
desired spectral properties of the transmitted signal. We derive the structure of the optimum
synchronous receiver and we analyze basic methods of digital signaling.

In Chapter 4 we use our results derived in Chapter 3 for analysis of passband trans-
mission and digital modulations of a sinusoidal carrier. We consider simple one- and
more dimensional modulations, continuous phase modulations, trellis-coded modulations
and present respective receivers. In most cases we derive the probability of erroneous
detection in selected types of receivers.

In Chapters 3 and 4 we consider baseband and passband digital signaling assuming
an additive Gaussian noise and limited channel bandwidth as the only impairments. In
turn, Chapter 5 is devoted to the description of representative physical channel properties.
Such considerations allow us to evaluate the physical limitation that can be encountered
in practice.

One such limitation occurring in band-limited digital communication systems is inter-
symbol interference. This phenomenon is present in many practical cases and many
digital communication systems have to cope with it. The methods of eliminating inter-
symbol interference or decreasing its influence on the system performance are presented
in Chapter 6.

Chapter 7 overviews basic types of digital communication systems based on the spread
spectrum principle. Many contemporary communication systems, in particular wireless
ones, use spectrum spreading for reliable communications.

Synchronization is another important topic that must be understood by a communication
engineer. Basic synchronization types and configurations are explained in Chapter 8.

Finally, Chapter 9 concentrates on the overview of multiple access methods, including
new methods based on multicarrier modulations.

Most of the chapters are appended with the problems that could be solved in the problem
sessions accompanying the lecture.

This book would not be in its present form if it had not been given attention and time by
many people. First of all, I would like to direct my thanks to the anonymous reviewers of
the English book proposal, who encouraged me to enrich the book with some additional
problems and slides that could be useful for potential lecturers using this book as a basic
source of material. I am also grateful to Mark Hammond, the Editorial Director of John
Wiley & Sons Ltd, and Sarah Tilley, the Project Editor, who showed their patience and
help. Someone who substantially influenced the final form of the book is Mrs Krystyna
Ciesielska (MA, MSc) who was the language consultant and as an electrical engineer
was a particularly critical reader of the English translation. I would like to thank Mr
Wtodzimierz Mankiewicz who helped in the preparation of some drawings. Finally, the
book would not have appeared if I did not have the warm support of my family, in
particular my wife Maria.

KRZYSZTOF WESOLOWSKI
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1

Elements of Information Theory

In this chapter we introduce basic concepts helpful in learning the rules of operation of
digital communication systems that have their origin in information theory. We present
basic theorems of information theory that establish the limits on effective representation
of messages using symbol sequences, i.e. we consider the limits of source coding. We
analyse the conditions for ensuring reliable transmission over distorting channels with the
maximum data rate. Sometimes we encounter complaints that information theory sets the
limits on the communication system parameters without giving recipes on how to reach
them. As modern communication systems are becoming more and more sophisticated, the
information theory hints are more and more valuable in optimization of these systems.
Therefore, knowing its basic results seems to be necessary for better understanding of
modern communication systems.

1.1 Introduction

As already mentioned, only basic concepts and the most important results of informa-
tion theory are presented in this chapter. The reader who is interested in more detailed
knowledge on information theory can find a number of books devoted to this interest-
ing discipline, such as the classical book by Abramson (1963) and others by Gallager
(1968), Cover and Thomas (1991), Mansuripur (1987), Heise and Quatrocchi (1989),
Roman (1992), Blahut (1987) or MacKay (2003). Their contents and level of presentation
are different and in some cases the reader should have a solid theoretical background
to profit from them. Some other books feature special chapters devoted to information
theory, e.g. Proakis’ classics (Proakis 2000) and the popular handbook by Haykin (2000).

The contents of the current chapter are as follows. First, we introduce the concept
of an amount of information, and we present various message source models and their
properties. Then we introduce and discuss the concept of source entropy. We proceed
to the methods of source coding and we end this part of the chapter with Shannon’s
theorem on source coding. We also give some examples showing source coding in practical
applications such as data compression algorithms.

The next section is devoted to discrete memoryless channel models. The concepts
of mutual information and channel capacity are introduced in the context of message
transmission over memoryless channels. Then, the notion of a decision rule is defined

Introduction to Digital Communication Systems Krzysztof Wesotowski
© 2009 John Wiley & Sons, Ltd



2 Introduction to Digital Communication Systems

and a few decision rules are derived. Subsequently, we present the basic Shannon’s
theorem showing conditions that have to be fulfilled to ensure reliable transmission over
distorting channels. These conditions motivate the application of channel coding. Next,
we extend our considerations on mutual information and related issues onto continuous
random variables. The concept of differential entropy is introduced. The achieved results
are applied to derive the formula describing the capacity of a band-limited channel with
additive white Gaussian noise. Some practical examples illustrating the meaning of this
formula are given. Then, the channel capacity formula is extended onto channels with a
specified transfer function and distorted by Gaussian noise with a given power spectral
density. Channel capacity and signaling strategy are also considered for time varying, flat
fading channels. Finally, channel capacity is considered for cases when transmission takes
place over more than one transmit and/or more than one receive antenna, i.e., capacity of
multiple-input multiple-output channels is derived.

1.2 Basic Concepts

However amazing it may seem, the foundations for information theory were laid in a
single forty-page-long paper written by a then young scientist, Claude Shannon (1948).
From that moment this area developed very quickly, providing the theoretical background
for rapidly developing telecommunications. Information theory was also treated as a tool
for the description of phenomena that were far from the technical world, with varying
success.

Although Shannon founded the whole discipline, the first elements of information theory
can already be found a quarter of a century earlier. H. Nyquist in his paper entitled
“Certain Factors Affecting Telegraph Speed” (Nyquist 1924) formulated a theorem on the
required sampling frequency of a band-limited signal. He showed indirectly that time in a
communication system has a discrete character because in order to acquire full knowledge
of an analog signal it is sufficient to know the signal values in sufficiently densely located
time instants.

The next essential contribution to information theory was given by R. V. L. Hartley, who
in his work entitled “Information Transmission” (Hartley 1928) associated the information
content of a message with the logarithm of the number of all possible messages that can
be observed on the output of a given source.

However, the crucial contribution to information theory came from Claude Shannon
who in 1948 presented his famous paper entitled “A Mathematical Theory of Communi-
cation” (Shannon 1948). The contents of this paper are considered to be so significant that
many works written since that time have only supplemented the knowledge contained in
Shannon’s original paper.

So what indeed is information theory? And what is the subject of its sister discipline —
coding theory?

Information theory formulates performance limits and states conditions that have to
be fulfilled by basic functional blocks of a communication system in order for a certain
amount of information to be transferred from its source (sender) to the sink (recipi-
ent). Coding theory in turn gives the rules of protecting the digital signals representing
sequences of messages from errors, which ensure sufficiently low probability of erroneous
reception at the receiver.
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1.3 Communication System Model

Before we formulate basic theorems of information theory let us introduce a model of a
communication system. As we know, a model is a certain abstraction or simplification of
reality; however, it contains essential features allowing the description of basic phenomena
occurring in reality, neglecting at the same time those features that are insignificant or
rare.

Let us first consider a model of a discrete communication system. It is conceptually
simpler than a model of a continuous system and reflects many real cases of transmission
in digital communication systems in which a source generates discrete messages. The
case of a continuous system will be considered later on.

A model of a discrete communication system is shown in Figure 1.1.

Its first block is a message source. We assume that it generates messages selected from
a given finite set of elementary messages at a certain clock rate. We further assume that
the source is stationary, i.e. its statistical properties do not depend on time. In particular,
messages are generated with specified probabilities that do not change in time. In other
words, the probability distribution of the message set does not depend on a specific time
instant.! The properties of message sources will be discussed later.

The source encoder is a functional block that transforms the message received from
the message source into a sequence of elementary symbols. This sequence in turn can
be further processed in the next blocks of the communication system. The main task
of the source encoder is to represent messages using the shortest possible sequences of
elementary symbols, because the most frequent limitation occurring in real communication
systems is the maximum number of symbols that can be transmitted per time unit.

The channel encoder processes the symbols received from the source encoder in a man-
ner that guarantees reliable transmission of these symbols to the receiver. The channel
encoder usually divides the input sequence into disjoint blocks and intentionally aug-
ments each input block with certain additional, redundant symbols. These symbols allow

a b c

Message ,/: Source [ Channel [

»

source encoder "] encoder

© @
. E le2¢
A A © o3
a b Cc 6 =z 8
Message |,/ Source | J Channel /
sink decoder | decoder

Figure 1.1 Basic model of a discrete communication system

! As we remember from probability theory, this feature is called stationarity in a narrow sense.



4 Introduction to Digital Communication Systems

the decoder to make a decision about the transmitted block with a high probability of
correctness despite errors made on some block symbols during their transmission.

The channel is the element of a communication system that is independent of other
system blocks. In the scope of information theory a channel is understood as a serial
connection of a certain number of physical blocks whose inclusion and structure depend
on the construction of the specific, considered system. In this sense, the channel block can
represent for example a mapper of the channel encoder output symbols into data symbols,
a block shaping the waves representing the data symbols and matching them to the channel
bandwidth, and a modulator that shifts the signal into the passband of the physical channel.
The subsequent important block of the channel is the physical transmission channel, which
reflects the properties of the transmission medium. It is probably obvious to each reader
that, for example, a pair of copper wires operating as a subscriber loop has different
transmission properties than a mobile communication channel. On the receiver side the
channel block can contain an amplifier, a demodulator, a receive filter, and a decision
device producing the estimates of the signals acceptable by the channel decoder. These
estimates sometimes can be supplemented by additional data informing the following
receiver blocks about the reliability of the supplied symbols. Figure 1.2 presents a possible
scheme of part of a communication system that can be integrated in the form of a channel
block.

A channel can have spacial or time character. A spacial channel is established between
a sender and recipient of messages who are located in different geographical places.
Communication systems that perform such message transfer are called telecommunication
(or communication) systems. We speak about time channels, on the other hand, with
reference to computer systems, in which signals are stored in memory devices such as
tape, magnetic or optical disk, and after some time are read out and sent to the recipient.
The properties of a memory device result from its construction and the physical medium
on which the memory is implemented.

Estimates of signal sequences received on the channel output are subsequently processed
in a functional block called a channel decoder. Its task is to recover the transmitted signal
block on the basis of the signal block received on the channel output. The channel decoder
applies the rule according to which the channel encoder produces its output signal blocks.
Typically, a channel decoder memorizes the signals received from the channel in the form

Symbols Signals
{ Signal [ Signal
mapping shaping Modulator ﬁ
block block =
k)
82
. £ c
Symbols Signals a8
< ©
| Decision 4 | Receive Demodulator
device filter

Figure 1.2 Example of the internal structure of the channel block
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of n-element blocks, and on this basis attempts to recover such a k-element block, which
uniquely indicates a particular n-element block that is “the most similar” to the received
n-element block. Three cases are possible:

e On the basis of the channel output block, the channel decoder reconstructs the signal
block that was really transmitted.

e The channel decoder is not able to reconstruct the transmitted block, however it detects
the errors in the received block and informs the receiver about this event.

e The channel decoder selects the signal block; however it is different from the block that
was actually transmitted. Although the decision is false, the block is sent for further
processing.

If the communication system has been correctly designed the latter case occurs with an
extremely low probability.

The task of a source decoder is to process the symbol blocks produced by the channel
decoder to obtain a form that is understandable to the recipient (message sink).

Example 1.3.1 As an example of a communication system, let us consider transmission
of human voice over the radio. There are many ways to assign the particular elements of
such a system to the functional blocks from Figure 1.1. One of them is presented below.
Let the human brain be the source of messages. Then the vocal tract can be treated as
a source encoder, which turns the messages generated by the human brain into acoustic
waves. The channel encoder is the microphone, which changes the acoustic wave into
electrical signals. The channel is a whole sequence of blocks, the most important of which
are the amplifier, radio transmitter with transmit antenna, physical radio channel, receive
antenna and receiver. The loudspeaker plays the role of a channel decoder, which converts
the received radio signal into an acoustic signal. This signal hits the human ear, which
can be considered as a source decoder. Through the elements of the nervous system the
“decoded” messages arrive in the human brain — the message sink.

Let us now consider a more technical example.

Example 1.3.2 Let the message source be a computer terminal. Alphanumeric characters
(at most 256 if the ASCII code is applied) are considered as elementary messages. The
source encoder is the block that assigns an 8-bit binary block (byte) to each alphanumeric
character according to the ASCII code. Subsequent bytes representing alphanumeric char-
acters are grouped into blocks of length k, which is a multiple of eight. Each k-bit block is
supplemented with r appropriately selected additional bits. The above operation is in fact
channel coding. Its aim is to protect the information block against errors. The resulting
binary stream is fed to the modem input. The latter device turns the binary stream into a
form that can be efficiently transmitted over a telephone channel. On the receive side the
signal is received by the modem connected to a computer server. The cascade of functional
elements consisting of a modem transmitter, a telephone channel and a modem receiver is
included in the channel block in the sense of the considered communication system model.
On the receive side, based on the reception of the k-bit block, r additional bits are derived
and compared with the additional received bits. This operation constitutes channel decod-
ing. Next, the transmitter of the modem on the server side sends a short feedback signal to
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the modem on the remote terminal side informing the latter about the required operation,
depending on the result of comparison of the calculated and received redundant bits; it
can be the transmission of the next binary block if both bit blocks are identical, or block
repetition if the blocks are not identical. The division of the accepted k-bit block into bytes
and assigning them appropriate alphanumeric blocks displayed on the screen or printed
by the printer connected to the server is a source decoding process. Thus, a printer or a
display monitor can be considered as a message sink.

The above example describes a very simple case of a digital transmission with an auto-
matic request to repeat erroneous blocks. The details of such an operation will be given
in the next chapter.

1.4 Concept of Information and Measure of Amount of Information

The question “what is information?” is almost philosophical in nature. In the literature
one can find different answers to this question. Generally, information can be described
in the following manner.

Definition 1.4.1 Information is a piece of knowledge gained on the reception of messages
that allows the recipient to undertake or improve his/her activity (Seidler 1983).

This general definition implies two features of information:

e potential character — it can, but need not, be utilized in the recipient’s current activity;
e relative character — what can be valuable knowledge for one particular recipient can be
disturbance for another recipient.

Let us note that we have not defined the notion of message. We will treat it as a primary
idea, as with a point or a straight line in geometry, which are not definable in it.

A crucial feature associated with information transfer is energy transfer. A well con-
structed system transmitting messages transfers a minimum amount of energy required to
ensure an appropriate quality of received signal.

The definition of information given above has a descriptive character. In science it is
often required to define a measure of quantity of a given value. Such a measure is the
amount of information and should result from the following intuitive observations:

e If we are certain about the message that occurs on the source output, there is no
information gained by observing this message.

e The occurrence of a message either provides some or no information, but never brings
about a loss of information.

e The more unexpected the received message is, the more it can influence the recipient’s
activity; the amount of information contained in a message should be associated with the
message probability of appearance — the lower the probability of message occurrence,
the higher the amount of information contained in it.

e Observation of two statistically independent messages should be associated with the
amount of information, which is the sum of amounts of information gained by obser-
vation of each message separately.
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The above requirements for measure of information are reflected in the definition given
by Hartley.

Definition 1.4.2 Let a be a message that is emitted by the source with a probability P(a).
We say that on observing message a, its recipient acquires

I(a) = (1.1)

log, ——
gr P (a)
units of amount of information.

In information theory the logarithm base r is usually equal to 2 and then the unit of
amount of information is called a bit.> The logarithm base r = e implies denoting the
unit of amount of information as a nat, whereas taking » = 10 results in a unit of amount
of information described as Hartley. Unless stated otherwise, in the current chapter the
logarithm symbol will denote the logarithm of base 2.

From the above definition we can draw the following conclusion: Gaining a certain
amount of information due to observation of the specified message on the source output
is associated with a stochastic nature of the message source.

1.5 Message Sources and Source Coding

In this section we will focus our attention on the description of message sources. We
will present basic source models and describe their typical parameters. We will define the
concepts of entropy and conditional entropy. We will also consider basic rules and limits
of source coding. We will quote Shannon’s theorem about source coding. We will also
present some important source coding algorithms applied in communication and computer
practice.

1.5.1 Models of Discrete Memory Sources

As we have already mentioned, a message source has a stochastic nature. Thus, its speci-
fication should be made using the tools of description of random signals or sequences. In
consequence, a sequence of messages observed on the source output can be treated as a
sample function of a stochastic process or of a random sequence. A source generates mes-
sages by selecting them from the set of elementary messages, called the source alphabet.
The source alphabet can be continuous or discrete. In the first case, in an arbitrarily close
neighborhood of an elementary message another elementary message can be found. In the
case of a discrete message source the messages are countable, although their number can
be infinitely high. A source is discrete and finite if its elementary messages are countable
and their number is finite. In the following sections we will concentrate on the models of
discrete sources, leaving the problems of continuous sources for later consideration.

2 We should not confuse “bit” denoting a measure of amount of information with a “bit”, which is a binary symbol
taking two possible values, “0” or “1”.



8 Introduction to Digital Communication Systems

1.5.2 Discrete Memoryless Source

The simplest source model is the model of a discrete memoryless source. Source memory
is considered as a statistical dependence of subsequently generated messages. A source
is memoryless if generated messages are statistically independent. It implies that the
probability of generation of a specific message at a given moment does not depend on
what messages have been generated before. Let us give a formal definition of a discrete
memoryless source.

Definition 1.5.1 Let X = {ay, ..., ag} be a discrete and finite set of elementary messages
generated by source X. We assume that this set is time invariant. Source X is discrete
and memoryless if elementary messages are selected mutually independently from set X in
conformity with the time-invariant probability distribution {P(a,), ..., P(ag)}.

In order to better characterize the properties of a discrete memoryless source we will
introduce the notion of average amount of information, which is acquired by observation of
a single message on the source output. An average amount of information is a weighted
sum of the amount of information acquired by observing subsequently all elementary
messages from the source with the alphabet X, where the weights of particular messages
are the probabilities of occurrence of these messages. In the mathematical sense, this
value is an ensemble average (expectation) of the amount of information 7 (a;). It is
denoted by the symbol H (X) and called the entropy of source X. Formalizing the above
considerations, we will give the definition of the entropy of the source X.

Definition 1.5.2 The entropy of a memoryless source X, characterized by the alphabet X =
{ay, ..., ax} and the probability distribution {P(a,), ..., P(ak)}, is the average amount
of information acquired by observation of a single message on the source output, given by
the formula

1
P(a;)

K
H(X) = E[I(a)] =Y _ P(a;)log
i=1

(1.2)

Since the source entropy is the average amount of information acquired by observation
of a single message, its unit is also a bit. The source entropy characterizes our uncertainty
in guessing which message will be generated by the source in the next moment (or
generally in the future). The value of entropy results from the probability distribution of
elementary messages, therefore the following properties hold.

Property 1.5.1 Entropy H(X) of a memoryless source X is non-negative.

Proof. Since for each elementary message of the source X the following inequality
holds

1>P@)>0 (=1,...,K)

then for each message q;

log >0

P(a;)
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which implies that the weighted sum of the above logarithms is non-negative as well, i.e.

u 1
P(a;) 1 >0
; (@) log 7o =

It can be easily checked that the entropy is equal to zero, i.e. it achieves its minimum if
and only if a certain message a; from the source alphabet X is sure (i.e. P(a;) = 1). This
implies the fact that the alphabet reduces to a single message. The amount of information
acquired by observing this message is zero, in other words, our uncertainty associated
with forthcoming messages is null.

Property 1.5.2 The entropy of a memoryless source does not exceed the logarithm of the
number of elementary messages constituting its alphabet, i.e.

H(X) <logK (1.3)

Proof. We will show that H(X) —log K < 0, using the formula allowing calculation
of the logarithm to the selected base, given the value of the logarithm to a different base

log, x

log, x = (1.4)

log, r

K
Knowing that Y P(a;) = 1, we have
i=1

K 1 K
H(X) —logK =Y P(a;)log P > P(ai)logK
i=1 ! i=1
K
= ; P(a;) log P

Recall that the logarithm base r = 2. In the proof we will apply the inequality Inx < x — 1
(cf. Figure 1.3) and the formula

logx =1Inxloge

We have
1

K P(aj)

K
H(X) —logK =loge Z P(a;)In

i=1

K 1 K 1 K
< 1oge§P(ai) (m - 1) =loge (;E - ;P(ai)) =0

so indeed
H(X)—1logK <0

which concludes the proof.
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Figure 1.3 Plots of the functions Inx and x — 1 (Goldsmith and Varaiya (1997)) © 1997 IEEE

In this context a question arises when the entropy is maximum, i.e. what conditions
have to be fulfilled to have H(X) = log K. In the proof of Property 1.2 we applied the
boundary Inx < x — 1 separately for each element 1/K P(a;). One can conclude from
Figure 1.3 that the function Inx is bounded by the line x — 1 and the boundary is exact,
ie.Inx = x — 1 if x = 1. In our case, in order for the entropy to be maximum and equal
to log K, for each elementary message a; the following equality must hold

1
KP(CI,')

=1, ie. P(ai)z% (i=1,...,K) (1.5)

It means that the entropy of the memoryless source is maximum if the probabilities of
occurrence of each message are the same. It also means that uncertainty with respect to
our observation of the source messages is the highest — none of the messages is more
probable than the others.

Consider now a particular example — a memoryless source with a two-element alphabet
X = {ay, ay}. Let the probability of message a; be P(a;) = p. The sum of probabilities
of generation of all the messages is equal to 1, so P(az) =1 — p = p. Therefore, the
entropy of this two-element memoryless source is

1 1
H(X) = plog — + plog — (1.6)
p P

As we see, the entropy H(X) is a function of probability p. Therefore let us introduce
the so-called entropy function given by the formula

1 1
H(p) = plog —+ plog = (1.7
p 1Z

The plot of the entropy function, which will be useful in our future considerations, is
shown in Figure 1.4. For obvious reasons (its argument has a sense of probability)
the function has the argument in the range (0, 1). The values of the entropy function
are contained in the range (0, 1], achieving maximum for p = 0.5, which agrees with
formula (1.5).
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Figure 1.4 Plot of the entropy function versus probability p

1.5.3 Extension of a Memoryless Source

A discrete memoryless source is the simplest source model. A slightly more sophisticated
model is created if an n-element block of messages subsequently generated by a memory-
less source X is treated jointly as a single message from a new message source, called the
nth extension of source X. We will now present a formal definition of an nth extension
of source X.

Definition 1.5.3 Ler a memoryless source X be described by an alphabet
X ={ay,...,ax} and associated probability distribution of the elementary mes-
sages {P(ay), ..., P(ak)}. The nth extension of the source X is a memoryless source X",
which is characterized by a set of elementary messages {by, ..., bgn} and the associated
probability distribution {P(by), ..., P(bgn)}, where message b; (j=1,...,K") is
defined by a block of messages from source X

bj = (aj,aj,,...,a;,) (1.8)

Index j; (i = 1,...,n) may take the values from the interval (1, ..., K), and the proba-
bility of occurrence of message b; is equal to

P(bj)zP(ajl)-P(aj2)-...-P(ajn) (19)

The number of messages of the nth source extension X" is equal to K". Messages of
X" are all n-element combinations of the messages of the primary source X.

Let us calculate the entropy of the source extension described above. The entropy value
can be derived from the following theorem.

Theorem 1.5.1 The entropy of the nth extension X" of a memoryless source X is equal to
the nth multiple of the entropy H(X) of source X.

Proof. The entropy of source X" is given by the formula

K}’l
H(X") =" P(b))log

1
fit P(b))
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However, message b; is a message block described by expression (1.8), with probability
given by formula (1.9). Therefore enumerating all subsequent messages by selection of
the whole index block (ji, j2, ..., ju), ji=1,2,...K (i =1,2,...n), we obtain the
n-fold sum

K K K
n == ; . . . l
H(X") =Y ">"...% Pa;)-...- P(aj,)log P o Pay MO

J1=1 =1 Jn=1

Knowing that the logarithm of the product of factors is equal to the sum of logarithms of
those factors, we can write formula (1.10) in the form

K K K 1
H(X"y=>">"...) P@;)-...- Pa,)log —— e "
ajy

n=lp=1  ja=l1

K K K 1
+ZZ...ZP(ajl)-...-P(ajn)log ) (1.11)

J1=1j=1 Jn=1

Consider a single component of formula (1.11), in which the argument of the logarithm
is 1/P(aj,). Exclude in front of the appropriate sums the factors that do not depend on
the index with respect to which the sum is performed. Then we obtain

K K K 1
Z Z XZ: Plaj)--.. P@;)log o

K 1 K K
- Z P(aj,) log @ Z P(aj,)... Z P(a;,)
s1=1 =1 Jn=1

In turn, knowing that the sum of probabilities of all elementary messages of source X is
equal to 1, we receive the following expression describing the above component

K K
1
Z > Z P(aj)-...- P(aj,)log P

1
=ZP(ajl)10g ” = H(X) (1.12)

Performing similar steps for all remaining n — 1 components, we obtain the same result,
i.e. each component is equal to entropy H (X). Adding these results together, we obtain
the thesis of the theorem, i.e. the formula

H(X") = nH(X) (1.13)
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Example 1.5.1 Consider a memoryless source X with the alphabet X = {a, ay, a3} and
associated probability distribution {P(a;), P(az), P(a3)} = {%, %, %}. In the table below
we describe the second extension X* of source X by giving its elementary messages and
associated probability distribution. We also calculate the source entropy and compare it
with the entropy of source X.

Messages of X* by b, b; by bs b by bg b

Messages OfX ajag ayap apas aray arayp aras asag asay aszdas
. 1 1 1 1 L L 1 L L

p (bl) 4 8 8 8 16 16 8 16 16

The entropy of source X* can be calculated on the basis of this table. The entropy of source
X is

1 1 1 3
H(X) = 510g2+ Zlog4+ Zlog4= 2

whereas the entropy of the second extension, X?, of source X is
1
-1

1
H(X?*) = Z1og4+4. 2

1
0g8—|—4-ﬁlog16=3

so in fact H(X?) = 2H(X).

1.5.4 Markov Sources

A discrete memoryless source is a very simple model and it does not reflect sufficiently
precisely how the messages or their sequences are generated by the source. A simple
example such as a text written in a specified language, in which alphanumerical characters
are treated as elementary messages, shows us that subsequent messages are statistically
dependent on each other. There exist typical combinations of characters constituting words
in a given language while some other combinations do not occur. Thus, messages are
statistically dependent. A model that takes statistical dependence of generated messages
into account is called a model of Markov sequences. Below we give its formal definition.

Definition 1.5.4 Let X be a source with the message alphabet X = {ay, ...,ag}. We
say that source X is a Markov source of the mth order, if the probability of gener-
ation of a message x; € {ay,...,ag} in the ith time instant depends on the sequence
of m messages generated by the source in the previous moments. This means that the
Markov source is described by the alphabet X and the set of conditional probabilities
{(P(xilxi—1, ..., Xi—m)}, where x;_; € X, (j =0,...,m).

The message block (x;_i, ..., x;_,) describes the current state of a Markov source.
Since in the (i — j)th moment the source can generate one of K messages from its
alphabet, the number of possible states is equal to K. As message x; is generated at the
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ith timing instant, the source evolves from the state (x;_i,...,x;_,) in the ith moment
to the state (x;, ..., X;_p,+1) in the next moment.

A Markov source can be efficiently described by its state diagram, as it is done when
describing automata. The state diagram presents all K™ source states with appropriate
connections reflecting possible transitions from the state in the ith moment to the state in
the (i + 1)st moment and their probabilities.

Example 1.5.2 Figure 1.5 presents the state diagram of a second-order Markov source
with a two-element alphabet X = {0, 1} and with the following conditional probabilities
{P(x;i|xi—1, x;—2)} given below

P(0]00) = P(1]11) = 0.6
P(1100) = P(0|11) = 0.4
P(0[01) = P(0[10) = P(1|01) = P(1|10) = 0.5

Figure 1.5 Example of the state diagram of a second-order Markov source

In a typical situation, we consider ergodic Markov sources. Let us recall that a random
process is ergodic if time averages of any of its sample functions are equal (with prob-
ability equal to 1) to the adequate ensemble average calculated in any time instant. One
can also describe a Markov source as ergodic (Abramson 1963) if it generates a “typical”
sequence of messages with a unit probability. Below we show an example of a source
that does not fulfill this condition, i.e. that is not ergodic (Abramson 1963).

Example 1.5.3 Consider a Markov source of second order with the binary alphabet X =
{0, 1}. Let its probability distribution have the form

P(0]00) = P(1]11) = 1
P(1]00) = P(0|11) =0
P(0|01) = P(0[10) = P(1]01) = P(1]10) = 0.5

The state diagram of this source is given in Figure 1.6. If following the generation of a
specific message sequence the message source achieves state 00 or 11, it will stay in it
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Figure 1.6 State diagram of the Markov source considered in Example 1.5.3

forever. Let us assume that each initial state of the source is equiprobable. If the source
generates a sufficiently large number of messages with the probability equal to 0.5, it will
reach either state 00 or state 11 with the same probability. After reaching state 00 the
Jollowing sequence of messages will have the form 000 . ... Similarly, from the moment of
achieving state 11 the source will emit an infinite sequence 111.... We see that none of
the sequences is typical and the time averages calculated for both sample functions of the
process of message generation are different. On the basis of a single sample function one
cannot estimate the probability that the source is in a given state. Thus, the source is not
ergodic.

From now on we will consider the ergodic Markov source. Since it generates “typical”
message sequences, after selection of the initial source state in a long time span we
observe generated messages, and in consequence we observe the sequence of states that
the source subsequently reaches. On the basis of long-term observation of subsequent
states one can estimate the values of probabilities of each state. Moreover, the obtained
state probability distribution does not depend on the choice of the initial state (this is
understandable as the source is ergodic). The obtained probability distribution is called a
stationary distribution and is one of the characteristics of the Markov source.

This distribution can be found on the basis of probabilities of state transitions, which
characterize the Markov source. We will show how to find the stationary distribution for
the source considered in Example 1.5.2.

Example 1.5.4 Let us return to the state diagram shown in Figure 1.5. Since the source
is stationary, the probability of reaching a given state can be found on the basis of the
probability that the source is in one of the previous states and the probability of transition
from that state to the state in the next moment. So in order for the source to be in state
00, at the previous moment it must have been in state 00 or O1. Taking into account the
probabilities of transitions between the states, we receive the following equation

P(00) = P(0]00) - P(00) + P(0[01) - P(01)
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Similar equations can be formulated for the remaining states

P(O1) = P(0]10) - P(10) + P(0|11) - P(11)
P(10) = P(1]00) - P(00) + P(1]01) - P(O1)
P(11) = P(1|11) - P(11) + P(1]10) - P(10)

It is easy to see that the above equation system is not independent. However, there is one
more equation that can be applied, namely

P(00) + P(01) + P(10) + P(11) = 1

because the sum of probabilities of the event that the source is in a given state is equal to
unity. Replacing any of the system equations with the last one, we obtain a new equation
system that can be uniquely solved. Simple calculations lead us to the following result

P(00) = P(11) = li P(O1) = P(10) = g

8 ’

1.5.5 Entropy of the Markov Source

We will now introduce the concept of entropy of the Markov source. As a result, we
will be able to compare this entropy with the average amount of information obtained by
observing a single message on the output of the memoryless source.

Recall that the state of an mth-order Markov source at the ith moment can be denoted
as (xj—1, Xj—2, ..., Xj—p). If at this moment the source emits a message x; € {a, ..., ax},
then the amount of information we receive is equal to

1
P(xi|xi—1, ..., Xi—m)

T(xi|xi—1, ..., Xi—m) = log

By averaging this result with respect to all possible messages, and assuming that the

source is in the state (x;_1,x;—2,...,X;—n), We receive the entropy of the source in this
state
H(X|xl*17 R ] xl*m)
K
=Y P =ajlxi1. .. Xiw) T = a1, Xio) (1.14)
j=1

In turn, calculating the average amount of information with the assumption that the source
is in any possible state, we obtain the ensemble average of expression (1.14), i.e.

H(X)=E[H(XIxi—1, ..., Xi—m)]

K
= Z Z P(x,'_l =djis-e s Xjom :ajm)H(X|x,~_1,...,x,~_m) (115)



Elements of Information Theory 17

Using expression (1.14) in (1.15), we receive

H(X) =Z...ZP(xl-,l,...,xi,m)P(xi|xl-,1,...,x,-,m)

Xi Xi—m
1

- log
Pxilxi—1, ..., Xi—m)

Applying Bayes’ formula to the probability products in the above expression,> we obtain
the final formula for the entropy of a Markov source
1
H(X) = P(xi, xi—1, ..., Xj—m)log (1.16)
; ;}n o TR Pl Xiem)

As we see, the entropy of a Markov source is an amount of information averaged over
all possible states and all messages that can be generated by the source remaining in each
of these states.

Example 1.5.5 Let us calculate the entropy of the source from Example 1.5.2. For this
source we can build the following table of probabilities

Xiy Xi—1,Xi—2  P(xilxi—1,xi—2)  P(xi—1,Xi—2)  P(xi, Xi—1, Xi—2)

000 0.6 5/18 3/18
001 0.5 2/9 1/9
010 0.5 2/9 1/9
011 0.4 5/18 1/9
100 0.4 5/18 1/9
101 0.5 2/9 1/9
110 0.5 2/9 1/9
111 0.6 5/18 3/18

On the basis of this table we can calculate the entropy of the Markov source as

1
P(xilxi—t, ..oy Xizm)

H(X)=» ...Y Pi.Xi_1,....Xm)log

Xi Xi—m

2 2100 g Liog 1040 Lige 16,0839 ity ]
—2. " Joo — .~ log — . Zlog — = 0. message
TR 9 %75 9 %87 ' g

1.5.6 Source Associated with the Markov Source

Knowing already the stationary distribution of the Markov source, it would be inter-
esting to calculate the probability of generation of specific messages by the source.
For the mth-order Markov source these probabilities can be derived from the stationary

3P(A, B) = P(B|A)P(A).
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distribution and the conditional probabilities describing the probability of generation of a
given message on condition that the source is in a given state.

Example 1.5.6 For the source considered in Example 1.5.2 we have

P(0) = P(000)P(00) + P(0[01)P(01) + P(0]10)P(10) + P(O|11)P(11)
P(1) = P(1]00)P(00) + P(1|01)P(01) + P(1]10)P(10) + P(1|11)P(11)

The substitution of the probabilities calculated in the previous example leads us to P(0) =
P(1) =0.5.

In the above example the probabilities of generation of particular messages by the source
are identical. If the source were memoryless it would have the highest possible entropy,
H(X) = 1. Calculation of the entropy of the Markov source, performed in Example 1.5.5,
indicates that its entropy is lower. Let us compare the value of this entropy with the
entropy of the memoryless source characterized by the same probabilities of generation
of particular messages. For that purpose the definition of the source associated with the
Markov source is introduced.

Definition 1.5.5 Let X = {ay, ..., ax} be the alphabet of an mth-order Markov source.
Let P(ay), ..., P(akx) be the probabilities of occurrence of respective messages on the
source output. Source X associated with the Markov source X is a memoryless source with
the same alphabet X and identical probability distribution of elementary messages.

Below we will show that the entropy of a Markov source is lower than or equal to the
entropy of the source associated with it. First we will prove a useful inequality that will
be used subsequently in the course of this chapter.

Let p; and ¢; (i = 1, ..., N) be interpreted as probabilities, so the following property
holds for them

Zp, Zq,—landp,zO gi>0 fori=1,...,N
i=1
We will show that

N
> pi log% <0 (1.17)
. l

For this purpose let us use the inequality Inx < x — 1 again. We have

N
zpnl()g% an __lnzzpn<qn_ >
n=
1
= E (;Qn_;pn) =0
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We will use inequality (1.17) to find the relationship of the entropy of the first-order
Markov source to the entropy of the memoryless source associated with it. For this
purpose we apply the following substitution

Pn = P(x;, xi—1) =Pr{x; = ax, xi—1 = a;}
gn = P(x))P(xi—1) = Pr{x; = a;} Pr{x;_; = a;}
kj=1,....K

Using inequality (1.17) and the expression written above, we obtain the following inequal-
ity, expressed in simplified notation as

P(xi) P(xi—1)
> PG xion)log S =0 (1.18)

Xi Xi—1
Knowing from Bayes’ formula that
P(xi, xi—1) = P(xilxi—1) P(xi-1)

on the basis of (1.18) we can write the following inequality

D) P, xiop)log P(x(lx) 5 =<0

Xi Xi—]

SO

1 1
ZZP(xi,x,-—l) (10g P(xi|x;i—1) ~loe P(x,-)) -

X Xi—]

From the latter we conclude that

> P@ixio)log ——— P(xm 5 <Y ) P(xixiop)log ( 5 (1.19)

X Xi—1 X Xi—1

Therefore, the left-hand side, which is, effectively, the entropy of the Markov source, is
bounded from above by the expression

ZZP(-xtv-xt 1)10g

X Xi—1

P(x )ZP(-xlv-xl 1)

- Z P(x;)log P(x_) (1.20)

We used the fact that

> P(i.xio) = P(x)

Xi—1
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Finally, on the basis of (1.19) and (1.20) we receive the dependence
H(X) < H(X) (1.21)

Let us try to establish when the Markov source entropy achieves its maximum, equal to
H (X). We should consider the situation in which expression (1.18) is fulfilled with the
equality sign. We can easily notice that it occurs when

P(xi, xi—1) = P(x;) P(x;—1)

However, it means that the messages generated at particular moments are statistically
independent, so the Markov source loses its memory, i.e. it becomes a memoryless source.

Our considerations can be easily extended on mth-order Markov sources. It is sufficient
to replace a single message x;_; from the (i — 1)st timing instant by their whole block
(Xi1s v Xizm)-

1.6 Discrete Source Coding

As we remember from the introductory section, the process of assignment of symbol
sequences to the source messages is called source coding. The level of efficiency of the
source coding process determines the size of the symbol stream that has to be transmitted
to the receiver. In the case of a typical computer system, the memory size needed to
memorize a particular message sequence depends on the efficiency of the source cod-
ing. Similar dependence also occurs for the continuous sources whose messages, with
acceptable loss of information, are represented by streams of discrete symbols.

Example 1.6.1 Consider a binary representation of a color picture on the color monitor.
Knowing that a single pixel has a 24-bit representation, a picture of the size 800 x 600
pixels would require 11.52 milion binary symbols (bits). However, thanks to the currently
used methods of picture coding (known as picture compression) it is posible to represent
such a picture in a much more effective manner. Usually, typical properties of such pictures
are taken into account, e.g. the fact that part of the picture plane is a uniform surface or that
neighboring points do not differ much from each other. Methods of picture compression
are currently an important branch of digital signal processing.

Our considerations on source coding will start from a formal definition of code (Stein-
buch and Rupprecht 1982).

Definition 1.6.1 Let X = {ay, as, .. ., ax} denote the source alphabet (the set of messages
that is the subject of coding), and let Y = {yy, ya2, ..., YN} be a set of code symbols. A code
is a relation in which each message of the source alphabet is mutually uniquely assigned a
sequence of symbols selected from the set of code symbols. The code sequence representing
a given message is called a codeword (or a code sequence).

Example 1.6.2 Let a message source have the alphabet X = {a;, ay, as, as}. Assume that
the set of code symbols is binary, i.e. Y = {0, 1}. An example of the relation between source
messages and code sequences is shown in the table below.
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Messages Codewords
ag 0
a» 11
as 00
ayg 01

This relation is not a code in the sense of the above definition because it is not mutually
unequivocal. The code sequence 00 can be a representation both of the message a3 and a
message sequence aaj.

Let us now consider some examples of codes. The source is the same as in the last
example.

Example 1.6.3 Denote by A, B and C three codes presented in the table below (Abramson
1963).

Messages A B C
a 00 0 0
a 01 10 01
as 10 110 011

as 11 1110 0111

Each of the above codes has different features. Code A, as opposed to the other two codes,
has codewords of equal length. The characteristic feature of code B is a construction of
codewords relying on the application of a specific number of “1”’s followed by a single zero
symbol. In the case of code C a zero symbol starts each codeword, whereas the codewords
differ by the number of “1”s following the zero symbol.

This simple example makes us aware of the multitude of possible codes. Thus, a
question arises as to how we should evaluate them and which of them should be selected.
The answer to this question is not easy. In the selection and evaluation process we should
consider:

e coding efficiency — we aim at possibly the smallest number of coding symbols repre-
senting a given sequence of messages; in the statistical sense we would like to minimize
the average number of symbols needed to represent a single message;

e simplicity of the coding and decoding process — the software and hardware complexity
is the consequence of both processes;

e allowable delay introduced by the coding and, in particular, the decoding processes.

As we conclude from the definition of code, encoding is an operation of mutually unique
assignment. In consequence, the sequence of code symbols observed in the receiver can
be unambiguously divided into codewords. This is obviously the necessary condition of
correct functioning of the whole coding/decoding process and clearly results from the code
difinition. The case is straightforward if the codewords have equal lengths, as in the case
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of code A in Example 1.6.3. Only the knowledge of the initial moment is necessary for
correct decoding. Comparing codes B and C we see that in the case of code B the decoder
should detect the occurrence of a zero symbol, which indicates the end of a codeword. In
code C a zero symbol signals the begining of a codeword. In order to decompose the whole
symbol sequence into particular codewords and to extract the current codeword, one has
to observe the first symbol of the next codeword. In this sense it is not possible to decode
the codewords of code C without delay. On the contrary, code B enables decoding without
delay. For decoding codewords of a given code without delay, none of the codewords
may be a prefix of another codeword. Therefore, code B is often called a prefix code.
The prefix is defined in the following way.

Definition 1.6.2 Let ¢; = (c;,, ¢iy, - . ., ¢i,,) be a codeword of a given code. Any sequence
of symbols (ci, ciy, - .., ci;), where j < m, is a prefix of codeword ¢;.

Note that in code C each codeword listed on a higher position in the code table is a
prefix of codewords appearing below it.

An essential task is a construction of a prefix code. In the next example (Abramson
1963) a heuristic approach to this task is presented.

Example 1.6.4 Assume that a memoryless source is characterized by a five-element alpha-
bet {ay, az, ..., as}. We construct a prefix code in the following manner. Assign message
ay the symbol “0”. Thus, it is the first selected codeword. If this symbol is not to be a
prefix of another codeword, all remaining codewords should start with “1” in their first
position. Therefore, let message ay be assigned the symbol sequence “10”. All remaining
codewords will have to start with the sequence “11”. So message as can be assigned the
codeword “110”. The remaining two messages can be assigned codewords starting with
the sequence “111” supplemented with “0” and “1”, respectively. The result of our code
design is presented in the table below as code A.

Message  Code A Code B

ai 0 00
an 10 01
as 110 10
as 1110 110
as 1111 111

Is this the only way of assigning the codewords to the source messages? For sure not!
Let us inspect the column containing the codewords of code B. In creation of this code the
same basic rule is applied as in the construction of code A, i.e. none of the codewords is
a prefix of another codeword. However, we start from assigning message a; the sequence
“00”. As a result we obtain a different code! Therefore, the following question arises:
How to evaluate these codes? Generally, we can say that the smaller number of symbols
required, on average, for representation of a single message, the better code. It is intuitively
clear that in order to achieve a high degree of efficiency of using the coding symbols,
messages that occur frequently should be assigned short codewords, whereas messages
with low probability of occurrence should be assigned longer codewords.



Elements of Information Theory 23

In order to assess the quality of the source coding process we introduce the concept of
the average codeword length.

Definition 1.6.3 Consider a memoryless source X with the alphabet {ay, ..., ax} and let
{Py, ..., Px} be the probability distribution of occurrence of elementary messages. Let
codewords of length {11, ..., lx} be assigned to these messages, respectively. The average
length L of codeword is an ensemble average of a codeword length described by the
formula

L=YIP (1.22)

In order to evaluate the quality of source coding we have to be sure that there exists a
prefix code with the selected set of codeword lengths {/, ..., [x}. In order to check this
we apply the Kraft-McMillan inequality .

Theorem 1.6.1 The necessary and sufficient condition of the existence of an r-nary prefix
code characterized by a set of codeword lengths {l1, ..., Ik} is the fulfilling of inequality

Y o< (1.23)

i=1

For a binary code (r = 2) this inequality obtains the form

K
Y 2thi<i (1.24)
i=1

As we said, the Kraft-McMillan inequality is useful for checking if there exists a prefix
code with a given set of codeword lengths. Unfortunately, this inequality does not facilitate
the process of finding such a code. We illustrate this statement by the next example quoted
after Abramson (1963).

Example 1.6.5 Consider five different source codes proposed for a memoryless source X
with four elementary messages {a,, az, as, as}. The codes are presented in the table below.

Message A B C D &
ai 00 0 0 0 0
a 01 100 10 100 10
as 10 110 110 110 110

as 11 111 111 11 11

If we denote the left-hand side of formula (1.24) as W, then simple calculations show
that for codes A, C and D we have W = 1, for code B we have W = 7/8, whereas for code
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E we obtain W = 9/8. Code A is uniquely decodable without delay because its codewords
have constant length and each of them is unique. The codeword lengths of code B fulfill
the Kraft-McMillan inequality and none of the codewords is a prefix of another codeword.
Using one codeword shorter than those in code B results in the allowable set of codeword
lengths as well; however, not all codes from the set of codes characterized by the same
codeword length are decodable without delay. Code C belongs to the prefix codes, whereas
code D does not. The reason for that is that the last codeword of code D is a prefix of
the codeword assigned to message as. Finally, code £ does not satisfy the Kraft-McMillan
inequality, so not only this code but also any other code with the same set of codeword
lengths will not be a prefix code.

There are many possible source codes characterized by a single set of codeword lengths
satisfying the Kraft-McMillan inequality. However, not all of them are the prefix codes.
Therefore, there is a problem of how to find the code that will have the shortest average
codeword length among all r-nary prefix codes used to represent the messages of a given
memoryless source X. Such a code will be called a compact code.

In the first step of our search for compact codes we will find a minimum average
codeword length for a prefix code.

As previously, consider a memoryless message source X described by the message
alphabet X = {a;, as, ...,ax} and the set of respective probabilities P(a;) = P; (i =
1,2,...,K). The code symbols that make up codewords are selected from an r-nary
alphabet Y. Denote the length of the codeword assigned to message a; as ;. As we
remember, the entropy of such a memoryless source is given by formula (1.2). Recall
again that we have already proven the inequality

Y P log& <0 (1.25)
4 P;
where both P; and Q; can be interpreted as probabilities, i.e. P, >0, Q; >0 (i =

K K
1,2,...,K), Y Pi=1,> Q; = 1. In consequence of (1.25) we have
i=1 i=1

K
1 1
Y Pilog— <) Pilog— (1.26)

Let us note that (1.25) becomes an equity if P, = Q; (i = 1,2, ..., K). So, recalling the
definition of the entropy of a memoryless source, we have

K
H(X) <> Plog i (1.27)

i=1 !

Let us assume now that

Qi = (1.28)



Elements of Information Theory 25

Let us note that the variables Q; defined in this way satisfy the conditions Q; > 0 and
K
> Q; = 1. Substituting (1.28) into (1.27), we obtain

i=1

K
K Z: K K K

H(X)<ZPlog ZPlog—+ZPlog Zr‘li
i=1 i=1

i=1 j=1

K K K K
=longPili + log Zrilf ZP,- = Llogr + log Zr*l
j=1

i=1 j=1 i=1
So finally
H(X) < Llogr (1.29)

The last inequality is a consequence of the fact that for a prefix code the Kraft-McMillan

inequality is satisfied so the second term of formula (1.29) is non-positive. Finally we
obtain

L H®

~ logr

— H.(X) (1.30)

The following theorem is a consequence of inequality (1.30).

Theorem 1.6.2 (The first Shannon theorem) The average codeword length in a prefix code
used for representation of messages generated by a memoryless source X is not lower than
the source entropy (calculated in r-nary units).

Theorem 1.6.2 formulates an important limit related to source coding. Let us now
consider the requirements for achieving this boundary. The analysis of subsequent deriva-
tion steps in (1.29) indicates that in order for the boundary to be reached the following
requirements have to be fulfilled

T [Ragls
)

1° HX) = ZP log (1.31)

K
2° Zr—’/ =1 (1.32)

We conclude from requirements 1° and 2° that the boundary of source coding efficiency
can be reached if the probability of occurrence P; for each message of the memoryless
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source is expressed by the formula

rli

/\ Pi=0i=— =7l (1.33)
i Z ril.i
j=1

Thus, for each message a; whose probability is given by (1.33) the codeword representing
it should be of length

1
li = logr F (134)

i
Obviously, the codeword length has to be an integer number. It is possible only if the
probabilities of message occurrence have the form

1\%
P = (—) (1.35)
r

where «; is an integer. Then for each i the codeword length would be /; = «;. Obviously
it is a special case that can occur in practice very rarely. The message probabilities are in
fact properties of the message source and we are not able to shape them according to our
needs. Thus, let us think how to proceed if condition (1.35) does not hold. The solution
presented below approches the limit of source coding efficiency asymptotically.

If the logarithm of the reciprocal of a particular message probability (1.35) is not an
integer number, then the codeword length, as an integer, is definitely contained in the
interval

1 1
log, E <l <log, E +1 (1.36)

Choosing the codeword lengths according to rule (1.36) ensures the result in the
form of the prefix code, because if for each i the inequality /; > log P%- is fulfilled, the
Kraft-McMillan inequality holds as well. We conclude that

i

so we have in consequence

K K
Yoy p=1 (1.37)

One can easily ascertain that the choice of the codeword length using (1.36) does not
lead to a very effective code because the average codeword length for such a code is
contained in the interval between the value of the source entropy and that value increased
by 1. We receive this result after multiplying, for each i, both sides of inequality (1.36)
by the respective message probability P; and subsequently summing the sides of all the
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inequalities. We namely have

i i

1 1
/\ P; IOgr F <Pl < P, IOgr F + P;
i

Summing all sides together we obtain

and finally
H.(X)<L < H.(X)+1 (1.38)

For small values of entropy such an interval is relatively wide and coding according to
(1.36) is ineffective. Thus, it is more effective to code n-element message blocks instead
of single messages separately. In other words, the efficiency of source coding increases if
the subjects of coding are the messages of the nth extension of source X. Denoting L, as
the average length of the codeword representing a message of the nth source extension
X", on the basis of (1.38) we receive the inequality

H,(X") < L, < H-(X") + 1 (1.39)
Recalling that H,(X") = nH,(X) we conclude that
nH.(X) <L, <nH.(X)+1

As a result

n

L 1
H.(X) < — < H(X)+ -
n n
Finally, we conclude from the last inequality that

lim Ly = H,(X) (1.40)
n—oo n
Note that L,/n is the average number of code symbols needed to encode a single
message in a block of n messages. The limit (1.40) is in agreement with the Shannon
theorem, once more indicating that the average codeword length of a decodable code
applied in representation of memoryless source messages cannot be lower than the entropy
of this source (given in the r-nary units).
Similar considerations to those shown above can be performed for a Markov source

(Abramson 1963). The conclusions derived from them are the same and lead to equality
(1.40).

Example 1.6.6 Consider a memoryless source X characterized by the elementary mes-
sages “0” and “1” appearing with the probabilities Py = 0.1 and Py = 0.9, respectively.
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It can be easily calculated that the entropy of this source is H(X) = 0.4690. Assuming
application of a binary source code (r = ?2) and direct encoding of messages “0” and
“1” using single-element codewords 0 and 1, we conclude that in this case the average
codeword length is L = 1. Thus, the coding efficiency is

_ H(X)  0.4690
===

=46.9%

Consider now the second extension X* of source X. The table below presents the messages
of source X2, their probabilities and the codeword lengths associated with them, selected
according to rule (1.36).

Message P; I;
11 0.81 1
10 0.09 4
01 0.09 4
00 0.01 7

It turns out that in this case the average codeword length is Ly, = 1.6, so the coding
efficiency is

2H,(X)
n= )

= 58,6%

One can easily find that the application of rule (1.36) has not led to finding a compact code.
Already the set of codeword lengths such as (1, 2, 3, 3) assigned to the messages 11, 10, 01
and 00, respectively, makes construction of a prefix code possible. The average codeword
length is then equal to Ly = 1.29, so the coding efficiency is n = 72%. The codeword
length selected according to rule (1.36) becomes closer and closer to the optimum when
we encode messages of higher and higher source extensions of source X.

The example shown above indicates that it could be interesting to determine a coding
method resulting in a compact code not only in the asymptotic sense by increasing source
extensions of message source X, but also for any source. It turns out that there are some
coding methods resulting in a compact code. In the following sections we will consider
the most important among them.

1.6.1 Huffman Coding

In 1952 Huffman presented a procedure that determines a r-nary compact code for any
memoryless message source. Below we describe it by the example of a binary code
synthesis.

Consider a memoryless message source characterized by the message alphabet X =
{ay, as, ..., ax} with related elementary message probabilities equal to Py, P, ..., Pk,
respectively. Assume without loss of generality that the message probabilities are ordered
in decreasing order, i.e. Py > P, > ... > Pg. In the first part of the procedure we
construct the sequence of reduced sources X = X, X, ..., Xx_» in the following way.
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Consider the ith step of the reduced source construction. Let us represent two of
the least probable messages of source X;, denoted as xgé)_i and x}é)_i_l, in the mes-
| ' . j(z+1)
P(x§’+1)) = P(xg)_i) + P(x}é)ﬂ.fl). The other messages of the newly created reduced
source X;,; remain unchanged; however, all messages are again ordered in decreasing
order of probabilities. Let us note that source X;;; has one message less when com-
pared with message source X;. In this sense it is reduced with respect to source X;. In
the following steps analogous to the previous one, the number of messages is gradually
reduced until we obtain a two-message source Xg _». Deriving a compact code for such a
source is straightforward: one message is represented by the codeword consisting of the

zero symbol, whereas the second message is represented by the codeword consisting of

sage set of source X;;; by a new message x , whose probability of occurrence is

a single “1”.
In the following steps we find compact codes for each of the sources Xg-_s,
Xk _4, ..., X1, Xo = X. Assume that a compact code for source X;; is already known.

We intend to find a compact code for source X;. In order to perform this task we assign
codewords to all messages of source X;, which are the same as those that have been

assigned to these messages in the source X;;; except messages x}?_ ; and xﬁ)_ i1~ The

codewords assigned to messages xg)ﬂ. and x}é)_i_l consist of a codeword associated

with message x}iH) of source X; i, extended by the symbols “0” and “1”, respectively.

Recall that message xj(.i+1) was created in the source reduction process by merging

messages x;é)_i and x}é)ﬂ.fl. Figure 1.7 presents an example of deriving a compact code
for a six-message memoryless source with respective message probabilities. As we see,
the Huffman algorithm renders a code in which the less probable the message the longer
its codeword.

The compact code achieved as a result of the Huffman algorithm can also be represented
by a tree in which the branches leaving a certain node in the left direction are associated
with the code symbol “0”, whereas those diverging in the right direction are associated
with the symbol “1”. The ending of such a branch is associated with a certain message

X=X, X, X, X3 X,

Message| F; [Codeword| FP; |Codeword| FP; [Codeword| FP; |Codeword| P; |Codeword

a, |05 |0 05 | o 05 | o 05| 0 05 0

a, [03 | 10 03 | 10 0.3 10 0.3 10 |>o_5 1

ag | 0.1 110 0.1 110 0.1 110 |->0.2 11

a, [0.05 | 1110 0.05 || 1110 I->o.1 111
a5 | 0.03 1111g|->o.05 1111

ag |0.02| 11111

Figure 1.7 Synthesis of the compact code using the Huffman algorithm
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Figure 1.8 Code tree determined for the code from Figure 1.7 derived using the Huffman proce-
dure

and the codeword assigned to it is a sequence of symbols associated with the path from
the tree root to the ending of this branch. The example of a tree for the code shown in
Figure 1.7 is presented in Figure 1.8.

The Huffman algorithm can be easily generalized for nonbinary source codes. If the
applied source code is intended to be r-nary, then in each source reduction step r least
probable messages are replaced by a single message of the reduced source. As a result
of the last reduction step we obtain a source with » messages, which can be assigned
one-symbol codewords each. However, in order for the reduction process to yield this
result, K (the number of messages of source X) has to fulfill the condition

K=@G—Dm+r (1.41)

where m is an integer, because in each reduction step the number of messages decreases
by r — 1, and the final number of messages is r. If the number of source messages does
not fulfill condition (1.41), then the source can be supplemented by a number of messages
occurring with zero probability. Thus, the resulting number of source messages does fulfill
condition (1.41).

The proof of the Huffman algorithm can be found, among others, in (Abramson 1963).

1.6.2  Shannon-Fano Coding

Huffman coding is obviously not the only method of derivation of a compact code.
Another method known as Shannon-Fano coding is presented in the form of the following
algorithm.

1. For a given list of messages construct the list of probabilities of message occurrence.
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2. Reorder the list of messages in decreasing order of message probabilities.

3. Divide the list of messages into two sets, Wy and Wy, in such a way that the sums of
probabilities are either identical or as close to each other as possible.

4. Create one-bit prefixes of codewords for messages, setting them to “0” for the code-
words related to the messages contained in set Wy and to “1” for the codewords related
to the messages contained in set Wj.

5. Apply the above algorithm recursively for each set of messages by dividing it into
subsets and adding subsequent bits to the codewords created in this way until all the
subsets contain single messages.

Figure 1.9 illustrates the creation of the source code using the above method. The
respective code tree is also presented.

Message| P; |Step 1| Step 2 |Step 3

a4 0.3 0 00 00
a| o2 o o1 || o

az | 0.15 1 10 100
a, | 0.15 1 10 101
as | 0.15 1 11 110
ag | 0.05 1 11 111

Codewords

Figure 1.9 A compact code and code tree obtained using the Shannon-Fano algorithm

1.6.3 Dynamic Huffman Coding

In Huffman or Shannon-Fano source encoding algorithms the statistics of source messages
are taken into account. In practice, blocks of messages such as data, text, single pictures
or video sequences featuring different statistics are the objects of coding. So far, for the
selected source code, the knowledge of these statistics in the form of message probabilities
is assumed. In consequence, these probabilities have to be estimated by initial analysis
of the message sequence to be encoded. On the basis of these estimates, during the sec-
ond round of analysis the message block can be a subject of encoding. The necessity
of double analysis of the message block to be encoded is disadvantageous because the
processing requirements increase. An additional problem is the necessity to supply the
decoder with the message source statistics or, equivalently, the obtained mapping of the
messages onto the codewords, i.e. the codebook. This was the motivation for developing a
coding method that, although optimum in the asymptotic sense for encoding of very long
message blocks, does not require double browsing of the message block and allows inde-
pendent estimation of the source statistics both at the source encoder and at the decoder.
Such requirements are fulfilled by the dynamic Huffman encoding. Its operation will be
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explained by inspecting the example of encoding of a given text, which is represented
in the form of an ASCII-encoded character sequence. Each character is considered to
be a single message. As an example, let us encode the sequence “This_is_mom”. For
simplicity, assume that the character “_” denotes space.

Both encoder and decoder construct a code tree. Initially, the code tree contains a single
branch with a “zero leaf” at its end and denoted by the symbol e¢. In general, leaves
terminating each branch are marked by the symbol x N, where x denotes a message (a
single character) and N is the number of its appearances from the start of the encoding
process. As previously, a branch growing in the left direction is assigned code symbol
“0”, whereas a branch directed to the right is assigned “1”. The process of encoding
of the analyzed text together with construction of the code tree is presented in Figures
1.10-1.13.

The encoder starts from encoding the message “7”. As this message occurs for the first
time, it is sent to the receiver in the open form, i.e. as an ASCII codeword. We denote its
occurrence on the code tree by the symbol 7'1 at the end of the branch accompanied by
digit “1”. In each step, besides tree modification, the list of nodes and leaves is created,
picking them up from the left of the lowest tree layer to the right and repeating the
same move shifting to the higher tree layers. In the first step the list consists only of two
nodes, e¢ and T 1. The list is arranged from the lowest to the highest weight of the nodes
and leaves. If, after a simple tree modification resulting from the occurrence of the next
message, the list is not ordered according to the increasing weights, we have to perform
its ordering by appropriate modification of the code tree. For the modified tree we create
the list again.

In the second step a new message, “h”, appears. This fact is signaled using the current
codeword assigned to an empty leaf, followed by the ASCII code of the character “A4”. In
our case sequence 0’4’ is sent to the receiver. The created list e, i1, 1, T'1 still remains
appropriately ordered.

In the third step the message “i” is encoded. The codeword currently assigned to an
empty leaf e¢ is 00, therefore the sequence 00'i’ is sent to the receiver. From the branch
terminated by an empty leaf a new empty leaf grows in the left direction and a new leaf
denoted by il grows in the right direction. The list of nodes and leaves of the newly
created tree is e¢, i1, 1, k1, 2, T'1 and it requires reordering. The position of symbol “2”
has to be exchanged with the symbol 7'1. In consequence, appropriate tree modification
is needed and a new list of nodes and leaves is created.

In the fourth and fifth steps the messages “s” and “_” are encoded in a similar way. In
each step, the code tree is expanded and modified and the sequences sent to the receiver
are 100's” and 000’_, respectively. Eventually, in the sixth step (Figure 1.11), message “i”
appears, which has already occurred before. In this case the encoder emits the codeword
01 and the number of occurrences of “i” in the leaf i1 is increased by one (i2). This
results in the need for the next tree modification. We recommend that the motivated
reader creates the tree on his/her own and generates the codeword sequence for the whole
analyzed text. The whole process of encoding and creation of the code tree is shown in
Figures 1.10-1.13.
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Message  Output Node list

ep
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Figure 1.10 Operation of the dynamic Huffman algorithm (Part 1)
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Figure 1.11 Operation of the dynamic Huffman algorithm (Part 2)

Let us note that on the basis of the codewords sent to the receiver the same code tree
can be created in it. The signal indicating the introduction of a new message (character)
to the code tree is the current codeword of the empty leaf, which is followed by a new
ASClII-encoded character. The occurrence of a character that has already appeared before
is signaled by the codeword currently assigned to it. The efficiency of dynamic Huffman
coding increases with the increase in encoded message sequence length.
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Figure 1.12 Operation of the dynamic Huffman algorithm (Part 3)

1.6.4 Arithmetic Coding

The method of source coding described in this paragraph was invented by Peter Elias
around 1960; however, it was not implementable until the 1970s. The description of
arithmetic coding is based on the work of Kieffer (2003).

Denote the message sequence that is the subject of arithmetic coding as the vector
(x1, X2, ...,x,). Subinterval /; of a unit interval [0, 1] is assigned to each message x; in
such a way that the following expression holds

LD>hLD>... I, (1.42)
Subinterval /; is determined recursively on the basis of /;_; and message x; (i > 2).

When subinterval 7, is finally specified, the binary sequence (by, by, ..., by) is selected
in such a way that the number

(1.43)
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Figure 1.13 Operation of the dynamic Huffman algorithm (Part 4)

is contained inside subinterval I,,. The length £ of the codeword is approximately equal
to —log P(x1, x2, ..., Xpn).

Let us now present a formal description of arithmetic coding and decoding. Consider the
nth extension of the memoryless source X = {0, 1, ..., j — 1}. As we see, the elementary
messages of source X are simply denoted as subsequent numbers. The probability of the
message sequence (xp, Xp, ..., X,) is equal to

Pa(xi.xo, .. x) = [ [ P(xi) (1.44)

i=1
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where P(0), P(1),..., P(j — 1) are the probabilities of occurrence of individual ele-
mentary messages. Denote the lower and upper limit of the subinterval /; as a; and b;,
respectively. Let ap = 0 and a; = 1. The coding algorithm can be formally presented in
the following three steps.

1. Foreachi (i =2,3,...,n), recursively determine the subinterval I; = [a;, b;] accord-
ing to the formula

lai—1, (ai—1 + (bi—1 —a;—1)P(0))] for x; =0
I = (1.45)
lai, b;] for x; >0

where
a; =a;_1 + (P(O) 4+ 4 P(Xi—l))(bi—l —aj_1)
bi=ai1+(PO)+ -+ P(x))(bi-1 —ai—1)

After applying the subinterval construction rule formulated above, the last subinterval
I,, will have the length equal to P, (xy, x2, ..., X,).
2. Determine the number of bits, k, used to encode sequence (xy, X2, ..., X,)

1
k=1 1 1.46
lrogpn(xlaXZa--'vxﬂ)—‘-i_ ( )

where [x] is the lowest integer greater than or equal to x.
3. Determine the number that is the middle of subinterval /,,. Perform k-bit expansion

(1.43) of this number. Digits of this expansion, (by, by, ..., by), constitute a codeword
assigned to the message sequence (x|, X2, ..., X;).
The decoding of the received sequence (by, by, ..., by) can be formally described in

the following steps.

1. Determine number M described by formula (1.43). Owing to preceding selection of
the number of bits k£ used in the binary expansion of number M, the latter is located
inside the subinterval I,,.

2. There are j possible positions of subinterval /; that depend on message x;, how-
ever the number M contained in this subinterval is situated in one position only.
Determine the subinterval /; in this way and, based on that, decide upon the message x;.

3. For each i (i =2,...,n) and knowing subinterval /;_;, determine that location (3f
subinterval /; out of j possible locations of this subinterval in which the number M
is contained. Determine message x; based on ;.

Let us explain the operation of coding and decoding with an example (Kieffer 2003).
Example 1.6.7 Let the subject of arithmetic coding be a sequence of messages of a binary

memoryless source with message alphabet X = {0, 1}. The probabilities of particular mes-
sages are P(0) =2/5, P(1) =3/5. Consider encoding the messages of the 5th source
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extension X° of source X. Let the binary message sequence be (1,0, 1, 1, 0). First, we
determine subintervals 1y, I, I3, 14 and Is.

I = % of the length from the right end of the interval [0, 1], ie. I} = [%, 1]
I, = % of the length from the left end of the subinterval Iy, i.e. I = [% 2—2]
I; = % of the length from the right end of the subinterval I, i.e. I3 = [1%, l—g’]
Iy = % of the length from the right end of the interval I3, i.e. 14 = [%, %]
Is = % of the length from the left end of the interval 1y, i.e. Is = [%, %]

The width of subinterval Is is equal to 108/3125. Let us note that it equals the probability
of generation of the considered encoded binary message sequence. Based on the width of
the subinterval, the length of the codeword k is determined from formula (1.46). Thus

3125
k= logzm +1=6

The number M = 1784 /3125 is the middle of subinterval Is. The binary expansion of the
number M is in turn equal to

1784
—— =.100100. ...
3125
so, the binary sequence (by, by, ..., by) representing the encoded messsage sequence

(1,0,1,1,0) is (100100). Let us note that the number of bits in the codeword is higher
than the length of the binary message sequence itself. However, the arithmetic coding
becomes more effective when the message sequence gets longer.

Consider now the process of decoding the codeword (100100). The decoder knows that
the message sequence that is the subject of coding has the form (xy, X3, X3, X4, X5). The
decoder has received a 6-bit sequence, therefore k = 6. On that basis an approximate
value of the number M equal to M= 1/241/16 = 9/16 is determined. In subsequent
steps the subintervals I; (i = 1,2,...,5) are found in such a way that the number M is
contained in them. Depending on whether a subsequent subinterval is the lower or upper
part of the preceding subinterval, the decoded message is equal to 0 or 1, respectively. So
the decoder subsequently determines:

e subinterval I;: out of two alternatives [O, g] or [% 1] the decoder selects the subinterval

[2 1] because M belongs to it; therefore x| = 1;

e subinterval I,: out of wo alternatives [g ég] or [;g, 1] the decoder selects the subin-

terval [g 25] because M belongs to it; therefore x, = 0;

e subinterval I3: out of two alternattves [2, 16225] or [ 16225 25] the decoder selects the subin-

terval [16225, 25] because M is contained in it; therefore x3 = 1;
e subinterval 1,: out of two altematlves [16225 gég] [2‘;2 25] the decoder selects the

subinterval [2‘2‘2 25] because M is contained in it; therefore x4 = 1;
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e subinterval Is: out of two alternatives [%, %] [%, %] the decoder selects the
346 1838 >

subinterval [@, ﬁ] because M is contained in it; therefore xs = Q.

The example of arithmetic coding and decoding considered above has not brought spec-
tacular results — the codeword is longer than the encoded binary message sequence itself.
As we noted before, the arithmetic coding becomes effective in the case of much longer
message sequences, i.e. when the messages to be coded are emitted by the extensions of
the memoryless source with the extension level much higher than 5. One can prove that
if the source extension level n is sufficiently high, the average number of code symbols
per single encoded message, denoted as L, /n, is contained within the limits

n

L 2
HX) < 2 <HX)+ = (1.47)
n n

Figure 1.14 illustrates the process of arithmetic coding and decoding of a binary message
sequence considered in the above example.
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Figure 1.14 [llustration of arithmetic coding and decoding (subintervals rejected in the decoding
process are denoted by dashed lines)

1.6.5 Lempel-Ziv Algorithm

The source coding algorithm developed by Lempel and Ziv (Ziv and Lempel 1977, 1978)
belongs to the category of source coding methods resulting in a so-called dictionary code.
Lempel-Ziv encoding became the basis for data compression algorithms applied in the
UNIX operating system. Below we describe the operation of this algorithm in the version
presented in (Ziv and Lempel 1978).

Assume that the subject of coding is a certain message sequence. Source encoding of
such a sequence consists of a few steps. The first step is parsing of the message sequence
into phrases. In the second step each phrase is assigned an address in the phrase dictionary
built on the basis of messages encoded so far. The phrase dictionary changes dynamically
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along with the progress of sequence message coding. In the next step a codeword is
assigned to each already determined address. Finally, the codeword assigned to the mes-
sage sequence {xj, xp, ..., X,} is a serial concatenation of the codewords assigned to the
subsequent addresses. Below we describe in detail the successive steps of the algorithm
and illustrate them with a simple example. The steps are:

1. Let the message sequence {xi,x»,...,x,} selected from the source alphabet X =
{0,1,..., K — 1} be the subject of coding. This sequence is parsed into subsequent
phrases. The first phrase obtained in this way from the sequence {x{, xz, ..., x,} is xj.
The second phrase is the shortest prefix of the sequence {xy, ..., x,} that is not equal to
x1. Let it be the sequence {x», ..., x;}. The subsequent phrase is then the shortest prefix
of the sequence {x;i1,x;12,...,x,} that is different from the previously obtained
phrases. Assume that [ initial phrases By, B», ..., B; of the sequence {x, x2, ..., x,}
have already been determined. Denote the remaining part of the message sequence as
x®. The next phrase B;,; received in the process of parsing the sequence x) is the
shortest prefix of sequence x) that is different from any of the previously derived
phrases Bi, B;, ..., B;. In the case when there is no such prefix, B;;; = x® and the
process of parsing is finished.

2. Denote the sequence of phrases obtained in the process of parsing of the sequence of
messages {xp, xa,...,Xx,} as By, By, ..., B,. A pair of integers is assigned to each
phrase according to the following rule. Each phrase B; of length equal to 1 is repre-
sented by a pair of numbers (0, B;). If the phrase length is higher than one, then the
phrase is represented by a pair (i, s), in which s is the last symbol in phrase B, while
i is the index of that phrase, which is identical in each symbol position of phrase B;
except the last symbol of that phrase. Next, the indices /; = Ki +s (j =1,2,...,m)
are generated based on the so-created pairs (i, s). Recall that K is the cardinality of
the alphabet of the message source, whereas m is the number of phrases obtained in
the previous step of the algorithm in which {x;, x», ..., x,} was parsed into phrases.

3. Assume that the previous step of the algorithm resulted in the indices Iy, I, ..., 1.
In the current step of the algorithm these indices are changed into binary sequences,
which are concatenated and yield the codeword representing the message sequence
{x1,x2,...,x,}. BEach integer I; (j =1, 2, ..., m) receives a binary representation that
is preceded by a sequence of zeros of such length that the number of bits representing
index /; is equal to |—10g2(K j)-|. Denote the received binary sequence as C;. The
number of bits of this sequence results from determination of the maximum possible
value of the index /;. Assume that sequence C; has been created on the basis of
the integer pair (i, s). Thus, the maximum value of i is j — 1, whereas s can take the
maximum value equal to K. Then the maximum value of the index /; is equal to K (j —
1) + (K — 1) = Kj — 1 and the number of bits necessary for binary representation of
that number is exactly ﬂogz(K j)—|. In the end, the codeword assigned to message
sequence {xp, X, ..., x,} achieves the form (Cy, C3, ..., Cy).

Let us illustrate the formal description of the algorithm with the following example.
Example 1.6.8 Let the subject of coding be the message sequence of the form

1010110100100
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so the source has a binary alphabet X = {0, 1} and its cardinality is K = 2. The subsequent
phrases achieved in the first step of the algorithm have the form

Bi=(). By=(0). Bi=(10), Bi=(l1),
Bs=(0,1), Bs=1(0,0), B;=(1,0,0)
Integer pairs (i, s) corresponding to the received phrases are
0, 1), (0,0), (1,0), (1, 1), (2, 1), (2,0), (3,0)

In turn, the indices corresponding to the received phrases are in this case determined by
the formula I; = 2i + s and they are equal to

L=1 5L=0,L51=2 14,=3,1Is=5 Isg=4, I; =6
The lengths of the codewords C; received from the binary representation of indices I;

supplemented from the left side by an appropriate number of zeros are calculated from the
Sformula |—10g2(2 j )-| and they are respectively equal to

1, 2,3,3, 4,4 4

In consequence, knowing the lengths of the codewords C; and the values of indices I; the
codewords can be determined as

Cr=(), G, =1(0,0), C3=(0,1,00, C4=(0,1,1),
C5=(0717O’ 1)? C6=(0117O’O)’ C7=(O’17170)

Summarizing, the binary message sequence 1010110100100 is assigned the following code
sequence

(C1, €2, C3, Gy, Cs,C, C7) =(1,0,0,0,1,0,0,1, 1,0, 1,0,1,0,1,0,0,0, 1, 1, 0)

As we see, also in this example the length of the codewords exceeds the length of the
binary message sequence that is the subject of coding. However, this is the case for short
message sequences only. The algorithm becoms effective for long mesage sequences. It
can be proved that the following condition is fulfilled for the Lempel-Ziv encoding

L
H(X) < =" < H(X)+ X
n log, n

(1.48)

where pk is a positive constant depending on the cardinality K of the source alphabet.

Generally, the Lempel-Ziv algorithm is a suboptimal procedure. However, it has a
meaningful advantage — it does not depend on the properties of the message source.
Because of this feature the Lempel-Ziv code is called a universal code.
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1.6.6 Case study: Source Coding in Facsimile Transmission

A facsimile (fax) machine is a device that converts black and white pictures into binary
sequences, performs their compression and, finally, using a transmission device called
a modem, sends them to the receiver. In the receiver, the received binary sequences
are decompressed and the printing device maps them back into a black and white pic-
ture. Note that compression of the binary sequence is virtually the same as a source
coding.

Fax transmission is standardized by the recommendations issued by the International
Telecommunication Union (ITU). Two fax standards denoted as T4 and T6 are currently
applied. They set the rules of operation of faxes from Group 3 and Group 4 related to
the Public Switched Telephone Network (PSTN) and Integrated Services Digital Network
(ISDN), respectively.

In a typical fax machine, a picture to be processed is divided into primary elements
called pixels with a resolution of 100 or 200 lines per inch (3.85 or 7.7 lines per mil-
limeter). Let a white pixel be represented by the digit “0” and a black pixel by the digit
“1”. In consequence, a single A4 page is equivalent to about two million binary digits.
During the analysis of subsequent lines of a picture with the above-mentioned resolution
one can easily see that the binary sequence representing one line is either dominated by
long sequences of zeros or by zeros or ones grouped in blocks. These observations refer
to a typical form of scanned document featuring a black text or black drawings with
geometical lines against a white background. These features are taken into account in the
choice of coding method used to compress the binary sequence received in the process of
scanning (processing of the sampled picture). The source code applied in the transmitter
belongs to the so-called run-length codes in which the subject of encoding is the length
of sequence of identical digits.

The data compressing block applies two code tables: the first one containing the
so-called termination code sequences (Figure 1.15) and the second one the make-up code
sequences (Figure 1.16). Both tables have been derived on the basis of Modified Huff-
man (MH) coding. In general, encoding relies on representing the length of bit sequence
of the same kind in an effective manner by decomposing this length into two compo-
nents: the largest possible natural number from the list of lengths in the make-up code
sequences and the complementing number from the terminating code sequences, which
is in the range 0—64. For example, the sequence of 140 black pixels occurring in a
single line can be written in the form of two components, 128 + 12. From the table of
make-up code sequences we find a code sequence associated with the number 128, which
is 000011001000, whereas in the table of termination code sequences we find a code
sequence associated with the number 12, which is a sequence 0000111. Summarizing, the
block of 140 black pixels, which without compression would be represented by 140 “1”’s,
is compressed to the form 0000110010000000111. Therefore the number of bits that have
to be sent to the receiver decreases from 140 to 19.

Let us note that the last element of the make-up code sequence table is a codeword
associated with the control message denoting the end of line — EOL (End-of-Line). In
Group 3 fax error protection is not applied and each scanned line is independently encoded.
Therefore, if one or more bits in the code sequences representing a given line are received
erroneously, then the decoder starts to parse the received binary sequence into code
sequences in an erroneous manner. The EOL codeword is applied, among others, to
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Number Number Number Number

ofwhite | %% | otplack|  Code of white | _ %% | ofblack Code

pixels sequence pixels sequence pixels sequence pixels sequence
0 00110101 0 0000110111 32 00011011 32 000001101010
1 000111 1 010 33 0010010 33 000001101011
2 0111 2 11 34 00010011 34 000011010010
3 1000 3 10 35 00010100 35 000011010011
4 1011 4 011 36 00010101 36 000011010100
5 1100 5 0011 37 00010110 37 000011010101
6 1110 6 0010 38 00010111 38 000011010110
7 1111 7 00011 39 00101000 39 000011010111
8 10011 8 000101 40 00101001 40 000001101100
9 10100 9 000100 41 00101011 4 000001101101
10 00111 10 0000100 42 00101011 42 000011011010
11 01000 11 0000101 43 00101100 43 000011011011
12 001000 12 0000111 44 00101101 44 000001010100
13 000011 13 00000100 45 00000100 45 000001010101
14 110100 14 |00000111 46 00000101 46 000001010110
15 110101 15 000011000 47 00001010 47 000001010111
16 101010 16 0000010111 48 00001011 48 000001100100
17 101011 17 0000011000 49 01010010 49 000001100101
18 0100111 18 0000001000 50 01010011 50 000001010010
19 0001100 19 00001100111 51 01010100 51 000001010011
20 0001000 20 00001101000 52 01010101 52 000000100100
21 0010111 21 00001101100 53 00100100 53 000000110111
22 0000011 22 00000110111 54 00100101 54 000000111000
23 0000100 23 |00000101000 55 01011000 55 000000100111
24 0101000 24  |00000010111 56 01011001 56 000000101000
25 0101011 25 00000011000 57 01011010 57 000001011000
26 0010011 26 000011001010 58 01011011 58 000001011001
27 0100100 27 1000011001011 59 01001010 59 000000101011
28 0011000 28 000011001100 60 01001011 60 000000101100
29 00000010 29 000011001101 61 00110010 61 000001011010
30 00000011 30 000001101000 62 00110011 62 000001100110
31 00011010 31 000001101001 63 00110100 63 000001100111

Figure 1.15 Table of termination code sequences for white and black pixel sequences

recover synchronism. If the decoder is not able to identify a valid codeword after a
sequence of bits of length equal to the maximum code length, it starts to look for the
EOL sequence. In turn, if after an assumed number of decodable lines the decoder is not
able to find the EOL sequence, the decoding process is interrupted and the transmitter
is notified about this event. A single EOL codeword precedes the codewords of each
scanned page, whereas a sequence of six EOL codewords indicates the end of a page.

Besides the Modified Huffman coding described above, some more sophisticated fax
machines additionally use Modified Read coding. Line processing is performed in blocks
of a few lines. The first line in the block is encoded in conformance with MH coding,
described above. The next line in the processed block is compared with the previous one
and their difference is the subject of encoding. This is an effective solution as most lines
differ little from their predecessor. Such an approach is continued until the last line in
the block is processed. The whole procedure is repeated in the next blocks of lines. The
number of lines in a block is two for standard resolution and four in higher resolution
fax machines.
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Number Number Number Number

of white Code of black Code of black Code of black Code
pixels sequence pixels sequence pixels sequence pixels sequence
64 11011 64 0000001111 1344 011011010 1344 | 0000001010011
128 10010 128 000011001000 1408 011011011 1408 | 0000001010100
192 010111 192 000011001001 1472 010011000 1472 | 0000001010101
256 0110111 256 000001011011 1536 010011001 1536 | 0000001011010
320 00110110 320 000000110011 1600 010011010 1600 | 0000001011011
384 00110111 384 000000110100 1664 011000 1664 | 0000001100100
448 01100100 448 000000110101 1728 010011011 1728 | 0000001100101
512 01100101 512 0000001101100 1792 00000001000 1792 | 00000001000
576 01101000 576 0000001101101 1856 00000001100 1856 | 00000001100
640 01100111 640 0000001001010 1920 00000001101 1920 | 00000001101
704 011001100 704 0000001001011 1984 000000010010 1984 | 000000010010
768 011001101 768 0000001001100 2048 000000010011 2048 | 000000010011
832 011010010 832 0000001001101 2112 000000010100 2112 | 000000010100
896 011010011 896 0000001110010 2176 000000010101 2176 | 000000010101
960 011010100 960 0000001110011 2240 000000010110 2240 | 000000010110
1024 011010101 1024 | 0000001110100 2304 000000010111 2304 | 000000010111
1088 011010110 1088 | 0000001110101 2368 000000011100 2368 | 000000011100
1152 011010111 1152 | 0000001110110 2432 000000011101 2432 | 000000011101
1216 011011000 1216 | 0000001110111 2496 000000011110 2496 | 000000011110
1280 011011001 1280 | 0000001010010 2560 000000011111 2560 | 000000011111

EOL 00000000001 EOL 00000000001

Figure 1.16 Table of make-up code sequences for white and black pixel sequences

This kind of source coding algorithm is effective for scanning and coding documents
featuring the above-mentioned properties. However, if the subject of source coding were
a black and white photograph in which grey levels are achieved by the intensity of black
pixels, the length of the code sequence received due to compression would be higher than
that of the uncoded binary sequence. This is caused by the fact that very short binary
sequences dominate in the sampled lines and such sequences are assigned long codewords.

The source coding algorithms presented in the above sections cover a few basic coding
methods only. All of them belong to the methods of lossless encoding. This means that
on the basis of correctly received codewords the receiver is able to recover a message
sequence identical to that produced on the transmitting side. In turn, coding of still and
moving pictures or sound coding is often matched to the human eye or ear perception
properties. In such cases the amount of information needed to recover the picture or sound
at the receiver can be substantially lower without subjective quality deterioration declared
by the recipient. The coding methods that use this fact are called lossy coding. This is an
interesting domain of digital signal processing that is outside the scope of this book.

1.7 Channel Models from the Information Theory Point of View

So far in the course of information theory we have considered message source models
and source encoding. The next block of a communication system that requires our study
is a channel encoder, however the topics related to channel coding are so broad that most
of them are presented in the next chapter. Instead we will concentrate our attention on
the next block in the communication system block chain: a channel and its models. The
channel models reflect the influence of physical properties of the transmission channel
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and all the elements of the communication system that are hidden in the joint block, often
called a channel. Below we present the simplest but most important channel models.

1.7.1 Discrete Memoryless Channel

A discrete memoryless channel is a channel model describing the statistical dependence
of the input symbols X on the channel output symbols Y. From a statistical point of view
X and Y are random variables. In each time instant the channel accepts and subsequently
transmits a single symbol X selected from the input symbol alphabet X'. As a result, a
single output symbol Y from alphabet ) appears on the channel output. If the alphabets
X and ) are finite, then the channel is discrete. The channel is memoryless if the cur-
rent output symbol Y depends exclusively on the current input symbol X, and does not
depend on the previous input symbols. Formalizing the above statements, let us present
the following definition of a discrete memoryless channel model.

Definition 1.7.1 A discrete memoryless channel model is a statistical model of a channel
determined by the following elements:

o the input symbol alphabet X = {x|, x»,...,x;};

e the output symbol alphabet Y = {y1, y2, ..., Yk},

e the set of transition probabilities P(yi|x;) =Pr{Y = y|X =x;}, for k=1,..., K,
j=1,...,J.

The cardinality of input and output alphabets does not need to be the same. In prac-
tice, we usually have K > J. The transition probabilities P (yi|x;) describe statistical
properties of the channel and are often presented in matrix form, as in formula (1.49)

P(yilx1) P(y2lx1) ... P(yklx1)
P(yilx2) P(y2lx2) ... P(yklx2)

(1.49)

POilxs) POalxs) ... POyklay)

Matrix P is called a channel matrix or transition matrix. Each matrix row is associated
with a single input symbol. In turn, each column is related to a single output symbol.
Because for each generated channel input symbol a single output symbol is received, the
following equality holds

K

Y P(ulxj) =1 for j=1.2,....7J (1.50)
k=1

As we see, the sum of probabilities in a single row is equal to unity.
For simplicity, denote P(x;) =Pr{X =x;}, j =1,2,...,J. Then the probability of
occurrence of a particular output symbol can be calculated on the basis of the formula

J
Pr{Y = yi} = P(y) = »_ P(wlxj)P(x)) (1.51)
j=1
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Let us temporarily assume that the numbers of channel input and output symbols are
the same, i.e. K = J. Assume that if the index of the received channel output symbol
is the same as the index of the transmitted channel input symbol, then the reception is
correct. If the reception correctness were described by another relation between the input
and output symbols, then we would be able to renumerate the output symbols in such a
way that the condition j = k would reflect the correct reception. The reception is incorrect
if k # j. In consequence of the above assumptions, the probability of incorrect reception,
i.e. of an error, can be determined from the formula

K J K J
PE)= Y Y P{¥=y.X=xj}= Y > POulx)Pk) (1.52)
k=1k#j j=1 k=1k#j j=1

It is often easier to calculate this probability by deriving the probability P(C) of the
correct reception first. Namely, we have

K
PE)=1-P(C)=1-) Pr{Y =y. X =x])
k=1

K K K
=1-Y POl P) =Y P(x) — Y P(yelxe) P(xe)
k=1 k=1 k=1
K K
=D [1 = POrlx0)] Px) = D P(Elx) P(xe) (1.53)
k=1 k=1
The probability P(x;) of generation of a given input symbol x; is often called a priori
probability *

1.7.2  Examples of Discrete Memoryless Channel Models

Below we present a few basic discrete memoryless channel models. Despite their sim-
plicity they are often used as a tool in selection of a channel code and its decoding
method.

1.7.2.1 Binary Symmetric Memoryless Channel

A binary symmetric memoryless channel is the most common channel model. In this
model we assume that both the input and output symbol alphabets are binary (often
described by symbols “0” and “1”), and subsequent output symbols are dependent only
on single input symbols. As we remember, this is a statistical description of the absence
of channel memory. Adoption of model symmetry results in assuming the same statistical
channel behavior in the case of generation of symbols “0” and “1”. The binary symmetric
memoryless channel is presented in Figure 1.17a. The arrows illustrate the occurrence of

4The term a priori originates from the Latin language and denotes something given in advance, before experienc-
ing it.
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Figure 1.17 Models of binary memoryless channels: (a) binary symmetric channel; (b) another
form of binary symmetric channel with binary error source; (c) binary erasure channel

the output symbol depending on the generated input symbol, with appropriate transition
probabilities placed above them. For our channel model we have

Pr{Y =0|X =0} = PO[0)=1—p Pr{Y =0/X=1}=PO|1)=p
Pr{Y = 1|X =0} = P(1|0) = p P{Y =1|X=1}=PU|l)=1—p

Let us now calculate the probability of error. Denoting the a priori probabilities of the
input symbols as Pr{X = 0} = « and Pr{X = 1} = | — «, respectively (as we know, the
sum of probabilities of occurrence of all the input symbols is equal to unity), we obtain

PE)=Pr{Y =1|X =0}Pr{X =0} +Pr{Y =0|X =1} Pr{X = 1}
=pa+p(l—a)=p (1.54)

The model shown in Figure 1.17a presents the channel operation in a single moment.
In Figure 1.17b another form of binary symmetric memoryless channel is presented. In
subsequent moments, indexed by n, the input symbols x, take on the value “0” or “1”.
The occurrence of errors in the channel is modeled by the exclusive-or addition of the
input symbol with the binary error symbol e,. If an error occurs in the channel, the error
source generates the symbol ¢, = 1, otherwise ¢, = 0. As we know from formula (1.54),
the probability of error is equal to p, so the error source is a binary digit generator that
emits “1”’s statistically independently of other symbols, with the probability p.

The model seems to be highly abstract. However, in practice many channel codes,
and in particular decoding algorithms, are constructed by taking into account such an
error source model. Very often errors in real communication channels are not uniformly
distributed in time, but they are grouped in error bursts. Thus, there are time intervals for
which the error probability is high and intervals in which error bursts do not happen. A
remedy for this disadvantageous situation is the application of a so-called interleaver at
the transmitter and deinterleaver at the receiver. They are blocks that perform mutually
dual operations. The interleaver changes the order of the sequence of transmitted channel
input symbols, whereas the deinterleaver recovers the initial order of the sequence of
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Figure 1.18 Application of interleaver and deinterleaver in spreading of error bursts

input symbols operating on the channel output symbols. Both operations compensate
each other with respect to the data symbols; however, the error sequence is the subject
of deinterleaving only. Thus the error bursts occurring in the channel are spread in time
and become almost independent statistically. Figure 1.18 illustrates a general rule of
interleaving and deinterleaving. Owing to this idea the binary symmetric memoryless
channel model remains valuable, despite the fact that the errors occurring in the channel
are bursty and therefore statistically dependent.

1.7.2.2 Binary Symmetric Erasure Channel

Figure 1.17c presents a binary symmetric erasure channel. As we see, the number of
different output symbols is increased to three. Besides the symbols “0” and “1” there
is a third symbol denoted by “e” , called erasure. This symbol reflects the situation in
which the receiver is not able to perform detection and decide if the received symbol
is “0” or “1”. This can occur if there is a transmission outage or if another transmitter
placed in the receiver’s vicinity temporarily saturates this receiver. This model does not
take into account the possibility of conversion of “0” into “1” or vice versa. Derivation
of error probability is very simple and leads to the same result as in the case of a
binary symmetric memoryless channel. Namely, assuming again that Pr{X = 0} = « and

Pr{X =1} =1 — o we have

PE)=Pr{Y =¢|X =0la +Pr{Yy =¢|X = 1}(1 — )
=pa+p(l—a)=p (1.55)

1.7.2.3 Memoryless Channel with Binary Input and m-ary Output

The memoryless binary input m-ary output channel model is more and more often used in
the analysis of digital communication systems with channel coding. As we remember, in
the binary memoryless channel model the output symbols are binary. This model reflects
the cases in which the demodulator, supplemented with a decision device, produces binary
decisions. Thus, the channel decoder loses a part of the knowledge that otherwise could
be used in the channel decoding. An important step towards avoiding this drawback is the
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Figure 1.19 Binary input 8-ary output channel model

application of a decision device that not only generates binary decisions but also gives an
additional measure of decision quality. An example of such an approach is the application
of an m-level quantizer replacing the binary one. The simplest model of such a system
is shown in Figure 1.19a. The binary symbols are transmitted in the form of pulses
of amplitude +A, which are distorted by an additive noise. A sample of a signal that
undergoes m-ary quantization is taken once per single pulse duration. In Figure 1.19b
the quantization thresholds of an 8-level quantizer are shown against the background
of conditional probability density functions of the channel output samples, whereas in
Figure 1.19¢ a corresponding channel model is drawn. The transition probabilities for a
particular input and output signal pair (not shown above the arrows showing appropriate
transitions in Figure 1.19¢) are given by the area limited by the appropriate conditional
probability curve and neighboring quantization thresholds. The selection of the optimum
quantization thresholds will not be considered here. The described model is an example
of the channel model applied in situations in which the decision device generates soft
decisions when our knowledge about received symbols is larger than the decided binary
values only.

1.7.3  Example of a Binary Channel Model with Memory

As we said before, in some communication channels errors tend to appear in bursts. It
happens in particular on radio channels featuring fading. The channel in the fading phase
is characterized by a low signal-to-noise power ratio, which leads, as we will learn later
in this book, to a high error probability. The channel that is not suffering from fading in
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Figure 1.20 Gilbert-Elliot model

a given moment features a higher signal-to-noise power ratio, so the error probability at
the receiver is lower. Evolution from one state to the other has a random and dynamic
nature, therefore the channel model has to take into account the memory of the channel
state. The simplest statistical channel model that reflects this situation is the Gilbert-Elliot
model (Bossert 1999) shown in Figure 1.20.

The channel can be in one of two states: a good one (G) or a bad one (B). Transition
from good to bad state occurs with the probability 1 — pg, whereas transition in the
opposite direction occurs with the probability 1 — pp. The channel remains in a good
state with the probability pp, and in a bad state with the probability pp. When the
channel remains in a good state the binary memoryless symmetric channel with a low
error probability p is applied. Transition to bad state B implies a change of the properties
of the binary memoryless symmetric channel model, resulting in an increase of the error
probability to ¢ > p. As we see in Figure 1.20, the transition state diagram of the channel
model resembles the state diagram of the Markov source.

The Gilbert-Elliot model is one of the simplest channel models with memory. Determi-
nation of the probabilities p, g, pp and pg is often performed on the basis of long-lasting
observation of occurrence of errors and their statistical grouping in bursts. However, we
have to stress that if the delay introduced by the communication system is not of the
first importance, the best solution is application of the interleaver in the transmitter and
the deinterleaver in the receiver in order to turn these blocks, jointly with the channel
with memory, into the memoryless channel with statistically independent errors. Most of
the channel codes and associated decoding algorithms are designed for the latter channel
model.

1.8 Mutual Information

Below we introduce the term mutual information, which will be applied in the course
of this chapter to determine the limits of channel parameters. This concept has a very
general meaning; however, for practical reasons we will relate it to the characteristics of
input and output channel symbols X and Y, respectively.

Since each input symbol x; (j =1,2,...,J) is given to the channel input with a
specified probability, it is possible to determine the entropy H(X') of the input symbol
alphabet X'. Intuitively, the entropy H(X') is a measure of the observer’s uncertainty
with respect to the occurrence of a channel input symbol. It is obviously maximum if all
the input symbols are equiprobable. In relation to this fact the question arises as to how
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the observation of a channel output symbol influences the uncertainty (or knowledge,
respectively) of the observer about the symbol given to the channel input. In order to
answer this question we introduce the notion of conditional entropy.

Assume that a specific symbol y; has been observed at the channel output. The input
symbol entropy conditioned on the observation of that output symbol is determined by
the formula

J

HX|Y = y0) =Y P(x;ly) log L (1.56)
= P(xjl|ye)

If we average this formula with respect to all possible output symbols, we end up with
the following expression describing the conditional entropy

K
HX|Y) =Y HX|Y = y)P(y)

~

D POy P () log

J

J

1
P(x;jlye)

Ma EMw

J
1
P(xj, y)log ———— (1.57)
1; SO B )

a-
I

We can state once more that H (X'|)) represents the observer’s uncertainty with respect to
the channel input symbols X that remains after observation of the output symbols Y. Since,
as we remember, H(X') represents the observer’s uncertainty before his/her observation
of the channel output (a priori), the difference H(X) — H(X|)) represents the value
by which the observer’s uncertainty with respect to an input symbol has decreased after
observation of the appropriate channel output symbol. Let us note that this value has a
meaning of an average amount of information about the channel input symbol gained
by the observer on the basis of the channel output symbol. Due to the above-presented
properties, the value H(X) — H(X|)Y) is called an average amout of mutual information,
or in short mutual information, and is denoted by I (X’; V). It can be also interpreted in the
following way: the observer needs, on average, H(X') bits of information to determine a
channel input symbol. However, after observing a channel output symbol he/she needs on
average only H (X'|)) bits of information to determine which channel input symbol caused
the appearance of the observed channel output symbol. Thus, one can say that observation
of a single channel output symbol results in gaining, on average, H (X) — H(X'|)) bits of
information. Applying the expressions describing the a priori and conditional entropies in
the expression /(X’; YV) = H(X) — H(X|)Y) results in the following formula for mutual
information

1(X;)) = H(X) — H(X]))

J K J
1
=§ P(x;)1 § § P(x;, yx) log ———
2 (xj)log —— P( ) (xj, yi) log PG o)

k=1 j=1
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K
Knowing that P(x;) = )  P(x;, yx) we obtain
k=1

1
I(X:Y PGy (1 —1
(X;Y) = ZZ (x; yk)<0g oy o P(leyk)>

k=1 j=1
K J
P(xjlye)
=Y > Plxj. yi) log —L=—= (1.58)
k=1 j=1 Px))
= j_
1.9 Properties of Mutual Information
Mutual information is characterized by the following properties.
Property 1.9.1 Mutual information is symmetric, i.e.
1(X;)) =10; X) (1.59)

Proof. Knowing that mutual information 7 (X’; ))) is determined by formula (1.58) and
using Bayes’ formula in the following form
P(xj,ye)  Pylx;)P(x;)

P (yi) P (yi)

P(xjlye) =

we obtain

v p NP (x;
I(X§y)=ZZP(Xj,yk)logM

=5 PGP ()
K J

P .
ZZPuJ-,yk)log% =1V X) (1.60)

=~
Il

1 j=1

Property 1.9.2 Mutual information is non-negative, i.e. I(X;Y) > 0.
Proof. In order to prove this property we will apply the following property, previously

used in the course of our lecture. It states that if P; and Q; denote probabilities (i.e.
P;>0,0;,>0,),P =13, 0;=1), then the following inequality holds

i

i . P;
Xi:Pilog%iso ie. Xi:PilogazO (1.61)

As we remember, the equality occurs when /\ P; = Q;. Applying the formula for con-
i

ditional probability in (1.58), we obtain

K J

LX) = > P(xj, i) log — ==

k=1 j=1

(]lyk)
P(xj)
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=iiP(xi,yk)logM (1.62)
et =t PGP (i)

Comparing (1.62) with (1.61) we note that P(x;, yx) can be interpreted as P; in (1.61)
whereas the product of probabilities P(x;)P(yr) can be interpreted as Q;. Summation
with respect to both indices, j and k, exhausts the whole set of probabilities. Then, on
the basis of (1.61), it becomes obvious that 7 (X; Y) > 0.

Let us note that mutual information is equal to zero if and only if for each index k and
J the following equality holds: P(x;, yv) = P(x;)P(y;). This means that channel input
and output symbols are statistically independent. In practice it means that the channel acts
in such a way that there is no dependence of channel output symbols on those given to
its input. From the point of view of information transfer, such a channel is useless.

From Property 1.9.1 and the general formula describing mutual information, the fol-
lowing property can be deduced:

Property 1.9.3 Mutual information can be determined from the formula
[(X;Y)=HQ) - HYIX) (1.63)

Let us illustrate the above-mentioned properties of mutual information with the follow-
ing example.

Example 1.9.1 Let us calculate mutual information for input and output of a binary sym-
metric memoryless channel. Recall that a binary symmetric memoryless channel is depicted
in Figure 1.17a. In calculations of mutual information we will use Property 1.9.3. Assume
that Pr{X = 0} = «, which results in Pr{X = 1} = 1 — « = «. Let us start with the calcu-
lation of the conditional entropy H(Y|X). Using formula (1.57) we have

2 2
1
HYIX) =Y Y P YP(x:)log ——
Y1) 22 (Vklx;) P (x;) log PO

1 1 1 1
=« (Elog: —}—plog—) +E<ﬁlog: + plog —)
p p p p
(= 1 1
=(¢+a) plog%—}—plog; = H(p) (1.64)

As we see, the conditional entropy depends only on the channel properties and it does
not depend on the channel input symbol statistics. Let us calculate now the entropy of
the channel output symbols. For this purpose we have to determine the channel output
probabilities, which are equal to (see Figure 1.17a)

Pr{Y = 0} = Pr{Y = 0|X = O} Pr{X = 0} +Pr{¥ = 0|X = 1} Pr{X = 1}

= pa + pa
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Pr(Y = 1} =Pr{Y = 1|X = 0} Pr{X = 0} + Pr{¥Y = 1|X = I} Pr{X = 1}
=pa+pa=1—Pr{Y =0} (1.65)

Since in our channel model there are only two input symbols, the probability of one of them
is the complement to unity of the probability of the other one. As a result, the entropy of the
channel output symbols H ()) is the entropy function of the argument Pr{Y = 0} calculated
from formula (1.65). Therefore, H())) = H(pa + pa). Finally, mutual information of the
input and output channel symbols for the binary symmetric memoryless channel is

1(X;)) = H(pa + pa) — H(p) (1.66)

Mutual information is shown graphically in Figure 1.21 with the entropy function in the
background. Let us note that if the error probability in a binary symmetric memoryless
channel is lower than 1/2, then pa + pa > p, so, taking into account the shape of the
entropy function, we find that the difference of entropies in formula (1.66) is positive. The
case in which p = 1/2 is the only one for which the arguments of both entropy functions
are identical, therefore their difference is zero. In conclusion, if the error probability in a
binary symmetric memoryless channel is p = 1/2, then the average amount of information
transferred by the channel is zero.

H(w) A
1

Figure 1.21 Illustration of calculations of average amount of mutual information in the case of
transmission over a binary symmetric memoryless channel

1.10 Channel Capacity

Consider once more a discrete memoryless channel model characterized by the input
symbol alphabet X, the output symbol alphabet ) and the set of transition probabili-
ties P(yxlx;) (k=1,2,...,K, j=1,2,...,J). The conclusion that can be drawn from
equation (1.60) leads us to the statement that mutual information 7 (X’; ))) can be expressed
as a function of the probabilities of input and output symbols as well as transition
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probabilities. Thus, it can be calculated using the formula

K

J
I(X;Y) =% P(xj, »)log

k=1 j=1

P (yrlxj)
P(yx)

J
Knowing that P(x;, yx) = P(yxlx;j)P(x;) and P(y;) = Y  P(yklx;)P(x;) we are able
j=1
to express I (X'; )) using exclusively the input symbol probabilities and transition prob-
abilities. Namely we have

L P (lx))
1X:9) =33 P(yilxj)Plxj) log ——1

k=1 j=1 > P(lx) P (xp)
=1

(1.67)

The transition probabilities are known in advance because they characterize the channel.
Thus, mutual information is influenced only by the channel input symbol probabilities,
which in turn can result from particular procedures of source or channel coding. There-
fore, the following question arises: What are the values of input symbol probabilities for
which the average amount of mutual information is maximum? This maximum simul-
taneously determines the maximum amount of information that can be transmitted on
average through the channel by sending a single input symbol and receiving a single out-
put symbol. This value is called channel capacity. The channel capacity C of a discrete
memoryless channel is given by the formula

C = max I(X;)) (1.68)
{P(xj)}

Formally the channel capacity C is a maximum of mutual information calculated with
respect to the input symbol probability distribution for a single channel use. From a
mathematical point of view, calculation of the channel capacity is an optimization problem
with constraints. These constraints result from the fact that the set of arguments for

which the maximum is searched is a set of probabilities, so it fulfills the conditions
J

P(xj))>0(j=1,2,...,J)and ) P(x;) = 1.In a general case, finding the maximum
j=1
can be a very complicated problem.

Example 1.10.1 Let us calculate the capacity of a binary symmetric memoryless channel.
Let us denote, as previously, the probability of the zero input channel symbol as «. Thus,
the probability of channel input symbol 1 is 1 — «a. As we see, the independent variable
with respect to which the optimization is performed is exclusively «. Taking into account
Example 1.9.1 and formula (1.66) we conclude that the capacity of this channel is given
by the formula

C = m;lx[H(Eoz + pa) — H(p)] (1.69)



56 Introduction to Digital Communication Systems

The second term of expression (1.69) does not depend on «, therefore, maximization of
(1.69) reduces to the derivation of such a value o for which H (pa + pa) approaches the
maximum. As we remember, the entropy function reaches its maximum if its argument is
equal to 1/2. A simple inspection of the expression pa + pa allows us to conclude that for
a = 1/2, independently of the value of p, the expression pa + po takes the value exactly
equal to 1/2. Eventually, we obtain a formula for the capacity of a binary symmetric
memoryless channel

C=1-H(p) (1.70)

Figure 1.22 presents the plot of capacity of this channel versus channel error probability
p. As we see, the maximum capacity of such a channel would be equal to one bit per
symbol and would be reached if the channel error probability were equal to zero. Since
an appropriate system design results in a decrease of the error probability, the channel
capacity is maximized at the same time.

C(a)) A
1 -1

C -

v

0 /V 1 o
p

Figure 1.22 Capacity of the binary symmetric memoryless channel versus error probability p

1.11 Decision Process and its Rules
1.11.1 Idea of Decision Rule

When receiving a sequence of symbols at the channel output we usually wish to get to
know the sequence of symbols given to the channel input in order to determine which
messages have been generated by the message source. For this purpose we have to apply a
projection in which all the channel output symbols are assigned the channel input symbols.
Therefore, we introduce the notion of a decision rule.

Definition 1.11.1 Consider a discrete memoryless channel model with the input alphabet
containing J symbols and the output alphabet consisting of K symbols. A function d(yi)
that unambiguously assigns an input symbol to each output symbol yy is called the decision
rule.
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There are JX possible unambiguous assignments of K output symbols to J input
symbols, therefore there are JX different decision rules. In this context the following
question arises: Which rule should be selected? In order to answer this question we must
propose a selection criterion.

The basic quality measure of a digital communication system is the probability of an
erroneous decision about the transmitted symbol performed in the receiver on the basis
of the received symbol. Therefore the decision rule should minimize the probability of
an erroneous decision. Let the channel input symbol x* = d(y;) be selected according
to the established decision rule when the received channel output symbol is yj. There is
an error event if, on reception of symbol y;, a symbol x; different from x* = d(y;) has
been fed to the channel input. Thus, the error probability can be, as in expression (1.53),
determined from the following formula

K

PE)=1-PC)=1- ZPr{X =d(y), Y = yi}
k=1

Therefore

K K K
PE) =1-=Y PAGOI) PG =Y Py — Y P(dy)lye)P()

k=1 k=1 k=1

K
[1= Placoly) [Poo = Y PENOPOD (1.71)

K
k=1 k=1

where the probability of the decision error conditioned on reception of the output symbol
ye is P(Ey) =1— P(d o)l yk). Analysis of formula (1.71) indicates that because all
terms of the form P (£|y,) in the sum are non-negative, the error probability is minimum
if the decision rule is selected in such a way that for each k the conditional probability
P(E|yx) is minimized. It is a very important observation, which leads us to the Maximum
a Posteriori Probability (MAP) decision rule.’

1.11.2 Maximum a Posteriori Probability (MAP) Decision Rule

Minimization of the conditional probability P(E|yx) for each k is equivalent to maximiza-
tion of the conditional probability P (d(yx)|yk). Thus, the MAP — Maximum a Posteriori
Probability — rule relies on the choice of such a channel input symbol x* = d(yx), for
which the following inequality holds

P(x*|y) = P(xjly) for j=1,2,...,J (1.72)

However, we conclude from Bayes’ formula that

P(xjlyr) = —(yk;,x(Jy)k) ()

5 Expression a posteriori denotes “after experience”, which in our particular case means after observation of the
channel output symbol.
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SO We can write

P (yr|x*) P (x™) _ POulxp) P(x))
P(yi) - P (yr)

(1.73)

Since P (yx) occurs in the denominator on both sides of inequality (1.73), this value does
not influence the result of the comparison. Therefore the equivalent form of the MAP rule
is described by the inequality

P(yelx®)P(x*) = P(ylx))P(x;) forj=12,....J (1.74)

Let us note that channel transition probabilities and a priori probabilities of the input
symbols appear in expression (1.74), as opposed to formula (1.72). Therefore, the MAP
rule in the version shown by (1.74) is much more useful than that described by formula
(1.72).

1.11.3 Maximum Likelihood Decision Rule

If the channel input symbols are equiprobable, the MAP rule expressed by formula (1.74)
can be further simplified and it takes the form

P(ylx™) = P(yklx;) (1.75)

Sometimes the decision rule given by (1.75) is applied even though the channel input
symbol probabilities are unknown to the receiver. In that case (1.75) is a suboptimum
procedure and it is called the Maximum Likelihood (ML) decision rule. This rule is applied
in data detection in many receivers. It is often used as a base of decoding algorithms for
channel code decoding.

Let us consider a simple example of the ML decision rule setting.

Example 1.11.1 Let us consider a discrete memoryless channel model with input and
output symbol alphabets of equal size. Let J = K = 3. Let the channel transition matrix
for the considered channel have the form

07 02 0.1
P=1|03 0.6 01
0.1 04 05

As we remember, the columns of the channel transition matrix P =[P (yc|x;)] (j =
1,....J, k=1,..., K) are associated with the same output symbol, whereas the rows
are associated with the same input symbol. Therefore, applying decision rule (1.75) in
which a given output symbol has to be assigned the input symbol for which the transition
probability is maximum, we obtain

d(y1) =x1, d(y2) =x2, d(y3) =x3
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From first glance it seems that both MAP and ML rules are quite abstract from the
implementation point of view; however, as we will learn, application of the ML decision
rule leads to highly practical solutions.

So far we have considered a discrete memoryless channel model. Let us focus for a
moment on one particular case, i.e. on the channel model with binary input and continuous
output. This channel model additionally supplemented with the quantizer is shown in
Figure 1.19a. Let y, be the unquantized channel output at the nth timing instant and let
the input symbol x, = +A. Since the channel output can take continuous values, the ML
decision rule changes its form to

POnlxn = A) s p(ynlxn = —A) (1.76)

As we see, conditional probabilities have been replaced by appropriate conditional prob-
ability density functions. The receiver selects the value, +A or —A, for which the
conditional probability density function is higher. The decision rule will obviously remain
the same if both sides of (1.76) are replaced by their natural logarithms, i.e.

lnp(yn|xn =A) § lnp(ynlxn =—-A) (177)
or, equivalently, if we calculate the expression

A(yp) zlnw (1.78)

p(yn |xn = _A)

and check if it is higher or lower than zero. The function A(y,) given by (1.78) is called
the Log-Likelihood Ratio (LLR) function and is an alternative tool in performing the ML
decision rule. For common probability density functions the general expression (1.78)
can be significantly simplified. For example, consider the channel model with an additive
Gaussian noise source, which is shown in Figure 1.19a. The conditional probability density
functions of a Gaussian shape are given in Figure 1.19b and are described by the formula

_ 1 (yn - xn)2
P(Ynlxn) = N exp [—T} (1.79)

For this example the LLR function reduces to

exp | — (n — A)?
V2ro 202 2A

Ay, =1 = —y, 1.80
(Yn) =1In 1 [ (yn-i-A)z} 2 (1.80)
exp| ———~
V2o P 202

The reader is asked to perform a simple derivation leading to the right-hand side of (1.80).
The additive noise variance is denoted by o2, As we see, in the particular case of bipolar
transmission® the ML criterion using the LLR function is reduced to checking if y, is
positive or negative.

6 We call that transmission bipolar if data symbols take the form +A.
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Now let us consider a binary symmetric memoryless channel with the error probabil-
ity p < 1/2. Let the channel transmit a block of n subsequent binary symbols. Let us
treat this block as a whole. Thus, we can state that we deal with a discrete memoryless
channel for which the input and output symbols are n-element binary blocks. Let the
input symbol alphabet X' consist of J =2 (k < n) blocks selected from 2" possible
binary combinations, and let the output symbol alphabet ) consist of K = 2" blocks (all
possible n-element binary blocks). During transmission of subsequent bits of the block
X a bit is received in error with the probability p and it is received correctly with the
probability 1 — p. As a result of feeding the symbol x; to the channel input, we receive
a single symbol y; at its output. On the basis of the received symbol y; in the form of
an n-element block, the ML decision rule should ensure the selection of such an input
symbol x* for which condition (1.75) is fulfilled.

In order to find the ML rule for the considered case, let us introduce the idea of the
Hamming distance between two binary blocks of the same length.

Definition 1.11.2 The Hamming distance between binary blocks x; and yy of the same
length, denoted by d(x;, yx), is the number of positions at which both blocks differ from
each other.

Let the Hamming distance between the input block x; and the output block y; be
D =d(x;, yr). Knowing that transmission of binary symbols consitituting an n-element
block is a sequence of statistically independent events, the probability of reception of yj
conditioned on transmission of x; is given by the expression

P(yelxj) = pP(1 = p)"~P (1.81)

In a typical situation the error probability p is lower than 1/2. Thus, the following
sequence of inequalities holds true

(1—p)">pl—p)"'>p*A—p)?>... (1.82)

We conclude from (1.82) that the ML rule is reduced in this case to the selection of block
x* =d(y) from all possible blocks x;, for which the Hamming distance to the received
block yy is the lowest. This situation is symbolically shown in Figure 1.23. The received
block yy is denoted by a cross. Block x5 is the closest one in the Hamming distance sense
to y; among the input symbols x, x2, ..., Xg.

Consider now a particular case of the above example. Let the input symbol alphabet X’
consist of two symbols x; = (000...0) and x, = (111...1) of length n. Let n be an odd
number. Symbol x; can be assigned a message “0” and x;, the message “1”, respectively.
Theoretically, these messages could be represented by O or 1; however, instead of that they
are represented by whole sequences of these symbols of length n. During transmission
of subsequent binary symbols of block x; or x, over the binary symmetric memoryless
channel with the error probability p, the received channel output block y; can take one of
2" possible forms. The ML rule allows selection of the input sequence that is closest to
the received block in the Hamming sense. The decision will be erroneous if the number
of binary errors committed during transmission of an n-element block of “0”s or “1”’s
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.XS

Figure 1.23 Process of finding the sequence x* featuring the minimum Hamming distance from
the received sequence yi

exceeds n/2. Assuming the independence of binary error events, we can easily deduce
that the probability of i errors occurring in the n-element block is p’(1 — p)"~'. The
number of possible combinations of i errors in the block of length n is (;’) Therefore the
probability of an erroneous decision on the transmitted message is given by the formula

n

PEO= Y (’;‘)p"a—p)"—" (1.83)

i=(n+1)/2

Assuming, for example, the value p = 0.01 and calculating the values of the probabil-
ity P(&) for subsequent odd block lengths n we obtain P(£) = 1072, 3 x 1074, 1077,
4x1077,... forn equalto 1,3,5,7, ..., respectively. From the above we conclude that
if we want to achieve a very low decision error probability related to a single message,
we should increase the size of the “0” and “1” blocks appropriately. Since each binary
message is represented by an n-bit block, the efficiency of this representation, and there-
fore of the coding, is R = 1/n. As we see, the price paid for increasing the transmission
quality is the n-fold lowering of its rate. Need this price really be paid?

The answer to this question was given by Claude Shannon, who formulated the famous
theorem on the reliable transmission of messages over unreliable channels. The form of
this theorem for the case of binary symmetric memoryless channel is as follows.

Theorem 1.11.1 Consider a binary symmetric memoryless channel with the error proba-
bility p and capacity C = 1 — H(p). Let € be an arbitrarily small positive constant and let
M = 2"C=9) For a sufficiently large number n, from 2" possible binary blocks of length
n one can select a subset of M blocks in such a way that the probability of erroneous
decoding of the received block will be arbitrarily small.

The proof of this theorem can be found in the original paper by Shannon (1948) and
in more advanced books on information theory. The above-quoted theorem, called the
second Shannon theorem for a binary symmetric memoryless channel, states that in order
to ensure transmission with arbitrarily low probability of error, the coding rate R cannot
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be higher than the channel capacity C. Since the number of allowed transmitted blocks
is M =2"C=%each allowed block of n bits represents in fact one of n(C — &) binary
messages. Therefore the coding rate is equal to

n(C —¢g) .
— =

R = C—c¢ (1.84)
As we see, R < C. The coding rate R gets closer to channel capacity C as ¢ decreases.
Thus, we conclude that the application of repetition coding is not a necessary solution,
because the coding rate is in reality limited by the channel capacity only. However, the
condition for achieving an arbitrarily small error probability is the application of the
appropriately long symbol block.

The theorem states that there exists a set of M blocks that ensure arbitrarily low
probability of erroneous decoding. However, it does not propose how to select them.
In this sense the above theorem is not constructive. However, in the 1990s some good
codes with performance very close to the limit stated by Shanon’s theorem have been
constructed. They will be presented in the next chapter.

In a more general case of the discrete memoryless channel the Shannon theorem has
the following formulation.

Theorem 1.11.2 Consider a memoryless source characterized by the alphabet X and
entropy H(X). Let the source emit a message every Ty seconds. Let there be given a
discrete memoryless channel with capacity C, through which the symbols representing the
messages of source X are sent every T, seconds. Then, if the following inequality holds

HX) _C

il 1.85
T, ~T. (18
there exists a code for which encoded messages of source X can be decoded at the channel
output with an arbitrarily low error probability. However, if

H(X) - C

7. T,

there is no code that ensures reception of the transmitted message sequence with an arbi-
trarily low error probability.

Both theorems establish a basic limit on the rate of reliable message transmission over
unreliable channels.

1.12 Differential Entropy and Average Amount of Information
for Continuous Variables

So far we have concentrated on a description of discrete sources and have considered
reliable transmission over unreliable channels. Now we will analyze the case of contin-
uous variables because it is obvious that many physical communication systems have
continuous character.
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Consider a continuous random variable X that is characterized by the probability density
function py(x). By analogy between discrete and continuous random variables we define
the so-called differential entropy, using the following formula

ee]

h(X)Z/px(X)IOg

—00

d 1.86
px() (1.86)

Theoretically, a continuous random variable has an infinitely high entropy because it can
take an infinite number of values. Let us explain the sense of differential entropy definition
by considering a continuous random variable as the boundary of a discrete random variable
with values in the form x; = kAx (k =0, 1, £2,...). If the incremental value Ax tends
to zero, we can define the entropy of the random variable X using the expression

o0
1
H(X) =1 Axlog ——— 1.87
(X) Jim E px (xx) Ax log ) Ax (1.87)

=—0Q

Let us note that px (x;)Ax is the approximate probability of the value of the random vari-
able X being contained in the interval [xg, x; + Ax]. Expanding formula (1.87) further,
we receive

)Ax—logAx Z px(xk)Ax:|

k=—00

o0
H(X)= 1l 1
(X) = lim LZOO Px(x) log

- / pr(olog s~ Jim, o &) / px(r)dx
=h(X)— Al,iIEO (log Ax) (1.88)

It turns out from formula (1.88) that the entropy of a continuous random variable is indeed
infinitely high, because an infinite value has the second term of this formula if Ax — 0.
However, the entropy H (X) can be expressed as the sum of the continuous term 4 (X) and
the component tending to infinity, which can be treated as a reference term. Let us note
that in particular during derivation of channel capacity the difference of two entropies is
usually calculated and then the reference terms reduce each other. As a result the channel
capacity depends only on differential entropies. From formula (1.88) we also conclude
that the differential entropy 2(X) is essentially the difference between the exact entropy
of the random variable X and the reference term. This is then probably the source of its
name.

As in the case of discrete random variables, we want to find a probability density func-
tion of the random variable X that maximizes the value of the differential entropy 4 (X).
Formally, we search for a probability density function px(x) that maximizes expression
(1.86) for the following constraints:
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1. Function py(x) is a probability density function, therefore

oo

/ px(x)dx =1 (1.89)

—00

2. Variance o2 of the random variable X is finite, i.e.
o0
/ (x — ) px(x)dx = o (1.90)
—0o0

The probability density function that maximizes expression (1.86) will be derived by
applying the following theorem of variation calculus.

Theorem 1.12.1 Let us have the integral

b

1 =/F(x,p)dx (1.91)

a
If we search for parameter p that maximizes (1.91) for the following constraints:

b b b
/(pl(x, p)dx = «, /(pz(x, pdx =y, ..., /(pk(x, p)dx = oy (1.92)

a a

then p can be derived as a solution of the equation

dF (x, 0 0
M—{—klﬂ—}—---—{-kkﬂ:() (1.93)
op ap ap

In our case F(x,p)=—plogp, ¢i(x,p)=p, ¢2(x,p) = (x — u)*p. Therefore,
applying formula (1.93) we receive

] 1 9 5
— (plog—= |+ 21 4+ 22— ((x —w)’p) =0 (1.94)
ap P ap

Deriving p from the above equation, we get
p= e()nl—l)e)»z()f—#)2 (1.95)

Substituting this value in the formulas of constraints (1.89) and (1.90), after short calcula-
tions we find that the probability density function that maximizes the differential entropy
is given by the formula

2
px(x)=\/21_ eXP<—u> (1.96)

o 207
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As we see, the random variable X featuring the maximum differential entropy has a
Gaussian distribution with mean p and variance o2,
Calculate now the maximum value of the differential entropy. Substituting expression

(1.96) in formula (1.86) we obtain

oo

h(X) = / px(x) log [«/ga exp (%ﬂ dx
oo o0
= / px(x)log (\/ 27‘[02) dx + / px(x)(x — u)z%dx
—0o0 —0o0
= Liog (2m0?) + 22252 — Liog (27e0?) (1.97)
2 202 2

The achieved result indicates that the maximum differential entropy calculated for a
Gaussian random variable depends only on the variance and does not depend on the
mean of the random variable.

By analogy between discrete and continuous random variables, we define the mutual
information between continuous random variables X and Y as

oo o0
1(X; Y>=/ /px,yu,y)log PxED) (1.98)
px(x)
—00 —00
One can also prove that this function can be expressed as
I1(X;Y)=h(X)—h(X]|Y) (1.99)
The following property also holds true
I1(X;Y)=1Y;X)=h(Y)—-h(Y|X) (1.100)
with
(e olNee) 1
h(X|Y) = / / px.y (x, y) log dxdy (1.101)
px(x]y)

—00 —00

We will use the above dependencies in the derivation of a band-limited channel capacity.

1.13 Capacity of Band-Limited Channel with Additive White
Gaussian Noise
Consider a zero-mean random signal X (¢#) whose band is limited to B Hz. As it is a

band-limited signal, it can be represented by a sequence of samples collected with the
frequency of 2B Hz. On the basis of this sequence of samples the original random signal
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(No/2)
v(t)
t=k/2B

Channel Filter
X(t Y(t) Y,
(1) . ;< k
-B B f -B B f

Figure 1.24 Scheme of the system with the band-limited channel and additive noise

X (t) can be recovered with a probability of 1. Assume that we analyze the transmission
of the signal X (¢) over the channel limited to B Hz in the time period of 7" seconds.
The number of analyzed samples is then equal to n = 2BT. During transmission through
this channel the signal is disturbed by Additive White Gaussian Noise (AWGN) with the
power density of Ny/2. Figure 1.24 shows a scheme of such a system. Because the signal
on the output of the filter is Y (1) = X (r) + v'(¢), where V() is a result of filtration of
the noise v(¢) by the lowpass filter of bandwidth B Hz, at the output of the sampler at
timing instants 1 = k/2B we receive

Yi = X + Ny (1.102)
In Chapter 3 we will prove that the noise sample Ny is zero-mean and has variance o> =
NoB. Subsequent samples are mutually uncorrelated, and as they are Gaussian they are
also statistically independent. Let statistical independence also be a feature of samples Xy
of the input signal X (). Thus, transmission of signal X () through the channel limited to
B Hz during the period of T seconds can be treated as n = 2B 7T independent transmissions
of samples X through the discrete memoryless channel described by expression (1.102),
often called the discrete time Gaussian memoryless channel. Let us note that all the
variables appearing in formula (1.102) are continuous random variables: Nj is a Gaussian
variable and X; has the probability distribution px(x). A natural assumption is that the
mean power of the input signal is finite, i.e.

EX1=P, k=1,2,....n (1.103)
Let us define the capacity of a discrete memoryless Gaussian channel as

C, = me(lx) {I(Xe; Yo): E[X]l= P} (1.104)
pPx X

where I (Xy; Yi) = h(Yy) — h(Yx|Xk). In order to derive the capacity C; let us first cal-
culate h (Y| Xy):

h(Yi|Xy) = / /px,y(x,y)log

d
Jo PG
o0 o0 1
=/px(x) /Py(ylx)log dy | dx (1.105)
Py (ylx)

—00 oo
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As we remember, the noise sample N, has a Gaussian distribution with zero-mean and
variance 2. Then the probability density function of the channel output sample Y; condi-
tioned on the occurrence of a specific value of the input sample X is Gaussian with the
same variance, but with the mean equal to the value of the sample X;. The conditional
probability density function py(y|x) is therefore described by the formula

Y
exp [—u} (1.106)

202

1
x) = —=
pry o
Using the latter expression in formula (1.105), we obtain

oo o0

h(Yi| X1)= / px(x) / py(y|x)<1og<d_ o)+ )1oge)dy dx

—00

r 1
/px(x)<10g\/27162 L+ 505 ge 2>dx—210g(2nec72) (1.107)

As we see, the conditional differential entropy depends exclusively on the noise variance
and it does not depend on the distribution of the samples X of the input signal. Thus, in
order to maximize the value of mutual information 7 (Xy; Yy) it is necessary to maximize
the entropy of samples Y; of the channel output signal. As we have already proven,
the differential entropy of a continuous random variable achieves its maximum if the
variable is Gaussian. The sample Y, which is the sum of two random variables X; and
Ny, has a probability density function that is a convolution of the Gaussian distribution
of the noise sample N; and the probability distribution of the input signal sample Xj.
Fortunately, if the probability density function of the sample X; is Gaussian, then the
probability density function of the sample Y is also Gaussian, because a convolution of
two Gaussian curves is also Gaussian. Concluding, the differential entropy /(Y}) achieves
its maximum if the random signal X (¢) and its samples are Gaussian. Since the samples
X and Ni are statistically independent, the mean power of their sum is equal to the sum
of mean powers of both components. So on the basis of formula (1.97) for the maximum
differential entropy we have

h(Yy) = llog [2me(P + o)) (1.108)

As a result, the capacity of a time-discrete Gaussian memoryless channel is

C, = llog [2e(P +0%)] — %log (2mea?)

\S}

1 P
— —log <1 + —2) (1.109)
(o2

\S}

So far we have calculated the capacity for a single sample only. Since in the time period
T there are n = 2BT samples, the capacity of the channel band-limited to B Hz and
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disturbed by additive Gaussian noise with the power density Ny/2 can be calculated from

the formula
c nC 2BT 11 1+P
= — = —— - —10 —
7T T 2% =

P
:Bm0+ﬁ5>mm (1.110)

The above calculations allow us to formulate the following theorem.

Theorem 1.13.1 The capacity of the channel band-limited to B Hz, in which the signal is
disturbed by the additive Gaussian noise of the power density equal to No/2, is described
by the formula

P
C =BI 1+ ——) [bit 1.111
0g< +NOB> [bit/s] ( )
where P is the mean power of the transmitted signal.

The above theorem defines an essential limit for the data rate of errorless transmission
in a Gaussian band-limited channel with the input signal of a limited power. Let us
note that in order to approach the limit established by (1.111) as closely as possible, the
transmitted signal should be Gaussian. At first glance this requirement seems to be difficult
to fulfill, however probability distributions of some digital signals are well approximated
by the Gaussian distribution. Figure 1.25a plots the channel capacity per Hz (measured
in bit/s/Hz), versus signal-to-noise ratio (SNR, in dB). We see that the capacity per Hz

(a) (b) Cx 105
o8 e [bit/s] 4
[bit/s/Hz] 9 1
3 L
7
2 L
5
3 1
1 0
0 5 10 15 20 25 30

SNR [dB]

Figure 1.25 Channel capacity plot: (a) per spectrum unit versus the signal-to-noise ratio (SNR);
(b) for constant power of the input signal at P/Ny = 3 x 10° versus bandwidth of the signal
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increases almost linearly for high SNR on the decibel scale. At the assumption of a
constant bandwidth, the capacity increases linearly along with the increase of transmitted
signal power. Assume now that the mean power of the transmitted signal is constant but
the channel bandwidth B changes. Figure 1.25b shows the channel capacity as a function
of the channel bandwidth when P/Ny = 3 x 10°. As we see, the capacity increases along
with the increase of the channel and transmitted signal bandwidth, however the rise has
a shape similar to the curve of 1 —e¢™* type. It turns out that for the constant mean
power of the transmitted signal and the increasing bandwidth the channel capacity tends
to the asymptotic value equal to N% log, e. A channel type in which a very large band
is occupied at the constant value of P/Ny is applied in the so-called spread spectrum
systems. They will be presented in one of the later chapters. In such systems, if the signal
bandwidth is very large, the SNR can be established even below 0dB.

Example 1.13.1 Let us calculate the theoretical capacity of the acoustic telephone channel
with the passband in the range 300—3400 Hz for the following values of SNR: 10, 15, 20, 25,
30, 35dB. Assume that the amplitude channel characteristic is flat in its passband, which
is in fact far from reality. The selected SNR levels are related to the following values of
P/(NyB) on the linear scale: 10, 31.62, 100, 316.23, 1000, 3162.28. Using these values
successively in formula (1.111) for the bandwidth of B = 3100 Hz we receive the following
approximate values of the channel capacity, given in kbit/s: 10.7, 15.6, 20.6, 25.8, 30.9,
36.0. Currently, data transmission methods applied on acoustic telephone channels allow
a 28.8kbit/s data rate to be achieved if highly sophisticated transmission and reception
algorithms are used. Therefore, such a value is close to the limit at the SNR of 30dB. Let
us note that the telephone modems offered on the market, which conform to ITU-T V.90
Recommendation, use in fact the subscriber loop channel in a different manner than a
typical acoustic modem, which uses only the bandwidth of 3100 Hz; therefore, they achieve
higher data rates.

1.14 Implication of AWGN Channel Capacity for Digital
Transmission

Let us analyze formula (1.111) once more. Let us express the mean signal power as a
product of two terms: energy per transmitted bit £, and the binary data rate R, given in
bit/s. Thus, the AWGN channel capacity normalized with respect to the channel bandwidth
is described by the formula

c Ey R
€ g, (H_b_b) (1.112)

If we were able to design an ideal system that achieves the data rate R, equal to the
channel capacity C, then formula (1.112) would evolve to the following

C oo, (14 E2€ (1.113)
— = 1lo _ .
B~ & No B
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Figure 1.26 Bandwidth efficiency diagram

It follows from (1.113) that the energy per bit to noise power density spectrum required
to achieve the channel capacity is

E, 25 —1
—b_ (1.114)
Ny

il

The curve visualizing formula (1.114) in reverse form, i.e. as C/B = f(E}/Ny), is shown
in Figure 1.26. The curve is in fact a capacity boundary and it is related to the ideal sys-
tem, for which R, = C. Let us note that the curve divides the surface determined by the
variables E,/Ny and Rp/B into two fields. In the area above the curve R, > C, so for
combinations of E,/Ny and Rj,/B located in it it is not possible to construct the system
that can achieve sufficiently low probability of error (cf. Shannon’s theorem). However,
for the combinations of E;/Ny and R;/B located below the capacity boundary curve
it is possible to construct a system that, owing to sufficiently strong coding and other
transmission and reception procedures applied in it, can achieve an arbitrarily low error
probability. Thus, all the real systems are characterized by the required Ej/Ny, the data
rate R, and the channel bandwidth B used. These parameters determine a certain oper-
ation point on the surface below the capacity boundary. As we will learn in one of the
future chapters, the error probability is a direct function of Ej;/Ny. We can improve the
system by decreasing the Ej,/Nj required to achieve a given value of the error proba-
bility at a constant R,/B. This operation is equivalent to moving the system operation
point to the left along the horizontal axis. On the other hand, owing to other possible
improvements in the system design, for a given Ej,/Ny and a required error probability
the ratio R,/B can be increased, resulting in spectrum savings or an increase in the data
rate.

Let us consider one more aspect of the capacity boundary curve. Let us determine the
value of E,/Ny required to achieve the data rate equal to the channel capacity if the
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channel bandwidth tends to infinity

lim —* = lim ~——— = lim
B—)ooNO B—o0 F B—o00 ( C>

) —1In2 (1.115)

Thus, in the decibel scale, the asymptotic value of E,/Ny required to achieve the data
rate equal to the channel capacity when the channel bandwidth tends to infinity is equal
to —1.6dB. This value is called the Shannon limit (see Figure 1.26).

1.15 Capacity of a Gaussian Channel with a Given Channel
Characteristic

So far we have considered a band-limited channel that does not introduce any signal
distortions in its passband. Now we will generalize our considerations to the channel
band-limited to B Hz, which has a given transfer function H(f). Assume that the input
signal is Gaussian, it has a power density spectrum P(f) and its power is limited to
P. This means that | g P(f)df = P. The signal is disturbed by additive Gaussian noise
characterized by the power density spectrum G, (f). An example of such a characteristic
is shown in Figure 1.27. In order to determine the channel capacity we divide the channel
band into N frequency intervals of width Af so that B = NAf. If N is sufficiently
high, the width of a single component channel is so small that it has approximately flat
characteristics and we can use (1.111) to derive its capacity. Thus, transmission through
the channel with the transfer function H(f) can be treated as a parallel transmission
through N ideal passband channels of bandwidth Af. Using formula (1.111) we can
obtain the following formula for the capacity of the ith component channel

(1.116)

) N2
Ci = Af log [1 L ASPUDIH )] }

AfGa(fi)

If the channel input signal is characterized by the power density spectrum P(f) then
the power density spectrum at the output of the channel with the transfer function H(f)
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Figure 1.27 Example of the channel transfer function of the channel with bandwidth B Hz
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is given by the expression P(f)|H (f)|>. Therefore, the power of the signal seen at the
output of the ith component channel of bandwidth Af with the center frequency f; is
AfP(f)|H(f)|?>. The capacity of the whole channel approximated by N ideal passband
channels is equal to

v . V|2
C=ZCi=AfZIOg[1+%} (1.117)
i=1 i=1 niJi

If the bandwidth Af of component channels tends to an infinitely low value d f, then the
sum evolves into the integral and discrete frequency values f; change into a continuous
variable f. Finally, we obtain the following formula for the channel capacity

2
czflog[u%}df (1.118)
B n

The capacity of the channel with transfer function H(f) depends both on its char-
acteristics and the power density spectra of the input signal and noise. The properties
of physical channel and noise are often difficult to change; however, it is possible to
change the power density spectrum P(f) of the input signal. Recall that the capacity
calculations require the input signal to be Gaussian. Thus, we would like to determine the
power density spectrum of the input signal for which the channel capacity is maximum,
i.e. the highest number of bits in a time unit that can be transmitted over the channel
H(f). Searching for the best shape of the power density spectrum P (f) that maximizes
capacity (1.118) with the assumption that the signal power is constant and is equal to
P is an optimization problem with a constraint. The solution method is similar to the
method that was applied in derivation of the probability density function for which the
differential entropy is maximized.

Let us apply Theorem 1.12.1 again. This time we deal with maximization of function
of form

P<f>|H<f)|2]
C = F(f, P df = 1 14+ —— " |d 1.119
/ (f, P(F)AS /og[+ o |ar (1.119)
B B
for the constraint
f o(f, PFAS = / P(f)df = P (1.120)
B B

As we remember from Theorem 1.12.1, we find the best P(f) by solving equation (1.93).
In our case this equation has the form

5 P(f)IH(f)IZ]} 5
1 1 A P =0 1.121
aP(f){ogz[ rexra | R el LRl (112D
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In equation (1.121) function P (f) is treated as a variable. The calculation of the derivative
with respect to P(f) leads to the following equation

Gy H(f)?
log, e- () 2~| (D +A1=0 (1.122)
Gn(f)+ PNHIH(HIZ Galf)
Substituting 1/K = —A/log, e we receive
H(f)? 1
HOPE L 1123)
Gu(f)+ P(NIH(HIT K
which after simple calculations leads to the formula
Gn(f)
P(f)=K — (1.124)
|H(HI?
If the additive noise is white, i.e. G,(f) = Ny/2, then
No/2
P(f)=K — (1.125)
|H (I
Substituting (1.124) into the equation describing the constraint |’ g P(f)df = P, we end
up with
Gn
/[K— (f)z]dsz (1.126)
|H(f)I
B
From this formula the following expression arises (see Figure 1.28)
Ga(f)
KB=P+ df (1.127)
g |H (I

Let us note that KB is the area of a rectangle of width B, which is limited by the
horizontal axis and the horizontal straight line located at the height K. The second term
of (1.127) is the area under the curve G,(f)/|H(f)|>. Thus, the input signal power P is
the area denoted in grey color above the mentioned curve, which fills out the area above
the curve to the level K (Figure 1.28).

The analysis of the optimized input signal power density shape, which leads to the
maximum capacity of the channel with a given characteristic H(f) and noise power
density G,(f), leads us to interesting conclusions. It turns out that the channel capacity
is maximized if we assign the highest input signal power to the channel sub-bands with
the lowest attenuation of the input signal. Less power should be placed in those frequency
intervals in which the signal is heavily attenuated. It is against our intuition, because at
first glance it seems that we apparently should amplify the transmitted signal in those
frequency ranges in which the channel attenuates it heavier. The process of shaping of
the input signal power density is called power loading. The rule of power loading reminds
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Figure 1.28 Illustration of the choice of input signal power density maximizing the capacity of
the channel with a given transfer function

us of pouring water into a basin, therefore this rule is often known as the water pouring
principle. Power loading is performed in the frequency domain. However, we will learn
in the next section that it is also possible in the time domain.

Let us note that power loading requires a feedback channel from the receiver back to
the transmitter. In order to assign the input signal power optimally, the receiver has to
derive the channel characteristic (we say that it performs channel estimation) and then
it has to transmit it back to the transmitter via a feedback channel. Thus, it is a case in
which Channel State Information (CSI) is known both to the transmitter and receiver. In
suboptimum systems the channel state information is known only at the receiver and it
can be applied only in the signal detection. In this case power loading is not possible and
the feedback channel is not required.

1.16 Capacity of a Flat Fading Channel

Consider now the capacity of the channel whose model is shown in Figure 1.29. In
our considerations we follow the work of Goldsmith and Varaiya (1997). The channel
input signal is band-limited to B Hz. The channel is modeled by a multiplier that performs
signal amplification by /g (i), where i is the current timing instant. Let us assume that g (i)
(g(i) = 0) is a sample function of the stationary and ergodic random process characterized

gty n(i)
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Figure 1.29 System model with flat fading channel, channel estimation and feedback channel
(dashed line) (Goldsmith and Varaiya 1997 © IEEE 1997)
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by a unit mean and a given probability density function. Additive white Gaussian noise
with the power density Ny/2 is added to the signal that is modified by the channel
coefficient \/g(i). The time varying coefficient v/g (i) models a situation often appearing
on radio channels, in which the received signal level is varying in time and the whole
signal spectrum is basically attenuated in the same way. We say that it is a flat fading
channel and the transmitted signal is the subject of flat fading.” At the receiver, the input
filter limits the bandwidth of the received signal to B Hz, the channel estimator determines
the current value of the channel coefficient g(i), and the decoder decodes the received
codeword. The dashed line in Figure 1.29 denotes the feedback channel from the receiver
to the transmitter, which allows for selection of the appropriate transmitted power level
and the particular coding scheme. Let us denote the mean power of the transmitted signal
as P. Thus, the SNR at the output of the receive filter is

y (i) = Pg(i)/(NoB) (1.128)

At the ith moment the channel is practically flat with the bandwidth limited to B Hz. In
this case its capacity is given by formula (1.111), i.e. for a given value of y it is equal to

C, = Blog(l +y) (1.129)

Let the probability distribution of the SNR y be pr(y). In practice, it refers to the
process g(i). In this case the channel capacity can be understood as an ensemble average
of the capacity C,, i.e.

CZ/CVPF(V)dV =/Blog(1+y)pr(y)d7/ (1.130)
Y 14

One can show that the capacity defined by formula (1.130) is lower than the capacity of a
flat channel band-limited to B Hz with the SNR equal to the average SNR of P/(NyB).

So far we have presented the formula for the capacity of a flat fading channel when
the input signal has a constant power equal to P. One can state the following problem:
How should we select the transmitted signal power with respect to the current value of
the SNR, y, at the given mean signal power P, in order to maximize the capacity given
by the formula

P
Cc(P) = max/ Blog |:1 + Wy
P(y) P

14

} pr(y)dy (1.131)

The constraint for the choice of the transmitted signal power is its mean power, which is
expressed by the formula

/P(J/)Pr()/)d)/ =P (1.132)
14

7 The channel model is called selective fading if in some parts of the passband substantial attenuation is introduced.
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Let us note that if the ratio y is given by formula (1.128), then the expression P(y)y /P =
P(y)g(i)/(NgB) determines the current value of the SNR. As shown by Goldsmith and
Varaiya (1997), there exists a channel coding scheme that achieves efficiency R < C(P)
with a sufficiently small codeword detection error probability when the mean input signal
power P is applied. In contrast, the probability of erroneous codeword decoding of the
channel code applied in the considered channel with the efficiency R > C(P) is higher
than zero.

Let us find the rule that should govern the selection of the power level P (y) of the chan-
nel input signal depending on parameter y, so that the channel capacity C(P) described
by formula (1.131) for the constraint (1.132) is maximized. For this purpose we apply
once more a similar procedure to that applied in derivation of the optimum input signal
power density spectrum that maximizes the capacity of the channel with transfer function
H(f). As previously, let us apply Theorem 1.12.1. In the current case, the integrated
function of the maximized integral and the integrated function of the constraint are of the
form

P(y)y

F(y, P(y)) = Blog, [1 + ]pr(y)

@y, P(y)) = P(y)pr(v) (1.133)

The optimum value of the applied input power P (y) results from solution of the following
equation

AF(y, P(y)) N dp(y, P(y)) _
aP(y) aP(y)

Calculation of equation (1.134) by applying (1.133) gives the following dependence

(1.134)

X e =0 (1.135)

P
B log,e - ————
pr(y)log, P+ PGy P

The coefficient y is selected from the range in which pr(y) > 0, therefore the equation
from which we derive P(y) has a simpler form

Blog,e - A=0 (1.136)

14
=
P+ P(y)y P

Applying the following substitution

= P (1.137)
=73 log, e '
after simple calculations we achieve the following result
1 1
P|——— for y >y

0 for y <y
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Let us analyze the meaning of (1.138). For y > yy, the transmitted power should increase
with increase of the mean SNR y. However, if this ratio falls below a certain threshold
value yp, we should abandon transmission of the signal. The value of yy results from the
established limit for the mean power (1.132) and is a solution of the equation

1

r 1
fP (— — —) pr(y)dy =P (1.139)
Yo Vv

Yo

In turn, after simple calculations, applying formula (1.138) in expression (1.131) we
obtain the following result

cp) = / Blog, (%) pr(y)dy (1.140)

Yo

For comparison let us consider a situation in which the transmitter applies the knowl-
edge about the channel attenuation in a nonoptimal way, namely it transmits the signal with
a higher power if the channel attenuates the signal more. This means that the transmitter
power is selected according to the rule

Piy) =P (1.141)
y

where o is the mean value of the SNR and constraint (1.132) holds. Thus, the constant
o results from this constraint, which has the form

o 1
Pldy =P ie o= (1.142)
/ T E[1/y]

Y

and the channel capacity is

C(P) = Blog,(1 +0) = Blog, <1 + ) (1.143)

E[1/y]

At the end of this section consider the case in which there is no feedback channel
that could be used to transmit data related to the channel estimated at the receiver to the
transmitter. This time the knowledge about the channel can be used only by the receiver.
The knowledge of the channel coefficient /g (i) allows us to equalize the level of the
received signal, i.e. multiply it by 1/4/g(i). Thus, the received signal power is constant
and equal to P, whereas the instantaneous noise power is BNy/g(i). Therefore, the SNR
is y = Pg(i)/(BNp) and it is the same as in (1.128). We conclude that in this case the
channel capacity is also described by formula (1.130).

Figure 1.30 cited after Goldsmith and Varaiya (1997) presents examples of the capacity
curves, normalized with respect to the channel bandwidth B, as a function of the mean
SNR in a dB scale for the log-normal probability density function of the channel coefficient
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Figure 1.30 Capacity per spectum unit of the channel with log-normal fading (o, = 8 dB): (1)
system with AWGN flat channel, (2) system with the optimum use of the channel state information
at the transmitter and receiver, (3) system with the optimum use of the channel state information
at the receiver only, (4) system with inversion of the power level at the transmitter. Reproduced
by permission of IEEE (Goldsmith and Varaiya 1997 © IEEE 1997)

/g(i) = g. This probability density function is described by the formula

(Ing — mq)2

1
—exp| — forg >0
plg)=1{ V274 ( 204 )

(1.144)
0 forg <0

Knowing the rules of transformation of random variables, on the basis of probability
density function p(g) one can easily receive the probability density function of the variable
¥y = Pq?/(BNy). The normalized capacity of the flat AWGN channel provides a reference
curve in Figure 1.30.

From analysis of the curves shown in Figure 1.30 we can see that, in general, fading
decreases channel capacity because the flat AWGN channel has the highest capacity.
The next channel, as far as quality is concerned, is the one in which optimum power
control is performed at the transmitter and the channel state information is used both
by the transmitter and receiver. The capacity of the channel for which the channel state
information is applied exclusively at the receiver by compensating the channel attenuation
is only slightly lower. Finally, the lowest capacity is achieved when the transmitted signal
power is increased if the channel attenuation increases. Goldsmith and Varaiya (1997)
present similar results for other probability density functions p(g), however the described
tendencies are basically preserved.
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1.17 Capacity of a Multiple-Input Multiple-Output Channel

Multiple-input multiple-output (MIMO) systems are a relatively new invention in commu-
nications. Their particular value, expecially for the development of wireless commnica-
tions, have been proven on the basis of information theory. Let us consider such systems
and show their capacity. In addition to our analysis we will also consider the capacity of
some other system configurations typical for wireless communications.

So far we have analyzed the systems in which a single transmitter sends symbols
representing the source messages and a single receiver transfers them to the message sink.
We call them Single-Input Single-Output (SISO) systems. Let us extend our considerations
onto the systems that have ny transmitters and ny receivers applied to transmit the
messages from a single message source to a single message sink. We will show how the
capacity of such a system with a MIMO channel depends on the number of transmitters
and receivers. Our considerations will lead us to very important conclusions showing a
potentially considerable improvement in capacity as compared with a SISO system. Our
derivations are quoted after Vucetic and Yuan (2003).

Consider the MIMO system shown in Figure 1.31. The messages from the message
source are source encoded and the resulting code symbols are subsequently assigned
to nr transmitters. The assignment scheme depends on the system designer. It can
be a simple demultiplexer that forms the input symbols into ny-element blocks. Each
such element is subsequently emitted in parallel by an appropriate transmitter. Another
possibility is using a code with a given coding rate and generating a certain number
of ny-element blocks that are transmitted through ny transmitters in subsequent timing
instants. Since n7 transmitters are typically distributed in space, such a coding scheme
is known as a Space-Time coding. Signals emitted by np transmitters are received
by ng receivers. On the way from the jth transmitter (j = 1,...,n7) to the ith
receiver (i =1,...,ng) the signal undergoes attenuation, which is symbolized by
the channel gain coefficient 4;;. As we see in Figure 1.31 each composite channel
is characterized by the gain coefficient, so if it is time varying then the channels
are flat fading. Besides channel attenuation, the transmitted signals are the subject
of disturbance by additive Gaussian noise. Denote the block of transmitted signals
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Figure 1.31 General scheme of the MIMO system
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at a given time instant as x and the block of received signals at this time instant as r, i.e.

X1 ri
X2 n

x=| 2. =] (1.145)
Xnp Tng

As we have already learnt, in order to calculate the capacity of such a system we assume
that the input signals have to be Gaussian distributed. Thus, we assume that each element
of vector X is a zero-mean Gaussian variable. The distributions of all the vector elements
are identical and statistically independent of each other. The operation of the whole system
can be described by the following matrix equation

r=Hx+n (1.146)
where n is the ng-long sample noise vector and H is a channel matrix of the form

hir hia oo higy

han hnRZ e hnRVlT
We assume that in general the input signals and noise vectors are complex random vari-
ables. As we will learn in the course of this book, this assumption about complex signal
representation allows us to consider most types of modulations applicable in digital com-
munication systems. We further assume that the elements of the noise vector n are mutually
uncorrelated, i.e.

Ron = E [m"] = 01, (1.148)

where o2 is the noise variance and I, x 1s the identity matrix of size [ng x ng]. The
symbol (.)¥ denotes Hermitian transposition, which is equivalent, as we know, to a
regular vector transposition and complex conjugation of its elements. Similarly, let us
define the autocorrelation matrix of the input signal x as

Ry = E[xx"] (1.149)
The power of the signals transmitted by ny transmitters is then equal to
nr
P=YE [|xj|2] = tr (Ryy) (1.150)
j=1

where tr(.) is a matrix trace, i.e. the sum of the main diagonal matrix entries. If the
channel matrix is unknown at the transmitter, then we assume that the powers of signals
generated by each transmitter are identical, i.e. equal to P/ny. Moreover, we assume that
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the transmitted signals are mutually uncorrelated. Thus
R = —1; (1.151)

Our next assumption is related to the receive side. Namely, we assume that the power
of the signals received by each of the ny receivers is equal to the total power P. This
means that we assume the normalized attenuation in the transmission chain and for each
receiver the following equation holds true

nr
Z|hij|2=nr, i=1,2,...,ng (1.152)
=1
In the case of random channel coefficients the above equation becomes
nr
ZE[}h,,f] —np, i=1,2,... ng (1.153)
j=1

Similarly to the transmit side, the autocorrelation matrix can be determined for the receive
side. For known channel coefficients, this is given by the expression

Ree = E [rr"] = E[(Hx+n) (Hx+n)"]
= HE[xx"|H" 4+ 6%I,, = HRH" + 01, (1.154)

After the above introductory considerations let us derive the general formula for MIMO
channel capacity. Let us assume that the channel matrix H is perfectly known at the
receivers and unknown at the transmitters. Inspecting the form of the channel matrix H
we see that at each receiver there is mutual interaction of all signals generated by all
transmitters. In order to present the nature of MIMO transmission in a more clear way
let us replace equation (1.146), characterizing basic channel behavior by another one in
which mutual interaction of the transmitted signal at the receivers is avoided. In order
to perform this task let us decompose the channel matrix using the procedure known as
Singular Value Decomposition (SVD), according to which the channel matrix H of size
[ng x n7] can be replaced by a product of three matrices

H=UDVH (1.155)

in which D is a non-negative diagonal matrix of size [ng x ny] and U and V are unitary
matrices® of size [ng x ng] and [n7 X nrl, respectively, i.e.
vu'=1, vv'=1Il, ad UU"=1,, VVi=1, (1.156)

In SVD decomposition, the elements of the main diagonal of matrix D are non-negative
square roots of eigenvalues A of the matrix HH", i.e. they are the singular values of

8 Matrix U is called unitary if the product of U with its own Hermitian transpose is a unity matrix.
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matrix H. Thus, the following eigenvalue equation holds
HH7y =1y, y#0 (1.157)

where y is the eigenvector associated with the eigenvalue A. Applying SVD decomposition
(1.155) in the system equation (1.146) we obtain

r=UDV"x+n (1.158)
Let us introduce the following transformations:
¥ =U"r, X =Vix, n'=U"n (1.159)
Therefore multiplying both sides of equation (1.158) on their left side by U we have
v =U"r=U"UDV*x+U"n
=Dx +n' (1.160)
The number of nonzero values /A; in the main diagonal of the matrix D is equal to

the rank r of the matrix HH™ . If the size of the matrix H is, as previously assumed,
[ng X n7], then the rank r is at most equal to

m = min(ng, nr) (1.161)

Thus, the vector equation (1.160) can be equivalently expressed by a set of individual
equations of the form

i’=\/)\_,~xi’+n§, i=1,2,...,r
! =n] i=r+1,r+2,...,0nr (1.162)

This means that the elements r; for i > r do not depend on the transmitted signal, i.e.
the channel coefficients are equal to zero. For i = 1, ..., r the signal r/ depends only on
the single signal x;. Thus, owing to the SVD decomposition we have represented MIMO
transmission in the form of r parallel transmissions over independent subchannels. Each
subchannel is associated with a singular value of the channel matrix H. The power gain
in a given subchannel is equal to the appropriate eigenvalue of the matrix HH". The
above considerations are visualized in Figure 1.32.
Based on the definition of the autocorrelation matrix we have

Ryy = Elr'r?1= E[U¥rr? U1 = UY E[rr" U = U" R U (1.163)
Similarly

Ryy = VIRV and Ryw = U RpU (1.164)
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Figure 1.32 Equivalent form of the MIMO system in the form of parallel transmission over
independent subchannels

From the matrix properties one can conclude that
tr(Ryp) = tr(Ryy), t(Ryy) = r(Rxx), tr(Ryw) = tr(Rpn) (1.165)

where tr(R) denotes a trace of matrix R, i.e. the sum of its main diagonal entries. The
latter equations indicate that vectors r’, X' and n’ have the same mean square value (i.e.
the power) as the vectors r, x and n.

As we have represented the MIMO system in the form of r = rank(H H") parallel
independent transmission systems, their capacities add together, resulting in the joint
capacity

,
P,
czwi;log (1+ 02) (1.166)
1=
_ AP

where P, = g In consequence

- A P - A P
C:WZlog(l—i—nTGz) = W log {]‘[ (Hnﬂﬂ)} (1.167)

i=1 i=1

Let us show now how the channel capacity depends on the channel matrix H. Again,
let m = min(ng, ny). From the equation for eigenvalues and eigenvectors of matrix Q
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we have
Ay, —Q)y=0, y#0 (1.168)
or equivalently
Oy = Ay (1.169)
where
HHY for ng < ny
0= (1.170)
HPH for ng > nr

The eigenvector y is different from zero if det(Al,, — Q) = 0, i.e. if matrix Q is singular.
Thus X is the eigenvalue of matrix Q. As a result

det(Al, — Q) = ]_[ O — i) (1.171)

Let us substitute A in (1.171) by the expression

I’ly‘dz

P

A=—

Thus, equation (1.171) receives the form

2 m 2
nro nro
det | — 1, — = | | — — A

i=

Equivalently

s[5 (e )] - () T+ 2)

l

PANKL a\m m

nro P nro P
— det | I,, =\|- || 14+ ——X; 1.172
( P ) e( " UZQ) ( P ) il( e ) 1

Comparing (1.172) with (1.167) we conclude that the MIMO channel capacity can be
expressed using the formula

or

C = Wlog [det (lm+L2Q>:| (1.173)
nro
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where, as previously

HHY for ng < nr
Q:

HYH for ng > nr

Based on the above formula, let us consider a few particular examples that allow
us to illustrate the practical meaning of MIMO systems with respect to the previously
known system configurations. First consider the simplest case we already know, i.e. the
SISO (Single-Input Single-Output) system. In this system there is a single transmitter
and receiver, i.e. ny = ng = 1. Furthermore, let the channel be normalized, i.e. let the
channel matrix be H = h = 1. As a result, matrix Q =h=1and I, =1 (m = 1). For
this case the channel capacity is given by the well-known formula

P|h|? P
C=Wlogdet| 1+ ——— ) =Wlog|1+ — (1.174)
o o

Let the SNR be 10log,o(P/o?) = 15dB. This means that P/o? = 31.62. Using this
value in formula (1.174) we receive the channel capacity per spectrum unit: C/ W = 5.02
b/s/Hz.

Consider now the case with a single transmitter and multiple receivers, i.e. ny = 1 and
ng > 1. Here, the channel matrix A has the form

H=(hi,ha .. hey)”

and the channel capacity is described by the expression

P
C = Wlog [det (1,1T + —ZHHH>:| (1.175)
nro
However,
nR
H"H =Y "|h|>, nr=1 and I,, =1
i=1
SO

P&
C = Wlog |:det(l + ;;W )} (1.176)

If the channel coefficients are normalized, i.e. |A; |2 =1, then

j2
C = Wlog (1 + —2nR) (1.177)
o

As we see, the channel capacity grows logarithmically with the number of receivers.
We can draw another important conclusion from formula (1.176). This formula indicates
how the signals from component receivers should be combined to create a single output
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Figure 1.33 SIMO system configuration with optimum combining

signal. As the channel from the transmitter to the ith receiver has the channel coefficient
hj, the ith receiver output signal should be weighted by the factor 4} before summing with
other receiver outputs. This scheme is shown in Figure 1.33. Such a system configuration
is called SIMO (Single-Input Multiple-Output) and this type of reception is called receive
diversity. The above-mentioned method of signal combining is called Maximum Ratio
Combining (MRC). It can be proved that it maximizes the SNR at the combiner’s output.
Let us note that due to the fact that each received signal is multiplied by the complex
conjugate of its own channel coefficient, the strong signals (for which channel coefficients
are higher) are amplified, whereas weeker signals are summed with lower weights. There
are a few other receive diversity methods that are suboptimum with respect to the MRC
method but they will not be considered here.

Let us illustrate the achievable capacity with an example, as for the previous system.
Consider the receiver consisting of the ng =4 or 8 component receivers. Let the SNR
be 15dB, as before. Using formula (1.177) we receive C/W = 6.99 bit/s/Hz for ng = 4
and C/W = 7.99 bit/s/Hz for ng = 8, so we observe increases in channel capacity by 37
and 59 percent, respectively.

The next particular case is the so-called transmit diversity, in which there are ny > 1
transmitters and a single receiver (ng = 1). This configuration is often called MISO
(Multiple-Input Single-Output). This time the channel matrix is

H = (hl,hz,...,h,,T)
and

nr
HHT =" ||
j=1

As a result

nr P
C = Wlog | det 1+Z|h,~\2n7
j=1
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P

nr
=Wlog |1+ Z |hj|2 e

j=1

(1.178)

Assuming |hj|2 =1, we have

P
o

As we see, in this case the channel capacity is the same as in the SISO system.

Finally, consider the MIMO (Multiple-Input Multiple-Output) system in which the num-
ber of transmitters and receivers is the same, i.e. n7 = ng = n. In calculating the capacity
let us take into account the idealized case in which the channels are mutually orthogonal,
so there is no interference between different channels. This can be performed practically
using spread spectrum techniques, explained in Chapter 7. Channel orthogonality also
means that the channel matrix H is diagonal. Assuming that Z:’Ll |h; j|2 =ny =n, the
entries of the channel matrix are

Jn fori=j
h,’j =
0 foriz#j
Thus
n
> lhijP=n and HH" =nl, (1.179)

j=1

As a result, the capacity is given by the formula

P
C = Wlog [det (I,, + —2n1,,>}
no

As the matrices for which the determinant is calculated are diagonal, this determinant is

det| 1, + PI 1+ Py
€ n “Hin | = 5
o2 o2
P\" P
C=W10g[<1+—2) }anlog(l—i——z) (1.180)
o o

The most important conclusion from formula (1.180) is that the capacity linearly
depends on the number n of transmiters and receivers. For an SNR of 15dB and

therefore
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ny = ng = 4 or §, respectively, the capacity per herz is equal to 20.08 and 40.16 bit/s/Hz,
respectively. This is an enormous increase in capacity, which amounts to 400% and
800%! As we see, in order to design a system with high capacity it is advised to
apply both transmit and receive diversities and to orthogonalize channels as much as
possible.

The above relatively simple capacity calculations gave a significant impulse in
the design of high capacity radio systems for which, due to spectrum scarsity, the
high spectral efficiency is a crucial feature. However, we have to be aware that the
above example illustrates an idealized case. In practice there is dependence between
particular channels and they are not fully orthogonal. Despite that, the increase in
data rates achievable in MIMO systems is very significant compared with SISO sy-
stems.

In this chapter we have presented only the most important and simplest elements of
information theory and they will allow us to analyze digital communication systems with
deeper understanding. Having in mind the theoretical performance limits related both
to the source coding as well as to transmit and receive strategies, it makes the evalua-
tion of the possible margin that still remains to be reduced through appropriate system
design much easier. For this reason, information theory, although a relatively theoretical
discipline, brings more and more to the development of modern digital communication
systems.

Problems

Problem 1.1 Calculate the entropy of a discrete memoryless source featuring the mes-
sage alphabet X = {ay, as, ..., ag}. The probability of appearance of each message at the
source output is equal to 1/6.

Problem 1.2 Let the message a have the probability of occurrence at the source output
equal to p, i.e., P(a) = p. Draw a plot of amount of information obtained by observing
the message a, as a function of its probability of occurrence p.

Problem 1.3 Consider a discrete memoryless source with the message alphabet X =
{ay, ay, as, a4} and respective probabilities P(a;) = 0.5, P(ay) = 0.25, P(a3) = 0.15,
P(ay) = 0.1. Find the entropy of source X and its second extension.

Problem 1.4 A typical TFT screen of a mobile phone has the size of 240 x 320 pixels.
The color of each pixel is encoded in 18 bits. Assuming that each color of the pixel is
equally probable and all pixels are statistically independent, calculate the entropy of a
single picture shown on this screen.

Problem 1.5 A random signal x(t) of zero mean is sampled every T seconds. The
received samples are converted into digital form by the analog-to-digital converter.
The probability distribution of the signal samples and the characteristics of the
analog-to-digital converter are shown in Figure 1.34. Calculate the entropy of the
samples observed at the output of the converter.
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Figure 1.34 Probability distribution function of the samples of signal x(¢) and the input—output
characteristics of the analog-to-digital converter

Problem 1.6 Solve Problem 1.5 for the signal at the input of the analog-to-digital con-
verter that has the uniform distribution shown in Figure 1.35.

px(x) 4

1/6

v

-4 -3 -2 -1 0 1 2 3 4

Figure 1.35 Probability distribution function of signal samples at the input of the analog-to-digital
converter

Problem 1.7 Consider a discrete memoryless source with an infinite number of messages
{ay, ay, ...} whose distribution is given by the formula

P(a)=ap', i=1.2,...

What is the correct value of a? Calculate the entropy of this source and plot it as a function
of probability p.

Problem 1.8 Consider a second-order Markov source X whose state diagram is shown
in Figure 1.36. Is this source ergodic? Calculate the entropy of this source. Calculate the
stationary probabilities and the entropy of the memoryless source X associated with source
X. Compare the entropies of source X and source X.
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Figure 1.36 State diagram of the second-order Markov source from Problem 1.8

Problem 1.9 A discrete memoryless source has eight messages X = {ay, ay, ..., ag} that
appear on its output with probabilities shown in Table 1.1. Six different mappings denoted
as A, B, ..., F are considered as potential source codes. Check which mappings consitute
a source code and which are prefix codes. Calculate the average code length for each code
and the respective coding efficiency. Which code is the best from the coding efficiency point
of view?

Table 1.1 Mapping of the source messages onto symbol sequences

Message P(a;) A B C D & F
aj 1/4 000 0 0 0 00 0
a 1/4 001 01 10 10 01 100
as 1/8 010 011 110 110 100 101
ay 1/8 011 0111 1110 1110 101 110
as 1/16 100 01111 11110 111100 1100 111
ag 1/16 101 011111 111110 111101 1101 1110
ay 1/16 110 0111111 1111110 111110 1110 1000
ag 1/16 111 01111111 11111110 111111 1111 11110

Problem 1.10 Construct a compact code for the message source from Problem 1.9 using
the Huffman algorithm. Repeat the problem for the Shannon-Fano algorithm.

Problem 1.11 For a given message source, two source codes are called nontrivially
different if they have different distributions of codeword lengths. For the message source
described by Table 1.2 construct two different compact codes using the Huffman algorithm.
Compare their average lengths and coding efficiencies.

Table 1.2 Table of source messages and their probabilities

Message ap a as ay as

Probability 0.4 0.2 0.2 0.1 0.1
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Problem 1.12 Find the coding efficiency of the compact code constructed for the dis-
crete memoryless source X with the alphabet {a,, a, a3} for which P(a;) = 0.5, P(ay) =
0.3 and P(a3) = 0.2. Construct a compact code for the second extension of the source X.
Compare the coding efficiencies of the constructed compact codes.

Problem 1.13  Use the dynamic Huffman coding procedure to encode the text “It is sci-
ence’.

Problem 1.14 Perform dynamic Huffman code decoding of the sequence obtained in
Problem 1.13.

Problem 1.15 Let us treat the binary sequence 0010110000101101100011 as an
output sequence of messages from the memoryless message source X. The probabilities
of particular messages are P(0) =0.1 and P(1) = 0.9, respectively. Encode the
sequence of the first six messages using the arithmetic coding algorithm. Then decode
the received codeword. Calculate the entropy of the memoryless source and compare it
with the average number of source symbols per single message achieved in the encoding
process.

Problem 1.16 Apply the Lempel-Ziv algorithm to encode the sequence of messages from
Problem 1.15. Recall that the Lempel-Ziv algorithm does not require the knowledge of
probabilities of messages generated by the message source. Compare the length of code-
words achieved in both encoding methods. Calculate the number of source symbols per
single message achieved owing to the encoding process.

Problem 1.17 Let us consider the communication link transmitting binary symbols that
consists of a cascade of component segments. This is a typical situation in transmission
systems built of optical fiber links or terrestrial radio links (see Chapter 5). On the output
of each communication segment the received signals are detected and the decided symbols
are subsequently transmitted through the next communication segment. The scheme of such
a link is shown in Figure 1.37. The communication block that detects the received symbols
and transmits them in the regenerated form through the next segment is sometimes called
a regenerative repeater. Let us assume that each segment can be represented by a binary
symmetric memoryless channel model characterized by the error probability p. Assume that
binary symbols fed to the link input are equally probable. What is the error probability on
the output of a cascade connection of: (a) two segments, (b) three segments? Knowing the
error probability at the output of the (n — 1)st segment, derive the error probability at the
output of the nth segment.

a; a
Rx Tx
Regenerative Regenerative
1st segment repeater 2nd segment repeater 3rd segment

Figure 1.37 Communication link consisting of the link segments with regenerative repeaters

Problem 1.18 Using the results of Problem 1.17 write a program, e.g. in Matlab, C,
Pascal or any other computer language you know, that iteratively calculates the probability
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of error on the output of n segments assuming that binary input symbols are equally
probable. Draw the results on a single plot for p = 0.01, 0.001 and 0.0001 as a function
of the number of segments n (let n be in the range between 1 and 10). Draw the conclusions
from the plotted curves.

Problem 1.19 Calculate the capacity of the binary symmetric erasure channel model
shown in Figure 1.17.

Problem 1.20 Calculate the capacity of a cascade connection of (a) two and (b) three
binary symmetric memoryless channels. Each component channel is characterized by the
error probability p. On the same plot draw the channel capacity as a function of p for
one, two and three binary symmetric memoryless channels connected in cascade. Find the
channel capacity for an increasing number n of composite channels if the error probability
for a single channel is p = 0.001.

Problem 1.21 Determine the capacity of the channel shown in Figure 1.38.

Figure 1.38 Model of a 4-ary input—4-ary output memoryless symmetric channel

Problem 1.22 Let us consider the discrete memoryless channel described by the channel
transition matrix P

06 02 0.1 0.1
04 05 0.03 0.07
0.1 0.1 0.1 0.7
0.1 02 05 0.2

Determine the maximum likelihood decision rule for this channel.
Problem 1.23 Let us consider the channel model with bipolar input x, = £A and con-
tinuous output determined by the formula

Yn = Xn + Uy

where v, is a noise sample characterized by the probability density function py(vy).
Assume that both subsequent data input symbols x, and noise samples v, are statistically
independent. The probabilities of input signals are respectively equal to Pr{x, = A} = P
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and Pr{x, = —A} = Py. Show how the MAP decision can be implemented for this case.
Derive the Log-Likelihood Ratio (LLR) in which the input symbol probabilities (a priori
probabilities) are taken into account. Repeat the derivation for the particular case of the
Gaussian probability density function of noise v,. Assume that the noise v, has a zero
mean and variance o°.

Problem 1.24 Calculate the differential entropy for a uniformly distributed random vari-
able with the probability density function shown in Figure 1.35. Calculate the variance of
this random variable and then calculate the differential entropy of the Gaussian random
variable with the same variance. Compare both results.

Problem 1.25 Consider the ideally flat band-limited channel. Let the SNR in this channel
be equal to 10dB. Let the input signal power be uniformly distributed over the whole
channel band and the additive noise be Gaussian and white. What is the value of the
channel bandwidth B required to achieve the channel capacity C equal to 10 kbit/s? Now
let us assume that the SNR is equal to 0 dB. How much wider does the channel bandwidth
have to be in order for the channel to achieve the same capacity? We further assume that
the input signal power is uniformly spread over the whole channel band.

Problem 1.26 Consider the communication system with diversity reception shown in
Figure 1.39. Data symbols d, of the mean power P are transmitted through two channels
characterized by the channel coefficients hy and hy, respectively. The signals transmit-
ted through each channel are disturbed by the additive Gaussian noise samples of zero
mean and variance 012 and 022, respectively. In the receiver the signals x,; (i =1,2)
received from each channel are appropriately weighted by the coefficients a, and a, and
subsequently combined, resulting in the signal y, = ajx, 1 + axx, 2. Calculate the optimal
weighting coefficients a| and a, that ensure maximization of the SNR on the output of the
combiner, assuming that the power of the useful signal on the combiner output remains
constant and equal to P. Calculate the SNR on the combiner output for the optimal weight-
ing coeffcients and the resulting channel capacity. Assume that 012 = 022 = 0% Calculate
the SNR and channel capacity for this case and compare it with formulas (1.176) and
(1.177). Comment on the results.

Receive antennas
Vi,

Diversity

/ receiver
Xn1 A
Input data ay q,
n

vn1 Xpo
, a

SIMO channel

Figure 1.39 System with diversity reception

Problem 1.27 Let us consider the 2 x 2 MIMO system shown in Figure 1.40. In order
to achieve a more reliable transmission as compared with the respective SISO system,
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Transmit antennas Receive antennas
r —» Decision [—»
Space-Time ! Space-Time i
c encoder hyp decoder

Input data 7/
stream ¢ ¢ —C} h ]
[c]+[c c S HiHg | |
2 2 1 r, A
B —
2 ? h { 2 - C
22 » Decision [—»

MIMO channel

Figure 1.40 General block diagram of the MIMO system with the Alamouti ST code

the so-called Alamouti Space-Time (ST) code has been applied. The input symbols are
grouped into blocks of two symbols [cy, c;] and transmitted by two parallel transmitters
in two consecutive time instants in the form of blocks [c1, c2] and [—c}, c]], where ()*
denotes a complex conjugate. Let us denote ry, as the signal sample received at the kth
receiver at the nth moment. Thus, we have

ri1 = hicr + hiper + v
* *
ri2 = hi1(—=c5) + hiac] +vi2

ra1 = harcr + hoxea + vy

Iy = hzl(—Cﬁ) + ]’lzzCT ) (1.181)
Denoting
| m ™ | v | v | e
I Py Y R P F)
we receive
ri = Hic+
r, = Hoe+ 1y (1.182)
where
]’l“ h12 i| |:h21 h22 i|
H, = , H, = (1.183)
1 [h —h7, o —h3

The ST code decoder performs the operation shown in Figure 1.40, where ()" denotes
matrix transposition and conjugation (Hermitian transposition).

1. Prove that matrices H| and H, are orthogonal.

2. Calculate the signals at both decoder outputs.

3. Find the formula for the maximum likelihood criterion for finding decisions ¢ and >
on the basis of the decoder output, assuming that all noise samples are Gaussian and
white.
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4. Assume that E[|hl~j|2] =1 (i, j = 1,2) and the transmitted signal power P is equally
divided between two antennas. Calculate the SNR at the output of the decoder, assuming
the mean noise power at each receiver input is equal to o*, and compare it with the
output of the regular SISO system transmitting data symbols c; over a flat channel with
the channel coefficient h, where E[|h|*] = 1, and additive noise with zero mean and
variance o>.

5. Calculate the capacity of the system with the Alamouti code and compare it with the
capacity of a regular SISO system featuring the same P /c>.
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Channel Coding

Information transfer over channels introducing distortions often requires protection against
errors. Due to distortions and noise, physical channels hardly ever ensure satisfactory
transmission quality. User applications often require binary error rates of the order of
107>-107°, so application of channel coding that protects binary sequences against errors
is necessary. Sometimes the system requirements are much higher. For example, due to
a very high compression rate of the video signal, in Digital Video Broadcasting (DVB)
correct video signal decompression requires Quasi Error-Free (QEF) reception, i.e. the
error rate should be of the order of 107'°~10~!2, Ensuring such quality is certainly a
demanding task. Fortunately, it is achievable owing to the progress in coding theory and
communication technology.

Channel coding applied in a given digital transmission system is strictly associated with
its structure, required transmission quality and limitations resulting from the applications
of the system. In some systems the data sequence needs to be transmitted at a constant
rate and rate fluctuations cannot be tolerated. In some others an allowable transmission
delay is a system limitation. In certain systems a feedback channel from the data receiver
to the transmitter can be established in order to send messages about data blocks reaching
the receiver. This enables repetition of the erroneously received blocks. Such a feedback
channel has a crucial influence on the choice of the channel code. Generally, channel cod-
ing is applied to ensure error detection and/or correction. The latter task is usually much
more costly than the former one. In modern digital transmission systems, in particular
those applying radio channels, both tasks are usually performed.

2.1 Idea of Channel Coding

The essence of channel coding is based on two rules: introduction of information redun-
dancy and averaging the noise influence. Introduction of information redundancy is
realized by attaching an additional symbol sequence to the information block representing
a given message. This sequence is selected in such a way that the transmitted message
could be easily distinguished from other messages that could potentially be transmitted.
Messages are represented by the symbol sequences in such a way that it is very unlikely
that channel perturbations distort so high a number of symbols in the sequence that these
erroneous symbols would destroy the possibility of a unique association of the received

Introduction to Digital Communication Systems Krzysztof Wesotowski
© 2009 John Wiley & Sons, Ltd
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symbol sequence with the transmitted message. The effect of noise averaging, in turn,
is achieved by association of the redundant symbols with a few different information
symbols representing a given message.

Recall for a moment our considerations from Chapter 1. We observed that the longer
the coded sequence, the easier it is to be closer to the asymptotic value of the code rate
determined by the channel capacity C. This statement is also illustrated by the following
argumentation (Clark and Cain 1981).

Consider the problem of binary error events occurring during transmission over a binary
memoryless symmetric channel. In this channel errors are mutually independent. Let the
error probability of a single symbol be p = 0.01. Figure 2.1 presents the plot of probability
Pr{e/n > p} of the event that the ratio of the error number ¢ in an n-element block to
the block length n exceeds a certain threshold value p. For any assumed value of n the
plot has a staircase shape, because the ratio e/n has a discrete nature. Calculation of the
probability Pr{e/n > p} is easy when we use the fact that Pr{e/n > p} = 1 — Pr{e/n < p}.
It is easy to show that

Lpn]
Pr{e/n < p} =) (’Z)pl’u -p) 2.1)

i=0

where |x] denotes the highest natural number not higher than x.

Conclusions resulting from Figure 2.1 are the following. Let the receiver make the
decision upon the whole received binary data block instead of individual decisions upon
successive symbols. In order to achieve acceptably low block error probability, it is
necessary to apply a sufficiently strong coding system in which the decoder is able to

Pr{% >p}
100 T T T T T T T

107"

1072

1073

1074

10-5

. . L--— .

0 005 01 015 02 025 03 035 04
p

1076

Figure 2.1 Probability of the event that the ratio of the number of errors to the block length
exceeds the given threshold p
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correct a certain number of erroneous symbols in a block. Unless the number of errors
exceeds a certain threshold, the decoder is able to interpret the received binary block
correctly. Let us note that the longer the binary block, the more rapid the decrease of
the probability of the event that the relative number of errors e/n exceeds a given value
p. In turn, assuming a certain value of Pr{e/n > p}, e.g. equal to 10~ we observe that
the longer the block, the smaller the relative number of errors that need to be corrected.
Therefore a longer code has to be able to correct a relatively smaller number of errors.

The next problem related to the reliable message transfer with channel coding involves
the choice of the method of error detection and correction. Let us again consider a binary
memoryless channel model in which errors occur independently, with probability p. As
we remember from the previous chapter, probability of the event that in n-element block
a particular sequence of d errors has occurred is equal to p?(1 — p)"~“. According to the
maximum likelihood rule, having received a particular symbol sequence, from possible
code sequences the receiver should select the sequence that exhibits the lowest Hamming
distance to the received sequence. If from 2" possible binary sequences of length n such
2% (k < n) code sequences have been selected that the Hamming distance between any
pair of them is not lower than dy,,, then the decoder operating according to the maximum
likelihood decision rule will make a correct decision unless the Hamming distance between
the received sequence and the transmitted one exceeds the value

dmin —1
_ L : J 2.2)

Let us quote the following example (Clark and Cain 1981).

Example 2.1.1 Let the length of the binary block be n = 5. Then there are 2° = 32 possible
binary sequences of length 5. From these sequences we select 2 = 2% = 4 code sequences.
Thus, each code sequence is related to one of four messages or, equivalently, to a particular
combination of k = 2 binary messages. Let the selected code sequences have the form

00000, 00111, 11100, 11011

Comparing the number of positions in which any pair of sequences differs, we conclude
that the minimum Hamming distance between them is dyi, = 3. Therefore, if the decision
upon the transmitted sequence made by the receiver is to be correct, the received sequence
can differ from the transmitted one in at most t = | (3 — 1)/2] = 1 position. Thus, error
correction relies on the association of the received 5-bit sequence (out of 32 sequences, 28
are incorrect) with the code sequence that is the closest in the Hamming distance sense.
Table 2.1 presents all possible 5-bit sequences in an ordered manner. Let us note that the
leader of each column is a code sequence. Binary sequences that differ from a given code
sequence in one position are placed below this sequence in the same column, therefore
their Hamming distance from the column leader does not exceed t. Under those sequences
there are blocks for which the Hamming distance from the column leader is d = 2. Unfor-
tunately, some of those sequences are equidistant from two different code sequences, e.g.
the sequence 10101 differs in two positions from the code sequence 00111 located in the
same column and the code sequence 11011 in the next column. The sequences located



100 Introduction to Digital Communication Systems

Table 2.1 Assignment of binary sequences to the codewords

Codewords 00000 11100 00111 11011
Correctable sequences 10000 01100 10111 01011
d=1) 01000 10100 01111 10011

00100 11000 00011 11111
00010 11110 00101 11001
00001 11101 00110 11010

Uncorrectable sequences 10001 01101 10110 01010
d=2) 10010 01110 10101 01001

below the line in the table cannot be uniquely associated with any code sequence. We call
them uncorrectable sequences, although the errors contained in them are detectable.

Table 2.1 can be directly applied in the maximum likelihood decoding process. Max-
imum likelihood decoding consists of finding the received sequence in a decoding table
such as Table 2.1 and associating it with the code sequence that is located on top of
the same column. This can be done only for correctable sequences. When locating the
received sequence among uncorrectable sequences the decoder can warn the other part of
the receiver about errors in the received sequence.

Such a table decoding is optimal in the sense of maximum likelihood; however, it
becomes cumbersome when the length of codewords increases and the number of code-
words rises as well. So it is applicable for short codes only.

When we create a decoding table, 2" possible sequences are distributed in 2% columns.
The number of columns is equal to the number of code sequences. The code is able to
correct ¢ errors if the number of N, sequences placed in each column fulfills the following

inequality
n n n
N, >1 e 2.3
=14 () (5) o+ (0) 23

The right-hand side of the inequality represents the number of sequences for which the
Hamming distance from a given code sequence does not exceed ¢. So there is the code
sequence itself, () = n sequences differing from the code sequence in one position, (})
sequences differing in two positions, etc., and finally there are ('t’) sequences differing
from the code sequence in ¢ positions. We conclude that the right-hand side of the above
inequality is the number of sequences located in a given column that are correctable.
One can state the following question: How many binary code sequences of length n
can be found if the code has to have the ability to correct ¢ errors? The answer to this
question is the following. As we know, there are 2" different binary sequences of length
n. Bach column of the decoding table in which there are sequences assigned to a single
codeword contains N, sequences, therefore the number N, of code sequences is given by

N.o=— < 2.4)
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In most cases an inequality holds, which means that there exist sequences for which the
Hamming distance to any code sequence is higher than ¢, so they cannot be uniquely
assigned to any code sequence. The equality is fulfilled if each column of the decoding
table consists only of correctable sequences. A code with this feature is called a perfect
code. As mentioned before, the number of codewords is usually given by the expression
N, = 2k, and then inequality (2.4) achieves the form

1
DS (’7 ) 25)
l
i=0

For perfect codes the sum on the right-hand side is maximum and equal to 2"~%. We say
that in this case the Hamming upper bound is reached.

The number of n-bit code sequences is equal to 2*. This implies that in the coding
process a message block of the length of k bits is mapped onto the code sequence of
length n bits. Therefore we can conclude that n — k redundant bits have been appended
to the original message block. These bits facilitate the differentiation of the code sequences
among each other. Instead of transmitting k£ unprotected bits, the transmitter sends n bits
of the code sequence. The ratio R = k/n is called a code rate. In Example 2.1.1 there
are four 5-bit code sequences, so the code rate is R = 2/5.

2.2 Classification of Codes

Codes can be classified in several ways. Below we present a classification based on
different criteria.

Let us note that a k-bit message block can be mapped onto an n-bit code sequence in
many ways. If the first k bits in the code sequence are the message bits and in the coding
process the next n — k redundant bits are added, then such a code is called a systematic
code. In some cases, in a code sequence there are no message bits in the direct form but
there are bits that are combinations of the message bits only. Such a code is described as
nonsystematic.

So far we have considered codes in which the code symbols are binary. Such codes are
called binary codes. In some applications the codes that apply code symbols belonging to
larger than binary sets are used. Such codes are known as nonbinary. Among nonbinary
codes the most popular ones are Reed-Solomon codes, which find applications in digital
TV systems, CD recording systems and CD players and in many radio systems, including
deep-space communications.

Another method of code classification results from operation of the encoder. From
this point of view, codes can be divided into block and convolutional codes. In the first
case the n-bit code sequence is the outcome of the mapping performed according to the
mathematic rule for creating codewords, based on a single k-bit message block currently
given to the encoder input. Such a mapping can be implemented using a combinatorial
logic circuit only. In such a circuit memory cells do not need to be applied, although they
appear in some specific implementations.

The basic block code parameters are the length of message block, k, and the length of the
codeword, n, which are often given in the form of a pair (n, k), the minimum distance
between codewords dp;, and the code rate R = k/n. An important code parameter is
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also the number of correctable errors 7. Typically the length of the message block ranges
between three and a few hundred symbols whereas the code rate is contained between 1/4
and 7/8. However, due to rapid progress in coding theory and implementation capabilities,
the codeword length can even reach a few tens of thousands of bits (see description of
turbo codes and LDPC codes at the end of this chapter).

Convolutional codes require a sequential logic circuit and, consequently, memory cells
to implement the encoder. Thus, memory cells to implement an encoder are necessary.
The generated n-bit codewords are the result not only of the k-bit message sequence
currently fed to the encoder input but also of the current state of the encoder, which
is determined by the contents of its memory cells. This state depends on the message
blocks previously given to the encoder input. Code sequences can often be interpreted
as a convolution of the encoder impulse response with the input sequence. This explains
the origin of the name of these codes. An encoder impulse response is the response of
the encoder to a single “1” followed by a sequence of zeros. As before, the code rate is
described by the ratio R = k/n. A convolutional code is characterized by the pair (n, k)
and the so-called free distance dfee, Which is the lowest Hamming distance between
any two sequences of the same length received from the encoder. Another characteristic
parameter of a convolutional code is the constraint length L, which is equal to the number
of input symbols used in the generation of the encoder output sequence. Therefore L is
the sum of k (the number of symbols given to the encoder input) and m (the number of
memory cells in the encoder). Typically the values of k and n range from 1 to 8, and the
code rate is, as before, between 1/4 and 7/8. In turn, the number of memory cells in the
encoder is contained between 2 and 60.

Codes are also classified according to their algebraic structure. From this point of view,
the codes are divided into linear and nonlinear. Most codes applied in practice belong
to the first type. In the algebraic sense, linear codes create a vector space. Linear block
codes create an algebraic group with respect to addition. Basic properties of such a group
are as follows: The sum of any two codewords is also a codeword of the same code and
a zero sequence also belongs to the group. The additive operation is defined as summing
two sequences “symbol by symbol”. In each linear vector space there exists a small set
of vectors, so-called basis, i.e. the vectors whose linear combination can synthesize any
space element. In our case such a space element is a codeword belonging to the given code.
The properties of any linear code can be easily analyzed by considering the transmission
of a zero codeword only and observing the properties of the received sequence and the
distances of other codewords to the zero codeword. The distance of codewords to the zero
codeword, which is equal to the number of “1”s contained in them, is called a Hamming
weight.

We can also classify codes with respect to the type of errors that the codes are aiming to
correct. From this point of view the most popular are random error correcting codes. They
are designed by assuming that code symbols are transmitted over a memoryless trans-
mission channel. Recall that errors occurring in such channels are mutually statistically
independent. Another group of codes resulting from the above classification criterion are
burst error correcting codes. The channel model used in their design includes a memory
of the error source (see Chapter 1). We should mention that the codes correcting burst
errors are applied if the error bursts are relatively well defined. In other cases it is much
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more convenient to apply random error correcting codes supported by an interleaver in
the transmitter and a deinterleaver in the receiver (see Chapter 1 and Section 2.10).

Last but not least, we distinguish error correction and error detection codes. This
differentiation results from two basic aims of coding that have already been mentioned.
Error correcting codes are characterized by a relatively high number of redundant symbols
contained in a codeword. As we have already mentioned, their typical code rate is between
1/4 and 7/8. They are able to detect and subsequently correct errors contained in corrupted
codewords. On the contrary, error detection codes only check if errors have occurred in
the received codeword. Since the erroneous sequences are not corrected, the blocks must
be transmitted again. This, in turn, implies the existence of a feedback channel for sending
acknowledgements or repetition requests. In this method, the number of redundant bits is
relatively small compared with the codeword length, so the code rate is very high.

2.3 Hard- and Soft-Decision Decoding

The problem of the so-called hard- and soft-decision decoding is strictly connected with
the kind of signals available on the decoder input, and with the assumed transmission
channel model. In traditional digital transmission systems, in particular those in which
modulation and error protection are treated separately, binary sequences appear on the
demodulator output. The decoder attempting to recover the transmitted codeword and the
message block associated with it has only a binary sequence at its disposal. The decoding
process can only rely on the knowledge of algebraic dependencies applied during the code
construction in the creation of redundant symbols. The decoding process in which only
binary sequences appear on the decoder input is called hard-decision decoding . Thus, we
can assume that the applied channel model has a binary output. In the previous chapter
we have descriptively shown that in the case of binary sequence processing the maximum
likelihood decision rule reduces to finding the codeword that is closest to the received
sequence in the Hamming distance sense. We will show this in a more formal way now.

Assume that we analyze n-element binary sequences that are transmitted over a binary
memoryless channel. As we remember from Chapter 1, the probability of reception of
sequence r under the condition that codeword ¢ has been transmitted is given by the
formula

P(rle) = p”(1 = p)"~" (2.6)
where D is the Hamming distance between codeword ¢ and sequence r. Let us find the
codeword that maximizes this probability. Taking the logarithm of both sides in (2.6)

we obtain

InP(rlc)=DIlnp+ (n — D)In(l — p)

=DInp+nin(l — p) — DIn(1 — p)

=DlIn P
1

+nlin(l — p) (2.7
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The expression whose value we intend to maximize consists of two parts: the first com-
ponent, which is proportional to the Hamming distance D, and the second component,
which is proportional to the codeword length n and for a given n is constant. With the
assumption that p < 0.5, the logarithm of the division p/(1 — p) is negative, therefore
In P(r|c) will be maximal if D is minimal. This conclusion confirms what we already
know — we should select the codeword c that is the closest in the Hamming sense to the
received sequence r.

In practice, the demodulator can produce not only binary decisions but also some
additional signals that enable the decoder to act with enhanced knowledge on the decoded
sequences. The simplest case is the application of a multilevel quantizer instead of the
two-level decision device producing binary signals on the demodulator output. Owing to
this approach we “measure” the signal level using a ruler with a more precise scale. As a
result, the signals and whole signal sequences are more distinguishable from each other. It
turns out that this approach results in a significant improvement in decoding quality. In the
case of an 8-level quantizer, the memoryless channel model that characterizes the whole
chain of the communication system blocks, starting from the channel encoder output and
finishing at the decoder input, looks like that shown in Figure 1.19c. There also exist
other solutions of soft-decision decoding, in which binary signals on the decoder output
are accompanied by additional signals that are a measure of their reliability. Generally, in
modern digital communication systems soft-decision decoding is applied more and more
often.

In hard-decision decoding it was the Hamming distance that was used in selection of
the codeword by the decoder. Now let us show how the soft-decision decoder should
decide upon the transmitted codeword on the basis of signal samples of the received
sequence. Assume that vector r appearing at the decoder input consists of n samples r;
(i =1,...,n) of the received signal. Each sample is the sum of the data symbol d; = +1
representing the ith bit of codeword ¢ and a sample v; of a zero mean Gaussian noise with
variance 2. We also assume that noise samples are mutually statistically independent.
According to the maximum likelihood rule, the decoder searches for such a codeword ¢
that maximizes the conditional probability density function p(r|c;) (j =1,..., 25). Due
to the Gaussian character of the noise samples the conditional probability density function
of vector r is described by the following formula

77! (ri —d)’

1y 1 & 2
= <\/EO.> exp |:—E (ri — dj,i) i| (28)
i=1

where d;; denotes the data symbol assigned to the ith element of the jth codeword c;.
Calculation of the logarithm of (2.8) results in an expression that is equivalent to (2.8)
with respect to selection of the most likelihood codeword ¢

1 |- )
Inp(ric;) =nln — — — ri —dj; (2.9)
) =nin A= =)
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Maximization of In p(r|c;) results in finding such a codeword ¢ for which the sum
S;=Yr(ri— dj,i)z is minimized. This means selecting the codeword ¢ for which
the representation using symbols d;; (i =1,...,n) is the closest to the received sample
vector r in the Euclidean distance sense. A suboptimal solution is the search for the code-
word using basically the same method if the received sample is quantized in the quantizer
featuring a small number of quantization levels, e.g. eight. Another simplification that
could have an important practical meaning is a replacement of the squared differences
r; —d;; by their modules. Then the criterion for selection of the codeword ¢ reduces to
searching for such a data sequence associated with the codeword that minimizes the sum

n

;=00 —d; (2.10)

i=1

where Q(r;) is a quantized form the received sample r;.

24 Coding Gain

Coding gain is the concept that has been introduced in order to compare systems with and
without error correction coding. Figure 2.2 presents typical error probability curves as a
function of the ratio Ej;/Ny for both kinds of systems. The scale of the vertical axis is
logarithmic, and the scale of the horizontal axis is expressed in decibels. Ej, is the signal
energy per transmitted bit, whereas Ny/2 is the power spectral density of the additive
white Gaussian noise. As we will show in the next chapter, the ratio E;/Ny expresses
the signal power to noise power ratio per single transmitted bit. As compared with the
system without coding, the system with error correction coding that has to transmit the
user data at a given data rate has to send a higher number of bits in a time unit. This is a
result of appending the message bits with the redundant bits needed for error correction.
Although coding ensures higher robustness against errors, the energy per transmitted bit

A Pe)

with coding

without coding

. | E,/N,
[dB]

Figure 2.2 Explanation of the concept of coding gain
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is lower than in case of transmission without coding. Performance gain that is achieved
as a result of redundant coding is a compromise between these two counteracting factors.
The higher the ratio E,/ Ny in the channel, the higher the performance gain; however, for
small values of E,/Ny we observe a loss in performance instead of gain. Typically both
curves intersect at a certain value of Ej;/Ny. Application of coding below this value is
unreasonable.

Coding gain for a given error probability is the difference between the required value
of Ep/ Ny in the system without coding and the value of E; /Ny for the system with error
correction coding. Depending on the considered level of error rate, the coding gain can
have different values. We can also determine the asymptotic value of the coding gain when
E},/ Ny tends to infinity. Such a value is called an asymptotic coding gain. In the case of
transmission of codewords using bipolar signals (see Chapters 3 and 4) the asymptotic
coding gain for the hard-decision decoding is (Clark and Cain 1981)

G, = 10log[R(t + 1)] (2.11)
whereas for ideal soft-decision decoding it is
G4 = 10log(Rdin) (2.12)

We know from formula (2.2) that dni, > 2f + 1, so the difference G; — G, between
asymptotic coding gains for hard- and soft-decision decoding is around 3 dB. In practice,
replacement of the hard-decision decoding by its soft version results in an improvement of
about 2 dB. Let us stress that it is a significant difference. Lowering of the required value
of E;,/Ny by 2dB is equivalent to a decrease in the transmitted signal power to 63% of
its previous value. This is a significant result not only from the power point of view. For
many systems, in particular for radio systems, lowering of the transmitted power results
in a decrease in the level of distortions induced to other users of the same system and
has a positive influence on the overall system capacity, i.e. the number of users who can
simultaneously operate in the given area.

2.5 Block Codes

Recall from Section 2.2 that for block codes the vector of k message symbols uniquely
determines the n-symbol codeword generated by the encoder. Among many possible block
codes linear block codes have a practical meaning. Let us limit ourselves temporarily to
binary codes. Codewords of a linear block code constitute an algebraic group with respect
to the additive operation. As we have already mentioned, the sum of two codewords is
also a codeword. The zero codeword, being a zero element of the algebraic group, also
belongs to the codeword set. Denote the codewords a and b as vectors

a’ =[aj,a,...,a,] and bT =[by, by, ..., b,] (2.13)
(T denotes vector transposition). Addition of two vectors is defined as

atb=c={[c1,c2...,cnl’, wWhereci=a;®b;, i =1,2,....n (2.14)
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The symbol @ denotes modulo-2 addition. Let us note that for the additive operation
defined in such a way the zero vector is also a codeword, as it is the sum of two identical
codewords.

Consider a simple example of the block code that belongs to the class of the so-called
generalized parity control codes. Let the code (n, k) be systematic, with k = 3 and n = 6.
Let the first three bits be message bits given to the encoder input, and let the three
remaining bits, the parity bits, be the linear combinations of these message bits. Let the
codewords be determined by the expression

al =[a1, a2, a3, (a1 ® @), (a2 ® a3), (a1 D a2 ® a3)] (2.15)
which means that
ag=a,Par, as=a,Paz, ag=a; Pa, P as (2.16)

Consider the addition of two codewords, a and b, both described by expression (2.15).
Their sum is a sequence ¢ of the form

e’ =Te1, ca, €3, ¢4, 5, 6]
= [(a1 @ b1), (ay B ba), ..., (ac D bs)]

where

4 = a®bs=a1®a®b1®by=(a1®b) D (@Db)=c1®2
s = asDbs=a, Daz Db, Dbz = (a2 ®by) ® (a3 Db3) =c2 Dy
6 = ac®be =a1 ®a, Daz; b &by ® b3

(a1 ®b)®(@®b)®(a3®b3) =c1 DD

(2.17)

We see from formula (2.17) that all redundant bits of the sequence ¢ are obtained as a
result of the same operations as in formula (2.15), which describes a codeword of the
code (6, 3). The sequence c is therefore also a codeword.

One of the most important features of a block code is the minimum Hamming distance
dmin between any pair of its codewords. From this point of view, linear codes have a
useful property. Let us note that if the Hamming distance between the codewords a and
b is d(a, b) = d, then the Hamming distance between the codewords a +a and a+ b is
also d. Let a+ b = ¢, so the distance between the codewords a and b is the same as
the distance between the codeword ¢ = a + b and the zero codeword. In consequence,
investigation of the distances between codewords can be limited to checking the distance
of nonzero codewords from the zero codeword. The Hamming distance of the codeword
¢ and the zero codeword is equal to the number of “1”’s contained in that codeword. That
number is called the Hamming weight of the given codeword ¢ and is denoted as w(c).
We will take advantage of this property many times in the analysis of decoders for several
linear codes. The lowest Hamming weight, i.e. the lowest number of “1”’s contained in
any nonzero codeword of a given linear binary code, is equivalent to the minimal distance
dmin of this code.
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2.5.1 Parity Check Matrix

So far we have described the code by defining the equations determining its redundant bits.
One of the basic decoder operations is checking if the received sequence is a codeword.
Knowing the equations that govern the production of redundant bits, the decoder can
locally generate the redundant bits on the basis of the received message bits. If these
bits are the same as the bits received in the redundant bit positions, it is highly probable
that the received sequence is a codeword. As an example, let us take the same code as
previously. Equations defining the redundant bits are determined by formula (2.16). We
can write them in the following equivalent form

ar®a®as =0
adazdas =0 (2.18)
ar®a®az®das=0

Checking if the received sequence r’ = [ry, 12, ..., rg] is a codeword is reduced to check-
ing if equation set (2.18) is fulfilled when the symbols r; of the received sequence replace
codeword symbols a; (i =1,2,...,6) in (2.18). The same operation can also be written
in matrix form

Ha=0 (2.19)
where the form of matrix H results from the equation set (2.18). In our example this is

equal to

11
H=|0 1 (2.20)
11

—_ = O

1
0
0

S = O
- o O

Each row of the matrix reflects a single equation of equation set (2.18). Note that “1”s
in a given row appear in those positions in which they occur in a given equation. Each
equation checks the parity of a certain set of codeword bits, so matrix H is called a
parity check matrix. In turn, each column of the parity check matrix is related to a single
codeword symbol (bit). For a systematic code the first k columns are related to message
bits of a codeword, and the n — k remaining columns are associated with the redundant
bits. The value of the latter bits ensures parity, i.e. the result of modulo-2 addition of
selected message and redundant bits is equal to zero. This is the reason why the redundant
bits are also called parity check bits. Let us note that if the code is systematic, its matrix
H consists of two parts: matrix PkT of size k x (n — k), which is associated with the
message bits, and the unity (identity) matrix I,_; of size (n — k) x (n — k) describing
the positions of the parity check bits. Therefore H can take the form

H =[P 1,] (2.21)

Now let us represent the parity check matrix in the form of the column vectors h; (i =
1,2,...,n) where vector h; is the ith column of matrix H. Thus, matrix H has the
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following form
H =[hy, hy, ..., hg] (2.22)
Then equation (2.19) can take the form

al 6
(hi by, hgl| 5 [ =3 hia; =0 (2.23)
ae i=l

and it can be interpreted in the following way. The parity check matrix is constructed in
such a way that its appropriate columns, which are selected by “1”’s of a given codeword,
result in a zero vector after adding them together. Recall that our considerations on the
Hamming distance between codewords have led us to the conclusion that the minimum
distance dpj, can be determined as the lowest number of “1”’s in a nonzero codeword.
However, this distance can also be determined on the basis of a parity check matrix.
Equation (2.23) is also fulfilled for a codeword featuring the lowest Hamming weight.
For that codeword, the lowest number of summed columns of matrix H results in a zero
vector. That number is simply the minimum distance dp;, of the given code.

Determine the minimum distance for our example code. All columns of matrix H are
different from each other, therefore the sum of any pair of columns is not equal to the
zero vector. Hence, we conclude that the minimum distance is higher than 2. However,
we can find three columns whose sum is a zero vector. For example, the sum of columns
1, 4 and 6 is a zero vector

S O =

1 0 0
0|+ +10]={(0
1 1 0

In general, one can formulate the following theorem.

Theorem 2.5.1 If the minimum Hamming distance for a linear block code is equal to dp;y,
then there exists at least one subset of dyin columns of parity check matrix H whose sum
is the zero vector. Moreover, there does not exist any subset of dmin — 1 or fewer columns
of matrix H whose sum is equal to the zero vector.

If the columns of matrix H are treated as vectors, one can state that for the code of
minimum distance dp,, all the subsets of dpj, — 1 columns have to be linearly indepen-
dent.!

Denote now the parity check matrix H using the vectors pl.T (i =1,....,(n— k))
describing its respective rows, i.e.

H=| : (2.24)
p;—k

I'Recall that the vectors belonging to a certain set are linearly independent when their weighted sum is equal to
zero if and only if all the weighting coefficients are equal to zero.
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Each product pl.Ta represents a single parity check equation. Equivalently, parity is also
checked if the parity check equations are added side by side, e.g. (p/ +pj)a=0 (i, j =
L...,(n— k)) is also a parity check equation. Therefore we conclude that based on
matrix H one can build another equivalent form of a parity check matrix by creating
linear combinations of the rows of the original matrix H. The necessary condition is that
the newly created parity check matrix has to apply a certain form of all parity check
equations p/a=0 (i = 1,..., (n — k)). Linear combinations of the parity check matrix
rows are applied in some block code decoding algorithms.

2.5.2 Generator Matrix

Previously we have determined a code by giving the equations for parity check bits
or, equivalently, the parity check matrix. Another way to describe a code is proposing
the construction of its generator matrix. The following subsection is devoted to this
issue.

As we remember, the sum of any two codewords of a linear code is also a codeword
of this code. Applying this rule repeatedly, we conclude that any combination of the
codewords of a linear code is also a codeword of this code. Because the message symbols
are selected independently, we can determine the codewords that result from the message
block, which consist of a “1” in one of its k positions and zeros in the remaining positions.
In this way we obtain the set of k codewords that, through the linear combination thereof,
can be applied to synthesize a codeword determined by any k-bit message sequence of
the systematic code. The k codewords found in this way constitute a basis of the code
vector space. One can imagine these codewords as k unit vectors in k-dimensional space,
which can be used in the creation of any vector in this space. Let us mention that the
selected basis is not the only one possible, as with a vector description in a given space
that can be done in several coordination systems.

As an example, let us consider the systematic code (7,4) for which the parity bit
equations are

as =a) D az D ay

as =a) ®ay Day (2.25)

a7 =a; Da; D a;z

One can easily determine four codewords of this code that have a single “1” in each
subsequent message position. The codewords are

¢l =1[1000111]
¢l =10100011]
¢ =[0010101] (2.26)
¢l =1[0001110]
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Let us write them in the compact matrix form as

ol 1 00 0 1 1 1
o 01 0 0 0 1 1
G = = (2.27)
ol 0 01 0 1 01
¢ 00 0 1 1 10

The above matrix is called the generator matrix for the code (7, 4). As the matrix rows
are the codewords creating the basis of the code vector space, a linear combination of
any rows of this matrix can create any codeword of the code characterized by this matrix.
Denoting the k-bit message block by the vector m = [my, ma, ..., m;]T, we receive the
following formula for the codeword assigned to the given message block

=3 "mef =m’G (2.28)

Note yet another interesting property. Each row of the generator matrix is a codeword,
so according to formula (2.19) multiplication of such a codeword by the parity check
matrix results in the zero vector. Performing this operation jointly for all rows of matrix
G, we receive the following dependence

HG" = [0lixn—k) (2.29)

where [O]xxn—k) 1S a zero matrix of k£ columns and n — k rows. One can also discover
the next dependence between those two matrices. For a systematic code the parity check
matrix can have the form (2.21), and the generator matrix of that code has the form
G = [I; | O], so knowing that expression (2.29) holds, we obtain

[P} | L] [ Q’kr ] =Pl + 0" =[0I (2.30)

which is true only if Q = P;. Therefore the generator matrix of the systematic code (n, k)
has the form

G = [k | Pl (2.31)

As we have mentioned, for a given code more than one generator matrix can be constructed
by the appropriate choice of a linear combination of the rows of matrix G derived for
a systematic code. Other matrices of the same code (which determine the same set of
codewords) do not have the form (2.31), therefore we say that they do not have a canonical
form. However, a characteristic feature of such matrices is that message bits, if appearing
directly, are located in those positions for which the columns of the generation matrix
contain a single “1” supplemented by zero symbols.

Example 2.5.1 Consider the code (7,4) created on the basis of the original systematic
code determined by parity check equations (2.25), through their modifications aiming at
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placing the message bits in positions 1,2, 6 and 7. Therefore independent bits are a,, a;,
ag and a;, whereas the parity bits are as, as and as. Parity equations for az and ay are
received by adding a; @ a to both sides of the second and third equation. The parity
equation for as is received on the basis of equations (2.25) by adding the second and third
equations side by side and substituting the result in the first equation. We finally have

ay;=a Da) Pay
as =ay D a ® ag
as =ay ® as @ ay

The appropriate forms of parity check matrix H' and matrix G’ result from the above
equations. They are equal to, respectively

H = (2.32)

O = =
oo~
oo
— oo
=)
—_0 =

Q

|
co o~
oo —~o
—_O = =
O = = =
—_—— O =
o— oo
==

Indeed, the columns of matrix G’ of numbers 1, 2, 6 and 7 have a single “1”, therefore
they reflect the message bit positions in a codeword. Another important fact is that if we
generate all codewords on the basis of matrix G described by formula (2.27) and matrix
G’ given by (2.32), then we discover that both codeword sets are identical; however, in
both cases a given codeword is assigned to two different message blocks.

2.5.3 Syndrome

During transmission of codewords through a communication channel errors occur in them.
Applying a binary channel model (not necessarily symmetric and memoryless), we can
assume that as a result of arising errors codeword ¢ is turned into sequence r, where
r = ¢ +e. As previously, summation of the two vectors is a modulo-2 addition of their
appropriate components. Vector e is the so-called error vector, containing zeros in those
positions in which errors did not occur and “1”s in those in which errors appeared.
Analyzing the decoding table for a simple code (5,2) shown in Table 2.1 we see that
its first column associated with the zero codeword contains in fact the error vectors. A
part of this column contains correctable errors. As we have mentioned, application of the
decoding table in the decoding process is feasible only for short and simple codes. For that
reason, for longer codes it is necessary to apply other decoding methods. In many cases
the first step in the decoding process is checking if the received sequence is a codeword.
If the check result is positive, then the decoding process is finished and the message bits
are extracted from the received sequence. If the check result is negative, then steps have
to be undertaken to find the erroneous positions in the received sequence, followed by
their correction (when an error correction code is applied) or only followed by signaling
the error event (when the error detection code is used). In the simplest case, in order to
verify if the received sequence is a codeword, the parity check equations are applied. In
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matrix form this operation can be described as
s = Hr (2.33)

The result of this operation, realized by multiplication of the received sequence by the
parity check matrix or performed in another equivalent way, is called a syndrome. The
syndrome s is a vector of length n — k. Let us note that because the equality He =0
holds, the following property is also true

s=H(c+e)=0+ He=He (2.34)

As we see, the syndrome is exclusively determined by the error vector and does not
depend on the transmitted codeword. Because the syndrome vector has n — k elements,
there are 2" ¥ different binary syndrome forms. The syndrome is a zero vector if the
error vector e is a zero vector or any nonzero codeword. In the first case it means that the
correct codeword has been received. In the second case the syndrome indicates reception
of the codeword; however, the decoder does not know that it is not the same codeword
that has been transmitted. The error correction code should be constructed in such a way
that the latter case has a very low probability of occurrence. As we have mentioned,
there are 2"~ different syndromes; however, at the same time there are 2" different n-bit
error sequences. Therefore it follows from equation (2.34) that the same syndrome is
related to many different error sequences. A correctly operating decoder is constructed
in such a way that, among all possible error vectors e resulting in the same syndrome,
it selects the most probable one. Because in a typical situation the error probability of a
single bit is lower than 1/2, for application of a binary memoryless symmetric channel
the most probable error sequence among those resulting in the same syndrome is the
one that contains the lowest number of “1”s, i.e. the number of error events within the
n-bit block is the smallest one. Finding that error sequence on the basis of the previously
calculated syndrome is the main task of the decoder. After the error sequence has been
determined, correction of the received sequence r follows. This consists of addition of
the estimated error sequence € to the received sequence r. Such an operation is described
by the expression

C=r+e=c+(e+e (2.35)

If the correct error sequence has been determined on the basis of the syndrome, the final
decision of the decoder is correct.

2.5.4 Hamming Codes

Let us illustrate the application of the parity check and generator matrices by introducing
Hamming codes. One can state the following question: What should the length n of the
codewords be for the given number of parity bits p = n — k so that the minimum distance
of the code is dpyin = 3?

In order to guarantee dpi, = 3, all column pairs of the parity check matrix of such a
code should be linearly independent, so they have to be different from each other and
from the zero vector. For p parity bits there exist 2 — 1 such columns, so n = 27 — 1.
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In general, we receive a code of parameters (27 — 1,27 — 1 — p). Examples of pairs
(n, k) fulfilling this condition are: (7,4), (15, 11), (31, 26), etc. If dpnin = 3, then the
error correction capability of such a code is equal to a single error (+ = 1). Analyzing
condition (2.5) on the Hamming upper bound for the given parameters, we see that these
numbers fulfill the equality

1
k=30 (:‘) —14n (2.36)

i=0

The codes with parameters (n, k) = (27 — 1,27 — 1 — p) that feature a single error cor-
rection capability are called Hamming codes. They conform to condition (2.36) therefore
they are perfect codes. Parity equations result from the above-mentioned parity check
matrix, which consists of all nonzero columns of length p = n — k. By approriate order-
ing of the columns a systematic code is received. For n = 7 and k = 4, matrix H has the
form

I 1.0 1 0 O
H=|1 1 0 1 0 1 O (2.37)
1 0 1.1 0 0 1

and generation matrix G is given by formula (2.27). Therefore, the exemplary code applied
before in the description of the generator matrix construction was a Hamming code.

The Hamming code (7,4) is often applied as an example in handbooks on digital
communications and coding theory. Hamming codes of higher length n are applied in
some wireless communication systems.

2.5.5 The Iterated Code

Below we present another simple code that is applicable when data can be ordered in the
form of a table. A good example is the transmission of a block of ASCII characters. Let
each character be represented by a 7-bit block. Each block is appended by a parity bit that
checks the parity of all seven bits. In this way a row of the data matrix is completed. Parity
is also checked in each column of this matrix, so the block of data rows is supplemented
with an additional row, often called the Frame Control Check(FCC). Note that the last
bit of the FCC block checks the parity of the parity bit column. The configuration of such
a frame, with the application of parity bits in each row and the FCC block, can have the
following form

ar - a7 pi1
a2,1 e a2,7 p2
an, 1 e an,7 Pn
q1 o q7 qs
A message block is a bit sequence ; ; (i =1,...,n, j =1,...,7). Bit p; is a modulo-2

sum of all bits of the ith row, whereas bit ¢; is a modulo-2 sum of the bits located in the
Jjth position in all rows. The code constructed in this way is able to identify the position of
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a single error in the table. The decoder calculates the parity bit in each row and modulo-2
accumulates the values of each row. In this way the FCC block is calculated. The error
location is determined by the row and column coordinates, for which inconsistencies of
the calculated and received parity bits occur. As the code is able to correct a single
error, its minimum distance is at least equal to 3. Unfortunately, this code is not able
to correct two errors, which is illustrated in Figure 2.3. In the figure a shadowed square
denotes the position in which the received and calculated parity bits differ. A single error
is identified on the basis of row and column coordinates (Figure 2.3a). Two errors in the
same column appear as the inconsistency of two row bits, however the column parity bit
in FCC remains unchanged, so it is not possible to identify in which column the errors
have occurred (Figure 2.3b). The situation is similar when both errors appear in the same
row (Figure 2.3c). Finally, if two errors are located in different columns and rows, their
identification is not possible either because there are two possible error locations, resulting
in the same parity check bit inconsistency. It can be shown that the minimum distance of
the considered code is dy, = 4.

(a) (b)

H’ _____________ ] I-If_'_'_'_'_'_'_I:I
E E :.5::::::: ]
:

(© (d)

Figure 2.3 Ilustration of possible error cases in the iterative codeword: (a) a single error, (b) a
double error in the same column, (c) a double error in the same row, (d) a double error in different
rows and columns (two different error pairs giving the same parity check results are denoted by
numbers 1 and 2) (Goldsmith and Varaiya (1997)) © 1997 IEEE

2.5.6 Polynomial Codes

The mathematical apparatus applied so far in code description has been limited to vec-
tors and matrices and modulo-2 operations. From the implementation point of view,
polynomial code representation is a very convenient way of code description. Block codes
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defined in the polynomial domain are called polynomial codes. Application of polynomial
calculus allows many codes to be synthesized and the decoding of these codes can be
described in a very clear way.

Let the codeword be given in vector form as

¢ =lco,cry..n, il (2.38)
Equivalently, it can be represented by a polynomial
c(x) =co+crx+ -+ cpgx"! (2.39)

Polynomial c¢(x) is called a code polynomial .

Thus, the code (n, k) can be determined not only by a list of codewords but also by a full
set of code polynomials of degree not higher than n — 1. In the case of polynomial codes,
the code polynomials have a special property. There exists a certain polynomial g(x) called
a generator polynomial, which is a common factor of all code polynomials creating the
given code. Applying polynomial operations, we can efficiently describe operations of
both encoder and decoder. The characteristic feature of the polynomial description is that
for binary codes the polynomial coefficients belong to the two-element set {0, 1} whereas
for nonbinary codes the polynomial coefficients belong to the appropriately selected and
finite set of non-negative integers. In general, they belong to a certain finite field. Let us
recall the definition of a finite field.

2.5.6.1 Finite Field

Definition 2.5.1 A finite field (Galois Field) G F (q) is a finite set of q elements for which
a set of arithmetic rules described by the following properties are defined:

1. Two operations (additive and multiplicative) are defined in the field.

2. The result of adding or multiplying two elements belonging to the finite field is an
element of the same field.

3. The field contains an additive identity zero element and a multiplicative identity unit
element, for which the following expressions hold

/\a+0=a /\ l-a=a
a a

4. For each field element there exists an additive inverse element, i.e.

/\ \/ a+(—a)=0
a (—a)
and for all nonzero field elements there exists a multiplicative inverse element, i.e.

/\\/a-a”:l

a#0 g—1
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5. In the set of field elements the associative, commutative and distributive properties
apply. This means that if a, b and c are the field elements then

a+b+c)=(@+b)+c albc)=(ab)c
a+b=b+a ab = ba
a(b+c) =ab+ bc

Finite fields exist only if the number of their elements is a prime number or is a power
of a prime number. In the first case we talk about a prime field and in the second one
about an extension field. For each prime number g there exists exactly one finite field.
The elements of this prime field denoted as G F(g) are integers in the range O to ¢ — 1.
Addition and multiplication are defined as modulo-¢ addition and multiplication. In turn,
the elements of the extension field whose number g = p™ is a power of a prime number p
are all possible polynomials of degree not higher than m — 1. The polynomial coefficients
belong to the prime field G F(p). Additive and multiplicative operations in the extension
field are defined as addition and multiplication of polynomials in the usual sense, recalling
that the polynomial coefficients belong to G F'(p) and addition and multiplication of these
coefficients are performed according to the rules defined for that field. The result of each
operation is the subject of reduction modulo the specially selected polynomial p(x) of
degree m with the coefficients belonging to the field G F(p). The polynomial p(x) is an
irreducible polynomial , i.e. it cannot be presented in the form of a product of lower degree
polynomials with coefficients belonging to the field G F'(p). In the set of polynomials the
irreducible polynomials are analogous to the prime numbers in the set of integers. These
polynomials are collected in mathematical tables and play a role not only in the description
of the polynomial codes but also in the generation of pseudorandom numbers and other
operations such as scrambling (randomization of a binary sequence).

2.5.6.2 Examples of Operations over Finite Fields

Now we will illustrate basic additive and multiplicative operations for finite prime and
extension fields. Assume G F(7) is a prime field and consists of the digits 0, 1, ..., 6.
The additive and multiplicative operations over this field are summarized in the tables
below.

+

NN AW = O

NN R W= OO
SOk W ==
—_— O N LBk
D= O NN A W|W
W= O Wn KB
B WO = O W
DN W= O
NN AW~ O
[=NeNeoNoloRol-) =]
AN R WN = O
N W=D OoON
A=W O|W
W AN W —= K~ O|s
N A ON—= W WnO|Wn
L IS I NV, e Wl No )

The table elements are created according to the rules (¢ + b) mod7 and (ab) mod7,
respectively. Let us present a few typical operations over this field.

345=8mod7 =1
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4—6=4+(-6)=4+1=5
4x4=16mod7 =2

4
g=4><5—1=(4><3)mod7=5

Regular addition operations do not require any particular comment. Subtraction is per-
formed by finding the opposite element to the subtrahent and adding it modulo-g to the
minuend. We proceed similarly in the case of division. First, the inverse element to the
divisor is found and then the result is multiplied modulo-q by the dividend.

Let us illustrate operations over the extension field on the example of Galois field
GF(8) = GF(2% (Clark and Cain 1981). The irreducible polynomial used in this field
is p(x) = 14 x + x3. Note again that operations on the polynomial coefficients are per-
formed over G F(2). The additive operation is then a modulo-2 addition (exclusive-or),
and the multiplicative operation is a modulo-2 multiplication, which is equivalent to the
logical product. One can easily check that subtraction in G F(2) is identical to addition
because the opposite number to the given one is the same number. Let us perform exem-
plary additions and multiplications over G F(8) for the polynomials c;(x) = 1 + x + x>
and c;(x) = = 1 + x%:

(@) +er(x) = (I +x +x) + (1 +x7)
=1eD+1®0x+ (1@ hx*=x
When performing multiplication of polynomials over G F(8), the distributive law with
respect to the modulo- p(x) operation is often applied. According to this law, the remainder
from the division by the polynomial p(x) of the sum of polynomials a(x) and b(x) is
equal to the sum of remainders from the division of each polynomial separately by the
polynomial p(x). Therefore
[e1(x)e2(x)]mod p(x) = [(1 4+ x +x%)(1 +x*)] mod p(x)
= [1 +x+x24+x2+x3 +x4]m0dp(x)
= [1 +x+x0+ x4] mod p(x)

Because x> mod(x® +x + 1) = x + 1 and x* mod(x® + x + 1) = x2 + x, we obtain

[c1(x)ea(x)Imod p(x) = 1+ x + (1 4+ x) + (x +x?)

x+x2

There exists a so-called primitive element in each finite field. It is a nonzero element that,
when raised to successive powers, exhausts all nonzero field elements. Let us consider it
with the example of the prime field G F (7). Inspection of the multiplication table over
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G F(7) indicates that the primitive element in this field is the number 3, because its
subsequent powers in this field are: 31=3,32=2,3=6,3*=4,3=5,3=1=3°
Then multiplication of two elements of this field can be performed by calculation of
the logarithm (i.e. finding the powers of the primitive element in representation of both
multiplied factors), adding these logarithms and performing the anti-logarithmic operation.
The sense of that kind of procedure is more visible in the case of an extension field.

Consider again the Galois field G F(2%) generated by the polynomial p(x) = 1 4+ x +
x3. It turns out that the primitive element in this field is the polynomial x. Denote this
element as «. As a result, we are able to construct the table of successive powers of the
primitive element « supplemented by the zero element. In this way all the elements of
the finite field are represented. This assignment is shown in Table 2.2.

Table 2.2 Table of powers of the primitive
element of the Galois field G F(8) and their
polynomial representation

=
=
8

GF(8) 1

0

R R R ] R R R

—_——o— 00O ~O
O~ — 0o —~0O0
—_———_—0o—00O0

Zeroes and “1”’s in appropriate columns denote the polynomial coefficients of the appro-
priate power of the polynomial x. Multiplication of the polynomials can be particularly
easily performed applying the above table. The operation can rely on representation of the
multipliers by the appropriate powers of the primitive element, modulo-(¢ — 1) adding
these powers and determining the polynomial that is associated with the resulting power
of the primitive element. For example,

(1+x +x)(1 +x?) = &’ = O+ md7
= a4 =X + x2

2.5.7 Codeword Generation for the Polynomial Codes

As we have already mentioned, the polynomial code (n, k) is determined by listing the
full set of code polynomials of degree not higher than n — 1, which have a common factor
called a generator polynomial g(x) of degree n — k. As a result, each code polynomial
can be expressed in the form

c(x) =a(x)g(x) (2.40)
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in which a(x) depends on message bits. Let g(x) = 1 +x 4+ x> and a(x) = ap + a1x +
a>x> 4 a3x3. The resulting code polynomial is then described by the expression

c(x) = (ap + arx + arx*> + a3x>)(1 + x + x%)
= ap + (ap ® a1)x + (a1 ® a2)x? + (ap ® ar ® az)x*

+ (a1 & ag)x4 + a2x5 + a3x6 (2.41)

As we see the derived (7, 4) code is nonsystematic. One can easily transform it into a
systematic code if the following substitutions are performed

by=a3, bo=ay, by=a ®az, bo=aoPar®as (2.42)

Thus, if we use the coefficients by, by, by, b3, calculation of the remaining polynomial
coefficients results in the systematic form of the code polynomial, which is further divisible
by g(x) =1 +x + x>

c(x) = (bo ® by @ b3) + (bo ® by ® by)x + (by ® by @ b3)x>

+ b0x3 + b1x4 + b2x5 + b3x6 (2.43)

Consider now possible realizations of the polynomial code encoder. Let us start from
the simple case of creation of the codeword described by equation (2.40). Let us turn
our attention to the analogy of the polynomial notation for a given sequence with the
Z-transform of this sequence if x = z~! is applied. Polynomials with the given coefficients
are analogous to the Z-transform of the coefficient sequence, so multiplication of two
polynomials results in a new polynomial with coefficients that are the convolution of the
coefficients of the multiplied polynomials.> Thus, the polynomial g(x) = 1 + x + x> can
be treated as a transform of the filter impulse response of the form 1, 1, 0, 1. The sequence
as, ap, ay, ay is fed to the filter input. This implies the encoder implementation shown in
Figure 2.4.

As we have already noticed, this encoder generates a nonsystematic code. Below we
show how to generate codewords of a systematic code. This structure is often applied in
practice. The fact that a code is systematic is particularly advantageous if the code is used
only for error detection. The number of redundant bits is then very low compared with
the message bits, and placing them at the end of the whole block substantially simplifies
the decoder.

As we remember, in polynomial codes, code polynomials are divisible by the generator
polynomial. Thus, we can place message bits in the form of the polynomial coefficients
at the highest powers of variable x and subsequently calculate the remaining coefficients
playing the role of parity bits in such a way that the whole polynomial is divisible by the
generator polynomial g(x).

2 Multiplication of the transforms is equivalent to convolution of the related sequences in the time domain.
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apay ap as
cycle 1 as as as
cycle 2 a a®a3 ag a &
cycle 3 ay a@a, adag a®a; ap as
cycle 4 ap a,@a; a19a, ay®a,®a; a;®az a, as

Figure 2.4 Encoder scheme for the nonsystematic code with additional memory cells storing the
whole codeword

Let us return to the (7, 4) code. Denote message bits as by, by, by, bs. The associated
message polynomial takes the form

b(x) = b3x> + byx? + byx + by (2.44)

In general, for a (n, k) code the polynomial b(x) has a degree at most equal to k — 1. In
order to place the message bits at the highest powers of x in the code polynomial, the
polynomial 5(x) should be multiplied by x"~*. Let a(x) be the remainder of the division
of the polynomial x"¥b(x) by g(x), i.e.

a(x) = [x"*b(x)] mod g(x) (2.45)
This means that the following equation is fulfilled
X" Kb(x) = mx)g(x) + a(x) (2.46)

where m (x) is the result of division of the polynomial x"~*b(x) by g(x). If we add the
remainder polynomial a(x) to both sides of (2.46), the result is

c(x) = x"_kb(x) +a(x) =m(x)g(x) (2.47)

As we see, the resulting polynomial is a systematic code polynomial. Technical imple-
mentation of that kind of encoder is shown in Figure 2.5 and the encoder operates in the
following way.

Assume that at the starting moment all memory cells are set to zero. The message bits
of the codeword are fed to the encoder input during the first k clock cycles. In this phase
of the encoder operation switches P; and P, remain in position “1”. Thus, the message bits
are immediately directed to the encoder output and, owing to the linear feedback register
determined by the form of the generator polynomial g(x), the remainder bits a(x) are
also determined. In the (k 4 1)st cycle the switches change their positions, which results
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Figure 2.5 Scheme of the encoder for the systematic polynomial code (7, 4)

in breaking the feedback connection (switch P;) in the feedback register and sending the
calculated remainder bits through switch P, set in position ‘“2” to the encoder output. Let
us note that feeding the encoder input with zero bits through switch P; starting from the
(k + 1)st cycle results in gradual filling of the encoder register with zeros. Thus after n
cycles the encoder is ready to encode the next message block.

Consider a more general case when the code polynomial coefficients are nonbinary,
e.g. g-ary. The generator polynomial has the form

g(0) = guix" F + guog1 X" 4 x4 g0 (2.48)

however, this time the polynomial coefficients belong to the Galois field GF(g). All
additive and multiplicative operations on the polynomial coefficients are performed in
this field. The circuit calculating the remainder resulting from division of the polynomial
x"7¥b(x) by the generator polynomial g(x) is shown in Figure 2.6. Let us note that the
feedback signal in the circuit is introduced in appropriate places of the shift register with
the weights that are the opposite numbers to the generator polynomial coefficients in
G F(q), while the feedback signal is received as the weighted sum of the contents of the
last register cell and the input symbol b; (i =k —1,...,0) in GF(q). The weighting
coefficient is the inverse number to the highest power coefficient g,_; of the generator
polynomial. We have to stress that each memory cell constituting the shift register stores
a single nonbinary symbol. Thus, more than one binary cell is practically required to store
each of g-ary symbols.

Figure 2.6 Encoder scheme for the nonbinary code with code symbols belonging to the nonbinary
Galois field GF(q)
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2.5.8 Cyclic Codes

For selected values of code length n some polynomial codes display the property of
cyclicity. This property means that if the sequence (co,cy,...,c,—1) is a codeword
of a cyclic code, then the sequence (cy, ¢, ...,Cp—1,¢0) is a codeword of the same
code as well. Applying this property repeatedly, we can observe that the sequence
(Ciy Cigtls s Cna1,C0s--.,Ci—1) 1s also a codeword. Thus, we say that cyclic codes are
the block polynomial codes whose codewords are cyclic permutations of other codewords.

Let us note that in polynomial calculus the cyclic shift of a codeword by one position
to the left can be interpreted as a multiplication of the code polynomial by x followed by
reduction of the resulting polynomial modulo-(x" — 1) [in G F (2) also modulo-(x" + 1)].
Consider a binary codeword of the form

c(x) =y X"V cpax 4+ oix + ¢ (2.49)
Let us perform the above-described operations. We namely have

[xe()Imod(x" + 1) = [cp1 X" + cuenx™ '+ -+ 4 c1x? + cox] mod(x" + 1)
= [(c,,_lx" +epax N eix? + cox) + e (X + l)] mod(x" + 1)

=y X" U e1x? 4 cox + Cpy (2.50)

In deriving (2.50) we took advantage of the already known property, which states that the
remainder of division of a polynomial sum by a given polynomial is equal to the sum of
remainders resulting from separate division of each sum component by that polynomial.
We also use the obvious fact that the remainder of division of the polynomial ¢, (x" + 1)
by (x" + 1) is equal to zero.

In the context of our current considerations the following question arises: What should
be the properties of the generator polynomial for the code to be cyclic? As we know,
each code polynomial is divisible by the generator polynomial. Thus, the code polynomial
describing the codeword that is a cyclic permutation of the given codeword polynomial
also has to be divisible by the generator polynomial. Because the original code polynomial
has the property c(x) = a(x)g(x), where the degree of a(x) is at most k — 1, the following
expression for the cyclic permutation of the codeword has to be true as well

[xc(x)]mod(x" + 1) = a;(x)g(x) (2.51)

It turns out that the code is cyclic if the generator polynomial is a divisor of the polynomial
x" 41, which means that there exists such a polynomial % (x) of degree k that 2 (x)g(x) =
x" 4 1. Considering from that point of view the calculations shown in (2.50) once more,
we have

[xe()]mod(x" + 1) = [xa(x)g(x) + cu—1 (" + D] mod(x" + 1)

— [xa(x)g(x) + co1h(x)g(x) | mod(x" + 1)
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Two cases are possible. If ¢,—; = 0, the degree of the polynomial xc(x) = xa(x)c(x)
is not higher than n — 1, thus the remainder of the division of xc(x) by x" + 1 is the
divident itself, i.e.

[xc(x)]mod(x" + 1) = xc(x) = xa(x)g(x)

In consequence, the new polynomial is also a code polynomial, because it is divisible by
g(x). A similar case occurs if ¢,—; = 1. We namely have

[xc(x)]mod(x" + 1) = [xa(x)g(x) + h(x)g(x)] mod(x" + 1)

= {[xa(x) + h(x)]g(x)} mod(x" + 1)

Since ¢,—1 = 1, the polynomial a(x) has to be of the (k — 1)st degree, so the degree
of the polynomial xa(x) is equal to k. As we remember, the degree of the polynomial
h(x) is also equal to k, so the sum of xa(x) with h(x) has a degree lower than k. As
a result, the degree of the polynomial [xa(x) + h(x)]g(x) is lower than n. In turn, this
imples that

[xc()]mod(x" + 1) = [xa(x) + h(x)]g(x) = a1(x)g(x)

so the received polynomial is also a code polynomial of the code generated by g(x).

Summarizing, cyclic (n, k) codes are the polynomial codes, the codewords of which
are cyclic permutations of other codewords, and the generator polynomial is a divisor of
the polynomial x" + 1.

Although the lengths of cyclic codes, at the assumption of a given generator polynomial
g(x), are precisely determined, we can select the required length of a code by applying one
of the code modifications, i.e. code shortening . This operation is particularly advantageous
when error detection codes have a high code rate. A real code length can be selected on the
basis of the original length 7, setting a certain number of initial message bits permanently
to zero so they do not need to be transmitted.

2.5.9 Parity Check Polynomial

As mentioned above, the generator polynomial of the cyclic code (n, k) has the degree
n — k and it is a divisor of the polynomial x" + 1. This means that the following property
holds true

h(x)gx) =x"+1 (2.52)

By analogy to the generator matrix G and the parity check matrix H, which when multi-
plied by each other result in a zero matrix, the polynomial /(x) is called the parity check
polynomial. Multiplication of the code polynomial c(x) = a(x)g(x) by h(x) results in
the expression

c)h(x) =a(x)g(x)h(x) =ax)x" + 1) = x"alx) + a(x) (2.53)
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Since the polynomial a(x) is of degree at most equal to k — 1, on the basis of
the right-hand side of (2.53) we can conclude that nonzero coefficients in the
polynomial c(x)h(x) can only appear at the components x"+ =1 x"tk=2_ 'y and
XK1 x*k=2 . x9. The remaining coefficents at the polynomial terms x" !, x"~2, ..., xF
have to be equal to zero. Let us illustrate this observation with a simple example.
Denote the product of the polynomials c(x)h(x) as g(x). Consider the Hamming code
(7,4) generated by the polynomial g(x) = x> + x + 1. Each code polynomial can be

represented by the product
c(x) = a(x)g(x) = (azx® + axx® + arx +ap)(x® +x + 1) (2.54)
In turn, the polynomial ¢ (x) becomes
q(x) = c(hx) = (&7 + Da(x)
= a3x10 + a2x9 + a1x8 + a0x7 + +a3x3 + a2x2 + aix + ap (2.55)
Knowing from (2.55) simultaneously that
q(x) = (cex® 4 csx° + - 4 c1x 4+ co) (x* + hax® + hox® + hyx + 1) (2.56)

and calculating those coefficients of ¢ (x) that have to be equal to zero following (2.53),
i.e. gs, g5 and g4, we obtain

q6 = ¢c2 + c3hs + c4hy + cshy +cc =0
qs =c1 +c2h3 +c3hy +c4hy +c5 =0 (2.57)

qs = co+ cths + cohy +c3hy +c4 =0
The parity check polynomial /4 (x) in equation (2.56) has been presented in the form
h(x) = x* + h3x® + hox® + hix + 1 (2.58)

because in (2.53) the coefficients both at the highest and lowest powers are equal to 1. In
the opposite case, h(x) and g(x) would not fulfill (2.52). Let us note that if k = 4, then
bits at the highest powers of the code polynomial c(x), i.e. cg, s, C4, €3, are message bits,
so the first equation in equation block (2.57) allows us to find the first parity bit c,. On the
basis of the second equation, knowing already bit c,, we can recurrently calculate bit c;;
in turn, knowing ¢, and cy, on the basis of the third equation we are able to determine the
last parity bit c¢g. Technical implementation of the parity bit calculations on the basis of
(2.57), i.e. implementation of the cyclic code encoder using the parity check polynomial
h(x), is shown in Figure 2.7.

During the first k& clock cycles switch P; is in position 1, so the message bits are
introduced to the shift register starting from the most meaningful bit. Starting from the
(k + 1)st cycle, switch Py is in position 2. Thus, a feedback loop has been created and



126 Introduction to Digital Communication Systems

Figure 2.7 Implementation of cyclic code encoder using the parity check polynomial A(x): (a)
general case for (7, 4) code, (b) the case for Hamming code (7, 4)

the parity bits can be calculated recurrently. After n cycles switch P; returns to position
1, the calculated parity bits are gradually shifted out of the encoder register and message
bits of the next codeword are simultaneously fed to the encoder input.

Implementation of the cyclic code encoder using the parity check polynomial 7(x)
is more advantageous than that using the generator polynomial g(x) if the code rate
R is lower than 1/2. For this case the whole structure, in particular the number of
memory cells, is lower than if the encoder construction was based on the generator
polynomial.

2.5.10 Polynomial Codes Determined by Roots

As we know, a polynomial code is determined by setting the length n of its codewords and
the generator polynomial g(x) of degree n — k. Each code polynomial is then divisible
by g(x). We also know from the polynomial algebra that polynomials can be factored
into a product of polynomials of the first degree with coefficients belonging to a certain
extension field, e.g.

ax)=(x —ap)(x —ay)...(x —ag_1) (2.59)

The elements «g, oy, .. ., ox— are the roots of the polynomial a(x) and they do not always
belong to the same field as the polynomial coefficients. We know that a polynomial cannot
always be factored into the product of polynomials of the first degree with the coefficients
belonging to the same finite field. In general, if the coefficients of the polynomial a(x)
belong to the field G F'(p), then the roots of this polynomial belong to the extension field
GF(p™).

The idea of an irreducible polynomial is strictly associated with answering the question:
To which field do the polynomial roots belong?

Definition 2.5.2 A polynomial a(x) with the coefficients belonging to a certain finite field
is called an irreducible polynomial in this field if this polynomial cannot be factored as a
product of polynomials of the first degree using the elements of this finite field.

Property 2.5.1 If a(x) is an irreducible polynomial with the coefficients selected from
the finite field G F (p) and « is the root of this polynomial, then a?, oz”z, oz”3, ... are the
roots of this polynomial as well. Moreover, all the roots of this irreducible polynomial can
be found in this manner. Polynomial a(x) is called a minimum function of the root o.
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Example 2.5.2 Let the element a belonging to the finite field G F (8) (see Table 2.2) be the
root of a certain searched polynomial with coefficients from the finite field G F (2). As we
see, in the considered case p = 2 and m = 3. Therefore if a is the root of this polynomial,
then the field elements o, o are also the roots. Higher powers of the element « result
in the already listed roots, e.g. a® = a’a = a, a'® = o’a’a?® = o, because, as it is easy
to check, in the finite field G F (8) the element o’ = o = 1. Therefore following Property
2.5.1 the elements a,a* and o* are all roots of the searched polynomial. In consequence,

the polynomial has the following form
a(x) = (x —a)(x —a?)(x —a’) (2.60)

Since the elements o, o> and o* belong to the finite field GF(8), they are represented
by binary triples according to Table 2.2. Let us stress that the minus signs appearing in
Jormula (2.60) have only a formal meaning, because subtraction in the field GF (2), as
well as subtraction of binary triples in the extension field G F (2°), is equivalent to addition
in the respective fields. Determining the polynomial a(x), we obtain

ax)=(x —a)(x — az)(x — oc4)

:x3—(ot+a2+a4)x2+(a3+a5+a6)x—o{7
=x*+x+1 (2.61)
because
0 0 0 0
a+a’+at*=|1]|+]0]+|1]=]0]=0
0 1 1 0
and
1 1 1 1
el +al=1|+|1]+]|0]= =1
0 1 1 0

In this way we have calculated the minimum function for the root o and we have shown
that the polynomial a(x) = x> 4+ x + 1 is an irreducible polynomial in the field G F(2)
because all its roots belong to the extension field G F (23).

Our considerations of polynomial roots and their properties allow us to define polyno-
mial codes in the following way.

Definition 2.5.3 Polynomials c;(x) (i =1, ...,2%) of degree not higher than n — 1 with
coefficients belonging to the field G F (p) are the code polynomials of a given polynomial
code (n, k) if each code polynomial has the roots By, B2, ..., Br (r < n — k) belonging to
the field GF (p™).
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As we remember, each code polynomial of a given code is divisible by the generator
polynomial. So if the code polynomials have a common subset of the roots 1, B2, ..., B,
then these roots are also the roots of the common factor of all code polynomials, namely
the generator polynomial. Thus, instead of defining the code by declaring its generator
polynomial, we can determine it by listing the common roots of all code polynomials. On
the basis of Property 2.5.1 we conclude that besides the roots defining the code directly,
there exist code polynomial roots that are the appropriate powers of these roots. Finally,
we state the following form of the generator polynomial

g(x) = LCM [myg, (x), mp,(x), ..., mg, (x)] (2.62)

where LCM].] denotes the least common multiple and mg, (x) is a minimum function of
the root ;.
Since Bi, B2, ..., By are the roots of code polynomials, the following equalities hold

c(B) =0, c(B2) =0, ....c(B)=0 (2.63)

Thus, if a certain symbol sequence represented by the polynomial r(x) appears at the
input of the encoder, then making sure if it is a codeword reduces to inspection if the
following equations are fulfilled

r(B) =0, r(f2) =0, ....r() =0 (2.64)

Let us note that in matrix notation, checking the validity of all equations is equivalent
to multiplying the received sequence vector r by the parity check matrix, i.e. checking if
the following matrix equation holds

B B ... B! o 0
,30 ,31 n—1 r 0

L ) =1 . (2.65)
g B B! [ 0

As an example, consider again the (7,4) code that is determined by the generator
polynomial g(x) = x* + x 4 1. At the same time, this code is determined by the common
root  belonging to GF(2%). As we remember, the minimum function of the root « is
just the polynomial g(x) = x* + x + 1, so besides the root «, the elements «? and o* are
also its roots. The parity check matrix has the form

10
H:[oe0 ol o L. a”_l]z 01
00

- o O

1011
1110 (2.66)
0111
so it is analogous to the Hamming code parity check matrix considered previously. Taking

into account other roots originating from the root «, we obtain a matrix in which some
rows are the repeated rows of matrix (2.66). In this way, some parity equations determined
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by (2.66) are checked a few times. We namely have

10 0 1 0 1 17
01 0 1 1 10
. 1 , 1 001 0 1 11
ne
o S o 1 00 1 0 1 1
(@) () (?) o 001 0 1 1 1 (2.67)
4\0 4)! 4)2 4yn—l 01 1 1 0 0 1
()" (@) () (o) L0 01011
01 1 10 0 1
01 0 1 1 1 0]

Closer inspection of matrix (2.67) allows us to note that rows 4 and 7 are identical to
row 1, row 5 is identical to row 3, the second and the ninth rows are equal to each other,
whereas the sixth and the eighth are the sum of the second and the third rows. Thus, it is
sufficient to check the parity equations according to matrix (2.66).

As we see, in the above example we have defined the Hamming code in a different
way compared with the previous definitions. The current definition is based on selecting
the roots of the generator polynomial. In general, the Hamming codes are (2" — 1, 2" —
1 — m) polynomial codes, for which all code polynomials have a root that is the primitive
element of the finite field G F(2™). For example, the next Hamming code following the
(7,4) code has the parameters (n, k) = (15, 11), and the root of all its code polynomials
is the primitive element of the field GF (2*) for which the minimum function mgq (x) =
x* 4 x + 1 is simultaneously the generator polynomial of this code.

2.5.11 Syndrome Polynomial

Recall that a syndrome is the result of multiplication of the parity check matrix by
the received sequence vector. If the syndrome is zero, then the received sequence is
a codeword. In the case of polynomial codes whose attribute is divisibility of a code
polynomial by the generator polynomial, we need to check if this property holds for
the received sequence. One can perform this checking in polynomial calculations by
derivation of the remainder of the division of the received sequence polynomial by the
generator polynomial. If this remainder is equal to zero, then the polynomial representing
the received sequence is a code polynomial. In the opposite case the remainder can be
associated with the most likelihood sequence, or equivalentlywith the most likelihood error
sequence. The polynomial that is the remainder of the division of the received sequence
polynomial r(x) by the generator polynomial g(x) is called a syndrome polynomial and
can be described in the form

s(x) = r(x) mod g(x) (2.68)
Note that because the degree of the generator polynomial g(x) is equal to n — k, the

degree of the syndrome polynomial can be at most n — k — 1, so it has n — k coefficients.
Then there are 2" possible forms of the syndrome polynomial.
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The polynomial describing the received sequence r(x) can be expressed, as in formula
(2.34), as the sum of the code polynomial c(x) generated at the transmitter and the
polynomial e(x), with the coefficients equal to 1 by those powers of x in which errors
occurred. Because ¢(x) mod g(x) = 0, we have

s(x) = [c(x) + e(x)]mod g(x) = c(x) mod g(x) + e(x) mod g(x)
= e(x) mod g(x) (2.69)

We conclude from formula (2.69) that the syndrome polynomial is practically the remain-
der of the division of the error polynomial by the generator polynomial and it does not
depend on the code polynomial.

The technical realization of the syndrome calculation according to formula (2.68) is
relatively easy and is shown in Figure 2.8. The received sequence is given to the input of
the syndrome calculator, starting from the most meaningful position located at the highest
power of the received sequence polynomial r(x). The linear feedback shift register (LFSR)
has a structure directly resulting from the generator polynomial g(x). After n clock cycles
the register memory cells contain the binary coefficients of the syndrome polynomial.

R LN

Figure 2.8 General scheme of the syndrome calculator

s 1155101

Example 2.5.3 Consider the syndrome calculator for the (7,4) code when the genera-
tor polynomial is g(x) = x> + x + 1. Figure 2.9a presents the decoder scheme, whereas
Figure 2.9b shows the mapping of the syndromes onto the correctable error sequences. This
mapping has been created by supplying a single “1” to the syndrome calculator input, fol-
lowed by a sequence of six zeros. The single “1” given as the first input symbol results in the
syndrome in the last row of the table, i.e. the one received after seven cycles. Placement of
the single “1” in the ith position results in the syndrom located in the (8 — i)th table row.

(a) (b)

e
2 3 x4 x5 x6

>
Y

O 22020 (x0®n

1
1
0
0
1
0
1
1

4 aa0—a00
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cooco—-s0O0O
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—~o0o0o0co0o0O0O

Figure 2.9 (a) Scheme of the syndrome calculator for the (7, 4) code generated by the polynomial
g(x) = x3 4 x + 1. (b) Mapping of syndromes onto correctable error sequences
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The syndrome calculator is a basic element of most block code decoders. Basic difficulty
in the decoder design lies in effective implementation of finding the error sequence on the
basis of the calculated syndrome. Very often the general decoder scheme looks like the
one shown in Figure 2.10. It consists of the syndrome calculator, the circuit recognizing
the error sequence on the basis of the calculated syndrome and the block that corrects
the received sequence. Decoding methods differ from each other mostly in the block of
mapping the syndrome onto the error sequence. In a further part of this chapter we will
analyze some examples of the decoders that operate according to the scheme shown in
Figure 2.10.

ro,r1,...,rn_1

Buffer r(x)

Figure 2.10 General scheme of polynomial code decoding

2.5.12 BCH Codes

BCH codes are an important subclass of the cyclic codes. They are named after their
inventors: Bose, Ray-Chaudhuri and Hocquenghem. BCH codes can be considered as a
generalization of Hamming codes and have an error correction capability higher than 1.
The definition of BCH codes is based on selection of their roots.

Definition 2.5.4 A primitive BCH code with a correction capability of t errors, built of
code symbols belonging to the field G F (p), is a code of codeword length n = p™ — 1 that
has the following roots of the generator polynomial g(x): o©, a0F! . 02~ ywhere
a is a primitive element of the field GF (p™) and iy is a certain initial natural number.

Codes for which the initial number iy is 1 are called BCH codes in a narrow sense.
We conclude from our previous considerations that the generator polynomial of the BCH
code is given by the formula

g(x) = LCM [m i (x), mig+1(x), ..., mig+2—1(x)] (2.70)

where m,,i (x) is a minimum function of the root ol
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Example 2.5.4 Determine the generator polynomial of the BCH code in the narrow sense
with a correction capability of t = 2 errors and a codeword length of n = 15. As we see,
the codeword length fulfills the condition n =2* — 1, so p =2 and m = 4. According
to the BCH code definition, the roots of the generator polynomial are equal to o0,
and o, where «a is a primitve element of GF (2*). We would like to determine minimum
Junctions of all the roots, but for that purpose we need the G F (16) logarithmic table.
This Galois field is generated by the polynomial p(x) = x* + x + 1. Motivated readers
will surely be able to determine the polynomial representation of subsequent powers of the
primitive element o = x as a remainder of division of the polynomial x' by the polynomial
px) fori =0,1,..., 14. Results of these calculations have been summarized in Table 2.3.
On this basis we can calculate the minimum functions of the subsequent roots, which are,

respectively

me(x) = (x —a)(x —aP)(x —at)(x —ab)

= —a?x —ax + )P —abx —atx +

12)
— =P+ o) — x4 a'?
= @40+ (alz Y —|—a3) x4 (az +a8)x Lol
=x*+x+1
mg2(x) = (x — az)(x — (az)z)(x — (a2)4)(x — (a2)8)
= (=) (x —aH(x —a¥)(x —a) = my(x)
my3(x) = (x — a3)(x — (a3)2) (x — (a3)4) (x — (a3)8)
=x—-a)x—ax - —a)=xr+ P+ P+ x+1
mya(x) = (x — oe4) (x — (a4)2) (x — (oc4)4) (x — (a4)8)

= (x —aH(x — o) (x — @) (x — a?) = my(x)

Table 2.3 Representation of Galois field G F(16) with the application of the
powers of the primitive element «

GF(16) 1 x x? x3 1 X x2 x3
0 0 0 0 0 o’ 1 1 0 1
o 1 0 0 0 ob 1 0 1 0
ol 0 1 0 0 o’ 0 1 0 1
o? 0 0 1 0 !0 1 1 1 0
o’ 0 0 0 1 oll 0 1 1 1
ot 1 1 0 0 ol? 1 1 1 1
o’ 0 1 1 0 al? 1 0 1 1
a® 0 0 1 1 alt 1 0 0 1
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so the generator polynomial described by formula (2.70) in our case is

g(x) = LCM[mg (x), m,2(X), M3 (x), M4 (x) ]
= (x4+x+ 1)(x4+x3+x2+x+1)
=¥+ 20+ x4 1 (2.71)

Therefore, n — k = 8 and we conclude that k = 7. As a result, we obtain the (15,7)
BCH code. The assumed number of correctable errors in a codeword has been t = 2. In
practice it turns out that the code is able to correct not only single and double errors, but
also some combinations of triple errors. However, the decoder has to be adjusted to use
this potential error correction capability.

BCH codes are a subclass of block codes that are currently often used. For higher
lengths BCH codes are one of the best codes with a given code rate.

2.5.13 Reed-Solomon Codes

Reed-Solomon (RS) codes are a subclass of BCH codes. They belong to nonbinary codes.
The properties of RS codes result from the specific choice of BCH code parameters.
For RS codes the values of iy and m have been selected as ip =1 and m = 1 and
these parameters determine other properties of RS codes. Thus, the codeword length is
n = p — | and, assuming the error correction capability of # symbols in a codeword, the
generator polynomial is given by the formula

g =x—a)x—a?)...(x —a?) (2.72)

As we see, 2t parity symbols are needed to correct up to ¢ errors. It turns out that the
codeword length is usually selected in such a way that n = 2/ — 1, which means that the
RS codes apply nonbinary 2/-ary symbols that can be represented by /-bit binary blocks.
Such blocks are treated as single symbols and all mathematical operations are performed in
the Galois field G F(2'). In consequence, the RS code encoder can be realized according
to the scheme shown in Figure 2.6. As [-bit binary blocks are treated as single code
symbols, RS codes are applied in systems corrupted by burst errors. They also function
as a so-called outer code in concatenated coding systems, which will be considered in
one of the next sections.

Example 2.5.5 Let us determine the generator polynomial for the RS code of codeword
length n = 15 that is able to correct three symbol errors (t = 3). Fromn = 15 we conclude
that p = 2* and all calculations are performed in the Galois field G F (2*) for which the
list of elements is given in Table 2.3. Each code symbol is represented by a 4-bit block
and all operations are performed on them. Memory cells denoted in the encoder scheme
as squares are in reality 4-bit registers. In accordance with formula (2.72) the generator
polynomial is given by the formula

gx) = (x —a)(x —aH)(x — &) (x —ah)(x — @) (x —a) (2.73)
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Using Table 2.3 we achieve the following generator polynomial

g(x) = (x —a)(x —aP)(x —aP)(x —ah)(x —a”)(x —af)

= ()c2 —o’x +a3)(x2 —a'x+ 017)()c2 —ax + a“)

=x0 4+ + oyt + ot +alx? + a’x +af (2.74)

Recall that if we operate in GF(2!), then all mathematical operations are performed on
[-element binary blocks. Adding two [-bit symbols is realized by bit-wise modulo-2 addi-
tion of their [-bit components. We conclude from this observation that the opposite element
to any element of the Galois field G F(2') is the element itself and subtraction is equiva-
lent to addition. We see from formula (2.74) that the degree of the generator polynomial
g(x) is equal to n — k = 6. The resulting code is a (15,9) nonbinary code with 16-level
symbols. The code is able to correct three symbol errors, which means that it is able to
detect and correct all 8-bit long error bursts and many longer bursts that fit inside three
neighboring 4-bit symbols. The encoder scheme is shown in Figure 2.11. The figure also
presents schemes of the adder block and the block multiplying by o/. Let us note that if
the multiplicand is equal to zero then also the result of multiplication is zero. If, however,
the multiplicand is a nonzero element of G F(16), then the result of its multiplication by
o’ is the element a whose power fulfills the condition

g = (i + j)modn 2.75)

The multiplying circuit can be implemented as a ROM with [-bit address lines and [-bit
output, or as an appropriately synthesized combinatorial circuit with [ inputs and | outputs.

bo

(b) by by b, by ()
3 L SR > Rmom [ |
a, > > Joro | Mutiplication [ ¢ or0
ay o> —» by —» g=(i+j)modn
J
ag— ) r—————————> —> « —

Figure 2.11 (a) Scheme of the encoder for the RS (15,9) code, (b) scheme of the adder block
and (c) example of the multiplying block
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Currently a few important applications of RS codes are known. The most popular
applications are code protection of music files stored on compact disks and outer code in
Digital Video Broadcasting (DVB) transmission.

2.5.14 Golay Codes

When we analyze the Hamming upper bound, we can notice that the upper bound is
achievable not only for Hamming code parameters but also when n = 23, k = 12 and ¢t =
3. Thus, there exists a perfect code (23, 12) able to correct t = 3 errors. Golay showed how
to construct it. The code named after him has been synthesized by taking the following
elements as the roots of the generator polynomial of the BCH code: 8, ,82, ,33, ,34, where
B =a®. In turn, o is a primitive element of the Galois field GF (2!"). Deriving the
minimum functions of the selected roots, we find the generator polynomial from (2.70) as

g) =x"M ¥ T4 a1 (2.76)
or
g) =xM + a0+ xC 45 4 xt a1 (2.77)

depending on which of the two possible irreducible polynomials is the basis for creation
of the extended Galois field G F(2'"). Despite the fact that # = 2 was assumed in the code
construction (note that only four roots have been selected), the code minimum distance
iS dmin = 7 so the code is able to correct three errors. Golay also found the ternary code
(11, 6), which is an ideal code as well.

2.5.15 Maximum Length Codes

Maximum length codes are cyclic codes that are dual to the Hamming codes. As we
remember, the parameters of (n, k) Hamming codes are (2" — 1, 2" — 1 — m). Hamming
codes are created by taking the irreducible polynomial p(x) for the Galois field G F (2")
as the generator polynomial. Recall that in the case of cyclic codes a dual code is obtained
by exchanging the roles of the generator polynomial g(x) and the parity check polynomial
h(x). So in the case of maximum length codes, i(x) = p(x) and the code parameters are
(n, k) = (2™ — 1, m). With a higher value of m the code rate significantly decreases.
Consider the maximum length (7, 3) code as an example. It is dual to the Hamming
code (7, 4) generated by the polynomial g(x) = x* + x + 1, therefore for the considered
code h(x) = x> 4+ x + 1. On this basis we can build the encoder shown in Figure 2.12.
Because the number of codewords is small, we can simply list all of them and analyze
their properties. Table 2.4 presents message blocks and the codewords related to them.
The maximum length code is cyclic, so each nonzero codeword is a cyclic permutation
of another codeword. The way the codewords are ordered in Table 2.4 allows us to notice
that each codeword is a cyclic shift of the previous codeword. A constant number of
“1”s is a characteristic feature of all nonzero codewords. Generally, the number of “1”’s
is equal to 2m=1 5o the number of zeros is smaller by one, i.e. it is equal to om=1_ 1,
Therefore the code minimum distance is 2" ~!. If for the encoder shown in Figure 2.12
more than n clock cycles were applied (remember that n is the codeword length) and
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+

2 output
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bo,by,b> P,

Figure 2.12 Encoder scheme of the maximum length code (7, 3)

Table 2.4 Message blocks and codewords for the maximum length

code (7, 3)
Message blocks Codewords

bo by by co o €2 3 bo b by
0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 1 1
0 0 1 1 1 0 1 0 0 1
1 0 0 1 1 1 0 1 0 0
0 1 0 0 1 1 1 0 1 0
1 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 1 1 0
1 1 1 0 1 0 0 1 1 1

the switch remained in position “2”, then it would turn out that the generated sequence
becomes periodic and the period length is equal to the codeword length n = 2™ — 1. The
sequence period equal to 2™ — 1 is the highest possible period that can be achieved in
the generation of a sequence using the shift register with m = 3 memory cells. This is
then the origin of the name of this class of codes.

Maximum length codes have a low code rate and an even value of the minimum dis-
tance, so they are not too attractive from the point of view of transmision effectiveness.
However, they are used to generate pseudorandom sequences. It turns out that these
sequences have multiple desirable statistical properties. For representing binary symbols
by bipolar symbols £1, the deterministic autocorrelation function of the periodic code-
words reaches the maximum of n for zero shift of the correlated codeword with its replica
and is equal to —1 if this shift is nonzero. Thus, for long codewords the shape of the auto-
correlation function approximates well the ideal autocorrelation function of the sequence
of uncorrelated bipolar pulses of zero mean. The maximum length sequences are applied
in spread spectrum systems, which will be dealt with in Chapter 7.

2.5.16 Code Modifications

So far we have considered codes that were characterized by specific code lengths n and
message block lengths k. Values of n and k for which codes have been designed are not
always advantageous from the point of view of a communication system in which the code
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is to be applied. Very often an adjustment of the code parameters to the communication
system requirements is desired even at a certain loss in coding efficiency. Below we show
how a code can be modified.

A code is the subject of extension if additional parity bits are added in order to improve
the codewords’ weight structure. The most common way of realizing this task is adding
a bit that checks the parity of all remaining bits. In the polynomial notation this bit is
the result of division of a codeword polynomial by the polynomial (x — 1). As a result
of this operation the code minimum distance is increased by 1. Consider the Hamming
code (7,4) as an example. Recall its parity check matrix:

H=1|1 (2.78)

O = =
—_ O =
— = O
S O =
S — O
- o O

When we supplement a codeword with the additional bit that checks the parity of all other
bits, the parity check matrix is extended by one row that is filled with all “1”s and by an
additional column because the codeword length increases by 1. The parity check matrix
of the extended code has the form H;, which is equivalent to the canonical form H,. The
latter has been received by replacing the last row in H; by the row that is the sum of all
rows of matrix H;.

1 110100 0 1 1 10100 0
1 101 01 0 0 1 10101 00
H=11 091 10010 ™1 0110010
11 1 1 1 1 1 1 01 1 100 0 1
(2.79)

The codeword length can decrease if some parity bits of original codewords are omit-
ted. This process is called puncturing and is particularly often applied in the case of
convolutional codes, considered later in this chapter.

We say that a code is expurgated if some codewords are excised. In the case of cyclic
codes for which the generator polynomial is a divisor of x" 4 1, the generator polynomial
is mostly multiplied by an additional divisor of the polynomial x" 4 1, usually x — 1.
For example, expurgation of the Hamming code (7, 4) leads to the code (7, 3) with the
generator polynomial in the form g(x) = (x + D +x+1).

If new codewords are added to the original set a code is augmented. Consequently,
the codeword length does not change, although the number of message bits increases
at the cost of parity bits. In case of cyclic codes the code augmentation is achieved by
construction of a new generator polynomial by dividing the original generator polynomial
by one of its own factors.

A code is lengthened if codewords are supplemented with additional message bits.
In turn, a code is shortened if some message bits are not transmitted. For a systematic
code, shortening can be easily implemented by setting a certain number of zeros at the
beginning of the message block. As mentioned before, the process of code shortening is
particularly often used in cyclic codes applied for error detection.
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2.6 Nonalgebraic Decoding for Block Codes

The encoding process is a simpler part of the protection of binary messages against
errors occurring in the transmission process. Recovering of the most likelihood transmit-
ted sequence at the receiver is a much more difficult task and requires technical means
of much higher complexity than the encoder itself. Making a decision upon the trans-
mitted codeword based on the received sequence is usually much more complicated than
encoding. In this section we will present three classical decoding methods for block codes
described in the book by Clark and Cain (1981). These methods are conceptually simple
but not universal, so they can be applied in the decoding of some codes only. However,
due to their simplicity they can be treated as a good introduction before considering more
elaborate methods of algebraic decoding.

2.6.1 Meggitt Decoder

The Meggitt decoder (Meggitt 1961) is a circuit that can be applied to decode any cyclic
or shortened cyclic code. It was proposed in the early 1960s when microelectronic circuits
were still in their introductory phase of development. The decoder is applicable for codes
correcting up to three errors and can be used only in a hard-decision mode. The Meggitt
decoder takes advantage of the following two properties of cyclic codes:

1. There is a unique relation between each element of the correctable error pattern set
and the respective element of the syndrome set.

2. If s(x) is a syndrome polynomial calculated on the basis of the received sequence poly-
nomial 7 (x) of a cyclic code, then [xs(x)] mod g(x) is a syndrome polynomial related
to the polynomial of the received sequence [xr(x)]mod(x" — 1) that is cyclically
shifted by one position with respect to the received sequence.

To prove property 2, let us present the polynomial of the received sequence in a regular
form, i.e.

) =1 x" X" X 1o (2.80)

Then the polynomial describing a sequence that is a cyclic shift of the sequence
(rn—1,¥n—2, ..., rp) can be presented as

r1(x) = rpox™ X" b rox
=xr(x) +r,_1(x"+1) (2.81)
Both polynomials, r(x) and r| (x), can be represented as the multiple of the generator poly-
nomial g(x) supplemented by the remainder of the division of these polynomials by g(x),

i.e. by the syndrome of the received sequence polynomial r(x) or rj(x), respectively. So

r(x) =ax)gx) + s(x) (2.82)
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and
ri(x) = x[a(x)g(x) 4+ s(x)] + ra18(x)h(x) (2.83)

because we take advantage of (2.81) of the polynomial | (x) and the fact that the generator
polynomial of cyclic codes is a divisor of x" + 1. Let the remainder of division of the
polynomial r;(x) by g(x), i.e. its syndrome, be s;(x), i.e.

ri(x) = b(x)g(x) + s1(x) (2.84)

Let us derive the expression xs(x) from equation (2.83) and calculate the remainder of
its division by g(x). We have

xs(x) = r1(x) + xa(x)g(x) + rp_1g(xX)h(x) (2.85)
The polynomial r;(x) can be represented by (2.84), so we obtain
xs(x) = b(x)g(x) + s1(x) + xa(x)g(x) + rn—18(x)h(x)
= [b(x) + xa(x) + ra—1h(x)]g(x) + s1(x) (2.86)

We can conclude from the last equation that [xs(x)]mod g(x) = s1(x) = r;(x) mod g(x).
Knowing that a syndrome exclusively depends on the error sequence, we have

[xs(x)] mod g(x) = ej(x) mod g(x) (2.87)

where e;(x) = [xe(x)] mod(x" + 1). This ends the proof.

Property 2 indicates that if a given syndrome s(x) corresponds to a certain error
sequence, then the error sequence that is cyclically shifted by one position corresponds
to the new syndrome that is received in the circuit, calculating the remainder of division
by g(x) by advancing the clock by one clock cycle when the shift register of this circuit
contains the coefficients of the syndrome s(x). A further implication of Property 2 is the
possibility to divide the set of correctable error sequences into classes, each of which
contains cyclic shifts of a given error sequence. Owing to Property 2, the error pattern
recognition block needs to recognize only one representative in each class on the basis
of the calculated syndrome. As a result, the error pattern recognition block structure can
be substantially simplified.

The Meggitt decoder, shown in its basic version in Figure 2.13, conforms to the general
structure presented in Figure 2.10. Let us consider it in detail in the example of the (15, 7)
cyclic code with the generator polynomial g(x) given by formula (2.71). This is a BCH
code with the minimum distance dp,;, = 5. It is able to correct all single and double errors
and about 30% of triple errors occurring in one block.

The Meggitt decoder operates in the following way. In the first n = 15 clock cycles
the received bits are fed both to the syndrome calculator and the serial buffer of length
n. In the next 15 clock cycles an error correction process is performed along with the
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Figure 2.13 Basic scheme of the Meggitt decoder for the (15,7) code with generator polynomial
2.71)

gradual generation of the output sequence. At the same time the syndrome calculator and
the buffer are gradually filled with zeros. For each clock cycle the syndrome calculator
performs the operation [xs(x)] mod g(x). The circuit that recognizes the syndromes related
to the specific error patterns generates a binary “1” on its output if the input syndrome
is related to the error sequence [x'e(x)]mod(x" + 1), i =0,1,..., (n — 1), in which
the error is located in the highest, (n — 1)st, position. Because all double errors are also
correctable, another error can simultaneously be located in another position. So the circuit
that recognizes the syndrome should generate a binary “1” if the syndrome on its input
is related to the error sequence in which there is a single “1” in the 14th position or two
binary “1”s where the first is again in the 14th position and the other is in any other
position. As we can see, there are 15 different syndrome combinations that should trigger
a logical “1” on the output of the syndrome recognizing circuit.

Let us note that in the decoder, except for the syndrome calculator, there are no paths
transferring the output signal back to the input. In practical solutions in which the decoding
rate is a critical parameter, pipelining can be applied. The functional blocks of a particular
decoder can be separated by the buffers, which store the operation of a given block until
the next clock cycle occurs. Thus, the buffers can be applied between the syndrome
calculator and the circuit that recognizes the syndromes and the output of the latter.
As a result, the slowest block determines the speed of operation of the whole decoder.
Without pipelining, the speed would result from the sum of delays introduced by all
blocks operating in cascade.

We propose that the motivated reader traces the decoder operation for the case in which
the zero codeword is corrupted by two errors that occurred in the ith and jth positions.
To perform this task it is helpful to determine all the syndromes resulting from the single
“1” given to the decoder input followed by a sequence of n — 1 zeros.

2.6.2 Majority Decoder

A majority decoder differs from the Meggitt decoder in the way a syndrome is applied
to generate correction symbols added modulo-2 to the received sequence. This decoding
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method can be applied only for some cyclic codes with some specific features; however,
if these features occur, the decoder is technically very simple.

Consider the operation of the majority decoder with the example of the (15, 7) code as
in the previous section. When the codeword symbols are written in increasing order, for
example as (co, ¢y, ..., c14), the parity check matrix of the considered code (15, 7) has
the following form

1 000 00O0O0OT1 101000
01 000O0UO0UO0OO0OTIT1O0TLO0 0
001 00O0OUO0UO0OO0OO0OT1IT1O0T1 0
0001 00UO0UO0UO0UO0O0T1 1 01
H=16 0001000110111 0 (2.88)
000O0O0OT1UO0OO0OOTLIT1O0 1 1 1
000O0O0OGO0OTLIOTLIT1T1TO0TO0T1 1
(000 00O0O0T1 10100 0 1]

Each row is related to a single syndrome bit. All these bits appear simultaneously after n
clock cycles in the appropriate memory cells of the syndrome calculator. As we remem-
ber, the parity check control can also be performed by the modified parity check equations
resulting from adding selected rows of the parity check matrix. Massey (1963), the inven-
tor of this decoding method, took advantage of the fact that even if only a small number of
parity equations are applied they can be modified in such a way that the most significant
codeword position appears in each of them whereas the remaining received bits show
their position in the parity check equation set only once at most. Such a construction of
the parity check equations is not always possible, therefore the method is used in only
some codes.

Let us return to our example and take into account the parity check matrix rows 4
and 8, the sum of rows 2 and 6 and the sum of rows 1, 3 and 7. Denoting the received
sequence as (rg, rq, ..., r14), we obtain the following parity check equations

Pi=r3+riu+ri2+r

Py=ri+rs+rio+ru

Py=ri+rs+rz+ru

Py=ro+r+re+ru (2.89)
Since these equations are satisfied for codeword bits, their results depend on the error
sequence only, so the equations evolve to the form

Pr=e3+en+en+en

Py =e7+es+eint+ens

Py =e;+es+ezten

Py=ey+ey+ec+ers (2.90)
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Majority gate I " P;>3, then &=1
i=1
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Figure 2.14 Scheme of the majority decoder for the (15,7) code determined by the generator
polynomial (2.71)

The majority decoder shown in Figure 2.14 takes advantage of the same properties that
are the basis of the Meggitt decoder operation. In the first n clock cycles the syndrome
of the received sequence is calculated and the serial buffer is gradually filled with the
received sequence bits. During the next n clock cycles the serial buffer is gradually
emptied. Simultaneously, correction of the contents at the highest buffer position can
be performed. Error detection at the currently highest buffer position is performed by
checking the results of the parity check equations. If a single error that has corrupted
a codeword is located at the given moment in the highest, i.e. 14th, position then the
results P;(i = 1,...,4) of all parity check equations are equal to logical “1”. If a single
error is temporarily found in other than the highest position, then at most one equation
results in a logical “1”, whereas the other equations are satisfied resulting in a logical
“zero”. A situation in which two errors have occurred in the received sequence is similar
to the previous case. If one of the errors shows up in the 14th position, at least three out
of four equations result in the symbol 1, because if the second error is in the position
participating in one of the parity check equations, then one of these equations is again
satisfied. However, if the second error is located in the position that is not taken into
account in the parity check equations at all, then all equations result in logical “1”. In
turn, if none of two errors appeared in the 14th position, then at most one parity check
equation results in logical “1”. Therefore, through counting the number of “I”’s on the

outputs Py, P>, P3 and P4 we can easily detect the presence of an error in the 14th position.
4

Namely, if the arithmetic sum ) P; > 3, then the error has occurred in the 14th position,

so it can be corrected by a 10glic;11 “1” generated by the arithmetic circuit calculating the
sum of outputs P;. This logical “1” is modulo-2 added to the buffer output.

The decoder described above is able to correct all single and double errors and a certain
number of combinations of triple errors. The correction of some triple errors is possible
because not all error positions participate in the calculations of the sum of the parity check
equation results. If the error occurs in the 14th position and at least in one position that is
not taken into account in the calculations of P;, P>, P; and P4, then the result given by the
majority gate will be correct. In order to support correction of the selected combinations
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Figure 2.15 Modified majority decoder for the (15, 7) cyclic code

of triple errors, the decoder can be modified to extend its operation on another period of
n clock cycles. The scheme of the modified decoder is shown in Figure 2.15.

The modified decoder has three switches, Sy, S, and S3, and the majority gate output
is connected with the input of the syndrome calculator. In the first period of n clock
cycles switches S; and S; are in position 1. The state of switch S, is irrelevant. In this
phase of decoding the syndrome of the received sequence is calculated and the received
sequence is simultaneously introduced into the serial buffer. In the second period of n
clock cycles switches S; and S3 are set in position 2 and switch S, is set in position
1. Now, gradual error correction is performed, complemented by removing the influence
of corrected errors from the following form of the syndrome. It is done by feeding the
correction symbol through the feedback path from the majority gate output to the input of
the syndrome calculator. In the last set of n clock cycles switch S, is shifted to position 2
and errors still remaining in the buffer are subsequently corrected when being transported
out of the buffer to the decoder output.

It is worth noting that the same modification can also be introduced in the Meggitt
decoder so that it will be able to correct selected triple error combinations.

2.6.3 Information Set Decoding

The next decoding method, unlike the majority decoding, can be used for a wide class
of block codes. Let us recall our considerations on possible locations of message and
parity bits in the codeword (see Example 2.5.1). In Example 2.5.1 we transformed the
original code placing the message bits at desired positions without changing the algebraic
dependencies among particular bits of a codeword. This property is applied in information
set decoding. An information set is a set of bits that are treated as message bits, so the
remaining bits in a codeword are considered as parity bits. For each code one can define
a certain number of information sets. For each of them, based on bits belonging to this
set, we calculate the remaining bits of the codeword related to parity checks.

Assume that a sequence r = (r,,—1, -2, ..., r9) appears on the decoder input. Some
bits have been received erroneously; however, we assume that the number of erroneous
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positions does not exceed the error correction capability of the applied code. The infor-
mation set decoding algorithm can be formulated as follows (Clark and Cain 1981):

1. Select the appropriate number of information sets according to a certain rule.

2. On the basis of the received block, construct hypothetical codewords for each informa-
tion set by assuming that message bits in the considered information set are error-free.

3. Compare each of the created candidate codewords with the received block r. The
decoder’s decision is the hypothetical codeword that is closest to the received sequence
in the sense of the selected distance measure (e.g. Hamming distance).

As we can see, the algorithm is based on elementary properties of linear block codes,
so it is useful in decoding many different codes. The only problem is the right choice of
information sets. It is crucial that with a probability tending to 1, at least for one infor-
mation set the selected message block contains errorless symbols, so based on them the
decoder is able to synthesize the codeword that has actually been sent by the transmitter.
This means that among hypothetical codewords there is a correct one. The operation of
the decoding algorithm is explained on the examples quoted in Clark and Cain (1981).

Example 2.6.1 Consider the Hamming code (7,4) again. For this code we select three
information sets I} = {1,2,3,4}, I, =1{4,5,6,7} and I3 ={1,2,6,7}. The digits in
parentheses denote positions of the message bits in a codeword starting from the left side.
Recall that message bits are related to the columns of the generator matrix that have a
single 1 in them. Information set I, is thus related to generator matrix G| in its canonical
Jorm, whereas the other matrices G, and G3 are achieved by summing the rows of matrix
G in such a way that the appropriate columns contain a single 1 in appropriate rows.
Finally, matrices G|, G, and G3 achieve the form

1 0 0 0 1 1 0 1 1.0 1 0 0 O
010 0 0 1 1 01 1.0 1 0 0
Gi=1o 01 01 1 1 Ga=|1 1 1 00 1 of @
(000 0 1 1 0 1| 1 01 0 0 0 1

1 0 1 1 1 0 0]
01 1 0 1 0 0

Gs=10 0 1 1 0 1 0 (2.92)
(000 0 1 1 0 1|

Let the transmitted codeword be ¢ = (1011100)7, whereas r = (1010100)7 is the received
sequence. By inspection we see that the error has occurred in the fourth position. Its
location is obviously unknown to the decoder. Based on the received sequence the decoder
determines hypothetical message bit sets for each selected information set: (1010) for set
I, (0100) for set I, and (1000) for set I5. In turn, for each of these hypothetical message
blocks the decoder calculates hypothetical codewords. These are

¢l = (1010)G, = (1010001)
¢ = (0100)G, = (0110100)
¢! = (1000)G3 = (1011100)
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As we can see, among hypothetical codewords that are candidates for the final decision
there is one that has actually been generated in the transmitter. From the codewords ¢y, ¢,
and c¢3 the maximum likelihood decoder selects the codeword for which the Hamming
distance to the received sequence is the lowest. These distances are, respectively, d(¢|,r) =
2, d(cy, r) =2 and d(c3, r) = 1. Consequently, the decoder makes the right decision that
the codeword ¢3 has been transmitted.

Example 2.6.2 Let us illustrate the operation of the same algorithm in the case of
soft-decision decoding. Let the received samples related to the particular bits of the
transmitted codeword be represented in the form of digits from the range 0-7. Define
the distance metric between two sequences — the received sequence and the hypothetical
code sequence — as a sum of modules of differences between the received samples and the
hypothetical samples representing bits of the hypothetical codeword, i.e.

n—1
dr,e) = |re — ciul (2.93)
k=0

where 1, € {0,1,2,...,7} and ci; € {0, 7}. Consider the codeword assumed in the for-
mer example; however, this time the received sequence has the form r = (7033701).
Let us note that binary decisions made with respect to particular samples would result
in a binary sequence ¥’ = (1000100)7. In this case the Hamming distance of this binary
sequence to the transmitted codeword is equal to 2, so the error correction capability of
the Hamming code if hard-decision decoding were applied would be exceeded and there
is no chance for correct decoding. Let us check how the soft-decision decoder copes with
the errors even if a simplified metric (2.93) has been applied. As previously, the decoder
synthesizes message bits for each information set by taking advantage of temporary binary
decisions shown in the sequence r'. So for the information set I, the hypothetical message
bits are (1000), for I, they are (0100) and for I3 they are (1000). The codewords related
to them are, respectively

clT = (1000)G; = (1000110) in representation {0, 7}: (7000770)
C2T = (0100)G, = (0110100) in representation {0, 7}: (0770700)
c3T = (1000)G3 = (1011100) in representation {0, 7}: (7077700)

If the distances among the hypothetical sequences with symbols from the set {0, 7} and the
received sequence t are calculated according to formula (2.93), we obtain d(r, ¢|) = 14,
d(r,¢cp) =22 and d(r, ¢3) = 9. As we can see, this time the decoder decision will also be
correct because the sequence ¢3 is the closest to the received sequence r in the sense of
the metric defined in (2.93).

Let us note that owing to more accurate quantization the distances among codewords
and the received sequence are more distinguishable. For the Hamming code for which the
minimum Hamming distance is dpi, = 3, in the case of soft-decision decoding and 8-level
quantization, the codewords presented in 8-level representation differ among themselves



146 Introduction to Digital Communication Systems

by at least 21. This means that all received sequences that differ by no more than 10 will
be decoded correctly.

A basic difficulty in the construction of the decoder operating according to this method
is the appropriate choice of information sets. They should cover the set of possible code-
words and the probability that among the selected hypothetical codewords there is no
transmitted codeword should be negligibly small. The choice of the information sets is
often made by a computer search.

So far in the information set decoding we have used generator matrices related to
the appropriate positions of the message bits associated with a given information set.
However, a parity check matrix can also be used in a similar algorithm. Let us note that
if message bits for a certain information set are errorless, then the errors have possibly
been committed in the parity positions. For parity bits the columns of the parity check
matrix contain single “1”’s and a syndrome is in fact a linear combination of them. So on
the basis of a syndrome one can conclude whether the message bit positions determined
by a given information set are error-free. For example, for the Hamming code (7, 4) and
the information set I} = {1, 2, 3, 4} the parity check matrix has the familar form

1 0 11
H=|111 0 0
0 1 1 0

S = O
— o O

A single correctable error in one of the parity positions results in a tri-bit syndrome
containing a single “1” strictly associated with the position in which the error has occurred.
Then the decoding algorithm relies on the syndrome calculations for all parity check
matrices associated with each information set and testing if the received syndrome has
the weight at most equal to 1.

In the general case we search for such parity bit positions that, when the associated
parity check matrix is applied, result in a syndrome of the weight not exceeding the
correctable number of ¢ errors. Thus, the form of a syndrome determines those parity
positions that should be corrected in the received sequence r. The motivated reader could
determine other parity check matrices and information sets /I and I3 associated with them
for the considered Hamming code. Performing the decoding process similar to that shown
in Example 2.6.1 would be an interesting excercise.

The considered information set decoding method using parity check matrices can be
substantially simplified for cyclic codes and can be conveniently described using a polyno-
mial notation. The decoding method for these codes, which is a variant of the information
set decoding, is called error trapping decoding; see (Lin and Costello 2004) for details.

2.7 Algebraic Decoding Methods for Cyclic Codes

The decoding methods considered so far have taken advantage of specific properties of
the applied codes, so they have been called nonalgebraic decoding methods. However,
an important class of decoding algorithms is the class of algebraic decoding methods,
relying on efficient solution of a certain equation set. These methods are applicable not
only to binary codes, but also for nonbinary ones such as Reed-Solomon codes. Thus,
they are important from the application point of view.
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Consider the decoding of binary BCH codes. The method that will be presented below
can be easily extended to nonbinary codes. As we remember, the roots of the BCH code
generator polynomial g(x) are equal to alo, glotl  giot2—1 where o is a primitive
element of the Galois field G F(p™) and ip is a certain initial natural number. Assume
without loss of generality that iy = 1. Recall that the roots of the generator polynomial
determine the form of the parity check matrix, which according to formula (2.65) is the
following

pe| € e

We also remember that Hr = He = s, so the syndrome calculated for the received
sequence depends exclusively on the error sequence e or, equivalently, on the error poly-
nomial e(x). Denote the result of the scalar product of the ith row of matrix H given by
(2.94) and the error sequence as s;. One can easily find that it is the ith component of
the syndrome vector s. We have

St O[O o an—l €
s 2)0 2)1 2\n—1 e
2 _ (a ) (a ) (a ) .1 (2.95)
) 21\0 211 21\l ’
5o @)’ (@) ... (@) ent
so in the polynomial notation for i =1, ...2¢ the ith syndrome component s; can be

shown in the form
si=e(@) =e @) +ea@) P+t ead + e (2.96)
Each syndrome component s; is a linear combination of the powers of the root & and

therefore belongs to the Galois field G F(p™). Assume that w < ¢ errors have occurred
in the received sequence. Their positions are unknown to the decoder. Denote them as

J1s J2, - - -» Jw- Therefore the error polynomial is expressed as
e(x) =e;,x" +ej, x4 e, x e x)! (2.97)
In the case of binary codes the coefficients ej,, e, ..., e;, are equal to binary “1”s.

Taking advantage of (2.97), we obtain equation set (2.96) in the following form
= ejwajw + ejwflajwil + e _l_ ejzaj2 + ejlajl
5 = e, (afm)? + € (fw-1)2 ... 4 e, (a2)? + e (a/1)?

(2.98)

sy = e, (am)? + €jn (ofw-1)2 .. 4 e, (i2)® 4 e, (o)
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so each syndrome component is described by the expression

w
si= Y eplal) (2.99)

I=1
The main goal of the decoder is to identify the error positions ji, jo, ..., ju. In general,
determination of the error positions relies on calculation of the syndrome components
S1, 82, ..., 8, followed by solution of the nonlinear equation set with respect to unknowns
alt a2 ... a/v. The appropriate powers of the primitive element « are found on the

basis of the achieved solutions. The powers indicate error positions in the received
sequence. Solution of the nonlinear equation set (2.98) is generally cumbersome. The
conceptually simplest approach would be to find the solution by successive substitu-
tion of unknowns /!, a2, ..., a’/ by all possible powers of the primitive element «
in equation set (2.98). Unfortunately, it is reasonable only if the number of correctable
errors ¢ is small. Particular decoding methods basically differ in the method of finding
the solution of equation set (2.98). In this section we will present the approach proposed
by Berlekamp (1965), modified by Massey (1972) and summarized in a clear way by Lee
(2000).

Instead of solving the nonlinear equation set, the Berlekamp-Massey algorithm defines
an error location polynomial A(x) and performs some operations on it. The polynomial
has the form

A) = Apx” + Ay x" T Ax 1 (2.100)
. . . w .
=1 —arx)d—ax). (1—olx) =[]0 -a’x) (2.101)
=1
The roots (a/)~' (I =1,2,...,w) of the error location polynomial are inverses of

the searched solutions of the nonliner equation set (2.98). Thus, the solution of (2.98)
has been replaced by construction of the polynomial A(x), followed by finding its
roots.

Let us multiply both sides of the polynomial expression A(x) given by formula (2.100)
by e (/) where k is a certain natural number,’ and calculate its value for x =
(a/)~!. Because (a/)~! is a root of the polynomial A(x), from (2.100) we get the
following dependence

¢ @ [Au@) ™ + Apoi (@)™ 4k M@ T 1] =0
or equivalently
ei[Aw@ + Ay @D 4 A @D @] =0 (2102)

3 One should not confuse the natural number k with the message block length of a codeword.
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Let us sum both sides of equation (2.102) for all values of the index [ =1,2,..., w.
Grouping all components containing A;, we receive the following equation

w w
AP es @ 4 At e @ 4
=1 =1

w w
+ ALY e @) T Y e @) =0 (2.103)
=1 =1

If we recall formula (2.99) for syndrome components, we see that equation (2.103) can
be written in the form

Awsi + Ap_1Sk41 + -+ AiSkqgw—1 + Skqw =0 (2.104)

Equation (2.104) contains the existing components of the syndrome calculated from (2.95)
if k is located within the interval [1, w], because if, as it is assumed, w < ¢, then k + w <
2t. Substituting i =k + w for w + 1 <i < 2w, we get the following equation

AySi—w + Dy1Si—wp1 + -+ Aysip +5: =0 (2.105)

SO

w
siz—ZAls,-_l for i=w+1l,w+2,...,2w (2.106)
=1

Based on (2.106) we get the following matrix equation

Sw1 S s ... Sw AAw
Sw42 _ Y] 53 .. Sw+1 w—1 (2 107)
Sow Sw Sw+1 s S2u—1 A

This is a linear equation set that needs to be solved in the finite field with respect to
the coefficient set {A1, Ay, ..., Ay} of the error location polynomial. Equation (2.106)
implies that the subsequent syndrome components can be found by applying the feedback
shift register shown in Figure 2.16 if the coefficients A, Aj, ..., Ay are known. The
solution of equation set (2.107) is then equivalent to the design of such a feedback shift
register that is able to generate the sequence of the syndrome components. The iterative
method of deriving the coefficients Ay, Aj, ..., A, was given by Massey (1972). His
method is related to Berlekamp’s method (Berlekamp 1965), so the name of the decoding
algorithm contains the names of both scientists. Let us note that the decoder does not know
the number of errors w that have occurred in the received sequence. Assuming that the
probability of a single error in the received symbol is smaller than 1/2, the case in which
fewer errors have occurred is more probable than the case in which the number of errors
is higher. Thus, we should search for the register with the lowest degree that correctly
generates the sequence of the syndrome components calculated for the received sequence.
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Figure 2.16 Linear feedback register synthesized in the Massey algorithm

The Massey algorithm is thus a method of feedback register synthesis that determines
the register of minimum length. This register generates the required sequence of syndrome
components. During operation of the algorithm the sequence of syndrome components
generated by the current form of the feedback register is subsequently compared with the
desired syndrome components calculated on the basis of the received sequence. This is
done step by step until all the syndrome components are correctly produced by the register
or the divergence between a component calculated by the register and that calculated on
the basis of the received sequence is observed. In the case of divergence, the feedback
register is modified so as to remove it. The syndrome components are generated again until
their number is exhausted or the next divergence between the calculated and generated
sequences appears again.

Denote the polynomial describing the correction of the feedback taps as D(x). L is
the current degree of the synthesized connection polynomial A(x). Let i be the number
of the subsequent syndrome component. The algorithm performing the synthesis of the
feedback register leading to determination of the error location polynomial coefficients
can be formulated in the following steps (Michelson and Levesque 2003).

1. Derive the syndrome components s;, i = 1,2, ..., 2¢.
2. Initialize the variables applied in the algorithm: i =1, A(x) =1, D(x) =x, L =0.
3. For a new syndrome component s; calculate the discrepancy

L
§=si+ Y Asicy (2.108)
=1

4. Check the calculated value of discrepancy §. If § = 0, go to step 9, otherwise go to
step 5.
5. Modify connection polynomial A(x). Let A*(x) = A(x) — §D(x).
6. Test the length of the feedback register. If 2L > i, go to step 8, i.e. do not extend
the register length, otherwise go to step 7.
7. Increase the register length and update the correction polynomial L :=i — L, D(x) =
A(x)s!
8. Update the connection polynomial: A(x) := A*(x).
9. Update the correction polynomial: D(x) := xD(x).
10. Update the counter of the syndrome components: i :=i + 1.
11. Check if the counter of the syndrome component has reached the final value, i.e. if
i >2t. If not, go to step 3; otherwise stop the procedure.
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Let us note that discrepancy § is defined in such a way that in the case of the first
realization of step 3 it is equal to the first syndrome component s;. Synthesis of the
correction polynomial D(x) is performed not only to set discrepancy § to zero but also
to modify the polynomial A(x) in such a manner that the feedback register configured
according to this polynomial would generate all preceding syndrome components. Thus
it is not then necessary to check the correctness of generation of the previous syndrome
components by the modified feedback register. This property has a crucial influence on the
algorithm complexity, which, as a result, depends linearly on the number of correctable
erTors.

After finding the coefficients of the polynomial A (x) we have to find its roots (oﬂl)_l,
which, as we remember, are inverses of the Galois field elements indicating the error
locations. Searching for the roots is often performed by substitution of each nonzero
element of the extension field G F(p™), in which the primitive element « is defined, to
the polynomial A(x) determined by formula (2.100), and testing if A(x) = 0. If this is
true, the tested element is a root of the polynomial A(x), so the power of the primitive
element related to the root inverse determines the error location in the received sequence.

Concluding, the Berlekamp-Massey algorithm of decoding of BCH codes can be sum-
marized in the following steps.

1. Derive the syndrome components si,sy,...,sy related to the received sequence
described by the polynomial r(x).
2. Apply the received syndrome components si, s, ..., sy in the Berlekamp-Massey

algorithm, which calculates the coefficients of the error location polynomial A (x).
Find the roots of the polynomial A(x).

On the basis of the inverses of the roots of A(x), determine the error polynomial e(x).
Correct the received sequence, i.e. add the error polynomial to the received sequence
polynomial 7 (x).

kAW

Let us illustrate the operation of the Berlekamp-Massey algorithm by the following
example taken from Lee (2000).

Example 2.7.1 Consider decoding of the BCH (15, 5) code of correction capability of
t = 3 errors. The generator polynomial is g(x) = x'0 4+ x8 4+ x> + x* + x> + x + 1. This
polynomial has the roots a,a?,a3,at,a’,al, where o is the primitive element of the field
G F (2%) generated by the polynomial p(x) = x* + x + 1. The list of field elements repre-
sented as the powers of the primitive element has been shown in Table 2.3. Assume that
the zero codeword has been transmitted, i.e. c(x) = 0; however, the received sequence
polynomial has the form r(x) = x'2 + x3 4 x3. In reality it is an error polynomial e(x),
but this fact is not known to the decoder. In the first phase of the decoding algorithm the
syndrome components have to be derived by calculating s; = r(a'), i =1,2,...,6. On
the basis of Table 2.3 we get

si=r(@) =a?+a’ +o°
1 0 0 1
1 1 0 0
=11 |T|o|=|o]="!
1 0 1 0
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The other syndrome elements calculated in a similar way are

Sy = r(ozz) =1 §3 = r(oe3) =ql0 sS4 = r(oe4) =1

ss=r@) =o' s5=r@’ =da°

Knowing the syndrome components we have to determine the coefficients of the error
location polynomial A (x), taking advantage of the iterative Berlekamp-Massey algorithm.
Table 2.5 presents subsequent steps of this algorithm.

Table 2.5 Results of subsequent steps of the Berlekamp-Massey iterative procedure (Lee 2000)

i ) D(x) A*(x) A(x) L
0 — X - 1 0
1 s =1 X 1+x 1+x 1
2 0 x2 1+x 1+x 1
3 o’ al0x2 4 10y x4+ x+1 x4 x+1 2
4 0 o10x3 4 10x2 x4+ x+1 x4+ x+1 2
5 al0 %3 + @9x2 4+ o¥x x4+ x+1 x4 x+1 3
6 0 o0 4+ @ x3 4 o¥x2 P+ x+1 x4 x+1 3

Analyze the operation of the algorithm. At the initial moment the variables used by
the algorithm are initialized, i.e. D(x) = x, A(x) =1, L = 0. In the first iteration the
discrepancy § is nonzero and equal to the first syndrome component sy = 1. Thus, the
connection polynomial is modified by setting A*(x) = 1 — 8x = 1 + x. Because the math-
ematical operations are performed in G F (2*), subtraction of 4-bit blocks representing the
elements of this field is equivalent to modulo-2 addition of their components. Therefore,
we will consequently apply signs of mathematical addition. Because L =0, i = 1, and
so far 2L < i, the feedback register length is increased (L :==i — L = 1) and the correc-
tion polynomial is updated accordingly, i.e. D(x) = A(x)8~' = 1. Next the connection
polynomial is also updated, so A(x) := A*(x) = 1 + x, and the correction polynomial is
changed again, D(x) := xD(x) = x. At the end of this iteration the syndrome element

counter is increased (i == i + 1 = 2). In the next iteration the discrepancy is calculated
1

again: § = sy — Y Aiso—; = 1 — 1 = 0. Consequently, in this iteration we go directly to

step 9 and the fleeldback register length is not changed because sy has been generated
correctly by the feedback register in the current form. In turn, updating of the correction
polynomial is performed, i.e. D(x) := xD(x) = x?2, and the iteration counter is increased
by 1. The reader is encouraged to trace the next iterations of this algorithm, Finally, in
the sixth iteration the following connection polynomial is received

AX)=c’x +x+1 (2.109)

Now the polynomial roots have to be found by substituting subsequent nonzero elements
of Galois field GF (2*) into equation (2.109) and checking if the result is equal to zero. It
turns out that the polynomial roots are a3, !0 and a'%. However, we are interested in their
inverses because the latter, expressed as the powers of the primitive elements, indicate the
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error locations in the received sequence. The calculated root inverses are a'?

5
, o and
o3, respectively. The error polynomial e(x) achieves the form e(x) = x'2 4+ x> + x3. The
final step of the decoder is correcting the errors by performing the following polynomial

calculation
) =r@)+e) =2+ +)+@%+°+xH)=0
As we can see, the final decoder decision is correct.

The example presented above illustrates the process of decoding of a binary code.
However, the Berlekamp-Massey algorithm is often applied for decoding nonbinary BCH
codes, such as Reed-Solomon codes. In the tutorial by Michelson and Levesque (2003)
the example for RS code decoding is presented.

One could wonder why such a complicated decoding method is used. The answer
is simple. If the error correction capability is relatively large (e.g. if six errors can be
corrected) and the codewords are long, then nonalgebraic decoding methods become
too complex. Direct search of the solution of the nonlinear equation set by checking all
nonzero elements of the field G F'(p™) exhausting the set of all possible error combinations
is also too complex. Thus, the Berlekamp-Massey algorithm becomes one of possible
solutions for decoding such codes.

The Berlekamp-Massey algorithm is a classical solution of the BCH code decoding. In
recent years many new soft-decision decoding algorithms have been developed; however,
their presentation is beyond the scope of this introductory chapter.

2.8 Convolutional Codes and Their Description

Convolutional codes have become an important class of error correction codes owing to
their simplicity, high coding gains and an effective decoding method invented by Viterbi
(1967). Nowadays the convolutional codes are often applied as channel codes in digital
communication systems. These codes can be found in digital TV broadcasting, cellular
GSM radio systems, cellular spread spectrum systems (such as cdmaOne, cdma2000 and
UMTS), wireless local area networks (WLANSs) and others.

Considering code classification, we mentioned that a convolutional code encoder is a
finite state machine featuring a certain number of memory cells and generating the output
sequence depending on the input sequence and the current contents of the memory cells.
Below we present a few approaches for describing convolutional codes that clearly result
from the above observation.

2.8.1 Convolutional Code Description

There exist a few ways to describe convolutional codes. The simplest one is to present the
encoder scheme. Figure 2.17a shows an exemplary encoder, featuring two memory cells,
of the code with the code rate R = 1/3. For each information bit supplied to the encoder
input, three output bits are generated. Each of them appears in each one-third of the input
bit duration. The first bit is the input bit, the second bit is a modulo-2 sum of the current
input bit and the one delayed by two time instants, and the third bit is a modulo-2 sum
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Figure 2.17 Example of the convolutional encoder (a), its trellis diagram (b) and an example of
the path on the trellis diagram implied by a specific message sequence (c)

of the current input bit, the preceding bit and the bit delayed by two time instants. The
number of input bits that participate in the generation of the output bits determines the
size of encoder memory and is called the constraint length of a code. It is often denoted
by L. An encoder, as in the case of block codes, is frequently described by defining its
generator polynomials. For the encoder shown in Figure 2.17a these polynomials have
the form

g =1 g =1+x> g&)=1+x+x (2.110)
Let us write the input sequence in the polynomial form
b(x) = bo + bix + box® + b3x’ + ... @2.111)

As we can see, for convolutional codes the input sequence can be infinitely long, although
in practical systems its length results from the higher layer system structures, e.g. the
information frame length. The polynomials describing the outputs of subsequent encoder
branches are

wi(x) =bx)g1(x) wax) =bx)g(x) w3(x)=>b(x)g3(x) (2.112)

Then it is clear that the branch output signals are convolutions of the input sequence
and the binary sequences determined by the taps of each encoder branch, which at the
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same time can be interpreted as binary impulse responses of each encoder branch. Next,
the branch output signals are multiplexed, so the joint binary impulse response can be
determined for the encoder. This response can be easily generated, feeding the encoder
input with the sequence (1000000 ...) and observing the encoder output. It can be easily
verified that for the considered encoder the impulse response is

h = (111001 011 000 000...)

Let us note that equations (2.112), which determine the output signals, indicate that the
encoder is a linear system, i.e. the superposition principle holds for it. For that reason,
based on the encoder impulse response the generator matrix can be constructed for the
considered code. This matrix consists of rows, each of which is a replica of the one
directly above it, shifted by three positions to the right. The first row exactly describes
the encoder impulse response. For the considered code the generator matrix has the form

111 001 011 000 000
000 111 001 011 000 000 ... ...
G =| 000 000 111 001 011 000 00O ... (2.113)

As we can see, the generator matrix is infinite, which corresponds to infinitely long input
sequences. It would be a regular matrix if finite input sequences were considered. A
codeword generated by the considered encoder fulfills the expression

' =blG (2.114)

where b is the vector of a message block, possibly infinitely long, and ¢ is a codeword.

It is worth mentioning that polynomial description is only one possible description of
the encoder structure. An equivalent description is based on binary vectors assigned to
each output branch for which the presence of the tap in a given branch is denoted by a
binary “1”. In such notation the considered code is determined by the vectors

g =[100] g =[101] g3 =[111] (2.115)

In turn, in convolutional code tables often found in books on coding theory one can find
encoder description in which the tap vectors are presented in an octal form. Thus, our
code would be denoted by the triple (4,5, 7).

Figure 2.18 presents an example of another convolutional code. This code is applied in
the American cellular system conforming to the ANSI standard IS-95. It has the code rate
R = 1/2 and the constraint length L = 9, and the generator polynomials are given by

g1ix)=14+x +x4+ 3+ + a8
) =1+x2+x3 +x*+ a8 (2.116)
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Figure 2.18 Convolutional code encoder applied in the IS-95 cellular telephony (cdmaOne)

In binary notation they are
g =[111101011] g, =[101110001] (2.117)

whereas in octal notation the code is denoted as (753, 561).

Let us analyze Figure 2.17b, which shows a trellis diagram for the encoder shown in
Figure 2.17a. A trellis diagram is a kind of state diagram, which is a convenient tool
for description of finite state machines. A trellis diagram differs from the state diagram
in the presentation of the encoder. The trellis diagram presents the encoder (automaton)
operation between the nth and (n + 1)st moment. The encoder states are determined by
the contents of its memory cells and are denoted by characters a, b, ¢ and d. So, state a is
related to zeros in both memory cells, state b is related to zero in the first cell and 1 in the
second cell, state ¢ to 1 in the first cell and zero in the second cell, and finally state d to
“1”’s in both memory cells. For each trellis state at the nth moment there are paths to the
selected states at the (n 4 1)st moment. If these paths result from the zero symbol given
to the encoder input they are denoted by a vector with a solid line, otherwise a dashed
line is used. The path vectors are accompanied by the encoder output symbols above
them. Figure 2.17c presents a whole route on the trellis diagram passed by the encoder
as a result of a certain input symbol sequence. This route is uniquely associated with
the message sequence. Let us note that the decoding task can be interpreted as finding a
route on the trellis diagram passed by the encoder that has been caused by a given input
sequence. Finding this route is equivalent to the determination of the message sequence
the decoder is looking for.

There exists another equivalent means of graphical presentation of the encoder oper-
ation, the so-called code tree diagram. The code tree diagram for the considered code
is presented in Figure 2.19 and has been created in the following way. The tree grows
from a root related to the initial moment and the zero encoder state. A branch growing in
the upper direction corresponds to the zero symbol given to the encoder input, whereas a
branch growing in the lower direction reflects the symbol 1 at the encoder input. At sub-
sequent moments the tree diagram illustrating all possible input symbol sequences grows
in upper and lower directions. The current encoder state is denoted under each branch,
whereas the output sequence generated at this moment is denoted above that branch. A
characteristic feature of a tree diagram is the recurrence of its blocks. The size of these
repeatable blocks depends on the encoder memory, i.e. on the number of possible encoder
states. Supplying the encoder with a certain input symbol sequence results in a certain
route along the branches of the tree diagram. Similarly to the case when a trellis diagram
is used, decoding of the received sequence can be interpreted as finding the most likely
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Figure 2.19 Tree diagram for the code shown in Figure 2.17

route on the tree diagram. There exist algorithms of convolutional code decoding in which
the above rule is applied.

2.8.2 Code Transfer Function

A code transfer function is a very useful tool in investigation of the properties of a
given code and evaluation of its decoding error rate. If a code is linear then, similarly
as for block codes, its properties, in particular the minimum distance, can be found
by considering transmission of the zero codeword and testing how much the received
sequence differs from it. In order to derive the code transfer function we apply a traditional
state diagram. Figure 2.20a presents a state diagram of the code shown in Figure 2.17.
Its form is equivalent to the trellis diagram. Figure 2.20b shows, in turn, the modified
state diagram in which the state a related to zeros in the encoder memory cells is split
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into two states, @ and e. Assuming the transmission of the zero codeword, the encoder
does not leave state a, performing a loop on the state diagram that begins and ends in
state a. On the basis of the received sequence the decoder should track the state sequence
and decide that the encoder remained all the time in state a. However, due to channel
distortions the received sequence can differ from the all-zero sequence and the decoder
can make wrong decisions. The splitting of state a into two states, a and e, allows
tracking of a possible divergence from the correct state a and merging with it again
after a few time instants to reach state e. The modified diagram shown in Figure 2.20
can be treated as a graph with the nodes determined by possible encoder states that are
connected by the branches with appropriately selected transfer functions, as in electrical
circuit analysis. A branch transfer function may consist of three symbols: J, N and
D raised to appropriate powers. Symbol J appears in each branch. It is introduced to
enable calculation of the number of steps in which diverging from and subsequently
merging the all-zero route (or approaching state a) is possible. Symbol N is placed in
the transfer function of those branches that result from feeding an information symbol 1
to the encoder input. The power of symbol D is, in turn, determined by the Hamming
weight of the codeword associated with the path between two states. For example, transfer
between state a and state ¢ results from giving a single 1 to the encoder input (symbol
N appears in the branch transfer function) and generation of the output sequence 111,
whose Hamming weight is equal to 3. Consequently, this branch transfer function is
JND?.

A transfer function is meant as a transmittance between nodes a and e. Denoting it as
T(D,N,J), we have

X
T(D,N,J)==-% (2.118)
X,

where X, is a signal seen in node ¢ and X, is a signal given to node a. We can determine
the equation describing signals in each state. Thus, for the considered code we receive

(b)

JD? e

v

101

Figure 2.20 State diagram (a) and diagram used for derivation of the transfer function for the
code shown in Figure 2.17 (b)
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the following equation set

X.=JND*X, + JNDX,

Xp,=JDX . +JDX,

X, =JND?X,+ JND*X,

X, = JD*X, (2.119)
The transfer function 7(D, N, J) can be determined from these equations in a traditional

way or using the Mason rule (known from the circuit theory). The solution, using any of
these methods, leads to the following formula

J3NDO

T(D,N,J) =
1— JNDX(1 + J)

(2.120)

Let us note that the transfer function has a form similar to the infinite sum of a geometrical
series ag, apq, a0q2, a0q3, ... that is described by the formula

ao

= (2.121)
l—gq

In our case ay = JND®, and ¢ = JND?(1 + J). Therefore the transfer function may
be expressed as a sum of infinite geometrical series

T(D,N,J)=J>ND®+ J*N’D® + J°’N?>D? + J5N3D'"
+2J°N3DY + JIN3DYO 4 ... (2.122)

Let us interpret the derived formula. The subsequent components of the series expansion
are related to the given paths diverging from the all-zero route and merging with it again
later. The first expansion component is associated with the route performed in three cycles
J 3), which, if selected by the decoder, would be associated with a single “1” in the
decided information sequence (N), whereas the Hamming distance of the zero path and
the code sequence associated with this route, i.e. between states a and e, would be dy = 6
(D®). We say that the code has a free distance die. = 6. Analysis of the trellis diagram in
Figure 2.17c indicates that this component is related to the path (a, ¢, b, a = ¢). Consider
now the second expansion term equal to J*N2D3. The path diverging from the all-zero
path and merging with it again is performed in four cycles. It would be associated with
two “1”s in the decided sequence if this path were selected by the decoder. The Hamming
weight of the decided code sequence would be equal to 8. We can easily show that this
route is determined by the sequence of states (a, c,d, b,a = e).

Let us note that the transfer function in the series expansion form allows us to inspect
the code weighting structure and indirectly helps us to determine one of the most important
code parameters, i.e. the free distance dge.. In the case of the considered code the free
distance is equal to 6 and there is only a single path diverging from and merging with
the all-zero path with such weight. The higher the number of minimum weight paths, the
higher the mean error probability of the decoder. The maximum likelihood decoder will
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select a wrong nonzero path of the lowest weight if at least three errors occur in appropriate
positions within the fragment of the code sequence of length 9 bits corresponding to three
cycles of the input signals.

2.8.3 Convolutional Codes with Rate k/n

The code that we used in our considerations was characterized by the code rate R = 1/n,
where n = 3. Transmission systems often require other code rates. In general, we are
interested in application of a convolutional code of the code rate R = k/n. There are two
method of achieving codes with such a code rate. The first one is a construction of such
an encoder that accepts k new information bits in each clock cycle with simultaneous
generation of n bits of a code sequence. An example of such an approach is shown in
Figure 2.21. The encoder with the code rate R = 2/3 has two parallel delay lines storing
a pair of information bits. In each cycle n = 3 code sequence bits are generated. Let us
note that at the ith moment the encoder can evolve from each state of the trellis diagram
to one of four states at the (i + 1)st moment.

(a) (b)

nth moment (n+1)st moment

b4
@

3

54
=
N,

Figure 2.21 Scheme of the convolutional code encoder of the code rate R = 2/3 (a) and the
associated trellis diagram (b)

The second approach is known as code puncturing. It relies on skipping some selected
code bits according to the prescribed pattern. This method is often applied if the system
requirements strongly depend on the channel conditions or if there is a long list of required
data rates and several levels of decoding quality. Figure 2.22a presents the scheme of the
so-called RCPC (Rate Compatible Punctured Convolutional Code) encoder with the code
rate R = 4/5. Its core is a regular convolutional code encoder with the code rate R = 1/2.
Some bits produced by the RCPC encoder are periodically omitted, which is reflected in
the puncturing table of the following form

1 1 1 0
az[l 0 o 1} (2.123)
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Figure 2.22 RCPC encoder of the code rate R = 4/5 with exemplary input and output sequences
for the puncturing table given by (2.123) (a) and the corresponding trellis diagram (b)

The symbol 1 in table a denotes a transfer of the R = 1/2 encoder output bit to the
RCPC encoder output, whereas the symbol O indicates that the bit generated by the
R = 1/2 encoder is omitted. So for every four encoder input bits there are five RCPC
encoder output bits and we conclude that the code rate is R = 4/5. Figure 2.22a also
presents the response of the RCPC encoder to the specific information input sequence.
The advantage of bit puncturing is the application of a single encoder with the code
rate R = 1/n supplemented with an easily modifiable puncturing table. Figure 2.22b,
in turn, shows the trellis diagram of the code modified by the appropriate puncturing.
The punctured bits have been denoted by X. Let us note that the number of trellis
chain elements shown in the trellis diagram must match the number of columns in the
puncturing table. As each column of the puncturing table reflects one encoder cycle, the
operation of the encoder repeats after the number of cycles, which is equal to the number
of columns in a.

2.9 Convolutional Code Decoding

There are several known methods of convolutional code decoding. The oldest ones are
similar to some block code decoding methods applying a syndrome. However, convolu-
tional codes gained popularity partially due to an efficient decoding algorithm invented
by Viterbi. This performs maximum likelihood decoding both in hard- and soft-decision
versions.

2.9.1 Viterbi Algorithm

Decoding of convolutional codes is historically the first application of the Viterbi algo-
rithm. Other applications of this algorithm will be discussed in Chapters 3 and 6. The
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Viterbi algorithm was first published in 1967 (Viterbi 1967). As we have mentioned, it
implements maximum likelihood decoding. We have shown in the previous chapter that
for hard-decision decoding this criterion reduces to selection of the codeword that is the
closest in the Hamming distance sense to the received sequence. If the distance between
two blocks of the same length is defined in another way, soft-decision decoding is realized.
Comparison of the received sequence with all possible codewords of the same length and
finding the closest one becomes infeasible already at moderate sequence lengths. Thus,
there is a need for a method that will do it in an effective way, e.g. by using in the
current comparisons the results of comparisons of those parts of the codewords with the
appropriate parts of the received sequence obtained previously. Let us note that selection
of the optimum codeword performed by the maximum likelihood decoder is equivalent
to finding the sequence of states in which the convolutional code encoder subsequently
resided while generating this codeword. The algorithm is based on the following core
observation: The shortest route at the nth moment (in the sense of the selected metric
measuring the distance between the received sequence and the hypothetical codeword) to
the appropriate state (e.g. the kth one) consists of the shortest path to one of the states
(e.g. the jth) at the (n — 1)st moment (called a survivor) and the path from this state to
the considered state at the nth moment. Consequently, each route to the considered kth
state from the jth state that does not contain the shortest route to the jth state at the
(n — 1)st moment will feature a higher metric, so it will not be optimal. The following
fundamental conclusion results from the above observation.

Conclusion 2.9.1 [f at the nth moment the shortest routes (called survivors) to each of
the trellis states are known, then the shortest route to each trellis state at the (n + 1)st
moment can be determined by searching for the path to the currently considered state from
one of the states at the previous moment, for which the sum of the state survivor metric
at the previous moment and the path metric from that state at the previous moment to the
currently considered state is minimum.

Thus, searching for the sequence of states on the trellis diagram that is associated with
the codeword closest to the received sequence is a recurrent process in which the results
obtained at the previous time instant are used in the next time instants. Consequently the
algorithm is computationally efficient and the number of operations depends linearly on
the codeword length. However, it strongly depends on the number of trellis states.

The Viterbi algorithm can be divided into two phases. The first one is its initialization
and lasts until the time instant in which the metrics of the paths to all trellis states are
determined. Assuming the convolutional code of the constraint length equal to L, the
initialization phase lasts for L — 1 algorithm cycles. At the Lth moment the second phase
starts in which the regular algorithm begins. In this phase, selection of the shortest route
to each trellis state is performed. As we have mentioned, two cases are possible. In the
first one the codeword is finite. Sometimes the generated codeword is appended by the
bit sequence of such length that uniquely determines the final encoder state. Thus, when
decoding the received sequence, the decoder starts and ends its operation in a known
(usually zero) trellis state. In the second case the decoded sequence is so long that it
can be considered as almost infinite. Waiting for decoding of the whole sequence is not
feasible any more and a partial decision upon a part of the decoded sequence is necessary,
along with extension of the shortest routes to each trellis state in each timing instant.
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The Viterbi algorithm for a code of constraint length equal to L and the number of
states equal to 2X~! can be formulated in the following steps:

1. Algorithm initialization at the moments i = 1,2, ..., L — 1. Calculate path metrics
to each trellis state determining the distances between the received sequence and the
codewords associated with the given path on the trellis diagram. As a result of ini-
tialization, unique paths from the initial state at the zero moment to each trellis state
k=1,2,...,2L~! denoted by DkL_l = (Ok, Okys - - - » Ok, _,) are found. Each path is
associated with the accompanied metric MkL_l. The subscript is related to the state
number, whereas the superscipt denotes the current timing instant. In turn, oy, symbol-
izes the state in which the encoder is found at the ith moment when travelling through
the path ending in the kth state at the (L — 1)st moment.

2. Recurrent phase (at the moments i = L, L + 1, ...). Knowing the shortest routes D,i
to each trellis state k = 1, 2, ..., 25! at the ith moment and the metrics M ;( associated
with them, determine the shortest route and the metric associated with it for each trellis
state at the (i + 1)st moment according to the following rule. Let the kth state at the ith
moment be reachable from the states indexed by j; and j; at the (i — 1)st moment. The

shortest route to the kth (k =1, 2, ..., 2L’1) state at the ith moment has the metric
M= min {[Mj.;‘ +d(r;, c,»l,k)] , [Mj.;‘ +d(r;, cjz,k)]} (2.124)

where d(r;, ¢j, ) (m =1,2) denotes the Hamming (or other) distance between the
received sequence r; at the ith moment and the codeword associated with the path on
the trellis diagram between the j,th state at the (i — 1)st moment and the kth state
at the ith moment. The choice of state with the index j = j; or j, from the previous
moment determines the shortest route to the kth state at the ith moment
] SO . _ L1

Dy = (0,,0%,...,05_.0r) fork=12,...,2 (2.125)
The path, described by formula (2.125) containing the sequence of states from
the initial moment to the current one, is uniquely associated with the appropriate
codeword and the information symbol sequence.

It has been noticed that the shortest routes to all trellis states starting in the zero timing
instant are common, with the probability close to unity up to the moment delayed by 3L
to 5L timing instants, as compared with the current timing instant. Therefore, producing
finite decisions upon the partially decoded sequence is possible with such a delay. It is
a particularly important observation in the case of long codewords. For such codewords
waiting for their end would require an unacceptably long delay. The delay in obtaining
the final decision from the decoder is called a decoding depth.

Consider the operation of the Viterbi decoder on the example of the code shown in
Figure 2.17a. Figure 2.23 presents the trellis diagram achieved as a result of the algorithm
operation after three different numbers of decoder cycles. Figure 2.23a shows the end of
the initialization phase. Each state diagram can be reached by only one route from the
initial state. The path metric is the Hamming distance between the received sequence
and the codeword associated with the given route finishing at the appropriate state. The
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Figure 2.23 Searching for the shortest routes for the states at the nth moment after two cycles

(a), five cycles (b) and ten cycles (c)

recurrent phase of the algorithm starts in the third timing instant. From this moment the
selection of the shortest route to each trellis state is performed. As an example, let us
consider determining the shortest routes to each state in the third timing instant. After
finishing the initialization phase we have the following metrics

M}=2, M}=4, M;=1, M;=5

and corresponding sequences of states indicating the routes to each state are

D12 =(a,a,a), D% =(a,c,b), D% =(a,a,c), Di =(a,c,d)
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At the third moment a sequence r3 = (010) has been received. Let us start from selection
of the shortest route to state a. It is possible to achieve it from states a or b. The path
from state a to state a at the next moment is associated with the code sequence 000,
whereas the path from state b to a results in the code sequence O11. As a result, the
Hamming distances between the candidate code sequences and the received sequence are,
respectively,

d(r3, cqs4) =d(010,000) =1 d(r3, ¢pq) =d(010,011) =1
Thus, the minimum cost of approaching the state a at the third cycle is
M} = min {[M} +d(rs, ca)], [M5 +d(x3, ¢0)]}

=min[(Z+1), 4+ D] =3

The shortest route to state a in the third timing instant leads through state a from the
second timing instant, so

D% =(a,a,a,a)
Performing similar steps for the remaining states, we receive
3 3 3 3
M =3, Mjy=3, Mjy=4 M;=2
and
Df =(a,a,a,a), D;’ =(a,a,c,b), Dg =(a,a,a,c), DZ =(a,a,c,d)

In each timing instant similar calculations to those shown above are performed.
Figure 2.23c presents the result of the Viterbi algorithm operation after ten cycles. We
can find the route featuring the lowest metric at the final moment. It has been denoted
by an envelope drawn with dashed lines. If only 30bits were transmitted, then the code
sequence associated with this route would be the decoder decision upon the transmitted
codeword and information sequence.

The Viterbi algorithm shown above performs hard-decision decoding. Let us recall,
however, that in current digital communication systems mostly soft-decision decoding is
applied. In the simplest version, binary sequences at the decoder input are replaced by
the samples (e.g. 8-level) of the received symbols. The operation of the Viterbi algorithm
differs from that shown above only in definition of the applied distance. It can be a
Euclidean distance or another distance, e.g. that expressed by formula (2.10).

A convolutional code is often used as an inner code in a coding system in which two
codes are applied in a cascade. To enable applying soft-decision decoding in an outer
code the convolutional code decoder should not only generate binary decisions but also
provide the measure of their reliability. The algorithm that supplies both values is called
the SOVA (Soft-Output Viterbi Algorithm) (Hagenauer and Hoeher 1989) and will be the
subject of our considerations in the next section.
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The Viterbi algorithm has a very regular structure, which makes it very attractive for
hardware implementation. Many operations can be performed in parallel, which results in
a high decoding speed. For example, each state can be served by a separate circuit that cal-
culates the metrics of the routes leading to it and by selecting the shortest one among them.

The Viterbi algorithm is not the only algorithm for convolutional code decoding,
although it is certainly the most popular. The Fano algorithm is another famous algo-
rithm. Similarly to the Viterbi algorithm, it finds the optimal code sequence analyzing the
sequence of the hypothetical encoder states, so it belongs to the sequential algorithms.
However, unlike the Viterbi algorithm, the basis for the search for the state sequence is a
code tree diagram. In general, the algorithm measures the distance between the received
sequence and the code sequence associated with the given route on the code tree along
which the algorithm “moves”. In each cycle the route is extended along a single tree
branch only. It is done as long as the distance between the associated codeword and the
received sequence does not exceed a predetermined threshold value. If the threshold value
is reached, the algorithm goes a few steps back and tries to select another route. Thus,
the delay introduced by the Fano algorithm is random. If the symbol error probability is
low, the event of going back and selecting a new route is rare. However, the randomness
of the decoding delay is a disadvantage of this algorithm.

If the number of encoder states grows, the Viterbi algorithm becomes so complicated
that suboptimal solutions must be sought. The number of required calculations stays
under control at the expense of a certain loss in the decoding performance. Suboptimal
algorithms are commonly used when the Viterbi algorithm is used to detect the signals
corrupted by intersymbol interference. This problem will be discussed further in Chapter 6.

2.9.2  Soft-Output Viterbi Algorithm (SOVA)

As we remember, the regular Viterbi algorithm decides about the transmitted codeword
upon the received sequence by using the maximum likelihood criterion. Our considerations
on the SOVA will be presented in a wider perspective using the Maximum a Posteriori
(MAP) criterion applied in the decision process for the whole received sequences. As in
the regular Viterbi algorithm, the algorithm will find the optimal codeword but, unlike
the latter, possibly unequal probabilities of the codewords are taken into account as well.
Equivalently, unequal probabilities of particular message sequences influence the decoder
operation.

Assume the channel model shown in Figure 1.19a. Thus, the codeword c"1 transmitted
from the initial moment up to the ith time unit is represented by a bipolar sequence d
that, in the case of the convolutional code of code rate R = 1/n, has the form

d =, dy,...,d) (2.126)

The jth vector element in (2.126) is a vector of bipolar symbols characterizing the code-
word generated in the jth time unit

de(djyl,dj)z,...,dj,n), dj’kzi\/EC, j=1,...,i, k=1,...,l’l (2127)
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where E. is the signal energy per single code symbol. Let d; ; = —JVE;if c ik =0 and
let djx = V/E¢ if cjx = 1. Let us also note that assuming a particular initial state of the
encoder, both the codeword c‘i and its bipolar version d’i are uniquely associated with the
message sequence

m| = (my,m,...,m) (2.128)

The transmitted vector di1 is subject to disturbance by additive white Gaussian noise, so
at the decoder input it has the form

ri=(r;, ..., 1) (2.129)
where
r/=(rj71,rj,2,...,rj,,,), rj,kzdj,k+vj,ka j=1,...,1, k=1,...,n (2.130)

and v; ; is a white Gaussian noise sample added to the kth element of the bipolar codeword
symbol in the jth time unit. As the Gaussian noise source is white, any different noise
samples are statistically independent. Let us now formulate the MAP criterion for finding
the codeword ¢; on the basis of the received sequence r] or, equivalently, finding the
sequence d’l, both uniquely associated with the transmitted message sequence m). The
codeword ¢} opt OF its bipolar version d1 opt is searched according to the MAP criterion,
which results from the maximized a posterzori probability

Lopt = argmaxP(d Ir}) (2.131)

Recalling Bayes’ formula, we have

d)H)pr
10pt = argmaxP(d ') = arg max M
dy (rl)
_ argmaxp(l‘ Id )P(dl) = argmaxp(r Id’])P(m’i) (2.132)
& @

We have used the observation that the denominator in Bayes’ formula is common for all
possible bipolar codewords dil, so it does not influence the choice of the best codeword.
We also applied the fact that the probability of the codeword d is equal to the probability
of the message sequence m. Instead of comparing the probabilities we can compare their
logarithms, so the MAP criterion evolves to the form

d ,, = argmaxIn p(r}|d})P(mj) (2.133)
cll
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Let us consider the term that is the subject of maximization in detail. Because noise
samples are statistically independent, we can write this term in the form

In p(ri|d)Pmi) =] [ parld)Pim)
=1

=In]] {Hp(n,udz,k)} P(my) (2.134)

=1 Lk=1

The inner product reflects the conditional probabilities of particular n samples received
within the /th timing instant. We have assumed in (2.134) that subsequent message
symbols m; are statistically independent, although their probabilities can have different
values. For our convenience we recall the formula describing the conditional probability
p(r1.kld; ) for the white Gaussian noise channel, which is described by the expression

1
2o

where o2 is the noise variance. We will prove in Chapter 3 that for the white Gaussian
noise channel and the optimum receiver o> = Ny/2 (where Ny/2 is the power spectral
density of additive white Gaussian noise on the receiver input). After substituting (2.135)
in (2.134) we receive

1
p(rixldig) = exp[—p(n,k—d,,k)z] I=1,...,i, k=1,...,n (2.135)

o . 1\
In p(r|d)P(m) = In ( )
plrd; 1 \/EO’

i 1 n
+ |:Z { |:_Fk2(’"l,k - dl,k)2:| +1In P(Mz)} (2.136)
=1

=1

The first term of the right-hand side in (2.136) does not depend on the searched codeword.
It linearly grows with the length of the codeword, so it does not influence the maximized
logarithm of the probability p(ri1 |d"1)P(m"1) and can be omitted. Thus, we can write
(2.133) in a new form

di

| opt = argmaxIn p(ri|dj)P(mj)
dl

1

= arg max <Z { {_ﬁz(”vk — dz,k)2i| + In P(ml)}> (2.137)
k=1

i
a4\

Maximization of the term in curly brackets is equivalent to minimization of the sum of
terms that consist of the squared errors between the received sample r; ; and the bipolar
symbol d; ; of a hypothetical codeword and the logarithms of the message probabilities
m; (I =1,...,1). Let us note that the noise variance is used in the minimization process
and it influences its result. If probabilities of all message symbols are equal, then their
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logarithms do not influence the choice of the decoded codeword and can be omitted.
Consequently, the criterion reduces to the well-known result considered in the previous
section
i n
di o = arg n;li.nZZ(n,k —diy)? (2.138)
1 i=1k=1

However, let us come back to the more general case shown in (2.137). Expanding the
squared errors in square brackets, we have

i

1 n
> { [_PZ(”J( - dl,k)2:| +1In P(ml)}
k=1

=1

1 n
1
= Z { {—ﬁzo’ﬁk — 2r1di i + dlz,k):| +In P(mz)}

=1 k=1

[ 2 R
= Z { [_F;(”’k +di) + ;Zrz,kdl,ki| +In P(ml)}

=1 = k=1

i n
=> |:C, +LyY rixd+1n P(m,)] (2.139)

=1 k=1

where
1 n 5 5
Cl 202 kE l(rl’k + dl,k) (2140)

is a common term in all possible codewords and does not influence the choice of the
decoded codeword. Denote L, = 1/02. In consequence, the criterion achieves the sim-
plified form

i n
dj ., = argmax {Z [varl,kdl,k +1In P(m,)] } (2.141)

1
4 = k=1

Let us now assume that the message symbols are bipolar as well. Without changing
the decoder decision we can add a certain value dependent on the current time index [/ to
each term summed in subsequent time units, i.e. instead of L, ZZ:I 7 xdp g +1n P(my)
we write

n
2Lv2r,,kdl,k +2InP(m;) — InPr{m; = 1} — InPr{m; = —1}
k=1

n
= LLZVz,kdl,k + myA(my) (2.142)
k=1
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where L/, = 2/(72 and A(m;) is the log-likelihood ratio (LLR) of the symbol my, i.e.

_ Pr {ml = 1}
A(m;) =In — (2.143)

In deriving (2.142) we used the observation that

2In P(m;) — InPr{m; =1} — InPr{m; = —1}
InPr{m; =1} —InPr{m; = —1} if m; =1

= =m;A(my) (2.144)
InPr{m; =—1} —InPr{m; =1} if m; = —1
Finally, the criterion achieves the useful form
Lopt = ATE max [M(x)|d)] (2.145)
1
where
i n
M(rj|d) =" [L;Zr,,kdz,k + mlA(ml)j| (2.146)
=1 k=1

is a maximized metric. Searching for the best codeword reduces to finding such a code-
word (or message sequence) for which the accumulated sum of the cross-correlation
between the received samples and the hypothetical codewords in bipolar form weighted
by L/, and the LLRs of the hypothetical message symbols weighted by their bipolar val-
ues is maximized. Let us note that metric (2.146) can be calculated recurrently using the
formula

n
M(xy|d}) = M AT + L) ridiac+ miAm;) (2.147)
k=1

The Viterbi algorithm calculates the metric M (r"1 |d"1) for each trellis state in each time unit,
trying to determine the survival path to each trellis state s; (j = 1,...,2E7"). Consider
such a calculation for the jth state at the ith moment. Let this state be accessible from
states /; and [, from the previous moment. Denote the survival path metrics for states /;
as My, (ri"!|di™") and My, (r7'di™"), respectively, and the metrics associated with the
paths between the pairs of states (s;,, s;) and (s;,, s;) as

n

dxi, sy, 5) = LY rigd 3 + om0 A [l ] (2.148)
k=1
and
n . . .
dxi,s5,5) = LY rigd 3+ mD A [l (2.149)

k=1
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where di(l,i’j ) and di(l,z’j ) are the bipolar codeword sequences associated with the path
between pairs of states (s;,, s;) and (s, s;), respectively, whereas mgll” ) and ml(.l“ ) are
the message symbols associated with these paths. Thus, for each trellis state s; at the ith

moment the decoder selects the path for which the following expression holds

i (qi\{1eJ i (qi\{27
e {Mll,j [r1| (dl)(1 j)] s M, [r1| (dl)(2 j)]} (2.150)
1,62

where
M [ @) "7] = M, 07167 + d )

i N i—1) qi—
My [¥11 (@) 7] = Myl 10 + dei, s,05)

NGW; NCH . .
The vectors (d’l)( b7 and (a )( 27) denote the codewords associated with the paths reach-
ing state s; through states s;, and s;,, respectively, and the new survival path metric for
the state s; is

- : NG i i\(2.))
;1) = max { vy, [y ()] [ ()] (2.151)
1,02

The above procedure is illustrated in Figure 2.24. We still need to assign a certain
measure of reliability to the decision upon the path selection. This is necessary for gen-
eration of a soft decoder output for each message element. It is intuitively clear that if
the candidate metrics M, j(r‘i|d’i) and M, j(r"l|d"1) do not differ much, then selection
of the correct path is unreliable, whereas when there is a large difference between them,
the probability of selecting a wrong path is low. In this context let us choose the measure
of reliability of reaching the state s; as

Aio1(sj) = % {Mluj [r‘il (d'i)(ll’j)] — M, [l"il (d’i)(b’j)]} (2.152)

Received
sequence M1M2M3 l21l22f3 3113233 I411a2la3 151152753 lfe1l62le3 171172173 3178283 l91/92f03
My,4(r9(d9)"")

54 =00 @
52=01 °

sz=10 @

s=110

Figure 2.24 Selection of the survival path for state s; at the ninth moment, accompanied by
calculation of the metric difference Ag(s)
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Let us arbitrarily assume that the correct path is the one that reaches state s; from state
s;, together with its survival path. Then the probability of the correct path selection can
be expressed in the form of the MAP probabilities associated with the candidate paths
reaching state s;; i.e. in the form

(11 )
P.(s;) = [ j ] (2.153)

Pl) ™ ]+ [(d’)(lz Ve
Recalling Bayes’ theorem, we have
p [xil (@) 7] P [mi)@]
p [rl~1| (d"l)(ll’j)] P [m))@i] + P [l.ill (dil)(lz,j)] P [(mi)@0)]

P.(s;) = (2.154)

However, our previous analysis allows us to express the probabilities in such a form that
the probability of selecting the correct path takes the following shape

i i{1.J)
Cexp {%le,j [r1| (dl) 1.J ]}
Cexp {%Mn,/’ [r"ll (dil)Un,j)]} + Cexp {%Mlz,j [ril| (dil)az,j)]}

where the constant C accumulates all the components in the logarithm domain that do
not influence the choice of path [see the first component of (2.136), C; in (2.139) and
(2.140)]. On the other hand, the scaling factor % reverts the influence of multiplication of
the original metric by 2 performed in (2.143) and (2.144). After multiplying the nominator

and denominator of (2.155) by exp {—%M,H [r’i| (d"])(lz’j)]} we obtain

P.(s;) = (2.155)

exp[A;_1(s;)]
exp[A;_1(s;)] +1

Po(s;) = (2.156)

Finally, the log-likelihood ratio or reliability of the path decision concerning reaching
state s; at the ith moment is

In = Ai_l(sj) (2157)

1—P.

It still remains to describe how the reliability of a path decision given by (2.157) is
associated with the hard-decision output of the Viterbi decoder. As we know, the decoder
produces hard decisions /; and the reliabilities associated with them. Recall that we
have assumed that (dil)(l"j) is associated with the correct survival path for state s;. The

codeword (dil)(l"/) is in turn uniquely associated with the message sequence (m)){1+/),
whereas the second competing path is associated with the message sequence (m)(2:/),
The choice of the survival path and the reliability associated with it affects only those
positions in the message sequence in which the candidate sequences are different. The
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calculated reliability becomes important after the initialization phase of the algorithm.
Consider the first moment of the regular phase of the algorithm, which occurs at the
time unit i = L (L is a code constraint length). At this moment the path selection is
performed for the first time for each trellis state and reliabilities A;_(s;) are calculated
for j=1,..., 2L=1 Ag we can see, each state s ; is characterized not only by the path
metric M;(r}|d;) and the state sequence D, as in a regular Viterbi algorithm, but also
by a reliability vector described by the expression

Ry (sj) = [Ri1(s)), Ra(sj), ..., Rp—1(s))] (2.158)
where

AL—I(Sj) if ml(llsj) # ml(lzd)
Ri(s;) = , forl=1,...,L—1 (2.159)
00 if ml(ll,J) — mI(IZaJ)
In this way, the reliability vectors are initialized for each trellis state. In subsequent time
instants of the SOVA recurrent phase, the metrics for each survival paths are updated using
formula (2.151) and the state sequence vectors are updated accordingly. Additionally, the
reliability vectors are modified using the following rule

Riy1(s;) = [Ri(s)), Ra(sj), ..., Ri(s;)] (2.160)
where

min[A;_i(s;), Ri(s;)] it m™ £ m®P
Ri(s;) = _ oL forl=1,....i (2.161)
Ri(s)) if my" = m{>?

As we can see from (2.161), elements of the reliability vector at the (i 4+ 1)st moment
preserve their previous value if two candidate paths have the same message symbol
on the appropriate position. If the message symbols differ, then the minimum of the
currently calculated reliability and of the previous vector entry is selected. The operation
of the algorithm is completed at the end of the received vector. The algorithm produces
the decided message sequence with the attached reliabilities that are the final values of
the reliability vector elements for the state featuring the maximum path metric. In the case
of very long codewords, for which waiting for the processing of the whole sequence of
symbols is infeasible, the appropriately long decoding depth is applied and all processed
vectors are truncated to the selected length.

At the end of our considerations let us note the potential role of the a priori term
m;A(m;) in the metric calculated according to (2.146). If some extra knowledge on
the a priori probabilities of the message symbols is available, then it can be applied
for improving decoding quality as compared with the case in which it is more or less
arbitrarily assumed that Pr{m; = 1} = Pr{m; = —1} regardless of the real values of these
probabilities. This potential improvement ability is utilized in iterative decoding, in which
in each decoding iteration the a priori LLR term A(m;) gets more and more precise.
Iterative decoding is a subject of our considerations in one of the next sections of this
chapter.
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2.9.3 Error Probability Analysis for Convolutional Codes

Consider the problem of decoding of convolutional codes using a hard-decision algorithm,
e.g. the Viterbi algorithm. Let us estimate the probability of error of the information
symbols on the output of the Viterbi algorithm. The code transfer function appears to be
useful for that purpose. Calculate the error probability for the code shown in Figure 2.17a.
As we remember, its transfer function is expressed in the form of an infinite series
presented by formula (2.122). Substitution of J = 1 in it results in the simplified form

T(D,N)=ND®+2N?D® +3N3D'" + ... (2.162)

Knowing that the considered code is linear, assume without loss of generality that an
all-zero codeword has been transmitted. We say that at a given jth moment an error event
has occurred if the all-zero path on the trellis diagram has been eliminated in favor of
another path merging with the all-zero path at that moment. If the decoder has decided to
select the path featuring the Hamming weight wy = 6, then the error event has occurred
if, among six positions in which both paths differ, the received sequence agrees with
the path of weight wy = 6 in four or more positions. Note that errors occurring in the
positions in which both paths do not differ have no influence on the decoder decision, as
they equally increase the distance of the received sequence from codewords associated
with both candidate paths. Let us additionally assume that if errors have occurred exactly
in three positions out of six meaningful positions determined by the incorrect codeword of
weight wy = 6, then the error event occurs with probability 1/2. If a memoryless binary
symmetric channel model is assumed, then binary errors are statistically independent and
their probability is equal to p. As a result, an incorrect codeword will be chosen with the
probability given by the formula

1/6 °\(6) :
Py =3 <3>p3(1 -+ <l.>p’(1 - (2.163)
i=a4

In the general case in which a codeword of weight wy = k is selected instead of the
all-zero codeword, we have

- ky k—i
> (,>p (1—p) for k odd
i=(k+1)/2
P, = (2.164)
k
%(kl/(Z)pk/z(l —p)k? 4 Z (f) pi(1 — p)*= for keven
i=k/2+1

The probability of the first error event can be upper-bounded by the sum of probabilities
of selection of particular incorrect codewords (paths on the trellis diagram)

o0
PE() < Y LiPk (2.165)
k:dfree
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where L; is the number of codewords of weight wy = k. Analysis of (2.162) for our
code indicates that Lg =1, L7 =0, Lg =2, Lg =0, Ly = 3, etc. The bound shown in
(2.165) does not depend on any particular moment j, therefore formula (2.165) can be
presented in the form

o0
Pp < Y LyP (2.166)
k:dfree

The formulae describing the probabilities P, can be upper-bounded as follows.
For k odd we have

k k

K\ . . k\ « k
P = i1 _ k=i L 4
= > (i)” a-p< > (l.)pz(l p)?
i=(k+1)/2 i=(k+1)/2
k k k k k L [k k k
k k k k kK k
= 2 — — — —
pra=p? ) (l.)<pz(1 p)zZ(i) 2pil—p)? (2167
i=(k+1)/2 i=0
The last equality sign in (2.167) results from the fact that
k
2 ;)=
i—o

In turn, for an even value of k we have

P—1<k> 2(1—p)? + Xk: (k> ‘(1= p)k
e=30k)? p )prd=p

i=k/2+1
k k
ky k—i k\ & K
<) <i>1’ A=pfi<> (l.>p2<1—p>z
i—k/2 i=k/2
k k k k k k
<P2(1—p)22(,) =2k p2(1 - p)> (2.168)
izo \

Therefore

Pe< Y L [2 (1 — p)]k — T(D) (2.169)

k:dfree

D=2/5T=p)

For small values of probability p the sum (2.169) is dominated by its first component
and then we have

dfree
Pp =~ Ly, [2 P — p)] " o Ly e pliee/2 (2.170)
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Each error event that is interpreted as diverging from and merging with the all-zero
codeword implies at least one error in the decoded message sequence. On the basis of
the estimated probability of an error event we are able to evaluate the error probability
for message bits on the decoder output. As we remember, the number of “1”s in the
message sequence resulting from selection of the path different from the all-zero path
can be deduced from the code transfer function 7 (D, N, J). This number is in fact a
power of variable N in each component of the series expansion of this function. Each
such component characterizes a certain path different from the all-zero path. For a given
error event a number of incorrectly decoded message symbols can be estimated as the
weighted sum of probabilities Py of selection of the route on the trellis diagram with the
weight k, where the weights are numbers Bj of message symbol errors resulting from
the selection of a given route, i.e.

o0
P, < Z By Py (2.171)
k:dfree

We have already shown that probability P, can be upper-bounded using the formula

po< 2o p)]

Notice also that when we calculate the derivative of the code transfer function 7(D, N)
in the series expansion form with respect to N and we substitute N = 1, we receive the
sum from formula (2.171). Namely, we have from (2.162)

dT (D, N)

N DS +4ND¥ +9N?D'"0 + ... (2.172)

Substituting N = 1 and D = 24/p(1 — p) in (2.172), we obtain

3T (D, N)

2.173
oN ( )

b <

N=1,D=2/p(I=p)

For small values of a single codeword bit error probability p, the sum (2.173) is dom-
inated by its first component. Then the probability of a single message symbol can be
approximated by the formula

dfree

Py~ By, [2 (1= p)] ~ By, 2 plie/? (2.174)

For the considered code we have By,,, = Bg = 1, which for p = 0.01 results in the
message error bit probability equal to about 6.4 x 107>, For small values of binary error
probabilities the shortest error events dominate. These events, in turn, cause single errors
in decoded message sequences.

One can show that due to hard-decision Viterbi decoding and application of bipolar
modulatigg (see Chapter 3) the asymptotic coding gain expressed in decibels is about
101logy =5"=.
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Let us extend our considerations on decoding performance to the soft-decision decoding
implemented by the soft-input Viterbi algorithm. We will apply our results to the SOVA
presented in the previous section. Let us again assume that all message symbols are
statistically independent and equiprobable. Thus, the LLR function of the message symbols
A(m)( =1,2,...,i) is equal to zero and does not influence the metric values. The
Viterbi algorithm reduces to the application of the maximum likelihood decision rule.
Consequently, the coefficient L/, does not have an impact on the choice of the decided
sequence and can be omitted. Using (2.146) we can describe the maximized metric by
the formula

i n
M) =Y ridi (2.175)

=1 k=1

Recall that index i denotes the current time instant, 1/n is the coding rate, d; x is a bipolar
code symbol in the ith time unit appearing in the kth position of the codeword and r; x is
the additive Gaussian noise channel output when d; ; is given to the channel input, i.e.,
r1x = dix + vi k. As previously, consider the probability of the error event for diverging
from and then merging with the all-zero path at the ith moment. Counting time units
starting from the moment of divergence from the all-zero path, the metric of the all-zero

route, denoted as M© (r"1 |d"1), takes the form (recall that d; ; = —1 for a zero codeword
symbol)
i n in
MO@d) == ==Y rj ri=ru j=k+nl-1),
I=1k=1 j=1
k=1,...,n (2.176)

The decoder will commit an error if an incorrect path different from the all-zero route is
decided. Denote the metric of this path as M (1)(1.11 |d}). Thus, the probability of an error
event Pg is

P =Pr{MVxt|d) > MOl |d)))
=PrMVxt|d) — MO |d)) >0} (2.177)

Let us note that, as in the hard-decision analysis, the result of metric comparison is
influenced only by those positions and signal samples in which codewords associated
with the all-zero and the other candidate path differ. Let them differ in at least d = wy
positions. Thus, the probability of the error event when two paths differ in d positions
can be expressed by the formula

d
Py =Pr{) r; >0} (2.178)
=k
where the set { i, jo, ..., jq} lists all the sample indices in which two candidate codewords

differ. Recall that due to the fact that the all-zero path is the correct one rj, = —v/E. + v},
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where the noise samples are statistically independent Gaussian zero-mean variables. As a
result, the sum Z i_; 7j, 1s a Gaussian random variable whose deterministic component
is equal to —d«/é’ whereas its variance is the sum of variances of each component
rj., i.€. it is equal to do?. The probability distribution function of the random variable
U= Z?:k rj, is then given by the formula

1 (u + d«/EC)z}
U) = ——=¢x [—7 (2.179)
Pv = Jas °F 2do?
Thus, the desired probability of error event P, is
d o0
Py=Pr{) rj >0} = / puw)du (2.180)
Jj=k 0

Let us apply the function Q(x) that describes the area under the tail of the normalized
Gaussian distribution and is often found in the tables. This function is given by the formula

0@x) = rfexp( )dt (2.181)

We can easily show, using appropriate substitutions, that

E.d 2E.
Pi=0|\—]=0 N (2.182)

The meaning of the Q-function is shown in Figure 2.25. As we know, the path differing
in d positions from the all-zero path is not the only one that can appear. The possible
values of d can be found from the code transfer function, which is expressed in the form
of an expansion series. In general, formula (2.166) can be applied as an upper bound of
the probability of an error event resulting in

Pr < Z LyPy = Z L,0 (,/ ) (2.183)

d=dfrec d=dfrec

where, as before, L; denotes the number of paths differing from the all-zero path in d
positions. When the argument x of the Q-function is growing then the function can be
tightly upper-bounded by an exponential function of the form

2
00 < ~exp (—x—)
2 2
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1

' exp(—t3/2)

. /

Figure 2.25 [Illustration of the Q-function

Then, as in (2.169), formula (2.183) reduces to

Z% i T(D)

D=exp[E,/20?] d=dfree

o0
1
Pr < Z LyPy = ED‘Z (2.184)

d=dfree

D:exp[Ec/2c72]

By analogy to (2.173), the message bit error probability can be upper-bounded in the
following way

10T (D, N)

P, <
2 0N

(2.185)

N:l,D:exp[Ec/Zaz]

Finally, for small noise variance the shortest route featuring the Hamming distance from
the all-zero route equal to dg.. dominates and then, as in (2.174), the message bit proba-
bility can be approximated in the following way

1 dfree E c 1 dfree E c
P}) =~ EBdfree exp (— 20_2 ) = EBdfree exp (—TO) (2186)

To end our considerations, let us illustrate the gain of soft-decision decoding over
hard-decision decoding by giving some quantitative examples based on the derived
approximations for high signal-to-noise ratios.

Recall the example of bit error probability for hard-decision decoding when the prob-
ability of a single code symbol is p = 0.01. Using (2.174) and substituting for our code
diree = 6, By, = 1, we again have P paq >~ 6.4 X 1073, As we will learn from Chapter
3, the probability of an error in bipolar transmission for high signal-to-noise ratios is

of [E) ! 1EN 1 E. o157,
= — | >x-expl—=—= ) =zexp|(—— .
P o2 | —29P 7252) T2\ T,
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Substituting (2.187) into (2.186), we have

1 1 EC dffe€ 1 7dfree 1 4 p
Pb,soft =~ EBdfree 5 exXp —E 5 — EBdfreez freep free

Thus, if p =0.01, then P, of = 3.2 x 107!, As we can see, the difference in per-
formance is significant. Let us also inspect the difference in the required E./o? for
a given probability of bit error P, for hard- and soft-decision decoding. Let us stay at
Py hard = Pp soft = 6.4 X 107>, so for hard-decision decoding p = 0.01. Using the approx-
imation applied in (2.187) for hard-decision decoding we have

E,

=—In2p =391=592dB
No

hard

In turn, using (2.186) we obtain

E.
No

1
= In2Pp sore = 1.49 = 1.74 dB

soft dfree

so the gain achieved by application of soft-decision decoding instead of hard-decision
decoding is of the order of 4dB! Let us note that this quantitative result is not very
precise, as only approximations of the bit error probabilities have been applied for both
types of decoding. Typically, we can expect about 2dB gain of soft-decision decoding
over its hard-decision version. Anyway, one can also easily notice that the code-free
distance dgee plays a crucial role in the overall decoding performance.

2.10 Concatenated Coding

Some communication systems require very high transmission quality in terms of low
error probability; however, error detection codes and automatic repetition of erroneous
blocks cannot be applied. Therefore, very strong FEC coding is a must. A good example
is the system applied for communication with very distant space aircraft (deep space
communications), and for transmission of telemetric and control signals for space satellites
travelling towards other planets. Another example in which very high transmission quality
is necessary is broadcasting of DVB (Digital Video Broadcast) signals. Here, efficient
source coding of video and audio signals has been achieved by strong compression of
the digital stream representing both types of signals. As a result, the decompression
process performed by the receiver is very sensitive to binary errors in the compressed
data stream. Thus, the applied FEC code should ensure a very low error probability. As we
know from information theory and the Shannon theorem on channel coding, if the code
rate does not exceed the channel capacity, it is possible to construct an error correcting
code of appropriately large length for which the probability of erroneous decoding of a
codeword can be arbitrarily low. However, very high codeword length would result in high
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Figure 2.26 Scheme of concatenated coding with interleaving

complexity of encoders and a very difficult hardware and algorithmic implementation of
decoders. Moreover, finding good codes of high length is itself a difficult task. Theerfore,
instead of searching for and subsequently applying such codes, Forney (1966) proposed
to construct a channel coding system by concatenation of two codes, an outer code and an
inner code. Both encoders are separated by an interleaver, whereas the related decoders
are separated by a dual block to the interleaver, i.e. by a deinterleaver. The basic scheme
of concatenated coding is shown in Figure 2.26.

Input message blocks denoted as vectors a; are coded in the outer code encoder of the
code rate R = K /N. Codewords c; are obtained. Subsequently, bits of codewords ¢; are
interleaved. As a result, the received output block consists of the input bits whose time
sequence is changed with respect to the input. The resulting binary block constitutes the
input sequence of the inner code encoder with the code rate equal to r = k/n. As we
can see, the code rate of the code concatenation is in fact % The receiver performs the
operations that are dual to those made in the transmitter. Thus, the decoder of the inner
code decides upon the input message sequence on the basis of the sequence corrupted
by the channel and noise. The resulting sequence is a subject of deinterleaving in which
the original time sequence of message bits is recovered. Finally, the outer code decoder
decodes the deinterleaved sequence.

Motivation for application of interleaving is the following. In many practical situations
errors arising in a channel have a bursty character; however the codes are usually designed
to correct independent errors. By reordering bits in the original sequence, the deinterleaver
disrupts error bursts created in the channel. The errors become quasi-statistically inde-
pendent. This in turn makes it possible to utilize the full correction capabilities of the
applied code.

So far we have considered the so-called serial concatenation, in which a codeword
of the outer code is a message sequence of the inner code. However, there also exists
parallel concatenated coding which has been applied in turbo-codes. Turbo codes will be
considered in detail later on. The interleaver applied in the encoder plays a crucial role
in achieving a high quality of turbo code decoding.

Let us focus on basic structures of the interleaver and deinterleaver. In general, we
differentiate between a block interleaver and a convolutional interleaver. A basic scheme
of a block interleaver and deinterleaver is shown in Figure 2.27. The interleaver consists
of a memory block, presented symbolically as a matrix, featuring a certain number of rows
and columns. Bits, or generally symbols, are written horizontally in subsequent rows, and
they are read vertically from subsequent columns. In the receiver, the incoming data are
written into the deinterleaver matrix in the vertical direction and are read in the horizontal
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Figure 2.27 Scheme of block interleaver and deinterleaver

direction. Burst errors recorded one after the other in the columns of the deinterleaver are
spread when data are read in the horizontal direction. If the error burst does not exceed
the length of a column, then particular errors are separated by correctly received bits,
whose number is equal to the deinterleaver matrix row length.

The ordered recording in row-column directions is not the only one possible. Data may
be written and read from the interleaver/deinterleaver matrix in a pseudorandom way.
Matrices of the interleaver and deinterleaver shown in Figure 2.27 in reality must be
doubled to enable writing to one of them while the other is being read. The matrices
change their roles after each cycle of reading/writing.

Figure 2.28 presents, in turn, a convolutional interleaver and an appropriate deinter-
leaver. The interleaver consists of B — 1 serial registers of length M, 2M, ..., (B — 1)M,
respectively. Input sequence bits are supplied to the subsequent register inputs via a com-
mutator or demultiplexer. The first branch transfers the input signals directly to the output
without delay. Other registers introduce delays that are multiples of the number M. Such
a construction of parallel registers with input signals supplied sequentially by a commu-
tator causes reordering of the signals appearing at the output of the output commutator.
Commutators in the deinterleaver have to be synchronized with those in the interleaver.
The input commutator feeds the received symbols to the register inputs; however, this
time they are placed in the opposite order, i.e. starting from the register introducing the
largest delay and ending with the branch without delay. Owing to such a configuration
and synchronization of the commutators, delays between the input of the registers in the
interleaver and the output of the appropriate registers in the deinterleaver remain constant.

Sequence Sequence
from encoder l l (B-)M for gecoder
d_ 5 7. .- o

'O .

: . . ¥o—»{ Channel LY ’ .
Synchronization B \___/ Synchronization
sequence Y sequence

Figure 2.28 Scheme of the convolutional interleaver and deinterleaver
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Thus, on the output of the deinterleaver the transmitted data have their original order-
ing, whereas burst errors that are subject to deinterleaving only are spread. It is worth
mentioning that if a nonbinary outer code is applied, whole data symbols, e.g. binary
blocks represented by symbols selected from G F(2™), are the subject to interleaving and
deinterleaving.

2.11 Case Studies: Two Examples of Concatenated Coding

2.11.1 Concatenated Coding in Deep Space Communications

A concatenated coding system for deep space communication has been standardized by
the CCSDS (Consultative Committee for Space Data Systems). Using the coding system
conforming to this standard, telemetric data can be transmitted between earth stations and
remote space aircrafts (Heegard and Wicker 1999). Figure 2.29 presents the architecture
of this system.

The function of an outer code is performed by the (255, 223) Reed-Solomon code.
According to the theory already known to us, its code length is n = ¢ — 1, where ¢ is a
number of Galois field elements in which all operations on code symbols are made. We
conclude that g = 256 = 28. Therefore, code symbols are binary blocks of 8 bits and all
operations are performed in G F(2%). The Galois field has been defined on the basis of
the primitive polynomial p(x) = x® + x7 4+ x> + x + 1, and the generator polynomial is
given by the formula

143

gy= ] =o' (2.188)

j=112

where « is the root of p(x). The (255, 223) RS code is able to correct up to 16 8-bit erro-
neous symbols in a codeword that has the length of 255 x 8 = 2040 bits. Between outer
code and inner code encoders a block interleaver is applied. This spans from two to eight
codewords of the RS code. As an inner code, the convolutional code has been selected. Its

______ Outercode ____Innercode  ~  Channel

Input Convolutional B
data | Encoder | Block | nvolutl 1| BPSK :
' > Rs (255,223) 7] interleaver | ! »| code encoder ' :§modulator i

| | Do Physical | |

| i i ; i channel !
Output | ; ' P i
data | Decoder i Blockde | Viterbi L BPSK :
4 RS (255,223) [T interleaver [*] decoder “T demodulator i

eight-level
soft output

Figure 2.29 Channel coding in telemetric standard CCSDS
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constraint length is L = 7 and the code rate is equal to R = 1/2. Generator polynomials
are expressed in binary form as the vectors g = [1111001] and g, = [1011011]. On the
receiver side, the Viterbi decoder is typically applied. The decoder accepts eight-level
signal samples. Note that the code rate of the overall concatenated coding system is equal
to R = (223/255) x (1/2) = 0.4373.

2.11.2 Channel Coding in the DVB Satellite Segment

Below we present channel coding in the satellite segment of DVB (Digital Video Broad-
casting) standardized by the European Telecommunications Standards Institute (ETSI
1997). This system applies many theoretical ideas considered so far in our chapter.
Figure 2.30 shows a functional block diagram of the blocks on the satellite DVB trans-
mit side. TV video, audio and data signals are first encoded in the appropriate source
encoders. The resulting data streams and the streams produced by some other services are
multiplexed, creating a transport stream. All these blocks jointly constitute a superblock
called the MPEG-2 source coding and multiplexing block* (see Figure 2.30). This block
produces the so-called multiplex packets of length of 188 bytes. The first byte is a synchro-
nization pattern containing the sync word 01000111 (i.e. 47ygx). Eight packets constitute
a frame. In the first packet of the frame the sync word has a negated form, i.e. it is B8ygx.
The framing structure is shown in Figure 2.31.

The first block of the channel coding part performs randomization of the data stream
contained in the packets. It is desirable that transmitted data stream looks like a ran-
dom binary stream, i.e. binary transitions occur in adequate numbers. As we will learn
later, the randomization ensures appropriate synchronization at the receiver and prohibits
concentration of energy in small subranges of the signal spectrum in the RF band. Ran-
domization is performed by a block called a scrambler. The scheme of the scrambler
applied in a DVB satellite system transmitter is shown in Figure 2.32. Its main part is
a Pseudo-Random Binary Sequence (PRBS) generator, which is a linear feedback shift

> Convolutional
EX code with
s g_ RS (204,188) puncturing
E5cy) [x N
] i »
8 adaptation o Conv. t
e uter - Inner (o]
g % & Plencoder| ] inter- [Plencoder| miodulator
g energy leaver Qi
Services dispersal v
MPEG-2 source coding Channel coding

and multiplexing

Figure 2.30 Source and channel coding structure in a DVB satellite transmitter © European
Telecommunications Standards Institute 1997. Further use, modification, redistribution is strictly
prohibited. ETSI standards are available from http://pda.etsi.org/pda.

4 Moving Picture Expert Group (MPEG) is an international group working within the International Standardization
Organization (ISO), focused on development and standardization of video and audio encoding methods. MPEG-2
is a widely used standard in DVB and other systems.
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Figure 2.31 Framing structure of DVB satellite data stream © European Telecommunications
Standards Institute 1997. Further use, modification, redistribution is strictly prohibited. ETSI stan-
dards are available from http://pda.etsi.org/pda.
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Figure 2.32 Diagram of scrambler and descrambler applied in a transmitter/receiver of a DVB
satellite segment

register (LFSR) of structure similar to that featured by maximum length codes. The LFSR
polynomial is 2(x) = 1 + x'* + x!3. The pseudorandom binary sequence is uniquely set
at the beginning of each frame by the initialization sequence shown in Figure 2.32. Then
the binary sequence generated by the initialized LFSR is modulo-2 added to each trans-
port frame, starting from the first information byte of the first packet. Although timing
signals are fed to the LFSR during the whole frame, the negative enable signal prohibits
modulo-2 addition of the LFSR output signal when sync patterns appear at the scrambler
input. Thus, synchronization words remain unchanged.

Obviously, a dual operation to scrambling has to be done in the receiver. Fortunately,
both scrambler and descrambler have an identical construction. The data sequence
scrambled in the transmitter and recovered in the receiver is modulo-2 added to the
binary sequence generated by the LFSR of the descrambler. Owing to synchronization
bytes introduced at the beginning of each transport frame, frame and bit synchronizations
are possible.

The scrambled data packets are the subject of outer code encoding. The outer code is the
(204, 188) shortened Reed-Solomon code. It has been created by substitution of 51 zero
symbols at the beginning of each codeword of the full (255, 239) RS code. Consequently,
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51 first codeword symbols (bytes) do not need to be transmitted and in this way the code
structure has been matched to the transport packet structure. Message blocks consist of
184-byte long packets, including sync patterns. The codeword symbols are selected from
the extended finite Galois field G F (2%) generated by polynomial p(x) = x® + x* + x3 +
x? + 1. The generator polynomial of the applied RS code is given by the formula

gx) = =B —BHEx =B ... (x — BY) (2.189)

where ,3 = 02HEX-

As a result of outer coding, 204-byte long packets are created. In order to increase
immunity of the coded packets against burst errors, a convolutional interleaver is applied.
Its structure is shown in Figure 2.33 and it is very similar to that shown in Figure 2.28;
however, this time all operations are performed on bytes. The scrambler consists of
input and output switches (commutators) that direct codeword symbols sequentially to 12
parallel branches. The first branch is always used by a syncronization byte. All others
contain FIFO (First-In First-Out) registers of length being a multiple of 17 bytes. As in
a typical interleaver/deinterleaver pair, the structure of the deinterleaver is dual to that
of the interleaver, so the first branch used to transport the synchronization byte is the
longest one and introduces a delay of 11 x 17 bytes. Delays of the other branches are
also a multiple of 17 bytes, but in descending order.

The interleaved bytes are coded by the inner code. The latter is a convolutional code
of constraint lenght L = 7 and code rate R = 1/2. Its generator polynomials are

gix) =14+x>+x>+x°>+x°

@) =1+x+x24+x>4+x° (2.190)
Two parallel encoder outputs are given to the input of the puncturing block. Its structure
must ensure the required final code rate equal to 1/2, 2/3, 3/4, 5/6 or 7/8. It also determines
the free distance of a resulting punctured code. Table 2.6 presents possible code rates,
associated puncturing tables, free distances of the resulting punctured codes and values of

E;/ Ny required to achieve Quasi-Error Free (QEF, 10710 — 10~!") performance on the
output of the outer RS decoder when the interleaver presented in Figure 2.33 is applied.

Sync byte route
1 byte per — 1 byte per Syncbyte route
yte p Ol 1 1l0 yte p
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: . :v\o—b Channel |—po™
Sequence from

RS encoder 11"- : 1149 111 2o , Sequence for
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Convolutional interleaver Convolutional deinterleaver

Figure 2.33 Diagram of interleaver and deinterleaver applied in the transmitter/receiver of a DVB
satellite segment © European Telecommunications Standards Institute 1997. Further use, modifica-
tion, redistribution is strictly prohibited. ETSI standards are available from http://pda.etsi.org/pda.
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Table 2.6 Convolutional code parameters applied in DVB satellite transmission

R dfree Puncturing table Required E,/Ny [dB]
1
12 10 [ | i| 4.5
1 0
2/3 6 |: 11 i| 5.0
1 01
3/4 5 |: 110 i| 5.5
1 01 01
5/6 4 [ 11010 i| 6.0
1000 01
7/8 3 |: 1111010 i| 6.4

As the energy per codeword symbol is equal to energy per bit, in Table 2.6 we have
replaced E. by Ej,.

The number of possible code rates allows us to select the most appropriate level of
error protection for a given DVB service and data rate. As shown in Figure 2.30, two
codeword symbols appear in parallel on the channel encoder output. They are denoted as
I and Q and are related to the upper and lower row of the selected puncturing table.

At the receiver side dual blocks to those contained in the transmitter are applied.
Figure 2.34 shows the block diagram of the channel decoding part of the receiver. Two
parallel samples from the demodulator and filtering block are supplied to the depuncturing
block and the inner decoder. In order for the other blocks to operate correctly, the bit
error rate of the hard-decision samples should be at the level of 10~!—1072, depending
on the applied code rate. The bit error rate on the inner decoder output should be about
2 x 10™* or lower. Although the ETSI Standard (ETSI 1997) does not precisely define
the receiver side, Annex B of this standard states that the inner code decoder implemented
with the application of the Viterbi algorithm makes use of soft-decision information, i.e.
it is a soft-input decoder. An additional task of this block is automatic recognition of
the applied code rate and of the puncturing configuration. The decoder is able to try all
possible puncturing combinations in order to find the correct one.

Convolutional

code RS (204,188)
I . Energy
from ) Depuncturing Conv dispersal to
demodulator and inner N Sync N deinte.r- ) Outer | » removal S demultiplexer
and receive decoding decoder loaver decoder & and source
fiiter >yl (Viterbi) in%g?sci:)n decoder

Figure 2.34 Channel decoder on the DVB satellite receiver side



188 Introduction to Digital Communication Systems

The next block decodes MPEG-2 synchronization bytes, thus providing synchronization
information needed for correct operation of the deinterleaver. The synchronized deinter-
leaver reorders received bytes so as to obtain their primary sequence, and the outer decoder
finds message sequences representing MPEG-2 transport packets. As we have mentioned
before, assuming a bit error rate on the output of the inner code Viterbi decoder at
the level of 2 x 107 or lower, the RS decoder output should be practically quasi error
free.

The last block performs descrambling and Syncl inversion, producing original transport
packets. The packets are then used by the source decoder.

As usual, the ETSI Standard (ETSI 1997) precisely defines the operation of a transmit-
ter, leaving the structure and algorithms of a receiver to the system designer. Since topics
associated with modulation and signal reception have not been considered in the course
of this book so far, we have not explained them in this case study. However, hopefully
the main ideas of channel coding applied in the DVB satellite segment have been clarified
and practical applications of some theoretical issues presented in this chapter have been
shown.

2.12 Turbo Codes

In the section on concatenated coding we mentioned that both serial and parallel code
concatenation is possible. Let us now analyze parallel code concatenation. As previously,
on the transmit side two component code encoders separated by an interleaver participate
in the encoding process. This configuration of parallel concatenated coding was first
presented in 1993 by Berrou, Glavieux and Thitimajshima (Berrou et al. 1993). They
also proposed an original decoding method well fitted to the applied codes. The core of
this method is the use of reliability information about temporary decisions worked out
by one component code decoder to improve decision likelihood in the second component
decoder. Reliability information derived in the second decoder is in turn fed back to the
first one, implying the improvement of decision reliability. This process is continued in
a closed loop, as is done in a car engine with turbo loading. The similarity justifies the
name of codes proposed by their inventors, i.e. turbo codes. Since the first article by
Berrou and co-authors (Berrou et al. 1993), hundreds of papers have been published on
turbo codes. There are some specialized books as well, including those by Heegard and
Wicker (1999) and Vucetic and Yuan (2000). The reason for the huge interest in turbo
codes is their excellent quality, a fraction of dB worse than the theoretical Shannon limit.
However, before we present the basic structure of a turbo code, let us focus on Recursive
Systematic Convolutional Codes (RSCC), which constitute a basic functional block of
turbo codes.

2.12.1 RSCC Code

So far we have considered nonsystematic convolutional codes. Recall polynomial descrip-
tion of a convolutional code of code rate R = 1/2. An encoder of such a code generates
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two output signals related to a single input signal. They can be described in polynomial
notation as

wi(x) = b)g1(x)  wa(x) = b(x)g2(x) (2.191)

where the polynomial b(x) represents the input signal, and the polynomials describing
outputs from both encoder branches are given by the formulae
g1(x) = g1+ giax+ - +gr1xt!

©0) =g+ gox+-+gpxt!

A systematic code featuring the same set of codewords and thus preserving the properties
of the original code (e.g. the same free distance) can be obtained by division of the
right-hand side of both polynomial products in (2.191) by either g;(x) or g>(x). If g1 (x) is
used in the division, the upper and lower branch output polynomials receive the following
form characteristic for an equivalent systematic code

wi(x) =bx) wa(x) = b@)g:(x) (2.192)

g1(x)

If the following polynomial is denoted as d(x)

b(x)
d(x) = (2.193)
g1(x)
then the branch output polynomials are described by the expressions
wi(x) =b(x)  wax) =d(x)g2(x) (2.194)

In the time domain marked by index &, assuming g; ; = 1, these equations are equivalent
to the following expressions

wy k= by

L-1
Wy = ZgZ,idk—i (2.195)
i=0

L—-1

d = b+ Y gridi—i
i=1

The scheme of an exemplary nonsystematic convolutional code encoder is shown in
Figure 2.35a and its equivalent recursive form can be found in Figure 2.35b. Note the
feedback that results from the last equation in formulae (2.195).
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Figure 2.35 Convolutional code encoder of a systematic code (a) and of an equivalent recursive
systematic convolutional code (b)

2.12.2 Basic Turbo Code Encoder Scheme

As mentioned before, an RSCC encoder is the basic element of a turbo code encoder. A
basic scheme of the turbo code encoder is shown in Figure 2.36. The encoder consists of
two identical RSCC encoders and an interleaver. The first encoder generates two parallel
streams. The first one is a message stream, directly transferred from the encoder input.
The second one consists of parity bits generated in the circuit with feedback. Message bits
are a subject of deep interleaving in a block interleaver. In practice a turbo code encoder
works in a block manner. As a result, interleaved message bits are fed to the second RSCC
encoder. Only parity bits of the second encoder are further transferred to the turbo code
encoder output. Therefore, the basic scheme of a turbo code encoder realizes coding of
the code rate R = 1/3. The generated binary stream consists of a stream of message bits
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Figure 2.36 Scheme of the turbo code encoder (Berrou et al. 1993)
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and two streams of parity bits. These streams are multiplexed and punctured, if required.
Puncturing allows higher code rates to be achieved.

A block interleaver applied in the turbo code encoder plays a special role. The inter-
leaving depth is typically very high, i.e. it amounts to hundreds or even thousands of bits.
Therefore a message bit and a parity bit of the first component encoder are in the time
sequence next to a parity bit of the second component encoder, which is related to a very
distant message bit. In this way very long codewords are produced in a simple way. As
we will see later, such codewords can be efficiently decoded using the turbo decoding
principle. As already mentioned, encoding is performed in frames of a given length and
the interleaving depth is matched to it.

2.12.3 RSCC Code MAP Decoding

Excellent decoding quality of turbo codes is achieved owing to the iterative procedure
applied in the receiver. In order to present this procedure, we have to describe a decoding
algorithm that can be applied in a component RSCC code decoder.

One such algorithm is the BCJR algorithm named after its inventors Bahl, Cocke,
Jelinek and Raviv (Bahl et al. 1974). Berrou, Glavieux and Thitimajshima modified this
algorithm and matched it to a turbo code. The modified BCJR algorithm determines each
message symbol of a codeword using the Maximum a Posteriori (MAP) criterion. In such
a sense it is optimal. In practice, however, suboptimal algorithms are mostly used, such
as SOVA (Hagenauer and Hoeher 1989) or the so-called Max-Log-MAP algorithm.

Consider the MAP algorithm of recursive decoding of an RSCC code. In the presen-
tation of this algorithm the author has used the book by Vucetic and Yuan (2000) as
guidance. It can also be found elsewhere but the derivation of the algorithm presented in
by Vucetic and Yuan (2000) is the most clear for the reader. Despite this, a less mathemat-
ically experienced reader can find the algorithm derivation quite complicated, although
only basic probability knowledge is required in the course of its presentation.

Assume a discrete memoryless channel model with a continuous signal amplitude on
its output. Let codeword bits be represented by bipolar symbols 1. Bipolar symbols
are distorted by additive Gaussian noise of zero mean and variance o2. Let the length
of a message bit block be n. For each message bit by (k =1, ..., n) the RSCC encoder
generates a parity bit p; related to it. In turn, let a; be a bipolar symbol reflecting the
bit by, and let r; be a bipolar symbol related to the parity bit p;. A codeword can be
described with the following vector form

X! =[x, X2, ...,%,] (2.196)

where each vector entry is itself a two-element vector
ai
xkz[ } k=1,2,...,n (2.197)
Ik

As in the description of the SOVA decoding algorithm, in (2.196) we directly denoted the
first and last time index of the analyzed sequence. It will be very useful in the description
of the BCJR decoding algorithm.
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Let vector x| be transmitted through an additive Gaussian noise channel. Then we
receive the following vector on the channel output

Y¥=[y1,y2,~--’)'n] (2198)

Each vector element is a sum of input symbol x; and noise vector vy, i.e.

Ya .k Ak Va k
— s — > =X, 4+ 2.199
Y |: Yr.k i| |: Tk Vrk j| k k ( )

The MAP algorithm makes a decision upon the kth message symbol by selecting from
two possible values +1 or —1 the value (denoted by symbol i) for which a posteriori
probability is maximum, i.e. it determines the value of decision @, according to the
following rule

ax = argmax Pr{a, = i|y'} (2.200)
L

Note that despite the fact that decisions are made symbol by symbol, the coding interrela-
tion is embedded in the received sequence y{. Equivalently, a decision upon each symbol
can be determined by calculation of the quotient of a posteriori probabilities for two
possible values of data symbols, followed by calculation of the logarithm of this quotient.
The sign of the logarithm will be equivalent to decision (2.200), i.e.

a; = sgn [Aap)] (2.201)

where

Pria, = +1|y}}

Aa) =1In
Pr{a, = —1|y}}

(2.202)

When a posteriori probabilities in the nominator and denominator are identical, A (ay)
is equal to zero. The higher the difference between them, the more A(ay) differs from
zero. The value of A (ay) is therefore a likelihood measure of the decision upon the symbol
ay. It follows from our considerations on soft-decision decoding that it is a soft decision
upon this symbol.

Let the considered RSCC encoder have M states. Assume that the encoder has generated
the sequence x| and the initial and final states are known and equal to zero state (s) =
s, = 0). The decoder makes decisions about subsequent message symbols of the sequence
x| on the basis of the whole received sequence y{. As we know, the decoder operation
can be interpreted as a search for the best route on the code trellis diagram. For example,
consider the path on the trellis diagram, which starts from state u at the (k — 1)st moment
and leads to state v at the kth moment. Each pair of states (u, v) is uniquely associated
with a symbol a; = &1 generated by the encoder. Let B, denote the set of state pairs
(u, v) for which during the transition from state u to v the symbol a; = 1 is generated.
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Let B_; be the set of state pairs (u, v) that are associated with the symbol @; = —1. Thus,
the conditional probabilities in formula (2.202) can be presented as

Priay = +1lyj} = Y Prisioi = u, 5 = vly}) (2.203)
(u,v)€B|
and
Priay = ~1ly{} = ) Prlsici = u.se = vly]) (2.204)
(u,v)eB_1

Applying Bayes’ formula on the right-hand side of both equations, we receive

> Pr{sici =u s =v,y7)
Priag = +1]y]} = 22!
= +lIyi) = P (2.205)
1

and

Z Pr{si_1 = u, sy = v, y'f}
n (u,v)eB_1
Priay = —1ly|} = p(y") (2:206)
1

Consequently, formula (2.202) can be presented in the form
> Pr{sioi =u, s =v,y])}
(u,v)eByy

> Pr{sici =u, s =0y}
(u,v)eB_1

A(ar) =In (2.207)

Consider a single component of the sums appearing both in the nominator and denominator
of (2.207). We are interested in the operation of the algorithm at the kth moment. The
reception of sequence y| can be treated as reception of the sequence y’f_l, symbol yi
(at the kth moment) and sequence y;_ ; [from the (k + 1)st moment to the nth moment].
Then

Prise-1 = u, sc = v, Y1} = Pr{y} ™, i ¥igps Skot = w5 = v}
= Pr{yl e, ¥y skmt = uyse = v} Pr{ye i sket = s = v} (2.208)
Since the channel through which the sequence x; is transmitted is memoryless, received
sequence yy,  starting from the (k + 1)st moment depends only on the state on the trellis
diagram in which the encoder was at the kth moment. Therefore

Prisi_1 = u, sy = v, ¥} = Pr{y}, st = v} Priy, ylf_l, Sk—1 = U, sy = v}

= Pr{yp, Isk = v} Prise = v, yilsior = u, Yy Y Prisio = u, ¥, 1) (2.209)
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Apply the following notation

Br(v) = Priy},lsk = v} (2.210)

ar—1(u) = Prisg_; = u, ¥\ 2.211)

Thus, variable i (v) represents the probability of reception of sequence y;, from the
(k + 1)st moment to the nth moment under the condition that the encoder was in state
v at the kth moment. Variable oy (1) denotes the probability of reaching state u in the
(k — 1)st moment when the sequence y’f_l has been received. We know that appearance
of the symbol y; at the kth moment on the decoder input and finding the decoder itself
in state v at the same moment depends exclusively on the data symbol ay =i (i = £1)

and on the state in which the encoder was at the (k — 1)st moment. Therefore, we can
write the following equality

Pr{sy = v, ylsi—1 = u, y\'} = Pr{si = v, ylsi—1 = u} (2.212)
Applying the notation
Vi (u, v) = Pr{ay =i, s = v, ylsi—1 = u} (2.213)
we can present the probability given in formula (2.209) in the following form

Prisii =, se = 0. ¥} =1 ) Y 7i(u, v)B(v) (2.214)
ie{—1,+1}

Finally, on the basis of (2.207) and (2.214) we have

Y a1y, v) B (v)

(u,v)eB4

Y 1@y w, v)B(v)

(u,v)EB_1

Alag) = In (2.215)

It seems that formula (2.215) is more complicated than its primary form (2.202); how-
ever, as we shall see, this new form of expression enables us to calculate soft decisions
for subsequent data symbols recurrently. Namely, probabilities o—1(u#) and S (v) can be
derived recurrently, the first one in ascending order and the second one in descending
order of index k.

First, derive a recurrence for o (v). According to (2.211) we have

M—1
ar(v) =Prise = v, y{} = Y Pr{sc_1 = u, s¢ = v, y})
u=0
M—1
= Prisi_i = u, s = v, ¥, ', yi)
u=0
M—1

Pris; = v, Yxlsxk—1 = u, yv '} Pr{sy_y = u, y* '} (2.216)

<
Il
o
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The last factor of the sum (2.216) is o _1(u). Therefore

M—1
() = Y o1 (@) Prisy = v, yelsi1 =u, ¥,
u=0

Appearance of the symbol y; at the kth moment and transition to state v does not depend
on the sequence of preceding signals, but exclusively on the state u in which the encoder
found itself previously, therefore

M—1

(V) = ) oy () Pr{sg = v, yilsi—1 = u} (2.217)
u=0

We can, in turn, take advantage of the dependence

Pr{sy = v, yelsk—1 = u} = Z Pr{ay =i, sk = v, yr|sk—1 = u}

ie{—1,+1}
= Z i, v) (2.218)
ie{—1,+1}
Finally,
M—1
@) =Y wi@) Y yiuv) (2219)
u=0 ie{—1,+1}

As we see, probabilities o (v) can be calculated recurrently with appropriate initialization
at the zero moment, e.g. in agreement with the following rule

ap(0) =1, o) =0, u=12,...,.M—1 (2.220)

since we assumed that the initial state is known and it is a zero state. After reception of
the full symbol sequence y, we can determine subsequent values of probabilities a (v)
in ascending order of time index k. However, it is necessary to determine y; (u, v) for
each state pair (u#, v) and each value of the data signal i = £1. We will now derive the
formula for ¥} (u, v).

Let us first derive the probabilities S (v). From the definition of S;(v) and Bayes’
formula we obtain

M—1
Bi(v) = Priy} sk =v} =Y Prisiii = w, yiy,lsc = v}

w=0

. 2:1 PI‘{Sk_H =w, yZH, Sk = v}
N Pr{s;y = v}

(2.221)
=0

€
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Extracting y+1 from sequence y;_ ,, we can write

Pr{yi+1, Yii0s Sk = U, Sk41 = w}
Pr{s; = v}

Br(v) =

||M§

, Sk =V, Sk+1 = w}Pr J Sk =1V,
_ Z Pr{y} o |¥k+1, sk k1 } Priyiat, sk vl = w} (2.222)

= Pr{s; = v}
For the memoryless channel, appearance of sequence y;, , on the channel output depends
only on the state in which the encoder was at the (k + 1)st moment, so

M—1
Pr{y} ,lsk41 = w} Pr{yis1, sk = v, e = w
Bv) = »  —2

— Pr{s;y = v}
M—1
_ Z Bit1(w) Pr{yiy1, sip1 = wisg = v} Prisy = v}
e Pr{s; = v}
M—1
= Y Brpr () Pr{yiq, sir1 = wlsi = v}
w=0

M-1
=Y Beriw) D Prlarp =i, Yar1, sep1 = wlse = v)

ie{—1,+1}

= Zﬁk+1(w> Z Vi1 (v, w) (2.223)

—1,+1}

Owing to (2.223) it is possible to derive f;(v) in a backward direction, starting from
the last symbol and finishing at the first symbol. However, knowledge of probabilities
y,f +1(v, w) is also needed. Assuming that the final state of the trellis diagram is a zero
state, we can initialize the values of S;(v) in the following way

B0y =1, Bo(v)=0, v=1,2,....M—1 (2.224)

Bringing the RSCC encoder with feedback into the zero state can be troublesome, therefore
we can disconnect the feedback in the last cycles, subsequently introducing zero symbols
to the encoder memory. This idea is presented in Figure 2.37. In normal operation the
switch is in position 1. For the last L steps, where L is the number of encoder memory
cells, the switch is placed in position 2, so the input of the delay line is supplied with
the modulo-2 sum of two identical symbols resulting in zero symbols. These symbols are
simultaneously the message symbols on the encoder output.
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Upper output
N wy(X)
1
b 2+ %
(%) || _b\_y
1 Y
@ ' wy(X)

Lower output

Figure 2.37 Scheme of the encoder from Figure 2.35 supplemented by the switch forcing the
zero state at the end of the sequence

We still have to derive the probabilities ¥} (u, v). Recall that they have been given by
formula (2.213). Applying the conditional probability formula, we obtain

Pr{ak = i, Yi, Sk = U, Sg—1 = u}

Hu, v) =
el v) Pr{sy—1 = u}

_ pWklak =i, sk = v, 5,1 = u) Pr{ag =i, s = v, 5,1 = u}
Pr{sy—1 = u}

(2.225)

The conditional probability density function that appears in formula (2.225) can be rep-
resented as a product of two probability density functions. The first function is related
to the message component y, ; of the received pair y; at the kth moment. The message
component y, ; depends exclusively on symbol a;. The second function is related to par-
ity component y, x, which results from the transition from state u to v at the kth moment.
Thus, for a memoryless channel with additive Gaussian noise with variance o2 we have

pelay = i, sg = v, 51 = 1) = pGaxlar = DpGrilxy”)

1 . Y r_xﬁuau)2
_ exp [_u} exp {_M (2.226)

T 2no? 202 202

where xr(“k’v) is a bipolar parity signal generated at the encoder transition from state u to

v. Consequently

Vi@, v) = pGaxlar = DpOrilxe™)

Pr{ak = i|Sk =V, Sk—1 = u}Pr{sk =V, Sk—1 = u}
X

Pris;_1 = u}

(u,v)

= paklax = Dpyrilx, ) X

x Pr{ay = i|sy = v, sp_1 = u} Pr{sy = v|s_1 = u} (2.227)
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Transition from state u to state v uniquely results from the data symbol a; = i fed to the
encoder input. Therefore

Pr{a; =i} for (u,v) € B;
Pr{s;y = v|si_1 = u} = (2.228)
0 otherwise

where Pr{a; =i} is the a priori probability of generation of data symbol a; =i by
the transmitter. In turn, the probability of appearance of data symbol a; =i under the
condition that transition from state u to state v has occurred is

1 if (u,v) € B;
Pr{ak = i|Sk =V, Sk—1 = l/t} = (2.229)
0 otherwise

Taking into account expressions (2.227)—(2.229), probability yki (u, v) can be expressed
in the following form

, Pr{ay = i}pOailax = D) pOrilxly?)  for (u,v) € B;
vi(u, v) = (2.230)

0 otherwise

Substituting y,f (u,v) determined by formulae (2.230) and (2.226) to formula (2.215)
describing a soft decision related to the symbol a;, we get

Prla = +1pOailac =+ X a1@p (veale”) Bew)

(u,v)eB+1
Alay) =In — (2.231)
Priax = —1)pGulac == ¥ o 1@p (3exlxs”) Bew)
(u,v)eB,l
This can be divided into three parts
Ala) = In r{ay = +1} in PWaklar = +1)
Pr{a; = —1} PWaklax = —1)
> a1 @p (k") )
(u,v)eB4
+In o)
> a1 (0p (eale”) i)
(u,v)eB_;
= AP (ar) + A" (ar) + A (ap) (2.232)

The first component is the so-called a priori information and its value depends on inequal-
ity of probabilities of the input symbol a; = i. If the symbols %1 are equiprobable, then
this component is zero. The second component is called intrinsic information and its value
results exclusively from the generated data symbol a; and the component y,  related to
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it, received at the kth moment on the channel output. For the assumed channel model,
intrinsic information according to formula (2.226) is

exp [_(yu,k - 1)2}
POaklar=+D _ | 202

A™ (@) =1In -
p(yu,k|ak =-1) [ (ya,k + 1)2i|
exp|———=—

202

Gk = 1?  Gax+ 1] 2
— T = S (2.233)

= Inexp |:
The third component is the so-called extrinsic information, which allows us to improve
a decision upon the data symbol a; on the basis of all remaining signals contained in the
received block, i.e.

> a1 (p (k") Betw)

(u,v)eBH

> a1 @p (snalaly”) fitw)

(u,v)eB,l

A% (q;) = In

> a1 Wy G u, 0) B ()

(u,v)eBy
—1In — (2.234)
> a1y Ok u, v)Br(v)
(u,v)eB_1
where
) ( : _x(u,v))Z
Vi (rir u, v) = exp [—”272" for u,v) € By, i ==+l (2.235)
o

The division of the soft decision A (ay) into three separate components is the most impor-
tant aspect of the presented algorithm. The importance of each component will be clarified
when we describe the turbo decoding algorithm.

Let us stress again that the algorithm presented above is a MAP algorithm. It is optimal
in this sense; however, its computational complexity is very high. In practical systems
suboptimum algorithms such as Max-Log-MAP (see Vucetic and Yuan 2000) or SOVA
(see this chapter) are often applied at the cost of a fraction of dB loss in the performance.

2.12.4 Turbo Decoding Algorithm

As we said earlier, codewords generated by a turbo code encoder are usually very long
because of the large size of the applied interleaver, therefore the optimal decoder would
be extremely complex. For that reason a suboptimum decoder structure has to be applied.
Owing to the applied algorithm, the difference in decoding quality is insignificant com-
pared with the optimal decoder. This result is achieved by using two component decoders
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Figure 2.38 Block diagram of a turbo decoder

that mutually improve each other’s decision quality. A basic scheme of the turbo code
decoder is shown in Figure 2.38.

The first decoder makes soft decisions on subsequent message bits contained in the
received block. For this purpuse it uses the received message symbols y,, and parity
symbols y,; ; related to the signals generated by the first component encoder. Signals
Ya,j that are related to interleaved message symbols (the time index has been changed
due to interleaving) and symbols y.» ; corresponding to parity symbols generated by the
second encoder appear at the input of the second component decoder. Additionally, the
second decoder is fed by a priori information achieved after interleaving of extrinsic
information from the first decoder. After the symbol sequence has been reordered to the
original time sequence by the deinterleaver, extrinsic information from the second decoder
becomes a priori information in the subsequent iteration of the first decoder.

We can formally present the operation of a turbo code decoder in the following steps:

1. First iteration
(a) Decoder 1. If the statistics of the message symbols a; are unknown, then it is
assumed that message symbols a; are equiprobable. Then

Pr{a; = 1}

T
Pr{ak = —1}

A% (a;) = In

The switch shown in Figure 2.38 is in position 1. On the basis of the vector of the
received samples

Ya,k
Yi=[yi.y2--o.¥a]s k=] vk |, k=1....n (2.236)
Yr2,k

metrics ykﬂ(y,l,k, u,v) and yk_l(yr,k, u,v) of the transition from state u to state
v at the (k + 1)st moment (#,v=20,1,..., M — 1) are calculated for each sym-
bol a; (k =1,2,...,n). It is also assumed that the initial state of the encoder is
known, e.g. u = 0. Then for k = 1 transitions from the initial state to two differ-
ent states are possible. They are determined by a; = 1 or a; = —1, respectively.
Using the probabilities yk“ (Yr1.k>u, v) and yk_l (Vr.k» 4, v), we determine the values
of ay_i(u) and B (v) for subsequent time instants k, applying iterative formulae
(2.219) and (2.223). Knowing the full set of the above probabilities, we calculate
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extrinsic information Af’” (ag) for each message symbol a;. This constitutes the
main output signal of the first decoder.

(b) Interleaver. After message bits have been interleaved, they are used to generate
parity bits by the second component encoder. Consequently, the process of inter-
leaving obviously implies the sequence of subsequent parity symbols used in the
second turbo code decoder. If the results produced by the first decoder are to be
used in the second decoder, this sequence has to be reordered in conformance with
the parity symbols of the second encoder. The same applies to message symbols.
Thus, the second decoder input is a triple: a priori information achieved owing
to interleaving of the extrinsic information, interleaved sequence of the message
symbols and the sequence of parity symbols matched in time to the interleaved
sequence of message symbols.

(c) Decoder 2. Decoder 2 uses (besides message and parity symbols) the symbols
that play the role of a priori information. This function is performed by extrinsic
information received from Decoder 1. In this way correlation between a priori
information and input symbols applied in Decoder 2 is avoided. Decoder 2, which
functions identically as Decoder 1, determines extrinsic information AS"’ (aj).

(d) Deinterleaver. This block matches the order of extrinsic information sequence
obtained from Decoder 2 to the order of the sequence processed in Decoder 1.
Extrinsic information A5*' (a;) is applied again in Decoder 1 as a priori information
(the switch is in position 2).

2. Subsequent iterations. Starting from the second iteration, each component decoder
receives a priori information from the other decoder. Owing to this information the
decoding quality improves. The value of a priori information related to each message
symbol gradually stabilizes its sign and increases its module.

3. The last iteration. After a number of iterations the decoding process achieves a state
close to optimum and a final decision is made for each message bit. This decision is
based on the soft decision A(ay) given by formula (2.232), i.e.

a; = sgn[Aay)] (2.237)

As we said earlier, knowledge of the final state of encoders, which is often assumed,
improves the final decoding quality.

Figure 2.39 shows the simulation results presented by Berrou, Glavieux and Thitima-
jshima in their original paper (Berrou et al. 1993). They are in the form of error probability
curves versus signal-to-noise ratio. It is clear that decoding quality significantly improves
with the increasing number of iterations. We can also notice that the most meaning-
ful improvement is achieved after performing the first few iterations. Other investigations
have shown that decoding quality strongly depends on the length of the decoded sequence
or, equivalently, on the size and structure of the applied block interleaver.

Turbo codes are believed to be one of the most important achievements of communi-
cation theory in the 1990s. Their inventors have shown how to get significantly closer
to the Shannon limit. It has turned out that only about 0.7 dB is left to achieve the the-
oretical limit. Invention of turbo codes triggered an enormous interest by code theorists
and communication engineers in iterative processing. They developed other applications
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Figure 2.39 Error rate versus Ej; /Ny as a function of the number of iterations in the turbo decoder
for the turbo code with the encoder presented in Figure 2.36. Reproduced by permission of IEEE
(Berrou et al. (1993)) © 1993 IEEE

of the concept of turbo decoding. In practice, turbo codes are applied in systems in which
decoding delay is not a critical parameter; however, a low error probability is of pri-
mary importance. Therefore turbo codes are useful in data transmission systems. They are
applied e.g. in the UMTS (Universal Mobile Telecommunication System) cellular standard
in which data transmission is one of the offered services.

2.13 LDPC Codes

LDPC (Low-Density Parity Check) codes are another class of codes that feature high
decoding quality. They were invented by Gallager in the 1960s (Gallager 1968) but
they did not gain attention at that time. They focused the interest of code theorists and
practitioners again in the 1990s owing to the works of MacKay and Neal (1996) and
MacKay (1999).

LDPC codes are (n, k) block codes whose parity check matrix is sparse, i.e. contains
a small number of “1”’s compared with the matrix size. A (J, K)-regular LDPC code is
characterized by the parity check matrix in which there are J “1”’s in each column and K
“1”s in each row. For given code parameters (n, k) the assumed column weight J is larger
than 3 and a parity check matrix H with a given number of “1”s in each column and row
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is generated in a pseudorandom manner. If the parity check matrix H is a low density
matrix but the number of “1”’s per column is not constant, the code is called an irregular
LDPC code. The codeword length is typically very high and the code rate can be close to
1, although lower code rates are often applied too. Examples of code parameters (n, k) of
high code rate LDPC codes presented in Benvenuto and Cherubini (2002) are (495, 433),
(1998, 1777), (4376, 4095). The related code rates are 0,8747, 0,8894, 0,9358.

Let us present three examples of parity check matrices for LDPC codes.

Consider a (10, 5) linear block code with four “1”s in a row and two “l1”s in each
column. Its parity check matrix is the following

(2.238)

SO = O~
S = OO~
-_o O O -

0
1
1
0
0

S = O = O
- o O = O
S = =00
—_0 = OO
—_—_ 0 OO

1
1
H=1]0
0
0

The (10, 5) linear code is not a typical LDPC code but it can serve as a simple example
for educational reasons. Let us note that the parity check matrix is not in a canonical
form. The density of “1”’s in H is equal to 0.4, so the parity check matrix is not sparse
in a strict sense.

Let us show another matrix created according to the rules valid for (J, K)-regular
LDPC codes. Let the parameters for that matrix be / = K =4 and n = 15. The parity
check matrix is (Lin and Costello 2004):

(2.239)

S OO OO =R, O, OO0 —~,OO
SO ODO R O R OOO—~,OO O
S OO~ PO OO~ OO0O 0O
SO R PO~ OO0~ OO Oo O
ORPR PO OO, OO0 OoO O
el S eleNel S “heclaleolleio el
el ol eNelell SeleleloBoBoNe S
OR OO O — OO0 O K~ —
e lel eleleleleleNel -
S OO~ OO0 = —= O =
SO OO =~ OO
=l NeoloNeoloNoloNel k=l el

Il
S OO OO OO R RO, OO ~O
— O OO0 OO O R, O~,OOO
SO DD OO0 R, O—~,OOO -

The size of the above parity check matrix is (15 x 15) so obviously some parity check
equations represented by the rows of this matrix are redundant. It can be proved that after
performing reduction of the parity check equations we end up with a (15,7) cyclic BCH
code considered earlier in this chapter. The density of matrix (2.239) is equal to 0.267,
so the matrix can be considered sparse.

Finally, let us present matrix H designed according to the procedure originally proposed
by Gallager. A code determined by such a parity check matrix is called a Gallager code.
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The parity check matrix consists of J submatrices of dimensions m x mK, denoted as
H\, Hy, ..., H;. The full parity check matrix has the form

H,
H,
H=| (2.240)

Hy
Each row of a constituent submatrix has K and each column has a single “1”. In particular,
in the ith row (1 < i < m) matrix H; contains a block of “1”’s in the columns with numbers
between (i — 1)K + 1 and iK. The remaining matrices are created by permutation of
matrix H;. However, not all permutations result in a good code that features a high
value of minimum distance. An intensive computer search is needed to find such a code.

Formula (2.241) presents an example of the parity check matrix of the Gallager code,
characterized by m =5, K =4 and J = 3.

1 1110 00O0O0OO0OOOO0OOOOOO0OO0OO
0o0o0o011110O0O0O0O0O0O0OO0OO0OO0OO0OTG O
0o0000O0OO0O00O0T111T1SO0O0O0O0O0OO0O0O0
0o0000O0OO0O0O0O0O0OO0O0O0OO0O0T1T1TT1T1TO0O0O0O0
o0 000 O0O0OO0OO0OO0OO0OO0OO0OO0OO0OSO0OT1T 1T 11
1 0001 00O0OT1 O0O0OO0OT1O0O0O0OUO0OO0OO0OTGO
010001 O0O0O0O0OT1O0O0OO0OOO0OOT1TO0OO0OSG O
H=|10 01 00 01 O0O0O0O0OO0OO0OTI1O0O0OO0OT1TQO0TO0
oo0o01n000O0O0O001O0O0O0O0T1TO0O0OO0OT1O
00 00O0O0OO0OT1O0OO0OO0OT1TO0OO0OO0OTITO0OSO0OOQO01
1 00001 00O0O0OOT1O0O0O0OOOT1IO0TO0
o1 00001 00O0O1O0O0OO0OO0OT1TTO0OTO0OTO0OTPO
oo01po0o0001 00O0O0OT1O0O0O0OO0OGO0OTIO
oo0o01n000O0O1O0O0OO0O0O0O0T1TO0O0OT1TTGO0OTO0OO
0 0 0010000100001 0000 1 |

~~
N
)
=~
ary
N

Since reinvention of the LDPC codes in the 1990s, a large number of methods for their
construction have been proposed. They are beyond the scope of this chapter but the

interested reader may explore the rich literature on this subject, starting from Lin and
Costello (2004), Moon (2005) or Ryan (2004).

2.13.1 Tanner Graph

A Tanner graph is a crucial graphical tool used in analysis of LDPC codes and their
decoding algorithms. In a sense a Tanner graph representing an LDPC code is analo-
gous to a trellis diagram representing convolutional codes. Its structure fully reflects the
code properties. The Tanner graph is a bipartite graph, which means that its nodes are
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divided into two separate sets and each edge of the graph connects a pair of nodes, each
of which belongs to a different set. One set consists of variable nodes (called v-nodes)
whereas the other one contains check nodes (denoted as c-nodes). Each v-node is asso-
ciated with a specific codeword element, so for an (n, k) code there are n v-nodes. Each
c-node reflects a single row of the parity check matrix, and the edges connecting a c-node
with the v-nodes result from a particular parity check equation described by the appro-
priate row of matrix H. Strictly speaking, check node j is connected to variable node
i if element 4 ;; of matrix H is equal to 1. Figure 2.40 presents Tanner graphs for the
codes determined by the parity check matrices given by (2.238) and (2.239), respectively.
We will not present the Tanner graph for the code determined by (2.240) due to its
complexity.

The edges of the Tanner graph that join a given check node s; indicate which received
symbols participate in the generation of the jth element s; of the syndrome vector s. On
the other hand, the edges departing from a given variable node v; inform which syndrome
symbols are influenced by the ith symbol v; of the received block v. The Tanner graph
helps to manage iterative decoding algorithms relying on the process of passing messages
back and forth between v-nodes and c-nodes, which leads to gradual improvement of the
selected decoding criterion, eventually resulting in the decoded codeword.

(a)

c-nodes

v-nodes

c-nodes

v-nodes

Figure 2.40 Examples of Tanner graphs for codes given by the parity check matrix H determined
by (2.238) (a) and (2.239) (b)
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2.13.2 Decoding of LDPC Codes

As in the case of other codes, LDPC codes can be decoded using hard- and soft-decision
algorithms. There is a large variety of decoding algorithms. Let us look at some repre-
sentative examples, i.e.:

e Bit-Flipping Algorithm (BPA): hard-decision decoding;
e Weighted Bit-Flipping Algorithm (WBPA): partially soft-decision decoding;
e Sum-Product Algorithm (SPA): fully soft-decision decoding.

2.13.2.1 Bit-Flipping Algorithm

The bit-flipping algorithm was proposed by Gallager in his early works on LDPC codes.
It entirely relies on calculations of syndrome elements s;, (j =1, ..., m), where m is the
number of rows in the parity check matrix H. As before, denote the received block as
r=(ry,...,r,)7. First, the syndrome is calculated according to the well-known formula

s= Hr (2.242)

If s = 0 then the received block is assumed to be correct and the decoder’s decision
is € = r. Otherwise the algorithm takes into account the nonzero syndrome elements and
changes the bit in the received block r that participates in at least L failed parity check
equations, i.e. for which s; = 1. After that change, the modified received vector r is
the base for subsequent calculation of syndrome (2.242). Such a procedure is performed
iteratively in the loop until the calculated syndrome is zero. Formally, the hard-decision
bit-flipping algorithm can be defined in the following steps (Lin and Costello 2004):

1. Compute the syndrome bits s;, (j =1, ..., m) from equation (2.242) for the received
block r. If all of them are equal to zero, the received block r is the decided codeword
¢ and end the decoding procedure. Otherwise go to step 2.

Find the number f; of failed syndrome bits for every received symbol r; (i = 1, ...n).
Determine the set S of bits for which f; is the largest.

Negate the bits in set S.

Repeat steps 1—4 until all syndrome bits are zero or the maximum allowable number
of iterations is reached.

SR

Let us illustrate the operation of the bit-flipping algorithm with an example.

Example 2.13.1 Consider the (15,7) BCH code, which when treated as an LDPC code
is determined by matrix H described by formula (2.239). We have considered this code
when describing the Meggitt and majority decoders. The code is able to correct t = 2
errors and a certain number of combinations of triple errors. For simplicity assume
that an all-zero codeword has been transmitted and the received block has the form
r = (110010000000000)”. Thus, “1”s in the received block clearly indicate errors that
have to be corrected by the decoder. The algorithm proceeds in the following steps:
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First, syndrome s = Hr is calculated, resulting in the sequence
s = (011000110001100)”

For each received bit the number f; of failed syndrome bits is calculated, giving the
following vector f:

f=(221122211222112)

The largest number f; occurs already for the first bit, so the change of its value in the
received block r results in a new block ¥’ = (010010000000000)7

Syndrome s = HY' is calculated again, giving the vector
s = (001001101001100)”

For each element of vector ¥’ the number of failed syndrome bits is calculated again,
resulting in the vector

f = (230232120121221)

This time the largest number of failed parity check equations is due to the second bit
(f2 = 3), so the second bit of vector ¥’ is negated and the new vector ¥" is

r’ = (000010000000000)”
Syndrome s = Hr" is calculated once more, resulting in the vector
s = (000001000101100)"

Let us note that the syndrome is the fifth column of matrix H, which means that only
one error, i.e. the error in the fifth position of the candidate codeword, remains to be
corrected.

Inspection of the bits influencing “1”s in syndrome s results in the following vector £
f=(111141111011110)
Clearly fs = 4 indicates the bit that has to be flipped. If it is done, the resulting vector is
r’” = (000000000000000)”

which agrees with the codeword produced by the encoder.

The resulting syndrome s = Hr'"" is finally equal to zero, which terminates the decoding
algorithm.
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For the considered code di, = 5 so all combinations of two errors are correctable. Let
us note, however, that the selected received block contained three errors, which means
that the considered combination of three errors belongs to the correctable error patterns.

The above decoding algorithm is fully hard-decision. As we said earlier, its performance
can be improved if the algorithm takes advantage of more detailed knowledge about the
received symbols obtained from the channel.

2.13.2.2 Weighted Bit-Flipping Algorithm

Consider bipolar transmission of the codewords. Let ¢ = (¢, ..., c,)” be the codeword
generated in the LDPC code encoder. The codeword ¢ is subsequently transmitted in the
bipolar form x = (xy, ..., x,)”, where x; = a(2c; — 1) and a is the magnitude of bipolar
pulses. The received block is denoted as y = (yy, ..., y,), where y; = x; + v; and v; is a
Gaussian noise sample, assumed to be statistically independent of other noise samples. We
have already noticed that a simple measure of reliability of the received symbol y; is its
magnitude |y;|. The larger the magnitude |y;|, the more reliable is the hard-decision symbol
r; associated with the sample y;. Denote the set of hard-decision bits r; that participate
in the calculation of syndrome bit s; as N(j), so N'(j) = {i : h;; = 1}. Similarly, let
MG ={j:h ji = 1} denote the set of parity checks in which bit 7; participates. First,
reliability measures of syndrome components are calculated as

Yl = i il j=1m (2.243)
In other words we assume that the reliability measure of syndrome bit s; is the lowest
magnitude of that received sample y; for which the corresponding hard-decision decoded
bit r; is used to calculate syndrome bit s;. After calculation of the reliability measures
for each syndrome bit the main part of the weighted bit flipping algorithm is performed
in the following steps:

1. On the basis of (2.242) calculate the syndrome, using hard-decision vector r.

2. For each received bit r; (i = 1, ..., n) calculate
Ei= Y @s;— Dyl i=1,....n (2.244)
JEM()

3. Flip bit r; located in position k for which k = arg max;<;<, E;.
4. Repeat steps 1 —3 until all parity check equations are satisfied or the maximum number
of iterations is reached.

Let us note that in step 3 position k is identified by finding the maximum value of
E; (i =1,...,n). This value indicates that the selected kth bit influences the highest
number of syndrome bits equal to 1. Note that the correct syndrome bit (s; = 0), if its
index belongs to set M (i), implies that appropriate E; decreases.

Example 2.13.2 Let us consider a similar example to that used to illustrate the regular
bit-flipping algorithm for the (15,7) BCH code determined by the parity check matrix H
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given by (2.239). Again let the all-zero codeword be generated by the encoder, which
results in the bipolar vector

x=(-1,-1,-1,-1,-1,—1,-1, -1, -1, -1, -1, =1, =1, =1, = )T
At the output of the AWGN channel let the received block be

y = (0.05,0.12, -0.8, —1.2,0.07, —-2.1, —0.9, —0.1, —1.0, —0.5,
—0.09, —0.7, —0.99, —0.32, —1.2)7
Hard-decision decoding would produce the received vector r = (110010000000000)”

identical to that in the example illustrating the hard-decision bit-flipping algorithm.
Inspection of parity check matrix (2.239) leads to the sets N'(j) (j =1,...,m) and

M) (i =1,...,n), which are shown in matrix form as

8 9 11 157 2 6 8 97

1 9 10 12 37 9 10

2 10 11 13 4 8 10 11

3 11 12 14 5 9 11 12

4 12 13 15 6 10 12 13

1 5 13 14 7 11 13 14

2 6 14 15 8§ 12 14 15

N=]|1 3 7 15 M=1|1 9 13 15

1 2 4 8 1 2 10 14

2 3 5 9 2 3 11 15

3 4 6 10 1 3 4 12

4 5 7 11 2 4 5 13

5 6 8 12 3 5 6 14

6 7 9 13 4 6 7 15
| 7 & 10 14 | |1 5 7 8]

Each row of matrices N and M corresponds to N(j) (j =1,...,m) and M(@) (i =
1, ..., n), respectively. They are useful in calculations of (2.243) and (2.244). The search
according to (2.243) for the smallest magnitude of those received samples that take part
in parity check giving syndrome element s; (j =1, ..., m) leads to the vector

Ymin = H)’lfél)n : ] =1, m}
= (0.09, 0.05, 0.09, 0.09, 0.70, 0.05, 0.12, 0.05, 0.05, 0.07,

0.50, 0.07, 0.07, 0.90, 0.10)"

After computing reliability measures of each syndrome bit we can start the iterative part
of the weighted bit-flipping algorithm.

o As usual, the syndrome is calculated first:

s = Hr = (011000110001100)”
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o Then, for each bit r; (i =1, ..., n) its reliability measure E; is computed according to
(2.244), giving the vector of values

E=(E:i=1,...,n)
— (0, 0.09, —0.61, —1.18, 0.02, —1.21, —0.88, —0.17, —1.01, —0.46,
~0.02, —0.67, —1.56, —0.12, —0.62)7

o The largest value E; is located at position k = 2 (step 3), so ry in vector r is flipped,
resulting in a new vector

r’ = (100010000000000)”
e For this vector the syndrome is computed again, resulting in the block
s = Hr' = (010000011101100)"
e Consequently, vector E for the new syndrome is (step 2):

E = (0.10, —0.09, —0.47, —1.08, 0.16, —1.45, —0.88, —0.07, —0.87, —0.64,
—0.20, —0.67, —1.74, —0.36, —0.86)"

e This time the largest E; can be found at position k =5, so rs in vector r is flipped,
giving a new candidate for the decided codeword

r’ = (100000000000000)”
o We come back to step 1 again and calculate the new syndrome
s = Hr” = (010001011000000)”

e The calculated syndrome is still different from zero, so the algorithm is continued. The
newly computed vector E is

E = (0.20, —0.23, —-0.61, —1.22, —0.16, —1.59, —1.02, —0.21, —1.01, —0.64,
—0.34, —0.81, —1.64, —0.26, —0.86)"

e Clearly, the highest value of E; is at position k = 1, so we flip bit ry. The resulting
vector r is an all-zero vector v,

e The algorithm is stopped after checking that this time the syndrome is equal to zero.

As we can see, the algorithm has succesfully decoded the received block. In the con-
sidered example, calculation of all vectors by hand during the algorithm operation can be
cumbersome, so a simple Matlab program has been written by the author to implement
the weighted bit-flipping algorithm. The reader is advised to write his/her own program
as an exercise.
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2.13.2.3 Sum-Product Algorithm

The Sum-Product Algorithm is also called the Belief-Propagation Algorithm and is a rep-
resentative example of soft-decision decoding of LDPC codes. Let the codeword ¢ of
length n generated by the encoder be represented by bipolar symbols. These symbols are
distorted by additive white Gaussian noise, which results in reception of the sample block
y. Generally, the optimal decoding should be performed using the Maximum a Posteri-
ori criterion. According to the MAP criterion the algorithm searches for the sequence
¢=[c1,...,Cyl, which maximizes the a posteriori probability Pr{c|y} and fulfills the
syndrome condition s = H¢ = 0. Thus, the criterion used by the MAP decoder can be
formulated as

‘¢ = argmax Pr{c|y, He = 0} (2.245)
C

However, the task defined by (2.245) is computationally complex to such an extent that
it is replaced by the following n suboptimal criteria

¢; = argmaxPr{c;ly, {s; =0, j e MD}}, i=1,....n (2.246)
Ci

where M(i) = {j : hj; = 1} is the set of indices of check bits in which codeword bit ¢;
is used. Condition {s; =0, j € M(i)} means that all checks involving ¢; are satisfied.
Denote

Qi(b) =Pr{c; =bly,{s; =0, je M@)}}, be{0,1}, i=1,....n (2.247)

The above a posteriori probability is the base for hard decisions upon transmitted code-
word bits, i.e.

0 if Q;(0)> Q;(1)
ci = (2.248)
1 otherwise

The sum-product decoder estimates Q;(0) and Q; (1) iteratively and checks if the derived
decision ¢ implies the zero syndrome. If it does, the decoding process is considered as
successfully finished. As we see, the main problem is to estimate the probabilities (2.247).
In order to perform this task let us introduce the auxiliary probabilities

Q;i(b) = Pr{c; = bly, all checks involving ¢; except s; are satisfied}
=Pr{ci=bly, {s; =0, e MO\j}}, i=1,....n, j=1,....,m (2249
where M(i)\j denotes the set of those syndrome bit indices, except the jth syndrome
bit, in which the codeword bit ¢; is involved. We also introduce the second auxiliary

probability

Rji(b) =Pr{s; =0lc; = b,y}, be{0,1} (2.250)
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This is the probability that the jth syndrome check is fulfilled under condition that the
ith codeword bit ¢; = b (b € {0, 1}) and the sample block y has been received.

An iterative process is performed in order to gradually improve the quality of Q;(0) and
0, (1) estimates. First, information from the received data is used to calculate probabilities
R;i(b) (b=0,1), referring to the parity check bits. These probabilities are derived for
those pairs (j, i) for which the parity check matrix entries are equal to 1, i.e. hj; =1
(i=1,...,n, j=1,...,m). Based on these probabilities, extrinsic information Q ;;(b)
b=0,1;i=1,...,n,j=1,...,m) about transmitted codeword bits is calculated. The
extrinsic information is applied in turn to compute the updated version of the probabilities
referring to the check bits. As we have mentioned, the iterative procedure is performed
in a loop until Q;(b) (i =1,...,n) achieves such values that hard decisions (2.248)
performed on them result in the zero syndrome.

Now let us derive probabilities Q;(b), Qj;(b) and R;;(b) applied in the decoding
algorithm. We start with Q;(b). Using the definition of Q;(b) and Bayes’ rule a few
times, we obtain

Pr {Ci =b,y, {s; =0, je M(l)}}

0i(b) = Pr{er =bly. {5 =0, j € M)} = — 5 == o
s W) — Y,

_ Pr{ci=b,{s; =0, j € MD)}Iy} p(y)
Pr{{s; =0, j € M@}lylp(y)

- 1 Prici =b.{s; =0,jeM(@)).y)
~ Pr{{s; = 0,j e M(@)}ly} ry)
_ 1 Pr{{s; =0.j e M@)}le; = b, y}Pr{c; = bly}p(y)
Pr{{s; = 0,j e M()}y} P(y)
1

= Bl =07 < M@ Pr{{s; =0, j € M(i)}le; = b, y} Pric; = bly}

(2.251)

Assuming independence of subsequent check bits, we may write
Qi (b) : Pr{c; = bly} l_[ Pr{ 0] by} (2.252)

i\b) = —_ ; ; PG = oly ns; =viG =0,y .
Pr{fs; =0, j € M@)]Iy} e
Recalling (2.250) we can formulate Q;(b) as
1

Qi(b) = Pric; =bly} [] Rjib) (2.253)

Pr{{s; =0. j € M)y} Lot

Due to the statistical independence of codeword bits and noise samples we have

Pr{c; = bly} = Pr{c; = b|yi}
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Let us note that the denominator in (2.253) can be expressed as
Pr{{s; =0, j € M(@)}ly}
= Prlc; = 0lyi} [ Prls; = 0le; = 0.y} + Pric; = 11y} [] Prls; =0les = 1.y)
JEM(D) JEM(D)
(2.254)
As we can see from (2.253) and (2.254), the value of the denominator in (2.253) is such

that Q;(0) + Q;(1) = 1, so instead of calculation of this denominator we can apply the
formula

Qi(b) = o; Pr{c; =bly} [] Rji(b) (2.255)
JEM((i)
Coefficients «; are selected to ensure that Q;(0) + Q;(1) = 1.
Similar calculations lead to the following formula for Q ;; ()
Qji(b) =Pr{c; = bly, {s; =0, j € M(@i)\j}}

=a;iPrici=bly} [] Ry (2.256)
J'eEMN]

Let us now derive Rj;(b) = Pr{s; = O|c; = b, y}. Let us consider the case for which
¢; =0, i.e. we derive R;;(0). For that purpose we apply the following theorem.

Theorem 2.13.1 Consider a sequence of K independent binary symbols a; featuring prob-
ability Pr{a; = 1} = p;. The probability that the set {a;, i =1, ..., K} contains an even
number of “1”s is equal to

1 1
5+ 51‘!(1 —2pi) (2257)
1=

One can prove by induction that the above result holds true. It can be directly applied
in the calculation of R;;(0), because we know that syndrome bit s; is equal to zero if
there is an even number of received symbols equal to 1 used to calculate this syndrome
check. Therefore, after replacing p; by Q;;(1) in (2.257) we can write

Rji(O) = PI'{Sj = 0|ci =0, y}
1 1
=5+5 [1 [1-20,)] (2258)
i'eN ()N
Consequently

Rji(1) =1— Rj;(0) (2.259)
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In order to be able to perform the sum-product algorithm we still have to derive the
probabilities Pr{c; = b|y;}, where b = 0, 1. Recall our assumption that the received block
y is the result of transmission of bipolar block x through the channel distorted by white
Gaussian noise, i.e. y; = x; +v;,i = 1,...,n, where x; = a(2¢; — 1) and a is, as before,
the magnitude of a bipolar pulse representing a single bit. Let us start from Pr{c; = 1]y;}.
We have

Pr{Ci — llyz} — P()’i|xi = Cl) Pr{xi = a}
PO

p(ilx; = a) Pr{x; = a}

= (2.260)
pOilxi = a) Prix; = a} + p(yilx; = —a) Pr{x; = —a}
Assuming a priori probabilities Pr{x; = a} = Pr{x; = —a} = 1/2, we receive
Pr{c; = 1]y;) = plilxi = a) (2.261)

pOilx; = a) + p(yilx; = —a)

Knowing that for Gaussian additive noise the conditional probability densities are
described by formula

. )2
_M} (2.262)

202

1
(vilx;j) = ——ex |:
pylll 2@0‘ p

we get

1
1+ exp (—2ay;/0?)

Pric; = 1]y;} = (2.263)

The sum-product algorithm can be summarized in the following steps:

1. For i =1,...,n calculate Pr{c; =1|y;} according to (2.263). Initiate Q;;(1) =
Pr{c; = 1]y;} and Q;;(0) =1 — Q;;(1) for all i and j for which h;; = 1.

2. Update the values of R;;(b) (b =0, 1) using equations (2.258) and (2.259) for all i
and j for which £ ;; = 1.

3. Actualize the values of Q;;(b) (b =0, 1) using equation (2.256) and calculate the
normalizing constants ;.

4. Fori =1, ...,n calculate
Qi(1) = o; Pr{c; = 1|y} 1_[ R;i(1) (2.264)
JeM(i)
and
0i(0) = «; Pr{c; = Oly} 1_[ R;i(0) (2.265)
JeM()

and the normalizing coefficient «;, taking into account the fact that Q;(0) + Q;(1) = 1.
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5. Find tentative hard decisions using (2.248) and check if s = H¢ = 0. If the syndrome
is zero, stop the algorithm and deliver its decision ¢. Otherwise go to step 2.

The sum-product algorithm has been presented above in its basic form. It has been
performed in the probability domain. There are more computationally efficient versions
of it in which, instead of probabilities, the likelihoods or log-likelihoods are applied;
however, this is beyond the scope of this introductory chapter. The interested reader is
recommended to study Lin and Costello (2004), Moon (2005) or Ryan (2004).

At the end of this section let us illustrate the operation of the sum-product algorithm
for the code used in the previous examples.

Example 2.13.3 Assume bipolar transmission with symbol amplitude a = 1 distorted by
statistically independent additive Gaussian noise samples. Let the signal-to-noise ratio be
on the level of 1.2dB, so if the signal power is equal to unity the noise variance is o> =
0.759. As in the previous examples, let the all-zero codeword represented by all-minus-one
symbol block of length n = 15 be transmitted. The received block is

y =[0.168, —0.662, —0.658, —2.487, —0.802, —0.403, —1.555, —1.873, —1.162,
—1.918, —1.062, —0.757,0.196, —0.843, —1.472]

so hard decisions performed on it result in the binary block
r = [100000000000100]

with two errors, in the first and thirteen position, respectively. Syndrome calculation results
in the vector

s = Hr =[011010011000010]

which is nonzero, so the error correction procedure has to be applied.

First the algorithm has to be initialized. Based on the received block y, probabilities
Pr{c; = 1|y;} (G =1, ..., n) are calculated according to (2.263), resulting in the following
vector

Pr{c; = 1]y;}I"_, =1[0.391, 0.851, 0.850, 0.999, 0.892, 0.743, 0.984, 0.993, 0.955,
0.994, 0.943, 0.880, 0.374, 0.902, 0.980]

The above vector entries are used to initialize Q;;(1) and Q;;(0)=1—-Q;; (1) (i =
1,...,n, j =1,...,m) on those positions (i, j) for which h;; = 1. Other positions (i, j)
in Q;;(1) and Q;;(0) matrices remain equal to zero.

After the above introductory steps the main iterative part of the decoding algorithm
can be started. First, according to step 2, values of R;;(b) (b =0, 1) are updated using
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equations (2.258) and (2.259), resulting in the matrix

[R;i ()],

B 0 0 0 0 0 0 0 0.887 0.919 0 0.931 0 0 0 0.897 7]
0.842 0 0 0 0 0 0 0 0.418 0.425 0 0.402 0 0 0
0 0.389 0 0 0 0 0 0 0 0.421 0.412 0 0.807 0 0
0 0 0.771 0 0 0 0 0 0 0 0.714 0.714 0 0.736 0
0 0 0 0.408 0 0 0 0 0 0 0 0.379 0.864 0 0.404
0.420 0 0 0 0.522 0 0 0 0 0 0 0 0.431 0.522 0
0 0.688 0 0 0 0.771 0 0 0 0 0 0 0 0.664 0.637
= 0.825 0 0.399 0 0 0 0.427 0 0 0 0 0 0 0 0.426
0.845 0.393 0 0.425 0 0 0 0.424 0 0 0 0 0 0 0
0 0.750 0.751 0 0.724 0 0 0 0.693 0 0 0 0 0 0
0 0 0.739 0.668 0 0.845 0 0 0 0.670 0 0 0 0 0
0 0 0 0.836 0.927 0 0.846 0 0 0 0.878 0 0 0 0
0 0 0 0 0.682 0.794 0 0.645 0 0 0 0.688 0 0 0
0 0 0 0 0 0.389 0.444 0 0.441 0 0 0 0.714 0 0

L 0 0 0 0 0 0 0.892 0.884 0 0.884 0 0 0 0.971 0|

As each nonzero element Rj;(1) = 1 — R;;(0), i.e. it is a complement of R;; (0) with respect
to unity, we omit the explicit presentation of matrix [R i (1)]mxn. Knowing already matrices
[Rﬁ(o)]mxn and [Rji(l)]mxn’ the algorithm is able to update the values of Qi (b) (b =
0, 1) using equation (2.256), which results in the matrix

[0/i (0],

0 0.868 0.451 0 0.890 0 0 0 0.363 7]
0 0 0.991 0.985 0 0.958 0 0 0
0 0 0.985 0.999 0 0.986 0 0
1.000 0.998 0 1.000 0

0 0 0

0
0
0 0.960 0 0
0

S o oo oo
S oo oo

0 0 0

0 0 0 0.984 0 0 0 0 0.973 0.985 0 0.990
0.997 0 0 0 0.995 0 0 0 0 0 0.995 0.998 0
0 0.987 0 0 0 0.999 0 0 0 0 0 0 1.000 0.996

= | 1.000 0 1.000 0 0 0 1.000 0 0 0 0 0 0 0 0.999
0.997 0.989 0 0.993 0 0 0 1.000 0 0 0 0 0 0 0
0 0.993 0.999 0 1.000 0 0 0 0.999 0 0 0 0 0 0

0 0 0.991 0.977 0 0.993 0 0 0 0.985 0 0 0 0 0

0 0 0 0.883 0.978 0 0.973 0 0 0 0.994 0 0 0 0

0 0 0 0 0.956 0.874 0 0.963 0 0 0 0.423 0 0 0

0 0 0 0 0 0.998 0.997 0 0.994 0 0 0 0.995 0 0

0 0 0 0 0 0 0.994 0.998 0 0.981 0 0 0 0.997 0

Similarly, [Q ji(1)luxn has been omitted. The next step is the calculation of the estimates
of a posteriori probabilities according to (2.264) and (2.265). The resulting vectors are
[Q;(D]]7_, =[0.015, 0.060, 0.009, 0.000, 0.002, 0.008, 0.001, 0.000, 0.003, 0.001,
0.000, 0.048, 0.032, 0.001, 0.003]
[Q;(0)]]7_, =10.985,0.940, 0.991, 1.000, 0.998, 0.992, 0.999, 1.000, 0.997, 0.999,
1.000, 0.952, 0.968, 0.999, 0.997]
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In the next step the algorithm finds tentative hard decisions using (2.248). The resulting
vector is

r = [000000000000000]

which is identical to the codeword generated in the transmitter. Clearly, checking the
parity Hr results in the syndrome s = 0, which ends the decoding algorithm.

Let us note that the algorithm corrected the received sequence in a single step by finding
two erroneous positions at once. The considered numerical example is very simple. If the
codeword length is of the order of a few thousand, the algorithm needs many iterations to
correctly decode the received sequence. Also, since computational complexity becomes
excessive, the sum-product algorithm is performed in the log-likelihood domain.

2.14 Error Detection Structures and Algorithms

As we have mentioned, in cases in which irregularity in data block transfer rate can be
tolerated and there is a simultaneous requirement for a very low error probability, error
detection with some mechanism of block retransmission is a common solution. We say
that the data transmission system is nontransparent. Data blocks arrive at the recipient
irregularly; however, their reliability is very high. A necessary condition for application of
an error detection procedure is the possibility of establishing a feedback channel from the
receiver to the transmitter. This channel is used to inform the transmitter about the results
of checking the correctness of the received data block. The traditional configuration of
an error detection system is shown in Figure 2.41.

a, | crc Cph r a
encoder Tx B Main channel |—» Ax |-» CRC 150y
i decoder
Buffer
ACK(n) / NAK(n)

A

Feedback channel

Figure 2.41 System configuration with error detection coding and block repetition

User data are first formed in blocks, denoted in Figure 2.41 by a symbol a,,. These blocks
are then coded using a selected shortened cyclic code. Codewords ¢, are subsequently
transmitted over the main channel to the receiver. For each received block a syndrome is
calculated. When the syndrome is nonzero, the receiver signals detection of an erroneous
data block by sending a so-called negative acknowledgment NAK (Not-Acknowledged)
indicating the necessity of repeating the block. If the syndrome calculated by the receiver
is zero, it means that the decoder located in the receiver has not detected any errors in
the received block and a positive acknowledgment ACK (Acknowledge) is sent to the
transmitter. Retransmission of erroneous blocks is automatic, therefore this technique is
often denoted by the acronym ARQ (Automatic-Repeat-Request).
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The motivation for using a shortened cyclic code is as follows. The length of the
information block is usually determined by a particular application. Applying a polyno-
mial code for error detection results in calculation of the remainder from division of the
message polynomial by the generator polynomial g(x). In the case of cyclic codes the gen-
erator polynomial is a divisor of x” — 1, where n is the codeword length of a full-length
cyclic code. The applied code is often denoted by the abbreviation CRC (Cyclic Redun-
dancy Check). The remainder from division of the message polynomial by the generator
polynomial calculated by the encoder is attached to the end of the message block and
constitutes a parity block. A few standardized generator polynomials g(x) are applied in
practice. The most important among them are (Held 1999)

CRC-16 (ANSI) g(x) = x'"0 4 x4+ x2 41
CRC (ITU-T) g) =x" 4+ xPx0+1
CRC-12 g) =x2 x4+ 341 (2.266)
CRC=32 g(x) — x32 +x26 +x23 +x22 +x16 +x12 +x11
+x0 T P+

Let us check the error detection oportunities offered by a CRC code. For that purpose
we formally define an error burst.

Definition 2.14.1 An error burst of length b is a sequence of b bits in which the first
and the bth bit are erroneous and among the remaining b — 2 bits some other bits can be
erroneous too.

The following theorem states abilities of error burst detection using a linear block code.

Theorem 2.14.1 The application of a linear code with b parity bits is the necessary and
sufficient condition of detection of all error bursts of length b or smaller in a binary block
of length n.

Let us note that error burst detection capability does not depend on the block length n,
so the method is very useful when very long message blocks are applied. The blocks can
have different lengths, which can also be useful in some applications. In order to make
error detection possible, the receiver requires determination of the start and the end of
the block.

Now we will show that b parity bits are sufficient to detect all error bursts not longer
than b bits. Let us group all message bits into b-bit subblocks. Let the block of b parity bits
be attached to the end of each message block. In this way we have created a systematic
code with parameters [n, (n — b)]. Let the ith parity bit be a modulo-2 sum of the ith bits
of each b-bit subblock. Let us note that only one bit in any b-bit or shorter error burst
will influence a given parity bit, so the presence of the error burst will be detected. Such
a situation occurs in cases when an error burst is contained in a single subblock or when
it partially overlaps two neighboring subblocks. This case is illustrated in Figure 2.42.
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Error burst # 1 Error burst # 2
1[2] ... [b] [12] ... [b]
Parity block
(2] ... [o[1]2] ... [ol1]2] ... Ib]  [1]2] ... [p[1]2] ... [#]

Error detection

Bit 1 Bit b

Figure 2.42 Detection of error bursts by a linear code of b parity bits

It turns out that application of a linear code, in particular a shortened cyclic code,
allows the detection of most error bursts longer than the number of parity bits. In order
to show this, we will prove the following theorem.

Theorem 2.14.2 A fraction of error bursts of length b > r, which remain undetected by a
cyclic code (n, k), where r =n — k, is 27" when b >r + 1 and is equal to 270D when
b=r+1.

Proof. Assume without loss of generality that an error burst of length b bits appeared
starting from the ith bit in a block. This implies that it ends in the (i + b — 1)st bit. In
polynomial notation this error burst can be given in the form

e(x) = x'b(x) (2.267)

where b(x) =x*"1+ ...+ 1lisa polynomial of degree (b — 1) that describes the error
burst. Because the error burst starts in the ith position and ends in the (i +b — 1)st
position, the coefficients of b(x) are equal to 1 for the polynomial components with the
power equal to (b — 1) and to zero. The remaining coefficients can take values equal to
zero or 1 depending on the current pattern of the error burst. Therefore, there exist 272
different error bursts of length b bits. Because error detection is performed by dividing
the polynomial representing the received sequence by generator polynomial g(x), an
error burst will remain undetected if and only if the polynomial describing it, i.e. b(x),
is divisible by g(x). This implies that such an error burst can be written in the form

b(x) = g(x)Q(x) (2.268)
where Q(x) is a polynomial of degree [(b -1 - r]. Consider three possible cases:

1. The degree of the polynomial b(x) is lower than the degree of the polynomial g(x),
which means that the error burst is shorter than r. Consequently, there is no such
polynomial Q(x), which when divided by g(x) results in polynomial b(x). As a result,
all error bursts shorter than r will be detected.
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2. The degree of the polynomial b(x) is equal to the degree of the polynomial g(x),
i.e. b — 1 =r. Then there exists exactly one polynomial b(x) that is divisible by the
polynomial g(x). This polynomial has the form b(x) = g(x). Then Q(x) =1 and
there is a single undetected error burst. Because the number of different polynomials
describing error bursts of length b is equal to 2072, the fraction of undetected error
bursts is 1/2072 =2-¢=D,

3. The degree of the polynomial b(x) is higher than the degree of the polynomial g(x).
The error bursts for which the polynomial b(x) is divisible by g(x) will remain unde-
tected. The result of such a division, i.e. the polynomial Q(x), is of [(b—1) —r]
degree. In consequence, the polynomial Q(x) has b — r coefficients and has the form

0(x) = x(=D-r 4+ 41 (2.269)

The coefficient at the highest power of x has to be equal to 1; otherwise, the polynomial
degree would be lower. In turn the “1” at zero power results from the fact that both b(x)
and g(x) have “1” in this position. Therefore there exist 2°~"~2 different polynomials
featuring this property. As a result, the fraction of undetected error bursts with respect
to all possible error bursts of length b is

2b—r—2
W = 2_r for b—1>r (2270)

Let us illustrate the meaning of the above theorem. If we assume that bit errors in
a transmitted block occur independently and their probability is denoted as p, then, if
the length n of a tranmitted data block is high enough and probability p is small, the
probability of an erroneous block can be well approximated by Pp ~ np. If a CRC code
with r parity bits is applied, the fraction of undetected error bursts will be 27", therefore
the probability of undetected erroneous block will be

P, =np2™" (2.271)

Table 2.7 presents the values of probability P, for different block lengths n and degrees
r = n — k of the polynomial g(x). These values have been achieved under the assumption
that the probability of a single bit error is p = 107>. As we can see, error detection using
a CRC code ensures very low block error probability; however, in order to be useful, a
possibility to retransmit erroneous blocks has to exist.

Table 2.7 Probability of undetected error burst
for different block lengths n and parity block

lengths r

n r P,
500 8 2x 1077
500 16 1077
1000 16 2 x 1077

1000 32 4 x 10712
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2.15 Application of Error Detection — ARQ Schemes

We have already learnt about effective ways to perform error detection in received data
blocks. Consider now basic strategies of nontransparent transmission, in which after detec-
tion of an erroneous block a feedback message is sent to the transmitter, informing it
about necessity of block retransmission. There are many data transmission services that
take advantage of this kind of strategy — mostly those services that do not require sending
data at constant rate or constant delay — but their crucial features are reliability and low
probability of undetected block error. An example of such a service is the transmission of
banking data. Data transmission in mobile networks is also often organized in this way.
The information exchange with block retransmission upon request is applied in many
protocols of the data link layer of the Open System Interconnection (OSI) description
model (Wesotowski 2002).

Consider the system shown in Figure 2.41. We will present three basic ARQ strategies
(although others exist as well) that differ in the required size of buffers applied in a
transmitter and receiver and, what is more important, in the data transfer efficiency. The
three basic ARQ strategies, presented in Figure 2.43, are (Lin and Costello 2004):

e stop-and-wait ARQ (Fig. 2.43a);
e go-back-N ARQ (Fig. 2.43b);
e selective-repeat ARQ (Fig. 2.43c).

The first technique is very easy to implement but its efficiency can be low if it is
applied in a transmission system in which a significant delay occurs in the transmission
chain. The transmitter sends a data block supplemented with parity bits and waits for
acknowledgment, i.e. the message ACK, which has to be transmitted over the feedback
channel. If this message does not arrive within a given maximum time period or if the
transmitter receives negative acknowledgment (NAK), the transmitter sends the same
block again. When the ACK message is received by the transmitter, the next data block
is sent. The time between the end of transmission of a given block and the beginning
of transmission of the next block is wasted. This is the main reason for the potentially
low efficiency of this strategy. The efficiency can be improved by lengthening the data
blocks; however, as a result, the probability of their failure increases (cf. the formula
Pp =~ np), so the frequency of block retransmission also increases. Block lengthening
may be impossible in some applications.

Let us estimate the transmission efficiency of the above strategy. An example of a
single data block transmission and its acknowledgment is shown in Figure 2.44. The
following notation has been applied for respective time intervals: 7, — propagation time
between transmitter and receiver of a data block or an acknowledgment block (in reverse
direction), 7j, — data block duration in time units, 7, — delay due to data block process-
ing in the receiver (e.g. due to applying the error detection procedure), 7, — duration
of an acknowledgment block, T,, — delay due to acknowledgment block processing in
the transmitter. In practice, when the stop-and-wait ARQ technique is applied, process-
ing times of data blocks and acknowledgment blocks are very short compared with the
duration 7}, of data transmission block. Also the duration of an acknowledgment block
is much shorter than the time needed for transmission of a data block. Consequently, the
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Figure 2.43 Illustration of basic ARQ techniques: (a) stop-and-wait, (b) go-back-N, (c)
selective-repeat (Lin and Costello 2004)
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Figure 2.44 Timing scheme of stop-and-wait ARQ strategy
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time span between transmission of subsequent blocks can be well approximated by the
sum T, + 27),. Therefore, transmission efficiency is equal to

T, 1 T,
= = , where « = — (2.272)
T, +2T, 142« Ty

n

Note that we have calculated the transmission efficiency for an ideal situation in which
block retransmissions do not occur. In reality, the probability of an erroneous block
occurrence is nonzero, which implies a nonzero probability of block retransmission, which
in turn leads to a decrease in transmission efficiency. Let N, attempts of transmission of a
single block occur. In a typical situation this number is only slightly higher than 1, which
means that a small number of data blocks need to be retransmitted. As we remember, the
probability of an erroneous block is Pg =~ np. Thus, the probability of a correct block
reception is 1 — Pp. Therefore the mean number of a single block transmission attempts is

1
T 1—Pg

Ny (2.273)

Then from (2.272) we have

B T, B 1 _1—Pg
N, +2N,T, N,(1+20) 142«

n (2.274)

This formula has been achieved under the assumption that the probability of erroneous
reception of the acknowledgment (positive or negative) block is vanishingly low compared
with the probability of data block error. This assumption is fully justified. As one can
conclude from formulae (2.272) and (2.274), transmission efficiency of the stop-and wait
ARQ strategy with waiting for acknowledgment strictly depends on the ratio of data block
propagation time to block transmission time and the probability of erroneous reception of
a data block. Let us determine transmission efficiency for a few representative examples
of transmission systems (Halsall 1996).

Example 2.15.1 Data blocks of length 1000 bits are transmitted using the stop-and-wait
ARQ strategy. Determine a transmission efficiency n in the following data links for two
data rates: (a) 1kbit/s, (b) 1 Mbit/s. Assume for simplicity that the signal propagation
velocity in the channel is v =2 x 108 m/s and the binary error probability is very small.
Consider three data links: (1) a twisted copper pair of length | = 1km, (2) a leased line
of length | = 200km, (3) a satellite link of length | = 50000 km. Duration of a data block
is determined by the formula

_ Number of bits in the data block N

T — - ; (2.275)
Transmission velocity [bit/s]
whereas signal propagation time results from the expression
Link length
T, ink length [ [m] (2.276)

- Propagation velocity v [m/s]
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Table 2.8 Effciency of the stop-and-wait ARQ strategy for different link lengths and data
transmission rates

Kind of link Transmission rate Parameter « Efficiency n
Twisted copper pair 1 kbit/s 5x107° ~

[ =1000m 1 Mbit/s 5% 1073 ~

Leased line 1 kbit/s 1 x 1073 ~1

1 =200 x 10°m 1 Mbit/s 1 0.33
Satellite link 1 kbit/s 0.25 0.67

[ =50x 10°m 1 Mbit/s 250 0.002

Substituting data values for transmission rates and data link lengths, we achieve the effi-
ciency values presented in Table 2.8.

Based on these simple examples one can easily conclude when the application of the
stop-and-wait ARQ strategy is reasonable. This technique is very useful if the duration
of a data block is significantly longer than the signal propagation time in the channel.

Consider now the second ARQ strategy, i.e. go-back-N. This time, the transmitter
does not wait for acknowledgment of the transmitted block, but it subsequently sends
the next blocks. Till the moment of acknowledgment of correct reception a given block
is stored in a transmitter buffer. The size of the buffer has to be selected by taking into
account a maximum time period that can pass until the acknowledgment related to a given
transmitted block is received by the transmitter. This time period is determined both by
signal propagation through the channel and duration of a data block. If the maximum
number of data blocks stored in a buffer is denoted as K, then the buffer memory is
sufficient if the following condition is fulfilled

KTy, >T,+2T, ie. K>1+2a (2.277)

A given data block is deleted from the buffer after reception of positive acknowledgment
(ACK). If a negative confirmation is received, the transmitter sends subsequent blocks
once more, starting from that one for which a positive acknowledgment has not been
received. Consequently, it is sufficient to apply the buffer in the transmitter only. The
receiver marks the blocks received after the erroneous one as erroneous blocks by sending
the NAK block until correct reception of the data block that had been previously received
in error occurs. The inefficiency of this technique results from repeated transmission of
correctly received blocks if they were preceded by a damaged one.

The third strategy, i.e. the selective-repeat ARQ strategy, does not have the disadvantage
of the go-back-N technique considered above. However, the price to pay is the necessity
of the data block buffer both in the transmitter and the receiver. It is also necessary to
number transmitted blocks modulo-N,,,x in order for the transmitter to know which data
block needs to be retransmitted. The transmitter learns it by reception of the NAK block
with the number of the data block that has to be transmitted again. The buffer in the
receiver is indispensable because it enables the correct ordering of the data blocks in case
some of them are retransmitted.
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Consider now the transmission efficiency for the selective-repeat ARQ strategy. This
strategy and the previous one do not differ in efficiency when the data blocks are received
without errors. Assume for a moment that the probability of data block damage is neg-
ligible and the buffer in the transmitter allows K recent data blocks to be stored. If the
number of stored blocks is sufficiently high so that it compensates for such a delay i.e.
that an acknowledgment block related to the oldest stored data block arrives within this
time period, then transmission efficiency is n = 1. However, if the signal propagation
time is so high that the buffer is filled before the acknowledgment block related to the
oldest data block stored in the buffer arrives, then transmission has to be halted until the
expected acknowledgment block is received. Thus, only part of the time between subse-
quent blocks can be utilized for transmission and only K blocks can be sent in the round
trip delay time. As a result, transmission efficiency is given by the formula

KT,
Ty +2T, 142«

1 if K<1+2a (2.278)

Now let us extend our considerations to the case when the block error probability cannot
be neglected. First consider the selective-repeat ARQ strategy. If the buffer capacity is
sufficiently large to allow continuous operation of the transmitter until acknowledgment
of a given data block is received, then transmission efficiency is n = 1 — Pp, where, as
before, Py is the probability of reception of an erroneous data block. However, if the
buffer capacity is not sufficient, then we calculate the efficiency as in formulae (2.273)
and (2.274) and we obtain

B KT, _ K(1—Pp)
©ON(Ty+2T,) 1420«

n (2.279)

The author suggests that the reader would derive the transmission efficiency for the
go-back-N ARQ strategy when the probability of erroneous block reception is not negli-
gible. The results of these calculations would be the following

K(1 — Pg)
for K <1+ 2«
1+ 201)(1 + Pp(K — 1))
n= (2.280)
1+ Pp(K —1)

Example 2.15.2 (Halsall 1996) A sequence of 1000-bit blocks is transmitted over the
link of length 100 km at 20 Mbit/s data rate. Let the signal propagation velocity be v =
2 x 108 m/s, and let the probability of binary error be p =4 x 107, Derive the trans-
mission efficiency for all three considered ARQ strategies. In the case of transmission
with go-back-N or selective-repeat strategies the size of buffer K is assumed to be 10.
Substituting the parameters given in this example to formulae (2.275) and (2.276) we
receive the transmission time for a data block and the signal propagation delay, which
are Ty =5 x 107 s and T,=5x 10™*s, respectively, so the value of the parameter
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a is 10. We conclude that 1 + 2« =21, i.e. K < 1+ 2a. Probability of an erroneous
data block reception can be approximated by the formula Pg = np, so we receive Pg ~
1000 x 4 x 107> =4 x 1072, In turn, 1 — Pg = 0.96. Substituting the calculated param-
eters to formulae describing transmission efficiency, we obtain

1—P
5 = 0,046 Sor stop-and-wait ARQ
14+ 2«
K = Ps) 0,336 for go-back-N ARQ
= =0, or go-back-
7] G2+ Pak — 1) ¢
K(1 — Pp) .
— =046 forselective-repeat ARQ
1 4+ 2«

As one could expect, for the given transmission and propagation parameters,
the selective-repeat ARQ strategy features the highest transmission efficiency. The
stop-and-wait ARQ technique results in very poor link utilization because the signal
propagation delay is ten times longer than the time needed for transmission of a single
data block and waiting for acknowledgment of a transmitted block takes most of the
time.

Despite disadvantages of the stop-and-wait AQR technique, it seems to be very useful
if there are N stop-and-wait ARQ processes applied in an interleaved manner. In this way
the idle time period in which the transmitter waits for the positive acknowledgment of
the transmitted block is used by other ARQ processes performed in parallel.

2.16 Hybrid ARQ

So far we have considered the application of cyclic codes in error detection and we have
concentrated on three basic strategies of block exchange associated with CRC codes.
However, one could think about more sophisticated schemes in which both error detection
and correction are applied. This leads us to hybrid ARQ configurations. The general idea
is to apply an error correction code that is able to correct a limited number of typical
error patterns; however, the detection capability of the same code or of the outer code
is additionally used. Although for small values of bit error probabilities this scheme has
lower efficiency than a scheme in which only error detection is used, for higher values
of bit error probabilities the block retransmission is expected to be much less frequent
compared with a pure ARQ scheme because after correction of typical error patterns
retransmissions are not needed so often.
Hybrid ARQ schemes are divided into two types.

2.16.1 Type-I Hybrid ARQ

The type-1 hybrid ARQ is the simpler type of the two hybrid ARQ schemes. It can
be implemented by applying either two codes or a single code. First let us consider a
two-code system. Let the length of the transmitted block be equal to k. Blocks of length
k are first encoded using an (n, k) error detecting code. Typically, a CRC code is applied.
The resulting packets of length n are subsequently encoded by an FEC (n|, n) code. At
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the receiver the blocks are first decoded by the FEC decoder. Due to its operation typical
error patterns can be corrected and the resulting blocks of length n are sent to the error
detection code decoder. If, despite error correction in the FEC decoder, further errors are
detected, the feedback message requesting retransmission is sent to the transmitter and
the whole encoding process starts again. In the case of no error detection, the k-bit packet
is transferred to the recipient.

The type-I hybrid ARQ can also be applied using a single FEC code. Typically, a block
code is applied. Let the block code have the minimum distance dy,;,. Its value can be
partitioned into two parts, / and X, such that dpy, > [ + A + 1, where X is the number of
correctable errors and [ is the number of detectable errors in a received block (I > 1). As
we can see, the error correction capability is not fully exploited but the coding capability is
partially used in error detection. The ability to correct A errors is achieved by construction
of a specific decoding algorithm that is based on the appropriately selected set of parity
check equations. After error correction in the FEC decoder (usually requiring syndrome
calculation) the syndrome of the corrected block is calculated again. If it is zero, this
means that either there were no errors or they have been corrected by the FEC decoding
algorithm. If the recalculated syndrome is nonzero, the retransmission request message is
sent back to the transmitter.

Another approach in using a single code for the type-I hybrid ARQ relies on application
of a block code that is not perfect. Thus, some error patterns can be detected, although
they are beyond the correction capabilities of the decoder. In the case of occurrence of
such errors, retransmission of the codeword is requested. All correctable error patterns
are processed in the decoder and retransmission is not required. Reed-Solomon codes are
an excellent example of block codes in such application (Wicker 1995). Another example
of a single code that can be used in the type-I hybrid ARQ is given in (Lin and Costello
2004). This code is the (1023, 923) BCH code. Its minimum distance is dp, = 21. It can
be applied to correct at most five errors, although it is able to detect all error patterns
featuring more than five and less than sixteen errors. Thus, retransmission requests will
take place if an error pattern containing more than five errors occurs.

2.16.2 Type-II Hybrid ARQ

Let us note that in type-I hybrid ARQ systems retransmission of the whole codeword
occurs if uncorrected errors are detected in the receiver. The type-II hybrid ARQ goes one
step further in achieving higher system throughput. It is obtained by using the incremental
redundancy approach. Both convolutional and block codes can be applied to implement
this ARQ scheme. Generally, as a result of a retransmission request message the transmit-
ter does not send the whole codeword again, but it sends some additional parity bits that
have been calculated but not sent to the receiver. They allow the decoder to decode the
previously received block again. The block is now supplemented by newly added parity
bits. Thus, a stronger code has been applied that has higher error correction capabilities
than its previously used punctured version. This strategy can be realized a few times until
the full number of parity bits is used by the decoder. If errors are still detected, the whole
procedure starts from the beginning.

As an example consider a classical type-II ARQ scheme using two codes. The first one,
denoted as Cy, is a high rate (n, k) error detection code, e.g. CRC code. The second code,
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denoted as C,, is a 1/2-rate (2k, k) block code used both for detection and correction.
The applied code is called invertible. This feature means that knowing only the parity
check symbols of a codeword, the message symbols that have implied these parity check
symbols can be uniquely determined from them in an inversion process.

Let us present the operation of the type-II hybrid ARQ scheme with an invertible code.
Let the subject of transmission be a k-bit message block m. First, this block is encoded
using the error detection code C;, which results in a codeword v = [p(m), m], where
p(m) is a block of n — k parity check bits. The codeword is transmitted to the receiver.
However, the transmitter simultaneously calculates parity bits of the (2k, k) inverse code
C,, so a codeword [¢(m), m] is generated. The calculated parity bits ¢ (m) are stored in the
transmitter in case they are needed in the retransmission procedure. Denote the received
block as V = [p(m), m]. First, based on the received block V the receiver calculates the
syndrome of the code C;. If the syndrome is zero the receiver accepts the message block m
and sends ACK to the transmitter. On the other hand, a nonzero syndrome indicates errors
contained in the received block V. The received message block m, possibly containing
errors, is stored in the receiver and the negative acknowledgment NAK block is sent
back to the transmitter. In this case the transmitter encodes the k-bit parity block g (m)
previously generated by the inverse code C, using the error detection code C;. As a result
the codeword v = {p[g(m)], g(m)} is transmitted. Let us note that in fact for a moment
a parity block ¢(m) from the (2k, k) inverse code plays the role of a message block. Let
the received block be denoted as V = {p[g(m)], g(m)}. If the syndrome calculated on the
basis of V' is zero then one can assume that the block ¢ (m) does not contain errors, so the
message block m can be recovered from it in the inversion process. On the other hand,
if the syndrome is nonzero, the message block m received in the previous step and the
block g (m) received recently are concatenated into a single block [¢(m), m] of the (2k, k)
code. This block is subsequently decoded. If the error correction process is successful,
the obtained message block is accepted and the ACK message is sent to the transmitter.
If the C, decoder detects an uncorrectable error pattern, the received message block m is
deleted but the parity check block g(m) is stored for further processing. A NAK is also
sent to the transmitter. After receiving the NAK again the transmitter repeats transmission
of the codeword v = [p(m), m]. The procedure is similar to the previous one. Again, if
the syndrome based on the received block Vv = [p(m), m] is zero, the block m is accepted
as a message block and the ACK message is issued to the transmitter. If it is not, the
recently received block m and the previously received block g(m) form a received block
being the subject of error correction decoding. If the error pattern contained in the block
[¢g(m), m] is correctable, the message block is recovered in the decoding process and
the ACK message is sent to the transmitter. If the detectable but uncorrectable errors
are contained in the block [g(m), m], the NAK message is sent again and the parity
block ¢(m) is coded by the C; code. Thus, the retransmission process has an alternating
character. It is continued until the message m is correctly received or the number of
retransmissions reaches the allowable maximum value indicating that the link quality is
unsatisfactory.

At this state of our description of the type-II hybrid ARQ scheme let us show how
the inversion process of a (2k, k) code can be implemented. Shortened cyclic codes are
applied as inversion codes. In (Lin and Costello 2004) an example of the (1023, 523)
BCH code shortened to the (1000, 500) code is considered. The inversion process of a
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half-rate block code is based on the theorem that states that there are no two codewords in
a half-rate shortened cyclic code that have the same parity check blocks (Lin and Costello
2004). Thus, the message part of the codeword is uniquely related to the parity check part.
As we remember from our considerations on the generation of a codeword of a systematic
polynomial code, the parity check bits are received by division of the message polynomial
x""¥m(x) by the generator polynomial g(x), resulting in the remainder p(x), i.e.

x"_km(x) =a(x)gx)+r(x) (2.281)

We want to recover the message polynomial from the parity polynomial r(x). Let us
multiply both sides of (2.281) by x*, which results in

x"m(x) = a(x)g(x)x* + ro)xt (2.282)
Adding m(x) twice> to the left side of (2.282), we have
(x" 4+ Dm(x) +mx) = a(x)g(x)x* + ro)xk (2.283)

However, for the (n, k) cyclic code the generator polynomial is a divisor of x” 4+ 1 so
x" 4+ 1= g(x)h(x). From (2.283) we conclude that

r(x)xk =[mx)h(x) + a(x)xk]g(x) + m(x) (2.284)

The last equation indicates that we can recover the message polynomial m(x) by dividing
the parity check polynomial r(x) multiplied by x* by the generator polynomial g(x). The
remainder of this division is the desired message polynomial m(x). This operation can
be performed in a typical circuit of a polynomial code encoder similar to that shown in
Figure 2.5. Let us note that n = 2k in our case, so X'k = xk,

At the end of our description of the type-II hybrid ARQ let us consider application
of convolutional codes in this type of ARQ strategy (Figure 2.45). This approach has
been realized in data transmission over GSM/GPRS/EDGE cellular networks and is con-
ceptually very simple. Let the data block of length k be first encoded using an error
detecting code such as a CRC code, which results in the block of length n bits. Next,
the n-bit block is 1/3-rate convolutionally encoded. This leads to the block of length
3n. Let us note that transmission over wireless channels very often requires strong FEC
coding anyway, in order to achieve satisfactory bit error rate performance. In our case
the FEC code is utilized not only in error correction but also in the hybrid ARQ mech-
anism. Subsequently the 3n-bit block is a subject of two types of puncturing according
to patterns P; and P,, respectively. Each of them leaves n bits out of a 3n-bit block
and they are disjoint. Thus, the n-bit block resulting from the puncturing pattern P is
transmitted first. As we can see, the code rate of the punctured convolutional code cre-
ated in this way is equal to 1. The received soft-decision samples are subject to FEC
decoding (mostly using the Viterbi algorithm). The punctured sample positions are filled
with zeros. The resulting n-bit block is checked for correctness using the CRC error

5 Recall that m(x) + m(x) = 0.
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Figure 2.45 Type-II hybrid ARQ with application of CRC and convolutional codes (illustration
of incremental redundancy principle)

detecting code decoder. If the syndrome is zero, the ACK message is issued for the
transmitter. If the syndrome is nonzero, the NAK message is sent back to the transmit-
ter and the second n-bit block resulting from puncturing using pattern P, is transmitted.
The received n samples partially fill the zeros in the stored sample vector received in
the previous step of the ARQ transmission. Thus, 2n out of 3n samples are now avail-
able for the Viterbi decoder. As we can see, the code rate is now equal to 1/2. After
repeated convolutional code decoding and checking the correctness of the decoded block
by the CRC decoder, the ACK or NAK message is sent to the transmitter. In the lat-
ter case the remaining n-bit block is sent to the receiver, so finally the decoder can
take advantage of 3n samples and the applied convolutional code has the original code
rate of 1/3. If errors are still detected, the whole procedure starts from the beginning.
Figure 2.45 illustrates the incremental redundancy principle in the hybrid ARQ procedure
with a convolutional code. Let us note that due to memorizing the received samples for
later use the application of the soft-decision decoding algorithm is a natural consequence
thereof.

Let us also note that in general the hybrid ARQ scheme is accompanied in its acknowl-
edgment message exchange part by one of the above-described regular ARQ schemes
such as stop-and-wait, go-back-N or selective-repeat strategies.

Despite the relatively large size of this chapter devoted to the protection of digital
messages against errors, we have only sketched basic topics of the channel coding theory.
After considering classical topics in coding theory we attempted to clarify the idea of
turbo coding and presented basic information on the idea and decoding of LDPC codes.
Channel coding is the subject of advanced academic handbooks and monographs, so the
author encourages a more interested reader to study them individually.
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Problems

Problem 2.1 A transmitter sends binary blocks of length n over a transmission channel
that can be modeled as a binary symmetric memoryless channel featuring the error prob-
ability p. What is the probability of the event that the number of errors occurring during
transmision of a single block does not exceed k?

Problem 2.2 Consider the (5, 2) code described in Example 2.1.1 and the channel model
from Problem 2.1. Let the error probability of a single bit be p = 0.001.

1. Calculate the probability of errorless reception of a codeword.

2. Calculate the probability that the decoder will correct a transmission error.

3. Calculate the probability that the decoder will detect transmission errors.

4. Calculate the probability that the decoder will commit an error during the decoding
process, i.e. it will assign a wrong codeword to the received sequence.

5. Is the code from Example 2.1.1 linear? What is the minimum distance of the code?

Problem 2.3 Plot the probability of reception of a particular sequence r that differs in
D concrete positions from the transmitted sequence ¢. Make the plots for several lengths
of sequences n as a function of D. Let n be equal to 10, 50 and 100. Let the parameter D
vary between 0 and 5. Write a computer program that calculates the required probabilities.

Problem 2.4 Consider the bipolar input memoryless channel model shown in Figure
1.19a with the Gaussian noise as an additive distortion. Before implementing suboptimal
soft-decision decoding, the signals are quantized by a uniform 8-level quantizer with the
thresholds shown in Figure 1.19b. Assume signal power P = A? and the noise variance
o?. For a given SNR = P/o? construct a binary input 8-ary output memoryless chan-
nel model, shown in Figure 1.19c, and calculate the transition probabilities Pr{i|A} and
Pr{i| — A} (i =0, ...,7) between inputs and outputs. If you like to use Matlab for calcu-
lation of these probabilities you can use the function y = gfunc(x), which calculates the
value of 1 minus the cumulative distribution function of the normalized Gaussian random
variable (6> = 1) for the argument x, according to the formula

Ox) = exp[—12/2]dr

oo
el
2
X
Otherwise use the table of Q-function, available in the Appendix. The resulting discrete

memoryless channel model describes the distribution of symbols at the input of the subop-
timum soft-decision decoder in the system shown in Figure 2.46.

Vi

oo Binary to Output
block i X.=+A I_’_’_,— -. b
’ eE?:égr —»  bipolar . ;5_> Yn| | Soft-input |bloc
converter _’_r’-‘ decoder ’

Binary input 8-ary output channel model

Figure 2.46 System with a binary input 8-ary output channel and soft-input decoder
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Problem 2.5 Let the codewords of the block code be described by the following formula
(Clark and Cain 1981)

¢c=(c1,c,03,¢04,C5, C1 +Cp+cC4+0c5, 1 +c3+c4+cs,

ci+c+c3+cs, ¢ +er+ce3+cy)

Determine the code parameters (n, k), construct the parity check matrix H and find the
minimum distance dp;, of this code.

Problem 2.6 Construct the generator matrix for the code from Problem 2.5.

Problem 2.7 Construct the parity check and generator matrices for the repetition codes
of lengths n = 3, 5 and 7. What is the minimum distance of these codes?

Problem 2.8 Consider the (7,4) Hamming code with the parity check matrix given by
formula (2.37).

. Find the generator matrix of this code.

. Find all the codewords of this code.

. Construct the optimum decoding table for the code. Show that this code is perfect.

. Find the syndrome of the received sequence r = (0111011).

. Draw a logical diagram of the syndrome calculator that uses only basic properties of
the parity check matrix.

. As we know, the (7,4) Hamming code is also generated by the polynomial g(x) =
x3 4+ x + 1. Draw the schemes of the encoder for the nonsystematic and systematic
versions of the code.

L AN W N~

=)

Problem 2.9 Consider the cyclic (15, 11) Hamming code generated by the polynomial
gx) =x*4+x+1.

1. Create a generator matrix G for this code.

2. Transform the received generator matrix to the canonical form and find the correspond-
ing parity check matrix H.

3. Check if the polynomials r{(x) = x> + x'0 4+ x7 + x0 + X +x3 +x + land ry(x) =
22 4 x4 X7 4+ x0 + x5 4+ x* + x3 + x + 1 describe codewords of the (15, 11) Ham-
ming code. Calculate syndromes for them.

Problem 2.10 Construct multiplication and addition tables for G F (5) and find the mul-
tiplicative and additive inverse elements for each nonzero element of GF (5).

Problem 2.11 Solve Problem 2.10 for G F (7).

Problem 2.12 G F (32) is generated using the primitive irreducible polynomial p(x) =
x> + x2 + 1. Generate the table of powers of a primitive element « of this field and find
their polynomial representation.

Problem 2.13 Consider three block codes of length n = 31. Using the table of G F(32)
derived in Problem 2.12 find the generator polynomial g(x) for the following codes:

1. The Hamming code.
2. The maximal-length code.
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3. The BCH code able to correct two errors.

Problem 2.14 Consider the (15,7) BCH code whose generator polynomial g(x) was
derived in Example 2.5.4.

1. Draw the scheme of the encoder based on the generator polynomial g(x).

2. Determine the parity check matrix and generator matrix of this code.

3. Check if this code is a cyclic code. If it is, determine the parity check polynomial h(x)
and sketch the encoder based on it.

Problem 2.15 Use G F(7) from Problem 2.11 with the primitive element o = 5 to con-
struct a Reed-Solomon code of length n = 6 that is able to correct a single error (t = 1).

1. Check if o =5 is really a primitive element of G F (7).

2. Derive the generator polynomial g(x) for this RS code and determine code parameters
(n, k).

3. Draw the scheme of a codeword generator based on division by g(x) and calculation
of the remainder. Alternatively, find the scheme of a codeword generator performing
multiplication of the information block polynomial by the generator polynomial.

Problem 2.16 Consider the Meggitt decoder of the (15, 7) BCH code from Problem 2.14
in the version shown in Figure 2.13.

1. Determine all syndromes that have to be recognized by the logical circuit denoted in
Figure 2.13 ase(x) = f[s(x)] resulting in the symbol 1, which corrects the shift register
output.

2. Let the all-zero sequence of the (15,7) BCH code be transmitted and let the received
sequence have the polynomial form r (x) = x'3 + x°. Trace the operation of the Meggitt
decoder and show how the errors are gradually corrected.

3. Supplement the decoder scheme with the feedback from the output of the logical circuit
recognizing the syndromes to the decoder input, such as that shown in Figure 2.15.
Determine which syndromes have to be recognized by the logical circuit producing
“1”s at its output and trace the operation of the Meggitt decoder for the input sequence
r(x) = x13 + x® + x* if the all-zero sequence was transmitted. Check if the decoder is
able to correct this triple-error sequence.

Problem 2.17 Consider the majority decoder with the feedback shown in Figure 2.15 for
the (15,7) BCH code [g(x) = x8 4+ x”7 4+ x% + x* + 1. Track the operation of the decoder
for the input sequence r(x) = x> + x8 4 x* if the all-zero sequence was transmitted.

Problem 2.18 Repeat the calculations performed in Example 2.6.2 for soft-decision
information set decoding of the Hamming code codewords if the received sequence has
the form r = (2760321).

Problem 2.19 Consider the (15,7) cyclic BCH code [g(x) = x% + x7 + x® + x* + 1]
again. This time we analyze decoding based on information set decoding in the version
called error trapping decoding. The decoder is shown in Figure 2.47 and its operation is
the following. During the first n clock cycles the received sequence is fed simultaneously
to the input of the syndrome calculator and to the shift register. During the next n cycles
the subsequent versions of the syndrome for the rotated input sequence are calculated and
their weight is checked to find whether it is at most equal to 2. If such a syndrome is
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Figure 2.47 Error trapping decoder for the (15,7) BCH code

observed, it indicates errors on current parity check positions. At this moment the switches
are shifted to Position 2 and the sequence is shifted out of the register with simultaneous
error correction implemented by adding modulo-2 the current syndrome bits with the bits
contained in the part of the shift register following the adder. Assume that the sequence
r(x) = x'3 + x° is received. Trace the operation of this decoder.

Problem 2.20 Repeat the procedure of decoding the all-zero codeword for (15,5) BCH
code considered in Example 2.7.1 using the iterative Berlekamp-Massey algorithm when
the received sequence has the polynomial form r(x) = x'! + x® + x. Perform the subse-
quent decoding steps and write them in a table similar to Table 2.5.

Problem 2.21 Consider the convolutional code of the coding rate R = 1/3 that is deter-
mined by the generator polynomials g\(x) =14 x%, ga(x) = 1 4+ x + x? and g3(x) =
1+ x4+ x%

1. Draw the tree, state diagram and trellis for this code.

2. Determine the generator matrix.

3. Draw the diagram used for derivation of the transfer function and determine the transfer
function for this code.

4. What is the free distance of this code?

5. Show a few shortest error events on the trellis diagram of the code and compare them
with the few first terms of the code transfer function expressed in the form of a series.

Problem 2.22 Solve Problem 2.21 for a systematic convolutional code of the coding rate
R = 1/2 determined by the generator polynomials g(x) = 1 and g>(x) = 1 + x + x°.

Problem 2.23 Show the subsequent steps of the Viterbi algorithm working in the
hard-decision mode and decoding the received sequence

111 100 111 101 100 011 111 111011 111
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when the encoder is determined by the generator polynomials given in Problem 2.21. If
the costs of two paths reaching the same trellis state are identical, use the same rule to
choose the survivor, e.g. always choose the upper state. Assume that the zero state is the
initial state of the encoder and that this fact is known to the decoder.

Problem 2.24 Solve Problem 2.23 for the same code and the Viterbi algorithm working
in the soft-decision mode when the received sequence is

565 421 455 714 424 245 675 657 245 444

Problem 2.25 Solve Problem 2.23 for the RCPC code of the coding rate R = 4/5 shown
in Figure 2.22a, whose puncturing table is given by formula (2.123). We assume that the
Viterbi decoder works in the hard-decision mode. The received sequence is

111101101010011

What is the free distance of this code?

Problem 2.26 Consider two equivalent convolutional codes — a nonsystematic code and
a recursive systematic code — whose encoders are shown in Figure 2.35. Determine their
trellis diagrams, compare them and draw conclusions.

Problem 2.27 Consider the (15, 7) BCH code whose parity check matrix in the extended
SJorm is given by formula (2.239). Assume that the encoder has generated the all-zero
codeword. Write computer programs performing the LDPC code decoding for the following
algorithms:

1. Bit-flipping algorithm,
2. Weighted bit-flipping algorithm,
3. Sum-product algorithm.

Test the programs performing the respective algorithms for the following received
sequences:

1. r = (010001000000000) for bit-flipping algorithm,
2. r=(-0.1,0.2,-0.8, -0.6, —0.3,0.3, —0.9, —0.1, —1.0, —0.5, —0.09, —0.7, —0.99,
—0.32, —1.2) for weighted bit-flipping and sum-product algorithms.
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Digital Baseband Transmission

3.1 Introduction

In this chapter we will consider the ways in which a binary stream generated by a binary
message source such as a PCM codec, a sound or video encoder, or a computer terminal
can be transformed into a sequence of signals transmitted through the channel. Signals
carrying digital messages can be transmitted by a passband or baseband channel. Methods
and ways of transmission over passband channels, in particular digital modulations, will
be the subject of our considerations in the next chapter. The current chapter is devoted
to baseband transmission methods. A channel that can be used for baseband transmission
passes spectral components of the signal in the range of frequencies from around DC up
to a certain limit frequency W. Examples of such channels are a copper wire pair and
a coaxial cable. For technical reasons the DC signal component is often eliminated and
very low frequencies contained in the signal are attenuated. This is often done to preserve
galvanic separation of the receiver and the channel. A transformer is often applied for this
purpose to ensure safety against possible supertensions that can occur in the channel (e.g.
due to short circuit to the power line or induction of charge during an atmospheric storm).
Figure 3.1 presents an example of the baseband channel characteristics. The frequency
range that is cut off by the transformer is also shown symbolically.

3.2 Shaping of Elementary Signals

The form of signals that represent particular bits (or bit blocks) should be well fitted to the
channel properties. We understand the best fit as the one that leads to the highest robustness
against distortions. In the case of digital transmission, robustness can be understood as
the Bit Error Rate (BER) measured in the receiver or a maximum range of transmission
achievable at the required BER level. Assignment of binary signals to the elementary
pulses that are subsequently transmitted over the channel is sometimes called digital
baseband modulation.

Let us first consider the simplest case in which subsequent bits of the data stream
determine the transmitted elementary pulses. Let elementary pulse so(f) be related to bit
“0” whereas s1(t) is selected by bit “1” in the binary stream. Assume for a moment
that subsequent bits a;(i = —o0, ..., 00) last T seconds each, and that the duration of
elementary pulses does not exceed 7' seconds. In such a case the transmitted signal can

Introduction to Digital Communication Systems Krzysztof Wesotowski
© 2009 John Wiley & Sons, Ltd
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\4

Figure 3.1 Characteristics of an exemplary baseband channel with a DC separating circuit

be described by the formula

x()= Y s(t—iT), where k =a (3.1)

i=—00

If the above assumptions are made subsequent pulses do not overlap. The following
question can be stated: What are the properties of signal x(¢) defined by (3.1)? From
the point of view of transmission over the channel, spectral properties of signal x(¢) are
of crucial importance. The features that enable robust synchronization of the receiver
with the received signal are also important. Very often the receiver has to recover the
timing clock that determines the moments of start and end of a modulation period, i.e.
the moments in which elementary pulses possibly change. Determination of those timing
instants is needed to make proper decisions upon the received pulses, and in consequence
to find the original binary stream that determined the sequence of pulses generated in the
transmitter. Let us note that the binary stream can be considered as random by an external
observer, so signal x(¢) is random too. Thus, calculation of the spectral density of signal
x(t) determined by a specific data sequence, which can be treated as a sample function of
the stochastic process, does not characterize spectral properties of this signal. Instead, the
power spectral density of random signal x(#) most often represents its spectral features.
Power spectral density can be calculated under the appropriate statistical assumptions. In
particular, it is assumed that statistical properties of the signal remain constant in time.
Moreover, the zero moment on the observer’s time axis with respect to the observed
signal x(¢) can be treated as a random variable that is uniformly distributed in the time
period [0, T]. Let us give the formula for power spectral density for a specific form of
signal x(¢) that is often observed in reality. Let the signal be described by the formula

x(t)= Y dis(t —iT) (3.2)

i=—00

where there is a mutually unique mapping between the bit sequence {¢;} and data symbol
sequence {d;}. For example, for bipolar signals d; = 2a; — 1, so so(t) = —s(t), whereas
s1(t) = s(t). In Appendix 3.8 we show that in this case the power spectral density of



Digital Baseband Transmission 239

signal x(t) is expressed by

1
G (f) = T|S(f)|2Gd(f) (3.3)

where S(f) = F[s(t)] is the spectral density of pulse s(¢). In turn, G4(f) is the power
spectral density of the data stream d; and is given by the expression

Ga(f)= ) Ra(n)exp(—j2rfnT) (3.4)

n=—0oo

R, (n) is the autocorrelation function of data sequence d, i.e.
Ry(n) = Eld;d;_,] (3.5)

where E[.] denotes ensemble average. Analyzing formula (3.3) we conclude that the
power spectral density of random signal x(#) depends both on the spectral properties of
the chosen pulse s(¢) and, through the factor G,;(f), on the correlation properties of the
data sequence. Consider a simple case when data symbols are uncorrelated, i.e.

Eld}] =02+ 12 forn =0
Ry(n) = (3.6)
Eldidi—,) = E|d;)E[d;i—y] = p3 forn #0

where iy = E[d;] is a mean value (strictly speaking, an expectation or ensemble average)
of data symbols, whereas oj = E[(d; — uq)?] is the variance of data symbols. Let us note
that the mean value can be interpreted as a constant (DC) component of the data sequence
whereas the variance can be interpreted as the mean power of the AC component. Thus,
for n = 0 the autocorrelation function of the data signal can be interpreted as the mean
power of the signal, i.e. the sum of the mean powers of the DC and AC components. For
n # 0 the autocorrelation function is in fact the mean power of the DC component of the
data sequence only. So for the case described by (3.6) the power spectral density of the
data sequence is given by the formula

Ga(f) =0 +mug Y exp(—j2rfnT) (3.7)

n=—00
Let us note that the expression

e ]

> exp(—j2mfnT)

n=—0o0

can be interpreted as a Fourier expansion of such a periodic function of frequency for
which the harmonic coefficients are constant and equal to unity. The Dirac pulse sequence
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along the frequency axis with the period 1/7 and intensity 1/7 features such an expan-
sion, i.e. it is a signal of the form

LS

Indeed, the Fourier series expansion coefficients of the periodic signal (3.8) can be deter-
mined from the formula

1/2T
1 1 . _
=17 / 73N exp(=j2xfnT)df =1 (3.9)
—1/2T
therefore
0o ‘ 1 o n

As a result, formula (3.7) is transformed to the expression

2 X
_ .2, Ha _n
Gy(f) =05+ T S(f T) 3.1D)

The final form of the power spectral density of signal x(z) with the signal assumed
properties is

Gx(f)=a7d2lS(f)I2+l;—% > s(E)s(r-%) (3.12)

Let us discuss formula (3.12). The power spectral density of signal x(¢) definitely depends
on the shape (and also on the spectral density) of the elementary pulse s(¢). The pulse
shape determines the bandwidth of signal x(#). However, the mean p,; of data symbols
also influences the power spectral density. If the mean is nonzero and the spectral density
of the elementary pulse is nonzero for frequency f =0, the spectral line for f =0
appears in the power spectral density of signal x(z), which indicates the nonzero mean
of signal x (7). The same can happen at multiple frequencies f = n/T. However, as we
have stated before, it is very often required that the mean value of data symbols is equal
to zero. In this case, the power spectral density of signal x(¢) reduces to the form

02
G.(f) = 7" IS(f)I? (3.13)

Consider a bipolar pulse stream in which each pulse lasts for 7 seconds and has a
rectangular shape. Assume that subsequent data bits are mutually uncorrelated. Figure 3.2
presents the elementary pulse shape and the power spectral density of x(¢).
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Figure 3.2 Rectangular pulse s(¢) and power spectral density G, (f) of signal x(¢#) when pulse
s(t) is applied

The spectral density of the rectangular pulse shown in Figure 3.2 is given by the
formula

S(f) = ATsinc(nfT)exp(—jrfT) (3.14)
Substituting (3.14) into (3.12), we obtain the power spectral density of signal x ()
G.(f) = o2 APT [sinc(rfT)] + A228(f) (3.15)

where the second component appears only if the mean value of data symbols d; is nonzero.
Let us note that the remaining possible spectral lines at multiples of 1/7 do not appear
because, independently of the data symbol mean value p4, the spectral density of the
elementary pulse s(¢) takes a zero value for these frequencies. As seen in Figure 3.2, the
power spectral density of signal x(¢) decreases relatively slowly along the frequency axis
(i.e. with its square; cf. the definition of sinc function). As a result, a relatively significant
part of the signal power is contained in the sidelobes of the power density spectrum.
Cutting off these sidelobes by the channel will result in signal distortions, which in turn
will lead to the bit error rate increase. On the contrary, if we wish to receive the signal
transmitted over the channel of bandwidth W in an undistorted form, the signaling rate
R =1/T must be significantly lower than W. As we can see, the channel bandwidth
cannot be used in an optimal way. If we want to increase the data rate for a given channel
bandwidth, we must select such an elementary signal shape s(¢) whose spectral density
does not exceed the channel bandwidth W or exceeds it in an insignificant manner.

Next we will consider spectral properties of signal x(¢) if the shape of elementary
signal s(¢) is determined by the function called a raised cosine curve, which is given by
the formula

s(t):é[l—l-cosz(t—T)] for 0 <t < 2T (3.16)
2 T =r=
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Figure 3.3 Application of the raised cosine pulse: (a) single pulse shape, (b) exemplary signal
waveform x(#), (c) power spectral density of signal x(¢)

shown in Figure 3.3a. Let us note that elementary signal s(¢) given by (3.16) lasts twice
as long as the modulation period; however, it is sufficiently short to ensure that the
samples of the pulse sequence taken at the moments n7 depend on a single pulse only.
Figure 3.3b presents an example of signal x(#). In this case the power spectral density of
x(t) is determined by the following formula

sinc>(2Q fT)

_ 242
G =i AT (T oy

+ 1z A% (f) (3.17)
and is shown in Figure 3.3c. Derivation of (3.17) is listed as a problem to solve at
the end of this chapter. It can be concluded from (3.17) that the power spectral density
decreases with the sixth power of frequency, i.e. much faster than in the case of applying
a rectangular shape of s(¢). Figure 3.4 compares power spectral densities in logarithmic
scale for bipolar random signals x(¢) for rectangular and raised cosine pulses. We notice
a significant difference in the sidelobe levels of power spectral densities of both signals.
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Figure 3.4 Comparison of power spectral densities on the logarithmic scale for a bipolar random

signal with the rectangular (a) and raised cosine (b) shape of elementary signal s(7)

Application of a smoother shape of the elementary signal and lengthening it up to 27
results in a significant improvement in concentration of power in the mainlobe.

Assume that the transmission channel has bandwidth W, its amplitude characteristic is
flat and its phase characteristic is linear. This means that if the spectrum of the transmitted
signal is fully contained in the channel passband, then the signal is the subject of constant
attenuation and delay but it remains undistorted. The channel bandwidth will be fully
used if the power spectral density of the transmitted signal has the shape determined by
the formula

_ S
G,(f) = B rect <2W> (3.18)

In other words, the spectral density of the elementary signal should preserve the rectangu-
lar shape of the channel transfer function. Therefore the signal should have the following
form

s(t) =2WA sincRWrt) (3.19)

where B = A%/T (see Figure 3.5). In theory, the duration of this signal is infinite, and
its amplitude decreases inversely proportionally with time. However, in practice only its
approximated version, lasting a few modulation periods, is applied. In such cases the
truncated signal loses good spectral properties compared with its ideal form. The latter is
rather obvious because a shaping filter featuring rectangular characteristic is not physically
realizable.

Let us turn our attention to an interesting and important feature of signal s(¢) determined
by (3.19). Except t = 0, the signal waveform has zeros in equal distances every 1/2W
seconds. Therefore, if every T = 1/2W seconds we send subsequent elementary pulses
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Figure 3.5 Signal waveform (3.19)

(3.19) whose polarization depends on the current data symbol, and if we select sampling
instants appropriately, we are able to sample signal x(¢) in the receiver in such a way
that the received samples depend exclusively on a single data symbol. The waveforms
that are the response to other data symbols are equal to zero exactly at these moments.
Thus, the channel of W Hz bandwidth could support transmission at the symbol rate of
2W symbol/s.

Unfortunately, our considerations have only a theoretical character. As we have already
mentioned, the synthesis of signal s(¢) featuring spectral properties given by (3.18) is not
possible due to the required steepness of the slope in characteristics of the filter that should
be used to shape the waveform of signal s(¢). In practice the following procedure takes
place. The symbol data rate is moderately decreased below 2W symbol/s so the smooth
transition from passband to stopband is realizable. It turns out that at the fulfillment of
certain requirements it is possible to shape the spectral density of s(¢) so that the zeros
of the waveform occur every 7 seconds (sometimes between those moments too). The
requirements are stated in the form of the following theorem.

Theorem 3.2.1 Consider the filter called a Nyquist filter with the transfer function of the
form

I
H(f) = rect(zg) +Y(f) for|f|<2B

0 otherwise

(3.20)

where Y (f) is a real function that is even-symmetric about f =0, i.e.

Y(=f)=Y(f), for|f|<2B
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and odd-symmetric about f = B, i.e.
Y(—f+B)=-Y(f+B), for|f|<B

If elementary pulse s(t) applied in digital transmission is the impulse response of the
Nyquist filter conforming to (3.20), then pulse s(t) has zeros at the moments that are
nonzero multiples of 1/2B, and for the data sequence transmitted in the form

x(t)= Y dis(t—iT)

i=—00

it is possible to find sampling moments at which the samples of x(t) contain information
on a single data symbol. Therefore transmission at the symbol rate R =1/T = 2B is
possible.

Proof. We will show that the impulse response of the filter described by (3.20) is zero
at the moments t = n /2B, n # 0. Let us calculate the inverse Fourier transform of (3.20).
We have

B B 2B
hoy = [y(nerag v [y iar+ [y
—2B —B B
or equivalently
B 2B
h(z):/eﬂ”f’der /Y(f)ejz”f’df
—B —2B
- 0 2B
_opiin2mBl /Y(f)eﬂ”f’df—i—/Y(f)ejz”f’df (3.21)
27 Bt
—2B 0

Let us substitute A = f + B in the first integral of (3.21) and A = f — B in the second
one. Thus, we obtain

B B
in 27t Bt . . . .
h(t) = 23% + e—ﬂ"Bf/ YO — B)e M f 4 eﬂ”Bf/ YO+ B)e/¥Hdf
JT
—B —B

(3.22)

However, we know that Y(A — B) = —Y (A + B), so using this property in (3.22) we
have

B

sin2g Bt . 27t
h(t) =2B———— + j2sin2x Bt [ Y(h + B)e/7™df (3.23)
2n Bt
~B
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It is clear from (3.23) that impulse response /A (¢) indeed has zeros for t = n/2B (n # 0)
due to sin 2 Bt appearing in both components of (3.23), so we can apply s(¢) = h(t) for
data transmission at the rate R = 2B = 1/T. Thus, the thesis of the theorem has been
proven.

An additional conclusion from the above theorem and formula (3.23) is that there are
many possible shapes of the filter slope, i.e. function Y (f) can be described by different
formulae. However, the symmetry conditions have to be preserved.

Pulse s(t), which conforms to the Nyquist criterion, is the most often applied in practice
and allows for transmission at the rate 1/7 not too much lower than 2W, is the so-called
signal with the raised cosine characteristics. Its spectral characteristics are determined
by the formula

T for 0 < |f] < %
or
- - 2T
T nT 1l -« 1l -« 1+«
S =4 —11 - — f < < 3.24
f) 2{ +cos|:a <|f| 57 >:|} or —— <|fl < 57 (3.24)
1+«
0 f >
or |f| > T

whereas its corresponding time function is described by expression

s(t) = sinc(nt/T)%

(3.25)
Analyzing formula (3.25) we find that pulse s(¢) is similar to that described by (3.19), but
the sinc function is additionally multiplied by a fraction with the numerator introducing
additional zeros besides the moments t = n/T (n # 0) and with the denominator pressing
faster suppression of the pulse in time (with the third power of time variable #). Figure 3.6
presents the characteristics S(f) and the corresponding pulse s(¢) for different values of
the so-called roll-off factor «. Let us note that in a channel of bandwidth W Hz it
is possible to transmit data symbols at such a rate 1/7 for which (1 +«)/2T < W, or
equivalently (1 4+ «)/T < 2W. For values of coefficient « contained in the range 0.1-0.5
the symbol data rate is in the range of 2/3 up to 0.9 of the theoretical maximum value
equal to 2W.

Despite its slightly more complex mathematical description, elementary pulse s(z)
shown in Figure 3.6 is often applied in the baseband transmission and it also serves
as a shaping pulse in digital modulations of sinusoidal carriers. In practice, pulse (3.25)
is approximated by a pulse of finite duration, however, due to a fast decrease of function
(3.25) in time, a good approximation is relatively easily achievable. Let us stress once
more that elementary pulse s(¢) features zeros each 7' seconds (except the zero moment
in which the pulse achieves its maximum), which allows such pulses to be sent from the
transmitter every 7' seconds and also that such a sampling phase is found at the receiver
(assuming that the channel does not distort these pulses) for which the samples depend
on a single data symbol only. This case has been illustrated in Figure 3.7. We see signal
x(t), which consists of a sequence of pulses s(t) conforming to (3.25).
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Figure 3.6 Spectral density of signal with raised cosine characteristics and its waveform for a
number of values of roll-off factor o«
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Figure 3.7 An example of signal waveform of x(¢) when pulses of raised cosine characteristics
(roll-off factor « = 0.5) are applied
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An eye pattern is a certain visual measure of a signal shape or signal distortions that
occur if a channel changes its form. It is obtained on the oscilloscope display if signal
x(t) is fed to its input. The time base of the oscilloscope is triggered in such a way that
we observe signal x(¢) during two modulation periods (27'), whereas the screen displays
the past signal transitions for such a long time that we see overlapping signal transitions
that have occurred during many modulation periods. Figure 3.8 shows examples of eye
patterns for signal x(¢) with the elementary pulse having the raised cosine characteristics
with the roll-off factor « = 0.5 and o = 1.0. The eye has the upper lid and lower lid and
the internal distance between the maximum of the upper lid and minimum of the lower
lid is called a maximum eye opening. Lines drawing the eye pattern can be blurred due to
additive noise occurring in the channel. The points on the time axis for which maximum
eye opening occurs are often selected as optimal moments for sampling signal x (7). Due
to distortions introduced by the channel, the eye pattern can change to such an extent that
the eye is partially or even fully closed and decisions based on such samples of signal
x(t) are highly unreliable. Quite often the maximum eye opening is determined by finding
half of the time distance between averaged signal zero crossings. We see in Figure 3.8
that when the roll-off factor of the applied pulse « is 0.5, then zero crossings of signal
x(t) fluctuate. In order to recover the stable timing signal that would allow the optimal
sampling phase to be determined a phase-locked loop (PLL) can be applied that operates
by averaging the fluctuating zero crossings. Let us note that relaxing the requirements
on the slope width (e.g. by selection of o = 1.0) results in a decrease of zero crossing
fluctuations and, in consequence, simplified operation of the timing recovery system.

Eye diagram

Eye diagram

(a)

Amplitude
o
Amplitude

0 0.5T T 1.5T 2T .
t t
Figure 3.8 Eye diagrams for signal x(¢) for elementary pulse s(¢) with the raised cosine charac-
teristics; the roll-off factor: (a) « = 0.5 and (b) ¢ = 1.0

3.3 Selection of the Data Symbol Format

So far we have considered such a baseband modulation in which a data bit simply deter-
mines polarization of the applied elementary pulse s(#). In such case we talk about
PAM — Pulse Amplitude Modulation — or simply about the application of bipolar sig-
naling. We limit the current considerations to signals of a rectangular shape; however,
shapes other than rectangular ones are also possible. Selection of a specific data format
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allows the spectral properties of the transmitted signal to be influenced through appropri-
ate shaping of data symbol power spectral density G4(f) applied in formulae (3.3) and
(3.4). Figure 3.9 presents a few typical formats of data symbols representing binary data.
The first of them is called unipolar NRZ (Non-Return-to-Zero). Bit “1” determines the
application of a rectangular signal with positive polarization, whereas for bit “0” the data
signal has a zero level. As a result, the data signal has a nonzero mean, which can often
be considered a drawback.

The second format is a bipolar NRZ, considered in the previous section. If probabilities
of bits “1”” and “0” are the same, the signal featuring this format has a zero mean; however,
in short time intervals the mean can be different from zero.

The third format shown in Figure 3.9 is called pseudoternary — despite binary assign-
ment of data bits to data symbols, the resulting signal may have three levels +1, 0 and —1.
This is a consequence of alternating polarity of a unipolar signal in subsequent nonzero
pulses. This kind of signal processing is an example of line coding. The signal presented in
Figure 3.9c conforms to AMI (Alternate Mark Inversion) coding. For this format the signal
mean is zero also in short time intervals. However, there is still a danger, as in the case of
the signal shown in Figure 3.9a, that long zero bit sequences will result in a long interval
of the zero level, which is disadvantageous from the synchronization point of view. In
reality much more sophisticated coding schemes than a regular AMI are often applied.
We will show them on the example of ISDN line coding options at the end of this chapter.

@ xpp 0T T 00 00T T
+1— ' : ' ' ' : : ' : '
o ——1 1 . . [,
(b)x(t)u
+1 = -
0 —

M A,
a0 UL L

A

Figure 3.9 Formats of rectangular data signals: (a) unipolar NRZ, (b) bipolar NRZ, (c) pseu-
doternary (AMI), (d) Manchester (biphase)
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Finally, the fourth data format shown in Figure 3.9d is the Manchester code (biphase
format). Each data symbol is represented by a double pulse with alternating polarity. For
example, bit “1” lasting 7" seconds is associated with a data symbol consisting of a positive
pulse of duration 7'/2 seconds, followed by a negative pulse of the same magnitude lasting
for the remaining second half of the modulation period 7. In turn, bit “0” is represented
by the data symbol that has a reversed shapes compared with the symbol representing bit
“1”. In this format the signal features a zero mean independently of the data stream. In
the middle of each signaling period the signal changes its polarization to the reversed one.
This fact is very advantageous for the timing recovery process performed in the receiver.
However, the drawback of this format is a wider bandwidth of the power density spectrum
compared with the formats considered previously, because an elementary signal s(z) is a
pair of bipolar pulses each of length equal to 7/2.

Let us show now how the choice of the data format influences the spectral properties of
the transmitted signal x (¢). Assume a rectangular shape of the elementary pulses. Assume
again that probabilities of bits “0” and “1” are the same and equal to 1/2, and particular
bits are mutually statistically independent. Correlation among data symbols can be the
result of the applied data format only.

First consider unipolar NRZ signals. Let the data symbols take value d; = 1 or d; = 0.
Calculate the autocorrelation function R, (n) of data signals that is needed for determina-
tion of the data signal power density spectrum G,(f). For that purpose we calculate [cf.
formula (3.6)]

Ry(0) = E [d7] = o] + nj = (0> Pr{d; = 0} + (1)*Pr{d; = 1} = % (3.26)
and

Ry(n) = E [didi_y] = u3 =30 Pr{d;d;_, = 0}

+1-(D?-Pr{did;_, = (1)*} = % forn #0 (3.27)

Formula (3.27) results from the fact that three out of four possible values of the product
d;d;_, are equal to zero and the probability of each data combination is 1/4 (which is the
consequence of the statistical independence of data bits and their respective probabilities
equal to 1/2). Finally, because the spectral density of the rectangular pulse of duration T
is given by formula (3.14) we obtain the expression for power density spectrum G, (f)
of the signal from Figure 3.9a in the form

AT A?
G (f) = == [sine(rf )] + 7-8(f) (3.28)

As we can see in (3.28), the signal has a nonzero mean value. The mean power of the DC
component is equal to A%/4. Similar calculations performed for the bipolar data format
from Figure 3.9b lead to the expression

G.(f) = A>T [sinc(nfT)]" (3.29)
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This results from the fact that for assumed statistical independence of data bits and their
probabilities the values of the data symbol autocorrelation function are respectively equal
to R;(0) =1 and R;(n) =0 for n # 0.

Consider now the pseudoternary format with alternating polarizations of “1” s. It is
obvious that the current value of the data symbol reflecting bit “1”” depends on the previous
data symbols (in particular on whether the previous “1” has been represented by a symbol
with positive or negative polarization). Therefore, in this case we deal with the introduction
of correlation among data symbols. Assuming equal probabilities of bits “1”” and “0”, we
see that Pr{d; = 1} = Pr{d; = —1} = 1/4 and Pr{d; = 0} = 1/2. Therefore

R4(0) = ()*Pr{d; = 1} + (0)*Pr{d; = 0} + (—1)*Pr{d; = —1} = % (3.30)

For n = +£1 the pair of bits (called a dibit) that is represented by a pair of data symbols
takes the possible values (0, 0), (0, 1), (1, 0) and (1, 1). Thus, the values of the product
did;y; are 0,0,0 and —1, respectively. The last value results from the fact that two
subsequent ones have inverse polarities. Then

Rd(n=:|:1)=3x(0)xé—11+(—1)xlxiz—é—l (3.31)

We can easily check that for |n| >1 R;(n) = 0. Finally, after simple derivation and
application of formulae (3.3) and (3.4), we obtain the following form of the power density
spectrum of the AMI coded signal (Figure 3.9, curve c)

G.(f) = AT [sinc(x fT)]2 sin?( fT) (3.32)

The Manchester line code is a variant of the previously considered bipolar PAM modu-
lation, in which an elementary pulse s(¢) given by

s(t) = rect (t _ T/4> — rect (ﬂ> (3.33)
T/2 T/2

is applied. After calculation of the spectral density S(f) of elementary signal s(z), insert-
ing the result into formula (3.13) and knowing that 03 = 1, we obtain

G, (f) = A*Tsinc?( fT/2) sin®(n f T /2) (3.34)

Power density spectra of signal x(¢) as a function of frequency normalized with respect
to modulation period 7 are shown in Figure 3.10 for different data formats sketched in
Figure 3.9. We see that bipolar and unipolar formats have a substantial part of their power
in the vicinity of the DC, so application of a separating transformer or other separating
circuit cutting off the DC and low frequency components will cause signal distortions.
Spectral properties of a pseudoternary signal are relatively advantageous because a sig-
nificant part of its power is contained in the frequency interval up to 1/7 Hz. Good
synchronization properties of the Manchester code result in its wide power density spec-
trum. Plots (a) and (c) shown in Figure 3.10 should be scaled if we want to have identical
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Figure 3.10 Power density spectra for signal x(#) using several data formats: (a) unipolar NRZ,
(b) bipolar NRZ, (c) pseudoternary (AMI), (d) Manchester

mean power for all considered data formats. However, even in the current figure we
observe characteristic spectral features of particular signals.

So far we have considered binary baseband modulation. Having at our disposal a
channel with a limited bandwidth and wishing to send the data stream at the bit rate
higher than 1/T bit/s we can proceed in the following way. We divide the data stream into
disjunctive k-bit blocks. Each block can be mapped onto one of 2¢ possible amplitudes of
the elementary signal. As a result, we receive M = 2*-ary pulse amplitude modulation,
so k/T bits per second are transmitted over the channel. Unfortunately the data rate
increase is not for free! Comparing two- or higher level PAM signals we should assume
their equal mean power. Typically noise is added to the signal during transmission, which
results in a certain error rate level. As we can observe, the difference between two
neighboring multilevel PAM signals compared with the difference between two binary
PAM signals featuring the same mean power is much smaller. Thus, multilevel PAM
signals are much more sensitive to noise, resulting in a higher error probability. Such a
comparison is often illustrated by the error probability versus signal-to-noise ratio curves.
However, for fair comparison, the curves are displayed as a function of signal energy
per bit E;, divided by power spectral density Ny of white noise. Figure 3.11 presents
error probability curves as a function of E;/Ny for two-level PAM (k =1, M = 2),
4-PAM (k =2, M = 4), 8-PAM (k =3, M = 8) and 16-PAM (k = 4, M = 16). Symbol
error probability does not directly translate itself onto bit error probability. The latter
depends on the bit block-to-symbol mapping. Table 3.1 presents two possible ways of bit
block-to-symbol mapping for 4-PAM. One of them is called natural encoding and the
other is called Gray encoding.
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Table 3.1 Mapping of binary blocks onto 4-PAM
data symbols

Symbol d; Natural encoding Gray encoding
-3 00 00
-1 01 01
1 10 11
3 11 10
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Figure 3.11 Symbol error probability for M-ary PAM modulations

Gray encoding features smaller bit error probability compared with natural encoding.
This results from the fact that the most probable errors lead the receiver to select the
neighboring symbol to the one that has been actually transmitted. Let us note that in the
case of Gray encoding a single bit error will be committed, whereas if natural encoding
is applied, in some cases double binary errors will be made.

3.4 Optimal Synchronous Receiver

Error probability is the basic measure of digital transmission system quality. It depends
on the choice of elementary signals, the mapping of binary blocks onto them and
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signal-to-noise ratio in the channel, and also on the applied method of signal reception.
Therefore, it is necessary to derive the receiver structure that ensures minimal probability
of erroneous signal reception. The error probability curves shown in Figure 3.11
have been plotted for the case when the optimal receiver derived in this section is
applied.

Below we determine the optimum receiver structure for digital signals transmitted over
a channel introducing an additive noise. First, we will consider the general case of an
optimum receiver for binary data symbols distorted by additive Gaussian noise charac-
terized by a given power density spectrum. After that we will consider some particular
cases for which the optimal receiver scheme is considerably simplified. In particular, we
will assume that the additive Gaussian noise is white, the data symbols are equiprobable
or that PAM is applied. We will also consider the optimal receiver for multilevel PAM
signals.

3.4.1 Optimal Reception of Binary Signals

Assume that transmission is performed using two elementary signals, so(f) and s(¢).
We temporarily assume that the duration of the elementary signals does not exceed the
modulation period 7, and that binary data are statistically independent. These assumptions
allow us to perform analysis of the received signal within a single modulation period. Let
the received signal have the following form

y(@) =si(t) + n(t) (3.35)

where n(t) is the additive Gaussian noise.

One of the basic receiver optimization criteria is minimization of a single data symbol
error probability at its output. This is not the only criterion possible. If the receiver
operating according to this criterion is difficult to implement, other criteria can be applied,
e.g. minimum mean square error at the receiver output or minimum error probability for a
whole received data sequence. Let us concentrate on the first criterion. We conclude from
Chapter 1 that minimization of the error probability at the receiver output is equivalent to
maximization of the a posteriori probability that a given signal has been transmitted after
observation of the signal at the receiver input. Recall that this criterion is called MAP
(Maximum a Posteriori Probability).! The optimization criterion receives the following
form

maxP[i|y(t)] wherei =0 or 1 (3.36)

Let P[s;(t)] = P; be the probability of transmission of signal s; (). Following the assump-
tion that the duration of an elementary signal does not exceed T seconds, it is sufficient for
the receiver to observe the received signal y(#) in that time interval. Instead of considering
the continuous signal y(¢), let us consider its samples y(#;) taken with an arbitrarily small
time step At within the interval [0, T'], where ty =, + At , k =1, ..., K. Denote the
vectors of the received signal, noise and the transmitted signal samples as y, n and s;,

' The word a posteriori means “after experience (experiment)”.
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respectively, so

y =1, yt), ..., yix)]
n=[n),nt),..., ntg)l (3.37)

s; = [si(t1), si(t2), ..., s:(tg)]

If we analyze vectors instead of continuous time functions, the MAP probability P[i|y(¢)]
receives the form P(i|y). Thanks to Bayes’ formula this can be expressed in the form

Ply) = LY PG (338)

P(y)

Recall that we search for the data symbol i, or equivalently the elementary signal s; ()
represented by vector s;, that maximizes the probability expressed by formula (3.38). The
denominator in (3.38) is common for all elementary signals (it refers to the signal observed
at the receiver input), so it does not influence the search result for the best data symbol
i in the MAP sense. Thus, it is sufficient to select the data symbol that maximizes the
numerator of (3.38). Let us focus on the conditional probability density function p(y|s;).
We have n =y — s; from (3.35), therefore

exp[—3(y —s)R(y —sp)T]
Q)52 |R, |12

p(ylsi) = p(y —s;)) = p(n) = (3.39)

Expression (3.39) is the multidimensional Gaussian distribution for the noise vector n.
Matrix R, is a [K x K] noise autocorrelation matrix whose elements are R; ; = R, (¢; —
1), where R, (7) is the autocorrelation function of noise n(¢). Calculating the logarithm
of both sides of (3.38), we obtain

In P(ily) = In p(y|s;) +In P(s;) — In P(y) (3.40)

Taking into account the right-hand side of (3.39) in (3.40) and including all the com-
ponents that do not depend on i in constant C, we obtain

. 1 _
InP(ly) =C+In P = Z(y = )R, (y =s)" (3.41)
If we expand the third term in (3.41) we have

y—soR,'y—s)" =yR,'y" —yR,'s] —siR'y" +s;R,'s] (3.42)

1

Then if we use this expression in (3.41) and add the first term of the right-hand side of
(3.42) to constant C (denoted after this modification as C;), we obtain

oY — __1 1T —1.T
InP(ily) = Ci +In P, = ssiR,'s] +yR.'s] (3.43)
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Define vector q; by the following equation

q; At = Sl‘R_1

n

ie. qf Ar =R 'sT (3.44)

1

SO
Qi AIR, =s; (3.45)

For a single element s; () of vector s; we have, from (3.45)

K
5i(6) =Y Rulte — tn)qi(tn) At (3.46)

m=1

Let us represent s; R, "'by q; At and use formula (3.46) in (3.43). Then the latter evolves
to the form

1
InP(ily) = C; +1n P; +yq! At — EsiqiTAt

K K
1
=C;+InP+ E y(t)g () At — 3 E si(t)gi (1) At (3.47)
=1 k=1

Now let the time interval At between the samples tend to zero and the number of samples
K tend to infinity in such a way that K At = T'. If the time interval At is reduced to an
infinitely small increment d¢ in the modulation period 7', the sums in expression (3.47)
evolve to appropriate integrals and formula (3.47) becomes

T T
1
InP@ly)y=Ci+InP; + f y(t)g; (t)dr — 3 / s (H)g; (t)dt (3.48)
0 0
whereas
T
si(1) = f Ry (t — 2)gi (1)dA (3.49)
0
Let Dl.2 denote the following expression
T
D? = / si(Dgi(Hde, i=0,1 (3.50)
0

After observation of signal y(¢), the receiver making a decision based on the MAP
criterion decides that signal so(¢) has been transmitted if

Ploly(0)] > P[11y®)]



Digital Baseband Transmission 257

or, equivalently, if

T T

D? D?
fy(t)qo(t)dt - 70 +1n Py > / y(®)q (t)dt — 71 +1In Py (3.51)
0 0

When the reverse inequality is true, the receiver decides that signal s;(¢) has been
transmitted. Figure 3.12 presents the receiver scheme that results directly from expres-
sion (3.51). The receiver is equipped with two correlators and each of them correlates
the received signal with the appropriate reference signal go(f) or g;(¢) in time interval
[0, T']. Let us note that the reference signals depend on elementary signal so(¢) or s;(¢),
respectively, and on the noise correlation properties. This observation is a clear result of
(3.49), which links both variables with each other. Derivation of the reference signals
from (3.49) seems to be a difficult task. However, we can solve this problem if we con-
sider an equivalent form of the optimum MAP receiver in which matched filters (MF)
are used instead of correlators.

O
™ 1S
N
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YO o)

O

qy(1) D,?

Figure 3.12 Optimal MAP receiver based on correlators

It turns out that the result of correlation of the received signal y(¢) with the reference
signals, i.e.

T T

/ y()qo(r)dr  and _/ y()qi(n)de (3.52)
0 0
can be achieved when the received signal y(¢) is fed to the inputs of appropriately selected

filters and their outputs are sampled at the moment ¢+ = 7. We will show now that if the
filter impulse response is given by expression

hime() = qi(T —1), i=0,1 (3.53)

then the results of correlations (3.52) and sampling of the filter outputs at the moment
t = T are identical. The reference signal, as with the transmitted one, does not last longer
than 7 seconds so the impulse response (3.53) does not exceed this time interval either.
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Therefore the signal at the output of the filter in the ith receiver branch can be described
by the convolutional integral

00 T

zi(t) = / y(©himp( — t)dt = / y(©)qi[T — (¢t —7)]dr (3.54)

—00 0
So at t = T the filter output signal is equal to

T T

zi(T) = f y(©)g[T — (T —v)]dr = / y(T)gi(t)dt (3.55)

0 0

As we see, both receiver configurations yield the same samples at the moment t = 7,
so they are equivalent. The filter with impulse response (3.53) is called a matched filter
(MF). Figure 3.13 presents the equivalent optimum MAP receiver structure in which the
matched filters have been applied.

Gol(T-1) [—o1 o—>(F)——|

Find maximum

(Tt ot

Figure 3.13 Optimal MAP receiver with matched filters

Consider now the transfer function of the matched filter. In order to derive this, let
us again analyze formula (3.49). Knowing that reference signal g;(¢) is zero outside the
interval [0, T] we can extend the integral limits from [0, T'] to (—oo, +00). Therefore

o0

5:(0) = f Rt — 1)qi(0)dA (3.56)

—00

so the elementary signal can be interpreted as a convolution of the reference signal with
the additive noise autocorrelation function. As a result, in the frequency domain the
following equation holds

Si(f) = Gu(HQi(f) (3.57)
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where G, (f) = F[R,(t)] is the power density spectrum of the additive noise. The spec-
tral density of the reference signal is therefore

Si(f)

Gu(f)

The impulse response of the matched filter is given by formula (3.53), so taking advantage
of (3.58) we get

Qi(f) = (3.58)

exp(—j27fT)S;(f)
Gn(f)

As we see, the matched filter transfer function depends on the spectral density of elemen-
tary signal s;(¢) and the power density spectrum of additive noise.

Consider the particular case of the matched filter when the additive Gaussian noise is
white and its power density spectrum is No/2. Thus

Hivp(f) = Flgi(T — )] = exp (—j2nfT) Q*(f) = (3.59)

2 2
Himve(f) = FOSf(f) exp(—j2nfT), so hime() = Fosi(T —1) (3.60)

In this case the matched filter impulse response is proportional to the mirrored reflection
of the elementary signal with respect to the vertical axis. Quite often the elementary signal
is symmetric with respect to its maximum. Then the impulse response of the matched
filter has a shape that is identical to the elementary signal waveform.

Consider now several particular cases of the optimum MAP receivers. First, let the
elementary signals have equal energies, i.e.

T T

/ sg(t)dt = / s3(r)de (3.61)

0 0
Let the additive Gaussian noise be white, so its autocorrelation function is described by
formula
N
R, (1) = 705@) (3.62)
As a result, the elementary signals and the corresponding reference signals resulting from
equation (3.49) are linked by expression

T T
N, N,
s5i(t) = /Rn(t —AM)gi(M)dr = 70 / 8 —A)gi(A)da = 70% () (3.63)
0 0
At the same time

T

T T
2 2
D} = / so(t)qo(t)dr = — / so(t)dt = — / si(t)dt = D? (3.64)
No No
0 0 0
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As the terms D(2) /2 and D]2/2 are equal they do not affect the result of comparison of
both sides in inequality (3.51) and they can be omitted in the receiver structure. Thus,
the receiver scheme looks like that shown in Figure 3.14.

InPo
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N Noso(f)

Find maximum
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f
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ALY InP,

Figure 3.14 Optimal MAP receiver for equal energy signals corrupted by additive white Gaussian
noise

If we additionally assume that both signals are transmitted with the same probability,
then the terms In Py and In P; do not affect the result of comparison either and they can
be removed. Consequently, the scaling factor 2/ Ny in the reference signals can be omitted
too, so the optimum MAP receiver scheme can take the form shown in Figure 3.15, and
its decisions result from comparison of the left- and right-hand side of the expression

T T
/ y(®)so(H)dt < / y(t)sy(¢)dt (3.65)
0 0
If the elementary signals are bipolar, i.e. so(f) = —s;(¢), then for the same assumptions

the receiver is further simplified. For this case the signals at the output of each receiver
branch (see Figure 3.15) differ only in sign, so a single branch and a decision circuit with
the zero threshold is sufficient. This particular receiver is shown in Figure 3.16a.

{T :

yt) | sy(t)

Find maximum

{T .

s4(t)

Figure 3.15 Optimal MAP receiver for equiprobable, equal energy signals corrupted by additive
white Gaussian noise

So far we have considered the MAP reception of an isolated elementary signal. In
practice, a whole sequence of data pulses is transmitted. If the duration of elementary
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Figure 3.16 Optimal MAP receiver for equiprobable bipolar signals corrupted by additive white
Gaussian noise with application of the correlator (a) and the matched filter (b)

signals does not exceed the modulation period T, as we have assumed so far, the reception
processes are disjoint and our analysis still holds. However, we have shown earlier that
good spectral properties of the modulated signal are obtained if elementary signals last
longer than the modulation period 7. As we remember, such signals can be received if
the signal at the input of the sampler is a linear combination of pulses having periodical
zeros except for the zero moment in which their maximum occurs. Consequently, the
assumption about the duration of elementary signals not exceeding the modulation period
T can be withdrawn if we apply the matched filter with the sampler sampling the filter
output every T seconds and if we use such a waveform of the elementary pulse that
the joint impulse response of the transmit and matched filters features zeros every T
seconds except for the moment in which its maximum occurs. Therefore, very often the
transmit filter has the square root raised cosine characteristics and the matched filter in the
receiver has the same characteristics. As a result, their joint characteristics have the raised
cosine shape so they conform to the Nyquist criterion. Figure 3.17 presents a scheme of
the transmitter with the transmit filter with the impulse response s(¢), the additive white
Gaussian noise (AWGN) channel and the receiver with the matched filter impulse response
hwme(t) = s(Ty — t) followed by a sampler and a decision circuit. Figure 3.18 shows the
transmit filter impulse response s(#) with the square root raised cosine characteristics,
the impulse response of the filter matched to the transmit filter and their joint impulse
response. Time Tj is the effective length of the transmit filter impulse response and it
lasts for a few modulation periods 7.

o | ! g
=d8(t—iT) s(t) ‘,_.é_'_.hMF(TFS(To—I)—o)\)—» :|: L

Transmitter Channel Receiver

Figure 3.17 Basic scheme of digital PAM transmission with optimum MAP receiver

3.4.2 Optimal Receiver for Multilevel Signals

Generalization of the optimal synchronous MAP receiver onto the application of multilevel
signals is very simple. The receiver performs the same operations as those done in each
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Figure 3.18 Impulse responses for transmit filter (a), matched filter (b) and cascade connection
of transmit filter and matched filter (c)

branch of the receiver shown in Figure 3.12, followed by finding the maximum signal
among the output signals of each branch. In a general case, the receiver looks like that
shown in Figure 3.19. In the decision process according to the MAP criterion the receiver
performs the following operation

T
2

—~ D+
d; =argrr}1ax /y(t)qi(t)dt—Tl—i—lnP,» ,i=1,2,....M (3.66)

0

Let us analyze the case of multilevel signals, which often occurs in practical applica-
tions. Consider the signals with M-level PAM modulation. Assume that all elementary
signals are equiprobable. Assume also that the additive noise is Gaussian and white and
its power density spectrum is No/2. The elementary signals have the following form

sit) =dis(t), di = +£1,43,...,£(M — 1) where M = 2F (3.67)

For this particular case

T
2 2 2
qi(t)zﬁod,-s(t) and D}:mdl? sz(t)dtzﬁodizEs (3.68)
0
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Figure 3.19 Optimal MAP synchronous receiver for M-level transmission

where E; is the energy of the elementary pulse s(#). The selection criterion applied in
the decision device is then reduced to the form

T
~ d?
dl-=argrr}iax d,-/y(t)s(t)dt—?’ s, i=12,....M (3.69)

0
Let us note that the receiver needs to perform only one correlation of the received signal
y(¢) with the elementary pulse s(¢). After scaling the correlation result with data symbol
d; and applying the appropriate shift by —di2 E /2, the receiver searches for the maximum
value. Denote the correlator output as U. Thus, selection of data symbol d; fulfilling the
MAP criterion reduces to finding that symbol d; among all possible data symbols that
maximizes the convex quadratic function

E;
fWU,d) =diU—d?7 (3.70)

It is easy to show that when the received signal has the ideal form y(r) = dis(7),
function f (U, d;) achieves its exact maximum for data symbol d; = dj. Now the following
question arises: How much can the received signal U differ from the ideal value at the
correlator output equal to

T
dy / s2()dt = diE,
0
so that the choice Zi: = dy. is still optimal? Let data symbol d; be one of the “internal”

data symbols, i.e. dy # (M — 1). Knowing that function f (U, d;) is a quadratic convex
function, it is sufficient to determine the lower bound U; and upper bound U, of this
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interval. For these bounds the value of function f (U, d;) for d; = di is equal to the value
of this function for data symbols that are neighboring to dy, i.e. the following equations
are fulfilled for U, and U,:

fWL dy) = f[UL, (d —2)] (3.71)
fUa, di) = fUs, (di +2)]

Applying (3.70) in the solution for both equations we receive the bounds in the form
U =y—1)E; and U, = (dp+ DE; (3.72)

These results indicate that if the result of correlation U of the received signal y(¢) with
the elementary signal s(¢) is found in the interval [(dy — 1)E;, (dx + 1)E;], then the
decision circuit should select symbol d; = di. We also conclude that the optimum receiver
for M-PAM signals consists of a correlator of the received signal with the elementary
reference pulse s(#) and an M-level quantizer. The scheme of this receiver is shown in
Figure 3.20, whereas the characteristics of the quantizer for the 4-PAM signal is presented
in Figure 3.21. The receiver of M-PAM signals often constitutes the basis for receivers
of more complicated signals applying M-PAM modulations of a sinusoidal carrier. Such
signals will be considered in the next chapter.

t=T
T

a
L T
s(t) M-level

quantizer

Figure 3.20 Optimal receiver for M-PAM signals

h

—2F, 1 _I
_,—‘ -1 2E, u
-3

Figure 3.21 Quantizer characteristics for the 4-PAM receiver

w Q)

3.5 Error Probability at the Output of the Optimal
Synchronous Receiver

In this section we will derive the probability of error at the output of the optimal syn-
chronous receiver for the case when binary data are transmitted by means of elementary
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signals so(¢) and s1(¢), which are corrupted by additive white Gaussian noise with the
power density spectrum equal to Ny/2. Assume that both elementary signals, whose dura-
tion does not exceed the modulation period equal to T seconds, have equal energy E and
the probabilities of generation of elementary signals are equal, i.e. P[so(¢)] = P[s;(?)].
Thus, condition (3.61) is fulfilled. It is well known that error probability P(£) can be
derived by calculation of conditional error probabilities P[E|s;(¢)] (i =0, 1), and using
the formula

P(&) = P[Elso)]P[so(®)] + P[Els1(D)]P[s1(1)] (3.73)

Consider the optimal receiver in its basic form, which consists of two correlators and
the device selecting the maximum correlator output at moments ¢ = n7T. First calculate
P[E|so(t)]. For simplicity let us consider the moment k = 1, because in every other
modulation period the process is analogous and, due to an assumption about the duration
of data symbols not exceeding the modulation period 7', the reception processes can be
performed separately, one after the other. Assume for the moment that signal so(f) has
been transmitted in the time interval [0, T]. Following our assumption about channel
properties, the signal observed at the receiver input is the sum of the elementary signal
and noise, i.e.

y() = so(t) + n(1) (3.74)

At the outputs of the correlators shown in Figure 3.15 at t = T we obtain

Uy

o\ﬂ o\'ﬂ

(so(t) + n(1))so(t)dt = E; + Ny o (3.75)

Ui = [ (s0(t) +n())si1(t)dt = y E; + Ny i (3.76)

where, as previously, E; is the energy of elementary signals in time interval 7 and
Ny and N, ; are random variables that result from correlation of the noise n(¢) with
elementary signals so(#) and s;(¢), respectively. Symbol y denotes the cross-correlation
coefficient of both elementary signals, i.e.

T
1
y = —fso(t)sl(t)dt (3.77)
E
0

The receiver commits an error if signal U; at the output of the correlator in which s (¢)
is used as the reference signal is higher than signal Uy at the output of the correlator
applying so(¢) as the reference signal. Therefore

P[Elso(t)] = Pr{U; > Uy} = Pr{Uy — U; < 0} (3.78)
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Define a random variable V = Uy — U; = E;(1 — y) + (Ny.0 — Np.1). For the given
elementary signals the first component of V is constant. The second component is a
difference of two Gaussian random variables. As we remember, the sum (or difference) of
two Gaussian random variables remains Gaussian distributed. Therefore random variable
V is Gaussian and the error probability conditional on transmitting so(¢) is equal to the
probability that random variable V is lower than zero, i.e.

P[Elso(t)] =Pr{V < 0} (3.79)

In order to calculate this probability we have to determine the parameters of Gaussian
distribution of V/, i.e. its mean and variance. We namely have

wy = E[V]=E;(—y) (3.80)
and

oy = EL(V = uy)*] = E[(Nn0 — Nu1)]
= E[N; o] = 2E[N, 0N, 11+ E[N; ] (3.81)
In order to derive the above variance we will consider the first component of the

right-hand side of (3.81). Knowing that the additive noise is white, i.e. its autocorrelation
function is a Dirac delta of intensity Ny/2, we obtain

- , _
E[Nf,o] =E /So(f)n(t)dt/ so()n(r)dr

L0 0 .

T T
=F // so(t)so(t)n(t)n(t)drdr
00

T T
://mmmmﬂﬁ—wmm
00

T T
= /so(t) /So(t)%a(t—f)dt dr
0 0
T
= No f so(t)so(2)dt = &ES (3.82)
2 ) 2

It is also easy to show that £ [N,% 1= %ES. In a similar way [the reader can perform

these calculations by himself/herself by taking (3.82) as a pattern] we can show that
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E[N,oNu1]l = % y E. As aresult, the variance of the Gaussian distribution of the random
variable V is

o7 = NoEs(1 —y) (3.83)

Knowing that the probability distribution of random variable V is given by the formula

1 (v —py)?
V)= ——exXp| ——— 3.84
pv(v) N P [ 207 (3.84)
and defining the complementary error function (Figure 3.22)
2 o0
erfc(x) = N / exp (—1%) dt (3.85)
X

A

12 exp(-12)

erfc(x)

X t

Figure 3.22 [llustration of complementary error function erfc(x)

we can find the probability of error at the receiver output conditional on the transmitted
signal so(¢) by performing the following calculations

e [ o[ -
7 —éerfc%;)

P(£10) =
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Therefore

P(EI0) = % erfc|: 2'f\']"o(l - y):| (3.86)

Similar calculations lead to the same formula for the probability of error conditional
on the transmitted signal s (¢). Thus, using formula (3.73) we obtain

P(E) ! f Es (1—1y) (3.87)
= — erfc — .
2 N Y

We conclude from formula (3.87) that the error probability depends on the signal-
to-noise ratio (expressed by E/Ng) and on the degree of mutual correlation of elemen-
tary signals. Selecting so(#) and s;(¢) as bipolar signals, we receive the cross-correlation
coefficient y = —1, which results in the maximum argument of erfc function and, as a
result, in minimum error probability. For that case the error probability is

0

P& = % erfc( %) (3.88)

Other values of cross-correlation factor y are also possible. In particular, elementary
signals can be mutually orthogonal. For such signals y = 0. In consequence we obtain

P& = % erfc( 2?\‘;0) (3.89)

As we have expressed the error probability as a function of E;/Ny, we may ask how
this ratio is associated with the signal-to-noise ratio SNR = Pgig/ Pyoise- As we remember,
owing to spectral shaping of the transmitted signal, its bandwidth moderately exceeds
the frequency 1/2T. In practice it does not exceed 1/7. Consider the signal-to-noise
ratio in this band, assuming that noise is Gaussian and white with the power density
spectrum Ny/2. Thus, the noise power in the band (—1/7,1/T) is Pyise = No/2 X
(2/T). Therefore

SNR — Psig _ Psig _ PsigT _ E (390)
Proise No x 2 No No

where E; is the mean signal energy per single data symbol.

As we see from (3.89), if we want to achieve the same error probability for the orthog-
onal signals as for bipolar signals [see (3.88)], the signal-to-noise ratio has to be twice as
high, i.e. it must be about 3 dB higher.
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3.6 Error Probability in the Optimal Receiver for M-PAM Signals

Knowing the structure of the optimal receiver for M-PAM signals we can relatively easily
determine the probability of error at its output. Assume that the receiver consists of a block
correlating the received signal with the basic pulse s(¢) and a multilevel quantizer with the
quantization thresholds given by (3.72) (see Figure 3.20). Assume that white Gaussian
noise of power density spectrum Njy/2 is an additive distortion and data symbols are
equiprobable, i.e. P(d;) = 1/M, where d; = 1, £3, ..., (M — 1) and M = 2*, Recall
that the received signal is described by the expression

y(t) =d;s(t) +n(r) (3.91)

Recalling that we have denoted the energy of the basic pulse s(¢) as E;, we obtain the
sample U at the correlator output

T
U= / [dis(t) +n(0)]s(t)dt = d;E, + Z, (3.92)
0

where Z, is a Gaussian random variable that results from the correlation of noise n(t)
and signal s(¢). This random variable has zero mean and a variance which is determined
on the basis of calculations similar to those performed in (3.82), resulting in the value
o% = E¢Ny/2. Therefore U is also a Gaussian variable with a mean equal to d; E; and
variance oé. In general, symbol error probability can be calculated from the formula

M
Py (E) = Z P(d;)P(€|d; transmitted) (3.93)

i=1

In the case of data symbols d; different from the “outer” ones, i.e. those different from
+(M — 1), taking into account the quantization thresholds (3.72) we obtain the conditional
symbol error probability

P(&|d; transmitted) = Pr{|U — d; E;| > E,} (3.94)

This probability is shown as the area under both tails of a Gaussian curve. For the “outer”

symbols d; = +(M — 1) this probability is equal to Pr{[U — (M — 1)E,]| < —E,} for

di=M —1 and Pr{[U + (M — 1)E,] > E,} for di = —(M — 1), respectively, because

the area of correct decision is limited only on one side. Figure 3.23 illustrates our consid-

erations for 4-PAM modulation. The grey areas indicate conditional error probabilities.
Using (3.93) and (3.94) we can write

o0
M—1 M-1 2 u?
Py (&) = Pr{|lU — E,| > E;} = —— ———)d 3.95
v (E) i r {] | > E} i m@/ﬂp( 20%) u (3.95)

Es

The denominator of the fraction (M — 1)/M is determined by the data symbol proba-
bilities P(d;) = 1/M, whereas the numerator (M — 1) reflects the fact that for M-level
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Figure 3.23 Conditional symbol error probability density functions at the correlator output of the
optimal receiver for 4-PAM modulated signals

modulation the number of decision areas limited on both sides is M — 2, and two decision
areas are limited on one side only, which is jointly equivalent to M — 1 decision areas
limited on both sides. Using again the standard form of the erfc function, we obtain

(o)
M—-1 2
Pu(&) = — ——= / exp (=A%) dx (3.96)
Es
V20,
SO
M—1 E; M —1 E;
Py(&) = —— erfc = erfc — (3.97)
M V2 NoE, ]2 M No

We have derived the formula for symbol error probability for M-PAM signals as a
function of the ratio of the basic pulse energy E; to the noise power density spectrum
Np. An expression for symbol error probability as a function of the mean power of the
signal will be more useful if the error probability is presented as a function of the ratio of
mean signal energy per data symbol or per data bit to the power density spectrum. Thus,
let us determine the mean power of the transmitted signal. We proceed in the following
way

T T
_ ! oz b L o ELd]
Prean = TE f[d,s(t)] dr ¢ = T fS (t)dr = T E; (3.98)
0 0

For the considered data symbol set, assuming that all data symbols are equiprobable,
we obtain

, ,. 28 , M2
E[d*] = E[Qi —M)* == Qi —1)?= 3.
[d?] = E[Qi — M)*] M;u ) 3 (3.99)
Therefore
M? -1
Prean = E; (3100)

T
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and we conclude that

3PmeanT o 3Emean o SkEb
M?—1 M?—1 M?—1

E, = (3.101)

where Eyean = Pmean? 1S the mean energy of a single data pulse. The number of mod-
ulation levels can be expressed in the form M = 2k where k is the number of bits
mapped onto a single data symbol. Denote mean signal energy per bit as E;, and notice

that Emean = kKEp. Now we can express the symbol error probability for M-PAM by the
formula

Py (&) M—1 3k By (3.102)
g) = erfc| .| ———— .
M M M2 —1N,

If we wish to have a fair comparison of error rates for modulations with different levels,
we should plot the error probability curves as functions of E;/Ny. Figure 3.11 presents
several error curves drawn according to (3.102) for different modulation levels M.

3.7 Case Study: Baseband Transmission in Basic Access
ISDN Systems

Let us consider a practical example that illustrates our considerations on digital baseband
transmission. In the 1980s, along with the progress in digitalization of telecommunication
networks affecting mainly switching centers and links between them, it was found that
extending the digital network directly to the end users (subscribers) would result in sub-
stantial enrichment of the services offered and would finalize digitalization of the whole
telecommunication network. In this way the idea of Integrated Services Digital Network
(ISDN) systems was established.

As we know, in a classical fixed telephone network each user is connected to the
closest switching center via a twisted copper wire pair. The properties of such a channel
are considered in Chapter 5. In the so-called Plain Old Telephone Service (POTS) a
twisted pair is applied only to transmit analog signals representing a voice waveform
or a voiceband modem signal. Both are contained in the band limited approximately
to 4kHz. However, a twisted pair offers a much wider channel bandwidth that can be
utilized for digital transmission. Thus, the heavy investment in subscriber lines made by
telecom operators with the expected return after a few tens of years had to be further
exploited. In the first phase of development of digital transmission over subscriber loops,
two bearer (B) channels of the rate 64 kbit/s each plus one data (D) channel of the rate 16
kbit/s were offered in the duplex mode. This means that 144 kbit/s was offered to a user
for simultaneous transmission in both directions. This transmission system is described
as Basic Access ISDN (ITU-T G.961 1993). Later the data rate was extended to 2.048
Mbit/s in Europe, equivalent to the primary rate in PCM systems and 1.544 Mbit/s in
the USA. Such a transmission technique is called a High-data-rate Digital Subscriber
Line (HDSL) (ITU-T G.991.1 1998) and was basically performed in parallel over two
or three twisted wire pairs. Later, owing to the progress in transmission technology, this
method was improved to enable a primary rate transmission on a single twisted wire pair.
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A subscriber line with appropriate transceivers which enables transmission of the latter is
called a Single-pair High-speed Digital Subscriber Line (SHDSL) (ITU-T G.991.2 2003).

In our case study we will present the recommended line codes and pulse shapes mainly
for Basic Access ISDN digital transmission.

Let us mention that much faster digital transmission over subscriber loops is currently
possible, enabling wideband Internet access using ADSL (Asymmetric Digital Subscriber
Line), ADSL2, VDSL (Very high rate Digital Subscriber Line) or VDSL2 technologies.
However, the corresponding methods of digital transmission have not been described
yet, as they require modulations of sinusoidal carriers. We will leave them for future
consideration.

Before we describe the line codes and appropriate pulse shapes in Basic Access ISDN,
let us explain how duplex transmission is possible over a single twisted wire pair. Accord-
ing to the nomenclature adopted for the description of ISDN systems, a transceiver on
the user side is part of Network Termination (NT), whereas a transceiver on the switching
center side is part of Line Termination (LT). Although there are various possible tech-
niques of duplex transmission, two techniques have been recommended for Basic Access
ISDN and HDLC or SHDLC systems. These are Echo Cancellation (ECH) and Time
Compression Multiplex (TCM).? In the ECH method (see Figure 3.24) signals in both
directions, i.e. from NT to LT and back, are transmitted simultaneously in the same range
of frequencies. The signals are split by a hybrid (which is described in Chapter 5). If
the hybrid worked ideally, there would be no signal at the input of the receiver that is
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Figure 3.24 Echo cancellation method used in duplex ISDN transmission: (a) basic transmission
configuration, (b) signal spectra at the input/output of the NT hybrid, (c) signals at the input/output
of the NT hybrid

2 A more popular explanation for the TCM acronym is Trellis-Coded Modulation, which will be the subject of our
considerations in the next chapter.
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generated by the transmitter located in the same transceiver. The only received signal
would be the signal generated by the remote transmitter and sent over the subscriber
loop channel. In reality, hybrid ability to attenuate the locally generated signal is limited.
Additionally, the signal from the remote transmitter is often attenuated to such a degree
that the unwanted local signal component received through a nonideal hybrid is much
stronger than the desired signal. Thus, an adaptive filter called an echo canceller attempts
to generate two unwanted components: e;(¢), the signal leaking through the hybrid; and
ey (1), the signal that arrives at the local receiver as a reflection signal due to nonideal
impedance matching in the subscriber loop (see Chapter 5). This signal is then subtracted
from the received sum of the desired remote signal and echoes, resulting in a sufficient
signal-to-noise ratio to allow for reliable signal detection. As shown in the chapter on
channel models (Chapter 5), the attenuation of a twisted wire pair channel substantially
increases with frequency, so transmitting in both directions in the same band allows the
required bandwidth to be minimized, leading to a higher transmission range.

The second method, TCM, uses the channel in time division mode (see Figure 3.25).
On the NT and LT sides there are two switches that, when appropriately synchronized,
establish a transmission link by alternating the transmission directions. As we see, no
hybrids are required and no echoes distort the received signal. However, the disadvantage
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Figure 3.25 The Time Compression Multiplex (TCM) method used in duplex ISDN transmission:
(a) basic transmission configuration, (b) time domain signal, (c) signal spectra on the input/output
of NT
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of this transmission method is the necessity to compress the signal in time more than
twice. Half of a time period is devoted to transmission in one direction, but one has
to take into account the delay resulting from signal propagation along the subscriber
loop channel and a finite time of reversing the transmission direction resulting from the
switching processes and rise time of transmit amplifiers. In consequence, the occupied
bandwidth is more than twice as large as that used in the ECH method.

Three line codes are presented in the Appendix to ITU-T G.961 Recommendation
(ITU-T G.961 1993) as allowable alternatives. The first one is called a Modified Monitor-
ing State Code (MMS 43) and it maps 4-bit blocks into blocks of three ternary symbols
with levels +1, 0 and —1 denoted as +, 0 or —. It is sometimes called the 4B3T code.
The MMS 43 line code applies four alphabets, S1, S2, S3 and S4. The choice of the
alphabet is determined by the current 4-bit block on the encoder input and the previously
used alphabet. Table 3.2 shows mapping applied in the MMS 43 line code. Each block of
three ternary symbols is accompanied by the number of the alphabet that has to be used
in the next application of the line code mapping table.

Table 3.2 MMS 43 line code mapping table

Input block S1 S2 S3 S4
0001 0-+ 1 0-+ 2 0-+ 3 0-+ 4
0111 -0+ 1 -0+ 2 -0+ 3 -0+ 4
0100 -+0 1 -+0 2 -+0 3 -+0 4
0010 +-0 1 +-0 2 +-0 3 +-0 4
1011 +0- 1 +0- 2 +0- 3 +0- 4
1110 0+- 1 0+- 2 0+- 3 0+- 4
1001 +-+ 2 +-+ 3 +-+ 4 -—— 1
0011 00+ 2 00+ 3 00+ 4 --0 2
1101 0+0 2 0+0 3 0+0 4 -0- 2
1000 +00 2 +00 3 +00 4 0-- 2
0110 —-++ 2 -++ 3 -——+ 2 --+ 3
1010 ++- 2 ++- 3 +-- 2 +-- 3
1111 ++0 3 00- 1 00- 2 00- 3
0000 +0+ 3 0-0 1 0-0 2 0-0 3
0101 0++ 3 -00 1 -00 2 -00 3
1100 +++ 4 -+- 1 -—+- 2 -+- 3

For example, if alphabet S1 has been used at the previous moment, the block 0000 fed
to the line encoder input at the current moment results in the ternary output symbol block
+ 0+ and alphabet S3 will be applied to send the next block. As we can see, the MMS
43 encoder is a device with memory, so it introduces correlation between subsequent
ternary data symbols. We should also note that not all possible ternary codewords can
be applied. At each moment of the encoding process the encoder is able to select one
of 16 ternary codewords (in a single column of the mapping table, appropriately to the
selected alphabet) out of 27 combinations of three ternary symbols. If the receiver detects
a ternary block that is not an allowable line code sequence, quality control alert can be
triggered.
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ITU-T Recommendation G.961 does not provide an exact formula for applied pulses;
however, it includes a pulse mask, as shown in Figure 3.26. Any pulse shape applied in
the NT or LT transmitter has to be contained within this mask.

1
"= Ta0knz =B34

Yz 02V
21 /

' {1 ' '
8T 7 29T 30T t

o777~V

v

Q

. r
—10mVW’ T
AL g
s 08 Y

0
-

12 9,5
873

) T

e ][eN)

Figure 3.26 Pulse mask for the elementary signal shape applied in ISDN transmission with MMS
43 line code. Reproduced with the kind permission of ITU

Transmission in both directions is organized in frames of 120 ternary symbols. In each
frame, besides two bearer channels and the data channel (2B+D) sent in symbols 1-84
and 86—109, the maintenance channel of rate 1 kbit/s is transmitted in symbol 85 and
the frame synchronization word consisting of 11 ternary symbols is sent in the block of
frame symbols 110—120. The data symbol rate is 120 ksymb/s. Assuming a square root
raised cosine shaping filter with roll-off factor of the order of 25-35% applied in the
transmitter, the signal bandwidth of around 75-80kHz is needed for Basic Access ISDN
transmission in each direction when the echo cancellation method is applied, although a
3 dB bandwidth of the power density spectrum is about 55 kHz.

Another possible line code listed in the Appendix to ITU-T G.961 Recommendation
(ITU-T G.961 1993) is the so-called 2B1Q code. This is a regular 4-PAM modula-
tion. The mapping rule of the 2B1Q code is shown in Table 3.3. The code does not
contain any redundancy that could be used for quality monitoring. The frame consists
of 120 quaternary symbols transmitted during 1.5ms. It starts from 9 symbols of the
frame synchronization word, followed by 108 symbols carrying bearer and data channels
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Table 3.3 2B1Q line code mapping table

First bit Second bit Quaternary symbol
(sign) (magnitude)
1 0 +3
1 1 +1
0 1 —1
0 0 -3

(2B+D). The frame ends with the maintenance channel requiring 3 quaternary symbols.
The required symbol rate is 80 ksymb/s, resulting in a narrower bandwidth compared
with the system using the MMS 43 line code. The echo cancellation method is used in
duplex transmission. An adequate shape mask can be found in ITU-T Recommendation
G.961 (ITU-T G.961 1993).

The third possible line code described in the Appendix to ITU-T G.961 Recommen-
dation (ITU-T G.961 1993) is the so-called SU 32 (Substitutional 3B2T) code. This line
code is used to support duplex transmission of 2B+D channels supplemented with an
auxiliary channel supporting data CRC, control, supervisory and maintenance functions.
The echo cancellation method is applied to ensure duplex transmission. The ternary data
symbols of SU 32 codewords are again denoted as +, 0 and —, depending on the polarity
of the previous nonzero symbol. Mapping of binary blocks onto ternary codewords is
shown in Table 3.4.

Table 3.4 SU 32 (3B2T) line code mapping table

Input block Output block Input block Output block

000 -- 100 0-
001 -0 101 +-
010 -+ 110 +0
011 0+ 111 ++

Due to the assumed frame configuration, the required data rates of 2B+D and mainte-
nance channels and the applied SU 32 line code, the symbol rate of a ternary data stream
is 108 ksymb/s. The pulse shape signal mask is presented in the above-mentioned ITU-T
recommendation.

Although less efficient than the ECH method and probably very rarely applied, the
TCM method of duplex transmission is one of the alternatives described in Annex III of
ITU-T G.961 Recommendation (ITU-T G.961 1993). For the TCM system configuration
a regular AMI line code has been foreseen. A binary “0” is represented by the zero line
signal whereas binary “1” is transmitted as a pulse alternately changing polarity. The
consequence of time compression is a very high symbol rate, equal to 320 ksymb/s. The
positive and negative pulses are rectangular pulses shaped by the low-pass filter with
cut-off frequency equal to 640 kHz and an appropriately selected roll-off.

So far we have considered line codes, symbol rates and elementary pulse shapes for
Basic Access ISDN transmission. The duplex data rate offered to the user is 144 kbit/s.
In the current state of access to the ISDN network it is not a very satisfactory data rate.
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The next step of development of data transmission over subscriber loops was HDSL
transmission. As we have already mentioned, its aim was to offer data transmission at
the rate of the order of 2048 kbit/s on a triple, double or single wire pair. In the last case
a more complicated transmission method than those described above was proposed in
ITU-T Recommendation G.991.2 in 2003. In fact, the cited recommendation standardizes
selected data rates between 192 kbit/s and 2312 kbit/s (in the form of n x 64 +i x 8
kbit/s) using a Trellis-Coded Pulse Amplitude Modulation (TCPAM). Detailed descriptions
of trellis-coded modulations will be presented in Chapter 4.

kskok

In this chapter we have presented basic information on the modulation of signals
in the baseband. We have shown that the spectral properties of the modulated signal
strongly depend on the selected shape of the elementary pulse and on the correlation
properties of data symbols. We have also derived the structure of the optimum receiver.
We have noticed, in particular, that a band-limited channel can be used effectively for
data transmission if we modulate elementary pulses that last longer than the modulation
period; however, these signals should have specific spectral or time properties expressed
by the Nyquist theorem.

In our overview we have concentrated on several forms of pulse amplitude modulation.
There are other baseband modulations such as Pulse Width Modulation (PWM) or Pulse
Position Modulation (PPM) but these are mostly used in measurement systems and very
specific telecommunication applications, therefore they will not be considered in this book.

3.8 Appendix: Power Spectral Density of Pulse Sequence

Let us derive the formula for power spectral density of the pulse sequence described by
(3.2). Let us quote this expression in a slightly modified form

x(ty= Y dis(t —iT = Ty) (3.103)

i=—00

where, as before, d; denotes data symbol and s(z) describes the shape of elementary
data pulses. Random variable 7 denotes a reference moment on the time axis of an
external observer of signal (3.103). It is usually assumed that 7y has a uniform probability
distribution in the interval [0, T']. Let us note that formula (3.103) describes a random
process in which two variables are random and mutually independent: the data symbol
sequence d; and random initial moment 7. We will show that the power density spectrum
of signal x(¢) given by formula (3.103) is expressed by (3.3).

Derivation of the power density spectrum can be performed via calculation of the auto-
correlation function of process (3.103), followed by calculation of its Fourier transform.
In fact, we use the Wiener-Khinchine theorem on the relationship between the autocorre-
lation function and power spectral density for a stationary stochastic process. It is worth
mentioning that if the random initial moment 7j is not taken into account, the sequence of
data pulses (3.2) is a nonstationary process. For such a case calculation of the autocorrela-
tion function for signal (3.2) would result in a function that would depend not only on the
time shift ¢ but also on the current time moment ¢. The dependence of the autocorrelation
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function on time ¢ is periodic. In such a case we speak about the cyclostationarity of
process (3.2). The property of cyclostationarity can be used in timing recovery performed
in the receiver of pulse sequences.

Let us start from derivation of the autocorrelation function of signal (3.103). Using the
basic definition of the autocorrelation function we have

+00 +00
Re(t+1.0)=E| Y dist+1—iT—To) Y djs(t—jT —Tp) (3.104)
I=—00 j=—00

where E [.] denotes ensemble average with respect to both random data symbols and a
random initial moment 7y. As we have mentioned, data symbols and the initial moment
Ty are mutually statistically independent. Knowing that the probability distribution of
random variable 7j is described by expression

for0<Ty <T

pry(f0) = (3.105)

o N =

otherwise

we can present formula (3.104) in the form given below by (3.106). Additionally, we take
into account the fact that the data sequence does not change its statistical properties in
time so its autocorrelation function E [didi+n] denoted as R;(n) does not depend on the
current moment i but is a function of time shift n only. Thus, we have

+00  +00
R.(+t1,1)=E [ Y D distt 41 —iT —t0)disns(t —iT —nT — to):|

I=—00 n=—00
+o00 A
= > El[dida Z /s(t—i—t—lT t0)s(t —iT — nT — to) pr, (fo)dto
n=—0o z—fooo

+00 oo T
= dd,_»,_n S([+T—iT—t())S(l‘—l'T—I’lT—l‘())ldt()
T

n=-—o00 =—o<>O
= Z Rd(n)/s(z+z—x)s(t—nT B L (3.106)

The last row in (3.106) is obtained owing to substitution A =#y +i7 and to replace-
ment of the infinite sum of integrals over period 7 by a single integral in the infinite
interval from minus to plus infinity. In turn, if we apply the substitution u =t + 17 — A,
we obtain

R (7) = Z R;i(n) / s(u)s(u —nT — v)du (3.107)

n=—0oo
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Calculation of the power density spectrum for signal (3.103) in fact reduces to performing
the Fourier transform of formula (3.107). Therefore we have

G.(f)=FIR —1+OOR foo T —1)d
D= FIR@I= 5 3 Ra) /S(u)s(u—n o)du
1 =
== 2 RaS(HS (Hexp(janfnT) (3.108)

where S(f) = F [s(¢)] is the spectral density of pulse s(¢). The property

oo
F / sw)s(w —nT —t)du | = S(S*(f)exp (j2rxfnT) (3.109)
—00
can be easily proved by applying basic formulae associated with the Fourier transform

and its properties. Thus, the power density spectrum for signal (3.103) can be expressed
by formula (3.110), which agrees with expression (3.3)

1
G (f) = FIS(J’)I2 Ga(f) (3.110)

In (3.110) G4(f) is the power density spectrum of data stream d; described by formula
(3.4), which for the reader’s convenience is again given below

“+o0

Ga(f)= Y Ra(n)exp(—j2mfnT) (3.111)

n=—0oo

Therefore, in a general case the power density spectrum is described by the expression

1 400
Ge(f) = ZIS(HP Y Ra(n)exp (—j2mfnT) (3.112)

n=—oo

Consider now a specific, very useful case. Let subsequent data symbols be statistically
independent. Then
E[df]zaf—i—,uﬁ forn =0
Ry(n) = (3.113)
E[didin] = E[d] E [disn] = g forn #0

and as a result

2 2 +00
Gu(f) = LIS+ ZLISGHE Y exp(—j2nfnT) (3.114)

n=—0o0
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Taking into account the Poisson formula, i.e.

+0o0 +o0

3 exp(—j2nfnT):% 3 S(f—;) (3.115)

n=—00 n=—00
we obtain the formula for the power density spectrum of signal x(¢) in the form
Guh=Lisr+ Sisnr Y s (r-%)
T T2 £ T

o e ny|? n
=% g e s(5) e (r- ) 3.116
TISHP+25 > [S(5 f-= (3.116)
n=—0o0
A wider interpretation of expression (3.116) is contained in the main course of the chapter.

Problems

Problem 3.1 Consider unipolar RZ (Return to Zero) line coding in binary transmission
at the rate R = 1/ T, in which the following signal is applied to transmit data symbols d,

—T/4
T/2

s(t):Arect(t > 0<t<T

Assume that the transmitted data are equiprobable and statistically independent. Calculate
the power spectral density of a random data sequence when the RZ line code is applied.
Compare it with the results for unipolar NRZ, bipolar NRZ and Manchester line coding.

Problem 3.2 Assume bipolar transmission of statistically independent and equiprobable
binary data in which the following elementary pulse is applied

Sin<—t> 0<tr<
T <t=<1
s(t) =

0 otherwise

1. Plot the pulse sequence x(t) given by formula (3.2) if the following data bits a, are
transmitted

011010010001110101011

2. Calculate the power spectral density of x(t) and compare it with the relevant power
spectral densities when a rectangular pulse of length T and a raised cosine pulse of
length 2T are applied.

Problem 3.3 Draw an eye diagram for the random bipolar data sequence x(t) described
by (3.2) if the applied elementary signal s(t) has the form of a raised cosine pulse of length
2T, given by formula (3.16).
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Problem 3.4 Consider a simple discrete model of binary transmission described by the
equation

Yn = Xp + Wy

where x,, = £ A and n is the time index. Denote Pr{x, = —A} = Py and Pr{x,, = A} = P,.
The sample v, represents a Gaussian noise with zero mean and variance o*. At the receiver
a simple threshold is applied to decide which symbol, A or — A, has been transmitted. Give
the formula describing the error probability P(E) = Pr{dec(y,) # x,}. Find the optimum
threshold that minimizes P (E).

Problem 3.5 Write a computer program that calculates the values of the impulse
response s(t) (3.25) of the filter with the raised cosine characteristics with a given value
of the roll-off factor a and subsequently plots them for o = 0.25. Perform calculations
and the plot for the time interval (—6T, 6T).

1. Calculate the amplitude characteristics of the filter.

2. Consider the filter impulse response in the time interval (—=3T, 3T). Calculate the ampli-
tude characteristics for this case. What are the consequences of shortening the impulse
response of the filter? Plot the characteristics on the decibel scale.

3. Integrate numerically the product of two pulses — the regular s(t) pulse and the pulse
shifted by a multiple of the signaling period T. Draw the conclusions from the result of
this integration.

Problem 3.6 Solve Problem 3.5 for the square-root raised cosine characteristics of the
filter, typically used as transmit and matched filters. It can be shown that the impulse
response of this filter is given by the formula

sin[r(1 —a)t/T]+ (dat/T)cos[m(1 + a)t/T]
(wt/TH[1 — (dat/T)?]

s(t) =

Problem 3.7 Consider the pulse shaping filter characteristics shown in Figure 3.27. Cal-
culate the impulse response of this filter and determine its properties in the context of
Theorem 3.2.1.

_(te) 1 (-9 (1-o (1+a) g

1
2T 2T 2T 2T 2T 2T

Figure 3.27 Pulse shaping filter characteristics considered in Problem 3.7

Problem 3.8 Assume the application of data pulses of a rectangular shape in 8-PAM
transmission. Data symbols d, are selected from the alphabet {£1, £3, 5, £7}.
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1. Propose a mapping of binary blocks onto data symbols d,, for natural and Gray encod-
ing.

2. Draw a plot of PAM signals when natural (a) and Gray (b) encoding is applied and the
following data sequence is transmitted

001 011 101 111 110 100 111 101 001 000

Problem 3.9 Apply any pulse from Figure 3.28 as the shaping pulse in binary bipolar
transmission over an AWGN channel. Draw the plot of the signal seen at the output of
the correlator and at the output of the matched filter applied in an optimum synchronouos
receiver for the noise-free case.

s(t) 4 s(t) A
@ 4 ©) 4

~ Vv
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T2 T
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T

Figure 3.28 Plots of three pulses analyzed in Problem 3.9

Problem 3.10 Assume that in binary transmission over the AWGN channel the data sym-
bol “0” is transmitted using the pulse shown in Figure 3.28a and the pulse shown in
Figure 3.28b is applied for transmission of the data symbol “1”. Assume that both data
symbols are equiprobable and statistically independent. The power spectral density of the
AWGN noise is equal to Ny/2.

1. Calculate the energy of both pulses in the signaling period T.

2. Draw a block diagram of the optimal synchronous receivers for this transmission in
which correlators (a) and matched filters (b) are applied.

3. Calculate the error probability at the output of this receiver.

Problem 3.11 Consider binary bipolar transmission systems in which the pulses from
Figure 3.28 are applied. Compare the power spectral density for all the pulses if data
symbols “0” and “1” are equiprobable and statistically independent. Draw respective
plots of power spectral density.

Problem 3.12 Consider a quaternary transmission system in which the elementary
pulses have the form +s(t), £s,(t) for 0 <t < T and are zero outside this time interval.
The pulses s,(t) and s>(t) have equal energy and are orthogonal. Derive the optimal
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synchronous receiver assuming that additive noise corrupting the transmitted pulses is
Gaussian and white with the power spectral density Ny/2, and that all data symbols are
equiprobable. Derive the decision rule for this receiver and calculate the error probability
at its output.

Problem 3.13 Consider a ternary transmission system in which equiprobable ternary
data symbols 1,0, —1 are represented by elementary pulses that have the form s|(t) = s(t),
so(t) =0, s_1(t) = —s(t), respectively. The energy of the pulse s(t) in the time interval T
is equal to E. Find the scheme of an optimal synchronous receiver when these signals are
transmitted through the AWGN channel. Calculate the probability of error at the receiver
output.

Problem 3.14 Consider the system known in the literature as Partial Response Signal-
ing in the version called the duobinary system. Its block diagram is shown in Figure 3.29.
Assume that binary input data symbols {a,} are equiprobable and statistically indepen-
dent. Binary data symbols are converted into a bipolar stream {b,} that is fed to the
duobinary encoder. The resulting data symbol sequence {d,} is subsequently shaped by
an ideal lowpass filter S(f) with bandwidth equal to 1/2T, where Tis the signaling
period.

1. Find the power spectral density of the signal at the output of the shaping filter S(f).
2. Determine the equivalent form of the system that can be described by the equation

x(t) = ) busmoalt —iT)

i=—00

Find a formula for the modified pulse smoq(t).

3. Design the receiver that is able to decode the considered signal assuming that spectral
shaping is equally divided between the transmitter and receiver, as it is in the case of
the transmit and matched filter pair. Find the appropriate thresholds of the decision
device and formulate the respective decision rule.

4. For the receiver designed in the previous point, show that a decision error can trigger
the error propagation effect.

5. Assuming perfect decisions in the preceding timing instants, calculate the probability
of error for this system. What is the performance difference compared with the regular
bipolar system?

6. Demonstrate operation of the considered system feeding the exemplary data stream
to its input if the system is now supplemented with the so-called differential encoder

{an}

{bn} {d} X(t)
—» Binary-to-bipolar o n Ideal LPF

S(f)

Figure 3.29 Block diagram of the duobinary partial response system transmitter
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operating according to the formula
a)=a,®d,_,

where @ denotes the modulo-2 addition and instead of data bits a, the data bits a,,
are now converted to bipolar form. Find a new decision device taking into account
differential encoding at the transmitter. Is error propagation still dangerous?

Problem 3.15 Solve Problem 3.14 for the system called Class-4 Partial Response or
Modified Duobinary, in which the data symbols d,, applied to the shaping filter S(f) are
received via the following operation

dy =by — by
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Digital Modulations of the
Sinusoidal Carrier

4.1 Introduction

Most transmission channels are of the bandpass type, i.e. the frequencies of the signal
provided to their input are strongly attenuated outside the frequency range limited by
certain minimum and maximum frequencies. The difference between the maximum and
minimum frequencies is the channel bandwidth. The bandwidth is determined by natu-
ral properties of the transmission channel, although it can be a result of administrative
regulations aiming at reasonably sharing the electromagnetic spectrum between different
systems and their users. The regulations are particularly important for radio systems.

In order to use a bandpass channel in digital transmission, we apply a sinusoidal carrier
of the frequency contained in the channel band and manipulate one or more parameters
of this signal, depending on the data stream to be carried on this carrier. If we present
the sinusoidal signal in the form

x(t) = AcosQu ft + @) 4.1)

we see that the subject of manipulation can be amplitude A, frequency f or phase ¢. In
the simplest case, the change of one of these parameters can occur in a stepwise manner,
so digital modulations of a sinusoidal carrier are often described as ASK — Amplitude
Shift Keying, FSK — Frequency Shift Keying or PSK — Phase Shift Keying. Figure 4.1
presents typical waveforms for ASK, PSK and FSK. It is assumed here that single bits
of a data stream modulate the carrier.

Consider the basic digital modulations mentioned above. Figure 4.1 illustrates a partic-
ular case of ASK, FSK and PSK modulations. Let us note that for all waveforms shown
in Figure 4.1 a single signaling period contains an integer number of sinusoidal periods.
Additionally, all possible changes of elementary signals always occur at the moments of
zero crossings of the sinusoidal carrier. Obviously, this is a rare case in practice, but it
allows a clear presentation of the basic properties of modulations to be given.

Let us start with the ASK modulation. According to the rule applied in Figure 4.1a,
a sinusoidal signal represents message “1”, whereas absence of the signal represents

Introduction to Digital Communication Systems Krzysztof Wesotowski
© 2009 John Wiley & Sons, Ltd
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0 1

(@ 4

Figure 4.1 Example of ASK (a), PSK (b) and FSK (c) waveforms with a binary modulating
sequence

message “0”. Therefore, the ASK modulation constitutes a choice of one of two elementary
signals

so(t) =0, or si(t)=AcosQnf.t), for tel0,T] 4.2)

As we see, the ASK-modulated signal can be generated by switching on and off a
sinusoidal generator of frequency f. for a duration of a single bit 7. As in the case
of baseband modulations, the time interval between the moments in which subsequent
elementary signals are generated is called a modulation period.

In turn, in the case of FSK modulation two elementary signals have the form

so(t) = Acos2m fot), s1(t) = Acos(2m fit), for t€0,T] 4.3)

where fp and f] are the so-called FSK nominal frequencies. If the nominal frequencies
are not selected in such a way that a multiple number of periods of sy(¢) and s1(¢) is
contained in the modulation period 7', then two cases are possible:

e The FSK-modulated signal is obtained by passing a signal from one of two free-running
generators of sinusoidal carriers of frequencies fy and f; to the modulator output — as
a result, a phase discontinuity at the ends of the modulation periods occurs, which has
a substantial influence on the signal spectral properties,

e The FSK-modulated signal is obtained by changing one of the parameters of a single
sine wave oscillator. Consequently, phase continuity is preserved in the moments of
the start of new modulation periods. Unfortunately, analysis of FSK-modulated signals
generated in this way is much more difficult than in the first case.
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Finally, the PSK-modulated signal can be represented by the following two elementary
signals

so(t) = Acos2r f.t), s1(t) = Acosrf.t +m) = —AcosQu f,t) “4.4)

Let us note that signal s;(¢) features the opposite polarization with respect to signal
so(t), so PSK modulation can be treated not only as the phase keying but also as a
particular case of DSB-SC modulation,! in which a binary rectangular random signal is
a modulating signal.

In telecommunication practice more than one signal parameter is very often used in
manipulation of a digitally modulated sinusoidal waveform. Typically, amplitude and
phase are manipulated simultaneously and the transmitted elementary signals are deter-
mined not by single message bits but by whole binary blocks. The application of elemen-
tary trigonometric formulas allows amplitude-and-phase-modulated signals to be treated as
a sum of two amplitude-modulated waveforms of the same frequency that are phase-shifted
by 90° with respect to each other. Since the carrier phase-shifted by 90° with respect to
the reference carrier is called a quadrature carrier, digital modulation in which ampli-
tude modulation of two orthogonal carriers is applied is called Quadrature Amplitude
Modulation (QAM).

Consider now a very general model of operations performed by a modulator. This
model covers practically all digital modulations of a sinusoidal carrier and is described
by the formula

s(t) = x'(t) cos 2m fut — x2(¢) sin 27 f.t = Refx (1) exp(j2m fo1)} 4.5)

where Re{.} is the real part of a complex variable, and x(¢) = x’(t) + jx2(¢). Functions
x!(t) and x2(¢) describe the signal modulating the cosinusoidal and sinusoidal carrier
of frequency f,, respectively. These signals are called the in-phase and quadrature
components. We are able to represent any modulation by an appropriate choice of signals
x!(t) and x(¢). By applying x(¢) in the description of a given modulation we are able to
consider each modulation on the complex plane, showing the points that are characteristic
for the applied modulation and the trajectories along which the signal passes between these
points. Signal x(¢) is called the baseband equivalent signal.

In general, digital modulations can be divided into linear and nonlinear ones. Linear
modulations are those for which signals x/(r) and x¢ () may be generated by linear
circuits. ASK, QAM and PSK as well as their variations may be generated using such
circuits. It is not always possible in the case of FSK and its derivatives, so generally this
type of modulation is considered to be nonlinear.

A digitally modulated signal may be processed using different kinds of receivers, which
in turn ensure different levels of error probability. Generally, digitally modulated signals
can be the subject of synchronous (coherent) or asynchronous (noncoherent) reception.
For the first type of reception the receiver needs to know the elementary signals and
their starting and ending points on the time axis, as well as the exact value of the carrier
phase. If the knowledge about the carrier phase is not used in the receiver or it cannot be

!'Let us recall that DSB-SC (Double SideBand - Supressed Carrier) denotes an amplitude modulation of the form
x(t) = m(t) cos 2m f.t, where m(t) is a zero-mean modulating signal.
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acquired due to technical difficulties or cost reasons, we talk about noncoherent reception.
Thus, we intuitively feel that the performance of a noncoherent receiver is worse than that
of a coherent one. In the course of this chapter we will consider both types of receivers
and we will study receiver schemes for basic types of digital modulations.

4.2 Optimal Synchronous Receiver

In our considerations on digital modulations and on performance evaluation of different
receiver types let us assume that the message bits are equiprobable. Let us also assume
that the only disturbance in the channel is a white Gaussian noise of power spectral density
equal to Ny/2. Channels that introduce other kinds of disturbances, e.g. they unequally
attenuate the signal frequency components, will be considered in Chapters 5 and 6.

The derivation of the synchronous receiver structure for a digital modulation in which
M elementary signals are applied is analogous to the derivation of the receiver for
M-ary baseband modulations that was presented in the previous chapter, therefore we
will not analyze it in detail. However, we will show the scheme of the optimal receiver
for an M-ary modulation, which will be further applied for several digital modula-
tions of a sinusoidal carrier. Let us denote elementary signals used by the modulator

as s;(t) i =0,...,M — 1). Their energy within a modulation period is given by the
formula
T
E = /siz(t)dt (4.6)
0

Since we consider modulations of a sinusoidal carrier, the elementary signals have the
form in which a sinusoidal signal is contained. However, we may treat these signals in the
same way as baseband signals. The only difference is the mathematical form that describes
them. As we already know the basic structure of the optimal synchronous receiver, we
easily conclude that the scheme of the optimal receiver looks like that shown in Figure 4.2.
The receiver is synchronous, because in the correlation with the received signal y(z) the
receiver applies the reference signals in the full form of the elementary signals, including
their carrier phase. Thus, the receiver consists of M correlators that apply the appropriate
elementary signals as the reference ones, the circuits that shift the signal levels according
to possibly different values of the elementary signal energy E; and a decision block that
selects the highest value on the outputs of all the receiver branches. As we already know,
the set of correlators can be replaced by the block of matched filters followed by the
circuits, which sample the output of each matched filter at the end of each modulation
period.

The generic scheme shown in Figure 4.2 may be the basis for a series of simpler
structures of optimal receivers for several digital modulations.

First, let us consider a binary modulation of a sinusoidal carrier. The analysis of this
modulation does not differ from the one performed in Chapter 3. Let us recall that in
this modulation two elementary signals so(¢) and s;(¢) are applied. If the energies of both
signals are equal to Ej, if the additive Gaussian noise is white and if binary modulating
symbols are equally probable, then we can apply the formula describing the probability
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Figure 4.2 Scheme of the optimal receiver for M-ary modulation assuming equiprobable elemen-
tary signals transmitted over the additive white Gaussian noise channel

of error on the output of the optimal receiver derived in the previous chapter, i.e.

P@E) = serfe| | 21— y) 4.7
= —erfc — .
2 N, Y

where, as we remember, y is the cross-correlation coefficient of the elementary signals.
Inspection of formula (4.7) allows us to note that the error probability depends on the
signal-to-noise ratio (due to E;/Ny) and the degree of cross-correlation of the elementary
signals. If we select bipolar elementary signals then, as in the case of baseband trans-
mission, we receive y = —1, which in turn ensures the maximum argument of the erfc
function and the minimum error probability, which is then equal to

1 | Eg
PE) = 2 erfc < FO) (4.8)

In turn, if the elementary signals are mutually orthogonal (y = 0), then

P(&) et Es (4.9)
= —erfc .
2 2Ny

Both bipolar and orthogonal signals are often used in modulations of a sinusoidal carrier
and we will study them further. In cases in which not all the assumptions set above
are valid, e.g. those related to the probabilities of message symbols, equal energy of
elementary signals or whiteness of the additive noise, the probability of error should
be determined individually for each case on the basis of the specific properties of the
analyzed modulation.
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4.3 Optimal Asynchronous Receiver

Let us consider the optimal asynchronous reception of signals representing a binary
sequence. Let bit “0” be represented by elementary signal so(¢), and let bit “1” be repre-
sented by signal s;(¢). In general, let the signals have the form

so(t) = ro(t) cos2m f, ot + 6p)
s1(t) = ri(t) cosQm fe 1t + 61) (4.10)

where ro(t) and r| () are any signals taking nonzero values in the interval 0 < ¢ < T and
equal to zero outside of it. Let us note that formula (4.10) is general enough to be valid
for three modulations, i.e. ASK, PSK and FSK, if appropriate forms of ry(t) and r(¢),
appropriate frequencies f.o and f.; and phases 6p and 6, are selected. Let the signal
observed on the receiver input have the form

y(@) =si(t) +v(1) 4.11)

Let us assume that the optimal asynchronous receiver is not able to recover the sig-
nal phase 6;, so 6; is treated as a random variable. As we remember, for the optimal
synchronous receiver the minimization of error probability resulting from application of
the Maximum a Posteriori (MAP) criterion is equivalent to searching for such a value i
(i =0, 1) for which p(y|s;)P; is maximized, i.e.

i = argmax (p(yls) Pi) (4.12)
where, as before
y=si+v
y=[@). y(®), ..., y(x)]
si = [si(t1), si(12), ..., si(tx)]
v =[v(t),v(t2), ..., v(tg)]

and we denote the probability of transmission of elementary signal s;(¢) as P; = P[s;(¢)].
The modulation period 7 is divided into K intervals of width At = T /K. If we take into
account the phase 6;, criterion (4.12) takes the form

i = argmax {p(yls;, 6;) P} (4.13)

If we assume that subsequent noise samples contained in the signal y are Gaussian and
statistically independent, we get

K
p(ylsi, 0) = [ [ po [y @) — s: @)

k=1
1 K 2
= Qo) K% exp —E;[y(tk)—si(tk)] } (4.14)

We will now determine the noise variance o2 that appears in (4.14).
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White noise can be treated as an asymptotic case of the noise that has a uniform power
spectral density equal to Ny/2 and is band-limited by an ideal low-pass filter of width
W if W tends to infinity. Since the power spectral density of this noise is given by the
formula

the noise autocorrelation function is described by the expression
R,(t) = NgW sincRQmrt W)

As a result, if the noise is sampled at time instants that are distant by At = 1/2W
seconds, then the samples are uncorrelated, because except for the moment t = 0 the noise
autocorrelation function R, (7) is equal to zero at multiples of time distance At = 1/2W.
As the noise samples are Gaussian and uncorrelated, they are statistically independent
and their variance is equal to

No

2

=R,(0) = NoW = — 4.15

o v(0) 0 TAT (4.15)
If we extend the number K of signal samples taken within modulation period T,

assuming that K At = T, we observe that the sum in formula (4.14) transforms into the

integral, the sequences of signal samples change into signals that are continuous functions

of time and time interval Ar tends to an infinitely small increment d¢. Thus

ply®lsi@), 6:] = lim p(yls:. 6:)

T T T
1 1 2
=C —— | YA()dr — — [ sP(r)dt —/ t)s; (t)dt
exp NO/)’() NO/S,() +N0 y(@)si (1)
0 0 0
(4.16)
The value of C is determined by the formula
, At \ K72
C= lim {— (4.17)
K—o00 \ TNy

and it does not have any influence on the decision-making by the receiver, because it is
the same for all i.

Since the phases 6y and 6, are unknown to the receiver, the decision criterion takes the
form

i=arg {ml_ax Eq [Pyl o), @)]P,»} (4.18)

where Ej,[.] denotes the ensemble average with respect to phase 6;. As we see, the optimal
asynchronous receiver makes the decisions on the basis of conditional probability density
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functions of signal y(¢), which are averaged with respect to phase 6;. It is usually assumed
that the values of phase 0; are uniformly distributed in the interval [0, 2rr]. If we take
into account the specific form of sy(#) and s;(¢) determined by (4.10) in the components
of the exponent in (4.16), and if we assume that the bandwidth of r(¢) and r(¢) is small
compared with the carrier frequencies f. o and f. , then we have

T T
1 2 1 2 2
Vo s;(ndt = Fo ri(t) cos”(2m f,;t + 0;)dt
0

T
E.
2N fr (t)dt—l— — r,.z(t)cos(4nfc,,-t+29i)dt R V; (4.19)
where
T
1 2
E;i = 7 ri(t)de (4.20)
0
If we use the expression
si(t) = ri(t) cos2m fe it + 0;)
=ri(t)cos2n f. it cos6; —r;(t) sin2m f ;t sin 6 4.21)
then for the last component of (4.16) we receive
2 2 ) 2
Fa / y(t)s; (t)dt = Fo (yl’ cos6; — yl.Q sin Hi) = For,» cos (0; + ¥;) (4.22)
where
T T
in = /y(t)r,- (t) cos2m f, ;t dt, yl.Q :/y(t)rl- (t)sin 2w f, ;¢ dt (4.23)
0 0
and

2 0 2 yQ
= O+ (0F) s =

i

Let us insert (4.19) and (4.22) into (4.16) and calculate the ensemble average with respect
to phase 6;. Let us recall our assumption that the values of phase 6; are uniformly
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distributed in the interval [0, 277]. According to (4.18) we obtain

Eg[p(y@)lsi (1), 6)]

T

CE ! / 2(1)dt Ei 2 O + ¥)
= . X _— _ — X —7; COS ; ;
0; P NO y NO p NO i i i
0
T 2
C ! f 2(ydr — £ | / 2 O+ ;) ) do;  (4.24)
= X _— _ — _— X —7r; COS(0; i ; .
p N() Y N() 27‘[ p N() ! ! ! !
0 0

Let us take advantage of the formula that describes the modified Bessel function of the
first kind of zero order

2
1
Ip(z) = —/exp(z cos o)da (4.25)
21
0
On the basis of (4.24) we get
T
Eg[p(y()lsi(1). )] = C : f 2(1)dr Ei) (2 (4.26)
) (1),0)] = Cexp| —— exp| —— — .
6; LPY)|S p No y p No 0 No
0

Since constant C and factor exp[(—1/Np) fOT y2(t)dt] are the same for each i, the decision
criterion reduces to the form

arg ymax | exp ] 1 4.27
i N() 0 N() ! ’ ’

The general form of the optimal asynchronous receiver results directly from formula
(4.27) and is shown in Figure 4.3. It contains correlators that are used to calculate the
in-phase and quadrature signal components, which are subsequently used to compute
the envelope sample r;. As we already know from the previous chapter, we can obtain
the same samples if we apply the filters matched to the signals ro(¢) cos 2m f, ot and
r1(t) cos 2m f. 1t, respectively. As a result, we can draw an equivalent scheme of the
receiver from Figure 4.3. This scheme is shown in Figure 4.4. In general, the optimal
receiver has to calculate the value of the modified Bessel function, which can be a problem.
However, if the energies of elementary signals and elementary signal probabilities are
equal, then it is no longer necessary to multiply the values of the Bessel function by the
factor P; exp(—E;/Nyp) (i =0, 1), so calculations of the Bessel function are not needed.
In order to make a decision about the transmitted data i, it is sufficient to check which
argument of the modified Bessel function is higher, as this function is monotonic (see

~.)
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Figure 4.3 General scheme of the optimal asynchronous receiver for binary modulated signals
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Figure 4.4 Equivalent form of the optimal asynchronous receiver using matched filters

Figure 4.5). As it is not necessary to multiply the signals on both branches by 2/Ny, the
optimal asynchronous receiver reduces to the form shown in Figure 4.6. It consists of
two parallel branches composed of filters matched to the appropriate elementary signals
and of envelope detectors. The branch output signals are subtracted and their difference
determines the decision i.

We will return to specific forms of the optimal asynchronous receiver again when
considering particular digital modulations.
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Figure 4.5 Plot of the modified Bessel function of order zero /y(z)
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Figure 4.6 Optimal asynchronous receiver for binary modulated signals of equal energies and
probabilities of the elementary signals

4.4 ASK Modulation

First let us consider ASK modulation. We will present both synchronous and asyn-
chronous receivers for ASK-modulated signals. Nowadays ASK modulation is not applied
in its pure form. Instead, more advanced binary modulations are used that feature, for
example, a constant envelope. Despite this we will devote our attention to ASK modula-
tion because the results of our considerations will be useful in the analysis of other digital
modulations.

4.4.1 Synchronous Receiver for ASK-Modulated Signals

First let us focus on the optimal synchronous receiver scheme. Although elementary
signals so(¢) and s;(¢) described by formula (4.2) are mutually orthogonal, their energies
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Figure 4.7 Two equivalent forms of the synchronous receiver for ASK-modulated signals

are not equal, as so(#) = 0 and consequently Ey = 0. As a result, the synchronous receiver
shown in Figure 4.2 reduces to the form presented in the upper part of Figure 4.7.

The bottom receiver shown in Figure 4.7 applies a single correlator with a nonlinear
decision circuit. Its decision threshold is half the energy value of elementary signal s (¢).
Relatively simple calculations, similar to those shown in the previous chapter for the
optimal baseband receiver, lead to the formula

1 E
P{&|so(r) was transmitted} = P{E|s| (1) was transmitted} = 3 erfc ( j) (4.28)
\ 4No

Thus, taking advantage of the formula
P(&) = P{&|so(t) was transmitted} P[so(r)] + P{E|s1 (1) was transmitted} P[s(1)]

we receive the following expression for error probability on the output of the synchronous
receiver of ASK-modulated signals

1 [ E,

Let us note that energy E; is the energy of its nonzero elementary signal s;(¢) and not
the mean energy of the ASK. If we assume equal probabilities of both elementary signals
then the mean energy of the ASK signal is E;/2, so the result obtained is the same as
for the orthogonal elementary signals of energy E;. Figure 4.8 illustrates the calculation
of the error probability for a synchronous receiver of ASK signals.

Formulas describing spectral properties of baseband digitally-modulated signals, which
are already known to us, can be directly applied to the case of passband signals as well.
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Figure 4.8 Conditional error distributions for a synchronous receiver of ASK-modulated signals

If we take into account that the Fourier transform of elementary signal s; () is
1
Flsi())] = F |:rect <?> Acos(Zﬂfct)]

_ %{ sinc[7(f — fT] +sinc[x(f + £)7]} (4.30)

we obtain the power spectral density of the ASK signal in the form

2
Gask(f) = %{ sinc?[7(f — f)T]+ sinc*[x(f + f)T]} 4.31)
As we can see, the shape of the power density spectrum is the square of the sinc
function shifted by =+ f.. However, formula (4.31) is valid if the modulation period is
much longer than the period of the carrier frequency f., or equivalently if the carrier
frequency f, is much higher than the modulation rate 1/7. In such a case two spectral
components in (4.30) centered at f, and — f. do not overlap. Let us note that the power
density spectrum of the ASK signal has the same shape as that for rectangular signals,
but the spectrum is shifted in frequency by =+ f, and is appropriately scaled.

4.4.2  Asynchronous Reception of ASK-Modulated Signals

Spectral properties of ASK-modulated signals are not impressive. Moreover, it can be
difficult to maintain synchronism of the reference signal in the correlator with the received
signal, since there are time periods in which a zero signal is transmitted. In fact, ASK
modulation was used in the early days of digital communications in which synchronous
reception was rather difficult to implement. Therefore, asynchronous reception, similar to
AM envelope signal detection, was usually applied.

Let us consider an optimal asynchronous receiver for ASK-modulated signals, which
can be treated as a particular case of the optimal asynchronous receiver considered pre-
viously. Let us apply a general form of elementary signals (4.10). We see that for ASK
modulation ro(t) = 0, r;(¢) = A, and the carrier frequency is f. 1 = f.. In that particular
case the scheme of the optimal asynchronous ASK receiver reduces to the form shown
in Figure 4.9a. However, such a receiver also requires calculation of the modified Bessel
function for the given value of rl([)N%' On the output of the sampling block the receiver
checks if the signal is higher or lower than zero. Such a receiver scheme results from
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Figure 4.9 Optimal asynchronous receiver for ASK-modulated signals: (a) in a full version; (b)
without calculation of the modified Bessel function when Py = P,

the fact that the second branch of the optimum receiver would give the zero signal on its
output, so it does not need to be implemented. Fortunately, we can further substantially
simplify the optimum asynchronous ASK receiver, taking advantage of the following
argumentation.

Let us assume that the transmitted binary symbols are equiprobable, i.e. Py = P;. We
wish to find a threshold value ryes on the output of the envelope detector for which the
sample on the input of the sampling block shown in Figure 4.9a is equal to zero at the
moment ¢t = 7. This envelope value can be determined from the equation

2 hres Ey
I — — =0 4.32
o () - exn (5 @32)

Let us write equation (4.32) in the form

2 2E1 El
I res. | ——. [ — | = — 4.33
O(rth \ EiNo' No) exp(NO) 33

which is similar to the equation Iy(bg+/2y ) = exp(y) known from mathematical litera-
ture. The latter equation has a solution by that depends on parameter y. The form of the
solution is

bo=+v2+vy/2

In our case we have
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We conclude that the optimal threshold value is

[E1Ny | E, E, 4
T'thres ) + 2N() 3 + El/No ( )

As we can see, the optimal threshold depends on the energy E; of elementary signal
s1(¢) and on the noise level. If the signal-to-noise ratio is high, then the optimal threshold
value is approximately equal to rges = E1/2, because the argument of the square root
in (4.34) is close to unity. Figure 4.9b shows the scheme of the receiver based on the
derivation presented above.

The receiver consists of a bandpass filter matched to signal s;(¢), an envelope detector
of the matched filter output, a sampling circuit and a decision device with the decision
threshold ryes. If a zero signal is transmitted, then the noise passes through the bandpass
filter and its envelope is determined in the envelope detector. If s;(¢) is transmitted, the
envelope detector determines the envelope of the sum of responses of the filter matched
to s1(¢) and Gaussian noise.

Figure 4.10 presents another equivalent version of the ASK asynchronous receiver.
The bandpass filter extracts the band in which signal s;(¢) is transmitted. The envelope
detector determines the envelope of the signal passing through the filter, i.e. signal s;(¢)
with additive noise, or noise only. The filter matched to the envelope is used to maximize
the signal-to-noise ratio. For each modulation period a sample from the filter output is
acquired. On its basis a decision about the transmitted data symbol is made. Let us
note that if the envelope has a rectangular shape, then the filter matched to it is in fact
an integrator over the modulation period, which is subsequently reset after its output
value is read. Figure 4.11 shows an example of the signal waveforms in several receiver
points.

t=T
y(t) = sy(t)+v(f)| Bandpass c _ )
— filter |,/ Envelope ,| Filter matched | < i

() detector to envelope U,

fhres U1

Figure 4.10 Equivalent form of the asynchronous receiver for ASK-modulated signals

4.4.3  Error Probability on the Output of the Asynchronous ASK
Receiver

Let us consider the error probability in the case of transmitting equiprobable data symbols
“0” and “1”, i.e. when Py = Pj. It is sufficient to find the conditional probabilities of error
P (g|symbol “0” is transmitted) and P (e|symbol “1” is transmitted). We assume that white
Gaussian noise of power density Ny/2 is an additive disturbance. To make our calculations
easier, let us consider the receiver in Figure 4.12. This receiver is equivalent to that shown
in Figure 4.9b, in which correlators are used instead of the matched filter. We also assume
that the carrier frequency is much higher than the modulation rate, i.e. f. > 1/T.
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Figure 4.11 Example of idealized waveforms in several points of the receiver from Figure 4.10:
(a) on the output of the bandpass filter, (b) on the output of the envelope detector, (c) on the output
of the filter matched to the envelope (sampling moments are indicated by arrows)
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Figure 4.12 Optimal asynchronous receiver for ASK signals with the application of correlators
if Py = P;

The signal appearing on the receiver input during modulation period T is described by
the formula

V(1) if symbol “0” is transmitted

y() = . i . (4.35)
ri(t)cosr f.t +60) 4+ v(t) if symbol “1” is transmitted

As previously, phase 6 is unknown to the receiver. The noise v(¢) can be presented as a
combination of baseband components n.(¢f) and ny(f), using the formula

v(t) = n.(t) cosQu fot +60) — ng(t) sinQu f.t +6) (4.36)

First, let us consider the case when a zero signal is transmitted. Then only the noise v ()
is observed on the receiver input. It is correlated in the in-phase and quadrature branches
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with appropriate reference signals, resulting in samples y’ and y?, respectively. Since
the correlation of the received signal with the reference signal is equivalent to the linear
filtration, samples y’ and y¢ are Gaussian random variables. Simple calculations that
are similar to those performed for the optimal baseband receiver result in the following
values of the variance of samples y’ and y?

of =0, =0>~ —E (4.37)

The sign of approximate equality in (4.37) is a result of the fact that the integrals of the
form fOT rlz(t) cos4m f, 1tdt are approximately equal to zero for f.; > 1/T. We will use
this fact a few times during error probability calculations.

Let us determine the signals on the output of the in-phase and quadrature correlators
shown in Figure 4.12. These signals are

T T

yl :/v(t)r](t) cos 2w f.tdt and yQ =/v(t)r1(t) sin 27 f tdt (4.38)
0 0

Using formula (4.36) for noise v(¢) in (4.38) we obtain

yl =u.cosf —uysinf and yQ = —u.sinf — u, sino (4.39)
where
1 ; 1 r
ue =3 / ne(H)ri(t)dt and u; = 5 / ng(t)ry(t)dt (4.40)
0 0

Samples y’ and y€ on the output of both correlators can be treated as a pair of orthogonal
signals that can be represented in polar coordinates by the amplitude (envelope) r and
phase ¥, i.e.

0
r=y (") +(2)° ¥ =arctg (yy—1> (4.41)

Putting (4.39) in (4.41), we obtain r = \/u2 + u?.

In order to calculate the conditional probability of error given that the symbol “0” was
transmitted, we have to know the probability density function of the envelope r, because
the decision is made on the basis of r. In general, taking into account the joint probability
distribution of the signal pair y/ and y?, the value of the incremental probability is the
same whichever system of coordinates (rectangular or polar) is applied. Therefore the
following equation holds

Pyt yo ' yOdy'dy@ = pry (r, Y)drdy (4.42)
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Due to statistical independence of samples y’ and y¢ and their Gaussian distribution, the
joint probability distribution py: yQ(yI , v¢) can be presented in the form

2ol P 202 P 202
b r (4.43)
= e - .
2mwo? *p 202

Since we also know from the mathematical analysis that dy/dy? = rdrdy, we have

Py o', y9) =

2
I .0 1.0 _ r r
pyl,yQ(y » Y )dy dy - 27T02 exXp (_F> d”dw

We conclude from the above expression and from equation (4.42) that

r 1"2
pr,W(rv 1//) = 27_[0_2 exp _E (444)

On the basis of (4.44) we finally obtain the envelope probability distribution in the
form

2

2
po(r) = / Proy ()Y = — exp (— ’ ) =0 (4.45)
o
0

202

where subscript “0” denotes the envelope probability distribution for data symbol “0” .

Let us recall that o> = NyE;/2. Formula (4.45) describes the Rayleigh distribution.
As a result, we can express the probability of error under the condition that symbol “0”
was transmitted in the following form

o
P (E|symbol “0” was transmitted) = / po(r)dr (4.46)

T'thres

where ryres 1S the appropriately selected threshold value of the envelope r.

Let us consider the second possible situation, i.e. transmission of symbol “1”. The signal
observed on the receiver input is then the sum of the signal carrying the data symbol and
of the noise: y(t) = r(t) cos(2m f.t + 60) + v(t). Let us calculate the signal on the output
of both correlators as we have done for the first case. We then get the formulae

vy = (E; + u.) cos@ — ug sinf
vy = —[(E; 4 uc) sin 6 + uy cos 0] (4.47)



Digital Modulations of the Sinusoidal Carrier 303

Let us note that every pair of orthogonal samples (y’, y?) is equivalent to the respective
pair [(Ej + u.), us], because they differ only due to rotation by angle 6. If we denote
u, = E; + u., then we can write

Proy(ro ) drdyr = p o (v, y@)dy'dy? = pyy . ()., us)dulug (4.48)

Random variable u/, is Gaussian with the mean E; and variance given by formula (4.37).
As in the previous case, both random variables, u/. and uy, are statistically independent,
therefore

w, — EV)* +u;
Pua, (s )it = e [—;

1
57 SXP 552 j| duug (4.49)

If we put (4.49) in (4.48), apply the equality du/.du; = rdrdy and the knowledge resulting
from Figure 4.13, after a few simple derivation steps we get

r ox _r2—2E1rcosw
22 P 202

EZ
Pry (r, ¥)drdy = exp (——1)

202

) drdy  (4.50)

v

E; Ne

Figure 4.13 Envelope r as a function of the orthogonal components of the signal and noise on
the output of the correlators in the asynchronous receiver

Derivation of the probability density function of envelope r for the case when symbol
“1” is transmitted results in the formula

2
P1(F)=/Pmp (r, Y)drdyr
0

2
E} P\ E,
= exp <_P> exp (_F) Imol /exp (—;r cos 1ﬁ> drdyr (4.51)
0

If we apply expression (4.25) in part of (4.51), we conclude that the probability density
function p;(r) is determined by the formula

r E} 412 Er
pi(r) = -2 &XP (— 752 ) Iy (—2> (4.52)

o
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This probability density function is called the Rice distribution. This time the conditional
probability of error given that the symbol “1” was transmitted is

T'thres
P(&|symbol “1” wastransmitted) = / p1(r)dr (4.53)
0

Probability density functions po(r) and p;(r) of envelope r conditioned on the transmit-
ted symbol “0” or “1”, respectively, are shown in Figure 4.14. The grey area corresponds
to the conditional probability of error. Finally, the probability of error on the output of
the optimal asynchronous receiver for ASK-modulated signals is given by the following
formula

00 Tthres
1 1
P = 3 / po(r)dr + 3 / pi1(r)dr (4.54)
T'thres 0

The value of the error probability for a given value of signal-to-noise ratio can be found
only numerically. For large values of signal-to-noise ratio the error probability can be
approximated by the formula

o1 | 1 _r
P(€)~2<1+ 2np>exp( 2) (4.55)

The ASK moodulation is hardly ever applied in current systems, however the main
concept of an asynchronous receiver for digital signals can be well explained using this
modulation scheme. In subsequent paragraphs we will present other digital modulations,
using the results obtained so far.

E;
where p = —.

v Rayleigh distribution Rice distribution
Polr) p(1)

finres r

Figure 4.14 Plots of the conditional probability density functions of the envelope of an
ASK-modulated signal at the sampling moment

4.5 FSK Modulation

Let us consider a binary FSK modulation with elementary signals described by formula
(4.3). As we have mentioned before, an FSK signal can be generated by switching between
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Figure 4.15 Power density spectrum of CPFSK signals for several values of modulation index &
(Peebles 1986)

two oscillators that independently generate sinusoidal waveforms of frequency fy and
f1, respectively. Another way of generating an FSK signal relies on modification of
parameters of a single sinusoidal oscillator. The latter method preserves phase continuity
of the generated FSK signal when the signal is switched from one nominal frequency to
the other. This kind of modulation is usually called Continuous Phase FSK — CPFSK).
Phase continuity atrongly affects the shape of the power density spectrum of the FSK
signal. However, calculation of the power density spectrum is beyond the scope of this
book. In Figure 4.15, quoted after (Peebles 1986), we plot the power density spectrum
for several values of the modulation index h =2AfT, where Af = f. — fo= fi — fe
with f, being the carrier frequency.

As we can see, the shape of the power density spectrum highly depends on the values
of modulation index h. If it is equal to 1/2, a substantial part of the power is located
around the carrier frequency. The higher the value of h, the wider the power spread on
the frequency axis and the less power contained between nominal frequencies fy and fj.

In the next sections we will consider synchronous and asynchronous reception of FSK
signals.
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4.5.1 Discussion of Synchronous Reception of FSK Signal

Let us note that both elementary signals of the FSK-modulated signal have equal energy
per modulation period. Thus, assuming additive white Gaussian noise and equal proba-
bility of data symbols, we conclude that the error probability on the output of an FSK
synchronous receiver can be calculated using formula (4.7). To apply this formula, we
need to determine the cross-correlation coefficient y for FSK elementary signals. Let us
additionally assume that the period of the carrier signals of frequency fy and f; is much
smaller than the modulation period 7', i.e. fy, fi > 1/T. Under these assumptions cal-
culation of the cross-correlation coefficient y between elementary signals so(¢) and s (f)
results in formula (4.56), which is illustrated in Figure 4.16.

B sin [27r(f1 — fo)T]
- 2n(fi — fo)T

(4.56)

0.8

0.6

0.4t

2.5 3
(f=f)T

0.715

Figure 4.16 Cross-correlation coefficient of the elementary signals in FSK modulation as a func-
tion of the normalized difference of nominal frequencies fy and fi

We can easily deduce that we can receive different values of the probability of error
(4.7) depending on the difference of nominal frequencies f; — fy normalized with respect
to modulation period 7. The smallest value of the cross-correlation coefficient appears for
(fi — fo)T = 0.715 and is equal to —0.217. This cross-correlation coefficient guarantees
the minimum of probability of error on the output of the synchronous receiver. As we
already know, such a synchronous receiver consists of two correlators correlating the
received signal with the elementary signals so(¢) and s;(¢), respectively, and the decision
device that selects the information symbol that is related to the higher correlator output.
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Let us put y = —0.217 in (4.7). We see from the resulting formula that if we want to
ensure a given level of error probability for different modulations, the signal-to-noise ratio
must be over 2dB higher for FSK modulation than for a bipolar (e.g. BPSK) modulation.
For y = 0 the elementary signals become mutually orthogonal. It occurs for example if
h=(fi — fo)T = 0.5. This is the smallest value of the modulation index . for which
elementary signals are orthogonal, therefore the FSK modulation with & = 0.5 is called
MSK (Minimum Shift Keying). We will discuss MSK in the section devoted to constant
envelope modulations.

4.5.2 Asynchronous Reception of FSK Signals

FSK-modulated signals are mostly received in an asynchronous manner. The optimal
structure of an asynchronous FSK receiver is similar to the structure of the receiver
derived for ASK-modulated signals. Let us note that an FSK signal can be treated as a
concatenation of two complementary ASK signals: one for which the modulator sends
a zero signal if data symbol “0” is transmitted and a carrier signal of frequency f; if
data symbol “1” is transmitted; and the other for which the modulator sends a carrier
signal of frequency f if data symbol “0” is transmitted and a zero signal if data symbol
“1” is transmitted. Therefore, the asynchronous receiver for FSK signals has two parallel
branches consisting of the receivers for ASK signals. Such a single ASK receiver has
already been shown in Figure 4.4. The equivalent form of the FSK receiver is presented
in Figure 4.17.

i It
BPF Envelope L, Filter matched o | 0
(fo) detector to envelope !
y(t) .
| I —>
FSK i -
signal BPF »| Envelope | | Filter matched o !
(f) detector to envelope i r
I
I

t=T

Figure 4.17 Asynchronous optimal receiver for FSK signals

The FSK signal corrupted by additive noise undergoes passband filtration performed
by two filters of center frequencies f. £ Af equal to the nominal frequencies f; and
f1, respectively, which in turn are related to data symbols “0” and “1”. In a given
modulation period in which one of the nominal frequencies is transmitted we observe
a noise signal on the output of one filter, whereas on the output of the second filter
we observe the carrier signal plus noise. Subsequently, envelope detectors determine the
envelopes in both branches. In order to maximize the signal-to-noise ratio, the envelope
detector output signals are fed to the matched filters. The matched filters act in the same
way as in a synchronous receiver. The outputs of the matched filters are sampled after each
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modulation period and the resulting samples are compared. The larger sample indicates
the data symbol that was more probably transmitted.

4.5.3 Error probability for Asynchronous FSK Receiver

In this section we will calculate the error probability for the optimal asynchronous receiver
for FSK signals, assuming that data symbols “0” and “1” are equiprobable. Let us recall
that energies of both elementary signals are the same and equal to E;. In our calculations
we will use the results previously obtained for ASK modulation.

Let us assume that data symbol “1” has been transmitted, i.e. the transmitter has sent
signal s;(¢). As a result, a signal of frequency f; appears in the lower branch of the
receiver shown in Figure 4.17. Envelope sample r; in the lower branch is Rice distributed,
whereas on the output of the upper branch filter we observe only the Gaussian noise. This
means that envelope sample ry is Rayleigh distributed. The receiver commits an error
if 79 > ry. The probability that this inequality holds true can be derived by calculation
of the probability that ro >r; for a given value ri, and averaging this result along the
whole range of possible values of | taking into account the probability distribution of r;.
This means that the conditional probability of error given that the data symbol “1” was
transmitted can be calculated from the formula

o) o)
P (&|symbol “1” was transmitted) = f pi1(ry) / po(ro)drg | dry (4.57)
r1=0 ro=ri

In (4.57) we assume that envelope samples in both receiver branches are statistically
independent. One can prove that this assumption is fulfilled if both the center frequency
fe = (fo+ f1)/2 and the difference frequency Af = fi — f. = f. — fo are multiples
of 1/4T. Consequently, the elementary signals applied in FSK modulation are mutually
orthogonal. Calculation of the integral within the square brackets in (4.57) gives the result

oo

r T r2 2
dro= [ 22 exp (=20 ) drg = exp (— L (4.58)
Ppo(ro)dro = 2 P\~ |dro=exp\ =5 3 .
r

r

Putting this in (4.57) and using the formula for the Rice distribution (4.52) we have

o
EZ 2 2 E
P(&|symbol “1” was transmitted) = s exp|—— i exp N Iy Gl dry
o2 202 o o2

r1=0

oo

r E;+2r}\  (Eri
= / ?exp<— 792 Iy 2 dr; (4.59)

r1=
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Substituting +/2r; for u in integral (4.59) and shifting the expression exp(—E2/45?%) in
front of the integral, we receive

, 1 E2\ [ u (55) S
P(E|symbol ‘1’ was transmltted)zzexp<—40‘2 / pexp — 52 Iy 2 d
u=0

(4.60)

Let us note that the integration contained in formula (4.60) is performed on the Rice
distribution in the whole range of its argument, therefore its result is equal to unity.
Thus, if we take into account that 0> = E;Ny/2 [see formula (4.37)], we obtain a simple
result

1 E
P(E|symbol “1’ was transmitted) = —exp | — u 4.61)
2 2Ny

Calculation of the conditional error probability given that the symbol “0” was transmitted
leads to an identical result because both receiver branches are symmetric to each other.
Since we have assumed that data symbols “0” and “1” are equiprobable, the final formula
for the error probability achieves the form

1 E,
P(€) = exp (— 2N0) (4.62)

In Figure 4.31 we compare the error probability for several binary modulations and
several types of receiver, including the asynchronous FSK receiver discussed above. We
can see that this receiver features the worst quality, although for high signal-to-noise
ratios the difference between the synchronous and asynchronous receiver is relatively
small.

4.5.4 Suboptimal FSK Reception with a Frequency Discriminator

Application of a frequency discriminator in an FSK receiver yields another method of
asynchronous FSK reception. In this type of receiver an FSK signal is treated as an FM
signal for which the modulating signal is a sequence of bipolar pulses representing the
binary sequence. Thus, the frequency discriminator converts an instantaneous frequency
into a signal with the amplitude proportional to this frequency. Further operations are
performed in the baseband. A phase-locked loop (PLL) is a typical circuit performing
frequency discrimination in the receivers. Figure 4.18 presents a general scheme of such
a receiver.

The appropriate choice of the input bandpass filter in the FSK receiver is a rel-
evant issue for the FSK receiver with a frequency discriminator. For a given value
of the modulation index /&, which is equivalent to a given distance between nominal
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Figure 4.18 An FSK receiver based on a frequency discriminator

frequencies fy and f; with respect to the modulation rate 1/7, we can find the optimal
filter bandwidth that will ensure the minimum probability of error for each input filter
characteristics. Let us consider the formula for the probability of error for the receiver
with a frequency discriminator and with an input bandpass filter of a given characteristic
H(f).

Let us denote the FSK signal amplitude at the input of the bandpass filter H(f) as A.
Let Hp(f) be the characteristic of the baseband equivalent filter that is associated with
the bandpass filter characteristic by the formula

H(f) == [Hp(f + fo) + Hp(f — fo)] (4.63)

R =

Figure 4.19 shows this relation in graphical form. Let Af = (f; — fo)/2. Let us introduce
the parameter 8 = AfT. We can prove that the error probability for the FSK receiver
with a frequency discriminator and matched filter is described by the formula

2
PE) = % erfc /352/2‘—1\5 |Hp(Af)? (4.64)

A (f)

f, 0 f,

Figure 4.19 Input bandpass filter characteristic H (f) and the characteristic Hg ( f) of its baseband
equivalent filter

In order to minimize the error probability we have to maximize the argument of the
erfc function. To do this, we can increase parameter 8 by increasing the distance between
nominal frequencies fy and f;. This leads to an increase of the argument of the erfc
function until Af becomes so large that |Hg(Af)|? starts to decrease. This finally causes
a decrease in the argument of the erfc function. Thus, for the given filter characteristic
Hp(f), or equivalently H(f), there is an optimal value of 8. Table 4.1 lists optimal
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Table 4.1 Optimal values of index § and the distance between nominal
frequencies for an FSK receiver with a frequency discriminator

Type of filter Value of index Optimum value of
|Hp(f)I? B distance f1 — fo
Gaussian
exp[—f?/(2B3ap)’] 0.31B3asT 0.7B348
Butterworth, 5th order
1/[1+ (f/Bsas)'] 0.40B3ggT 0.81Bsgs

Ideal

|Hg(f)I* =1 |f| < Baas

|Hp(f)> =0 otherwise 0.5B3asT Bsas

values of parameter 8 and the distance between nominal frequencies f; and fy for a few
types of the input filter.

In conclusion, let us stress once more that the performance of various types of FSK
receivers differs substantially, which manifests itself in a different immunity to noise. The
synchronous receiver that uses the largest knowledge about the signal features the lowest
probability of erronous detection. The asynchronous receiver utilizing envelope detection
is slightly worse, whereas the FSK receiver with the frequency discriminator features the
lowest detection quality. Despite this, the latter receiver is often applied due to its simple
implementation.

4.6 PSK Modulation

Let us recall that elementary signals applied in digital phase modulation are given by for-
mula (4.4). As we have already mentioned during analysis of this formula, the elementary
signals are bipolar, i.e. s1(¢) has the opposite polarity with respect to so(#). Therefore, it
is easy to show that elementary signals so(#) and s;(¢) have equal energy and their cor-
relation coefficient is ¥y = —1. In consequence, for synchronous reception we obtain the
probability of error described by formula (4.8). Let us note that in the case of a standard
Phase Shift Keying (PSK) modulation the elementary signals last for exactly 7" seconds,
i.e. the modulation period. Signal components x’(¢) and x?(¢) appearing in the general
formula (4.5) have, for PSK, the following form for the time interval i7 <t < (i + )T

t—T/2—iT
T
x2@0) =0 (4.65)

xl@t)y=d;A rect( ) , where d; = +1

As we can see, the gate function rect (.) determines the spectral properties of the PSK
signal defined by formula (4.4). After simple calculations, assuming again that f. > 1/T,
we get

A’T
Grsk(f) = =~ {sinc®[7(f = foT ]+ sinc*[7 (f + f)T]} (4.66)
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Due to the application of bipolar signals, the optimal synchronous receiver is simpli-
fied to a single branch consisting of a correlator that performs correlation of the received
signal with the elementary signal so(#) = A cos(2n f.t), a sampling block and a deci-
sion device in the form of a comparator with zero threshold. The receiver is shown in
Figure 4.20.

= x(1) +

y(t) = x(f) + w(t) T I
f —o>§o—b —>
0 U, 0y,

So(f) = Acos(2nf,t)

Figure 4.20 Block diagram of a synchronous PSK receiver

We can see from (4.65) that the spectral properties of the PSK modulation are not
very good, similar to those for ASK modulation. They can be improved by replacing the
gate function applied in (4.65), which describes a modulating pulse in the baseband, with
another function, e.g. one of the functions presented in Chapter 3. The pulses with the
raised cosine or square root raised cosine characteristics are particularly advantageous for
improving the spectral properties of PSK modulation.

4.7 Linear Approach to Digital Modulations — M-PSK Modulation

So far we have considered binary modulations. However, if a higher data rate com-
pared with that obtained with a binary modulation is required in transmission over a
band-limited channel, then the solution is to increase the number of elementary signals
of a given modulation. This is also true for PSK modulation. Figure 4.21 presents the
so-called signal constellations for 2-, 4- and 8-PSK modulations. A signal constellation
is a set of points determined by the in-phase / and quadrature Q components of the data
symbols. Thus, the coordinates of signal constellation points are the data symbol pairs
that modulate the baseband pulses of the in-phase x/() and quadrature x?(¢) compo-
nents, respectively. As two mutually orthogonal signal components are modulated, such

Figure 4.21 PSK signal constellations for binary PSK (BPSK) (a), 4-PSK (b), 4-PSK in the QPSK
version (c¢) and 8-PSK (d)
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Figure 4.22 Linear modulator for a two-dimensional digital modulation

modulation is considered as two-dimensional. If we consider PSK modulation as linear,
the modulation process can be presented in a linear form, as shown for the general case in
Figure 4.22.

The elements of a binary data sequence in the form of single bits or bit blocks are
mapped onto pairs of elementary symbols di’ and dl.Q, which constitute an excitation for
the transmit baseband filters characterized by the impulse responses p(¢) and ¢(¢), respec-
tively. Thus, the signals modulating the in-phase and quadrature carriers are described by
the formulae

xy= " dlpt—iT) %= ) d2q(t —iT) (4.67)

I=—00 I=—00

We can map bit blocks onto pairs of elementary symbols dl.I and dl.Q in several ways. The
so-called Gray code is most frequently applied. For this code neighboring constellation
points on the in-phase and quadrature plane are assigned binary blocks that differ in the
smallest possible number (mostly one) of positions. Figure 4.23 illustrates how binary
blocks are assigned to 8-PSK constellation points according to the Gray code.

The main reason for application of the Gray code is the observation that the most
frequent errors are due to selection of the neighboring constellation point with respect to
the one that was actually transmitted. If binary blocks assigned to the neighboring points
differ only in one position, then a single binary error will be made. Other binary block
assignments would lead to an increased number of binary errors. There are, however,
situations for which other forms of mapping are more advantageous for transmission
quality.

Several linear modulations can be presented using formula (4.67). If we assume
q(t)=0, dl.l ==+1 and p(t) =rect((t — T/2)/T), we obtain BPSK — Binary Phase
Shift Keying — Figure 4.21a. In turn, if we select dl.l = dl.Q ==£1 and p(t) =q(t) =
rect((t — T/2)/T), we obtain QPSK — Quadrature Phase Shift Keying — shown in
Figure 4.21c. 8-PSK modulation is obtained assuming data symbols dl.l and dl.Q in the
form of cos(iw/4) and sin(inw/4) (i =0,...,7), respectively.
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Figure 4.23 Mapping of the binary blocks onto the elementary signals for QPSK and 8-PSK
modulations according to the Gray code

As we have already mentioned, the signal spectrum can be shaped by appropriate
selection of the transmit filter impulse responses p(t) and g (z). A typical impulse response
of the transmit filter applied in digital communication systems is a time function p(t)
whose frequency characteristic has the shape of a square root raised cosine. In the receiver,
the same receive filter characteristic is applied. The spectrum shaped in this way ensures
a low level of spectral sidelobes and high energy in the mainlobe. However, let us note
that the transmit filter response to a data symbol lasts for a few modulation periods, so in
the case of transmission of a whole data symbol sequence the responses of the transmit
filter to particular data symbols overlap.

So far we have considered signal constellations for some PSK modulations. They are
formed out of the points on the (/, Q) plane, which represent data symbols modulating
the in-phase and quadrature components. Such a constellation does not illustrate how the
modulator changes elementary signals during the modulation period. We can obtain a
plot showing this process if we draw both components x’(¢) and x2(¢) along mutually
orthogonal axes. The resulting trajectories show the instantaneous amplitude and phase of
the modulated signal as a function of time. Strictly speaking, the distance of a trajectory
point to the origin of the coordinate system is the instantaneous value of the envelope of the
modulated signal, whereas the angle between the line connecting the trajectory point with
the origin of the coordinate system and the / axis is the instantaneous signal phase (not
taking into account the phase resulting from the carrier signal). In some communication
systems, e.g. in cellular radio, it is crucial that the signal envelope is constant or fluctuates
only within a small range. This need results from the application of power amplifiers in
their nonlinear range, which is usually caused by limited energy resources, in particular in
mobile terminals. Thus, the applied modulation should be robust to nonlinear distortions.
In Section 4.14 we consider the influence of the nonlinear characteristics of the power
amplifier on the transmitted signal.

Figure 4.24a presents envelope trajectories for QPSK modulation in which a transmit
filter with the square root raised cosine characteristics is applied. Recall that for each
time instant the current envelope value is the distance between the trajectory point
and the coordinate system origin. Let us note that at some moments the envelope
value is close to zero. Therefore, despite good spectral properties achieved due to
filtering, the modulated signal is not robust against nonlinear distortions. We can obtain
a visible improvement if we shift the symbol timing clock of one signal compo-
nent with respect to the other, i.e. if g(t) = p(t — T/2). In such a case we talk about
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Figure 4.24 Envelope trajectories for QPSK (a) and OQPSK (b) modulations using the filter with
square root raised cosine characteristics

OQPSK - Offset Quaternary Phase Shift Keying. This type of modulation is illustrated in
Figure 4.24b.

Another means of decreasing the envelope dynamics, leading to higher robustness
against nonlinear distortions, relies on adding an extra phase shift of 7 /4 to the mod-
ulated signal in each modulation period. Applying the phase difference between two
consequtive modulation periods and the additional phase shift mentioned above results
in the so-called 7/4-DQPSK modulation that appears in some mobile communication
systems.

In a typical 7/4-DQPSK modulation a binary stream is divided into dibits, which deter-
mine the phase shift with respect to the phase in the previous modulation period. Possible
phase shifts are £ /4 and +3 /4. Figure 4.25 presents envelope trajectories for any pos-
sible dibit combinations. The envelope is not constant but its fluctuations are moderate.
We see that the envelope is never equal to zero, which positively influences the signal
robustness against nonlinear distortions. The signal shown in Figure 4.25 was generated
by application of the transmit filter with the square root raised cosine characteristics and
with the roll-off factor equal to 0.35.

Figure 4.25 Envelope trajectories for 7 /4-DQPSK-modulated signal



316 Introduction to Digital Communication Systems

__’%)—’ Pt PN =T d inary
Received cos(2nfyt + ) é‘ G Do. | Seduence
S

. >
signal | ano mapping
I
I
(%) » p(-t) _,\_ : : _||_ :
| 7'y
. z X ro_Jd___ _|
sin(2nf,t + @) ) _:::::_g?_:
Frequency  h------ ! v v |
and phase - —————— I Timing
recovery recovery

Figure 4.26 Optimal receiver for QPSK signals with carrier and timing recovery blocks

Figure 4.26 presents a typical synchronous receiver scheme for a QPSK signal [we
assume that the transmit filters in the transmitter shown in Figure 4.22 are identical, i.e.
q(t) = p()].

The received signal (possibly after down-conversion to the intermediate frequency)
is given to the inputs of two synchronous demodulators that consist of multipliers and
low-pass filters. These filters are simultaneously matched to the transmit filters applied
in the transmitter. Let us recall that for a nondistorting channel with additive white
Gaussian noise the impulse response of the receive filter should be a mirrored reflection
of the transmit filter impulse response. For a transmit filter with the characteristics given
by formula (4.20), for which the impulse response is symmetric with respect to its center,
the receive filter has an impulse response that is identical to that of the transmit filter.
Therefore both filters constitute a pair. The frequency and phase recovery block shown in
Figure 4.26 makes use of the difference between the decision generated in the decision
device for the in-phase and quadrature components and the signal components given to
the input of the decision device. This difference is a measure of the phase difference. The
rate of change of the phase difference carries information about frequency offset with
respect to the received signal.

The above frequency and phase recovery block with feedback is one of several possible
solutions. There are other phase and frequency recovery circuits that are based on nonlin-
ear processing of the received signal, resulting in creation of a discrete spectral component
at the multiple of the carrier frequency. After extracting this spectral component from the
received signal and dividing it in a frequency divisor, we obtain the carrier frequency that
can be applied by the reference carrier. One possible way to adjust the symbol timing
circuit is also based on the signal difference between the signal on the decision device
input and the signal on its output.

A negative consequence of using the carrier phase recovery circuits is the so-called
phase ambiguity. Due to the performed mathematical operations these circuits recover the
received signal phase modulo-180° (for BPSK modulation) or modulo-90° (for 4-PSK or
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other modulations with constellations that are symmetric with respect to both coordinate
axes).

4.8 Differential Phase Shift Keying (DPSK)

4.8.1 PSK Modulation with Differential Coding and Synchronous
Detection

Phase ambiguity, as we said above, is a negative consequence of the carrier phase recovery
that takes place in a synchronous receiver. To remove phase ambiguity we must apply
differential coding before feeding the data symbols to the modulator input. The simplest
case of the BPSK modulation is shown in Figure 4.27.

Noise
b; v( t=T b .

a; |—— ————— 1 BPSK X(t) ‘/_%\ y(t)‘&\ fT _°>\,_. I——’ ————— - a8

i ' Modulator ~— 0 U, 0 U | |

I =

L _b_'H_ — _ +Acos(2nf,l) L by
Differential encoder Phase Differential decoder

recovery

Figure 4.27 Transmitter and synchronous receiver for BPSK-modulated signals with differential
coding

Let us use Figure 4.27 for explanation of the differential encoding. This operation is
based on modulo-2 addition of the input bit to the bit resulting from differential encoding
in the previous timing instant. Therefore, the BPSK input signal b; is given by the equation

bi =a; ®b;i_; (4.68)

Symbols b; are recovered in the receiver on the output of the BPSK demodulator. First,
let us assume that the phase recovery circuit operating with 180° phase ambiguity has
recovered the received signal phase correctly. Let the decided symbol b; be the same as
the transmitted symbol b;. Then, differential decoding leads to the following result

G =b;®bi_1 = (a; ®bi_) ®bi_| =a (4.69)

Naturally, the receiver operates correctly if the decision device makes correct decisions.
If the decision is incorrect, it will appear in the differential decoder in two succesive timing
instants due to the applied memory cell. Thus, a single decision error will trigger two
binary errors. This is the price paid for removing the influence of phase ambiguity caused
by the phase recovery circuit applied at the receiver.
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Now let us assume that the phase recovery circuit generates the reference signal shifted
by 180° with respect to the received signal. Thus, the correlator output sample is generated
with inverted polarity with respect to the output sample that would appear if the phase
were recovered properly. In consequence, assuming the correct decision of the decision

device, its output symbol is b; = b; = 1 @ b;. Therefore, we get the following signal on
the output of the differential decoder

G=bi@®b_ =(1ab)®(eb_)
=b ®bi_1=0a;®bi_1 ®bi_1 =aq; (4.70)

As we can see, the final decision related to symbol @; remains correct independently
of the presence or absence of the 180° phase shift caused by the carrier recovery circuit.
Let us stress once more that the condition for correct operation of the whole system is
the lack of errors on the output of the decision device. Let us also note that the receiver
considered so far is synchronous, since it recovers the carrier phase (although it performs
this task with 180° or 90° ambiguity in some other cases).

We can easily calculate the error probability for the receiver of differentially encoded
BPSK if we apply the results for a synchronous BPSK receiver. As we have already
noticed, in order to achieve the correct signal from the differential decoder, correct deci-
sions from the decision device have to be made in the current and preceding timing
instants. The output decision will also be correct if the decision device commits an error
in the current and preceding timing instants. Knowing the probability of an incorrect
decision (4.8), we receive the following formula for the probability Pc of the correct data
symbol decision

P—1le"21fE‘2 4.71
c = —zerc ﬁo + Eerc Fo 4.71)

so the symbol error probability is

E; 1 2 E;
= erfc — | — —erfc — 4.72)
Ny 2 No

If we compare (4.72) with (4.8), we see that the error probability is higher for the
synchronous receiver of differentially encoded BPSK signals than for the receiver of the
pure BPSK. The value of the first component in (4.72) is twice as high as the value of
the single component in (4.8), whereas the value of the second, negative component is
substantially smaller than that in (4.8).
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4.8.2 Asynchronous DPSK Receivers

Now let us treat the BPSK modulator and differential encoder jointly. Let us assume
that the elementary signal so(¢) [see formula (4.4)] is generated for b; = 0, whereas data
symbol b; = 1 implies generation of the elementary signal s;(¢), as it occurs in a typical
BPSK modulator. Let by = 0, i.e. the encoder memory cell contains a zero in the zero
timing instant. From the respective waveform in Figure 4.28 we see that the 180° phase
shift with respect to the current phase is triggered by the data symbol a; = 1, whereas
there is no phase shift if the data symbol a; = 0 appears on the modulator input. Such a
modulation is called Differential Phase Shift Keying (DPSK) and it can be achieved also
through differential encoding and regular BPSK modulation.

Figure 4.28 Example of DPSK-modulated signal waveform

In real channels distortions are introduced by multipath propagation, flat and selective
fading, intersymbol interference and phase jitter. As a result, the complexity of the syn-
chronous receiver grows and sometimes implementation of the synchronous receiver is
impossible, particularly if the phase and frequency recovery blocks generate estimates of
the carrier frequency and phase of insufficient quality. In such cases, instead of regular
PSK modulation a DPSK modulation with asynchronous reception can be applied. Let us
consider the DQPSK signal, i.e. the signal with four-phase differential shift keying in the
version analogous to that shown in Figure 4.21c. The signal is described by formula (4.5),
and the in-phase and quadrature baseband components of signal (4.5) are determined by
the expressions

x@y= Y dipt—nT) x%t)= Y d?p(t—nT) (4.73)

n=—0o n=—0oo

This time, the two-bit information is carried neither by the data symbols d! and an
themselves nor by their argument ¢, = arg(d,{ + jan ). It is contained in the phase dif-
ference between successive modulati