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Preface
Knowledge of basic rules of operation of digital communication systems is a crucial
factor in understanding contemporary communications. Digital communication systems
can be treated as a medium for many different systems and services. Digital TV, cellular
telephony or Internet access are only three prominent examples of such services. Basically,
each kind of communication between human beings and between computers requires a
certain kind of transmission of digitally represented messages from one location to another,
or, alternatively, from one time instant to another, as it is in the case of digital storage.
It often happens in technology that its current state is a result of a long engineering
experience and numerous experiments. However, most of the developments in digital
communications are the result of deep theoretical studies. Thus, theoretical knowledge is
needed to understand the operation of many functional blocks of digital communication
systems.

There are numerous books devoted to digital communication systems and they are
written for different readers; simpler books are directed to undergraduate students spe-
cializing in communication engineering, whereas more advanced ones should be a source
of knowledge for graduate or doctoral students. The number of topics to be described
and the details to be explained grow very quickly, so some of these books are very thick
indeed. As a result, there is a problem of appropriate selection of the most important
topics, leaving the rest to be studied in more specialized books.

The author of this textbook has tried to balance the number of interesting topics against
the moderate size of the book by showing the rules of operation of several communication
systems and their functional blocks rather than deriving deep analytical results. Whether
this aim has been achieved can be evaluated by the reader. This textbook is the result of
many years of lectures read to students of Electronics and Telecommunications at Poznań
University of Technology. One-semester courses were devoted to separate topics reflected
in the book chapters, such as information theory, channel coding and digital modulations.
The textbook was first published in Polish. The current English version is an updated
and extended translation of the Polish original. To make this textbook more attractive and
closer to the telecommunication practice, almost each chapter has been enriched with a
case study that shows practical applications of the material explained in this chapter.

Unlike many other textbooks devoted to digital communication systems, we start from
the basic course on information theory in Chapter 1. This approach gives us some knowl-
edge on basic rules and performance limitations and ideas that are applied later in the
following chapters. Such an approach allows us to consider a digital communication sys-
tem in a top-to-bottom direction, i.e. starting from very general rules and models and
going deeper into particular solutions and details.



 

xiv Preface

Chapter 2 is devoted to protection of digital messages against errors. The basic rules
of this protection are derived from information theory. We start from very simple error
correction codes and end up with basic information on turbo codes and LDPC codes.
Error detection codes and several automatic request-to-repeat strategies are also tackled.

The subject of Chapter 3 is the baseband transmission. We show how to shape baseband
pulses and how to form the statistical properties of data symbols in order to achieve the
desired spectral properties of the transmitted signal. We derive the structure of the optimum
synchronous receiver and we analyze basic methods of digital signaling.

In Chapter 4 we use our results derived in Chapter 3 for analysis of passband trans-
mission and digital modulations of a sinusoidal carrier. We consider simple one- and
more dimensional modulations, continuous phase modulations, trellis-coded modulations
and present respective receivers. In most cases we derive the probability of erroneous
detection in selected types of receivers.

In Chapters 3 and 4 we consider baseband and passband digital signaling assuming
an additive Gaussian noise and limited channel bandwidth as the only impairments. In
turn, Chapter 5 is devoted to the description of representative physical channel properties.
Such considerations allow us to evaluate the physical limitation that can be encountered
in practice.

One such limitation occurring in band-limited digital communication systems is inter-
symbol interference. This phenomenon is present in many practical cases and many
digital communication systems have to cope with it. The methods of eliminating inter-
symbol interference or decreasing its influence on the system performance are presented
in Chapter 6.

Chapter 7 overviews basic types of digital communication systems based on the spread
spectrum principle. Many contemporary communication systems, in particular wireless
ones, use spectrum spreading for reliable communications.

Synchronization is another important topic that must be understood by a communication
engineer. Basic synchronization types and configurations are explained in Chapter 8.

Finally, Chapter 9 concentrates on the overview of multiple access methods, including
new methods based on multicarrier modulations.

Most of the chapters are appended with the problems that could be solved in the problem
sessions accompanying the lecture.

This book would not be in its present form if it had not been given attention and time by
many people. First of all, I would like to direct my thanks to the anonymous reviewers of
the English book proposal, who encouraged me to enrich the book with some additional
problems and slides that could be useful for potential lecturers using this book as a basic
source of material. I am also grateful to Mark Hammond, the Editorial Director of John
Wiley & Sons Ltd, and Sarah Tilley, the Project Editor, who showed their patience and
help. Someone who substantially influenced the final form of the book is Mrs Krystyna
Ciesielska (MA, MSc) who was the language consultant and as an electrical engineer
was a particularly critical reader of the English translation. I would like to thank Mr
Włodzimierz Mankiewicz who helped in the preparation of some drawings. Finally, the
book would not have appeared if I did not have the warm support of my family, in
particular my wife Maria.

KRZYSZTOF WESOŁOWSKI
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1
Elements of Information Theory

In this chapter we introduce basic concepts helpful in learning the rules of operation of
digital communication systems that have their origin in information theory. We present
basic theorems of information theory that establish the limits on effective representation
of messages using symbol sequences, i.e. we consider the limits of source coding . We
analyse the conditions for ensuring reliable transmission over distorting channels with the
maximum data rate. Sometimes we encounter complaints that information theory sets the
limits on the communication system parameters without giving recipes on how to reach
them. As modern communication systems are becoming more and more sophisticated, the
information theory hints are more and more valuable in optimization of these systems.
Therefore, knowing its basic results seems to be necessary for better understanding of
modern communication systems.

1.1 Introduction

As already mentioned, only basic concepts and the most important results of informa-
tion theory are presented in this chapter. The reader who is interested in more detailed
knowledge on information theory can find a number of books devoted to this interest-
ing discipline, such as the classical book by Abramson (1963) and others by Gallager
(1968), Cover and Thomas (1991), Mansuripur (1987), Heise and Quatrocchi (1989),
Roman (1992), Blahut (1987) or MacKay (2003). Their contents and level of presentation
are different and in some cases the reader should have a solid theoretical background
to profit from them. Some other books feature special chapters devoted to information
theory, e.g. Proakis’ classics (Proakis 2000) and the popular handbook by Haykin (2000).

The contents of the current chapter are as follows. First, we introduce the concept
of an amount of information, and we present various message source models and their
properties. Then we introduce and discuss the concept of source entropy. We proceed
to the methods of source coding and we end this part of the chapter with Shannon’s
theorem on source coding. We also give some examples showing source coding in practical
applications such as data compression algorithms.

The next section is devoted to discrete memoryless channel models. The concepts
of mutual information and channel capacity are introduced in the context of message
transmission over memoryless channels. Then, the notion of a decision rule is defined

Introduction to Digital Communication Systems Krzysztof Wesołowski
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2 Introduction to Digital Communication Systems

and a few decision rules are derived. Subsequently, we present the basic Shannon’s
theorem showing conditions that have to be fulfilled to ensure reliable transmission over
distorting channels. These conditions motivate the application of channel coding. Next,
we extend our considerations on mutual information and related issues onto continuous
random variables. The concept of differential entropy is introduced. The achieved results
are applied to derive the formula describing the capacity of a band-limited channel with
additive white Gaussian noise. Some practical examples illustrating the meaning of this
formula are given. Then, the channel capacity formula is extended onto channels with a
specified transfer function and distorted by Gaussian noise with a given power spectral
density. Channel capacity and signaling strategy are also considered for time varying, flat
fading channels. Finally, channel capacity is considered for cases when transmission takes
place over more than one transmit and/or more than one receive antenna, i.e., capacity of
multiple-input multiple-output channels is derived.

1.2 Basic Concepts

However amazing it may seem, the foundations for information theory were laid in a
single forty-page-long paper written by a then young scientist, Claude Shannon (1948).
From that moment this area developed very quickly, providing the theoretical background
for rapidly developing telecommunications. Information theory was also treated as a tool
for the description of phenomena that were far from the technical world, with varying
success.

Although Shannon founded the whole discipline, the first elements of information theory
can already be found a quarter of a century earlier. H. Nyquist in his paper entitled
“Certain Factors Affecting Telegraph Speed” (Nyquist 1924) formulated a theorem on the
required sampling frequency of a band-limited signal. He showed indirectly that time in a
communication system has a discrete character because in order to acquire full knowledge
of an analog signal it is sufficient to know the signal values in sufficiently densely located
time instants.

The next essential contribution to information theory was given by R. V. L. Hartley, who
in his work entitled “Information Transmission” (Hartley 1928) associated the information
content of a message with the logarithm of the number of all possible messages that can
be observed on the output of a given source.

However, the crucial contribution to information theory came from Claude Shannon
who in 1948 presented his famous paper entitled “A Mathematical Theory of Communi-
cation” (Shannon 1948). The contents of this paper are considered to be so significant that
many works written since that time have only supplemented the knowledge contained in
Shannon’s original paper.

So what indeed is information theory? And what is the subject of its sister discipline –
coding theory?

Information theory formulates performance limits and states conditions that have to
be fulfilled by basic functional blocks of a communication system in order for a certain
amount of information to be transferred from its source (sender) to the sink (recipi-
ent). Coding theory in turn gives the rules of protecting the digital signals representing
sequences of messages from errors, which ensure sufficiently low probability of erroneous
reception at the receiver.
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1.3 Communication System Model

Before we formulate basic theorems of information theory let us introduce a model of a
communication system. As we know, a model is a certain abstraction or simplification of
reality; however, it contains essential features allowing the description of basic phenomena
occurring in reality, neglecting at the same time those features that are insignificant or
rare.

Let us first consider a model of a discrete communication system. It is conceptually
simpler than a model of a continuous system and reflects many real cases of transmission
in digital communication systems in which a source generates discrete messages. The
case of a continuous system will be considered later on.

A model of a discrete communication system is shown in Figure 1.1.
Its first block is a message source. We assume that it generates messages selected from

a given finite set of elementary messages at a certain clock rate. We further assume that
the source is stationary, i.e. its statistical properties do not depend on time. In particular,
messages are generated with specified probabilities that do not change in time. In other
words, the probability distribution of the message set does not depend on a specific time
instant.1 The properties of message sources will be discussed later.

The source encoder is a functional block that transforms the message received from
the message source into a sequence of elementary symbols. This sequence in turn can
be further processed in the next blocks of the communication system. The main task
of the source encoder is to represent messages using the shortest possible sequences of
elementary symbols, because the most frequent limitation occurring in real communication
systems is the maximum number of symbols that can be transmitted per time unit.

The channel encoder processes the symbols received from the source encoder in a man-
ner that guarantees reliable transmission of these symbols to the receiver. The channel
encoder usually divides the input sequence into disjoint blocks and intentionally aug-
ments each input block with certain additional, redundant symbols. These symbols allow

Message
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Figure 1.1 Basic model of a discrete communication system

1 As we remember from probability theory, this feature is called stationarity in a narrow sense.
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the decoder to make a decision about the transmitted block with a high probability of
correctness despite errors made on some block symbols during their transmission.

The channel is the element of a communication system that is independent of other
system blocks. In the scope of information theory a channel is understood as a serial
connection of a certain number of physical blocks whose inclusion and structure depend
on the construction of the specific, considered system. In this sense, the channel block can
represent for example a mapper of the channel encoder output symbols into data symbols,
a block shaping the waves representing the data symbols and matching them to the channel
bandwidth, and a modulator that shifts the signal into the passband of the physical channel.
The subsequent important block of the channel is the physical transmission channel, which
reflects the properties of the transmission medium. It is probably obvious to each reader
that, for example, a pair of copper wires operating as a subscriber loop has different
transmission properties than a mobile communication channel. On the receiver side the
channel block can contain an amplifier, a demodulator, a receive filter, and a decision
device producing the estimates of the signals acceptable by the channel decoder. These
estimates sometimes can be supplemented by additional data informing the following
receiver blocks about the reliability of the supplied symbols. Figure 1.2 presents a possible
scheme of part of a communication system that can be integrated in the form of a channel
block.

A channel can have spacial or time character. A spacial channel is established between
a sender and recipient of messages who are located in different geographical places.
Communication systems that perform such message transfer are called telecommunication
(or communication) systems . We speak about time channels, on the other hand, with
reference to computer systems, in which signals are stored in memory devices such as
tape, magnetic or optical disk, and after some time are read out and sent to the recipient.
The properties of a memory device result from its construction and the physical medium
on which the memory is implemented.

Estimates of signal sequences received on the channel output are subsequently processed
in a functional block called a channel decoder . Its task is to recover the transmitted signal
block on the basis of the signal block received on the channel output. The channel decoder
applies the rule according to which the channel encoder produces its output signal blocks.
Typically, a channel decoder memorizes the signals received from the channel in the form
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Figure 1.2 Example of the internal structure of the channel block
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of n-element blocks, and on this basis attempts to recover such a k-element block, which
uniquely indicates a particular n-element block that is “the most similar” to the received
n-element block. Three cases are possible:

• On the basis of the channel output block, the channel decoder reconstructs the signal
block that was really transmitted.

• The channel decoder is not able to reconstruct the transmitted block, however it detects
the errors in the received block and informs the receiver about this event.

• The channel decoder selects the signal block; however it is different from the block that
was actually transmitted. Although the decision is false, the block is sent for further
processing.

If the communication system has been correctly designed the latter case occurs with an
extremely low probability.

The task of a source decoder is to process the symbol blocks produced by the channel
decoder to obtain a form that is understandable to the recipient (message sink ).

Example 1.3.1 As an example of a communication system, let us consider transmission
of human voice over the radio. There are many ways to assign the particular elements of
such a system to the functional blocks from Figure 1.1. One of them is presented below.
Let the human brain be the source of messages. Then the vocal tract can be treated as
a source encoder, which turns the messages generated by the human brain into acoustic
waves. The channel encoder is the microphone, which changes the acoustic wave into
electrical signals. The channel is a whole sequence of blocks, the most important of which
are the amplifier, radio transmitter with transmit antenna, physical radio channel, receive
antenna and receiver. The loudspeaker plays the role of a channel decoder, which converts
the received radio signal into an acoustic signal. This signal hits the human ear, which
can be considered as a source decoder. Through the elements of the nervous system the
“decoded” messages arrive in the human brain – the message sink.

Let us now consider a more technical example.

Example 1.3.2 Let the message source be a computer terminal. Alphanumeric characters
(at most 256 if the ASCII code is applied) are considered as elementary messages. The
source encoder is the block that assigns an 8-bit binary block (byte) to each alphanumeric
character according to the ASCII code. Subsequent bytes representing alphanumeric char-
acters are grouped into blocks of length k, which is a multiple of eight. Each k-bit block is
supplemented with r appropriately selected additional bits. The above operation is in fact
channel coding. Its aim is to protect the information block against errors. The resulting
binary stream is fed to the modem input. The latter device turns the binary stream into a
form that can be efficiently transmitted over a telephone channel. On the receive side the
signal is received by the modem connected to a computer server. The cascade of functional
elements consisting of a modem transmitter, a telephone channel and a modem receiver is
included in the channel block in the sense of the considered communication system model.
On the receive side, based on the reception of the k-bit block, r additional bits are derived
and compared with the additional received bits. This operation constitutes channel decod-
ing. Next, the transmitter of the modem on the server side sends a short feedback signal to
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the modem on the remote terminal side informing the latter about the required operation,
depending on the result of comparison of the calculated and received redundant bits; it
can be the transmission of the next binary block if both bit blocks are identical, or block
repetition if the blocks are not identical. The division of the accepted k-bit block into bytes
and assigning them appropriate alphanumeric blocks displayed on the screen or printed
by the printer connected to the server is a source decoding process. Thus, a printer or a
display monitor can be considered as a message sink.

The above example describes a very simple case of a digital transmission with an auto-
matic request to repeat erroneous blocks. The details of such an operation will be given
in the next chapter.

1.4 Concept of Information and Measure of Amount of Information

The question “what is information?” is almost philosophical in nature. In the literature
one can find different answers to this question. Generally, information can be described
in the following manner.

Definition 1.4.1 Information is a piece of knowledge gained on the reception of messages
that allows the recipient to undertake or improve his/her activity (Seidler 1983).

This general definition implies two features of information:

• potential character – it can, but need not, be utilized in the recipient’s current activity;
• relative character – what can be valuable knowledge for one particular recipient can be

disturbance for another recipient.

Let us note that we have not defined the notion of message. We will treat it as a primary
idea, as with a point or a straight line in geometry, which are not definable in it.

A crucial feature associated with information transfer is energy transfer. A well con-
structed system transmitting messages transfers a minimum amount of energy required to
ensure an appropriate quality of received signal.

The definition of information given above has a descriptive character. In science it is
often required to define a measure of quantity of a given value. Such a measure is the
amount of information and should result from the following intuitive observations:

• If we are certain about the message that occurs on the source output, there is no
information gained by observing this message.

• The occurrence of a message either provides some or no information, but never brings
about a loss of information.

• The more unexpected the received message is, the more it can influence the recipient’s
activity; the amount of information contained in a message should be associated with the
message probability of appearance – the lower the probability of message occurrence,
the higher the amount of information contained in it.

• Observation of two statistically independent messages should be associated with the
amount of information, which is the sum of amounts of information gained by obser-
vation of each message separately.
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The above requirements for measure of information are reflected in the definition given
by Hartley.

Definition 1.4.2 Let a be a message that is emitted by the source with a probability P(a).
We say that on observing message a, its recipient acquires

I (a) = logr

1

P(a)
(1.1)

units of amount of information.

In information theory the logarithm base r is usually equal to 2 and then the unit of
amount of information is called a bit .2 The logarithm base r = e implies denoting the
unit of amount of information as a nat , whereas taking r = 10 results in a unit of amount
of information described as Hartley . Unless stated otherwise, in the current chapter the
logarithm symbol will denote the logarithm of base 2.

From the above definition we can draw the following conclusion: Gaining a certain
amount of information due to observation of the specified message on the source output
is associated with a stochastic nature of the message source.

1.5 Message Sources and Source Coding

In this section we will focus our attention on the description of message sources. We
will present basic source models and describe their typical parameters. We will define the
concepts of entropy and conditional entropy. We will also consider basic rules and limits
of source coding. We will quote Shannon’s theorem about source coding. We will also
present some important source coding algorithms applied in communication and computer
practice.

1.5.1 Models of Discrete Memory Sources

As we have already mentioned, a message source has a stochastic nature. Thus, its speci-
fication should be made using the tools of description of random signals or sequences. In
consequence, a sequence of messages observed on the source output can be treated as a
sample function of a stochastic process or of a random sequence. A source generates mes-
sages by selecting them from the set of elementary messages , called the source alphabet .
The source alphabet can be continuous or discrete. In the first case, in an arbitrarily close
neighborhood of an elementary message another elementary message can be found. In the
case of a discrete message source the messages are countable, although their number can
be infinitely high. A source is discrete and finite if its elementary messages are countable
and their number is finite. In the following sections we will concentrate on the models of
discrete sources, leaving the problems of continuous sources for later consideration.

2 We should not confuse “bit” denoting a measure of amount of information with a “bit”, which is a binary symbol
taking two possible values, “0” or “1”.
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1.5.2 Discrete Memoryless Source

The simplest source model is the model of a discrete memoryless source. Source memory
is considered as a statistical dependence of subsequently generated messages. A source
is memoryless if generated messages are statistically independent. It implies that the
probability of generation of a specific message at a given moment does not depend on
what messages have been generated before. Let us give a formal definition of a discrete
memoryless source.

Definition 1.5.1 Let X = {a1, . . . , aK} be a discrete and finite set of elementary messages
generated by source X. We assume that this set is time invariant. Source X is discrete
and memoryless if elementary messages are selected mutually independently from set X in
conformity with the time-invariant probability distribution {P(a1), . . . , P (aK)}.

In order to better characterize the properties of a discrete memoryless source we will
introduce the notion of average amount of information, which is acquired by observation of
a single message on the source output. An average amount of information is a weighted
sum of the amount of information acquired by observing subsequently all elementary
messages from the source with the alphabet X, where the weights of particular messages
are the probabilities of occurrence of these messages. In the mathematical sense, this
value is an ensemble average (expectation) of the amount of information I (ai). It is
denoted by the symbol H(X) and called the entropy of source X. Formalizing the above
considerations, we will give the definition of the entropy of the source X.

Definition 1.5.2 The entropy of a memoryless source X, characterized by the alphabet X =
{a1, . . . , aK} and the probability distribution {P(a1), . . . , P (aK)}, is the average amount
of information acquired by observation of a single message on the source output, given by
the formula

H(X) = E[I (ai)] =
K∑

i=1

P(ai) log
1

P(ai)
(1.2)

Since the source entropy is the average amount of information acquired by observation
of a single message, its unit is also a bit. The source entropy characterizes our uncertainty
in guessing which message will be generated by the source in the next moment (or
generally in the future). The value of entropy results from the probability distribution of
elementary messages, therefore the following properties hold.

Property 1.5.1 Entropy H(X) of a memoryless source X is non-negative.

Proof. Since for each elementary message of the source X the following inequality
holds

1 ≥ P(ai) > 0, (i = 1, . . . , K)

then for each message ai

log
1

P(ai)
≥ 0
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which implies that the weighted sum of the above logarithms is non-negative as well, i.e.

K∑
i=1

P(ai) log
1

P(ai)
≥ 0

It can be easily checked that the entropy is equal to zero, i.e. it achieves its minimum if
and only if a certain message aj from the source alphabet X is sure (i.e. P(aj ) = 1). This
implies the fact that the alphabet reduces to a single message. The amount of information
acquired by observing this message is zero, in other words, our uncertainty associated
with forthcoming messages is null.

Property 1.5.2 The entropy of a memoryless source does not exceed the logarithm of the
number of elementary messages constituting its alphabet, i.e.

H(X) ≤ log K (1.3)

Proof. We will show that H(X) − log K ≤ 0, using the formula allowing calculation
of the logarithm to the selected base, given the value of the logarithm to a different base

logr x = loga x

loga r
(1.4)

Knowing that
K∑

i=1
P(ai) = 1, we have

H(X) − log K =
K∑

i=1

P(ai) log
1

P(ai)
−

K∑
i=1

P(ai) log K

=
K∑

i=1

P(ai) log
1

KP(ai)

Recall that the logarithm base r = 2. In the proof we will apply the inequality ln x ≤ x − 1
(cf. Figure 1.3) and the formula

log x = ln x log e

We have

H(X) − log K = log e

K∑
i=1

P(ai) ln
1

KP(ai)

≤ log e

K∑
i=1

P(ai)

(
1

KP(ai)
− 1

)
= log e

(
K∑

i=1

1

K
−

K∑
i=1

P(ai)

)
= 0

so indeed
H(X) − log K ≤ 0

which concludes the proof.
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Figure 1.3 Plots of the functions ln x and x − 1 (Goldsmith and Varaiya (1997))  1997 IEEE

In this context a question arises when the entropy is maximum, i.e. what conditions
have to be fulfilled to have H(X) = log K . In the proof of Property 1.2 we applied the
boundary ln x ≤ x − 1 separately for each element 1/KP(ai). One can conclude from
Figure 1.3 that the function ln x is bounded by the line x − 1 and the boundary is exact,
i.e. ln x = x − 1 if x = 1. In our case, in order for the entropy to be maximum and equal
to log K , for each elementary message ai the following equality must hold

1

KP(ai)
= 1, i.e. P (ai) = 1

K
(i = 1, . . . , K) (1.5)

It means that the entropy of the memoryless source is maximum if the probabilities of
occurrence of each message are the same. It also means that uncertainty with respect to
our observation of the source messages is the highest – none of the messages is more
probable than the others.

Consider now a particular example – a memoryless source with a two-element alphabet
X = {a1, a2}. Let the probability of message a1 be P(a1) = p. The sum of probabilities
of generation of all the messages is equal to 1, so P(a2) = 1 − p = p. Therefore, the
entropy of this two-element memoryless source is

H(X) = p log
1

p
+ p log

1

p
(1.6)

As we see, the entropy H(X) is a function of probability p. Therefore let us introduce
the so-called entropy function given by the formula

H(p) = p log
1

p
+ p log

1

p
(1.7)

The plot of the entropy function, which will be useful in our future considerations, is
shown in Figure 1.4. For obvious reasons (its argument has a sense of probability)
the function has the argument in the range (0, 1). The values of the entropy function
are contained in the range (0, 1], achieving maximum for p = 0.5, which agrees with
formula (1.5).
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Figure 1.4 Plot of the entropy function versus probability p

1.5.3 Extension of a Memoryless Source

A discrete memoryless source is the simplest source model. A slightly more sophisticated
model is created if an n-element block of messages subsequently generated by a memory-
less source X is treated jointly as a single message from a new message source, called the
nth extension of source X. We will now present a formal definition of an nth extension
of source X.

Definition 1.5.3 Let a memoryless source X be described by an alphabet
X = {a1, . . . , aK} and associated probability distribution of the elementary mes-
sages {P(a1), . . . , P (aK)}. The nth extension of the source X is a memoryless source Xn,
which is characterized by a set of elementary messages {b1, . . . , bKn} and the associated
probability distribution {P(b1), . . . , P (bKn)}, where message bj (j = 1, . . . , Kn) is
defined by a block of messages from source X

bj = (aj1 , aj2 , . . . , ajn) (1.8)

Index ji (i = 1, . . . , n) may take the values from the interval (1, . . . , K), and the proba-
bility of occurrence of message bj is equal to

P(bj ) = P(aj1) · P(aj2) · . . . · P(ajn) (1.9)

The number of messages of the nth source extension Xn is equal to Kn. Messages of
Xn are all n-element combinations of the messages of the primary source X.

Let us calculate the entropy of the source extension described above. The entropy value
can be derived from the following theorem.

Theorem 1.5.1 The entropy of the nth extension Xn of a memoryless source X is equal to
the nth multiple of the entropy H(X) of source X.

Proof. The entropy of source Xn is given by the formula

H(Xn) =
Kn∑
j=1

P(bj ) log
1

P(bj )
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However, message bj is a message block described by expression (1.8), with probability
given by formula (1.9). Therefore enumerating all subsequent messages by selection of
the whole index block (j1, j2, . . . , jn), ji = 1, 2, . . . K (i = 1, 2, . . . n), we obtain the
n-fold sum

H(Xn) =
K∑

j1=1

K∑
j2=1

. . .

K∑
jn=1

P(aj1) · . . . · P(ajn) log
1

P(aj1) · . . . · P(ajn)
(1.10)

Knowing that the logarithm of the product of factors is equal to the sum of logarithms of
those factors, we can write formula (1.10) in the form

H(Xn) =
K∑

j1=1

K∑
j2=1

. . .

K∑
jn=1

P(aj1) · . . . · P(ajn) log
1

P(aj1)
+ · · ·

+
K∑

j1=1

K∑
j2=1

. . .

K∑
jn=1

P(aj1) · . . . · P(ajn) log
1

P(ajn)
(1.11)

Consider a single component of formula (1.11), in which the argument of the logarithm
is 1/P (aj1). Exclude in front of the appropriate sums the factors that do not depend on
the index with respect to which the sum is performed. Then we obtain

K∑
j1=1

K∑
j2=1

. . .

K∑
jn=1

P(aj1) · . . . · P(ajn) log
1

P(aj1)

=
K∑

j1=1

P(aj1) log
1

P(aj1)

K∑
j2=1

P(aj2) . . .

K∑
jn=1

P(ajn)

In turn, knowing that the sum of probabilities of all elementary messages of source X is
equal to 1, we receive the following expression describing the above component

K∑
j1=1

K∑
j2=1

. . .

K∑
jn=1

P(aj1) · . . . · P(ajn) log
1

P(aj1)

=
K∑

j1=1

P(aj1) log
1

P(aj1)
= H(X) (1.12)

Performing similar steps for all remaining n − 1 components, we obtain the same result,
i.e. each component is equal to entropy H(X). Adding these results together, we obtain
the thesis of the theorem, i.e. the formula

H(Xn) = nH(X) (1.13)
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Example 1.5.1 Consider a memoryless source X with the alphabet X = {a1, a2, a3} and
associated probability distribution {P(a1), P (a2), P (a3)} = { 1

2 , 1
4 , 1

4 }. In the table below
we describe the second extension X2 of source X by giving its elementary messages and
associated probability distribution. We also calculate the source entropy and compare it
with the entropy of source X.

Messages of X2 b1 b2 b3 b4 b5 b6 b7 b8 b9

Messages of X a1a1 a1a2 a1a3 a2a1 a2a2 a2a3 a3a1 a3a2 a3a3

P(bj )
1
4

1
8

1
8

1
8

1
16

1
16

1
8

1
16

1
16

The entropy of source X2 can be calculated on the basis of this table. The entropy of source
X is

H(X) = 1

2
log 2 + 1

4
log 4 + 1

4
log 4 = 3

2

whereas the entropy of the second extension, X2, of source X is

H(X2) = 1

4
log 4 + 4 · 1

8
log 8 + 4 · 1

16
log 16 = 3

so in fact H(X2) = 2H(X).

1.5.4 Markov Sources

A discrete memoryless source is a very simple model and it does not reflect sufficiently
precisely how the messages or their sequences are generated by the source. A simple
example such as a text written in a specified language, in which alphanumerical characters
are treated as elementary messages, shows us that subsequent messages are statistically
dependent on each other. There exist typical combinations of characters constituting words
in a given language while some other combinations do not occur. Thus, messages are
statistically dependent. A model that takes statistical dependence of generated messages
into account is called a model of Markov sequences . Below we give its formal definition.

Definition 1.5.4 Let X be a source with the message alphabet X = {a1, . . . , aK}. We
say that source X is a Markov source of the mth order, if the probability of gener-
ation of a message xi ∈ {a1, . . . , aK } in the ith time instant depends on the sequence
of m messages generated by the source in the previous moments. This means that the
Markov source is described by the alphabet X and the set of conditional probabilities
{P(xi |xi−1, . . . , xi−m)}, where xi−j ∈ X, (j = 0, . . . , m).

The message block (xi−1, . . . , xi−m) describes the current state of a Markov source.
Since in the (i − j)th moment the source can generate one of K messages from its
alphabet, the number of possible states is equal to Km. As message xi is generated at the
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ith timing instant, the source evolves from the state (xi−1, . . . , xi−m) in the ith moment
to the state (xi, . . . , xi−m+1) in the next moment.

A Markov source can be efficiently described by its state diagram, as it is done when
describing automata. The state diagram presents all Km source states with appropriate
connections reflecting possible transitions from the state in the ith moment to the state in
the (i + 1)st moment and their probabilities.

Example 1.5.2 Figure 1.5 presents the state diagram of a second-order Markov source
with a two-element alphabet X = {0, 1} and with the following conditional probabilities
{P(xi |xi−1, xi−2)} given below

P(0|00) = P(1|11) = 0.6

P(1|00) = P(0|11) = 0.4

P(0|01) = P(0|10) = P(1|01) = P(1|10) = 0.5

00

10

11

01

0.6

0.5

0.5

0.5

0.5

0.4

0.4

0.6

(0)

(1)

(1)

(1)

(1)

(0)

(0)

(0)

Figure 1.5 Example of the state diagram of a second-order Markov source

In a typical situation, we consider ergodic Markov sources. Let us recall that a random
process is ergodic if time averages of any of its sample functions are equal (with prob-
ability equal to 1) to the adequate ensemble average calculated in any time instant. One
can also describe a Markov source as ergodic (Abramson 1963) if it generates a “typical”
sequence of messages with a unit probability. Below we show an example of a source
that does not fulfill this condition, i.e. that is not ergodic (Abramson 1963).

Example 1.5.3 Consider a Markov source of second order with the binary alphabet X =
{0, 1}. Let its probability distribution have the form

P(0|00) = P(1|11) = 1

P(1|00) = P(0|11) = 0

P(0|01) = P(0|10) = P(1|01) = P(1|10) = 0.5

The state diagram of this source is given in Figure 1.6. If following the generation of a
specific message sequence the message source achieves state 00 or 11, it will stay in it
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Figure 1.6 State diagram of the Markov source considered in Example 1.5.3

forever. Let us assume that each initial state of the source is equiprobable. If the source
generates a sufficiently large number of messages with the probability equal to 0.5, it will
reach either state 00 or state 11 with the same probability. After reaching state 00 the
following sequence of messages will have the form 000 . . . . Similarly, from the moment of
achieving state 11 the source will emit an infinite sequence 111 . . . . We see that none of
the sequences is typical and the time averages calculated for both sample functions of the
process of message generation are different. On the basis of a single sample function one
cannot estimate the probability that the source is in a given state. Thus, the source is not
ergodic.

From now on we will consider the ergodic Markov source. Since it generates “typical”
message sequences, after selection of the initial source state in a long time span we
observe generated messages, and in consequence we observe the sequence of states that
the source subsequently reaches. On the basis of long-term observation of subsequent
states one can estimate the values of probabilities of each state. Moreover, the obtained
state probability distribution does not depend on the choice of the initial state (this is
understandable as the source is ergodic). The obtained probability distribution is called a
stationary distribution and is one of the characteristics of the Markov source.

This distribution can be found on the basis of probabilities of state transitions, which
characterize the Markov source. We will show how to find the stationary distribution for
the source considered in Example 1.5.2.

Example 1.5.4 Let us return to the state diagram shown in Figure 1.5. Since the source
is stationary, the probability of reaching a given state can be found on the basis of the
probability that the source is in one of the previous states and the probability of transition
from that state to the state in the next moment. So in order for the source to be in state
00, at the previous moment it must have been in state 00 or 01. Taking into account the
probabilities of transitions between the states, we receive the following equation

P(00) = P(0|00) · P(00) + P(0|01) · P(01)
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Similar equations can be formulated for the remaining states

P(01) = P(0|10) · P(10) + P(0|11) · P(11)

P (10) = P(1|00) · P(00) + P(1|01) · P(01)

P (11) = P(1|11) · P(11) + P(1|10) · P(10)

It is easy to see that the above equation system is not independent. However, there is one
more equation that can be applied, namely

P(00) + P(01) + P(10) + P(11) = 1

because the sum of probabilities of the event that the source is in a given state is equal to
unity. Replacing any of the system equations with the last one, we obtain a new equation
system that can be uniquely solved. Simple calculations lead us to the following result

P(00) = P(11) = 5

18
, P (01) = P(10) = 2

9

1.5.5 Entropy of the Markov Source

We will now introduce the concept of entropy of the Markov source. As a result, we
will be able to compare this entropy with the average amount of information obtained by
observing a single message on the output of the memoryless source.

Recall that the state of an mth-order Markov source at the ith moment can be denoted
as (xi−1, xi−2, . . . , xi−m). If at this moment the source emits a message xi ∈ {a1, . . . , aK},
then the amount of information we receive is equal to

I (xi |xi−1, . . . , xi−m) = log
1

P(xi |xi−1, . . . , xi−m)

By averaging this result with respect to all possible messages, and assuming that the
source is in the state (xi−1, xi−2, . . . , xi−m), we receive the entropy of the source in this
state

H(X|xi−1, . . . , xi−m)

=
K∑

j=1

P(xi = aj |xi−1, . . . , xi−m) · I (xi = aj |xi−1, . . . , xi−m) (1.14)

In turn, calculating the average amount of information with the assumption that the source
is in any possible state, we obtain the ensemble average of expression (1.14), i.e.

H(X) = E
[
H(X|xi−1, . . . , xi−m)

]
=

K∑
j1=1

. . .

K∑
jm=1

P(xi−1 = aj1 , . . . , xj−m = ajm)H(X|xi−1, . . . , xi−m) (1.15)
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Using expression (1.14) in (1.15), we receive

H(X) =
∑
xi

. . .
∑
xi−m

P (xi−1, . . . , xi−m)P (xi |xi−1, . . . , xi−m)

· log
1

P(xi |xi−1, . . . , xi−m)

Applying Bayes’ formula to the probability products in the above expression,3 we obtain
the final formula for the entropy of a Markov source

H(X) =
∑
xi

. . .
∑
xi−m

P (xi, xi−1, . . . , xi−m) log
1

P(xi |xi−1, . . . , xi−m)
(1.16)

As we see, the entropy of a Markov source is an amount of information averaged over
all possible states and all messages that can be generated by the source remaining in each
of these states.

Example 1.5.5 Let us calculate the entropy of the source from Example 1.5.2. For this
source we can build the following table of probabilities

xi, xi−1, xi−2 P(xi |xi−1, xi−2) P (xi−1, xi−2) P (xi, xi−1, xi−2)

000 0.6 5/18 3/18
001 0.5 2/9 1/9
010 0.5 2/9 1/9
011 0.4 5/18 1/9
100 0.4 5/18 1/9
101 0.5 2/9 1/9
110 0.5 2/9 1/9
111 0.6 5/18 3/18

On the basis of this table we can calculate the entropy of the Markov source as

H(X) =
∑
xi

. . .
∑
xi−m

P (xi, xi−1, . . . , xi−m) log
1

P(xi |xi−1, . . . , xi−m)

= 2 · 3

18
log

10

6
+ 4 · 1

9
log

10

5
+ 2 · 1

9
log

10

4
= 0.9839 [bit/message]

1.5.6 Source Associated with the Markov Source

Knowing already the stationary distribution of the Markov source, it would be inter-
esting to calculate the probability of generation of specific messages by the source.
For the mth-order Markov source these probabilities can be derived from the stationary

3 P (A,B) = P (B|A)P (A).
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distribution and the conditional probabilities describing the probability of generation of a
given message on condition that the source is in a given state.

Example 1.5.6 For the source considered in Example 1.5.2 we have

P(0) = P(0|00)P (00) + P(0|01)P (01) + P(0|10)P (10) + P(0|11)P (11)

P (1) = P(1|00)P (00) + P(1|01)P (01) + P(1|10)P (10) + P(1|11)P (11)

The substitution of the probabilities calculated in the previous example leads us to P(0) =
P(1) = 0.5.

In the above example the probabilities of generation of particular messages by the source
are identical. If the source were memoryless it would have the highest possible entropy,
H(X) = 1. Calculation of the entropy of the Markov source, performed in Example 1.5.5,
indicates that its entropy is lower. Let us compare the value of this entropy with the
entropy of the memoryless source characterized by the same probabilities of generation
of particular messages. For that purpose the definition of the source associated with the
Markov source is introduced.

Definition 1.5.5 Let X = {a1, . . . , aK} be the alphabet of an mth-order Markov source.
Let P(a1), . . . , P (aK) be the probabilities of occurrence of respective messages on the
source output. Source X associated with the Markov source X is a memoryless source with
the same alphabet X and identical probability distribution of elementary messages.

Below we will show that the entropy of a Markov source is lower than or equal to the
entropy of the source associated with it. First we will prove a useful inequality that will
be used subsequently in the course of this chapter.

Let pi and qi (i = 1, . . . , N) be interpreted as probabilities, so the following property
holds for them

N∑
i=1

pi =
N∑

i=1

qi = 1 and pi ≥ 0, qi ≥ 0 for i = 1, . . . , N

We will show that

N∑
i=1

pi log
qi

pi

≤ 0 (1.17)

For this purpose let us use the inequality ln x ≤ x − 1 again. We have

N∑
n=1

pn log
qn

pn

= 1

ln 2

N∑
n=1

pn ln
qn

pn

≤ 1

ln 2

N∑
n=1

pn

(
qn

pn

− 1

)

= 1

ln 2

(
N∑

n=1

qn −
N∑

n=1

pn

)
= 0
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We will use inequality (1.17) to find the relationship of the entropy of the first-order
Markov source to the entropy of the memoryless source associated with it. For this
purpose we apply the following substitution

pn = P(xi, xi−1) = Pr{xi = ak, xi−1 = aj }
qn = P(xi)P (xi−1) = Pr{xi = ak} Pr{xi−1 = aj }

k, j = 1, . . . , K

Using inequality (1.17) and the expression written above, we obtain the following inequal-
ity, expressed in simplified notation as∑

xi

∑
xi−1

P(xi, xi−1) log
P(xi)P (xi−1)

P (xi, xi−1)
≤ 0 (1.18)

Knowing from Bayes’ formula that

P(xi, xi−1) = P(xi |xi−1)P (xi−1)

on the basis of (1.18) we can write the following inequality∑
xi

∑
xi−1

P(xi, xi−1) log
P(xi)

P (xi |xi−1)
≤ 0

so ∑
xi

∑
xi−1

P(xi, xi−1)

(
log

1

P(xi |xi−1)
− log

1

P(xi)

)
≤ 0

From the latter we conclude that∑
xi

∑
xi−1

P(xi, xi−1) log
1

P(xi |xi−1)
≤

∑
xi

∑
xi−1

P(xi, xi−1) log
1

P(xi)
(1.19)

Therefore, the left-hand side, which is, effectively, the entropy of the Markov source, is
bounded from above by the expression∑

xi

∑
xi−1

P(xi, xi−1) log
1

P(xi)
=

∑
xi

log
1

P(xi)

∑
xi−1

P(xi, xi−1)

=
∑
xi

P (xi) log
1

P(xi)
(1.20)

We used the fact that ∑
xi−1

P(xi, xi−1) = P(xi)
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Finally, on the basis of (1.19) and (1.20) we receive the dependence

H(X) ≤ H(X) (1.21)

Let us try to establish when the Markov source entropy achieves its maximum, equal to
H(X). We should consider the situation in which expression (1.18) is fulfilled with the
equality sign. We can easily notice that it occurs when

P(xi, xi−1) = P(xi)P (xi−1)

However, it means that the messages generated at particular moments are statistically
independent, so the Markov source loses its memory, i.e. it becomes a memoryless source.

Our considerations can be easily extended on mth-order Markov sources. It is sufficient
to replace a single message xi−1 from the (i − 1)st timing instant by their whole block
(xi−1, . . . , xi−m).

1.6 Discrete Source Coding

As we remember from the introductory section, the process of assignment of symbol
sequences to the source messages is called source coding. The level of efficiency of the
source coding process determines the size of the symbol stream that has to be transmitted
to the receiver. In the case of a typical computer system, the memory size needed to
memorize a particular message sequence depends on the efficiency of the source cod-
ing. Similar dependence also occurs for the continuous sources whose messages, with
acceptable loss of information, are represented by streams of discrete symbols.

Example 1.6.1 Consider a binary representation of a color picture on the color monitor.
Knowing that a single pixel has a 24-bit representation, a picture of the size 800 × 600
pixels would require 11.52 milion binary symbols (bits). However, thanks to the currently
used methods of picture coding (known as picture compression) it is posible to represent
such a picture in a much more effective manner. Usually, typical properties of such pictures
are taken into account, e.g. the fact that part of the picture plane is a uniform surface or that
neighboring points do not differ much from each other. Methods of picture compression
are currently an important branch of digital signal processing.

Our considerations on source coding will start from a formal definition of code (Stein-
buch and Rupprecht 1982).

Definition 1.6.1 Let X = {a1, a2, . . . , aK} denote the source alphabet (the set of messages
that is the subject of coding), and let Y = {y1, y2, . . . , yN } be a set of code symbols. A code
is a relation in which each message of the source alphabet is mutually uniquely assigned a
sequence of symbols selected from the set of code symbols. The code sequence representing
a given message is called a codeword (or a code sequence).

Example 1.6.2 Let a message source have the alphabet X = {a1, a2, a3, a4}. Assume that
the set of code symbols is binary, i.e. Y = {0, 1}. An example of the relation between source
messages and code sequences is shown in the table below.
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Messages Codewords

a1 0
a2 11
a3 00
a4 01

This relation is not a code in the sense of the above definition because it is not mutually
unequivocal. The code sequence 00 can be a representation both of the message a3 and a
message sequence a1a1.

Let us now consider some examples of codes. The source is the same as in the last
example.

Example 1.6.3 Denote by A, B and C three codes presented in the table below (Abramson
1963).

Messages A B C
a1 00 0 0
a2 01 10 01
a3 10 110 011
a4 11 1110 0111

Each of the above codes has different features. Code A, as opposed to the other two codes,
has codewords of equal length. The characteristic feature of code B is a construction of
codewords relying on the application of a specific number of “1”s followed by a single zero
symbol. In the case of code C a zero symbol starts each codeword, whereas the codewords
differ by the number of “1”s following the zero symbol.

This simple example makes us aware of the multitude of possible codes. Thus, a
question arises as to how we should evaluate them and which of them should be selected.
The answer to this question is not easy. In the selection and evaluation process we should
consider:

• coding efficiency – we aim at possibly the smallest number of coding symbols repre-
senting a given sequence of messages; in the statistical sense we would like to minimize
the average number of symbols needed to represent a single message;

• simplicity of the coding and decoding process – the software and hardware complexity
is the consequence of both processes;

• allowable delay introduced by the coding and, in particular, the decoding processes.

As we conclude from the definition of code, encoding is an operation of mutually unique
assignment. In consequence, the sequence of code symbols observed in the receiver can
be unambiguously divided into codewords. This is obviously the necessary condition of
correct functioning of the whole coding/decoding process and clearly results from the code
difinition. The case is straightforward if the codewords have equal lengths, as in the case
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of code A in Example 1.6.3. Only the knowledge of the initial moment is necessary for
correct decoding. Comparing codes B and C we see that in the case of code B the decoder
should detect the occurrence of a zero symbol, which indicates the end of a codeword. In
code C a zero symbol signals the begining of a codeword. In order to decompose the whole
symbol sequence into particular codewords and to extract the current codeword, one has
to observe the first symbol of the next codeword. In this sense it is not possible to decode
the codewords of code C without delay. On the contrary, code B enables decoding without
delay. For decoding codewords of a given code without delay, none of the codewords
may be a prefix of another codeword. Therefore, code B is often called a prefix code.
The prefix is defined in the following way.

Definition 1.6.2 Let ci = (ci1, ci2, . . . , cim) be a codeword of a given code. Any sequence
of symbols (ci1, ci2, . . . , cij ), where j ≤ m, is a prefix of codeword ci .

Note that in code C each codeword listed on a higher position in the code table is a
prefix of codewords appearing below it.

An essential task is a construction of a prefix code. In the next example (Abramson
1963) a heuristic approach to this task is presented.

Example 1.6.4 Assume that a memoryless source is characterized by a five-element alpha-
bet {a1, a2, . . . , a5}. We construct a prefix code in the following manner. Assign message
a1 the symbol “0”. Thus, it is the first selected codeword. If this symbol is not to be a
prefix of another codeword, all remaining codewords should start with “1” in their first
position. Therefore, let message a2 be assigned the symbol sequence “10”. All remaining
codewords will have to start with the sequence “11”. So message a3 can be assigned the
codeword “110”. The remaining two messages can be assigned codewords starting with
the sequence “111” supplemented with “0” and “1”, respectively. The result of our code
design is presented in the table below as code A.

Message Code A Code B
a1 0 00
a2 10 01
a3 110 10
a4 1110 110
a5 1111 111

Is this the only way of assigning the codewords to the source messages? For sure not!
Let us inspect the column containing the codewords of code B. In creation of this code the
same basic rule is applied as in the construction of code A, i.e. none of the codewords is
a prefix of another codeword. However, we start from assigning message a1 the sequence
“00”. As a result we obtain a different code! Therefore, the following question arises:
How to evaluate these codes? Generally, we can say that the smaller number of symbols
required, on average, for representation of a single message, the better code. It is intuitively
clear that in order to achieve a high degree of efficiency of using the coding symbols,
messages that occur frequently should be assigned short codewords, whereas messages
with low probability of occurrence should be assigned longer codewords.
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In order to assess the quality of the source coding process we introduce the concept of
the average codeword length .

Definition 1.6.3 Consider a memoryless source X with the alphabet {a1, . . . , aK} and let
{P1, . . . , PK } be the probability distribution of occurrence of elementary messages. Let
codewords of length {l1, . . . , lK} be assigned to these messages, respectively. The average
length L of codeword is an ensemble average of a codeword length described by the
formula

L =
K∑

i=1

liPi (1.22)

In order to evaluate the quality of source coding we have to be sure that there exists a
prefix code with the selected set of codeword lengths {l1, . . . , lK}. In order to check this
we apply the Kraft-McMillan inequality .

Theorem 1.6.1 The necessary and sufficient condition of the existence of an r-nary prefix
code characterized by a set of codeword lengths {l1, . . . , lK} is the fulfilling of inequality

K∑
i=1

r−li ≤ 1 (1.23)

For a binary code (r = 2) this inequality obtains the form

K∑
i=1

2−li ≤ 1 (1.24)

As we said, the Kraft-McMillan inequality is useful for checking if there exists a prefix
code with a given set of codeword lengths. Unfortunately, this inequality does not facilitate
the process of finding such a code. We illustrate this statement by the next example quoted
after Abramson (1963).

Example 1.6.5 Consider five different source codes proposed for a memoryless source X
with four elementary messages {a1, a2, a3, a4}. The codes are presented in the table below.

Message A B C D E
a1 00 0 0 0 0
a2 01 100 10 100 10
a3 10 110 110 110 110
a4 11 111 111 11 11

If we denote the left-hand side of formula (1.24) as W , then simple calculations show
that for codes A, C and D we have W = 1, for code B we have W = 7/8, whereas for code
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E we obtain W = 9/8. Code A is uniquely decodable without delay because its codewords
have constant length and each of them is unique. The codeword lengths of code B fulfill
the Kraft-McMillan inequality and none of the codewords is a prefix of another codeword.
Using one codeword shorter than those in code B results in the allowable set of codeword
lengths as well; however, not all codes from the set of codes characterized by the same
codeword length are decodable without delay. Code C belongs to the prefix codes, whereas
code D does not. The reason for that is that the last codeword of code D is a prefix of
the codeword assigned to message a3. Finally, code E does not satisfy the Kraft-McMillan
inequality, so not only this code but also any other code with the same set of codeword
lengths will not be a prefix code.

There are many possible source codes characterized by a single set of codeword lengths
satisfying the Kraft-McMillan inequality. However, not all of them are the prefix codes.
Therefore, there is a problem of how to find the code that will have the shortest average
codeword length among all r-nary prefix codes used to represent the messages of a given
memoryless source X. Such a code will be called a compact code.

In the first step of our search for compact codes we will find a minimum average
codeword length for a prefix code.

As previously, consider a memoryless message source X described by the message
alphabet X = {a1, a2, . . . , aK } and the set of respective probabilities P(ai) = Pi (i =
1, 2, . . . , K). The code symbols that make up codewords are selected from an r-nary
alphabet Y . Denote the length of the codeword assigned to message ai as li . As we
remember, the entropy of such a memoryless source is given by formula (1.2). Recall
again that we have already proven the inequality

K∑
i=1

Pi log
Qi

Pi

≤ 0 (1.25)

where both Pi and Qi can be interpreted as probabilities, i.e. Pi ≥ 0, Qi ≥ 0 (i =
1, 2, . . . , K),

K∑
i=1

Pi = 1,
K∑

i=1
Qi = 1. In consequence of (1.25) we have

K∑
i=1

Pi log
1

Pi

≤
K∑

i=1

Pi log
1

Qi

(1.26)

Let us note that (1.25) becomes an equity if Pi = Qi (i = 1, 2, . . . , K). So, recalling the
definition of the entropy of a memoryless source, we have

H(X) ≤
K∑

i=1

Pi log
1

Qi

(1.27)

Let us assume now that

Qi = r−li

K∑
j=1

r−lj

(1.28)
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Let us note that the variables Qi defined in this way satisfy the conditions Qi ≥ 0 and
K∑

i=1
Qi = 1. Substituting (1.28) into (1.27), we obtain

H(X) ≤
K∑

i=1

Pi log

K∑
j=1

r−lj

r−li
=

K∑
i=1

Pi log
1

r−li
+

K∑
i=1

Pi log

 K∑
j=1

r−lj



= log r

K∑
i=1

Pili + log

 K∑
j=1

r−lj

 K∑
i=1

Pi = L log r + log

 K∑
j=1

r−lj


So finally

H(X) ≤ L log r (1.29)

The last inequality is a consequence of the fact that for a prefix code the Kraft-McMillan
inequality is satisfied so the second term of formula (1.29) is non-positive. Finally we
obtain

L ≥ H(X)

log r
= Hr(X) (1.30)

The following theorem is a consequence of inequality (1.30).

Theorem 1.6.2 (The first Shannon theorem) The average codeword length in a prefix code
used for representation of messages generated by a memoryless source X is not lower than
the source entropy (calculated in r-nary units).

Theorem 1.6.2 formulates an important limit related to source coding. Let us now
consider the requirements for achieving this boundary. The analysis of subsequent deriva-
tion steps in (1.29) indicates that in order for the boundary to be reached the following
requirements have to be fulfilled

1◦ H(X) =
K∑

i=1

Pi log

K∑
j=1

r−lj

r−li
(1.31)

2◦
K∑

j=1

r−lj = 1 (1.32)

We conclude from requirements 1◦ and 2◦ that the boundary of source coding efficiency
can be reached if the probability of occurrence Pi for each message of the memoryless
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source is expressed by the formula

∧
i

Pi = Qi = r−li

K∑
j=1

r−lj

= r−li (1.33)

Thus, for each message ai whose probability is given by (1.33) the codeword representing
it should be of length

li = logr

1

Pi

(1.34)

Obviously, the codeword length has to be an integer number. It is possible only if the
probabilities of message occurrence have the form

Pi =
(

1

r

)αi

(1.35)

where αi is an integer. Then for each i the codeword length would be li = αi . Obviously
it is a special case that can occur in practice very rarely. The message probabilities are in
fact properties of the message source and we are not able to shape them according to our
needs. Thus, let us think how to proceed if condition (1.35) does not hold. The solution
presented below approches the limit of source coding efficiency asymptotically.

If the logarithm of the reciprocal of a particular message probability (1.35) is not an
integer number, then the codeword length, as an integer, is definitely contained in the
interval

logr

1

Pi

≤ li < logr

1

Pi

+ 1 (1.36)

Choosing the codeword lengths according to rule (1.36) ensures the result in the
form of the prefix code, because if for each i the inequality li ≥ log 1

Pi
is fulfilled, the

Kraft-McMillan inequality holds as well. We conclude that∧
i

Pi ≥ r−li

so we have in consequence

K∑
i=1

r−li ≤
K∑

i=1

Pi = 1 (1.37)

One can easily ascertain that the choice of the codeword length using (1.36) does not
lead to a very effective code because the average codeword length for such a code is
contained in the interval between the value of the source entropy and that value increased
by 1. We receive this result after multiplying, for each i, both sides of inequality (1.36)
by the respective message probability Pi and subsequently summing the sides of all the
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inequalities. We namely have∧
i

Pi logr

1

Pi

≤ Pili < Pi logr

1

Pi

+ Pi

Summing all sides together we obtain

K∑
i=1

Pi logr

1

Pi

≤
K∑

i=1

Pili <

K∑
i=1

Pi logr

1

Pi

+
K∑

i=1

Pi

and finally

Hr(X) ≤ L < Hr(X) + 1 (1.38)

For small values of entropy such an interval is relatively wide and coding according to
(1.36) is ineffective. Thus, it is more effective to code n-element message blocks instead
of single messages separately. In other words, the efficiency of source coding increases if
the subjects of coding are the messages of the nth extension of source X. Denoting Ln as
the average length of the codeword representing a message of the nth source extension
Xn, on the basis of (1.38) we receive the inequality

Hr(X
n) ≤ Ln < Hr(X

n) + 1 (1.39)

Recalling that Hr(X
n) = nHr(X) we conclude that

nHr(X) ≤ Ln < nHr(X) + 1

As a result

Hr(X) ≤ Ln

n
< Hr(X) + 1

n

Finally, we conclude from the last inequality that

lim
n→∞

Ln

n
= Hr(X) (1.40)

Note that Ln/n is the average number of code symbols needed to encode a single
message in a block of n messages. The limit (1.40) is in agreement with the Shannon
theorem, once more indicating that the average codeword length of a decodable code
applied in representation of memoryless source messages cannot be lower than the entropy
of this source (given in the r-nary units).

Similar considerations to those shown above can be performed for a Markov source
(Abramson 1963). The conclusions derived from them are the same and lead to equality
(1.40).

Example 1.6.6 Consider a memoryless source X characterized by the elementary mes-
sages “0” and “1” appearing with the probabilities P0 = 0.1 and P1 = 0.9, respectively.
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It can be easily calculated that the entropy of this source is H(X) = 0.4690. Assuming
application of a binary source code (r = 2) and direct encoding of messages “0” and
“1” using single-element codewords 0 and 1, we conclude that in this case the average
codeword length is L = 1. Thus, the coding efficiency is

η = Hr(X)

L
= 0.4690

1
= 46.9%

Consider now the second extension X2 of source X. The table below presents the messages
of source X2, their probabilities and the codeword lengths associated with them, selected
according to rule (1.36).

Message Pi li

11 0.81 1
10 0.09 4
01 0.09 4
00 0.01 7

It turns out that in this case the average codeword length is L2 = 1.6, so the coding
efficiency is

η = 2Hr(X)

L2
= 58,6%

One can easily find that the application of rule (1.36) has not led to finding a compact code.
Already the set of codeword lengths such as (1, 2, 3, 3) assigned to the messages 11, 10, 01
and 00, respectively, makes construction of a prefix code possible. The average codeword
length is then equal to L2 = 1.29, so the coding efficiency is η = 72%. The codeword
length selected according to rule (1.36) becomes closer and closer to the optimum when
we encode messages of higher and higher source extensions of source X.

The example shown above indicates that it could be interesting to determine a coding
method resulting in a compact code not only in the asymptotic sense by increasing source
extensions of message source X, but also for any source. It turns out that there are some
coding methods resulting in a compact code. In the following sections we will consider
the most important among them.

1.6.1 Huffman Coding

In 1952 Huffman presented a procedure that determines a r-nary compact code for any
memoryless message source. Below we describe it by the example of a binary code
synthesis.

Consider a memoryless message source characterized by the message alphabet X =
{a1, a2, . . . , aK} with related elementary message probabilities equal to P1, P2, . . . , PK ,
respectively. Assume without loss of generality that the message probabilities are ordered
in decreasing order, i.e. P1 ≥ P2 ≥ . . . ≥ PK . In the first part of the procedure we
construct the sequence of reduced sources X = X0, X1, . . . , XK−2 in the following way.
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Consider the ith step of the reduced source construction. Let us represent two of
the least probable messages of source Xi , denoted as x

(i)
K−i and x

(i)
K−i−1, in the mes-

sage set of source Xi+1 by a new message x
(i+1)
j , whose probability of occurrence is

P(x
(i+1)
j ) = P(x

(i)
K−i ) + P(x

(i)
K−i−1). The other messages of the newly created reduced

source Xi+1 remain unchanged; however, all messages are again ordered in decreasing
order of probabilities. Let us note that source Xi+1 has one message less when com-
pared with message source Xi . In this sense it is reduced with respect to source Xi . In
the following steps analogous to the previous one, the number of messages is gradually
reduced until we obtain a two-message source XK−2. Deriving a compact code for such a
source is straightforward: one message is represented by the codeword consisting of the
zero symbol, whereas the second message is represented by the codeword consisting of
a single “1”.

In the following steps we find compact codes for each of the sources XK−3,
XK−4, . . . , X1, X0 = X. Assume that a compact code for source Xi+1 is already known.
We intend to find a compact code for source Xi . In order to perform this task we assign
codewords to all messages of source Xi , which are the same as those that have been
assigned to these messages in the source Xi+1 except messages x

(i)
K−i and x

(i)
K−i−1. The

codewords assigned to messages x
(i)
K−i and x

(i)
K−i−1 consist of a codeword associated

with message x
(i+1)
j of source Xi+1, extended by the symbols “0” and “1”, respectively.

Recall that message x
(i+1)
j was created in the source reduction process by merging

messages x
(i)
K−i and x

(i)
K−i−1. Figure 1.7 presents an example of deriving a compact code

for a six-message memoryless source with respective message probabilities. As we see,
the Huffman algorithm renders a code in which the less probable the message the longer
its codeword.

The compact code achieved as a result of the Huffman algorithm can also be represented
by a tree in which the branches leaving a certain node in the left direction are associated
with the code symbol “0”, whereas those diverging in the right direction are associated
with the symbol “1”. The ending of such a branch is associated with a certain message
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Figure 1.7 Synthesis of the compact code using the Huffman algorithm
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Figure 1.8 Code tree determined for the code from Figure 1.7 derived using the Huffman proce-
dure

and the codeword assigned to it is a sequence of symbols associated with the path from
the tree root to the ending of this branch. The example of a tree for the code shown in
Figure 1.7 is presented in Figure 1.8.

The Huffman algorithm can be easily generalized for nonbinary source codes. If the
applied source code is intended to be r-nary, then in each source reduction step r least
probable messages are replaced by a single message of the reduced source. As a result
of the last reduction step we obtain a source with r messages, which can be assigned
one-symbol codewords each. However, in order for the reduction process to yield this
result, K (the number of messages of source X) has to fulfill the condition

K = (r − 1)m + r (1.41)

where m is an integer, because in each reduction step the number of messages decreases
by r − 1, and the final number of messages is r . If the number of source messages does
not fulfill condition (1.41), then the source can be supplemented by a number of messages
occurring with zero probability. Thus, the resulting number of source messages does fulfill
condition (1.41).

The proof of the Huffman algorithm can be found, among others, in (Abramson 1963).

1.6.2 Shannon-Fano Coding

Huffman coding is obviously not the only method of derivation of a compact code.
Another method known as Shannon-Fano coding is presented in the form of the following
algorithm.

1. For a given list of messages construct the list of probabilities of message occurrence.
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2. Reorder the list of messages in decreasing order of message probabilities.
3. Divide the list of messages into two sets, W0 and W1, in such a way that the sums of

probabilities are either identical or as close to each other as possible.
4. Create one-bit prefixes of codewords for messages, setting them to “0” for the code-

words related to the messages contained in set W0 and to “1” for the codewords related
to the messages contained in set W1.

5. Apply the above algorithm recursively for each set of messages by dividing it into
subsets and adding subsequent bits to the codewords created in this way until all the
subsets contain single messages.

Figure 1.9 illustrates the creation of the source code using the above method. The
respective code tree is also presented.

a1 0.3 0 00 00

a2 0.2 0 01 01

a3 0.15 1 10 100

a4 0.15 1 10 101

a5 0.15 1 11 110

a6 0.05 1 11 111

Message Pi Step 1 Step 2 Step 3

Codewords

0

0 0

0 0

1 1

1 1

1

0.5

0.3 0.3

0.15

0.2 0.2

0.15

0.5

a3

a2a1

0.15 0.05

a4 a5 a6

Figure 1.9 A compact code and code tree obtained using the Shannon-Fano algorithm

1.6.3 Dynamic Huffman Coding

In Huffman or Shannon-Fano source encoding algorithms the statistics of source messages
are taken into account. In practice, blocks of messages such as data, text, single pictures
or video sequences featuring different statistics are the objects of coding. So far, for the
selected source code, the knowledge of these statistics in the form of message probabilities
is assumed. In consequence, these probabilities have to be estimated by initial analysis
of the message sequence to be encoded. On the basis of these estimates, during the sec-
ond round of analysis the message block can be a subject of encoding. The necessity
of double analysis of the message block to be encoded is disadvantageous because the
processing requirements increase. An additional problem is the necessity to supply the
decoder with the message source statistics or, equivalently, the obtained mapping of the
messages onto the codewords, i.e. the codebook. This was the motivation for developing a
coding method that, although optimum in the asymptotic sense for encoding of very long
message blocks, does not require double browsing of the message block and allows inde-
pendent estimation of the source statistics both at the source encoder and at the decoder.
Such requirements are fulfilled by the dynamic Huffman encoding. Its operation will be
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explained by inspecting the example of encoding of a given text, which is represented
in the form of an ASCII-encoded character sequence. Each character is considered to
be a single message. As an example, let us encode the sequence “This_is_mom”. For
simplicity, assume that the character “_” denotes space.

Both encoder and decoder construct a code tree. Initially, the code tree contains a single
branch with a “zero leaf” at its end and denoted by the symbol eφ. In general, leaves
terminating each branch are marked by the symbol xN , where x denotes a message (a
single character) and N is the number of its appearances from the start of the encoding
process. As previously, a branch growing in the left direction is assigned code symbol
“0”, whereas a branch directed to the right is assigned “1”. The process of encoding
of the analyzed text together with construction of the code tree is presented in Figures
1.10–1.13.

The encoder starts from encoding the message “T ”. As this message occurs for the first
time, it is sent to the receiver in the open form, i.e. as an ASCII codeword. We denote its
occurrence on the code tree by the symbol T 1 at the end of the branch accompanied by
digit “1”. In each step, besides tree modification, the list of nodes and leaves is created,
picking them up from the left of the lowest tree layer to the right and repeating the
same move shifting to the higher tree layers. In the first step the list consists only of two
nodes, eφ and T 1. The list is arranged from the lowest to the highest weight of the nodes
and leaves. If, after a simple tree modification resulting from the occurrence of the next
message, the list is not ordered according to the increasing weights, we have to perform
its ordering by appropriate modification of the code tree. For the modified tree we create
the list again.

In the second step a new message, “h”, appears. This fact is signaled using the current
codeword assigned to an empty leaf, followed by the ASCII code of the character “h”. In
our case sequence 0′h′ is sent to the receiver. The created list eφ, h1, 1, T 1 still remains
appropriately ordered.

In the third step the message “i” is encoded. The codeword currently assigned to an
empty leaf eφ is 00, therefore the sequence 00′i′ is sent to the receiver. From the branch
terminated by an empty leaf a new empty leaf grows in the left direction and a new leaf
denoted by i1 grows in the right direction. The list of nodes and leaves of the newly
created tree is eφ, i1, 1, h1, 2, T 1 and it requires reordering. The position of symbol “2”
has to be exchanged with the symbol T 1. In consequence, appropriate tree modification
is needed and a new list of nodes and leaves is created.

In the fourth and fifth steps the messages “s” and “_” are encoded in a similar way. In
each step, the code tree is expanded and modified and the sequences sent to the receiver
are 100′s′ and 000′_′, respectively. Eventually, in the sixth step (Figure 1.11), message “i”
appears, which has already occurred before. In this case the encoder emits the codeword
01 and the number of occurrences of “i” in the leaf i1 is increased by one (i2). This
results in the need for the next tree modification. We recommend that the motivated
reader creates the tree on his/her own and generates the codeword sequence for the whole
analyzed text. The whole process of encoding and creation of the code tree is shown in
Figures 1.10–1.13.
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Figure 1.10 Operation of the dynamic Huffman algorithm (Part 1)
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Figure 1.11 Operation of the dynamic Huffman algorithm (Part 2)

Let us note that on the basis of the codewords sent to the receiver the same code tree
can be created in it. The signal indicating the introduction of a new message (character)
to the code tree is the current codeword of the empty leaf, which is followed by a new
ASCII-encoded character. The occurrence of a character that has already appeared before
is signaled by the codeword currently assigned to it. The efficiency of dynamic Huffman
coding increases with the increase in encoded message sequence length.
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Figure 1.12 Operation of the dynamic Huffman algorithm (Part 3)

1.6.4 Arithmetic Coding

The method of source coding described in this paragraph was invented by Peter Elias
around 1960; however, it was not implementable until the 1970s. The description of
arithmetic coding is based on the work of Kieffer (2003).

Denote the message sequence that is the subject of arithmetic coding as the vector
(x1, x2, . . . , xn). Subinterval Ii of a unit interval [0, 1] is assigned to each message xi in
such a way that the following expression holds

I1 ⊃ I2 ⊃ . . . In (1.42)

Subinterval Ii is determined recursively on the basis of Ii−1 and message xi (i ≥ 2).
When subinterval In is finally specified, the binary sequence (b1, b2, . . . , bk) is selected
in such a way that the number

b1

2
+ b2

4
+ · · · + bk

2k
(1.43)
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Figure 1.13 Operation of the dynamic Huffman algorithm (Part 4)

is contained inside subinterval In. The length k of the codeword is approximately equal
to − log P(x1, x2, . . . , xn).

Let us now present a formal description of arithmetic coding and decoding. Consider the
nth extension of the memoryless source X = {0, 1, . . . , j − 1}. As we see, the elementary
messages of source X are simply denoted as subsequent numbers. The probability of the
message sequence (x1, x2, . . . , xn) is equal to

Pn(x1, x2, . . . , xn) =
n∏

i=1

P(xi) (1.44)
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where P(0), P (1), . . . , P (j − 1) are the probabilities of occurrence of individual ele-
mentary messages. Denote the lower and upper limit of the subinterval Ii as ai and bi ,
respectively. Let a0 = 0 and a1 = 1. The coding algorithm can be formally presented in
the following three steps.

1. For each i (i = 2, 3, . . . , n), recursively determine the subinterval Ii = [ai, bi] accord-
ing to the formula

Ii =
 [ai−1, (ai−1 + (bi−1 − ai−1)P (0))] for xi = 0

[ai, bi] for xi > 0
(1.45)

where

ai = ai−1 + (
P(0) + · · · + P(xi−1)

)
(bi−1 − ai−1)

bi = ai−1 + (
P(0) + · · · + P(xi)

)
(bi−1 − ai−1)

After applying the subinterval construction rule formulated above, the last subinterval
In will have the length equal to Pn(x1, x2, . . . , xn).

2. Determine the number of bits, k, used to encode sequence (x1, x2, . . . , xn)

k =
⌈

log
1

Pn(x1, x2, . . . , xn)

⌉
+ 1 (1.46)

where 	x
 is the lowest integer greater than or equal to x.
3. Determine the number that is the middle of subinterval In. Perform k-bit expansion

(1.43) of this number. Digits of this expansion, (b1, b2, . . . , bk), constitute a codeword
assigned to the message sequence (x1, x2, . . . , xn).

The decoding of the received sequence (b1, b2, . . . , bk) can be formally described in
the following steps.

1. Determine number M̂ described by formula (1.43). Owing to preceding selection of
the number of bits k used in the binary expansion of number M̂ , the latter is located
inside the subinterval In.

2. There are j possible positions of subinterval I1 that depend on message x1, how-
ever the number M̂ contained in this subinterval is situated in one position only.
Determine the subinterval I1 in this way and, based on that, decide upon the message x1.

3. For each i (i = 2, . . . , n) and knowing subinterval Ii−1, determine that location of
subinterval Ii out of j possible locations of this subinterval in which the number M̂

is contained. Determine message xi based on Ii .

Let us explain the operation of coding and decoding with an example (Kieffer 2003).

Example 1.6.7 Let the subject of arithmetic coding be a sequence of messages of a binary
memoryless source with message alphabet X = {0, 1}. The probabilities of particular mes-
sages are P(0) = 2/5, P(1) = 3/5. Consider encoding the messages of the 5th source



 

38 Introduction to Digital Communication Systems

extension X5 of source X. Let the binary message sequence be (1, 0, 1, 1, 0). First, we
determine subintervals I1, I2, I3, I4 and I5.

I1 = 3
5 of the length from the right end of the interval [0, 1], i.e. I1 = [ 2

5 , 1
]

I2 = 2
5 of the length from the left end of the subinterval I1, i.e. I2 = [ 2

5 , 16
25

]
I3 = 3

5 of the length from the right end of the subinterval I2, i.e. I3 = [ 62
125 , 16

25

]
I4 = 3

5 of the length from the right end of the interval I3, i.e. I4 = [ 346
625 , 16

25

]
I5 = 2

5 of the length from the left end of the interval I4, i.e. I5 = [ 346
625 , 1838

3125

]
The width of subinterval I5 is equal to 108/3125. Let us note that it equals the probability
of generation of the considered encoded binary message sequence. Based on the width of
the subinterval, the length of the codeword k is determined from formula (1.46). Thus

k =
⌈

log2
3125

108

⌉
+ 1 = 6

The number M = 1784/3125 is the middle of subinterval I5. The binary expansion of the
number M is in turn equal to

1784

3125
= .100100 . . .

so, the binary sequence (b1, b2, . . . , bk) representing the encoded messsage sequence
(1, 0, 1, 1, 0) is (100100). Let us note that the number of bits in the codeword is higher
than the length of the binary message sequence itself. However, the arithmetic coding
becomes more effective when the message sequence gets longer.

Consider now the process of decoding the codeword (100100). The decoder knows that
the message sequence that is the subject of coding has the form (x1, x2, x3, x4, x5). The
decoder has received a 6-bit sequence, therefore k = 6. On that basis an approximate
value of the number M equal to M̂ = 1/2 + 1/16 = 9/16 is determined. In subsequent
steps the subintervals Ii (i = 1, 2, . . . , 5) are found in such a way that the number M̂ is
contained in them. Depending on whether a subsequent subinterval is the lower or upper
part of the preceding subinterval, the decoded message is equal to 0 or 1, respectively. So
the decoder subsequently determines:

• subinterval I1: out of two alternatives
[
0, 2

5

]
or

[ 2
5 , 1

]
the decoder selects the subinterval[ 2

5 , 1
]

because M̂ belongs to it; therefore x1 = 1;
• subinterval I2: out of two alternatives

[ 2
5 , 16

25

]
or

[ 16
25 , 1

]
the decoder selects the subin-

terval
[ 2

5 , 16
25

]
because M̂ belongs to it; therefore x2 = 0;

• subinterval I3: out of two alternatives
[ 2

5 , 62
125

]
or

[ 62
125 , 16

25

]
the decoder selects the subin-

terval
[ 62

125 , 16
25

]
because M̂ is contained in it; therefore x3 = 1;

• subinterval I4: out of two alternatives
[ 62

125 , 346
625

]
or

[ 346
625 , 16

25

]
the decoder selects the

subinterval
[ 346

625 , 16
25

]
because M̂ is contained in it; therefore x4 = 1;
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• subinterval I5: out of two alternatives
[ 346

625 , 1838
3125

]
or

[ 1838
3125 , 16

25

]
the decoder selects the

subinterval
[ 346

625 , 1838
3125

]
because M̂ is contained in it; therefore x5 = 0.

The example of arithmetic coding and decoding considered above has not brought spec-
tacular results – the codeword is longer than the encoded binary message sequence itself.
As we noted before, the arithmetic coding becomes effective in the case of much longer
message sequences, i.e. when the messages to be coded are emitted by the extensions of
the memoryless source with the extension level much higher than 5. One can prove that
if the source extension level n is sufficiently high, the average number of code symbols
per single encoded message, denoted as Ln/n, is contained within the limits

H(X) <
Ln

n
< H(X) + 2

n
(1.47)

Figure 1.14 illustrates the process of arithmetic coding and decoding of a binary message
sequence considered in the above example.

0 1

I1 I1

I2 I2

I3 I3

I4 I4

I5
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x3 = 1

x4 = 1

x5 = 0

x1 = 1

x2 = 0

x3 = 1

x4 = 1

x5 = 0

M

Decisions:

Coding Decoding

0 1

Figure 1.14 Illustration of arithmetic coding and decoding (subintervals rejected in the decoding
process are denoted by dashed lines)

1.6.5 Lempel-Ziv Algorithm

The source coding algorithm developed by Lempel and Ziv (Ziv and Lempel 1977, 1978)
belongs to the category of source coding methods resulting in a so-called dictionary code.
Lempel-Ziv encoding became the basis for data compression algorithms applied in the
UNIX operating system. Below we describe the operation of this algorithm in the version
presented in (Ziv and Lempel 1978).

Assume that the subject of coding is a certain message sequence. Source encoding of
such a sequence consists of a few steps. The first step is parsing of the message sequence
into phrases . In the second step each phrase is assigned an address in the phrase dictionary
built on the basis of messages encoded so far. The phrase dictionary changes dynamically
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along with the progress of sequence message coding. In the next step a codeword is
assigned to each already determined address. Finally, the codeword assigned to the mes-
sage sequence {x1, x2, . . . , xn} is a serial concatenation of the codewords assigned to the
subsequent addresses. Below we describe in detail the successive steps of the algorithm
and illustrate them with a simple example. The steps are:

1. Let the message sequence {x1, x2, . . . , xn} selected from the source alphabet X =
{0, 1, . . . , K − 1} be the subject of coding. This sequence is parsed into subsequent
phrases. The first phrase obtained in this way from the sequence {x1, x2, . . . , xn} is x1.
The second phrase is the shortest prefix of the sequence {x2, . . . , xn} that is not equal to
x1. Let it be the sequence {x2, . . . , xj }. The subsequent phrase is then the shortest prefix
of the sequence {xj+1, xj+2, . . . , xn} that is different from the previously obtained
phrases. Assume that l initial phrases B1, B2, . . . , Bl of the sequence {x1, x2, . . . , xn}
have already been determined. Denote the remaining part of the message sequence as
x(l). The next phrase Bl+1 received in the process of parsing the sequence x(l) is the
shortest prefix of sequence x(l) that is different from any of the previously derived
phrases B1, B2, . . . , Bl . In the case when there is no such prefix, Bl+1 = x(l) and the
process of parsing is finished.

2. Denote the sequence of phrases obtained in the process of parsing of the sequence of
messages {x1, x2, . . . , xn} as B1, B2, . . . , Bm. A pair of integers is assigned to each
phrase according to the following rule. Each phrase Bj of length equal to 1 is repre-
sented by a pair of numbers (0, Bj ). If the phrase length is higher than one, then the
phrase is represented by a pair (i, s), in which s is the last symbol in phrase Bj , while
i is the index of that phrase, which is identical in each symbol position of phrase Bj

except the last symbol of that phrase. Next, the indices Ij = Ki + s (j = 1, 2, . . . , m)
are generated based on the so-created pairs (i, s). Recall that K is the cardinality of
the alphabet of the message source, whereas m is the number of phrases obtained in
the previous step of the algorithm in which {x1, x2, . . . , xn} was parsed into phrases.

3. Assume that the previous step of the algorithm resulted in the indices I1, I2, . . . , Im.
In the current step of the algorithm these indices are changed into binary sequences,
which are concatenated and yield the codeword representing the message sequence
{x1, x2, . . . , xn}. Each integer Ij (j = 1, 2, . . . , m) receives a binary representation that
is preceded by a sequence of zeros of such length that the number of bits representing
index Ij is equal to

⌈
log2(Kj)

⌉
. Denote the received binary sequence as Cj . The

number of bits of this sequence results from determination of the maximum possible
value of the index Ij . Assume that sequence Cj has been created on the basis of
the integer pair (i, s). Thus, the maximum value of i is j − 1, whereas s can take the
maximum value equal to K . Then the maximum value of the index Ij is equal to K(j −
1) + (K − 1) = Kj − 1 and the number of bits necessary for binary representation of
that number is exactly

⌈
log2(Kj)

⌉
. In the end, the codeword assigned to message

sequence {x1, x2, . . . , xn} achieves the form (C1, C2, . . . , Cm).

Let us illustrate the formal description of the algorithm with the following example.

Example 1.6.8 Let the subject of coding be the message sequence of the form

1010110100100
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so the source has a binary alphabet X = {0, 1} and its cardinality is K = 2. The subsequent
phrases achieved in the first step of the algorithm have the form

B1 = (1), B2 = (0), B3 = (1, 0), B4 = (1, 1),

B5 = (0, 1), B6 = (0, 0), B7 = (1, 0, 0)

Integer pairs (i, s) corresponding to the received phrases are

(0, 1), (0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (3, 0)

In turn, the indices corresponding to the received phrases are in this case determined by
the formula Ij = 2i + s and they are equal to

I1 = 1, I2 = 0, I3 = 2, I4 = 3, I5 = 5, I6 = 4, I7 = 6

The lengths of the codewords Cj received from the binary representation of indices Ij

supplemented from the left side by an appropriate number of zeros are calculated from the
formula

⌈
log2(2j)

⌉
and they are respectively equal to

1, 2, 3, 3, 4, 4, 4

In consequence, knowing the lengths of the codewords Cj and the values of indices Ij the
codewords can be determined as

C1 = (1), C2 = (0, 0), C3 = (0, 1, 0), C4 = (0, 1, 1),

C5 = (0, 1, 0, 1), C6 = (0, 1, 0, 0), C7 = (0, 1, 1, 0)

Summarizing, the binary message sequence 1010110100100 is assigned the following code
sequence

(C1, C2, C3, C4, C5, C6, C7) = (1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0)

As we see, also in this example the length of the codewords exceeds the length of the
binary message sequence that is the subject of coding. However, this is the case for short
message sequences only. The algorithm becoms effective for long mesage sequences. It
can be proved that the following condition is fulfilled for the Lempel-Ziv encoding

H(X) ≤ Ln

n
≤ H(X) + ρK

log2 n
(1.48)

where ρK is a positive constant depending on the cardinality K of the source alphabet.
Generally, the Lempel-Ziv algorithm is a suboptimal procedure. However, it has a

meaningful advantage – it does not depend on the properties of the message source.
Because of this feature the Lempel-Ziv code is called a universal code.
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1.6.6 Case study: Source Coding in Facsimile Transmission

A facsimile (fax) machine is a device that converts black and white pictures into binary
sequences, performs their compression and, finally, using a transmission device called
a modem , sends them to the receiver. In the receiver, the received binary sequences
are decompressed and the printing device maps them back into a black and white pic-
ture. Note that compression of the binary sequence is virtually the same as a source
coding.

Fax transmission is standardized by the recommendations issued by the International
Telecommunication Union (ITU). Two fax standards denoted as T4 and T6 are currently
applied. They set the rules of operation of faxes from Group 3 and Group 4 related to
the Public Switched Telephone Network (PSTN) and Integrated Services Digital Network
(ISDN), respectively.

In a typical fax machine, a picture to be processed is divided into primary elements
called pixels with a resolution of 100 or 200 lines per inch (3.85 or 7.7 lines per mil-
limeter). Let a white pixel be represented by the digit “0” and a black pixel by the digit
“1”. In consequence, a single A4 page is equivalent to about two million binary digits.
During the analysis of subsequent lines of a picture with the above-mentioned resolution
one can easily see that the binary sequence representing one line is either dominated by
long sequences of zeros or by zeros or ones grouped in blocks. These observations refer
to a typical form of scanned document featuring a black text or black drawings with
geometical lines against a white background. These features are taken into account in the
choice of coding method used to compress the binary sequence received in the process of
scanning (processing of the sampled picture). The source code applied in the transmitter
belongs to the so-called run-length codes in which the subject of encoding is the length
of sequence of identical digits.

The data compressing block applies two code tables: the first one containing the
so-called termination code sequences (Figure 1.15) and the second one the make-up code
sequences (Figure 1.16). Both tables have been derived on the basis of Modified Huff-
man (MH) coding. In general, encoding relies on representing the length of bit sequence
of the same kind in an effective manner by decomposing this length into two compo-
nents: the largest possible natural number from the list of lengths in the make-up code
sequences and the complementing number from the terminating code sequences, which
is in the range 0–64. For example, the sequence of 140 black pixels occurring in a
single line can be written in the form of two components, 128 + 12. From the table of
make-up code sequences we find a code sequence associated with the number 128, which
is 000011001000, whereas in the table of termination code sequences we find a code
sequence associated with the number 12, which is a sequence 0000111. Summarizing, the
block of 140 black pixels, which without compression would be represented by 140 “1”s,
is compressed to the form 0000110010000000111. Therefore the number of bits that have
to be sent to the receiver decreases from 140 to 19.

Let us note that the last element of the make-up code sequence table is a codeword
associated with the control message denoting the end of line – EOL (End-of-Line). In
Group 3 fax error protection is not applied and each scanned line is independently encoded.
Therefore, if one or more bits in the code sequences representing a given line are received
erroneously, then the decoder starts to parse the received binary sequence into code
sequences in an erroneous manner. The EOL codeword is applied, among others, to
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Figure 1.15 Table of termination code sequences for white and black pixel sequences

recover synchronism. If the decoder is not able to identify a valid codeword after a
sequence of bits of length equal to the maximum code length, it starts to look for the
EOL sequence. In turn, if after an assumed number of decodable lines the decoder is not
able to find the EOL sequence, the decoding process is interrupted and the transmitter
is notified about this event. A single EOL codeword precedes the codewords of each
scanned page, whereas a sequence of six EOL codewords indicates the end of a page.

Besides the Modified Huffman coding described above, some more sophisticated fax
machines additionally use Modified Read coding. Line processing is performed in blocks
of a few lines. The first line in the block is encoded in conformance with MH coding,
described above. The next line in the processed block is compared with the previous one
and their difference is the subject of encoding. This is an effective solution as most lines
differ little from their predecessor. Such an approach is continued until the last line in
the block is processed. The whole procedure is repeated in the next blocks of lines. The
number of lines in a block is two for standard resolution and four in higher resolution
fax machines.
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Figure 1.16 Table of make-up code sequences for white and black pixel sequences

This kind of source coding algorithm is effective for scanning and coding documents
featuring the above-mentioned properties. However, if the subject of source coding were
a black and white photograph in which grey levels are achieved by the intensity of black
pixels, the length of the code sequence received due to compression would be higher than
that of the uncoded binary sequence. This is caused by the fact that very short binary
sequences dominate in the sampled lines and such sequences are assigned long codewords.

The source coding algorithms presented in the above sections cover a few basic coding
methods only. All of them belong to the methods of lossless encoding . This means that
on the basis of correctly received codewords the receiver is able to recover a message
sequence identical to that produced on the transmitting side. In turn, coding of still and
moving pictures or sound coding is often matched to the human eye or ear perception
properties. In such cases the amount of information needed to recover the picture or sound
at the receiver can be substantially lower without subjective quality deterioration declared
by the recipient. The coding methods that use this fact are called lossy coding . This is an
interesting domain of digital signal processing that is outside the scope of this book.

1.7 Channel Models from the Information Theory Point of View

So far in the course of information theory we have considered message source models
and source encoding. The next block of a communication system that requires our study
is a channel encoder, however the topics related to channel coding are so broad that most
of them are presented in the next chapter. Instead we will concentrate our attention on
the next block in the communication system block chain: a channel and its models. The
channel models reflect the influence of physical properties of the transmission channel



 

Elements of Information Theory 45

and all the elements of the communication system that are hidden in the joint block, often
called a channel . Below we present the simplest but most important channel models.

1.7.1 Discrete Memoryless Channel

A discrete memoryless channel is a channel model describing the statistical dependence
of the input symbols X on the channel output symbols Y . From a statistical point of view
X and Y are random variables. In each time instant the channel accepts and subsequently
transmits a single symbol X selected from the input symbol alphabet X . As a result, a
single output symbol Y from alphabet Y appears on the channel output. If the alphabets
X and Y are finite, then the channel is discrete. The channel is memoryless if the cur-
rent output symbol Y depends exclusively on the current input symbol X, and does not
depend on the previous input symbols. Formalizing the above statements, let us present
the following definition of a discrete memoryless channel model.

Definition 1.7.1 A discrete memoryless channel model is a statistical model of a channel
determined by the following elements:

• the input symbol alphabet X = {x1, x2, . . . , xJ };
• the output symbol alphabet Y = {y1, y2, . . . , yK};
• the set of transition probabilities P(yk|xj ) = Pr{Y = yk|X = xj }, for k = 1, . . . , K,

j = 1, . . . , J .

The cardinality of input and output alphabets does not need to be the same. In prac-
tice, we usually have K ≥ J . The transition probabilities P(yk|xj ) describe statistical
properties of the channel and are often presented in matrix form, as in formula (1.49)

P =


P(y1|x1) P (y2|x1) . . . P (yK |x1)

P (y1|x2) P (y2|x2) . . . P (yK |x2)
...

...
...

...

P (y1|xJ ) P (y2|xJ ) . . . P (yK |xJ )

 (1.49)

Matrix P is called a channel matrix or transition matrix . Each matrix row is associated
with a single input symbol. In turn, each column is related to a single output symbol.
Because for each generated channel input symbol a single output symbol is received, the
following equality holds

K∑
k=1

P(yk|xj ) = 1 for j = 1, 2, . . . , J (1.50)

As we see, the sum of probabilities in a single row is equal to unity.
For simplicity, denote P(xj ) = Pr{X = xj }, j = 1, 2, . . . , J . Then the probability of

occurrence of a particular output symbol can be calculated on the basis of the formula

Pr{Y = yk} = P(yk) =
J∑

j=1

P(yk|xj )P (xj ) (1.51)
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Let us temporarily assume that the numbers of channel input and output symbols are
the same, i.e. K = J . Assume that if the index of the received channel output symbol
is the same as the index of the transmitted channel input symbol, then the reception is
correct. If the reception correctness were described by another relation between the input
and output symbols, then we would be able to renumerate the output symbols in such a
way that the condition j = k would reflect the correct reception. The reception is incorrect
if k �= j . In consequence of the above assumptions, the probability of incorrect reception,
i.e. of an error, can be determined from the formula

P(E) =
K∑

k=1,k �=j

J∑
j=1

Pr{Y = yk, X = xj } =
K∑

k=1,k �=j

J∑
j=1

P(yk|xj )P (xj ) (1.52)

It is often easier to calculate this probability by deriving the probability P(C) of the
correct reception first. Namely, we have

P(E) = 1 − P(C) = 1 −
K∑

k=1

Pr{Y = yk, X = xk}

= 1 −
K∑

k=1

P(yk|xk)P (xk) =
K∑

k=1

P(xk) −
K∑

k=1

P(yk|xk)P (xk)

=
K∑

k=1

[
1 − P(yk|xk)

]
P(xk) =

K∑
k=1

P(E |xk)P (xk) (1.53)

The probability P(xk) of generation of a given input symbol xk is often called a priori
probability .4

1.7.2 Examples of Discrete Memoryless Channel Models

Below we present a few basic discrete memoryless channel models. Despite their sim-
plicity they are often used as a tool in selection of a channel code and its decoding
method.

1.7.2.1 Binary Symmetric Memoryless Channel

A binary symmetric memoryless channel is the most common channel model. In this
model we assume that both the input and output symbol alphabets are binary (often
described by symbols “0” and “1”), and subsequent output symbols are dependent only
on single input symbols. As we remember, this is a statistical description of the absence
of channel memory. Adoption of model symmetry results in assuming the same statistical
channel behavior in the case of generation of symbols “0” and “1”. The binary symmetric
memoryless channel is presented in Figure 1.17a. The arrows illustrate the occurrence of

4 The term a priori originates from the Latin language and denotes something given in advance, before experienc-
ing it.
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Figure 1.17 Models of binary memoryless channels: (a) binary symmetric channel; (b) another
form of binary symmetric channel with binary error source; (c) binary erasure channel

the output symbol depending on the generated input symbol, with appropriate transition
probabilities placed above them. For our channel model we have

Pr{Y = 0|X = 0} = P(0|0) = 1 − p Pr{Y = 0|X = 1} = P(0|1) = p

Pr{Y = 1|X = 0} = P(1|0) = p Pr{Y = 1|X = 1} = P(1|1) = 1 − p

Let us now calculate the probability of error. Denoting the a priori probabilities of the
input symbols as Pr{X = 0} = α and Pr{X = 1} = 1 − α, respectively (as we know, the
sum of probabilities of occurrence of all the input symbols is equal to unity), we obtain

P(E) = Pr{Y = 1|X = 0} Pr{X = 0} + Pr{Y = 0|X = 1} Pr{X = 1}
= pα + p(1 − α) = p (1.54)

The model shown in Figure 1.17a presents the channel operation in a single moment.
In Figure 1.17b another form of binary symmetric memoryless channel is presented. In
subsequent moments, indexed by n, the input symbols xn take on the value “0” or “1”.
The occurrence of errors in the channel is modeled by the exclusive-or addition of the
input symbol with the binary error symbol en. If an error occurs in the channel, the error
source generates the symbol en = 1, otherwise en = 0. As we know from formula (1.54),
the probability of error is equal to p, so the error source is a binary digit generator that
emits “1”s statistically independently of other symbols, with the probability p.

The model seems to be highly abstract. However, in practice many channel codes,
and in particular decoding algorithms, are constructed by taking into account such an
error source model. Very often errors in real communication channels are not uniformly
distributed in time, but they are grouped in error bursts . Thus, there are time intervals for
which the error probability is high and intervals in which error bursts do not happen. A
remedy for this disadvantageous situation is the application of a so-called interleaver at
the transmitter and deinterleaver at the receiver. They are blocks that perform mutually
dual operations. The interleaver changes the order of the sequence of transmitted channel
input symbols, whereas the deinterleaver recovers the initial order of the sequence of
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Figure 1.18 Application of interleaver and deinterleaver in spreading of error bursts

input symbols operating on the channel output symbols. Both operations compensate
each other with respect to the data symbols; however, the error sequence is the subject
of deinterleaving only. Thus the error bursts occurring in the channel are spread in time
and become almost independent statistically. Figure 1.18 illustrates a general rule of
interleaving and deinterleaving. Owing to this idea the binary symmetric memoryless
channel model remains valuable, despite the fact that the errors occurring in the channel
are bursty and therefore statistically dependent.

1.7.2.2 Binary Symmetric Erasure Channel

Figure 1.17c presents a binary symmetric erasure channel. As we see, the number of
different output symbols is increased to three. Besides the symbols “0” and “1” there
is a third symbol denoted by “e” , called erasure. This symbol reflects the situation in
which the receiver is not able to perform detection and decide if the received symbol
is “0” or “1”. This can occur if there is a transmission outage or if another transmitter
placed in the receiver’s vicinity temporarily saturates this receiver. This model does not
take into account the possibility of conversion of “0” into “1” or vice versa. Derivation
of error probability is very simple and leads to the same result as in the case of a
binary symmetric memoryless channel. Namely, assuming again that Pr{X = 0} = α and
Pr{X = 1} = 1 − α we have

P(E) = Pr{Y = e|X = 0}α + Pr{Y = e|X = 1}(1 − α)

= pα + p(1 − α) = p (1.55)

1.7.2.3 Memoryless Channel with Binary Input and m-ary Output

The memoryless binary input m-ary output channel model is more and more often used in
the analysis of digital communication systems with channel coding. As we remember, in
the binary memoryless channel model the output symbols are binary. This model reflects
the cases in which the demodulator, supplemented with a decision device, produces binary
decisions. Thus, the channel decoder loses a part of the knowledge that otherwise could
be used in the channel decoding. An important step towards avoiding this drawback is the
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Figure 1.19 Binary input 8-ary output channel model

application of a decision device that not only generates binary decisions but also gives an
additional measure of decision quality. An example of such an approach is the application
of an m-level quantizer replacing the binary one. The simplest model of such a system
is shown in Figure 1.19a. The binary symbols are transmitted in the form of pulses
of amplitude ±A, which are distorted by an additive noise. A sample of a signal that
undergoes m-ary quantization is taken once per single pulse duration. In Figure 1.19b
the quantization thresholds of an 8-level quantizer are shown against the background
of conditional probability density functions of the channel output samples, whereas in
Figure 1.19c a corresponding channel model is drawn. The transition probabilities for a
particular input and output signal pair (not shown above the arrows showing appropriate
transitions in Figure 1.19c) are given by the area limited by the appropriate conditional
probability curve and neighboring quantization thresholds. The selection of the optimum
quantization thresholds will not be considered here. The described model is an example
of the channel model applied in situations in which the decision device generates soft
decisions when our knowledge about received symbols is larger than the decided binary
values only.

1.7.3 Example of a Binary Channel Model with Memory

As we said before, in some communication channels errors tend to appear in bursts. It
happens in particular on radio channels featuring fading. The channel in the fading phase
is characterized by a low signal-to-noise power ratio, which leads, as we will learn later
in this book, to a high error probability. The channel that is not suffering from fading in
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Figure 1.20 Gilbert-Elliot model

a given moment features a higher signal-to-noise power ratio, so the error probability at
the receiver is lower. Evolution from one state to the other has a random and dynamic
nature, therefore the channel model has to take into account the memory of the channel
state. The simplest statistical channel model that reflects this situation is the Gilbert-Elliot
model (Bossert 1999) shown in Figure 1.20.

The channel can be in one of two states: a good one (G) or a bad one (B). Transition
from good to bad state occurs with the probability 1 − pG, whereas transition in the
opposite direction occurs with the probability 1 − pB . The channel remains in a good
state with the probability pD , and in a bad state with the probability pB . When the
channel remains in a good state the binary memoryless symmetric channel with a low
error probability p is applied. Transition to bad state B implies a change of the properties
of the binary memoryless symmetric channel model, resulting in an increase of the error
probability to q � p. As we see in Figure 1.20, the transition state diagram of the channel
model resembles the state diagram of the Markov source.

The Gilbert-Elliot model is one of the simplest channel models with memory. Determi-
nation of the probabilities p, q, pB and pG is often performed on the basis of long-lasting
observation of occurrence of errors and their statistical grouping in bursts. However, we
have to stress that if the delay introduced by the communication system is not of the
first importance, the best solution is application of the interleaver in the transmitter and
the deinterleaver in the receiver in order to turn these blocks, jointly with the channel
with memory, into the memoryless channel with statistically independent errors. Most of
the channel codes and associated decoding algorithms are designed for the latter channel
model.

1.8 Mutual Information

Below we introduce the term mutual information , which will be applied in the course
of this chapter to determine the limits of channel parameters. This concept has a very
general meaning; however, for practical reasons we will relate it to the characteristics of
input and output channel symbols X and Y , respectively.

Since each input symbol xj (j = 1, 2, . . . , J ) is given to the channel input with a
specified probability, it is possible to determine the entropy H(X ) of the input symbol
alphabet X . Intuitively, the entropy H(X ) is a measure of the observer’s uncertainty
with respect to the occurrence of a channel input symbol. It is obviously maximum if all
the input symbols are equiprobable. In relation to this fact the question arises as to how
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the observation of a channel output symbol influences the uncertainty (or knowledge,
respectively) of the observer about the symbol given to the channel input. In order to
answer this question we introduce the notion of conditional entropy .

Assume that a specific symbol yk has been observed at the channel output. The input
symbol entropy conditioned on the observation of that output symbol is determined by
the formula

H(X |Y = yk) =
J∑

j=1

P(xj |yk) log
1

P(xj |yk)
(1.56)

If we average this formula with respect to all possible output symbols, we end up with
the following expression describing the conditional entropy

H(X |Y) =
K∑

k=1

H(X |Y = yk)P (yk)

=
K∑

k=1

J∑
j=1

P(xj |yk)P (yk) log
1

P(xj |yk)

=
K∑

k=1

J∑
j=1

P(xj , yk) log
1

P(xj |yk)
(1.57)

We can state once more that H(X |Y) represents the observer’s uncertainty with respect to
the channel input symbols X that remains after observation of the output symbols Y . Since,
as we remember, H(X ) represents the observer’s uncertainty before his/her observation
of the channel output (a priori ), the difference H(X ) − H(X |Y) represents the value
by which the observer’s uncertainty with respect to an input symbol has decreased after
observation of the appropriate channel output symbol. Let us note that this value has a
meaning of an average amount of information about the channel input symbol gained
by the observer on the basis of the channel output symbol. Due to the above-presented
properties, the value H(X ) − H(X |Y) is called an average amout of mutual information ,
or in short mutual information , and is denoted by I (X ;Y). It can be also interpreted in the
following way: the observer needs, on average, H(X ) bits of information to determine a
channel input symbol. However, after observing a channel output symbol he/she needs on
average only H(X |Y) bits of information to determine which channel input symbol caused
the appearance of the observed channel output symbol. Thus, one can say that observation
of a single channel output symbol results in gaining, on average, H(X ) − H(X |Y) bits of
information. Applying the expressions describing the a priori and conditional entropies in
the expression I (X ;Y) = H(X ) − H(X |Y) results in the following formula for mutual
information

I (X ;Y) = H(X ) − H(X |Y)

=
J∑

j=1

P(xj ) log
1

P(xj )
−

K∑
k=1

J∑
j=1

P(xj , yk) log
1

P(xj |yk)
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Knowing that P(xj ) =
K∑

k=1
P(xj , yk) we obtain

I (X; Y ) =
K∑

k=1

J∑
j=1

P(xj , yk)

(
log

1

P(xj )
− log

1

P(xj |yk)

)

=
K∑

k=1

J∑
j=1

P(xj , yk) log
P(xj |yk)

P (xj )
(1.58)

1.9 Properties of Mutual Information

Mutual information is characterized by the following properties.

Property 1.9.1 Mutual information is symmetric, i.e.

I (X ;Y) = I (Y;X ) (1.59)

Proof. Knowing that mutual information I (X ;Y) is determined by formula (1.58) and
using Bayes’ formula in the following form

P(xj |yk) = P(xj , yk)

P (yk)
= P(yk|xj )P (xj )

P (yk)

we obtain

I (X ;Y) =
K∑

k=1

J∑
j=1

P(xj , yk) log
P(yk|xj )P (xj )

P (yk)P (xj )

=
K∑

k=1

J∑
j=1

P(xj , yk) log
P(yk|xj )

P (yk)
= I (Y;X ) (1.60)

Property 1.9.2 Mutual information is non-negative, i.e. I (X ;Y) ≥ 0.

Proof. In order to prove this property we will apply the following property, previously
used in the course of our lecture. It states that if Pi and Qi denote probabilities (i.e.
Pi ≥ 0, Qi ≥ 0,

∑
i Pi = 1,

∑
i Qi = 1), then the following inequality holds∑

i

Pi log
Qi

Pi

≤ 0 i.e.
∑

i

Pi log
Pi

Qi

≥ 0 (1.61)

As we remember, the equality occurs when
∧
i

Pi = Qi . Applying the formula for con-

ditional probability in (1.58), we obtain

I (X ;Y) =
K∑

k=1

J∑
j=1

P(xj , yk) log
P(xj |yk)

P (xj )
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=
K∑

k=1

J∑
j=1

P(xj , yk) log
P(xj , yk)

P (xj )P (yk)
(1.62)

Comparing (1.62) with (1.61) we note that P(xj , yk) can be interpreted as Pi in (1.61)
whereas the product of probabilities P(xj )P (yk) can be interpreted as Qi . Summation
with respect to both indices, j and k, exhausts the whole set of probabilities. Then, on
the basis of (1.61), it becomes obvious that I (X; Y ) ≥ 0.

Let us note that mutual information is equal to zero if and only if for each index k and
j the following equality holds: P(xj , yk) = P(xj )P (yk). This means that channel input
and output symbols are statistically independent. In practice it means that the channel acts
in such a way that there is no dependence of channel output symbols on those given to
its input. From the point of view of information transfer, such a channel is useless.

From Property 1.9.1 and the general formula describing mutual information, the fol-
lowing property can be deduced:

Property 1.9.3 Mutual information can be determined from the formula

I (X ;Y) = H(Y) − H(Y|X ) (1.63)

Let us illustrate the above-mentioned properties of mutual information with the follow-
ing example.

Example 1.9.1 Let us calculate mutual information for input and output of a binary sym-
metric memoryless channel. Recall that a binary symmetric memoryless channel is depicted
in Figure 1.17a. In calculations of mutual information we will use Property 1.9.3. Assume
that Pr{X = 0} = α, which results in Pr{X = 1} = 1 − α = α. Let us start with the calcu-
lation of the conditional entropy H(Y|X ). Using formula (1.57) we have

H(Y|X ) =
2∑

k=1

2∑
j=1

P(yk|xj )P (xj ) log
1

P(yk|xj )

= α

(
p log

1

p
+ p log

1

p

)
+ α

(
p log

1

p
+ p log

1

p

)
= (α + α)

(
p log

1

p
+ p log

1

p

)
= H(p) (1.64)

As we see, the conditional entropy depends only on the channel properties and it does
not depend on the channel input symbol statistics. Let us calculate now the entropy of
the channel output symbols. For this purpose we have to determine the channel output
probabilities, which are equal to (see Figure 1.17a)

Pr{Y = 0} = Pr{Y = 0|X = 0} Pr{X = 0} + Pr{Y = 0|X = 1} Pr{X = 1}
= pα + pα
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Pr{Y = 1} = Pr{Y = 1|X = 0} Pr{X = 0} + Pr{Y = 1|X = 1} Pr{X = 1}
= pα + p α = 1 − Pr{Y = 0} (1.65)

Since in our channel model there are only two input symbols, the probability of one of them
is the complement to unity of the probability of the other one. As a result, the entropy of the
channel output symbols H(Y) is the entropy function of the argument Pr{Y = 0} calculated
from formula (1.65). Therefore, H(Y) = H(pα + pα). Finally, mutual information of the
input and output channel symbols for the binary symmetric memoryless channel is

I (X ;Y) = H(pα + pα) − H(p) (1.66)

Mutual information is shown graphically in Figure 1.21 with the entropy function in the
background. Let us note that if the error probability in a binary symmetric memoryless
channel is lower than 1/2, then pα + pα >p, so, taking into account the shape of the
entropy function, we find that the difference of entropies in formula (1.66) is positive. The
case in which p = 1/2 is the only one for which the arguments of both entropy functions
are identical, therefore their difference is zero. In conclusion, if the error probability in a
binary symmetric memoryless channel is p = 1/2, then the average amount of information
transferred by the channel is zero.

0

1

1 w

H (w)

p ap + ap

I(X;Y )

Figure 1.21 Illustration of calculations of average amount of mutual information in the case of
transmission over a binary symmetric memoryless channel

1.10 Channel Capacity

Consider once more a discrete memoryless channel model characterized by the input
symbol alphabet X , the output symbol alphabet Y and the set of transition probabili-
ties P(yk|xj ) (k = 1, 2, . . . , K, j = 1, 2, . . . , J ). The conclusion that can be drawn from
equation (1.60) leads us to the statement that mutual information I (X ;Y) can be expressed
as a function of the probabilities of input and output symbols as well as transition



 

Elements of Information Theory 55

probabilities. Thus, it can be calculated using the formula

I (X ;Y) =
K∑

k=1

J∑
j=1

P(xj , yk) log
P(yk|xj )

P (yk)

Knowing that P(xj , yk) = P(yk|xj )P (xj ) and P(yk) =
J∑

j=1
P(yk|xj )P (xj ) we are able

to express I (X ;Y) using exclusively the input symbol probabilities and transition prob-
abilities. Namely we have

I (X ;Y) =
K∑

k=1

J∑
j=1

P(yk|xj )P (xj ) log
P(yk|xj )

J∑
l=1

P(yk|xl)P (xl)

(1.67)

The transition probabilities are known in advance because they characterize the channel.
Thus, mutual information is influenced only by the channel input symbol probabilities,
which in turn can result from particular procedures of source or channel coding. There-
fore, the following question arises: What are the values of input symbol probabilities for
which the average amount of mutual information is maximum? This maximum simul-
taneously determines the maximum amount of information that can be transmitted on
average through the channel by sending a single input symbol and receiving a single out-
put symbol. This value is called channel capacity . The channel capacity C of a discrete
memoryless channel is given by the formula

C = max
{P (xj )}

I (X ;Y) (1.68)

Formally the channel capacity C is a maximum of mutual information calculated with
respect to the input symbol probability distribution for a single channel use. From a
mathematical point of view, calculation of the channel capacity is an optimization problem
with constraints. These constraints result from the fact that the set of arguments for
which the maximum is searched is a set of probabilities, so it fulfills the conditions

P(xj ) ≥ 0 (j = 1, 2, . . . , J ) and
J∑

j=1
P(xj ) = 1. In a general case, finding the maximum

can be a very complicated problem.

Example 1.10.1 Let us calculate the capacity of a binary symmetric memoryless channel.
Let us denote, as previously, the probability of the zero input channel symbol as α. Thus,
the probability of channel input symbol 1 is 1 − α. As we see, the independent variable
with respect to which the optimization is performed is exclusively α. Taking into account
Example 1.9.1 and formula (1.66) we conclude that the capacity of this channel is given
by the formula

C = max
α

[
H(pα + pα) − H(p)

]
(1.69)
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The second term of expression (1.69) does not depend on α; therefore, maximization of
(1.69) reduces to the derivation of such a value α for which H(pα + pα) approaches the
maximum. As we remember, the entropy function reaches its maximum if its argument is
equal to 1/2. A simple inspection of the expression pα + pα allows us to conclude that for
α = 1/2, independently of the value of p, the expression pα + pα takes the value exactly
equal to 1/2. Eventually, we obtain a formula for the capacity of a binary symmetric
memoryless channel

C = 1 − H(p) (1.70)

Figure 1.22 presents the plot of capacity of this channel versus channel error probability
p. As we see, the maximum capacity of such a channel would be equal to one bit per
symbol and would be reached if the channel error probability were equal to zero. Since
an appropriate system design results in a decrease of the error probability, the channel
capacity is maximized at the same time.

0
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1 w

C(w)

p

C

Figure 1.22 Capacity of the binary symmetric memoryless channel versus error probability p

1.11 Decision Process and its Rules

1.11.1 Idea of Decision Rule

When receiving a sequence of symbols at the channel output we usually wish to get to
know the sequence of symbols given to the channel input in order to determine which
messages have been generated by the message source. For this purpose we have to apply a
projection in which all the channel output symbols are assigned the channel input symbols.
Therefore, we introduce the notion of a decision rule.

Definition 1.11.1 Consider a discrete memoryless channel model with the input alphabet
containing J symbols and the output alphabet consisting of K symbols. A function d(yk)

that unambiguously assigns an input symbol to each output symbol yk is called the decision
rule.



 

Elements of Information Theory 57

There are JK possible unambiguous assignments of K output symbols to J input
symbols, therefore there are JK different decision rules. In this context the following
question arises: Which rule should be selected? In order to answer this question we must
propose a selection criterion.

The basic quality measure of a digital communication system is the probability of an
erroneous decision about the transmitted symbol performed in the receiver on the basis
of the received symbol. Therefore the decision rule should minimize the probability of
an erroneous decision. Let the channel input symbol x∗ = d(yk) be selected according
to the established decision rule when the received channel output symbol is yk . There is
an error event if, on reception of symbol yk, a symbol xj different from x∗ = d(yk) has
been fed to the channel input. Thus, the error probability can be, as in expression (1.53),
determined from the following formula

P(E) = 1 − P(C) = 1 −
K∑

k=1

Pr{X = d(yk), Y = yk}

Therefore

P(E) = 1 −
K∑

k=1

P
(
d(yk)|yk

)
P(yk) =

K∑
k=1

P(yk) −
K∑

k=1

P
(
d(yk)|yk

)
P(yk)

=
K∑

k=1

[
1 − P

(
d(yk)|yk

)]
P(yk) =

K∑
k=1

P(E |yk)P (yk) (1.71)

where the probability of the decision error conditioned on reception of the output symbol
yk is P(E |yk) = 1 − P

(
d(yk)|yk

)
. Analysis of formula (1.71) indicates that because all

terms of the form P(E |yk) in the sum are non-negative, the error probability is minimum
if the decision rule is selected in such a way that for each k the conditional probability
P(E |yk) is minimized. It is a very important observation, which leads us to the Maximum
a Posteriori Probability (MAP) decision rule.5

1.11.2 Maximum a Posteriori Probability (MAP) Decision Rule

Minimization of the conditional probability P(E |yk) for each k is equivalent to maximiza-
tion of the conditional probability P(d(yk)|yk). Thus, the MAP – Maximum a Posteriori
Probability – rule relies on the choice of such a channel input symbol x∗ = d(yk), for
which the following inequality holds

P(x∗|yk) ≥ P(xj |yk) for j = 1, 2, . . . , J (1.72)

However, we conclude from Bayes’ formula that

P(xj |yk) = P(yk|xj )P (xj )

P (yk)

5 Expression a posteriori denotes “after experience”, which in our particular case means after observation of the
channel output symbol.
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so we can write

P(yk|x∗)P (x∗)
P (yk)

≥ P(yk|xj )P (xj )

P (yk)
(1.73)

Since P(yk) occurs in the denominator on both sides of inequality (1.73), this value does
not influence the result of the comparison. Therefore the equivalent form of the MAP rule
is described by the inequality

P(yk|x∗)P (x∗) ≥ P(yk|xj )P (xj ) forj = 1, 2, . . . , J (1.74)

Let us note that channel transition probabilities and a priori probabilities of the input
symbols appear in expression (1.74), as opposed to formula (1.72). Therefore, the MAP
rule in the version shown by (1.74) is much more useful than that described by formula
(1.72).

1.11.3 Maximum Likelihood Decision Rule

If the channel input symbols are equiprobable, the MAP rule expressed by formula (1.74)
can be further simplified and it takes the form

P(yk|x∗) ≥ P(yk|xj ) (1.75)

Sometimes the decision rule given by (1.75) is applied even though the channel input
symbol probabilities are unknown to the receiver. In that case (1.75) is a suboptimum
procedure and it is called the Maximum Likelihood (ML) decision rule. This rule is applied
in data detection in many receivers. It is often used as a base of decoding algorithms for
channel code decoding.

Let us consider a simple example of the ML decision rule setting.

Example 1.11.1 Let us consider a discrete memoryless channel model with input and
output symbol alphabets of equal size. Let J = K = 3. Let the channel transition matrix
for the considered channel have the form

P =
 0.7 0.2 0.1

0.3 0.6 0.1
0.1 0.4 0.5


As we remember, the columns of the channel transition matrix P = [P(yk|xj )] (j =
1, . . . , J , k = 1, . . . , K) are associated with the same output symbol, whereas the rows
are associated with the same input symbol. Therefore, applying decision rule (1.75) in
which a given output symbol has to be assigned the input symbol for which the transition
probability is maximum, we obtain

d(y1) = x1, d(y2) = x2, d(y3) = x3
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From first glance it seems that both MAP and ML rules are quite abstract from the
implementation point of view; however, as we will learn, application of the ML decision
rule leads to highly practical solutions.

So far we have considered a discrete memoryless channel model. Let us focus for a
moment on one particular case, i.e. on the channel model with binary input and continuous
output. This channel model additionally supplemented with the quantizer is shown in
Figure 1.19a. Let yn be the unquantized channel output at the nth timing instant and let
the input symbol xn = ±A. Since the channel output can take continuous values, the ML
decision rule changes its form to

p(yn|xn = A) ≶ p(yn|xn = −A) (1.76)

As we see, conditional probabilities have been replaced by appropriate conditional prob-
ability density functions. The receiver selects the value, +A or −A, for which the
conditional probability density function is higher. The decision rule will obviously remain
the same if both sides of (1.76) are replaced by their natural logarithms, i.e.

ln p(yn|xn = A) ≶ ln p(yn|xn = −A) (1.77)

or, equivalently, if we calculate the expression

�(yn) = ln
p(yn|xn = A)

p(yn|xn = −A)
(1.78)

and check if it is higher or lower than zero. The function �(yn) given by (1.78) is called
the Log-Likelihood Ratio (LLR) function and is an alternative tool in performing the ML
decision rule. For common probability density functions the general expression (1.78)
can be significantly simplified. For example, consider the channel model with an additive
Gaussian noise source, which is shown in Figure 1.19a. The conditional probability density
functions of a Gaussian shape are given in Figure 1.19b and are described by the formula

p(yn|xn) = 1√
2πσ

exp

[
− (yn − xn)

2

2σ 2

]
(1.79)

For this example the LLR function reduces to

�(yn) = ln

1√
2πσ

exp

[
− (yn − A)2

2σ 2

]
1√

2πσ
exp

[
− (yn + A)2

2σ 2

] = 2A

σ 2
yn (1.80)

The reader is asked to perform a simple derivation leading to the right-hand side of (1.80).
The additive noise variance is denoted by σ 2. As we see, in the particular case of bipolar
transmission6 the ML criterion using the LLR function is reduced to checking if yn is
positive or negative.

6 We call that transmission bipolar if data symbols take the form ±A.
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Now let us consider a binary symmetric memoryless channel with the error probabil-
ity p < 1/2. Let the channel transmit a block of n subsequent binary symbols. Let us
treat this block as a whole. Thus, we can state that we deal with a discrete memoryless
channel for which the input and output symbols are n-element binary blocks. Let the
input symbol alphabet X consist of J = 2k (k < n) blocks selected from 2n possible
binary combinations, and let the output symbol alphabet Y consist of K = 2n blocks (all
possible n-element binary blocks). During transmission of subsequent bits of the block
xj a bit is received in error with the probability p and it is received correctly with the
probability 1 − p. As a result of feeding the symbol xj to the channel input, we receive
a single symbol yk at its output. On the basis of the received symbol yk in the form of
an n-element block, the ML decision rule should ensure the selection of such an input
symbol x∗ for which condition (1.75) is fulfilled.

In order to find the ML rule for the considered case, let us introduce the idea of the
Hamming distance between two binary blocks of the same length.

Definition 1.11.2 The Hamming distance between binary blocks xj and yk of the same
length, denoted by d(xj , yk), is the number of positions at which both blocks differ from
each other.

Let the Hamming distance between the input block xj and the output block yk be
D = d(xj , yk). Knowing that transmission of binary symbols consitituting an n-element
block is a sequence of statistically independent events, the probability of reception of yk

conditioned on transmission of xj is given by the expression

P(yk|xj ) = pD(1 − p)n−D (1.81)

In a typical situation the error probability p is lower than 1/2. Thus, the following
sequence of inequalities holds true

(1 − p)n >p(1 − p)n−1 >p2(1 − p)n−2 > . . . (1.82)

We conclude from (1.82) that the ML rule is reduced in this case to the selection of block
x∗ = d(yk) from all possible blocks xj , for which the Hamming distance to the received
block yk is the lowest. This situation is symbolically shown in Figure 1.23. The received
block yk is denoted by a cross. Block x5 is the closest one in the Hamming distance sense
to yk among the input symbols x1, x2, . . . , x9.

Consider now a particular case of the above example. Let the input symbol alphabet X
consist of two symbols x1 = (000 . . . 0) and x2 = (111 . . . 1) of length n. Let n be an odd
number. Symbol x1 can be assigned a message “0” and x2 the message “1”, respectively.
Theoretically, these messages could be represented by 0 or 1; however, instead of that they
are represented by whole sequences of these symbols of length n. During transmission
of subsequent binary symbols of block x1 or x2 over the binary symmetric memoryless
channel with the error probability p, the received channel output block yk can take one of
2n possible forms. The ML rule allows selection of the input sequence that is closest to
the received block in the Hamming sense. The decision will be erroneous if the number
of binary errors committed during transmission of an n-element block of “0”s or “1”s
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Figure 1.23 Process of finding the sequence x∗ featuring the minimum Hamming distance from
the received sequence yk

exceeds n/2. Assuming the independence of binary error events, we can easily deduce
that the probability of i errors occurring in the n-element block is pi(1 − p)n−i . The
number of possible combinations of i errors in the block of length n is

(
n

i

)
. Therefore the

probability of an erroneous decision on the transmitted message is given by the formula

P(E) =
n∑

i=(n+1)/2

(
n

i

)
pi(1 − p)n−i (1.83)

Assuming, for example, the value p = 0.01 and calculating the values of the probabil-
ity P(E) for subsequent odd block lengths n we obtain P(E) = 10−2, 3 × 10−4, 10−5,
4 × 10−7, . . . for n equal to 1, 3, 5, 7, . . . , respectively. From the above we conclude that
if we want to achieve a very low decision error probability related to a single message,
we should increase the size of the “0” and “1” blocks appropriately. Since each binary
message is represented by an n-bit block, the efficiency of this representation, and there-
fore of the coding, is R = 1/n. As we see, the price paid for increasing the transmission
quality is the n-fold lowering of its rate. Need this price really be paid?

The answer to this question was given by Claude Shannon, who formulated the famous
theorem on the reliable transmission of messages over unreliable channels. The form of
this theorem for the case of binary symmetric memoryless channel is as follows.

Theorem 1.11.1 Consider a binary symmetric memoryless channel with the error proba-
bility p and capacity C = 1 − H(p). Let ε be an arbitrarily small positive constant and let
M = 2n(C−ε). For a sufficiently large number n, from 2n possible binary blocks of length
n one can select a subset of M blocks in such a way that the probability of erroneous
decoding of the received block will be arbitrarily small.

The proof of this theorem can be found in the original paper by Shannon (1948) and
in more advanced books on information theory. The above-quoted theorem, called the
second Shannon theorem for a binary symmetric memoryless channel, states that in order
to ensure transmission with arbitrarily low probability of error, the coding rate R cannot
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be higher than the channel capacity C. Since the number of allowed transmitted blocks
is M = 2n(C−ε), each allowed block of n bits represents in fact one of n(C − ε) binary
messages. Therefore the coding rate is equal to

R = n(C − ε)

n
= C − ε (1.84)

As we see, R < C. The coding rate R gets closer to channel capacity C as ε decreases.
Thus, we conclude that the application of repetition coding is not a necessary solution,
because the coding rate is in reality limited by the channel capacity only. However, the
condition for achieving an arbitrarily small error probability is the application of the
appropriately long symbol block.

The theorem states that there exists a set of M blocks that ensure arbitrarily low
probability of erroneous decoding. However, it does not propose how to select them.
In this sense the above theorem is not constructive. However, in the 1990s some good
codes with performance very close to the limit stated by Shanon’s theorem have been
constructed. They will be presented in the next chapter.

In a more general case of the discrete memoryless channel the Shannon theorem has
the following formulation.

Theorem 1.11.2 Consider a memoryless source characterized by the alphabet X and
entropy H(X). Let the source emit a message every Ts seconds. Let there be given a
discrete memoryless channel with capacity C, through which the symbols representing the
messages of source X are sent every Tc seconds. Then, if the following inequality holds

H(X)

Ts

≤ C

Tc

(1.85)

there exists a code for which encoded messages of source X can be decoded at the channel
output with an arbitrarily low error probability. However, if

H(X)

Ts

>
C

Tc

there is no code that ensures reception of the transmitted message sequence with an arbi-
trarily low error probability.

Both theorems establish a basic limit on the rate of reliable message transmission over
unreliable channels.

1.12 Differential Entropy and Average Amount of Information
for Continuous Variables

So far we have concentrated on a description of discrete sources and have considered
reliable transmission over unreliable channels. Now we will analyze the case of contin-
uous variables because it is obvious that many physical communication systems have
continuous character.
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Consider a continuous random variable X that is characterized by the probability density
function pX(x). By analogy between discrete and continuous random variables we define
the so-called differential entropy , using the following formula

h(X) =
∞∫

−∞
pX(x) log

1

pX(x)
dx (1.86)

Theoretically, a continuous random variable has an infinitely high entropy because it can
take an infinite number of values. Let us explain the sense of differential entropy definition
by considering a continuous random variable as the boundary of a discrete random variable
with values in the form xk = k	x (k = 0, ±1,±2, . . .). If the incremental value 	x tends
to zero, we can define the entropy of the random variable X using the expression

H(X) = lim
	x→0

∞∑
k=−∞

pX(xk)	x log
1

pX(xk)	x
(1.87)

Let us note that pX(xk)	x is the approximate probability of the value of the random vari-
able X being contained in the interval [xk, xk + 	x]. Expanding formula (1.87) further,
we receive

H(X) = lim
	x→0

[ ∞∑
k=−∞

pX(xk) log
1

pX(xk)
	x − log 	x

∞∑
k=−∞

pX(xk)	x

]

=
∞∫

−∞
pX(x) log

1

pX(x)
dx − lim

	x→0
(log 	x)

∞∫
−∞

pX(x)dx

= h(X) − lim
	x→0

(log 	x) (1.88)

It turns out from formula (1.88) that the entropy of a continuous random variable is indeed
infinitely high, because an infinite value has the second term of this formula if 	x → 0.
However, the entropy H(X) can be expressed as the sum of the continuous term h(X) and
the component tending to infinity, which can be treated as a reference term. Let us note
that in particular during derivation of channel capacity the difference of two entropies is
usually calculated and then the reference terms reduce each other. As a result the channel
capacity depends only on differential entropies. From formula (1.88) we also conclude
that the differential entropy h(X) is essentially the difference between the exact entropy
of the random variable X and the reference term. This is then probably the source of its
name.

As in the case of discrete random variables, we want to find a probability density func-
tion of the random variable X that maximizes the value of the differential entropy h(X).
Formally, we search for a probability density function pX(x) that maximizes expression
(1.86) for the following constraints:
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1. Function pX(x) is a probability density function, therefore

∞∫
−∞

pX(x)dx = 1 (1.89)

2. Variance σ 2 of the random variable X is finite, i.e.

∞∫
−∞

(x − µ)2pX(x)dx = σ 2 (1.90)

The probability density function that maximizes expression (1.86) will be derived by
applying the following theorem of variation calculus.

Theorem 1.12.1 Let us have the integral

I =
b∫

a

F (x, p)dx (1.91)

If we search for parameter p that maximizes (1.91) for the following constraints:

b∫
a

ϕ1(x, p)dx = α1,

b∫
a

ϕ2(x, p)dx = α2, . . . ,

b∫
a

ϕk(x, p)dx = αk (1.92)

then p can be derived as a solution of the equation

∂F (x, p)

∂p
+ λ1

∂ϕ1

∂p
+ · · · + λk

∂ϕk

∂p
= 0 (1.93)

In our case F(x, p) = −p log p, ϕ1(x, p) = p, ϕ2(x, p) = (x − µ)2p. Therefore,
applying formula (1.93) we receive

∂

∂p

(
p log

1

p

)
+ λ1 + λ2

∂

∂p

(
(x − µ)2p

) = 0 (1.94)

Deriving p from the above equation, we get

p = e(λ1−1)eλ2(x−µ)2
(1.95)

Substituting this value in the formulas of constraints (1.89) and (1.90), after short calcula-
tions we find that the probability density function that maximizes the differential entropy
is given by the formula

pX(x) = 1√
2πσ

exp

(
− (x − µ)2

2σ 2

)
(1.96)
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As we see, the random variable X featuring the maximum differential entropy has a
Gaussian distribution with mean µ and variance σ 2.

Calculate now the maximum value of the differential entropy. Substituting expression
(1.96) in formula (1.86) we obtain

h(X) =
∞∫

−∞
pX(x) log

[√
2πσ exp

(
(x − µ)2

2σ 2

)]
dx

=
∞∫

−∞
pX(x) log

(√
2πσ 2

)
dx +

∞∫
−∞

pX(x)(x − µ)2 log e

2σ 2
dx

= 1

2
log

(
2πσ 2) + log e

2σ 2
σ 2 = 1

2
log

(
2πeσ 2) (1.97)

The achieved result indicates that the maximum differential entropy calculated for a
Gaussian random variable depends only on the variance and does not depend on the
mean of the random variable.

By analogy between discrete and continuous random variables, we define the mutual
information between continuous random variables X and Y as

I (X; Y ) =
∞∫

−∞

∞∫
−∞

pX,Y (x, y) log
pX(x|y)

pX(x)
dxdy (1.98)

One can also prove that this function can be expressed as

I (X; Y ) = h(X) − h(X|Y ) (1.99)

The following property also holds true

I (X; Y ) = I (Y ;X) = h(Y ) − h(Y |X) (1.100)

with

h(X|Y ) =
∞∫

−∞

∞∫
−∞

pX,Y (x, y) log
1

pX(x|y)
dxdy (1.101)

We will use the above dependencies in the derivation of a band-limited channel capacity.

1.13 Capacity of Band-Limited Channel with Additive White
Gaussian Noise

Consider a zero-mean random signal X(t) whose band is limited to B Hz. As it is a
band-limited signal, it can be represented by a sequence of samples collected with the
frequency of 2B Hz. On the basis of this sequence of samples the original random signal
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Figure 1.24 Scheme of the system with the band-limited channel and additive noise

X(t) can be recovered with a probability of 1. Assume that we analyze the transmission
of the signal X(t) over the channel limited to B Hz in the time period of T seconds.
The number of analyzed samples is then equal to n = 2BT . During transmission through
this channel the signal is disturbed by Additive White Gaussian Noise (AWGN) with the
power density of N0/2. Figure 1.24 shows a scheme of such a system. Because the signal
on the output of the filter is Y (t) = X(t) + ν′(t), where ν′(t) is a result of filtration of
the noise ν(t) by the lowpass filter of bandwidth B Hz, at the output of the sampler at
timing instants t = k/2B we receive

Yk = Xk + Nk (1.102)

In Chapter 3 we will prove that the noise sample Nk is zero-mean and has variance σ 2 =
N0B. Subsequent samples are mutually uncorrelated, and as they are Gaussian they are
also statistically independent. Let statistical independence also be a feature of samples Xk

of the input signal X(t). Thus, transmission of signal X(t) through the channel limited to
B Hz during the period of T seconds can be treated as n = 2BT independent transmissions
of samples Xk through the discrete memoryless channel described by expression (1.102),
often called the discrete time Gaussian memoryless channel . Let us note that all the
variables appearing in formula (1.102) are continuous random variables: Nk is a Gaussian
variable and Xk has the probability distribution pX(x). A natural assumption is that the
mean power of the input signal is finite, i.e.

E[X2
k] = P, k = 1, 2, . . . , n (1.103)

Let us define the capacity of a discrete memoryless Gaussian channel as

Cs = max
pX(x)

{
I (Xk;Yk): E[X2

k] = P
}

(1.104)

where I (Xk;Yk) = h(Yk) − h(Yk|Xk). In order to derive the capacity Cs let us first cal-
culate h(Yk|Xk):

h(Yk|Xk) =
∞∫

−∞

∞∫
−∞

pX,Y (x, y) log
1

pY (y|x)
dxdy

=
∞∫

−∞
pX(x)

 ∞∫
−∞

pY (y|x) log
1

pY (y|x)
dy

 dx (1.105)
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As we remember, the noise sample Nk has a Gaussian distribution with zero-mean and
variance σ 2. Then the probability density function of the channel output sample Yk condi-
tioned on the occurrence of a specific value of the input sample Xk is Gaussian with the
same variance, but with the mean equal to the value of the sample Xk . The conditional
probability density function pY (y|x) is therefore described by the formula

pY (y|x) = 1√
2πσ

exp

[
− (y − x)2

2σ 2

]
(1.106)

Using the latter expression in formula (1.105), we obtain

h(Yk|Xk)=
∞∫

−∞
pX(x)

 ∞∫
−∞

pY (y|x)

(
log(

√
2πσ) + (y − x)2

2σ 2
log e

)
dy

dx

=
∞∫

−∞
pX(x)

(
log

√
2πσ 2 · 1 + log e

2σ 2
σ 2

)
dx = 1

2
log

(
2πeσ 2) (1.107)

As we see, the conditional differential entropy depends exclusively on the noise variance
and it does not depend on the distribution of the samples Xk of the input signal. Thus, in
order to maximize the value of mutual information I (Xk; Yk) it is necessary to maximize
the entropy of samples Yk of the channel output signal. As we have already proven,
the differential entropy of a continuous random variable achieves its maximum if the
variable is Gaussian. The sample Yk, which is the sum of two random variables Xk and
Nk, has a probability density function that is a convolution of the Gaussian distribution
of the noise sample Nk and the probability distribution of the input signal sample Xk.
Fortunately, if the probability density function of the sample Xk is Gaussian, then the
probability density function of the sample Yk is also Gaussian, because a convolution of
two Gaussian curves is also Gaussian. Concluding, the differential entropy h(Yk) achieves
its maximum if the random signal X(t) and its samples are Gaussian. Since the samples
Xk and Nk are statistically independent, the mean power of their sum is equal to the sum
of mean powers of both components. So on the basis of formula (1.97) for the maximum
differential entropy we have

h(Yk) = 1

2
log

[
2πe(P + σ 2)

]
(1.108)

As a result, the capacity of a time-discrete Gaussian memoryless channel is

Cs = 1

2
log

[
2πe(P + σ 2)

] − 1

2
log

(
2πeσ 2)

= 1

2
log

(
1 + P

σ 2

)
(1.109)

So far we have calculated the capacity for a single sample only. Since in the time period
T there are n = 2BT samples, the capacity of the channel band-limited to B Hz and
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disturbed by additive Gaussian noise with the power density N0/2 can be calculated from
the formula

C = n

T
Cs = 2BT

T
· 1

2
log

(
1 + P

σ 2

)
= B log

(
1 + P

N0B

)
[bit/s] (1.110)

The above calculations allow us to formulate the following theorem.

Theorem 1.13.1 The capacity of the channel band-limited to B Hz, in which the signal is
disturbed by the additive Gaussian noise of the power density equal to N0/2, is described
by the formula

C = B log

(
1 + P

N0B

)
[bit/s] (1.111)

where P is the mean power of the transmitted signal.

The above theorem defines an essential limit for the data rate of errorless transmission
in a Gaussian band-limited channel with the input signal of a limited power. Let us
note that in order to approach the limit established by (1.111) as closely as possible, the
transmitted signal should be Gaussian. At first glance this requirement seems to be difficult
to fulfill, however probability distributions of some digital signals are well approximated
by the Gaussian distribution. Figure 1.25a plots the channel capacity per Hz (measured
in bit/s/Hz), versus signal-to-noise ratio (SNR, in dB). We see that the capacity per Hz

C/B
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Figure 1.25 Channel capacity plot: (a) per spectrum unit versus the signal-to-noise ratio (SNR);
(b) for constant power of the input signal at P/N0 = 3 × 105 versus bandwidth of the signal
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increases almost linearly for high SNR on the decibel scale. At the assumption of a
constant bandwidth, the capacity increases linearly along with the increase of transmitted
signal power. Assume now that the mean power of the transmitted signal is constant but
the channel bandwidth B changes. Figure 1.25b shows the channel capacity as a function
of the channel bandwidth when P/N0 = 3 × 105. As we see, the capacity increases along
with the increase of the channel and transmitted signal bandwidth, however the rise has
a shape similar to the curve of 1 − e−αx type. It turns out that for the constant mean
power of the transmitted signal and the increasing bandwidth the channel capacity tends
to the asymptotic value equal to P

N0
log2 e. A channel type in which a very large band

is occupied at the constant value of P/N0 is applied in the so-called spread spectrum
systems . They will be presented in one of the later chapters. In such systems, if the signal
bandwidth is very large, the SNR can be established even below 0 dB.

Example 1.13.1 Let us calculate the theoretical capacity of the acoustic telephone channel
with the passband in the range 300–3400 Hz for the following values of SNR: 10, 15, 20, 25,
30, 35 dB. Assume that the amplitude channel characteristic is flat in its passband, which
is in fact far from reality. The selected SNR levels are related to the following values of
P/(N0B) on the linear scale: 10, 31.62, 100, 316.23, 1000, 3162.28. Using these values
successively in formula (1.111) for the bandwidth of B = 3100 Hz we receive the following
approximate values of the channel capacity, given in kbit/s: 10.7, 15.6, 20.6, 25.8, 30.9,
36.0. Currently, data transmission methods applied on acoustic telephone channels allow
a 28.8 kbit/s data rate to be achieved if highly sophisticated transmission and reception
algorithms are used. Therefore, such a value is close to the limit at the SNR of 30 dB. Let
us note that the telephone modems offered on the market, which conform to ITU-T V.90
Recommendation, use in fact the subscriber loop channel in a different manner than a
typical acoustic modem, which uses only the bandwidth of 3100 Hz; therefore, they achieve
higher data rates.

1.14 Implication of AWGN Channel Capacity for Digital
Transmission

Let us analyze formula (1.111) once more. Let us express the mean signal power as a
product of two terms: energy per transmitted bit Eb and the binary data rate Rb given in
bit/s. Thus, the AWGN channel capacity normalized with respect to the channel bandwidth
is described by the formula

C

B
= log2

(
1 + Eb

N0

Rb

B

)
(1.112)

If we were able to design an ideal system that achieves the data rate Rb equal to the
channel capacity C, then formula (1.112) would evolve to the following

C

B
= log2

(
1 + Eb

N0

C

B

)
(1.113)
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Figure 1.26 Bandwidth efficiency diagram

It follows from (1.113) that the energy per bit to noise power density spectrum required
to achieve the channel capacity is

Eb

N0
= 2

C
B − 1

C
B

(1.114)

The curve visualizing formula (1.114) in reverse form, i.e. as C/B = f (Eb/N0), is shown
in Figure 1.26. The curve is in fact a capacity boundary and it is related to the ideal sys-
tem, for which Rb = C. Let us note that the curve divides the surface determined by the
variables Eb/N0 and Rb/B into two fields. In the area above the curve Rb >C, so for
combinations of Eb/N0 and Rb/B located in it it is not possible to construct the system
that can achieve sufficiently low probability of error (cf. Shannon’s theorem). However,
for the combinations of Eb/N0 and Rb/B located below the capacity boundary curve
it is possible to construct a system that, owing to sufficiently strong coding and other
transmission and reception procedures applied in it, can achieve an arbitrarily low error
probability. Thus, all the real systems are characterized by the required Eb/N0, the data
rate Rb and the channel bandwidth B used. These parameters determine a certain oper-
ation point on the surface below the capacity boundary. As we will learn in one of the
future chapters, the error probability is a direct function of Eb/N0. We can improve the
system by decreasing the Eb/N0 required to achieve a given value of the error proba-
bility at a constant Rb/B. This operation is equivalent to moving the system operation
point to the left along the horizontal axis. On the other hand, owing to other possible
improvements in the system design, for a given Eb/N0 and a required error probability
the ratio Rb/B can be increased, resulting in spectrum savings or an increase in the data
rate.

Let us consider one more aspect of the capacity boundary curve. Let us determine the
value of Eb/N0 required to achieve the data rate equal to the channel capacity if the
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channel bandwidth tends to infinity

lim
B→∞

Eb

N0
= lim

B→∞
2

C
B − 1

C
B

= lim
B→∞

ln 2 · 2
C
B ·

(
− C

B2

)
(
− C

B2

) = ln 2 (1.115)

Thus, in the decibel scale, the asymptotic value of Eb/N0 required to achieve the data
rate equal to the channel capacity when the channel bandwidth tends to infinity is equal
to −1.6 dB. This value is called the Shannon limit (see Figure 1.26).

1.15 Capacity of a Gaussian Channel with a Given Channel
Characteristic

So far we have considered a band-limited channel that does not introduce any signal
distortions in its passband. Now we will generalize our considerations to the channel
band-limited to B Hz, which has a given transfer function H(f ). Assume that the input
signal is Gaussian, it has a power density spectrum P(f ) and its power is limited to
P . This means that

∫
B

P (f )df = P . The signal is disturbed by additive Gaussian noise
characterized by the power density spectrum Gn(f ). An example of such a characteristic
is shown in Figure 1.27. In order to determine the channel capacity we divide the channel
band into N frequency intervals of width 	f so that B = N	f . If N is sufficiently
high, the width of a single component channel is so small that it has approximately flat
characteristics and we can use (1.111) to derive its capacity. Thus, transmission through
the channel with the transfer function H(f ) can be treated as a parallel transmission
through N ideal passband channels of bandwidth 	f . Using formula (1.111) we can
obtain the following formula for the capacity of the ith component channel

Ci = 	f log

[
1 + 	f P(fi)|H(fi)|2

	f Gn(fi)

]
(1.116)

If the channel input signal is characterized by the power density spectrum P(f ) then
the power density spectrum at the output of the channel with the transfer function H(f )

H(f )

∆f f

B

Figure 1.27 Example of the channel transfer function of the channel with bandwidth B Hz
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is given by the expression P(f )|H(f )|2. Therefore, the power of the signal seen at the
output of the ith component channel of bandwidth 	f with the center frequency fi is
	f P(fi)|H(fi)|2. The capacity of the whole channel approximated by N ideal passband
channels is equal to

C =
N∑

i=1

Ci = 	f

N∑
i=1

log

[
1 + P(fi)|H(fi)|2

Gn(fi)

]
(1.117)

If the bandwidth 	f of component channels tends to an infinitely low value df , then the
sum evolves into the integral and discrete frequency values fi change into a continuous
variable f . Finally, we obtain the following formula for the channel capacity

C =
∫
B

log

[
1 + P(f )|H(f )|2

Gn(f )

]
df (1.118)

The capacity of the channel with transfer function H(f ) depends both on its char-
acteristics and the power density spectra of the input signal and noise. The properties
of physical channel and noise are often difficult to change; however, it is possible to
change the power density spectrum P(f ) of the input signal. Recall that the capacity
calculations require the input signal to be Gaussian. Thus, we would like to determine the
power density spectrum of the input signal for which the channel capacity is maximum,
i.e. the highest number of bits in a time unit that can be transmitted over the channel
H(f ). Searching for the best shape of the power density spectrum P(f ) that maximizes
capacity (1.118) with the assumption that the signal power is constant and is equal to
P is an optimization problem with a constraint. The solution method is similar to the
method that was applied in derivation of the probability density function for which the
differential entropy is maximized.

Let us apply Theorem 1.12.1 again. This time we deal with maximization of function
of form

C =
∫
B

F (f, P (f ))df =
∫
B

log

[
1 + P(f )|H(f )|2

Gn(f )

]
df (1.119)

for the constraint ∫
B

ϕ(f, P (f ))df =
∫
B

P (f )df = P (1.120)

As we remember from Theorem 1.12.1, we find the best P(f ) by solving equation (1.93).
In our case this equation has the form

∂

∂P (f )

{
log2

[
1 + P(f )|H(f )|2

Gn(f )

]}
+ λ

∂

∂P (f )

[
P(f )

] = 0 (1.121)
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In equation (1.121) function P(f ) is treated as a variable. The calculation of the derivative
with respect to P(f ) leads to the following equation

log2 e· Gn(f )

Gn(f ) + P(f )|H(f )|2 · |H(f )|2
Gn(f )

+ λ = 0 (1.122)

Substituting 1/K = −λ/ log2 e we receive

|H(f )|2
Gn(f ) + P(f )|H(f )|2 = 1

K
(1.123)

which after simple calculations leads to the formula

P(f ) = K − Gn(f )

|H(f )|2 (1.124)

If the additive noise is white, i.e. Gn(f ) = N0/2, then

P(f ) = K − N0/2

|H(f )|2 (1.125)

Substituting (1.124) into the equation describing the constraint
∫
B

P (f )df = P , we end
up with ∫

B

[
K − Gn(f )

|H(f )|2
]

df = P (1.126)

From this formula the following expression arises (see Figure 1.28)

KB = P +
∫
B

Gn(f )

|H(f )|2 df (1.127)

Let us note that KB is the area of a rectangle of width B, which is limited by the
horizontal axis and the horizontal straight line located at the height K . The second term
of (1.127) is the area under the curve Gn(f )/|H(f )|2. Thus, the input signal power P is
the area denoted in grey color above the mentioned curve, which fills out the area above
the curve to the level K (Figure 1.28).

The analysis of the optimized input signal power density shape, which leads to the
maximum capacity of the channel with a given characteristic H(f ) and noise power
density Gn(f ), leads us to interesting conclusions. It turns out that the channel capacity
is maximized if we assign the highest input signal power to the channel sub-bands with
the lowest attenuation of the input signal. Less power should be placed in those frequency
intervals in which the signal is heavily attenuated. It is against our intuition, because at
first glance it seems that we apparently should amplify the transmitted signal in those
frequency ranges in which the channel attenuates it heavier. The process of shaping of
the input signal power density is called power loading . The rule of power loading reminds
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Figure 1.28 Illustration of the choice of input signal power density maximizing the capacity of
the channel with a given transfer function

us of pouring water into a basin, therefore this rule is often known as the water pouring
principle. Power loading is performed in the frequency domain. However, we will learn
in the next section that it is also possible in the time domain.

Let us note that power loading requires a feedback channel from the receiver back to
the transmitter. In order to assign the input signal power optimally, the receiver has to
derive the channel characteristic (we say that it performs channel estimation) and then
it has to transmit it back to the transmitter via a feedback channel. Thus, it is a case in
which Channel State Information (CSI) is known both to the transmitter and receiver. In
suboptimum systems the channel state information is known only at the receiver and it
can be applied only in the signal detection. In this case power loading is not possible and
the feedback channel is not required.

1.16 Capacity of a Flat Fading Channel

Consider now the capacity of the channel whose model is shown in Figure 1.29. In
our considerations we follow the work of Goldsmith and Varaiya (1997). The channel
input signal is band-limited to B Hz. The channel is modeled by a multiplier that performs
signal amplification by

√
g(i), where i is the current timing instant. Let us assume that g(i)

(g(i) ≥ 0) is a sample function of the stationary and ergodic random process characterized

Encoder Power
control

Receive
filter Decoder

Channel
estimator

g(i ) n(i )

Message Code
sequence

Signal

g(i )^

ŵw

Figure 1.29 System model with flat fading channel, channel estimation and feedback channel
(dashed line) (Goldsmith and Varaiya 1997  IEEE 1997)
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by a unit mean and a given probability density function. Additive white Gaussian noise
with the power density N0/2 is added to the signal that is modified by the channel
coefficient

√
g(i). The time varying coefficient

√
g(i) models a situation often appearing

on radio channels, in which the received signal level is varying in time and the whole
signal spectrum is basically attenuated in the same way. We say that it is a flat fading
channel and the transmitted signal is the subject of flat fading .7 At the receiver, the input
filter limits the bandwidth of the received signal to B Hz, the channel estimator determines
the current value of the channel coefficient g(i), and the decoder decodes the received
codeword. The dashed line in Figure 1.29 denotes the feedback channel from the receiver
to the transmitter, which allows for selection of the appropriate transmitted power level
and the particular coding scheme. Let us denote the mean power of the transmitted signal
as P . Thus, the SNR at the output of the receive filter is

γ (i) = Pg(i)/(N0B) (1.128)

At the ith moment the channel is practically flat with the bandwidth limited to B Hz. In
this case its capacity is given by formula (1.111), i.e. for a given value of γ it is equal to

Cγ = B log(1 + γ ) (1.129)

Let the probability distribution of the SNR γ be p�(γ ). In practice, it refers to the
process g(i). In this case the channel capacity can be understood as an ensemble average
of the capacity Cγ , i.e.

C =
∫
γ

Cγ p�(γ )dγ =
∫
γ

B log(1 + γ )p�(γ )dγ (1.130)

One can show that the capacity defined by formula (1.130) is lower than the capacity of a
flat channel band-limited to B Hz with the SNR equal to the average SNR of P/(N0B).

So far we have presented the formula for the capacity of a flat fading channel when
the input signal has a constant power equal to P . One can state the following problem:
How should we select the transmitted signal power with respect to the current value of
the SNR, γ , at the given mean signal power P , in order to maximize the capacity given
by the formula

C(P ) = max
P (γ )

∫
γ

B log

[
1 + P(γ )γ

P

]
p�(γ )dγ (1.131)

The constraint for the choice of the transmitted signal power is its mean power, which is
expressed by the formula ∫

γ

P (γ )p�(γ )dγ = P (1.132)

7 The channel model is called selective fading if in some parts of the passband substantial attenuation is introduced.
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Let us note that if the ratio γ is given by formula (1.128), then the expression P(γ )γ /P =
P(γ )g(i)/(N0B) determines the current value of the SNR. As shown by Goldsmith and
Varaiya (1997), there exists a channel coding scheme that achieves efficiency R < C(P )

with a sufficiently small codeword detection error probability when the mean input signal
power P is applied. In contrast, the probability of erroneous codeword decoding of the
channel code applied in the considered channel with the efficiency R >C(P ) is higher
than zero.

Let us find the rule that should govern the selection of the power level P(γ ) of the chan-
nel input signal depending on parameter γ , so that the channel capacity C(P ) described
by formula (1.131) for the constraint (1.132) is maximized. For this purpose we apply
once more a similar procedure to that applied in derivation of the optimum input signal
power density spectrum that maximizes the capacity of the channel with transfer function
H(f ). As previously, let us apply Theorem 1.12.1. In the current case, the integrated
function of the maximized integral and the integrated function of the constraint are of the
form

F(γ, P (γ )) = B log2

[
1 + P(γ )γ

P

]
p�(γ )

ϕ(γ, P (γ )) = P(γ )p�(γ ) (1.133)

The optimum value of the applied input power P(γ ) results from solution of the following
equation

∂F (γ, P (γ ))

∂P (γ )
+ λ

∂ϕ(γ, P (γ ))

∂P (γ )
= 0 (1.134)

Calculation of equation (1.134) by applying (1.133) gives the following dependence

Bp�(γ ) log2 e · P

P + P(γ )γ
· γ

P
+ λp�(γ ) = 0 (1.135)

The coefficient γ is selected from the range in which p�(γ ) > 0, therefore the equation
from which we derive P(γ ) has a simpler form

B log2 e · P

P + P(γ )γ
· γ

P
+ λ = 0 (1.136)

Applying the following substitution

γ0 = − λP

B log2 e
(1.137)

after simple calculations we achieve the following result

P(γ ) =


P

(
1

γ0
− 1

γ

)
for γ ≥ γ0

0 for γ < γ0

(1.138)
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Let us analyze the meaning of (1.138). For γ ≥ γ0, the transmitted power should increase
with increase of the mean SNR γ . However, if this ratio falls below a certain threshold
value γ0, we should abandon transmission of the signal. The value of γ0 results from the
established limit for the mean power (1.132) and is a solution of the equation

∞∫
γ0

P

(
1

γ0
− 1

γ

)
p�(γ )dγ = P (1.139)

In turn, after simple calculations, applying formula (1.138) in expression (1.131) we
obtain the following result

C(P ) =
∞∫

γ0

B log2

(
γ

γ0

)
p�(γ )dγ (1.140)

For comparison let us consider a situation in which the transmitter applies the knowl-
edge about the channel attenuation in a nonoptimal way, namely it transmits the signal with
a higher power if the channel attenuates the signal more. This means that the transmitter
power is selected according to the rule

P(γ ) = P
σ

γ
(1.141)

where σ is the mean value of the SNR and constraint (1.132) holds. Thus, the constant
σ results from this constraint, which has the form∫

γ

P
σ

γ
dγ = P i.e. σ = 1

E[1/γ ]
(1.142)

and the channel capacity is

C(P ) = B log2(1 + σ) = B log2

(
1 + 1

E[1/γ ]

)
(1.143)

At the end of this section consider the case in which there is no feedback channel
that could be used to transmit data related to the channel estimated at the receiver to the
transmitter. This time the knowledge about the channel can be used only by the receiver.
The knowledge of the channel coefficient

√
g(i) allows us to equalize the level of the

received signal, i.e. multiply it by 1/
√

g(i). Thus, the received signal power is constant
and equal to P , whereas the instantaneous noise power is BN0/g(i). Therefore, the SNR
is γ = Pg(i)/(BN0) and it is the same as in (1.128). We conclude that in this case the
channel capacity is also described by formula (1.130).

Figure 1.30 cited after Goldsmith and Varaiya (1997) presents examples of the capacity
curves, normalized with respect to the channel bandwidth B, as a function of the mean
SNR in a dB scale for the log-normal probability density function of the channel coefficient
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Figure 1.30 Capacity per spectum unit of the channel with log-normal fading (σγ = 8 dB): (1)
system with AWGN flat channel, (2) system with the optimum use of the channel state information
at the transmitter and receiver, (3) system with the optimum use of the channel state information
at the receiver only, (4) system with inversion of the power level at the transmitter. Reproduced
by permission of IEEE (Goldsmith and Varaiya 1997  IEEE 1997)

√
g(i) = q. This probability density function is described by the formula

p(q) =


1√

2πσqq
exp

(
−
(
ln q − mq

)2

2σ 2
q

)
for q ≥ 0

0 for q < 0

(1.144)

Knowing the rules of transformation of random variables, on the basis of probability
density function p(q) one can easily receive the probability density function of the variable
γ = Pq2/(BN0). The normalized capacity of the flat AWGN channel provides a reference
curve in Figure 1.30.

From analysis of the curves shown in Figure 1.30 we can see that, in general, fading
decreases channel capacity because the flat AWGN channel has the highest capacity.
The next channel, as far as quality is concerned, is the one in which optimum power
control is performed at the transmitter and the channel state information is used both
by the transmitter and receiver. The capacity of the channel for which the channel state
information is applied exclusively at the receiver by compensating the channel attenuation
is only slightly lower. Finally, the lowest capacity is achieved when the transmitted signal
power is increased if the channel attenuation increases. Goldsmith and Varaiya (1997)
present similar results for other probability density functions p(q), however the described
tendencies are basically preserved.
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1.17 Capacity of a Multiple-Input Multiple-Output Channel

Multiple-input multiple-output (MIMO) systems are a relatively new invention in commu-
nications. Their particular value, expecially for the development of wireless commnica-
tions, have been proven on the basis of information theory. Let us consider such systems
and show their capacity. In addition to our analysis we will also consider the capacity of
some other system configurations typical for wireless communications.

So far we have analyzed the systems in which a single transmitter sends symbols
representing the source messages and a single receiver transfers them to the message sink.
We call them Single-Input Single-Output (SISO) systems. Let us extend our considerations
onto the systems that have nT transmitters and nR receivers applied to transmit the
messages from a single message source to a single message sink. We will show how the
capacity of such a system with a MIMO channel depends on the number of transmitters
and receivers. Our considerations will lead us to very important conclusions showing a
potentially considerable improvement in capacity as compared with a SISO system. Our
derivations are quoted after Vucetic and Yuan (2003).

Consider the MIMO system shown in Figure 1.31. The messages from the message
source are source encoded and the resulting code symbols are subsequently assigned
to nT transmitters. The assignment scheme depends on the system designer. It can
be a simple demultiplexer that forms the input symbols into nT -element blocks. Each
such element is subsequently emitted in parallel by an appropriate transmitter. Another
possibility is using a code with a given coding rate and generating a certain number
of nT -element blocks that are transmitted through nT transmitters in subsequent timing
instants. Since nT transmitters are typically distributed in space, such a coding scheme
is known as a Space-Time coding . Signals emitted by nT transmitters are received
by nR receivers. On the way from the j th transmitter (j = 1, . . . , nT ) to the ith
receiver (i = 1, . . . , nR) the signal undergoes attenuation, which is symbolized by
the channel gain coefficient hij . As we see in Figure 1.31 each composite channel
is characterized by the gain coefficient, so if it is time varying then the channels
are flat fading. Besides channel attenuation, the transmitted signals are the subject
of disturbance by additive Gaussian noise. Denote the block of transmitted signals
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Figure 1.31 General scheme of the MIMO system
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at a given time instant as x and the block of received signals at this time instant as r, i.e.

x =


x1

x2
...

xnT

 , r =


r1

r2
...

rnR

 (1.145)

As we have already learnt, in order to calculate the capacity of such a system we assume
that the input signals have to be Gaussian distributed. Thus, we assume that each element
of vector x is a zero-mean Gaussian variable. The distributions of all the vector elements
are identical and statistically independent of each other. The operation of the whole system
can be described by the following matrix equation

r = Hx + n (1.146)

where n is the nR-long sample noise vector and H is a channel matrix of the form

H =


h11 h12 . . . h1nT

h21 h22 . . . h2nT

. . . . . . . . . . . .

hnR1 hnR2 . . . hnRnT

 (1.147)

We assume that in general the input signals and noise vectors are complex random vari-
ables. As we will learn in the course of this book, this assumption about complex signal
representation allows us to consider most types of modulations applicable in digital com-
munication systems. We further assume that the elements of the noise vector n are mutually
uncorrelated, i.e.

Rnn = E
[
nnH

] = σ 2InR
(1.148)

where σ 2 is the noise variance and InR
is the identity matrix of size [nR × nR]. The

symbol (.)H denotes Hermitian transposition, which is equivalent, as we know, to a
regular vector transposition and complex conjugation of its elements. Similarly, let us
define the autocorrelation matrix of the input signal x as

Rxx = E[xxH ] (1.149)

The power of the signals transmitted by nT transmitters is then equal to

P =
nT∑
j=1

E
[∣∣xj

∣∣2] = tr (Rxx) (1.150)

where tr(.) is a matrix trace, i.e. the sum of the main diagonal matrix entries. If the
channel matrix is unknown at the transmitter, then we assume that the powers of signals
generated by each transmitter are identical, i.e. equal to P/nT . Moreover, we assume that
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the transmitted signals are mutually uncorrelated. Thus

Rxx = P

nT

InT
(1.151)

Our next assumption is related to the receive side. Namely, we assume that the power
of the signals received by each of the nR receivers is equal to the total power P . This
means that we assume the normalized attenuation in the transmission chain and for each
receiver the following equation holds true

nT∑
j=1

∣∣hij

∣∣2 = nT , i = 1, 2, . . . , nR (1.152)

In the case of random channel coefficients the above equation becomes

nT∑
j=1

E
[∣∣hij

∣∣2] = nT , i = 1, 2, . . . , nR (1.153)

Similarly to the transmit side, the autocorrelation matrix can be determined for the receive
side. For known channel coefficients, this is given by the expression

Rrr = E
[
rrH

] = E
[
(Hx + n) (Hx + n)H

]
= HE[xxH ]HH + σ 2InR

= HRxxH
H + σ 2InR

(1.154)

After the above introductory considerations let us derive the general formula for MIMO
channel capacity. Let us assume that the channel matrix H is perfectly known at the
receivers and unknown at the transmitters. Inspecting the form of the channel matrix H

we see that at each receiver there is mutual interaction of all signals generated by all
transmitters. In order to present the nature of MIMO transmission in a more clear way
let us replace equation (1.146), characterizing basic channel behavior by another one in
which mutual interaction of the transmitted signal at the receivers is avoided. In order
to perform this task let us decompose the channel matrix using the procedure known as
Singular Value Decomposition (SVD), according to which the channel matrix H of size
[nR × nT ] can be replaced by a product of three matrices

H = UDV H (1.155)

in which D is a non-negative diagonal matrix of size [nR × nT ] and U and V are unitary
matrices8 of size [nR × nR] and [nT × nT ], respectively, i.e.

UU−1 = InR
, V V −1 = InT

and UUH = InR
, V V H = InT

(1.156)

In SVD decomposition, the elements of the main diagonal of matrix D are non-negative
square roots of eigenvalues λ of the matrix HHH , i.e. they are the singular values of

8 Matrix U is called unitary if the product of U with its own Hermitian transpose is a unity matrix.
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matrix H . Thus, the following eigenvalue equation holds

HHH y = λy, y �= 0 (1.157)

where y is the eigenvector associated with the eigenvalue λ. Applying SVD decomposition
(1.155) in the system equation (1.146) we obtain

r = UDV H x + n (1.158)

Let us introduce the following transformations:

r′ = UH r, x′ = V H x, n′ = UH n (1.159)

Therefore multiplying both sides of equation (1.158) on their left side by UH we have

r′ = UH r = UHUDV H x + UH n

= Dx′ + n′ (1.160)

The number of nonzero values
√

λi in the main diagonal of the matrix D is equal to
the rank r of the matrix HHH . If the size of the matrix H is, as previously assumed,
[nR × nT ], then the rank r is at most equal to

m = min(nR, nT ) (1.161)

Thus, the vector equation (1.160) can be equivalently expressed by a set of individual
equations of the form

r ′
i =

√
λix

′
i + n′

i , i = 1, 2, . . . , r

r ′
i = n′

i i = r + 1, r + 2, . . . , nR (1.162)

This means that the elements r ′
i for i > r do not depend on the transmitted signal, i.e.

the channel coefficients are equal to zero. For i = 1, . . . , r the signal r ′
i depends only on

the single signal x′
i . Thus, owing to the SVD decomposition we have represented MIMO

transmission in the form of r parallel transmissions over independent subchannels. Each
subchannel is associated with a singular value of the channel matrix H . The power gain
in a given subchannel is equal to the appropriate eigenvalue of the matrix HHH . The
above considerations are visualized in Figure 1.32.

Based on the definition of the autocorrelation matrix we have

Rr′r′ = E[r′r′H ] = E[UH rrH U ] = UHE[rrH ]U = UHRrrU (1.163)

Similarly

Rx′x′ = V HRxxV and Rn′n′ = UHRnnU (1.164)
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Figure 1.32 Equivalent form of the MIMO system in the form of parallel transmission over
independent subchannels

From the matrix properties one can conclude that

tr(Rr′r′) = tr(Rrr), tr(Rx′x′) = tr(Rxx), tr(Rn′n′) = tr(Rnn) (1.165)

where tr(R) denotes a trace of matrix R, i.e. the sum of its main diagonal entries. The
latter equations indicate that vectors r′, x′ and n′ have the same mean square value (i.e.
the power) as the vectors r, x and n.

As we have represented the MIMO system in the form of r = rank(HHH ) parallel
independent transmission systems, their capacities add together, resulting in the joint
capacity

C = W

r∑
i=1

log

(
1 + Pri

σ 2

)
(1.166)

where Pri = λiP

nT
. In consequence

C = W

r∑
i=1

log

(
1 + λiP

nT σ 2

)
= W log

[
r∏

i=1

(
1 + λiP

nT σ 2

)]
(1.167)

Let us show now how the channel capacity depends on the channel matrix H . Again,
let m = min(nR, nT ). From the equation for eigenvalues and eigenvectors of matrix Q
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we have

(λIm − Q) y = 0, y �= 0 (1.168)

or equivalently

Qy = λy (1.169)

where

Q =
 HHH for nR < nT

HHH for nR ≥ nT

(1.170)

The eigenvector y is different from zero if det(λIm − Q) = 0, i.e. if matrix Q is singular.
Thus λ is the eigenvalue of matrix Q. As a result

det(λIm − Q) =
m∏

i=1

(λ − λi) (1.171)

Let us substitute λ in (1.171) by the expression

λ = −nT σ 2

P

Thus, equation (1.171) receives the form

det

(
−nT σ 2

P
Im − Q

)
=

m∏
i=1

(
−nT σ 2

P
− λi

)

Equivalently

det

[
−nT σ 2

P

(
Im + P

nT σ 2
Q

)]
=

(
−nT σ 2

P

)m m∏
i=1

(
1 + P

nT σ 2
λi

)
or (

−nT σ 2

P

)m

det

(
Im + P

nT σ 2
Q

)
=

(
−nT σ 2

P

)m m∏
i=1

(
1 + P

nT σ 2
λi

)
(1.172)

Comparing (1.172) with (1.167) we conclude that the MIMO channel capacity can be
expressed using the formula

C = W log

[
det

(
Im + P

nT σ 2
Q

)]
(1.173)
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where, as previously

Q =
 HHH for nR < nT

HH H for nR ≥ nT

Based on the above formula, let us consider a few particular examples that allow
us to illustrate the practical meaning of MIMO systems with respect to the previously
known system configurations. First consider the simplest case we already know, i.e. the
SISO (Single-Input Single-Output) system. In this system there is a single transmitter
and receiver, i.e. nT = nR = 1. Furthermore, let the channel be normalized, i.e. let the
channel matrix be H = h = 1. As a result, matrix Q = h = 1 and Im = 1 (m = 1). For
this case the channel capacity is given by the well-known formula

C = W log det

(
1 + P |h|2

σ 2

)
= W log

(
1 + P

σ 2

)
(1.174)

Let the SNR be 10 log10(P/σ 2) = 15 dB. This means that P/σ 2 = 31.62. Using this
value in formula (1.174) we receive the channel capacity per spectrum unit: C/W = 5.02
b/s/Hz.

Consider now the case with a single transmitter and multiple receivers, i.e. nT = 1 and
nR > 1. Here, the channel matrix H has the form

H = (
h1, h2, . . . , hnR

)T
and the channel capacity is described by the expression

C = W log

[
det

(
InT

+ P

nT σ 2
HH H

)]
(1.175)

However,

HH H =
nR∑
i=1

|hi |2, nT = 1 and InT
= 1

so

C = W log

[
det

(
1 + P

σ 2

nR∑
i=1

|hi |2
)]

(1.176)

If the channel coefficients are normalized, i.e. |hi |2 = 1, then

C = W log

(
1 + P

σ 2
nR

)
(1.177)

As we see, the channel capacity grows logarithmically with the number of receivers.
We can draw another important conclusion from formula (1.176). This formula indicates

how the signals from component receivers should be combined to create a single output
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Figure 1.33 SIMO system configuration with optimum combining

signal. As the channel from the transmitter to the ith receiver has the channel coefficient
hi , the ith receiver output signal should be weighted by the factor h∗

i before summing with
other receiver outputs. This scheme is shown in Figure 1.33. Such a system configuration
is called SIMO (Single-Input Multiple-Output) and this type of reception is called receive
diversity . The above-mentioned method of signal combining is called Maximum Ratio
Combining (MRC). It can be proved that it maximizes the SNR at the combiner’s output.
Let us note that due to the fact that each received signal is multiplied by the complex
conjugate of its own channel coefficient, the strong signals (for which channel coefficients
are higher) are amplified, whereas weeker signals are summed with lower weights. There
are a few other receive diversity methods that are suboptimum with respect to the MRC
method but they will not be considered here.

Let us illustrate the achievable capacity with an example, as for the previous system.
Consider the receiver consisting of the nR = 4 or 8 component receivers. Let the SNR
be 15 dB, as before. Using formula (1.177) we receive C/W = 6.99 bit/s/Hz for nR = 4
and C/W = 7.99 bit/s/Hz for nR = 8, so we observe increases in channel capacity by 37
and 59 percent, respectively.

The next particular case is the so-called transmit diversity , in which there are nT > 1
transmitters and a single receiver (nR = 1). This configuration is often called MISO
(Multiple-Input Single-Output). This time the channel matrix is

H = (
h1, h2, . . . , hnT

)
and

HHH =
nT∑
j=1

∣∣hj

∣∣2
As a result

C = W log

det

1 +
nT∑
j=1

∣∣hj

∣∣2 P

nT σ 2
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= W log

1 +
nT∑
j=1

∣∣hj

∣∣2 P

nT σ 2

 (1.178)

Assuming |hj |2 = 1, we have

C = W log

(
1 + P

σ 2

)
As we see, in this case the channel capacity is the same as in the SISO system.

Finally, consider the MIMO (Multiple-Input Multiple-Output) system in which the num-
ber of transmitters and receivers is the same, i.e. nT = nR = n. In calculating the capacity
let us take into account the idealized case in which the channels are mutually orthogonal,
so there is no interference between different channels. This can be performed practically
using spread spectrum techniques, explained in Chapter 7. Channel orthogonality also
means that the channel matrix H is diagonal. Assuming that

∑nT

j=1 |hij |2 = nT = n, the
entries of the channel matrix are

hij =


√
n for i = j

0 for i �= j

Thus

n∑
j=1

|hij |2 = n and HHH = nIn (1.179)

As a result, the capacity is given by the formula

C = W log

[
det

(
In + P

nσ 2
nIn

)]
As the matrices for which the determinant is calculated are diagonal, this determinant is

det

(
In + P

σ 2
In

)
=

(
1 + P

σ 2

)n

therefore

C = W log

[(
1 + P

σ 2

)n]
= nW log

(
1 + P

σ 2

)
(1.180)

The most important conclusion from formula (1.180) is that the capacity linearly
depends on the number n of transmiters and receivers. For an SNR of 15 dB and
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nT = nR = 4 or 8, respectively, the capacity per herz is equal to 20.08 and 40.16 bit/s/Hz,
respectively. This is an enormous increase in capacity, which amounts to 400% and
800%! As we see, in order to design a system with high capacity it is advised to
apply both transmit and receive diversities and to orthogonalize channels as much as
possible.

The above relatively simple capacity calculations gave a significant impulse in
the design of high capacity radio systems for which, due to spectrum scarsity, the
high spectral efficiency is a crucial feature. However, we have to be aware that the
above example illustrates an idealized case. In practice there is dependence between
particular channels and they are not fully orthogonal. Despite that, the increase in
data rates achievable in MIMO systems is very significant compared with SISO sy-
stems.

In this chapter we have presented only the most important and simplest elements of
information theory and they will allow us to analyze digital communication systems with
deeper understanding. Having in mind the theoretical performance limits related both
to the source coding as well as to transmit and receive strategies, it makes the evalua-
tion of the possible margin that still remains to be reduced through appropriate system
design much easier. For this reason, information theory, although a relatively theoretical
discipline, brings more and more to the development of modern digital communication
systems.

Problems

Problem 1.1 Calculate the entropy of a discrete memoryless source featuring the mes-
sage alphabet X = {a1, a2, . . . , a6}. The probability of appearance of each message at the
source output is equal to 1/6.

Problem 1.2 Let the message a have the probability of occurrence at the source output
equal to p, i.e., P(a) = p. Draw a plot of amount of information obtained by observing
the message a, as a function of its probability of occurrence p.

Problem 1.3 Consider a discrete memoryless source with the message alphabet X =
{a1, a2, a3, a4} and respective probabilities P(a1) = 0.5, P (a2) = 0.25, P (a3) = 0.15,

P (a4) = 0.1. Find the entropy of source X and its second extension.

Problem 1.4 A typical TFT screen of a mobile phone has the size of 240 × 320 pixels.
The color of each pixel is encoded in 18 bits. Assuming that each color of the pixel is
equally probable and all pixels are statistically independent, calculate the entropy of a
single picture shown on this screen.

Problem 1.5 A random signal x(t) of zero mean is sampled every T seconds. The
received samples are converted into digital form by the analog-to-digital converter.
The probability distribution of the signal samples and the characteristics of the
analog-to-digital converter are shown in Figure 1.34. Calculate the entropy of the
samples observed at the output of the converter.
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Figure 1.34 Probability distribution function of the samples of signal x(t) and the input–output
characteristics of the analog-to-digital converter

Problem 1.6 Solve Problem 1.5 for the signal at the input of the analog-to-digital con-
verter that has the uniform distribution shown in Figure 1.35.

−4 −3 −2 −1 0 1 2 3 4
x

1/6

pX(x)

Figure 1.35 Probability distribution function of signal samples at the input of the analog-to-digital
converter

Problem 1.7 Consider a discrete memoryless source with an infinite number of messages
{a1, a2, . . .} whose distribution is given by the formula

P(ai) = αpi, i = 1, 2, . . .

What is the correct value of α? Calculate the entropy of this source and plot it as a function
of probability p.

Problem 1.8 Consider a second-order Markov source X whose state diagram is shown
in Figure 1.36. Is this source ergodic? Calculate the entropy of this source. Calculate the
stationary probabilities and the entropy of the memoryless source X associated with source
X. Compare the entropies of source X and source X.
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Figure 1.36 State diagram of the second-order Markov source from Problem 1.8

Problem 1.9 A discrete memoryless source has eight messages X = {a1, a2, . . . , a8} that
appear on its output with probabilities shown in Table 1.1. Six different mappings denoted
as A, B, . . . ,F are considered as potential source codes. Check which mappings consitute
a source code and which are prefix codes. Calculate the average code length for each code
and the respective coding efficiency. Which code is the best from the coding efficiency point
of view?

Table 1.1 Mapping of the source messages onto symbol sequences

Message P(ai) A B C D E F

a1 1/4 000 0 0 0 00 0
a2 1/4 001 01 10 10 01 100
a3 1/8 010 011 110 110 100 101
a4 1/8 011 0111 1110 1110 101 110
a5 1/16 100 01111 11110 111100 1100 111
a6 1/16 101 011111 111110 111101 1101 1110
a7 1/16 110 0111111 1111110 111110 1110 1000
a8 1/16 111 01111111 11111110 111111 1111 11110

Problem 1.10 Construct a compact code for the message source from Problem 1.9 using
the Huffman algorithm. Repeat the problem for the Shannon-Fano algorithm.

Problem 1.11 For a given message source, two source codes are called nontrivially
different if they have different distributions of codeword lengths. For the message source
described by Table 1.2 construct two different compact codes using the Huffman algorithm.
Compare their average lengths and coding efficiencies.

Table 1.2 Table of source messages and their probabilities

Message a1 a2 a3 a4 a5

Probability 0.4 0.2 0.2 0.1 0.1
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Problem 1.12 Find the coding efficiency of the compact code constructed for the dis-
crete memoryless source X with the alphabet {a1, a2, a3} for which P(a1) = 0.5, P (a2) =
0.3 and P(a3) = 0.2. Construct a compact code for the second extension of the source X.
Compare the coding efficiencies of the constructed compact codes.

Problem 1.13 Use the dynamic Huffman coding procedure to encode the text “It is sci-
ence”.

Problem 1.14 Perform dynamic Huffman code decoding of the sequence obtained in
Problem 1.13.

Problem 1.15 Let us treat the binary sequence 0010110000101101100011 as an
output sequence of messages from the memoryless message source X. The probabilities
of particular messages are P(0) = 0.1 and P(1) = 0.9, respectively. Encode the
sequence of the first six messages using the arithmetic coding algorithm. Then decode
the received codeword. Calculate the entropy of the memoryless source and compare it
with the average number of source symbols per single message achieved in the encoding
process.

Problem 1.16 Apply the Lempel-Ziv algorithm to encode the sequence of messages from
Problem 1.15. Recall that the Lempel-Ziv algorithm does not require the knowledge of
probabilities of messages generated by the message source. Compare the length of code-
words achieved in both encoding methods. Calculate the number of source symbols per
single message achieved owing to the encoding process.

Problem 1.17 Let us consider the communication link transmitting binary symbols that
consists of a cascade of component segments. This is a typical situation in transmission
systems built of optical fiber links or terrestrial radio links (see Chapter 5). On the output
of each communication segment the received signals are detected and the decided symbols
are subsequently transmitted through the next communication segment. The scheme of such
a link is shown in Figure 1.37. The communication block that detects the received symbols
and transmits them in the regenerated form through the next segment is sometimes called
a regenerative repeater. Let us assume that each segment can be represented by a binary
symmetric memoryless channel model characterized by the error probability p. Assume that
binary symbols fed to the link input are equally probable. What is the error probability on
the output of a cascade connection of: (a) two segments, (b) three segments? Knowing the
error probability at the output of the (n − 1)st segment, derive the error probability at the
output of the nth segment.

TX TX TX RXRX RX

ai

ai
′ ai

′′
ai′′′

Regenerative
repeater

Regenerative
repeater1st segment 2nd segment 3rd segment

Figure 1.37 Communication link consisting of the link segments with regenerative repeaters

Problem 1.18 Using the results of Problem 1.17 write a program, e.g. in Matlab, C,
Pascal or any other computer language you know, that iteratively calculates the probability
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of error on the output of n segments assuming that binary input symbols are equally
probable. Draw the results on a single plot for p = 0.01, 0.001 and 0.0001 as a function
of the number of segments n (let n be in the range between 1 and 10). Draw the conclusions
from the plotted curves.

Problem 1.19 Calculate the capacity of the binary symmetric erasure channel model
shown in Figure 1.17.

Problem 1.20 Calculate the capacity of a cascade connection of (a) two and (b) three
binary symmetric memoryless channels. Each component channel is characterized by the
error probability p. On the same plot draw the channel capacity as a function of p for
one, two and three binary symmetric memoryless channels connected in cascade. Find the
channel capacity for an increasing number n of composite channels if the error probability
for a single channel is p = 0.001.

Problem 1.21 Determine the capacity of the channel shown in Figure 1.38.

1−p

p/3

p/3

p/3

1−p

1−p

1−p

x1

x2

x3

x4

y1

y2

y3

y4

Figure 1.38 Model of a 4-ary input–4-ary output memoryless symmetric channel

Problem 1.22 Let us consider the discrete memoryless channel described by the channel
transition matrix P

P =


0.6 0.2 0.1 0.1
0.4 0.5 0.03 0.07
0.1 0.1 0.1 0.7
0.1 0.2 0.5 0.2


Determine the maximum likelihood decision rule for this channel.

Problem 1.23 Let us consider the channel model with bipolar input xn = ±A and con-
tinuous output determined by the formula

yn = xn + νn

where νn is a noise sample characterized by the probability density function pN(νn).
Assume that both subsequent data input symbols xn and noise samples νn are statistically
independent. The probabilities of input signals are respectively equal to Pr{xn = A} = P0
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and Pr{xn = −A} = P1. Show how the MAP decision can be implemented for this case.
Derive the Log-Likelihood Ratio (LLR) in which the input symbol probabilities (a priori
probabilities) are taken into account. Repeat the derivation for the particular case of the
Gaussian probability density function of noise νn. Assume that the noise νn has a zero
mean and variance σ 2.

Problem 1.24 Calculate the differential entropy for a uniformly distributed random vari-
able with the probability density function shown in Figure 1.35. Calculate the variance of
this random variable and then calculate the differential entropy of the Gaussian random
variable with the same variance. Compare both results.

Problem 1.25 Consider the ideally flat band-limited channel. Let the SNR in this channel
be equal to 10 dB. Let the input signal power be uniformly distributed over the whole
channel band and the additive noise be Gaussian and white. What is the value of the
channel bandwidth B required to achieve the channel capacity C equal to 10 kbit/s? Now
let us assume that the SNR is equal to 0 dB. How much wider does the channel bandwidth
have to be in order for the channel to achieve the same capacity? We further assume that
the input signal power is uniformly spread over the whole channel band.

Problem 1.26 Consider the communication system with diversity reception shown in
Figure 1.39. Data symbols dn of the mean power P are transmitted through two channels
characterized by the channel coefficients h1 and h2, respectively. The signals transmit-
ted through each channel are disturbed by the additive Gaussian noise samples of zero
mean and variance σ 2

1 and σ 2
2 , respectively. In the receiver the signals xn,i (i = 1, 2)

received from each channel are appropriately weighted by the coefficients a1 and a2 and
subsequently combined, resulting in the signal yn = a1xn,1 + a2xn,2. Calculate the optimal
weighting coefficients a1 and a2 that ensure maximization of the SNR on the output of the
combiner, assuming that the power of the useful signal on the combiner output remains
constant and equal to P . Calculate the SNR on the combiner output for the optimal weight-
ing coeffcients and the resulting channel capacity. Assume that σ 2

1 = σ 2
2 = σ 2. Calculate

the SNR and channel capacity for this case and compare it with formulas (1.176) and
(1.177). Comment on the results.

Input data
stream

Receive antennas
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h2
Transmitter

Diversity
receiver

dn dn

xn,2

xn,1

yn
Decision

^

SIMO channel

νn,1

νn,2

a1

a2

Figure 1.39 System with diversity reception

Problem 1.27 Let us consider the 2 × 2 MIMO system shown in Figure 1.40. In order
to achieve a more reliable transmission as compared with the respective SISO system,
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Figure 1.40 General block diagram of the MIMO system with the Alamouti ST code

the so-called Alamouti Space-Time (ST) code has been applied. The input symbols are
grouped into blocks of two symbols [c1, c2] and transmitted by two parallel transmitters
in two consecutive time instants in the form of blocks [c1, c2] and [−c∗

2, c
∗
1], where (.)∗

denotes a complex conjugate. Let us denote rkn as the signal sample received at the kth
receiver at the nth moment. Thus, we have

r11 = h11c1 + h12c2 + ν11

r12 = h11(−c∗
2) + h12c

∗
1 + ν12

r21 = h21c1 + h22c2 + ν21

r22 = h21(−c∗
2) + h22c

∗
1 + ν22 (1.181)

Denoting

r1 =
[

r11

r∗
12

]
, r2 =

[
r21

r∗
22

]
, ν1 =

[
ν11

ν∗
12

]
, ν2 =

[
ν21

ν∗
22

]
, c =

[
c1

c2

]
we receive

r1 = H1c + ν1

r2 = H2c + ν2 (1.182)

where

H1 =
[

h11 h12

h∗
12 −h∗

11

]
, H2 =

[
h21 h22

h∗
22 −h∗

21

]
(1.183)

The ST code decoder performs the operation shown in Figure 1.40, where (.)H denotes
matrix transposition and conjugation (Hermitian transposition).

1. Prove that matrices H1 and H2 are orthogonal.
2. Calculate the signals at both decoder outputs.
3. Find the formula for the maximum likelihood criterion for finding decisions ĉ1 and ĉ2

on the basis of the decoder output, assuming that all noise samples are Gaussian and
white.
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4. Assume that E[|hij |2] = 1 (i, j = 1, 2) and the transmitted signal power P is equally
divided between two antennas. Calculate the SNR at the output of the decoder, assuming
the mean noise power at each receiver input is equal to σ 2, and compare it with the
output of the regular SISO system transmitting data symbols ci over a flat channel with
the channel coefficient h, where E[|h|2] = 1, and additive noise with zero mean and
variance σ 2.

5. Calculate the capacity of the system with the Alamouti code and compare it with the
capacity of a regular SISO system featuring the same P/σ 2.



 



 

2
Channel Coding

Information transfer over channels introducing distortions often requires protection against
errors. Due to distortions and noise, physical channels hardly ever ensure satisfactory
transmission quality. User applications often require binary error rates of the order of
10−5 –10−6, so application of channel coding that protects binary sequences against errors
is necessary. Sometimes the system requirements are much higher. For example, due to
a very high compression rate of the video signal, in Digital Video Broadcasting (DVB)
correct video signal decompression requires Quasi Error-Free (QEF) reception, i.e. the
error rate should be of the order of 10−10 –10−12. Ensuring such quality is certainly a
demanding task. Fortunately, it is achievable owing to the progress in coding theory and
communication technology.

Channel coding applied in a given digital transmission system is strictly associated with
its structure, required transmission quality and limitations resulting from the applications
of the system. In some systems the data sequence needs to be transmitted at a constant
rate and rate fluctuations cannot be tolerated. In some others an allowable transmission
delay is a system limitation. In certain systems a feedback channel from the data receiver
to the transmitter can be established in order to send messages about data blocks reaching
the receiver. This enables repetition of the erroneously received blocks. Such a feedback
channel has a crucial influence on the choice of the channel code. Generally, channel cod-
ing is applied to ensure error detection and/or correction. The latter task is usually much
more costly than the former one. In modern digital transmission systems, in particular
those applying radio channels, both tasks are usually performed.

2.1 Idea of Channel Coding

The essence of channel coding is based on two rules: introduction of information redun-
dancy and averaging the noise influence. Introduction of information redundancy is
realized by attaching an additional symbol sequence to the information block representing
a given message. This sequence is selected in such a way that the transmitted message
could be easily distinguished from other messages that could potentially be transmitted.
Messages are represented by the symbol sequences in such a way that it is very unlikely
that channel perturbations distort so high a number of symbols in the sequence that these
erroneous symbols would destroy the possibility of a unique association of the received

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd
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symbol sequence with the transmitted message. The effect of noise averaging, in turn,
is achieved by association of the redundant symbols with a few different information
symbols representing a given message.

Recall for a moment our considerations from Chapter 1. We observed that the longer
the coded sequence, the easier it is to be closer to the asymptotic value of the code rate
determined by the channel capacity C. This statement is also illustrated by the following
argumentation (Clark and Cain 1981).

Consider the problem of binary error events occurring during transmission over a binary
memoryless symmetric channel. In this channel errors are mutually independent. Let the
error probability of a single symbol be p = 0.01. Figure 2.1 presents the plot of probability
Pr{e/n >ρ} of the event that the ratio of the error number e in an n-element block to
the block length n exceeds a certain threshold value ρ. For any assumed value of n the
plot has a staircase shape, because the ratio e/n has a discrete nature. Calculation of the
probability Pr{e/n>ρ} is easy when we use the fact that Pr{e/n>ρ} = 1 − Pr{e/n ≤ ρ}.
It is easy to show that

Pr{e/n ≤ ρ} =
�ρn�∑
i=0

(
n

i

)
pi(1 − p)n−i (2.1)

where �x� denotes the highest natural number not higher than x.
Conclusions resulting from Figure 2.1 are the following. Let the receiver make the

decision upon the whole received binary data block instead of individual decisions upon
successive symbols. In order to achieve acceptably low block error probability, it is
necessary to apply a sufficiently strong coding system in which the decoder is able to
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Figure 2.1 Probability of the event that the ratio of the number of errors to the block length
exceeds the given threshold ρ
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correct a certain number of erroneous symbols in a block. Unless the number of errors
exceeds a certain threshold, the decoder is able to interpret the received binary block
correctly. Let us note that the longer the binary block, the more rapid the decrease of
the probability of the event that the relative number of errors e/n exceeds a given value
ρ. In turn, assuming a certain value of Pr{e/n>ρ}, e.g. equal to 10−4, we observe that
the longer the block, the smaller the relative number of errors that need to be corrected.
Therefore a longer code has to be able to correct a relatively smaller number of errors.

The next problem related to the reliable message transfer with channel coding involves
the choice of the method of error detection and correction. Let us again consider a binary
memoryless channel model in which errors occur independently, with probability p. As
we remember from the previous chapter, probability of the event that in n-element block
a particular sequence of d errors has occurred is equal to pd(1 − p)n−d . According to the
maximum likelihood rule, having received a particular symbol sequence, from possible
code sequences the receiver should select the sequence that exhibits the lowest Hamming
distance to the received sequence. If from 2n possible binary sequences of length n such
2k (k < n) code sequences have been selected that the Hamming distance between any
pair of them is not lower than dmin, then the decoder operating according to the maximum
likelihood decision rule will make a correct decision unless the Hamming distance between
the received sequence and the transmitted one exceeds the value

t =
⌊

dmin − 1

2

⌋
(2.2)

Let us quote the following example (Clark and Cain 1981).

Example 2.1.1 Let the length of the binary block be n = 5. Then there are 25 = 32 possible
binary sequences of length 5. From these sequences we select 2k = 22 = 4 code sequences.
Thus, each code sequence is related to one of four messages or, equivalently, to a particular
combination of k = 2 binary messages. Let the selected code sequences have the form

00000, 00111, 11100, 11011

Comparing the number of positions in which any pair of sequences differs, we conclude
that the minimum Hamming distance between them is dmin = 3. Therefore, if the decision
upon the transmitted sequence made by the receiver is to be correct, the received sequence
can differ from the transmitted one in at most t = �(3 − 1)/2� = 1 position. Thus, error
correction relies on the association of the received 5-bit sequence (out of 32 sequences, 28
are incorrect) with the code sequence that is the closest in the Hamming distance sense.
Table 2.1 presents all possible 5-bit sequences in an ordered manner. Let us note that the
leader of each column is a code sequence. Binary sequences that differ from a given code
sequence in one position are placed below this sequence in the same column, therefore
their Hamming distance from the column leader does not exceed t . Under those sequences
there are blocks for which the Hamming distance from the column leader is d = 2. Unfor-
tunately, some of those sequences are equidistant from two different code sequences, e.g.
the sequence 10101 differs in two positions from the code sequence 00111 located in the
same column and the code sequence 11011 in the next column. The sequences located
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Table 2.1 Assignment of binary sequences to the codewords

Codewords 00000 11100 00111 11011

Correctable sequences 10000 01100 10111 01011
(d = 1) 01000 10100 01111 10011

00100 11000 00011 11111
00010 11110 00101 11001
00001 11101 00110 11010

Uncorrectable sequences 10001 01101 10110 01010
(d = 2) 10010 01110 10101 01001

below the line in the table cannot be uniquely associated with any code sequence. We call
them uncorrectable sequences, although the errors contained in them are detectable.

Table 2.1 can be directly applied in the maximum likelihood decoding process. Max-
imum likelihood decoding consists of finding the received sequence in a decoding table
such as Table 2.1 and associating it with the code sequence that is located on top of
the same column. This can be done only for correctable sequences. When locating the
received sequence among uncorrectable sequences the decoder can warn the other part of
the receiver about errors in the received sequence.

Such a table decoding is optimal in the sense of maximum likelihood; however, it
becomes cumbersome when the length of codewords increases and the number of code-
words rises as well. So it is applicable for short codes only.

When we create a decoding table, 2n possible sequences are distributed in 2k columns.
The number of columns is equal to the number of code sequences. The code is able to
correct t errors if the number of Ne sequences placed in each column fulfills the following
inequality

Ne ≥ 1 +
(

n

1

)
+

(
n

2

)
+ · · · +

(
n

t

)
(2.3)

The right-hand side of the inequality represents the number of sequences for which the
Hamming distance from a given code sequence does not exceed t . So there is the code
sequence itself,

(
n
1

) = n sequences differing from the code sequence in one position,
(
n
2

)
sequences differing in two positions, etc., and finally there are

(
n

t

)
sequences differing

from the code sequence in t positions. We conclude that the right-hand side of the above
inequality is the number of sequences located in a given column that are correctable.

One can state the following question: How many binary code sequences of length n

can be found if the code has to have the ability to correct t errors? The answer to this
question is the following. As we know, there are 2n different binary sequences of length
n. Each column of the decoding table in which there are sequences assigned to a single
codeword contains Ne sequences, therefore the number Nc of code sequences is given by

Nc = 2n

Ne

≤ 2n

1 + (
n
1

) + (
n
2

) + · · · + (
n
t

) (2.4)
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In most cases an inequality holds, which means that there exist sequences for which the
Hamming distance to any code sequence is higher than t , so they cannot be uniquely
assigned to any code sequence. The equality is fulfilled if each column of the decoding
table consists only of correctable sequences. A code with this feature is called a perfect
code. As mentioned before, the number of codewords is usually given by the expression
Nc = 2k, and then inequality (2.4) achieves the form

2n−k ≥
t∑

i=0

(
n

i

)
(2.5)

For perfect codes the sum on the right-hand side is maximum and equal to 2n−k . We say
that in this case the Hamming upper bound is reached.

The number of n-bit code sequences is equal to 2k. This implies that in the coding
process a message block of the length of k bits is mapped onto the code sequence of
length n bits. Therefore we can conclude that n − k redundant bits have been appended
to the original message block. These bits facilitate the differentiation of the code sequences
among each other. Instead of transmitting k unprotected bits, the transmitter sends n bits
of the code sequence. The ratio R = k/n is called a code rate. In Example 2.1.1 there
are four 5-bit code sequences, so the code rate is R = 2/5.

2.2 Classification of Codes

Codes can be classified in several ways. Below we present a classification based on
different criteria.

Let us note that a k-bit message block can be mapped onto an n-bit code sequence in
many ways. If the first k bits in the code sequence are the message bits and in the coding
process the next n − k redundant bits are added, then such a code is called a systematic
code. In some cases, in a code sequence there are no message bits in the direct form but
there are bits that are combinations of the message bits only. Such a code is described as
nonsystematic.

So far we have considered codes in which the code symbols are binary. Such codes are
called binary codes . In some applications the codes that apply code symbols belonging to
larger than binary sets are used. Such codes are known as nonbinary . Among nonbinary
codes the most popular ones are Reed-Solomon codes, which find applications in digital
TV systems, CD recording systems and CD players and in many radio systems, including
deep-space communications.

Another method of code classification results from operation of the encoder. From
this point of view, codes can be divided into block and convolutional codes. In the first
case the n-bit code sequence is the outcome of the mapping performed according to the
mathematic rule for creating codewords, based on a single k-bit message block currently
given to the encoder input. Such a mapping can be implemented using a combinatorial
logic circuit only. In such a circuit memory cells do not need to be applied, although they
appear in some specific implementations.

The basic block code parameters are the length of message block, k, and the length of the
codeword, n, which are often given in the form of a pair (n, k), the minimum distance
between codewords dmin and the code rate R = k/n. An important code parameter is
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also the number of correctable errors t . Typically the length of the message block ranges
between three and a few hundred symbols whereas the code rate is contained between 1/4
and 7/8. However, due to rapid progress in coding theory and implementation capabilities,
the codeword length can even reach a few tens of thousands of bits (see description of
turbo codes and LDPC codes at the end of this chapter).

Convolutional codes require a sequential logic circuit and, consequently, memory cells
to implement the encoder. Thus, memory cells to implement an encoder are necessary.
The generated n-bit codewords are the result not only of the k-bit message sequence
currently fed to the encoder input but also of the current state of the encoder, which
is determined by the contents of its memory cells. This state depends on the message
blocks previously given to the encoder input. Code sequences can often be interpreted
as a convolution of the encoder impulse response with the input sequence. This explains
the origin of the name of these codes. An encoder impulse response is the response of
the encoder to a single “1” followed by a sequence of zeros. As before, the code rate is
described by the ratio R = k/n. A convolutional code is characterized by the pair (n, k)

and the so-called free distance dfree, which is the lowest Hamming distance between
any two sequences of the same length received from the encoder. Another characteristic
parameter of a convolutional code is the constraint length L, which is equal to the number
of input symbols used in the generation of the encoder output sequence. Therefore L is
the sum of k (the number of symbols given to the encoder input) and m (the number of
memory cells in the encoder). Typically the values of k and n range from 1 to 8, and the
code rate is, as before, between 1/4 and 7/8. In turn, the number of memory cells in the
encoder is contained between 2 and 60.

Codes are also classified according to their algebraic structure. From this point of view,
the codes are divided into linear and nonlinear . Most codes applied in practice belong
to the first type. In the algebraic sense, linear codes create a vector space. Linear block
codes create an algebraic group with respect to addition. Basic properties of such a group
are as follows: The sum of any two codewords is also a codeword of the same code and
a zero sequence also belongs to the group. The additive operation is defined as summing
two sequences “symbol by symbol”. In each linear vector space there exists a small set
of vectors, so-called basis , i.e. the vectors whose linear combination can synthesize any
space element. In our case such a space element is a codeword belonging to the given code.
The properties of any linear code can be easily analyzed by considering the transmission
of a zero codeword only and observing the properties of the received sequence and the
distances of other codewords to the zero codeword. The distance of codewords to the zero
codeword, which is equal to the number of “1”s contained in them, is called a Hamming
weight .

We can also classify codes with respect to the type of errors that the codes are aiming to
correct. From this point of view the most popular are random error correcting codes . They
are designed by assuming that code symbols are transmitted over a memoryless trans-
mission channel. Recall that errors occurring in such channels are mutually statistically
independent. Another group of codes resulting from the above classification criterion are
burst error correcting codes . The channel model used in their design includes a memory
of the error source (see Chapter 1). We should mention that the codes correcting burst
errors are applied if the error bursts are relatively well defined. In other cases it is much
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more convenient to apply random error correcting codes supported by an interleaver in
the transmitter and a deinterleaver in the receiver (see Chapter 1 and Section 2.10).

Last but not least, we distinguish error correction and error detection codes. This
differentiation results from two basic aims of coding that have already been mentioned.
Error correcting codes are characterized by a relatively high number of redundant symbols
contained in a codeword. As we have already mentioned, their typical code rate is between
1/4 and 7/8. They are able to detect and subsequently correct errors contained in corrupted
codewords. On the contrary, error detection codes only check if errors have occurred in
the received codeword. Since the erroneous sequences are not corrected, the blocks must
be transmitted again. This, in turn, implies the existence of a feedback channel for sending
acknowledgements or repetition requests. In this method, the number of redundant bits is
relatively small compared with the codeword length, so the code rate is very high.

2.3 Hard- and Soft-Decision Decoding

The problem of the so-called hard- and soft-decision decoding is strictly connected with
the kind of signals available on the decoder input, and with the assumed transmission
channel model. In traditional digital transmission systems, in particular those in which
modulation and error protection are treated separately, binary sequences appear on the
demodulator output. The decoder attempting to recover the transmitted codeword and the
message block associated with it has only a binary sequence at its disposal. The decoding
process can only rely on the knowledge of algebraic dependencies applied during the code
construction in the creation of redundant symbols. The decoding process in which only
binary sequences appear on the decoder input is called hard-decision decoding . Thus, we
can assume that the applied channel model has a binary output. In the previous chapter
we have descriptively shown that in the case of binary sequence processing the maximum
likelihood decision rule reduces to finding the codeword that is closest to the received
sequence in the Hamming distance sense. We will show this in a more formal way now.

Assume that we analyze n-element binary sequences that are transmitted over a binary
memoryless channel. As we remember from Chapter 1, the probability of reception of
sequence r under the condition that codeword c has been transmitted is given by the
formula

P(r|c) = pD(1 − p)n−D (2.6)

where D is the Hamming distance between codeword c and sequence r. Let us find the
codeword that maximizes this probability. Taking the logarithm of both sides in (2.6)
we obtain

ln P(r|c) = D ln p + (n − D) ln(1 − p)

= D ln p + n ln(1 − p) − D ln(1 − p)

= D ln
p

1 − p
+ n ln(1 − p) (2.7)
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The expression whose value we intend to maximize consists of two parts: the first com-
ponent, which is proportional to the Hamming distance D, and the second component,
which is proportional to the codeword length n and for a given n is constant. With the
assumption that p < 0.5, the logarithm of the division p/(1 − p) is negative, therefore
ln P(r|c) will be maximal if D is minimal. This conclusion confirms what we already
know – we should select the codeword c that is the closest in the Hamming sense to the
received sequence r.

In practice, the demodulator can produce not only binary decisions but also some
additional signals that enable the decoder to act with enhanced knowledge on the decoded
sequences. The simplest case is the application of a multilevel quantizer instead of the
two-level decision device producing binary signals on the demodulator output. Owing to
this approach we “measure” the signal level using a ruler with a more precise scale. As a
result, the signals and whole signal sequences are more distinguishable from each other. It
turns out that this approach results in a significant improvement in decoding quality. In the
case of an 8-level quantizer, the memoryless channel model that characterizes the whole
chain of the communication system blocks, starting from the channel encoder output and
finishing at the decoder input, looks like that shown in Figure 1.19c. There also exist
other solutions of soft-decision decoding , in which binary signals on the decoder output
are accompanied by additional signals that are a measure of their reliability. Generally, in
modern digital communication systems soft-decision decoding is applied more and more
often.

In hard-decision decoding it was the Hamming distance that was used in selection of
the codeword by the decoder. Now let us show how the soft-decision decoder should
decide upon the transmitted codeword on the basis of signal samples of the received
sequence. Assume that vector r appearing at the decoder input consists of n samples ri

(i = 1, . . . , n) of the received signal. Each sample is the sum of the data symbol di = ±1
representing the ith bit of codeword c and a sample νi of a zero mean Gaussian noise with
variance σ 2. We also assume that noise samples are mutually statistically independent.
According to the maximum likelihood rule, the decoder searches for such a codeword c
that maximizes the conditional probability density function p(r|cj ) (j = 1, . . . , 2k). Due
to the Gaussian character of the noise samples the conditional probability density function
of vector r is described by the following formula

p(r|cj ) =
n∏

i=1

1√
2πσ

exp

[
−
(
ri − dj,i

)2

2σ 2

]

=
(

1√
2πσ

)n

exp

[
− 1

2σ 2

n∑
i=1

(
ri − dj,i

)2

]
(2.8)

where dj,i denotes the data symbol assigned to the ith element of the j th codeword cj .
Calculation of the logarithm of (2.8) results in an expression that is equivalent to (2.8)
with respect to selection of the most likelihood codeword c

ln p(r|cj ) = n ln
1√

2πσ
− 1

2σ 2

n∑
i=1

(
ri − dj,i

)2
(2.9)
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Maximization of ln p(r|cj ) results in finding such a codeword c for which the sum
Sj = ∑n

i=1

(
ri − dj,i

)2
is minimized. This means selecting the codeword c for which

the representation using symbols dj,i (i = 1, . . . , n) is the closest to the received sample
vector r in the Euclidean distance sense. A suboptimal solution is the search for the code-
word using basically the same method if the received sample is quantized in the quantizer
featuring a small number of quantization levels, e.g. eight. Another simplification that
could have an important practical meaning is a replacement of the squared differences
ri − dj,i by their modules. Then the criterion for selection of the codeword c reduces to
searching for such a data sequence associated with the codeword that minimizes the sum

S′
j =

n∑
i=1

∣∣Q(ri) − dj,i

∣∣ (2.10)

where Q(ri) is a quantized form the received sample ri .

2.4 Coding Gain

Coding gain is the concept that has been introduced in order to compare systems with and
without error correction coding. Figure 2.2 presents typical error probability curves as a
function of the ratio Eb/N0 for both kinds of systems. The scale of the vertical axis is
logarithmic, and the scale of the horizontal axis is expressed in decibels. Eb is the signal
energy per transmitted bit, whereas N0/2 is the power spectral density of the additive
white Gaussian noise. As we will show in the next chapter, the ratio Eb/N0 expresses
the signal power to noise power ratio per single transmitted bit. As compared with the
system without coding, the system with error correction coding that has to transmit the
user data at a given data rate has to send a higher number of bits in a time unit. This is a
result of appending the message bits with the redundant bits needed for error correction.
Although coding ensures higher robustness against errors, the energy per transmitted bit

G

P(e)

Eb/N0

with coding

without coding

[dB]

Figure 2.2 Explanation of the concept of coding gain



 

106 Introduction to Digital Communication Systems

is lower than in case of transmission without coding. Performance gain that is achieved
as a result of redundant coding is a compromise between these two counteracting factors.
The higher the ratio Eb/N0 in the channel, the higher the performance gain; however, for
small values of Eb/N0 we observe a loss in performance instead of gain. Typically both
curves intersect at a certain value of Eb/N0. Application of coding below this value is
unreasonable.

Coding gain for a given error probability is the difference between the required value
of Eb/N0 in the system without coding and the value of Eb/N0 for the system with error
correction coding. Depending on the considered level of error rate, the coding gain can
have different values. We can also determine the asymptotic value of the coding gain when
Eb/N0 tends to infinity. Such a value is called an asymptotic coding gain . In the case of
transmission of codewords using bipolar signals (see Chapters 3 and 4) the asymptotic
coding gain for the hard-decision decoding is (Clark and Cain 1981)

Gt = 10 log [R(t + 1)] (2.11)

whereas for ideal soft-decision decoding it is

Gd = 10 log(Rdmin) (2.12)

We know from formula (2.2) that dmin ≥ 2t + 1, so the difference Gd − Gt between
asymptotic coding gains for hard- and soft-decision decoding is around 3 dB. In practice,
replacement of the hard-decision decoding by its soft version results in an improvement of
about 2 dB. Let us stress that it is a significant difference. Lowering of the required value
of Eb/N0 by 2 dB is equivalent to a decrease in the transmitted signal power to 63% of
its previous value. This is a significant result not only from the power point of view. For
many systems, in particular for radio systems, lowering of the transmitted power results
in a decrease in the level of distortions induced to other users of the same system and
has a positive influence on the overall system capacity, i.e. the number of users who can
simultaneously operate in the given area.

2.5 Block Codes

Recall from Section 2.2 that for block codes the vector of k message symbols uniquely
determines the n-symbol codeword generated by the encoder. Among many possible block
codes linear block codes have a practical meaning. Let us limit ourselves temporarily to
binary codes. Codewords of a linear block code constitute an algebraic group with respect
to the additive operation. As we have already mentioned, the sum of two codewords is
also a codeword. The zero codeword, being a zero element of the algebraic group, also
belongs to the codeword set. Denote the codewords a and b as vectors

aT = [a1, a2, . . . , an] and bT = [b1, b2, . . . , bn] (2.13)

(T denotes vector transposition). Addition of two vectors is defined as

a + b = c = [c1, c2, . . . , cn]T , where ci = ai ⊕ bi, i = 1, 2, . . . , n (2.14)
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The symbol ⊕ denotes modulo-2 addition. Let us note that for the additive operation
defined in such a way the zero vector is also a codeword, as it is the sum of two identical
codewords.

Consider a simple example of the block code that belongs to the class of the so-called
generalized parity control codes. Let the code (n, k) be systematic, with k = 3 and n = 6.
Let the first three bits be message bits given to the encoder input, and let the three
remaining bits, the parity bits, be the linear combinations of these message bits. Let the
codewords be determined by the expression

aT = [a1, a2, a3, (a1 ⊕ a2), (a2 ⊕ a3), (a1 ⊕ a2 ⊕ a3)] (2.15)

which means that

a4 = a1 ⊕ a2, a5 = a2 ⊕ a3, a6 = a1 ⊕ a2 ⊕ a3 (2.16)

Consider the addition of two codewords, a and b, both described by expression (2.15).
Their sum is a sequence c of the form

cT = [c1, c2, c3, c4, c5, c6]

= [(a1 ⊕ b1), (a2 ⊕ b2), . . . , (a6 ⊕ b6)]

where

c4 = a4 ⊕ b4 = a1 ⊕ a2 ⊕ b1 ⊕ b2 = (a1 ⊕ b1) ⊕ (a2 ⊕ b2) = c1 ⊕ c2

c5 = a5 ⊕ b5 = a2 ⊕ a3 ⊕ b2 ⊕ b3 = (a2 ⊕ b2) ⊕ (a3 ⊕ b3) = c2 ⊕ c3

c6 = a6 ⊕ b6 = a1 ⊕ a2 ⊕ a3 ⊕ b1 ⊕ b2 ⊕ b3

= (a1 ⊕ b1) ⊕ (a2 ⊕ b2) ⊕ (a3 ⊕ b3) = c1 ⊕ c2 ⊕ c3

(2.17)

We see from formula (2.17) that all redundant bits of the sequence c are obtained as a
result of the same operations as in formula (2.15), which describes a codeword of the
code (6, 3). The sequence c is therefore also a codeword.

One of the most important features of a block code is the minimum Hamming distance
dmin between any pair of its codewords. From this point of view, linear codes have a
useful property. Let us note that if the Hamming distance between the codewords a and
b is d(a, b) = d , then the Hamming distance between the codewords a + a and a + b is
also d . Let a + b = c, so the distance between the codewords a and b is the same as
the distance between the codeword c = a + b and the zero codeword. In consequence,
investigation of the distances between codewords can be limited to checking the distance
of nonzero codewords from the zero codeword. The Hamming distance of the codeword
c and the zero codeword is equal to the number of “1”s contained in that codeword. That
number is called the Hamming weight of the given codeword c and is denoted as w(c).
We will take advantage of this property many times in the analysis of decoders for several
linear codes. The lowest Hamming weight, i.e. the lowest number of “1”s contained in
any nonzero codeword of a given linear binary code, is equivalent to the minimal distance
dmin of this code.
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2.5.1 Parity Check Matrix

So far we have described the code by defining the equations determining its redundant bits.
One of the basic decoder operations is checking if the received sequence is a codeword.
Knowing the equations that govern the production of redundant bits, the decoder can
locally generate the redundant bits on the basis of the received message bits. If these
bits are the same as the bits received in the redundant bit positions, it is highly probable
that the received sequence is a codeword. As an example, let us take the same code as
previously. Equations defining the redundant bits are determined by formula (2.16). We
can write them in the following equivalent form

a1 ⊕ a2 ⊕ a4 = 0

a2 ⊕ a3 ⊕ a5 = 0 (2.18)

a1 ⊕ a2 ⊕ a3 ⊕ a6 = 0

Checking if the received sequence rT = [r1, r2, . . . , r6] is a codeword is reduced to check-
ing if equation set (2.18) is fulfilled when the symbols ri of the received sequence replace
codeword symbols ai (i = 1, 2, . . . , 6) in (2.18). The same operation can also be written
in matrix form

Ha = 0 (2.19)

where the form of matrix H results from the equation set (2.18). In our example this is
equal to

H =
 1 1 0 1 0 0

0 1 1 0 1 0
1 1 1 0 0 1

 (2.20)

Each row of the matrix reflects a single equation of equation set (2.18). Note that “1”s
in a given row appear in those positions in which they occur in a given equation. Each
equation checks the parity of a certain set of codeword bits, so matrix H is called a
parity check matrix . In turn, each column of the parity check matrix is related to a single
codeword symbol (bit). For a systematic code the first k columns are related to message
bits of a codeword, and the n − k remaining columns are associated with the redundant
bits. The value of the latter bits ensures parity, i.e. the result of modulo-2 addition of
selected message and redundant bits is equal to zero. This is the reason why the redundant
bits are also called parity check bits . Let us note that if the code is systematic, its matrix
H consists of two parts: matrix P T

k of size k × (n − k), which is associated with the
message bits, and the unity (identity) matrix In−k of size (n − k) × (n − k) describing
the positions of the parity check bits. Therefore H can take the form

H = [P T
k | In−k] (2.21)

Now let us represent the parity check matrix in the form of the column vectors hi (i =
1, 2, . . . , n) where vector hi is the ith column of matrix H . Thus, matrix H has the
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following form

H = [h1, h2, . . . , h6] (2.22)

Then equation (2.19) can take the form

[h1, h2, . . . , h6]

 a1
...

a6

 =
6∑

i=1

hiai = 0 (2.23)

and it can be interpreted in the following way. The parity check matrix is constructed in
such a way that its appropriate columns, which are selected by “1”s of a given codeword,
result in a zero vector after adding them together. Recall that our considerations on the
Hamming distance between codewords have led us to the conclusion that the minimum
distance dmin can be determined as the lowest number of “1”s in a nonzero codeword.
However, this distance can also be determined on the basis of a parity check matrix.
Equation (2.23) is also fulfilled for a codeword featuring the lowest Hamming weight.
For that codeword, the lowest number of summed columns of matrix H results in a zero
vector. That number is simply the minimum distance dmin of the given code.

Determine the minimum distance for our example code. All columns of matrix H are
different from each other, therefore the sum of any pair of columns is not equal to the
zero vector. Hence, we conclude that the minimum distance is higher than 2. However,
we can find three columns whose sum is a zero vector. For example, the sum of columns
1, 4 and 6 is a zero vector  1

0
1

 +
 1

0
0

 +
 0

0
1

 =
 0

0
0


In general, one can formulate the following theorem.

Theorem 2.5.1 If the minimum Hamming distance for a linear block code is equal to dmin,
then there exists at least one subset of dmin columns of parity check matrix H whose sum
is the zero vector. Moreover, there does not exist any subset of dmin − 1 or fewer columns
of matrix H whose sum is equal to the zero vector.

If the columns of matrix H are treated as vectors, one can state that for the code of
minimum distance dmin all the subsets of dmin − 1 columns have to be linearly indepen-
dent.1

Denote now the parity check matrix H using the vectors pT
i

(
i = 1, . . . , (n − k)

)
describing its respective rows, i.e.

H =

 pT
1
...

pT
n−k

 (2.24)

1 Recall that the vectors belonging to a certain set are linearly independent when their weighted sum is equal to
zero if and only if all the weighting coefficients are equal to zero.
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Each product pT
i a represents a single parity check equation. Equivalently, parity is also

checked if the parity check equations are added side by side, e.g. (pT
i + pT

j )a = 0
(
i, j =

1, . . . , (n − k)
)

is also a parity check equation. Therefore we conclude that based on
matrix H one can build another equivalent form of a parity check matrix by creating
linear combinations of the rows of the original matrix H . The necessary condition is that
the newly created parity check matrix has to apply a certain form of all parity check
equations pT

i a = 0
(
i = 1, . . . , (n − k)

)
. Linear combinations of the parity check matrix

rows are applied in some block code decoding algorithms.

2.5.2 Generator Matrix

Previously we have determined a code by giving the equations for parity check bits
or, equivalently, the parity check matrix. Another way to describe a code is proposing
the construction of its generator matrix. The following subsection is devoted to this
issue.

As we remember, the sum of any two codewords of a linear code is also a codeword
of this code. Applying this rule repeatedly, we conclude that any combination of the
codewords of a linear code is also a codeword of this code. Because the message symbols
are selected independently, we can determine the codewords that result from the message
block, which consist of a “1” in one of its k positions and zeros in the remaining positions.
In this way we obtain the set of k codewords that, through the linear combination thereof,
can be applied to synthesize a codeword determined by any k-bit message sequence of
the systematic code. The k codewords found in this way constitute a basis of the code
vector space. One can imagine these codewords as k unit vectors in k-dimensional space,
which can be used in the creation of any vector in this space. Let us mention that the
selected basis is not the only one possible, as with a vector description in a given space
that can be done in several coordination systems.

As an example, let us consider the systematic code (7, 4) for which the parity bit
equations are

a5 = a1 ⊕ a3 ⊕ a4

a6 = a1 ⊕ a2 ⊕ a4 (2.25)

a7 = a1 ⊕ a2 ⊕ a3

One can easily determine four codewords of this code that have a single “1” in each
subsequent message position. The codewords are

cT
1 = [1000111]

cT
2 = [0100011]

cT
3 = [0010101] (2.26)

cT
4 = [0001110]
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Let us write them in the compact matrix form as

G =


cT

1

cT
2

cT
3

cT
4

 =


1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 0

 (2.27)

The above matrix is called the generator matrix for the code (7, 4). As the matrix rows
are the codewords creating the basis of the code vector space, a linear combination of
any rows of this matrix can create any codeword of the code characterized by this matrix.
Denoting the k-bit message block by the vector m = [m1,m2, . . . , mk]T , we receive the
following formula for the codeword assigned to the given message block

cT =
k∑

i=1

micT
i = mT G (2.28)

Note yet another interesting property. Each row of the generator matrix is a codeword,
so according to formula (2.19) multiplication of such a codeword by the parity check
matrix results in the zero vector. Performing this operation jointly for all rows of matrix
G, we receive the following dependence

HGT = [0]k×(n−k) (2.29)

where [0]k×(n−k) is a zero matrix of k columns and n − k rows. One can also discover
the next dependence between those two matrices. For a systematic code the parity check
matrix can have the form (2.21), and the generator matrix of that code has the form
G = [Ik |Q], so knowing that expression (2.29) holds, we obtain

[P T
k | In−k]

[
Ik

QT

]
= P T

k + QT = [0]k (2.30)

which is true only if Q = Pk . Therefore the generator matrix of the systematic code (n, k)

has the form

G = [Ik |Pk] (2.31)

As we have mentioned, for a given code more than one generator matrix can be constructed
by the appropriate choice of a linear combination of the rows of matrix G derived for
a systematic code. Other matrices of the same code (which determine the same set of
codewords) do not have the form (2.31), therefore we say that they do not have a canonical
form . However, a characteristic feature of such matrices is that message bits, if appearing
directly, are located in those positions for which the columns of the generation matrix
contain a single “1” supplemented by zero symbols.

Example 2.5.1 Consider the code (7, 4) created on the basis of the original systematic
code determined by parity check equations (2.25), through their modifications aiming at
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placing the message bits in positions 1, 2, 6 and 7. Therefore independent bits are a1, a2,

a6 and a7, whereas the parity bits are a3, a4 and a5. Parity equations for a3 and a4 are
received by adding a1 ⊕ a2 to both sides of the second and third equation. The parity
equation for a5 is received on the basis of equations (2.25) by adding the second and third
equations side by side and substituting the result in the first equation. We finally have

a3 = a1 ⊕ a2 ⊕ a7

a4 = a1 ⊕ a2 ⊕ a6

a5 = a1 ⊕ a6 ⊕ a7

The appropriate forms of parity check matrix H ′ and matrix G′ result from the above
equations. They are equal to, respectively

H ′ =
 1 1 1 0 0 0 1

1 1 0 1 0 1 0
1 0 0 0 1 1 1

 , G′ =


1 0 1 1 1 0 0
0 1 1 1 0 0 0
0 0 0 1 1 1 0
0 0 1 0 1 0 1

 (2.32)

Indeed, the columns of matrix G′ of numbers 1, 2, 6 and 7 have a single “1”, therefore
they reflect the message bit positions in a codeword. Another important fact is that if we
generate all codewords on the basis of matrix G described by formula (2.27) and matrix
G′ given by (2.32), then we discover that both codeword sets are identical; however, in
both cases a given codeword is assigned to two different message blocks.

2.5.3 Syndrome

During transmission of codewords through a communication channel errors occur in them.
Applying a binary channel model (not necessarily symmetric and memoryless), we can
assume that as a result of arising errors codeword c is turned into sequence r, where
r = c + e. As previously, summation of the two vectors is a modulo-2 addition of their
appropriate components. Vector e is the so-called error vector , containing zeros in those
positions in which errors did not occur and “1”s in those in which errors appeared.
Analyzing the decoding table for a simple code (5, 2) shown in Table 2.1 we see that
its first column associated with the zero codeword contains in fact the error vectors. A
part of this column contains correctable errors. As we have mentioned, application of the
decoding table in the decoding process is feasible only for short and simple codes. For that
reason, for longer codes it is necessary to apply other decoding methods. In many cases
the first step in the decoding process is checking if the received sequence is a codeword.
If the check result is positive, then the decoding process is finished and the message bits
are extracted from the received sequence. If the check result is negative, then steps have
to be undertaken to find the erroneous positions in the received sequence, followed by
their correction (when an error correction code is applied) or only followed by signaling
the error event (when the error detection code is used). In the simplest case, in order to
verify if the received sequence is a codeword, the parity check equations are applied. In
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matrix form this operation can be described as

s = Hr (2.33)

The result of this operation, realized by multiplication of the received sequence by the
parity check matrix or performed in another equivalent way, is called a syndrome. The
syndrome s is a vector of length n − k. Let us note that because the equality Hc = 0
holds, the following property is also true

s = H(c + e) = 0 + He =He (2.34)

As we see, the syndrome is exclusively determined by the error vector and does not
depend on the transmitted codeword. Because the syndrome vector has n − k elements,
there are 2n−k different binary syndrome forms. The syndrome is a zero vector if the
error vector e is a zero vector or any nonzero codeword. In the first case it means that the
correct codeword has been received. In the second case the syndrome indicates reception
of the codeword; however, the decoder does not know that it is not the same codeword
that has been transmitted. The error correction code should be constructed in such a way
that the latter case has a very low probability of occurrence. As we have mentioned,
there are 2n−k different syndromes; however, at the same time there are 2n different n-bit
error sequences. Therefore it follows from equation (2.34) that the same syndrome is
related to many different error sequences. A correctly operating decoder is constructed
in such a way that, among all possible error vectors e resulting in the same syndrome,
it selects the most probable one. Because in a typical situation the error probability of a
single bit is lower than 1/2, for application of a binary memoryless symmetric channel
the most probable error sequence among those resulting in the same syndrome is the
one that contains the lowest number of “1”s, i.e. the number of error events within the
n-bit block is the smallest one. Finding that error sequence on the basis of the previously
calculated syndrome is the main task of the decoder. After the error sequence has been
determined, correction of the received sequence r follows. This consists of addition of
the estimated error sequence ê to the received sequence r. Such an operation is described
by the expression

ĉ = r + ê = c + (e + ê) (2.35)

If the correct error sequence has been determined on the basis of the syndrome, the final
decision of the decoder is correct.

2.5.4 Hamming Codes

Let us illustrate the application of the parity check and generator matrices by introducing
Hamming codes . One can state the following question: What should the length n of the
codewords be for the given number of parity bits p = n − k so that the minimum distance
of the code is dmin = 3?

In order to guarantee dmin = 3, all column pairs of the parity check matrix of such a
code should be linearly independent, so they have to be different from each other and
from the zero vector. For p parity bits there exist 2p − 1 such columns, so n = 2p − 1.
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In general, we receive a code of parameters (2p − 1, 2p − 1 − p). Examples of pairs
(n, k) fulfilling this condition are: (7, 4), (15, 11), (31, 26), etc. If dmin = 3, then the
error correction capability of such a code is equal to a single error (t = 1). Analyzing
condition (2.5) on the Hamming upper bound for the given parameters, we see that these
numbers fulfill the equality

2n−k =
1∑

i=0

(
n

i

)
= 1 + n (2.36)

The codes with parameters (n, k) = (2p − 1, 2p − 1 − p) that feature a single error cor-
rection capability are called Hamming codes . They conform to condition (2.36) therefore
they are perfect codes. Parity equations result from the above-mentioned parity check
matrix, which consists of all nonzero columns of length p = n − k. By approriate order-
ing of the columns a systematic code is received. For n = 7 and k = 4, matrix H has the
form

H =
 1 1 1 0 1 0 0

1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (2.37)

and generation matrix G is given by formula (2.27). Therefore, the exemplary code applied
before in the description of the generator matrix construction was a Hamming code.

The Hamming code (7, 4) is often applied as an example in handbooks on digital
communications and coding theory. Hamming codes of higher length n are applied in
some wireless communication systems.

2.5.5 The Iterated Code

Below we present another simple code that is applicable when data can be ordered in the
form of a table. A good example is the transmission of a block of ASCII characters. Let
each character be represented by a 7-bit block. Each block is appended by a parity bit that
checks the parity of all seven bits. In this way a row of the data matrix is completed. Parity
is also checked in each column of this matrix, so the block of data rows is supplemented
with an additional row, often called the Frame Control Check (FCC). Note that the last
bit of the FCC block checks the parity of the parity bit column. The configuration of such
a frame, with the application of parity bits in each row and the FCC block, can have the
following form 

a1,1 · · · a1,7 p1

a2,1 · · · a2,7 p2

· · · · · · · · · · · ·
an,1 · · · an,7 pn

q1 · · · q7 q8


A message block is a bit sequence ai,j (i = 1, . . . , n, j = 1, . . . , 7). Bit pi is a modulo-2
sum of all bits of the ith row, whereas bit qj is a modulo-2 sum of the bits located in the
j th position in all rows. The code constructed in this way is able to identify the position of
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a single error in the table. The decoder calculates the parity bit in each row and modulo-2
accumulates the values of each row. In this way the FCC block is calculated. The error
location is determined by the row and column coordinates, for which inconsistencies of
the calculated and received parity bits occur. As the code is able to correct a single
error, its minimum distance is at least equal to 3. Unfortunately, this code is not able
to correct two errors, which is illustrated in Figure 2.3. In the figure a shadowed square
denotes the position in which the received and calculated parity bits differ. A single error
is identified on the basis of row and column coordinates (Figure 2.3a). Two errors in the
same column appear as the inconsistency of two row bits, however the column parity bit
in FCC remains unchanged, so it is not possible to identify in which column the errors
have occurred (Figure 2.3b). The situation is similar when both errors appear in the same
row (Figure 2.3c). Finally, if two errors are located in different columns and rows, their
identification is not possible either because there are two possible error locations, resulting
in the same parity check bit inconsistency. It can be shown that the minimum distance of
the considered code is dmin = 4.

2

2

1

1

(a) (b)

(c) (d)

Figure 2.3 Ilustration of possible error cases in the iterative codeword: (a) a single error, (b) a
double error in the same column, (c) a double error in the same row, (d) a double error in different
rows and columns (two different error pairs giving the same parity check results are denoted by
numbers 1 and 2) (Goldsmith and Varaiya (1997))  1997 IEEE

2.5.6 Polynomial Codes

The mathematical apparatus applied so far in code description has been limited to vec-
tors and matrices and modulo-2 operations. From the implementation point of view,
polynomial code representation is a very convenient way of code description. Block codes
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defined in the polynomial domain are called polynomial codes . Application of polynomial
calculus allows many codes to be synthesized and the decoding of these codes can be
described in a very clear way.

Let the codeword be given in vector form as

cT = [c0, c1, . . . , cn−1] (2.38)

Equivalently, it can be represented by a polynomial

c(x) = c0 + c1x + · · · + cn−1x
n−1 (2.39)

Polynomial c(x) is called a code polynomial .
Thus, the code (n, k) can be determined not only by a list of codewords but also by a full

set of code polynomials of degree not higher than n − 1. In the case of polynomial codes,
the code polynomials have a special property. There exists a certain polynomial g(x) called
a generator polynomial , which is a common factor of all code polynomials creating the
given code. Applying polynomial operations, we can efficiently describe operations of
both encoder and decoder. The characteristic feature of the polynomial description is that
for binary codes the polynomial coefficients belong to the two-element set {0, 1} whereas
for nonbinary codes the polynomial coefficients belong to the appropriately selected and
finite set of non-negative integers. In general, they belong to a certain finite field. Let us
recall the definition of a finite field.

2.5.6.1 Finite Field

Definition 2.5.1 A finite field (Galois Field) GF(q) is a finite set of q elements for which
a set of arithmetic rules described by the following properties are defined:

1. Two operations (additive and multiplicative) are defined in the field.
2. The result of adding or multiplying two elements belonging to the finite field is an

element of the same field.
3. The field contains an additive identity zero element and a multiplicative identity unit

element, for which the following expressions hold∧
a

a + 0 = a
∧
a

1 · a = a

4. For each field element there exists an additive inverse element, i.e.∧
a

∨
(−a)

a + (−a) = 0

and for all nonzero field elements there exists a multiplicative inverse element, i.e.∧
a �=0

∨
a−1

a · a−1 = 1
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5. In the set of field elements the associative, commutative and distributive properties
apply. This means that if a, b and c are the field elements then

a + (b + c) = (a + b) + c a(bc) = (ab)c

a + b = b + a ab = ba

a(b + c) = ab + bc

Finite fields exist only if the number of their elements is a prime number or is a power
of a prime number. In the first case we talk about a prime field and in the second one
about an extension field . For each prime number q there exists exactly one finite field.
The elements of this prime field denoted as GF(q) are integers in the range 0 to q − 1.
Addition and multiplication are defined as modulo-q addition and multiplication. In turn,
the elements of the extension field whose number q = pm is a power of a prime number p

are all possible polynomials of degree not higher than m − 1. The polynomial coefficients
belong to the prime field GF(p). Additive and multiplicative operations in the extension
field are defined as addition and multiplication of polynomials in the usual sense, recalling
that the polynomial coefficients belong to GF(p) and addition and multiplication of these
coefficients are performed according to the rules defined for that field. The result of each
operation is the subject of reduction modulo the specially selected polynomial p(x) of
degree m with the coefficients belonging to the field GF(p). The polynomial p(x) is an
irreducible polynomial , i.e. it cannot be presented in the form of a product of lower degree
polynomials with coefficients belonging to the field GF(p). In the set of polynomials the
irreducible polynomials are analogous to the prime numbers in the set of integers. These
polynomials are collected in mathematical tables and play a role not only in the description
of the polynomial codes but also in the generation of pseudorandom numbers and other
operations such as scrambling (randomization of a binary sequence).

2.5.6.2 Examples of Operations over Finite Fields

Now we will illustrate basic additive and multiplicative operations for finite prime and
extension fields. Assume GF(7) is a prime field and consists of the digits 0, 1, . . . , 6.
The additive and multiplicative operations over this field are summarized in the tables
below.

+ 0 1 2 3 4 5 6 � 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 0 1 0 1 2 3 4 5 6
2 2 3 4 5 6 0 1 2 0 2 4 6 1 3 5
3 3 4 5 6 0 1 2 3 0 3 6 2 5 1 4
4 4 5 6 0 1 2 3 4 0 4 1 5 2 6 3
5 5 6 0 1 2 3 4 5 0 5 3 1 6 4 2
6 6 0 1 2 3 4 5 6 0 6 5 4 3 2 1

The table elements are created according to the rules (a + b) mod 7 and (ab) mod 7,
respectively. Let us present a few typical operations over this field.

3 + 5 = 8 mod 7 = 1
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4 − 6 = 4 + (−6) = 4 + 1 = 5

4 × 4 = 16 mod 7 = 2

4

5
= 4 × 5−1 = (4 × 3) mod 7 = 5

Regular addition operations do not require any particular comment. Subtraction is per-
formed by finding the opposite element to the subtrahent and adding it modulo-q to the
minuend. We proceed similarly in the case of division. First, the inverse element to the
divisor is found and then the result is multiplied modulo-q by the dividend.

Let us illustrate operations over the extension field on the example of Galois field
GF(8) = GF(23) (Clark and Cain 1981). The irreducible polynomial used in this field
is p(x) = 1 + x + x3. Note again that operations on the polynomial coefficients are per-
formed over GF(2). The additive operation is then a modulo-2 addition (exclusive-or),
and the multiplicative operation is a modulo-2 multiplication, which is equivalent to the
logical product. One can easily check that subtraction in GF(2) is identical to addition
because the opposite number to the given one is the same number. Let us perform exem-
plary additions and multiplications over GF(8) for the polynomials c1(x) = 1 + x + x2

and c2(x) = = 1 + x2:

c1(x) + c2(x) = (1 + x + x2) + (1 + x2)

= (1 ⊕ 1) + (1 ⊕ 0)x + (1 ⊕ 1)x2 = x

When performing multiplication of polynomials over GF(8), the distributive law with
respect to the modulo-p(x) operation is often applied. According to this law, the remainder
from the division by the polynomial p(x) of the sum of polynomials a(x) and b(x) is
equal to the sum of remainders from the division of each polynomial separately by the
polynomial p(x). Therefore

[c1(x)c2(x)] mod p(x) = [
(1 + x + x2)(1 + x2)

]
mod p(x)

= [
1 + x + x2 + x2 + x3 + x4]mod p(x)

= [
1 + x + x3 + x4]mod p(x)

Because x3 mod(x3 + x + 1) = x + 1 and x4 mod(x3 + x + 1) = x2 + x, we obtain

[c1(x)c2(x)] mod p(x) = 1 + x + (1 + x) + (x + x2)

= x + x2

There exists a so-called primitive element in each finite field. It is a nonzero element that,
when raised to successive powers, exhausts all nonzero field elements. Let us consider it
with the example of the prime field GF(7). Inspection of the multiplication table over
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GF(7) indicates that the primitive element in this field is the number 3, because its
subsequent powers in this field are: 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 = 30.
Then multiplication of two elements of this field can be performed by calculation of
the logarithm (i.e. finding the powers of the primitive element in representation of both
multiplied factors), adding these logarithms and performing the anti-logarithmic operation.
The sense of that kind of procedure is more visible in the case of an extension field.

Consider again the Galois field GF(23) generated by the polynomial p(x) = 1 + x +
x3. It turns out that the primitive element in this field is the polynomial x. Denote this
element as α. As a result, we are able to construct the table of successive powers of the
primitive element α supplemented by the zero element. In this way all the elements of
the finite field are represented. This assignment is shown in Table 2.2.

Table 2.2 Table of powers of the primitive
element of the Galois field GF(8) and their
polynomial representation

GF(8) 1 x x2

0 0 0 0
α0 1 0 0
α1 0 1 0
α2 0 0 1
α3 1 1 0
α4 0 1 1
α5 1 1 1
α6 1 0 1

Zeroes and “1”s in appropriate columns denote the polynomial coefficients of the appro-
priate power of the polynomial x. Multiplication of the polynomials can be particularly
easily performed applying the above table. The operation can rely on representation of the
multipliers by the appropriate powers of the primitive element, modulo-(q − 1) adding
these powers and determining the polynomial that is associated with the resulting power
of the primitive element. For example,

(1 + x + x2)(1 + x2) = α5α6 = α(5+6) mod 7

= α4 = x + x2

2.5.7 Codeword Generation for the Polynomial Codes

As we have already mentioned, the polynomial code (n, k) is determined by listing the
full set of code polynomials of degree not higher than n − 1, which have a common factor
called a generator polynomial g(x) of degree n − k. As a result, each code polynomial
can be expressed in the form

c(x) = a(x)g(x) (2.40)
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in which a(x) depends on message bits. Let g(x) = 1 + x + x3 and a(x) = a0 + a1x +
a2x

2 + a3x
3. The resulting code polynomial is then described by the expression

c(x) = (a0 + a1x + a2x
2 + a3x

3)(1 + x + x3)

= a0 + (a0 ⊕ a1)x + (a1 ⊕ a2)x
2 + (a0 ⊕ a2 ⊕ a3)x

3

+ (a1 ⊕ a3)x
4 + a2x

5 + a3x
6 (2.41)

As we see the derived (7, 4) code is nonsystematic. One can easily transform it into a
systematic code if the following substitutions are performed

b3 = a3, b2 = a2, b1 = a1 ⊕ a3, b0 = a0 ⊕ a2 ⊕ a3 (2.42)

Thus, if we use the coefficients b0, b1, b2, b3, calculation of the remaining polynomial
coefficients results in the systematic form of the code polynomial, which is further divisible
by g(x) = 1 + x + x3:

c(x) = (b0 ⊕ b2 ⊕ b3) + (b0 ⊕ b1 ⊕ b2)x + (b1 ⊕ b2 ⊕ b3)x
2

+ b0x
3 + b1x

4 + b2x
5 + b3x

6 (2.43)

Consider now possible realizations of the polynomial code encoder. Let us start from
the simple case of creation of the codeword described by equation (2.40). Let us turn
our attention to the analogy of the polynomial notation for a given sequence with the
Z-transform of this sequence if x = z−1 is applied. Polynomials with the given coefficients
are analogous to the Z-transform of the coefficient sequence, so multiplication of two
polynomials results in a new polynomial with coefficients that are the convolution of the
coefficients of the multiplied polynomials.2 Thus, the polynomial g(x) = 1 + x + x3 can
be treated as a transform of the filter impulse response of the form 1, 1, 0, 1. The sequence
a3, a2, a1, a0 is fed to the filter input. This implies the encoder implementation shown in
Figure 2.4.

As we have already noticed, this encoder generates a nonsystematic code. Below we
show how to generate codewords of a systematic code. This structure is often applied in
practice. The fact that a code is systematic is particularly advantageous if the code is used
only for error detection. The number of redundant bits is then very low compared with
the message bits, and placing them at the end of the whole block substantially simplifies
the decoder.

As we remember, in polynomial codes, code polynomials are divisible by the generator
polynomial. Thus, we can place message bits in the form of the polynomial coefficients
at the highest powers of variable x and subsequently calculate the remaining coefficients
playing the role of parity bits in such a way that the whole polynomial is divisible by the
generator polynomial g(x).

2 Multiplication of the transforms is equivalent to convolution of the related sequences in the time domain.
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cycle 2
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Figure 2.4 Encoder scheme for the nonsystematic code with additional memory cells storing the
whole codeword

Let us return to the (7, 4) code. Denote message bits as b0, b1, b2, b3. The associated
message polynomial takes the form

b(x) = b3x
3 + b2x

2 + b1x + b0 (2.44)

In general, for a (n, k) code the polynomial b(x) has a degree at most equal to k − 1. In
order to place the message bits at the highest powers of x in the code polynomial, the
polynomial b(x) should be multiplied by xn−k . Let a(x) be the remainder of the division
of the polynomial xn−kb(x) by g(x), i.e.

a(x) = [
xn−kb(x)

]
mod g(x) (2.45)

This means that the following equation is fulfilled

xn−kb(x) = m(x)g(x) + a(x) (2.46)

where m(x) is the result of division of the polynomial xn−kb(x) by g(x). If we add the
remainder polynomial a(x) to both sides of (2.46), the result is

c(x) = xn−kb(x) + a(x) = m(x)g(x) (2.47)

As we see, the resulting polynomial is a systematic code polynomial. Technical imple-
mentation of that kind of encoder is shown in Figure 2.5 and the encoder operates in the
following way.

Assume that at the starting moment all memory cells are set to zero. The message bits
of the codeword are fed to the encoder input during the first k clock cycles. In this phase
of the encoder operation switches P1 and P2 remain in position “1”. Thus, the message bits
are immediately directed to the encoder output and, owing to the linear feedback register
determined by the form of the generator polynomial g(x), the remainder bits a(x) are
also determined. In the (k + 1)st cycle the switches change their positions, which results
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Figure 2.5 Scheme of the encoder for the systematic polynomial code (7, 4)

in breaking the feedback connection (switch P1) in the feedback register and sending the
calculated remainder bits through switch P2 set in position “2” to the encoder output. Let
us note that feeding the encoder input with zero bits through switch P1 starting from the
(k + 1)st cycle results in gradual filling of the encoder register with zeros. Thus after n

cycles the encoder is ready to encode the next message block.
Consider a more general case when the code polynomial coefficients are nonbinary,

e.g. q-ary. The generator polynomial has the form

g(x) = gn−kx
n−k + gn−k−1x

n−k−1 + · · · + g1x + g0 (2.48)

however, this time the polynomial coefficients belong to the Galois field GF(q). All
additive and multiplicative operations on the polynomial coefficients are performed in
this field. The circuit calculating the remainder resulting from division of the polynomial
xn−kb(x) by the generator polynomial g(x) is shown in Figure 2.6. Let us note that the
feedback signal in the circuit is introduced in appropriate places of the shift register with
the weights that are the opposite numbers to the generator polynomial coefficients in
GF(q), while the feedback signal is received as the weighted sum of the contents of the
last register cell and the input symbol bi (i = k − 1, . . . , 0) in GF(q). The weighting
coefficient is the inverse number to the highest power coefficient gn−k of the generator
polynomial. We have to stress that each memory cell constituting the shift register stores
a single nonbinary symbol. Thus, more than one binary cell is practically required to store
each of q-ary symbols.

−g0 −g1 −gn−k−2 −gn−k−1

−1gn−k

+ + +

+
P1

P2

0”

“

1

2

1

2

...

...

b0

bk−1

…

Figure 2.6 Encoder scheme for the nonbinary code with code symbols belonging to the nonbinary
Galois field GF(q)
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2.5.8 Cyclic Codes

For selected values of code length n some polynomial codes display the property of
cyclicity. This property means that if the sequence (c0, c1, . . . , cn−1) is a codeword
of a cyclic code, then the sequence (c1, c2, . . . , cn−1, c0) is a codeword of the same
code as well. Applying this property repeatedly, we can observe that the sequence
(ci, ci+1, . . . , cn−1, c0, . . . , ci−1) is also a codeword. Thus, we say that cyclic codes are
the block polynomial codes whose codewords are cyclic permutations of other codewords.

Let us note that in polynomial calculus the cyclic shift of a codeword by one position
to the left can be interpreted as a multiplication of the code polynomial by x followed by
reduction of the resulting polynomial modulo-(xn − 1)

[
in GF(2) also modulo-(xn + 1)

]
.

Consider a binary codeword of the form

c(x) = cn−1x
n−1 + cn−2x

n−2 + · · · + c1x + c0 (2.49)

Let us perform the above-described operations. We namely have

[xc(x)] mod(xn + 1) = [cn−1x
n + cn−2x

n−1 + · · · + c1x
2 + c0x] mod(xn + 1)

= [
(cn−1x

n + cn−2x
n−1 + · · · + c1x

2 + c0x) + cn−1(x
n + 1)

]
mod(xn + 1)

= cn−2x
n−1 + · · · + c1x

2 + c0x + cn−1 (2.50)

In deriving (2.50) we took advantage of the already known property, which states that the
remainder of division of a polynomial sum by a given polynomial is equal to the sum of
remainders resulting from separate division of each sum component by that polynomial.
We also use the obvious fact that the remainder of division of the polynomial cn−1(x

n + 1)

by (xn + 1) is equal to zero.
In the context of our current considerations the following question arises: What should

be the properties of the generator polynomial for the code to be cyclic? As we know,
each code polynomial is divisible by the generator polynomial. Thus, the code polynomial
describing the codeword that is a cyclic permutation of the given codeword polynomial
also has to be divisible by the generator polynomial. Because the original code polynomial
has the property c(x) = a(x)g(x), where the degree of a(x) is at most k − 1, the following
expression for the cyclic permutation of the codeword has to be true as well

[xc(x)] mod(xn + 1) = a1(x)g(x) (2.51)

It turns out that the code is cyclic if the generator polynomial is a divisor of the polynomial
xn + 1, which means that there exists such a polynomial h(x) of degree k that h(x)g(x) =
xn + 1. Considering from that point of view the calculations shown in (2.50) once more,
we have

[xc(x)] mod(xn + 1) = [
xa(x)g(x) + cn−1(x

n + 1)
]

mod(xn + 1)

= [
xa(x)g(x) + cn−1h(x)g(x)

]
mod(xn + 1)
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Two cases are possible. If cn−1 = 0, the degree of the polynomial xc(x) = xa(x)c(x)

is not higher than n − 1, thus the remainder of the division of xc(x) by xn + 1 is the
divident itself, i.e.

[xc(x)] mod(xn + 1) = xc(x) = xa(x)g(x)

In consequence, the new polynomial is also a code polynomial, because it is divisible by
g(x). A similar case occurs if cn−1 = 1. We namely have

[xc(x)] mod(xn + 1) = [
xa(x)g(x) + h(x)g(x)

]
mod(xn + 1)

= {[
xa(x) + h(x)

]
g(x)

}
mod(xn + 1)

Since cn−1 = 1, the polynomial a(x) has to be of the (k − 1)st degree, so the degree
of the polynomial xa(x) is equal to k. As we remember, the degree of the polynomial
h(x) is also equal to k, so the sum of xa(x) with h(x) has a degree lower than k. As
a result, the degree of the polynomial

[
xa(x) + h(x)

]
g(x) is lower than n. In turn, this

imples that

[xc(x)] mod(xn + 1) = [
xa(x) + h(x)

]
g(x) = a1(x)g(x)

so the received polynomial is also a code polynomial of the code generated by g(x).
Summarizing, cyclic (n, k) codes are the polynomial codes, the codewords of which

are cyclic permutations of other codewords, and the generator polynomial is a divisor of
the polynomial xn + 1.

Although the lengths of cyclic codes, at the assumption of a given generator polynomial
g(x), are precisely determined, we can select the required length of a code by applying one
of the code modifications, i.e. code shortening . This operation is particularly advantageous
when error detection codes have a high code rate. A real code length can be selected on the
basis of the original length n, setting a certain number of initial message bits permanently
to zero so they do not need to be transmitted.

2.5.9 Parity Check Polynomial

As mentioned above, the generator polynomial of the cyclic code (n, k) has the degree
n − k and it is a divisor of the polynomial xn + 1. This means that the following property
holds true

h(x)g(x) = xn + 1 (2.52)

By analogy to the generator matrix G and the parity check matrix H , which when multi-
plied by each other result in a zero matrix, the polynomial h(x) is called the parity check
polynomial . Multiplication of the code polynomial c(x) = a(x)g(x) by h(x) results in
the expression

c(x)h(x) = a(x)g(x)h(x) = a(x)(xn + 1) = xna(x) + a(x) (2.53)
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Since the polynomial a(x) is of degree at most equal to k − 1, on the basis of
the right-hand side of (2.53) we can conclude that nonzero coefficients in the
polynomial c(x)h(x) can only appear at the components xn+k−1, xn+k−2, . . . , xn and
xk−1, xk−2, . . . , x0. The remaining coefficents at the polynomial terms xn−1, xn−2, . . . , xk

have to be equal to zero. Let us illustrate this observation with a simple example.
Denote the product of the polynomials c(x)h(x) as q(x). Consider the Hamming code
(7, 4) generated by the polynomial g(x) = x3 + x + 1. Each code polynomial can be
represented by the product

c(x) = a(x)g(x) = (a3x
3 + a2x

2 + a1x + a0)(x
3 + x + 1) (2.54)

In turn, the polynomial q(x) becomes

q(x) = c(x)h(x) = (x7 + 1)a(x)

= a3x
10 + a2x

9 + a1x
8 + a0x

7 + +a3x
3 + a2x

2 + a1x + a0 (2.55)

Knowing from (2.55) simultaneously that

q(x) = (c6x
6 + c5x

5 + · · · + c1x + c0)(x
4 + h3x

3 + h2x
2 + h1x + 1) (2.56)

and calculating those coefficients of q(x) that have to be equal to zero following (2.53),
i.e. q6, q5 and q4, we obtain

q6 = c2 + c3h3 + c4h2 + c5h1 + c6 = 0

q5 = c1 + c2h3 + c3h2 + c4h1 + c5 = 0 (2.57)

q4 = c0 + c1h3 + c2h2 + c3h1 + c4 = 0

The parity check polynomial h(x) in equation (2.56) has been presented in the form

h(x) = x4 + h3x
3 + h2x

2 + h1x + 1 (2.58)

because in (2.53) the coefficients both at the highest and lowest powers are equal to 1. In
the opposite case, h(x) and g(x) would not fulfill (2.52). Let us note that if k = 4, then
bits at the highest powers of the code polynomial c(x), i.e. c6, c5, c4, c3, are message bits,
so the first equation in equation block (2.57) allows us to find the first parity bit c2. On the
basis of the second equation, knowing already bit c2, we can recurrently calculate bit c1;
in turn, knowing c2 and c1, on the basis of the third equation we are able to determine the
last parity bit c0. Technical implementation of the parity bit calculations on the basis of
(2.57), i.e. implementation of the cyclic code encoder using the parity check polynomial
h(x), is shown in Figure 2.7.

During the first k clock cycles switch P1 is in position 1, so the message bits are
introduced to the shift register starting from the most meaningful bit. Starting from the
(k + 1)st cycle, switch P1 is in position 2. Thus, a feedback loop has been created and
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Figure 2.7 Implementation of cyclic code encoder using the parity check polynomial h(x): (a)
general case for (7, 4) code, (b) the case for Hamming code (7, 4)

the parity bits can be calculated recurrently. After n cycles switch P1 returns to position
1, the calculated parity bits are gradually shifted out of the encoder register and message
bits of the next codeword are simultaneously fed to the encoder input.

Implementation of the cyclic code encoder using the parity check polynomial h(x)

is more advantageous than that using the generator polynomial g(x) if the code rate
R is lower than 1/2. For this case the whole structure, in particular the number of
memory cells, is lower than if the encoder construction was based on the generator
polynomial.

2.5.10 Polynomial Codes Determined by Roots

As we know, a polynomial code is determined by setting the length n of its codewords and
the generator polynomial g(x) of degree n − k. Each code polynomial is then divisible
by g(x). We also know from the polynomial algebra that polynomials can be factored
into a product of polynomials of the first degree with coefficients belonging to a certain
extension field, e.g.

a(x) = (x − α0)(x − α1) . . . (x − αk−1) (2.59)

The elements α0, α1, . . . , αk−1 are the roots of the polynomial a(x) and they do not always
belong to the same field as the polynomial coefficients. We know that a polynomial cannot
always be factored into the product of polynomials of the first degree with the coefficients
belonging to the same finite field. In general, if the coefficients of the polynomial a(x)

belong to the field GF(p), then the roots of this polynomial belong to the extension field
GF(pm).

The idea of an irreducible polynomial is strictly associated with answering the question:
To which field do the polynomial roots belong?

Definition 2.5.2 A polynomial a(x) with the coefficients belonging to a certain finite field
is called an irreducible polynomial in this field if this polynomial cannot be factored as a
product of polynomials of the first degree using the elements of this finite field.

Property 2.5.1 If a(x) is an irreducible polynomial with the coefficients selected from
the finite field GF(p) and α is the root of this polynomial, then αp, αp2

, αp3
, . . . are the

roots of this polynomial as well. Moreover, all the roots of this irreducible polynomial can
be found in this manner. Polynomial a(x) is called a minimum function of the root α.
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Example 2.5.2 Let the element α belonging to the finite field GF(8) (see Table 2.2) be the
root of a certain searched polynomial with coefficients from the finite field GF(2). As we
see, in the considered case p = 2 and m = 3. Therefore if α is the root of this polynomial,
then the field elements α2, α4 are also the roots. Higher powers of the element α result
in the already listed roots, e.g. α8 = α7α = α, α16 = α7α7α2 = α2, because, as it is easy
to check, in the finite field GF(8) the element α7 = α0 = 1. Therefore following Property
2.5.1 the elements α,α2 and α4 are all roots of the searched polynomial. In consequence,
the polynomial has the following form

a(x) = (x − α)(x − α2)(x − α4) (2.60)

Since the elements α, α2 and α4 belong to the finite field GF(8), they are represented
by binary triples according to Table 2.2. Let us stress that the minus signs appearing in
formula (2.60) have only a formal meaning, because subtraction in the field GF(2), as
well as subtraction of binary triples in the extension field GF(23), is equivalent to addition
in the respective fields. Determining the polynomial a(x), we obtain

a(x) = (x − α)(x − α2)(x − α4)

= x3 − (α + α2 + α4)x2 + (α3 + α5 + α6)x − α7

= x3 + x + 1 (2.61)

because

α + α2 + α4 =
 0

1
0

 +
 0

0
1

 +
 0

1
1

 =
 0

0
0

 = 0

and

α3 + α5 + α6 =
 1

1
0

 +
 1

1
1

 +
 1

0
1

 =
 1

0
0

 = 1

In this way we have calculated the minimum function for the root α and we have shown
that the polynomial a(x) = x3 + x + 1 is an irreducible polynomial in the field GF(2)

because all its roots belong to the extension field GF(23).

Our considerations of polynomial roots and their properties allow us to define polyno-
mial codes in the following way.

Definition 2.5.3 Polynomials ci(x) (i = 1, . . . , 2k) of degree not higher than n − 1 with
coefficients belonging to the field GF(p) are the code polynomials of a given polynomial
code (n, k) if each code polynomial has the roots β1, β2, . . . , βr (r ≤ n − k) belonging to
the field GF(pm).
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As we remember, each code polynomial of a given code is divisible by the generator
polynomial. So if the code polynomials have a common subset of the roots β1, β2, . . . , βr ,
then these roots are also the roots of the common factor of all code polynomials, namely
the generator polynomial. Thus, instead of defining the code by declaring its generator
polynomial, we can determine it by listing the common roots of all code polynomials. On
the basis of Property 2.5.1 we conclude that besides the roots defining the code directly,
there exist code polynomial roots that are the appropriate powers of these roots. Finally,
we state the following form of the generator polynomial

g(x) = LCM
[
mβ1(x), mβ2(x), . . . , mβr (x)

]
(2.62)

where LCM[.] denotes the least common multiple and mβi
(x) is a minimum function of

the root βi .
Since β1, β2, . . . , βr are the roots of code polynomials, the following equalities hold

c(β1) = 0, c(β2) = 0, . . . , c(βr) = 0 (2.63)

Thus, if a certain symbol sequence represented by the polynomial r(x) appears at the
input of the encoder, then making sure if it is a codeword reduces to inspection if the
following equations are fulfilled

r(β1) = 0, r(β2) = 0, . . . , r(βr) = 0 (2.64)

Let us note that in matrix notation, checking the validity of all equations is equivalent
to multiplying the received sequence vector r by the parity check matrix, i.e. checking if
the following matrix equation holds

β0
1 β1

1 . . . βn−1
1

β0
2 β1

2 . . . βn−1
2

. . . . . . . . . . . .

β0
r β1

r . . . βn−1
r




r0

r1
...

rn−1

 =


0
0
...

0

 (2.65)

As an example, consider again the (7, 4) code that is determined by the generator
polynomial g(x) = x3 + x + 1. At the same time, this code is determined by the common
root α belonging to GF(23). As we remember, the minimum function of the root α is
just the polynomial g(x) = x3 + x + 1, so besides the root α, the elements α2 and α4 are
also its roots. The parity check matrix has the form

H = [
α0 α1 α2 . . . αn−1

] =
 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

 (2.66)

so it is analogous to the Hamming code parity check matrix considered previously. Taking
into account other roots originating from the root α, we obtain a matrix in which some
rows are the repeated rows of matrix (2.66). In this way, some parity equations determined
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by (2.66) are checked a few times. We namely have

 α0 α1 α2 . . . αn−1(
α2

)0 (
α2

)1 (
α2

)2
. . .

(
α2

)n−1(
α4

)0 (
α4

)1 (
α4

)2
. . .

(
α4

)n−1

=



1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
0 0 1 0 1 1 1
0 1 1 1 0 0 1
1 0 0 1 0 1 1
0 1 1 1 0 0 1
0 1 0 1 1 1 0


(2.67)

Closer inspection of matrix (2.67) allows us to note that rows 4 and 7 are identical to
row 1, row 5 is identical to row 3, the second and the ninth rows are equal to each other,
whereas the sixth and the eighth are the sum of the second and the third rows. Thus, it is
sufficient to check the parity equations according to matrix (2.66).

As we see, in the above example we have defined the Hamming code in a different
way compared with the previous definitions. The current definition is based on selecting
the roots of the generator polynomial. In general, the Hamming codes are (2m − 1, 2m −
1 − m) polynomial codes, for which all code polynomials have a root that is the primitive
element of the finite field GF(2m). For example, the next Hamming code following the
(7, 4) code has the parameters (n, k) = (15, 11), and the root of all its code polynomials
is the primitive element of the field GF(24) for which the minimum function mα(x) =
x4 + x + 1 is simultaneously the generator polynomial of this code.

2.5.11 Syndrome Polynomial

Recall that a syndrome is the result of multiplication of the parity check matrix by
the received sequence vector. If the syndrome is zero, then the received sequence is
a codeword. In the case of polynomial codes whose attribute is divisibility of a code
polynomial by the generator polynomial, we need to check if this property holds for
the received sequence. One can perform this checking in polynomial calculations by
derivation of the remainder of the division of the received sequence polynomial by the
generator polynomial. If this remainder is equal to zero, then the polynomial representing
the received sequence is a code polynomial. In the opposite case the remainder can be
associated with the most likelihood sequence, or equivalentlywith the most likelihood error
sequence. The polynomial that is the remainder of the division of the received sequence
polynomial r(x) by the generator polynomial g(x) is called a syndrome polynomial and
can be described in the form

s(x) = r(x) mod g(x) (2.68)

Note that because the degree of the generator polynomial g(x) is equal to n − k, the
degree of the syndrome polynomial can be at most n − k − 1, so it has n − k coefficients.
Then there are 2n−k possible forms of the syndrome polynomial.
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The polynomial describing the received sequence r(x) can be expressed, as in formula
(2.34), as the sum of the code polynomial c(x) generated at the transmitter and the
polynomial e(x), with the coefficients equal to 1 by those powers of x in which errors
occurred. Because c(x) mod g(x) = 0, we have

s(x) = [c(x) + e(x)] mod g(x) = c(x) mod g(x) + e(x) mod g(x)

= e(x) mod g(x) (2.69)

We conclude from formula (2.69) that the syndrome polynomial is practically the remain-
der of the division of the error polynomial by the generator polynomial and it does not
depend on the code polynomial.

The technical realization of the syndrome calculation according to formula (2.68) is
relatively easy and is shown in Figure 2.8. The received sequence is given to the input of
the syndrome calculator, starting from the most meaningful position located at the highest
power of the received sequence polynomial r(x). The linear feedback shift register (LFSR)
has a structure directly resulting from the generator polynomial g(x). After n clock cycles
the register memory cells contain the binary coefficients of the syndrome polynomial.

g1 g2 gn−k−2 gn−k−1

++ + + +…
r0,r1,...,rn−1

Figure 2.8 General scheme of the syndrome calculator

Example 2.5.3 Consider the syndrome calculator for the (7, 4) code when the genera-
tor polynomial is g(x) = x3 + x + 1. Figure 2.9a presents the decoder scheme, whereas
Figure 2.9b shows the mapping of the syndromes onto the correctable error sequences. This
mapping has been created by supplying a single “1” to the syndrome calculator input, fol-
lowed by a sequence of six zeros. The single “1” given as the first input symbol results in the
syndrome in the last row of the table, i.e. the one received after seven cycles. Placement of
the single “1” in the ith position results in the syndrom located in the (8 − i)th table row.

++
r0,r1,...,r6

1 x3

(a)

1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0
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1
1
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0
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1 0 0 0 0 0 0 1

s
cycle

(b)
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e

Figure 2.9 (a) Scheme of the syndrome calculator for the (7, 4) code generated by the polynomial
g(x) = x3 + x + 1. (b) Mapping of syndromes onto correctable error sequences
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The syndrome calculator is a basic element of most block code decoders. Basic difficulty
in the decoder design lies in effective implementation of finding the error sequence on the
basis of the calculated syndrome. Very often the general decoder scheme looks like the
one shown in Figure 2.10. It consists of the syndrome calculator, the circuit recognizing
the error sequence on the basis of the calculated syndrome and the block that corrects
the received sequence. Decoding methods differ from each other mostly in the block of
mapping the syndrome onto the error sequence. In a further part of this chapter we will
analyze some examples of the decoders that operate according to the scheme shown in
Figure 2.10.

g1 g2 gn−k−1

+

+

+ + +
r0,r1,...,rn−1

e(x)

r (x)

e(x)=f [s(x)]

Buffer

c(x)

Figure 2.10 General scheme of polynomial code decoding

2.5.12 BCH Codes

BCH codes are an important subclass of the cyclic codes. They are named after their
inventors: Bose, Ray-Chaudhuri and Hocquenghem. BCH codes can be considered as a
generalization of Hamming codes and have an error correction capability higher than 1.
The definition of BCH codes is based on selection of their roots.

Definition 2.5.4 A primitive BCH code with a correction capability of t errors, built of
code symbols belonging to the field GF(p), is a code of codeword length n = pm − 1 that
has the following roots of the generator polynomial g(x): αi0, αi0+1, . . . , αi0+2t−1, where
α is a primitive element of the field GF(pm) and i0 is a certain initial natural number.

Codes for which the initial number i0 is 1 are called BCH codes in a narrow sense.
We conclude from our previous considerations that the generator polynomial of the BCH
code is given by the formula

g(x) = LCM
[
mαi0 (x), mαi0+1(x), . . . , mαi0+2t−1(x)

]
(2.70)

where mαi (x) is a minimum function of the root αi .
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Example 2.5.4 Determine the generator polynomial of the BCH code in the narrow sense
with a correction capability of t = 2 errors and a codeword length of n = 15. As we see,
the codeword length fulfills the condition n = 24 − 1, so p = 2 and m = 4. According
to the BCH code definition, the roots of the generator polynomial are equal to α,α2,α3

and α4, where α is a primitve element of GF(24). We would like to determine minimum
functions of all the roots, but for that purpose we need the GF(16) logarithmic table.
This Galois field is generated by the polynomial p(x) = x4 + x + 1. Motivated readers
will surely be able to determine the polynomial representation of subsequent powers of the
primitive element α = x as a remainder of division of the polynomial xi by the polynomial
p(x) for i = 0, 1, . . . , 14. Results of these calculations have been summarized in Table 2.3.
On this basis we can calculate the minimum functions of the subsequent roots, which are,
respectively

mα(x) = (x − α)(x − α2)(x − α4)(x − α8)

= (x2 − α2x − αx + α3)(x2 − α8x − α4x + α12)

= (x2 − α5x + α3)(x2 − α5x + α12)

= x4 − (α5 + α5)x3 + (
α12 + α10 + α3) x2 + (

α2 + α8) x + α15

= x4 + x + 1

mα2(x) = (
x − α2)(x − (α2)2)(x − (α2)4)(x − (α2)8)

= (x − α2)(x − α4)(x − α8)(x − α) = mα(x)

mα3(x) = (
x − α3)(x − (α3)2)(x − (α3)4)(x − (α3)8)

= (x − α3)(x − α6)(x − α12)(x − α9) = x4 + x3 + x2 + x + 1

mα4(x) = (
x − α4)(x − (α4)2)(x − (α4)4)(x − (α4)8)

= (x − α4)(x − α8)(x − α)(x − α2) = mα(x)

Table 2.3 Representation of Galois field GF(16) with the application of the
powers of the primitive element α

GF(16) 1 x x2 x3 1 x x2 x3

0 0 0 0 0 α7 1 1 0 1
α0 1 0 0 0 α8 1 0 1 0
α1 0 1 0 0 α9 0 1 0 1
α2 0 0 1 0 α10 1 1 1 0
α3 0 0 0 1 α11 0 1 1 1
α4 1 1 0 0 α12 1 1 1 1
α5 0 1 1 0 α13 1 0 1 1
α6 0 0 1 1 α14 1 0 0 1
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so the generator polynomial described by formula (2.70) in our case is

g(x) = LCM
[
mα(x), mα2(x), mα3(x), mα4(x)

]
= (x4 + x + 1)(x4 + x3 + x2 + x + 1)

= x8 + x7 + x6 + x4 + 1 (2.71)

Therefore, n − k = 8 and we conclude that k = 7. As a result, we obtain the (15, 7)

BCH code. The assumed number of correctable errors in a codeword has been t = 2. In
practice it turns out that the code is able to correct not only single and double errors, but
also some combinations of triple errors. However, the decoder has to be adjusted to use
this potential error correction capability.

BCH codes are a subclass of block codes that are currently often used. For higher
lengths BCH codes are one of the best codes with a given code rate.

2.5.13 Reed-Solomon Codes

Reed-Solomon (RS) codes are a subclass of BCH codes. They belong to nonbinary codes.
The properties of RS codes result from the specific choice of BCH code parameters.
For RS codes the values of i0 and m have been selected as i0 = 1 and m = 1 and
these parameters determine other properties of RS codes. Thus, the codeword length is
n = p − 1 and, assuming the error correction capability of t symbols in a codeword, the
generator polynomial is given by the formula

g(x) = (x − α)(x − α2) . . . (x − α2t ) (2.72)

As we see, 2t parity symbols are needed to correct up to t errors. It turns out that the
codeword length is usually selected in such a way that n = 2l − 1, which means that the
RS codes apply nonbinary 2l-ary symbols that can be represented by l-bit binary blocks.
Such blocks are treated as single symbols and all mathematical operations are performed in
the Galois field GF(2l ). In consequence, the RS code encoder can be realized according
to the scheme shown in Figure 2.6. As l-bit binary blocks are treated as single code
symbols, RS codes are applied in systems corrupted by burst errors. They also function
as a so-called outer code in concatenated coding systems, which will be considered in
one of the next sections.

Example 2.5.5 Let us determine the generator polynomial for the RS code of codeword
length n = 15 that is able to correct three symbol errors (t = 3). From n = 15 we conclude
that p = 24 and all calculations are performed in the Galois field GF(24) for which the
list of elements is given in Table 2.3. Each code symbol is represented by a 4-bit block
and all operations are performed on them. Memory cells denoted in the encoder scheme
as squares are in reality 4-bit registers. In accordance with formula (2.72) the generator
polynomial is given by the formula

g(x) = (x − α)(x − α2)(x − α3)(x − α4)(x − α5)(x − α6) (2.73)



 

134 Introduction to Digital Communication Systems

Using Table 2.3 we achieve the following generator polynomial

g(x) = (x − α)(x − α2)(x − α3)(x − α4)(x − α5)(x − α6)

= (x2 − α5x + α3)(x2 − α7x + α7)(x2 − α9x + α11)

= x6 + α10x5 + α14x4 + α4x3 + α6x2 + α9x + α6 (2.74)

Recall that if we operate in GF(2l ), then all mathematical operations are performed on
l-element binary blocks. Adding two l-bit symbols is realized by bit-wise modulo-2 addi-
tion of their l-bit components. We conclude from this observation that the opposite element
to any element of the Galois field GF(2l ) is the element itself and subtraction is equiva-
lent to addition. We see from formula (2.74) that the degree of the generator polynomial
g(x) is equal to n − k = 6. The resulting code is a (15, 9) nonbinary code with 16-level
symbols. The code is able to correct three symbol errors, which means that it is able to
detect and correct all 8-bit long error bursts and many longer bursts that fit inside three
neighboring 4-bit symbols. The encoder scheme is shown in Figure 2.11. The figure also
presents schemes of the adder block and the block multiplying by αj . Let us note that if
the multiplicand is equal to zero then also the result of multiplication is zero. If, however,
the multiplicand is a nonzero element of GF(16), then the result of its multiplication by
αj is the element αq whose power fulfills the condition

q = (i + j) mod n (2.75)

The multiplying circuit can be implemented as a ROM with l-bit address lines and l-bit
output, or as an appropriately synthesized combinatorial circuit with l inputs and l outputs.
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Figure 2.11 (a) Scheme of the encoder for the RS (15,9) code, (b) scheme of the adder block
and (c) example of the multiplying block
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Currently a few important applications of RS codes are known. The most popular
applications are code protection of music files stored on compact disks and outer code in
Digital Video Broadcasting (DVB) transmission.

2.5.14 Golay Codes

When we analyze the Hamming upper bound, we can notice that the upper bound is
achievable not only for Hamming code parameters but also when n = 23, k = 12 and t =
3. Thus, there exists a perfect code (23, 12) able to correct t = 3 errors. Golay showed how
to construct it. The code named after him has been synthesized by taking the following
elements as the roots of the generator polynomial of the BCH code: β, β2, β3, β4, where
β = α89. In turn, α is a primitive element of the Galois field GF(211). Deriving the
minimum functions of the selected roots, we find the generator polynomial from (2.70) as

g(x) = x11 + x9 + x7 + x6 + x5 + x + 1 (2.76)

or

g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1 (2.77)

depending on which of the two possible irreducible polynomials is the basis for creation
of the extended Galois field GF(211). Despite the fact that t = 2 was assumed in the code
construction (note that only four roots have been selected), the code minimum distance
is dmin = 7 so the code is able to correct three errors. Golay also found the ternary code
(11, 6), which is an ideal code as well.

2.5.15 Maximum Length Codes

Maximum length codes are cyclic codes that are dual to the Hamming codes. As we
remember, the parameters of (n, k) Hamming codes are (2m − 1, 2m − 1 − m). Hamming
codes are created by taking the irreducible polynomial p(x) for the Galois field GF(2m)

as the generator polynomial. Recall that in the case of cyclic codes a dual code is obtained
by exchanging the roles of the generator polynomial g(x) and the parity check polynomial
h(x). So in the case of maximum length codes, h(x) = p(x) and the code parameters are
(n, k) = (2m − 1, m). With a higher value of m the code rate significantly decreases.

Consider the maximum length (7, 3) code as an example. It is dual to the Hamming
code (7, 4) generated by the polynomial g(x) = x3 + x + 1, therefore for the considered
code h(x) = x3 + x + 1. On this basis we can build the encoder shown in Figure 2.12.
Because the number of codewords is small, we can simply list all of them and analyze
their properties. Table 2.4 presents message blocks and the codewords related to them.

The maximum length code is cyclic, so each nonzero codeword is a cyclic permutation
of another codeword. The way the codewords are ordered in Table 2.4 allows us to notice
that each codeword is a cyclic shift of the previous codeword. A constant number of
“1”s is a characteristic feature of all nonzero codewords. Generally, the number of “1”s
is equal to 2m−1, so the number of zeros is smaller by one, i.e. it is equal to 2m−1 − 1.
Therefore the code minimum distance is 2m−1. If for the encoder shown in Figure 2.12
more than n clock cycles were applied (remember that n is the codeword length) and
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P1
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2 output

b0,b1,b2

Figure 2.12 Encoder scheme of the maximum length code (7, 3)

Table 2.4 Message blocks and codewords for the maximum length
code (7, 3)

Message blocks Codewords
b0 b1 b2 c0 c1 c2 c3 b0 b1 b2

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 1 1
0 0 1 1 1 0 1 0 0 1
1 0 0 1 1 1 0 1 0 0
0 1 0 0 1 1 1 0 1 0
1 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 1 1 0
1 1 1 0 1 0 0 1 1 1

the switch remained in position “2”, then it would turn out that the generated sequence
becomes periodic and the period length is equal to the codeword length n = 2m − 1. The
sequence period equal to 2m − 1 is the highest possible period that can be achieved in
the generation of a sequence using the shift register with m = 3 memory cells. This is
then the origin of the name of this class of codes.

Maximum length codes have a low code rate and an even value of the minimum dis-
tance, so they are not too attractive from the point of view of transmision effectiveness.
However, they are used to generate pseudorandom sequences. It turns out that these
sequences have multiple desirable statistical properties. For representing binary symbols
by bipolar symbols ±1, the deterministic autocorrelation function of the periodic code-
words reaches the maximum of n for zero shift of the correlated codeword with its replica
and is equal to −1 if this shift is nonzero. Thus, for long codewords the shape of the auto-
correlation function approximates well the ideal autocorrelation function of the sequence
of uncorrelated bipolar pulses of zero mean. The maximum length sequences are applied
in spread spectrum systems, which will be dealt with in Chapter 7.

2.5.16 Code Modifications

So far we have considered codes that were characterized by specific code lengths n and
message block lengths k. Values of n and k for which codes have been designed are not
always advantageous from the point of view of a communication system in which the code
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is to be applied. Very often an adjustment of the code parameters to the communication
system requirements is desired even at a certain loss in coding efficiency. Below we show
how a code can be modified.

A code is the subject of extension if additional parity bits are added in order to improve
the codewords’ weight structure. The most common way of realizing this task is adding
a bit that checks the parity of all remaining bits. In the polynomial notation this bit is
the result of division of a codeword polynomial by the polynomial (x − 1). As a result
of this operation the code minimum distance is increased by 1. Consider the Hamming
code (7, 4) as an example. Recall its parity check matrix:

H =
 1 1 1 0 1 0 0

1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (2.78)

When we supplement a codeword with the additional bit that checks the parity of all other
bits, the parity check matrix is extended by one row that is filled with all “1”s and by an
additional column because the codeword length increases by 1. The parity check matrix
of the extended code has the form H1, which is equivalent to the canonical form H2. The
latter has been received by replacing the last row in H1 by the row that is the sum of all
rows of matrix H1.

H1 =


1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1

 H2 =


1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1


(2.79)

The codeword length can decrease if some parity bits of original codewords are omit-
ted. This process is called puncturing and is particularly often applied in the case of
convolutional codes, considered later in this chapter.

We say that a code is expurgated if some codewords are excised. In the case of cyclic
codes for which the generator polynomial is a divisor of xn + 1, the generator polynomial
is mostly multiplied by an additional divisor of the polynomial xn + 1, usually x − 1.
For example, expurgation of the Hamming code (7, 4) leads to the code (7, 3) with the
generator polynomial in the form g(x) = (x + 1)(x3 + x + 1).

If new codewords are added to the original set a code is augmented . Consequently,
the codeword length does not change, although the number of message bits increases
at the cost of parity bits. In case of cyclic codes the code augmentation is achieved by
construction of a new generator polynomial by dividing the original generator polynomial
by one of its own factors.

A code is lengthened if codewords are supplemented with additional message bits.
In turn, a code is shortened if some message bits are not transmitted. For a systematic
code, shortening can be easily implemented by setting a certain number of zeros at the
beginning of the message block. As mentioned before, the process of code shortening is
particularly often used in cyclic codes applied for error detection.
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2.6 Nonalgebraic Decoding for Block Codes

The encoding process is a simpler part of the protection of binary messages against
errors occurring in the transmission process. Recovering of the most likelihood transmit-
ted sequence at the receiver is a much more difficult task and requires technical means
of much higher complexity than the encoder itself. Making a decision upon the trans-
mitted codeword based on the received sequence is usually much more complicated than
encoding. In this section we will present three classical decoding methods for block codes
described in the book by Clark and Cain (1981). These methods are conceptually simple
but not universal, so they can be applied in the decoding of some codes only. However,
due to their simplicity they can be treated as a good introduction before considering more
elaborate methods of algebraic decoding.

2.6.1 Meggitt Decoder

The Meggitt decoder (Meggitt 1961) is a circuit that can be applied to decode any cyclic
or shortened cyclic code. It was proposed in the early 1960s when microelectronic circuits
were still in their introductory phase of development. The decoder is applicable for codes
correcting up to three errors and can be used only in a hard-decision mode. The Meggitt
decoder takes advantage of the following two properties of cyclic codes:

1. There is a unique relation between each element of the correctable error pattern set
and the respective element of the syndrome set.

2. If s(x) is a syndrome polynomial calculated on the basis of the received sequence poly-
nomial r(x) of a cyclic code, then [xs(x)] mod g(x) is a syndrome polynomial related
to the polynomial of the received sequence [xr(x)] mod(xn − 1) that is cyclically
shifted by one position with respect to the received sequence.

To prove property 2, let us present the polynomial of the received sequence in a regular
form, i.e.

r(x) = rn−1x
n−1 + rn−2x

n−2 + · · · + r1x + r0 (2.80)

Then the polynomial describing a sequence that is a cyclic shift of the sequence
(rn−1, rn−2, . . . , r0) can be presented as

r1(x) = rn−2x
n−1 + rn−3x

n−2 + · · · + r0x + rn−1

= xr(x) + rn−1(x
n + 1) (2.81)

Both polynomials, r(x) and r1(x), can be represented as the multiple of the generator poly-
nomial g(x) supplemented by the remainder of the division of these polynomials by g(x),
i.e. by the syndrome of the received sequence polynomial r(x) or r1(x), respectively. So

r(x) = a(x)g(x) + s(x) (2.82)
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and

r1(x) = x
[
a(x)g(x) + s(x)

] + rn−1g(x)h(x) (2.83)

because we take advantage of (2.81) of the polynomial r1(x) and the fact that the generator
polynomial of cyclic codes is a divisor of xn + 1. Let the remainder of division of the
polynomial r1(x) by g(x), i.e. its syndrome, be s1(x), i.e.

r1(x) = b(x)g(x) + s1(x) (2.84)

Let us derive the expression xs(x) from equation (2.83) and calculate the remainder of
its division by g(x). We have

xs(x) = r1(x) + xa(x)g(x) + rn−1g(x)h(x) (2.85)

The polynomial r1(x) can be represented by (2.84), so we obtain

xs(x) = b(x)g(x) + s1(x) + xa(x)g(x) + rn−1g(x)h(x)

= [
b(x) + xa(x) + rn−1h(x)

]
g(x) + s1(x) (2.86)

We can conclude from the last equation that [xs(x)] mod g(x) = s1(x) = r1(x) mod g(x).
Knowing that a syndrome exclusively depends on the error sequence, we have

[xs(x)] mod g(x) = e1(x) mod g(x) (2.87)

where e1(x) = [xe(x)] mod(xn + 1). This ends the proof.
Property 2 indicates that if a given syndrome s(x) corresponds to a certain error

sequence, then the error sequence that is cyclically shifted by one position corresponds
to the new syndrome that is received in the circuit, calculating the remainder of division
by g(x) by advancing the clock by one clock cycle when the shift register of this circuit
contains the coefficients of the syndrome s(x). A further implication of Property 2 is the
possibility to divide the set of correctable error sequences into classes, each of which
contains cyclic shifts of a given error sequence. Owing to Property 2, the error pattern
recognition block needs to recognize only one representative in each class on the basis
of the calculated syndrome. As a result, the error pattern recognition block structure can
be substantially simplified.

The Meggitt decoder, shown in its basic version in Figure 2.13, conforms to the general
structure presented in Figure 2.10. Let us consider it in detail in the example of the (15, 7)

cyclic code with the generator polynomial g(x) given by formula (2.71). This is a BCH
code with the minimum distance dmin = 5. It is able to correct all single and double errors
and about 30% of triple errors occurring in one block.

The Meggitt decoder operates in the following way. In the first n = 15 clock cycles
the received bits are fed both to the syndrome calculator and the serial buffer of length
n. In the next 15 clock cycles an error correction process is performed along with the
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Figure 2.13 Basic scheme of the Meggitt decoder for the (15,7) code with generator polynomial
(2.71)

gradual generation of the output sequence. At the same time the syndrome calculator and
the buffer are gradually filled with zeros. For each clock cycle the syndrome calculator
performs the operation [xs(x)] mod g(x). The circuit that recognizes the syndromes related
to the specific error patterns generates a binary “1” on its output if the input syndrome
is related to the error sequence [xie(x)] mod(xn + 1), i = 0, 1, . . . , (n − 1), in which
the error is located in the highest, (n − 1)st, position. Because all double errors are also
correctable, another error can simultaneously be located in another position. So the circuit
that recognizes the syndrome should generate a binary “1” if the syndrome on its input
is related to the error sequence in which there is a single “1” in the 14th position or two
binary “1”s where the first is again in the 14th position and the other is in any other
position. As we can see, there are 15 different syndrome combinations that should trigger
a logical “1” on the output of the syndrome recognizing circuit.

Let us note that in the decoder, except for the syndrome calculator, there are no paths
transferring the output signal back to the input. In practical solutions in which the decoding
rate is a critical parameter, pipelining can be applied. The functional blocks of a particular
decoder can be separated by the buffers, which store the operation of a given block until
the next clock cycle occurs. Thus, the buffers can be applied between the syndrome
calculator and the circuit that recognizes the syndromes and the output of the latter.
As a result, the slowest block determines the speed of operation of the whole decoder.
Without pipelining, the speed would result from the sum of delays introduced by all
blocks operating in cascade.

We propose that the motivated reader traces the decoder operation for the case in which
the zero codeword is corrupted by two errors that occurred in the ith and j th positions.
To perform this task it is helpful to determine all the syndromes resulting from the single
“1” given to the decoder input followed by a sequence of n − 1 zeros.

2.6.2 Majority Decoder

A majority decoder differs from the Meggitt decoder in the way a syndrome is applied
to generate correction symbols added modulo-2 to the received sequence. This decoding
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method can be applied only for some cyclic codes with some specific features; however,
if these features occur, the decoder is technically very simple.

Consider the operation of the majority decoder with the example of the (15, 7) code as
in the previous section. When the codeword symbols are written in increasing order, for
example as (c0, c1, . . . , c14), the parity check matrix of the considered code (15, 7) has
the following form

H =



1 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1


(2.88)

Each row is related to a single syndrome bit. All these bits appear simultaneously after n

clock cycles in the appropriate memory cells of the syndrome calculator. As we remem-
ber, the parity check control can also be performed by the modified parity check equations
resulting from adding selected rows of the parity check matrix. Massey (1963), the inven-
tor of this decoding method, took advantage of the fact that even if only a small number of
parity equations are applied they can be modified in such a way that the most significant
codeword position appears in each of them whereas the remaining received bits show
their position in the parity check equation set only once at most. Such a construction of
the parity check equations is not always possible, therefore the method is used in only
some codes.

Let us return to our example and take into account the parity check matrix rows 4
and 8, the sum of rows 2 and 6 and the sum of rows 1, 3 and 7. Denoting the received
sequence as (r0, r1, . . . , r14), we obtain the following parity check equations

P1 = r3 + r11 + r12 + r14

P2 = r7 + r8 + r10 + r14

P3 = r1 + r5 + r13 + r14

P4 = r0 + r2 + r6 + r14 (2.89)

Since these equations are satisfied for codeword bits, their results depend on the error
sequence only, so the equations evolve to the form

P1 = e3 + e11 + e12 + e14

P2 = e7 + e8 + e10 + e14

P3 = e1 + e5 + e13 + e14

P4 = e0 + e2 + e6 + e14 (2.90)
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Figure 2.14 Scheme of the majority decoder for the (15,7) code determined by the generator
polynomial (2.71)

The majority decoder shown in Figure 2.14 takes advantage of the same properties that
are the basis of the Meggitt decoder operation. In the first n clock cycles the syndrome
of the received sequence is calculated and the serial buffer is gradually filled with the
received sequence bits. During the next n clock cycles the serial buffer is gradually
emptied. Simultaneously, correction of the contents at the highest buffer position can
be performed. Error detection at the currently highest buffer position is performed by
checking the results of the parity check equations. If a single error that has corrupted
a codeword is located at the given moment in the highest, i.e. 14th, position then the
results Pi(i = 1, . . . , 4) of all parity check equations are equal to logical “1”. If a single
error is temporarily found in other than the highest position, then at most one equation
results in a logical “1”, whereas the other equations are satisfied resulting in a logical
“zero”. A situation in which two errors have occurred in the received sequence is similar
to the previous case. If one of the errors shows up in the 14th position, at least three out
of four equations result in the symbol 1, because if the second error is in the position
participating in one of the parity check equations, then one of these equations is again
satisfied. However, if the second error is located in the position that is not taken into
account in the parity check equations at all, then all equations result in logical “1”. In
turn, if none of two errors appeared in the 14th position, then at most one parity check
equation results in logical “1”. Therefore, through counting the number of “1”s on the
outputs P1, P2, P3 and P4 we can easily detect the presence of an error in the 14th position.

Namely, if the arithmetic sum
4∑

i=1
Pi ≥ 3, then the error has occurred in the 14th position,

so it can be corrected by a logical “1” generated by the arithmetic circuit calculating the
sum of outputs Pi . This logical “1” is modulo-2 added to the buffer output.

The decoder described above is able to correct all single and double errors and a certain
number of combinations of triple errors. The correction of some triple errors is possible
because not all error positions participate in the calculations of the sum of the parity check
equation results. If the error occurs in the 14th position and at least in one position that is
not taken into account in the calculations of P1, P2, P3 and P4, then the result given by the
majority gate will be correct. In order to support correction of the selected combinations
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Figure 2.15 Modified majority decoder for the (15, 7) cyclic code

of triple errors, the decoder can be modified to extend its operation on another period of
n clock cycles. The scheme of the modified decoder is shown in Figure 2.15.

The modified decoder has three switches, S1, S2 and S3, and the majority gate output
is connected with the input of the syndrome calculator. In the first period of n clock
cycles switches S1 and S3 are in position 1. The state of switch S2 is irrelevant. In this
phase of decoding the syndrome of the received sequence is calculated and the received
sequence is simultaneously introduced into the serial buffer. In the second period of n

clock cycles switches S1 and S3 are set in position 2 and switch S2 is set in position
1. Now, gradual error correction is performed, complemented by removing the influence
of corrected errors from the following form of the syndrome. It is done by feeding the
correction symbol through the feedback path from the majority gate output to the input of
the syndrome calculator. In the last set of n clock cycles switch S2 is shifted to position 2
and errors still remaining in the buffer are subsequently corrected when being transported
out of the buffer to the decoder output.

It is worth noting that the same modification can also be introduced in the Meggitt
decoder so that it will be able to correct selected triple error combinations.

2.6.3 Information Set Decoding

The next decoding method, unlike the majority decoding, can be used for a wide class
of block codes. Let us recall our considerations on possible locations of message and
parity bits in the codeword (see Example 2.5.1). In Example 2.5.1 we transformed the
original code placing the message bits at desired positions without changing the algebraic
dependencies among particular bits of a codeword. This property is applied in information
set decoding. An information set is a set of bits that are treated as message bits, so the
remaining bits in a codeword are considered as parity bits. For each code one can define
a certain number of information sets. For each of them, based on bits belonging to this
set, we calculate the remaining bits of the codeword related to parity checks.

Assume that a sequence r = (rn−1, rn−2, . . . , r0) appears on the decoder input. Some
bits have been received erroneously; however, we assume that the number of erroneous
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positions does not exceed the error correction capability of the applied code. The infor-
mation set decoding algorithm can be formulated as follows (Clark and Cain 1981):

1. Select the appropriate number of information sets according to a certain rule.
2. On the basis of the received block, construct hypothetical codewords for each informa-

tion set by assuming that message bits in the considered information set are error-free.
3. Compare each of the created candidate codewords with the received block r. The

decoder’s decision is the hypothetical codeword that is closest to the received sequence
in the sense of the selected distance measure (e.g. Hamming distance).

As we can see, the algorithm is based on elementary properties of linear block codes,
so it is useful in decoding many different codes. The only problem is the right choice of
information sets. It is crucial that with a probability tending to 1, at least for one infor-
mation set the selected message block contains errorless symbols, so based on them the
decoder is able to synthesize the codeword that has actually been sent by the transmitter.
This means that among hypothetical codewords there is a correct one. The operation of
the decoding algorithm is explained on the examples quoted in Clark and Cain (1981).

Example 2.6.1 Consider the Hamming code (7, 4) again. For this code we select three
information sets I1 = {1, 2, 3, 4}, I2 = {4, 5, 6, 7} and I3 = {1, 2, 6, 7}. The digits in
parentheses denote positions of the message bits in a codeword starting from the left side.
Recall that message bits are related to the columns of the generator matrix that have a
single 1 in them. Information set I1 is thus related to generator matrix G1 in its canonical
form, whereas the other matrices G2 and G3 are achieved by summing the rows of matrix
G1 in such a way that the appropriate columns contain a single 1 in appropriate rows.
Finally, matrices G1, G2 and G3 achieve the form

G1 =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 G2 =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 (2.91)

G3 =


1 0 1 1 1 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 (2.92)

Let the transmitted codeword be c = (1011100)T , whereas r = (1010100)T is the received
sequence. By inspection we see that the error has occurred in the fourth position. Its
location is obviously unknown to the decoder. Based on the received sequence the decoder
determines hypothetical message bit sets for each selected information set: (1010) for set
I1, (0100) for set I2 and (1000) for set I3. In turn, for each of these hypothetical message
blocks the decoder calculates hypothetical codewords. These are

cT
1 = (1010)G1 = (1010001)

cT
2 = (0100)G2 = (0110100)

cT
3 = (1000)G3 = (1011100)
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As we can see, among hypothetical codewords that are candidates for the final decision
there is one that has actually been generated in the transmitter. From the codewords c1, c2

and c3 the maximum likelihood decoder selects the codeword for which the Hamming
distance to the received sequence is the lowest. These distances are, respectively, d(c1, r) =
2, d(c2, r) = 2 and d(c3, r) = 1. Consequently, the decoder makes the right decision that
the codeword c3 has been transmitted.

Example 2.6.2 Let us illustrate the operation of the same algorithm in the case of
soft-decision decoding. Let the received samples related to the particular bits of the
transmitted codeword be represented in the form of digits from the range 0–7. Define
the distance metric between two sequences – the received sequence and the hypothetical
code sequence – as a sum of modules of differences between the received samples and the
hypothetical samples representing bits of the hypothetical codeword, i.e.

d(r, ci) =
n−1∑
k=0

∣∣rk − ci,k

∣∣ (2.93)

where rk ∈ {0, 1, 2, . . . , 7} and ck,i ∈ {0, 7}. Consider the codeword assumed in the for-
mer example; however, this time the received sequence has the form r = (7033701)T .
Let us note that binary decisions made with respect to particular samples would result
in a binary sequence r′ = (1000100)T . In this case the Hamming distance of this binary
sequence to the transmitted codeword is equal to 2, so the error correction capability of
the Hamming code if hard-decision decoding were applied would be exceeded and there
is no chance for correct decoding. Let us check how the soft-decision decoder copes with
the errors even if a simplified metric (2.93) has been applied. As previously, the decoder
synthesizes message bits for each information set by taking advantage of temporary binary
decisions shown in the sequence r′. So for the information set I1 the hypothetical message
bits are (1000), for I2 they are (0100) and for I3 they are (1000). The codewords related
to them are, respectively

cT
1 = (1000)G1 = (1000110) in representation {0, 7}: (7000770)

cT
2 = (0100)G2 = (0110100) in representation {0, 7}: (0770700)

cT
3 = (1000)G3 = (1011100) in representation {0, 7}: (7077700)

If the distances among the hypothetical sequences with symbols from the set {0, 7} and the
received sequence r are calculated according to formula (2.93), we obtain d(r, c1) = 14,
d(r, c2) = 22 and d(r, c3) = 9. As we can see, this time the decoder decision will also be
correct because the sequence c3 is the closest to the received sequence r in the sense of
the metric defined in (2.93).

Let us note that owing to more accurate quantization the distances among codewords
and the received sequence are more distinguishable. For the Hamming code for which the
minimum Hamming distance is dmin = 3, in the case of soft-decision decoding and 8-level
quantization, the codewords presented in 8-level representation differ among themselves
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by at least 21. This means that all received sequences that differ by no more than 10 will
be decoded correctly.

A basic difficulty in the construction of the decoder operating according to this method
is the appropriate choice of information sets. They should cover the set of possible code-
words and the probability that among the selected hypothetical codewords there is no
transmitted codeword should be negligibly small. The choice of the information sets is
often made by a computer search.

So far in the information set decoding we have used generator matrices related to
the appropriate positions of the message bits associated with a given information set.
However, a parity check matrix can also be used in a similar algorithm. Let us note that
if message bits for a certain information set are errorless, then the errors have possibly
been committed in the parity positions. For parity bits the columns of the parity check
matrix contain single “1”s and a syndrome is in fact a linear combination of them. So on
the basis of a syndrome one can conclude whether the message bit positions determined
by a given information set are error-free. For example, for the Hamming code (7, 4) and
the information set I1 = {1, 2, 3, 4} the parity check matrix has the familar form

H1 =
 1 0 1 1 1 0 0

1 1 1 0 0 1 0
0 1 1 1 0 0 1


A single correctable error in one of the parity positions results in a tri-bit syndrome
containing a single “1” strictly associated with the position in which the error has occurred.
Then the decoding algorithm relies on the syndrome calculations for all parity check
matrices associated with each information set and testing if the received syndrome has
the weight at most equal to 1.

In the general case we search for such parity bit positions that, when the associated
parity check matrix is applied, result in a syndrome of the weight not exceeding the
correctable number of t errors. Thus, the form of a syndrome determines those parity
positions that should be corrected in the received sequence r. The motivated reader could
determine other parity check matrices and information sets I2 and I3 associated with them
for the considered Hamming code. Performing the decoding process similar to that shown
in Example 2.6.1 would be an interesting excercise.

The considered information set decoding method using parity check matrices can be
substantially simplified for cyclic codes and can be conveniently described using a polyno-
mial notation. The decoding method for these codes, which is a variant of the information
set decoding, is called error trapping decoding ; see (Lin and Costello 2004) for details.

2.7 Algebraic Decoding Methods for Cyclic Codes

The decoding methods considered so far have taken advantage of specific properties of
the applied codes, so they have been called nonalgebraic decoding methods. However,
an important class of decoding algorithms is the class of algebraic decoding methods,
relying on efficient solution of a certain equation set. These methods are applicable not
only to binary codes, but also for nonbinary ones such as Reed-Solomon codes. Thus,
they are important from the application point of view.
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Consider the decoding of binary BCH codes. The method that will be presented below
can be easily extended to nonbinary codes. As we remember, the roots of the BCH code
generator polynomial g(x) are equal to αi0 , αi0+1, . . . , αi0+2t−1, where α is a primitive
element of the Galois field GF(pm) and i0 is a certain initial natural number. Assume
without loss of generality that i0 = 1. Recall that the roots of the generator polynomial
determine the form of the parity check matrix, which according to formula (2.65) is the
following

H =


α0 α . . . αn−1(
α2

)0 (
α2

)1
. . .

(
α2

)n−1

. . . . . . . . . . . .(
α2t

)0 (
α2t

)1
. . .

(
α2t

)n−1

 (2.94)

We also remember that Hr = He = s, so the syndrome calculated for the received
sequence depends exclusively on the error sequence e or, equivalently, on the error poly-
nomial e(x). Denote the result of the scalar product of the ith row of matrix H given by
(2.94) and the error sequence as si . One can easily find that it is the ith component of
the syndrome vector s. We have

s1

s2
...

s2t

 =


α0 α . . . αn−1(
α2

)0 (
α2

)1
. . .

(
α2

)n−1

. . . . . . . . . . . .(
α2t

)0 (
α2t

)1
. . .

(
α2t

)n−1




e0

e1
...

en−1

 (2.95)

so in the polynomial notation for i = 1, . . . 2t the ith syndrome component si can be
shown in the form

si = e(αi) = en−1(α
i)n−1 + en−2(α

i)n−2 + · · · + e1α
i + e0 (2.96)

Each syndrome component si is a linear combination of the powers of the root αi and
therefore belongs to the Galois field GF(pm). Assume that w ≤ t errors have occurred
in the received sequence. Their positions are unknown to the decoder. Denote them as
j1, j2, . . . , jw. Therefore the error polynomial is expressed as

e(x) = ejwxjw + ejw−1x
jw−1 + · · · + ej2x

j2 + ej1x
j1 (2.97)

In the case of binary codes the coefficients ej1, ej2, . . . , ejw are equal to binary “1”s.
Taking advantage of (2.97), we obtain equation set (2.96) in the following form

s1 = ejwαjw + ejw−1α
jw−1 + · · · + ej2α

j2 + ej1α
j1

s2 = ejw(αjw)2 + ejw−1(α
jw−1)2 + · · · + ej2(α

j2)2 + ej1(α
j1)2

...

s2t = ejw(αjw)2t + ejw−1(α
jw−1)2t + · · · + ej2(α

j2)2t + ej1(α
j1)2t

(2.98)
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so each syndrome component is described by the expression

si =
w∑

l=1

ejl
(αjl )i (2.99)

The main goal of the decoder is to identify the error positions j1, j2, . . . , jw. In general,
determination of the error positions relies on calculation of the syndrome components
s1, s2, . . . , s2t , followed by solution of the nonlinear equation set with respect to unknowns
αj1 , αj2 , . . . , αjw . The appropriate powers of the primitive element α are found on the
basis of the achieved solutions. The powers indicate error positions in the received
sequence. Solution of the nonlinear equation set (2.98) is generally cumbersome. The
conceptually simplest approach would be to find the solution by successive substitu-
tion of unknowns αj1 , αj2, . . . , αjw by all possible powers of the primitive element α

in equation set (2.98). Unfortunately, it is reasonable only if the number of correctable
errors t is small. Particular decoding methods basically differ in the method of finding
the solution of equation set (2.98). In this section we will present the approach proposed
by Berlekamp (1965), modified by Massey (1972) and summarized in a clear way by Lee
(2000).

Instead of solving the nonlinear equation set, the Berlekamp-Massey algorithm defines
an error location polynomial �(x) and performs some operations on it. The polynomial
has the form

�(x) = �wxw + �w−1x
w−1 + · · · + �1x + 1 (2.100)

= (1 − αjwx)(1 − αjw−1x) . . . (1 − αj1x) =
w∏

l=1

(1 − αjl x) (2.101)

The roots (αjl )−1 (l = 1, 2, . . . , w) of the error location polynomial are inverses of
the searched solutions of the nonliner equation set (2.98). Thus, the solution of (2.98)
has been replaced by construction of the polynomial �(x), followed by finding its
roots.

Let us multiply both sides of the polynomial expression �(x) given by formula (2.100)
by ejl

(αjl )k+w, where k is a certain natural number,3 and calculate its value for x =
(αjl )−1. Because (αjl )−1 is a root of the polynomial �(x), from (2.100) we get the
following dependence

ejl
(αjl )k+w

[
�w(αjl )−w + �w−1(α

jl )−w+1 + · · · + �1(α
jl )−1 + 1

] = 0

or equivalently

ejl

[
�w(αjl )k + �w−1(α

jl )k+1 + · · · + �1(α
jl )k+w−1 + (αjl )k+w

] = 0 (2.102)

3 One should not confuse the natural number k with the message block length of a codeword.
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Let us sum both sides of equation (2.102) for all values of the index l = 1, 2, . . . , w.
Grouping all components containing �i , we receive the following equation

�w

w∑
l=1

ejl
(αjl )k + �w−1

w∑
l=1

ejl
(αjl )k+1 + · · ·

+ �1

w∑
l=1

ejl
(αjl )k+w−1 +

w∑
l=1

ejl
(αjl )k+w = 0 (2.103)

If we recall formula (2.99) for syndrome components, we see that equation (2.103) can
be written in the form

�wsk + �w−1sk+1 + · · · + �1sk+w−1 + sk+w = 0 (2.104)

Equation (2.104) contains the existing components of the syndrome calculated from (2.95)
if k is located within the interval [1, w], because if, as it is assumed, w ≤ t , then k + w ≤
2t . Substituting i = k + w for w + 1 ≤ i ≤ 2w, we get the following equation

�wsi−w + �w−1si−w+1 + · · · + �1si−1 + si = 0 (2.105)

so

si = −
w∑

l=1

�lsi−l for i = w + 1, w + 2, . . . , 2w (2.106)

Based on (2.106) we get the following matrix equation
sw+1

sw+2
...

s2w

 = −


s1 s2 . . . sw

s2 s3 . . . sw+1

. . . . . . . . . . . .

sw sw+1 . . . s2w−1




�w

�w−1
...

�1

 (2.107)

This is a linear equation set that needs to be solved in the finite field with respect to
the coefficient set {�1,�2, . . . ,�w} of the error location polynomial. Equation (2.106)
implies that the subsequent syndrome components can be found by applying the feedback
shift register shown in Figure 2.16 if the coefficients �1, �2, . . . ,�w are known. The
solution of equation set (2.107) is then equivalent to the design of such a feedback shift
register that is able to generate the sequence of the syndrome components. The iterative
method of deriving the coefficients �1, �2, . . . ,�w was given by Massey (1972). His
method is related to Berlekamp’s method (Berlekamp 1965), so the name of the decoding
algorithm contains the names of both scientists. Let us note that the decoder does not know
the number of errors w that have occurred in the received sequence. Assuming that the
probability of a single error in the received symbol is smaller than 1/2, the case in which
fewer errors have occurred is more probable than the case in which the number of errors
is higher. Thus, we should search for the register with the lowest degree that correctly
generates the sequence of the syndrome components calculated for the received sequence.
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Figure 2.16 Linear feedback register synthesized in the Massey algorithm

The Massey algorithm is thus a method of feedback register synthesis that determines
the register of minimum length. This register generates the required sequence of syndrome
components. During operation of the algorithm the sequence of syndrome components
generated by the current form of the feedback register is subsequently compared with the
desired syndrome components calculated on the basis of the received sequence. This is
done step by step until all the syndrome components are correctly produced by the register
or the divergence between a component calculated by the register and that calculated on
the basis of the received sequence is observed. In the case of divergence, the feedback
register is modified so as to remove it. The syndrome components are generated again until
their number is exhausted or the next divergence between the calculated and generated
sequences appears again.

Denote the polynomial describing the correction of the feedback taps as D(x). L is
the current degree of the synthesized connection polynomial �(x). Let i be the number
of the subsequent syndrome component. The algorithm performing the synthesis of the
feedback register leading to determination of the error location polynomial coefficients
can be formulated in the following steps (Michelson and Levesque 2003).

1. Derive the syndrome components si , i = 1, 2, . . . , 2t .
2. Initialize the variables applied in the algorithm: i = 1, �(x) = 1, D(x) = x, L = 0.
3. For a new syndrome component si calculate the discrepancy

δ = si +
L∑

l=1

�lsi−l (2.108)

4. Check the calculated value of discrepancy δ. If δ = 0, go to step 9, otherwise go to
step 5.

5. Modify connection polynomial �(x). Let �∗(x) = �(x) − δD(x).
6. Test the length of the feedback register. If 2L ≥ i, go to step 8, i.e. do not extend

the register length, otherwise go to step 7.
7. Increase the register length and update the correction polynomial L := i − L, D(x) =

�(x)δ−1

8. Update the connection polynomial: �(x) := �∗(x).
9. Update the correction polynomial: D(x) := xD(x).

10. Update the counter of the syndrome components: i := i + 1.
11. Check if the counter of the syndrome component has reached the final value, i.e. if

i > 2t . If not, go to step 3; otherwise stop the procedure.
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Let us note that discrepancy δ is defined in such a way that in the case of the first
realization of step 3 it is equal to the first syndrome component s1. Synthesis of the
correction polynomial D(x) is performed not only to set discrepancy δ to zero but also
to modify the polynomial �(x) in such a manner that the feedback register configured
according to this polynomial would generate all preceding syndrome components. Thus
it is not then necessary to check the correctness of generation of the previous syndrome
components by the modified feedback register. This property has a crucial influence on the
algorithm complexity, which, as a result, depends linearly on the number of correctable
errors.

After finding the coefficients of the polynomial �(x) we have to find its roots
(
αjl

)−1
,

which, as we remember, are inverses of the Galois field elements indicating the error
locations. Searching for the roots is often performed by substitution of each nonzero
element of the extension field GF(pm), in which the primitive element α is defined, to
the polynomial �(x) determined by formula (2.100), and testing if �(x) = 0. If this is
true, the tested element is a root of the polynomial �(x), so the power of the primitive
element related to the root inverse determines the error location in the received sequence.

Concluding, the Berlekamp-Massey algorithm of decoding of BCH codes can be sum-
marized in the following steps.

1. Derive the syndrome components s1, s2, . . . , s2t related to the received sequence
described by the polynomial r(x).

2. Apply the received syndrome components s1, s2, . . . , s2t in the Berlekamp-Massey
algorithm, which calculates the coefficients of the error location polynomial �(x).

3. Find the roots of the polynomial �(x).

4. On the basis of the inverses of the roots of �(x), determine the error polynomial e(x).
5. Correct the received sequence, i.e. add the error polynomial to the received sequence

polynomial r(x).

Let us illustrate the operation of the Berlekamp-Massey algorithm by the following
example taken from Lee (2000).

Example 2.7.1 Consider decoding of the BCH (15, 5) code of correction capability of
t = 3 errors. The generator polynomial is g(x) = x10 + x8 + x5 + x4 + x2 + x + 1. This
polynomial has the roots α,α2,α3,α4,α5,α6, where α is the primitive element of the field
GF(24) generated by the polynomial p(x) = x4 + x + 1. The list of field elements repre-
sented as the powers of the primitive element has been shown in Table 2.3. Assume that
the zero codeword has been transmitted, i.e. c(x) = 0; however, the received sequence
polynomial has the form r(x) = x12 + x5 + x3. In reality it is an error polynomial e(x),
but this fact is not known to the decoder. In the first phase of the decoding algorithm the
syndrome components have to be derived by calculating si = r(αi), i = 1, 2, . . . , 6. On
the basis of Table 2.3 we get

s1 = r(α) = α12 + α5 + α3

=


1
1
1
1

 +


0
1
1
0

 +


0
0
0
1

 =


1
0
0
0

 = 1
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The other syndrome elements calculated in a similar way are

s2 = r(α2) = 1 s3 = r(α3) = α10 s4 = r(α4) = 1
s5 = r(α5) = α10 s6 = r(α6) = α5

Knowing the syndrome components we have to determine the coefficients of the error
location polynomial �(x), taking advantage of the iterative Berlekamp-Massey algorithm.
Table 2.5 presents subsequent steps of this algorithm.

Table 2.5 Results of subsequent steps of the Berlekamp-Massey iterative procedure (Lee 2000)

i δ D(x) �∗(x) �(x) L

0 − x − 1 0
1 s1 = 1 x 1 + x 1 + x 1
2 0 x2 1 + x 1 + x 1
3 α5 α10x2 + α10x α5x2 + x + 1 α5x2 + x + 1 2
4 0 α10x3 + α10x2 α5x2 + x + 1 α5x2 + x + 1 2
5 α10 α10x3 + α5x2 + α5x α5x3 + x + 1 α5x3 + x + 1 3
6 0 α10x4 + α5x3 + α5x2 α5x3 + x + 1 α5x3 + x + 1 3

Analyze the operation of the algorithm. At the initial moment the variables used by
the algorithm are initialized, i.e. D(x) = x, �(x) = 1, L = 0. In the first iteration the
discrepancy δ is nonzero and equal to the first syndrome component s1 = 1. Thus, the
connection polynomial is modified by setting �∗(x) = 1 − δx = 1 + x. Because the math-
ematical operations are performed in GF(24), subtraction of 4-bit blocks representing the
elements of this field is equivalent to modulo-2 addition of their components. Therefore,
we will consequently apply signs of mathematical addition. Because L = 0, i = 1, and
so far 2L < i, the feedback register length is increased (L := i − L = 1) and the correc-
tion polynomial is updated accordingly, i.e. D(x) = �(x)δ−1 = 1. Next the connection
polynomial is also updated, so �(x) := �∗(x) = 1 + x, and the correction polynomial is
changed again, D(x) := xD(x) = x. At the end of this iteration the syndrome element
counter is increased (i := i + 1 = 2). In the next iteration the discrepancy is calculated

again: δ = s2 −
1∑

l=1
�ls2−l = 1 − 1 = 0. Consequently, in this iteration we go directly to

step 9 and the feedback register length is not changed because s2 has been generated
correctly by the feedback register in the current form. In turn, updating of the correction
polynomial is performed, i.e. D(x) := xD(x) = x2, and the iteration counter is increased
by 1. The reader is encouraged to trace the next iterations of this algorithm, Finally, in
the sixth iteration the following connection polynomial is received

�(x) = α5x3 + x + 1 (2.109)

Now the polynomial roots have to be found by substituting subsequent nonzero elements
of Galois field GF(24) into equation (2.109) and checking if the result is equal to zero. It
turns out that the polynomial roots are α3, α10 and α12. However, we are interested in their
inverses because the latter, expressed as the powers of the primitive elements, indicate the
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error locations in the received sequence. The calculated root inverses are α12, α5 and
α3, respectively. The error polynomial e(x) achieves the form e(x) = x12 + x5 + x3. The
final step of the decoder is correcting the errors by performing the following polynomial
calculation

ĉ(x) = r(x) + e(x) = (x12 + x5 + x3) + (x12 + x5 + x3) = 0

As we can see, the final decoder decision is correct.

The example presented above illustrates the process of decoding of a binary code.
However, the Berlekamp-Massey algorithm is often applied for decoding nonbinary BCH
codes, such as Reed-Solomon codes. In the tutorial by Michelson and Levesque (2003)
the example for RS code decoding is presented.

One could wonder why such a complicated decoding method is used. The answer
is simple. If the error correction capability is relatively large (e.g. if six errors can be
corrected) and the codewords are long, then nonalgebraic decoding methods become
too complex. Direct search of the solution of the nonlinear equation set by checking all
nonzero elements of the field GF(pm) exhausting the set of all possible error combinations
is also too complex. Thus, the Berlekamp-Massey algorithm becomes one of possible
solutions for decoding such codes.

The Berlekamp-Massey algorithm is a classical solution of the BCH code decoding. In
recent years many new soft-decision decoding algorithms have been developed; however,
their presentation is beyond the scope of this introductory chapter.

2.8 Convolutional Codes and Their Description

Convolutional codes have become an important class of error correction codes owing to
their simplicity, high coding gains and an effective decoding method invented by Viterbi
(1967). Nowadays the convolutional codes are often applied as channel codes in digital
communication systems. These codes can be found in digital TV broadcasting, cellular
GSM radio systems, cellular spread spectrum systems (such as cdmaOne, cdma2000 and
UMTS), wireless local area networks (WLANs) and others.

Considering code classification, we mentioned that a convolutional code encoder is a
finite state machine featuring a certain number of memory cells and generating the output
sequence depending on the input sequence and the current contents of the memory cells.
Below we present a few approaches for describing convolutional codes that clearly result
from the above observation.

2.8.1 Convolutional Code Description

There exist a few ways to describe convolutional codes. The simplest one is to present the
encoder scheme. Figure 2.17a shows an exemplary encoder, featuring two memory cells,
of the code with the code rate R = 1/3. For each information bit supplied to the encoder
input, three output bits are generated. Each of them appears in each one-third of the input
bit duration. The first bit is the input bit, the second bit is a modulo-2 sum of the current
input bit and the one delayed by two time instants, and the third bit is a modulo-2 sum
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Figure 2.17 Example of the convolutional encoder (a), its trellis diagram (b) and an example of
the path on the trellis diagram implied by a specific message sequence (c)

of the current input bit, the preceding bit and the bit delayed by two time instants. The
number of input bits that participate in the generation of the output bits determines the
size of encoder memory and is called the constraint length of a code. It is often denoted
by L. An encoder, as in the case of block codes, is frequently described by defining its
generator polynomials. For the encoder shown in Figure 2.17a these polynomials have
the form

g1(x) = 1 g2(x) = 1 + x2 g3(x) = 1 + x + x2 (2.110)

Let us write the input sequence in the polynomial form

b(x) = b0 + b1x + b2x
2 + b3x

3 + . . . (2.111)

As we can see, for convolutional codes the input sequence can be infinitely long, although
in practical systems its length results from the higher layer system structures, e.g. the
information frame length. The polynomials describing the outputs of subsequent encoder
branches are

w1(x) = b(x)g1(x) w2(x) = b(x)g2(x) w3(x) = b(x)g3(x) (2.112)

Then it is clear that the branch output signals are convolutions of the input sequence
and the binary sequences determined by the taps of each encoder branch, which at the
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same time can be interpreted as binary impulse responses of each encoder branch. Next,
the branch output signals are multiplexed, so the joint binary impulse response can be
determined for the encoder. This response can be easily generated, feeding the encoder
input with the sequence (1000000 . . .) and observing the encoder output. It can be easily
verified that for the considered encoder the impulse response is

h = (111 001 011 000 000 . . .)

Let us note that equations (2.112), which determine the output signals, indicate that the
encoder is a linear system, i.e. the superposition principle holds for it. For that reason,
based on the encoder impulse response the generator matrix can be constructed for the
considered code. This matrix consists of rows, each of which is a replica of the one
directly above it, shifted by three positions to the right. The first row exactly describes
the encoder impulse response. For the considered code the generator matrix has the form

G =


111 001 011 000 000 . . . . . . . . .

000 111 001 011 000 000 . . . . . .

000 000 111 001 011 000 000 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 (2.113)

As we can see, the generator matrix is infinite, which corresponds to infinitely long input
sequences. It would be a regular matrix if finite input sequences were considered. A
codeword generated by the considered encoder fulfills the expression

cT = bT G (2.114)

where b is the vector of a message block, possibly infinitely long, and c is a codeword.
It is worth mentioning that polynomial description is only one possible description of

the encoder structure. An equivalent description is based on binary vectors assigned to
each output branch for which the presence of the tap in a given branch is denoted by a
binary “1”. In such notation the considered code is determined by the vectors

g1 = [100] g2 = [101] g3 = [111] (2.115)

In turn, in convolutional code tables often found in books on coding theory one can find
encoder description in which the tap vectors are presented in an octal form. Thus, our
code would be denoted by the triple (4, 5, 7).

Figure 2.18 presents an example of another convolutional code. This code is applied in
the American cellular system conforming to the ANSI standard IS-95. It has the code rate
R = 1/2 and the constraint length L = 9, and the generator polynomials are given by

g1(x) = 1 + x + x2 + x3 + x5 + x7 + x8

g2(x) = 1 + x2 + x3 + x4 + x8 (2.116)
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Figure 2.18 Convolutional code encoder applied in the IS-95 cellular telephony (cdmaOne)

In binary notation they are

g1 = [111101011] g2 = [101110001] (2.117)

whereas in octal notation the code is denoted as (753, 561).
Let us analyze Figure 2.17b, which shows a trellis diagram for the encoder shown in

Figure 2.17a. A trellis diagram is a kind of state diagram, which is a convenient tool
for description of finite state machines. A trellis diagram differs from the state diagram
in the presentation of the encoder. The trellis diagram presents the encoder (automaton)
operation between the nth and (n + 1)st moment. The encoder states are determined by
the contents of its memory cells and are denoted by characters a, b, c and d . So, state a is
related to zeros in both memory cells, state b is related to zero in the first cell and 1 in the
second cell, state c to 1 in the first cell and zero in the second cell, and finally state d to
“1”s in both memory cells. For each trellis state at the nth moment there are paths to the
selected states at the (n + 1)st moment. If these paths result from the zero symbol given
to the encoder input they are denoted by a vector with a solid line, otherwise a dashed
line is used. The path vectors are accompanied by the encoder output symbols above
them. Figure 2.17c presents a whole route on the trellis diagram passed by the encoder
as a result of a certain input symbol sequence. This route is uniquely associated with
the message sequence. Let us note that the decoding task can be interpreted as finding a
route on the trellis diagram passed by the encoder that has been caused by a given input
sequence. Finding this route is equivalent to the determination of the message sequence
the decoder is looking for.

There exists another equivalent means of graphical presentation of the encoder oper-
ation, the so-called code tree diagram. The code tree diagram for the considered code
is presented in Figure 2.19 and has been created in the following way. The tree grows
from a root related to the initial moment and the zero encoder state. A branch growing in
the upper direction corresponds to the zero symbol given to the encoder input, whereas a
branch growing in the lower direction reflects the symbol 1 at the encoder input. At sub-
sequent moments the tree diagram illustrating all possible input symbol sequences grows
in upper and lower directions. The current encoder state is denoted under each branch,
whereas the output sequence generated at this moment is denoted above that branch. A
characteristic feature of a tree diagram is the recurrence of its blocks. The size of these
repeatable blocks depends on the encoder memory, i.e. on the number of possible encoder
states. Supplying the encoder with a certain input symbol sequence results in a certain
route along the branches of the tree diagram. Similarly to the case when a trellis diagram
is used, decoding of the received sequence can be interpreted as finding the most likely
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Figure 2.19 Tree diagram for the code shown in Figure 2.17

route on the tree diagram. There exist algorithms of convolutional code decoding in which
the above rule is applied.

2.8.2 Code Transfer Function

A code transfer function is a very useful tool in investigation of the properties of a
given code and evaluation of its decoding error rate. If a code is linear then, similarly
as for block codes, its properties, in particular the minimum distance, can be found
by considering transmission of the zero codeword and testing how much the received
sequence differs from it. In order to derive the code transfer function we apply a traditional
state diagram. Figure 2.20a presents a state diagram of the code shown in Figure 2.17.
Its form is equivalent to the trellis diagram. Figure 2.20b shows, in turn, the modified
state diagram in which the state a related to zeros in the encoder memory cells is split
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into two states, a and e. Assuming the transmission of the zero codeword, the encoder
does not leave state a, performing a loop on the state diagram that begins and ends in
state a. On the basis of the received sequence the decoder should track the state sequence
and decide that the encoder remained all the time in state a. However, due to channel
distortions the received sequence can differ from the all-zero sequence and the decoder
can make wrong decisions. The splitting of state a into two states, a and e, allows
tracking of a possible divergence from the correct state a and merging with it again
after a few time instants to reach state e. The modified diagram shown in Figure 2.20
can be treated as a graph with the nodes determined by possible encoder states that are
connected by the branches with appropriately selected transfer functions, as in electrical
circuit analysis. A branch transfer function may consist of three symbols: J , N and
D raised to appropriate powers. Symbol J appears in each branch. It is introduced to
enable calculation of the number of steps in which diverging from and subsequently
merging the all-zero route (or approaching state a) is possible. Symbol N is placed in
the transfer function of those branches that result from feeding an information symbol 1
to the encoder input. The power of symbol D is, in turn, determined by the Hamming
weight of the codeword associated with the path between two states. For example, transfer
between state a and state c results from giving a single 1 to the encoder input (symbol
N appears in the branch transfer function) and generation of the output sequence 111,
whose Hamming weight is equal to 3. Consequently, this branch transfer function is
JND3.

A transfer function is meant as a transmittance between nodes a and e. Denoting it as
T (D, N, J ), we have

T (D, N, J ) = Xe

Xa

(2.118)

where Xe is a signal seen in node e and Xa is a signal given to node a. We can determine
the equation describing signals in each state. Thus, for the considered code we receive
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Figure 2.20 State diagram (a) and diagram used for derivation of the transfer function for the
code shown in Figure 2.17 (b)
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the following equation set

Xc = JND3Xa + JNDXb

Xb = JDXc + JDXd

Xd = JND2Xc + JND2Xd

Xe = JD2Xb (2.119)

The transfer function T (D, N, J ) can be determined from these equations in a traditional
way or using the Mason rule (known from the circuit theory). The solution, using any of
these methods, leads to the following formula

T (D, N, J ) = J 3ND6

1 − JND2(1 + J )
(2.120)

Let us note that the transfer function has a form similar to the infinite sum of a geometrical
series a0, a0q, a0q

2, a0q
3, . . . that is described by the formula

S = a0

1 − q
(2.121)

In our case a0 = J 3ND6, and q = JND2(1 + J ). Therefore the transfer function may
be expressed as a sum of infinite geometrical series

T (D, N, J ) = J 3ND6 + J 4N2D8 + J 5N2D8 + J 5N3D10

+ 2J 6N3D10 + J 7N3D10 + · · · (2.122)

Let us interpret the derived formula. The subsequent components of the series expansion
are related to the given paths diverging from the all-zero route and merging with it again
later. The first expansion component is associated with the route performed in three cycles
(J 3), which, if selected by the decoder, would be associated with a single “1” in the
decided information sequence (N), whereas the Hamming distance of the zero path and
the code sequence associated with this route, i.e. between states a and e, would be dH = 6
(D6). We say that the code has a free distance dfree = 6. Analysis of the trellis diagram in
Figure 2.17c indicates that this component is related to the path (a, c, b, a = e). Consider
now the second expansion term equal to J 4N2D8. The path diverging from the all-zero
path and merging with it again is performed in four cycles. It would be associated with
two “1”s in the decided sequence if this path were selected by the decoder. The Hamming
weight of the decided code sequence would be equal to 8. We can easily show that this
route is determined by the sequence of states (a, c, d, b, a = e).

Let us note that the transfer function in the series expansion form allows us to inspect
the code weighting structure and indirectly helps us to determine one of the most important
code parameters, i.e. the free distance dfree. In the case of the considered code the free
distance is equal to 6 and there is only a single path diverging from and merging with
the all-zero path with such weight. The higher the number of minimum weight paths, the
higher the mean error probability of the decoder. The maximum likelihood decoder will
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select a wrong nonzero path of the lowest weight if at least three errors occur in appropriate
positions within the fragment of the code sequence of length 9 bits corresponding to three
cycles of the input signals.

2.8.3 Convolutional Codes with Rate k/n

The code that we used in our considerations was characterized by the code rate R = 1/n,
where n = 3. Transmission systems often require other code rates. In general, we are
interested in application of a convolutional code of the code rate R = k/n. There are two
method of achieving codes with such a code rate. The first one is a construction of such
an encoder that accepts k new information bits in each clock cycle with simultaneous
generation of n bits of a code sequence. An example of such an approach is shown in
Figure 2.21. The encoder with the code rate R = 2/3 has two parallel delay lines storing
a pair of information bits. In each cycle n = 3 code sequence bits are generated. Let us
note that at the ith moment the encoder can evolve from each state of the trellis diagram
to one of four states at the (i + 1)st moment.
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Figure 2.21 Scheme of the convolutional code encoder of the code rate R = 2/3 (a) and the
associated trellis diagram (b)

The second approach is known as code puncturing . It relies on skipping some selected
code bits according to the prescribed pattern. This method is often applied if the system
requirements strongly depend on the channel conditions or if there is a long list of required
data rates and several levels of decoding quality. Figure 2.22a presents the scheme of the
so-called RCPC (Rate Compatible Punctured Convolutional Code) encoder with the code
rate R = 4/5. Its core is a regular convolutional code encoder with the code rate R = 1/2.
Some bits produced by the RCPC encoder are periodically omitted, which is reflected in
the puncturing table of the following form

a =
[

1 1 1 0
1 0 0 1

]
(2.123)
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Figure 2.22 RCPC encoder of the code rate R = 4/5 with exemplary input and output sequences
for the puncturing table given by (2.123) (a) and the corresponding trellis diagram (b)

The symbol 1 in table a denotes a transfer of the R = 1/2 encoder output bit to the
RCPC encoder output, whereas the symbol 0 indicates that the bit generated by the
R = 1/2 encoder is omitted. So for every four encoder input bits there are five RCPC
encoder output bits and we conclude that the code rate is R = 4/5. Figure 2.22a also
presents the response of the RCPC encoder to the specific information input sequence.
The advantage of bit puncturing is the application of a single encoder with the code
rate R = 1/n supplemented with an easily modifiable puncturing table. Figure 2.22b,
in turn, shows the trellis diagram of the code modified by the appropriate puncturing.
The punctured bits have been denoted by X. Let us note that the number of trellis
chain elements shown in the trellis diagram must match the number of columns in the
puncturing table. As each column of the puncturing table reflects one encoder cycle, the
operation of the encoder repeats after the number of cycles, which is equal to the number
of columns in a.

2.9 Convolutional Code Decoding

There are several known methods of convolutional code decoding. The oldest ones are
similar to some block code decoding methods applying a syndrome. However, convolu-
tional codes gained popularity partially due to an efficient decoding algorithm invented
by Viterbi. This performs maximum likelihood decoding both in hard- and soft-decision
versions.

2.9.1 Viterbi Algorithm

Decoding of convolutional codes is historically the first application of the Viterbi algo-
rithm. Other applications of this algorithm will be discussed in Chapters 3 and 6. The
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Viterbi algorithm was first published in 1967 (Viterbi 1967). As we have mentioned, it
implements maximum likelihood decoding. We have shown in the previous chapter that
for hard-decision decoding this criterion reduces to selection of the codeword that is the
closest in the Hamming distance sense to the received sequence. If the distance between
two blocks of the same length is defined in another way, soft-decision decoding is realized.
Comparison of the received sequence with all possible codewords of the same length and
finding the closest one becomes infeasible already at moderate sequence lengths. Thus,
there is a need for a method that will do it in an effective way, e.g. by using in the
current comparisons the results of comparisons of those parts of the codewords with the
appropriate parts of the received sequence obtained previously. Let us note that selection
of the optimum codeword performed by the maximum likelihood decoder is equivalent
to finding the sequence of states in which the convolutional code encoder subsequently
resided while generating this codeword. The algorithm is based on the following core
observation: The shortest route at the nth moment (in the sense of the selected metric
measuring the distance between the received sequence and the hypothetical codeword) to
the appropriate state (e.g. the kth one) consists of the shortest path to one of the states
(e.g. the j th) at the (n − 1)st moment (called a survivor) and the path from this state to
the considered state at the nth moment. Consequently, each route to the considered kth
state from the j th state that does not contain the shortest route to the j th state at the
(n − 1)st moment will feature a higher metric, so it will not be optimal. The following
fundamental conclusion results from the above observation.

Conclusion 2.9.1 If at the nth moment the shortest routes (called survivors) to each of
the trellis states are known, then the shortest route to each trellis state at the (n + 1)st
moment can be determined by searching for the path to the currently considered state from
one of the states at the previous moment, for which the sum of the state survivor metric
at the previous moment and the path metric from that state at the previous moment to the
currently considered state is minimum.

Thus, searching for the sequence of states on the trellis diagram that is associated with
the codeword closest to the received sequence is a recurrent process in which the results
obtained at the previous time instant are used in the next time instants. Consequently the
algorithm is computationally efficient and the number of operations depends linearly on
the codeword length. However, it strongly depends on the number of trellis states.

The Viterbi algorithm can be divided into two phases. The first one is its initialization
and lasts until the time instant in which the metrics of the paths to all trellis states are
determined. Assuming the convolutional code of the constraint length equal to L, the
initialization phase lasts for L − 1 algorithm cycles. At the Lth moment the second phase
starts in which the regular algorithm begins. In this phase, selection of the shortest route
to each trellis state is performed. As we have mentioned, two cases are possible. In the
first one the codeword is finite. Sometimes the generated codeword is appended by the
bit sequence of such length that uniquely determines the final encoder state. Thus, when
decoding the received sequence, the decoder starts and ends its operation in a known
(usually zero) trellis state. In the second case the decoded sequence is so long that it
can be considered as almost infinite. Waiting for decoding of the whole sequence is not
feasible any more and a partial decision upon a part of the decoded sequence is necessary,
along with extension of the shortest routes to each trellis state in each timing instant.
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The Viterbi algorithm for a code of constraint length equal to L and the number of
states equal to 2L−1 can be formulated in the following steps:

1. Algorithm initialization at the moments i = 1, 2, . . . , L − 1. Calculate path metrics
to each trellis state determining the distances between the received sequence and the
codewords associated with the given path on the trellis diagram. As a result of ini-
tialization, unique paths from the initial state at the zero moment to each trellis state
k = 1, 2, . . . , 2L−1 denoted by DL−1

k = (σk1 , σk2 , . . . , σkL−1) are found. Each path is
associated with the accompanied metric ML−1

k . The subscript is related to the state
number, whereas the superscipt denotes the current timing instant. In turn, σki

symbol-
izes the state in which the encoder is found at the ith moment when travelling through
the path ending in the kth state at the (L − 1)st moment.

2. Recurrent phase (at the moments i = L, L + 1, . . .). Knowing the shortest routes Di
k

to each trellis state k = 1, 2, . . . , 2L−1 at the ith moment and the metrics Mi
k associated

with them, determine the shortest route and the metric associated with it for each trellis
state at the (i + 1)st moment according to the following rule. Let the kth state at the ith
moment be reachable from the states indexed by j1 and j2 at the (i − 1)st moment. The
shortest route to the kth (k = 1, 2, . . . , 2L−1) state at the ith moment has the metric

Mi
k = min

{j1,j2}

{[
Mi−1

j1
+ d(ri , cj1,k)

]
,
[
Mi−1

j2
+ d(ri , cj2,k)

]}
(2.124)

where d(ri , cjm,k) (m = 1, 2) denotes the Hamming (or other) distance between the
received sequence ri at the ith moment and the codeword associated with the path on
the trellis diagram between the jmth state at the (i − 1)st moment and the kth state
at the ith moment. The choice of state with the index ĵ = j1 or j2 from the previous
moment determines the shortest route to the kth state at the ith moment

Di
k = (σĵ1

, σĵ2
, . . . , σĵi−1

, σk) for k = 1, 2, . . . , 2L−1 (2.125)

The path, described by formula (2.125) containing the sequence of states from
the initial moment to the current one, is uniquely associated with the appropriate
codeword and the information symbol sequence.

It has been noticed that the shortest routes to all trellis states starting in the zero timing
instant are common, with the probability close to unity up to the moment delayed by 3L

to 5L timing instants, as compared with the current timing instant. Therefore, producing
finite decisions upon the partially decoded sequence is possible with such a delay. It is
a particularly important observation in the case of long codewords. For such codewords
waiting for their end would require an unacceptably long delay. The delay in obtaining
the final decision from the decoder is called a decoding depth .

Consider the operation of the Viterbi decoder on the example of the code shown in
Figure 2.17a. Figure 2.23 presents the trellis diagram achieved as a result of the algorithm
operation after three different numbers of decoder cycles. Figure 2.23a shows the end of
the initialization phase. Each state diagram can be reached by only one route from the
initial state. The path metric is the Hamming distance between the received sequence
and the codeword associated with the given route finishing at the appropriate state. The
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Figure 2.23 Searching for the shortest routes for the states at the nth moment after two cycles
(a), five cycles (b) and ten cycles (c)

recurrent phase of the algorithm starts in the third timing instant. From this moment the
selection of the shortest route to each trellis state is performed. As an example, let us
consider determining the shortest routes to each state in the third timing instant. After
finishing the initialization phase we have the following metrics

M2
1 = 2, M2

2 = 4, M2
3 = 1, M2

4 = 5

and corresponding sequences of states indicating the routes to each state are

D2
1 = (a, a, a), D2

2 = (a, c, b), D2
3 = (a, a, c), D2

4 = (a, c, d)
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At the third moment a sequence r3 = (010) has been received. Let us start from selection
of the shortest route to state a. It is possible to achieve it from states a or b. The path
from state a to state a at the next moment is associated with the code sequence 000,
whereas the path from state b to a results in the code sequence 011. As a result, the
Hamming distances between the candidate code sequences and the received sequence are,
respectively,

d(r3, ca,a) = d(010, 000) = 1 d(r3, cb,a) = d(010, 011) = 1

Thus, the minimum cost of approaching the state a at the third cycle is

M3
1 = min

a,b

{[
M2

1 + d(r3, ca,a)
]
,
[
M2

2 + d(r3, cb,a)
]}

= min
a,b

[(2 + 1), (4 + 1)] = 3

The shortest route to state a in the third timing instant leads through state a from the
second timing instant, so

D3
1 = (a, a, a, a)

Performing similar steps for the remaining states, we receive

M3
1 = 3, M3

2 = 3, M3
3 = 4, M3

4 = 2

and

D3
1 = (a, a, a, a), D3

2 = (a, a, c, b), D3
3 = (a, a, a, c), D3

4 = (a, a, c, d)

In each timing instant similar calculations to those shown above are performed.
Figure 2.23c presents the result of the Viterbi algorithm operation after ten cycles. We
can find the route featuring the lowest metric at the final moment. It has been denoted
by an envelope drawn with dashed lines. If only 30 bits were transmitted, then the code
sequence associated with this route would be the decoder decision upon the transmitted
codeword and information sequence.

The Viterbi algorithm shown above performs hard-decision decoding. Let us recall,
however, that in current digital communication systems mostly soft-decision decoding is
applied. In the simplest version, binary sequences at the decoder input are replaced by
the samples (e.g. 8-level) of the received symbols. The operation of the Viterbi algorithm
differs from that shown above only in definition of the applied distance. It can be a
Euclidean distance or another distance, e.g. that expressed by formula (2.10).

A convolutional code is often used as an inner code in a coding system in which two
codes are applied in a cascade. To enable applying soft-decision decoding in an outer
code the convolutional code decoder should not only generate binary decisions but also
provide the measure of their reliability. The algorithm that supplies both values is called
the SOVA (Soft-Output Viterbi Algorithm) (Hagenauer and Hoeher 1989) and will be the
subject of our considerations in the next section.
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The Viterbi algorithm has a very regular structure, which makes it very attractive for
hardware implementation. Many operations can be performed in parallel, which results in
a high decoding speed. For example, each state can be served by a separate circuit that cal-
culates the metrics of the routes leading to it and by selecting the shortest one among them.

The Viterbi algorithm is not the only algorithm for convolutional code decoding,
although it is certainly the most popular. The Fano algorithm is another famous algo-
rithm. Similarly to the Viterbi algorithm, it finds the optimal code sequence analyzing the
sequence of the hypothetical encoder states, so it belongs to the sequential algorithms.
However, unlike the Viterbi algorithm, the basis for the search for the state sequence is a
code tree diagram. In general, the algorithm measures the distance between the received
sequence and the code sequence associated with the given route on the code tree along
which the algorithm “moves”. In each cycle the route is extended along a single tree
branch only. It is done as long as the distance between the associated codeword and the
received sequence does not exceed a predetermined threshold value. If the threshold value
is reached, the algorithm goes a few steps back and tries to select another route. Thus,
the delay introduced by the Fano algorithm is random. If the symbol error probability is
low, the event of going back and selecting a new route is rare. However, the randomness
of the decoding delay is a disadvantage of this algorithm.

If the number of encoder states grows, the Viterbi algorithm becomes so complicated
that suboptimal solutions must be sought. The number of required calculations stays
under control at the expense of a certain loss in the decoding performance. Suboptimal
algorithms are commonly used when the Viterbi algorithm is used to detect the signals
corrupted by intersymbol interference. This problem will be discussed further in Chapter 6.

2.9.2 Soft-Output Viterbi Algorithm (SOVA)

As we remember, the regular Viterbi algorithm decides about the transmitted codeword
upon the received sequence by using the maximum likelihood criterion. Our considerations
on the SOVA will be presented in a wider perspective using the Maximum a Posteriori
(MAP) criterion applied in the decision process for the whole received sequences. As in
the regular Viterbi algorithm, the algorithm will find the optimal codeword but, unlike
the latter, possibly unequal probabilities of the codewords are taken into account as well.
Equivalently, unequal probabilities of particular message sequences influence the decoder
operation.

Assume the channel model shown in Figure 1.19a. Thus, the codeword ci
1 transmitted

from the initial moment up to the ith time unit is represented by a bipolar sequence di
1

that, in the case of the convolutional code of code rate R = 1/n, has the form

di
1 = (d1, d2, . . . , di) (2.126)

The j th vector element in (2.126) is a vector of bipolar symbols characterizing the code-
word generated in the j th time unit

dj = (dj,1, dj,2, . . . , dj,n), dj,k = ±
√

Ec, j = 1, . . . , i, k = 1, . . . , n (2.127)
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where Ec is the signal energy per single code symbol. Let dj,k = −√
Ec if cj,k = 0 and

let dj,k = √
Ec if cj,k = 1. Let us also note that assuming a particular initial state of the

encoder, both the codeword ci
1 and its bipolar version di

1 are uniquely associated with the
message sequence

mi
1 = (m1, m2, . . . , mi) (2.128)

The transmitted vector di
1 is subject to disturbance by additive white Gaussian noise, so

at the decoder input it has the form

ri
1 = (r1, r2, . . . , ri) (2.129)

where

rj = (rj,1, rj,2, . . . , rj,n), rj,k = dj,k + νj,k, j = 1, . . . , i, k = 1, . . . , n (2.130)

and νj,k is a white Gaussian noise sample added to the kth element of the bipolar codeword
symbol in the j th time unit. As the Gaussian noise source is white, any different noise
samples are statistically independent. Let us now formulate the MAP criterion for finding
the codeword ci

1 on the basis of the received sequence ri
1 or, equivalently, finding the

sequence di
1, both uniquely associated with the transmitted message sequence mi

1. The
codeword ci

1,opt or its bipolar version di
1,opt is searched according to the MAP criterion,

which results from the maximized a posteriori probability

di
1,opt = arg max

di
1

P(di
1|ri

1) (2.131)

Recalling Bayes’ formula, we have

di
1,opt = arg max

di
1

P(di
1|ri

1) = arg max
di

1

p(ri
1|di

1)P (di
1)

p(ri
1)

= arg max
di

1

p(ri
1|di

1)P (di
1) = arg max

di
1

p(ri
1|di

1)P (mi
1) (2.132)

We have used the observation that the denominator in Bayes’ formula is common for all
possible bipolar codewords di

1, so it does not influence the choice of the best codeword.
We also applied the fact that the probability of the codeword di

1 is equal to the probability
of the message sequence mi

1. Instead of comparing the probabilities we can compare their
logarithms, so the MAP criterion evolves to the form

di
1,opt = arg max

di
1

ln p(ri
1|di

1)P (mi
1) (2.133)



 

168 Introduction to Digital Communication Systems

Let us consider the term that is the subject of maximization in detail. Because noise
samples are statistically independent, we can write this term in the form

ln p(ri
1|di

1)P (mi
1) = ln

i∏
l=1

p(rl|dl)P (ml)

= ln
i∏

l=1

[
n∏

k=1

p(rl,k|dl,k)

]
P(ml) (2.134)

The inner product reflects the conditional probabilities of particular n samples received
within the lth timing instant. We have assumed in (2.134) that subsequent message
symbols ml are statistically independent, although their probabilities can have different
values. For our convenience we recall the formula describing the conditional probability
p(rl,k|dl,k) for the white Gaussian noise channel, which is described by the expression

p(rl,k|dl,k) = 1√
2πσ

exp

[
− 1

2σ 2
(rl,k − dl,k)

2
]

, l = 1, . . . , i, k = 1, . . . , n (2.135)

where σ 2 is the noise variance. We will prove in Chapter 3 that for the white Gaussian
noise channel and the optimum receiver σ 2 = N0/2 (where N0/2 is the power spectral
density of additive white Gaussian noise on the receiver input). After substituting (2.135)
in (2.134) we receive

ln p(ri
1|di

1)P (mi
1) = ln

(
1√

2πσ

)ni

+
[

i∑
l=1

{[
− 1

2σ 2

n∑
k=1

(rl,k − dl,k)
2

]
+ ln P(ml)

}
(2.136)

The first term of the right-hand side in (2.136) does not depend on the searched codeword.
It linearly grows with the length of the codeword, so it does not influence the maximized
logarithm of the probability p(ri

1|di
1)P (mi

1) and can be omitted. Thus, we can write
(2.133) in a new form

di
1,opt = arg max

di
1

ln p(ri
1|di

1)P (mi
1)

= arg max
di

1

〈
i∑

l=1

{[
− 1

2σ 2

n∑
k=1

(rl,k − dl,k)
2

]
+ ln P(ml)

}〉
(2.137)

Maximization of the term in curly brackets is equivalent to minimization of the sum of
terms that consist of the squared errors between the received sample rl,k and the bipolar
symbol dl,k of a hypothetical codeword and the logarithms of the message probabilities
ml (l = 1, . . . , i). Let us note that the noise variance is used in the minimization process
and it influences its result. If probabilities of all message symbols are equal, then their
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logarithms do not influence the choice of the decoded codeword and can be omitted.
Consequently, the criterion reduces to the well-known result considered in the previous
section

di
1,opt = arg min

di
1

i∑
l=1

n∑
k=1

(rl,k − dl,k)
2 (2.138)

However, let us come back to the more general case shown in (2.137). Expanding the
squared errors in square brackets, we have

i∑
l=1

{[
− 1

2σ 2

n∑
k=1

(rl,k − dl,k)
2

]
+ ln P(ml)

}

=
i∑

l=1

{[
− 1

2σ 2

n∑
k=1

(r2
l,k − 2rl,kdl,k + d2

l,k)

]
+ ln P(ml)

}

=
i∑

l=1

{[
− 1

2σ 2

n∑
k=1

(r2
l,k + d2

l,k) + 1

σ 2

n∑
k=1

rl,kdl,k

]
+ ln P(ml)

}

=
i∑

l=1

[
Cl + Lν

n∑
k=1

rl,kdl,k + ln P(ml)

]
(2.139)

where

Cl = − 1

2σ 2

n∑
k=1

(r2
l,k + d2

l,k) (2.140)

is a common term in all possible codewords and does not influence the choice of the
decoded codeword. Denote Lν = 1/σ 2. In consequence, the criterion achieves the sim-
plified form

di
1,opt = arg max

di
1

{
i∑

l=1

[
Lν

n∑
k=1

rl,kdl,k + ln P(ml)

]}
(2.141)

Let us now assume that the message symbols are bipolar as well. Without changing
the decoder decision we can add a certain value dependent on the current time index l to
each term summed in subsequent time units, i.e. instead of Lν

∑n
k=1 rl,kdl,k + ln P(ml)

we write

2Lν

n∑
k=1

rl,kdl,k + 2 ln P(ml) − ln Pr {ml = 1} − ln Pr {ml = −1}

= L′
ν

n∑
k=1

rl,kdl,k + ml�(ml) (2.142)
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where L′
ν = 2/σ 2 and �(ml) is the log-likelihood ratio (LLR) of the symbol ml , i.e.

�(ml) = ln
Pr {ml = 1}

Pr {ml = −1} (2.143)

In deriving (2.142) we used the observation that

2 ln P(ml) − ln Pr {ml = 1} − ln Pr {ml = −1}

=
 ln Pr {ml = 1} − ln Pr {ml = −1} if ml = 1

ln Pr {ml = −1} − ln Pr {ml = 1} if ml = −1

 = ml�(ml) (2.144)

Finally, the criterion achieves the useful form

di
1,opt = arg max

di
1

[
M(ri

1|di
1)
]

(2.145)

where

M(ri
1|di

1) =
i∑

l=1

[
L′

ν

n∑
k=1

rl,kdl,k + ml�(ml)

]
(2.146)

is a maximized metric. Searching for the best codeword reduces to finding such a code-
word (or message sequence) for which the accumulated sum of the cross-correlation
between the received samples and the hypothetical codewords in bipolar form weighted
by L′

ν and the LLRs of the hypothetical message symbols weighted by their bipolar val-
ues is maximized. Let us note that metric (2.146) can be calculated recurrently using the
formula

M(ri
1|di

1) = M(ri−1
1 |di−1

1 ) + L′
ν

n∑
k=1

ri,kdi,k + mi�(mi) (2.147)

The Viterbi algorithm calculates the metric M(ri
1|di

1) for each trellis state in each time unit,
trying to determine the survival path to each trellis state sj (j = 1, . . . , 2L−1). Consider
such a calculation for the j th state at the ith moment. Let this state be accessible from
states l1 and l2 from the previous moment. Denote the survival path metrics for states l1
as Ml1(r

i−1
1 |di−1

1 ) and Ml2(r
i−1
1 |di−1

1 ), respectively, and the metrics associated with the
paths between the pairs of states (sl1 , sj ) and (sl2 , sj ) as

d(ri , sl1 , sj ) = L′
ν

n∑
k=1

ri,kd
(l1,j )

i,k + m
(l1,j )

i �
[
m

(l1,j )

i

]
(2.148)

and

d(ri , sl2 , sj ) = L′
ν

n∑
k=1

ri,kd
(l2,j )

i,k + m
(l2,j )

i �
[
m

(l2,j )

i

]
(2.149)
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where d
(l1,j )

i,k and d
(l2,j )

i,k are the bipolar codeword sequences associated with the path

between pairs of states (sl1 , sj ) and (sl2 , sj ), respectively, whereas m
(l1,j )

i and m
(l2,j )

i are
the message symbols associated with these paths. Thus, for each trellis state sj at the ith
moment the decoder selects the path for which the following expression holds

max
(l1,l2)

{
Ml1,j

[
ri

1|
(
di

1

)(l1,j )
]
, Ml2,j

[
ri

1|
(
di

1

)(l2,j )
]}

(2.150)

where

Ml1,j

[
ri

1|
(
di

1

)(l1,j )
]

= Ml1(r
i−1
1 |di−1

1 ) + d(ri , sl1 , sj )

Ml2,j

[
ri

1|
(
di

1

)(l2,j )
]

= Ml2(r
i−1
1 |di−1

1 ) + d(ri , sl2 , sj )

The vectors
(
di

1

)(l1,j )
and

(
di

1

)(l2,j )
denote the codewords associated with the paths reach-

ing state sj through states sl1 and sl2 , respectively, and the new survival path metric for
the state sj is

Mj(ri
1|di

i) = max
(l1,l2)

{
Ml1,j

[
ri

1|
(
di

1

)(l1,j )
]
, Ml2,j

[
ri

1|
(
di

1

)(l2,j )
]}

(2.151)

The above procedure is illustrated in Figure 2.24. We still need to assign a certain
measure of reliability to the decision upon the path selection. This is necessary for gen-
eration of a soft decoder output for each message element. It is intuitively clear that if
the candidate metrics Ml1,j (ri

1|di
1) and Ml2 , j (ri

1|di
1) do not differ much, then selection

of the correct path is unreliable, whereas when there is a large difference between them,
the probability of selecting a wrong path is low. In this context let us choose the measure
of reliability of reaching the state sj as

	i−1(sj ) = 1

2

{
Ml1,j

[
ri

1|
(
di

1

)(l1,j )
]

− Ml2,j

[
ri

1|
(
di

1

)(l2,j )
]}

(2.152)

s1=00

s2=01

s3=10

s4=11

Received
sequence r81r82r83r71r72r73r61r62r63r51r52r53r41r42r43r31r32r33r21r22r23r11r12r13 r91r92r93

 ∆8(s1)

M1,1(r1|(d1)1,1)9 9

M2,1(r1|(d1)2,1)9 9

Figure 2.24 Selection of the survival path for state s1 at the ninth moment, accompanied by
calculation of the metric difference 	8(s1)
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Let us arbitrarily assume that the correct path is the one that reaches state sj from state
sl1 together with its survival path. Then the probability of the correct path selection can
be expressed in the form of the MAP probabilities associated with the candidate paths
reaching state sj ; i.e. in the form

Pc(sj ) =
P

[(
di

1

)(l1,j ) |ri
1

]
P

[(
di

1

)(l1,j ) |ri
1

]
+ P

[(
di

1

)(l2,j ) |ri
1

] (2.153)

Recalling Bayes’ theorem, we have

Pc(sj ) =
p
[
ri

1|
(
di

1

)(l1,j )
]
P

[
(mi

1)
(l1,j )

]
p
[
ri

1|
(
di

1

)(l1,j )
]
P

[
(mi

1)
(l1,j )

] + P
[
ri

1|
(
di

1

)(l2,j )
]
P

[
(mi

1)
(l2,j )

] (2.154)

However, our previous analysis allows us to express the probabilities in such a form that
the probability of selecting the correct path takes the following shape

Pc(sj ) =
C exp

{
1
2Ml1,j

[
ri

1|
(
di

1

)(l1,j )
]}

C exp
{

1
2Ml1,j

[
ri

1|
(
di

1

)(l1,j )
]}

+ C exp
{

1
2Ml2,j

[
ri

1|
(
di

1

)(l2,j )
]} (2.155)

where the constant C accumulates all the components in the logarithm domain that do
not influence the choice of path [see the first component of (2.136), Cl in (2.139) and
(2.140)]. On the other hand, the scaling factor 1

2 reverts the influence of multiplication of
the original metric by 2 performed in (2.143) and (2.144). After multiplying the nominator
and denominator of (2.155) by exp

{
− 1

2Ml2,j

[
ri

1|
(
di

1

)(l2,j )
]}

we obtain

Pc(sj ) = exp[	i−1(sj )]

exp[	i−1(sj )] + 1
(2.156)

Finally, the log-likelihood ratio or reliability of the path decision concerning reaching
state sj at the ith moment is

ln
Pc

1 − Pc

= 	i−1(sj ) (2.157)

It still remains to describe how the reliability of a path decision given by (2.157) is
associated with the hard-decision output of the Viterbi decoder. As we know, the decoder
produces hard decisions m̂i and the reliabilities associated with them. Recall that we
have assumed that

(
di

1

)(l1,j )
is associated with the correct survival path for state sj . The

codeword
(
di

1

)(l1,j )
is in turn uniquely associated with the message sequence (mi

1)
(l1,j ),

whereas the second competing path is associated with the message sequence (mi
1)

(l2,j ).
The choice of the survival path and the reliability associated with it affects only those
positions in the message sequence in which the candidate sequences are different. The
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calculated reliability becomes important after the initialization phase of the algorithm.
Consider the first moment of the regular phase of the algorithm, which occurs at the
time unit i = L (L is a code constraint length). At this moment the path selection is
performed for the first time for each trellis state and reliabilities 	L−1(sj ) are calculated
for j = 1, . . . , 2L−1. As we can see, each state sj is characterized not only by the path
metric Mj(ri

1|di
i) and the state sequence Di

j , as in a regular Viterbi algorithm, but also
by a reliability vector described by the expression

RL(sj ) = [R1(sj ), R2(sj ), . . . , RL−1(sj )] (2.158)

where

Rl(sj ) =
 	L−1(sj ) if m

(l1,j )

l �= m
(l2,j )

l

∞ if m
(l1,j )

l = m
(l2,j )

l

, for l = 1, . . . , L − 1 (2.159)

In this way, the reliability vectors are initialized for each trellis state. In subsequent time
instants of the SOVA recurrent phase, the metrics for each survival paths are updated using
formula (2.151) and the state sequence vectors are updated accordingly. Additionally, the
reliability vectors are modified using the following rule

Ri+1(sj ) = [R1(sj ), R2(sj ), . . . , Ri(sj )] (2.160)

where

Rl(sj ) =
 min[	L−1(sj ), Rl(sj )] if m

(l1,j )

l �= m
(l2,j )

l

Rl(sj ) if m
(l1,j )

l = m
(l2,j )

l

, for l = 1, . . . , i (2.161)

As we can see from (2.161), elements of the reliability vector at the (i + 1)st moment
preserve their previous value if two candidate paths have the same message symbol
on the appropriate position. If the message symbols differ, then the minimum of the
currently calculated reliability and of the previous vector entry is selected. The operation
of the algorithm is completed at the end of the received vector. The algorithm produces
the decided message sequence with the attached reliabilities that are the final values of
the reliability vector elements for the state featuring the maximum path metric. In the case
of very long codewords, for which waiting for the processing of the whole sequence of
symbols is infeasible, the appropriately long decoding depth is applied and all processed
vectors are truncated to the selected length.

At the end of our considerations let us note the potential role of the a priori term
ml�(ml) in the metric calculated according to (2.146). If some extra knowledge on
the a priori probabilities of the message symbols is available, then it can be applied
for improving decoding quality as compared with the case in which it is more or less
arbitrarily assumed that Pr{ml = 1} = Pr{ml = −1} regardless of the real values of these
probabilities. This potential improvement ability is utilized in iterative decoding, in which
in each decoding iteration the a priori LLR term �(ml) gets more and more precise.
Iterative decoding is a subject of our considerations in one of the next sections of this
chapter.
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2.9.3 Error Probability Analysis for Convolutional Codes

Consider the problem of decoding of convolutional codes using a hard-decision algorithm,
e.g. the Viterbi algorithm. Let us estimate the probability of error of the information
symbols on the output of the Viterbi algorithm. The code transfer function appears to be
useful for that purpose. Calculate the error probability for the code shown in Figure 2.17a.
As we remember, its transfer function is expressed in the form of an infinite series
presented by formula (2.122). Substitution of J = 1 in it results in the simplified form

T (D, N) = ND6 + 2N2D8 + 3N3D10 + · · · (2.162)

Knowing that the considered code is linear, assume without loss of generality that an
all-zero codeword has been transmitted. We say that at a given j th moment an error event
has occurred if the all-zero path on the trellis diagram has been eliminated in favor of
another path merging with the all-zero path at that moment. If the decoder has decided to
select the path featuring the Hamming weight wH = 6, then the error event has occurred
if, among six positions in which both paths differ, the received sequence agrees with
the path of weight wH = 6 in four or more positions. Note that errors occurring in the
positions in which both paths do not differ have no influence on the decoder decision, as
they equally increase the distance of the received sequence from codewords associated
with both candidate paths. Let us additionally assume that if errors have occurred exactly
in three positions out of six meaningful positions determined by the incorrect codeword of
weight wH = 6, then the error event occurs with probability 1/2. If a memoryless binary
symmetric channel model is assumed, then binary errors are statistically independent and
their probability is equal to p. As a result, an incorrect codeword will be chosen with the
probability given by the formula

P6 = 1

2

(
6

3

)
p3(1 − p)3 +

6∑
i=4

(
6

i

)
pi(1 − p)6−i (2.163)

In the general case in which a codeword of weight wH = k is selected instead of the
all-zero codeword, we have

Pk =



k∑
i=(k+1)/2

(
k

i

)
pi(1 − p)k−i for k odd

1

2

(
k

k/2

)
pk/2(1 − p)k/2 +

k∑
i=k/2+1

(
k

i

)
pi(1 − p)k−i for keven

(2.164)

The probability of the first error event can be upper-bounded by the sum of probabilities
of selection of particular incorrect codewords (paths on the trellis diagram)

PE(j) ≤
∞∑

k=dfree

LkPk (2.165)



 

Channel Coding 175

where Lk is the number of codewords of weight wH = k. Analysis of (2.162) for our
code indicates that L6 = 1, L7 = 0, L8 = 2, L9 = 0, L10 = 3, etc. The bound shown in
(2.165) does not depend on any particular moment j , therefore formula (2.165) can be
presented in the form

PE ≤
∞∑

k=dfree

LkPk (2.166)

The formulae describing the probabilities Pk can be upper-bounded as follows.
For k odd we have

Pk =
k∑

i=(k+1)/2

(
k

i

)
pi(1 − p)k−i <

k∑
i=(k+1)/2

(
k

i

)
p

k
2 (1 − p)

k
2

= p
k
2 (1 − p)

k
2

k∑
i=(k+1)/2

(
k

i

)
< p

k
2 (1 − p)

k
2

k∑
i=0

(
k

i

)
= 2kp

k
2 (1 − p)

k
2 (2.167)

The last equality sign in (2.167) results from the fact that

k∑
i=0

(
k

i

)
= 2k

In turn, for an even value of k we have

Pk = 1

2

(
k

k/2

)
p

k
2 (1 − p)

k
2 +

k∑
i=k/2+1

(
k

i

)
pi(1 − p)k−i

<

k∑
i=k/2

(
k

i

)
pi(1 − p)k−i <

k∑
i=k/2

(
k

i

)
p

k
2 (1 − p)

k
2

< p
k
2 (1 − p)

k
2

k∑
i=0

(
k

i

)
= 2kp

k
2 (1 − p)

k
2 (2.168)

Therefore

PE <

∞∑
k=df ree

Lk

[
2
√

p(1 − p)
]k = T (D)

∣∣∣∣
D=2

√
p(1−p)

(2.169)

For small values of probability p the sum (2.169) is dominated by its first component
and then we have

PE � Ldfree

[
2
√

p(1 − p)
]dfree � Ldfree2dfreepdfree/2 (2.170)
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Each error event that is interpreted as diverging from and merging with the all-zero
codeword implies at least one error in the decoded message sequence. On the basis of
the estimated probability of an error event we are able to evaluate the error probability
for message bits on the decoder output. As we remember, the number of “1”s in the
message sequence resulting from selection of the path different from the all-zero path
can be deduced from the code transfer function T (D, N, J ). This number is in fact a
power of variable N in each component of the series expansion of this function. Each
such component characterizes a certain path different from the all-zero path. For a given
error event a number of incorrectly decoded message symbols can be estimated as the
weighted sum of probabilities Pk of selection of the route on the trellis diagram with the
weight k, where the weights are numbers Bk of message symbol errors resulting from
the selection of a given route, i.e.

Pb <

∞∑
k=df ree

BkPk (2.171)

We have already shown that probability Pk can be upper-bounded using the formula

Pk <
[
2
√

p(1 − p)
]k

Notice also that when we calculate the derivative of the code transfer function T (D, N)

in the series expansion form with respect to N and we substitute N = 1, we receive the
sum from formula (2.171). Namely, we have from (2.162)

∂T (D, N)

∂N
= D6 + 4ND8 + 9N2D10 + · · · (2.172)

Substituting N = 1 and D = 2
√

p(1 − p) in (2.172), we obtain

Pb <
∂T (D, N)

∂N

∣∣∣∣
N=1,D=2

√
p(1−p)

(2.173)

For small values of a single codeword bit error probability p, the sum (2.173) is dom-
inated by its first component. Then the probability of a single message symbol can be
approximated by the formula

Pb � Bdfree

[
2
√

p(1 − p)
]dfree � Bdfree2dfreepdfree/2 (2.174)

For the considered code we have Bdfree = B6 = 1, which for p = 0.01 results in the
message error bit probability equal to about 6.4 × 10−5. For small values of binary error
probabilities the shortest error events dominate. These events, in turn, cause single errors
in decoded message sequences.

One can show that due to hard-decision Viterbi decoding and application of bipolar
modulation (see Chapter 3) the asymptotic coding gain expressed in decibels is about
10 log10

Rdfree
2 .
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Let us extend our considerations on decoding performance to the soft-decision decoding
implemented by the soft-input Viterbi algorithm. We will apply our results to the SOVA
presented in the previous section. Let us again assume that all message symbols are
statistically independent and equiprobable. Thus, the LLR function of the message symbols
�(ml)(l = 1, 2, . . . , i) is equal to zero and does not influence the metric values. The
Viterbi algorithm reduces to the application of the maximum likelihood decision rule.
Consequently, the coefficient L′

ν does not have an impact on the choice of the decided
sequence and can be omitted. Using (2.146) we can describe the maximized metric by
the formula

M(ri
1|di

1) =
i∑

l=1

n∑
k=1

rl,kdl,k (2.175)

Recall that index i denotes the current time instant, 1/n is the coding rate, dl,k is a bipolar
code symbol in the ith time unit appearing in the kth position of the codeword and rl,k is
the additive Gaussian noise channel output when dl,k is given to the channel input, i.e.,
rl,k = dl,k + νl,k . As previously, consider the probability of the error event for diverging
from and then merging with the all-zero path at the ith moment. Counting time units
starting from the moment of divergence from the all-zero path, the metric of the all-zero
route, denoted as M(0)(ri

1|di
1), takes the form (recall that dl,k = −1 for a zero codeword

symbol)

M(0)(ri
1|di

1) = −
i∑

l=1

n∑
k=1

rl,k = −
in∑

j=1

rj , rj = rl,k, j = k + n(l − 1),

k = 1, . . . , n (2.176)

The decoder will commit an error if an incorrect path different from the all-zero route is
decided. Denote the metric of this path as M(1)(ri

1|di
1). Thus, the probability of an error

event PE is

PE = Pr{M(1)(ri
1|di

1) >M(0)(ri
1|di

1)}
= Pr{M(1)(ri

1|di
1) − M(0)(ri

1|di
1) > 0} (2.177)

Let us note that, as in the hard-decision analysis, the result of metric comparison is
influenced only by those positions and signal samples in which codewords associated
with the all-zero and the other candidate path differ. Let them differ in at least d = wH

positions. Thus, the probability of the error event when two paths differ in d positions
can be expressed by the formula

Pd = Pr{
d∑

j=k

rjk
> 0} (2.178)

where the set {j1, j2, . . . , jd} lists all the sample indices in which two candidate codewords
differ. Recall that due to the fact that the all-zero path is the correct one rjk

= −√
Ec + νjk

,



 

178 Introduction to Digital Communication Systems

where the noise samples are statistically independent Gaussian zero-mean variables. As a
result, the sum

∑d
j=k rjk

is a Gaussian random variable whose deterministic component
is equal to −d

√Ec whereas its variance is the sum of variances of each component
rjk

, i.e. it is equal to dσ 2. The probability distribution function of the random variable
U = ∑d

j=k rjk
is then given by the formula

pU(u) = 1√
2π

√
dσ

exp

[
− (u + d

√
Ec)

2

2dσ 2

]
(2.179)

Thus, the desired probability of error event Pd is

Pd = Pr{
d∑

j=k

rjk
> 0} =

∞∫
0

pU(u)du (2.180)

Let us apply the function Q(x) that describes the area under the tail of the normalized
Gaussian distribution and is often found in the tables. This function is given by the formula

Q(x) = 1√
2π

∞∫
x

exp

(
− t2

2

)
dt (2.181)

We can easily show, using appropriate substitutions, that

Pd = Q

(√
Ecd

σ 2

)
= Q

(√
d

2Ec

N0

)
(2.182)

The meaning of the Q-function is shown in Figure 2.25. As we know, the path differing
in d positions from the all-zero path is not the only one that can appear. The possible
values of d can be found from the code transfer function, which is expressed in the form
of an expansion series. In general, formula (2.166) can be applied as an upper bound of
the probability of an error event resulting in

PE ≤
∞∑

d=dfree

LdPd =
∞∑

d=dfree

LdQ

(√
Ecd

σ 2

)
(2.183)

where, as before, Ld denotes the number of paths differing from the all-zero path in d

positions. When the argument x of the Q-function is growing then the function can be
tightly upper-bounded by an exponential function of the form

Q(x) ≤ 1

2
exp

(
−x2

2

)
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Figure 2.25 Illustration of the Q-function

Then, as in (2.169), formula (2.183) reduces to

PE ≤
∞∑

d=dfree

LdPd = 1

2
Dd

∣∣∣∣
D=exp[Ec/2σ 2]

= 1

2

∞∑
d=dfree

T (D)

∣∣∣∣
D=exp[Ec/2σ 2]

(2.184)

By analogy to (2.173), the message bit error probability can be upper-bounded in the
following way

Pb <
1

2

∂T (D, N)

∂N

∣∣∣∣
N=1,D=exp[Ec/2σ 2]

(2.185)

Finally, for small noise variance the shortest route featuring the Hamming distance from
the all-zero route equal to dfree dominates and then, as in (2.174), the message bit proba-
bility can be approximated in the following way

Pb � 1

2
Bdfree exp

(
−dfreeEc

2σ 2

)
= 1

2
Bdfree exp

(
−dfreeEc

N0

)
(2.186)

To end our considerations, let us illustrate the gain of soft-decision decoding over
hard-decision decoding by giving some quantitative examples based on the derived
approximations for high signal-to-noise ratios.

Recall the example of bit error probability for hard-decision decoding when the prob-
ability of a single code symbol is p = 0.01. Using (2.174) and substituting for our code
dfree = 6, Bdfree = 1, we again have Pb,hard � 6.4 × 10−5. As we will learn from Chapter
3, the probability of an error in bipolar transmission for high signal-to-noise ratios is

p = Q

(√
Ec

σ 2

)
� 1

2
exp

(
−1

2

Ec

σ 2

)
= 1

2
exp

(
−Ec

N0

)
(2.187)
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Substituting (2.187) into (2.186), we have

Pb,soft � 1

2
Bdfree

[
1

2
exp

(
− Ec

2σ 2

)]dfree
(

1

2

)−dfree

= 1

2
Bdfree2dfreepdfree

Thus, if p = 0.01, then Pb,soft � 3.2 × 10−11. As we can see, the difference in per-
formance is significant. Let us also inspect the difference in the required Ec/σ

2 for
a given probability of bit error Pb for hard- and soft-decision decoding. Let us stay at
Pb,hard = Pb,soft � 6.4 × 10−5, so for hard-decision decoding p = 0.01. Using the approx-
imation applied in (2.187) for hard-decision decoding we have

Ec

N0

∣∣∣∣
hard

= − ln 2p = 3.91 = 5.92 dB

In turn, using (2.186) we obtain

Ec

N0

∣∣∣∣
soft

= − 1

dfree
ln 2Pb,soft = 1.49 = 1.74 dB

so the gain achieved by application of soft-decision decoding instead of hard-decision
decoding is of the order of 4 dB! Let us note that this quantitative result is not very
precise, as only approximations of the bit error probabilities have been applied for both
types of decoding. Typically, we can expect about 2 dB gain of soft-decision decoding
over its hard-decision version. Anyway, one can also easily notice that the code-free
distance dfree plays a crucial role in the overall decoding performance.

2.10 Concatenated Coding

Some communication systems require very high transmission quality in terms of low
error probability; however, error detection codes and automatic repetition of erroneous
blocks cannot be applied. Therefore, very strong FEC coding is a must. A good example
is the system applied for communication with very distant space aircraft (deep space
communications), and for transmission of telemetric and control signals for space satellites
travelling towards other planets. Another example in which very high transmission quality
is necessary is broadcasting of DVB (Digital Video Broadcast) signals. Here, efficient
source coding of video and audio signals has been achieved by strong compression of
the digital stream representing both types of signals. As a result, the decompression
process performed by the receiver is very sensitive to binary errors in the compressed
data stream. Thus, the applied FEC code should ensure a very low error probability. As we
know from information theory and the Shannon theorem on channel coding, if the code
rate does not exceed the channel capacity, it is possible to construct an error correcting
code of appropriately large length for which the probability of erroneous decoding of a
codeword can be arbitrarily low. However, very high codeword length would result in high
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Figure 2.26 Scheme of concatenated coding with interleaving

complexity of encoders and a very difficult hardware and algorithmic implementation of
decoders. Moreover, finding good codes of high length is itself a difficult task. Theerfore,
instead of searching for and subsequently applying such codes, Forney (1966) proposed
to construct a channel coding system by concatenation of two codes, an outer code and an
inner code. Both encoders are separated by an interleaver, whereas the related decoders
are separated by a dual block to the interleaver, i.e. by a deinterleaver. The basic scheme
of concatenated coding is shown in Figure 2.26.

Input message blocks denoted as vectors a1 are coded in the outer code encoder of the
code rate R = K/N . Codewords c1 are obtained. Subsequently, bits of codewords c1 are
interleaved. As a result, the received output block consists of the input bits whose time
sequence is changed with respect to the input. The resulting binary block constitutes the
input sequence of the inner code encoder with the code rate equal to r = k/n. As we
can see, the code rate of the code concatenation is in fact Kk

Nn
. The receiver performs the

operations that are dual to those made in the transmitter. Thus, the decoder of the inner
code decides upon the input message sequence on the basis of the sequence corrupted
by the channel and noise. The resulting sequence is a subject of deinterleaving in which
the original time sequence of message bits is recovered. Finally, the outer code decoder
decodes the deinterleaved sequence.

Motivation for application of interleaving is the following. In many practical situations
errors arising in a channel have a bursty character; however the codes are usually designed
to correct independent errors. By reordering bits in the original sequence, the deinterleaver
disrupts error bursts created in the channel. The errors become quasi-statistically inde-
pendent. This in turn makes it possible to utilize the full correction capabilities of the
applied code.

So far we have considered the so-called serial concatenation, in which a codeword
of the outer code is a message sequence of the inner code. However, there also exists
parallel concatenated coding which has been applied in turbo-codes. Turbo codes will be
considered in detail later on. The interleaver applied in the encoder plays a crucial role
in achieving a high quality of turbo code decoding.

Let us focus on basic structures of the interleaver and deinterleaver. In general, we
differentiate between a block interleaver and a convolutional interleaver. A basic scheme
of a block interleaver and deinterleaver is shown in Figure 2.27. The interleaver consists
of a memory block, presented symbolically as a matrix, featuring a certain number of rows
and columns. Bits, or generally symbols, are written horizontally in subsequent rows, and
they are read vertically from subsequent columns. In the receiver, the incoming data are
written into the deinterleaver matrix in the vertical direction and are read in the horizontal
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Figure 2.27 Scheme of block interleaver and deinterleaver

direction. Burst errors recorded one after the other in the columns of the deinterleaver are
spread when data are read in the horizontal direction. If the error burst does not exceed
the length of a column, then particular errors are separated by correctly received bits,
whose number is equal to the deinterleaver matrix row length.

The ordered recording in row-column directions is not the only one possible. Data may
be written and read from the interleaver/deinterleaver matrix in a pseudorandom way.
Matrices of the interleaver and deinterleaver shown in Figure 2.27 in reality must be
doubled to enable writing to one of them while the other is being read. The matrices
change their roles after each cycle of reading/writing.

Figure 2.28 presents, in turn, a convolutional interleaver and an appropriate deinter-
leaver. The interleaver consists of B − 1 serial registers of length M , 2M , . . ., (B − 1)M ,
respectively. Input sequence bits are supplied to the subsequent register inputs via a com-
mutator or demultiplexer. The first branch transfers the input signals directly to the output
without delay. Other registers introduce delays that are multiples of the number M . Such
a construction of parallel registers with input signals supplied sequentially by a commu-
tator causes reordering of the signals appearing at the output of the output commutator.
Commutators in the deinterleaver have to be synchronized with those in the interleaver.
The input commutator feeds the received symbols to the register inputs; however, this
time they are placed in the opposite order, i.e. starting from the register introducing the
largest delay and ending with the branch without delay. Owing to such a configuration
and synchronization of the commutators, delays between the input of the registers in the
interleaver and the output of the appropriate registers in the deinterleaver remain constant.
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Figure 2.28 Scheme of the convolutional interleaver and deinterleaver
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Thus, on the output of the deinterleaver the transmitted data have their original order-
ing, whereas burst errors that are subject to deinterleaving only are spread. It is worth
mentioning that if a nonbinary outer code is applied, whole data symbols, e.g. binary
blocks represented by symbols selected from GF(2m), are the subject to interleaving and
deinterleaving.

2.11 Case Studies: Two Examples of Concatenated Coding

2.11.1 Concatenated Coding in Deep Space Communications

A concatenated coding system for deep space communication has been standardized by
the CCSDS (Consultative Committee for Space Data Systems). Using the coding system
conforming to this standard, telemetric data can be transmitted between earth stations and
remote space aircrafts (Heegard and Wicker 1999). Figure 2.29 presents the architecture
of this system.

The function of an outer code is performed by the (255, 223) Reed-Solomon code.
According to the theory already known to us, its code length is n = q − 1, where q is a
number of Galois field elements in which all operations on code symbols are made. We
conclude that q = 256 = 28. Therefore, code symbols are binary blocks of 8 bits and all
operations are performed in GF(28). The Galois field has been defined on the basis of
the primitive polynomial p(x) = x8 + x7 + x2 + x + 1, and the generator polynomial is
given by the formula

g(x) =
143∏

j=112

(x − α11j ) (2.188)

where α is the root of p(x). The (255, 223) RS code is able to correct up to 16 8-bit erro-
neous symbols in a codeword that has the length of 255 × 8 = 2040 bits. Between outer
code and inner code encoders a block interleaver is applied. This spans from two to eight
codewords of the RS code. As an inner code, the convolutional code has been selected. Its
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Figure 2.29 Channel coding in telemetric standard CCSDS
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constraint length is L = 7 and the code rate is equal to R = 1/2. Generator polynomials
are expressed in binary form as the vectors g1 = [1111001] and g2 = [1011011]. On the
receiver side, the Viterbi decoder is typically applied. The decoder accepts eight-level
signal samples. Note that the code rate of the overall concatenated coding system is equal
to R = (223/255) × (1/2) = 0.4373.

2.11.2 Channel Coding in the DVB Satellite Segment

Below we present channel coding in the satellite segment of DVB (Digital Video Broad-
casting) standardized by the European Telecommunications Standards Institute (ETSI
1997). This system applies many theoretical ideas considered so far in our chapter.
Figure 2.30 shows a functional block diagram of the blocks on the satellite DVB trans-
mit side. TV video, audio and data signals are first encoded in the appropriate source
encoders. The resulting data streams and the streams produced by some other services are
multiplexed, creating a transport stream. All these blocks jointly constitute a superblock
called the MPEG-2 source coding and multiplexing block4 (see Figure 2.30). This block
produces the so-called multiplex packets of length of 188 bytes. The first byte is a synchro-
nization pattern containing the sync word 01000111 (i.e. 47HEX). Eight packets constitute
a frame. In the first packet of the frame the sync word has a negated form, i.e. it is B8HEX.
The framing structure is shown in Figure 2.31.

The first block of the channel coding part performs randomization of the data stream
contained in the packets. It is desirable that transmitted data stream looks like a ran-
dom binary stream, i.e. binary transitions occur in adequate numbers. As we will learn
later, the randomization ensures appropriate synchronization at the receiver and prohibits
concentration of energy in small subranges of the signal spectrum in the RF band. Ran-
domization is performed by a block called a scrambler . The scheme of the scrambler
applied in a DVB satellite system transmitter is shown in Figure 2.32. Its main part is
a Pseudo-Random Binary Sequence (PRBS) generator, which is a linear feedback shift
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Figure 2.30 Source and channel coding structure in a DVB satellite transmitter  European
Telecommunications Standards Institute 1997. Further use, modification, redistribution is strictly
prohibited. ETSI standards are available from http://pda.etsi.org/pda.

4 Moving Picture Expert Group (MPEG) is an international group working within the International Standardization
Organization (ISO), focused on development and standardization of video and audio encoding methods. MPEG-2
is a widely used standard in DVB and other systems.
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Figure 2.32 Diagram of scrambler and descrambler applied in a transmitter/receiver of a DVB
satellite segment

register (LFSR) of structure similar to that featured by maximum length codes. The LFSR
polynomial is h(x) = 1 + x14 + x15. The pseudorandom binary sequence is uniquely set
at the beginning of each frame by the initialization sequence shown in Figure 2.32. Then
the binary sequence generated by the initialized LFSR is modulo-2 added to each trans-
port frame, starting from the first information byte of the first packet. Although timing
signals are fed to the LFSR during the whole frame, the negative enable signal prohibits
modulo-2 addition of the LFSR output signal when sync patterns appear at the scrambler
input. Thus, synchronization words remain unchanged.

Obviously, a dual operation to scrambling has to be done in the receiver. Fortunately,
both scrambler and descrambler have an identical construction. The data sequence
scrambled in the transmitter and recovered in the receiver is modulo-2 added to the
binary sequence generated by the LFSR of the descrambler. Owing to synchronization
bytes introduced at the beginning of each transport frame, frame and bit synchronizations
are possible.

The scrambled data packets are the subject of outer code encoding. The outer code is the
(204, 188) shortened Reed-Solomon code. It has been created by substitution of 51 zero
symbols at the beginning of each codeword of the full (255, 239) RS code. Consequently,
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51 first codeword symbols (bytes) do not need to be transmitted and in this way the code
structure has been matched to the transport packet structure. Message blocks consist of
184-byte long packets, including sync patterns. The codeword symbols are selected from
the extended finite Galois field GF(28) generated by polynomial p(x) = x8 + x4 + x3 +
x2 + 1. The generator polynomial of the applied RS code is given by the formula

g(x) = (x − β0)(x − β1)(x − β2) · . . . · (x − β15) (2.189)

where β = 02HEX.
As a result of outer coding, 204-byte long packets are created. In order to increase

immunity of the coded packets against burst errors, a convolutional interleaver is applied.
Its structure is shown in Figure 2.33 and it is very similar to that shown in Figure 2.28;
however, this time all operations are performed on bytes. The scrambler consists of
input and output switches (commutators) that direct codeword symbols sequentially to 12
parallel branches. The first branch is always used by a syncronization byte. All others
contain FIFO (First-In First-Out) registers of length being a multiple of 17 bytes. As in
a typical interleaver/deinterleaver pair, the structure of the deinterleaver is dual to that
of the interleaver, so the first branch used to transport the synchronization byte is the
longest one and introduces a delay of 11 × 17 bytes. Delays of the other branches are
also a multiple of 17 bytes, but in descending order.

The interleaved bytes are coded by the inner code. The latter is a convolutional code
of constraint lenght L = 7 and code rate R = 1/2. Its generator polynomials are

g1(x) = 1 + x2 + x3 + x5 + x6

g2(x) = 1 + x + x2 + x3 + x6 (2.190)

Two parallel encoder outputs are given to the input of the puncturing block. Its structure
must ensure the required final code rate equal to 1/2, 2/3, 3/4, 5/6 or 7/8. It also determines
the free distance of a resulting punctured code. Table 2.6 presents possible code rates,
associated puncturing tables, free distances of the resulting punctured codes and values of
Eb/N0 required to achieve Quasi-Error Free (QEF, 10−10 − 10−11) performance on the
output of the outer RS decoder when the interleaver presented in Figure 2.33 is applied.
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Table 2.6 Convolutional code parameters applied in DVB satellite transmission

R dfree Puncturing table Required Eb/N0 [dB]

1/2 10

[
1
1

]
4.5

2/3 6

[
1 0
1 1

]
5.0

3/4 5

[
1 0 1
1 1 0

]
5.5

5/6 4

[
1 0 1 0 1
1 1 0 1 0

]
6.0

7/8 3

[
1 0 0 0 1 0 1
1 1 1 1 0 1 0

]
6.4

As the energy per codeword symbol is equal to energy per bit, in Table 2.6 we have
replaced Ec by Eb.

The number of possible code rates allows us to select the most appropriate level of
error protection for a given DVB service and data rate. As shown in Figure 2.30, two
codeword symbols appear in parallel on the channel encoder output. They are denoted as
I and Q and are related to the upper and lower row of the selected puncturing table.

At the receiver side dual blocks to those contained in the transmitter are applied.
Figure 2.34 shows the block diagram of the channel decoding part of the receiver. Two
parallel samples from the demodulator and filtering block are supplied to the depuncturing
block and the inner decoder. In order for the other blocks to operate correctly, the bit
error rate of the hard-decision samples should be at the level of 10−1 –10−2, depending
on the applied code rate. The bit error rate on the inner decoder output should be about
2 × 10−4 or lower. Although the ETSI Standard (ETSI 1997) does not precisely define
the receiver side, Annex B of this standard states that the inner code decoder implemented
with the application of the Viterbi algorithm makes use of soft-decision information, i.e.
it is a soft-input decoder. An additional task of this block is automatic recognition of
the applied code rate and of the puncturing configuration. The decoder is able to try all
possible puncturing combinations in order to find the correct one.
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The next block decodes MPEG-2 synchronization bytes, thus providing synchronization
information needed for correct operation of the deinterleaver. The synchronized deinter-
leaver reorders received bytes so as to obtain their primary sequence, and the outer decoder
finds message sequences representing MPEG-2 transport packets. As we have mentioned
before, assuming a bit error rate on the output of the inner code Viterbi decoder at
the level of 2 × 10−4 or lower, the RS decoder output should be practically quasi error
free.

The last block performs descrambling and Sync1 inversion, producing original transport
packets. The packets are then used by the source decoder.

As usual, the ETSI Standard (ETSI 1997) precisely defines the operation of a transmit-
ter, leaving the structure and algorithms of a receiver to the system designer. Since topics
associated with modulation and signal reception have not been considered in the course
of this book so far, we have not explained them in this case study. However, hopefully
the main ideas of channel coding applied in the DVB satellite segment have been clarified
and practical applications of some theoretical issues presented in this chapter have been
shown.

2.12 Turbo Codes

In the section on concatenated coding we mentioned that both serial and parallel code
concatenation is possible. Let us now analyze parallel code concatenation. As previously,
on the transmit side two component code encoders separated by an interleaver participate
in the encoding process. This configuration of parallel concatenated coding was first
presented in 1993 by Berrou, Glavieux and Thitimajshima (Berrou et al. 1993). They
also proposed an original decoding method well fitted to the applied codes. The core of
this method is the use of reliability information about temporary decisions worked out
by one component code decoder to improve decision likelihood in the second component
decoder. Reliability information derived in the second decoder is in turn fed back to the
first one, implying the improvement of decision reliability. This process is continued in
a closed loop, as is done in a car engine with turbo loading. The similarity justifies the
name of codes proposed by their inventors, i.e. turbo codes . Since the first article by
Berrou and co-authors (Berrou et al. 1993), hundreds of papers have been published on
turbo codes. There are some specialized books as well, including those by Heegard and
Wicker (1999) and Vucetic and Yuan (2000). The reason for the huge interest in turbo
codes is their excellent quality, a fraction of dB worse than the theoretical Shannon limit.
However, before we present the basic structure of a turbo code, let us focus on Recursive
Systematic Convolutional Codes (RSCC), which constitute a basic functional block of
turbo codes.

2.12.1 RSCC Code

So far we have considered nonsystematic convolutional codes. Recall polynomial descrip-
tion of a convolutional code of code rate R = 1/2. An encoder of such a code generates
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two output signals related to a single input signal. They can be described in polynomial
notation as

w1(x) = b(x)g1(x) w2(x) = b(x)g2(x) (2.191)

where the polynomial b(x) represents the input signal, and the polynomials describing
outputs from both encoder branches are given by the formulae

g1(x) = g1,1 + g1,2x + · · · + g1,L−1x
L−1

g2(x) = g2,1 + g2,2x + · · · + g2,L−1x
L−1

A systematic code featuring the same set of codewords and thus preserving the properties
of the original code (e.g. the same free distance) can be obtained by division of the
right-hand side of both polynomial products in (2.191) by either g1(x) or g2(x). If g1(x) is
used in the division, the upper and lower branch output polynomials receive the following
form characteristic for an equivalent systematic code

w1(x) = b(x) w2(x) = b(x)g2(x)

g1(x)
(2.192)

If the following polynomial is denoted as d(x)

d(x) = b(x)

g1(x)
(2.193)

then the branch output polynomials are described by the expressions

w1(x) = b(x) w2(x) = d(x)g2(x) (2.194)

In the time domain marked by index k, assuming g1,1 = 1, these equations are equivalent
to the following expressions

w1,k = bk

w2,k =
L−1∑
i=0

g2,idk−i (2.195)

dk = bk +
L−1∑
i=1

g1,idk−i

The scheme of an exemplary nonsystematic convolutional code encoder is shown in
Figure 2.35a and its equivalent recursive form can be found in Figure 2.35b. Note the
feedback that results from the last equation in formulae (2.195).
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2.12.2 Basic Turbo Code Encoder Scheme

As mentioned before, an RSCC encoder is the basic element of a turbo code encoder. A
basic scheme of the turbo code encoder is shown in Figure 2.36. The encoder consists of
two identical RSCC encoders and an interleaver. The first encoder generates two parallel
streams. The first one is a message stream, directly transferred from the encoder input.
The second one consists of parity bits generated in the circuit with feedback. Message bits
are a subject of deep interleaving in a block interleaver. In practice a turbo code encoder
works in a block manner. As a result, interleaved message bits are fed to the second RSCC
encoder. Only parity bits of the second encoder are further transferred to the turbo code
encoder output. Therefore, the basic scheme of a turbo code encoder realizes coding of
the code rate R = 1/3. The generated binary stream consists of a stream of message bits
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Figure 2.36 Scheme of the turbo code encoder (Berrou et al. 1993)
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and two streams of parity bits. These streams are multiplexed and punctured, if required.
Puncturing allows higher code rates to be achieved.

A block interleaver applied in the turbo code encoder plays a special role. The inter-
leaving depth is typically very high, i.e. it amounts to hundreds or even thousands of bits.
Therefore a message bit and a parity bit of the first component encoder are in the time
sequence next to a parity bit of the second component encoder, which is related to a very
distant message bit. In this way very long codewords are produced in a simple way. As
we will see later, such codewords can be efficiently decoded using the turbo decoding
principle. As already mentioned, encoding is performed in frames of a given length and
the interleaving depth is matched to it.

2.12.3 RSCC Code MAP Decoding

Excellent decoding quality of turbo codes is achieved owing to the iterative procedure
applied in the receiver. In order to present this procedure, we have to describe a decoding
algorithm that can be applied in a component RSCC code decoder.

One such algorithm is the BCJR algorithm named after its inventors Bahl, Cocke,
Jelinek and Raviv (Bahl et al. 1974). Berrou, Glavieux and Thitimajshima modified this
algorithm and matched it to a turbo code. The modified BCJR algorithm determines each
message symbol of a codeword using the Maximum a Posteriori (MAP) criterion. In such
a sense it is optimal. In practice, however, suboptimal algorithms are mostly used, such
as SOVA (Hagenauer and Hoeher 1989) or the so-called Max-Log-MAP algorithm.

Consider the MAP algorithm of recursive decoding of an RSCC code. In the presen-
tation of this algorithm the author has used the book by Vucetic and Yuan (2000) as
guidance. It can also be found elsewhere but the derivation of the algorithm presented in
by Vucetic and Yuan (2000) is the most clear for the reader. Despite this, a less mathemat-
ically experienced reader can find the algorithm derivation quite complicated, although
only basic probability knowledge is required in the course of its presentation.

Assume a discrete memoryless channel model with a continuous signal amplitude on
its output. Let codeword bits be represented by bipolar symbols ±1. Bipolar symbols
are distorted by additive Gaussian noise of zero mean and variance σ 2. Let the length
of a message bit block be n. For each message bit bk (k = 1, . . . , n) the RSCC encoder
generates a parity bit pk related to it. In turn, let ak be a bipolar symbol reflecting the
bit bk, and let rk be a bipolar symbol related to the parity bit pk. A codeword can be
described with the following vector form

xn
1 = [x1, x2, . . . , xn] (2.196)

where each vector entry is itself a two-element vector

xk =
[

ak

rk

]
k = 1, 2, . . . , n (2.197)

As in the description of the SOVA decoding algorithm, in (2.196) we directly denoted the
first and last time index of the analyzed sequence. It will be very useful in the description
of the BCJR decoding algorithm.
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Let vector xn
1 be transmitted through an additive Gaussian noise channel. Then we

receive the following vector on the channel output

yn
1 = [y1, y2, . . . , yn] (2.198)

Each vector element is a sum of input symbol xk and noise vector νk , i.e.

yk =
[

ya,k

yr,k

]
=

[
ak + νa,k

rk + νr,k

]
= xk + νk (2.199)

The MAP algorithm makes a decision upon the kth message symbol by selecting from
two possible values +1 or −1 the value (denoted by symbol i) for which a posteriori
probability is maximum, i.e. it determines the value of decision âk according to the
following rule

âk = arg max
i

Pr{ak = i|yn
1} (2.200)

Note that despite the fact that decisions are made symbol by symbol, the coding interrela-
tion is embedded in the received sequence yn

1. Equivalently, a decision upon each symbol
can be determined by calculation of the quotient of a posteriori probabilities for two
possible values of data symbols, followed by calculation of the logarithm of this quotient.
The sign of the logarithm will be equivalent to decision (2.200), i.e.

âk = sgn
[
�(ak)

]
(2.201)

where

�(ak) = ln
Pr{ak = +1|yn

1}
Pr{ak = −1|yn

1}
(2.202)

When a posteriori probabilities in the nominator and denominator are identical, �(ak)

is equal to zero. The higher the difference between them, the more �(ak) differs from
zero. The value of �(ak) is therefore a likelihood measure of the decision upon the symbol
ak . It follows from our considerations on soft-decision decoding that it is a soft decision
upon this symbol.

Let the considered RSCC encoder have M states. Assume that the encoder has generated
the sequence xn

1 and the initial and final states are known and equal to zero state (s0 =
sn = 0). The decoder makes decisions about subsequent message symbols of the sequence
xn

1 on the basis of the whole received sequence yn
1. As we know, the decoder operation

can be interpreted as a search for the best route on the code trellis diagram. For example,
consider the path on the trellis diagram, which starts from state u at the (k − 1)st moment
and leads to state v at the kth moment. Each pair of states (u, v) is uniquely associated
with a symbol ak = ±1 generated by the encoder. Let B+1 denote the set of state pairs
(u, v) for which during the transition from state u to v the symbol ak = 1 is generated.
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Let B−1 be the set of state pairs (u, v) that are associated with the symbol ak = −1. Thus,
the conditional probabilities in formula (2.202) can be presented as

Pr{ak = +1|yn
1} =

∑
(u,v)∈B+1

Pr{sk−1 = u, sk = v|yn
1} (2.203)

and

Pr{ak = −1|yn
1} =

∑
(u,v)∈B−1

Pr{sk−1 = u, sk = v|yn
1} (2.204)

Applying Bayes’ formula on the right-hand side of both equations, we receive

Pr{ak = +1|yn
1} =

∑
(u,v)∈B+1

Pr{sk−1 = u, sk = v, yn
1}

p(yn
1)

(2.205)

and

Pr{ak = −1|yn
1} =

∑
(u,v)∈B−1

Pr{sk−1 = u, sk = v, yn
1}

p(yn
1)

(2.206)

Consequently, formula (2.202) can be presented in the form

�(ak) = ln

∑
(u,v)∈B+1

Pr{sk−1 = u, sk = v, yn
1}∑

(u,v)∈B−1

Pr{sk−1 = u, sk = v, yn
1}

(2.207)

Consider a single component of the sums appearing both in the nominator and denominator
of (2.207). We are interested in the operation of the algorithm at the kth moment. The
reception of sequence yn

1 can be treated as reception of the sequence yk−1
1 , symbol yk

(at the kth moment) and sequence yn
k+1 [from the (k + 1)st moment to the nth moment].

Then

Pr{sk−1 = u, sk = v, yn
1} = Pr{yk−1

1 , yk, yn
k+1, sk−1 = u, sk = v}

= Pr{yn
k+1|yk, yk−1

1 , sk−1 = u, sk = v} Pr{yk, yk−1
1 , sk−1 = u, sk = v} (2.208)

Since the channel through which the sequence xk is transmitted is memoryless, received
sequence yn

k+1 starting from the (k + 1)st moment depends only on the state on the trellis
diagram in which the encoder was at the kth moment. Therefore

Pr{sk−1 = u, sk = v, yn
1} = Pr{yn

k+1|sk = v} Pr{yk, yk−1
1 , sk−1 = u, sk = v}

= Pr{yn
k+1|sk = v} Pr{sk = v, yk|sk−1 = u, yk−1

1 } Pr{sk−1 = u, yk−1
1 } (2.209)
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Apply the following notation

βk(v) = Pr{yn
k+1|sk = v} (2.210)

αk−1(u) = Pr{sk−1 = u, yk−1
1 } (2.211)

Thus, variable βk(v) represents the probability of reception of sequence yn
k+1 from the

(k + 1)st moment to the nth moment under the condition that the encoder was in state
v at the kth moment. Variable αk−1(u) denotes the probability of reaching state u in the
(k − 1)st moment when the sequence yk−1

1 has been received. We know that appearance
of the symbol yk at the kth moment on the decoder input and finding the decoder itself
in state v at the same moment depends exclusively on the data symbol ak = i (i = ±1)

and on the state in which the encoder was at the (k − 1)st moment. Therefore, we can
write the following equality

Pr{sk = v, yk|sk−1 = u, yk−1
1 } = Pr{sk = v, yk|sk−1 = u} (2.212)

Applying the notation

γ i
k (u, v) = Pr{ak = i, sk = v, yk|sk−1 = u} (2.213)

we can present the probability given in formula (2.209) in the following form

Pr{sk−1 = u, sk = v, yn
1} = αk−1(u)

∑
i∈{−1,+1}

γ i
k (u, v)βk(v) (2.214)

Finally, on the basis of (2.207) and (2.214) we have

�(ak) = ln

∑
(u,v)∈B+1

αk−1(u)γ +1
k (u, v)βk(v)∑

(u,v)∈B−1

αk−1(u)γ −1
k (u, v)βk(v)

(2.215)

It seems that formula (2.215) is more complicated than its primary form (2.202); how-
ever, as we shall see, this new form of expression enables us to calculate soft decisions
for subsequent data symbols recurrently. Namely, probabilities αk−1(u) and βk(v) can be
derived recurrently, the first one in ascending order and the second one in descending
order of index k.

First, derive a recurrence for αk(v). According to (2.211) we have

αk(v) = Pr{sk = v, yk
1} =

M−1∑
u=0

Pr{sk−1 = u, sk = v, yk
1}

=
M−1∑
u=0

Pr{sk−1 = u, sk = v, yk−1
1 , yk}

=
M−1∑
u=0

Pr{sk = v, yk|sk−1 = u, yk−1
1 } Pr{sk−1 = u, yk−1

1 } (2.216)
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The last factor of the sum (2.216) is αk−1(u). Therefore

αk(v) =
M−1∑
u=0

αk−1(u) Pr{sk = v, yk|sk−1 = u, yk−1
1 }

Appearance of the symbol yk at the kth moment and transition to state v does not depend
on the sequence of preceding signals, but exclusively on the state u in which the encoder
found itself previously, therefore

αk(v) =
M−1∑
u=0

αk−1(u) Pr{sk = v, yk|sk−1 = u} (2.217)

We can, in turn, take advantage of the dependence

Pr{sk = v, yk|sk−1 = u} =
∑

i∈{−1,+1}
Pr{ak = i, sk = v, yk|sk−1 = u}

=
∑

i∈{−1,+1}
γ i

k (u, v) (2.218)

Finally,

αk(v) =
M−1∑
u=0

αk−1(u)
∑

i∈{−1,+1}
γ i

k (u, v) (2.219)

As we see, probabilities αk(v) can be calculated recurrently with appropriate initialization
at the zero moment, e.g. in agreement with the following rule

α0(0) = 1, α0(u) = 0, u = 1, 2, . . . , M − 1 (2.220)

since we assumed that the initial state is known and it is a zero state. After reception of
the full symbol sequence yn

1, we can determine subsequent values of probabilities αk(v)

in ascending order of time index k. However, it is necessary to determine γ i
k (u, v) for

each state pair (u, v) and each value of the data signal i = ±1. We will now derive the
formula for γ i

k (u, v).
Let us first derive the probabilities βk(v). From the definition of βk(v) and Bayes’

formula we obtain

βk(v) = Pr{yn
k+1|sk = v} =

M−1∑
w=0

Pr{sk+1 = w, yn
k+1|sk = v}

=
M−1∑
w=0

Pr{sk+1 = w, yn
k+1, sk = v}

Pr{sk = v} (2.221)
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Extracting yk+1 from sequence yn
k+1, we can write

βk(v) =
M−1∑
w=0

Pr{yk+1, yn
k+2, sk = v, sk+1 = w}
Pr{sk = v}

=
M−1∑
w=0

Pr{yn
k+2|yk+1, sk = v, sk+1 = w} Pr{yk+1, sk = v, sk+1 = w}

Pr{sk = v} (2.222)

For the memoryless channel, appearance of sequence yn
k+2 on the channel output depends

only on the state in which the encoder was at the (k + 1)st moment, so

βk(v) =
M−1∑
w=0

Pr{yn
k+2|sk+1 = w} Pr{yk+1, sk = v, sk+1 = w}

Pr{sk = v}

=
M−1∑
w=0

βk+1(w) Pr{yk+1, sk+1 = w|sk = v} Pr{sk = v}
Pr{sk = v}

=
M−1∑
w=0

βk+1(w) Pr{yk+1, sk+1 = w|sk = v}

=
M−1∑
w=0

βk+1(w)
∑

i∈{−1,+1}
Pr{ak+1 = i, yk+1, sk+1 = w|sk = v}

=
M−1∑
w=0

βk+1(w)
∑

i∈{−1,+1}
γ i

k+1(v, w) (2.223)

Owing to (2.223) it is possible to derive βk(v) in a backward direction, starting from
the last symbol and finishing at the first symbol. However, knowledge of probabilities
γ i

k+1(v, w) is also needed. Assuming that the final state of the trellis diagram is a zero
state, we can initialize the values of βk(v) in the following way

βn(0) = 1, βn(v) = 0, v = 1, 2, . . . ,M − 1 (2.224)

Bringing the RSCC encoder with feedback into the zero state can be troublesome, therefore
we can disconnect the feedback in the last cycles, subsequently introducing zero symbols
to the encoder memory. This idea is presented in Figure 2.37. In normal operation the
switch is in position 1. For the last L steps, where L is the number of encoder memory
cells, the switch is placed in position 2, so the input of the delay line is supplied with
the modulo-2 sum of two identical symbols resulting in zero symbols. These symbols are
simultaneously the message symbols on the encoder output.
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2

Figure 2.37 Scheme of the encoder from Figure 2.35 supplemented by the switch forcing the
zero state at the end of the sequence

We still have to derive the probabilities γ i
k (u, v). Recall that they have been given by

formula (2.213). Applying the conditional probability formula, we obtain

γ i
k (u, v) = Pr{ak = i, yk, sk = v, sk−1 = u}

Pr{sk−1 = u}

= p(yk|ak = i, sk = v, sk−1 = u) Pr{ak = i, sk = v, sk−1 = u}
Pr{sk−1 = u} (2.225)

The conditional probability density function that appears in formula (2.225) can be rep-
resented as a product of two probability density functions. The first function is related
to the message component ya,k of the received pair yk at the kth moment. The message
component ya,k depends exclusively on symbol ak . The second function is related to par-
ity component yr,k , which results from the transition from state u to v at the kth moment.
Thus, for a memoryless channel with additive Gaussian noise with variance σ 2 we have

p(yk|ak = i, sk = v, sk−1 = u) = p(ya,k|ak = i)p(yr,k |x(u,v)
r,k )

= 1

2πσ 2
exp

[
− (ya,k − i)2

2σ 2

]
exp

[
− (yr,k − x

(u,v)
r,k )2

2σ 2

]
(2.226)

where x
(u,v)
r,k is a bipolar parity signal generated at the encoder transition from state u to

v. Consequently

γ i
k (u, v) = p(ya,k|ak = i)p(yr,k |x(u,v)

r,k )

× Pr{ak = i|sk = v, sk−1 = u} Pr{sk = v, sk−1 = u}
Pr{sk−1 = u}

= p(ya,k|ak = i)p(yr,k |x(u,v)
r,k ) ×

× Pr{ak = i|sk = v, sk−1 = u} Pr{sk = v|sk−1 = u} (2.227)
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Transition from state u to state v uniquely results from the data symbol ak = i fed to the
encoder input. Therefore

Pr{sk = v|sk−1 = u} =
 Pr{ak = i} for (u, v) ∈ Bi

0 otherwise
(2.228)

where Pr{ak = i} is the a priori probability of generation of data symbol ak = i by
the transmitter. In turn, the probability of appearance of data symbol ak = i under the
condition that transition from state u to state v has occurred is

Pr{ak = i|sk = v, sk−1 = u} =
 1 if (u, v) ∈ Bi

0 otherwise
(2.229)

Taking into account expressions (2.227)–(2.229), probability γ i
k (u, v) can be expressed

in the following form

γ i
k (u, v) =

 Pr{ak = i}p(ya,k|ak = i)p(yr,k |x(u,v)
r,k ) for (u, v) ∈ Bi

0 otherwise
(2.230)

Substituting γ i
k (u, v) determined by formulae (2.230) and (2.226) to formula (2.215)

describing a soft decision related to the symbol ak, we get

�(ak) = ln

Pr{ak = +1}p(ya,k|ak = +1)
∑

(u,v)∈B+1

αk−1(u)p
(
yr,k|x(u,v)

r,k

)
βk(v)

Pr{ak = −1}p(ya,k|ak = −1)
∑

(u,v)∈B−1

αk−1(u)p
(
yr,k|x(u,v)

r,k

)
βk(v)

(2.231)

This can be divided into three parts

�(ak) = ln
Pr{ak = +1}
Pr{ak = −1} + ln

p(ya,k|ak = +1)

p(ya,k|ak = −1)

+ ln

∑
(u,v)∈B+1

αk−1(u)p
(
yr,k|x(u,v)

r,k

)
βk(v)

∑
(u,v)∈B−1

αk−1(u)p
(
yr,k|x(u,v)

r,k

)
βk(v)

= �ap(ak) + �int (ak) + �ext (ak) (2.232)

The first component is the so-called a priori information and its value depends on inequal-
ity of probabilities of the input symbol ak = i. If the symbols ±1 are equiprobable, then
this component is zero. The second component is called intrinsic information and its value
results exclusively from the generated data symbol ak and the component ya,k related to



 

Channel Coding 199

it, received at the kth moment on the channel output. For the assumed channel model,
intrinsic information according to formula (2.226) is

�int (ak) = ln
p(ya,k|ak = +1)

p(ya,k|ak = −1)
= ln

exp

[
− (ya,k − 1)2

2σ 2

]
exp

[
− (ya,k + 1)2

2σ 2

]

= ln exp

[
− (ya,k − 1)2

2σ 2
+ (ya,k + 1)2

2σ 2

]
= 2

σ 2
ya,k (2.233)

The third component is the so-called extrinsic information , which allows us to improve
a decision upon the data symbol ak on the basis of all remaining signals contained in the
received block, i.e.

�ext (ak) = ln

∑
(u,v)∈B+1

αk−1(u)p
(
yr,k|x(u,v)

r,k

)
βk(v)

∑
(u,v)∈B−1

αk−1(u)p
(
yr,k|x(u,v)

r,k

)
βk(v)

= ln

∑
(u,v)∈B+1

αk−1(u)γ +1
k (yr,k, u, v)βk(v)∑

(u,v)∈B−1

αk−1(u)γ −1
k (yr,k, u, v)βk(v)

(2.234)

where

γ i
k (yr,k, u, v) = exp

[
− (yr,k − x

(u,v)
r,k )2

2σ 2

]
for (u, v) ∈ Bi, i = ±1 (2.235)

The division of the soft decision �(ak) into three separate components is the most impor-
tant aspect of the presented algorithm. The importance of each component will be clarified
when we describe the turbo decoding algorithm.

Let us stress again that the algorithm presented above is a MAP algorithm. It is optimal
in this sense; however, its computational complexity is very high. In practical systems
suboptimum algorithms such as Max-Log-MAP (see Vucetic and Yuan 2000) or SOVA
(see this chapter) are often applied at the cost of a fraction of dB loss in the performance.

2.12.4 Turbo Decoding Algorithm

As we said earlier, codewords generated by a turbo code encoder are usually very long
because of the large size of the applied interleaver, therefore the optimal decoder would
be extremely complex. For that reason a suboptimum decoder structure has to be applied.
Owing to the applied algorithm, the difference in decoding quality is insignificant com-
pared with the optimal decoder. This result is achieved by using two component decoders
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Figure 2.38 Block diagram of a turbo decoder

that mutually improve each other’s decision quality. A basic scheme of the turbo code
decoder is shown in Figure 2.38.

The first decoder makes soft decisions on subsequent message bits contained in the
received block. For this purpuse it uses the received message symbols ya,k and parity
symbols yr1,k related to the signals generated by the first component encoder. Signals
ya,j that are related to interleaved message symbols (the time index has been changed
due to interleaving) and symbols yr2,j corresponding to parity symbols generated by the
second encoder appear at the input of the second component decoder. Additionally, the
second decoder is fed by a priori information achieved after interleaving of extrinsic
information from the first decoder. After the symbol sequence has been reordered to the
original time sequence by the deinterleaver, extrinsic information from the second decoder
becomes a priori information in the subsequent iteration of the first decoder.

We can formally present the operation of a turbo code decoder in the following steps:

1. First iteration
(a) Decoder 1 . If the statistics of the message symbols ak are unknown, then it is

assumed that message symbols ak are equiprobable. Then

�ap(ak) = ln
Pr{ak = 1}

Pr{ak = −1} = 0

The switch shown in Figure 2.38 is in position 1. On the basis of the vector of the
received samples

yn
1 = [

y1, y2, . . . , yn

]
, yk =

 ya,k

yr1,k

yr2,k

 , k = 1, . . . , n (2.236)

metrics γ +1
k (yr1,k, u, v) and γ −1

k (yr,k, u, v) of the transition from state u to state
v at the (k + 1)st moment (u, v = 0, 1, . . . ,M − 1) are calculated for each sym-
bol ak (k = 1, 2, . . . , n). It is also assumed that the initial state of the encoder is
known, e.g. u = 0. Then for k = 1 transitions from the initial state to two differ-
ent states are possible. They are determined by a1 = 1 or a1 = −1, respectively.
Using the probabilities γ +1

k (yr1,k, u, v) and γ −1
k (yr,k, u, v), we determine the values

of αk−1(u) and βk(v) for subsequent time instants k, applying iterative formulae
(2.219) and (2.223). Knowing the full set of the above probabilities, we calculate
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extrinsic information �ext
1 (ak) for each message symbol ak. This constitutes the

main output signal of the first decoder.
(b) Interleaver . After message bits have been interleaved, they are used to generate

parity bits by the second component encoder. Consequently, the process of inter-
leaving obviously implies the sequence of subsequent parity symbols used in the
second turbo code decoder. If the results produced by the first decoder are to be
used in the second decoder, this sequence has to be reordered in conformance with
the parity symbols of the second encoder. The same applies to message symbols.
Thus, the second decoder input is a triple: a priori information achieved owing
to interleaving of the extrinsic information, interleaved sequence of the message
symbols and the sequence of parity symbols matched in time to the interleaved
sequence of message symbols.

(c) Decoder 2 . Decoder 2 uses (besides message and parity symbols) the symbols
that play the role of a priori information. This function is performed by extrinsic
information received from Decoder 1. In this way correlation between a priori
information and input symbols applied in Decoder 2 is avoided. Decoder 2, which
functions identically as Decoder 1, determines extrinsic information �ext

2 (aj ).
(d) Deinterleaver . This block matches the order of extrinsic information sequence

obtained from Decoder 2 to the order of the sequence processed in Decoder 1.
Extrinsic information �ext

2 (aj ) is applied again in Decoder 1 as a priori information
(the switch is in position 2).

2. Subsequent iterations . Starting from the second iteration, each component decoder
receives a priori information from the other decoder. Owing to this information the
decoding quality improves. The value of a priori information related to each message
symbol gradually stabilizes its sign and increases its module.

3. The last iteration. After a number of iterations the decoding process achieves a state
close to optimum and a final decision is made for each message bit. This decision is
based on the soft decision �(ak) given by formula (2.232), i.e.

âk = sgn
[
�(ak)

]
(2.237)

As we said earlier, knowledge of the final state of encoders, which is often assumed,
improves the final decoding quality.

Figure 2.39 shows the simulation results presented by Berrou, Glavieux and Thitima-
jshima in their original paper (Berrou et al. 1993). They are in the form of error probability
curves versus signal-to-noise ratio. It is clear that decoding quality significantly improves
with the increasing number of iterations. We can also notice that the most meaning-
ful improvement is achieved after performing the first few iterations. Other investigations
have shown that decoding quality strongly depends on the length of the decoded sequence
or, equivalently, on the size and structure of the applied block interleaver.

Turbo codes are believed to be one of the most important achievements of communi-
cation theory in the 1990s. Their inventors have shown how to get significantly closer
to the Shannon limit. It has turned out that only about 0.7 dB is left to achieve the the-
oretical limit. Invention of turbo codes triggered an enormous interest by code theorists
and communication engineers in iterative processing. They developed other applications
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Figure 2.39 Error rate versus Eb/N0 as a function of the number of iterations in the turbo decoder
for the turbo code with the encoder presented in Figure 2.36. Reproduced by permission of IEEE
(Berrou et al. (1993))  1993 IEEE

of the concept of turbo decoding. In practice, turbo codes are applied in systems in which
decoding delay is not a critical parameter; however, a low error probability is of pri-
mary importance. Therefore turbo codes are useful in data transmission systems. They are
applied e.g. in the UMTS (Universal Mobile Telecommunication System) cellular standard
in which data transmission is one of the offered services.

2.13 LDPC Codes

LDPC (Low-Density Parity Check ) codes are another class of codes that feature high
decoding quality. They were invented by Gallager in the 1960s (Gallager 1968) but
they did not gain attention at that time. They focused the interest of code theorists and
practitioners again in the 1990s owing to the works of MacKay and Neal (1996) and
MacKay (1999).

LDPC codes are (n, k) block codes whose parity check matrix is sparse, i.e. contains
a small number of “1”s compared with the matrix size. A (J, K)-regular LDPC code is
characterized by the parity check matrix in which there are J “1”s in each column and K

“1”s in each row. For given code parameters (n, k) the assumed column weight J is larger
than 3 and a parity check matrix H with a given number of “1”s in each column and row
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is generated in a pseudorandom manner. If the parity check matrix H is a low density
matrix but the number of “1”s per column is not constant, the code is called an irregular
LDPC code. The codeword length is typically very high and the code rate can be close to
1, although lower code rates are often applied too. Examples of code parameters (n, k) of
high code rate LDPC codes presented in Benvenuto and Cherubini (2002) are (495, 433),
(1998, 1777), (4376, 4095). The related code rates are 0,8747, 0,8894, 0,9358.

Let us present three examples of parity check matrices for LDPC codes.
Consider a (10, 5) linear block code with four “1”s in a row and two “1”s in each

column. Its parity check matrix is the following

H =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 (2.238)

The (10, 5) linear code is not a typical LDPC code but it can serve as a simple example
for educational reasons. Let us note that the parity check matrix is not in a canonical
form. The density of “1”s in H is equal to 0.4, so the parity check matrix is not sparse
in a strict sense.

Let us show another matrix created according to the rules valid for (J, K)-regular
LDPC codes. Let the parameters for that matrix be J = K = 4 and n = 15. The parity
check matrix is (Lin and Costello 2004):

H =



0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0



(2.239)

The size of the above parity check matrix is (15 × 15) so obviously some parity check
equations represented by the rows of this matrix are redundant. It can be proved that after
performing reduction of the parity check equations we end up with a (15,7) cyclic BCH
code considered earlier in this chapter. The density of matrix (2.239) is equal to 0.267,
so the matrix can be considered sparse.

Finally, let us present matrix H designed according to the procedure originally proposed
by Gallager. A code determined by such a parity check matrix is called a Gallager code.
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The parity check matrix consists of J submatrices of dimensions m × mK , denoted as
H1, H2, . . . , HJ . The full parity check matrix has the form

H =


H1

H2
...

HJ

 (2.240)

Each row of a constituent submatrix has K and each column has a single “1”. In particular,
in the ith row (1 ≤ i ≤ m) matrix H1 contains a block of “1”s in the columns with numbers
between (i − 1)K + 1 and iK . The remaining matrices are created by permutation of
matrix H1. However, not all permutations result in a good code that features a high
value of minimum distance. An intensive computer search is needed to find such a code.
Formula (2.241) presents an example of the parity check matrix of the Gallager code,
characterized by m = 5, K = 4 and J = 3.

H =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
− − − − − − − − − − − − − − − − − − − −
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
− − − − − − − − − − − − − − − − − − − −
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1


(2.241)

Since reinvention of the LDPC codes in the 1990s, a large number of methods for their
construction have been proposed. They are beyond the scope of this chapter but the
interested reader may explore the rich literature on this subject, starting from Lin and
Costello (2004), Moon (2005) or Ryan (2004).

2.13.1 Tanner Graph

A Tanner graph is a crucial graphical tool used in analysis of LDPC codes and their
decoding algorithms. In a sense a Tanner graph representing an LDPC code is analo-
gous to a trellis diagram representing convolutional codes. Its structure fully reflects the
code properties. The Tanner graph is a bipartite graph , which means that its nodes are
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divided into two separate sets and each edge of the graph connects a pair of nodes, each
of which belongs to a different set. One set consists of variable nodes (called v-nodes)
whereas the other one contains check nodes (denoted as c-nodes). Each v-node is asso-
ciated with a specific codeword element, so for an (n, k) code there are n v-nodes. Each
c-node reflects a single row of the parity check matrix, and the edges connecting a c-node
with the v-nodes result from a particular parity check equation described by the appro-
priate row of matrix H . Strictly speaking, check node j is connected to variable node
i if element hji of matrix H is equal to 1. Figure 2.40 presents Tanner graphs for the
codes determined by the parity check matrices given by (2.238) and (2.239), respectively.
We will not present the Tanner graph for the code determined by (2.240) due to its
complexity.

The edges of the Tanner graph that join a given check node sj indicate which received
symbols participate in the generation of the j th element sj of the syndrome vector s. On
the other hand, the edges departing from a given variable node vi inform which syndrome
symbols are influenced by the ith symbol vi of the received block v. The Tanner graph
helps to manage iterative decoding algorithms relying on the process of passing messages
back and forth between v-nodes and c-nodes, which leads to gradual improvement of the
selected decoding criterion, eventually resulting in the decoded codeword.

v-nodes

v-nodes

c-nodes

c-nodes

v1

s1 s2 s3 s4 s5

v2 v3 v4 v5 v6 v7 v8 v9 v10

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

(a)

(b)

Figure 2.40 Examples of Tanner graphs for codes given by the parity check matrix H determined
by (2.238) (a) and (2.239) (b)
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2.13.2 Decoding of LDPC Codes

As in the case of other codes, LDPC codes can be decoded using hard- and soft-decision
algorithms. There is a large variety of decoding algorithms. Let us look at some repre-
sentative examples, i.e.:

• Bit-Flipping Algorithm (BPA): hard-decision decoding;
• Weighted Bit-Flipping Algorithm (WBPA): partially soft-decision decoding;
• Sum-Product Algorithm (SPA): fully soft-decision decoding.

2.13.2.1 Bit-Flipping Algorithm

The bit-flipping algorithm was proposed by Gallager in his early works on LDPC codes.
It entirely relies on calculations of syndrome elements sj , (j = 1, . . . , m), where m is the
number of rows in the parity check matrix H . As before, denote the received block as
r = (r1, . . . , rn)

T . First, the syndrome is calculated according to the well-known formula

s = Hr (2.242)

If s = 0 then the received block is assumed to be correct and the decoder’s decision
is ĉ = r. Otherwise the algorithm takes into account the nonzero syndrome elements and
changes the bit in the received block r that participates in at least L failed parity check
equations, i.e. for which sj = 1. After that change, the modified received vector r′ is
the base for subsequent calculation of syndrome (2.242). Such a procedure is performed
iteratively in the loop until the calculated syndrome is zero. Formally, the hard-decision
bit-flipping algorithm can be defined in the following steps (Lin and Costello 2004):

1. Compute the syndrome bits sj , (j = 1, . . . , m) from equation (2.242) for the received
block r. If all of them are equal to zero, the received block r is the decided codeword
ĉ and end the decoding procedure. Otherwise go to step 2.

2. Find the number fi of failed syndrome bits for every received symbol ri (i = 1, . . . n).
3. Determine the set S of bits for which fi is the largest.
4. Negate the bits in set S .
5. Repeat steps 1–4 until all syndrome bits are zero or the maximum allowable number

of iterations is reached.

Let us illustrate the operation of the bit-flipping algorithm with an example.

Example 2.13.1 Consider the (15, 7) BCH code, which when treated as an LDPC code
is determined by matrix H described by formula (2.239). We have considered this code
when describing the Meggitt and majority decoders. The code is able to correct t = 2
errors and a certain number of combinations of triple errors. For simplicity assume
that an all-zero codeword has been transmitted and the received block has the form
r = (110010000000000)T . Thus, “1”s in the received block clearly indicate errors that
have to be corrected by the decoder. The algorithm proceeds in the following steps:
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• First, syndrome s = Hr is calculated, resulting in the sequence

s = (011000110001100)T

• For each received bit the number fi of failed syndrome bits is calculated, giving the
following vector f:

f = (221122211222112)

• The largest number fi occurs already for the first bit, so the change of its value in the
received block r results in a new block r′ = (010010000000000)T

• Syndrome s = Hr′ is calculated again, giving the vector

s = (001001101001100)T

• For each element of vector r′ the number of failed syndrome bits is calculated again,
resulting in the vector

f = (230232120121221)

• This time the largest number of failed parity check equations is due to the second bit
(f2 = 3), so the second bit of vector r′ is negated and the new vector r′′ is

r′′ = (000010000000000)T

• Syndrome s = Hr′′ is calculated once more, resulting in the vector

s = (000001000101100)T

Let us note that the syndrome is the fifth column of matrix H , which means that only
one error, i.e. the error in the fifth position of the candidate codeword, remains to be
corrected.

• Inspection of the bits influencing “1”s in syndrome s results in the following vector f

f = (111141111011110)

Clearly f5 = 4 indicates the bit that has to be flipped. If it is done, the resulting vector is

r′′′ = (000000000000000)T

which agrees with the codeword produced by the encoder.
• The resulting syndrome s = Hr′′′ is finally equal to zero, which terminates the decoding

algorithm.
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For the considered code dmin = 5 so all combinations of two errors are correctable. Let
us note, however, that the selected received block contained three errors, which means
that the considered combination of three errors belongs to the correctable error patterns.

The above decoding algorithm is fully hard-decision. As we said earlier, its performance
can be improved if the algorithm takes advantage of more detailed knowledge about the
received symbols obtained from the channel.

2.13.2.2 Weighted Bit-Flipping Algorithm

Consider bipolar transmission of the codewords. Let c = (c1, . . . , cn)
T be the codeword

generated in the LDPC code encoder. The codeword c is subsequently transmitted in the
bipolar form x = (x1, . . . , xn)

T , where xi = a(2ci − 1) and a is the magnitude of bipolar
pulses. The received block is denoted as y = (y1, . . . , yn), where yi = xi + νi and νi is a
Gaussian noise sample, assumed to be statistically independent of other noise samples. We
have already noticed that a simple measure of reliability of the received symbol yi is its
magnitude |yi |. The larger the magnitude |yi |, the more reliable is the hard-decision symbol
ri associated with the sample yi . Denote the set of hard-decision bits ri that participate
in the calculation of syndrome bit sj as N (j), so N (j) = {i : hji = 1}. Similarly, let
M(i) = {j : hji = 1} denote the set of parity checks in which bit ri participates. First,
reliability measures of syndrome components are calculated as

|y|(j)

min = min
i:i∈N (j)

|yi | j = 1, . . . , m (2.243)

In other words we assume that the reliability measure of syndrome bit sj is the lowest
magnitude of that received sample yi for which the corresponding hard-decision decoded
bit ri is used to calculate syndrome bit sj . After calculation of the reliability measures
for each syndrome bit the main part of the weighted bit flipping algorithm is performed
in the following steps:

1. On the basis of (2.242) calculate the syndrome, using hard-decision vector r.
2. For each received bit ri (i = 1, . . . , n) calculate

Ei =
∑

j∈M(i)

(2sj − 1)|y|(j)

min, i = 1, . . . , n (2.244)

3. Flip bit rk located in position k for which k = arg max1≤i≤n Ei .
4. Repeat steps 1 –3 until all parity check equations are satisfied or the maximum number

of iterations is reached.

Let us note that in step 3 position k is identified by finding the maximum value of
Ei (i = 1, . . . , n). This value indicates that the selected kth bit influences the highest
number of syndrome bits equal to 1. Note that the correct syndrome bit (sj = 0), if its
index belongs to set M(i), implies that appropriate Ei decreases.

Example 2.13.2 Let us consider a similar example to that used to illustrate the regular
bit-flipping algorithm for the (15,7) BCH code determined by the parity check matrix H
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given by (2.239). Again let the all-zero codeword be generated by the encoder, which
results in the bipolar vector

x = (−1, −1, −1,−1, −1, −1,−1, −1,−1, −1,−1, −1,−1, −1,−1)T

At the output of the AWGN channel let the received block be

y = (0.05, 0.12, −0.8,−1.2, 0.07,−2.1, −0.9,−0.1, −1.0,−0.5,

−0.09,−0.7, −0.99,−0.32, −1.2)T

Hard-decision decoding would produce the received vector r = (110010000000000)T

identical to that in the example illustrating the hard-decision bit-flipping algorithm.
Inspection of parity check matrix (2.239) leads to the sets N (j) (j = 1, . . . , m) and
M(i) (i = 1, . . . , n), which are shown in matrix form as

N =



8 9 11 15
1 9 10 12
2 10 11 13
3 11 12 14
4 12 13 15
1 5 13 14
2 6 14 15
1 3 7 15
1 2 4 8
2 3 5 9
3 4 6 10
4 5 7 11
5 6 8 12
6 7 9 13
7 8 10 14



M =



2 6 8 9
3 7 9 10
4 8 10 11
5 9 11 12
6 10 12 13
7 11 13 14
8 12 14 15
1 9 13 15
1 2 10 14
2 3 11 15
1 3 4 12
2 4 5 13
3 5 6 14
4 6 7 15
1 5 7 8


Each row of matrices N and M corresponds to N (j) (j = 1, . . . ,m) and M(i) (i =
1, . . . , n), respectively. They are useful in calculations of (2.243) and (2.244). The search
according to (2.243) for the smallest magnitude of those received samples that take part
in parity check giving syndrome element sj (j = 1, . . . , m) leads to the vector

ymin = {|y|(j)

min : j = 1, . . . m}
= (0.09, 0.05, 0.09, 0.09, 0.70, 0.05, 0.12, 0.05, 0.05, 0.07,

0.50, 0.07, 0.07, 0.90, 0.10)T

After computing reliability measures of each syndrome bit we can start the iterative part
of the weighted bit-flipping algorithm.

• As usual, the syndrome is calculated first:

s = Hr = (011000110001100)T
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• Then, for each bit ri (i = 1, . . . , n) its reliability measure Ei is computed according to
(2.244), giving the vector of values

E = {Ei : i = 1, . . . , n}
= (0, 0.09, −0.61, −1.18, 0.02, −1.21, −0.88, −0.17, −1.01, −0.46,

−0.02, −0.67, −1.56, −0.12, −0.62)T

• The largest value Ei is located at position k = 2 (step 3), so r2 in vector r is flipped,
resulting in a new vector

r′ = (100010000000000)T

• For this vector the syndrome is computed again, resulting in the block

s = Hr′ = (010000011101100)T

• Consequently, vector E for the new syndrome is (step 2):

E = (0.10, −0.09, −0.47, −1.08, 0.16, −1.45, −0.88, −0.07, −0.87, −0.64,

−0.20, −0.67, −1.74, −0.36, −0.86)T

• This time the largest Ei can be found at position k = 5, so r5 in vector r is flipped,
giving a new candidate for the decided codeword

r′′ = (100000000000000)T

• We come back to step 1 again and calculate the new syndrome

s = Hr′′ = (010001011000000)T

• The calculated syndrome is still different from zero, so the algorithm is continued. The
newly computed vector E is

E = (0.20, −0.23, −0.61, −1.22, −0.16, −1.59, −1.02, −0.21, −1.01, −0.64,

−0.34, −0.81, −1.64, −0.26, −0.86)T

• Clearly, the highest value of Ei is at position k = 1, so we flip bit r1. The resulting
vector r is an all-zero vector r′′′.

• The algorithm is stopped after checking that this time the syndrome is equal to zero.

As we can see, the algorithm has succesfully decoded the received block. In the con-
sidered example, calculation of all vectors by hand during the algorithm operation can be
cumbersome, so a simple Matlab program has been written by the author to implement
the weighted bit-flipping algorithm. The reader is advised to write his/her own program
as an exercise.
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2.13.2.3 Sum-Product Algorithm

The Sum-Product Algorithm is also called the Belief-Propagation Algorithm and is a rep-
resentative example of soft-decision decoding of LDPC codes. Let the codeword c of
length n generated by the encoder be represented by bipolar symbols. These symbols are
distorted by additive white Gaussian noise, which results in reception of the sample block
y. Generally, the optimal decoding should be performed using the Maximum a Posteri-
ori criterion. According to the MAP criterion the algorithm searches for the sequence
ĉ = [̂c1, . . . , ĉn], which maximizes the a posteriori probability Pr{c|y} and fulfills the
syndrome condition s = H ĉ = 0. Thus, the criterion used by the MAP decoder can be
formulated as

ĉ = arg max
c

Pr{c|y,Hc = 0} (2.245)

However, the task defined by (2.245) is computationally complex to such an extent that
it is replaced by the following n suboptimal criteria

ĉi = arg max
ci

Pr
{
ci |y, {sj = 0, j ∈ M(i)}} , i = 1, . . . , n (2.246)

where M(i) = {j : hji = 1} is the set of indices of check bits in which codeword bit ci

is used. Condition {sj = 0, j ∈ M(i)} means that all checks involving ci are satisfied.
Denote

Qi(b) = Pr
{
ci = b|y, {sj = 0, j ∈ M(i)}} , b ∈ {0, 1}, i = 1, . . . , n (2.247)

The above a posteriori probability is the base for hard decisions upon transmitted code-
word bits, i.e.

ci =
 0 if Qi(0) >Qi(1)

1 otherwise
(2.248)

The sum-product decoder estimates Qi(0) and Qi(1) iteratively and checks if the derived
decision ĉ implies the zero syndrome. If it does, the decoding process is considered as
successfully finished. As we see, the main problem is to estimate the probabilities (2.247).
In order to perform this task let us introduce the auxiliary probabilities

Qji(b) = Pr
{
ci = b|y, all checks involving ci except sj are satisfied

}
= Pr

{
ci = b|y, {sj ′ = 0, j ′ ∈ M(i)\j}} , i = 1, . . . , n, j = 1, . . . ,m (2.249)

where M(i)\j denotes the set of those syndrome bit indices, except the j th syndrome
bit, in which the codeword bit ci is involved. We also introduce the second auxiliary
probability

Rji(b) = Pr{sj = 0|ci = b, y}, b ∈ {0, 1} (2.250)
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This is the probability that the j th syndrome check is fulfilled under condition that the
ith codeword bit ci = b (b ∈ {0, 1}) and the sample block y has been received.

An iterative process is performed in order to gradually improve the quality of Qi(0) and
Qi(1) estimates. First, information from the received data is used to calculate probabilities
Rji(b) (b = 0, 1), referring to the parity check bits. These probabilities are derived for
those pairs (j, i) for which the parity check matrix entries are equal to 1, i.e. hji = 1
(i = 1, . . . , n, j = 1, . . . , m). Based on these probabilities, extrinsic information Qji(b)

(b = 0, 1; i = 1, . . . , n, j = 1, . . . , m) about transmitted codeword bits is calculated. The
extrinsic information is applied in turn to compute the updated version of the probabilities
referring to the check bits. As we have mentioned, the iterative procedure is performed
in a loop until Qi(b) (i = 1, . . . , n) achieves such values that hard decisions (2.248)
performed on them result in the zero syndrome.

Now let us derive probabilities Qi(b), Qji(b) and Rji(b) applied in the decoding
algorithm. We start with Qi(b). Using the definition of Qi(b) and Bayes’ rule a few
times, we obtain

Qi(b) = Pr
{
ci = b|y, {sj = 0, j ∈ M(i)}} = Pr

{
ci = b, y, {sj = 0, j ∈ M(i)}}
Pr{y, {sj = 0, j ∈ M(i)}}

= Pr
{
ci = b, {sj = 0, j ∈ M(i)}|y}p(y)

Pr{{sj = 0, j ∈ M(i)}|y}p(y)

= 1

Pr{{sj = 0,j ∈M(i)}|y} · Pr
{
ci = b, {sj = 0,j ∈M(i)}, y

}
p(y)

= 1

Pr{{sj = 0,j ∈M(i)}|y} · Pr
{{sj = 0,j ∈M(i)}|ci = b, y

}
Pr{ci = b|y}p(y)

p(y)

= 1

Pr{{sj = 0, j ∈ M(i)}|y} · Pr
{{sj = 0, j ∈ M(i)}|ci = b, y

}
Pr{ci = b|y}

(2.251)
Assuming independence of subsequent check bits, we may write

Qi(b) = 1

Pr{{sj = 0, j ∈ M(i)}|y} · Pr{ci = b|y}
∏

j∈M(i)

Pr{sj = 0|ci = b, y} (2.252)

Recalling (2.250) we can formulate Qi(b) as

Qi(b) = 1

Pr{{sj = 0, j ∈ M(i)}|y} · Pr{ci = b|y}
∏

j∈M(i)

Rji(b) (2.253)

Due to the statistical independence of codeword bits and noise samples we have

Pr{ci = b|y} = Pr{ci = b|yi}
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Let us note that the denominator in (2.253) can be expressed as

Pr{{sj = 0, j ∈ M(i)}|y}
= Pr{ci = 0|yi}

∏
j∈M(i)

Pr{sj = 0|ci = 0, y} + Pr{ci = 1|yi}
∏

j∈M(i)

Pr{sj = 0|ci = 1, y}

(2.254)

As we can see from (2.253) and (2.254), the value of the denominator in (2.253) is such
that Qi(0) + Qi(1) = 1, so instead of calculation of this denominator we can apply the
formula

Qi(b) = αi Pr{ci = b|y}
∏

j∈M(i)

Rji(b) (2.255)

Coefficients αi are selected to ensure that Qi(0) + Qi(1) = 1.
Similar calculations lead to the following formula for Qji(b)

Qji(b) = Pr
{
ci = b|y, {sj ′ = 0, j ′ ∈ M(i)\j }}

= αji Pr{ci = b|yi}
∏

j ′∈M(i)\j

Rj ′i (b) (2.256)

Let us now derive Rji(b) = Pr{sj = 0|ci = b, y}. Let us consider the case for which
ci = 0, i.e. we derive Rji(0). For that purpose we apply the following theorem.

Theorem 2.13.1 Consider a sequence of K independent binary symbols ai featuring prob-
ability Pr{ai = 1} = pi . The probability that the set {ai, i = 1, . . . ,K} contains an even
number of “1”s is equal to

1

2
+ 1

2

K∏
i=1

(1 − 2pi) (2.257)

One can prove by induction that the above result holds true. It can be directly applied
in the calculation of Rji(0), because we know that syndrome bit sj is equal to zero if
there is an even number of received symbols equal to 1 used to calculate this syndrome
check. Therefore, after replacing pi by Qji(1) in (2.257) we can write

Rji(0) = Pr{sj = 0|ci = 0, y}

= 1

2
+ 1

2

∏
i′∈N (j)\i

[
1 − 2Qji′(1)

]
(2.258)

Consequently

Rji(1) = 1 − Rji(0) (2.259)
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In order to be able to perform the sum-product algorithm we still have to derive the
probabilities Pr{ci = b|yi}, where b = 0, 1. Recall our assumption that the received block
y is the result of transmission of bipolar block x through the channel distorted by white
Gaussian noise, i.e. yi = xi + νi , i = 1, . . . , n, where xi = a(2ci − 1) and a is, as before,
the magnitude of a bipolar pulse representing a single bit. Let us start from Pr{ci = 1|yi}.
We have

Pr{ci = 1|yi} = p(yi |xi = a) Pr{xi = a}
p(yi)

= p(yi |xi = a) Pr{xi = a}
p(yi |xi = a) Pr{xi = a} + p(yi |xi = −a) Pr{xi = −a} (2.260)

Assuming a priori probabilities Pr{xi = a} = Pr{xi = −a} = 1/2, we receive

Pr{ci = 1|yi} = p(yi |xi = a)

p(yi |xi = a) + p(yi |xi = −a)
(2.261)

Knowing that for Gaussian additive noise the conditional probability densities are
described by formula

p(yi |xi) = 1

2
√

2πσ
exp

[
− (yi − xi)

2

2σ 2

]
(2.262)

we get

Pr{ci = 1|yi} = 1

1 + exp
(−2ayi/σ 2

) (2.263)

The sum-product algorithm can be summarized in the following steps:

1. For i = 1, . . . , n calculate Pr{ci = 1|yi} according to (2.263). Initiate Qji(1) =
Pr{ci = 1|yi} and Qji(0) = 1 − Qji(1) for all i and j for which hji = 1.

2. Update the values of Rji(b) (b = 0, 1) using equations (2.258) and (2.259) for all i

and j for which hji = 1.
3. Actualize the values of Qji(b) (b = 0, 1) using equation (2.256) and calculate the

normalizing constants αji .
4. For i = 1, . . . , n calculate

Qi(1) = αi Pr{ci = 1|y}
∏

j∈M(i)

Rji(1) (2.264)

and

Qi(0) = αi Pr{ci = 0|y}
∏

j∈M(i)

Rji(0) (2.265)

and the normalizing coefficient αi , taking into account the fact that Qi(0) + Qi(1) = 1.
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5. Find tentative hard decisions using (2.248) and check if s = H ĉ = 0. If the syndrome
is zero, stop the algorithm and deliver its decision ĉ. Otherwise go to step 2.

The sum-product algorithm has been presented above in its basic form. It has been
performed in the probability domain. There are more computationally efficient versions
of it in which, instead of probabilities, the likelihoods or log-likelihoods are applied;
however, this is beyond the scope of this introductory chapter. The interested reader is
recommended to study Lin and Costello (2004), Moon (2005) or Ryan (2004).

At the end of this section let us illustrate the operation of the sum-product algorithm
for the code used in the previous examples.

Example 2.13.3 Assume bipolar transmission with symbol amplitude a = 1 distorted by
statistically independent additive Gaussian noise samples. Let the signal-to-noise ratio be
on the level of 1.2 dB, so if the signal power is equal to unity the noise variance is σ 2 =
0.759. As in the previous examples, let the all-zero codeword represented by all-minus-one
symbol block of length n = 15 be transmitted. The received block is

y = [0.168, −0.662,−0.658, −2.487, −0.802,−0.403, −1.555, −1.873,−1.162,

−1.918,−1.062, −0.757, 0.196, −0.843, −1.472]

so hard decisions performed on it result in the binary block

r = [100000000000100]

with two errors, in the first and thirteen position, respectively. Syndrome calculation results
in the vector

s = Hr = [011010011000010]

which is nonzero, so the error correction procedure has to be applied.
First the algorithm has to be initialized. Based on the received block y, probabilities

Pr{ci = 1|yi} (i = 1, . . . , n) are calculated according to (2.263), resulting in the following
vector

Pr{ci = 1|yi}|ni=1 = [0.391, 0.851, 0.850, 0.999, 0.892, 0.743, 0.984, 0.993, 0.955,

0.994, 0.943, 0.880, 0.374, 0.902, 0.980]

The above vector entries are used to initialize Qji(1) and Qji(0) = 1 − Qji(1) (i =
1, . . . , n, j = 1, . . . , m) on those positions (i, j) for which hji = 1. Other positions (i, j)

in Qji(1) and Qji(0) matrices remain equal to zero.
After the above introductory steps the main iterative part of the decoding algorithm

can be started. First, according to step 2, values of Rji(b) (b = 0, 1) are updated using
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equations (2.258) and (2.259), resulting in the matrix[
Rji(0)

]
m×n

=



0 0 0 0 0 0 0 0.887 0.919 0 0.931 0 0 0 0.897
0.842 0 0 0 0 0 0 0 0.418 0.425 0 0.402 0 0 0

0 0.389 0 0 0 0 0 0 0 0.421 0.412 0 0.807 0 0
0 0 0.771 0 0 0 0 0 0 0 0.714 0.714 0 0.736 0
0 0 0 0.408 0 0 0 0 0 0 0 0.379 0.864 0 0.404

0.420 0 0 0 0.522 0 0 0 0 0 0 0 0.431 0.522 0
0 0.688 0 0 0 0.771 0 0 0 0 0 0 0 0.664 0.637

0.825 0 0.399 0 0 0 0.427 0 0 0 0 0 0 0 0.426
0.845 0.393 0 0.425 0 0 0 0.424 0 0 0 0 0 0 0

0 0.750 0.751 0 0.724 0 0 0 0.693 0 0 0 0 0 0
0 0 0.739 0.668 0 0.845 0 0 0 0.670 0 0 0 0 0
0 0 0 0.836 0.927 0 0.846 0 0 0 0.878 0 0 0 0
0 0 0 0 0.682 0.794 0 0.645 0 0 0 0.688 0 0 0
0 0 0 0 0 0.389 0.444 0 0.441 0 0 0 0.714 0 0
0 0 0 0 0 0 0.892 0.884 0 0.884 0 0 0 0.971 0


As each nonzero element Rji(1) = 1 − Rji(0), i.e. it is a complement of Rji(0) with respect
to unity, we omit the explicit presentation of matrix

[
Rji(1)

]
m×n

. Knowing already matrices[
Rji(0)

]
m×n

and
[
Rji(1)

]
m×n

, the algorithm is able to update the values of Qji(b) (b =
0, 1) using equation (2.256), which results in the matrix[

Qji(0)
]
m×n

=



0 0 0 0 0 0 0 0.868 0.451 0 0.890 0 0 0 0.363
0.991 0 0 0 0 0 0 0 0.991 0.985 0 0.958 0 0 0

0 0.960 0 0 0 0 0 0 0 0.985 0.999 0 0.986 0 0
0 0 1.000 0 0 0 0 0 0 0 1.000 0.998 0 1.000 0
0 0 0 0.984 0 0 0 0 0 0 0 0.973 0.985 0 0.990

0.997 0 0 0 0.995 0 0 0 0 0 0 0 0.995 0.998 0
0 0.987 0 0 0 0.999 0 0 0 0 0 0 0 1.000 0.996

1.000 0 1.000 0 0 0 1.000 0 0 0 0 0 0 0 0.999
0.997 0.989 0 0.993 0 0 0 1.000 0 0 0 0 0 0 0

0 0.993 0.999 0 1.000 0 0 0 0.999 0 0 0 0 0 0
0 0 0.991 0.977 0 0.993 0 0 0 0.985 0 0 0 0 0
0 0 0 0.883 0.978 0 0.973 0 0 0 0.994 0 0 0 0
0 0 0 0 0.956 0.874 0 0.963 0 0 0 0.423 0 0 0
0 0 0 0 0 0.998 0.997 0 0.994 0 0 0 0.995 0 0
0 0 0 0 0 0 0.994 0.998 0 0.981 0 0 0 0.997 0


Similarly, [Qji(1)]m×n has been omitted. The next step is the calculation of the estimates
of a posteriori probabilities according to (2.264) and (2.265). The resulting vectors are

[Qi(1)]|ni=1 = [0.015, 0.060, 0.009, 0.000, 0.002, 0.008, 0.001, 0.000, 0.003, 0.001,

0.000, 0.048, 0.032, 0.001, 0.003]

[Qi(0)]|ni=1 = [0.985, 0.940, 0.991, 1.000, 0.998, 0.992, 0.999, 1.000, 0.997, 0.999,

1.000, 0.952, 0.968, 0.999, 0.997]
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In the next step the algorithm finds tentative hard decisions using (2.248). The resulting
vector is

r = [000000000000000]

which is identical to the codeword generated in the transmitter. Clearly, checking the
parity Hr results in the syndrome s = 0, which ends the decoding algorithm.

Let us note that the algorithm corrected the received sequence in a single step by finding
two erroneous positions at once. The considered numerical example is very simple. If the
codeword length is of the order of a few thousand, the algorithm needs many iterations to
correctly decode the received sequence. Also, since computational complexity becomes
excessive, the sum-product algorithm is performed in the log-likelihood domain.

2.14 Error Detection Structures and Algorithms

As we have mentioned, in cases in which irregularity in data block transfer rate can be
tolerated and there is a simultaneous requirement for a very low error probability, error
detection with some mechanism of block retransmission is a common solution. We say
that the data transmission system is nontransparent . Data blocks arrive at the recipient
irregularly; however, their reliability is very high. A necessary condition for application of
an error detection procedure is the possibility of establishing a feedback channel from the
receiver to the transmitter. This channel is used to inform the transmitter about the results
of checking the correctness of the received data block. The traditional configuration of
an error detection system is shown in Figure 2.41.

CRC
encoder

Buffer

Tx Main channel

Feedback channel

Rx
CRC

decoder

ACK(n) / NAK(n)

an cn
anrn

Figure 2.41 System configuration with error detection coding and block repetition

User data are first formed in blocks, denoted in Figure 2.41 by a symbol an. These blocks
are then coded using a selected shortened cyclic code. Codewords cn are subsequently
transmitted over the main channel to the receiver. For each received block a syndrome is
calculated. When the syndrome is nonzero, the receiver signals detection of an erroneous
data block by sending a so-called negative acknowledgment NAK (Not-Acknowledged )
indicating the necessity of repeating the block. If the syndrome calculated by the receiver
is zero, it means that the decoder located in the receiver has not detected any errors in
the received block and a positive acknowledgment ACK (Acknowledge) is sent to the
transmitter. Retransmission of erroneous blocks is automatic, therefore this technique is
often denoted by the acronym ARQ (Automatic-Repeat-Request).
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The motivation for using a shortened cyclic code is as follows. The length of the
information block is usually determined by a particular application. Applying a polyno-
mial code for error detection results in calculation of the remainder from division of the
message polynomial by the generator polynomial g(x). In the case of cyclic codes the gen-
erator polynomial is a divisor of xn − 1, where n is the codeword length of a full-length
cyclic code. The applied code is often denoted by the abbreviation CRC (Cyclic Redun-
dancy Check ). The remainder from division of the message polynomial by the generator
polynomial calculated by the encoder is attached to the end of the message block and
constitutes a parity block. A few standardized generator polynomials g(x) are applied in
practice. The most important among them are (Held 1999)

CRC-16 (ANSI) g(x) = x16 + x15 + x2 + 1

CRC (ITU-T) g(x) = x16 + x12 + x5 + 1

CRC-12 g(x) = x12 + x11 + x3 + 1

CRC–32 g(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1

(2.266)

Let us check the error detection oportunities offered by a CRC code. For that purpose
we formally define an error burst.

Definition 2.14.1 An error burst of length b is a sequence of b bits in which the first
and the bth bit are erroneous and among the remaining b − 2 bits some other bits can be
erroneous too.

The following theorem states abilities of error burst detection using a linear block code.

Theorem 2.14.1 The application of a linear code with b parity bits is the necessary and
sufficient condition of detection of all error bursts of length b or smaller in a binary block
of length n.

Let us note that error burst detection capability does not depend on the block length n,
so the method is very useful when very long message blocks are applied. The blocks can
have different lengths, which can also be useful in some applications. In order to make
error detection possible, the receiver requires determination of the start and the end of
the block.

Now we will show that b parity bits are sufficient to detect all error bursts not longer
than b bits. Let us group all message bits into b-bit subblocks. Let the block of b parity bits
be attached to the end of each message block. In this way we have created a systematic
code with parameters

[
n, (n − b)

]
. Let the ith parity bit be a modulo-2 sum of the ith bits

of each b-bit subblock. Let us note that only one bit in any b-bit or shorter error burst
will influence a given parity bit, so the presence of the error burst will be detected. Such
a situation occurs in cases when an error burst is contained in a single subblock or when
it partially overlaps two neighboring subblocks. This case is illustrated in Figure 2.42.
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Figure 2.42 Detection of error bursts by a linear code of b parity bits

It turns out that application of a linear code, in particular a shortened cyclic code,
allows the detection of most error bursts longer than the number of parity bits. In order
to show this, we will prove the following theorem.

Theorem 2.14.2 A fraction of error bursts of length b > r , which remain undetected by a
cyclic code (n, k), where r = n − k, is 2−r when b > r + 1 and is equal to 2−(r−1) when
b = r + 1.

Proof. Assume without loss of generality that an error burst of length b bits appeared
starting from the ith bit in a block. This implies that it ends in the (i + b − 1)st bit. In
polynomial notation this error burst can be given in the form

e(x) = xib(x) (2.267)

where b(x) = xb−1 + · · · + 1 is a polynomial of degree (b − 1) that describes the error
burst. Because the error burst starts in the ith position and ends in the (i + b − 1)st
position, the coefficients of b(x) are equal to 1 for the polynomial components with the
power equal to (b − 1) and to zero. The remaining coefficients can take values equal to
zero or 1 depending on the current pattern of the error burst. Therefore, there exist 2b−2

different error bursts of length b bits. Because error detection is performed by dividing
the polynomial representing the received sequence by generator polynomial g(x), an
error burst will remain undetected if and only if the polynomial describing it, i.e. b(x),
is divisible by g(x). This implies that such an error burst can be written in the form

b(x) = g(x)Q(x) (2.268)

where Q(x) is a polynomial of degree
[
(b − 1) − r

]
. Consider three possible cases:

1. The degree of the polynomial b(x) is lower than the degree of the polynomial g(x),
which means that the error burst is shorter than r . Consequently, there is no such
polynomial Q(x), which when divided by g(x) results in polynomial b(x). As a result,
all error bursts shorter than r will be detected.
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2. The degree of the polynomial b(x) is equal to the degree of the polynomial g(x),
i.e. b − 1 = r . Then there exists exactly one polynomial b(x) that is divisible by the
polynomial g(x). This polynomial has the form b(x) = g(x). Then Q(x) = 1 and
there is a single undetected error burst. Because the number of different polynomials
describing error bursts of length b is equal to 2b−2, the fraction of undetected error
bursts is 1/2b−2 = 2−(r−1).

3. The degree of the polynomial b(x) is higher than the degree of the polynomial g(x).
The error bursts for which the polynomial b(x) is divisible by g(x) will remain unde-
tected. The result of such a division, i.e. the polynomial Q(x), is of

[
(b − 1) − r

]
degree. In consequence, the polynomial Q(x) has b − r coefficients and has the form

Q(x) = x(b−1)−r + · · · + 1 (2.269)

The coefficient at the highest power of x has to be equal to 1; otherwise, the polynomial
degree would be lower. In turn the “1” at zero power results from the fact that both b(x)

and g(x) have “1” in this position. Therefore there exist 2b−r−2 different polynomials
featuring this property. As a result, the fraction of undetected error bursts with respect
to all possible error bursts of length b is

2b−r−2

2b−2
= 2−r for b − 1 >r (2.270)

Let us illustrate the meaning of the above theorem. If we assume that bit errors in
a transmitted block occur independently and their probability is denoted as p, then, if
the length n of a tranmitted data block is high enough and probability p is small, the
probability of an erroneous block can be well approximated by PB ≈ np. If a CRC code
with r parity bits is applied, the fraction of undetected error bursts will be 2−r , therefore
the probability of undetected erroneous block will be

Pe = np2−r (2.271)

Table 2.7 presents the values of probability Pe for different block lengths n and degrees
r = n − k of the polynomial g(x). These values have been achieved under the assumption
that the probability of a single bit error is p = 10−5. As we can see, error detection using
a CRC code ensures very low block error probability; however, in order to be useful, a
possibility to retransmit erroneous blocks has to exist.

Table 2.7 Probability of undetected error burst
for different block lengths n and parity block
lengths r

n r Pe

500 8 2 × 10−5

500 16 10−7

1000 16 2 × 10−7

1000 32 4 × 10-12
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2.15 Application of Error Detection – ARQ Schemes

We have already learnt about effective ways to perform error detection in received data
blocks. Consider now basic strategies of nontransparent transmission, in which after detec-
tion of an erroneous block a feedback message is sent to the transmitter, informing it
about necessity of block retransmission. There are many data transmission services that
take advantage of this kind of strategy – mostly those services that do not require sending
data at constant rate or constant delay – but their crucial features are reliability and low
probability of undetected block error. An example of such a service is the transmission of
banking data. Data transmission in mobile networks is also often organized in this way.
The information exchange with block retransmission upon request is applied in many
protocols of the data link layer of the Open System Interconnection (OSI) description
model (Wesołowski 2002).

Consider the system shown in Figure 2.41. We will present three basic ARQ strategies
(although others exist as well) that differ in the required size of buffers applied in a
transmitter and receiver and, what is more important, in the data transfer efficiency. The
three basic ARQ strategies, presented in Figure 2.43, are (Lin and Costello 2004):

• stop-and-wait ARQ (Fig. 2.43a);
• go-back-N ARQ (Fig. 2.43b);
• selective-repeat ARQ (Fig. 2.43c).

The first technique is very easy to implement but its efficiency can be low if it is
applied in a transmission system in which a significant delay occurs in the transmission
chain. The transmitter sends a data block supplemented with parity bits and waits for
acknowledgment, i.e. the message ACK, which has to be transmitted over the feedback
channel. If this message does not arrive within a given maximum time period or if the
transmitter receives negative acknowledgment (NAK), the transmitter sends the same
block again. When the ACK message is received by the transmitter, the next data block
is sent. The time between the end of transmission of a given block and the beginning
of transmission of the next block is wasted. This is the main reason for the potentially
low efficiency of this strategy. The efficiency can be improved by lengthening the data
blocks; however, as a result, the probability of their failure increases (cf. the formula
PB ≈ np), so the frequency of block retransmission also increases. Block lengthening
may be impossible in some applications.

Let us estimate the transmission efficiency of the above strategy. An example of a
single data block transmission and its acknowledgment is shown in Figure 2.44. The
following notation has been applied for respective time intervals: Tp – propagation time
between transmitter and receiver of a data block or an acknowledgment block (in reverse
direction), Tb – data block duration in time units, Tbp – delay due to data block process-
ing in the receiver (e.g. due to applying the error detection procedure), Ta – duration
of an acknowledgment block, Tap – delay due to acknowledgment block processing in
the transmitter. In practice, when the stop-and-wait ARQ technique is applied, process-
ing times of data blocks and acknowledgment blocks are very short compared with the
duration Tb of data transmission block. Also the duration of an acknowledgment block
is much shorter than the time needed for transmission of a data block. Consequently, the
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Figure 2.43 Illustration of basic ARQ techniques: (a) stop-and-wait, (b) go-back-N , (c)
selective-repeat (Lin and Costello 2004)

Block(n) Block(n+1)

Block(n)

Transmitter

Receiver

ACK(n)

Tp Tb Tbp Tp TaTap

Figure 2.44 Timing scheme of stop-and-wait ARQ strategy
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time span between transmission of subsequent blocks can be well approximated by the
sum Tb + 2Tp. Therefore, transmission efficiency is equal to

η = Tb

Tb + 2Tp

= 1

1 + 2α
, where α = Tp

Tb

(2.272)

Note that we have calculated the transmission efficiency for an ideal situation in which
block retransmissions do not occur. In reality, the probability of an erroneous block
occurrence is nonzero, which implies a nonzero probability of block retransmission, which
in turn leads to a decrease in transmission efficiency. Let Np attempts of transmission of a
single block occur. In a typical situation this number is only slightly higher than 1, which
means that a small number of data blocks need to be retransmitted. As we remember, the
probability of an erroneous block is PB ≈ np. Thus, the probability of a correct block
reception is 1 − PB . Therefore the mean number of a single block transmission attempts is

Np = 1

1 − PB

(2.273)

Then from (2.272) we have

η = Tb

NpTb + 2NpTp

= 1

Np(1 + 2α)
= 1 − PB

1 + 2α
(2.274)

This formula has been achieved under the assumption that the probability of erroneous
reception of the acknowledgment (positive or negative) block is vanishingly low compared
with the probability of data block error. This assumption is fully justified. As one can
conclude from formulae (2.272) and (2.274), transmission efficiency of the stop-and wait
ARQ strategy with waiting for acknowledgment strictly depends on the ratio of data block
propagation time to block transmission time and the probability of erroneous reception of
a data block. Let us determine transmission efficiency for a few representative examples
of transmission systems (Halsall 1996).

Example 2.15.1 Data blocks of length 1000 bits are transmitted using the stop-and-wait
ARQ strategy. Determine a transmission efficiency η in the following data links for two
data rates: (a) 1 kbit/s, (b) 1 Mbit/s. Assume for simplicity that the signal propagation
velocity in the channel is v = 2 × 108 m/s and the binary error probability is very small.
Consider three data links: (1) a twisted copper pair of length l = 1 km, (2) a leased line
of length l = 200 km, (3) a satellite link of length l = 50000 km. Duration of a data block
is determined by the formula

Tb = Number of bits in the data block N

Transmission velocity [bit/s]
(2.275)

whereas signal propagation time results from the expression

Tp = Link length l [m]

Propagation velocity v [m/s]
(2.276)
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Table 2.8 Effciency of the stop-and-wait ARQ strategy for different link lengths and data
transmission rates

Kind of link Transmission rate Parameter α Efficiency η

Twisted copper pair 1 kbit/s 5 × 10−6 ≈1
l = 1000 m 1 Mbit/s 5 × 10−3 ≈1

Leased line 1 kbit/s 1 × 10−3 ≈1
l = 200 × 103 m 1 Mbit/s 1 0.33

Satellite link 1 kbit/s 0.25 0.67
l = 50 × 106 m 1 Mbit/s 250 0.002

Substituting data values for transmission rates and data link lengths, we achieve the effi-
ciency values presented in Table 2.8.

Based on these simple examples one can easily conclude when the application of the
stop-and-wait ARQ strategy is reasonable. This technique is very useful if the duration
of a data block is significantly longer than the signal propagation time in the channel.

Consider now the second ARQ strategy, i.e. go-back-N . This time, the transmitter
does not wait for acknowledgment of the transmitted block, but it subsequently sends
the next blocks. Till the moment of acknowledgment of correct reception a given block
is stored in a transmitter buffer. The size of the buffer has to be selected by taking into
account a maximum time period that can pass until the acknowledgment related to a given
transmitted block is received by the transmitter. This time period is determined both by
signal propagation through the channel and duration of a data block. If the maximum
number of data blocks stored in a buffer is denoted as K , then the buffer memory is
sufficient if the following condition is fulfilled

KTb >Tb + 2Tp i.e. K > 1 + 2α (2.277)

A given data block is deleted from the buffer after reception of positive acknowledgment
(ACK). If a negative confirmation is received, the transmitter sends subsequent blocks
once more, starting from that one for which a positive acknowledgment has not been
received. Consequently, it is sufficient to apply the buffer in the transmitter only. The
receiver marks the blocks received after the erroneous one as erroneous blocks by sending
the NAK block until correct reception of the data block that had been previously received
in error occurs. The inefficiency of this technique results from repeated transmission of
correctly received blocks if they were preceded by a damaged one.

The third strategy, i.e. the selective-repeat ARQ strategy, does not have the disadvantage
of the go-back-N technique considered above. However, the price to pay is the necessity
of the data block buffer both in the transmitter and the receiver. It is also necessary to
number transmitted blocks modulo-Nmax in order for the transmitter to know which data
block needs to be retransmitted. The transmitter learns it by reception of the NAK block
with the number of the data block that has to be transmitted again. The buffer in the
receiver is indispensable because it enables the correct ordering of the data blocks in case
some of them are retransmitted.
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Consider now the transmission efficiency for the selective-repeat ARQ strategy. This
strategy and the previous one do not differ in efficiency when the data blocks are received
without errors. Assume for a moment that the probability of data block damage is neg-
ligible and the buffer in the transmitter allows K recent data blocks to be stored. If the
number of stored blocks is sufficiently high so that it compensates for such a delay i.e.
that an acknowledgment block related to the oldest stored data block arrives within this
time period, then transmission efficiency is η = 1. However, if the signal propagation
time is so high that the buffer is filled before the acknowledgment block related to the
oldest data block stored in the buffer arrives, then transmission has to be halted until the
expected acknowledgment block is received. Thus, only part of the time between subse-
quent blocks can be utilized for transmission and only K blocks can be sent in the round
trip delay time. As a result, transmission efficiency is given by the formula

η = KTb

Tb + 2Tp

= K

1 + 2α
if K < 1 + 2α (2.278)

Now let us extend our considerations to the case when the block error probability cannot
be neglected. First consider the selective-repeat ARQ strategy. If the buffer capacity is
sufficiently large to allow continuous operation of the transmitter until acknowledgment
of a given data block is received, then transmission efficiency is η = 1 − PB , where, as
before, PB is the probability of reception of an erroneous data block. However, if the
buffer capacity is not sufficient, then we calculate the efficiency as in formulae (2.273)
and (2.274) and we obtain

η = KTb

Np(Tb + 2Tp)
= K(1 − PB)

1 + 2α
(2.279)

The author suggests that the reader would derive the transmission efficiency for the
go-back-N ARQ strategy when the probability of erroneous block reception is not negli-
gible. The results of these calculations would be the following

η =


K(1 − PB)

(1 + 2α)
(
1 + PB(K − 1)

) for K < 1 + 2α

(1 − PB)

1 + PB(K − 1)
for K ≥ 1 + 2α

(2.280)

Example 2.15.2 (Halsall 1996) A sequence of 1000-bit blocks is transmitted over the
link of length 100 km at 20 Mbit/s data rate. Let the signal propagation velocity be v =
2 × 108 m/s, and let the probability of binary error be p = 4 × 10−5. Derive the trans-
mission efficiency for all three considered ARQ strategies. In the case of transmission
with go-back-N or selective-repeat strategies the size of buffer K is assumed to be 10.
Substituting the parameters given in this example to formulae (2.275) and (2.276) we
receive the transmission time for a data block and the signal propagation delay, which
are Tb = 5 × 10−5 s and Tp = 5 × 10−4 s, respectively, so the value of the parameter
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α is 10. We conclude that 1 + 2α = 21, i.e. K < 1 + 2α. Probability of an erroneous
data block reception can be approximated by the formula PB ≈ np, so we receive PB ≈
1000 × 4 × 10−5 = 4 × 10−2. In turn, 1 − PB = 0.96. Substituting the calculated param-
eters to formulae describing transmission efficiency, we obtain

η =



1 − PB

1 + 2α
= 0,046 for stop-and-wait ARQ

K(1 − PB)

(1 + 2α)[1 + PB(K − 1)]
= 0,336 for go-back-N ARQ

K(1 − PB)

1 + 2α
= 0,46 forselective-repeat ARQ

As one could expect, for the given transmission and propagation parameters,
the selective-repeat ARQ strategy features the highest transmission efficiency. The
stop-and-wait ARQ technique results in very poor link utilization because the signal
propagation delay is ten times longer than the time needed for transmission of a single
data block and waiting for acknowledgment of a transmitted block takes most of the
time.

Despite disadvantages of the stop-and-wait AQR technique, it seems to be very useful
if there are N stop-and-wait ARQ processes applied in an interleaved manner. In this way
the idle time period in which the transmitter waits for the positive acknowledgment of
the transmitted block is used by other ARQ processes performed in parallel.

2.16 Hybrid ARQ

So far we have considered the application of cyclic codes in error detection and we have
concentrated on three basic strategies of block exchange associated with CRC codes.
However, one could think about more sophisticated schemes in which both error detection
and correction are applied. This leads us to hybrid ARQ configurations. The general idea
is to apply an error correction code that is able to correct a limited number of typical
error patterns; however, the detection capability of the same code or of the outer code
is additionally used. Although for small values of bit error probabilities this scheme has
lower efficiency than a scheme in which only error detection is used, for higher values
of bit error probabilities the block retransmission is expected to be much less frequent
compared with a pure ARQ scheme because after correction of typical error patterns
retransmissions are not needed so often.

Hybrid ARQ schemes are divided into two types.

2.16.1 Type-I Hybrid ARQ

The type-I hybrid ARQ is the simpler type of the two hybrid ARQ schemes. It can
be implemented by applying either two codes or a single code. First let us consider a
two-code system. Let the length of the transmitted block be equal to k. Blocks of length
k are first encoded using an (n, k) error detecting code. Typically, a CRC code is applied.
The resulting packets of length n are subsequently encoded by an FEC (n1, n) code. At
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the receiver the blocks are first decoded by the FEC decoder. Due to its operation typical
error patterns can be corrected and the resulting blocks of length n are sent to the error
detection code decoder. If, despite error correction in the FEC decoder, further errors are
detected, the feedback message requesting retransmission is sent to the transmitter and
the whole encoding process starts again. In the case of no error detection, the k-bit packet
is transferred to the recipient.

The type-I hybrid ARQ can also be applied using a single FEC code. Typically, a block
code is applied. Let the block code have the minimum distance dmin. Its value can be
partitioned into two parts, l and λ, such that dmin ≥ l + λ + 1, where λ is the number of
correctable errors and l is the number of detectable errors in a received block (l > λ). As
we can see, the error correction capability is not fully exploited but the coding capability is
partially used in error detection. The ability to correct λ errors is achieved by construction
of a specific decoding algorithm that is based on the appropriately selected set of parity
check equations. After error correction in the FEC decoder (usually requiring syndrome
calculation) the syndrome of the corrected block is calculated again. If it is zero, this
means that either there were no errors or they have been corrected by the FEC decoding
algorithm. If the recalculated syndrome is nonzero, the retransmission request message is
sent back to the transmitter.

Another approach in using a single code for the type-I hybrid ARQ relies on application
of a block code that is not perfect. Thus, some error patterns can be detected, although
they are beyond the correction capabilities of the decoder. In the case of occurrence of
such errors, retransmission of the codeword is requested. All correctable error patterns
are processed in the decoder and retransmission is not required. Reed-Solomon codes are
an excellent example of block codes in such application (Wicker 1995). Another example
of a single code that can be used in the type-I hybrid ARQ is given in (Lin and Costello
2004). This code is the (1023, 923) BCH code. Its minimum distance is dmin = 21. It can
be applied to correct at most five errors, although it is able to detect all error patterns
featuring more than five and less than sixteen errors. Thus, retransmission requests will
take place if an error pattern containing more than five errors occurs.

2.16.2 Type-II Hybrid ARQ

Let us note that in type-I hybrid ARQ systems retransmission of the whole codeword
occurs if uncorrected errors are detected in the receiver. The type-II hybrid ARQ goes one
step further in achieving higher system throughput. It is obtained by using the incremental
redundancy approach. Both convolutional and block codes can be applied to implement
this ARQ scheme. Generally, as a result of a retransmission request message the transmit-
ter does not send the whole codeword again, but it sends some additional parity bits that
have been calculated but not sent to the receiver. They allow the decoder to decode the
previously received block again. The block is now supplemented by newly added parity
bits. Thus, a stronger code has been applied that has higher error correction capabilities
than its previously used punctured version. This strategy can be realized a few times until
the full number of parity bits is used by the decoder. If errors are still detected, the whole
procedure starts from the beginning.

As an example consider a classical type-II ARQ scheme using two codes. The first one,
denoted as C1, is a high rate (n, k) error detection code, e.g. CRC code. The second code,
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denoted as C2, is a 1/2-rate (2k, k) block code used both for detection and correction.
The applied code is called invertible. This feature means that knowing only the parity
check symbols of a codeword, the message symbols that have implied these parity check
symbols can be uniquely determined from them in an inversion process .

Let us present the operation of the type-II hybrid ARQ scheme with an invertible code.
Let the subject of transmission be a k-bit message block m. First, this block is encoded
using the error detection code C1, which results in a codeword v = [p(m), m], where
p(m) is a block of n − k parity check bits. The codeword is transmitted to the receiver.
However, the transmitter simultaneously calculates parity bits of the (2k, k) inverse code
C2, so a codeword [q(m), m] is generated. The calculated parity bits q(m) are stored in the
transmitter in case they are needed in the retransmission procedure. Denote the received
block as ṽ = [p̃(m), m̃]. First, based on the received block ṽ the receiver calculates the
syndrome of the code C1. If the syndrome is zero the receiver accepts the message block m̃
and sends ACK to the transmitter. On the other hand, a nonzero syndrome indicates errors
contained in the received block ṽ. The received message block m̃, possibly containing
errors, is stored in the receiver and the negative acknowledgment NAK block is sent
back to the transmitter. In this case the transmitter encodes the k-bit parity block q(m)

previously generated by the inverse code C2 using the error detection code C1. As a result
the codeword v′ = {p[q(m)], q(m)} is transmitted. Let us note that in fact for a moment
a parity block q(m) from the (2k, k) inverse code plays the role of a message block. Let
the received block be denoted as ṽ′ = {p̃[q(m)], q̃(m)}. If the syndrome calculated on the
basis of ṽ′ is zero then one can assume that the block q̃(m) does not contain errors, so the
message block m can be recovered from it in the inversion process. On the other hand,
if the syndrome is nonzero, the message block m̃ received in the previous step and the
block q̃(m) received recently are concatenated into a single block [̃q(m), m̃] of the (2k, k)

code. This block is subsequently decoded. If the error correction process is successful,
the obtained message block is accepted and the ACK message is sent to the transmitter.
If the C2 decoder detects an uncorrectable error pattern, the received message block m̃ is
deleted but the parity check block q̃(m) is stored for further processing. A NAK is also
sent to the transmitter. After receiving the NAK again the transmitter repeats transmission
of the codeword v = [p(m), m]. The procedure is similar to the previous one. Again, if
the syndrome based on the received block ṽ = [p̃(m), m̃] is zero, the block m̃ is accepted
as a message block and the ACK message is issued to the transmitter. If it is not, the
recently received block m̃ and the previously received block q̃(m) form a received block
being the subject of error correction decoding. If the error pattern contained in the block
[̃q(m), m̃] is correctable, the message block is recovered in the decoding process and
the ACK message is sent to the transmitter. If the detectable but uncorrectable errors
are contained in the block [̃q(m), m̃], the NAK message is sent again and the parity
block q(m) is coded by the C1 code. Thus, the retransmission process has an alternating
character. It is continued until the message m is correctly received or the number of
retransmissions reaches the allowable maximum value indicating that the link quality is
unsatisfactory.

At this state of our description of the type-II hybrid ARQ scheme let us show how
the inversion process of a (2k, k) code can be implemented. Shortened cyclic codes are
applied as inversion codes. In (Lin and Costello 2004) an example of the (1023, 523)

BCH code shortened to the (1000, 500) code is considered. The inversion process of a
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half-rate block code is based on the theorem that states that there are no two codewords in
a half-rate shortened cyclic code that have the same parity check blocks (Lin and Costello
2004). Thus, the message part of the codeword is uniquely related to the parity check part.
As we remember from our considerations on the generation of a codeword of a systematic
polynomial code, the parity check bits are received by division of the message polynomial
xn−km(x) by the generator polynomial g(x), resulting in the remainder p(x), i.e.

xn−km(x) = a(x)g(x) + r(x) (2.281)

We want to recover the message polynomial from the parity polynomial r(x). Let us
multiply both sides of (2.281) by xk, which results in

xnm(x) = a(x)g(x)xk + r(x)xk (2.282)

Adding m(x) twice5 to the left side of (2.282), we have

(xn + 1)m(x) + m(x) = a(x)g(x)xk + r(x)xk (2.283)

However, for the (n, k) cyclic code the generator polynomial is a divisor of xn + 1 so
xn + 1 = g(x)h(x). From (2.283) we conclude that

r(x)xk = [m(x)h(x) + a(x)xk]g(x) + m(x) (2.284)

The last equation indicates that we can recover the message polynomial m(x) by dividing
the parity check polynomial r(x) multiplied by xk by the generator polynomial g(x). The
remainder of this division is the desired message polynomial m(x). This operation can
be performed in a typical circuit of a polynomial code encoder similar to that shown in
Figure 2.5. Let us note that n = 2k in our case, so xn−k = xk .

At the end of our description of the type-II hybrid ARQ let us consider application
of convolutional codes in this type of ARQ strategy (Figure 2.45). This approach has
been realized in data transmission over GSM/GPRS/EDGE cellular networks and is con-
ceptually very simple. Let the data block of length k be first encoded using an error
detecting code such as a CRC code, which results in the block of length n bits. Next,
the n-bit block is 1/3-rate convolutionally encoded. This leads to the block of length
3n. Let us note that transmission over wireless channels very often requires strong FEC
coding anyway, in order to achieve satisfactory bit error rate performance. In our case
the FEC code is utilized not only in error correction but also in the hybrid ARQ mech-
anism. Subsequently the 3n-bit block is a subject of two types of puncturing according
to patterns P1 and P2, respectively. Each of them leaves n bits out of a 3n-bit block
and they are disjoint. Thus, the n-bit block resulting from the puncturing pattern P1 is
transmitted first. As we can see, the code rate of the punctured convolutional code cre-
ated in this way is equal to 1. The received soft-decision samples are subject to FEC
decoding (mostly using the Viterbi algorithm). The punctured sample positions are filled
with zeros. The resulting n-bit block is checked for correctness using the CRC error

5 Recall that m(x) + m(x) = 0.
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Figure 2.45 Type-II hybrid ARQ with application of CRC and convolutional codes (illustration
of incremental redundancy principle)

detecting code decoder. If the syndrome is zero, the ACK message is issued for the
transmitter. If the syndrome is nonzero, the NAK message is sent back to the transmit-
ter and the second n-bit block resulting from puncturing using pattern P2 is transmitted.
The received n samples partially fill the zeros in the stored sample vector received in
the previous step of the ARQ transmission. Thus, 2n out of 3n samples are now avail-
able for the Viterbi decoder. As we can see, the code rate is now equal to 1/2. After
repeated convolutional code decoding and checking the correctness of the decoded block
by the CRC decoder, the ACK or NAK message is sent to the transmitter. In the lat-
ter case the remaining n-bit block is sent to the receiver, so finally the decoder can
take advantage of 3n samples and the applied convolutional code has the original code
rate of 1/3. If errors are still detected, the whole procedure starts from the beginning.
Figure 2.45 illustrates the incremental redundancy principle in the hybrid ARQ procedure
with a convolutional code. Let us note that due to memorizing the received samples for
later use the application of the soft-decision decoding algorithm is a natural consequence
thereof.

Let us also note that in general the hybrid ARQ scheme is accompanied in its acknowl-
edgment message exchange part by one of the above-described regular ARQ schemes
such as stop-and-wait, go-back-N or selective-repeat strategies.

Despite the relatively large size of this chapter devoted to the protection of digital
messages against errors, we have only sketched basic topics of the channel coding theory.
After considering classical topics in coding theory we attempted to clarify the idea of
turbo coding and presented basic information on the idea and decoding of LDPC codes.
Channel coding is the subject of advanced academic handbooks and monographs, so the
author encourages a more interested reader to study them individually.
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Problems

Problem 2.1 A transmitter sends binary blocks of length n over a transmission channel
that can be modeled as a binary symmetric memoryless channel featuring the error prob-
ability p. What is the probability of the event that the number of errors occurring during
transmision of a single block does not exceed k?

Problem 2.2 Consider the (5, 2) code described in Example 2.1.1 and the channel model
from Problem 2.1. Let the error probability of a single bit be p = 0.001.

1. Calculate the probability of errorless reception of a codeword.
2. Calculate the probability that the decoder will correct a transmission error.
3. Calculate the probability that the decoder will detect transmission errors.
4. Calculate the probability that the decoder will commit an error during the decoding

process, i.e. it will assign a wrong codeword to the received sequence.
5. Is the code from Example 2.1.1 linear? What is the minimum distance of the code?

Problem 2.3 Plot the probability of reception of a particular sequence r that differs in
D concrete positions from the transmitted sequence c. Make the plots for several lengths
of sequences n as a function of D. Let n be equal to 10, 50 and 100. Let the parameter D

vary between 0 and 5. Write a computer program that calculates the required probabilities.

Problem 2.4 Consider the bipolar input memoryless channel model shown in Figure
1.19a with the Gaussian noise as an additive distortion. Before implementing suboptimal
soft-decision decoding, the signals are quantized by a uniform 8-level quantizer with the
thresholds shown in Figure 1.19b. Assume signal power P = A2 and the noise variance
σ 2. For a given SNR = P/σ 2 construct a binary input 8-ary output memoryless chan-
nel model, shown in Figure 1.19c, and calculate the transition probabilities Pr{i|A} and
Pr{i| − A} (i = 0, . . . , 7) between inputs and outputs. If you like to use Matlab for calcu-
lation of these probabilities you can use the function y = qfunc(x), which calculates the
value of 1 minus the cumulative distribution function of the normalized Gaussian random
variable (σ 2 = 1) for the argument x, according to the formula

Q(x) = 1√
2π

∞∫
x

exp[−t2/2]dt

Otherwise use the table of Q-function, available in the Appendix. The resulting discrete
memoryless channel model describes the distribution of symbols at the input of the subop-
timum soft-decision decoder in the system shown in Figure 2.46.

 
xn=±A yn

 vn
Binary to 
bipolar

converter

Binary
encoder

Input
block Soft-input

decoder

Output
block

Binary input 8-ary output channel model

Figure 2.46 System with a binary input 8-ary output channel and soft-input decoder
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Problem 2.5 Let the codewords of the block code be described by the following formula
(Clark and Cain 1981)

c = (c1, c2, c3, c4, c5, c1 + c2 + c4 + c5, c1 + c3 + c4 + c5,

c1 + c2 + c3 + c5, c1 + c2 + c3 + c4)

Determine the code parameters (n, k), construct the parity check matrix H and find the
minimum distance dmin of this code.

Problem 2.6 Construct the generator matrix for the code from Problem 2.5.

Problem 2.7 Construct the parity check and generator matrices for the repetition codes
of lengths n = 3, 5 and 7. What is the minimum distance of these codes?

Problem 2.8 Consider the (7, 4) Hamming code with the parity check matrix given by
formula (2.37).

1. Find the generator matrix of this code.
2. Find all the codewords of this code.
3. Construct the optimum decoding table for the code. Show that this code is perfect.
4. Find the syndrome of the received sequence r = (0111011).
5. Draw a logical diagram of the syndrome calculator that uses only basic properties of

the parity check matrix.
6. As we know, the (7, 4) Hamming code is also generated by the polynomial g(x) =

x3 + x + 1. Draw the schemes of the encoder for the nonsystematic and systematic
versions of the code.

Problem 2.9 Consider the cyclic (15, 11) Hamming code generated by the polynomial
g(x) = x4 + x + 1.

1. Create a generator matrix G for this code.
2. Transform the received generator matrix to the canonical form and find the correspond-

ing parity check matrix H .
3. Check if the polynomials r1(x) = x13 + x10 + x7 + x6 + x5 + x3 + x + 1 and r2(x) =

x12 + x11 + x7 + x6 + x5 + x4 + x3 + x + 1 describe codewords of the (15, 11) Ham-
ming code. Calculate syndromes for them.

Problem 2.10 Construct multiplication and addition tables for GF(5) and find the mul-
tiplicative and additive inverse elements for each nonzero element of GF(5).

Problem 2.11 Solve Problem 2.10 for GF(7).

Problem 2.12 GF(32) is generated using the primitive irreducible polynomial p(x) =
x5 + x2 + 1. Generate the table of powers of a primitive element α of this field and find
their polynomial representation.

Problem 2.13 Consider three block codes of length n = 31. Using the table of GF(32)

derived in Problem 2.12 find the generator polynomial g(x) for the following codes:

1. The Hamming code.
2. The maximal-length code.
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3. The BCH code able to correct two errors.

Problem 2.14 Consider the (15, 7) BCH code whose generator polynomial g(x) was
derived in Example 2.5.4.

1. Draw the scheme of the encoder based on the generator polynomial g(x).
2. Determine the parity check matrix and generator matrix of this code.
3. Check if this code is a cyclic code. If it is, determine the parity check polynomial h(x)

and sketch the encoder based on it.

Problem 2.15 Use GF(7) from Problem 2.11 with the primitive element α = 5 to con-
struct a Reed-Solomon code of length n = 6 that is able to correct a single error (t = 1).

1. Check if α = 5 is really a primitive element of GF(7).
2. Derive the generator polynomial g(x) for this RS code and determine code parameters

(n, k).
3. Draw the scheme of a codeword generator based on division by g(x) and calculation

of the remainder. Alternatively, find the scheme of a codeword generator performing
multiplication of the information block polynomial by the generator polynomial.

Problem 2.16 Consider the Meggitt decoder of the (15, 7) BCH code from Problem 2.14
in the version shown in Figure 2.13.

1. Determine all syndromes that have to be recognized by the logical circuit denoted in
Figure 2.13 as ê(x) = f [s(x)] resulting in the symbol 1, which corrects the shift register
output.

2. Let the all-zero sequence of the (15, 7) BCH code be transmitted and let the received
sequence have the polynomial form r(x) = x13 + x9. Trace the operation of the Meggitt
decoder and show how the errors are gradually corrected.

3. Supplement the decoder scheme with the feedback from the output of the logical circuit
recognizing the syndromes to the decoder input, such as that shown in Figure 2.15.
Determine which syndromes have to be recognized by the logical circuit producing
“1”s at its output and trace the operation of the Meggitt decoder for the input sequence
r(x) = x13 + x8 + x4 if the all-zero sequence was transmitted. Check if the decoder is
able to correct this triple-error sequence.

Problem 2.17 Consider the majority decoder with the feedback shown in Figure 2.15 for
the (15, 7) BCH code [g(x) = x8 + x7 + x6 + x4 + 1]. Track the operation of the decoder
for the input sequence r(x) = x13 + x8 + x4 if the all-zero sequence was transmitted.

Problem 2.18 Repeat the calculations performed in Example 2.6.2 for soft-decision
information set decoding of the Hamming code codewords if the received sequence has
the form r = (2760321).

Problem 2.19 Consider the (15, 7) cyclic BCH code [g(x) = x8 + x7 + x6 + x4 + 1]
again. This time we analyze decoding based on information set decoding in the version
called error trapping decoding. The decoder is shown in Figure 2.47 and its operation is
the following. During the first n clock cycles the received sequence is fed simultaneously
to the input of the syndrome calculator and to the shift register. During the next n cycles
the subsequent versions of the syndrome for the rotated input sequence are calculated and
their weight is checked to find whether it is at most equal to 2. If such a syndrome is
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Figure 2.47 Error trapping decoder for the (15,7) BCH code

observed, it indicates errors on current parity check positions. At this moment the switches
are shifted to Position 2 and the sequence is shifted out of the register with simultaneous
error correction implemented by adding modulo-2 the current syndrome bits with the bits
contained in the part of the shift register following the adder. Assume that the sequence
r(x) = x13 + x9 is received. Trace the operation of this decoder.

Problem 2.20 Repeat the procedure of decoding the all-zero codeword for (15, 5) BCH
code considered in Example 2.7.1 using the iterative Berlekamp-Massey algorithm when
the received sequence has the polynomial form r(x) = x11 + x6 + x. Perform the subse-
quent decoding steps and write them in a table similar to Table 2.5.

Problem 2.21 Consider the convolutional code of the coding rate R = 1/3 that is deter-
mined by the generator polynomials g1(x) = 1 + x2, g2(x) = 1 + x + x2 and g3(x) =
1 + x + x2.

1. Draw the tree, state diagram and trellis for this code.
2. Determine the generator matrix.
3. Draw the diagram used for derivation of the transfer function and determine the transfer

function for this code.
4. What is the free distance of this code?
5. Show a few shortest error events on the trellis diagram of the code and compare them

with the few first terms of the code transfer function expressed in the form of a series.

Problem 2.22 Solve Problem 2.21 for a systematic convolutional code of the coding rate
R = 1/2 determined by the generator polynomials g1(x) = 1 and g2(x) = 1 + x + x3.

Problem 2.23 Show the subsequent steps of the Viterbi algorithm working in the
hard-decision mode and decoding the received sequence

111 100 111 101 100 011 111 111 011 111
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when the encoder is determined by the generator polynomials given in Problem 2.21. If
the costs of two paths reaching the same trellis state are identical, use the same rule to
choose the survivor, e.g. always choose the upper state. Assume that the zero state is the
initial state of the encoder and that this fact is known to the decoder.

Problem 2.24 Solve Problem 2.23 for the same code and the Viterbi algorithm working
in the soft-decision mode when the received sequence is

565 421 455 714 424 245 675 657 245 444

Problem 2.25 Solve Problem 2.23 for the RCPC code of the coding rate R = 4/5 shown
in Figure 2.22a, whose puncturing table is given by formula (2.123). We assume that the
Viterbi decoder works in the hard-decision mode. The received sequence is

11 1 1 0 11 0 1 0 10 0 1 1

What is the free distance of this code?

Problem 2.26 Consider two equivalent convolutional codes – a nonsystematic code and
a recursive systematic code – whose encoders are shown in Figure 2.35. Determine their
trellis diagrams, compare them and draw conclusions.

Problem 2.27 Consider the (15, 7) BCH code whose parity check matrix in the extended
form is given by formula (2.239). Assume that the encoder has generated the all-zero
codeword. Write computer programs performing the LDPC code decoding for the following
algorithms:

1. Bit-flipping algorithm,
2. Weighted bit-flipping algorithm,
3. Sum-product algorithm.

Test the programs performing the respective algorithms for the following received
sequences:

1. r = (010001000000000) for bit-flipping algorithm,
2. r = (−0.1, 0.2, −0.8,−0.6, −0.3, 0.3, −0.9,−0.1, −1.0,−0.5, −0.09,−0.7, −0.99,

−0.32, −1.2) for weighted bit-flipping and sum-product algorithms.



 



 

3
Digital Baseband Transmission

3.1 Introduction

In this chapter we will consider the ways in which a binary stream generated by a binary
message source such as a PCM codec, a sound or video encoder, or a computer terminal
can be transformed into a sequence of signals transmitted through the channel. Signals
carrying digital messages can be transmitted by a passband or baseband channel. Methods
and ways of transmission over passband channels, in particular digital modulations, will
be the subject of our considerations in the next chapter. The current chapter is devoted
to baseband transmission methods. A channel that can be used for baseband transmission
passes spectral components of the signal in the range of frequencies from around DC up
to a certain limit frequency W . Examples of such channels are a copper wire pair and
a coaxial cable. For technical reasons the DC signal component is often eliminated and
very low frequencies contained in the signal are attenuated. This is often done to preserve
galvanic separation of the receiver and the channel. A transformer is often applied for this
purpose to ensure safety against possible supertensions that can occur in the channel (e.g.
due to short circuit to the power line or induction of charge during an atmospheric storm).
Figure 3.1 presents an example of the baseband channel characteristics. The frequency
range that is cut off by the transformer is also shown symbolically.

3.2 Shaping of Elementary Signals

The form of signals that represent particular bits (or bit blocks) should be well fitted to the
channel properties. We understand the best fit as the one that leads to the highest robustness
against distortions. In the case of digital transmission, robustness can be understood as
the Bit Error Rate (BER) measured in the receiver or a maximum range of transmission
achievable at the required BER level. Assignment of binary signals to the elementary
pulses that are subsequently transmitted over the channel is sometimes called digital
baseband modulation.

Let us first consider the simplest case in which subsequent bits of the data stream
determine the transmitted elementary pulses. Let elementary pulse s0(t) be related to bit
“0” whereas s1(t) is selected by bit “1” in the binary stream. Assume for a moment
that subsequent bits ai(i = −∞, . . . ,∞) last T seconds each, and that the duration of
elementary pulses does not exceed T seconds. In such a case the transmitted signal can

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd
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f

|H(f )|

Figure 3.1 Characteristics of an exemplary baseband channel with a DC separating circuit

be described by the formula

x(t) =
∞∑

i=−∞
sk(t − iT ), where k = ai (3.1)

If the above assumptions are made subsequent pulses do not overlap. The following
question can be stated: What are the properties of signal x(t) defined by (3.1)? From
the point of view of transmission over the channel, spectral properties of signal x(t) are
of crucial importance. The features that enable robust synchronization of the receiver
with the received signal are also important. Very often the receiver has to recover the
timing clock that determines the moments of start and end of a modulation period, i.e.
the moments in which elementary pulses possibly change. Determination of those timing
instants is needed to make proper decisions upon the received pulses, and in consequence
to find the original binary stream that determined the sequence of pulses generated in the
transmitter. Let us note that the binary stream can be considered as random by an external
observer, so signal x(t) is random too. Thus, calculation of the spectral density of signal
x(t) determined by a specific data sequence, which can be treated as a sample function of
the stochastic process, does not characterize spectral properties of this signal. Instead, the
power spectral density of random signal x(t) most often represents its spectral features.
Power spectral density can be calculated under the appropriate statistical assumptions. In
particular, it is assumed that statistical properties of the signal remain constant in time.
Moreover, the zero moment on the observer’s time axis with respect to the observed
signal x(t) can be treated as a random variable that is uniformly distributed in the time
period [0, T ]. Let us give the formula for power spectral density for a specific form of
signal x(t) that is often observed in reality. Let the signal be described by the formula

x(t) =
∞∑

i=−∞
dis(t − iT ) (3.2)

where there is a mutually unique mapping between the bit sequence {ai} and data symbol
sequence {di}. For example, for bipolar signals di = 2ai − 1, so s0(t) = −s(t), whereas
s1(t) = s(t). In Appendix 3.8 we show that in this case the power spectral density of
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signal x(t) is expressed by

Gx(f ) = 1

T
|S(f )|2 Gd(f ) (3.3)

where S(f ) = F[s(t)] is the spectral density of pulse s(t). In turn, Gd(f ) is the power
spectral density of the data stream di and is given by the expression

Gd(f ) =
∞∑

n=−∞
Rd(n) exp(−j2πf nT ) (3.4)

Rd(n) is the autocorrelation function of data sequence di , i.e.

Rd(n) = E[didi−n] (3.5)

where E[.] denotes ensemble average. Analyzing formula (3.3) we conclude that the
power spectral density of random signal x(t) depends both on the spectral properties of
the chosen pulse s(t) and, through the factor Gd(f ), on the correlation properties of the
data sequence. Consider a simple case when data symbols are uncorrelated, i.e.

Rd(n) =
{

E[d2
i ] = σ 2

d + µ2
d for n = 0

E[didi−n] = E[di]E[di−n] = µ2
d for n �= 0

(3.6)

where µd = E[di] is a mean value (strictly speaking, an expectation or ensemble average)
of data symbols, whereas σ 2

d = E[(di − µd)
2] is the variance of data symbols. Let us note

that the mean value can be interpreted as a constant (DC) component of the data sequence
whereas the variance can be interpreted as the mean power of the AC component. Thus,
for n = 0 the autocorrelation function of the data signal can be interpreted as the mean
power of the signal, i.e. the sum of the mean powers of the DC and AC components. For
n �= 0 the autocorrelation function is in fact the mean power of the DC component of the
data sequence only. So for the case described by (3.6) the power spectral density of the
data sequence is given by the formula

Gd(f ) = σ 2
d + µ2

d

∞∑
n=−∞

exp(−j2πf nT ) (3.7)

Let us note that the expression

∞∑
n=−∞

exp(−j2πf nT )

can be interpreted as a Fourier expansion of such a periodic function of frequency for
which the harmonic coefficients are constant and equal to unity. The Dirac pulse sequence
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along the frequency axis with the period 1/T and intensity 1/T features such an expan-
sion, i.e. it is a signal of the form

1

T

∞∑
n=−∞

δ
(
f − n

T

)
(3.8)

Indeed, the Fourier series expansion coefficients of the periodic signal (3.8) can be deter-
mined from the formula

cn = 1

1/T

1/2T∫
−1/2T

1

T
δ(f ) exp(−j2πf nT )df = 1 (3.9)

therefore

∞∑
n=−∞

exp(−j2πf nT ) = 1

T

∞∑
n=−∞

δ
(
f − n

T

)
(3.10)

As a result, formula (3.7) is transformed to the expression

Gd(f ) = σ 2
d + µ2

d

T

∞∑
n=−∞

δ
(
f − n

T

)
(3.11)

The final form of the power spectral density of signal x(t) with the signal assumed
properties is

Gx(f ) = σ 2
d

T
|S(f )|2 + µ2

d

T 2

∞∑
n=−∞

∣∣∣S ( n

T

)∣∣∣2 δ
(
f − n

T

)
(3.12)

Let us discuss formula (3.12). The power spectral density of signal x(t) definitely depends
on the shape (and also on the spectral density) of the elementary pulse s(t). The pulse
shape determines the bandwidth of signal x(t). However, the mean µd of data symbols
also influences the power spectral density. If the mean is nonzero and the spectral density
of the elementary pulse is nonzero for frequency f = 0, the spectral line for f = 0
appears in the power spectral density of signal x(t), which indicates the nonzero mean
of signal x(t). The same can happen at multiple frequencies f = n/T . However, as we
have stated before, it is very often required that the mean value of data symbols is equal
to zero. In this case, the power spectral density of signal x(t) reduces to the form

Gx(f ) = σ 2
d

T
|S(f )|2 (3.13)

Consider a bipolar pulse stream in which each pulse lasts for T seconds and has a
rectangular shape. Assume that subsequent data bits are mutually uncorrelated. Figure 3.2
presents the elementary pulse shape and the power spectral density of x(t).



 

Digital Baseband Transmission 241

0
0

0.2

0.4

0.6

0.8

1

f

Gx(f)

σ2
dA2T

A

tT

s(t )

−6
T

−4
T

−2
T

−1
T

1
T

2
T

4
T

6
T

Figure 3.2 Rectangular pulse s(t) and power spectral density Gx(f ) of signal x(t) when pulse
s(t) is applied

The spectral density of the rectangular pulse shown in Figure 3.2 is given by the
formula

S(f ) = AT sinc(πf T ) exp(−jπf T ) (3.14)

Substituting (3.14) into (3.12), we obtain the power spectral density of signal x(t)

Gx(f ) = σ 2
d A2T

[
sinc(πf T )

]2 + A2µ2
dδ(f ) (3.15)

where the second component appears only if the mean value of data symbols di is nonzero.
Let us note that the remaining possible spectral lines at multiples of 1/T do not appear
because, independently of the data symbol mean value µd , the spectral density of the
elementary pulse s(t) takes a zero value for these frequencies. As seen in Figure 3.2, the
power spectral density of signal x(t) decreases relatively slowly along the frequency axis
(i.e. with its square; cf. the definition of sinc function). As a result, a relatively significant
part of the signal power is contained in the sidelobes of the power density spectrum.
Cutting off these sidelobes by the channel will result in signal distortions, which in turn
will lead to the bit error rate increase. On the contrary, if we wish to receive the signal
transmitted over the channel of bandwidth W in an undistorted form, the signaling rate
R = 1/T must be significantly lower than W . As we can see, the channel bandwidth
cannot be used in an optimal way. If we want to increase the data rate for a given channel
bandwidth, we must select such an elementary signal shape s(t) whose spectral density
does not exceed the channel bandwidth W or exceeds it in an insignificant manner.

Next we will consider spectral properties of signal x(t) if the shape of elementary
signal s(t) is determined by the function called a raised cosine curve, which is given by
the formula

s(t) = A

2

[
1 + cos

π

T
(t − T )

]
for 0 ≤ t ≤ 2T (3.16)
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Figure 3.3 Application of the raised cosine pulse: (a) single pulse shape, (b) exemplary signal
waveform x(t), (c) power spectral density of signal x(t)

shown in Figure 3.3a. Let us note that elementary signal s(t) given by (3.16) lasts twice
as long as the modulation period; however, it is sufficiently short to ensure that the
samples of the pulse sequence taken at the moments nT depend on a single pulse only.
Figure 3.3b presents an example of signal x(t). In this case the power spectral density of
x(t) is determined by the following formula

Gx(f ) = σ 2
d A2T

sinc2(2πf T )

(1 − 4T 2f 2)2
+ µ2

dA
2δ(f ) (3.17)

and is shown in Figure 3.3c. Derivation of (3.17) is listed as a problem to solve at
the end of this chapter. It can be concluded from (3.17) that the power spectral density
decreases with the sixth power of frequency, i.e. much faster than in the case of applying
a rectangular shape of s(t). Figure 3.4 compares power spectral densities in logarithmic
scale for bipolar random signals x(t) for rectangular and raised cosine pulses. We notice
a significant difference in the sidelobe levels of power spectral densities of both signals.
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Figure 3.4 Comparison of power spectral densities on the logarithmic scale for a bipolar random
signal with the rectangular (a) and raised cosine (b) shape of elementary signal s(t)

Application of a smoother shape of the elementary signal and lengthening it up to 2T

results in a significant improvement in concentration of power in the mainlobe.
Assume that the transmission channel has bandwidth W , its amplitude characteristic is

flat and its phase characteristic is linear. This means that if the spectrum of the transmitted
signal is fully contained in the channel passband, then the signal is the subject of constant
attenuation and delay but it remains undistorted. The channel bandwidth will be fully
used if the power spectral density of the transmitted signal has the shape determined by
the formula

Gx(f ) = B rect

(
f

2W

)
(3.18)

In other words, the spectral density of the elementary signal should preserve the rectangu-
lar shape of the channel transfer function. Therefore the signal should have the following
form

s(t) = 2WA sinc(2Wπt) (3.19)

where B = A2/T (see Figure 3.5). In theory, the duration of this signal is infinite, and
its amplitude decreases inversely proportionally with time. However, in practice only its
approximated version, lasting a few modulation periods, is applied. In such cases the
truncated signal loses good spectral properties compared with its ideal form. The latter is
rather obvious because a shaping filter featuring rectangular characteristic is not physically
realizable.

Let us turn our attention to an interesting and important feature of signal s(t) determined
by (3.19). Except t = 0, the signal waveform has zeros in equal distances every 1/2W

seconds. Therefore, if every T = 1/2W seconds we send subsequent elementary pulses
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(3.19) whose polarization depends on the current data symbol, and if we select sampling
instants appropriately, we are able to sample signal x(t) in the receiver in such a way
that the received samples depend exclusively on a single data symbol. The waveforms
that are the response to other data symbols are equal to zero exactly at these moments.
Thus, the channel of W Hz bandwidth could support transmission at the symbol rate of
2W symbol/s.

Unfortunately, our considerations have only a theoretical character. As we have already
mentioned, the synthesis of signal s(t) featuring spectral properties given by (3.18) is not
possible due to the required steepness of the slope in characteristics of the filter that should
be used to shape the waveform of signal s(t). In practice the following procedure takes
place. The symbol data rate is moderately decreased below 2W symbol/s so the smooth
transition from passband to stopband is realizable. It turns out that at the fulfillment of
certain requirements it is possible to shape the spectral density of s(t) so that the zeros
of the waveform occur every T seconds (sometimes between those moments too). The
requirements are stated in the form of the following theorem.

Theorem 3.2.1 Consider the filter called a Nyquist filter with the transfer function of the
form

H(f ) =
 rect

(
f

2B

)
+ Y (f ) for |f | < 2B

0 otherwise
(3.20)

where Y (f ) is a real function that is even-symmetric about f = 0, i.e.

Y (−f ) = Y (f ), for |f | < 2B
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and odd-symmetric about f = B, i.e.

Y (−f + B) = −Y (f + B), for |f | < B

If elementary pulse s(t) applied in digital transmission is the impulse response of the
Nyquist filter conforming to (3.20), then pulse s(t) has zeros at the moments that are
nonzero multiples of 1/2B, and for the data sequence transmitted in the form

x(t) =
∞∑

i=−∞
dis(t − iT )

it is possible to find sampling moments at which the samples of x(t) contain information
on a single data symbol. Therefore transmission at the symbol rate R = 1/T = 2B is
possible.

Proof. We will show that the impulse response of the filter described by (3.20) is zero
at the moments t = n/2B, n �= 0. Let us calculate the inverse Fourier transform of (3.20).
We have

h(t) =
B∫

−2B

Y (f )ej2πf tdf +
B∫

−B

[1 + Y (f )]ej2πf tdf +
2B∫

B

Y (f )ej2πf tdf

or equivalently

h(t) =
B∫

−B

ej2πf tdf +
2B∫

−2B

Y (f )ej2πf tdf

= 2B
sin 2πBt

2πBt
+

0∫
−2B

Y (f )ej2πf tdf +
2B∫

0

Y (f )ej2πf tdf (3.21)

Let us substitute λ = f + B in the first integral of (3.21) and λ = f − B in the second
one. Thus, we obtain

h(t) = 2B
sin 2πBt

2πBt
+ e−j2πBt

B∫
−B

Y (λ − B)ej2πλtdf + ej2πBt

B∫
−B

Y (λ + B)ej2πλtdf

(3.22)

However, we know that Y (λ − B) = −Y (λ + B), so using this property in (3.22) we
have

h(t) = 2B
sin 2πBt

2πBt
+ j2 sin 2πBt

B∫
−B

Y (λ + B)ej2πλtdf (3.23)
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It is clear from (3.23) that impulse response h(t) indeed has zeros for t = n/2B (n �= 0)

due to sin 2πBt appearing in both components of (3.23), so we can apply s(t) = h(t) for
data transmission at the rate R = 2B = 1/T . Thus, the thesis of the theorem has been
proven.

An additional conclusion from the above theorem and formula (3.23) is that there are
many possible shapes of the filter slope, i.e. function Y (f ) can be described by different
formulae. However, the symmetry conditions have to be preserved.

Pulse s(t), which conforms to the Nyquist criterion, is the most often applied in practice
and allows for transmission at the rate 1/T not too much lower than 2W , is the so-called
signal with the raised cosine characteristics. Its spectral characteristics are determined
by the formula

S(f ) =



T for 0 ≤ |f | ≤ 1 − α

2T

T

2

{
1 + cos

[
πT

α

(
|f | − 1 − α

2T

)]}
for

1 − α

2T
≤ |f | ≤ 1 + α

2T

0 for |f | ≥ 1 + α

2T

(3.24)

whereas its corresponding time function is described by expression

s(t) = sinc(πt/T )
cos(παt/T )

1 − 4α2t2/T 2
(3.25)

Analyzing formula (3.25) we find that pulse s(t) is similar to that described by (3.19), but
the sinc function is additionally multiplied by a fraction with the numerator introducing
additional zeros besides the moments t = n/T (n �= 0) and with the denominator pressing
faster suppression of the pulse in time (with the third power of time variable t). Figure 3.6
presents the characteristics S(f ) and the corresponding pulse s(t) for different values of
the so-called roll-off factor α. Let us note that in a channel of bandwidth W Hz it
is possible to transmit data symbols at such a rate 1/T for which (1 + α)/2T ≤ W , or
equivalently (1 + α)/T ≤ 2W . For values of coefficient α contained in the range 0.1–0.5
the symbol data rate is in the range of 2/3 up to 0.9 of the theoretical maximum value
equal to 2W .

Despite its slightly more complex mathematical description, elementary pulse s(t)

shown in Figure 3.6 is often applied in the baseband transmission and it also serves
as a shaping pulse in digital modulations of sinusoidal carriers. In practice, pulse (3.25)
is approximated by a pulse of finite duration, however, due to a fast decrease of function
(3.25) in time, a good approximation is relatively easily achievable. Let us stress once
more that elementary pulse s(t) features zeros each T seconds (except the zero moment
in which the pulse achieves its maximum), which allows such pulses to be sent from the
transmitter every T seconds and also that such a sampling phase is found at the receiver
(assuming that the channel does not distort these pulses) for which the samples depend
on a single data symbol only. This case has been illustrated in Figure 3.7. We see signal
x(t), which consists of a sequence of pulses s(t) conforming to (3.25).
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An eye pattern is a certain visual measure of a signal shape or signal distortions that
occur if a channel changes its form. It is obtained on the oscilloscope display if signal
x(t) is fed to its input. The time base of the oscilloscope is triggered in such a way that
we observe signal x(t) during two modulation periods (2T ), whereas the screen displays
the past signal transitions for such a long time that we see overlapping signal transitions
that have occurred during many modulation periods. Figure 3.8 shows examples of eye
patterns for signal x(t) with the elementary pulse having the raised cosine characteristics
with the roll-off factor α = 0.5 and α = 1.0. The eye has the upper lid and lower lid and
the internal distance between the maximum of the upper lid and minimum of the lower
lid is called a maximum eye opening . Lines drawing the eye pattern can be blurred due to
additive noise occurring in the channel. The points on the time axis for which maximum
eye opening occurs are often selected as optimal moments for sampling signal x(t). Due
to distortions introduced by the channel, the eye pattern can change to such an extent that
the eye is partially or even fully closed and decisions based on such samples of signal
x(t) are highly unreliable. Quite often the maximum eye opening is determined by finding
half of the time distance between averaged signal zero crossings. We see in Figure 3.8
that when the roll-off factor of the applied pulse α is 0.5, then zero crossings of signal
x(t) fluctuate. In order to recover the stable timing signal that would allow the optimal
sampling phase to be determined a phase-locked loop (PLL) can be applied that operates
by averaging the fluctuating zero crossings. Let us note that relaxing the requirements
on the slope width (e.g. by selection of α = 1.0) results in a decrease of zero crossing
fluctuations and, in consequence, simplified operation of the timing recovery system.
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Figure 3.8 Eye diagrams for signal x(t) for elementary pulse s(t) with the raised cosine charac-
teristics; the roll-off factor: (a) α = 0.5 and (b) α = 1.0

3.3 Selection of the Data Symbol Format

So far we have considered such a baseband modulation in which a data bit simply deter-
mines polarization of the applied elementary pulse s(t). In such case we talk about
PAM – Pulse Amplitude Modulation – or simply about the application of bipolar sig-
naling. We limit the current considerations to signals of a rectangular shape; however,
shapes other than rectangular ones are also possible. Selection of a specific data format
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allows the spectral properties of the transmitted signal to be influenced through appropri-
ate shaping of data symbol power spectral density Gd(f ) applied in formulae (3.3) and
(3.4). Figure 3.9 presents a few typical formats of data symbols representing binary data.
The first of them is called unipolar NRZ (Non-Return-to-Zero). Bit “1” determines the
application of a rectangular signal with positive polarization, whereas for bit “0” the data
signal has a zero level. As a result, the data signal has a nonzero mean, which can often
be considered a drawback.

The second format is a bipolar NRZ, considered in the previous section. If probabilities
of bits “1” and “0” are the same, the signal featuring this format has a zero mean; however,
in short time intervals the mean can be different from zero.

The third format shown in Figure 3.9 is called pseudoternary – despite binary assign-
ment of data bits to data symbols, the resulting signal may have three levels +1, 0 and −1.
This is a consequence of alternating polarity of a unipolar signal in subsequent nonzero
pulses. This kind of signal processing is an example of line coding. The signal presented in
Figure 3.9c conforms to AMI (Alternate Mark Inversion) coding. For this format the signal
mean is zero also in short time intervals. However, there is still a danger, as in the case of
the signal shown in Figure 3.9a, that long zero bit sequences will result in a long interval
of the zero level, which is disadvantageous from the synchronization point of view. In
reality much more sophisticated coding schemes than a regular AMI are often applied.
We will show them on the example of ISDN line coding options at the end of this chapter.
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Figure 3.9 Formats of rectangular data signals: (a) unipolar NRZ, (b) bipolar NRZ, (c) pseu-
doternary (AMI), (d) Manchester (biphase)
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Finally, the fourth data format shown in Figure 3.9d is the Manchester code (biphase
format). Each data symbol is represented by a double pulse with alternating polarity. For
example, bit “1” lasting T seconds is associated with a data symbol consisting of a positive
pulse of duration T /2 seconds, followed by a negative pulse of the same magnitude lasting
for the remaining second half of the modulation period T . In turn, bit “0” is represented
by the data symbol that has a reversed shapes compared with the symbol representing bit
“1”. In this format the signal features a zero mean independently of the data stream. In
the middle of each signaling period the signal changes its polarization to the reversed one.
This fact is very advantageous for the timing recovery process performed in the receiver.
However, the drawback of this format is a wider bandwidth of the power density spectrum
compared with the formats considered previously, because an elementary signal s(t) is a
pair of bipolar pulses each of length equal to T /2.

Let us show now how the choice of the data format influences the spectral properties of
the transmitted signal x(t). Assume a rectangular shape of the elementary pulses. Assume
again that probabilities of bits “0” and “1” are the same and equal to 1/2, and particular
bits are mutually statistically independent. Correlation among data symbols can be the
result of the applied data format only.

First consider unipolar NRZ signals. Let the data symbols take value di = 1 or di = 0.
Calculate the autocorrelation function Rd(n) of data signals that is needed for determina-
tion of the data signal power density spectrum Gd(f ). For that purpose we calculate [cf.
formula (3.6)]

Rd(0) = E
[
d2

i

] = σ 2
d + µ2

d = (0)2 Pr{di = 0} + (1)2 Pr{di = 1} = 1

2
(3.26)

and

Rd(n) = E
[
didi−n

] = µ2
d = 3 · 0 · Pr{didi−n = 0}

+1 · (1)2 · Pr{didi−n = (1)2} = 1

4
for n �= 0 (3.27)

Formula (3.27) results from the fact that three out of four possible values of the product
didi−n are equal to zero and the probability of each data combination is 1/4 (which is the
consequence of the statistical independence of data bits and their respective probabilities
equal to 1/2). Finally, because the spectral density of the rectangular pulse of duration T

is given by formula (3.14) we obtain the expression for power density spectrum Gx(f )

of the signal from Figure 3.9a in the form

Gx(f ) = A2T

4

[
sinc(πf T )

]2 + A2

4
δ(f ) (3.28)

As we can see in (3.28), the signal has a nonzero mean value. The mean power of the DC
component is equal to A2/4. Similar calculations performed for the bipolar data format
from Figure 3.9b lead to the expression

Gx(f ) = A2T
[
sinc(πf T )

]2
(3.29)
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This results from the fact that for assumed statistical independence of data bits and their
probabilities the values of the data symbol autocorrelation function are respectively equal
to Rd(0) = 1 and Rd(n) = 0 for n �= 0.

Consider now the pseudoternary format with alternating polarizations of “1” s. It is
obvious that the current value of the data symbol reflecting bit “1” depends on the previous
data symbols (in particular on whether the previous “1” has been represented by a symbol
with positive or negative polarization). Therefore, in this case we deal with the introduction
of correlation among data symbols. Assuming equal probabilities of bits “1” and “0”, we
see that Pr{di = 1} = Pr{di = −1} = 1/4 and Pr{di = 0} = 1/2. Therefore

Rd(0) = (1)2 Pr{di = 1} + (0)2 Pr{di = 0} + (−1)2 Pr{di = −1} = 1

2
(3.30)

For n = ±1 the pair of bits (called a dibit) that is represented by a pair of data symbols
takes the possible values (0, 0), (0, 1), (1, 0) and (1, 1). Thus, the values of the product
didi±1 are 0, 0, 0 and −1, respectively. The last value results from the fact that two
subsequent ones have inverse polarities. Then

Rd(n = ±1) = 3 × (0) × 1

4
+ (−1) × 1 × 1

4
= −1

4
(3.31)

We can easily check that for |n|> 1 Rd(n) = 0. Finally, after simple derivation and
application of formulae (3.3) and (3.4), we obtain the following form of the power density
spectrum of the AMI coded signal (Figure 3.9, curve c)

Gx(f ) = A2T
[
sinc(πf T )

]2
sin2(πf T ) (3.32)

The Manchester line code is a variant of the previously considered bipolar PAM modu-
lation, in which an elementary pulse s(t) given by

s(t) = rect

(
t − T /4

T /2

)
− rect

(
t − 3T /4

T /2

)
(3.33)

is applied. After calculation of the spectral density S(f ) of elementary signal s(t), insert-
ing the result into formula (3.13) and knowing that σ 2

d = 1, we obtain

Gx(f ) = A2T sinc2(πf T /2) sin2(πf T /2) (3.34)

Power density spectra of signal x(t) as a function of frequency normalized with respect
to modulation period T are shown in Figure 3.10 for different data formats sketched in
Figure 3.9. We see that bipolar and unipolar formats have a substantial part of their power
in the vicinity of the DC, so application of a separating transformer or other separating
circuit cutting off the DC and low frequency components will cause signal distortions.
Spectral properties of a pseudoternary signal are relatively advantageous because a sig-
nificant part of its power is contained in the frequency interval up to 1/T Hz. Good
synchronization properties of the Manchester code result in its wide power density spec-
trum. Plots (a) and (c) shown in Figure 3.10 should be scaled if we want to have identical
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Figure 3.10 Power density spectra for signal x(t) using several data formats: (a) unipolar NRZ,
(b) bipolar NRZ, (c) pseudoternary (AMI), (d) Manchester

mean power for all considered data formats. However, even in the current figure we
observe characteristic spectral features of particular signals.

So far we have considered binary baseband modulation. Having at our disposal a
channel with a limited bandwidth and wishing to send the data stream at the bit rate
higher than 1/T bit/s we can proceed in the following way. We divide the data stream into
disjunctive k-bit blocks. Each block can be mapped onto one of 2k possible amplitudes of
the elementary signal. As a result, we receive M = 2k-ary pulse amplitude modulation,
so k/T bits per second are transmitted over the channel. Unfortunately the data rate
increase is not for free! Comparing two- or higher level PAM signals we should assume
their equal mean power. Typically noise is added to the signal during transmission, which
results in a certain error rate level. As we can observe, the difference between two
neighboring multilevel PAM signals compared with the difference between two binary
PAM signals featuring the same mean power is much smaller. Thus, multilevel PAM
signals are much more sensitive to noise, resulting in a higher error probability. Such a
comparison is often illustrated by the error probability versus signal-to-noise ratio curves.
However, for fair comparison, the curves are displayed as a function of signal energy
per bit Eb divided by power spectral density N0 of white noise. Figure 3.11 presents
error probability curves as a function of Eb/N0 for two-level PAM (k = 1, M = 2),
4-PAM (k = 2, M = 4), 8-PAM (k = 3, M = 8) and 16-PAM (k = 4, M = 16). Symbol
error probability does not directly translate itself onto bit error probability. The latter
depends on the bit block-to-symbol mapping. Table 3.1 presents two possible ways of bit
block-to-symbol mapping for 4-PAM. One of them is called natural encoding and the
other is called Gray encoding .



 

Digital Baseband Transmission 253

Table 3.1 Mapping of binary blocks onto 4-PAM
data symbols

Symbol di Natural encoding Gray encoding

−3 00 00
−1 01 01

1 10 11
3 11 10
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Figure 3.11 Symbol error probability for M-ary PAM modulations

Gray encoding features smaller bit error probability compared with natural encoding.
This results from the fact that the most probable errors lead the receiver to select the
neighboring symbol to the one that has been actually transmitted. Let us note that in the
case of Gray encoding a single bit error will be committed, whereas if natural encoding
is applied, in some cases double binary errors will be made.

3.4 Optimal Synchronous Receiver

Error probability is the basic measure of digital transmission system quality. It depends
on the choice of elementary signals, the mapping of binary blocks onto them and
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signal-to-noise ratio in the channel, and also on the applied method of signal reception.
Therefore, it is necessary to derive the receiver structure that ensures minimal probability
of erroneous signal reception. The error probability curves shown in Figure 3.11
have been plotted for the case when the optimal receiver derived in this section is
applied.

Below we determine the optimum receiver structure for digital signals transmitted over
a channel introducing an additive noise. First, we will consider the general case of an
optimum receiver for binary data symbols distorted by additive Gaussian noise charac-
terized by a given power density spectrum. After that we will consider some particular
cases for which the optimal receiver scheme is considerably simplified. In particular, we
will assume that the additive Gaussian noise is white, the data symbols are equiprobable
or that PAM is applied. We will also consider the optimal receiver for multilevel PAM
signals.

3.4.1 Optimal Reception of Binary Signals

Assume that transmission is performed using two elementary signals, s0(t) and s1(t).
We temporarily assume that the duration of the elementary signals does not exceed the
modulation period T , and that binary data are statistically independent. These assumptions
allow us to perform analysis of the received signal within a single modulation period. Let
the received signal have the following form

y(t) = si(t) + n(t) (3.35)

where n(t) is the additive Gaussian noise.
One of the basic receiver optimization criteria is minimization of a single data symbol

error probability at its output. This is not the only criterion possible. If the receiver
operating according to this criterion is difficult to implement, other criteria can be applied,
e.g. minimum mean square error at the receiver output or minimum error probability for a
whole received data sequence. Let us concentrate on the first criterion. We conclude from
Chapter 1 that minimization of the error probability at the receiver output is equivalent to
maximization of the a posteriori probability that a given signal has been transmitted after
observation of the signal at the receiver input. Recall that this criterion is called MAP
(Maximum a Posteriori Probability).1 The optimization criterion receives the following
form

max
i

P [i|y(t)] where i = 0 or 1 (3.36)

Let P [si(t)] = Pi be the probability of transmission of signal si(t). Following the assump-
tion that the duration of an elementary signal does not exceed T seconds, it is sufficient for
the receiver to observe the received signal y(t) in that time interval. Instead of considering
the continuous signal y(t), let us consider its samples y(tk) taken with an arbitrarily small
time step 	t within the interval [0, T ], where tk = tk−1 + 	t , k = 1, . . . , K . Denote the
vectors of the received signal, noise and the transmitted signal samples as y, n and si ,

1 The word a posteriori means “after experience (experiment)”.
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respectively, so

y = [y(t1), y(t2), . . . , y(tK)]

n = [n(t1), n(t2), . . . , n(tK)] (3.37)

si = [si(t1), si(t2), . . . , si(tK)]

If we analyze vectors instead of continuous time functions, the MAP probability P [i|y(t)]
receives the form P(i|y). Thanks to Bayes’ formula this can be expressed in the form

P(i|y) = p(y|si )P (si )

P (y)
(3.38)

Recall that we search for the data symbol i, or equivalently the elementary signal si(t)

represented by vector si , that maximizes the probability expressed by formula (3.38). The
denominator in (3.38) is common for all elementary signals (it refers to the signal observed
at the receiver input), so it does not influence the search result for the best data symbol
i in the MAP sense. Thus, it is sufficient to select the data symbol that maximizes the
numerator of (3.38). Let us focus on the conditional probability density function p(y|si ).
We have n = y − si from (3.35), therefore

p(y|si ) = p(y − si ) = p(n) = exp
[− 1

2 (y − si )R
−1
n (y − si )

T
]

(2π)K/2 |Rn|1/2
(3.39)

Expression (3.39) is the multidimensional Gaussian distribution for the noise vector n.
Matrix Rn is a [K × K] noise autocorrelation matrix whose elements are Rj,k = Rn(tj −
tk), where Rn(τ) is the autocorrelation function of noise n(t). Calculating the logarithm
of both sides of (3.38), we obtain

ln P(i|y) = ln p(y|si ) + ln P(si ) − ln P(y) (3.40)

Taking into account the right-hand side of (3.39) in (3.40) and including all the com-
ponents that do not depend on i in constant C, we obtain

ln P(i|y) = C + ln Pi − 1

2
(y − si )R

−1
n (y − si )

T (3.41)

If we expand the third term in (3.41) we have

(y − si )R
−1
n (y − si )

T = yR−1
n yT − yR−1

n sT
i − siR

−1
n yT + siR

−1
n sT

i (3.42)

Then if we use this expression in (3.41) and add the first term of the right-hand side of
(3.42) to constant C (denoted after this modification as C1), we obtain

ln P(i|y) = C1 + ln Pi − 1

2
siR

−1
n sT

i + yR−1
n sT

i (3.43)
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Define vector qi by the following equation

qi	t = siR
−1
n , i.e. qT

i 	t = R−1
n sT

i (3.44)

so

qi	tRn = si (3.45)

For a single element si(tk) of vector si we have, from (3.45)

si(tk) =
K∑

m=1

Rn(tk − tm)qi(tm)	t (3.46)

Let us represent siR
−1
n by qi	t and use formula (3.46) in (3.43). Then the latter evolves

to the form

ln P(i|y) = C1 + ln Pi + yqT
i 	t − 1

2
siqT

i 	t

= C1 + ln Pi +
K∑

k=1

y(tk)q(tk)	t − 1

2

K∑
k=1

si(tk)qi(tk)	t (3.47)

Now let the time interval 	t between the samples tend to zero and the number of samples
K tend to infinity in such a way that K	t = T . If the time interval 	t is reduced to an
infinitely small increment dt in the modulation period T , the sums in expression (3.47)
evolve to appropriate integrals and formula (3.47) becomes

ln P(i|y) = C1 + ln Pi +
T∫

0

y(t)qi(t)dt − 1

2

T∫
0

si(t)qi (t)dt (3.48)

whereas

si(t) =
T∫

0

Rn(t − λ)qi(λ)dλ (3.49)

Let D2
i denote the following expression

D2
i =

T∫
0

si(t)qi(t)dt, i = 0, 1 (3.50)

After observation of signal y(t), the receiver making a decision based on the MAP
criterion decides that signal s0(t) has been transmitted if

P
[
0|y(t)

]
>P

[
1|y(t)

]
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or, equivalently, if

T∫
0

y(t)q0(t)dt − D2
0

2
+ ln P0 >

T∫
0

y(t)q1(t)dt − D2
1

2
+ ln P1 (3.51)

When the reverse inequality is true, the receiver decides that signal s1(t) has been
transmitted. Figure 3.12 presents the receiver scheme that results directly from expres-
sion (3.51). The receiver is equipped with two correlators and each of them correlates
the received signal with the appropriate reference signal q0(t) or q1(t) in time interval
[0, T ]. Let us note that the reference signals depend on elementary signal s0(t) or s1(t),
respectively, and on the noise correlation properties. This observation is a clear result of
(3.49), which links both variables with each other. Derivation of the reference signals
from (3.49) seems to be a difficult task. However, we can solve this problem if we con-
sider an equivalent form of the optimum MAP receiver in which matched filters (MF)
are used instead of correlators.

ln P1− D1
2

2

0

T

0

T

ln P0− D0
2

2

y(t)
q0(t )

q1(t )

i
^

F
in

d 
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im

um

Figure 3.12 Optimal MAP receiver based on correlators

It turns out that the result of correlation of the received signal y(t) with the reference
signals, i.e.

T∫
0

y(t)q0(t)dt and

T∫
0

y(t)q1(t)dt (3.52)

can be achieved when the received signal y(t) is fed to the inputs of appropriately selected
filters and their outputs are sampled at the moment t = T . We will show now that if the
filter impulse response is given by expression

hi,MF(t) = qi(T − t), i = 0, 1 (3.53)

then the results of correlations (3.52) and sampling of the filter outputs at the moment
t = T are identical. The reference signal, as with the transmitted one, does not last longer
than T seconds so the impulse response (3.53) does not exceed this time interval either.
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Therefore the signal at the output of the filter in the ith receiver branch can be described
by the convolutional integral

zi(t) =
∞∫

−∞
y(τ)hi,MF(t − τ)dτ =

T∫
0

y(τ)qi

[
T − (t − τ)

]
dτ (3.54)

So at t = T the filter output signal is equal to

zi(T ) =
T∫

0

y(τ)qi

[
T − (T − τ)

]
dτ =

T∫
0

y(τ)qi(τ )dτ (3.55)

As we see, both receiver configurations yield the same samples at the moment t = T ,
so they are equivalent. The filter with impulse response (3.53) is called a matched filter
(MF). Figure 3.13 presents the equivalent optimum MAP receiver structure in which the
matched filters have been applied.

t = T
ln P1− D1

2

2

ln P0− D0
2

2

y(t) i
^

F
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um

q0(T−t)

q1(T−t)

Figure 3.13 Optimal MAP receiver with matched filters

Consider now the transfer function of the matched filter. In order to derive this, let
us again analyze formula (3.49). Knowing that reference signal qi(t) is zero outside the
interval [0, T ] we can extend the integral limits from [0, T ] to (−∞, +∞). Therefore

si(t) =
∞∫

−∞
Rn(t − λ)qi(λ)dλ (3.56)

so the elementary signal can be interpreted as a convolution of the reference signal with
the additive noise autocorrelation function. As a result, in the frequency domain the
following equation holds

Si(f ) = Gn(f )Qi(f ) (3.57)
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where Gn(f ) = F[Rn(τ)] is the power density spectrum of the additive noise. The spec-
tral density of the reference signal is therefore

Qi(f ) = Si(f )

Gn(f )
(3.58)

The impulse response of the matched filter is given by formula (3.53), so taking advantage
of (3.58) we get

Hi,MF(f ) = F[qi(T − t)] = exp (−j2πf T ) Q∗(f ) = exp(−j2πf T )S∗
i (f )

Gn(f )
(3.59)

As we see, the matched filter transfer function depends on the spectral density of elemen-
tary signal si(t) and the power density spectrum of additive noise.

Consider the particular case of the matched filter when the additive Gaussian noise is
white and its power density spectrum is N0/2. Thus

Hi,MF(f ) = 2

N0
S∗

i (f ) exp(−j2πf T ), so hi,MF(t) = 2

N0
si(T − t) (3.60)

In this case the matched filter impulse response is proportional to the mirrored reflection
of the elementary signal with respect to the vertical axis. Quite often the elementary signal
is symmetric with respect to its maximum. Then the impulse response of the matched
filter has a shape that is identical to the elementary signal waveform.

Consider now several particular cases of the optimum MAP receivers. First, let the
elementary signals have equal energies, i.e.

T∫
0

s2
0 (t)dt =

T∫
0

s2
1 (t)dt (3.61)

Let the additive Gaussian noise be white, so its autocorrelation function is described by
formula

Rn(τ) = N0

2
δ(τ ) (3.62)

As a result, the elementary signals and the corresponding reference signals resulting from
equation (3.49) are linked by expression

si(t) =
T∫

0

Rn(t − λ)qi(λ)dλ = N0

2

T∫
0

δ(t − λ)qi(λ)dλ = N0

2
qi(t) (3.63)

At the same time

D2
0 =

T∫
0

s0(t)q0(t)dt = 2

N0

T∫
0

s2
0(t)dt = 2

N0

T∫
0

s2
1 (t)dt = D2

1 (3.64)
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As the terms D2
0/2 and D2

1/2 are equal they do not affect the result of comparison of
both sides in inequality (3.51) and they can be omitted in the receiver structure. Thus,
the receiver scheme looks like that shown in Figure 3.14.
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2
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N0
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Figure 3.14 Optimal MAP receiver for equal energy signals corrupted by additive white Gaussian
noise

If we additionally assume that both signals are transmitted with the same probability,
then the terms ln P0 and ln P1 do not affect the result of comparison either and they can
be removed. Consequently, the scaling factor 2/N0 in the reference signals can be omitted
too, so the optimum MAP receiver scheme can take the form shown in Figure 3.15, and
its decisions result from comparison of the left- and right-hand side of the expression

T∫
0

y(t)s0(t)dt ≶
T∫

0

y(t)s1(t)dt (3.65)

If the elementary signals are bipolar, i.e. s0(t) = −s1(t), then for the same assumptions
the receiver is further simplified. For this case the signals at the output of each receiver
branch (see Figure 3.15) differ only in sign, so a single branch and a decision circuit with
the zero threshold is sufficient. This particular receiver is shown in Figure 3.16a.
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s1(t )

F
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Figure 3.15 Optimal MAP receiver for equiprobable, equal energy signals corrupted by additive
white Gaussian noise

So far we have considered the MAP reception of an isolated elementary signal. In
practice, a whole sequence of data pulses is transmitted. If the duration of elementary
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t = T

t = T

hMF(t)=s(T−t)

(a)

(b)

di
^

di
^

T

0

y (t )

y (t )

s(t )

Figure 3.16 Optimal MAP receiver for equiprobable bipolar signals corrupted by additive white
Gaussian noise with application of the correlator (a) and the matched filter (b)

signals does not exceed the modulation period T , as we have assumed so far, the reception
processes are disjoint and our analysis still holds. However, we have shown earlier that
good spectral properties of the modulated signal are obtained if elementary signals last
longer than the modulation period T . As we remember, such signals can be received if
the signal at the input of the sampler is a linear combination of pulses having periodical
zeros except for the zero moment in which their maximum occurs. Consequently, the
assumption about the duration of elementary signals not exceeding the modulation period
T can be withdrawn if we apply the matched filter with the sampler sampling the filter
output every T seconds and if we use such a waveform of the elementary pulse that
the joint impulse response of the transmit and matched filters features zeros every T

seconds except for the moment in which its maximum occurs. Therefore, very often the
transmit filter has the square root raised cosine characteristics and the matched filter in the
receiver has the same characteristics. As a result, their joint characteristics have the raised
cosine shape so they conform to the Nyquist criterion. Figure 3.17 presents a scheme of
the transmitter with the transmit filter with the impulse response s(t), the additive white
Gaussian noise (AWGN) channel and the receiver with the matched filter impulse response
hMF(t) = s(T0 − t) followed by a sampler and a decision circuit. Figure 3.18 shows the
transmit filter impulse response s(t) with the square root raised cosine characteristics,
the impulse response of the filter matched to the transmit filter and their joint impulse
response. Time T0 is the effective length of the transmit filter impulse response and it
lasts for a few modulation periods T .

n(t )

s(t )

ChannelTransmitter

Σdid(t−iT )

Receiver

hMF(t ) = s(T0−t )

t = iT
di
^

Figure 3.17 Basic scheme of digital PAM transmission with optimum MAP receiver

3.4.2 Optimal Receiver for Multilevel Signals

Generalization of the optimal synchronous MAP receiver onto the application of multilevel
signals is very simple. The receiver performs the same operations as those done in each
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Figure 3.18 Impulse responses for transmit filter (a), matched filter (b) and cascade connection
of transmit filter and matched filter (c)

branch of the receiver shown in Figure 3.12, followed by finding the maximum signal
among the output signals of each branch. In a general case, the receiver looks like that
shown in Figure 3.19. In the decision process according to the MAP criterion the receiver
performs the following operation

d̂i = arg max
di

 T∫
0

y(t)qi (t)dt − D2
i

2
+ ln Pi

 , i = 1, 2, . . . , M (3.66)

Let us analyze the case of multilevel signals, which often occurs in practical applica-
tions. Consider the signals with M-level PAM modulation. Assume that all elementary
signals are equiprobable. Assume also that the additive noise is Gaussian and white and
its power density spectrum is N0/2. The elementary signals have the following form

si(t) = dis(t), di = ±1, ±3, . . . , ±(M − 1) where M = 2k (3.67)

For this particular case

qi(t) = 2

N0
dis(t) and D2

i = 2

N0
d2

i

T∫
0

s2(t)dt = 2

N0
d2

i Es (3.68)
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Figure 3.19 Optimal MAP synchronous receiver for M-level transmission

where Es is the energy of the elementary pulse s(t). The selection criterion applied in
the decision device is then reduced to the form

d̂i = arg max
di

di

T∫
0

y(t)s(t)dt − d2
i

2
Es

 , i = 1, 2, . . . , M (3.69)

Let us note that the receiver needs to perform only one correlation of the received signal
y(t) with the elementary pulse s(t). After scaling the correlation result with data symbol
di and applying the appropriate shift by −d2

i Es/2, the receiver searches for the maximum
value. Denote the correlator output as U . Thus, selection of data symbol di fulfilling the
MAP criterion reduces to finding that symbol d̂i among all possible data symbols that
maximizes the convex quadratic function

f (U, di) = diU − d2
i

Es

2
(3.70)

It is easy to show that when the received signal has the ideal form y(t) = dks(t),
function f (U, di) achieves its exact maximum for data symbol d̂i = dk . Now the following
question arises: How much can the received signal U differ from the ideal value at the
correlator output equal to

dk

T∫
0

s2(t)dt = dkEs

so that the choice d̂i = dk is still optimal? Let data symbol dk be one of the “internal”
data symbols, i.e. dk �= ±(M − 1). Knowing that function f (U, di) is a quadratic convex
function, it is sufficient to determine the lower bound U1 and upper bound U2 of this
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interval. For these bounds the value of function f (U, di) for di = dk is equal to the value
of this function for data symbols that are neighboring to dk, i.e. the following equations
are fulfilled for U1 and U2:

f (U1, dk) = f
[
U1, (dk − 2)

]
(3.71)

f (U2, dk) = f
[
U2, (dk + 2)

]
Applying (3.70) in the solution for both equations we receive the bounds in the form

U1 = (dk − 1)Es and U2 = (dk + 1)Es (3.72)

These results indicate that if the result of correlation U of the received signal y(t) with
the elementary signal s(t) is found in the interval [(dk − 1)Es, (dk + 1)Es], then the
decision circuit should select symbol d̂i = dk . We also conclude that the optimum receiver
for M-PAM signals consists of a correlator of the received signal with the elementary
reference pulse s(t) and an M-level quantizer. The scheme of this receiver is shown in
Figure 3.20, whereas the characteristics of the quantizer for the 4-PAM signal is presented
in Figure 3.21. The receiver of M-PAM signals often constitutes the basis for receivers
of more complicated signals applying M-PAM modulations of a sinusoidal carrier. Such
signals will be considered in the next chapter.

M-level
quantizer

T

0

y (t )

s(t )

t = T
di
^

Figure 3.20 Optimal receiver for M-PAM signals

U

−3

−1

1

3

2Es

−2Es

di
^

Figure 3.21 Quantizer characteristics for the 4-PAM receiver

3.5 Error Probability at the Output of the Optimal
Synchronous Receiver

In this section we will derive the probability of error at the output of the optimal syn-
chronous receiver for the case when binary data are transmitted by means of elementary
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signals s0(t) and s1(t), which are corrupted by additive white Gaussian noise with the
power density spectrum equal to N0/2. Assume that both elementary signals, whose dura-
tion does not exceed the modulation period equal to T seconds, have equal energy E and
the probabilities of generation of elementary signals are equal, i.e. P [s0(t)] = P [s1(t)].
Thus, condition (3.61) is fulfilled. It is well known that error probability P(E) can be
derived by calculation of conditional error probabilities P [E |si(t)] (i = 0, 1), and using
the formula

P(E) = P
[E |s0(t)

]
P
[
s0(t)

] + P
[E |s1(t)

]
P
[
s1(t)

]
(3.73)

Consider the optimal receiver in its basic form, which consists of two correlators and
the device selecting the maximum correlator output at moments t = nT . First calculate
P [E |s0(t)]. For simplicity let us consider the moment k = 1, because in every other
modulation period the process is analogous and, due to an assumption about the duration
of data symbols not exceeding the modulation period T , the reception processes can be
performed separately, one after the other. Assume for the moment that signal s0(t) has
been transmitted in the time interval [0, T ]. Following our assumption about channel
properties, the signal observed at the receiver input is the sum of the elementary signal
and noise, i.e.

y(t) = s0(t) + n(t) (3.74)

At the outputs of the correlators shown in Figure 3.15 at t = T we obtain

U0 =
T∫

0

(
s0(t) + n(t)

)
s0(t)dt = Es + Nn,0 (3.75)

U1 =
T∫

0

(
s0(t) + n(t)

)
s1(t)dt = γEs + Nn,1 (3.76)

where, as previously, Es is the energy of elementary signals in time interval T and
Nn,0 and Nn,1 are random variables that result from correlation of the noise n(t) with
elementary signals s0(t) and s1(t), respectively. Symbol γ denotes the cross-correlation
coefficient of both elementary signals, i.e.

γ = 1

Es

T∫
0

s0(t)s1(t)dt (3.77)

The receiver commits an error if signal U1 at the output of the correlator in which s1(t)

is used as the reference signal is higher than signal U0 at the output of the correlator
applying s0(t) as the reference signal. Therefore

P
[E |s0(t)

] = Pr{U1 >U0} = Pr{U0 − U1 < 0} (3.78)
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Define a random variable V = U0 − U1 = Es(1 − γ ) + (Nn,0 − Nn,1). For the given
elementary signals the first component of V is constant. The second component is a
difference of two Gaussian random variables. As we remember, the sum (or difference) of
two Gaussian random variables remains Gaussian distributed. Therefore random variable
V is Gaussian and the error probability conditional on transmitting s0(t) is equal to the
probability that random variable V is lower than zero, i.e.

P
[E |s0(t)

] = Pr{V < 0} (3.79)

In order to calculate this probability we have to determine the parameters of Gaussian
distribution of V , i.e. its mean and variance. We namely have

µV = E[V ] = Es(1 − γ ) (3.80)

and

σ 2
V = E[(V − µV )2] = E[(Nn,0 − Nn,1)

2]

= E[N2
n,0] − 2E[Nn,0Nn,1] + E[N2

n,1] (3.81)

In order to derive the above variance we will consider the first component of the
right-hand side of (3.81). Knowing that the additive noise is white, i.e. its autocorrelation
function is a Dirac delta of intensity N0/2, we obtain

E[N2
n,0] = E

 T∫
0

s0(t)n(t)dt

T∫
0

s0(τ )n(τ)dτ



= E

 T∫
0

T∫
0

s0(t)s0(τ )n(t)n(τ)dtdτ



=
T∫

0

T∫
0

s0(t)s0(τ )Rn(t − τ)dtdτ

=
T∫

0

s0(t)

 T∫
0

s0(τ )
N0

2
δ(t − τ)dτ

 dt

= N0

2

T∫
0

s0(t)s0(t)dt = N0

2
Es (3.82)

It is also easy to show that E[N2
n,1] = N0

2 Es . In a similar way [the reader can perform
these calculations by himself/herself by taking (3.82) as a pattern] we can show that
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E[Nn,0Nn,1] = N0
2 γEs . As a result, the variance of the Gaussian distribution of the random

variable V is

σ 2
V = N0Es(1 − γ ) (3.83)

Knowing that the probability distribution of random variable V is given by the formula

pV(v) = 1√
πσV

exp

[
− (v − µV )2

2σ 2
V

]
(3.84)

and defining the complementary error function (Figure 3.22)

erfc(x) = 2√
π

∞∫
x

exp
(−t2) dt (3.85)

exp(−t2)

t

2

x

erfc(x)

Figure 3.22 Illustration of complementary error function erfc(x)

we can find the probability of error at the receiver output conditional on the transmitted
signal s0(t) by performing the following calculations

P(E |0) = 1√
2πσV

0∫
−∞

exp

[
− (v − µV )2

2σ 2
V

]
dv = 1√

π

µV√
2σV∫

−∞
exp

(−t2) dt

= 1√
π

∞∫
µV√
2σV

exp
(−t2) dt = 1

2
erfc

(
µV√
2σV

)

= 1

2
erfc

[
Es(1 − γ )√

2
√

EsN0(1 − γ )

]
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Therefore

P(E |0) = 1

2
erfc

[√
Es

2N0
(1 − γ )

]
(3.86)

Similar calculations lead to the same formula for the probability of error conditional
on the transmitted signal s1(t). Thus, using formula (3.73) we obtain

P(E) = 1

2
erfc

[√
Es

2N0
(1 − γ )

]
(3.87)

We conclude from formula (3.87) that the error probability depends on the signal-
to-noise ratio (expressed by Es/N0) and on the degree of mutual correlation of elemen-
tary signals. Selecting s0(t) and s1(t) as bipolar signals, we receive the cross-correlation
coefficient γ = −1, which results in the maximum argument of erfc function and, as a
result, in minimum error probability. For that case the error probability is

P(E) = 1

2
erfc

(√
Es

N0

)
(3.88)

Other values of cross-correlation factor γ are also possible. In particular, elementary
signals can be mutually orthogonal. For such signals γ = 0. In consequence we obtain

P(E) = 1

2
erfc

(√
Es

2N0

)
(3.89)

As we have expressed the error probability as a function of Es/N0, we may ask how
this ratio is associated with the signal-to-noise ratio SNR = Psig/Pnoise. As we remember,
owing to spectral shaping of the transmitted signal, its bandwidth moderately exceeds
the frequency 1/2T . In practice it does not exceed 1/T . Consider the signal-to-noise
ratio in this band, assuming that noise is Gaussian and white with the power density
spectrum N0/2. Thus, the noise power in the band (−1/T , 1/T ) is Pnoise = N0/2 ×
(2/T ). Therefore

SNR = Psig

Pnoise
= Psig

N0

2
× 2

T

= PsigT

N0
= Es

N0
(3.90)

where Es is the mean signal energy per single data symbol.
As we see from (3.89), if we want to achieve the same error probability for the orthog-

onal signals as for bipolar signals [see (3.88)], the signal-to-noise ratio has to be twice as
high, i.e. it must be about 3 dB higher.
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3.6 Error Probability in the Optimal Receiver for M-PAM Signals

Knowing the structure of the optimal receiver for M-PAM signals we can relatively easily
determine the probability of error at its output. Assume that the receiver consists of a block
correlating the received signal with the basic pulse s(t) and a multilevel quantizer with the
quantization thresholds given by (3.72) (see Figure 3.20). Assume that white Gaussian
noise of power density spectrum N0/2 is an additive distortion and data symbols are
equiprobable, i.e. P(di) = 1/M, where di = ±1, ±3, . . . , ±(M − 1) and M = 2k . Recall
that the received signal is described by the expression

y(t) = dis(t) + n(t) (3.91)

Recalling that we have denoted the energy of the basic pulse s(t) as Es , we obtain the
sample U at the correlator output

U =
T∫

0

[
dis(t) + n(t)

]
s(t)dt = diEs + Zn (3.92)

where Zn is a Gaussian random variable that results from the correlation of noise n(t)

and signal s(t). This random variable has zero mean and a variance which is determined
on the basis of calculations similar to those performed in (3.82), resulting in the value
σ 2

Z = EsN0/2. Therefore U is also a Gaussian variable with a mean equal to diEs and
variance σ 2

Z . In general, symbol error probability can be calculated from the formula

PM(E) =
M∑
i=1

P(di)P (E |di transmitted) (3.93)

In the case of data symbols di different from the “outer” ones, i.e. those different from
±(M − 1), taking into account the quantization thresholds (3.72) we obtain the conditional
symbol error probability

P(E |di transmitted) = Pr {|U − diEs |>Es} (3.94)

This probability is shown as the area under both tails of a Gaussian curve. For the “outer”
symbols di = ±(M − 1) this probability is equal to Pr

{[
U − (M − 1)Es

]
< −Es

}
for

di = M − 1 and Pr
{[

U + (M − 1)Es

]
>Es

}
for di = −(M − 1), respectively, because

the area of correct decision is limited only on one side. Figure 3.23 illustrates our consid-
erations for 4-PAM modulation. The grey areas indicate conditional error probabilities.

Using (3.93) and (3.94) we can write

PM(E) = M − 1

M
Pr {|U − Es |>Es} = M − 1

M

2√
2πσZ

∞∫
Es

exp

(
− u2

2σ 2
Z

)
du (3.95)

The denominator of the fraction (M − 1)/M is determined by the data symbol proba-
bilities P(di) = 1/M , whereas the numerator (M − 1) reflects the fact that for M-level
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u

p(u|di = −3) p(u|di = −1) p(u|di = 1) p(u|di = 3)

−2Es −Es 0 2Es 3EsEs−3Es

Figure 3.23 Conditional symbol error probability density functions at the correlator output of the
optimal receiver for 4-PAM modulated signals

modulation the number of decision areas limited on both sides is M − 2, and two decision
areas are limited on one side only, which is jointly equivalent to M − 1 decision areas
limited on both sides. Using again the standard form of the erfc function, we obtain

PM(E) = M − 1

M

2√
π

∞∫
Es√
2σZ

exp
(−λ2) dλ (3.96)

so

PM(E) = M − 1

M
erfc

(
Es√

2
√

N0Es/2

)
= M − 1

M
erfc

(√
Es

N0

)
(3.97)

We have derived the formula for symbol error probability for M-PAM signals as a
function of the ratio of the basic pulse energy Es to the noise power density spectrum
N0. An expression for symbol error probability as a function of the mean power of the
signal will be more useful if the error probability is presented as a function of the ratio of
mean signal energy per data symbol or per data bit to the power density spectrum. Thus,
let us determine the mean power of the transmitted signal. We proceed in the following
way

Pmean = 1

T
E


T∫

0

[dis(t)]
2 dt

 = E[d2
i ]

T

T∫
0

s2(t)dt = E[d2
i ]

T
Es (3.98)

For the considered data symbol set, assuming that all data symbols are equiprobable,
we obtain

E[d2
i ] = E[(2i − M)2] = 2

M

M/2∑
i=1

(2i − 1)2 = M2 − 1

3
(3.99)

Therefore

Pmean = M2 − 1

3T
Es (3.100)
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and we conclude that

Es = 3PmeanT

M2 − 1
= 3Emean

M2 − 1
= 3kEb

M2 − 1
(3.101)

where Emean = PmeanT is the mean energy of a single data pulse. The number of mod-
ulation levels can be expressed in the form M = 2k, where k is the number of bits
mapped onto a single data symbol. Denote mean signal energy per bit as Eb and notice
that Emean = kEb. Now we can express the symbol error probability for M-PAM by the
formula

PM(ε) = M − 1

M
erfc

(√
3k

M2 − 1

Eb

N0

)
(3.102)

If we wish to have a fair comparison of error rates for modulations with different levels,
we should plot the error probability curves as functions of Eb/N0. Figure 3.11 presents
several error curves drawn according to (3.102) for different modulation levels M .

3.7 Case Study: Baseband Transmission in Basic Access
ISDN Systems

Let us consider a practical example that illustrates our considerations on digital baseband
transmission. In the 1980s, along with the progress in digitalization of telecommunication
networks affecting mainly switching centers and links between them, it was found that
extending the digital network directly to the end users (subscribers) would result in sub-
stantial enrichment of the services offered and would finalize digitalization of the whole
telecommunication network. In this way the idea of Integrated Services Digital Network
(ISDN) systems was established.

As we know, in a classical fixed telephone network each user is connected to the
closest switching center via a twisted copper wire pair. The properties of such a channel
are considered in Chapter 5. In the so-called Plain Old Telephone Service (POTS) a
twisted pair is applied only to transmit analog signals representing a voice waveform
or a voiceband modem signal. Both are contained in the band limited approximately
to 4 kHz. However, a twisted pair offers a much wider channel bandwidth that can be
utilized for digital transmission. Thus, the heavy investment in subscriber lines made by
telecom operators with the expected return after a few tens of years had to be further
exploited. In the first phase of development of digital transmission over subscriber loops,
two bearer (B) channels of the rate 64 kbit/s each plus one data (D) channel of the rate 16
kbit/s were offered in the duplex mode. This means that 144 kbit/s was offered to a user
for simultaneous transmission in both directions. This transmission system is described
as Basic Access ISDN (ITU-T G.961 1993). Later the data rate was extended to 2.048
Mbit/s in Europe, equivalent to the primary rate in PCM systems and 1.544 Mbit/s in
the USA. Such a transmission technique is called a High-data-rate Digital Subscriber
Line (HDSL) (ITU-T G.991.1 1998) and was basically performed in parallel over two
or three twisted wire pairs. Later, owing to the progress in transmission technology, this
method was improved to enable a primary rate transmission on a single twisted wire pair.
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A subscriber line with appropriate transceivers which enables transmission of the latter is
called a Single-pair High-speed Digital Subscriber Line (SHDSL) (ITU-T G.991.2 2003).

In our case study we will present the recommended line codes and pulse shapes mainly
for Basic Access ISDN digital transmission.

Let us mention that much faster digital transmission over subscriber loops is currently
possible, enabling wideband Internet access using ADSL (Asymmetric Digital Subscriber
Line), ADSL2, VDSL (Very high rate Digital Subscriber Line) or VDSL2 technologies.
However, the corresponding methods of digital transmission have not been described
yet, as they require modulations of sinusoidal carriers. We will leave them for future
consideration.

Before we describe the line codes and appropriate pulse shapes in Basic Access ISDN,
let us explain how duplex transmission is possible over a single twisted wire pair. Accord-
ing to the nomenclature adopted for the description of ISDN systems, a transceiver on
the user side is part of Network Termination (NT), whereas a transceiver on the switching
center side is part of Line Termination (LT). Although there are various possible tech-
niques of duplex transmission, two techniques have been recommended for Basic Access
ISDN and HDLC or SHDLC systems. These are Echo Cancellation (ECH) and Time
Compression Multiplex (TCM).2 In the ECH method (see Figure 3.24) signals in both
directions, i.e. from NT to LT and back, are transmitted simultaneously in the same range
of frequencies. The signals are split by a hybrid (which is described in Chapter 5). If
the hybrid worked ideally, there would be no signal at the input of the receiver that is
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xNT(t )
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(a)
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Figure 3.24 Echo cancellation method used in duplex ISDN transmission: (a) basic transmission
configuration, (b) signal spectra at the input/output of the NT hybrid, (c) signals at the input/output
of the NT hybrid

2 A more popular explanation for the TCM acronym is Trellis-Coded Modulation, which will be the subject of our
considerations in the next chapter.
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generated by the transmitter located in the same transceiver. The only received signal
would be the signal generated by the remote transmitter and sent over the subscriber
loop channel. In reality, hybrid ability to attenuate the locally generated signal is limited.
Additionally, the signal from the remote transmitter is often attenuated to such a degree
that the unwanted local signal component received through a nonideal hybrid is much
stronger than the desired signal. Thus, an adaptive filter called an echo canceller attempts
to generate two unwanted components: e1(t), the signal leaking through the hybrid; and
e2(t), the signal that arrives at the local receiver as a reflection signal due to nonideal
impedance matching in the subscriber loop (see Chapter 5). This signal is then subtracted
from the received sum of the desired remote signal and echoes, resulting in a sufficient
signal-to-noise ratio to allow for reliable signal detection. As shown in the chapter on
channel models (Chapter 5), the attenuation of a twisted wire pair channel substantially
increases with frequency, so transmitting in both directions in the same band allows the
required bandwidth to be minimized, leading to a higher transmission range.

The second method, TCM, uses the channel in time division mode (see Figure 3.25).
On the NT and LT sides there are two switches that, when appropriately synchronized,
establish a transmission link by alternating the transmission directions. As we see, no
hybrids are required and no echoes distort the received signal. However, the disadvantage
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Figure 3.25 The Time Compression Multiplex (TCM) method used in duplex ISDN transmission:
(a) basic transmission configuration, (b) time domain signal, (c) signal spectra on the input/output
of NT
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of this transmission method is the necessity to compress the signal in time more than
twice. Half of a time period is devoted to transmission in one direction, but one has
to take into account the delay resulting from signal propagation along the subscriber
loop channel and a finite time of reversing the transmission direction resulting from the
switching processes and rise time of transmit amplifiers. In consequence, the occupied
bandwidth is more than twice as large as that used in the ECH method.

Three line codes are presented in the Appendix to ITU-T G.961 Recommendation
(ITU-T G.961 1993) as allowable alternatives. The first one is called a Modified Monitor-
ing State Code (MMS 43) and it maps 4-bit blocks into blocks of three ternary symbols
with levels +1, 0 and −1 denoted as +, 0 or −. It is sometimes called the 4B3T code.
The MMS 43 line code applies four alphabets, S1, S2, S3 and S4. The choice of the
alphabet is determined by the current 4-bit block on the encoder input and the previously
used alphabet. Table 3.2 shows mapping applied in the MMS 43 line code. Each block of
three ternary symbols is accompanied by the number of the alphabet that has to be used
in the next application of the line code mapping table.

Table 3.2 MMS 43 line code mapping table

Input block S1 S2 S3 S4

0001 0-+ 1 0-+ 2 0-+ 3 0-+ 4
0111 -0+ 1 -0+ 2 -0+ 3 -0+ 4
0100 -+0 1 -+0 2 -+0 3 -+0 4
0010 +-0 1 +-0 2 +-0 3 +-0 4
1011 +0- 1 +0- 2 +0- 3 +0- 4
1110 0+- 1 0+- 2 0+- 3 0+- 4
1001 +-+ 2 +-+ 3 +-+ 4 --- 1
0011 00+ 2 00+ 3 00+ 4 --0 2
1101 0+0 2 0+0 3 0+0 4 -0- 2
1000 +00 2 +00 3 +00 4 0-- 2
0110 -++ 2 -++ 3 --+ 2 --+ 3
1010 ++- 2 ++- 3 +-- 2 +-- 3
1111 ++0 3 00- 1 00- 2 00- 3
0000 +0+ 3 0-0 1 0-0 2 0-0 3
0101 0++ 3 -00 1 -00 2 -00 3
1100 +++ 4 -+- 1 -+- 2 -+- 3

For example, if alphabet S1 has been used at the previous moment, the block 0000 fed
to the line encoder input at the current moment results in the ternary output symbol block
+ 0 + and alphabet S3 will be applied to send the next block. As we can see, the MMS
43 encoder is a device with memory, so it introduces correlation between subsequent
ternary data symbols. We should also note that not all possible ternary codewords can
be applied. At each moment of the encoding process the encoder is able to select one
of 16 ternary codewords (in a single column of the mapping table, appropriately to the
selected alphabet) out of 27 combinations of three ternary symbols. If the receiver detects
a ternary block that is not an allowable line code sequence, quality control alert can be
triggered.
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ITU-T Recommendation G.961 does not provide an exact formula for applied pulses;
however, it includes a pulse mask, as shown in Figure 3.26. Any pulse shape applied in
the NT or LT transmitter has to be contained within this mask.
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Figure 3.26 Pulse mask for the elementary signal shape applied in ISDN transmission with MMS
43 line code. Reproduced with the kind permission of ITU

Transmission in both directions is organized in frames of 120 ternary symbols. In each
frame, besides two bearer channels and the data channel (2B+D) sent in symbols 1–84
and 86–109, the maintenance channel of rate 1 kbit/s is transmitted in symbol 85 and
the frame synchronization word consisting of 11 ternary symbols is sent in the block of
frame symbols 110–120. The data symbol rate is 120 ksymb/s. Assuming a square root
raised cosine shaping filter with roll-off factor of the order of 25–35% applied in the
transmitter, the signal bandwidth of around 75–80 kHz is needed for Basic Access ISDN
transmission in each direction when the echo cancellation method is applied, although a
3 dB bandwidth of the power density spectrum is about 55 kHz.

Another possible line code listed in the Appendix to ITU-T G.961 Recommendation
(ITU-T G.961 1993) is the so-called 2B1Q code. This is a regular 4-PAM modula-
tion. The mapping rule of the 2B1Q code is shown in Table 3.3. The code does not
contain any redundancy that could be used for quality monitoring. The frame consists
of 120 quaternary symbols transmitted during 1.5 ms. It starts from 9 symbols of the
frame synchronization word, followed by 108 symbols carrying bearer and data channels
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Table 3.3 2B1Q line code mapping table

First bit Second bit Quaternary symbol
(sign) (magnitude)

1 0 +3
1 1 +1
0 1 −1
0 0 −3

(2B+D). The frame ends with the maintenance channel requiring 3 quaternary symbols.
The required symbol rate is 80 ksymb/s, resulting in a narrower bandwidth compared
with the system using the MMS 43 line code. The echo cancellation method is used in
duplex transmission. An adequate shape mask can be found in ITU-T Recommendation
G.961 (ITU-T G.961 1993).

The third possible line code described in the Appendix to ITU-T G.961 Recommen-
dation (ITU-T G.961 1993) is the so-called SU 32 (Substitutional 3B2T) code. This line
code is used to support duplex transmission of 2B+D channels supplemented with an
auxiliary channel supporting data CRC, control, supervisory and maintenance functions.
The echo cancellation method is applied to ensure duplex transmission. The ternary data
symbols of SU 32 codewords are again denoted as +, 0 and −, depending on the polarity
of the previous nonzero symbol. Mapping of binary blocks onto ternary codewords is
shown in Table 3.4.

Table 3.4 SU 32 (3B2T) line code mapping table

Input block Output block Input block Output block

000 -- 100 0-
001 -0 101 +-
010 -+ 110 +0
011 0+ 111 ++

Due to the assumed frame configuration, the required data rates of 2B+D and mainte-
nance channels and the applied SU 32 line code, the symbol rate of a ternary data stream
is 108 ksymb/s. The pulse shape signal mask is presented in the above-mentioned ITU-T
recommendation.

Although less efficient than the ECH method and probably very rarely applied, the
TCM method of duplex transmission is one of the alternatives described in Annex III of
ITU-T G.961 Recommendation (ITU-T G.961 1993). For the TCM system configuration
a regular AMI line code has been foreseen. A binary “0” is represented by the zero line
signal whereas binary “1” is transmitted as a pulse alternately changing polarity. The
consequence of time compression is a very high symbol rate, equal to 320 ksymb/s. The
positive and negative pulses are rectangular pulses shaped by the low-pass filter with
cut-off frequency equal to 640 kHz and an appropriately selected roll-off.

So far we have considered line codes, symbol rates and elementary pulse shapes for
Basic Access ISDN transmission. The duplex data rate offered to the user is 144 kbit/s.
In the current state of access to the ISDN network it is not a very satisfactory data rate.
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The next step of development of data transmission over subscriber loops was HDSL
transmission. As we have already mentioned, its aim was to offer data transmission at
the rate of the order of 2048 kbit/s on a triple, double or single wire pair. In the last case
a more complicated transmission method than those described above was proposed in
ITU-T Recommendation G.991.2 in 2003. In fact, the cited recommendation standardizes
selected data rates between 192 kbit/s and 2312 kbit/s (in the form of n × 64 + i × 8
kbit/s) using a Trellis-Coded Pulse Amplitude Modulation (TCPAM). Detailed descriptions
of trellis-coded modulations will be presented in Chapter 4.

***

In this chapter we have presented basic information on the modulation of signals
in the baseband. We have shown that the spectral properties of the modulated signal
strongly depend on the selected shape of the elementary pulse and on the correlation
properties of data symbols. We have also derived the structure of the optimum receiver.
We have noticed, in particular, that a band-limited channel can be used effectively for
data transmission if we modulate elementary pulses that last longer than the modulation
period; however, these signals should have specific spectral or time properties expressed
by the Nyquist theorem.

In our overview we have concentrated on several forms of pulse amplitude modulation.
There are other baseband modulations such as Pulse Width Modulation (PWM) or Pulse
Position Modulation (PPM) but these are mostly used in measurement systems and very
specific telecommunication applications, therefore they will not be considered in this book.

3.8 Appendix: Power Spectral Density of Pulse Sequence

Let us derive the formula for power spectral density of the pulse sequence described by
(3.2). Let us quote this expression in a slightly modified form

x(t) =
∞∑

i=−∞
dis(t − iT − T0) (3.103)

where, as before, di denotes data symbol and s(t) describes the shape of elementary
data pulses. Random variable T0 denotes a reference moment on the time axis of an
external observer of signal (3.103). It is usually assumed that T0 has a uniform probability
distribution in the interval [0, T ]. Let us note that formula (3.103) describes a random
process in which two variables are random and mutually independent: the data symbol
sequence di and random initial moment T0. We will show that the power density spectrum
of signal x(t) given by formula (3.103) is expressed by (3.3).

Derivation of the power density spectrum can be performed via calculation of the auto-
correlation function of process (3.103), followed by calculation of its Fourier transform.
In fact, we use the Wiener-Khinchine theorem on the relationship between the autocorre-
lation function and power spectral density for a stationary stochastic process. It is worth
mentioning that if the random initial moment T0 is not taken into account, the sequence of
data pulses (3.2) is a nonstationary process. For such a case calculation of the autocorrela-
tion function for signal (3.2) would result in a function that would depend not only on the
time shift τ but also on the current time moment t . The dependence of the autocorrelation
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function on time t is periodic. In such a case we speak about the cyclostationarity of
process (3.2). The property of cyclostationarity can be used in timing recovery performed
in the receiver of pulse sequences.

Let us start from derivation of the autocorrelation function of signal (3.103). Using the
basic definition of the autocorrelation function we have

Rx(t + τ, t) = E

 +∞∑
i=−∞

dis(t + τ − iT − T0)

+∞∑
j=−∞

dj s(t − jT − T0)

 (3.104)

where E [.] denotes ensemble average with respect to both random data symbols and a
random initial moment T0. As we have mentioned, data symbols and the initial moment
T0 are mutually statistically independent. Knowing that the probability distribution of
random variable T0 is described by expression

pT0(t0) =


1

T
for 0 ≤ T0 ≤ T

0 otherwise

(3.105)

we can present formula (3.104) in the form given below by (3.106). Additionally, we take
into account the fact that the data sequence does not change its statistical properties in
time so its autocorrelation function E

[
didi+n

]
denoted as Rd(n) does not depend on the

current moment i but is a function of time shift n only. Thus, we have

Rx(t + τ, t) = E

[ +∞∑
i=−∞

+∞∑
n=−∞

dis(t + τ − iT − t0)di+ns(t − iT − nT − t0)

]

=
+∞∑

n=−∞
E

[
didi+n

] +∞∑
i=−∞

T∫
0

s(t + τ − iT − t0)s(t − iT − nT − t0)pT0(t0)dt0

=
+∞∑

n=−∞
E
[
didi+n

] +∞∑
i=−∞

T∫
0

s(t + τ − iT − t0)s(t − iT − nT − t0)
1

T
dt0

=
+∞∑

n=−∞
Rd(n)

∞∫
−∞

s(t + τ − λ)s(t − nT − λ)
1

T
dλ (3.106)

The last row in (3.106) is obtained owing to substitution λ = t0 + iT and to replace-
ment of the infinite sum of integrals over period T by a single integral in the infinite
interval from minus to plus infinity. In turn, if we apply the substitution u = t + τ − λ,
we obtain

Rx(τ) = 1

T

+∞∑
n=−∞

Rd(n)

∞∫
−∞

s(u)s(u − nT − τ)du (3.107)
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Calculation of the power density spectrum for signal (3.103) in fact reduces to performing
the Fourier transform of formula (3.107). Therefore we have

Gx(f ) = F [Rx(τ)] = 1

T

+∞∑
n=−∞

Rd(n)F
 ∞∫

−∞
s(u)s(u − nT − τ)du


= 1

T

+∞∑
n=−∞

Rd(n)S(f )S∗(f ) exp (j2πfnT ) (3.108)

where S(f ) = F [s(t)] is the spectral density of pulse s(t). The property

F
 ∞∫

−∞
s(u)s(u − nT − τ)du

 = S(f )S∗(f ) exp (j2πf nT ) (3.109)

can be easily proved by applying basic formulae associated with the Fourier transform
and its properties. Thus, the power density spectrum for signal (3.103) can be expressed
by formula (3.110), which agrees with expression (3.3)

Gx(f ) = 1

T
|S(f )|2 Gd(f ) (3.110)

In (3.110) Gd(f ) is the power density spectrum of data stream di described by formula
(3.4), which for the reader’s convenience is again given below

Gd(f ) =
+∞∑

n=−∞
Rd(n) exp (−j2πf nT ) (3.111)

Therefore, in a general case the power density spectrum is described by the expression

Gx(f ) = 1

T
|S(f )|2

+∞∑
n=−∞

Rd(n) exp (−j2πfnT ) (3.112)

Consider now a specific, very useful case. Let subsequent data symbols be statistically
independent. Then

Rd(n) =
 E

[
d2

i

] = σ 2
d + µ2

d for n = 0

E
[
didi+n

] = E [di] E
[
di+n

] = µ2
d for n �= 0

(3.113)

and as a result

Gx(f ) = σ 2
d

T
|S(f )|2 + µ2

d

T
|S(f )|2

+∞∑
n=−∞

exp (−j2πf nT ) (3.114)
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Taking into account the Poisson formula, i.e.

+∞∑
n=−∞

exp (−j2πf nT ) = 1

T

+∞∑
n=−∞

δ
(
f − n

T

)
(3.115)

we obtain the formula for the power density spectrum of signal x(t) in the form

Gx(f ) = σ 2
d

T
|S(f )|2 + µ2

d

T 2
|S(f )|2

+∞∑
n=−∞

δ
(
f − n

T

)

= σ 2
d

T
|S(f )|2 + µ2

d

T 2

+∞∑
n=−∞

∣∣∣S ( n

T

)∣∣∣2 δ
(
f − n

T

)
(3.116)

A wider interpretation of expression (3.116) is contained in the main course of the chapter.

Problems

Problem 3.1 Consider unipolar RZ (Return to Zero) line coding in binary transmission
at the rate R = 1/T , in which the following signal is applied to transmit data symbols dn

s(t) = Arect

(
t − T /4

T /2

)
0 ≤ t ≤ T

Assume that the transmitted data are equiprobable and statistically independent. Calculate
the power spectral density of a random data sequence when the RZ line code is applied.
Compare it with the results for unipolar NRZ, bipolar NRZ and Manchester line coding.

Problem 3.2 Assume bipolar transmission of statistically independent and equiprobable
binary data in which the following elementary pulse is applied

s(t) =


sin

(
πt
T

)
0 ≤ t ≤ T

0 otherwise

1. Plot the pulse sequence x(t) given by formula (3.2) if the following data bits an are
transmitted

011010010001110101011

2. Calculate the power spectral density of x(t) and compare it with the relevant power
spectral densities when a rectangular pulse of length T and a raised cosine pulse of
length 2T are applied.

Problem 3.3 Draw an eye diagram for the random bipolar data sequence x(t) described
by (3.2) if the applied elementary signal s(t) has the form of a raised cosine pulse of length
2T , given by formula (3.16).
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Problem 3.4 Consider a simple discrete model of binary transmission described by the
equation

yn = xn + νn

where xn = ±A and n is the time index. Denote Pr{xn = −A} = P0 and Pr{xn = A} = P1.
The sample νn represents a Gaussian noise with zero mean and variance σ 2. At the receiver
a simple threshold is applied to decide which symbol, A or −A, has been transmitted. Give
the formula describing the error probability P(E) = Pr{dec(yn) �= xn}. Find the optimum
threshold that minimizes P(E).

Problem 3.5 Write a computer program that calculates the values of the impulse
response s(t) (3.25) of the filter with the raised cosine characteristics with a given value
of the roll-off factor α and subsequently plots them for α = 0.25. Perform calculations
and the plot for the time interval (−6T , 6T ).

1. Calculate the amplitude characteristics of the filter.
2. Consider the filter impulse response in the time interval (−3T , 3T ). Calculate the ampli-

tude characteristics for this case. What are the consequences of shortening the impulse
response of the filter? Plot the characteristics on the decibel scale.

3. Integrate numerically the product of two pulses – the regular s(t) pulse and the pulse
shifted by a multiple of the signaling period T . Draw the conclusions from the result of
this integration.

Problem 3.6 Solve Problem 3.5 for the square-root raised cosine characteristics of the
filter, typically used as transmit and matched filters. It can be shown that the impulse
response of this filter is given by the formula

s(t) = sin[π(1 − α)t/T ] + (4αt/T ) cos[π(1 + α)t/T ]

(πt/T )[1 − (4αt/T )2]

Problem 3.7 Consider the pulse shaping filter characteristics shown in Figure 3.27. Cal-
culate the impulse response of this filter and determine its properties in the context of
Theorem 3.2.1.

H(f )

T

T/2

f11
2T

(1 + a) (1 − a)
2T

  
2T

(1 + a)
2T

(1 − a)
2T 2T

− − −

Figure 3.27 Pulse shaping filter characteristics considered in Problem 3.7

Problem 3.8 Assume the application of data pulses of a rectangular shape in 8-PAM
transmission. Data symbols dn are selected from the alphabet {±1,±3, ±5,±7}.
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1. Propose a mapping of binary blocks onto data symbols dn for natural and Gray encod-
ing.

2. Draw a plot of PAM signals when natural (a) and Gray (b) encoding is applied and the
following data sequence is transmitted

001 011 101 111 110 100 111 101 001 000

Problem 3.9 Apply any pulse from Figure 3.28 as the shaping pulse in binary bipolar
transmission over an AWGN channel. Draw the plot of the signal seen at the output of
the correlator and at the output of the matched filter applied in an optimum synchronouos
receiver for the noise-free case.

T Tt

T t

t

A A

s(t )

s(t )

s(t )

T/2

3A

(a)

(c)

(b)

Figure 3.28 Plots of three pulses analyzed in Problem 3.9

Problem 3.10 Assume that in binary transmission over the AWGN channel the data sym-
bol “0” is transmitted using the pulse shown in Figure 3.28a and the pulse shown in
Figure 3.28b is applied for transmission of the data symbol “1”. Assume that both data
symbols are equiprobable and statistically independent. The power spectral density of the
AWGN noise is equal to N0/2.

1. Calculate the energy of both pulses in the signaling period T .
2. Draw a block diagram of the optimal synchronous receivers for this transmission in

which correlators (a) and matched filters (b) are applied.
3. Calculate the error probability at the output of this receiver.

Problem 3.11 Consider binary bipolar transmission systems in which the pulses from
Figure 3.28 are applied. Compare the power spectral density for all the pulses if data
symbols “0” and “1” are equiprobable and statistically independent. Draw respective
plots of power spectral density.

Problem 3.12 Consider a quaternary transmission system in which the elementary
pulses have the form ±s1(t), ±s2(t) for 0 ≤ t ≤ T and are zero outside this time interval.
The pulses s1(t) and s2(t) have equal energy and are orthogonal. Derive the optimal
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synchronous receiver assuming that additive noise corrupting the transmitted pulses is
Gaussian and white with the power spectral density N0/2, and that all data symbols are
equiprobable. Derive the decision rule for this receiver and calculate the error probability
at its output.

Problem 3.13 Consider a ternary transmission system in which equiprobable ternary
data symbols 1, 0, −1 are represented by elementary pulses that have the form s1(t) = s(t),

s0(t) = 0, s−1(t) = −s(t), respectively. The energy of the pulse s(t) in the time interval T

is equal to E. Find the scheme of an optimal synchronous receiver when these signals are
transmitted through the AWGN channel. Calculate the probability of error at the receiver
output.

Problem 3.14 Consider the system known in the literature as Partial Response Signal-
ing in the version called the duobinary system. Its block diagram is shown in Figure 3.29.
Assume that binary input data symbols {an} are equiprobable and statistically indepen-
dent. Binary data symbols are converted into a bipolar stream {bn} that is fed to the
duobinary encoder. The resulting data symbol sequence {dn} is subsequently shaped by
an ideal lowpass filter S(f ) with bandwidth equal to 1/2T , where T is the signaling
period.

1. Find the power spectral density of the signal at the output of the shaping filter S(f ).
2. Determine the equivalent form of the system that can be described by the equation

x(t) =
∞∑

i=−∞
bnsmod(t − iT )

Find a formula for the modified pulse smod(t).
3. Design the receiver that is able to decode the considered signal assuming that spectral

shaping is equally divided between the transmitter and receiver, as it is in the case of
the transmit and matched filter pair. Find the appropriate thresholds of the decision
device and formulate the respective decision rule.

4. For the receiver designed in the previous point, show that a decision error can trigger
the error propagation effect.

5. Assuming perfect decisions in the preceding timing instants, calculate the probability
of error for this system. What is the performance difference compared with the regular
bipolar system?

6. Demonstrate operation of the considered system feeding the exemplary data stream
to its input if the system is now supplemented with the so-called differential encoder

Binary-to-bipolar
Ideal LPF 

S(f )

+
+

T

x(t ){an} {bn} {dn}
Σ

Figure 3.29 Block diagram of the duobinary partial response system transmitter
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operating according to the formula

a′
n = an ⊕ a′

n−1

where ⊕ denotes the modulo-2 addition and instead of data bits an the data bits a′
n

are now converted to bipolar form. Find a new decision device taking into account
differential encoding at the transmitter. Is error propagation still dangerous?

Problem 3.15 Solve Problem 3.14 for the system called Class-4 Partial Response or
Modified Duobinary, in which the data symbols dn applied to the shaping filter S(f ) are
received via the following operation

dn = bn − bn−2



 

4
Digital Modulations of the
Sinusoidal Carrier

4.1 Introduction

Most transmission channels are of the bandpass type, i.e. the frequencies of the signal
provided to their input are strongly attenuated outside the frequency range limited by
certain minimum and maximum frequencies. The difference between the maximum and
minimum frequencies is the channel bandwidth. The bandwidth is determined by natu-
ral properties of the transmission channel, although it can be a result of administrative
regulations aiming at reasonably sharing the electromagnetic spectrum between different
systems and their users. The regulations are particularly important for radio systems.

In order to use a bandpass channel in digital transmission, we apply a sinusoidal carrier
of the frequency contained in the channel band and manipulate one or more parameters
of this signal, depending on the data stream to be carried on this carrier. If we present
the sinusoidal signal in the form

x(t) = A cos(2πf t + ϕ) (4.1)

we see that the subject of manipulation can be amplitude A, frequency f or phase ϕ. In
the simplest case, the change of one of these parameters can occur in a stepwise manner,
so digital modulations of a sinusoidal carrier are often described as ASK – Amplitude
Shift Keying , FSK – Frequency Shift Keying or PSK – Phase Shift Keying . Figure 4.1
presents typical waveforms for ASK, PSK and FSK. It is assumed here that single bits
of a data stream modulate the carrier.

Consider the basic digital modulations mentioned above. Figure 4.1 illustrates a partic-
ular case of ASK, FSK and PSK modulations. Let us note that for all waveforms shown
in Figure 4.1 a single signaling period contains an integer number of sinusoidal periods.
Additionally, all possible changes of elementary signals always occur at the moments of
zero crossings of the sinusoidal carrier. Obviously, this is a rare case in practice, but it
allows a clear presentation of the basic properties of modulations to be given.

Let us start with the ASK modulation. According to the rule applied in Figure 4.1a,
a sinusoidal signal represents message “1”, whereas absence of the signal represents

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd



 

286 Introduction to Digital Communication Systems

t

t

t

0

0

0

(a)

(b)

(c)

1 1 1 10 0 0 0

Figure 4.1 Example of ASK (a), PSK (b) and FSK (c) waveforms with a binary modulating
sequence

message “0”. Therefore, the ASK modulation constitutes a choice of one of two elementary
signals

s0(t) = 0, or s1(t) = A cos(2πfct), for t ∈ [0, T ] (4.2)

As we see, the ASK-modulated signal can be generated by switching on and off a
sinusoidal generator of frequency fc for a duration of a single bit T . As in the case
of baseband modulations, the time interval between the moments in which subsequent
elementary signals are generated is called a modulation period .

In turn, in the case of FSK modulation two elementary signals have the form

s0(t) = A cos(2πf0t), s1(t) = A cos(2πf1t), for t ∈ [0, T ] (4.3)

where f0 and f1 are the so-called FSK nominal frequencies . If the nominal frequencies
are not selected in such a way that a multiple number of periods of s0(t) and s1(t) is
contained in the modulation period T , then two cases are possible:

• The FSK-modulated signal is obtained by passing a signal from one of two free-running
generators of sinusoidal carriers of frequencies f0 and f1 to the modulator output – as
a result, a phase discontinuity at the ends of the modulation periods occurs, which has
a substantial influence on the signal spectral properties,

• The FSK-modulated signal is obtained by changing one of the parameters of a single
sine wave oscillator. Consequently, phase continuity is preserved in the moments of
the start of new modulation periods. Unfortunately, analysis of FSK-modulated signals
generated in this way is much more difficult than in the first case.
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Finally, the PSK-modulated signal can be represented by the following two elementary
signals

s0(t) = A cos(2πfct), s1(t) = A cos(2πfct + π) = −A cos(2πfct) (4.4)

Let us note that signal s1(t) features the opposite polarization with respect to signal
s0(t), so PSK modulation can be treated not only as the phase keying but also as a
particular case of DSB-SC modulation,1 in which a binary rectangular random signal is
a modulating signal.

In telecommunication practice more than one signal parameter is very often used in
manipulation of a digitally modulated sinusoidal waveform. Typically, amplitude and
phase are manipulated simultaneously and the transmitted elementary signals are deter-
mined not by single message bits but by whole binary blocks. The application of elemen-
tary trigonometric formulas allows amplitude-and-phase-modulated signals to be treated as
a sum of two amplitude-modulated waveforms of the same frequency that are phase-shifted
by 90◦ with respect to each other. Since the carrier phase-shifted by 90◦ with respect to
the reference carrier is called a quadrature carrier, digital modulation in which ampli-
tude modulation of two orthogonal carriers is applied is called Quadrature Amplitude
Modulation (QAM).

Consider now a very general model of operations performed by a modulator. This
model covers practically all digital modulations of a sinusoidal carrier and is described
by the formula

s(t) = xI (t) cos 2πfct − xQ(t) sin 2πfct = Re{x(t) exp(j2πfct)} (4.5)

where Re{.} is the real part of a complex variable, and x(t) = xI (t) + jxQ(t). Functions
xI (t) and xQ(t) describe the signal modulating the cosinusoidal and sinusoidal carrier
of frequency fc, respectively. These signals are called the in-phase and quadrature
components . We are able to represent any modulation by an appropriate choice of signals
xI (t) and xQ(t). By applying x(t) in the description of a given modulation we are able to
consider each modulation on the complex plane, showing the points that are characteristic
for the applied modulation and the trajectories along which the signal passes between these
points. Signal x(t) is called the baseband equivalent signal .

In general, digital modulations can be divided into linear and nonlinear ones. Linear
modulations are those for which signals xI (t) and xQ(t) may be generated by linear
circuits. ASK, QAM and PSK as well as their variations may be generated using such
circuits. It is not always possible in the case of FSK and its derivatives, so generally this
type of modulation is considered to be nonlinear.

A digitally modulated signal may be processed using different kinds of receivers, which
in turn ensure different levels of error probability. Generally, digitally modulated signals
can be the subject of synchronous (coherent) or asynchronous (noncoherent ) reception.
For the first type of reception the receiver needs to know the elementary signals and
their starting and ending points on the time axis, as well as the exact value of the carrier
phase. If the knowledge about the carrier phase is not used in the receiver or it cannot be

1 Let us recall that DSB-SC (Double SideBand - Supressed Carrier) denotes an amplitude modulation of the form
x(t) = m(t) cos 2πfct , where m(t) is a zero-mean modulating signal.
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acquired due to technical difficulties or cost reasons, we talk about noncoherent reception.
Thus, we intuitively feel that the performance of a noncoherent receiver is worse than that
of a coherent one. In the course of this chapter we will consider both types of receivers
and we will study receiver schemes for basic types of digital modulations.

4.2 Optimal Synchronous Receiver

In our considerations on digital modulations and on performance evaluation of different
receiver types let us assume that the message bits are equiprobable. Let us also assume
that the only disturbance in the channel is a white Gaussian noise of power spectral density
equal to N0/2. Channels that introduce other kinds of disturbances, e.g. they unequally
attenuate the signal frequency components, will be considered in Chapters 5 and 6.

The derivation of the synchronous receiver structure for a digital modulation in which
M elementary signals are applied is analogous to the derivation of the receiver for
M-ary baseband modulations that was presented in the previous chapter, therefore we
will not analyze it in detail. However, we will show the scheme of the optimal receiver
for an M-ary modulation, which will be further applied for several digital modula-
tions of a sinusoidal carrier. Let us denote elementary signals used by the modulator
as si(t) (i = 0, . . . ,M − 1). Their energy within a modulation period is given by the
formula

Ei =
T∫

0

s2
i (t)dt (4.6)

Since we consider modulations of a sinusoidal carrier, the elementary signals have the
form in which a sinusoidal signal is contained. However, we may treat these signals in the
same way as baseband signals. The only difference is the mathematical form that describes
them. As we already know the basic structure of the optimal synchronous receiver, we
easily conclude that the scheme of the optimal receiver looks like that shown in Figure 4.2.
The receiver is synchronous , because in the correlation with the received signal y(t) the
receiver applies the reference signals in the full form of the elementary signals, including
their carrier phase. Thus, the receiver consists of M correlators that apply the appropriate
elementary signals as the reference ones, the circuits that shift the signal levels according
to possibly different values of the elementary signal energy Ei and a decision block that
selects the highest value on the outputs of all the receiver branches. As we already know,
the set of correlators can be replaced by the block of matched filters followed by the
circuits, which sample the output of each matched filter at the end of each modulation
period.

The generic scheme shown in Figure 4.2 may be the basis for a series of simpler
structures of optimal receivers for several digital modulations.

First, let us consider a binary modulation of a sinusoidal carrier. The analysis of this
modulation does not differ from the one performed in Chapter 3. Let us recall that in
this modulation two elementary signals s0(t) and s1(t) are applied. If the energies of both
signals are equal to Es , if the additive Gaussian noise is white and if binary modulating
symbols are equally probable, then we can apply the formula describing the probability
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Figure 4.2 Scheme of the optimal receiver for M-ary modulation assuming equiprobable elemen-
tary signals transmitted over the additive white Gaussian noise channel

of error on the output of the optimal receiver derived in the previous chapter, i.e.

P(E) = 1

2
erfc

[√
Es

2N0
(1 − γ )

]
(4.7)

where, as we remember, γ is the cross-correlation coefficient of the elementary signals.
Inspection of formula (4.7) allows us to note that the error probability depends on the
signal-to-noise ratio (due to Es/N0) and the degree of cross-correlation of the elementary
signals. If we select bipolar elementary signals then, as in the case of baseband trans-
mission, we receive γ = −1, which in turn ensures the maximum argument of the erfc
function and the minimum error probability, which is then equal to

P(E) = 1

2
erfc

(√
Es

N0

)
(4.8)

In turn, if the elementary signals are mutually orthogonal (γ = 0), then

P(E) = 1

2
erfc

(√
Es

2N0

)
(4.9)

Both bipolar and orthogonal signals are often used in modulations of a sinusoidal carrier
and we will study them further. In cases in which not all the assumptions set above
are valid, e.g. those related to the probabilities of message symbols, equal energy of
elementary signals or whiteness of the additive noise, the probability of error should
be determined individually for each case on the basis of the specific properties of the
analyzed modulation.
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4.3 Optimal Asynchronous Receiver

Let us consider the optimal asynchronous reception of signals representing a binary
sequence. Let bit “0” be represented by elementary signal s0(t), and let bit “1” be repre-
sented by signal s1(t). In general, let the signals have the form

s0(t) = r0(t) cos(2πfc,0t + θ0)

s1(t) = r1(t) cos(2πfc,1t + θ1) (4.10)

where r0(t) and r1(t) are any signals taking nonzero values in the interval 0 ≤ t ≤ T and
equal to zero outside of it. Let us note that formula (4.10) is general enough to be valid
for three modulations, i.e. ASK, PSK and FSK, if appropriate forms of r0(t) and r1(t),
appropriate frequencies fc,0 and fc,1 and phases θ0 and θ1 are selected. Let the signal
observed on the receiver input have the form

y(t) = si(t) + ν(t) (4.11)

Let us assume that the optimal asynchronous receiver is not able to recover the sig-
nal phase θi , so θi is treated as a random variable. As we remember, for the optimal
synchronous receiver the minimization of error probability resulting from application of
the Maximum a Posteriori (MAP) criterion is equivalent to searching for such a value î

(i = 0, 1) for which p(y|si )Pi is maximized, i.e.

î = arg max
i

{p(y|si )Pi} (4.12)

where, as before

y = si + ν

y = [y(t1), y(t2), . . . , y(tK)]

si = [si(t1), si(t2), . . . , si(tK)]

ν = [ν(t1), ν(t2), . . . , ν(tK)]

and we denote the probability of transmission of elementary signal si(t) as Pi = P [si(t)].
The modulation period T is divided into K intervals of width 	t = T /K . If we take into
account the phase θi , criterion (4.12) takes the form

î = arg max
i

{p(y|si , θi)Pi} (4.13)

If we assume that subsequent noise samples contained in the signal y are Gaussian and
statistically independent, we get

p(y|si , θi) =
K∏

k=1

pv

[
y(tk) − si(tk)

]
= (2πσ)−K/2 exp

{
− 1

2σ 2

K∑
k=1

[
y(tk) − si(tk)

]2

}
(4.14)

We will now determine the noise variance σ 2 that appears in (4.14).
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White noise can be treated as an asymptotic case of the noise that has a uniform power
spectral density equal to N0/2 and is band-limited by an ideal low-pass filter of width
W if W tends to infinity. Since the power spectral density of this noise is given by the
formula

Gν(f ) = N0

2
rect

(
f

2W

)
the noise autocorrelation function is described by the expression

Rν(τ) = N0W sinc(2πτW)

As a result, if the noise is sampled at time instants that are distant by 	t = 1/2W

seconds, then the samples are uncorrelated, because except for the moment τ = 0 the noise
autocorrelation function Rν(τ) is equal to zero at multiples of time distance 	t = 1/2W .
As the noise samples are Gaussian and uncorrelated, they are statistically independent
and their variance is equal to

σ 2 = Rν(0) = N0W = N0

2	t
(4.15)

If we extend the number K of signal samples taken within modulation period T ,
assuming that K	t = T , we observe that the sum in formula (4.14) transforms into the
integral, the sequences of signal samples change into signals that are continuous functions
of time and time interval 	t tends to an infinitely small increment dt . Thus

p
[
y(t)|si (t), θi

] = lim
K→∞

p(y|si , θi)

= C exp

− 1

N0

T∫
0

y2(t)dt − 1

N0

T∫
0

s2
i (t)dt + 2

N0

T∫
0

y(t)si (t)dt


(4.16)

The value of C is determined by the formula

C = lim
K→∞

(
	t

πN0

)K/2

(4.17)

and it does not have any influence on the decision-making by the receiver, because it is
the same for all i.

Since the phases θ0 and θ1 are unknown to the receiver, the decision criterion takes the
form

î = arg

{
max

i
Eθi

[
p
(
y(t)|si (t), θi

)]
Pi

}
(4.18)

where Eθi
[.] denotes the ensemble average with respect to phase θi . As we see, the optimal

asynchronous receiver makes the decisions on the basis of conditional probability density
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functions of signal y(t), which are averaged with respect to phase θi . It is usually assumed
that the values of phase θi are uniformly distributed in the interval [0, 2π]. If we take
into account the specific form of s0(t) and s1(t) determined by (4.10) in the components
of the exponent in (4.16), and if we assume that the bandwidth of r0(t) and r1(t) is small
compared with the carrier frequencies fc,0 and fc,1, then we have

1

N0

T∫
0

s2
i (t)dt = 1

N0

T∫
0

r2
i (t) cos2(2πfc,i t + θi)dt

= 1

2N0

T∫
0

r2
i (t)dt + 1

2N0

T∫
0

r2
i (t) cos(4πfc,i t + 2θi)dt ≈ Ei

N0
(4.19)

where

Ei = 1

2

T∫
0

r2
i (t)dt (4.20)

If we use the expression

si(t) = ri(t) cos(2πfc,i t + θi)

= ri(t) cos 2πfc,i t cos θi − ri(t) sin 2πfc,i t sin θi (4.21)

then for the last component of (4.16) we receive

2

N0

T∫
0

y(t)si (t)dt = 2

N0

(
yI

i cos θi − y
Q
i sin θi

)
= 2

N0
ri cos (θi + ψi) (4.22)

where

yI
i =

T∫
0

y(t)ri (t) cos 2πfc,i t dt, y
Q
i =

T∫
0

y(t)ri (t) sin 2πfc,i t dt (4.23)

and

ri =
√(

yI
i

)2 +
(
y

Q
i

)2
, ψi = arctg

y
Q
i

yI
i

Let us insert (4.19) and (4.22) into (4.16) and calculate the ensemble average with respect
to phase θi . Let us recall our assumption that the values of phase θi are uniformly
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distributed in the interval [0, 2π]. According to (4.18) we obtain

Eθi
[p(y(t)|si(t), θi)]

= CEθi

exp

− 1

N0

T∫
0

y2(t)dt − Ei

N0

 exp

(
2

N0
ri cos (θi + ψi)

)

= C exp

− 1

N0

T∫
0

y2(t)dt − Ei

N0

 1

2π

2π∫
0

exp

(
2

N0
ri cos(θi + ψi)

)
dθi (4.24)

Let us take advantage of the formula that describes the modified Bessel function of the
first kind of zero order

I0(z) = 1

2π

2π∫
0

exp(z cos α)dα (4.25)

On the basis of (4.24) we get

Eθi
[p(y(t)|si(t), θi)] = C exp

− 1

N0

T∫
0

y2(t)dt

 exp

(
− Ei

N0

)
I0

(
2ri

N0

)
(4.26)

Since constant C and factor exp[(−1/N0)
∫ T

0 y2(t)dt] are the same for each i, the decision
criterion reduces to the form

î = arg

{
max

i

[
exp

(
− Ei

N0

)
I0

(
2ri

N0

)
Pi

]}
, i = 0, 1 (4.27)

The general form of the optimal asynchronous receiver results directly from formula
(4.27) and is shown in Figure 4.3. It contains correlators that are used to calculate the
in-phase and quadrature signal components, which are subsequently used to compute
the envelope sample ri . As we already know from the previous chapter, we can obtain
the same samples if we apply the filters matched to the signals r0(t) cos 2πfc,0t and
r1(t) cos 2πfc,1t , respectively. As a result, we can draw an equivalent scheme of the
receiver from Figure 4.3. This scheme is shown in Figure 4.4. In general, the optimal
receiver has to calculate the value of the modified Bessel function, which can be a problem.
However, if the energies of elementary signals and elementary signal probabilities are
equal, then it is no longer necessary to multiply the values of the Bessel function by the
factor Pi exp(−Ei/N0) (i = 0, 1), so calculations of the Bessel function are not needed.
In order to make a decision about the transmitted data i, it is sufficient to check which
argument of the modified Bessel function is higher, as this function is monotonic (see
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Figure 4.3 General scheme of the optimal asynchronous receiver for binary modulated signals
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Figure 4.4 Equivalent form of the optimal asynchronous receiver using matched filters

Figure 4.5). As it is not necessary to multiply the signals on both branches by 2/N0, the
optimal asynchronous receiver reduces to the form shown in Figure 4.6. It consists of
two parallel branches composed of filters matched to the appropriate elementary signals
and of envelope detectors. The branch output signals are subtracted and their difference
determines the decision î.

We will return to specific forms of the optimal asynchronous receiver again when
considering particular digital modulations.
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Figure 4.6 Optimal asynchronous receiver for binary modulated signals of equal energies and
probabilities of the elementary signals

4.4 ASK Modulation

First let us consider ASK modulation. We will present both synchronous and asyn-
chronous receivers for ASK-modulated signals. Nowadays ASK modulation is not applied
in its pure form. Instead, more advanced binary modulations are used that feature, for
example, a constant envelope. Despite this we will devote our attention to ASK modula-
tion because the results of our considerations will be useful in the analysis of other digital
modulations.

4.4.1 Synchronous Receiver for ASK-Modulated Signals

First let us focus on the optimal synchronous receiver scheme. Although elementary
signals s0(t) and s1(t) described by formula (4.2) are mutually orthogonal, their energies
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Figure 4.7 Two equivalent forms of the synchronous receiver for ASK-modulated signals

are not equal, as s0(t) = 0 and consequently E0 = 0. As a result, the synchronous receiver
shown in Figure 4.2 reduces to the form presented in the upper part of Figure 4.7.

The bottom receiver shown in Figure 4.7 applies a single correlator with a nonlinear
decision circuit. Its decision threshold is half the energy value of elementary signal s1(t).
Relatively simple calculations, similar to those shown in the previous chapter for the
optimal baseband receiver, lead to the formula

P
{E |s0(t) was transmitted

} = P
{E |s1(t) was transmitted

} = 1

2
erfc

(√
E1

4N0

)
(4.28)

Thus, taking advantage of the formula

P
(E) = P

{E |s0(t) was transmitted
}
P
[
s0(t)

] + P
{E |s1(t) was transmitted

}
P
[
s1(t)

]
we receive the following expression for error probability on the output of the synchronous
receiver of ASK-modulated signals

P(E) = 1

2
erfc

(√
E1

4N0

)
(4.29)

Let us note that energy E1 is the energy of its nonzero elementary signal s1(t) and not
the mean energy of the ASK. If we assume equal probabilities of both elementary signals
then the mean energy of the ASK signal is E1/2, so the result obtained is the same as
for the orthogonal elementary signals of energy Es . Figure 4.8 illustrates the calculation
of the error probability for a synchronous receiver of ASK signals.

Formulas describing spectral properties of baseband digitally-modulated signals, which
are already known to us, can be directly applied to the case of passband signals as well.
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Figure 4.8 Conditional error distributions for a synchronous receiver of ASK-modulated signals

If we take into account that the Fourier transform of elementary signal s1(t) is

F [s1(t)] = F

[
rect

(
1

T

)
A cos(2πfct)

]
= AT

2

{
sinc

[
π(f − fc)T

] + sinc
[
π(f + fc)T

]}
(4.30)

we obtain the power spectral density of the ASK signal in the form

GASK(f ) = A2T

8

{
sinc2[π(f − fc)T

] + sinc2[π(f + fc)T
]}

(4.31)

As we can see, the shape of the power density spectrum is the square of the sinc
function shifted by ±fc. However, formula (4.31) is valid if the modulation period is
much longer than the period of the carrier frequency fc, or equivalently if the carrier
frequency fc is much higher than the modulation rate 1/T . In such a case two spectral
components in (4.30) centered at fc and −fc do not overlap. Let us note that the power
density spectrum of the ASK signal has the same shape as that for rectangular signals,
but the spectrum is shifted in frequency by ±fc and is appropriately scaled.

4.4.2 Asynchronous Reception of ASK-Modulated Signals

Spectral properties of ASK-modulated signals are not impressive. Moreover, it can be
difficult to maintain synchronism of the reference signal in the correlator with the received
signal, since there are time periods in which a zero signal is transmitted. In fact, ASK
modulation was used in the early days of digital communications in which synchronous
reception was rather difficult to implement. Therefore, asynchronous reception, similar to
AM envelope signal detection, was usually applied.

Let us consider an optimal asynchronous receiver for ASK-modulated signals, which
can be treated as a particular case of the optimal asynchronous receiver considered pre-
viously. Let us apply a general form of elementary signals (4.10). We see that for ASK
modulation r0(t) = 0, r1(t) = A, and the carrier frequency is fc,1 = fc. In that particular
case the scheme of the optimal asynchronous ASK receiver reduces to the form shown
in Figure 4.9a. However, such a receiver also requires calculation of the modified Bessel
function for the given value of r1(t)

2
N0

. On the output of the sampling block the receiver
checks if the signal is higher or lower than zero. Such a receiver scheme results from
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Figure 4.9 Optimal asynchronous receiver for ASK-modulated signals: (a) in a full version; (b)
without calculation of the modified Bessel function when P0 = P1

the fact that the second branch of the optimum receiver would give the zero signal on its
output, so it does not need to be implemented. Fortunately, we can further substantially
simplify the optimum asynchronous ASK receiver, taking advantage of the following
argumentation.

Let us assume that the transmitted binary symbols are equiprobable, i.e. P0 = P1. We
wish to find a threshold value rthres on the output of the envelope detector for which the
sample on the input of the sampling block shown in Figure 4.9a is equal to zero at the
moment t = T . This envelope value can be determined from the equation

I0

(
2rthres

N0

)
− exp

(
E1

N0

)
= 0 (4.32)

Let us write equation (4.32) in the form

I0

(
rthres

√
2

E1N0

√
2E1

N0

)
= exp

(
E1

N0

)
(4.33)

which is similar to the equation I0(b0
√

2γ ) = exp(γ ) known from mathematical litera-
ture. The latter equation has a solution b0 that depends on parameter γ . The form of the
solution is

b0 =
√

2 + γ/2

In our case we have

b0 = rthres

√
2

E1N0
and γ = E1

N0
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We conclude that the optimal threshold value is

rthres =
√

E1N0

2

√
2 + E1

2N0
= E1

2

√
1 + 4

E1/N0
(4.34)

As we can see, the optimal threshold depends on the energy E1 of elementary signal
s1(t) and on the noise level. If the signal-to-noise ratio is high, then the optimal threshold
value is approximately equal to rthres = E1/2, because the argument of the square root
in (4.34) is close to unity. Figure 4.9b shows the scheme of the receiver based on the
derivation presented above.

The receiver consists of a bandpass filter matched to signal s1(t), an envelope detector
of the matched filter output, a sampling circuit and a decision device with the decision
threshold rthres. If a zero signal is transmitted, then the noise passes through the bandpass
filter and its envelope is determined in the envelope detector. If s1(t) is transmitted, the
envelope detector determines the envelope of the sum of responses of the filter matched
to s1(t) and Gaussian noise.

Figure 4.10 presents another equivalent version of the ASK asynchronous receiver.
The bandpass filter extracts the band in which signal s1(t) is transmitted. The envelope
detector determines the envelope of the signal passing through the filter, i.e. signal s1(t)

with additive noise, or noise only. The filter matched to the envelope is used to maximize
the signal-to-noise ratio. For each modulation period a sample from the filter output is
acquired. On its basis a decision about the transmitted data symbol is made. Let us
note that if the envelope has a rectangular shape, then the filter matched to it is in fact
an integrator over the modulation period, which is subsequently reset after its output
value is read. Figure 4.11 shows an example of the signal waveforms in several receiver
points.

y (t ) = s1(t )+ν(t)
t =T

rthres
U1 U1

Bandpass
filter
(fc)

Envelope
detector

Filter matched 
to envelope i

^

Figure 4.10 Equivalent form of the asynchronous receiver for ASK-modulated signals

4.4.3 Error Probability on the Output of the Asynchronous ASK
Receiver

Let us consider the error probability in the case of transmitting equiprobable data symbols
“0” and “1”, i.e. when P0 = P1. It is sufficient to find the conditional probabilities of error
P(ε|symbol “0” is transmitted) and P(ε|symbol “1” is transmitted). We assume that white
Gaussian noise of power density N0/2 is an additive disturbance. To make our calculations
easier, let us consider the receiver in Figure 4.12. This receiver is equivalent to that shown
in Figure 4.9b, in which correlators are used instead of the matched filter. We also assume
that the carrier frequency is much higher than the modulation rate, i.e. fc � 1/T .
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The signal appearing on the receiver input during modulation period T is described by
the formula

y(t) =
{

ν(t) if symbol “0” is transmitted

r1(t) cos(2πfct + θ) + ν(t) if symbol “1” is transmitted
(4.35)

As previously, phase θ is unknown to the receiver. The noise ν(t) can be presented as a
combination of baseband components nc(t) and ns(t), using the formula

ν(t) = nc(t) cos(2πfct + θ) − ns(t) sin(2πfct + θ) (4.36)

First, let us consider the case when a zero signal is transmitted. Then only the noise ν(t)

is observed on the receiver input. It is correlated in the in-phase and quadrature branches
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with appropriate reference signals, resulting in samples yI and yQ, respectively. Since
the correlation of the received signal with the reference signal is equivalent to the linear
filtration, samples yI and yQ are Gaussian random variables. Simple calculations that
are similar to those performed for the optimal baseband receiver result in the following
values of the variance of samples yI and yQ

σ 2
I = σ 2

Q = σ 2 ≈ N0

2
E1 (4.37)

The sign of approximate equality in (4.37) is a result of the fact that the integrals of the
form

∫ T

0 r2
1 (t) cos 4πfc,1tdt are approximately equal to zero for fc,1 � 1/T . We will use

this fact a few times during error probability calculations.
Let us determine the signals on the output of the in-phase and quadrature correlators

shown in Figure 4.12. These signals are

yI =
T∫

0

ν(t)r1(t) cos 2πfctdt and yQ =
T∫

0

ν(t)r1(t) sin 2πfctdt (4.38)

Using formula (4.36) for noise ν(t) in (4.38) we obtain

yI = uc cos θ − us sin θ and yQ = −uc sin θ − us sin θ (4.39)

where

uc = 1

2

T∫
0

nc(t)r1(t)dt and us = 1

2

T∫
0

ns(t)r1(t)dt (4.40)

Samples yI and yQ on the output of both correlators can be treated as a pair of orthogonal
signals that can be represented in polar coordinates by the amplitude (envelope) r and
phase ψ , i.e.

r =
√(

yI
)2 + (

yQ
)2

, ψ = arctg

(
yQ

yI

)
(4.41)

Putting (4.39) in (4.41), we obtain r = √
u2

c + u2
s .

In order to calculate the conditional probability of error given that the symbol “0” was
transmitted, we have to know the probability density function of the envelope r , because
the decision is made on the basis of r . In general, taking into account the joint probability
distribution of the signal pair yI and yQ, the value of the incremental probability is the
same whichever system of coordinates (rectangular or polar) is applied. Therefore the
following equation holds

pyI ,yQ(yI , yQ)dyI dyQ = pr,ψ(r, ψ)drdψ (4.42)
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Due to statistical independence of samples yI and yQ and their Gaussian distribution, the
joint probability distribution pyI ,yQ(yI , yQ) can be presented in the form

pyI ,yQ(yI , yQ) = 1

2πσ 2
exp

[
−
(
yI

)2

2σ 2

]
exp

[
−
(
yQ

)2

2σ 2

]

= 1

2πσ 2
exp

(
− r2

2σ 2

)
(4.43)

Since we also know from the mathematical analysis that dyI dyQ = rdrdψ , we have

pyI ,yQ(yI , yQ)dyI dyQ = r

2πσ 2
exp

(
− r2

2σ 2

)
drdψ

We conclude from the above expression and from equation (4.42) that

pr,ψ(r, ψ) = r

2πσ 2
exp

(
− r2

2σ 2

)
(4.44)

On the basis of (4.44) we finally obtain the envelope probability distribution in the
form

p0(r) =
2π∫

0

pr,ψ(r, ψ)dψ = r

σ 2
exp

(
− r2

2σ 2

)
, r ≥ 0 (4.45)

where subscript “0” denotes the envelope probability distribution for data symbol “0” .
Let us recall that σ 2 = N0E1/2. Formula (4.45) describes the Rayleigh distribution .

As a result, we can express the probability of error under the condition that symbol “0”
was transmitted in the following form

P(E |symbol “0” was transmitted) =
∞∫

rthres

p0(r)dr (4.46)

where rthres is the appropriately selected threshold value of the envelope r .
Let us consider the second possible situation, i.e. transmission of symbol “1”. The signal

observed on the receiver input is then the sum of the signal carrying the data symbol and
of the noise: y(t) = r1(t) cos(2πfct + θ) + ν(t). Let us calculate the signal on the output
of both correlators as we have done for the first case. We then get the formulae

yI = (E1 + uc) cos θ − us sin θ

yQ = − [(E1 + uc) sin θ + us cos θ ] (4.47)
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Let us note that every pair of orthogonal samples (yI , yQ) is equivalent to the respective
pair [(E1 + uc), us], because they differ only due to rotation by angle θ. If we denote
u′

c = E1 + uc, then we can write

pr,ψ(r, ψ)drdψ = pyI ,yQ(yI , yQ)dyI dyQ = pu′
c,us

(u′
c, us)du′

cus (4.48)

Random variable u′
c is Gaussian with the mean E1 and variance given by formula (4.37).

As in the previous case, both random variables, u′
c and us , are statistically independent,

therefore

pu′
c,us

(u′
c, us)du′

cus = 1

2πσ 2
exp

[
− (u′

c − E1)
2 + u2

s

2σ 2

]
du′

cus (4.49)

If we put (4.49) in (4.48), apply the equality du′
cdus = rdrdψ and the knowledge resulting

from Figure 4.13, after a few simple derivation steps we get

pr,ψ(r, ψ)drdψ = exp

(
− E2

1

2σ 2

)
r

2πσ 2
exp

(
− r2 − 2E1r cos ψ

2σ 2

)
drdψ (4.50)

E1 nc

ns

r
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Figure 4.13 Envelope r as a function of the orthogonal components of the signal and noise on
the output of the correlators in the asynchronous receiver

Derivation of the probability density function of envelope r for the case when symbol
“1” is transmitted results in the formula

p1(r) =
2π∫

0

pr,ψ (r, ψ)drdψ

= exp

(
− E2

1

2σ 2

)
exp

(
− r2

2σ 2

)
r

2πσ 2

2π∫
0

exp

(
−E1

σ 2
r cos ψ

)
drdψ (4.51)

If we apply expression (4.25) in part of (4.51), we conclude that the probability density
function p1(r) is determined by the formula

p1(r) = r

σ 2
exp

(
−E2

1 + r2

2σ 2

)
I0

(
E1r

σ 2

)
(4.52)
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This probability density function is called the Rice distribution. This time the conditional
probability of error given that the symbol “1” was transmitted is

P(E |symbol “1” wastransmitted) =
rthres∫
0

p1(r)dr (4.53)

Probability density functions p0(r) and p1(r) of envelope r conditioned on the transmit-
ted symbol “0” or “1”, respectively, are shown in Figure 4.14. The grey area corresponds
to the conditional probability of error. Finally, the probability of error on the output of
the optimal asynchronous receiver for ASK-modulated signals is given by the following
formula

P(E) = 1

2

∞∫
rthres

p0(r)dr + 1

2

rthres∫
0

p1(r)dr (4.54)

The value of the error probability for a given value of signal-to-noise ratio can be found
only numerically. For large values of signal-to-noise ratio the error probability can be
approximated by the formula

P(E) ≈ 1

2

(
1 +

√
1

2πρ

)
exp

(
−ρ

2

)
(4.55)

where ρ = E1

2N0
.

The ASK modulation is hardly ever applied in current systems, however the main
concept of an asynchronous receiver for digital signals can be well explained using this
modulation scheme. In subsequent paragraphs we will present other digital modulations,
using the results obtained so far.

p0(r) p1(r)

Rayleigh distribution Rice distribution

rthres r

Figure 4.14 Plots of the conditional probability density functions of the envelope of an
ASK-modulated signal at the sampling moment

4.5 FSK Modulation

Let us consider a binary FSK modulation with elementary signals described by formula
(4.3). As we have mentioned before, an FSK signal can be generated by switching between
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Figure 4.15 Power density spectrum of CPFSK signals for several values of modulation index h

(Peebles 1986)

two oscillators that independently generate sinusoidal waveforms of frequency f0 and
f1, respectively. Another way of generating an FSK signal relies on modification of
parameters of a single sinusoidal oscillator. The latter method preserves phase continuity
of the generated FSK signal when the signal is switched from one nominal frequency to
the other. This kind of modulation is usually called Continuous Phase FSK – CPFSK).
Phase continuity atrongly affects the shape of the power density spectrum of the FSK
signal. However, calculation of the power density spectrum is beyond the scope of this
book. In Figure 4.15, quoted after (Peebles 1986), we plot the power density spectrum
for several values of the modulation index h = 2	f T , where 	f = fc − f0 = f1 − fc,
with fc being the carrier frequency.

As we can see, the shape of the power density spectrum highly depends on the values
of modulation index h. If it is equal to 1/2, a substantial part of the power is located
around the carrier frequency. The higher the value of h, the wider the power spread on
the frequency axis and the less power contained between nominal frequencies f0 and f1.

In the next sections we will consider synchronous and asynchronous reception of FSK
signals.
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4.5.1 Discussion of Synchronous Reception of FSK Signal

Let us note that both elementary signals of the FSK-modulated signal have equal energy
per modulation period. Thus, assuming additive white Gaussian noise and equal proba-
bility of data symbols, we conclude that the error probability on the output of an FSK
synchronous receiver can be calculated using formula (4.7). To apply this formula, we
need to determine the cross-correlation coefficient γ for FSK elementary signals. Let us
additionally assume that the period of the carrier signals of frequency f0 and f1 is much
smaller than the modulation period T , i.e. f0, f1 � 1/T . Under these assumptions cal-
culation of the cross-correlation coefficient γ between elementary signals s0(t) and s1(t)

results in formula (4.56), which is illustrated in Figure 4.16.

γ = sin
[
2π(f1 − f0)T

]
2π(f1 − f0)T

(4.56)
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Figure 4.16 Cross-correlation coefficient of the elementary signals in FSK modulation as a func-
tion of the normalized difference of nominal frequencies f0 and f1

We can easily deduce that we can receive different values of the probability of error
(4.7) depending on the difference of nominal frequencies f1 − f0 normalized with respect
to modulation period T . The smallest value of the cross-correlation coefficient appears for
(f1 − f0)T = 0.715 and is equal to −0.217. This cross-correlation coefficient guarantees
the minimum of probability of error on the output of the synchronous receiver. As we
already know, such a synchronous receiver consists of two correlators correlating the
received signal with the elementary signals s0(t) and s1(t), respectively, and the decision
device that selects the information symbol that is related to the higher correlator output.
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Let us put γ = −0.217 in (4.7). We see from the resulting formula that if we want to
ensure a given level of error probability for different modulations, the signal-to-noise ratio
must be over 2 dB higher for FSK modulation than for a bipolar (e.g. BPSK) modulation.
For γ = 0 the elementary signals become mutually orthogonal. It occurs for example if
h = (f1 − f0)T = 0.5. This is the smallest value of the modulation index h for which
elementary signals are orthogonal, therefore the FSK modulation with h = 0.5 is called
MSK (Minimum Shift Keying). We will discuss MSK in the section devoted to constant
envelope modulations.

4.5.2 Asynchronous Reception of FSK Signals

FSK-modulated signals are mostly received in an asynchronous manner. The optimal
structure of an asynchronous FSK receiver is similar to the structure of the receiver
derived for ASK-modulated signals. Let us note that an FSK signal can be treated as a
concatenation of two complementary ASK signals: one for which the modulator sends
a zero signal if data symbol “0” is transmitted and a carrier signal of frequency f1 if
data symbol “1” is transmitted; and the other for which the modulator sends a carrier
signal of frequency f0 if data symbol “0” is transmitted and a zero signal if data symbol
“1” is transmitted. Therefore, the asynchronous receiver for FSK signals has two parallel
branches consisting of the receivers for ASK signals. Such a single ASK receiver has
already been shown in Figure 4.4. The equivalent form of the FSK receiver is presented
in Figure 4.17.

FSK
signal BPF

(f1)

BPF
(f0)

Envelope
detector

Envelope
detector

Filter matched
to envelope

Filter matched
to envelope

r0

r1

i
^y (t )

t =T

Figure 4.17 Asynchronous optimal receiver for FSK signals

The FSK signal corrupted by additive noise undergoes passband filtration performed
by two filters of center frequencies fc ± 	f equal to the nominal frequencies f0 and
f1, respectively, which in turn are related to data symbols “0” and “1”. In a given
modulation period in which one of the nominal frequencies is transmitted we observe
a noise signal on the output of one filter, whereas on the output of the second filter
we observe the carrier signal plus noise. Subsequently, envelope detectors determine the
envelopes in both branches. In order to maximize the signal-to-noise ratio, the envelope
detector output signals are fed to the matched filters. The matched filters act in the same
way as in a synchronous receiver. The outputs of the matched filters are sampled after each
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modulation period and the resulting samples are compared. The larger sample indicates
the data symbol that was more probably transmitted.

4.5.3 Error probability for Asynchronous FSK Receiver

In this section we will calculate the error probability for the optimal asynchronous receiver
for FSK signals, assuming that data symbols “0” and “1” are equiprobable. Let us recall
that energies of both elementary signals are the same and equal to Es . In our calculations
we will use the results previously obtained for ASK modulation.

Let us assume that data symbol “1” has been transmitted, i.e. the transmitter has sent
signal s1(t). As a result, a signal of frequency f1 appears in the lower branch of the
receiver shown in Figure 4.17. Envelope sample r1 in the lower branch is Rice distributed,
whereas on the output of the upper branch filter we observe only the Gaussian noise. This
means that envelope sample r0 is Rayleigh distributed. The receiver commits an error
if r0 >r1. The probability that this inequality holds true can be derived by calculation
of the probability that r0 >r1 for a given value r1, and averaging this result along the
whole range of possible values of r1 taking into account the probability distribution of r1.
This means that the conditional probability of error given that the data symbol “1” was
transmitted can be calculated from the formula

P(E |symbol “1” was transmitted) =
∞∫

r1=0

p1(r1)

 ∞∫
r0=r1

p0(r0)dr0

 dr1 (4.57)

In (4.57) we assume that envelope samples in both receiver branches are statistically
independent. One can prove that this assumption is fulfilled if both the center frequency
fc = (f0 + f1)/2 and the difference frequency 	f = f1 − fc = fc − f0 are multiples
of 1/4T . Consequently, the elementary signals applied in FSK modulation are mutually
orthogonal. Calculation of the integral within the square brackets in (4.57) gives the result

∞∫
r1

p0(r0)dr0 =
∞∫

r1

r0

σ 2
exp

(
− r2

0

2σ 2

)
dr0 = exp

(
− r2

1

2σ 2

)
(4.58)

Putting this in (4.57) and using the formula for the Rice distribution (4.52) we have

P(E |symbol “1” was transmitted)=
∞∫

r1=0

r1

σ 2
exp

(
−E2

s + r2
1

2σ 2

)
exp

(
− r2

1

2σ 2

)
I0

(
Esr1

σ 2

)
dr1

=
∞∫

r1=0

r1

σ 2
exp

(
−E2

s + 2r2
1

2σ 2

)
I0

(
Esr1

σ 2

)
dr1 (4.59)
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Substituting
√

2r1 for u in integral (4.59) and shifting the expression exp(−E2
s /4σ 2) in

front of the integral, we receive

P(E |symbol ‘1’ was transmitted)= 1

2
exp

(
− E2

s

4σ 2

) ∞∫
u=0

u

σ 2
exp

−
(

Es√
2

)2 + u2

2σ 2

I0

(Es√
2
u

σ 2

)
du

(4.60)

Let us note that the integration contained in formula (4.60) is performed on the Rice
distribution in the whole range of its argument, therefore its result is equal to unity.
Thus, if we take into account that σ 2 = EsN0/2 [see formula (4.37)], we obtain a simple
result

P(E |symbol “1’ was transmitted) = 1

2
exp

(
− Es

2N0

)
(4.61)

Calculation of the conditional error probability given that the symbol “0” was transmitted
leads to an identical result because both receiver branches are symmetric to each other.
Since we have assumed that data symbols “0” and “1” are equiprobable, the final formula
for the error probability achieves the form

P(E) = 1

2
exp

(
− Es

2N0

)
(4.62)

In Figure 4.31 we compare the error probability for several binary modulations and
several types of receiver, including the asynchronous FSK receiver discussed above. We
can see that this receiver features the worst quality, although for high signal-to-noise
ratios the difference between the synchronous and asynchronous receiver is relatively
small.

4.5.4 Suboptimal FSK Reception with a Frequency Discriminator

Application of a frequency discriminator in an FSK receiver yields another method of
asynchronous FSK reception. In this type of receiver an FSK signal is treated as an FM
signal for which the modulating signal is a sequence of bipolar pulses representing the
binary sequence. Thus, the frequency discriminator converts an instantaneous frequency
into a signal with the amplitude proportional to this frequency. Further operations are
performed in the baseband. A phase-locked loop (PLL) is a typical circuit performing
frequency discrimination in the receivers. Figure 4.18 presents a general scheme of such
a receiver.

The appropriate choice of the input bandpass filter in the FSK receiver is a rel-
evant issue for the FSK receiver with a frequency discriminator. For a given value
of the modulation index h, which is equivalent to a given distance between nominal
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Figure 4.18 An FSK receiver based on a frequency discriminator

frequencies f0 and f1 with respect to the modulation rate 1/T , we can find the optimal
filter bandwidth that will ensure the minimum probability of error for each input filter
characteristics. Let us consider the formula for the probability of error for the receiver
with a frequency discriminator and with an input bandpass filter of a given characteristic
H(f ).

Let us denote the FSK signal amplitude at the input of the bandpass filter H(f ) as A.
Let HB(f ) be the characteristic of the baseband equivalent filter that is associated with
the bandpass filter characteristic by the formula

H(f ) = 1

2

[
HB(f + fc) + HB(f − fc)

]
(4.63)

Figure 4.19 shows this relation in graphical form. Let 	f = (f1 − f0)/2. Let us introduce
the parameter β = 	f T . We can prove that the error probability for the FSK receiver
with a frequency discriminator and matched filter is described by the formula

P(E) = 1

2
erfc

√
3β2

A2T

2N0
|HB(	f )|2

 (4.64)

 0

HB(f )

fc fc

H(f )

f

Figure 4.19 Input bandpass filter characteristic H(f ) and the characteristic HB(f ) of its baseband
equivalent filter

In order to minimize the error probability we have to maximize the argument of the
erfc function. To do this, we can increase parameter β by increasing the distance between
nominal frequencies f0 and f1. This leads to an increase of the argument of the erfc
function until 	f becomes so large that |HB(	f )|2 starts to decrease. This finally causes
a decrease in the argument of the erfc function. Thus, for the given filter characteristic
HB(f ), or equivalently H(f ), there is an optimal value of β. Table 4.1 lists optimal
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Table 4.1 Optimal values of index β and the distance between nominal
frequencies for an FSK receiver with a frequency discriminator

Type of filter Value of index Optimum value of
|HB(f )|2 β distance f1 − f0

Gaussian
exp[−f 2/(2B3dB)2] 0.31B3dBT 0.7B3dB

Butterworth, 5th order
1/[1 + (f/B3dB)10] 0.40B3dBT 0.81B3dB

Ideal
|HB(f )|2 = 1 |f | ≤ B3dB

|HB(f )|2 = 0 otherwise
0.5B3dBT B3dB

values of parameter β and the distance between nominal frequencies f1 and f0 for a few
types of the input filter.

In conclusion, let us stress once more that the performance of various types of FSK
receivers differs substantially, which manifests itself in a different immunity to noise. The
synchronous receiver that uses the largest knowledge about the signal features the lowest
probability of erronous detection. The asynchronous receiver utilizing envelope detection
is slightly worse, whereas the FSK receiver with the frequency discriminator features the
lowest detection quality. Despite this, the latter receiver is often applied due to its simple
implementation.

4.6 PSK Modulation

Let us recall that elementary signals applied in digital phase modulation are given by for-
mula (4.4). As we have already mentioned during analysis of this formula, the elementary
signals are bipolar, i.e. s1(t) has the opposite polarity with respect to s0(t). Therefore, it
is easy to show that elementary signals s0(t) and s1(t) have equal energy and their cor-
relation coefficient is γ = −1. In consequence, for synchronous reception we obtain the
probability of error described by formula (4.8). Let us note that in the case of a standard
Phase Shift Keying (PSK) modulation the elementary signals last for exactly T seconds,
i.e. the modulation period. Signal components xI (t) and xQ(t) appearing in the general
formula (4.5) have, for PSK, the following form for the time interval iT ≤ t ≤ (i + 1)T

xI (t) = diA rect

(
t − T /2 − iT

T

)
, where di = ±1

xQ(t) = 0 (4.65)

As we can see, the gate function rect (.) determines the spectral properties of the PSK
signal defined by formula (4.4). After simple calculations, assuming again that fc � 1/T ,
we get

GPSK(f ) = A2T

4

{
sinc2[π(f − fc)T

] + sinc2[π(f + fc)T
]}

(4.66)
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Due to the application of bipolar signals, the optimal synchronous receiver is simpli-
fied to a single branch consisting of a correlator that performs correlation of the received
signal with the elementary signal s0(t) = A cos(2πfct), a sampling block and a deci-
sion device in the form of a comparator with zero threshold. The receiver is shown in
Figure 4.20.

y(t ) = x(t ) + v(t )

s0(t) = Acos(2πfct )

t = T

0U1 U1
0

T ^
i

Figure 4.20 Block diagram of a synchronous PSK receiver

We can see from (4.65) that the spectral properties of the PSK modulation are not
very good, similar to those for ASK modulation. They can be improved by replacing the
gate function applied in (4.65), which describes a modulating pulse in the baseband, with
another function, e.g. one of the functions presented in Chapter 3. The pulses with the
raised cosine or square root raised cosine characteristics are particularly advantageous for
improving the spectral properties of PSK modulation.

4.7 Linear Approach to Digital Modulations – M-PSK Modulation

So far we have considered binary modulations. However, if a higher data rate com-
pared with that obtained with a binary modulation is required in transmission over a
band-limited channel, then the solution is to increase the number of elementary signals
of a given modulation. This is also true for PSK modulation. Figure 4.21 presents the
so-called signal constellations for 2-, 4- and 8-PSK modulations. A signal constellation
is a set of points determined by the in-phase I and quadrature Q components of the data
symbols. Thus, the coordinates of signal constellation points are the data symbol pairs
that modulate the baseband pulses of the in-phase xI (t) and quadrature xQ(t) compo-
nents, respectively. As two mutually orthogonal signal components are modulated, such

(a) (b) (c) (d)

I

Q

I

Q

I

Q

I

Q

Figure 4.21 PSK signal constellations for binary PSK (BPSK) (a), 4-PSK (b), 4-PSK in the QPSK
version (c) and 8-PSK (d)
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Figure 4.22 Linear modulator for a two-dimensional digital modulation

modulation is considered as two-dimensional. If we consider PSK modulation as linear,
the modulation process can be presented in a linear form, as shown for the general case in
Figure 4.22.

The elements of a binary data sequence in the form of single bits or bit blocks are
mapped onto pairs of elementary symbols dI

i and d
Q
i , which constitute an excitation for

the transmit baseband filters characterized by the impulse responses p(t) and q(t), respec-
tively. Thus, the signals modulating the in-phase and quadrature carriers are described by
the formulae

xI (t) =
∞∑

i=−∞
dI

i p(t − iT ) xQ(t) =
∞∑

i=−∞
d

Q
i q(t − iT ) (4.67)

We can map bit blocks onto pairs of elementary symbols dI
i and d

Q
i in several ways. The

so-called Gray code is most frequently applied. For this code neighboring constellation
points on the in-phase and quadrature plane are assigned binary blocks that differ in the
smallest possible number (mostly one) of positions. Figure 4.23 illustrates how binary
blocks are assigned to 8-PSK constellation points according to the Gray code.

The main reason for application of the Gray code is the observation that the most
frequent errors are due to selection of the neighboring constellation point with respect to
the one that was actually transmitted. If binary blocks assigned to the neighboring points
differ only in one position, then a single binary error will be made. Other binary block
assignments would lead to an increased number of binary errors. There are, however,
situations for which other forms of mapping are more advantageous for transmission
quality.

Several linear modulations can be presented using formula (4.67). If we assume
q(t) = 0, dI

i = ±1 and p(t) = rect((t − T /2)/T ), we obtain BPSK – Binary Phase
Shift Keying – Figure 4.21a. In turn, if we select dI

i = d
Q
i = ±1 and p(t) = q(t) =

rect((t − T /2)/T ), we obtain QPSK – Quadrature Phase Shift Keying – shown in
Figure 4.21c. 8-PSK modulation is obtained assuming data symbols dI

i and d
Q
i in the

form of cos(iπ/4) and sin(iπ/4) (i = 0, . . . , 7), respectively.
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Figure 4.23 Mapping of the binary blocks onto the elementary signals for QPSK and 8-PSK
modulations according to the Gray code

As we have already mentioned, the signal spectrum can be shaped by appropriate
selection of the transmit filter impulse responses p(t) and q(t). A typical impulse response
of the transmit filter applied in digital communication systems is a time function p(t)

whose frequency characteristic has the shape of a square root raised cosine. In the receiver,
the same receive filter characteristic is applied. The spectrum shaped in this way ensures
a low level of spectral sidelobes and high energy in the mainlobe. However, let us note
that the transmit filter response to a data symbol lasts for a few modulation periods, so in
the case of transmission of a whole data symbol sequence the responses of the transmit
filter to particular data symbols overlap.

So far we have considered signal constellations for some PSK modulations. They are
formed out of the points on the (I, Q) plane, which represent data symbols modulating
the in-phase and quadrature components. Such a constellation does not illustrate how the
modulator changes elementary signals during the modulation period. We can obtain a
plot showing this process if we draw both components xI (t) and xQ(t) along mutually
orthogonal axes. The resulting trajectories show the instantaneous amplitude and phase of
the modulated signal as a function of time. Strictly speaking, the distance of a trajectory
point to the origin of the coordinate system is the instantaneous value of the envelope of the
modulated signal, whereas the angle between the line connecting the trajectory point with
the origin of the coordinate system and the I axis is the instantaneous signal phase (not
taking into account the phase resulting from the carrier signal). In some communication
systems, e.g. in cellular radio, it is crucial that the signal envelope is constant or fluctuates
only within a small range. This need results from the application of power amplifiers in
their nonlinear range, which is usually caused by limited energy resources, in particular in
mobile terminals. Thus, the applied modulation should be robust to nonlinear distortions.
In Section 4.14 we consider the influence of the nonlinear characteristics of the power
amplifier on the transmitted signal.

Figure 4.24a presents envelope trajectories for QPSK modulation in which a transmit
filter with the square root raised cosine characteristics is applied. Recall that for each
time instant the current envelope value is the distance between the trajectory point
and the coordinate system origin. Let us note that at some moments the envelope
value is close to zero. Therefore, despite good spectral properties achieved due to
filtering, the modulated signal is not robust against nonlinear distortions. We can obtain
a visible improvement if we shift the symbol timing clock of one signal compo-
nent with respect to the other, i.e. if q(t) = p(t − T /2). In such a case we talk about
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x I(t)

xQ(t)

x I(t)

xQ(t)(a) (b)

Figure 4.24 Envelope trajectories for QPSK (a) and OQPSK (b) modulations using the filter with
square root raised cosine characteristics

OQPSK – Offset Quaternary Phase Shift Keying . This type of modulation is illustrated in
Figure 4.24b.

Another means of decreasing the envelope dynamics, leading to higher robustness
against nonlinear distortions, relies on adding an extra phase shift of π/4 to the mod-
ulated signal in each modulation period. Applying the phase difference between two
consequtive modulation periods and the additional phase shift mentioned above results
in the so-called π /4-DQPSK modulation that appears in some mobile communication
systems.

In a typical π /4-DQPSK modulation a binary stream is divided into dibits, which deter-
mine the phase shift with respect to the phase in the previous modulation period. Possible
phase shifts are ±π/4 and ±3π/4. Figure 4.25 presents envelope trajectories for any pos-
sible dibit combinations. The envelope is not constant but its fluctuations are moderate.
We see that the envelope is never equal to zero, which positively influences the signal
robustness against nonlinear distortions. The signal shown in Figure 4.25 was generated
by application of the transmit filter with the square root raised cosine characteristics and
with the roll-off factor equal to 0.35.

I

Q

Figure 4.25 Envelope trajectories for π/4-DQPSK-modulated signal
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Figure 4.26 Optimal receiver for QPSK signals with carrier and timing recovery blocks

Figure 4.26 presents a typical synchronous receiver scheme for a QPSK signal [we
assume that the transmit filters in the transmitter shown in Figure 4.22 are identical, i.e.
q(t) = p(t)].

The received signal (possibly after down-conversion to the intermediate frequency)
is given to the inputs of two synchronous demodulators that consist of multipliers and
low-pass filters. These filters are simultaneously matched to the transmit filters applied
in the transmitter. Let us recall that for a nondistorting channel with additive white
Gaussian noise the impulse response of the receive filter should be a mirrored reflection
of the transmit filter impulse response. For a transmit filter with the characteristics given
by formula (4.20), for which the impulse response is symmetric with respect to its center,
the receive filter has an impulse response that is identical to that of the transmit filter.
Therefore both filters constitute a pair. The frequency and phase recovery block shown in
Figure 4.26 makes use of the difference between the decision generated in the decision
device for the in-phase and quadrature components and the signal components given to
the input of the decision device. This difference is a measure of the phase difference. The
rate of change of the phase difference carries information about frequency offset with
respect to the received signal.

The above frequency and phase recovery block with feedback is one of several possible
solutions. There are other phase and frequency recovery circuits that are based on nonlin-
ear processing of the received signal, resulting in creation of a discrete spectral component
at the multiple of the carrier frequency. After extracting this spectral component from the
received signal and dividing it in a frequency divisor, we obtain the carrier frequency that
can be applied by the reference carrier. One possible way to adjust the symbol timing
circuit is also based on the signal difference between the signal on the decision device
input and the signal on its output.

A negative consequence of using the carrier phase recovery circuits is the so-called
phase ambiguity . Due to the performed mathematical operations these circuits recover the
received signal phase modulo-180◦ (for BPSK modulation) or modulo-90◦ (for 4-PSK or
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other modulations with constellations that are symmetric with respect to both coordinate
axes).

4.8 Differential Phase Shift Keying (DPSK)

4.8.1 PSK Modulation with Differential Coding and Synchronous
Detection

Phase ambiguity, as we said above, is a negative consequence of the carrier phase recovery
that takes place in a synchronous receiver. To remove phase ambiguity we must apply
differential coding before feeding the data symbols to the modulator input. The simplest
case of the BPSK modulation is shown in Figure 4.27.

y(t)
t = T

0U1 U1 T

Differential decoderDifferential encoder

bi
ai + +

T

Phase
recovery

±Acos(2πfct)

BPSK
Modulator

Noise
ν(t)

x(t)

0

T

bi−1 bi−1

bi ai+

Figure 4.27 Transmitter and synchronous receiver for BPSK-modulated signals with differential
coding

Let us use Figure 4.27 for explanation of the differential encoding. This operation is
based on modulo-2 addition of the input bit to the bit resulting from differential encoding
in the previous timing instant. Therefore, the BPSK input signal bi is given by the equation

bi = ai ⊕ bi−1 (4.68)

Symbols bi are recovered in the receiver on the output of the BPSK demodulator. First,
let us assume that the phase recovery circuit operating with 180◦ phase ambiguity has
recovered the received signal phase correctly. Let the decided symbol b̂i be the same as
the transmitted symbol bi . Then, differential decoding leads to the following result

âi = b̂i ⊕ b̂i−1 = (ai ⊕ bi−1) ⊕ bi−1 = ai (4.69)

Naturally, the receiver operates correctly if the decision device makes correct decisions.
If the decision is incorrect, it will appear in the differential decoder in two succesive timing
instants due to the applied memory cell. Thus, a single decision error will trigger two
binary errors. This is the price paid for removing the influence of phase ambiguity caused
by the phase recovery circuit applied at the receiver.
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Now let us assume that the phase recovery circuit generates the reference signal shifted
by 180◦ with respect to the received signal. Thus, the correlator output sample is generated
with inverted polarity with respect to the output sample that would appear if the phase
were recovered properly. In consequence, assuming the correct decision of the decision
device, its output symbol is b̂i = bi = 1 ⊕ bi . Therefore, we get the following signal on
the output of the differential decoder

âi = b̂i ⊕ b̂i−1 = (1 ⊕ bi) ⊕ (1 ⊕ bi−1)

= bi ⊕ bi−1 = ai ⊕ bi−1 ⊕ bi−1 = ai (4.70)

As we can see, the final decision related to symbol ai remains correct independently
of the presence or absence of the 180◦ phase shift caused by the carrier recovery circuit.
Let us stress once more that the condition for correct operation of the whole system is
the lack of errors on the output of the decision device. Let us also note that the receiver
considered so far is synchronous, since it recovers the carrier phase (although it performs
this task with 180◦ or 90◦ ambiguity in some other cases).

We can easily calculate the error probability for the receiver of differentially encoded
BPSK if we apply the results for a synchronous BPSK receiver. As we have already
noticed, in order to achieve the correct signal from the differential decoder, correct deci-
sions from the decision device have to be made in the current and preceding timing
instants. The output decision will also be correct if the decision device commits an error
in the current and preceding timing instants. Knowing the probability of an incorrect
decision (4.8), we receive the following formula for the probability PC of the correct data
symbol decision

PC =
[

1 − 1

2
erfc

(√
Es

N0

)]2

+
[

1

2
erfc

(√
Es

N0

)]2

(4.71)

so the symbol error probability is

P(E) = 1 − PC = 1 −
[

1 − 1

2
erfc

(√
Es

N0

)]2

−
[

1

2
erfc

(√
Es

N0

)]2

= erfc

(√
Es

N0

)
− 1

2
erfc2

(√
Es

N0

)
(4.72)

If we compare (4.72) with (4.8), we see that the error probability is higher for the
synchronous receiver of differentially encoded BPSK signals than for the receiver of the
pure BPSK. The value of the first component in (4.72) is twice as high as the value of
the single component in (4.8), whereas the value of the second, negative component is
substantially smaller than that in (4.8).
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4.8.2 Asynchronous DPSK Receivers

Now let us treat the BPSK modulator and differential encoder jointly. Let us assume
that the elementary signal s0(t) [see formula (4.4)] is generated for bi = 0, whereas data
symbol bi = 1 implies generation of the elementary signal s1(t), as it occurs in a typical
BPSK modulator. Let b0 = 0, i.e. the encoder memory cell contains a zero in the zero
timing instant. From the respective waveform in Figure 4.28 we see that the 180◦ phase
shift with respect to the current phase is triggered by the data symbol ai = 1, whereas
there is no phase shift if the data symbol ai = 0 appears on the modulator input. Such a
modulation is called Differential Phase Shift Keying (DPSK) and it can be achieved also
through differential encoding and regular BPSK modulation.

t
0

bi 1 0 0 1 0 1 1 0

ai 0 1 0 1 1 1 0 1

Figure 4.28 Example of DPSK-modulated signal waveform

In real channels distortions are introduced by multipath propagation, flat and selective
fading, intersymbol interference and phase jitter. As a result, the complexity of the syn-
chronous receiver grows and sometimes implementation of the synchronous receiver is
impossible, particularly if the phase and frequency recovery blocks generate estimates of
the carrier frequency and phase of insufficient quality. In such cases, instead of regular
PSK modulation a DPSK modulation with asynchronous reception can be applied. Let us
consider the DQPSK signal, i.e. the signal with four-phase differential shift keying in the
version analogous to that shown in Figure 4.21c. The signal is described by formula (4.5),
and the in-phase and quadrature baseband components of signal (4.5) are determined by
the expressions

xI (t) =
∞∑

n=−∞
dI

np(t − nT ) xQ(t) =
∞∑

n=−∞
dQ

n p(t − nT ) (4.73)

This time, the two-bit information is carried neither by the data symbols dI
n and d

Q
n

themselves nor by their argument φn = arg(dI
n + jd

Q
n ). It is contained in the phase dif-

ference between successive modulation periods, 	φn = φn − φn−1. The scheme of such
a receiver is shown in Figure 4.29 (Okunev 1979).

Signals on the output of both receive filters are sampled once per modulation period
and are proportional to the cosine and sine of the angle φn + θ , respectively, where θ

represents the carrier phase difference between the received signal and the demodulating
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Figure 4.29 Asynchronous receiver for DQPSK signals

signals. The receiver does not track the carrier phase of the received signal. The samples
that are proportional to cosines and sines of the angles φn + θ are stored in the memory
cells denoted by T , so both current and previous samples are at the disposal of the receiver.
Let us note that in order to make a decision it is sufficient to know in which quarter of
the coordinate system the angle 	φn is located. In order to detect it, it is sufficient to
determine the sign of functions sin 	φn and cos 	φn. They can be calculated on the basis
of well-known trigonometric formulas

cos(	φn) = cos
[
(φn + θ) − (φn−1 + θ)

]
= cos (φn + θ) cos (φn−1 + θ) + sin (φn + θ) sin (φn−1 + θ)

sin(	φn) = sin
[
(φn + θ) − (φn−1 + θ)

]
= sin (φn + θ) cos (φn−1 + θ) − cos (φn + θ) sin (φn−1 + θ) (4.74)

Let us note that the system of multipliers and adders in Figure 4.29 exactly follows for-
mula (4.74). The whole receiver operates correctly under the assumption that the changes
of angle θ between succeeding modulation periods are insignificant, i.e. the phase jitter is
slow as compared with the duration of a single modulation period. If the impulse response
of the baseband filter p(t) lasted for the modulation period T and p(t) had a rectangular
shape, the optimum receive filter would be an integrator, so it would realize a correlation.
Thus, such DQPSK receiver is called a correlative receiver .

For DPSK modulation for which information is carried by the phase difference between
the current and previous modulation periods, besides a correlative receiver another type of
asynchronous receiver is also possible. This receiver is called an autocorrelative receiver ,
because correlation is performed between the currently received signal and the signal
received during the previous modulation period and stored in the delay line. Two versions
of a DPSK autocorrelative receiver are shown in Figure 4.30.

Let us consider the operation of both versions. Transmitted data are contained in the
phase difference 	φ = 0 or π . Let the phase of the received signal be θ . Let the following
assumptions be fulfilled:

• a multiple number of periods of a carrier signal are contained in the modulation period;
• the carrier frequency is much higher than the modulation rate 1/T .
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Figure 4.30 Autocorrelative receiver for binary DPSK signals: (a) suboptimal receiver; (b) optimal
receiver with a matched filter

Let us consider the suboptimal receiver shown in Figure 4.30a. Neglecting noise for
a while, which is approximately equivalent to the assumption of a high signal-to-noise
ratio, we can describe the sample on the output of the correlator as a random variable U1:

U1 =
T∫

0

A cos(2πfct + ϕn + θ)A cos[2πfc(t − T ) + ϕn−1 + θ ]dt

= A2

2

T∫
0

[
cos(ϕn − ϕn−1) + cos(4πfct − 2πfcT + 2θ + ϕn + ϕn−1)

]
dt

= A2T

2
cos(	ϕn) (4.75)

As we see, the signal on the input of the decision device is proportional to the cosine of
the angle 	ϕn. In order to check if this angle is equal to 0 or π , it is sufficient to check
the sign of its cosine. The scheme is rather simple but its performance is inferior to the
other receiver types, because in reality the noise from the current and previous modulation
periods disturbs the correlation process. Let us note that the correlator is preceded by a
bandpass filter, which narrows the signal spectrum to a necessary minimum in order to
ensure the maximum signal-to-noise ratio without distorting the useful signal. Denoting the
bandpass filter bandwidth as B, one can show (see Park 1978) that for high signal-to-noise
ratio the error probability on the receiver output can be approximated by the following
formula

PDPSK(E) = 1

2
erfc


√√√√√ 1

1 + BT

2

N0

Es

Es

2N0

 (4.76)
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For a typical filter bandwidth B = 3/T and for Es/N0 = 10 dB, formula (4.76) can be
approximated by the expression (Couch 1987)

PDPSK(E) = 1

2
erfc

(√
Es

2N0

)
(4.77)

so the performance of the considered receiver is comparable to the performance of a
synchronous receiver for orthogonal elementary signals.

Now let us consider the second type of receiver. It can be proved that this is an optimal
asynchronous receiver for DPSK signals. The impulse response of the matched filter at
the receiver input is given by the formula

hMF(t) = 1

T
rect

(
t − T /2

T

)
cos 2πfct (4.78)

so the initial phase θ of the received signal is not taken into account. Let the bipolar data
sequence, which reflects the transmitted binary sequence ai , be denoted as di , and let
the bipolar sequence ci represent the binary sequence bi on the output of the differential
encoder. The data symbols of sequences ci and di take the values ±1. We can easily
note that differential coding can be described not only by formula (4.68), but also by the
expression

ci = dici−1 (4.79)

As a result, the DPSK signal generated by the transmitter can be described by

s(t) =
{ ∞∑

i=−∞
ci rect

[
t − (i − 0, 5)T

T

]}
A cos(2πfct + θ) (4.80)

Signal y(t) observed on the receiver input is the sum of signal s(t) and white additive
Gaussian noise ν(t) of power spectral density N0/2. On the output of the matched filter
we obtain the component resulting from the DPSK signal and the noise component. The
first component, under the assumption that fc � 1/T , is

x(t) =
{ ∞∑

i=−∞
ci�

[
t − (i + 1)T

T

]}
A cos(2πfct + θ) (4.81)

where �(t) is a triangular function described by the formula

�(t) =
{

1 − |t | dla |t | < 1
0 dla |t |> 1

(4.82)

The noise component on the matched filter output is a Gaussian passband noise of the
form

n(t) = nc(t) cos(2πfct + θ) − ns(t) sin(2πfct + θ)
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with the power spectral density and autocorrelation function equal to, respectively

Gn(f ) = |HMF(f )|2 N0

2
and Rn(τ) = N0

4T
�

( τ

T

)
cos(2πfcτ) (4.83)

where HMF(f ) = F[hMF(t)] is the matched filter transfer function, and the noise on the
output of the matched filter has the variance σ 2 = N0/4T (we propose that interested
readers calculate the noise variance in a similar way as we have done for asynchronous
reception of ASK signals). Let us note that, under the assumption that fc = k/T , the
processes n(t) and n(t − T ), where n(t − T ) appears on the output of the element delaying
the signal by modulation period T , are mutually uncorrelated [cf. formula (4.83)]. Because
they are Gaussian they are also statistically independent. Denoting

n(t − T ) = nc(t − T ) cos
[
2πfc(t − T ) + θ

]
− ns(t − T ) sin

[
2πfc(t − T ) + θ

]
= nc,T (t) cos(2πfct + θ) − ns,T (t) sin(2πfct + θ) (4.84)

we obtain the following expressions for the samples multiplied at the moment t = kT

y(kT ) =
[
ckA

2
+ nc(kT )

]
cos(2πfckT + θ) − ns(kT ) sin(2πfckT + θ)

y
(
(k − 1)T

) =
[
ck−1A

2
+ nc,T (kT )

]
cos(2πfckT + θ)

− ns,T (kT ) sin(2πfckT + θ) (4.85)

The signal that is a product of the signals y(t) and y(t − T ) is filtered in the low-pass
filter so the components around 2fc are attenuated. Assume again that the signal-to-noise
ratio is so high that the noise components can be neglected for a while. Then the product
of the signals on the output of the lowpass filter at the time instant t = kT is

y(kT )y
[
(k − 1)T

] ≈ ckck−1A
2

8
= c2

k−1dkA
2

8
= dkA

2

8
(4.86)

As we can see, this result is proportional to the bipolar data symbol dk , so it is sufficient to
determine the polarization of the product of the signals y(t) and y(t − T ) at the moments
t = kT .

4.8.3 Discussion on the Error Probability of the Optimal Asynchronous
DPSK Receiver

Considerations that lead to the structure of the optimal asynchronous receiver for DPSK
signals can be based on the following argumentation.
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Let us note that in DPSK modulation, as for BPSK modulation, the elementary signals
used are s0(t) = s(t) and s1(t) = −s(t). In the modulation period T each signal has
energy Es . However, for DPSK a phase shift with respect to the current phase occurs if
the data symbol ai = 1. This means that the data symbol ai = 1 is mapped onto a pair of
elementary signals, [s(t), −s(t)] or [−s(t), s(t)]. Similarly, the data symbol ai = 0, for
which the phase shift does not take place, is mapped onto a pair of elementary signals,
[s(t), s(t)] or [−s(t), −s(t)]. In each case a transmitted bit is represented by a pair of
elementary signals of energy 2Es . Let us note that any signal pair assigned to the data
symbol ai = 0 is orthogonal to any signal pair assigned to the data symbol ai = 1. Thus,
the orthogonal signals of equal energy 2Es are used for transmission. The error probability
for such a case has already been the subject of our considerations and has resulted in
formula (4.62). This time the signal energy is twice as high as in the case of orthogonal
signals of energy Es for which formula (4.62) is valid, so we get

PDPSK(E) = 1

2
exp

(
−Es

N0

)
(4.87)

If we compare the above formula with formula (4.62) describing the error probabil-
ity for the optimal asynchronous receiver for FSK orthogonal signals, we see that the
argument of the function exp(−x) contained in both formulas is twice as high for DPSK
compared with FSK. From this observation we conclude that for DPSK the error prob-
ability curve is shifted by 3 dB to the left with respect to the curve for orthogonal FSK
signals. Therefore, in order to obtain the same probability of error, the DPSK system
with optimal asynchronous reception requires a signal-to-noise ratio that is twice as small
compared with the FSK system.

4.8.4 Comparison of Binary Modulations

In the previous paragraphs we considered different binary modulations and several
receivers. Our considerations usually resulted in formulas for error probability for
respective modulations and associated receivers. Now we will use these results for
plotting the curves of error probability versus signal-to-noise ratio expressed in dB
(Figure 4.31). We draw the following conclusions from analysis of the plots:

1. Error probability decreases monotonically with an increase of Es/N0.
2. For any value of Es/N0, PSK modulation with a synchronous receiver ensures lower

probability of error than any other binary modulation. One can show that the PSK
system with a synchronous receiver is the optimal solution for the additive white
Gaussian noise channel.

3. PSK and DPSK modulations with synchronous receivers require an Es/N0 ratio that
is 3 dB lower compared with FSK modulation with synchronous and nonsynchronous
receivers, respectively.

4. For high Es/N0 DPSK modulation with a nonsynchronous receiver and FSK modula-
tion with a nonsynchronous receiver are only slightly worse (by less than 1 dB) than
PSK and FSK modulations with synchronous receivers, respectively.
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Figure 4.31 Error probability for several binary modulations and several types of reception:
synchronous PSK reception (1), synchronous DPSK reception (2), nonsynchronous DPSK reception
(3), synchronous FSK reception (4), nonsynchronous FSK reception (5)

4.9 Digital Amplitude and Phase Modulations – QAM

4.9.1 General Remarks

So far we have limited our considerations to the modulations in which only a single
parameter of the carrier, such as amplitude, frequency or phase, is manipulated. As we
have seen, in order to achieve a high throughput in the transmission over a band-limited
channel, we cannot only apply M-ary PSK (or its differential version), but we can use
digital modulations in which both amplitude and phase of the carrier are manipulated
simultaneously. Such modulations are often denoted as AM/PM (Amplitude Modula-
tion/Phase Modulation). As for an M-ary PSK, these modulations can be interpreted
as amplitude modulation of two mutually orthogonal carriers and are often described
as QAM (Quadrature Amplitude Modulation). Figure 4.32 presents examples of QAM
constellations.

The first modulation shown in Figure 4.32 is actually an AM/PM. Constellation points
are located on four circles reflecting four amplitude values. The signals characterized by a
given amplitude can have one of four possible phases. Let us note that the phases of con-
stellation points on neighboring amplitude circles are mutually shifted by 45◦. Thus the
distance between constellation points on the I–Q plane is maximized and they become
more distinguishable from each other. As a result, the error probability is minimized.
The remaining modulations shown in Figure 4.32 are QAM: 16-QAM of a square shape
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Figure 4.32 Examples of signal constellations for AM/PM and QAM modulations: (a) 16-AM/PM,
(b) 16-QAM, (c) 32-QAM cross-constellation

and 32-QAM of a cross shape. All three modulations are applied in many communi-
cation systems in which a high binary throughput per spectrum unit is required and the
signal-to-noise ratio is sufficiently high to allow for application of multilevel modulations.

QAM is best described by formulas (4.5) and (4.67). The signals that modulate in-phase
and quadrature carriers are baseband signals with PAM. The block diagram of a QAM
modulator is shown in Figure 4.33 and the synchronous receiver matched to it is presented
in Figure 4.34.

Similarly, as for an M-ary PSK, mapping of binary data blocks onto QAM elementary
signals has to be performed. Gray coding is applicable in this case as well, however this
kind of mapping requires more careful analysis. This time Gray coding is not applied
for the constellation points located on a circle, but it is applied simultaneously in two
dimensions. In real communication systems differential encoding is typically applied as
well, since the carrier phase synchronization block recovers the received signal phase
modulo-90◦. In this context we wish our QAM to be 90◦ phase invariant , i.e. we have to
apply such a differential encoding and binary block mapping that if the reference carrier
phase is recovered in the receiver with the phase shift of kπ/2 with respect to the original
one, the data blocks on the output of the differential decoder are correct. Because the
invariance with respect to the reference phase should be preserved modulo-90◦, two bits
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Figure 4.34 Block diagram of the synchronous receiver for QAM signals with spectral shaping
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Figure 4.35 Scheme of a differential encoder with a look-up table (LUT) and a 16-QAM mapping
block

are differentially encoded in each binary block. Figure 4.35 presents a general scheme of
the differential encoder and QAM symbol mapper for a 16-QAM. An example of mapping
of 4-bit blocks onto 16-QAM constellation points and the table of the differential encoder
are shown in Figure 4.36. Let us note that for constellation points equidistant from the
origin of the coordinate system and differing between each other by a multiple of 90◦,
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Figure 4.36 Binary block mapping onto 16-QAM constellation points and the differential encoding
table (in accordance with ITU-T V.32 Recommendation 1993)

two last bits of the binary block mapped to them are identical. Moreover, all constellation
points located in a given quarter have an identical first two bits of the block mapped to
them. Such mapping ensures modulo-90◦ phase invariance.

4.9.2 Error Probability for QAM Synchronous Receiver

Probability of error for QAM with an optimal receiver can be easily derived if the results
for a baseband multilevel PAM are applied. Let us recall that the error probability for
M-ary PAM is given by the formula

PM-PAM(E) = M − 1

M
erfc

(√
3k

M2 − 1

Eb

N0

)
(4.88)

where k is the number of bits assigned to a single PAM symbol. Let us note that an M-ary
QAM signal can be treated as a superposition of two independent

√
M-ary PAM signals

placed on two orthogonal sinusoidal signals with the same carrier frequency. This is
exactly the case if M = 22m. Let us consider this case first. Note that the investigated QAM
has 4, 16, 64, 256, etc. constellation points, so the signal constellation has a quadratic
shape.

We will derive the error probability by calculating the probability PC of the correct
reception first. The symbol decision will be correct if there is no erroneous decision in
either of the two dimensions of the modulation, so we can write

PC = [1 − P√
M-PAM(E)]2

Therefore

PM-QAM(E) = 1 − PC = 1 − [1 − P√
M-PAM(E)]2 (4.89)
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In consequence

PM-QAM(E) = 2P√
M-PAM(E) − [P√

M-PAM(E)]2 (4.90)

Application of formula (4.88) in (4.89) is not straightforward. Let us note that the mean
energy per modulation period for a single modulation dimension is half of the energy
Es = kEb of a two-dimensional QAM signal (Eb is the mean energy in the modulation
period per single data bit). Similar observation is valid for the noise component too. For
high values of Eb/N0 the squared error probability P√

M-PAM(E) is small compared with
the first component, therefore the second term of (4.90) can be neglected. Finally, we
obtain the following approximate formula for probability of error for an M-ary QAM
modulation

PM−QAM(E) ≈ 2

(
1 − 1√

M

)
erfc

[√
3kEb

2(M − 1)N0

]
(4.91)

When the number k of bits in a block mapped onto a constellation point is odd (M =
32, 128, 512), the QAM signal cannot be decomposed into two independent mutually
orthogonal one-dimensional modulations. Exact calculation of error probability should
take this fact into account. However, for high signal-to-noise ratios approximation (4.91)
can still be used.

In communication systems maximum power of the signal generated by a transmitter is
often one of the main limitations. One system must not interfere with the functioning of
other systems that use the neighboring transmission lines or neighboring spectral bands.
Sometimes the maximum allowable power is determined by the maximum value of the
signal that can be fed to the amplifier input without saturating it. The considered limitation
is often defined as a maximum allowable mean power or a maximum peak power. Taking
into account one of these limitations we can find a QAM or AM/PM that ensures the lowest
error probability on the output of a synchronous receiver if the signal is transmitted over
an additive white Gaussian noise channel. In the general case, finding the best modulation
can be a difficult task. This task can be simplified if we assume a high signal-to-noise
ratio on the receiver input. In this case, the most probable errors are caused by selection
of the signal constellation points that are the neighboring constellation points with respect
to those signals that have actually been transmitted. Thus, our aim can be formulated in
the reversed form: Find the signal constellation featuring the lowest mean power among
possible constellation sets with the same number of constellation points and the same
minimum Euclidean distance among constellation points. Another possible criterion for
the constellation selection is the sensitivity of the receiver performance to the phase
recovery inaccuracies.

4.9.3 Multidimensional Modulations

Development of new digital transmission systems, microprocessors and digital signal
processing techniques paved the way to new concepts in digital modulations (Forney
et al. 1984). In order to maximize the minimum distance between constellation points,
the number of modulation dimensions can be increased. QAM considered so far are
two-dimensional (cf. those shown in Figure 4.32). The dimensions are determined by
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carriers that are orthogonal to each other. Since in each modulation period a pair of data
symbols (dI

i , d
Q
i ) is transmitted, these symbols can be interpreted as coordinates of a

particular constellation point. However, if we treat two subsequent modulation periods
jointly, i.e. we consider the vector (dI

i , d
Q
i , dI

i+1, d
Q
i+1) as coordinates of a single constel-

lation point in four-dimensional space, then we achieve additional freedom in selection
of the constellation points. We choose these points in such a way that the minimum
Euclidean distance between neighboring points is maximized. In general, the coordinates
of the first two dimensions (dI

i , d
Q
i ) do not need to be selected from the same constel-

lation set as the coordinates (dI
i+1, d

Q
i+1) in the next modulation period. This approach

results in a decrease in error probability compared to two-dimensional QAM. The above
idea can be further expanded to a higher number of dimensions.

The disadvantage of getting the modulation more robust against noise by expanding
its number N of dimensions is a serious increase in complexity of a decision device
that makes joint decisions in N -dimensional space on the whole data symbol block.
For example, for N = 4, decisions are made jointly on the blocks (dI

i , d
Q
i , dI

i+1, d
Q
i+1).

Although the achieved gain is finally quite moderate, the idea of increase in modula-
tion dimensions found an application (together with other methods not considered in this
section) in telephone modems, e.g. in the ITU-T V.34 modem (ITU-T V34 Recommen-
dation 1997).

4.10 Constant Envelope Modulations – Continuous Phase
Modulation (CPM)

A constant envelope of a transmitted signal is a highly desired feature in some wireless
communication systems. The reason for this is the necessity to use the whole range of
amplifier characteristics, including its nonlinear part. Thus, high power efficiency can be
achieved, which is particularly important for battery powered devices.

A constant envelope signal can be achieved using the phase (PM) or frequency (FM)
modulation if the modulating signal is a continuous signal m(t) whose amplitude does
not exceed a given maximum value mmax. In the general case, the FM is described by
the expression

x(t) = xI (t) cos 2πfct − xQ(t) sin 2πfct (4.92)

where

xI (t) = r cos ϕ(t) and xQ(t) = r sin ϕ(t) (4.93)

and

ϕ(t) = 2πkFM

t∫
−∞

m(τ)dτ where |m(t)| ≤ mmax (4.94)

The coefficient kFM is the FM modulation index , kFM = 	f/mmax, and 	f is the fre-
quency deviation, i.e. maximum possible difference between the instantaneous signal
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frequency and the carrier frequency. FM was used for voice transmission in the first gen-
eration analog mobile cellular radio and cordless telephony. It is also used in FM radio
broadcasting.

In the case of digital transmission using Continuous Phase Modulation (CPM), the
equation describing the function of phase in time, ϕ(t), used in (4.93) in which data
symbols are contained is

ϕ(t) = 2πh

n∑
i=−∞

ai

t∫
−∞

g(τ − iT )dτ for nT ≤ t < (n + 1)T (4.95)

Formula (4.95) describes the instantaneous phase determined by the data symbol sequence
{ai} (i = −∞, ..., n). Parameter h = 2	f T is the so-called digital modulation index,
whereas 	f is, as previously, the frequency deviation, and T is the modulation period.
Data symbols are usually bipolar (i.e. ai = ±1), although in some cases the number
of possible data symbols is higher. Function g(t) is called a frequency impulse and it
describes how the instantaneous frequency changes in time due to a single data symbol
ai = 1. Instantaneous frequency is determined with respect to the carrier frequency fc.
Let us note that the instantaneous frequency can be found from the formula

f (t) = 1

2π

dϕ(t)

dt
= h

n∑
i=−∞

aig(τ − iT ) where nT ≤ t < (n + 1)T (4.96)

In turn

q(t) =
t∫

−∞
g(τ)dτ (4.97)

is the so-called phase impulse and describes how the instantaneous phase changes in
time due to a single data symbol ai = 1. In the simplest case the frequency impulse g(t)

has a rectangular shape of height 1/2T and it lasts for a modulation period T . Thus,
the instantaneous frequency with respect to the carrier frequency is equal to ±	f . The
frequency and phase impulses for this case are shown in Figure 4.37.

Let us notice that the signal described by equations (4.95) and (4.97) features a contin-
uous phase function for any integrable shape of the phase impulse g(t). Such modulations

t t

g(t ) q(t )

T T

1 1
2T 2

Figure 4.37 Frequency and phase impulses for continuous phase FSK modulation
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Figure 4.38 Phase tree for continuous phase FSK modulation with modulation index h

are often called Continuous Phase Modulation – CPM. This property has a fundamental
meaning for spectral properties of a modulated signal. In practice, among several possible
FSK modulations a continuous phase FSK signal (CPFSK) is most frequently applied.

Figure 4.38 presents possible phase paths ϕ(t) in a few modulation periods starting
from the zero time instant, in which the initial phase is equal to zero. The plot obtained is
the so-called phase tree and it characterizes a given modulation. Phase trees can differ
owing to the choice of the modulation index h and selection of the applied phase impulse
q(t). Supplying the modulator with the data symbol +1 implies the walk on the phase
tree in the upper direction, whereas the data symbol −1 causes the walk to be in the lower
direction, starting from the phase appearing at the beginning of the current modulation
period. As we see, a given data sequence is in fact equivalent to the corresponding path
on the phase tree. Thus, we could say that the aim of the demodulator is to find the
best path on the phase tree on the basis of the received signal. Futher inspection of the
phase tree shows another important feature of CPM. As we have already mentioned, the
phase walk at a given modulation period depends not only on the supplied data symbol
but also on the operation of the modulator in the past and the phase achieved up to the
current moment. Therefore we can say that CPM is a modulation with memory. Thus, the
optimum reception should not be limited to a single modulation period only, because the
modulator memory should be used. In the case shown in Figure 4.38 the memory is equal
to one modulation period, because the same phase value can appear again at the earliest
after two modulation periods. Therefore the optimum receiver should analyze the signals
from the current and preceding modulation periods. One can show that such a receiver
should select the data symbol for which the generated FSK signal should have the lowest
Euclidean distance from the received signal.

It was found quite early that both the shape of the frequency (or, equivalently, phase)
impulse and the value of the modulation index h have a fundamental influence on the
spectral properties of the CPM signal. For the frequency impulse shown in Figure 4.37
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and for the modulation index h = 1/2 we obtain a special case of the FSK modulation, the
so-called Minimum Shift Keying (MSK), i.e. the FSK with the minimum deviation that
ensures orthogonality of the elementary signals. The scheme of the modulator is shown
in Figure 4.39.

Contrary to FSK with values of the modulation index h �= 1/2, MSK can be interpreted
as a linear modulation for which the superposition rule with respect to the modulating
signal holds true. Therefore the MSK-modulated signal can be described by formula
(4.5). The baseband shaping filter impulse response p(t) is shown in Figure 4.40a, and
the impulse response of the similar filter q(t) is shown in Figure 4.40b.

For MSK signals the baseband shaping filter p(t) applied in the in-phase branch of the
modulator is described by the formula

p(t) = rect

(
t

2T

)
cos

( π

2T
t
)

(4.98)

whereas the baseband shaping filter q(t) used in the quadrature branch of the modulator
has the impulse response

q(t) = p(t − T ) = rect

(
t − T

2T

)
sin

( π

2T
t
)

(4.99)

Finally, the MSK-modulated signal can be expressed in the linear form using the fol-
lowing formula

x(t) =
n/2∑
k=0

[
d2k−1p(t − 2kT ) cos(2πfct) − d2kp

(
t − (2k + 1)T

)
sin(2πfct)

]
(4.100)

Figure 4.40 presents the baseband shaping filter impulse responses and shows the
example of the in-phase and quadrature baseband signal components that finally result in
a particular phase function of time.

The constant value of the FSK, MSK or other signal envelope can be shown graphically
on a complex plane if we plot the position of the points as a function of time, where
the real coordinate is the amplitude of the in-phase component xI (t) and the imaginary



 

334 Introduction to Digital Communication Systems

t

t

t

t

t

 −T +T0

0 T 2T

0 2T 4T 6T

0 2T 4T 6T

0 2T 4T 6T

+1

+1 −1

−1

−1 +1

+1

+1

p(t)

p(t − T)

d−1

d1

d0 d2

d4

d6

d3 d5

d7

d2k−1

d2k

π
2

(a)

(b)

(c)

(d)

(e) ϕ(t)
π

−π

π
2−

Figure 4.40 Impulse response of the in-phase filter (a) and quadrature filter (b). Example of the
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of time (e) for the MSK signal

coordinate is the quadrature component xQ(t). From (4.93) we conclude that the envelope
is given by the formula

r(t) =
√(

xI (t)
)2 + (

xQ(t)
)2 = r

√
cos2 ϕ(t) + sin2 ϕ(t) = r = const (4.101)

The constant envelope is independent of the form of variability of the phase function
ϕ(t). Figure 4.41 presents the plot of the envelope and phase functions of time for MSK
modulation (h = 0.5). Let us note that in this case the angle ϕ(t) changes by ±π/2 during
a single modulation period T . The phase at the end of this period depends on the current
data symbol and also on the phase achieved at the end of the previous modulation period.
Therefore we conclude from this plot that MSK modulation has memory.
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Several frequency impulses were investigated in research on CPM. The influence of
these impulses on the signal spectral properties and detection capabilities was also eval-
uated. For an appropriately designed modulation the sequence of elementary signals
generated by the modulator for different data sequences should differ from each other
as much as possible. We can achieve this feature by lengthening the frequency impulse
response beyond the modulation period T . This leads to increased complexity of the
receiver, as the appropriately modified detection algorithm (e.g. the Viterbi algorithm)
has to be applied.

One of the most successful solutions in terms of the signal spectral properties is appli-
cation of a frequency impulse of the form

g(t) = 1√
2πσT

exp

( −t2

2σ 2T 2

)
∗ rect

(
t

T

)
(4.102)

where ∗ denotes convolution, and rect(t/T ) describes a rectangular pulse of unit height
that lasts from −1/2T to 1/2T . Such a modulation is known as GMSK (Gaussian Min-
imum Shift Keying). This is a modulation with a minimum frequency shift (h = 1/2).
Its frequency impulse is a Gaussian-filtered rectangular pulse. For GMSK modulation
σ = √

ln 2/(2πBT ), where B is a 3-dB bandwidth of the Gaussian filter. The impulse
g(t) usually spans a few modulation periods so subsequent pulses that are the response to
the succeeding data symbols interfere with each other. As already mentioned, the Viterbi
algorithm is useful in such signal detection.

GMSK modulation is applied in mobile cellular GSM systems and some cordless tele-
phony systems. Particularly good spectral properties of GMSK-modulated signals are the
reason for GMSK application. These properties are expressed as a narrow mainlobe and
low levels of spectral sidelobes of the modulated signal. A simple scheme of the GMSK
modulator is shown in Figure 4.42.

VCO
s(t)

T t

ai

g(t)

Figure 4.42 Block diagram of GMSK modulator



 

336 Introduction to Digital Communication Systems

S((f–fc)T ) [dB]

(f–fc)T

0 0.5 1 1.5 2 2.5 3

0

−20

−40

−60

−80

−100

−120

BPSK MSK

GMSK

Figure 4.43 Power spectral density of GMSK in comparison with MSK and BPSK signals

The GMSK modulator operates as follows. First, the binary data stream is formed into
the NRZ (Non-Return to Zero) bipolar sequence of pulses lasting T seconds each. The
resulting sequence is given to the input of the lowpass filter of Gaussian characteristics
(both in time and frequency domains), so the joint response to a single data symbol
is given by formula (4.102). The effective duration of this impulse response is around
(4 ÷ 5)T for BT = 0.3. The filter output signal controls the voltage-controlled oscillator
(VCO).

Figure 4.43 presents the power density spectrum of the signal on the output of the ideal
GMSK modulator. The plot is drawn around the carrier frequency fc. Power spectral den-
sities for BPSK and MSK with the same modulation period T are shown for comparison.
We observe an impressive improvement in the spectral properties of the GMSK signal
compared with the other modulations. GMSK is currently one of the best modulations
with a constant envelope with respect to its spectral efficiency.

As we have already mentioned, the increased receiver complexity and intersymbol
interference, which is meant as overlapping of the modulator responses to subsequent
data symbols, is the price paid for excellent spectral properties of GMSK signals. In
practice, GSMK signals are demodulated using a synchronous receiver with detection
of a whole sequence of data symbols (as it is typically applied in a GSM system). An
alternative demodulator solution is a simplified asynchronous receiver that is based on a
frequency discriminator (e.g. applied in DECT cordless telephony).

It was found (Laurent 1986) that GMSK, in particular for BT = 0.3 characteristic
for GSM and DECT systems, can be effectively approximated by a linear modulation
described by formulae (4.5) and (4.67) with the appropriately selected baseband shaping
pulse p(t). The optimum pulse p(t) has a shape similar, but not identical, to the Gaussian
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Figure 4.44 Envelopes of an ideal GMSK signal (a) and its linear approximation (b)

shape. For a linear modulator using the pulse p(t) the signal envelope is not fully constant
(see Figure 4.44).

Several other CPM have been investigated, however regular CPFSK, MSK and GMSK
are the most popular so we have concentrated our attention on them.

4.11 Trellis-Coded Modulations

4.11.1 Description of Trellis-Coded Signals

Performance of data transmission over many communication channels is not satisfactory.
Therefore, there have been attempts to find modulation and error correction codes that
would ensure the required transmission quality. As we already know, application of an
error correction code leads to the necessity for transmission of additional parity bits that
allow the error pattern to be identified and corrected. In order to maintain an unchanged
information data bit rate, we can take one of the following approaches:

• Increase the data symbol rate while preserving the number of constellation points in
the applied modulation – this approach leads to spectrum broadening, which may not
be acceptable for band-limited channels.

• Increase the number of constellation points in the modulation while keeping the data
symbol rate constant – assuming constant mean signal power, this approach leads to
an increase in the symbol error rate that has to be compensated for by the applied error
correction code.

It turns out that the first method cannot be applied due to channel bandwidth limitations,
whereas for transmission over band-limited channels the results of the second solution are
at most moderate, leading to a substantial increase in receiver complexity. The reason for
rather poor results in searching for a good error correction code was in treating modulation
and error correction as separate processes.

In 1982 Ungerboeck published a paper (Ungerboeck 1982) in which he proposed to treat
modulation and coding jointly. This approach made a breakthrough in digital communica-
tion systems of the 1980s. The criterion of the code and modulation optimization selected
by Ungerboeck was the maximization of the minimum Euclidean distance between the
sequences of constellation points that are allowed due to the coding process and are
set through the mapping of the binary blocks received from the error correcting code
encoder onto the signal constellation points. In this joint approach to coding and mod-
ulation mostly convolutional codes are applied. Convolutional codes that are combined
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Figure 4.45 Trellis encoder with the parameters k = 2 and n = 3 and the associated trellis diagram

with appropriately selected modulations are often called Trellis-Codes , and the appropriate
modulations are called Trellis-Coded Modulations (TCM). In general, the trellis encoder
is a finite state machine stimulated by a sequence of k-bit blocks (a0

i , a
1
i , . . . , a

k−1
i ) and

generating a sequence of n-bit blocks (b0
i , b

1
i , . . . , b

n−1
i ), where index i denotes subse-

quent modulation periods. The operation of this finite state machine is described by a
trellis diagram. Figure 4.45 shows a four-state trellis encoder combined with an 8-PSK
modulator and the trellis diagram associated with the encoder.

The number of encoder states results from the number of possible data combinations
contained in the encoder memory cells. The trellis diagram presents all paths from each
state in the ith moment to possible states in the (i + 1)st moment. Each path is associated
with the appropriate binary encoder output block. For example, in Figure 4.45 the binary
block 100 is associated with the path between the states u1 = 00 and u1 = 00 as well as
between u2 = 01 and u3 = 10. Let us note that the trellis diagram shown in Figure 4.45
features parallel paths. They result from the uncoded bit a0

i , which directly appears on
the encoder output in position b0

i . In general, the number of parallel paths between states
is equal to 2n−k . Let us denote the trellis encoder output signal by sj . Let this signal be
mapped to the binary block (b0

i , b
1
i , ..., b

n−1
i ) that represents the number j in the binary

form. For the trellis diagram shown in Figure 4.45 there exist the signals s0, ..., s7, which
correspond to each of eight phases of the 8-PSK modulation.

The task of the decoder is to select the best sequence among all the sequences that can
appear due to coding, i.e. the one that is the closest in the Euclidean distance sense to the
received sequence of samples. As we remember, this criterion of the signal selection is
called the Maximum Likelihood (ML) criterion. In the decoding process errors can arise.
In the so-called error event , which occurs in the decoder, the decoded path diverges from
the correct one on the trellis diagram, and merges with it again after some modulation
periods (decoder timing instants). Figure 4.46 presents two out of many possible error
events for the trellis code shown in Figure 4.45 on the assumption that the correct path
on the trellis is associated with the signal sequence s0, s0, ..., s0, which in turn represents
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Figure 4.46 Example of error events on the trellis diagram for the code presented in Figure 4.45

the blocks 000 on the encoder output. Let us note that if parallel paths on the trellis
diagram exist then the error event may be as short as a single modulation period. The
example of such an event is shown in Figure 4.46. The error event (s6, s1, s2) shown
in this figure is one of eight possible signal sequences associated with the marked path
between states u1, u3, u2, u1. For high values of the signal-to-noise ratio, error events that
have the lowest Euclidean distance dmin to the correct trellis path dominate, therefore they
practically determine the achievable error rate. The number of error events characterized
by the lowest Euclidean distance influences the error rate too. For that reason the mapping
of binary blocks produced by the convolutional encoder onto the elementary signals or
constellation points of the modulator has a crucial meaning for the overall trellis code
performance.

Ungerboeck formulated the following rules for the mapping of binary blocks onto
elementary signals:

1. Signals associated with all parallel paths on the trellis diagram should be characterized
by the highest Euclidean distance between them on the constellation diagram.

2. Signals associated with all paths diverging from or merging to a given state should be
characterized by the second highest Euclidean distance between them.

The procedure of assigning binary blocks to elementary signals is called set partitioning
and will be explained by the example of a trellis-coded signal based on 8-PSK shown in
Figure 4.47, i.e. based on the modulation presented in Figure 4.45.

In the first step of 8-PSK set partitioning, when the minimum Euclidean distance
between 8-PSK constellation points is d0 =

√
2 − √

2r , the constellation points are
divided into two four-point constellations for which the minimum distance is d1 = √

2r .
In the second step each of these constellations is further divided into two two-point
constellations according to the same rule. The minimum distance for them is d2 = 2r .
As a result we obtain four constellations, denoted by symbols A,B,C and D, that are
the subsets of the primary constellation. The subsets can be assigned the following
dibits

A ←− 00, B ←− 10, C ←− 01, D ←− 11
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Figure 4.48 Binary block assignment to elementary signals (constellation points) of 8-PSK mod-
ulation according to the set partitioning rule

In the last set partitioning step, single constellation points are selected from each subset
A, B,C and D. The final result of the binary block assignment to 8-PSK constellation
points is shown in Figure 4.48.

According to the set partitioning rule, parallel transitions on the trellis diagram are
characterized by the signal constellation points related to the binary blocks (0A, 1A),
(0B, 1B), (0C, 1C) or (0D, 1D). Taking into account the second rule of set partitioning
we conclude that the signals associated with the paths diverging from the same state or
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merging into the same state should belong to the pairs of constellation subsets (A, B)

or (C, D). The trellis encoder drawn in Figure 4.45 is one of the encoders found by
Ungerboeck that fulfills the above stated set partitioning rules.

The minimum distance between constellation points for pure QPSK modulation is
dmin = √

2r . Therefore, in order to obtain the same performance for high signal-to-noise
ratios, as in the case of 8-PSK trellis-coded modulation, the signal-to-noise ratio value
for uncoded QPSK must be

G = d2
TCM, min

d2
QPSK, min

= 2 (4.103)

times higher. We find that the asymptotic gain G, which is achieved owing to trellis
coding, in our case is equal to 3 dB. Let us stress that this performance improvement has
been achieved without bandwidth expansion.

The same set partitioning rule can be applied for 16-QAM. It is shown in Figure 4.49
down to the stage in which the subsets A, B, C, D, E, F , G and H are determined. The
reader is kindly asked to analyze this figure by himself/herself.

A B C D E F G H

W Y ZX

d = 8

d = 4

d = 2

2

d = 4

Figure 4.49 Set partitioning for 16-QAM

The joint modulation and coding approach has been applied e.g. in telephone modems
(ITU-T V.32, V.33 and V.34 Recommendations). Figure 4.50 presents the scheme of
the trellis encoder and 32-QAM signal constellation associated with it, designed for
duplex transmission at the data rate of 9600 bit/s. The additional advantage of the pre-
sented trellis code and binary block mapping to the constellation points is modulo-90◦
phase invariance of the signal constellation. Another system in which TCM is applied
is SHDSL – Single-pair High-speed Digital Subscriber Line. In this system TCM coding
is associated with PAM, resulting in serial transmission at rates of 192–2312 kbit/s (see
ITU-T G.991.2 2003).
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Figure 4.50 Trellis encoder and signal constellation for 32-TCM according to ITU-T V.32 Rec-
ommendation (1993)

In the literature we can find tables of useful trellis codes (Ungerboeck 1987a, 1987b)
with asymptotic gains, achievable with the associated PAM, PSK and QAM. Complexity
of the tabularized codes expressed as the number of encoder states ranges between 4
and 512. The achievable coding gains reach 6 dB, which is an impressive achievement.
However, in order to reach it, a relatively computationally demanding decoding algorithm
of the trellis-coded signals is required, such as the Viterbi algorithm.
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4.11.2 Decoding of the Trellis-Coded Signals

Let us consider the operation of the receiver for trellis-coded signals with the example
of the signal constellation and trellis code shown in Figure 4.51. The trellis diagram and
binary block mapping onto signal constellation points have been repeated for convenience
again and have been supplemented with notation of the signal subsets A, B, C and D

containing pairs of signals with opposite polarization.
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Figure 4.51 Scheme of the synchronous receiver for trellis-coded signals corrupted by additive
noise and the example of the signal mapping and the trellis diagram of the applied trellis code

Let us assume that the trellis-coded 8-PSK signal corrupted by the additive white
Gaussian noise of power density N0/2 reaches the receiver. First, the received signal
is synchronously demodulated: it is multiplied by the reference in-phase and quadrature
carrier signals and the results are filtered by a pair of lowpass filters that are at the same
time matched to the baseband signal pulses applied in the modulator. A typical receive
filter has a square root raised cosine characteristic and it is matched to the transmit filter
of the same shape. Therefore, the additive noise power density spectrum on the outputs
of both receive filters has a raised cosine shape, and the noise autocorrelation function
has periodical zeros in the modulation period intervals (except for the zero argument).
Therefore the noise samples picked up in both in-phase and quadrature branches at the
modulation period intervals are uncorrelated. Because the noise samples on the filter
outputs are Gaussian, they are also statistically independent. This important conclusion
will be applied in the reception procedure.
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As we know from Chapter 1, in making the decisions the decoder very often searches
for a data symbol sequence dn, which ensures a maximum conditional probability density
function for the sequence of the received samples xn when the data sequence dn has
been transmitted. This means that the decoder selects the data sequence d̂n for which the
following expression holds

d̂n = arg max
dn

p(xn|dn) (4.104)

where dn = (d1, d2, . . . , dn) and xn = (x1, x2, . . . , xn). Note that di = dI
i + jd

Q
i is a com-

plex data symbol that describes coordinates of the signal constellation point transmitted in
the ith modulation period, while xi = xI

i + jx
Q
i is a complex representation of the sam-

ples taken in the ith moment from the outputs of the matched filters of the synchronous
detector. Let us note that the complex sample of the received signal xi is a sum of the
data symbol di and the complex sample of the additive noise ni = nI

i + jn
Q
i . In-phase

and quadrature noise components are statistically independent not only along the time
axis but also with respect to each other. Then, knowing that noise samples are Gaussian
distributed and statistically independent, we can write the conditional probability density
function p(xn|dn) in the following form

p(xn|dn) =
n∏

i=1

p(xi |di) =
n∏

i=1

p(xI
i |dI

i )p(x
Q
i |dQ

i )

=
n∏

i=1

1√
2πσ

exp

[
− (xI

i − dI
i )2

2σ 2

]
1√

2πσ
exp

[
− (x

Q
i − d

Q
i )2

2σ 2

]

=
(

1

2πσ 2

)n

exp

(
− 1

2σ 2

n∑
i=1

|xi − di |2
)

(4.105)

Searching for the maximum likelihood data sequence dn will be much easier if we cal-
culate the natural logarithm of both sides of formula (4.105), i.e.

ln p(xn|dn) = n ln
1

2πσ 2
− 1

2σ 2

n∑
i=1

|xi − di |2 (4.106)

Applying criterion (4.104), we should select that data sequence d̂n for which the Euclidean
distance of the data sequence constellation points to all points characterizing the received
in-phase and quadrature samples on the (I, Q) plane is minimized. Thus, criterion (4.104)
reduces to the form

d̂n = arg min
dn

n∑
i=1

|xi − di |2 (4.107)

As we remember from our considerations on convolutional code decoding, searching
for the maximum likelihood data sequence according to criterion (4.107) is effectively
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realized by the Viterbi algorithm. Its operation differs from soft-decision convolutional
code decoding in the way in which path metrics are calculated. First of all, the calculations
are performed on complex samples. Typically, the trellis diagram has parallel transitions.
These transitions imply that when the sample xi = xI

i + jx
Q
i is received, the closest (in

the Euclidean sense) constellation points representing each subset A, B, C and D are
selected. For example, for sample xi in Figure 4.51 the following signals from each
subset are selected: 0A, 1B, 0C and 0D. These signals take part in determination of
the minimum cost of reaching each trellis state in the ith moment. This is equivalent to
finding the best route on the trellis diagram, the so-called survivor , to each state. Let us
denote the survivor costs for the trellis states 00, 01, 10 and 11 in the ith moments as
S0,i , S1,i , S2,i and S3,i , respectively. Calculation of the cost of reaching each state in the
(i + 1)st moment is performed by finding for each state m (m = 0, 1, 2, 3) the minimum

Sm,(i+1) = min
[(

Sk,i + |xi − di,X|2) ,
(
Sj,i + |xi − di,Y |2)] (4.108)

where at the given moment the mth state can be reached from the kth or j th state.
Transitions from the kth to mth state and from the j th to mth state are associated with
the choice of the data symbols in the ith moment from X and Y subsets, respectively
(X, Y ∈ {A, B,C,D}). For example, if we analyze the trellis diagram in Figure 4.51 we
find that reaching the first state in the given moment is possible from the first or second
state from the previous moment and the data signals associated with these paths belong
to the subsets X = A and Y = B, respectively.

As for the decoding of a convolutional code using the Viterbi algorithm, it has been
observed that in the trellis code decoding the survivors reaching each state merge into a
single path on the trellis diagram with a probability close to unity about (3÷5)L timing
instants back, where L is the trellis code constraint length. Therefore, it is possible to issue
final decisions upon the transmitted data symbols di−D with the delay D = (3 ÷ 5)L. This
is also the size of memory needed by the processor implementing trellis decoding using
the Viterbi algorithm. In such memory not only transitions between states but also the
signals associated with them have to be remembered. Let us recall that these signals have
to be stored because more than one signal is associated with each transition between states
due to parallel transitions on the trellis diagram.

The above description is related to the reception of trellis-coded signals in the presence
of additive noise. The situation becomes more complicated if the channel distorts the
spectrum of the transmitted signal. Thus, the Viterbi TCM decoder is typically preceded
by the block that mainly corrects the channel characteristics. This leads to the situation
in which the signal samples on the input of the TCM decoder are TCM signal samples
corrupted by the additive noise, thus our system model considered above remains valid.

4.12 Multitone Modulations

So far we have considered digital modulations of a sinusoidal carrier where the binary
signal is transmitted bit by bit (for binary modulations) or binary block after binary block
(for multilevel modulations). However, most real communication channels substantially
differ from the channel model in which additive white Gaussian noise is the only impair-
ment. Real channels very often feature strict spectral limitations and introduce amplitude
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and phase distortions. When data symbol rate (measured in symbols per second) is getting
closer and closer to the channnel bandwidth expressed in Hz, the phenomenon of inter-
symbol interference is getting more and more visible. The length of the channel impulse
response increases to such an extent that the channel responses to particular data symbols
partially overlap. As a result, serious signal distortions occur and signal constellations on
the channel output may completely lose their shape. We can also observe the eye pattern
with the eye partially or even fully closed. This is an indication that the decision process
may yield unreliable results.

There are two solutions to the problem of fast data transmission over band-limited
channels:

• application of a channel equalizer that compensates for the channel amplitude and phase
distortions; the equalizer often works in an adaptive mode, i.e., it automatically adjusts
its parameters to the channel characteristics, providing signal samples with negligible
intersymbol interference at the sampling moments;

• division of the data stream to be transmitted into a set of substreams that are transmitted
in parallel on many subcarriers; each subcarrier carries data symbols at such a low data
rate that intersymbol interference practically does not occur.

The first solution will be described in a separate chapter. The second solution leads to
the introduction of multitone modulations and we will consider it in this section.

The idea of multitone modulations first appeared in the late 1950s. Multitone modu-
lations were successfully applied for data transmission rates above 2400 bit/s in military
data modems operating on high frequency (HF) channels of the acoustic bandwidth.
Achieving such a data rate was a real success considering the early stages of electronics
development at that time. Multitone modulation was rediscovered in the late 1980s when
the work on digital radio broadcasting began. Currently multitone modulation is the basis
of Digital Audio Broadcasting (DAB), the terrestrial and handheld segment of Digital
Video Broadcasting (DVB-T and DVB-H), fast digital transmission in digital subscriber
loops (Asymmetric Digital Subscriber Line – ADSL; Very High Bitrate Digital Subscriber
Line – VDSL; and their modifications), fast wireless LAN (WLAN) links, and broadband
wireless access to digital networks known as WiMAX.

Let us assume that the binary data stream is equal to R bit/s. If a single carrier with
16-QAM were applied, the symbol data rate would be R/4 symb/s. Instead, let us apply
N subcarriers that are appropriately located in the channel band. Each of them should
carry the substream of R/N bit/s. If the 4-PSK modulation is applied on each subcarrier,
the symbol data rate on each of them is equal to R/(2N) symb/s.

Let us consider data transmission at the rate of 2400 bit/s over an HF channel. This
is an old traditional application of multitone modulation2. Application of a 16-QAM
single-carrier transmission is relatively difficult due to nonlinear distortions introduced by
the power amplifier, time variablity of the channel characteristics and intersymbol inter-
ference introduced by the channel. If the 4-PSK (or QPSK) modulation is considered,
the symbol data rate is 1200 symb/s. The modulation period is then equal to 0.8333 ms.
Unfortunately, due to the property of the HF channel known as multipath propagation,

2 Current military standards describe a single-carrier transmission with QAM for which an advanced receive
algorithm has to be applied.
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intersymbol interference arises because the channel impulse response can span the time
period up to 1.5 and sometimes even 5 ms. Additionally, channel characteristics can vary
so quickly in comparison with the symbol data rate that tracking them requires a com-
plicated channel estimation algorithm. A simple solution is the application of multitone
transmission. Let us assume N = 24 QPSK-modulated subcarriers in parallel. Each sub-
carrier carries the substream of 100 bit/s, which is equivalent to 50 symb/s. The modulation
period on each subcarrier lasts for 20 ms. Thus, in the worst case intersymbol interference
distorts 1/4 of the modulation period. Typically, however, it does not exceed 7.5% of
the modulation period. The subcarrier frequencies should be selected in such a way that
the subcarrier signals are mutually orthogonal in the part of the modulation period in
which the influence of multipath propagation and intersymbol interference is negligible.
Figure 4.52 presents the multipath channel response to a rectangular pulse of duration
equal to T . In its initial part we observe some ripples that appear when the transmitted
signal components arrive at the receiver at intervals resulting from multipath propagation.
After a time interval lasting for a duration of the channel impulse response, the channel
response to the data pulse achieves its steady state. From this moment until the end of
the modulation period we can consider the signals transmitted on different subcarriers
as mutually orthogonal if their subcarrier frequecies are properly selected. The modula-
tion period is divided into two parts: the so-called guard time Tg , in which the channel
response to the data symbol is still unstable; and the orthogonality period Tort . Typically
Tg does not exceed 20% of the modulation period.

t

t

Tg Tort

p(t)

p(t)*h(t)

Figure 4.52 Example of the multipath channel response to the rectangular baseband equivalent
signal with the denoted period of the guard time Tg and the orthogonality period Tort

Two sinusoidal signals with arbitrary initial phases and amplitudes are mutually orthogo-
nal if their frequencies are different multiples of the reciprocal of the orthogonality period,
i.e. if

fc,i = i

Tort
, fc,j = j

Tort
, i �= j (4.109)

Then we have

Tort∫
0

cos

(
2π

i

Tort
t + ϕi

)
cos

(
2π

j

Tort
t + ϕj

)
dt = 0 for i �= j (4.110)
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It is easy to verify (4.110) using elementary trigonometric formulas. Similarly we have

Tort∫
0

cos

(
2π

i

Tort
t + ϕi

)
sin

(
2π

j

Tort
t + ϕj

)
dt = 0 for any i, j (4.111)

Knowing, that (4.110) and (4.111) hold true, we can state that the following signals si(t)

and sj (t) determined in the time interval nT < t < (n + 1)T are mutually orthogonal in
the orthogonality period Tort :

si(t) = ai,n cos

(
2π

i

Tort
t

)
− bi,n sin

(
2π

i

Tort
t

)
and

sj (t) = aj,n cos

(
2π

j

Tort
t

)
− bj,n sin

(
2π

j

Tort
t

)
(4.112)

where ai,n, bi,n and aj,n, bj,n are the data symbols modulating the ith and j th subcarriers
in the nth modulation period, respectively. Application of the data symbols ai,n, bi,n and
aj,n, bj,n implies that both PSK and QAM can be applied on particular subcarriers.

Mutual orthogonality of the signals using different subcarrier frequencies is necessary
for the correct demodulation process. We will explain it below. Due to mutual orthog-
onality of signals on different subcarriers, this type of modulation is often denoted as
OFDM (Orthogonal Frequency Division Multiplexing).

Let the multitone signal be described in the time period [nT , (n + 1)T ] by the formula

x(t) =
N∑

i=1

[
ai,n cos

(
2π

i

Tort
t

)
− bi,n sin

(
2π

i

Tort
t

)]
(4.113)

Considering the ith subcarrier of frequency i/Tort we see that it is a QAM signal with
the baseband pulse shaping filter p(t) in the form of a rectangular pulse of the unit
amplitude. The shape of the power density spectrum of such a signal is a square of the
sinc function. Figure 4.53 presents an example of a power density spectrum of signal x(t)

centered around a given carrier frequency. The spectrum is plotted in the decibel scale
with respect to this center frequency. This is the power density spectrum of a terrestrial
digital video broadcasting (DVB-T) signal, in which 1705 or 6817 OFDM subcarriers
are applied. If 1705 subcarriers are used, the system is often referred to as a 2k system,
whereas if 6817 subcarriers are applied, the DVB-T system works in the so-called 8k

mode. Let us note that the more subcarriers in a given bandwidth, the faster the power
density spectrum falls outside the mainlobe.

We also see that the power density spectrum is almost flat in the frequency range in
which subcarrier frequencies are generated. Power density spectra of neighboring sub-
carrier signals partially overlap. Thus, the following problem arises: how to extract the
signals of the particular j th subcarrier in order to enable the detection of information
symbols aj,n and bj,n. Mutual orthogonality of subcarrier signals turns out to be crucial
for solving this problem. In order to extract the data symbols on a particular subcarrier it
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Figure 4.53 Power spectral density of the OFDM DVB-T signal x(t) for 2k and 8k subcarriers
 European Telecommunications Standards Institute 2004. Further use, modification, redistribution
is strictly prohibited. ETSI standards are available from http://pda.etsi.org/pda

is sufficient to correlate the composite signal x(t) with the selected subcarrier signal. We
have

UI
j,n =

T∫
Tg

{
N∑

i=1

[
ai,n cos

(
2π

i

Tort
t

)
− bi,n sin

(
2π

i

Tort
t

)]}
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(
2π

j

Tort
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)
dt

= aj,nTort

2
cos θj (4.114)

and

U
Q
j,n =

T∫
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{
N∑

i=1

[
ai,n cos

(
2π

i

Tort
t

)
− bi,n sin

(
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i

Tort
t

)]}
sin

(
2π

j

Tort
t + θj

)
dt

= bj,nTort

2
cos θj (4.115)

where θj denotes the phase difference of the j th reference subcarrier in comparison with
the phase of the j th received subcarrier. If synchronous reception on each subcarrier
is applied, then the phase θj = 0, or, what is more often, before making a decision on
data symbols (aj,n, bj,n) on the basis of the correlators outputs (UI

j,n, U
Q
j,n), the phase

shift is estimated and subsequently cancelled. However, if the channel introduces various
phase shifts on different subcarriers or the phase shifts vary in time so quickly that they
cannot be tracked by the receiver, DPSK modulation on each subcarrier can be used and
the correlation reception similar to that shown in Figure 4.29 can be applied. We can
imagine a few correlators operating in parallel in the receiver for different subcarriers.
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The same number of modulators is needed in the transmitter. However, if the number of
subcarriers grows, implementation of such a receiver becomes unreasonable. Fortunately,
achievements in digital signal processing are the remedy for the increased complexity
of both the transmitter and the receiver. Let us note that if the OFDM signal is placed
around a certain carrier frequency fc, formula (4.113) can be presented for the time period
[nT , (n + 1)T ] in the form

x(t) = Re

exp(j2πfct)

N/2−1∑
i=−N/2

(ai,n + jbi,n) exp

(
j2π

i

Tort
t

) (4.116)

or, after renumerating the data symbols and subcarriers from 0 to N − 1

x(t) = Re

[
exp

(
j2π(fc − N/2

Tort
)t

) N−1∑
i=0

(ai,n + jbi,n) exp

(
j2π

i

Tort
t

)]

The first component in (4.116) symbolizes the frequency shift to the carrier frequency
fc and it can be omitted in further analysis if the baseband equivalent OFDM signal is
considered. Denoting the data symbols in the baseband equivalent part xB(t) of signal
x(t) as di,n = ai,n + jbi,n we obtain

xB(t) = Re

[
N−1∑
i=0

di,n exp

(
j2π

i

Tort
t

)]
for t ∈ [nT , (n + 1)T ] (4.117)

Let us calculate the samples of the baseband equivalent signal xB(t) at the time instants
t = kTort/N. We obtain

xB

(
k

N
Tort

)
= Re

[
N−1∑
i=0

XB(i) exp

(
j2π

ik

N

)]
(4.118)

where XB(i) = di,n for k ∈ [0, N − 1]. Inspection of formula (4.118) allows us to note
that the samples of signal xB(t) can be received as a real part of the discrete inverse Fourier
transform of the samples in the frequency domain, which are given as XB(i) = di,n. We
can determine the sample block of signal xB(t) effectively by implementing formula
(4.118) with the Inverse Fast Fourier Transform (IFFT). Similarly, we can show that dis-
crete correlation with respect to the in-phase and quadrature subcarriers (see Figure 4.29)
performed in parallel for all subcarriers can be implemented using the Fast Fourier Trans-
form (FFT). According to this transformation, a signal sample on frequency i/Tort can be
derived from the formula [for comparison, see expressions (4.114) and (4.115)]

XB(i) =
N∑

k=1

xB

(
kTort

N

)
exp

(
−j2π

ik

N

)
(4.119)

The real part of the right-hand side of (4.119) is a discrete implementation of the
correlator with respect to the cosinusoidal reference signal of frequency i/Tort , whereas its
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imaginary part is a discrete implementation of the correlation of signal xB(t) with respect
to the sinusoidal reference signal of the same frequency. Performing these calculations
in parallel with the use of the FFT results in a substantial reduction of the number
of necessary calculations. Let us note that the samples generated using IFFT/FFT span
the orthogonality period only. In order to protect the signal against the influence of the
channel impulse response resulting from multipath propagation, the transmitter applies
the so-called cyclic prefix . The appropriately selected signal samples fill the whole guard
time Tg . These samples are copies of the signal from the last part of the orthogonality
period. In the receiver the cyclic prefix is removed before correlation starts.

The final, simplified scheme of the discrete transmitter and receiver for OFDM signals
is shown in Figure 4.54. Let us note that prior to the decisions made by the receiver on
subcarrier symbols, the FFT output samples representing the discrete correlators outputs
and denoted by Y (i), (i = 0 . . . , N − 1) are multiplied by complex coefficients C(i).
These coefficients correct the received correlator samples by compensating for the attenu-
ation and phase shifts that are introduced by the transmission channel on each subcarrier.
Very often these coefficients are set adaptively.

Let us consider how the shift of the correlation period influences the signals on the
correlator outputs when the cyclic prefix is applied. Let us neglect the impact of additive
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Figure 4.54 Block diagram of the OFDM transmitter and receiver in which IFFT/FFT algorithms
are applied
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noise on the correlators output signals for a while. Let the samples acquired within the
modulation period have the form

xB(N − L), xB(N − L + 1), . . . , xB(N − 1)︸ ︷︷ ︸
cyclic prefix

, xB(0), xB(1), . . . , xB(N − 1) (4.120)

where xB(k) = xB(kTort/N). Let us note that the first L samples constitute a cyclic prefix
and they are the copies of the last L samples from the modulation period. In the discrete
correlation process formula (4.119) is applied to the samples xB(0), xB(1), . . . , xB(N − 1).
Let us suppose that due to the synchronization block operation the samples xB(N −
1), xB(0), xB(1), . . . , xB(N − 2) are applied in the correlation process. Let us calculate
the result of the correlation

X′
B(i) = xB(N − 1) +

N−1∑
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xB(k − 1) exp
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j2π
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N

)
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(
j2π

i

N

) N−2∑
l=0

xB(l) exp
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= XB(i) exp
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)
(4.121)

As we see, the ith sample of the spectrum X′
B(i) differs from the correlation result based

on the sample set xB(0), xB(1), . . . , xB(N − 1) resulting in the frequency domain sample
XB(i) only in the phase rotation by the angle 2πi/N . However, if the cyclic prefix were
not used and the guard time were filled with zeros, the correlation realized on the sample
sequence 0, xB(0), xB(1), . . . , xB(N − 2) would result in the loss of mutual orthogonality
of particular subcarrier signals. Due to the zero value of the first sample applied in the
correlation process, the correlation is practically performed in the time period that is
shorter than the orthogonality period.

The cyclic prefix plays another important role. It can be applied in maintaining OFDM
symbol timing synchronization, i.e. in determination of the start of a correlation period, or
finding the possible frequency offset between the received signal and the reference signal
used in the receiver. If there were no additive noise on the input of OFDM receiver
and the channel were not distorting the OFDM signal, then the cyclic prefix and the
last L received signal samples used in the correlation period would be identical. This
fact can be used for detection of the cyclic prefix in the received signal by performing
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correlation of the received samples in the window of length equal to L samples with
the samples that are distant by N samples. At the moment in which the prefix samples
are exactly correlated with the end part of the samples from the modulation period, the
correlator output is maximum. Appearance of noise and distortions due to the echoes
from the previous OFDM symbol decreases the level of this maximum. Despite this fact,
this method is applied in maintaining the timing synchronization in OFDM transmission.
Thus, the cyclic prefix length should significantly exceed the length of the channel impulse
response. If the carrier frequencies of the received and reference signals differ by 	f ,
then the phase shift between the signal samples distant by N samples accumulates to the
value of 2π	f NTs , where Ts is the sampling period. This observation can be applied
in determination of the frequency shift by finding the phase argument of the maximum
of the correlation function between signals that are distant by the period of NTs seconds
(N samples). The block scheme of detection of the beginning of the orthogonality period
and determination of the frequency offset is shown in Figure 4.55.

NTs
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xk−N *

Rk

arg Rk

|Rk|

2πNTs

∆f
^

^

max?
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Figure 4.55 Scheme of timing synchronization and frequency offset detection based on the cor-
relation of the cyclic prefix with the end part of the modulation period sample block

A cyclic prefix usually lasts no longer than 20–25% of the OFDM modulation period.
Thus, treating it as a base for synchronization acquisition would be unreliable. Alterna-
tively, this process would be very slow. In order to make the synchronization process fast
and reliable the OFDM transmission is often organized in frames. The first few OFDM
symbols in a frame are specially selected and known to the receiver. Thus, the full length
of these symbols can be applied for timing and carrier synchronization purposes.

OFDM modulation allows for highly flexible use of transmission properties of a channel.
If a feedback channel from the receiver to the transmitter can be established, then the
results of the channel transfer function measurements performed in the receiver can be
transmitted back to the transmitter. As a result, the channel measurements can be applied
by the transmitter in the optimization of the OFDM transmission link. The measure of
transmission quality on a particular OFDM subcarrier is the magnitude of this subcarrier
or, more generally, the signal-to-noise ratio measured on it. Thus, for sufficiently high
signal-to-noise ratio the required error probability can be achieved for a sufficiently high
modulation level. If the amplitude of a given subcarrier is lower, a lower level modulation
should be applied on it. In conclusion we can state that the transmission rate, which is
controlled through selection of the modulation level, can be modified on the basis of
information on channel properties received through the feedback channel.

4.13 Case Study: OFDM Transmission in DVB-T System

Let us illustrate the problems that have been considered in this chapter with an example of
OFDM transmission in the DVB-T system. This will allow us to confront our theoretical
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knowledge with some important details of a real system. As the topic of our current
chapter is modulation, we will focus on modulations applied in DVB-T and on some
issues related to them.

The ETSI Standard EN 300 744 (ETSI 2004) describes the framing structure, channel
coding and modulations applied in the DVB-T system. As we have mentioned earlier,
OFDM has been selected as the main modulation method. Two modes of transmission are
applicable in DVB-T systems, based on 2k and 8k IFFT/FFT processing. In the 2k mode
K = 1705 subcarriers are used, whereas in 8k mode K = 6817 subcarriers are applied
for information transfer and link maintenance. Besides the 2k and 8k modes applied in
DVB-T, there is also the 4k mode applicable in the mobile DVB-H system for handheld
digital TV receivers that has been described in the same standard. In our analysis we will
concentrate on DVB-T only.

Digital transmission in the DVB-T system is organized in OFDM frames. Each frame
consists of 68 OFDM symbols. Four frames constitute a superframe. The symbols in the
OFDM frame are numbered from 0 to 67. The OFDM symbols carry data and reference
information. Out of K = 1705 or K = 6817 subcarriers applied in 2k or 8k modes,
respectively, part of them contains data symbols and the other part, consisting of selected
subcarriers, carries the scattered and continual reference signals, which are called pilots .
The pilots are used for frame, frequency and timing synchronization, channel estimation
and transmission mode identification. The remaining subcarriers are applied to transport
the Transmission Parameter Signaling (TPS) block, which describes the mode (FFT size),
constellation of the modulation, error correction coding and the OFDM guard interval
parameters that will be applied in the next frame.

The DVB-T system is to replace analog TV, so it occupies channels of the same
width as those assigned to analog TV. In many countries, e.g. in European countries, the
bandwidth of a single analog TV channel is equal to 8 MHz; however, there are also 6
and 7 MHz TV channels. The ETSI Standard EN 300 744 describes OFDM transmission
parameters for all the above channel bandwidths. We will focus on the 8 MHz channel as
it gives enough information about the system parameters. Transmission parameters for 6
and 7 MHz channels differ in detail and are not dealt with in this book. The interested
reader is referred to the original ETSI standard. Table 4.2 presents OFDM parameters for
8 MHz channels for the 2k and 8k modes.

Tables 4.3 and 4.4 show further OFDM parameters for 8 MHz channels that are mostly
related to the sampling period Ts and different lengths of the cyclic prefix. As we see,
OFDM transmission in the DVB-T system can be set in a very flexible way depending
on the current propagation environment.

Table 4.2 OFDM signal parameters for the 8k and 2k modes for 8 MHz channels

Parameter 8k mode 2k mode

Number of subcarriers K 6817 1705
Value of subcarrier number Kmin 0 0
Value of subcarrier number Kmax 6816 1704
Duration of the orthogonality period Tort 896 µs 224 µs

Subcarrier spacing 1/Tort (approx.) 1116 Hz 4464 Hz
Spacing between subcarriers Kmin and Kmax (K − 1)/Tort 7.61 MHz 7.61 MHz
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Table 4.3 Duration of guard and orthogonality periods in the 8k mode for 8 MHz channels

Mode 8k mode

Guard interval Tg/Tort 1/4 1/8 1/16 1/32

Duration of 8192Ts

orthogonality interval 896 µs

Duration of guard time 2048 × Ts 1024 × Ts 512 × Ts 256 × Ts

interval Tg 224 µs 112 µs 56 µs 28 µs

Symbol duration 10240 × Ts 9216 × Ts 8704 × Ts 8448 × Ts

T = Tg + Tort 1120 µs 1008 µs 952 µs 924 µs

Table 4.4 Duration of guard and orthogonality periods in the 2k mode for 8 MHz channels

Mode 2k mode

Guard interval Tg/Tort 1/4 1/8 1/16 c1/32

Duration of 2048Ts

orthogonality interval 224 µs

Duration of guard time 512 × Ts 256 × Ts 128 × Ts 64 × Ts

interval Tg 56 µs 28 µs 14 µs 7 µs

Symbol duration 2560 × Ts 2304 × Ts 2176 × Ts 2112 × Ts

T = Tg + Tort 280 µs 252 µs 238 µs 231 µs

In general, the DVB-T OFDM signal is described by the formula (ETSI 2004)

x(t) = Re

ej2πfct

∞∑
m=0

67∑
l=0

Kmax∑
k=Kmin

cm,l,kψm,l,k(t)

 (4.122)

where

ψm,l,k(t) =


exp

[
j2π k′

Tort

(
t − Tg − lT − 68mT

)]
(l + 68m)T ≤ t ≤ (l + 68m + 1)T

0 otherwise
(4.123)

As we see, ψm,l,k(t) is a complex kth subcarrier signal that is generated in the mth OFDM
frame during the lth OFDM symbol, where k′ is the subcarrier index with respect to the
center frequency, i.e. k′ = k − (Kmax − Kmin)/2. The complex data symbol carried on the
kth subcarrier that is generated in the mth OFDM frame during the lth OFDM symbol is
denoted by cm,l,k. Recall that T denotes the OFDM symbol modulation period.

Data carrying subcarrier symbols cm,l,k are selected according to the QPSK, 16-QAM or
64-QAM signal constellations shown in Figures 4.56, 4.57 and 4.58. Figure 4.56 presents
standard uniform QPSK and QAM constellations. Figures 4.57 and 4.58 show nonuniform
QAM constellations for which each constellation point is obtained by adding the complex
number ±(α − 1) ± j (α − 1) to the original constellation symbol z from Figure 4.56
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Figure 4.56 QPSK and uniform QAM constellations used on OFDM subcarriers
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Figure 4.57 Nonuniform QAM constellations (α = 2) used on OFDM subcarriers
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Figure 4.58 Nonuniform QAM constellations (α = 4) used on OFDM subcarriers
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(with signs of α depending on the quarter of the coordinate system in which a particular
constellation point z is located). Shifting constellation points further outside the origin
allows less sophisticated receivers to treat the constellation clusters in each quarter of the
coordinate system as single points and consider the received signal as the signal in which
applied modulation has fewer constellation points than the original one. This is possible
due to appropriate binary block assignment to each constellation point. The data symbols
cm,l,k are normalized in the sense that E[|c|2] = 1. This means that the mean power of
the data symbols is equal to unity. Therefore, each constellation point z is normalized
depending on the modulation level and the value of α. In Table 4.5 the normalization
factors are listed for all uniform and nonuniform modulations.

Table 4.5 Normalization factors for different modulations

Modulation scheme Normalization factor

QPSK c = z/
√

2
16-QAM α = 1 c = z/

√
10

α = 2 c = z/
√

20
α = 4 c = z/

√
52

64-QAM α = 1 c = z/
√

42
α = 2 c = z/

√
60

α = 4 c = z/
√

108

As we have already mentioned, subcarriers transmit both data symbols and reference
symbols. Figure 4.59 presents the location of scattered pilot symbols along frequency
and time axes. The scattered pilot symbols feature the increased power and are BPSK
modulated for more reliable channel estimation and synchronization. Thus, their symbols

pilot symbol

TPS pilots and continual pilots not shown

data symbol

Kmax = 1704 if 2 K

Kmin = 0 Kmax = 6816 if 8 K

−Symbol 3
−Symbol 2

−Symbol 67
−Symbol 0
−Symbol 1
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F
ra

m
e

m
subcarriers

Figure 4.59 Pilot and data symbols located on OFDM subcarriers in successive OFDM sym-
bols in the DVB-T OFDM frame  European Telecommunications Standards Institute 2004.
Further use, modification, redistribution is strictly prohibited. ETSI standards are available from
http://pda.etsi.org/pda
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are described by formula

Re{cm,l,k} = 4

3
· 2

(
1

2
− wk

)
(4.124)

Im{cm,l,k} = 0

where wk is the output of the pseudorandom binary sequence (PRBS) generator described
by the polynomial p(x) = x11 + x2 + 1. The power increase is due to the factor 4/3
contained in (4.124). As we have mentioned before, both scattered pilots and continual
pilots are transmitted on appropriate subcarriers. Thus, some selected subcarriers are
exclusively devoted to the transmission of the reference symbols. There are 45 such
subcarriers in the 2k mode and 177 subcarriers in the 8k mode. The continual pilots
create an irregular pattern of boosted subcarrier symbols along the frequency axis. The
pilot symbols are also generated by the binary PRBS and are given by formula (4.124).

Finally, the remaining subcarriers are used to transmit the TPS block. Its correct detec-
tion is crucial for operation of the receiver in the next frame, therefore the TPS block is
transmitted along the OFDM frame in parallel on 17 subcarriers in the 2k mode and 68
subcarriers in the 8k mode. The contents of the TPS block have already been described.
DBPSK (differential BPSK) modulation is applied on each subcarrier carrying the TPS
block. The first symbol of the TPS block constitutes a reference symbol for the DBPSK
modulation and its value is also determined by the same PRBS generator.

Summarizing, out of K = 1705 subcarriers used in the 2k mode of DVB-T OFDM
transmission 1512 subcarriers are used for data transmission, whereas the remaining ones
carry scattered or continual pilot symbols or carry transmission parameter sequence infor-
mation. Similarly, for K = 6817 subcarriers in the 8k mode 6048 are used for data
transmission. The remaining ones are used as pilots or to carry TPS blocks.

The above short sketch of digital modulation schemes applied in the DVB-T system
shows us how advanced modulation techniques can be applied in modern communication
systems. A similar modulation system also operates in DVB-H transmission for which
receivers should be handheld devices.

4.14 Influence of Nonlinearity on Signal Properties

Nonlinear distortions introduced by a given block, e.g. by a power amplifier placed in
a transmitter or a satellite transponder, are often characterized by the so-called AM-AM
and AM-PM characteristics. The former characteristics show how the amplitude of the
input signal influences the amplitude of the output signal, whereas the latter describe how
the nonlinear block shifts the signal phase depending on the input signal amplitude.

Let rout = A(rin) be the AM-AM characteristics and ϕout = �(rin) be the AM-PM char-
acteristics of a nonlinear block. Figure 4.60 presents AM-AM and AM-PM characteristics
for a typical model of nonlinearity that well characterizes the properties of the so-called
Travelling Wave Tube (TWT). The TWT is often the main amplifying element of the
satellite transponder. Let us consider an input signal of the form

s(t) = r(t) cos
[
2πfct + θ(t)

]
(4.125)
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Figure 4.60 AM-AM and AM-PM characteristics of the model of the nonlinear amplifier as a
function of the normalized input signal envelope r

where r(t) denotes the signal envelope and θ(t) is the phase function of time. Let us
recall that by using the signal pair [r(t), θ(t)] we can characterize an arbitrary mod-
ulation, including a digital one. Recalling formula (4.5) and using the in-phase and
quadrature components we can easily show that r(t) =

√
[xI (t)]2 + [xQ(t)]2, and θ(t) =

arctg[xQ(t)/xI (t)]. Thus, the signal on the output of a nonlinear block can be described
by the expression

x(t) = A
[
r(t)

]
cos

{
2πfct + θ(t) + �

[
r(t)

]}
(4.126)

First, let us assume that the signal envelope is constant, i.e. r(t) = r = const , and the
transmitted data signal is fully represented by the signal θ(t). If we consider the signal
with a constant envelope and with phase or frequency modulation, then

x(t) = A(r) cos
[
2πfct + θ(t) + �(r)

]
(4.127)

As a result, the signal on the output of the nonlinear block is characterized by a constant
amplitude and an additional but constant phase shift. Thus, the spectral properties of the
transmitted signal remain unchanged (only scaling due to amplification and a constant
phase shift occur). The information carrying phase function θ(t) is not distorted either.
We conclude that the nonlinarity is harmless for constant envelope signals.

The situation becomes much more complicated if the input signal envelope varies in
time. For simplicity let us consider the input signal of the form

x(t) = r(t) cos 2πfct (4.128)

where, as previously, r(t) is the signal envelope [r(t) ≥ 0]. In order to illustrate the
influence of nonlinearity on signal (4.128) let us represent the AM-AM characteristics in
the form of the polynomial expansion

rout = A1rin + A2r
2
in + A3r

3
in + · · · (4.129)



 

362 Introduction to Digital Communication Systems

Let us consider an even simpler case in which only two first expansion components in
(4.129) are taken into account, i.e.

rout = A1rin + A2r
2
in (4.130)

and the nonlinear block does not introduce AM-PM distortions, as is often the case for
solid-state amplifiers. Then the signal on the output of a nonlinear block is

x(t) = [
A1r(t) + A2r

2(t)
]

cos 2πfct (4.131)

and the spectrum of x(t) is expressed by the formula

X(f ) = 1

2

[
M(f − fc) + M(f + fc)

]
, (4.132)

where M(f ) = F [
A1r(t) + A2r

2(t)
]

Let us denote the spectral density of signal r(t) as R(f ). The spectral density of the
signal envelope on the output of the nonlinear block is then equal to

M(f ) = A1R(f ) + A2R(f ) ∗ R(f ) (4.133)

As we see, new spectral components appear in the signal on the output of the nonlin-
ear block and they distort the original signal spectrum. While the spectral width of the
nonzero values of the convolution R(f ) ∗ R(f ) is doubled compared with the original
spectrum R(f ), we see that nonlinearity results not only in spectral distortions but also
in spectrum re-growth. Thus, nonlinearity appearing in the transmitter is particularly dis-
advantageous in radio transmission because it causes crosstalk to the neighboring radio
channels. Figure 4.61 presents spectral re-growth and spectral distortion of the signal
transmitted through the nonlinear block.

A2[R(f ) R(f )]
M(f )

f

f

R(f )

Figure 4.61 Illustration of the spectral distortion resulting from transmission of a signal through
the block featuring second-order nonlinearity
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Problems

Problem 4.1 Derive the formula for the cross-correlation coefficient γ given by (4.56)
for two elementary signals used in FSK modulation described by (4.3). Assume that the
nominal frequencies f0 and f1 of the elementary signals are much higher than the signaling
rate 1/T . Show that the optimal cross-correlation coefficient γ for two elementary signals
used in FSK modulation is equal to −0.217 when a synchronous FSK receiver is applied.
Calculate the exact value of the loss in Es/N0 for this receiver compared with an optimal
synchronous receiver of BPSK signals with the same energy.

Problem 4.2 Assume that for an FSK signal the nominal frequency f1 is higher than the
nominal frequency f0. Plot the FSK signal characterizing the data sequence 0110011100
and for the asynchronous optimal FSK receiver shown in Figure 4.17 draw the idealized
waveforms at the outputs of bandpass filters, envelope detectors and filters matched to the
envelope.

Problem 4.3 Consider a suboptimal FSK receiver with a frequency discriminator. The
receiver is shown in Figure 4.18 and the probability of error at its output is given by
formula (4.64). Assume that the square root raised cosine filter with a given roll-off factor
α is a baseband equivalent filter of the bandpass filter applied in the receiver. Find the
optimal parameter β = (f1 − f0)T /2 and the distance between the nominal frequencies
f0 and f1 that minimize the probability of error (4.64). Give the quantitative results for
α = 0.1, 0.25 and 0.5. Compare them with the results for other filter characteristics shown
in Table 4.1.

Problem 4.4 Consider PSK transmission with synchronous reception. Assume that the
signal energy over the modulation period T is equal to Es , the PSK signal is corrupted
by an additive white Gaussian noise of power spectral density equal to N0/2, and data
symbols are statistically independent and equiprobable. Calculate the probability of error
at the output of the synchronous receiver when the phase of the reference carrier sig-
nal differs by θ from the ideal one. Draw the plot of the error probability versus Es/N0

for a few values of the phase error θ . What is the allowable phase error θ if the loss
equivalent to 0.5 dB in Es/N0 compared with ideal reception can be tolerated? In draw-
ing the plots apply the tables of the erfc function contained in the Appendix or use
Matlab.

Problem 4.5 Consider PSK transmission with synchronous reception. Assume that the
signal energy over the modulation period T is equal to Es , the PSK signal is corrupted
by an additive white Gaussian noise of power spectral density equal to N0/2, and data
symbols are statistically independent and equiprobable. Calculate the probability of error
at the output of the synchronous receiver when the timing recovery block produces a timimg
clock that differs by τ seconds from the ideal timing moments. Draw the plot of the error
probability versus Es/N0 for a few values of the timing error τ . What is the allowable
timing error τ if the loss equivalent to 0.5 dB in Es/N0 compared with the ideal reception
can be tolerated? In drawing the plots apply the tables of the erfc function contained in
the Appendix or use Matlab.
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Problem 4.6 For high values of the signal-to-noise ratio (SNR) in M-QAM or M-PSK
transmission a predominating error event in a synchronous receiver is due to selection of
a constellation point that is closest to the transmitted one. Thus, the minimum Euclidean
distance between constellation points is an important factor influencing the error probabil-
ity value. Assume that 16-PSK and 16-QAM feature the same minimum distance d . What
is the difference in Eb/N0 between both modulations if, for high SNR, they have the same
probability of error at the synchronous receiver output?

Problem 4.7 Consider synchronous reception of QPSK and 8-PSK signals in the pres-
ence of an additive white Gaussian noise of power spectral density equal to N0/2. Let
the mean energy over the modulation period be the same for both modulations. Show that
the difference in the required Eb/N0 expressed in dB between both modulations needed to
achieve the same probability of error approaches the value of 10 log10

(
3d2

8PSK/2d2
QPSK

)
when the SNR increases. Calculate this value in dB.

Problem 4.8 Consider QPSK transmission with differential encoding that ensures
robustness to phase ambiguity of multiples of 90◦. Design the mapping of the binary
blocks onto QPSK signal constellation points and calculate the contents of the look-up
table of the differential encoder shown in Figure 4.62.

QPSK
constellation

mapper

Differential
encoder

LUT

sQPSK(t)
bi

0

b i−1
0 b i−1

1

bi
1

ai
0

ai
1

Figure 4.62 Block diagram of the DQPSK modulator

Problem 4.9 Check, by considering the autocorrelation properties of the differentially
encoded QPSK data symbols, if the process of differential encoding has an impact on the
spectral properties of the QPSK signal compared with the QPSK signal without differential
encoding. Apply the results of your considerations in spectral properties of the random data
sequence derived in Chapter 3.

Problem 4.10 Solve Problem 4.8 for 32-QAM.

Problem 4.11 Draw the block diagram of the correlative receiver for a DBPSK signal
similar to that shown for DQPSK in Figure 4.29. Assume for simplicity that instead of the
matched filters p(−t) shown in Figure 4.29 two correlators are applied. Give the formulas
for signals at the outputs of the correlators and the input to the decision device when the
DBPSK signal corrupted by additive noise ν(t) is found at the receiver input.

Problem 4.12 Compare the formulas for the probability of error for synchronous recep-
tion of BPSK and QPSK signals. Show that when the SNR increases, the probability of
error approaches the same value for both modulations.
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Problem 4.13 Probability of error at the output of a synchronous receiver for a differ-
entially encoded PSK signal is given by formula (4.72). Derive a similar formula for the
probability of error at the output of a synchronous receiver for DQPSK signals. We assume
that data symbols are statistically independent and equiprobable and an additive noise is
Gaussian and white with the power spectral density N0/2.

Problem 4.14 As we know, the MSK modulation can be considered as a linear mod-
ulation. An MSK signal can be generated by a linear transmitter shown in Figure 4.39
for which the pulse shaping filters in the in-phase and quadrature branches are selected
according to formulas (4.98) and (4.99). Design the optimal linear receiver for MSK
signals.

Problem 4.15 Draw the phase tree for a continuous phase FSK signal featuring the
modulation index h = 0.7. Show the path of the signal on this tree if the data sequence at
the modulator input is 011010001011. Assume that binary zero is represented by the data
symbol ai = −1 and binary one by the data symbol ai = 1.

Problem 4.16 Let the frequency pulse g(t) in a continuous phase FSK signal have
the raised cosine shape lasting for the modulation period T , i.e. let it be given by the
formula

g(t) = A

2

[
1 + cos

2π

T

(
t − T

2

)]
for 0 ≤ t ≤ T

What is the appropriate value of the signal amplitude A? Draw the phase impulse q(t) for
the calculated amplitude A and subsequently sketch the phase tree.

Problem 4.17 Let us assume a continuous phase FSK signal with modulation index h =
0.5 and frequency pulse g(t) lasting no longer than the modulation period T . Besides the
phase tree the equivalent way to characterize the continuous phase FSK signal is the trellis
diagram, in which the number of states is determined by the number of possible phases
achievable after each modulation period. Determine the trellis diagram showing possible
transitions between the trellis states from the nth to the (n + 1)st moment. Denote the
paths traversed due to the data symbol an = −1 by solid lines and the paths traversed due
to the data symbol an = 1 by dashed lines. Demonstrate the path on the trellis diagram
for the continuous phase FSK signal starting at the zero moment from the zero phase
when the continuous phase FSK signal is used to transmit the following data sequence:
a = [1,−1, 1,−1, −1, 1, 1, 1, 1, −1].

Problem 4.18 Solve Problem 4.17 if the continuous phase FSK signal has the modulation
index h = 3/4 but other parameters retain their previous values. How many states does
the trellis have?

Problem 4.19 Consider the trellis diagram developed in Problem 4.17. How could the
Viterbi algorithm be applied at the receiver to determine the best path on the trellis diagram
and the data sequence associated with this path starting from the zero moment up to the
current moment n? Assume that the Viterbi algorithm measures the ”distance” between
the signal x(t) received during the nth modulating period ((n − 1)T ≤ t ≤ T ) and signal
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s(t, θn−1, an) according to the formula

λ(θn−1, an) =
∫ nT

(n−1)T

|x(t) − s(t, θn−1, an)|2 dt

The Viterbi algorithm attempts to find the best path for which the sum of such
distances is minimized. Recall that the reference signal is given by formula
s(t, θn−1, an) = cos(2πfct + θn−1 + 2πhanq(t − (n − 1)T )), with (n − 1)T ≤ t ≤ nT .
In our case h = 1/2 and the phase impulse q(t) = 1

2T
t for 0 ≤ t ≤ T .

Problem 4.20 Consider TCM in which 16-QAM and the trellis encoder shown in
Figure 4.63 are applied. Assume that the binary block to 16-QAM constellation mapping
is done as in Figure 4.49. Determine the trellis diagram for the TCM configuration. How
many parallel transitions between the states exist for the trellis diagram? What is the
minimum distance for the considered TCM?
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Figure 4.63 TCM encoder with 16-QAM mapper

Problem 4.21 Consider the TCM with 8-PSK for which the encoder is shown in
Figure 4.45. Assume that the TCM signal is corrupted by a white Gaussian noise. The
TCM signal is processed by the receiver shown in Figure 4.51. Let the (xI

i , x
Q
i ) pairs

received at the outputs of the samplers be

(0.9, 0.1), (−0.78, 0.85), (−0.1, 1.1), (0.5, 0.3), (−0.3, −0.9),

(1.3, −0.5), (−0.1, −1.1), (−0.15, 1.2)

Assuming that the trellis encoder starts from the state (0, 0), demonstrate the operation of
the TCM Viterbi detector. Determine the sequence of TCM constellation points indicated
by the Viterbi detector and give the binary sequence decided by the detector.

Problem 4.22 Let us consider an OFDM transmission system for indoor radio appli-
cations such as WLANs. In order to incorporate the channel impulse response within the
guard period and to retain sufficient synchronization abilities, it is often assumed that
the the guard interval is four times longer than the average length of the channel impulse
response. Design the parameters of the OFDM system, in particular the modulation period,
the guard interval, the size of digital modulation applied on each subcarrier, the subcarrier
frequency separation and the number of applied subcarriers if the system requirements are
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the following: the system binary throughput for the user is 20 Mbit/s, the assumed channel
impulse reponse length is 200 ns, the signal bandwidth is 15 MHz, the FEC coding rate
R = 1/2.

Problem 4.23 Consider OFDM transmission over a channel with the transfer function
H(f ). The system configuration is shown in Figure 4.64. An additive white Gaussian noise
with the power spectral density N0/2 is added at the receiver input. Let the channel transfer
function be

H(f ) = 0.7107 · {1 − 0.99 exp
[−j2π(f − f0)τ

]}
The channel transfer function describes a two-path channel with the second path delayed
by τ with respect to the first one. Let us assume that the cyclic prefix applied in the OFDM
signal is longer than the delay τ . In such a situation the signal sample at each FFT output
can be described by the formula

Y (i) = H(i)X(i) + Nν(i), i = 1, . . . , N

where X(i) is the 16-QAM data symbol of the mean energy per bit Eb transmitted on the ith
subcarrier, H(i) = H(fi) is the channel transfer function coefficient on the ith subcarrier
of frequency fi and Nν(i) is the noise component resulting from the correlation of the noise
from the receiver input performed by the FFT demodulator. Let the equalizer applied at
the FFT output invert the channel transfer function, thus C(i) = H−1(i). The assumed
system parameters are: N = 8, f1 = 300 Hz, subcarrier separation 	f = 400 Hz, energy
per transmitted bit Eb = 0.001 W·s and the FFT demodulator preserves the level of the
signal power. The channel parameters are: N0 = 3.2: 10−6 W/Hz, notch frequency f0 =
1500 Hz and second path delay τ = 0.3 ms. Calculate the probability of error for each
subcarrier and find the probability of error for the whole OFDM signal. Is there any
subcarrier that has a decisive influence on the overall system performance?

IFFT
OFDM

modulator

FFT
OFDM

demodulatorChannel H(f )

ν(t )

+ Prefix
removal

Prefix
insertion

P
ar

al
le

l t
o 

se
ria

l

N
 o

ne
-t

ap
eq

ua
liz

er
s

N
 d

ec
is

io
n

de
vi

ce
s

S
er

ia
l t

o 
pa

ra
lle

lX(1) X(1)

Y(1)

X(2) X(2)

X(8) X(8)

Y(8)

..
.

..
.

^

^

^

Figure 4.64 Block diagram of the OFDM system considered in Problem 4.23



 



 

5
Properties of Communication
Channels

5.1 Introduction

The communication channel is a key element in the whole chain of blocks constituting
a communication system, because the structure and operation of many remaining blocks
strictly depend on its physical properties. For example, the channel passband implies the
range of applicable carrier frequencies and the bandwidth of the applied signal. A given
noise level allows for application of a modulation featuring the appropriate number of
levels, whereas fluctuations of the amplitude characteristics and nonlinearity of the phase
characteristics determine the necessity of application of respective equalization structures
at the receiver.

In this chapter we will describe basic properties of several kinds of communication
channels and present the methods of modeling these channels. Construction of a channel
model allows us to conduct both theoretical and simulation analysis of the investigated
communication system. Hardware and software channel simulators are useful tools in
simulation investigations and laboratory tests.

We will start the description of channel properties with the introduction of the concept
of the baseband equivalent channel, which is very useful in channel characterization
and modeling. Then we will describe the most frequently used transmission channel, i.e.
telephone channel. We will mention ambiguity of the telephone channel term. We will
also present properties of a subscriber loop, i.e. a twisted copper wire pair connecting
a subscriber’s telephone or modem with line equipment in the telephone exchange. We
will further show properties of a twisted copper wire pair channel that imply much wider
possibilities of its use, as compared with a typical application for transmission of an
acoustic signal in the range of frequencies between 300 and 3400 Hz. Next we will
consider basic properties of selected radio channels, i.e. the channel used in cellular radio,
the indoor channel typical for wireless local area networks, the line-of-sight horizontal
microwave channel and the HF channel. Finally, we will present basic features of an
optical fiber channel.

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd
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5.2 Baseband Equivalent Channel

Figure 5.1 presents a typical model of the digital transmission system in which modulation
of both the in-phase and quadrature carriers is applied. The in-phase and quadrature data
symbols, dI

n and d
Q
n , are fed to the inputs of the baseband pulse-shaping filters. Very often

the pulse-shaping filter has the square root raised cosine characteristics. Thus, the same
characteristics are selected for the filters applied in synchronous demodulators, which also
function as the matched filters. The signals at the outputs of the pulse-shaping filters are
given by the formula

uI (t) =
∞∑

n=−∞
dI

np(t − nT )

uQ(t) =
∞∑

n=−∞
dQ

n p(t − nT ) (5.1)

The signals are shifted to the channel passband by the modulators in which sinusoidal
and cosinusoidal carriers of frequency fc are applied. The sum of both signals, denoted
in Figure 5.1 as s(t), is transmitted through the channel with the characteristics GP(f ).
Equivalently, the channel is characterized in time domain by the impulse response gP(t).
At the receiver synchronous demodulation and matched filtering are performed. We
assume that the demodulator uses the ideal reference phase of the locally generated car-
riers. If the transmission channel with the characteristics GP(f ) were undistorting, then
the sampling of the matched filters outputs at the appropriate time phase would result in
signals proportional to the data symbols dI

n and d
Q
n . Unfortunately, in reality the channel

distorts the transmitted signal and the samples at the matched filters outputs depend not
only on the data symbols dI

n and d
Q
n but also on some preceding and following data

symbols.
In order to characterize this phenomenon more precisely, let us derive the transfer

function between two data inputs denoted in Figure 5.1 by the dotted line A and two
receiver outputs denoted by the second dotted line B. In our derivation we apply the
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symbolic notation in which the in-phase signals are represented by the real part of the
complex waveform, whereas the quadrature signals are represented by the imaginary part
of the complex waveform. Therefore, we can introduce the baseband complex signal u(t),
which has the form

u(t) = uI (t) + juQ(t) =
∞∑

n=−∞
(dI

n + jdQ
n )p(t − nT ) (5.2)

Denoting dn = dI
n + jd

Q
n as the complex data symbol, we can express the signal u(t) as

u(t) =
∞∑

n=−∞
dnp(t − nT ) = p(t) ∗

+∞∑
n=−∞

dnδ(t − nT ) (5.3)

The transmitted signal s(t) is then given by the formula

s(t) = uI (t) cos 2πfct − uQ(t) sin 2πfct = Re {u(t) exp (j2πfct)} (5.4)

or, equivalently

s(t) = 1

2

[
u(t) exp(j2πfct) + u∗(t) exp(−j2πfct)

]
(5.5)

where (.)∗ denotes a complex conjugate. In turn, the spectrum of the transmitted signal
is given by the expression

S(f ) = F [s(t)] = 1

2

[
U(f − fc) + U∗(−f − fc)

]
(5.6)

Since the bandpass channel with the characteristics GP(f ) is a physical channel, its
impulse response is a real function of time. Thus, taking into account the Fourier transform
properties the characteristics fulfill the following equality

G∗
P(−f ) = GP(f ) (5.7)

Let GB(f ) be the part of the channel characteristics GP(f ) located on the positive part
of the frequency axis after shifting it to the coordinate system origin by fc Hz, i.e.

GB(f − fc) =
{

GP(f ) for f > 0

0 for f ≤ 0
(5.8)

Consequently

G∗
B(−f − fc) =

{
0 for f ≤ 0

G∗
P(−f ) for f > 0

(5.9)
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and

GP(f ) = GB(f − fc) + G∗
B(−f − fc) (5.10)

From (5.10) we can write the expression describing the channel impulse response as

gP(t) = F−1 [GP(f )
] = gB(t) exp (j2πfct) + g∗

B(t) exp (−j2πfct)

= 2Re {gB(t) exp (j2πfct)} (5.11)

Let us denote the signal at the channel output as rP (t), so

rP(t) = 2Re {r(t) exp (j2πfct)} (5.12)

Its spectrum depends on the input signal spectrum and the channel transfer function, as
in the following formula

RP(f ) = GP(f )S(f ) (5.13)

On the basis of (5.6) and (5.10) we have

RP(f ) = 1

2

[
U(f − fc) + U∗(−f − fc)

] [
GB(f − fc)G

∗
B(−f − fc)

]
(5.14)

Since the channel and the input signal are bandpass, we have

U(f − fc) = 0, GB(f − fc) = 0 for f < 0

U(f + fc) = 0, GB(f + fc) = 0 for f > 0 (5.15)

Therefore, taking into account (5.15) we obtain the following formula from (5.14)

RP(f ) = 1

2

[
U(f − fc)GB(f − fc) + U∗(−f − fc)G

∗
B(−f − fc)

]
= 1

2

[
R(f − fc) + R∗(−f − fc)

]
(5.16)

We conclude from (5.16) that

R(f ) = U(f )GB(f ) (5.17)

which is equivalent in the time domain to the expression

r(t) = rI (t) + jrQ(t) = u(t) ∗ gB(t) (5.18)

The impulse response gB(t) characterizes the so-called baseband equivalent channel .
Figure 5.2 shows the characteristics of the baseband equivalent channel in comparison
with the bandpass channel. In the general case the impulse response gB(t) is a complex
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Figure 5.2 Example of the bandpass channel characteristics and the characteristics of the baseband
equivalent channel

function of time. Let us recall that it would be a real function of time if the characteristics
|GB(f )| were even-symmetric with respect to zero frequency and arg[GB(f )] were an
odd-symmetric function of frequency, i.e. if the following expressions were fulfilled

|GB(f )| = |GB(f )| and arg[GB(f )] = − arg[GB(−f )] (5.19)

These features of GB(f ) are equivalent to the even symmetry of the bandpass chan-
nel amplitude characteristics |GP(f )| with respect of the carrier frequency fc and the
odd symmetry of the bandpass channel phase characteristics with respect to the carrier
frequency. Typically they are not preserved in real transmission channels.

The receiver aims at recovery of the data symbols dI
n and d

Q
n on the basis of the

received signal rP(t) = F−1
[
RP(f )

]
. Since from (5.12) we have

rP(t) = 2
[
rI (t) cos 2πfct − rQ(t) sin 2πfct

]
(5.20)

we can derive the signals at the outputs of the synchronous demodulators. For the in-phase
demodulator we have

xI (t) = [
rP(t) cos 2πfct

] ∗ p(−t) (5.21)

= 2
[
rI (t) cos2 2πfct − rQ(t) cos 2πfct sin 2πfct

] ∗ p(−t)

= rI (t) ∗ p(−t)

The remaining components in (5.21) are concentrated around the doubled carrier frequency
so they are attenuated by the lowpass filter that is matched to the transmitted pulses.
Similar derivation performed for the quadrature demodulator results in the formula

xQ(t) = rQ(t) ∗ p(−t) (5.22)
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Therefore, in the complex notation the signal x(t) at the demodulator output is the fol-
lowing

x(t) = xI (t) + jxQ(t) = r(t) ∗ p(−t) (5.23)

Using (5.18) and (5.3), we get

x(t) = u(t) ∗ gB(t) ∗ p(−t) (5.24)

=
[ +∞∑

n=−∞
dnδ(t − nT )

]
∗ p(t) ∗ gB(t) ∗ p(−t)

=
+∞∑

n=−∞
dnδ(t − nT ) ∗ h(t)

So, finally

x(t) =
+∞∑

n=−∞
dnh(t − nT ) (5.25)

where

h(t) = p(t) ∗ gB(t) ∗ p(−t) (5.26)

Formulae (5.25) and (5.26) indicate that the whole system between the data symbol
inputs in the transmitter and the matched filters outputs in the receiver can be replaced by a
single filter characterized by the complex impulse response h(t) = hre(t) + jhim(t). This
impulse response is a convolution of the transmit filter impulse response, the impulse
response of the filter matched to the transmit filter and the impulse response of the
baseband equivalent channel. The system is presented in Figure 5.3 and it is supplemented
with the in-phase and quadrature noise sources.

nI(t)

nQ(t)

hre(t) xI(t)

xQ(t)

him(t)

him(t)

hre(t) ++

++
−

dn
I

dn
Q

Figure 5.3 Simple baseband model of a digital transmission system with in-phase and quadrature
components
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As we conclude from Figure 5.3, the output signals xI (t) and xQ(t) not only contain
the components resulting from the appropriate data symbols, dI

n snd d
Q
n , repectively, but

also contain distorting components that are the result of signal transmission through the
cross-connecting filters with the impulse reponses him(t).

Summarizing, the system shown in Figure 5.1 can be equivalently described by the
formula

x(t) =
+∞∑

n=−∞
dnh(t − nT ) + ν(t) (5.27)

In further considerations we will often use formula (5.27) for digital transmission system
modeling.

5.3 Telephone Channel

5.3.1 Basic Elements of the Telephone Network Structure

Originally, the telephone network was designed to transmit analog signals representing
human voice in the range 300–3400 Hz. However, owing to technological progress it
is more and more often used for transmission of digital data. Due to heavy investment
costs of its deployment and despite new alternative transmission channels and systems,
such as wireless or cellular systems, the telephone channel will be further exploited for
decades to come. Additionally, new applications are offered on subscriber channels to
retain their attractiveness. Therefore it seems valuable to present properties of particular
channel types applied in a telephone network as a whole.

Some subscribers still use their telephone lines for transmitting digital signals from and
to their computers via modems. A telephone modem generates analog signals featuring
the bandwidth similar to that of human voice transmitted over a telephone channel. This
is necessary because some transmission devices applied in the transmission chain limit
the signal bandwidth. Consider some basic configurations of a telephone link. Let us start
from a configuration typical for an “analog communications era”, i.e. the configuration
that is almost obsolete in many countries.

Figure 5.4 presents a block diagram of a telephone link between subscriber A and
B, implemented in analog technology. The subscriber equipment, i.e. a telephone or a
modem, is connected with a twisted copper wire pair to so-called Line Equipment (LE)
in the front-end part of the switching exchange. The length of a twisted wire pair ranges
from a few tens of meters up to a few kilometers. Its properties will be descibed in
detail in one of the following sections. A twisted copper wire pair can be used in a
much more effective way than for transmission of human voice or voiceband acoustic
modem signals. The line equipment connects a subscriber with a telephone network,
matches the received and transmitted signal levels, separates galvanically the subscriber
loop and the switching exchange, etc. In the switching exchange a link to another switching
exchange is established. The signal arrives at the destination switching exchange to which
subscriber B is connected through his/her twisted wire pair. On the way to subscriber B

the signal passes the chain of transmission lines and subsequent switching exchanges. In
the switching exchanges the process of concentration of many telephone links takes place
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Figure 5.4 Simplified scheme of the analog telephone link

and some of them are further transferred to a particular switching exchange. Thus, the
links between switching exchanges have to be able to transmit many telephone signals
at the same time. They are typically made of wideband coaxial cables. Due to analog
transmission using a coaxial cable as a common transmission medium, a multiple access
method based on frequency division, i.e. FDMA (Frequency Division Multiple Access)
is applied. The common cable signal is formed in the Frequency Division Multiplexer
(FDM), which is part of the transmitter of the carrier telephony. In order to ensure a high
cable throughput, each component link signal is band-limited to the range 300–3400 Hz
with a passband filter. In the days of design and deployment of such systems human voice
was the only transmitted signal, so these filters were designed by taking into account its
properties and the properties of the human ear. Consequently, because fluctuations of the
group delay characteristics of the order of a millisecond are not detectable for a human
being, they were not taken into account in the filter design. Such fluctuations are, however,
very important for data transmission. The filter output signals modulate carriers spaced
every 4 kHz using Single Sideband Modulation (SSB).1 In the receive part of the carrier
telephony system, i.e. in the FDM demultiplexer, the signals on the appropriate carriers are
demodulated and down-converted so that particular links are extracted. Filtering is also an
important part of this process. As a result of SSB modulation and demodulation frequency
offset often arises, because the carrier frequencies in the modulator and demodulator are
not identical. The difference between them can reach a few Hz. There can be a few FDM
multiplexers and demultiplexers along a particular link. Characteristics of the telephone
channel seen between subscriber A and B can have the shape shown in Figure 5.5.

Figure 5.6 shows a typical configuration of a modern telephone network in which mostly
digital technology is applied. An analog signal generated by a subscriber or his/her modem
is transmitted over a twisted wire pair to the concentrator of the switching exchange. A
concentrator is often an external part of the switching exchange. The signals from each
subscriber are turned, in the line equipment of the concentrator, into a binary stream. On
the subscriber side the concentrator is connected with tens or hundreds of subscribers.
Statistically, about one-tenth of the lines on the switching exchange side are sufficient
to serve the traffic offered by subscribers. Their signals converted to binary streams are
further transmitted using the Time Division Multiplexing rule. Transmission between a

1 Recall that SSB relies on amplitude modulation of the carrier by the passband signal. As a result a double-side
band signal is received, which is subsequently filtered retaining one sideband only. Alternatively, a single
sideband-modulated signal can be obtained using a special transmitter structure. The reader is asked to consult
Couch (1987) for more information, if needed.
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Figure 5.5 Average attenuation characteristics (a) and group delay characteristics (b) for a medium
or long link including subscriber loops (Carrey et al. 1984)
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Figure 5.6 Example of a telephone network configuration based on a PCM system including con-
nections to other networks (such as Internet or cellular radio) Reproduced with the kind permission
of ITU

concentrator and its switching exchange is digital. The key elements in concentrators are
PCM (Pulse Code Modulation) encoders and decoders with filters, known as PCM codecs
(Figure 5.7). A hybrid is a circuit placed on the subscriber input of the codec that splits
transmission directions from and to the subscriber because in a subscriber loop the signals
flow in both directions concurrently. Figure 5.7 presents a possible hybrid scheme and
applies the principle of a balanced bridge. A hybrid operates correctly if the impedance
ZL of the subscriber loop seen at points A–B is fully balanced by impedance Z = ZL in
the bottom right branch of the bridge. This impedance is called a balance impedance. The
resistances in upper branches of the bridge are identical. Impedance Z should be equal
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Figure 5.7 Functional scheme of a PCM codec (BPF, bandpass filter; LPF, lowpass filter)

to the loop impedance ZL in the whole range of the used frequency band. However, this
condition cannot be precisely fulfilled. Typically, a simple RC circuit with parameters
selected on a statistical basis is applied. Let us note that owing to the transformer, the
subscriber loop is galvanically separated from the main PCM codec circuit.

On the side of the analog-to-digital (A/D) conversion there is a lowpass or bandpass
filter that narrows the signal bandwidth to the range 300–3400 Hz. The upper band limi-
tation results from the necessity to avoid spectrum overlapping due to the applied 8 kHz
sampling frequency. Lower band limitation results from desired attenuation of a power
line frequency (50 or 60 Hz) and its harmonics induced in a twisted wire pair. In turn, on
the digital-to-analog (D/A) conversion side the lowpass filter smoothes a staircase form of
the signal produced by the D/A converter. Figure 5.8 shows the characteristics of the filter
preceding the A/D conversion and the characteristics of the filter on the D/A converter
output of the M5913 PCM codec produced by SGS-Thomson Microelectronics (1993).
As we know, the characteristics of the applied analog-to-digital and digital-to-analog con-
verters are nonlinear in order to make the quantization noise the least perceptible to a
listener. The characteristics of both converters are reciprocal to each other, so their nonlin-
earity mutually compensates. In accordance with ITU-T recommendations, the nonlinear
characteristics of the analog-to-digital conversion, called compression characteristics , are
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Figure 5.8 Characteristics of the M5913 PCM codec filters: (a) the filter preceding the A/D
converter and (b) the filter following the D/A converter (SGS-Thomson Microelectronics 1993)
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given by the formula

f (x) =


A

1 + ln A
x for 0 ≤ |x| ≤ 1

A

sgn(x)

1 + ln A
[1 + ln(A|x|)] for

1

A
≤ |x| ≤ 1

(5.28)

These are the so-called A-law characteristics and a typical value of A is 87.6. The A-law
characteristics are used in European PCM systems. In the USA and Japan different com-
pression characteristics are applied, known as µ-law, given by the formula

f (x) = sgn(x)

ln(1 + µ)
ln(1 + µ|x|) (5.29)

In the receive part of the PCM codec, in which the digital PCM stream is converted back
into analog form, expansion characteristics are applied. The data stream resulting from
A/D processing has the binary rate of 64 kbit/s and it represents signal samples acquired
at the frequency of 8 kHz. Data streams in both transmission directions are the object of
electronic switching in the switching exchange and they are subsequently time multiplexed
according to the TDM principle. The binary streams organized in a hierarchical manner
in the form of structures of higher orders are subsequently transmitted between switching
exchanges mostly over optical fiber links. In more traditional implementations coaxial
cables are applied. The coaxial or optical fiber cable sections are separated by devices
called regenerators , which receive the signal attenuated by the transmission line, recover
the timing clock for the data signal, amplify the data signal and recover a primary shape
that is adequate for transmission in the next cable segment.

A telephone network is often used for communication with other communication net-
works, such as the Internet and several public land mobile networks. In particular in
cellular networks the internal PCM links are often implemented using line-of-sight ter-
restrial radio links. Line-of-sight terrestrial radio links are also an alternative for wireline
links, particularly in environments in which deployment of wireline systems can be very
difficult or expensive.

Summarizing, we see that channel properties that are crucial for digital transmission
highly depend on the particular structure of the telephone network and, within it, on the
applied filters and properties of subscriber loops.

5.3.2 Telephone Channel Properties

A typical telephone channel features various disturbances and distortions. Due to the
applied filters and separating transformers, the telephone channel is essentially passband.
Unfortunately, the channel amplitude characteristics are not flat and the group delay
characteristics are not linear, so we observe amplitude and delay distortions.

Amplitude distortions are introduced by filters that have been designed for voice signal
transmission. Let the channel transfer function be denoted as Hc(f ). We apply the mathe-
matical description of the channel by assuming its linearity (we neglect a small nonlinear
effect caused by amplifiers applied in the transmission chain). Recall that the channel
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amplitude characteristics are |Hc(f )|, whereas the phase characteristics are given by the
formula ϕ(f ) = arg[Hc(f )]. Instead of amplitude and phase characteristics, a channel is
often described by its attenuation characteristics and delay or group delay characteristics ,
denoted by A(f ) and τ(f ), respectively. They are given by the expressions

A(f ) = 20 log10
|Hc(f )|
|Hc(f0)| τ(f ) = τ(f0) − 1

2π

d
{

arg[Hc(f )]
}

df
(5.30)

where f0 is a selected frequency for which attenuation and delay are references for mea-
surements at other frequencies. ITU-T Recommendations M.1020, M.1025 and M.1040
(ITU-T Series M 1997) determine the limits within which the channel characteristics have
to be fitted to fulfill the defined requirements. An example of the limits for attenuation
and delay characteristics is shown in Figure 5.9. These limits are defined for a leased
telephone line of special quality, useful for international links. An example of channel
characteristics fulfilling these requirements is also shown in this figure. The leased line
is a link that has been set up by the telecom operator for a group of subscribers. It is a
high quality but expensive solution. In times of wide access to the Internet and satellite
and wireless communications, the importance of such links has diminished.
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Figure 5.9 Limits of attenuation and delay characteristics determined by ITU-T M.1020 Recom-
mendation and an example of channel characteristics. Reproduced with the kind permission of ITU

In 1984 the measurement results for US telephone links were published (Carrey
et al. 1984), taking into account the potential use of telephone links in data transmission.
Figure 5.10 presents statistical measurement results of attenuation and delay charac-
teristics for links of medium (as for the USA) length between 550 km and 1700 km.
Although these data are relatively old, they sufficiently characterize possible attenuation
and delay characteristics of a telephone channel. Well-designed equipment should work
reliably for the channel characteristics shown by curve (c).

Besides linear distortions described by attenuation and delay characteristics of a tele-
phone channel, one can expect several kinds of noise. Thermal noise is caused by various
electronic devices operating in a transmission link, in particular amplifiers and receivers.
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Figure 5.10 Amplitude and delay characteristic measurement results for medium length links in
the USA: (a) lower limit of 1% of the best links, (b) average characteristics, (c) lower limit of 99%
of links (Carrey et al. 1984)

Such noise is modeled as a Gaussian process with a flat power density spectrum. Quan-
tization noise results from converting analog samples of the processed signal into 8-bit
representations in the PCM codec according to one of the characteristics (5.28) or (5.29).
The source of impulse noise can be crosstalk from neighboring telephone links placed in a
common cable when impulse dialing is applied at a given moment. However, this source
of impulse noise is already rare due to massive application of DTMF signaling.2 Impulse
noise can also be caused by switching processes in switching exchanges or induced in a
subscriber loop by external devices. It is observed as a sequence of pulses significantly
exceeding a typical noise level.

Another already mentioned distortion is frequency offset resulting from the application
of carrier telephony in old telephone networks. If it is not compensated for, it can be a
reason for errors in data transmission. Telephone modems standardized in ITU-T Recom-
mendations Series V (1997) should be able to cope with the frequency offset of up to
7 Hz.

The reasons for phase jitter are the power supplies of electronic devices applied in a
telephone link and the power line harmonics induced in subscriber loops. Phase jitter is
revealed as an undesired phase modulation in the transmitted signal. Phase jitter can be
measured as a spread of zero crossings with respect to the reference tone. The measure-
ments reported in (Carrey et al. 1984) indicate that the peak value of the phase jitter does
not exceed 20◦.

The level of nonlinear distortions in telephone channels is low. For example, when a
sinusoidal measurement tone is applied, its second and third harmonics are about 30 dB
below the first harmonics. Nonlinear distortions are caused by nonideal compression and
expansion characteristics in PCM codecs or nonlinearity of power amplifiers in analog

2 DTMF (Dual-Tone Multi-Frequency) is a method of signaling the dialed number by selection of one of sixteen
combinations of two tones, each taken from a separate set of four frequencies.
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systems. Nonlinear distortions are usually neglected in system analysis. Their influence
is taken into account only in very advanced receivers.

The last distortion to be described is echo. Figure 5.11 shows a situation typical for
both analog and digital transmission in which the phenomenon of echo shows itself. The
main source (although not the only one) of echo is nonideal operation of hybrids (see
Figure 5.7). Near-end echo arises due to nonideal match of hybrid and loop impedances.
If the hybrid worked ideally, then the signal from subscriber A would pass through the
loop and would be directed exclusively to the upper branch of the link; actually, however,
part of the signal is reflected and returns back to the receiver of subscriber A, creating
a distortion. Recall that a similar hybrid is located in the subscriber device where two
transmission directions over a subscriber loop have to be split. Nonideal operation of
the local hybrid also causes near-end echo; this time however, the echo signal is not
attenuated by the subscriber loop (see Figure 5.12). Far-end echo also has its origin in
nonideal operation of the hybrid. However, it is caused by the crosstalk of the signal from
the input to output branch of the hybrid on the right-hand side of Figure 5.11. This signal
returns (together with the signal from subscriber B) to subscriber A, creating a disturbance.
Besides nonideal operation of a hybrid the reasons for echos are impedance mismatches
occurring in different places of a telephone link, which cause signal reflections.

Figure 5.12 illustrates the phenomenon of echo arising due to hybrid and subscriber loop
mismatch, in which the hybrid is part of the subscriber’s DCE – Data Communication
Equipment . As we have mentioned above, the echo arising due to the crosstalk from
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Figure 5.11 Phenomenon of near-end and far-end echo
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Figure 5.12 Creation of echoes in systems with hybrids in the end-user devices
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a local transmitter to a local receiver is particularly harmful because its level can be
tens of dB higher than the level of a desired signal received from the remote transmitter
(Transmitter 2 in Figure 5.12).

The phenomenon of echo has a crucial influence on a data transmission system if the
system works in duplex mode, i.e. transmission is performed in two directions simulta-
neously in a two-wire link when both directions occupy the same frequency band.

5.4 Properties of a Subscriber Loop Channel

Properties of a channel connecting a single subscriber to a telephone switching exchange
became particularly important when full network digitalization took place. In many
countries electromechanical switching exchanges were replaced by electronic ones and
transmitted signals starting from concentrators are already in a digital form. Only “the
last mile” connection, i.e. the connection between a switching exchange concentrator and
a subscriber’s equipment, was analog. As we have learnt, the band limitation to the range
between 300 and 3400 Hz has nothing to do with the properties of the twisted wire pair.
Digitalization of this last part of a communication link was possible owing to the intro-
duction of ISDN – Integrated Services Digital Network . As a result, a subscriber loop
channel could be used much more efficiently. The next steps were the introduction of
HDSL (High-Rate Digital Subscriber Line), ADSL (Asymmetric Digital Subscriber Line)
and VDSL (Very High Bitrate Digital Subscriber Line) and their upgrades.

As we have already mentioned in the case study in Chapter 3, basic access to ISDN
networks is performed by a duplex transmission in a subscriber loop at the rate of 144
(2 × 64 + 16) kbit/s. The methods of duplex transmission in such channel were intensively
investigated in the 1980s (Lechleider 1986; Modestine et al. 1986). In the 1990s HDSL
transmission at the rate up to 2 Mbit/s was investigated. In ADSL multicarrier transmission
(known as OFDM; see Chapter 4 on modulations of sinusoidal carriers for details) was
introduced. In particular, it is applied to provide wideband access to the Internet. In all
those cases the transmission medium is a twisted copper wire pair connecting a subscriber
with the closest switching exchange.

In typical situations a subscriber loop consists of serial connection of a number of
sections of copper pairs which are part of the communication cable. These sections
differ in wire diameter, length and insulation material. Currently polyethylene is mostly
applied as an insulation material. In some countries the number of sections is in practice
limited to two.

Taking into account the wide bandwidth used by HDSL and VDSL systems, each section
of the copper wire pair can be treated as a transmission line. Thus, the transmission line
theory can be applied to find a subscriber channel transfer function. On the basis of this
we can find a channel impulse response that is particularly important in the description
of digital transmission.

Let us treat a single twisted wire pair section as a two-port with input and output
voltages and currents denoted as Uin, Iin, Uout, Iout, respectively. In the steady state the
two-port can be characterized by the following matrix equation[

Uin

Iin

]
=

[
A B

C D

] [
Uout

Iout

]
(5.31)
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where A, B, C and D are complex functions of frequency that characterize the two-port
properties. One can prove that serial connection of a number of two-ports is characterized
by the product of matrices ABCD describing each of the two-ports separately.

Let us focus on a single homogeneous section of a subscriber loop of incremental
length dx. According to transmission line theory, a section of copper wire pair of length
dx can be represented by the lumped circuit shown in Figure 5.13. Symbols G′, R′, C′ and
L′ denote conductance, resistance, capacity and inductance per unit length, respectively.
These values are basic parameters of the subscriber loop section. Unfortunately, most of
them depend on frequency. Due to the skin effect , resistance R′ increases with frequency.
This feature is a result of the fact that with increasing frequency the current flows within
a thinner and thinner external layer of the conductor. Inductance L′ consists of two
components: external and internal. The first component depends on geometrical properties
of the loop and magnetic properties of the applied materials. Because the copper wire
does not possess ferromagnetic properties, this component does not depend on frequency.
Internal inductance is associated with the electromagnetic field generated by the current
flowing in the conductor. Due to the skin effect, the current inside the conductor and,
consequently, the electromagnetic field decrease with an increase of frequency. Therefore
internal inductance gradually decreases to zero with a frequency increase. Capacity C′ is
the only parameter that does not depend on frequency and is a function of geometrical
properties of the subscriber loop. Conductance G′ is associated with capacity C′ through
the formula G′ = tgδ · 2πf C′, where tgδ is the so-called loss coefficient . It depends on
the insulation material applied in the cable and is relatively constant in the relevant range
of frequencies, except for paper insulation (Schmid 1976). As we can see, the cable
properties significantly depend on frequency. Table 5.1 presents typical values of basic
parameters of a twisted copper wire pair for a few representative types of cables (Schmid
1976).

x + dx

U U + dU

x

I R ′dx L′dx

C ′dx
G ′dx

Figure 5.13 Representation of the incremental section of the transmission line using a two-port
with lumped elements

For clarity of applied notation we will not show explicitly the dependence of copper
wire pair parameters on frequency, however we will take this dependence into account
during calculation of the loop transfer function. It is well known from the transmission
line theory (Davidson 1978; Schmid 1976) that for sinusoidal excitation parameters A,
B, C and D of the line matrix are given by the following formulae

A = D = cosh γ l

B = Z0 sinh γ l (5.32)

C = Z−1
0 sinh γ l
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Table 5.1 Basic parameters of symmetric copper pairs (Schmid 1976)

Diameter Max. resistance Capacity Inductance Conductance
[mm] [�/km] (20◦C) [nF/km] [mH/km] [µS/km]

Local cable, paper insulation

0.3 530 50 0.7 0.5
0.4 300 36 0.7 0.5
0.6 130 42 0.7 0.5
0.8 73.2 42 0.7 0.6

Local cable, polyethylene insulation

0.3 530 50 0.7 0.1
0.4 300 50 0.7 0.1
0.6 130 50 0.7 0.1
0.8 73.2 55 0.7 0.1

where l is the line length. Characteristic impedance Z0 and propagation coefficient γ are
described by expressions

Z0(f ) =
√

R′ + j2πf L′

G′ + j2πf C′ (5.33)

γ (f ) = α(f ) + jβ(f ) =
√

(R′ + j2πf L′) (G′ + j2πf C′) (5.34)

Consider now a single subscriber loop section of length l with load impedance ZL

connected to its output. Let the signal at the input of the section be a sinusoid of fre-
quency f denoted as U(f ). Figure 5.14 illustrates the considered case. Calculate the input
impedance Zin(f ) = Uin(f )/Iin(f ) and the transfer function H(f ) = Uout(f )/Uin(f ).
Knowing that Uout(f ) = Iout(f )ZL, from formula (5.31) we obtain the following expres-
sion [

Uin(f )

Iin(f )

]
=

[
A B

C D

] [
ZLIout(f )

Iout(f )

]
(5.35)

from which we conclude that

Zin(f ) = Uin(f )

Iin(f )
= AZL + B

CZL + D
(5.36)

A B

C D
U(f )

Iin(f )

Uin(f )

Iout(f )

Uout(f ) ZL

Figure 5.14 Representation of a single cable section in the form of a two-port with load
impedance ZL
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One can easily verify that if ZL = Z0 then Zin(f ) = Z0. Similarly, if the line remains
open then

Zin(f ) = Z0
cosh γ l

sinh γ l
(5.37)

In turn, the transfer function of the considered section can be derived from the first
equation of equation system (5.31). Knowing that Iout(f ) = Uout(f )/ZL, we get

H(f ) = Uout(f )

Uin(f )
= 1

A + BZ−1
L

(5.38)

On the basis of formuale (5.31), (5.32) and (5.38) we are able to calculate the transfer
function of any serial connection of particular sections of twisted copper wire pair. Let
us stress once more that a serial connection of several loop sections is represented by the
product of ABCD matrices characterizing each section.

In some countries during deployment of new subscriber loops, installment of unloaded
loop taps is allowable. In this way higher flexibility of installation of possible telecom-
munication equipment is achieved. Such taps do not have a big influence on voice signal
transmission, however they are meaningful if a subscriber loop is used for digital trans-
mission, as happens in the case of ISDN. Since these taps remain unloaded, signals reflect
from their ends, which in turn causes echoes. Unloaded taps can be represented in the
form of a two-port and the ABCD matrix, shown in Figure 5.15.

Let us present an example, cited after Werner (1991).

Uin(f )

Iin(f ) Iout(f ) = 0

Uout(f )ZB

1

1ZB
−1

0

Figure 5.15 Representation of an unloaded line tap

Example 5.4.1 Consider a subscriber loop consisting of two sections of lengths l1 and
l2 featuring characteristic impedances Z01 and Z02, respectively. In the junction point of
two sections the third section is connected in the form of the unloaded tap. A sinusoidal
voltage from the source with internal impedance ZS is fed to the loop input. Figure 5.16
presents the considered loop configuration. Based on our considerations we can formulate
the following equation system[

Uin

Iin

]
=

[
1 ZS

0 1

][
A1 B1

C1 D1

][
A3 B3

C3 D3

][
A2 B2

C2 D2

][
Uout

Iout

]
(5.39)

where for i = 1, 2 we have

Ai = Di = cosh γili
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Uin

Iin Iout

Uout

ZS

ZL

l1, Z01 l2, Z02

l3, Z03

Figure 5.16 Configuration of the subscriber loop with unloaded tap considered in Example 5.4.1

Bi = sinh γili

Ci = Z−1
0i sinh γili

and

A3 = D3 = 1

B3 = 0

C3 = Z−1
B

Recall that both γi , Z0i (i = 1, 2) and ZB depend on frequency. Equation system (5.39)
can be replaced by a simple equation system similar to (5.31), for which the ABCD matrix
is determined by expression[

A B

C D

]
=

[
1 ZS

0 1

][
A1 B1

C1 D1

][
A3 B3

C3 D3

][
A2 B2

C2 D2

]
(5.40)

So based on (5.40) we can derive the transfer function H(f ) of the loop, taking into account
formula (5.38). Calculating the inverse Fourier transform of H(f ), we can determine the
channel impulse response h(t).

Concluding our presentation of a subscriber loop channel, we present a typical form of
the channel transfer function and corresponding channel impulse response. Figure 5.17
shows the results of calculations similar to those sketched in Example 5.4.1. Calcula-
tions were performed for a subscriber loop of length l = 3.3 km constructed from a
single section of a twisted copper wire pair of diameter 0.4 mm. The copper pair had the
following parameters: R′ = 300 �/km, C′ = 42 nF/km, L′ = 1 mH/km, G′ = 1 µS/km,
ZS = ZL = 300 �. Analysis of Figure 5.17 allows us to formulate the following obser-
vations. Due to the loop length of 3.3 km the signal reaching the end of the loop is
substantially attenuated. This attenuation is seen in the plot of transfer function H(f )

around zero frequency. In the range of a few tens of kHz the attenuation grows relatively
quickly with frequency. Starting from about 50 kHz, attenuation increase is significantly
slower, with attenuation achieving the value of 80 dB at a frequency of around 2 MHz.
When the subscriber loop is used in the acoustic range, e.g. for analog voice signal trans-
mission, only a small fraction of the available band is occupied. If the signal features
much wider bandwidth, attenuation of this signal increases with frequency. In order for
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Figure 5.17 Characteristics of a subscriber loop channel of length 3.3 km and parameters described
in the text: (a) amplitude characteristics, (b) channel impulse response

transmission to be as robust as possible, the signal spectrum should be concentrated in
the lower part of the channel band.

Interesting conclusions also can be drawn from analysis of the channel impulse
response. The channel has a relatively wide bandwidth, so its impulse response has
the form of a sharp impulse, which, however, features a long decaying time; in our
example it exceeds 200 µs. The time duration of the impulse response has a crucial
meaning for application of appropriate transmission methods and receiver structures.
In practice, a long “tail” of the channel impulse response causes the channel responses
to subsequent input pulses to overlap. This phenomenon is known as intersymbol
interference. Intersymbol interference is considered in Chapter 6.

So far we have focused on properties of the subscriber loop channel transfer func-
tion and the corresponding channel impulse response. However, besides linear distortions
causing intersymbol interference, some other disturbances are present in a subscriber
loop channel. The most important disturbance is crosstalk . As we have mentioned, a
subscriber loop is constructed of sections that, at each level of telephone network distri-
bution, are physically placed close to many other twisted copper wire pairs connecting
other subscribers. In particular, there are a number of wire pairs close to the switching
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Figure 5.18 Scheme of creation of NEXT and FEXT

exchange. Communication cables are specially constructed so as to minimize crosstalk
and differential transmission is performed; however, minor imperfections cause the sig-
nals propagating in different copper pairs placed in the same cable electromagnetically to
interfere with each other. Such interference is described as NEXT (Near-End Crosstalk )
and FEXT (Far-End Crosstalk ). Both kinds of crosstalk are illustrated in Figure 5.18.
The NEXT generated in the j th pair by signal transmission in the ith pair is interference
resulting from the operation of a transmitter of the ith pair placed at the same end of
the copper wire pair as the receiver of the j th pair. Figure 5.18 shows the creation of a
crosstalk between two selected copper wire pairs. In reality, the receiver operating at the
output of the j th pair receives crosstalk signals appearing in the j th pair due to ongoing
transmission in many other pairs (so-called direct crosstalk ), the signals being indirect
crosstalk . The receiver also receives signals that are the result of a chain of crosstalk
between subsequent pairs, leading to the final crosstalk to the j th pair. Such a situation
often occurs at the end devices on the switching exchange side. In turn, the FEXT is inter-
ference that originates in the transmitter located on the remote loop end. In this case the
interfering signal is attenuated across the whole line length, so it appears at the receiver
input as a disturbance on a much lower level than the level of NEXT. One can prove (see
(Gibbs and Addie 1979; Werner 1991)) that if the subscriber loop is sufficiently long and
the considered frequency range is sufficiently wide, e.g. appropriate for HDSL transmis-
sion, then the mean square of the amplitude characteristics of the NEXT is proportional
to f 3/2, i.e.

|HNEXT(f )|2 ≈ KNEXT · |f |3/2 (5.41)

whereas the mean square of the amplitude characteristics of FEXT can be described by
the formula

|HFEXT(f )|2 ≈ KFEXT · f 2 · l · exp[−2α(f )l] (5.42)

where α(f ) is the attenuation coefficient determined by equation (5.34), and l is the
line length. The form of crosstalk appearing at the receiver input depends on the form
of transmission in a given cable. In some copper pairs analog voice transmission takes
place, however some others can be used for data transmission at the same rate as the
rate that is applied in the reference twisted copper wire pair. If all the crosstalk sources
can be considered as statistically independent and none of them dominates, then the joint
crosstalk signal can be modeled as white Gaussian noise. In a general case the crosstalk
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signal observed at the receiver input can be modeled as colored Gaussian noise with the
power density spectrum described by the formula

GNEXT(f ) = |HNEXT(f )|2Gin(f )

GFEXT(f ) = |HFEXT(f )|2Gin(f ) (5.43)

where Gin(f ) is the power density spectrum of the crosstalk source. This model is not
correct if transmission in all pairs within the same cable is performed at the same rate in
a synchronous way.

Apart from both kinds of crosstalk, there are other additive disturbances in subscriber
loops. As in a typical telephone channel, impulse noise can be observed. According to
Werner (1990) impulse noise is one of the main limitations in the application of subscriber
loops in data transmission. It is difficult to describe impulsive noise in a statistical sense.
The measurements indicate that its properties depend on the time of day, location and kind
of switching exchange, as well as other factors. According to Werner (1990) distorting
pulses occur about one to five times per minute and their peak values are in the range
between 5 and 20 mV, whereas their duration is contained in the interval 30–150 µs.
Most of the impulse noise energy is concentrated below 40 kHz, so the influence of this
kind of noise can be limited if the spectrum of the transmitted signal is placed above this
frequency. This can be achieved by appropriate line coding or modulation.

Thermal noise is another source of additive disturbance and is typically modeled as
white Gaussian noise. Its level is about 45–60 dB lower than the level of the used signal.

Echo is also a problem in data transmission over subscriber loops. It is particularly
significant if a subscriber loop is used in duplex transmission in the same frequency
band. The main echo component is the result of a mismatch between a subscriber loop
and the hybrid to which a local transmitter and receiver are connected. Other causes of
echo are small inaccuracies in the matching of particular loop segments, and, in some
countries, parallel unloaded taps.

Summarizing, as in the case of other transmission channels, the choice of modula-
tion type and duplex transmission method resulting from the channel properties deter-
mines the transmission range in the subscriber loop. The task of a transmission system
designer having at his/her disposal the telephone network with given statistics of the
loop lengths and loop parameters is to design a system that will be accessible for the
highest possible percentage of subscribers residing in the area served by the telephone
network.

As we have already mentioned, the twisted copper wire pair is expected to be used
for communication with subscribers for many years, although expansion of radio access
techniques and enhancing their service offer will change the importance of a wireline
subscriber loop. More and more often “the last mile” connection will be realized in
the form of a wireless subscriber loop or a wideband radio access to a digital network.
Cellular systems and their data transmission capabilities are growing rapidly, successfully
competing with fast subscriber loop access systems. Another observed tendency is the
approach of optical fiber links closer and closer to end users, offering data transmission
rates that will be difficult to achieve in radio access systems due to the spectral limitations
of the latter.
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5.5 Line-of-Sight Radio Channel

Line-of-sight radio links are an alternative to wireline links applied to carry digital streams
generated by several systems. They can be the streams transmitted between switching
exchanges, between a base station and a base station controller in a cellular radio system,
or they can be a digital stream representing TV or audio signals applied in the distribution
part of digital broadcasting systems.

A channel model of line-of-sight radio characterizes a specific transmission scenario.
Transmission takes place between two strongly directive mutually visible antennas. These
antennas are placed on high masts or towers in order to ensure a wide transmission
range and to minimize defraction by several terrain obstacles. Figure 5.19 symbolically
presents such a situation. Radio transmission takes place in several microwave bands.
Table 5.2 shows the frequency ranges applied in different line-of-sight systems, quoted
after Manning (1999).

In typical situations antennas are deployed on towers of height 50–100 m. The distance
between the towers depends on the applied carrier frequency. Frequencies above 10 GHz
are subject to strong attenuation, which increases significantly during rainfalls. Table 5.3
presents typical distances between antennas, depending on the applied band.

Figure 5.19 Channel of a line-of-sight radio link

Table 5.2 Frequency ranges applied in line-of-sight radio links

Band Range Comment
[GHz] [GHz]

2 1.7–2.7 Currently applied by DECT and PCS
4 3.8–4.2 High throughput; the band used by a public operator
6 5.9–7.1 High throughput; the band used by a public operator

7–8 7.1–8.5 Long distance links; medium or high throughput
11 10.7–11.7 High throughput; the band used by a public operator
13 12.7–13.3 Small or medium throughput
15 14.4–15.4 All throughputs
18 17.7–19.7 The band used by a public operator; small or medium throughput
23 21.2–23.6 All throughputs
26 24.5–26.5 All throughputs
38 37–39.5 All throughputs
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Table 5.3 Allowable distances between antennas
depending on the applied frequency band

Band Maximum distance between antennas

7 GHz >39 km
13/15/18 GHz 15–30 km

23/26 GHz 5–15 km
38 GHz <5 km

Most of the time a microwave line-of-sight channel is well described by the model of an
additive white Gaussian noise channel. The signal emitted by a transmit antenna reaches
the receive antenna over a specular path, because a typical antenna emits a signal beam of
angular width about 1◦. The channel introduces attenuation because only part of the energy
reaches the receiver and the remaining part dissipates in the troposphere. Unfortunately, in
a small fraction of time the signal propagation between the transmit and receive antennas
becomes multipath due to bad meteorological conditions. Such multipath propagation has
been symbolically sketched in Figure 5.19. We observe multipath propagation, because
atypical change of the refraction coefficient as a function of height of the atmosphere
layers takes place and part of the emitted energy that would normally be dissipated is
reflected from those layers and reaches the receive antenna. Several propagation paths
differ in length, so they introduce different delays. In consequence, the received signal
is a sum of many delayed and attenuated replicas of the transmitted signal. The impulse
response of the channel in the state of multipath propagation can be characterized by the
following formula

h(t) =
N∑

k=1

Akδ(t − τk) (5.44)

where Ak and τk are the gain coefficient and delay of the kth path, respectively. The
corresponding channel transfer function is then equal to

H(f ) =
N∑

k=1

Ak exp(−j2πf τk) (5.45)

As in the case of a telephone channel, the line-of-sight radio channel can be described
by its attenuation characteristics A(f ) = −20 log10 |H(f )| and the delay characteristics
τ(f ) = − 1

2π

d[arg H(f )]
df

. For some values of coefficient Ak and delay τk the channel intro-
duces strong attenuation as a result of the fact that some frequency components arrive
at the receiver in opposite phases but with similar levels of amplitudes. In turn, some
other frequency components arrive at the receiver along different paths and add to each
other constructively. Thus, we observe deep attenuation in some frequency ranges and
much smaller attenuation in other ranges. This phenomenon is dynamic in time. If atten-
uation changes in time practically equally over the whole range of signal frequencies,
we talk about flat fading . When the attenuation variations strongly depend on frequency,
we observe selective fading . Both phenomena have a substantial influence on the binary
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error rate and if the latter exceeds the assumed level, e.g. 10−3, we mean that transmission
is no longer possible and the system status is declared as a system outage. Usually the
variations of channel characteristics in time are much slower than the applied signaling
rate of the transmitted signal. In such a situation a channel appears to be quasi-static. As
we see, relative channel time variability is of primary importance for digital transmission.

Measurements indicate that when a line-of-sight channel of bandwidth 50 MHz or less
is in the multipath propagation mode, typically a single fade occurs inside the passband.
It has the form of strong attenuation at a given frequency or the form of attenuation
increasing in the direction of one of the ends of the channel passband. The measurements
reported in Martin et al. (1983) show that in extreme cases the fading rate achieves
up to 100 dB/s, whereas the fade can move along the frequency axis at the rate of about
10–30 MHz/s, achieving a rate up to 100 MHz/s. For the carrier frequency of a few GHz a
channel of bandwidth of the order of 50 MHz can be considered as narrowband. Therefore,
it is not possible to extract individual components of the signal reaching the receiver along
individual paths characterized by the pairs Ak and τk. Thus, these parameters cannot be
estimated. In practical situations a single selective fade appears within the band of the
channel in the multipath mode, thus a few mathematical models have been worked out
to characterize line-of-sight channels in this mode. The most popular one is the Rummler
model (Rummler 1979; Rummler 1981). The channel transfer function used in this model
is described by the formula

H(f ) = a
{
1 − b exp[−j2π(f − f0)τ ]

}
(5.46)

Coefficient a describes attenuation introduced by the channel, coefficient b is relative
attenuation of the path delayed by τ with respect to the first path and f0 determines the
frequency for which the maximum attenuation occurs. Figure 5.20 presents an example
of the amplitude characteristics of concatenation of the Rummler channel model using the
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Figure 5.20 Amplitude characteristics of a serial connection of the Rummler channel model
(a = 1; b = 0.8, 0.9, 0.99; τ = 6.3 ns; f0 = 3 MHz) and the filter with the raised cosine charac-
teristics (roll-off factor α = 0.5)
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filter with raised cosine characteristics. The latter filter jointly describes the transmit and
receive filters applied in a line-of-sight radio system. The channel amplitude characteristics
distorted by selective fading are a source of intersymbol interference.

Summarizing, let us stress that most of the time a channel of line-of-sight radio is
well characterized by a band-limited channel with additive white Gaussian noise. In
the multipath mode occurring during the remaining small fraction of time, the channel
characteristics are well defined by formula (5.46).

5.6 Mobile Radio Channel

Mobile communication systems have been developing intensively since the 1980s. Mobile
phones have become a common good. Transmission between a mobile phone and a fixed
part of the radio system has a digital form. Thus, it would be advantageous to characterize
mobile communication channel with respect to digital transmission. A more detailed
description of the cellular radio channel can be found in Pätzold (2002). At this point we
will present only essential information related to this topic.

In a cellular mobile system the system coverage area is divided into subareas called
cells . Very often the cells are further divided into sectors . Mobile stations communicate
with a base station that is installed in each cell or sector. A mobile station can change its
location with respect to the base station with which it currently communicates or move
to the area covered by another base station. Base stations emit the signal in wide angle
resulting from the number of sectors, e.g. 120◦ for three sectors or 360◦ in the case of
an omnidirectional antenna. A mobile station is also equipped with an omnidirectional
antenna to ensure approximately the same link quality at different positions of a mobile
station user with respect to the base station. The kinds of applied antennas, place of their
installment and possibility of moving the mobile stations with respect to the base station
determine the properties of a mobile communication channel.

Figure 5.21 presents an example scenario of a signal propagation from a base station to
a mobile station located in a moving vehicle. A wide emission angle of the base station
antenna and omnidirectionality of the mobile station antenna imply reception of the signal
by the mobile station from all possible directions. The signal components appear as a result
of reflections from terrain obstacles and refractions on their sharp edges. From our own
observations we know very well that communication is also possible when there is no
optical visibility between a transmit and receive antenna. This means that a mobile station
is able to operate when receiving only the signal components that have been reflected or
refracted from the obstacles. In general, a signal travels from a base station to a mobile
station (and vice versa) in the form of differently attenuated and delayed replicas of the
transmitted signal.

In a typical situation the signal propagates along a few distinguishable paths, and in
the direct neighborhood of a mobile station it is locally dispersed on the obstacles located
close to it. The propagation scenario is relatively static in a short time interval, although
this quasi-stationarity depends on the signaling rate, applied carrier frequency and velocity
of the mobile station. In a scenario typical for a popular GSM system that operates in the
900, 1800 and 1900 MHz bands at a signalling rate of 270.833 kbits, we assume that the
channel is approximately static in a period of about 150 data symbols even if the mobile
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Figure 5.21 An example scenario of radio propagation between base and mobile station
(Wesołowski 2002)

station operating in the 900 MHz band moves at a speed up to 250 kmph or at a speed
of about 130 kmph if the system operates in the 1800 MHz band.

The Doppler effect resulting from movement of the mobile station or elements of
the propagation environment is an important phenomenon observed in mobile channels.
The Doppler effect causes a frequency shift called the Doppler frequency . The Doppler
frequency of each signal component depends on the angle ϕi between the direction of the
mobile station route and the direction of arrival of the ith received signal component. It
also depends on the carrier frequency fc and the velocity v of the mobile station. The
Doppler frequency is described by the formula

fDi = fc · v

c
cos ϕi (5.47)

where c is the speed of electromagnetic wave propagation. Let us note that the Doppler
frequency has its maximum magnitude equal to fD max = fcv/c if the direction of move-
ment of a mobile station is the same as or opposite to the direction of the electromagnetic
wave propagation.

We can show (see (Wesołowski 2002)) that for a given signal propagation scenario we
can define a model in which only baseband signals are applied. As we already know, such
a channel model is called a baseband equivalent channel model. The model is sketched in
Figure 5.22 and consists of a tapped delay line, where the tap coefficients are functions
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Figure 5.22 Short-term mobile channel model

of time. All the signals and tap coefficients are complex functions of time and their real
and imaginary components correpond to the in-phase and quadrature signal components.
Values T1, T2, . . . , TM denote delays at which the signals reach a receiver along M main
propagation paths. Signal dispersion in the local vicinity of the mobile station causes
minor changes in delays and also results in the signal arriving at the receive antenna from
different directions. Movement of the mobile station, or alternatively of the elements of the
propagation environment, is taken into account in the time variation of the tap coefficients.
The impulse response of the modeled channel is given by the following formula

h(t, τ ) =
M∑

k=1

ck(t)δ(τ − Tk) (5.48)

Let us note that there are two arguments representing time. The first of them, i.e. t

describes time flow associated with the time variability of the channel characteristics,
whereas the second one, i.e. τ is related to a short term channel description in time span
of the order of a few lengths of the channel impulse response. If the channel were fully
static then the tap coefficients would not depend on time and the channel impulse response
would only depend on τ .

It remains to consider which function should be applied to describe the time variability
of the weighting coefficients ck(t), k = 1, 2, . . . , M . This function depends on the Doppler
frequency, and on geometrical properties of the dispersing environment around the mobile
station. Jakes (1974) proved that in the case of the signal approaching the receive antenna
with equal angular power density from all the directions, the power spectral density of
signal ck(t) as a function of the Doppler frequency is given by the formula

Gk(fD) =


σ 2

k

π

√
f 2

D,max − f 2
D

for |fD| < fD,max

0 otherwise

(5.49)

In order to prove the formula, see Jakes (1974). However, if both the dispersed signal and
the signal along a specular path jointly reach the receiver, the signal component featuring
the lowest delay has a power spectral density that is the sum of expression (5.49) and the
Dirac delta function placed on the Doppler frequency fD,dir resulting from the velocity
of the mobile station and the angle between the velocity vector and the direction of
arrival of the direct, specular wave. The frequency fD,max appearing in formula (5.49)
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is a maximum Doppler frequency whereas σ 2
k symbolizes the mean power of the kth

weighting coefficient ck(t). Figure 5.23 presents the power spectral density described by
formula (5.49) supplemented by a Dirac delta pulse of intensity σ 2

dir corresponding to the
mean power of the signal from the direct, specular path.

G(fD)

−fD,max fD,max fDfD,dir0

σdir
2

Figure 5.23 Power spectral density of the weighting coefficient of the kth propagation path of
model (5.48) describing the channel impulse response

The above considerations allow us to derive another way of characterizing the time
properties of a transmission channel in mobile radio systems. Namely, knowing the mean
powers σ 2

1 , σ 2
2 , . . . , σ 2

M of the signals reaching the receiver over subsequent propagation
paths and path delays T1, T2, . . . , TM we often present a so-called power delay profile
P(τ) describing the mean power distribution in time. The power delay profile is given
by the formula

P(τ) =
M∑

k=1

σ 2
k δ(τ − Tk) (5.50)

This formula describes a statistical signal spread in time resulting from multipath propa-
gation. An example of such a plot is shown in Figure 5.24. It is a fragment of the channel
model description contained in the ETSI standard of radio transmission in GSM 05.05
(2000). It shows a power delay profile describing the spread of the mean power for signal
propagation in a typical urban environment. Let us stress again that the model character-
ized by Figure 5.22 and formulae (5.48) and (5.50) is valid in short time intervals only.
If the propagation environment changes sufficiently, delays T1, T2, . . . , TM and the path
mean powers σ 2

1 , σ 2
2 , . . . , σ 2

M can change their values and a new channel model has to be
used.

Multipath propagation and associated dispersion of the transmitted signal in time is
obviously not the only distortion occurring in a cellular mobile radio channel. The imma-
nent feature of the mobile cellular channel is the occurrence of disturbances from use
of the same channel frequencies in cells located at a “safe” distance from the reference
cell in which the given channel frequencies are applied. This is a so-called co-channel
interference. Each receiver receives a few signals at the given channel frequency: the
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Figure 5.24 Power delay profile for a typical urban environment, according to ETSI GSM 05.05
Standard (2000)

desired one and some others generated in other cells. Their number depends on the sys-
tem design, in particular on the applied multiple access method, i.e. sharing time and
frequency resources by many system users, or the number of applied sectors in the cells.

The next kind of disturbances are the signals pervading from the neighboring channels
on the frequency axis. They create the so-called inter-channel interference. Appropriate
selection of frequency channels in each cell allows the influence of this kind of disturbance
to be minimized. Another disturbance that occurs in a cellular mobile radio channel is
impulsive noise, which mostly originates from human activities or car ignition systems.

Apart from the disturbances described above, the cellular mobile radio channel features
some nonlinearities caused by transmit amplifiers. Nonlinearity is particularly visible if the
transmitted signal has a high peak-to-average power ratio. For these reasons, if possible,
this ratio should be minimized. The most common way to avoid nonlinearities is to apply
a signal featuring a constant envelope. This topic is considered in more detail in Chapter 4.

5.7 Examples of Other Radio Channels

5.7.1 Wireless Local Area Network (WLAN) Channel

Development of digital wireless transmission systems opens wide perspectives for new
services applications. One of them is wireless access to local computer networks. In wire-
less local area networks (WLANs) digital transmission is performed over short distances
up to a few hundred meters. This distance has a crucial influence on the scale of phys-
ical phenomena taking place in WLAN channels. Generally, the properties of a WLAN
channel are similar to those of a cellular radio channel. The differences result from the
channel bandwidth, the range of applied frequencies and the distance between a mobile
terminal and a base station called, in WLAN nomenclature, an Access Point (AP). The
type of environment in which a signal propagates and channel nonstationarity are of great
importance as well.

A mobile terminal is most often a functional part of a portable computer such as a laptop
or palmtop. However, the computer often remains in one place while some elements of
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the propagation environment are moving, e.g. people walking in the immediate vicinity
of the WLAN terminal or of the AP. Physical properties of the buildings in which digital
transmission is performed also affect the overall channel properties. Generally, a WLAN
channel features multipath propagation, although its time spread is much smaller than in
a cellular radio channel. This is a result of small distances between a mobile terminal and
an AP and of geometrical properties of the room or office space in which transmission
is performed. Echoes arising due to reflections from the walls depend on the properties
of the construction materials of which the walls have been built. More information on
WLAN channel properties can be found in Wesołowski (2002) or Rappaport (1996).

5.7.2 Channel in Satellite Transmission

Satellite links (Figure 5.25) are often used in digital transmission. A good example of
satellite link application is the distribution of TV signals in the satellite segment of the
Digital Video Broadcasting (DVB) system (DVB-S). In DVB-S the signals are broadcast
from the satellite to many users, so transmission is mostly unidirectional.3 There are
two-directional satellite systems as well, such as VSATs (Very Small Aperture Terminals).
The VSATs are used in data transmission on satellite links with antennas of diameters
in the range 1.2–1.8 m, installed directly on the subscriber’s premises. We should also
mention personal satellite communication systems such as IRIDIUM or GLOBALSTAR,
in which a user terminal is similar to a cellular phone.

Earth station Satellite terminal

Satellite

Figure 5.25 Basic scheme of a satellite link (Li 1980)  1980 IEEE

A characteristic feature of a typical satellite channel is the existence of a specular
path between a transmitter and receiver. Because the distance between them is very
large (around 35780 km for a geostationary satellite, or 700–800 km for LEO – Low
Earth Orbit – satellites), strong signal attenuation is observed. This implies relatively
low values of the signal-to-noise ratio. Consequently, low-level modulations are mostly
applied. If a satellite is placed sufficiently high above the horizon, the propagation is
mainly single-path.

3 There are special services that require two-directional transmission as well. An example of such services is the
so-called Digital Satellite News Gathering (DSNG).
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A satellite transponder plays a crucial role in the determination of satellite channel
properties. Its function is similar to that of a regenerator in cable transmission. The
transponder receives strongly attenuated signals from an earth station or a user terminal,
decides upon the received data, shapes data pulses, places the signal in the spectral range
appropriate for transmission in a downlink direction and amplifies the signal to such a
level that a sufficient signal-to-noise ratio at the receiver is ensured. The system located
on the satellite has a limited power supply, therefore a power-efficient amplifier has to
be applied. In consequence, the amplifier operates in the range where nonlinearity of its
characteristics is already observed. Nonlinearity of the transponder’s characteristics is one
of the important features of a satellite channel. In order to minimize its influence, digital
modulations featuring a low peak-to-average power ratio, e.g. QPSK, are applied.

5.7.3 Short-Wave (HF) Channel

A short-wave or High-Frequency (HF) channel has been used in radio communications
for many years. Its importance has decreased due to satellite communications, but it is
used in special point-to-point applications such as military, maritime or diplomatic. Owing
to specific features of wave propagation in the range between 2 and 30 MHz, i.e. the HF
range, if the carrier frequency is appropriately selected it is even possible to communicate
between continents.

In the frequency range of 2–30 MHz electromagnetic waves emitted along the earth’s
surface are heavily attenuated. Consequently, the transmission range is relatively small and
decreases with a carrier frequency increase. For example, for a carrier frequency of 5 MHz
and transmitted signal power of 1 kW, the transmission range is about 100–500 km along
the earth’s surface and about 1000 km over the sea surface (Wiesner 1984). Fortunately,
the transmission range can be considerably higher due to ionospheric reflections.

The ionosphere is a layer of the atmosphere located above the troposphere. It starts at a
height of about 60 km and reaches a height of 600 km. It consists of a few layers and, due
to solar radiation, ionization of gases contained within it takes place. The intensity of the
process depends on the time of day and the season of the year. Ionization causes partial
absorption of the HF radiation emitted by a transmitter. However, the other part of the
signal is reflected and directed back to the earth’s surface (Figure 5.26). The reflecting
layer is irregular and its height varies in time, causing the Doppler effect and mulipath
propagation. Electromagnetic waves can be also reflected from the earth’s surface. There-
fore a multiple process of reflections from the earth and the ionosphere is possible, which
is shown in Figure 5.27. Taking all this into consideration, we can represent the HF chan-
nel in a short time range with a model similar to that shown in Figure 5.22. The duration
of the channel impulse response, i.e. the time spread resulting from the multipath propa-
gation, is contained in the range between 0.5 and 5 ms, and typically is about 1.5 ms. The
Doppler effect and fluctuations in signal attenuation are basic reasons for time variabil-
ity of the HF channel and the frequency spectrum shift, which in extreme situations can
reach up to 10 Hz. We can conclude on the basis of the literature studies that time-varying
tap coefficients of the channel model can be interpreted as sample functions of random
processes of bandwidth of the order of a few herz. Let us note that in typical HF data
transmission applications the transmission band is of acoustic width due to the fact that
the main HF application is voice transmission.
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Figure 5.26 Wave propagation in the HF channel with ionospheric reflections

Transmitter Receiver

Earth

Ionosphere

Figure 5.27 Examples of paths with a single reflection and triple reflections in the HF channel

In special applications, e.g. military, the bandwidth of the radio channel for land mobile
services is often 25 kHz and the transmission range is a few kilometers for signals in bands
between 20 up to 512 MHz. As we see, the frequencies start in the HF band, cover the VHF
(Very High Frequency : 30–300 MHz) range and reach the lower part of the UHF (Ultra
High Frequency : 300 MHz–3 GHz) band. For such scenarios, the transmission channel is
almost flat fading and can be modeled in the form of a multiplier with a time-varying
channel gain coefficient.

5.8 Basic Properties of Optical Fiber Channels

Transmission systems using light pulses propagated along optical fibers were introduced
in the 1970s and since then have steadily gained importance. Optical fiber systems and
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physical phenomena associated with light propagation over optical fibers are usually the
topics of separate courses in electronic and communication studies, so in this section we
will present only some basic optical fiber channel properties shown from the point of
view of digital transmission systems.

Electromagnetic waves applied in optical fiber transmission have wavelengths between
800 and 1600 nm. Let us note that in optical fiber systems wavelengths rather than
frequencies are used in system description, unlike many other communication systems.
Figure 5.28 presents the attenuation per unit length given in dB/km for a typical optical
fiber as a function of wavelength. Three wavelength ranges, the so-called windows, are
of practical use: 800–900 nm (the first transmission window ), 1250–1350 nm (the second
transmission window ) and 1500–1600 nm (the third transmission window ). The frequency
of light emission of wavelength λ is given by the expression

f = vp

λ
= c/n

λ
(5.51)

where vp denotes the light propagation velocity in the given transmission medium mea-
sured in m/s, c is the light propagation velocity in a vacuum and n is the light refraction
index in a given propagation medium. In the case of glass this index is 1.5, therefore
vp = 2 × 108 m/s. Let us note that for the third transmission window, taking advantage
of formula (5.51), we receive the upper and lower band limits equal to 1.25 × 1014 and
1.33 × 1014, respectively, so the bandwidth of the window is equal to 0.08 × 1014 Hz,
i.e. it is equal to 8 THz. In radio systems such a bandwidth is difficult to imagine. The-
oretically it makes possible extremely fast digital transmission or, equivalently, parallel
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Figure 5.28 Plot of optical fiber attenuation as a function of wavelength. Reproduced with kind
permission of IEEE (Li 1980  IEEE 1980)
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transmission of many very fast data streams using different carrier wavelengths. Accord-
ing to the plot in Figure 5.28, in the third transmission window an optical fiber shows
attenuation of about 0.3 dB/km only,4 therefore the sections of optical fibers between
regenerators can be very long. In this context optical fiber transmission has a number of
advantages: a very wide bandwidth available for data transmission allowing very high data
rates, the possibility of deployment of very long links without regenerators, robustness
to electromagnetic perturbations such as atmospheric storms or man-made impulse noise,
lack of crosstalk between optical fibers placed in the same cable, difficulty in intercepting
transmitted signals, galvanic separation of transmitters and receivers, and a very low error
rate resulting from a high signal-to-noise ratio.

At the same time an optical fiber channel has some limitations resulting from the
construction of optical fibers and light-emitting sources. The fundamental physical law
on which optical fiber transmission is based is Snell’s law. According to this law the
ratio of the sines of the angles of incidence θ1 and refraction θ2 between two media is
equivalent to the opposite ratio of the indices of refraction n1 and n2 of these media. This
law is described by the formula

sin θ1

sin θ2
= n2

n1
(5.52)

and is illustrated in Figure 5.29.

Incident ray

Reflected ray

Refracted ray

q1 q2

q3

Medium 1 (n1)

Medium 2 (n2)

Figure 5.29 Illustration of Snell’s law

A typical optical fiber is built of a core, a cladding layer and an external coating called
a jacket. The first two elements have a significant impact on wave propagation within
the core. The refractive index of the core is larger than that of the cladding, so light
propagates exclusively inside the core if the light ray is introduced into the core at the
appropriate angle.

Light pulses transmitted through an optical fiber are subject to dispersion. There are a
few kinds of dispersion. Generally, dispersion implies spreading of the transmitted pulses,
which in turn causes intersymbol interference and constitutes a practical limitation for the

4 Due to technological progress the attenuation level has further decreased and current solutions ensure attenuation
below 0.2 dB/km.
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transmission medium. The measure of dispersion of the transmitted pulses is the value of
	τ given by formula

	τ = (M + Mg)L	λ (5.53)

where M is the coefficient of the material dispersion , Mg is the coefficient of waveguide
dispersion resulting from the optical fiber geometry, L denotes the fiber length in km
and 	λ is the spectral width of the light-emitting source, given in nanometers. The joint
dispersion coefficient (M + Mg) is equal to 120, 0 and 15 ps/(nm·km) for wavelengths of
850, 1300 and 1550 nm, respectively.

Material dispersion results from dependence of the refractive index on the light wave-
length. The light sources emit pulses that are not fully monochromatic. The bandwidth of
emission for a laser transmitter is of the order of 1–3 nm, however for a light-emitting
diode it is in the range 30–50 nm. The components of the emitted light featuring differ-
ent colors diffract on the core boundary, which leads to different path lengths for these
color components and eventually causes pulse spreading. Material dispersion can hardly
be avoided. However, owing to the appropriate construction of an optical fiber we can
avoid the so-called modal dispersion .

Construction of an optical fiber is characterized by a specific profile. Three basic pro-
files are shown in Figure 5.30. Figure 5.30a visualizes a step-index optical fiber. In this
type of fiber light rays travel along the fiber in a multimodal way, causing modal disper-
sion. Energy for different modes propagates at different velocities, resulting in additional
spreading of the light pulses. The fastest propagation takes place along the concentric path.
Other paths that feature reflections from the core and cladding boundaries are longer and
the signal propagating along them reaches the receiver after a longer time. The sum of
signals arriving along different paths causes pulse spreading, as in multipath radio prop-
agation. As a result, such fibers are applied if the transmission bandwidth and the length
of the transmission line are not large.

n1

n2

n
n1

n2

n
n1

n2

n

~50 mm ~50 mm 2~ 10 mm

(c)(b)(a)

Figure 5.30 Three types of optical fibers: multimode step-index (a), multimode graded-index (b),
monomode step-index (c)

Modal dispersion can be significantly decreased when a graded-index fiber is applied
(Figure 5.30b), for which the refractive index varies with the distance from the fiber axis
in such a way that propagation times of rays along each path are equalized. Finally, by
applying a monomode fiber in which the core has a diameter of the order of 2–10 µm,
we limit propagation to a single mode only, the one in which propagation is concentric.



 

Properties of Communication Channels 405

Monomode fibers are preferred for applications in which a wide bandwidth is required
and transmission lines are very long.

Besides dispersion, which in practice limits the transmission rate, noise is an additional
disturbance occurring in optical fibers. Additive noise has a level a few orders lower than
in traditional communication systems. However, there also exists multiplicative noise,
whose level depends on the generated signal power.

The characteristic properties of optical fiber transmission also reflect the properties of
applied light sources that are controlled by electrical signals. Typical sources are Laser
Diodes (LD) and Light-Emitting Diodes (LED). These devices are controlled by current.
The power PT x of an emitted light signal depends on the value of the current i according
to the formula

PT x = k0 + k1i (5.54)

where k0 and k1 are constants. Let us note that this dependence is nonlinear in the sense
of the superposition rule. At the optical fiber output a photodetector converts the received
light signal back into an electrical current signal. This time current i at the output of a
photodetector depends on the received light signal power according to the formula

i = ρPRx (5.55)

where ρ is the photodetector sensitivity and ρ � 0.5 mA/mW. Due to the nonlinear
character of the transmitter, only simple modulations may be used in optical fiber links
compared with those applied in copper wire or radio links.

5.9 Conclusions

The transmission channel is an extremely important block in the communication system.
Its properties determine possible types of digital transmission, achievable data rates, the
construction of a transmitter and receiver, and the level of complexity of applied channel
coding or data block exchange procedures such as ARQ. Knowledge of the telephone
channel properties, and the properties of its part, i.e. the subscriber loop, allows better use
of them in digital transmission. Radio channels are also very important. Owing to the fact
that we know their properties, and owing to advanced digital signal processing techniques
applied in the transmitter and receiver, they have become a popular transmission medium.
By performing a rough overview of the properties of an optical fiber channel we have
tried to show its specific features and its ability to carry data streams with very high
throughputs.

Problems

Problem 5.1 Let us assume that the signal at the analog-to-digital converter (A/D) has
a Gaussian distribution with a zero mean and variance σ 2. The n-bit linear A/D converter
spans the range [−4σ, 4σ ]. Calculate the signal-to-quantization noise power ratio assum-
ing that the number of quantization levels, 2n, is so high that we can assume that the
quantization noise has uniform distribution.
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Problem 5.2 Solve Problem 5.1 for the input signal of the same Gaussian distribu-
tion and for a nonlinear A/D converter. The A/D converter can be decomposed into a
linear quantizer and nonlinear compressor operating according to the µ-law given by
formula (5.29).

Problem 5.3 Prove formulae (5.32) using the general transmission line theory.

Problem 5.4 From the general expression describing the currents and voltages and the
related ABCD matrix of the two-port shown in Figure 5.14, derive the values of A, B, C
and D of the ABCD matrix for the circuits shown in Figure 5.31.

Z
Z Uout(f)Uin(f)

Iin(f) Iout(f)

Uout(f)Uin(f)

Iin(f) Iout(f)

Figure 5.31 Two circuits considered in Problem 5.4

Problem 5.5 Show that if several line segments are connected in series, then the line
ABCD matrix of the whole chain of line segments is a product of the line matrices of each
line segment.

Problem 5.6 Write a computer program that calculates the channel transfer function and
the corresponding channel impulse response of a chain of subscriber loop line segments
of given lengths l1, l2, . . . , lN and line parameters R

′
i , C

′
i , L

′
i , G

′
i (i = 1, 2, . . . , N). Take

into account the load impedance ZL and the source impedance ZS , and a single bridged
unloaded tap, as an option. Draw the channel transfer function and the impulse response
for the line configuration shown in Figure 5.16 when the first segment, of diameter equal
to 0.4 mm, has the length l1 = 2 km and parameters R′ = 300 �/km, C′ = 42 nF/km, L′ =
1 mH/km and G′ = 1 µS/km, and the second segment has the length l2 = 1 km and the
same parameters. The bridged tap has the length l3 = 0.5 km, the same line parameters
and it remains unloaded. The source and load impedances are ZS = ZL = 300 �.

Problem 5.7 Receivers of GSM signals operating in the 900 MHz band have been
designed to cope with the Doppler effect when they move with a speed up to 250 km/h.
Calculate the maximum Doppler frequency for this case. What is the maximum speed of
the moving GSM receiver if it operates in the 1800 MHz band?

Problem 5.8 Consider 16-QAM transmission over a flat fading radio channel. Let us
model the channel as in Figure 5.32. The channel attenuates the transmitted signal equally
in its whole passband and we assume that the gain G shown in Figure 5.32 has the Rayleigh
distribution [see formula (4.45)] with variance σ 2

G = 1. The power of the signal at the
channel input is normalized to unity. The power of the additive white Gaussian noise in
the signal band

(− 1
T
, 1

T

)
is 30 dB lower than the signal power at the channel input (T is

the signaling period). If the binary error rate is 10−3 or higher the transmission system is
considered to be in the outage state. Assuming that in regular system operation single-bit
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Figure 5.32 Channel model applied in Problem 5.8

errors dominate owing to the applied Gray coding, calculate the probability of the system
outage. If needed, compute the probability of system outage numerically.

Problem 5.9 Consider the baseband equivalent mobile communication channel model
described by formula (5.48). Let it be additionally characterized by the power delay profile
(5.50) in which Tk = k	T (	T = 3.69 µs, k = 1, . . . ,M), the number of signal paths
is M = 6 and the mean power of the signal reaching the receiver over the kth path is
σ 2

k = σ 2
0 exp(−k/a). Let σ 2

0 = 1 and a = 2.1714.

1. Draw a power delay profile of this channel in the dB scale.
2. Based on the determined power delay profile, and assuming line-of sight (LOS) sig-

nal propagation, write a program simulating time variability of the channel impulse
response (5.48). In the case of LOS propagation, the channel complex tap coefficients
are the sample functions of mutually independent random processes characterized by
the Rayleigh distribution of their envelope and the uniform distribution of their phase
(check Chapter 4 in order to find that such a process can be synthesized as the sum
of two independent in-phase and quadrature Gaussian processes). Apply appropriate
filters that shape the time variability of the tap coefficients, resulting in the approximate
shape of the Doppler spectrum (5.49). Assume that the maximum Doppler frequency
is equal to 200 Hz. Calculate the series of channel transfer functions for the moments
t = n	T (n = 1, 2, . . .). In general, for each moment t we have

H(f, t) =
∫ ∞

−∞
h(t, τ ) exp[−j2πf τ ]dτ

so apply the adequate and properly scaled FFT algorithm. Assume 	T = 0.5 ms. Draw
the series of transfer functions in the form of a three-dimensional plot along frequency f

and time t axes (in Matlab use mesh or surf commands for that purpose).



 



 

6
Digital Transmission on Channels
Introducing Intersymbol
Interference

6.1 Introduction

Physical channels used in transmission of digital signals can be rarely represented by a
non-distorting channel model with additive white Gaussian noise (AWGN) as the only
impairment. As we have already mentioned in the previous chapter, the only channel
that can be represented most of the time by a band-limited AWGN channel model is a
microwave line-of-sight channel. The majority of channels are characterized not only by
a limited bandwidth but also by a channel transfer function in which particular frequency
components of transmitted signals are unequally attenuated (causing amplitude distortion)
and unequally delayed (creating delay distortion). These effects are the result of the phys-
ical properties of the transmission medium and of the imperfect design of transmit and
receive filters applied in the transmission system. A good example of the first is the radio
channel, in which the transmitted signal reaches the receiver along many different paths
through reflections, diffractions and dispersion on the terrain obstacles. As a result, partic-
ular signal path components arriving with various attenuations and delays are combined
at the receiver. The delayed components can be considered as echoes that cause time
dispersion of the transmitted signal. If time dispersion is greater than a substantial frac-
tion of the signaling period, the channel responses to the subsequent data signals overlap.
This effect is known as intersymbol interference (ISI). Thus, the signal observed at the
receiver input contains information on a certain number of data signals simultaneously. In
many cases the channel impulse response spans tens of signaling periods and intersymbol
interference appears to be a major impairment introduced by the channel.

The destructive influence of intersymbol interference on a digital communication system
performance has to be counteracted by special receiver and/or transmitter design. The part
of the receiver that counteracts ISI is called the channel equalizer . Very often transmis-
sion channel characteristics are either not known at the beginning of a data transmission
session or they are time variant. Therefore, it is advantageous to make the equalizer

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd
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adaptive. The adaptive equalizer is able to adaptively compensate for the distorting chan-
nel characteristics and simultaneously track the changes of channel characteristics in
time. The latter property is a key feature of equalizers used in digital transmission over
nonstationary radio channels.

Since the invention of an equalizer in the early 1960s, hundreds of papers have been
devoted to this subject. Adaptive equalization is usually the topic of a separate chapter
in leading books on digital communication systems (Proakis 2000; Barry et al. 2003;
Gitlin et al. 1992) and separate books tackle this subject as well (Clark 1985; Ding and
Ye 2001). Adaptive equalization is also a well-documented application example in books
devoted to adaptive filters (Haykin 2002; Macchi 1995). Interested readers are referred
to the bibliography included in such papers as Qureshi (1985) and Taylor et al. (1998).
The current chapter is partially based on the tutorial published by the author (Wesołowski
2003).

In this chapter we will concentrate on basic structures and algorithms of adaptive
equalizers. We will start with a general description of the intersymbol interference chan-
nel. Subsequently, we will divide the equalizers into several classes. We will continue
our considerations with the basic analysis of adaptation criteria and algorithms for lin-
ear and decision feedback equalizers. Then we will concentrate on adaptive algorithms
and equalizer structures applying the MAP (Maximum a Posteriori ) symbol-by-symbol
detector and the MLSE (Maximum Likelihood Sequence Estimation) detector. We will
also describe basic structures and algorithms of adaptive equalization without a training
sequence (blind equalization). Further, we will tackle turbo-equalizers as a new applica-
tion of the turbo principle. Finally, we will consider equalizers for MIMO systems. As
a case study we will consider the operation of a typical MLSE detector applied in GSM
receivers.

6.2 Intersymbol Interference

Let us describe the phenomenon of intersymbol interference using the baseband equivalent
channel model (see Chapter 5). As we remember, the output of the baseband equivalent
channel is described by the formula

x(t) = xI (t) + jxQ(t) =
+∞∑

i=−∞
dih(t − iT ) + ν(t) (6.1)

where the complex pulse h(t) is a convolution of the transmit filter response p(t), receive
filter response p(−t) and channel impulse response converted to the baseband gB(t),
i.e. h(t) = p(t) ∗ gB(t) ∗ p(−t). Function ν(t) is the noise n(t) filtered by the receive
filter, so ν(t) = n(t) ∗ p(−t). The baseband equivalent channel model considered in this
chapter is shown in Figure 6.1.

The task of the digital system receiver is to find the most probable data symbols dI
n

and d
Q
n on the basis of the signal x(t) observed at its input. Recall that if the channel

were non-distorting, then, assuming appropriate shaping of the transmit filter p(t) and
the filter p(−t) matched to it, it would be possible to find periodic sampling moments at
the outputs of the receive filters such that the samples of signals xI (t) and xQ(t) would
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Figure 6.1 Equivalent transmission system model with the equalizer

contain information on single data symbols only. However, the distortion introduced by
the channel makes the finding of such sampling moments impossible. Thus, it is necessary
to apply a special system block denoted in Figure 6.1 as an equalizer, which is able to
detect data symbols on the basis of x(t) [or equivalently xI (t) and xQ(t)] or its samples.
An equalizer is in fact a kind of receiver that either minimizes the influence of intersymbol
interference or uses it constructively in decisions concerning the transmitted data.

Although the signals xI (t) and xQ(t) are represented in Figure 6.1 as continuous time
functions, typically, due to digital implementation, the equalizer accepts their samples
only. Let us temporarily assume that the equalizer input samples are taken with the
symbol period T , with the time offset τ with respect to the zero moment. Then the
equalizer input signal is expressed by the equation

xn = x(nT + τ) =
∞∑

i=−∞
dih(nT + τ − iT ) + ν(nT + τ)

=
∞∑

i=−∞
dihn−i + νn =

∞∑
i=−∞

hidn−i + νn (6.2)

or

xn = h0dn +
∞∑

i=−∞, i �=0

hidn−i + νn (6.3)

where hn−i = h(nT + τ − iT ). The first term in (6.3) is proportional to the data symbol
to be decided on. The second term is a linear combination of previous and future data
symbols and expresses intersymbol interference. It should be eliminated or constructively
used by the equalizer. The third term is the additive noise and cannot be eliminated.

6.3 Channel with ISI as a Finite State Machine

Let us consider the baseband equivalent channel model again. The samples taken at the
output of the receive filter with the sampling rate 1/T are described by formula (6.2).
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This formula can be approximated by the expression

xn =
L∑

i=0

hidn−i + νn (6.4)

in which we have assumed that the channel impulse response effectively has a finite
duration equal to L + 1. A sample taken from the channel output in the nth time instant
is the sum of the unobservable channel output

rn =
L∑

i=0

hidn−i (6.5)

and additive noise νn. In fact, equation (6.5) describes the output sample of a finite impulse
response filter that models the channel. Let us assume that data symbols supplied to the
channel input (6.4) are selected from a finite alphabet, they are statistically independent
and have a given probability distribution. As a result, the output samples {rn} take the
values from a finite set of all possible linear combinations of subsequent L + 1 data
symbols. A particular sequence {rn} is a sample function of the Markov chain. The
current state of this chain is determined by the data sequence that is currently contained
in the tapped delay line of the finite impulse response filter modeling the channel (6.5).
Therefore the channel model can be interpreted as a finite state machine with the states
determined by the content of the tapped delay line. Its excitation is the data symbol
currently supplied to its input, and the output signal is equal to rn. Transfer of the finite
state machine from a given state in the nth moment to a new state in the (n + 1)st moment
is determined by the input symbol. Thus, it is clear that a given input data sequence is
uniquely associated with the channel state sequence. Let us illustrate this with a simple
example.

Example 6.3.1 Let us consider a channel model with three taps with weighting coefficients
h0, h1, h2. Bipolar data symbols dn = ±1 are fed to its input. This model is presented in
Figure 6.2a. A typical way to illustrate the functioning of a finite state machine is to
present its state diagram. The trellis diagram shown in Figure 6.2b is an alternative way
to represent a finite state machine. The considered channel has four states, because it has
two delay elements and the data stored in them are bipolar. In the general case of M-ary
data symbols fed to the channel with L + 1 taps, the number of states is equal to ML.
Figure 6.2c presents all possible paths on the trellis diagram starting in the zero moment
from the state determined by the data sequence (1, 1). The dotted line denotes the sequence
of states through which the channel evolves when a given sequence of data symbols is
supplied to its input. These data symbols are shown above the arrows symbolizing the
paths between subsequent states. There are Mn possible data sequences starting from the
zero moment and ending in the nth timing instant. Recall that in our example M = 2.
Finding the most likely data sequence in the receiver on the basis of the sequence of
samples {xn} seems to be quite a complex task.
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Figure 6.2 Model of the ISI channel with three taps (a), trellis diagram of the channel (b) and
possible state sequences (c)

6.4 Classification of Equalizer Structures and Algorithms

Channel equalization can be performed by linear or nonlinear methods. Decisions upon
the data symbols can be made by the equalizer on a symbol-by-symbol basis or performed
on the whole sequence. Figure 6.3 presents the classification of equalization structures.

Equalizer

linear nonlinear

transversal filter lattice filter

symbol-by-symbol
detection

Maximum Likelihood
sequence detection

Viterbi algorithm simplified
algorithms

symbol spaced

DDFSE

RSSE

Maximum a Posteriori
detectors turbo-

equalizer
M algorithm

decision feedback
equalizer

fractionally spaced

Figure 6.3 Classification of the equalization structures
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Within the class of linear receivers the equalizer based on an FIR transversal filter is
of great importance. It is implemented using symbol-spaced or fractionally spaced taps.
A lot of attention has also been paid in the literature to the linear equalizer applying a
lattice filter (Satorius and Alexander 1979). The latter, although more complicated than
the transversal filter, assures faster convergence of the adaptation algorithm. Despite this,
due to implementation simplicity, FIR equalizers are most common.

In the case of channels characterized by the occurrence of deep notches, nonlinear
receivers are used. The simplest version of a nonlinear receiver is the Decision Feed-
back Equalizer (DFE) (Monsen 1971). The Maximum Likelihood Sequence Estimation
(MLSE) equalizer, which is more computationally intensive, is applied in GSM receivers
and high-speed telephone modems. It detects a whole sequence of data symbols, usually
using the Viterbi algorithm (Forney 1972). Sometimes the MLSE equalizer not only
detects the data symbols but also supplies their likelihoods. This is particularly impor-
tant if the equalizer is followed by an error correction code decoder that uses soft inputs.
The MLSE equalizer using the modified Viterbi algorithm, which produces soft outputs, is
called a SOVA equalizer (cf. the SOVA algorithm for channel code decoding described in
Chapter 2). If the intersymbol interference is caused by a long channel impulse response
or if the data symbol alphabet is large, the MLSE equalizer becomes infeasible due
to excessive computational complexity. Several suboptimal structures and procedures
can be applied instead, e.g. Reduced State Sequence Estimation (RSSE; Eyuboglu and
Qureshi 1988), Delayed Decision Feedback Sequence Estimation (DDFSE; Duel-Hallen
1992) or the M algorithm (Anderson and Mohan 1984). Another approach is a nonlinear
symbol-by-symbol detection using the Maximum a Posteriori (MAP) criterion. The algo-
rithm of Abend and Fritchman (1970) is one example of such an approach. The MAP
algorithms are usually computationally complex.

Modern digital communication systems, particularly those operating on radio channels,
are often equipped with a channel code that improves the overall transmission quality.
Treating the channel introducing ISI as an inner convolutional encoder and the channel
encoder applied in the transmitter as an outer code encoder (see the section on concate-
nated coding in Chapter 2) we are able to apply the turbo principle in the receiver. Thus,
the equalizer (linear, MLSE- or MAP-based) is treated as an inner code decoder and the
whole decoding process is performed in an iterative manner.

The key feature of all equalization structures is their ability to perform initial adaptation
to the channel characteristics (start-up equalization) and to track channel characteristics in
time. In order to acquire the initial adaptation, an optimization criterion has to be defined.
Historically, the first criterion was minimization of the maximum value of intersymbol
interference (Mini-Max criterion) resulting in the Zero-Forcing (ZF) equalizer. The most
popular adaptation criterion is minimization of the Mean Square Error , resulting in the
MSE equalizer. In this criterion the expectation of the squared error signal at the equalizer
output is minimized. Finally, the criterion used in the fastest adaptation algorithms relies
on minimization of the Least Squares (LS) of errors. The equalizer using the algorithm
based on this criterion is called an LS equalizer. The equalizer parameters are selected to
minimize the squared sum of the equalizer output signal errors that would be achieved if
these parameters were used starting from the initial moment of adaptation. Some other cost
functions can be selected if the equalizer coefficients are derived without the knowledge
of the transmitted data symbols.
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The equalizer parameters are derived in accordance with a chosen adaptation criterion
by an adaptation algorithm . Most of the algorithms are recursive – the adaptation at a
given moment is performed iteratively, taking advantage of the results achieved in the
previous adaptation step. In special cases fast start-up equalization algorithms are applied,
resulting in extremely fast calculation of coarse equalizer parameters that are good enough
to start regular data transmission and are later refined. Some of these algorithms are known
as noniterative and others are Recursive Least Squares (RLS) algorithms.

The adaptation process of a typical equalizer can be divided into two phases. In the
first phase, the training data sequence known to the receiver is transmitted. The adaptation
algorithm uses this sequence as a reference for adjustment of the equalizer coefficients;
thus the equalizer is in training mode. After achieving the equalizer parameters which
result in a sufficiently low probability of errors made by the equalizer decision device, the
second phase of adaptation begins in which the equalizer starts to use the derived decisions
in its adaptation algorithm. We say that the equalizer is then in the decision-directed mode.

In some cases, in particular in point-to-multipoint transmission, sending the training
sequence to initiate a particular receiver is not feasible. Thus, the equalizer must be able
to adapt without a training sequence. Its algorithm is based exclusively on the general
knowledge about the data signal statistics and on the signal reaching the receiver. Such
an equalizer is called blind . Blind adaptation algorithms are generally either much slower
or much more complex than data-trained algorithms.

6.5 Linear Equalizers

The linear equalizer is the simplest structure most frequently used in practice. Let us
consider the receiver applying a transversal filter. The scheme of such an equalizer is
shown in Figure 6.4. The output signal yn at the nth moment depends on the input
signal samples xn−i and the equalizer coefficients ci,n (i = −N, . . . , N ) according to the
equation

yn =
N∑

i=−N

ci,nxn−i (6.6)

The equalizer output signal is a linear combination of 2N + 1 subsequent samples of the
input signal. Indexing the equalizer coefficients from −N to N reflects the fact that the
reference tap is located in the middle of the tapped delay line of the equalizer and that,
typically, not only previous data symbols with respect to the reference one but also some
future symbols influence the current input signal sample.

6.5.1 ZF Equalizers

Historically, the earliest equalizers used the Mini-Max adaptation criterion. This resulted in
the simplest algorithm, which is sometimes used in the equalizers applied in line-of-sight
microwave radio receivers. Let us neglect the additive noise for a while. Taking into
account (6.3) and (6.6) we obtain

yn =
N∑

i=−N

ci,n

∞∑
k=−∞

hkdn−i−k (6.7)
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Substituting j = i + k we get

yn =
N∑

i=−N

ci,n

∞∑
j=−∞

hj−idn−j (6.8)

or equivalently

yn =
∞∑

j=−∞
gj,ndn−j where gj,n =

N∑
i=−N

ci,nhj−i (6.9)

and gj,n are the samples of cascade connection of the discrete channel and the equalizer.
In the Mini-Max criterion the equalizer coefficients ci,n (i = −N, . . . , N) are adjusted to
minimize the expression

I = 1

g0,n

∞∑
j=−∞, j �=0

∣∣gj,n

∣∣ (6.10)

Let us note that, because of the finite number of adjustable equalizer coefficients, it is
possible to set to zero only part of the ISI samples observed at the output of the equalizer
filter. One can show that in order to set the ISI samples to zero, under the assumption
that the data symbols are uncorrelated and equiprobable, it suffices to set the equalizer
coefficients to force the following equality to be fulfilled,

E
(
end

∗
n−i

) = 0 for i = −N, . . . , N (6.11)
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where the error en in the training mode is given by the expression

en = yn − dn (6.12)

or en = yn − dec(yn) in the decision-directed mode, and where (.)∗ denotes a complex
conjugate. In fact, substituting in (6.11) the expression for en and yn we obtain from (6.9)

E
[
end

∗
n−i

]= E

 ∞∑
j=−∞

gj,ndn−j − dn

d∗
n−i

=
0 for i = 0, if g0,n = 1

0 for i �= 0, i ∈ 〈−N,N〉 , if gi,n = 0
(6.13)

By forcing condition (6.13), 2N intersymbol interference samples can be set to zero.
Therefore, such an equalizer is called a Zero-Forcing equalizer . If the equalizer was
infinitely long it would be able to completely eliminate the ISI at its output. The cascade
connection of the channel and equalizer would have a discrete impulse response in the
form of a unit pulse. Therefore, the equalizer would ideally inverse the channel frequency
characteristics. Such an equalizer could be adjusted iteratively according to the equation

ci,n+1 = ci,n − αE
[
end

∗
n−i

]
for i = −N, . . . , N (6.14)

where α is an appropriately selected small constant, called the adaptation step size. How-
ever, replacing the ensemble average with its stochastic estimate, we obtain the following
equation for the coefficients’ adjustment, which is easily implementable even at a very
high symbol rate

ci,n+1 = ci,n − αendn−i for i = −N, . . . , N (6.15)

for real equalizers, and

ci,n+1 = ci,n − αend
∗
n−i for i = −N, . . . , N (6.16)

for complex ones. More details on the ZF equalizer can be found in Lucky et al. (1968).
The ZF equalizer attempting to inverse the channel characteristics amplifies the noise in
those frequency regions in which the channel particularly attenuates the signal.

6.5.2 MSE Equalizers

As we have already mentioned, the most frequent adaptation criterion is minimization of
the mean square error (MSE), i.e.

min{ci,n, i=−N,...,N}E
[|en|2

]
(6.17)

where the error is given by equation (6.12). Direct calculations of the mean
square error EMSE

n = E
[|en|2

]
with respect to the equalizer coefficients cn =
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[
c−N,n, . . . , c0,n, . . . , cN,n

]T
lead to the following dependence of the MSE on the

coefficients for the real equalizer

EMSE
n = E[e2

n] = E[(cT
n xn − dn)(xT

n cn − dn)]

= cT
n Acn − 2bT cn + E

[|dn|2
]

(6.18)

where A = E
[
xnxT

n

]
(xn = [

xn+N, . . . , xn, . . . , xn−N

]T
) is the input signal autocorrela-

tion matrix and b = E [dnxn] is the vector of cross-correlation between the current data
symbol and the equalizer input samples. The autocorrelation matrix A is positive definite
(all its eigenvalues are positive). It is well known from algebra that for such a matrix
expression (6.18) has a single and global minimum. The minimum can be found if we
set the condition

∂EMSE
n

∂cn

=



∂EMSE
n

∂c−N,n
...

∂EMSE
n

∂cN,n

 = 2Acn − 2b = 0 (6.19)

The result is the well-known Wiener-Hopf equation for the optimum equalizer coefficients

Acopt = b (6.20)

An efficient method of achieving the optimum coefficients and the minimum MSE is to
update the equalizer coefficients iteratively with adjustments proportional to the negative
value of the gradient of EMSE

n calculated for the current values of the coefficients, i.e.

ci,n+1 = ci,n − αn

∂EMSE
n

∂ci,n

for i = −N, . . . , N (6.21)

where αn is a small positive value called the adjustment step size. Generally, it can be

time variant, which is expressed by the time index n. Calculation of the gradient ∂EMSE
n

∂ci,n

leads to the result

∂EMSE
n

∂ci,n

= ∂E
[|en|2

]
∂ci,n

= 2E

[
en

∂en

∂ci,n

]
= 2E

[
enxn−i

]
for i = −N, . . . , N (6.22)

Replacing the gradient calculated in (6.22) by its stochastic estimate enxn−i (i =
−N, . . . , N) for the real equalizer we receive the stochastic gradient (LMS – Least
Mean Square) algorithm

ci,n+1 = ci,n − γnenxn−i for i = −N, . . . , N (6.23)
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where γn = 2αn. One can show that the analogous equation for the complex equalizer is

ci,n+1 = ci,n − γnenx
∗
n−i for i = −N, . . . , N (6.24)

Figure 6.5 presents a scheme of the linear transversal equalizer with the tap coefficients
adjusted according to algorithm (6.24). The switch changes its position from 1 to 2 after
a sufficiently long training mode.
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Figure 6.5 Adaptive MSE gradient equalizer

The convergence rate of the LMS algorithm depends on the value of the step size γn.
This problem has been thoroughly researched. Generally, the value of the step size depends
on the eigenvalue distribution of the input signal autocorrelation matrix A (Proakis 2000).
G. Ungerboeck (1972) derived a simple “engineering” formula for the step size, which
results in fast and stable convergence of the LMS adaptive equalizer. The initial step size
is described by the formula

γ0 = 1

(2N + 1)E
[|xn|2

] (6.25)

where E
[|xn|2

]
is the mean input signal power and is equal to each element of the

main diagonal of the autocorrelation matrix A. When the equalizer taps are close to their
optimum values, the step size should be decreased in order to prevent a too high level of
the residual mean square error (e.g. γ∞ = 0.2γ0).

Algorithm (6.24) is very simple and it is often applied in digital transmission systems for
which the channel characteristics are stationary or change very slowly in time with respect
to the symbol rate. Thus, there are no strict time limits on the training sequence applied
in the start-up phase. However, time limits for the start-up phase must be introduced if
transmission has the form of short data packets starting with a preamble that plays the
role of a training sequence. Obviously the preamble should be much shorter than the
transmitted packets and the equalizer start-up procedure should be fast.
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6.5.3 LS Equalizers

Particularly fast initial equalizer convergence is achieved if the Least Squares adaptation
criterion is applied. The coefficients of a linear equalizer are set in order to minimize the
following cost function with respect to the filter coefficient vector cn

ELS
n =

n∑
i=0

λn−i
∣∣cT

n xi − di

∣∣2 (6.26)

For each moment n, the algorithm minimizes the weighted summed squared error starting
from the initial moment up to the current moment n, which would be achieved if the
current coefficient vector calculated on the basis of the whole signal sequence up to the
nth moment were applied in the equalizer from the initial moment. The window coefficient
λn−i (λ ≤ 1) causes gradual forgetting of past errors and is applied for nonstationary
channels to follow the changes in the channel characteristics. The calculation of (6.26)
leads to equations similar to (6.18) and (6.20)

ELS
n = cT

n Rncn − 2cT
n qn +

n∑
i=0

λn−i |di |2 (6.27)

Rncn,opt = qn (6.28)

where

Rn =
n∑

i=0

λn−ixT
i xi = λRn−1 + xT

n xn and qn =
n∑

i=0

λn−idixi (6.29)

Instead of solving the set of linear equations (6.28) at each subsequent moment, we can
find the optimum coefficients iteratively using the results derived at the previous time
instant. Below we list the equations of the standard Recursive Least Squares (Kalman)
algorithm proposed by Godard (1974) for fast adaptive equalization. The algorithm is
quoted after Proakis (2000).

For convenience let us denote Pn = R−1
n . Let us also assume that before adaptation at

the nth moment we have the filter coefficients cn−1 and the inverse matrix Pn−1 at our
disposal. The algorithm steps are as follows:

• Initialization: c0 = [0, . . . , 0]T , x0 = [0, . . . , 0]T and Rn = δI , where δ is a small pos-
itive constant.
Do the following for n ≥ 1

• Shift the contents of the filter tapped delay line by one position and accept the new
input signal xn

• Compute the filter output signal:

yn = cT
n−1xn (6.30)
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• Compute the error at the filter output:

en = dn − yn (6.31)

• Compute the Kalman gain vector kn = Pnxn:

kn = Pn−1xn

λ + xT
n Pnxn

(6.32)

• Update the inverse of the autocorrelation matrix:

Pn = 1

λ

[
Pn−1 − knxT

n Pn−1
]

(6.33)

• Update the filter coefficients:

cn = cn−1 + knen (6.34)

Formulas (6.30)–(6.34) summarize the RLS Kalman algorithm for a real equalizer.
The complex version of this algorithm can be found in Proakis (2000). Knowing that
kn = Pnxn, we find that the coefficients’ update is equivalent to the formula

cn = cn−1 + R−1
n xnen (6.35)

Comparing the equalizer update using the LMS algorithm (6.24) and the RLS algorithm
(6.35) we see that the Kalman algorithm speeds up its convergence because of the inverse
matrix Pn = R−1

n used in each iteration. In the LMS algorithm this matrix is replaced by
a single scalar γn. Figure 6.6 presents the convergence rate for both the LMS and RLS
algorithms used in the linear transversal equalizer. The step size of the LMS algorithm
was constant and selected to ensure the same residual mean square error as that achieved
by the RLS algorithm. The difference in the convergence rate is evident. However, we
have to admit that for the channel model used in the simulations shown in Figure 6.6 the
application of the step size according to formula (6.25) and switching it to a small fraction
of the initial value after the appropriate number of iterations improves the convergence of
the LMS equalizer considerably. On the other hand, the tracking abilities of the Kalman
algorithm are much better than those of the LMS algorithm. However, the RLS Kalman
algorithm is much more demanding computationally. Moreover, due to the roundoff noise
it becomes numerically unstable in the long run, particularly if the forgetting factor λ is
lower than 1. Solving the problem of excessive computational complexity and ensuring
numerical stability have been the subject of intensive research. Cioffi and Kailath’s paper
(1984) is only one representative example of numerous publications in this area.

Besides the transversal filter, a lattice filter can also be applied in the adaptive equalizer
using both the LMS (Satorius and Alexander 1979) and RLS (Satorius and Pack 1981)
adaptation algorithms.
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Figure 6.6 Convergence of the constant step size LMS and Kalman RLS equalizer of length
2N = 30

6.5.4 Choice of Reference Signal

The choice of reference signal plays an important role in the equalizer adaptation process.
In fact, the reference signal tests the unknown channel. Its spectral properties should be
selected in such a way that the channel characteristics are fully reflected in the spectrum
of the signal at the input of the equalizer. So far in our analysis we have assumed that
the data symbols are uncorrelated and equiprobable, i.e.

E
[
dnd

∗
n−k

] =
{

σ 2
d for k = 0

0 for k �= 0
(6.36)

This means that the power spectrum of the test signal is flat and the channel characteristic
is “sampled” by a constant power spectrum of the input signal. In practice this theoretical
assumption is only approximately fulfilled. Typically, the data sequence is produced on
the basis of the Maximum-Length sequence generator. The test generator is usually imple-
mented by a scrambler contained in the transmitter that is based on a Linear Feedback
Shift Register (LFSR). As a result, a pseudonoise (PN) binary sequence is generated.
Typically, subsets of very long PN sequences are used as a training sequence.

Special attention has focused on very short test sequences that allow for fast, coarse
setting of the equalizer coefficients. These sequences are periodic and are constructed in
such a way that their deterministic autocorrelation function is zero apart from its zero
argument.
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6.5.5 Fast Linear Equalization using Periodic Test Signals

In certain applications extremely fast initial equalization is of major importance. A good
example is the master modem in a computer network, which receives data blocks from
many tributary modems communicating through different channels. Such communication
can be effective if the block header is a small part of the whole transmitted data block. A
part of the header is a training sequence necessary to acquire the equalizer settings. Let us
neglect the influence of noise for a while. In many cases the signal-to-noise ratio (SNR)
in the channel is so high that the ISI plays a dominant role in the signal distortion. Let the
reference signal be periodic. In fact, no more than two periods of the test signal should be
transmitted in order to acquire coarse equalizer settings. The period M of the test signal
is at least as long as the highest expected length of the channel impulse response L. With
periodic excitation the channel output (neglecting the influence of the additive noise) is
also a periodic signal. This fact is reflected by the formula

x0

x1
...

xM−1

 =


d0 d1 d2 · · · dM−1

dM−1 d0 d1 · · · dM−2
...

. . .
...

d1 d2 · · · dM−1 d0

 ·


h0

h1
...

hM−1

 (6.37)

If the length of the channel impulse response is shorter than the length of the test signal,
we can assume that some of the last elements in the vector hT = [h0, h1, . . . , hM−1] are
equal to zero. Due to the periodic nature of the signal transmitted through the channel,
a cyclic convolution of the sequence h and the data sequence d = [d0, d1, . . . , dM−1] is
realized. In the frequency domain this operation is equivalent to the multiplication of two
Discrete Fourier Transform (DFT) spectra, i.e.

X(k	f ) = D(k	f ) · H(k	f ), k = 0, 1, . . . ,M − 1 (6.38)

where 	f T = 1/M and

X(k	f ) = 1

M

M−1∑
i=0

x(iT ) exp (−j2πk	f iT ) (6.39)

Dependencies similar to (6.39) are held for the data and channel impulse response
sequences. Knowing the spectrum of the data sequence, one can easily calculate the
spectrum of the channel and, after reversing it, the characteristics of the ZF equalizer can
be achieved, i.e.

C(k	f ) = 1

H(k	f )
= D(k	f )

X(k	f )
, k = 0, 1, . . . , M − 1 (6.40)

On the basis of the equalizer characteristics CT = [C(0), C(	f ), . . . , C((M − 1)	f )]
the equalizer coefficients cT = (c0, c1, . . . , cM−1) can be calculated using the inverse DFT.
If the length of the training sequence and of the equalizer is a power of 2, then all the DFT
and IDFT calculations can be effectively performed by the FFT/IFFT algorithms. More
detailed considerations on fast start-up equalization using the periodic training sequence
can be found in Chevillat et al. (1987).
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6.5.6 Symbol-Spaced versus Fractionally Spaced Equalizers

So far we have considered equalizers that accepted one sample per symbol period at
their input. In fact the spectrum of the transmitted signal, although usually carefully
shaped, exceeds half of the signaling frequency by 10–50%. Thus, the Nyquist theorem
is not fulfilled and, as a result of sampling at the symbol rate, the input signal spectra
overlap. In consequence, the symbol-spaced equalizer is able to correct the overlapped
spectrum only. In some disadvantageous cases the overlapping spectra can result in deep
nulls in the sampled channel characteristic, which is the subject of equalization. In these
spectral intervals the noise will be substantially amplified by the equalizer, which results
in deterioration of the system performance.

Derivation of the optimum MSE receiver in the class of linear receivers results in the
receiver structure consisting of a filter matched to the impulse observed at the receiver
input and an infinite T -spaced transversal filter (see Gitlin et al. 1992 for details). This
derivation also shows that the characteristics W0(f ) of the optimum MSE linear receiver
are given by the formula

W0(f ) = σ 2
d

σ 2
ν

H ∗(f )

[ ∞∑
i=−∞

ci exp (−j2πf iT )

]
exp (−j2πf t0) (6.41)

where σ 2
d is the data symbol mean power and σ 2

ν is the noise power. Lack of a matched
filter preceding the transversal filter results in the suboptimality of the receiver and in
performance deterioration. In practice, a sufficiently long but finite transversal filter is
applied.

The question of whether an optimum receiver can be implemented more efficiently
was answered by Macchi and Guidoux (1975) as well as by Qureshi and Forney
(1977).

As we have mentioned, typically the spectrum of the received input signal is limited to
the frequency fmax = 1

2T
(1 + α), where α ≤ 1 (cf. a typical square root raised cosine pulse

shaping filter characteristics in the transmitter and similar characteristics of the receive
filter). Let us assume that the noise is also limited to the same bandwidth because of the
band-limiting filter applied in the receiver front-end. Thus, the bandwidth of the optimal
receiver is also limited to the same frequency fmax. Because the input signal is spectrally
limited to fmax, the optimum linear receiver can be implemented by the transversal filter
working at the input sampling frequency equal at least to 2fmax. Let the sampling period
T ′ = KT

M
be selected to fulfill this condition, i.e. 1

2T ′ ≥ fmax, and K and M are integers
of possibly small values. As a result, the following equation holds

H(f ) · W0(f ) = H(f ) · Copt(f ) (6.42)

where

Copt(f ) =
∑

i

W0

(
f − i

1

T ′

)
(6.43)
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Figure 6.7 Equalization of the channel spectrum using a T/2-spaced equalizer

We must stress that although the input sampling frequency is 1
T ′ , the data symbols are

detected every T seconds, so the output of the equalizer is processed at the rate of 1
T

. It
is important to note that the channel characteristics are first equalized by the T ′-spaced
filter and then the output spectrum components overlap due to sampling the output at
the symbol rate. Figure 6.7 illustrates these processes for K = 1 and M = 2; specifically,
the equalizer is T /2-spaced. One can also show that the performance of the fractionally
spaced equalizer is independent of the sampling phase (Ungerboeck 1976).

Because the input signal spectrum is practically limited to |fmax|, the equalizer can
synthesize any characteristics in the frequency range (− 1

2T ′ ,−fmax) ∪ (fmax,
1

2T ′ ) with-
out any consequences for the system performance. Therefore, the optimum fractionally
spaced equalizer can have many sets of optimum coefficients. This phenomenon is disad-
vantageous from the implementation point of view because the values of the coefficients
can slowly drift to unacceptable values. To stabilize the operation of the LMS gradient
algorithm, a tap leakage algorithm was introduced (Gitlin et al. 1982).
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6.6 Decision Feedback Equalizer

The decision feedback equalizer (DFE) is the simplest nonlinear equalizer with a
symbol-by-symbol detector. It was first described by Austin (1967). The in-depth
treatment of decision feedback equalization can be found in Belfiore and Park (1979).
Austin noticed that intersymbol interference arising from past symbols can be cancelled
by synthesizing it using already detected data symbols and subtracting the received value
from the sample entering the decision device. Figure 6.8 presents the basic scheme of
the decision feedback equalizer.

T ′ T ′ T ′ T ′ T ′

TTTTT

+

+

Decision

c−2,n

b5,n b4,n b3,n b2,n b1,n

c−1,n c0,n c1,n c2,n c3,n

xn

yn
d̂n

dn
1

2

Linear filter

Decision feedback filter

+
−

Figure 6.8 Structure of the decision feedback equalizer

The equalizer input samples are fed to the linear (usually fractionally spaced) adaptive
filter, which performs matched filtering and shapes the ISI on its output in such a way
that the symbol-spaced samples given to the decision device contain the ISI arising from
the past symbols only. The ISI resulting from the joint channel and linear filter impulse
response is synthesized in the transversal decision feedback filter. The structure of the
DFE is very similar to the infinite impulse response filter; however, the decision device
is placed inside the filter loop, causing the whole structure to be nonlinear. Generally, the
operation of the decision feedback equalizer is described by the equation

yn =
N2∑

k=−N1

ck,nx(nT − kT ′) −
N3∑
j=1

bj,nd̂n−j (6.44)

where ck,n are the tap coefficients of the linear filter, bj,n are the tap coefficients of the
decision feedback filter and d̂n is a data symbol estimate produced by the decision device.
In training mode the data estimates are replaced by the training data symbols.

The decision feedback equalizer is applied in digital systems operating on channels
with deep nulls (Monsen 1971). Such channels cannot be effectively equalized by the
linear equalizers attempting to synthesize the reverse channel characteristics. Instead, the
DFE cancels a part of the ISI without inverting the channel and, as a result, the noise
in the frequency regions in which nulls in channel characteristics occur is not amplified.
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Although the DFE structure is very simple and improves the system performance in
comparison to that achieved for the linear equalizer, it has some drawbacks as well. First,
part of the signal energy is not used in the decision process because of its cancellation by
the decision feedback filter. Second, because of the decision feedback, errors made in the
decision device take part in the synthesis of the ISI as they propagate along the decision
feedback filter delay line. Thus, the errors contained in the tapped delay line increase the
probability of occurrence of further errors. The phenomenon of error propagation can be
observed if the signal-to-noise ratio is not sufficiently high. This effect is discussed in
Barry et al. (2003).

The DFE tap coefficients can be adjusted according to the ZF or MSE criterion. As for
the linear equalizer, the LMS and RLS adaptation algorithms can be used in the DFE. The
DFE can be based on transversal or lattice filter structures (Ling and Proakis 1985). Let
us concentrate on the LMS algorithm only. We can combine the contents of the tapped
delay lines of the linear and decision feedback filters as well as the filter coefficients into
single vectors, i.e.

zn =
 xn

· · ·
dn

 wn =
 cn

· · ·
−bn

 (6.45)

where xn = [xn+N1 , . . . , xn−N2]T , dn = [dn−1, . . . , dn−N3 ]T , cn = [c−N1,n, . . . , cN2,n]T

and bn = [b1,n, . . . , bN3,n]T . Then equation (6.44) can be rewritten in the form

yn = zT
n wn (6.46)

and the LMS gradient algorithm can be described by the recursive expression

wn+1 = wn − βnenz∗
n (6.47)

where en = yn − dn. Knowing (6.45), we can break equation (6.47) into two separate
LMS adjustment formulas for the feedforward and feedback filters

cn+1 = cn − βnenx∗
n (6.48)

bn+1 = bn + γnend∗
n (6.49)

where we have applied different values of the algorithm step size for both filters.
Besides the regular DFE structure shown in Figure 6.8 there exists the so-called pre-

dictive DFE (Belfiore and Park 1979; Proakis 2000), which, although featuring slightly
lower performance, has some advantages in certain applications. Figure 6.9 presents the
block diagram of this structure. The feedforward filter works as a regular linear equalizer
according to the ZF or MSE criterion. Its adaptation algorithm is driven by the error signal
between the filter output and the data decision (or training data symbol). As we remem-
ber, the linear equalizer more or less inverts the channel characteristics, which results in
noise amplification. The noise contained in the feedforward filter output samples is corre-
lated due to the filter characteristics. Therefore, its influence can be further minimized by
applying the linear predictor. Assuming that the decision device makes correct decisions,
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Figure 6.9 Predictive DFE

the noise samples contained in the feedforward filter output are the error samples used in
the adaptation of this filter. The linear combination of the previous noise samples allows
to predict the new sample, which is subsequently subtracted from the feedforward filter
output. In this way the effective SNR is increased. The result of subtraction constitutes
the basis for decision-making.

Let us note (see Figure 6.9) that the feedforward filter and the predictor are adjusted
separately, so the performance of the predictive DFE is worse than the performance of
the conventional DFE for which the taps adjustments are realized on the basis of the final
output error. It has been shown that the predictive DFE is useful in realization of the joint
trellis code decoder and channel equalizer (Chevillat and Elefteriou 1989).

6.7 Equalizers using MAP Symbol-by-Symbol Detection

The decision feedback equalizer is a particularly simple version of a nonlinear receiver
in which the decision device is some kind of an M-level quantizer, where M is the
number of data symbols. Much more sophisticated detectors have been developed that
minimize the symbol error probability. This goal is achieved if the Maximum a Posteriori
Probability (MAP) criterion is applied. Let us consider the receiver structure shown in
Figure 6.10. The linear filter preceding the detection algorithm is a Whitened Matched
Filter (WMF). Its function is very similar to the function of the linear filter applied
in the decision feedback equalizer. It shapes the joint channel and linear filter impulse
response to receive ISI arising from the past data symbols only. At the same time the
noise samples at the output of the WMF are white. We say that the signal at the output
of the WMF constitutes a sufficient statistic for detection, which roughly means that the

Whitened
matched filter

MAP
symbol-by-symbol

detector

yn dn
^Input

samples

Figure 6.10 Basic scheme of the MAP symbol-by-symbol equalizer
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part of the received signal that has been removed by the WMF is irrelevant for detection.
Assuming that the number of interfering symbols is finite we can write the following
equation describing the sample yn at the detector input

yn =
N∑

i=0

bidn−i + νn (6.50)

where νn is a white Gaussian noise sample. Let us note that the information on the data
symbol dn is “hidden” in the samples yn, yn+1, . . . , yn+N . Generally, according to the
MAP criterion the detector finds that d̂n among all possible M data symbols for which
the following a posteriori probability is maximum

Pr {dn|yn+N } (6.51)

where yn+N = [yn+N, yn+N−1, . . . , y1] is the vector of the observed input samples. From
Bayes’ theorem we know that for expression (6.51) the following equality holds

Pr {dn = m|yn+N } = p(yn+N |dn = m) Pr{dn = m}
p(yn+N)

(6.52)

Because p(yn+N) is common for all possible probabilities (6.52), it has no meaning in
the search for the data symbol featuring the MAP probability. Thus, the task of the MAP
detector can be formulated in the following manner

d̂n = arg

{
max

dn

p(yn+N |dn) Pr{dn}
}

(6.53)

Finding the data estimate (6.53) is usually computationally complex. Several algorithms
have been proposed to realize (6.53). Abend and Fritchman (1970) as well as Chang and
Hancock (1966) algorithms [the latter being analogous to the well-known BCJR algorithm
(Bahl et al. 1974) applied in convolutional code decoding and shown in Chapter 2] are
good examples of these methods. We have to stress that all of them require knowledge
of the impulse response {bi} (i = 1, . . . , N) to calculate values of the appropriate condi-
tional probability density functions. This problem will also appear in the MLSE receiver
discussed in the next section.

6.8 Maximum Likelihood Equalizers

Instead of minimizing the data symbol error probability, we could select minimization
of the probability of error of the whole data sequence as the optimization goal of the
receiver. Thus, the MAP criterion yields the form

max
dn

P (dn|yn) (6.54)
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If the data sequences are equiprobable, our criterion is equivalent to the selection of such
a data sequence that maximizes the conditional probability density function p(xn|dn).
Namely, we have

d̂n = arg

{
max

dn

P (dn|yn)

}
= arg

{
max

dn

p(yn|dn)P (dn)

p(yn)

}
= arg

{
max

dn

p(yn|dn)

}
(6.55)

where, as before, yn = [y1, . . . , yn]T , dn = [d1, . . . , dn]T . Because noise at the WMF
output is white and Gaussian, its samples are statistically independent and the conditional
probability density function can be expressed by the formula

p(yn|dn) =
n∏

i=1

p(yi |di) = 1(
2πσ 2

)n/2

n∏
i=1

exp

−

∣∣∣yi − ∑N
k=0 bkdi−k

∣∣∣2
2σ 2

 (6.56)

Calculating the natural logarithm of both sides of (6.56) we obtain

d̂n = arg

{
max

dn

ln p(yn|dn)

}
= arg

min
dn

n∑
i=1

∣∣∣∣∣yi −
N∑

k=0

bkdi−k

∣∣∣∣∣
2
 (6.57)

From all possible equiprobable data sequences dn this sequence d̂n is selected for which
the sum

Sn =
n∑

i=1

∣∣∣∣∣yi −
N∑

k=0

bkdi−k

∣∣∣∣∣
2

(6.58)

is minimum. It was found by Forney (1972) that the effective method of searching for such
a sequence is the Viterbi algorithm. Let us note that in order to select the data sequence
the samples of the impulse response {bk} (k = 0, . . . , N ) have to be estimated. They are
usually derived on the basis of the channel impulse response {hk} (k = −N1, . . . , N2). The
scheme of such a receiver is shown in Figure 6.11. The heart of the receiver is the Viterbi
detector fed with the impulse response samples {bk} calculated on the basis of the channel
impulse response samples {hk} estimated in the channel estimator . The channel estimator
is usually an adaptive filter using the LMS or RLS algorithm for deriving the impulse
response samples. From the system theory point of view it performs system identification.
The channel estimator input signal is the data reference signal or the final or preliminary
decision produced by the Viterbi detector. The channel output signal acts as a reference
signal for the channel estimator. Usually, the reference signal has to be appropriately
delayed in order to accommodate the decision delay introduced by the Viterbi detector.
In transmission over fast time-varying channels the FIR channel estimator is sometimes
supported with a predictor that helps to decrease the delay in channel estimation caused
by the decision delay introduced by the Viterbi detector.

For example, let us consider the channel estimator using the LMS algorithm and driven
by ideal data symbols. Let us neglect the delay with which the data symbols are fed to
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Figure 6.11 Basic scheme of the MLSE receiver with the WMF and Viterbi algorithm

the estimator. Assume that the data symbols are uncorrelated. Then, applying the mean
square error as the criterion for the estimator, we have

En = E
[|en|2

] = E


∣∣∣∣∣∣xn −

N∑
j=−N

ĥj,ndn−j

∣∣∣∣∣∣
2
 (6.59)

where xn is the channel output sample [see (6.3)] and ĥj,n (j = −N, . . . , N) are the
estimates of the channel impulse response at the nth moment. The calculation of the
gradient of error En with respect to the channel impulse response estimate ĥj gives

∂En

∂ĥj,n

= −2E
[
end

∗
n−j

]
(6.60)

Therefore the stochastic gradient algorithm for the adjustment of channel impulse response
estimates is

ĥj,n+1 = ĥj,n + αnend
∗
n−j , j = −N, . . . , N (6.61)

where αn is an appropriately selected step size. It can be shown that the initial step size
should be α0 = 1/((2N + 1)E[|dn|2].

Another solution for deriving the channel impulse response is to use a
zero-autocorrelation periodic training sequence. A fast channel estimator using
such a sequence is applied, for example, in the GSM receiver. Part of the known
sequence placed in the middle of the data burst, called midamble, is a zero-autocorrelation



 

432 Introduction to Digital Communication Systems

periodic training sequence. In this case the channel impulse response samples are
estimated on the basis of the following formula

ĥi =
N∑

j=−N

xjd
∗
i−j (6.62)

Thus, the received signal, which is the response of the channel to the periodic training
signal, is cross-correlated with the complex conjugate of the training sequence. On the
basis of the estimated impulse response samples ĥi the receiver calculates the WMF
coefficients and the weights {bk} used by the Viterbi detector.

Closer investigation of formula (6.57) allows to conclude that in order to minimize
the cost function and find the optimum data sequence, MN operations (multiply and
add, compare, etc.) have to be performed in each timing instant. M is the size of the
data alphabet. If modulation is binary (M = 2) and the length of ISI is moderate, the
detection algorithm is manageable. This is the case of the GSM receiver. However, if
M is larger and/or ISI corrupts a larger number of modulation periods, the number of
calculations becomes excessive and suboptimal solutions have to be applied. Papers by
Eyuboglu and Qureshi (1988), Duel-Hallen (1992) and Wesołowski (1987) show examples
of suboptimum MLSE receivers.

An alternative equivalent structure of the MLSE equalizer was proposed by Ungerboeck
(1974). Its derivation following Ungerboeck’s considerations can also be found in Proakis
(2000).

As in (6.1), let the received signal have the form

x(t) =
n∑

i=0

dih(t − iT ) + ν(t) (6.63)

Let us note that this time we consider the received signal starting from the data symbol
indexed with 0 and finishing at the current timing instant n. Let us represent the above
signal in the form of an expansion, using a set of orthonormal functions. Then (6.63) can
be written in the form

x(t) = lim
K→∞

K∑
k=1

xkfk(t)

where {fk(t)} is a complete set of orthonormal functions and K is the number of functions
used in the approximation of the continuous signal x(t). The weights xk are in fact
linear combinations of data symbols di (i = 0, . . . , n) and expansion coefficients hki

(i = 0, . . . , n, k = 1, 2, . . . ,K), i.e.

xk =
n∑

i=0

dihki + νk, k = 1, 2, . . . (6.64)
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In turn, the expansion coefficients hki and vk result from the formulas

hki =
∫

h(t − iT )fk(t)dt (6.65)

and
νk =

∫
ν(t)fk(t)dt (6.66)

Let us write the expansion coefficients and the data sequence in vector form as

xK
1 = [x1, x2, . . . , xK ] (6.67)

dn
0 = [d0, d1, . . . , dn] (6.68)

This time, we explicitly show the size of appropriate vectors. The MLSE receiver selects
the data vector d̂n

1 for which the conditional probability density function p(xK
1 |dn

0) is max-
imized. Let us note that coefficients xK

1 represent the received signal x(t). The maximized
probability density function has the form of a multidimensional Gaussian pdf, i.e.

p(xK
1 |dn

0) =
(

1

2πσ 2

)K

exp

− 1

σ 2

K∑
k=1

∣∣∣∣∣xk −
n∑

i=0

dihki

∣∣∣∣∣
2
 (6.69)

Maximization of the logarithm of p(xK
1 |dn

0) is much more convenient than the maximiza-
tion of p(xK

1 |dn
0) itself. The logarithm of the conditional probability density function takes

the form

ln p(xK
1 |dn

0) = const − 1

2σ 2

K∑
k=1

∣∣∣∣∣xk −
n∑

i=0

dihki

∣∣∣∣∣
2

(6.70)

where const does not depend on the choice of data sequence and can be omitted in
further considerations. As the number of applied orthonormal functions K tends to infinity,
the finite sum evolves into an integral and discrete coefficients change into continuous
functions. As a result, we have

ln p(xK
1 |dn

0) ∼ −
∫ ∞

−∞

∣∣∣∣∣x(t) −
n∑

i=0

dih(t − iT )

∣∣∣∣∣
2

dt

= −
∫ ∞

−∞
|x(t)|2 dt + 2 Re

{
n∑

i=0

[
d∗

i

∫ ∞

−∞
x(t)h∗(t − iT )dt

]}

−
n∑

i=0

n∑
j=0

d∗
i dj

∫ ∞

−∞
h(t − jT )h∗(t − iT )dt (6.71)
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The integral − ∫ ∞
−∞ |x(t)|2 dt does not have any influence on the choice of the data

sequence dn
0, so in order to maximize ln p(xK

1 |dn
0) we search for such dn

0 for which the
sum of the second and third component of (6.71) is maximized. Let us denote the samples
of the autocorrelation function of the channel impulse response as

rn = r(nT ) =
∫ ∞

−∞
h∗(t)h(t + nT )dt (6.72)

The variable yn is then the sample of the filter matched to the channel impulse response
taken at modulation period intervals when the channel output signal x(t) is given to its
input, i.e.

yn = y(nT ) =
∫ ∞

−∞
x(t)h∗(t − nT )dt =

n∑
i=0

dirn−i + νn (6.73)

As a result, maximization of the logarithm of the conditional probability density function
p(xM

1 |dn
1) is equivalent to finding the sequence d̂n

0 for which the following cost function
Cn(dn

0) is maximized

Cn(dn
0) = 2 Re

[
n∑

i=0

d∗
i yi

]
−

n∑
i=0

n∑
j=0

d∗
i dj ri−j (6.74)

The maximized cost function can be calculated recursively using the expression

Cn(dn
0) = Cn−1(d

n−1
1 ) + Re

[
d∗

n

(
2yn − r0dn − 2

L∑
m=1

rmdn−m

)]
(6.75)

where yn is the sample at the matched filter output in the nth timing instant and rm

(m = 0, . . . , L) are the samples of the autocorrelation function of the channel impulse
response. In (6.75) we have assumed that at most L samples of the channel autocorelation
function have significant values.

As in the case of the regular MLSE receiver, Ungerboeck’s MLSE receiver (Figure 6.12)
can apply the Viterbi algorithm to recursively calculate the cost function for each trellis
state. This time the number of states is equal to ML, where M is the number of data
signal constellation points.

The performance of the Ungerboeck receiver and the Forney receiver is the same.
The advantage of Ungerboeck’s receiver is that there is no need to calculate the whitened
matched filter impulse response. Instead, the matched filter is applied and the path metrics
are appropriately modified.

Matched filter
h*(−t)

ML sequence
detector

t = nT
yn

Input
signal x(t) dn

^

Figure 6.12 Block diagram of the Ungerboeck version of the MLSE receiver
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6.9 Examples of Suboptimum Sequential Receivers

Sequential receivers applying the Viterbi algorithm achieve high performance, which is
measured by a low probability of erroneous decisions. They are among the best receivers
considered so far in this chapter. However, the performance quality of sequential receivers
is usually bought by their high computational requirements resulting from the number ML

of states of the the trellis diagram. As we see, the number of states grows exponentially
with the number of interfering symbols L. However, the base of the state number ML is
the size of digital modulation M . Therefore the receiver that is based on the pure Viterbi
algorithm is impractical if 16- or 64-QAM modulations are applied. As we have said ear-
lier, in such cases simplifications of sequential receivers are needed that will substantially
decrease the computational requirements without unduly decreasing the performance. Two
such solutions will be described below.

The first one is called the M algorithm , but it is worth noting that this symbol M has
a different meaning than the modulation size. The algorithm was presented by Anderson
and Mohan (1984). Its functioning is very similar to the Viterbi algorithm and it is based
on the observation that in the Viterbi algorithm in a given time instant only a limited
number of states are realistic candidates to be the source of paths that feature small or
even the lowest metric. The performance quality should only be insignificantly decreased
if in each algorithm step only a small subset of states, for which the cost of reaching
them is among the smallest, is extended. Let us denote the number of such states as MS .
The M algorithm works as follows.

Let us assume that in a given time instant we know the subset of MS states featuring
the lowest metrics of their survivors. In each modulation period the algorithm extends the
paths reaching each of these MS states to those states that are available in the next timing
instant. The number of possible paths originating from each of these MS states is equal
to the modulation size M . For all achievable states the algorithm calculates the metrics
of the path reaching them. The states are subsequently sorted in decreasing order of the
costs of their surviving paths and among at most M × MS such states only MS states are
retained for processing in the next step.

Let us denote the cost of reaching the kth state in the (n − 1)st moment as Sk
n−1.

Let the data sequence associated with the kth state survivor in the (n − 1)st moment be
d(k)

n−1 = (d
(k)
n−1, d

(k)
n−2, . . . , d

(k))
n−L. Let us assume that the algorithm processes the samples

from the output of the whitened matched filter. As a result, intersymbol interference on
its output is only caused by the past data symbols. Then, the hypothetical intersymbol
interference resulting from the data sequence associated with the kth state can be presented
as (cf. Figure 6.11)

ISI
(k)
n−1 =

L∑
j=1

bjd
(k)
n−j (6.76)

For each state considered in the (n − 1)st moment the cost of reaching every possible
state in the nth moment is calculated according to the formula

Sj
n = |yn − b0d

i
n − ISI

(k)
n−1|2 + S

(k)
n−1

for i = 1, 2, . . . , M, j = 1, 2, . . . ,MS × M (6.77)
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Figure 6.13 Illustration of the M algorithm

where j is the state index determined by the data vector [di
n, d

(k)
n−1, d

(k)
n−2, . . . , d

(k)
n−(L−1)].

As we said earlier, the algorithm sorts the survivor costs in decreasing order and only MS

lowest costs and associated states are taken into account in the next moment. Figure 6.13
illustrates the operation of the M algorithm for a binary modulation (M = 2), when
intersymbol interference results from L = 3 past data symbols and the algorithm retains
MS = 2 states for processing in the next step. Let us note that among ML = 8 possible
states the M algorithm considers only two best states and it extends their potential list
to MS × M = 4 states. In the example shown in Figure 6.13 we assume that until the
(n − 7)th moment the data sequence is known to the receiver (the data sequence can be
a known preamble or a test sequence). Starting from the (n − 7)th moment the receiver
uses the sequential algorithm. In the (n − 7)th moment the algorithm investigates the path
from state e to two possible states, i.e. states c and g. Starting from the (n − 6)th moment
the algorithm checks the possible paths from both states to two states in the next moment.
Out of the resulting four states the best two states are retained. In Figure 6.13 they are
denoted by circles. Let us note that all survivors of processed states in the nth moment
originate from the same route. In Figure 6.13 this is marked in bold. The appearance of
the common route indicates that the algorithm has already made the final decision upon
the past symbols [up to the (n − 2)nd moment, as shown in Figure 6.13].

It has been noticed that the M algorithm operates well if it is preceded by the whitened
matched filter. In consequence, calculation of the WMF coefficients is required. The next
drawback is the necessity of sorting the state costs and creation of the state list. If the
number of states extended in each step of the algorithm is large, such an operation can
be cumbersome.

The second suboptimum sequential algorithm is DDFSE – Decision-Delayed Feedback
Sequence Estimation – proposed in 1989 (Duel-Hallen and Heegard 1989). Assume again
that the whitened matched filter precedes the functional block implementing the sequen-
tial algorithm. In the DDFSE receiver the effective decrease of the number of states of
the original Viterbi algorithm is obtained through subtraction of the partial hypothetical
intersymbol interference associated with the shortest path to a given state from the input
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sample yn. Let us consider the calculation of the path metric λ
kj
n from the kth state in the

(n − 1)st moment to the j th state in the nth moment. In the DDFSE receiver this metric
is calculated from the formula

λkj
n =

∣∣∣∣∣∣yn −
L′∑
i=0

bid
(kj)

n−i −
L∑

i=L′+1

bid
(k)
n−i

∣∣∣∣∣∣
2

(6.78)

where d
(kj)

n−i (i = 0, 1, . . . , L′) are data symbols associated with the path from the kth to
the j th state in the nth moment, whereas d

(k)
n−i (i = L′ + 1, . . . , L) is the data sequence

uniquely determined on the trellis diagram by the shortest path to the kth state in the
(n − 1)st moment. As we can see, owing to this operation the number of algorithm states
decreases from ML to ML′

(L′ < L). The characteristic feature of the DDFSE algorithm
is the individual feedback applied in each trellis state. The choice of the number of states
to be considered is made by selection of the number L′ of interfering samples acquired
from the output of the whitened matched filter and seen on the input of the DDFSE block.
This number determines the compromise between the computational requirements and the
performance quality of the suboptimal sequential detector.

6.10 Case Study: GSM Receiver

In order to illustrate the operation of a GSM receiver we have to describe the basic
scheme of GSM transmission first. In the GSM system data are transmitted in the form
of bursts. There are several types of bursts, resulting from different operations performed
during the setting of connection, signaling, synchronization, paging request, etc. We will
consider a typical situation in which the link has already been established and traffic data
are transmitted.

The GSM system is based on the Time Division Multiple Access (TDMA) principle,
which will be explained in detail in Chapter 9. In the GSM system time is divided into
frames that last for 4.6125 ms each. A single frame is further divided into eight slots.
Each slot has a duration of 0.577 ms. A slot in each frame is assigned to a particular link.
Thus, in a typical connection the mobile terminal transmits and receives data in 1/8 of a
frame. The basic GSM system applies a binary modulation called a GMSK (see Chapter
4). The modulation period is equal to 3.69 µs, so the modulation rate is 270.833 kbit/s
and a single slot has a duration of 156.25 bits. Actually, only 148 bits are transmitted and
the remaining time is a guard period. The guard time is needed for switching the transmit
amplifier on and off and for protection against timing inaccuracies. Figure 6.14 shows a
normal burst used for data transmisison after the link has been established. As already
mentioned, the burst consists of 148 bits. Three bits at the beginning and at the end of
the burst are the so-called zero tail bits. Two 57-bit blocks on both ends of the burst
transmit the user data. Two separate flag bits inform the receiver what type of data is
currently transported. Finally, a 26-bit training sequence called midamble is transmitted
in the middle of the burst. The ETSI/GSM standard EN 300 908 (ETSI 1999) lists eight
possible training sequences (see Table 6.1). A particular training sequence is assigned to
the link during the process of its establishment.
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Figure 6.14 Structure of the normal GSM burst

Table 6.1 Training sequences for normal GSM burst

Training sequence code Training sequence bits

0 0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1
1 0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1
2 0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,0
3 0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0
4 0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1
5 0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0
6 1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,1,1
7 1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0

Training sequences have a special form. Each of them consists of a 16-bit word plus
five cyclicly repeated bits at both ends for protection purposes. The aim of the training
sequence is to allow the receiver to position the received burst on its own time axis, i.e.
to synchronize its own operation with the received signal and to estimate the channel
impulse response that is needed for appropriate operation of the data sequence estimator.
Assuming that the received samples can be accumulated in the memory, placement of the
training sequence is arbitrary – it does not need to be located at the start of the burst. If
placed in the middle of the burst, it minimizes the effect of channel time variability within
the slot. If the channel is time varying, its change is substantially smaller when observed
from the middle of the burst towards both ends compared with a potential change from
the beginning of the burst to its end.

In the transmitter, 148 bits of the normal burst are fed to the GMSK modulator. Accord-
ing to ETSI Standard EN 300 959 (ETSI 2001a), functioning of the modulator is described
by the following formulas. First, data bits di are subject to some kind of differential
encoding in the form

ai = di ⊕ di−1 (6.79)
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where ⊕ denotes a modulo-2 sum. Then, the resulting bits are converted into bipolar
form, using the expression

αi = 1 − 2ai (6.80)

Data symbols are shaped by an appropriate filter characterized by the impulse response
g(t) given by formula (5.102) with parameters BT = 0.3, where B is a 3-dB bandwidth
and T is the modulation period. Finally, the GMSK signal is described by the formula

s(t) =
√

2Ec

T
cos[2πfct + ϕ(t) + ϕ0] (6.81)

where the phase function containing data symbols is given by the expression

ϕ(t) =
∑

i

πhαi

t−iT∫
−∞

g(τ)dτ (6.82)

As we explained in Chapter 4, signal s(t) given by (6.81) and (6.82) with BT = 0.3
and h = 0.5 is well approximated by a linear modulation with the appropriately selected
pulse-shaping filter and a numerically calculated impulse response p(t) that has a similar
shape to the Gaussian one. Unfortunately this pulse spans up to five modulation periods,
so the modulator itself introduces intersymbol interference.

The burst in the form of a GMSK-modulated signal (6.81) is transmitted over the
multipath channel, received in distorted form by the receive antenna (Figure 6.15) and
down-converted to the baseband. The burst samples of the in-phase and quadrature base-
band components are stored in RAM. The whole transmission chain after conversion to
the baseband can be approximately described by the following equation

x(t) =
N∑

k=0

ckh(t − kT ) + ν(t) (6.83)
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Figure 6.15 General scheme of the GSM receiver
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where h(t) is a convolution of the pulse-shaping filter p(t), the baseband equivalent
channel and the receive filter, and ν(t) is the additive Gaussian noise. The data symbols
are given by the formula

ck = ck−1 exp(jαkπ/2) = c0 exp

(
j
π

2

k∑
i=0

αi

)
(6.84)

After the whole burst is accumulated, its contents can be processed off-line. First, the
middle of the burst is found and the joint channel, transmit and receive filter impulse
response is estimated on the basis of the known midamble.

Estimation of the joint channel impulse response h(t) is an important step in the receiver
operation. Let us consider it when taking the midamble sequence No. 0 as an example.
As we know from (6.79) the differential encoding is performed in the transmitter. Let us
arbitrarily assume that d0 = 0, i.e. the value of the last bit preceding the midamble in the
burst. Let us note that it could be equal to “1” as well. In Tables 6.2 and 6.3 we show the
original midamble dk (k = 1, . . . , 26), the midamble ak (k = 1, . . . , 26) after differential
encoding and related symbols ck (k = 1, . . . , 26), assuming that c0 = 1.

The specific 16-symbol word is contained between positions 6 and 21. The first five
symbols are copied from positions 17–21, whereas the last five symbols are copied from
positions 6–10. It is assumed that the first five samples contain echoes from the data
symbols preceding the midamble, so they are not taken into account in channel estimation.
It is also assumed that the channel impulse response spans at most five modulation periods,
so we estimate six channel impulse response samples and we assume N = 5 in (6.83).
After sampling the baseband equivalent channel output at the moments t = nT , and if
we neglect noise, we obtain formula (6.83) in the form

xn = x(nT ) =
N∑

k=0

ckhn−k =
N∑

k=0

hkcn−k (6.85)

Table 6.2 Several forms of GSM training sequence No. 0 – Part 1

k 1 2 3 4 5 6 7 8 9 10 11 12 13

dk 0 0 1 0 0 1 0 1 1 1 0 0 0
ak 0 0 1 1 0 1 1 1 0 0 1 0 0
ck j −1 j 1 j 1 −j −1 −j 1 −j 1 j

Table 6.3 Several forms of GSM training sequence No. 0 – Part 2

k 14 15 16 17 18 19 20 21 22 23 24 25 26

dk 0 1 0 0 0 1 0 0 1 0 1 1 1
ak 0 1 1 0 0 1 1 0 1 1 1 0 0
ck −1 j 1 j −1 j 1 j 1 −j −1 −j 1
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If the sequence ck has the following property

N∑
m=0

c∗
mcm+k =

 0 for k �= 0

(N + 1)|c|2 for k = 0
(6.86)

then on the basis of the received samples xn we can derive the channel impulse response
sample, using the formula

yi =
N∑

m=0

c∗
mxi+m (6.87)

Substituting (6.85) into (6.87) we obtain

yi =
N∑

m=0

c∗
m

N∑
k=0

hkci+m−k =
N∑

k=0

hk

N∑
m=0

c∗
mci+m−k

=
 0 for k �= i

(N + 1)|c|2hi for k = i

(6.88)

If we wish to estimate the channel impulse response using (6.87), we have to apply
a training sequence fulfilling the zero-autocorrelation property expressed by (6.86). Let
us note that if we extract data symbols ck from positions 11–16 shown in Tables 6.2
and 6.3, we obtain such a sequence. Equation (6.87), which allows us to estimate the
channel impulse response, can be easily implemented as a FIR filter in which the tap
coefficients are complex conjugates of the elements of the training sequence. In fact, such
a filter implements the filter matched to the training sequence and its scheme is shown in
Figure 6.16. In this way a sliding window over the sample sequence from the matched
filter output can be created. The moment in which the signal energy within the window
is maximum indicates synchronization with the burst midamble and this point determines
the middle of the burst. In this way slot (burst) synchronization is performed.

Knowing the channel impulse response estimates hi (i = 0, . . . , N ) and the midamble
sequence, the Viterbi detector can start its operation. It is preceded by the matched filter,
so the optimum solution is to apply the Viterbi detector in the version proposed by

T T T T T

yi

cN−1* c1* c0*cN−2* cN−3*cN*

xi+N

+

××××××

Figure 6.16 The filter matched to the GSM midamble used for slot synchronization
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Ungerboeck that has been shown earlier in this chapter. Let us note that searching for the
best route on the trellis is performed in both ways towards the ends of the burst, i.e. in the
regular and reversed order. Despite N = 5 being assumed in the above considerations, five
samples of the channel impulse response are usually taken into account so the equivalent
channel model has four memory cells. In consequence, the Viterbi detector operates on the
trellis that has 16 states, starting from the known state determined by the current training
sequence ck in the middle of the burst. In a typical GSM receiver the deinterleaver and
convolutional code decoder follow the Viterbi detector, so it is very desirable that the
Viterbi detector produces not only data symbols but also their reliability measures, i.e. it
generates soft outputs. Consequently, the convolutional code decoder can be implemented
in the soft-input version and its performance can be increased compared with the case
when only hard-output bits are generated by the Viterbi detector.

6.11 Equalizers for Trellis-Coded Modulations

Trellis-coded modulation (TCM) has already been considered in Chapter 4. However, at
that time we considered TCM in a nondistorting channel with additive white Gaussian
noise as the only impairment. As we remember, detection of the trellis-coded data stream
requires a sequential algorithm, such as the Viterbi algorithm.

Using TCM signals on the ISI channels requires both adaptive equalization and TCM
decoding. The TCM detection process of the whole symbol sequences creates problems
in selection of the equalizer structure and in adjustment of the equalizer coefficients. The
standard solution is to apply a linear equalizer minimizing ISI, followed by the TCM
Viterbi decoder. The equalizer coefficient updates can be done using either unreliable ten-
tative decisions or the reliable but delayed decisions from the TCM Viterbi decoder (Long
et al. 1989). In the case of the LMS algorithm applied in the equalizer, the consequence
of using the delayed error signal (see Figure 6.17) is the need to decrease the step size
(Long et al. 1989).

Linear
equalizer

+ −

Error signal

yn dn−D
^Input

samples

Delay

TCM Viterbi
detector

Figure 6.17 Linear equalizer with TCM decoder

On some channels, in particular those featuring a long tail in the channel impulse
response or possessing deep nulls in their characteristics, applying a decision feeedback
equalizer is more advantageous. Using joint DFE and trellis coding requires some spe-
cial solutions due to the fact that in its feedback filter the DFE uses symbol-by-symbol
decisions with a single delay. One solution is to apply an interleaver between the TCM
encoder and the modulator at the transmitter, and the predictive DFE with the deinterleaver
between the linear part of the equalizer and the decision feedback part incorporating the
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TCM Viterbi decoder and predictor (Proakis 2000). Another solution applicable in sys-
tems with a feedback channel and operating on transmission channels that are stationary or
slowly varying in time is to share the DFE equalization between transmitter and receiver.
In this case the concept of Tomlinson precoding applied jointly with the TCM coding is
very useful (Aman et al. 1991).

The optimum receiver for TCM signals corrupted by ISI was shown in Chevillat and
Elefteriou (1989). Its structure is basically the same as that shown in Figure 6.11; however,
now the Viterbi detector operates on the supertrellis resulting from concatenation of ISI
and TCM code trellises. Because both the number of supertrellis states and the resulting
computational complexity are very high, suboptimum solutions have to be applied. The
most efficient relies on incorporating ISI into the decision feedback for each supertrellis
state, using the data sequences that constitute the “oldest” part of the maximum likelihood
data sequence associated with each state (the so-called survivor). In fact, this idea is
already known from the decision-delayed feedback sequence estimation (Duel-Hallen
1992) used for uncoded data.

6.12 Turbo Equalization

In modern digital communication systems data transmission is often supplemented with
FEC error correction coding, which ensures the required overall system performance. A
simplified configuration of a transmitter of such a system is shown in Figure 6.18. The
binary data stream ak (k = 1, . . . , N) is encoded using the convolutional code encoder
that produces binary coded symbols xk,l (k = 1, . . . , N ; l = 1, . . . , n), where 1/n is the
coding rate. This stream is then subject to interleaving. Data reordering performed by the
interleaver is denoted by a new index i on the interleaver output, so the interleaved data
stream is denoted as xi (i = 1, . . . , nN). If a BPSK modulator is applied in the system, as
shown in Figure 6.18, each output BPSK symbol represents a single bit from its input.The
BPSK output symbols are di = 2xi − 1 (i = 1, . . . , nN). In vector notation we denote
respective data streams as a, x, and d. The resulting BPSK data stream is transmitted
through the channel. The channel block shown in Figure 6.18 represents the cascade of
the transmit filter, the transmission channel and the whitened matched filter. The received
signal is sampled with the frequency equal to the modulation rate 1/T . The signal seen
at the input of the equalizer is described by (6.50), repeated here for our convenience in
a slightly changed version

yi =
L∑

j=0

bjdi−j + νi (6.89)

Convolutional
code encoder Interleaver BPSK

modulator Channel Turbo
equalizer

 νi

âak xkl xi di yi+

Figure 6.18 Simplified scheme of the transmission system with coding and turbo equalization
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where νi is, as before, the white Gaussian noise sample of variance σ 2
ν . Let us denote the

whole block of received samples yi (i = 1, . . . , nN) as y. The goal of the receiver is to
find the input block vector a on the basis of the received block y.

In the conventional approach, FEC decoding and equalization of the transmission chan-
nel are treated separately. This disjoint strategy results in performance loss compared with
the optimal receiver, which would treat equalization and decoding jointly. The optimal
receiver is an MLSE or symbol-by-symbol MAP detector that operates on the super-trellis
resulting from joint treatment of the channel and FEC code. Let us note that the channel,
whose operation is described by equation (6.89), can be considered as a convolutional
code with analog coefficients and coding rate R = 1. Thus, in fact we can interpret the
transmission system shown in Figure 6.18 as a concatenated coding system with the outer
code in the form of a convolutional code and the inner code in the form of a finite impulse
response channel.

The optimal MLSE or symbol-by-symbol MAP detector would have excessive com-
plexity because of the large size of the super-trellis characterizing the whole system.
Instead, a suboptimal solution similar to the turbo decoder can be applied. The technique,
which uses the turbo principle, is called turbo equalization . A general scheme of the
receiver based on this technique is shown in Figure 6.19. It is very similar to the turbo
decoder described in Chapter 2.

Interleaver

Deinterleaver

 

SISO binary
decoder

SISO
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Λa(xi)
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Figure 6.19 General scheme of the turbo equalizer

The turbo equalizer consists of the SISO (Soft-Input Soft-Output) equalizer, the dein-
terleaver, the SISO binary decoder and the interleaver in the feedback loop connected to
the SISO equalizer input. The SISO equalizer acquires the received sequence yi of length
nN and the sequence of a priori log-likelihood ratios �a(xi) of the code symbols xi of
the same length. Namely, we have

�a(xi) = ln
Pr{xi = 1}

Pr{xi = −1} = ln
Pr{di = 1}

Pr{di = −1} (6.90)

The log-likelihood ratio �a(xi) is obtained by interleaving the extrinsic information
sequence calculated by the SISO decoder in the previous iteration of the turbo equal-
izer. We assume that in the first iteration the data symbols di , or equivalently xi , are
equiprobable, so at the beginning �a(xi) = 0 (i = 1, . . . , nN).
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The SISO equalizer can operate according to different criteria. The optimal one is MAP
symbol-by-symbol detection, whereas the suboptimal one is soft-output MLSE detection.
Assuming application of the MAP criterion, which operates according to the formula

d̂i = arg max
{di}

P(di |y) (6.91)

in each iteration the SISO equalizer calculates the a posteriori log-likelihood ratios �p(xi)

of the data symbols di (i = 1, . . . , nN) on the basis of the received data block y, i.e.

�p(di) = ln
Pr{di = 1|y}

Pr{di = −1|y} = ln
Pr{xi = 1|y}
Pr{xi = 0|y} = �p(xi) (6.92)

As in the case of turbo decoding, one can show that �p(xi) can be split into two compo-
nents: the a priori information related to the data symbol di , or equivalently to the code
symbol xi , and the extrinsic information about the code symbol xi , i.e.

�p(xi) = �a(xi) + �e(xi) (6.93)

As in the case of turbo decoding, only the extrinsic information �e(xi) = �p(xi) −
�a(xi), which is changed to �e(xl) after deinterleaving, is supplied as the input sequence
to the SISO decoder, which treats it as the a priori information �a(xl). On the basis
of the sequence �a(xl) (l = 1, . . . , nN), the SISO decoder calculates the sequence of
a posteriori log-likelihood ratios, which again can be treated as the sum of a priori
information �a(xl) and extrinsic information �e(xl) about code symbol xl , i.e.

�p(xl) = ln
Pr{ak = 1|y}
Pr{ak = 0|y} = �a(xl) + �e(xl) (6.94)

The extrinsic information �e(xl) is, after interleaving, supplied back to the SISO equalizer
as the a priori information �a(xi). In this way the feedback loop of the turbo equalizer
has been closed. The detection and decoding operations are performed iteratively an
appropriate number of times. In the last iteration, instead of �p(xl) the SISO decoder
generates a sequence of the a posteriori log-likelihood ratios

�p(ak) = ln
Pr{ak = 1|y}
Pr{ak = 0|y} (6.95)

The final decision concerning the data block ak (k = 1, . . . , N) results from the rule

âk =
 1 if �p(ak) ≥ 0

0 if �p(ak) < 0
(6.96)

The way in which different log-likelihood ratios applied in the turbo equalizer are
calculated depends on the applied detection and decoding algorithms. The performed
calculations are similar to those shown for the turbo decoder in Chapter 2, so we will not
repeat them here.
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6.13 Blind Adaptive Equalization

As we have already mentioned, in some cases sending a known data sequence to train
the equalizer can result in wasting of a considerable part of transmission time. One of
the cases where adaptive equalization without a training sequence is applied is the trans-
mission of a Digital Video Broadcasting (DVB) data stream in a DVB cable distribution
system. A DVB cable receiver, after being switched on, has to compensate for intersymbol
interference on the basis of the received signal and general knowledge of the transmitted
signal properties.

Blind equalization algorithms can be divided into three groups:

• the Bussgang (Bellini 1988) algorithms, which apply the gradient-type procedure with
nonlinear processing of the filter output signal in order to obtain a reference signal
conforming to the selected criterion;

• second- and higher order spectra algorithms, which apply higher order statistics of the
input signals in order to recover the channel impulse response and subsequently to
calculate the equalizer coefficients;

• probabilistic algorithms, which realize the ML or MAP sequence estimation or subop-
timum methods.

The algorithms belonging to the first category are easiest to implement and will
be described below. A short overview of the remaining categories can be found in
Wesołowski (2003).

The theory of blind equalization presented in Benveniste et al. (1980) shows that in
order to adjust the linear equalizer properly one should drive its coefficients in such a
way that the instantaneous probability distribution of the equalizer output yn converges
to the data input signal probability distribution pD(y). However, one important condition
has to be fulfilled: the probability density function of the input signal dn must be different
from the Gaussian one. It has been found that the ISI introduced by the channel distorts
the shape of the input probability density function unless it is Gaussian.

The main difficulty in designing the equalizer’s adaptation algorithm is finding a crite-
rion that, when minimized with respect to the equalizer’s coefficients, results in (almost)
perfect channel equalization. One approach is to calculate the error

en = yn − g(yn) (6.97)

which is to be minimized in the mean square error sense, where g(yn) is an “artificially”
generated “reference signal” and g(.) is the memoryless nonlinearity. Thus, the general
criterion that is the subject of minimization with respect to the coefficient vector cn is

En = E
[|en|2

] = E
[|yn − g(yn)|2

]
(6.98)

A typical approach to finding the minimum of En is to change the equalizer’s coefficients in
a direction opposite to that indicated by the current gradient of En, calculated with respect
to cn. If we assume that all the signals and filters are complex, we get the following
“reference” and error signals

ỹn = g[Re(yn)] + jg[Im(yn)] ẽn = yn − ỹn (6.99)
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Calculation of the gradient of En leads to the result

grad
cn

En = 2E
[〈Re(̃en){1 − g′[Re(yn)]} + j Im(̃en){1 − g′[Im(yn)]}〉x∗

n

]
(6.100)

In practice the derivative g′(.) is equal to zero except for a few discrete values of its
argument. Thus, the stochastic version of the gradient algorithm achieves the well-known
form

cn+1 = cn − αẽnx∗
n (6.101)

where this time the error signal ẽn is described by (6.99). Unfortunately, the optimal non-
linear function g(.) is difficult to calculate. Bellini (1988) investigated this function with
several simplifying assumptions. Generally, function g(.) should vary during the equal-
ization process. Most of the gradient-based adaptation algorithms are in fact examples
of the Bussgang technique, although they were found independently of it. Below we list
the most important versions of the gradient algorithms, quoting the error signals that are
characteristic for them:

• Sato algorithm: ẽn = eS
n = yn − AScsgn(yn), where csgn(yn) = sgn[Re(yn)]+

+jsgn[Im(yn] and AS is the weighting center of the in-phase and quadrature data
signal components;

• Benveniste–Goursat algorithm: ẽn = eB
n = k1en + k2 |en| eS

n , en = yn − dec(yn), where
k1 and k2 are properly selected weighting coefficients;

• Stop-and-Go algorithm: ẽn = eSG
n = f R

n [ Re(en)] + jf I
n [[ Im(en)], where en = yn −

dec(yn) and the weighting factors f R
n and f I

n turn on and off the in-phase and quadrature
components of the decision error, depending on the probability of the event that these
components indicate the appropriate direction of the coefficients’ adjustment;

• Constant Modulus (CM) algorithm: ẽn = eG
n = (|yn|2 − R2

)
yn, where R2 is a properly

selected data constellation radius.

The CM algorithm, which is explicitly described by the equation

ci,n+1 = ci,n − α
(|yn|2 − R

)
ynx

∗
n−i , i = −N,−(N − 1), . . . , N (6.102)

is the most popular among the four described above but loses information about the phase
of the received signal. Therefore, it has to be supported by the phase-locked loop in order
to compensate for the phase ambiguity.

Example 6.13.1 Let us consider application of the CM algorithm in the transmission of
DVB signals over a cable used before for transmission and distribution of analog TV
signals. Our example is similar to that reported in Karam et al. (1996). Let the single
TV 8-MHz channel have the characteristics shown in Figure 6.20, which results from the
echoes occurring in the cable and from the characteristics of the transmit and receive fil-
ters. Let the transmit and receive filters have the square root raised cosine characteristics
with a roll-off factor of α = 0.15, as it is set by the standard. The DVB-C signal is trans-
mitted using 64-QAM. Figure 6.21a presents the signal received on the equalizer input
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Figure 6.20 Characteristics of the cascade connection of the transmit and receive square root
raised cosine filters and the exemplary cable channel used in DVB-C digital transmission: (a)
impulse response, (b) amplitude characteristics (Karam et al. 1996)
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Figure 6.21 Illustration of functioning of the linear equalizer with CM algorithm compensating
for the channel from Figure 6.20 after achieving tap settings close to the optimum: (a) signal con-
stellation on the equalizer input, (b) signal constellation on the filter output, (c) signal constellation
after carrier phase adaptation

in the in-phase and quadrature plane. As we see, the signal is distorted by the channel
introducing ISI, noise and frequency offset to such an extent that correct decisions upon
received constellation points are not possible. Figure 6.21b presents the results of the
channel equalization performed by the linear equalizer operating according to the CMA
citerion, whereas Figure 6.21c shows the signal constellation on the output of the car-
rier phase correction block placed on the output of the equalizer filter. Such constellation
points enable reliable data decisions to be made.
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6.14 Equalizers for MIMO Systems

So far we have considered several configurations of digital receivers operating in
single-input single-output (SISO) systems. In Chapter 1 we showed that the system
capacity can be substantially increased with respect to SISO systems if the transmitter
emits signals over NT antennas and the receiver uses NR antennas to acquire all the
signals generated by the transmitter. Such a system is called a MIMO (Multiple-Input
Multiple-Output) system. Let us recall that all the signals are emitted simultaneously
by NT antennas in the same band. Because there are NR receive antennas, NT × NR

channels are established in such a system (see Figure 6.22). The MIMO scheme can be
supplemented by channel coding if necessary; however, in the following we consider a
pure MIMO system without coding.
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Figure 6.22 General configuration of the MIMO system

M-ary data symbols, which are generated serially, are initially converted into the data
vector dk = [d1

k , d2
k , . . . , d

NT

k ] of length NT , where index k denotes the current timing
instant. Each vector entry di

k (i = 1, . . . , NT ) is subsequently emitted by a separate trans-
mit antenna. The signals generated by all NT antennas are jointly received by NR receive
antennas. Let us denote the channel impulse response between the ith transmit antenna
and j th receive antenna, in which the transmit pulse-shaping filter g(t) is included, as
hji(t). The baseband equivalent signal generated by the ith transmit antenna is

si(t) =
∞∑

k=−∞
di

kg(t − kT ), i = 1, . . . , NT (6.103)

whereas the signal observed on the j th receive antenna is

x
j

k = xj (kT ) =
NT∑
i=1

Lji−1∑
m=0

h
(m)
ji di

k−m + n
j

k = r
j

k + n
j

k (6.104)

where h
(m)
ji = hji(mT ) (m = 0, . . . , Lji − 1) are samples of the impulse response of the

channel existing between the ith input and j th output antennas. Variable n
j

k is a sample
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of white Gaussian noise observed in the kth timing instant on the j th receive antenna
and r

j

k is an unobservable “noiseless” channel output sample. Let us assume that channel
coefficients h

(m)
ji are complex-valued, mutually statistically independent Gaussian random

variables with zero mean and variance σ 2
j im.

6.14.1 MIMO MLSE Equalizer

A MIMO MLSE equalizer is a generalization of the MLSE equalizer considered previ-
ously for SISO systems. The MLSE receiver treats the equalized channel as a finite state
machine. The channel states are determined by the contents of the tapped delay lines
of the filters that model each composite channel. The filter weighting coefficients are
given by vectors hj i = [h(0)

j i , h
(1)
j i , . . . , h

(Lji−1)

j i ]T (i = 1, . . . , NT , j = 1, . . . , NR). Let us
assume for simplicity that Lji = L for i = 1, . . . , NT and j = 1, . . . , NR . As in each
timing instant the data vector dk = [d1

k , d2
k , . . . , d

NT

k ] enters all the composite channels,
and since their tapped delay line length is equal to L, the MIMO channel state in the kth
timing instant is determined by the vector

Sk = [dk−1, dk−2, . . . , dk−L+1] (6.105)

We conclude from (6.105) that the number of channel states is MNT (L−1) and it exponen-
tially depends on the number of transmit antennas NT and the channel impulse response
length L. The channel states and transitions between them can be represented by the
trellis diagram with MNT paths going out of each state. Thus, as in SISO transmission,
finding the maximum likelihood sequence of data vectors dk (k = 1, . . . , K) is equivalent
to searching for the maximum likelihood sequence of states Sk (k = 1, . . . , K) on the
trellis diagram. Formally, the MIMO MLSE receiver finds the sequence of data vectors
dk (k = 1, . . . , K) that maximizes the probability density function

p(xK
1 |dK

1 ) =
K∏

k=1

p(xk|dk, dk−1, dk−2, . . . , dk−L+1) (6.106)

where xK
1 = [x1, x2, . . . , xK ] and xk = [x1

k , x
2
k , . . . , x

NR

k ] (k = 1, . . . , K). We replaced
the joint conditional probability density function p(xK

1 |dK
1 ) by the products of the terms

p(xk|dk, dk−1, dk−2, . . . , dk−L+1) owing to the assumption that additive noise samples
are Gaussian and white, so they are statistically independent. As a result we can write

p(xK
1 |dK

1 ) =
(

1

2πσ 2

)NRK

exp

− 1

2σ 2

K∑
k=1

NR∑
j=1

∣∣∣xj

k − r
j

k

∣∣∣2
 (6.107)

Maximization of (6.107) is equivalent to minimization of the cost metric

CK =
K∑

k=1

NR∑
j=1

∣∣∣xj

k − r
j

k

∣∣∣2 (6.108)
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Cost metric (6.108) can be calculated recursively as

Ck = Ck−1 +
NR∑
j=1

∣∣∣xj

k − r
j

k

∣∣∣2 = Ck−1 + λk(dk) (6.109)

where

λk(dk) =
NR∑
j=1

∣∣∣∣∣∣xj

k −
NT∑
i=1

Lji−1∑
m=0

h
(m)
ji di

k−m

∣∣∣∣∣∣
2

(6.110)

We can efficiently search for the sequence of trellis states, or equivalently the sequence
of data symbols dk (k = 1, . . . , K), for which cost metric (6.108) is minimized if we
use the Viterbi algorithm. What we need to determine is the shortest route to each trellis
state. The only difference between the Viterbi algorithm applied in the MIMO MLSE
receiver and that used in the SISO MLSE receiver is the calculation of the path metric
according to (6.110). For that reason there is no need to present the whole Viterbi algorithm
again. However, we have to stress that the Viterbi algorithm becomes impractical due to
the excessive number of trellis states MNT (L−1) even for short ISI channels when an
M-ary modulation of data symbols is applied and the number of transmit antennas NT

is moderate, e.g. 2–4, as in MIMO systems. Thus, suboptimal receiver structures are
necessary, or reception has to be performed according to another criterion.

6.14.2 Linear MIMO Receiver

As the MLSE receiver is computationally intensive, it can be replaced by simpler
structures. The first one is the linear MIMO equalizer and its scheme is shown in
Figure 6.23. The signals received from NR antennas are down-converted and sampled,
resulting at the kth moment in the sample vector xk = [x1

k , x
2
k , . . . , x

NR

k ]T . The vector
entries constitute the input signals for NT × NR FIR filters with coefficient vector aj i =
[a(−N/2)

j i , a
(−N/2+1)

j i , . . . , a
(0)
j i , . . . , a

(N/2)

j i ], where the length of FIR filters is equal to
N + 1. Strictly speaking, sample x1

k is the input for FIR filters a1i (k) (i = 1, . . . , NT ),
sample x2

k is the input for FIR filters a2i (k) (i = 1, . . . , NT ), etc. On the other hand
the estimate d̃1

k of the transmitted data symbol d1
k is the sum of the outputs from FIR

filters aj1(k) (j = 1, . . . , NR). The operation of the linear MIMO equalizer can be
described in mathematical form by

d̃ i
k =

NR∑
j=1

 N/2∑
m=−N/2

a
(m)
ji x

j

k−m

 , i = 1, . . . , NT (6.111)

or in matrix form as

d̃k =
N/2∑

m=−N/2

Amxk−m (6.112)



 

452 Introduction to Digital Communication Systems

FIR
a11(k)

S
er

ia
l t

o
pa

ra
lle

lData
in

Tx

Tx
dk

1

dk
NT

rk
NR

h11(t)

rNR
(t)

hNR
1(t)

h2NT
(t)

hNRNT
(t)

h1NT
(t)

h21(t)

rk
1

rk
2

r2(t)

r1(t)

dk
1^

dk
NT^

Demod/
sampling

Demod/
sampling

Demod/
sampling

FIR
a1NT

(k)

FIR
a21(k)

FIR
a2NT

(k)

FIR
aNR

1(k)

FIR
aNRNT

(k)

+

+

Figure 6.23 MIMO system with a linear equalizer

where matrix Am is described by the expression

Am =


a

(m)
11 a

(m)
21 · · · a

(m)
NR1

a
(m)
12 a

(m)
22 · · · a

(m)
NR2

...
...

. . .
...

a
(m)
1NT

a
(m)
2NT

· · · a
(m)
NRNT

 , m = −N/2, . . . , 0, . . . , N/2 (6.113)

Equation (6.112) describes the operation of the generalized FIR filter, for which matrices
Am are the filter coefficients, the received sample vectors xk−m are the tapped delay
line contents, and the vector of equalizer data estimates d̃k is the output the equalizer.
Thus, finding the best coefficients is in fact equivalent to finding such a matrix set Am

(m = −N/2, . . . , N/2) for which the selected criterion is fulfilled. Typical optimization
criteria are Zero Forcing (ZF) or Minimum Mean Square Error (MMSE).

Let us consider the MMSE criterion. Inspection of Figure 6.23 and formula (6.111)
indicates that separate sets of composite FIR filters participate in the minimization of each
mean square error E[|d̃ i

k − di
k|2] (i = 1, . . . , NT ), so minimization of the mean square

error for each data symbol separately leads to the joint minimum mean square error. For
the ith output data symbol the mean square error, which has to be minimized, is described
by the formula

E i
k = E


∣∣∣∣∣∣

NR∑
j=1

aT
jix

j

k − di
k

∣∣∣∣∣∣
2
 (6.114)

where expectation is calculated jointly with respect to data symbols, noise samples and
composite channel coefficients. Denoting the error between the ith transmitted data symbol
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and its equalizer estimate as

ei
k =

NR∑
j=1

aT
jix

j

k − di
k (6.115)

we can express the mean square error for the ith data symbol at the kth moment as
E i

k = E
[∣∣ei

k

∣∣2] and we can calculate its gradient with respect to the coefficient vector ani

(n = 1, . . . , NR)

∂E i
k

∂ani

= E

[
∂ei

k

∂ani

(
ei
k

)∗ + ∂
(
ei
k

)∗
∂ani

ei
k

]
(6.116)

If we calculate the gradient (6.116) and set it to zero we obtain the equation

E

(
xn

k

)∗ NR∑
j=1

(
xj

k

)T

aj i

 = E
[
di

k

(
xn

k

)∗]
, n = 1, . . . , NR (6.117)

So far, we have assumed that the composite channel coefficients are statistically indepen-
dent, zero-mean and Gaussian. Based on these assumptions, the left-hand side of (6.117)
reduces to a single matrix, so the equation takes the form

E
[(

xn
k

)∗ (xn
k

)T ] ani = E
[
di

k

(
xn

k

)∗]
, n = 1, . . . , NR (6.118)

and the optimum coefficient vector can be calculated from the equation

ani,opt = E
[(

xn
k

)∗ (xn
k

)T ]−1· E [
di

k

(
xn

k

)∗]
, n = 1, . . . , NR (6.119)

As we can see, the form of this equation is analogous to that derived for the SISO linear
equalizer. Equation (6.119) allows us to calculate the optimum MMSE coefficients for the
case when the channel coefficients are Gaussian, zero-mean and statistically independent.
If this assumption is not fulfilled the composite equalizer filter coefficients depend not
only on the contents of its own tapped delay line xn

k , but also on all other sample vectors
xj

k . This is caused by possible correlation of impulse responses of the composite MIMO
channels. In order to find a solution for this case, we define the joint vectors of input
samples and equalizer coefficients in the form

xk =
[(

x1
k

)T
,
(
x2

k

)T
, . . . ,

(
xNR

k

)T
]T

ai = [
aT

1i , aT
2i , . . . , aT

NRi

]
(6.120)

and calculate the optimum joint vector of the equalizer coefficients ai,opt . Similar calcu-
lations as sketched above lead us to the following solution

ai,opt = E
[
x∗

kxT
k

]−1· E [
di

kx∗
k

]
(6.121)
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in which cross-correlations of signal samples received from different receive antennas
appear in matrix E

[
x∗

kxT
k

]
.

Instead of calculating the equalizer coefficients directly from (6.119) or (6.121) we can
apply recursive algorithms based on the LMS or LS algorithms. They are similar to SISO
equalizers, so we do not consider them in this chapter.

6.14.3 Decision Feedback MIMO Equalizer

As in SISO data transmission over channels corrupted by intersymbol interference, a Deci-
sion Feedback Equalizer (DFE) can be considered in MIMO systems (see Figure 6.24).
In this case the MIMO linear equalizer is supplemented with the set of decision feedback
filters synthesizing the ISI caused by past data symbols. Therefore, NT FIR feedback
filters are used for each data symbol estimate d̂ i

k (i = 1, . . . , NT ). Let us denote the data
vector of past decisions made at the ith equalizer output in the kth timing instant as

d̂i
k = [

d̂ i
k−1, d̂

i
k−2, . . . d̂

i
k−F

]T
(6.122)

where F is the number of data symbols taking part in the synthesis of ISI. The coefficient
vector of the decision filter synthesizing ISI caused by past data symbols from the lth
data output to the ith one is

bli =
[
b

(1)
li , b

(2)
li , . . . , b

(F)
li

]T

(6.123)

so for the ith output data symbol estimate we can write the equation that describes the
operation of the DFE equalizer as

d̃ i
k =

NR∑
j=1

 N/2∑
m=−N/2

a
(m)
ji x

j

k−m

 −
NT∑
i=1

[
F∑

m=1

b
(m)
ji d̂ i

k−m

]
, i = 1, . . . , NT (6.124)
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Figure 6.24 Structure of MIMO DFE equalizer
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or in vector form

d̃ i
k =

NR∑
j=1

aT
jix

j

k −
NT∑
l=1

bT
li d̂

i
k, i = 1, . . . , NT (6.125)

For each timing instant k, decisions are made for all NT received data symbols d̂ i
k =

dec(d̃i
k) (i = 1, . . . , NT ). Again, the MMSE or ZF criterion can be applied in setting the

linear and decision feedback filter coefficients, as in (6.119) and (6.121).

6.14.4 Equalization in the MIMO-OFDM System

As we see, the linear or decision feedback equalizers of MIMO channels in single-carrier
systems corrupted by ISI are very complicated and require many matrix calculations.
Thus, the implementation of these equalizers is highly complex. Fortunately, there is
an alternative to this solution. As we have alredy mentioned in Chapter 4, multicar-
rier transmission can be considered as the way to avoid the influence of intersymbol
interference. This is a typical solution in modern wireless systems, which, if a single
carrier transmission were applied, would suffer from multipath propagation creating the
ISI. Figure 6.25 presents a scheme of the multicarrier system with NT transmit and NR

receive antennas.
In the transmitter a binary data stream is represented in the form of parallel blocks that

are subsequently mapped onto blocks of data symbol constellation points. If there are NT

transmit antennas and if the OFDM system applies the N -point IFFT/FFT, there are NT

N -element signal constellation blocks. Let us denote the ith block (i = 1, . . . , NT ) as

Dk,i = [D1
ki , . . . , D

N
ki ]

T , i = 1, . . . , NT (6.126)

where index k denotes the current time instant. Owing to the application of an appropri-
ately long cyclic prefix, the channel characteristics for each subcarrier appears to be flat
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and the complex samples at the output of the FFT demodulator can be represented by the
equation

Yn
k,j =

NT∑
i=1

Hn
jiD

n
ki + Nn

k,j , n = 1, . . . , N (6.127)

where Hn
ji is the gain of the channel between the ith transmit antenna and j th receive

antenna observed on the nth OFDM subcarrier and Nn
k,j is the additive noise sample at the

output of the nth FFT bin of the j th antenna at the kth moment. As the subcarriers remain
mutually orthogonal, we can consider each output bin separately. As we consider MIMO
transmission, we jointly process FFT output samples from a given nth bin received from
all NR OFDM demodulators. The goal of this operation is to recover all NT data symbols
placed in the nth bin of the IFFT block in the transmitter. If we apply the following vector
notation

Yn
k = [Yn

k,1, . . . , Y
n
k,NR

]T

Dn
k = [Dn

k,1, . . . ,D
n
k,NT

]T

Nn
k = [Nn

k,1, . . . , N
n
k,NR

]T (6.128)

Hn =

 Hn
11 . . . Hn

1NT

...
. . .

...

Hn
NR1 . . . Hn

NRNT


we are able to express the outputs of the nth bin of the FFT demodulator as

Yn
k = HnDn

k + Nn
k, n = 1, . . . , N (6.129)

Our task is to find the data block Dn
k on the basis of the sample vector Yn

k that is observed
at the outputs of the nth bin of NR FFT OFDM demodulators. Let us note that in general
matrix Hn is rectangular, because usually NR ≥ NT . One can prove that if the MMSE
criterion is applied, the estimates D̃n

k of the data vectors Dn
k can be obtained from the

formula

D̃n
k =

[(
Hn

)† Hn
]−1· (Hn

)† Yn
k , n = 1, . . . , N (6.130)

where (.)† denotes Hermitian transposition (i.e. matrix transposition with complex con-
jugation of its elements). Such a matrix operation has to be made for all FFT subcarriers
used for data transmission. On the other hand, if the MLSE criterion is applied, we search
for the data vector D̂n

k for which the following expression holds

D̂n
k = arg min

Dn
k

∥∥Yn
k − HnDn

k

∥∥2
(6.131)
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where ‖. ‖ denotes the vector norm. We also note that estimation of matrices Hn (n =
1, . . . , N) has a crucial meaning for the detection quality if any of the above-mentioned
criteria is applied.

Generally, although the MIMO-OFDM system is computationally more efficient than
a single-carrier MIMO system, its complexity is still very high. However, it is already
implementable in currently available digital technology.

6.15 Conclusions

In this chapter we have concentrated on the problem of equalization in point-to-point
transmission. In the early years adaptive equalizers were mostly applied in voiceband
acoustic modems; however, fast development of wireless communications substantially
extended applications of equalizers. In our chapter we have considered the GSM receiver
as an example of the system in which channel equalization in the form of sequential
detection is performed. Introduction of the turbo principle and MIMO systems opened up
new problems for equalization in such systems. We have simply sketched these problems
only, leaving the details for self-study by motivated readers.

Problems

Problem 6.1 Consider the simplified model of the baseband transmission system shown
in Figure 6.26. The signal source generates bipolar, equiprobable, statistically independent
data symbols at the rate R. The baseband transmitter applies a pulse-shaping filter and the
receiver uses a receive filter, both having the square root raised cosine characteristics with
a roll-off factor of α = 0.25. Let the amplitude characteristics |HB(f )| be linear in the dB
scale, and let |HB(f )|dB = 0 for f = 0 and |HB(f )|dB = −a for |f | = 1/T , as shown
in Figure 6.26. Let the delay characteristics have a parabolic shape, i.e. τ(f ) = β · f 2.
The level of the AWGN is reflected in the given SNR. Write a computer program (e.g. using
Matlab or a similar package) that simulates the operation of the above system. Apply the
oversampling factor Ns = 16 to all the signals (i.e. Ns = 16 samples per signalling period
T = 1/R).
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 ν(t )
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|H(f )|
[dB]
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τ(f )

 β|f |2

t = nT+ τ
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Figure 6.26 Simple model of the baseband digital communication system
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1. Calculate and subsequently plot the impulse response of the cascade connection of the
pulse-shaping filter, the channel and the receive filter as a function of the filter and
channel parameters. To simplify the calculations, truncate the joint channel impulse
response to 10 signalling periods T .

2. Simulate the transmission of 10 000 data symbols and accumulate the waveform at the
receive filter output. Plot the eye diagrams for the signals at the channel output and
the receive filter output. In Matlab you can use the function called eyediagram. In your
simulation apply the following sets of system and channel parameters:

(a) R = 2400 symb/s, a = 0 dB, β = 0, SNR = 20, 15, 10 and 5 dB. For this set of
parameters we simulate the system with the AWGN channel, as the transmisson
channel introduces the additive noise only.

(b) R = 2400 symb/s, a = 0, 5 and 10 dB, β = 0, SNR = 15 dB. For this set of param-
eters we check the influence of amplitude distortions on the system performance.

(c) R = 2400 symb/s, a = 0 dB, SNR = 15 dB. The values of β are such that the group
delay τ is equal to 0.5, 1, 1.5 and 2 ms at the frequency R/2 Hz. For this set
of parameters we check the influence of the delay characteristics on the system
performance.

(d) Select your own set of parameters to show how amplitude and delay distortions as
well as additive noise change the eye diagram. Find the set of parameters for which
the eye is practically closed.

3. For each of Ns = 16 possible sampling phases, calculate the measure of intersymbol
interference given by formula (6.10). Find the best sampling phase resulting in the
lowest intersymbol interference according to the applied measure.

4. Add a block of down-sampling at a selected time phase, resulting in one sample per
signaling period T . The block is placed at the output of the receive filter. Also apply
the decision device block following the down-sampling block, as shown in Figure 6.26.
Next extend your simulation program to include the functionality of counting the deci-
sion errors and the estimation of the bit error rate (BER). For a few selected sets of
transmission parameters estimate the BER curve as a function of SNR, plot the results
and draw conclusions. Apply the sampling phase to the receive filter output signal for
which the ISI is the lowest.

Problem 6.2 Consider the minimum MSE linear equalizer. As we know, the MSE error
at the output of its FIR filter is given by formula (6.18) whereas the optimal equalizer
coefficient vector is described by expression (6.20).

1. Derive the formula for the minimum MSE error that is achieved for the optimal equalizer
settings.

2. Recall that the autocorrelation matrix A and the cross-correlation vector b are
described by the expressions A = E[xnxT

n ] and b = E[dnxn], respectively. Assuming
that the data symbols dn are equiprobable and uncorrelated, knowing that the equalizer
input samples xn are given by formula (6.2) and assuming the uncorrelated noise
samples in (6.2), calculate the expression for the entries of matrix A and vector b
depending on the joint channel, transmit and receive filters’ impulse response {hi} and
the noise variance σ 2.
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3. Based on the expression derived in the previous point, write a script of the function that
calculates matrix A and vector b for the system and equalizer parameters: equalizer
length 2N + 1, data symbol power σ 2

d = E[d2
n], vector of the impulse response h =

[h0, h1, . . . , hL] and noise variance σ 2. The function subsequently finds the optimal
coefficients according to the MMSE criterion.

4. Using the function derived in the previous point, calculate the minimum MSE error
at the equalizer output for the system transmitting the uncorrelated and equiprobable
data symbols dn of the mean power σ 2

d over the channel with impulse response h =
[0.407, 0.815, 0.407] and additive uncorrelated and zero-mean Gaussian noise with
variance σ 2

ν resulting in SNR = 20 dB. Assume that the lengths of the equalizer are
2N + 1 = 5, 7, 9, 11, 13 and 15. Plot the resulting minimum MSE error as a function
of the equalizer length.

5. Apply the program to the system model described in Problem 6.1 in which a given set
of parameters has been selected. For that purpose calculate the joint channel impulse
response of the transmit filter, the channel and the receive filter for the applied sampling
phase. Calculate the minimum MSE for each of Ns = 16 possible sampling phases and
for the given equalizer length 2N + 1. For the best sampling phase find the sufficient
length of the equalizer and calculate the minimum mean square error achievable by
it. The equalizer length can be considered sufficient if further extension does not bring
about any meaningful decrease in the MSE.

Problem 6.3 Consider again the data transmission system model derived in Problem 6.1.
Let the SNR be equal to 20 dB and let the system parameters be R = 2400 symb/s, a =
10 dB, β = 6.9 × 10−9. Extend the chain of the simulated blocks by an adaptive equalizer
of length 2N + 1 = 21 (see Figure 6.27). Apply the appropriately delayed data stream from
the transmitter as the reference data sequence in the equalizer. Find the correct delay of the
data stream in order to treat the signal sample at the central point of the tapped delay line
of the equalizer as the main one. In two simulation experiments simulate the convergence
process of the equalizer. Apply the ZF algorithm given by (6.15) in the first simulation
experiment and the LMS algorithm given by (6.23) in the second one. Select the appropriate
values of the step sizes α and γ , respectively [recall formula (6.25) describing the initial
value of the step size for the LMS equalizer]. Assume the initial equalizer settings to be
equal to the vector c0 = [c−N,0 = 0, . . . , 0, c0,0 = 1, 0, . . . cN,0 = 0]. In order to obtain
statistically valuable results, perform simulation runs 50 times and calculate the mean
value of the square error for each iteration number.
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Figure 6.27 Scheme of the baseband transmission system with the equalizer
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1. How many reference data symbols have to be sent for application of each type of adap-
tation algorithm in order to obtain equalizer settings close to the optimal ones?

2. Experiment with the value of the step size applied in the LMS algorithm. Let the constant
step size be applied in the convergence process, equal to γ0, 0.8γ0, 0.5γ0 and 0.3γ0.
Compare the rate of convergence and the steady state MSE error for all applied values
of the step size.

Problem 6.4 Consider the MSE decision feedback equalizer with NL linear filter taps
and NF decision feedback taps. We have shown in (6.46) that the equalizer output signal
sample is the scalar product of the coefficient vectors wn and the signal samples zn con-
tained in the tapped delay lines of both filters. Let the reference data symbol be related to
the signal sample contained in the middle of the tapped delay line of the linear filter. It
can be easily shown that the optimum coefficient vector wopt = A−1b, where A = E[znzT

n ]
and b = E[dnzn].

1. Calculate the entries of matrix A and vector b as a function of the channel impulse
response samples {hi}, the additive Gaussian noise variance σ 2

ν and the data symbol
mean power σ 2

d = E[d2
n].

2. Derive the function that calculates the minimum MSE error for the given linear and
decision feedback filter lengths, the channel impulse response vector, the noise vari-
ance and the data symbol mean power. Apply this function to calculate the minimum
MSE error for the same system parameters as in Problem 6.2, Point 5, for all possible
sampling phases. Assume the lengths of the linear and decision feedback filters to be
NL = 10 and NF = 11. Compare the results with those achieved in Problem 6.2 for the
linear MSE equalizer.

3. Repeat the calculations performed in the previous point for different lengths of the
linear and decision feedback filters NL and NF , keeping the number of all coefficients
NL + NF = 21.

Problem 6.5 Replace the linear equalizer applied in Problem 6.3 by the decision feed-
back equalizer with NL = 10 linear filter taps and NF = 11 decision filter taps. Treat the
sample in the middle of the tapped delay line of the linear filter as the main one. Adjust the
delay of the reference data symbols appropriately. Apply the LMS algorithm described by
(6.48) and (6.49) to both linear and feedback filters. Select the appropriate step sizes and
show the abilty of the equalizer to converge. Set the system parameters as in the previous
problem. Repeat the simulation experiments for different lengths of the linear and decision
feedback filters, e.g. NL = 7 and NF = 14 or NL = 15 and NF = 6. Does the choice of
the filter lengths have any influence on the equalizer performance?

Problem 6.6 Consider the simple tapped delay line model of a transmission system.
Assume that the cascade of the transmit filter, channel and receive filter has the impulse
response in the form h = [h0, h1, h2], where h0 = 1, h1 = 0.5 and h2 = −0.2. The trans-
mitted data symbols are binary, bipolar and equiprobable. The channel output signal
samples are distorted by additive Gaussian noise νn. Denote the samples observable on
the joint channel output as xn.

1. Find the trellis diagram of this model and calculate all possible unobservable channel
outputs rn = xn − νn.
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2. Perform the operation of the Viterbi detector and find the ML data sequence if the
following samples are observed on the detector input (0.7, -0.3, 1.1, 0.6, 0.3, -0.1, 0.2,
1.6, 0.4, 1.8)

Problem 6.7 Use the program derived in Problem 6.1 to demonstrate the operation of
the channel estimator. Configure the simulated system as shown in Figure 6.28. Set the
simulated system parameters as in Problem 6.3. Apply the LMS algorithm given by formula
(6.61) in the adaptation process of the channel estimator shown in Figure 6.11.
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Figure 6.28 Block diagram of a baseband transmission system with the channel estimator

1. Demonstrate the convergence of the LMS algorithm with properly selected step size α

applied in the estimator of length Ne = 12 by performing 50 independent simulation
runs and averaging the received squared error values along the time axis. What is the
best step size value and the steady state MSE error?

2. Repeat the experiments for Ne = 10 and Ne = 14.



 



 

7
Spread Spectrum Systems

7.1 Introduction

Spread spectrum systems were invented in the late 1940s. Originally they were applied in
military communications. Today the concept of spread spectrum systems is used in many
contemporary communication systems. The most important ones are the third genera-
tion cellular systems UMTS (Universal Mobile Telecommunications System; Holma and
Toskala 2004) and cdma2000 (Garg 2000), GPS (Global Positioning System), personal
satellite communication system GLOBALSTAR (Lagarde et al. 1995) and the second
generation cellular telephony system based on the IS-95 standard (Garg 2000).

The basic concept of the spread spectrum system can be derived from the formula
that describes the capacity of a continuous channel of bandwidth B Hz and with the
signal-to-noise ratio γ = P/(N0B)

C = B log (1 + γ ) (7.1)

Changing the logarithm base from 2 to e, we get

C

B
= 1.44 ln (1 + γ ) (7.2)

Let us note that if the SNR is small, e.g. γ < 0.1, we can represent logarithmic function
(7.2) in the form of a Taylor expansion with respect to γ . We obtain

C

B
= 1.44

(
γ − 1

2
γ 2 + 1

3
γ 3 − 1

4
γ 4 + . . .

)
(7.3)

Neglecting higher order components in (7.3), for small values of γ we get an approximate
expression for the system bandwidth as a function of the channel capacity and the channel
SNR

B ≈ C

1.44γ
(7.4)

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd



 

464 Introduction to Digital Communication Systems

Therefore, if the SNR is low, i.e. the signal level is significantly lower than the noise
level, then the required channel capacity can be achieved by sufficient widening of the
signal bandwidth. For example, in order to ensure a channel throughput of 10 kbit/s at the
SNR of γ = 0.01 (i.e. −20 dB), a 690 kHz bandwidth is needed. This finding indicates
how to transmit data at a given rate in a completely different way from what we did
earlier. So far we have attempted to use as narrow band as possible when simultaneously
ensuring a possibly high value of the SNR. However, we can proceed in the opposite way:
We can substantially widen the applied signal band, significantly decreasing the SNR. If
the signal is transmitted in a wide band at a low SNR it is hardly detectable and can be
applied even if other systems use parts of the same spectrum range. These features are
particularly valuable in military applications. As a result of the assumed low SNR the
following problem arises: how to spread the spectrum of the signal carrying the user’s
messages and how to enable reliable reception of this signal in the presence of several
disturbances introduced by the transmission channel and its other users. We will sketch
the answers to these questions below.

There are several kinds of spread spectrum systems. The most important among
them are:

• Direct Sequence Spread Spectrum (DS-SS) system, in which spectral spreading is per-
formed by direct modulation of the data signal by a pseudorandom sequence;

• Frequency-Hopping Spread Spectrum (FH-SS) system, in which spectral spreading is
performed by pseudorandom hopping of the carrier frequency of the data-modulated
signal;

• Time-Hopping Spread Spectrum (TH-SS) system, in which data-carrying pulses are
located in a pseudorandom manner within the defined time slots.

The first type of spread spectrum system is widely used in the radio systems listed at
the beginning of this chapter. The second one dominates in military applications, although
it is also the basis of one of the standards of radio access to local area networks (IEEE
802.11: IEEE 2007; Bing 2000). The popular Bluetooth standard (Haartsen 1998) of
short-range radio links is also based on this type of spread spectrum system. The third
type of spreading has found application in ultra-wideband communication systems.

Below we will shortly describe the DS-SS, FH-SS and TH-SS systems. A distinctive
feature of all such systems is the application of a source of pseudorandom signals that
makes spectrum spreading in a given band possible. For that reason we will start our
description from the generation of spreading sequences.

7.2 Pseudorandom Sequence Generation

Generation of pseudorandom sequences with given correlation properties was considered
by scientists and engineers a long time ago (Golomb 1967). This problem is closely
related to the polynomial theory described briefly in Chapter 2. Generation of a fully
random sequence in a repetitive manner is technically not realizable. Repetitiveness is
a key property of the sequence, because, as we will soon learn, both transmitter and
receiver apply the same sequence, which is used for spectral spreading in the transmitter
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and spectral de-spreading in the receiver. Thus, instead of random sequences, pseudo-
random ones are applied. The latter are in fact deterministic symbol sequences. Except
for a few special cases, these sequences have a very long period compared with a single
sequence element. Although they are fully deterministic, they appear random to an exter-
nal observer. It is desirable that the spectum of such a sequence is flat. In the ideal case it
could be white, which means that the autocorrelation function of such a sequence should
have the form of an ideal pulse for a zero argument, with zero values for any nonzero
argument.

The above-mentioned features of an ideal pseudorandom sequence are essential in the
case of its application by a single transmitter and receiver pair. However, the same con-
cept of spectrum spreading is also applied when the same spectrum is used by many
users at the same time. Thus, many transmitter – receiver pairs simultaneously operate
in the same spectrum and zero cross-correlation between sequences used by differ-
ent transmitter – receiver pairs is of key importance. Summarizing, the pseudorandom
sequences are useful if:

• there exists a sufficiently large set of pseudorandom sequences that can be applied
simultaneously;

• each sequence belonging to this set has good autocorrelation properties, i.e. its auto-
correlation function is an impulse for a zero argument and is equal to zero or at least
very close to zero otherwise;

• any two different sequences from the set are mutually uncorrelated.

Naturally, typical pseudorandom sequences do not feature ideal properties. Never-
theless, they are often applied in practical systems. We will review several kinds of
pseudorandom sequences now.

7.2.1 Maximum Length Sequences

Maximum length sequences, often called m-sequences, are codewords of the maximum
length code described in Chapter 2. As we remember, codewords of length n = 2m − 1
of that code are generated by the encoder based on the parity check polynomial h(x),
which is a primitive polynomial and the divisor of the polynomial xn − 1 and cannot be
factorized into polynomials of lower degrees. The structure of such an encoder is called
a Linear Feedback Shift Register (LFSR). An example of such a sequence generator is
shown in Figure 7.1.

For rising degree m the number of different primitive polynomials useful in generating
the maximum length sequences quickly increases. The m-sequences have the following
properties.

Property 7.2.1 The balance property. The number of binary “1”s occurring in a full
period of an m-sequence of length 2m − 1 is equal to 2m−1, whereas the number of zeros
is equal to 2m−1 − 1.

This property is a direct consequence of the fact that m-sequences are codewords of a
maximum length code. The Hamming weights of all nonzero codewords of such codes
are exactly equal to 2m−1.
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Figure 7.1 Example of the LFSR generating a pseudorandom sequence (a) and the autocorrelation
function of this sequence (b)

Property 7.2.2 The run property. There exist 2m−1 different runs consisting of only “1”s

or zeros, half of which have length equal to 1, 1/22 have length equal to 2, and generally
1/2k have length k. There is a single run of length m − 1 containing only zeros and a
single run of the same length consisting of only “1”s.

Property 7.2.3 The correlation property. The autocorrelation function of the m-sequence,
whose symbols are represented by bipolar symbols ±1, takes the value R(n) = −1 for all
arguments n different from zero and equals R(0) = 2m − 1 for the zero argument.

The last property indicates that the autocorrelation function is not exactly equal to zero
for a nonzero argument, although its form approximates well to an ideal pulse if the
length of the m-sequence is large. Recall that as the m-sequence (c0, c1, . . . , c2m−2) is a
periodical deterministic sequence with the period P = 2m − 1, its autocorrelation function
R(n) can be calculated from the formula

R(n) =
P−1∑
i=0

cic(i+n) mod P (7.5)

Pseudorandom sequences applied in spread spectrum systems often have such a long
period that only fragments of them are used. Then the autocorrelation function calculated
over these fragments is crucial for the whole system properties. It turns out that for
nonzero arguments the autocorrelation function can take much higher values than those
calculated on the basis of the whole sequence period. Cross-correlation of two equal
length fragments of different m-sequences takes values substantially different from zero.
For that reason Gold (1966) proposed a new type of pseudorandom sequence for which
the above-mentioned disadvantages appear to a much more limited extent.

7.2.2 Gold Sequences

Gold discovered that in a set of m-sequences of length 2m − 1 there exist such sequence
pairs x, y that have three-level values of the cross-correlation function Rxy(n). These
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values belong to the set {−1, −t (m), t (m) − 2}, where

t (m) =
{

2(m+1)/2 + 1 for odd m

2(m+2)/2 + 1 for even m
(7.6)

The pairs x, y featuring this property are called preferred sequences , and possible values
of their cross-correlation function are substantially lower than in the case of regular
m-sequences of the same length. Gold sequences are created on the basis of preferred
sequences by summing modulo-2 the first sequence x with a cyclically shifted version
of the second sequence y. The sequences created by this operation have length equal to
2m − 1. In this way we achieve a family of 2m + 1 Gold sequences, because there are
2m − 1 cyclic shifts of one of the component sequences and single preferred sequences
x and y belong to the family as well. Figure 7.2 presents an example of the scheme
for the generation of Gold sequences of length 26 − 1. Each Gold sequence is created by
summing modulo-2 two m-sequences generated in the LFSRs, determined by polynomials
h1(x) = 1 + x + x6 and h2(x) = 1 + x + x2 + x5 + x6, respectively.

+

+ + +

+
Output

h2(x )=1+x+x2+x5+x6

h1(x )=1+x+x6

Figure 7.2 Generator of Gold sequences of length 26 − 1

Besides Gold sequences there are other pseudorandom sequences that will not be
described here. Among them, the sequences discovered by Kasami et al. (1968) are well
known. Interested readers are asked to study Wesołowski (2002) and the bibliography
therein.

Pseudorandom sequences are not the only ones used for spreading the spectrum
of information-bearing signals. In practical wireless systems, deterministic sequences
constituting a set of mutually orthogonal sequences are also applied for that purpose.
Walsh-Hadamard sequences (Garg 2000; Wesołowski 2002), for example, are applied in
cellular telephony for assigning a channel in a given cell.

7.2.3 Barker Sequences

Besides long period pseudorandom sequences, short sequences of good autocorrelation
properties are used in some systems for spreading or synchronization purposes. Barker
sequences are a good example of such systems. These sequences are strictly deterministic
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bipolar sequences that have an almost ideal form of the so-called aperiodic autocorrelation
function defined by the formula

Rap(n) =



P−n∑
i=1

ci+nci for 0 ≤ n ≤ P − 1

P+n∑
i=1

cici−n for − P + 1 ≤ n ≤ 0

0 for |n| ≥ P

(7.7)

Let us note that the aperiodic autocorrelation function is in fact a regular autocorrelation
function of a deterministic sequence supplemented by a sequence of zeros.

Barker sequences exist for strictly limited lengths that are equal to 2, 3, 4, 5, 7, 11 and
13. They do not exist for other lengths. The sequences are listed below.

c2 = (+1, −1)

c3 = (+1, +1, −1)

c4 = (+1, +1, −1,+1)

c5 = (+1, +1, +1,−1, +1) (7.8)

c7 = (+1, +1, +1,−1, −1,+1, −1)

c11 = (+1, +1, +1,−1, −1,−1, +1,−1, −1,+1, −1)

c13 = (+1, +1, +1,+1, +1,−1, −1,+1, +1,−1, +1, −1,+1)

The sequences reordered in the backward direction are also Barker sequences. The ape-
riodic autocorrelation function of Barker sequences is

Rap(n) =
{

1 for n = 0

0, 1/P or − 1/P for 1 ≤ |n| ≤ P − 1
(7.9)

where P is the period of a sequence.

7.3 Direct Sequence Spread Spectrum Systems

Figure 7.3 presents a basic block diagram of the direct sequence spread spectrum (DS-SS)
system applying a pseudorandom sequence. Assume that the data symbols are bipolar,
i.e. an = ±1. Index n is related to the current data symbol. Data symbols appear on the
DS-SS transmitter input every Tb seconds. They can be treated as a signal modulating
the sequence ci , which is achieved from the output of a pseudorandom generator whose
pulses, so-called chips , are generated every Tc seconds. Period Tb is usually an integer
multiple of period Tc, i.e., Tb = KTc. As a result, the data signal spectrum is widened K

times. The obtained bipolar signal constitutes a modulating signal for a PSK modulator.
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Figure 7.3 Basic scheme of a direct sequence spread spectrum system

In the simplest version a BPSK is applied, although higher level modulations such as
QPSK can be used as well. Let the transmission channel be characterized by constant
attentuation in the whole range of the signal spectrum and let the additive white Gaussian
noise with power density spectrum equal to N0/2 be the only disturbance. In the receiver
a synchronous demodulator converts the received signal to the baseband. Let us note that
the considered system can be treated as a bipolar PAM system in which a data symbol
an modulates the amplitude of the baseband pulse that has the form of a pseudorandom
bipolar sequence ci . Figure 7.4 presents the process of modulation of the pseudorandom
sequence by the data sequence. The data sequence {an} is shown as a continuous function
a(t), whereas c(t) is a waveform representation of the chip sequence {ci}. In accordance
with the theory of the optimum synchronous receiver, for equiprobable bipolar data sym-
bols one should apply the receiver that correlates the received signal with the baseband
pulse, i.e. with the pseudorandom sequence ci . Obviously, if the receiver is to function
correctly, it must know the shape of the baseband pulse. In our case the receiver has
to know the exact pseudorandom sequence and this sequence has to be synchronized
with the signal it receives. These considerations result in the receiver structure shown in
Figure 7.3.
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Figure 7.4 Creating the spread spectrum signal using the Barker sequence c5: (a) data sequence,
(b) spreading sequence, (c) resulting signal
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Figure 7.5 Several spreading schemes: (a) spreading a single data sequence by a single spread-
ing sequence, (b) spreading a single data sequence by two spreading sequences, (c) independent
spreading of two data sequences by a pair of spreading sequences, (d) complex spreading

As we said earlier, the spreading scheme shown in Figure 7.3, in which a single
spreading sequence is applied and data are in the form of a single sequence, is particularly
simple. Obviously, more advanced schemes are applied in real systems. We can encounter
the systems in which two multilevel data sequences are the subject of spreading at the
same time. Several other spreading configurations are also possible. Figure 7.5 presents
typical spreading schemes. So far we have considered the scheme from Figure 7.5a. In
the case of transmission of a single data sequence and QPSK modulation we can select
the spreading scheme shown in Figure 7.5b. If two data sequences aI (t) and aQ(t) are the
subject of spreading, we can apply two independent spreading sequences cI (t) and cQ(t)

(Figure 7.5c) or the so-called complex spreading (Figure 7.5d) for which the following
operation is performed

dI (t) + jdQ(t) = [
aI (t) + jaQ(t)

][
cI (t) + jcQ(t)

]
(7.10)

In the last two cases the resulting spread symbols dI (t) and dQ(t) are subsequently treated
as a pair of modulating signals in a QPSK or OQPSK modulator.

Let us come back to the analysis of the simplest system (see Figure 7.3) with direct
sequence spreading and let us compare the error probability in two cases. We assume that
data symbols are equiprobable and the channel noise is Gaussian and white. In the first
case a traditional bipolar transmission system is applied in which data symbols an directly
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modulate the carrier without application of spreading, i.e. the BPSK signal is applied that
has the form

x(t) = anu(t) = an

√
2Eb

Tb

cos(2πfct + θ) for nTb ≤ t < (n + 1)Tb (7.11)

In the optimal synchronous receiver, the received signal given by the formula r(t) =
x(t) + ν(t) is correlated with the pulse u(t), whose energy in the signaling period Tb is
equal to Eb. As we know, the probability of error on the output of such a receiver is

P(E) = 1

2
erfc

(√
Eb

N0

)
(7.12)

In the second case direct sequence spreading using the pseudorandom sequence ci is
applied. Let the spreading signal in the nth modulation period, in which data symbol an

is transmitted, have the form

c(t) =
K−1∑
i=0

cip(t − iTc − nTb) for nTb ≤ t < (n + 1)Tb (7.13)

where ci = ±1, and p(t) describes the shape of a single chip. Assume that p(t) is a
gate function of unit amplitude (|c(t)| = 1) and duration Tc. Thus, the pulse u(t) whose
amplitude is modulated by data symbol an is described by the formula

u(t) = c(t)

√
2Ec

Tc

cos(2πfct + θ) (7.14)

where Ec = Eb/K . As a result, the energy of the signal transmitted within the duration
of a single data symbol an is the same in both cases, because

Tb∫
0

u2(t)dt = 2Ec

Tc

|c(t)|2
Tb∫

0

cos2(2πfct + θ)dt = 2Ec

Tc

Tb

2
= KEc = Eb (7.15)

Thus, if in the system with spreading sequence c(t) the optimal receiver correlating the
received signal with the reference signal (7.14) is applied, the probability of an erroneous
decision on the data symbol an is again given by formula (7.12). Therefore we can
conclude that spreading of the signal over a much wider spectrum theoretically does not
bring any advantage. So, what is the aim of using spread spectrum systems?

We can formulate at least four answers to this question:

1. If the mean power of the signal is constant, by performing K-fold spreading of the
signal spectrum we decrease the power density spectrum of the signal K times. If K
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Figure 7.6 Illustration of the influence of spreading on spectral properties of the signal in the
presence of additive white Gaussian noise: (a) power density spectrum of the narrow-band signal
and noise, (b) power density spectrum of the spread spectrum signal and noise when preserving
the signal power

is sufficiently high, the power density spectrum of the transmitted signal can fall down
below the level of the noise power density spectrum. Thus signal transmission can
be hidden from unauthorized users, which can potentially have a military application.
This property is illustrated in Figure 7.6.

2. Spreading of the data-carrying signal in the transmitter and de-spreading of the received
signal in the receiver are dual operations that compensate for each other; however, the
disturbance appearing within the spectrum of the transmitted spread spectrum signal
is the subject of de-spreading only. If the disturbance and the de-spreading signal are
mutually uncorrelated, then the result of correlation performed by the de-spreader is
close or equal to zero. Thus, spreading of the transmitted signal improves its robustness
against uncorrelated disturbance. This process is illustrated in Figure 7.7.

3. It follows from the above conclusion that different links may use the same spectrum
simultaneously if the signals applied in one link are orthogonal to any signals used
in any other links. This observation is the basis for Code Division Multiple Access
(CDMA) applied in different wireless communication systems, e.g. in UMTS and
cdma2000.

4. Radio channels on which spread spectrum systems are applied can rarely be represented
by an AWGN channel model. As we know from our studies on channel properties,
a typical radio channel features multipath propagation. If propagation delays between
particular channel paths differ by more than the chip period Tc, then, assuming that the
applied spreading sequence has an ideal autocorrelation function, the signals arriving
at the receiver along particular paths are mutually uncorrelated. As a result, each path
signal can be individually extracted using correlators, one of which has been shown in
Figure 7.3. In order to take full advantage of each path signal, these signals should be
appropriately combined in order to minimize the probability of an erronous decision
upon transmitted data symbols. Such operations are performed by the so-called RAKE
receiver described in the next section.

Let us come back to the second answer to the question concerning the meaning of
the spread spectrum systems. Let us analyze the spectral properties of the signals in
the most important locations of the considered DS-SS system (Figure 7.7). The follow-
ing notation has been applied: Sa(f ) – data signal spectrum, Sc(f ) – spreading signal
spectrum, Smod(f ) – spectrum at the output of the BPSK modulator, Sdem(f ) – spectrum
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Figure 7.7 Spectra in particular locations of the DS-SS system operating in the presence of
narrow-band disturbance (Wesołowski 2002)
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at the output of the BPSK demodulator, Hint(f ) – transfer function of the integrator,
and Sout(f ) – signal spectrum at the system output. As we can see, in the receiver the
narrow-band disturbance located within the band of the spread signal is the subject of
correlation consisting of multiplication and integration. Multiplication results in spread-
ing of the disturbance over the whole spectrum of the spread signal. In turn, integration
results in cutting off a significant part of the spectrum of the spread disturbance. Owing
to both operations only a small part of the disturbance power located in the band of the
data signal is contained in the spectrum of the output signal.

7.4 RAKE Receiver

In the case of spread spectrum transmission over an ideal AWGN channel the opti-
mal receiver is a single correlator that correlates the received signal with the spreading
sequence. However, this is not an optimal solution if the transmission channel features
multipath propagation and if its channel impulse response is given in a short time inter-
val by formula (5.48). The optimal receiver for such a channel, called RAKE, was first
described by Price and Green (1958). Its description can be found in many handbooks
on digital communications, including Proakis (2000) and Wesołowski (2002), but for
completeness of the spread spectrum system description we repeat its derivation below.

Let the signal on the demodulator output be described in the baseband by the equation

r(t) = h(τ ; t) ∗ x(t) + ν(t) (7.16)

We assume that all the functions of time in (7.16) are complex. Owing to this assump-
tion this description refers to the systems in which BPSK as well as two-dimensional
modulations such as QPSK are applied. Function h(τ ; t) is the baseband equivalent chan-
nel impulse response. The channel contains not only the multipath physical transmission
channel but also the transmit and receive filters. Function x(t) describes the baseband
equivalent transmitted signal, whereas ν(t) represents the additive noise. As in the multi-
path channel description presented in Chapter 4, the variable τ reflects the time running
from the moment of channel excitation, whereas the variable t describes slow changes of
the channel impulse response in time. For simplicity let us consider the bipolar transmis-
sion in the form

x(t) = aiu(t) for 0 ≤ t < Tb (7.17)

where Tb is, as in our previous considerations, the duration of the information symbol,
whereas u(t) is a signal that is the subject of modulation by a sequence of information
symbols according to one of the rules shown in Figure 7.5. One of the possible forms of
signal u(t) is then a bipolar spreading sequence. Our derivation is based on that shown
in Proakis (2000).

Let us assume that the bandwidth of the signal u(t) is limited to W/2 Hz. Then, accord-
ing to the sampling theorem, this signal can be characterized by the following expression

u(t) =
∞∑

n=−∞
u
( n

W

) sin
[
πW(t − n/W)

]
πW(t − n/W)

(7.18)
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As a result, its density spectrum is described by the formula

U(f ) =


1

W

∞∑
n=−∞

u
( n

W

)
exp (−j2πf n/W) for |f | ≤ W/2

0 otherwise

(7.19)

When the signal u(t) is given to the channel input, the signal received on the output of
the time-varying channel characterized by the transfer function H(f ; t) is given by the
inverse Fourier transform

r(t) =
∞∫

−∞
H(f ; t)U(f ) exp (j2πf t) df (7.20)

If we apply (7.19) in expression (7.20), we get

r(t) = 1

W

∞∑
n=−∞

u
( n

W

) ∞∫
−∞

H(f ; t) exp[−j2πf (t − n/W)]df

= 1

W

∞∑
n=−∞

u
( n

W

)
h
(
t − n

W
; t
)

(7.21)

where h(τ ; t) is the channel impulse response of the time-varying channel characterized
by the transfer function H(f ; t). If we interchange the variables in (7.21), we obtain

r(t) = 1

W

∞∑
n=−∞

u
(
t − n

W

)
h
( n

W
; t
)

(7.22)

Defining

hn(t) = 1

W
h
( n

W
; t
)

(7.23)

we obtain

r(t) =
∞∑

n=−∞
hn(t)u

(
t − n

W

)
(7.24)

It can be easily seen from (7.24) that by applying notation (7.23) the channel impulse
response is, as in (5.48), described by the formula

h(τ ; t) =
∞∑

n=−∞
hn(t)δ

(
t − n

W

)
(7.25)

Let the effective duration of the channel impulse response be Tm. Then summation of
all components in formula (7.25) is limited to L = �TmW� + 1 terms with the weights
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hn(t) (n = 0, . . . , L − 1) and the channel impulse response achieves the form

h(τ ; t) =
L−1∑
n=0

hn(t)δ
(
t − n

W

)
(7.26)

Now let us come back to the analysis of the signal on the channel output if signal (7.17)
is transmitted. Let the duration of the pulse u(t) be much longer than the duration of the
channel impulse response. In practice this means that channel responses to subsequent
pulses u(t) almost do not overlap. The signal received on the channel output is then
approximately described by the formula

r(t) =
L−1∑
n=0

aihn(t)u
(
t − n

W

)
+ ν(t) for iTb ≤ t < (i + 1)Tb (7.27)

Assuming that the coefficients of the channel impulse response are known, the optimum
receiver is a correlator in which the reference signal has the form

q(t) =
L−1∑
n=0

hn(t)u
(
t − n

W

)
(7.28)

The operation performed by the correlator is described by the formula

ãi =
Tb∫

0

r(t)q∗(t)dt =
L−1∑
n=0

Tb∫
0

h∗
n(t)r(t)u

∗
(
t − n

W

)
dt (7.29)

The change in channel impulse response within a single data symbol period Tb is usually
negligibly small, so the correlator output signal can be expressed by the formula

ãi =
L−1∑
n=0

h∗
n(t)

Tb∫
0

r(t)u∗
(
t − n

W

)
dt, iTb ≤ t < (i + 1)Tb (7.30)

Expression (7.30) implies the scheme of the receiver shown in Figure 7.8. The complex
conjugate version of the pulse u(t) propagates along the tapped delay line. The time
span between neighboring delay line taps is equal to 1/W whereas the tap weighting
coefficients are equal to the complex conjugates of the channel impulse response coef-
ficients h∗

n(t) (n = 0, . . . , L − 1). All tap signals are, after their appropriate weighting,
correlated with the received signal r(t). The correlator outputs are summed and, based
on the resulting value, a decision upon the received data symbol is made.

For DS-SS systems the pulse u(t) is simply the spreading signal and sampling with
frequency W can be approximated by sampling with a frequency equal to the chip rate
1/Tc. From the technical implementation point of view the functioning of the optimum
receiver shown in Figure 7.8 is equivalent to supplying the received signal to the input of
the delay line and correlating the delay line tap signals with the complex conjugated form
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Figure 7.8 Optimum receiver for multipath channel under the assumption that the duration of the
channel impulse response is significantly shorter than the information symbol duration
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Figure 7.9 Basic scheme of the RAKE receiver

of the spreading sequence u∗(t). The weighting coefficients assigned to the appropriate
taps appear along the tapped delay line in reverse order. This version of the receiver
is shown in Figure 7.9 and is known as the RAKE receiver . The correlators applied
in appropriate taps are called RAKE fingers . Each finger “collects” the signal from a
particular path of the multipath channel. Subsequently, these signals are optimally com-
bined, which is performed by weighting them by the conjugated channel coefficients
h∗

i (i = 0, . . . , L − 1).
Let us note that the RAKE structure is equivalent to the filter matched to the signal

that is a convolution of the channel impulse response and the spreading sequence u(t). In
practice, when the chip rate is very high, the number of RAKE fingers is often limited to
3–4. The receiver automatically selects three to four strongest channel paths and places
the fingers in appropriate locations of the delay line in order to extract these path signals.
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This automatic process is realized by applying an additional correlator that sequentially
scans the possible delay line taps in order to measure the level of the signal received on
a given path and to find the strongest paths.

Calculation of the error probability on the RAKE receiver output is a relatively complex
task. This probability depends on the statistical properties of the channel, the time delay
distribution of particular channel propagation paths and the time variability of the channel
weighting coefficients hn(t) (n = 0, 1, . . . , L − 1). We leave the derivation of this error
probability to particularly motivated readers. For this purpose the author advises the
readers to study appropriate sections in Proakis (2000) or Stüber (2001).

We have to stress that the RAKE receiver is optimal in a single link transmission when
the duration Tm of the channel impulse response is much shorter than the data symbol
interval Tb. The reception quality of the RAKE receiver degrades if the same band is
occupied by more users, i.e. there are more transmission links, as it occurs in CDMA.
In reality, the spreading signals of other users that are applied in the same band are not
fully mutually orthogonal due to the inherent signal and channel properties. As a result,
these signals infiltrate into other receivers where they are treated as a disturbance. This
negative effect may be counteracted by applying joint detection . Basic information on that
topic can be found in Wesołowski (2002), and full treatment of this subject is contained
in Verdú (1998) and Castoldi (2002).

7.5 Frequency-Hopping Spread Spectrum Systems

The DS-SS systems considered so far have high requirements with respect to sequence
synchronization and their receivers are synchronous. In some applications receiver syn-
chronization with an accuracy of a fraction of a chip is difficult to ensure or can be
expensive to implement, therefore other spread spectrum systems have been proposed
in which the signal carrier hops in a pseudorandom manner. Such systems are called
Frequency-Hopping Spread Spectrum (FH-SS) systems. The general scheme of the basic
FH-SS system is shown in Figure 7.10.

Data, possibly protected by an error correction code, are given to the input of the M-FSK
modulator. In Chapter 4 we considered FSK modulation for which M = 2. In FH-SS sys-
tems it is possible to apply a higher modulation level, for which M = 2k. A pseudorandom

Encoder DecoderM-FSK
modulator

M-FSK
demodulatorMixer Mixer

Frequency
synthesizer

Frequency
synthesizer

PN
generator

PN
generator

Synchronization

Data Data

Figure 7.10 General scheme of the system with spectrum spreading using pseudorandom hopping
of carrier frequency
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generator produces a binary sequence, which is segmented into binary blocks and controls
the choice of the frequency generated by the carrier frequency synthesizer. Owing to the
applied frequency mixer, the M-FSK signal is placed on the carrier currently generated
by the frequency synthesizer. If the number of possible carrier frequencies is equal to
2L, then the length of the blocks onto which the generated pseudorandom sequence is
divided is exactly equal to L. In this way the frequency synthesizer implements the pro-
cess of frequency hopping. The receiver performs dual operations to those performed in
the transmitter. After synchronization of the pseudorandom generator in the receiver with
respect to the received signal, the L-bit binary block is given to the synthesizer input. As
a result, the synthesizer generates an appropriate carrier frequency. This in turn allows
the received signal to be converted to the band in which the M-FSK-modulated signal is
detected. Finally, k-bit data blocks appear on the detector output.

Let us consider the mathematical description of an FH-SS signal. An M-FSK-modulated
signal can be described by the formula

xMFSK(t) = Re
{
A exp

[
j2π

(
fc + 	f (t)

)
t
]}

(7.31)

in which the frequency keying is denoted by the expression

	f (t) =
∞∑

n=−∞
anpd(t − nTd) (7.32)

and data symbols an are selected from the set {−(M − 1), . . . , −1,+1, . . . , (M − 1)}
every Td seconds. The spreading signal given to the input of the frequency mixer is
described by the formula

cFH(t) =
∞∑

i=−∞
ph(t − iTh) exp

[
j (2πfit + ϕi)

]
(7.33)

where both pd(t) and ph(t) functions describe the frequency pulses as functions of time
and mostly have the form of a gate function of duration Td and Th, respectively. Finally,
an FH-SS signal is given by the expression

xFH(t) = cFH(t)xMFSK(t) (7.34)

The phase ϕi that appears in formula (7.33) results from the fact that the frequency
synthesizer of the dense frequency grid is usually not able to preserve phase continuity.

Depending on the relation that exists between the time periods Td and Th, the FH-SS
systems can be divided into slow (SFH – Slow Frequency Hopping) and fast (FFH – Fast
Frequency Hopping) frequency-hopping systems. The key difference between these sys-
tems is illustrated in Figure 7.11. We have assumed that the M-FSK modulation is binary,
i.e. M = 2. In the case of fast frequency hopping a few carrier frequency hops (four in
Figure 7.11) occur within a single data symbol. In turn, in the case of slow frequency
hopping a single frequency hop is performed after a few data symbols. Therefore, in the
first case Td = NTh, whereas in the second case Th = KTd .
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Figure 7.11 Illustration of the FH-SS system operation with fast (a) and slow (b) carrier frequency
hops (current carrier frequency is denoted by a dashed line)

The data symbol period Td and the frequency-hopping interval Th are strictly associated
with chip frequency fchip. It is the greater value out of two values 1/Td and 1/Th, so
it can be meant as the highest timing frequency applied in a given FH-SS system. The
frequency fchip is also associated with the frequency deviation applied in the M-FSK
modulation and the frequency separation between carriers selected during the hopping
process.

In the SFH systems the interval between the applied nominal frequencies is the same
as between nominal frequencies in the M-FSK modulation. The applied tones are equally
distributed on the frequency axis. In turn, in order to ensure orthogonality between tones
applied in M-FSK, which is a desired feature due to the applied noncoherent detection,
the distance between tones should be a multiple of the chip frequency fchip = 1/Td . If
this distance were exactly equal to fchip, then for Nc carrier frequencies the bandwidth
used by the system would be equal to NcMfchip. It is indeed exactly equal to this value
if the used band is divided into disjoint subbands, which are used by M-FSK-modulated
signals with a momentary carrier frequency located exactly in the middle of a subband.
Then the distance between possible neighboring carrier frequencies is Mfchip. As FH-SS
systems are often applied for military purposes, they should be robust against intentional
disturbance (jamming). Robustness can be improved compared with the previous choice
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of carrier frequencies if the distance between carriers is equal to fchip, i.e. if it is the same
as between the nominal frequencies of M-FSK-modulated signals. Neighboring bands of
M-FSK signals will substantially overlap and the jammer will have a more difficult task
facing a much higher number of carrier frequencies that can be potentially selected.

For FFH systems with fast frequency hopping the chip frequency is equal to the hopping
frequency, fchip = 1/Th. Thus, the distance between the applied tones in M-FSK signals
is equal to fchip = 1/Th and the whole band used by the FFH system is divided into
subbands with carrier frequencies placed in the middle of them and selectable by the
pseudorandom generator. Since a few frequency hops occur for each data symbol, the
decision upon a given data symbol has to be based on a sequence of tones that are
generated by the modulator within the duration Td of the whole data symbol.

Although FH-SS systems are mainly used in military communication systems, they
have also found civil applications. The most popular one is Bluetooth (Haartsen 1998).
The idea of FH-SS is also a basic rule for operation of one of the alternative versions of
IEEE 802.11 (IEEE 2007) wireless access to LANs. Both systems are classified as HF
systems with slow hopping and both systems take advantage of nonlicensed bands. These
bands are not reserved for any particular wireless system so several systems can operate
in them simultaneously. Robustness against disturbances becomes a key feature of such
FH-SS systems, additionally supported by the application of channel coding.

FH-SS systems, as with DS-SS systems, can operate in a multiple access mode. In
a given band more than a single link between users can be established without mutual
disturbances if mutually orthogonal signals are used in different links. This condition is
fulfilled if the selection rules of M-FSK nominal and carrier frequencies presented above
are preserved and if the users apply synchronized pseudorandom generators in such a
way that a simultaneous generation of two identical tones by different transmitters does
not occur. In the case of lack of synchronism among users, collisions are possible and
channel coding becomes a remedy against them.

7.6 Time-Hopping Spread Spectrum System with Pseudorandom
Pulse Position Selection

The time-hopping spread spectrum (TH-SS) system is probably the least popular of the
three main types. Its general scheme is shown in Figure 7.12. User data, which can be
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Figure 7.12 General scheme of a TH-SS system
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the subject of channel coding at the coding rate Rc, are accumulated in block form in the
buffer. Time is divided into frames of length T seconds. The frames in turn are divided
into time slots. Let the number of time slots in a single frame be MT . A pseudorandom
generator selects one of MT time slots, in which a PSK modulator generates a signal
representing the binary sequence stored in the buffer. If the information data rate is equal
to R bit/s, then application of the channel coding at the coding rate of Rc results in the
data stream of the rate being equal to R/Rc bit/s. Because a single time slot out of MT

possible slots in a frame can be applied in user data transmission, the transmission rate
is MT R/Rc. This results in spectrum spreading of around MT R/Rc Hz, compared with
the bandwidth of the order of R/Rc, if pseudorandom selection of the pulse position is
not used.

Due to synchronization difficulties and the bursty nature of transmission, TH-SS systems
are not so popular as DS-SS and FH-SS systems. However, we have to admit that a similar
rule to that used in TH-SS systems has been applied in one of the alternative solutions
of Ultra-WideBand (UWB) communication systems.

The main idea of UWB systems is to apply signals with an extremely wide bandwidth.
They are used to transmit data over short distances. In a UWB system, spreading of
the energy of a transmitted signal is so wide that very low spectral density allows the
system to share the spectrum simultaneously with other systems using some parts of
the same spectrum. One of the UWB transmission methods is application of OFDM-like
transmission, however a powerful alternative is to use the TH-SS principle.

* * *

Spread spectrum systems are an important category of digital communication systems,
particularly in their radio segment. Owing to multiple use of the same band, which is pos-
sible by applying mutually orthogonal spreading sequences, DS-SS systems have been
particularly useful in mobile cellular systems. They ensure higher capacity (i.e. number of
users per unit area and spectrum unit) than other cellular systems based on other multiple
access methods such as Time Division Multiple Access (TDMA) or Frequency Divi-
sion Multiple Access (FDMA). The main standards of third generation cellular telephony
(UMTS, cdma2000) apply Code Division Multiple Access (CDMA) using DS-SS trans-
mission. However, such systems require a sufficiently wide spectrum, which is possible
when the data transmission is of the order of a few Mbit/s but if we wish to consider
data transmission at rates of several hundred Mbit/s then signal spreading would lead to a
spectral occupancy that is too high. The electromagnetic spectrum is a scarce resource and
requires particularly careful usage, therefore it is better to use spectrally efficient trans-
mission methods for higher transmission rates. The main candidates for such applications
are solutions based on OFDM transmission.

Problems

Problem 7.1 In DS-SS systems m-sequences are often used as spreading sequences. For
simplicity of calculations, let us consider an m-sequence based on the linear feedback shift
register (LSFR) defined by the polynomial x4 + x3 + 1. Draw the scheme of this LFSR.
What is the period of the generated sequences? How many different sequences can be
generated starting from the time instant n = 0? Generate these sequences and compare
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them. Let us treat the sequence received at the highest LFSR position (described by the
power x4), when a single “1” is contained in the shift register at this position at the moment
n = 0, as the reference sequence. How can we easily generate the m-sequences originating
from the same LFSR and shifted in time with respect to the reference sequence? Recall that
m-sequences are in fact the codewords of the maximum length code (cf. Chapter 2). Design
an appropriate logical circuit generating the sequence shifted in time by an appropriate
number of clock cycles with respect to the reference sequence.

Problem 7.2 Write a simple program (e.g. applying Matlab) that generates an
m-sequence based on the polynomial x9 + x4 + 1. Let a single “1” be contained in the
LFSR at its highest position at the moment n = 0 and let the reference LFSR output be
the output of the memory cell at this position. Assuming representation of the generated
zeros and “1”s in the form of bipolar rectangular pulses of length Tc, calculate the power
density spectrum of the generated sequence and plot it. For computational purposes
assume that the oversampling rate is Ns = 8. Recall that the m-sequence is in fact a
periodic sequence with the period equal to 2N − 1 (N = 9 in our case). For comparison
derive the formula for the power spectral density analytically for any m-sequence length
m = 2N − 1.

Problem 7.3 Consider the m-sequence from Problem 7.2. Let us generate the
m-sequence as a modulo-2 sum of the 9th, 7th and 5th positions of the LFSR.

1. Calculate the cross-correlation of this sequence with the reference sequence gener-
ated at the highest LFSR position. Perform this calculation over the whole m-sequence
period.

2. Repeat the same calculations for a shorter period of time, i.e. calculate the
cross-correlation of both sequences in bipolar form (assume the oversampling rate
Ns = 1) performed over the sliding window of length W = 28, 27 and 26 symbols.
Find the maximal values of cross-correlation for all window lengths and compare them
with the result of cross-correlaton performed over a full sequence period. Is almost
perfect orthogonality of both sequences preserved when only partial sequences are
considered?

Problem 7.4 Consider the Barker sequence of length 11, as shown in formula (7.8).
Calculate its aperiodic autocorrelation function. Next calculate the autocorrelation func-
tion of the periodic version of the same Barker sequence. Compare both cases and draw
conclusions.

Problem 7.5 Consider the family of Gold sequences of length N = 511 that are gener-
ated as an XOR sum of the output sequences of two LFSRs determined by the polynomials
h1(x) = x9 + x4 + 1 and h2(x) = x9 + x6 + x4 + x3 + 1. For the experiments select two
sequences belonging to this family. Let both LFSRs start at the moment n = 0 from a sin-
gle one in the highest position. The first sequence is simply the XOR sum of both output
sequences of the component LFSRs whereas the second one is the sequence that is cycli-
cally shifted by three symbols with respect to the first one. Calculate the cross-correlation
value over the whole sequence length. Next calculate the maximum of the cross-correlation
values over the sliding window of length W = 28, 27 and 26. Compare the results with
appropriate cross-correlation values found in Problem 7.3.
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Problem 7.6 Consider the DS-SS system with bipolar signaling and the bipolar spread-
ing sequence based on the m-sequence generated by the LFSR given by the polynomial
g(x) = x9 + x4 + 1. For data signal spreading the whole period of the spreading sequence
is used. The signal is transmitted over a two-tap channel with the tap coefficients h0 = 0.8
and h1 = 0.6. The additive Gaussian noise of the variance σ 2 = 0.1 added at the channel
output models the system noise. Consider two types of receiver:

1. a simple correlator with a bipolar reference signal tuned to the first signal path;
2. a two-tap RAKE receiver.

Draw the block diagrams of both receivers. Calculate the SNR at the input of the decision
device applied in both receivers, assuming that the length of the channel impulse response
is negligible compared with the length of the spreading sequence.



 

8
Synchronization in Digital
Communication Systems

8.1 Introduction

In previous chapters we considered several questions related to digital communication
systems. Some of them involved baseband transmission, whereas others were associated
with digital modulations of a sinusoidal carrier and methods of demodulation of such
signals. In our considerations, including those associated with spread spectrum systems,
we assumed ideal synchronization of the receiver with the incoming signal, which is surely
an idealization. In order for the system to work properly, synchronization is necessary on
several levels of system functioning. Providing synchronization can be a difficult task.
Synchronization is essential for starting and continuing transmission, and its quality often
decides the actual level of bit error probability in the considered system.

Whole books are devoted to synchronization (Lindsey 1972; Meyr and Ascheid 1990;
Mengali and D’Andrea 1997) but it is also the subject of large chapters in each significant
academic handbook devoted to digital communication systems (Proakis 2000; Barry et al.
2003; Kurzweil 2000; Benvenuto and Cherubini 2002). In this chapter we will only sketch
the most important synchronization topics. More interested readers are asked to study one
of the above-mentioned handbooks or the tutorial (Luise et al. 2003) devoted to the role
of synchronization and its structures in digital communication systems.

Let us consider digital transmission in which a sinusoidal carrier is used. The trans-
mitted signal approaches the receiver in the form disturbed by noise. Moreover, it is
often a subject of intersymbol interference resulting from amplitude and phase distortions
introduced by the transmission channel. The Doppler effect, which shifts the signal spec-
trum along the frequency axis, can also occur. If a synchronous receiver is applied, the
following types of sychronization become necessary:

• carrier synchronization, whose aim is to recover the carrier frequency of the received
signal (frequency synchronization) and the carrier phase (phase synchronization);

• timing synchronization , whose aim is to recover the optimal sampling moments for
data symbol detection or the starting moments of data symbol periods, both of which
allow the received distorted data symbols to be analyzed;

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd



 

486 Introduction to Digital Communication Systems

• frame synchronization, whose aim is to synchronize the operation of the receiver with
the hierarchical structure of the received information-carrying signal.

In some digital communication systems implemented mostly in digital signal processing
technology, in which data transmission has a continuous character, a fourth type of syn-
chronization is also needed. This is the so-called sampling frequency synchonization . A
free-running oscillator, which would be the source of sampling clock, would cause a loss
of quality if data were transmitted in long sequences. Therefore, it has to be synchronized
on the basis of the data measurements extracted from the received signal.

Each of the above-mentioned types of synchronization can be implemented in several
ways. The functioning of many communication systems is organized in such a way that
it facilitates acquiring synchronization followed by its tracking. For example, ITU-T rec-
ommendations related to voiceband telephone modems standardize sequences of specially
selected data signals that precede the user data transmission. These sequences enable
gradual carrier and timing synchronization. Other examples of communication standards
in which synchronization is an important issue are IEEE 802.11a/g (IEEE 1999, 2003)
and ETSI HIPERLAN/2 (ETSI 2001b) which describe the functioning of wireless LAN
modems with OFDM modulation. Transmission is organized in frames that start with a
specially selected OFDM symbol sequence, called preamble, which allows the receiver
to synchronize the carrier and timing of OFDM symbols. Additionally, during user data
transmission some OFDM subcarriers are exclusively applied for transmission of the data
symbols known to the receiver (the so-called pilots), which are used to maintain frequency
and timing synchronization and enable estimation of the channel transfer function. The
next example of the synchronization approach can be found in GSM cellular telephony.
In this system transmission is organized according to the hybrid time division/frequency
division multiple access method (cf. Chapter 9). Each GSM base station has a selected
carrier on which in certain time slots it periodically sends a sinusoidal signal, which plays
the role of a pilot. Its detection by a newly turned on mobile station allows it to syn-
chronize its carrier and to determine the frame starting moment. In the detected time slot
of subsequent frames the mobile station reads information that enables it to acquire sys-
tem synchronization, i.e. frame synchronization on different levels of the complex GSM
timing hierarchy.

Figure 8.1 presents an example of a synchronous receiver (Luise et al. 2003) with
carrier and timing synchronization blocks. This is one of several possible configurations
typical for digital communication systems. For the systems in which intersymbol inter-
ference occurs, the matched filter block is supplemented with or replaced by the channel
equalizer.

As we conclude from the above discussion on several approaches to synchronization
issues, acquisition and tracking of synchronization can be supported by application of
special preambles or pilot signals. Sometimes synchronization has to be achieved exclu-
sively on the basis of a continuously received information-bearing signal. Methods that
extract synchronization signals from the received signal exclusively on the basis of the
knowledge of statistical signal properties are called blind synchronization methods.

Most carrier and timing synchronization methods apply some form of Phase-Locked
Loop (PLL). We will describe the basics of its functioning in the next section and in our
analysis we will follow the book by Barry et al. (2003).
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Figure 8.1 Example of configuration of carrier and timing synchronization blocks in a syn-
chronous receiver (Luise et al. 2003)

8.2 Phase-locked loop for continuous signals

The phase-locked loop is a key element of various synchronization circuits. The basic
PLL block diagram for continuous signals is shown in Figure 8.2. The PLL input signal is
given to the phase detector , which compares the phase of the input signal with the phase
of the reference signal generated by the Voltage-Controlled Oscillator (VCO). The phase
detector output signal, which is a measure of phase difference between both signals, is
filtered in the PLL filter . The filter output signal controls the VCO. The place from which
the PLL signal is treated as an output signal depends on a particular PLL application. It
can be the output of the VCO, as shown in Figure 8.2, or the PLL filter output.

Let us assume that the signal on the PLL input has the form

y(t) = Ain cos
[
2πfct + θ(t)

]
(8.1)

where Ain is the amplitude of the cosinusoidal input signal and fc is its frequency. The
signal that approaches the receiver is usually modulated, distorted by the channel and
disturbed by noise. However, we will temporarily apply the idealized signal (8.1) in our
analysis. Let the VCO output signal be given by the formula

v(t) = AVCO cos
[
2πfct + ϕ(t)

]
(8.2)

If the phase function ϕ(t) were constant, the frequency of the VCO output signal would
be equal to fc. This frequency is often called the free-running frequency of the VCO.

Phase
detector

Phase error
signal

Control
signal

VCO
outputinput Loop filter 

H (s)y(t) e(t ) c (t) v (t)

Figure 8.2 Block diagram of a phase-locked loop
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Let us note that all possible frequency variations can be contained in the function ϕ(t),
because the instantaneous frequency of the VCO output signal is

f (t) = 1

2π

d
[
2πfct + ϕ(t)

]
dt

= fc + 1

2π

dϕ(t)

dt
(8.3)

Let us temporarily assume that the phase detector is ideal, i.e. its output signal is
described by the formula

e(t) = W
[
θ(t) − ϕ(t)

]
(8.4)

where W(.) denotes the input–output characteristics of the detector shown in Figure 8.3.
The function from Figure 8.3 is called a sawtooth characteristic and reflects phase differ-
ence ambiguity equal to 2π . The slope of the detector characteristic shown in Figure 8.3
is equal to unity. If it were different from unity, then for the purpose of PLL analysis
it can be incorporated into the gain of the loop filter. The time function e(t), which is
a measure of the phase difference between the input signal and the signal generated by
the VCO, is filtered by the PLL filter of transfer function1 H(s), resulting in the output
signal c(t). This signal is subsequently applied in VCO control. In the case of an ideal
VCO, its instantaneous frequency offset from the free-running frequency exactly reflects
the control signal c(t). Therefore, if we want the control signal to be proportional to the
instantaneous frequency offset, we set

c(t) = dϕ(t)

dt
(8.5)

Also in this case, if the slope of the VCO characteristics is different from unity, it can be
incorporated into the PLL filter gain. If the VCO generates the signal in such a way that
the following expression is valid

ϕ(t) = θ(t) + ϕ0 (8.6)

we say that the PLL is locked , whereas if the PLL recovers the phase function of the
input signal with the zero phase shift, we say that the PLL is ideally locked .

Let us determine the range of operation of the PLL. Let us assume that the frequency
of the input signal differs from the free-running PLL frequency by a constant offset equal

p

−p

−p p−2p 2p a

W(a) 

Figure 8.3 Characteristics of the ideal phase detector

1 The Laplace transform is a useful tool in PLL analysis.
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to f0 Hz. This means that

θ(t) = 2πf0t + θ0 (8.7)

In order for the PLL to stay locked, the phase difference on the phase detector output
cannot exceed the range of ±π, which follows from the detector characteristics shown in
Figure 8.3. The VCO has to generate the signal with the same frequency offset f0. Thus
we conclude that

ϕ(t) = 2πf0t + ϕ0 (8.8)

and the signal on the phase detector output resulting, according to formula (8.5), in the
signal c(t) = 2πf0 produced on the filter output has to fulfill the dependency

|e(t)| = |θ(t) − ϕ(t)| = |θ0 − ϕ0| ≤ π (8.9)

Therefore, in the PLL steady state, taking into account the PLL scheme and formulas
(8.5) and (8.9), we obtain the following form of the condition for keeping the PLL locked

2πf0 ≤ H(0)π (8.10)

where H(0) is the filter gain for the DC signal component.
Let us analyze the dynamic properties of the PLL when it stays locked, i.e. when

condition (8.9) is fulfilled. The loop operates in a linear range and mathematic tools
appropriate for the description of linear systems can be applied. Let us derive the phase
transfer function of the loop. Taking the Laplace transform of both sides of formula (8.5),
we can write

s�(s) = C(s) = E(s)H(s) (8.11)

In turn, taking into account (8.4) and assuming a unity slope of the detector characteristics
we have

E(s) = �(s) − �(s) (8.12)

If we calculate the ratio �(s)/�(s), we get the closed loop transfer function in the form

�(s)

�(s)
= H(s)

H(s) + s
(8.13)

As we see, the PLL is a dynamic system whose properties highly depend on the applied
loop filter. In the simplest case the loop filter is represented by a constant gain2 denoted
as Kamp. Then we have

�(s)

�(s)
= Kamp

Kamp + s
(8.14)

2 Let us recall that we have accumulated the slope coefficients of the phase detector and VCO characteristics, as
well as the filter gain characteristics, into a single PLL gain coefficient.
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This time H(0) = Kamp, so from (8.10) we get the following inequality for the lock range
of the PLL

|2πf0| ≤ Kampπ (8.15)

As we see in (8.15), the lock range of the PLL is proportional to the filter gain, which
in our analysis represents the real filter gain and the slope coefficients of the phase
detector and VCO. The value of Kamp determines the bandwidth of the PLL, because if
we substitute s = j2πf in (8.14) we get the magnitude of the transfer function in the
form ∣∣∣∣�(f )

�(f )

∣∣∣∣ = Kamp√
K2

amp + 4π2f 2
(8.16)

The magnitude of the transfer function in logarithmic scale is shown in Figure 8.4, in
which we can observe how the gain coefficient Kamp influences the bandwidth of the PLL.
Decreasing the PLL bandwidth is realized by lowering the value of Kamp. Unfortunately,
the lock range decreases as well. In order to avoid this negative effect we can apply a
higher order loop filter.

Let us now consider the response of the PLL in steady state to a given signal type. Let
us take the frequency step function 2πf0u(t), where u(t) is a unit step function. We are
interested in the value of the phase error in the steady state. According to the Laplace
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Figure 8.4 Magnitude of the phase transfer function for the PLL with the filter featuring the
constant gain Kamp, for different values of Kamp
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transform rules, this error can be calculated as

e∞ = lim
t→∞ e(t) = lim

s→0
sE(s) (8.17)

Deriving the Laplace transform of the error signal on the output of the phase detector as
a function of the Laplace transform of the input signal phase �(s), we get

E(s) = s�(s)

H(s) + s
(8.18)

Therefore

e∞ = lim
s→0

sE(s) = lim
s→0

s2�(s)

H(s) + s
(8.19)

If a frequency shift by f0 occurs in the input signal at the moment t = 0, the phase θ(t)

changes as follows

θ(t) = 2πf0u(t), i.e. �(s) = 2πf0

s2
(8.20)

Substituting (8.20) into (8.19) we obtain e∞, in the general case as

e∞ = lim
s→0

2πf0

H(s) + s
(8.21)

If the filter transfer function H(s) = Kamp, the phase error in steady state is

e∞ = 2πf0

Kamp
(8.22)

so it is nonzero. We conclude that the loop is able to compensate for the frequency shift
appearing on its input, but the price for this is a nonzero phase error on the output of the
phase detector.

Let us now consider a higher order filter. Let its transfer function be

H(s) = Kamp
s + K1

s + K2
(8.23)

For s = 0 we obtain H(0) = KampK1/K2. Therefore, for this filter type we have the
following PLL lock range

|2πf0| ≤ πKamp
K1

K2
(8.24)

The closed loop transfer function is then given by the formula

�(s)

�(s)
= Kamps + KampK1

s2 + (Kamp + K2)s + KampK1
(8.25)

As known from control theory, a linear system is stable if the roots of its transfer function
denominator are located in the left half-plane of the complex variable s. One can show
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that in order for the stability criterion to be satisfied, the following conditions must be
fulfilled

K2 >−Kamp and KampK1 > 0 (8.26)

If the stability is ensured, the dynamic PLL properties result from the choice of parameters
K1, K2 and Kamp. As we hopefully remember from the course devoted to control theory,
transfer function (8.25) can be presented in the following form

�(s)

�(s)
= (2ζωn − K2)s + ω2

n

s2 + 2ζωns + ω2
n

(8.27)

where ωn = √
KampK1 is the so-called natural angular frequency of the system and ζ

is the damping factor . If parameters K1, K2 and Kamp are selected in such a way that
if conditions (8.26) are simultaneously fulfilled we have ζ < 1, then a gain higher than
unity is observed around the angular frequency ωn. This is easily seen as a ripple on the
transfer function magnitude plot (see Figure 8.5). The lower the damping factor ζ , the
higher the ripple. If ζ > 1, this phenomenon does not occur. In practice the choice of
the loop parameters for which ζ < 1 is often disadvantageous. The bandwidth of phase
synchronization is in practice determined by ωn = √

KampK1, whereas the lock range
depends on all three parameters, as it is in formula (8.24). Therefore, by selecting the
values of KampK1 we determine the bandwidth, and by manipulating the parameter K2

we determine the PLL lock range.
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If we take advantage of (8.21), for the given filter transfer function we can derive the
phase error on the phase detector output if a frequency shift of f0 Hz is applied to the
loop input. Substituting the formula for the filter transfer function in expression (8.21)
and determining the limit of the latter for s tending to zero, we get

e∞ = K22πf0

K1Kamp
(8.28)

As we see, this time the error is also nonzero; however, it can be small if the parameter
K2 is also small. Let us note that the error is exactly equal to zero if K2 = 0, i.e. the
filter transfer function has the form

H(s) = Kamp
s + K1

s
= Kamp

(
1 + K1

s

)
(8.29)

Such a filter is called a proportional-integral filter .
So far we have assumed linear characteristics of the phase detector shown in Figure 8.4,

so our analysis was related to a linear system. This assumption is justified if the PLL is
already locked. Typically, at the initial moment the PLL is not synchronized to the input
signal and it is in the mode of synchronization search. The frequency range within which
the PLL is able to synchronize with the input signal is called the capture range. The
phenomena that occur during synchronization search are slip cycles. They result from
modulo-2π discontinuities between two linear ranges of the phase detector characteristics
and have a strongly nonlinear character, but they require much more advanced analysis
so will not be covered in this short description of the PLL.

So far now we have assumed an ideal phase detector. A real phase detector can be
implemented in many different ways, e.g. using a multiplier. If the signal on the PLL
input and the signal generated by the VCO are logic signals, the phase detector can be
implemented using the XOR gate.

Let us analyze the PLL phase detector based on the multiplier. If the signals given to
its inputs have the form conforming to formulas (8.1) and (8.2), then the output of the
multiplier resulting from the well-known trigonometric formula is

AinAV CO

2

{
cos

[
θ(t) − ϕ(t)

] + cos
[
4πfct + θ(t) + ϕ(t)

]}
(8.30)

Assuming that the double-frequency component is eliminated by the loop filter, we can
write the following expression for the phase error signal

e(t) = AinAV CO

2
cos

[
θ(t) − ϕ(t)

]
(8.31)

We conclude from (8.31) that the error signal is equal to zero if[
θ(t) − ϕ(t)

]
mod 2π = π/2 (8.32)
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i.e. if the VCO output signal is shifted in phase by π/2 with respect to the received signal
phase. However, if the VCO generates the signal

v(t) = AV CO cos
[
2πfct + ψ(t) − π

2

]
= AV CO sin

[
2πfct + ψ(t)

]
(8.33)

then the error signal on the output of the multiplying detector is

e(t) = AinAV CO

2
sin

[
θ(t) − ψ(t)

]
(8.34)

We conclude from the above formula that the multiplying phase detector is a nonlinear
block, because its error signal depends on the sine of the phase difference between the
input and VCO signals, but it is not proportional to this phase difference. Fortunately,
such a detector can be approximately treated as a linear circuit if the phase difference is
small, because for a small angle α we have sin(α) ≈ α. Therefore

e(t) ≈ AinAV CO

2

[
θ(t) − ψ(t)

]
(8.35)

The above considerations allow us to conclude that it would be useful if the VCO were
able to generate a pair of carrier signals: the regular one and the signal shifted by 90◦
with respect to the first one. One of them could be used for comparison in the phase
detector, whereas the other could be the PLL output signal.

8.3 Phase-Locked Loop for Sampled Signals

With digital signal processing becoming a dominating technology in receiver implemen-
tation, synchronization algorithms are needed for sampled signals instead of continuous
signals. For that reason it seems advantageous to consider the PLL that operates exclu-
sively on the received signal samples (see Figure 8.6).

Let the sampling period be equal to TS . The sequence of sinusoidal signal samples is
then described by the formula

yk = Ain cos(2πfckTS + θk) (8.36)

Let the sequence of samples generated by the time-discrete VCO be determined by the
formula

vk = AV CO cos(2πfckTS + ϕk) (8.37)

Phase
detector

Phase error 
signal

Control
signal

VCO
outputinput Loop filter

H(z)yk ek ck vk

Figure 8.6 Block diagram of the time-discrete PLL
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The error on the output of the time-discrete phase detector is

ek = W(θk − ϕk) (8.38)

and the control signal ck of the VCO is described by the following difference equation
depending on the phase ϕk

ck = ϕk+1 − ϕk (8.39)

Let us note that the above difference equation is analogous to equation (8.5), which
contains a time derivative of a continuous phase signal. Let us calculate the Z-transform
of both sides of equation (8.39). We obtain

C(z) = z�(z) − �(z) (8.40)

therefore, on the basis of Figure 8.6, we have

�(z) = C(z)

z − 1
= H(z)E(z)

z − 1
(8.41)

Assuming the linear form of the function W(.) or alternatively assuming small differences
of the angles θk and ϕk justifying a linear approximation of W(.), we can write the
following formula on the basis of equation (8.38)

ek = θk − ϕk (8.42)

Therefore, we obtain

E(z) = �(z) − �(z) (8.43)

Taking advantage of (8.41) we can derive the PLL phase transfer function in the form

�(z)

�(z)
= H(z)

H(z) + z − 1
(8.44)

Let us now derive the PLL steady-state response for time-discrete signals. Let us check
the error value on the output of the phase detector after an infinitely long time, i.e.

e∞ = lim
k→∞

ek (8.45)

On the basis of the appropriate theorem related to the Z-transform, assuming that ek = 0
for k < 0, we obtain

e∞ = lim
z→1

(z − 1)E(z) = lim
z→1

(z − 1)2�(z)

H(z) + z − 1
(8.46)



 

496 Introduction to Digital Communication Systems

Let us investigate the steady-state PLL error if there is a phase shift by the angle θ in
the k = 0 time instant, i.e.

θk = θuk (8.47)

where uk is a unit time-discrete step function. The Z-transform of both sides of (8.47) is
equal to

�(z) = zθ

z − 1
(8.48)

After substituting this expression in formula (8.46) we get

e∞ = lim
z→1

(z − 1)zθ

H(z) + z − 1
(8.49)

For the steady-state phase error to be zero, it is sufficient to have H(1) �= 0. Let us also
investigate the phase error if at the moment k = 0 the input frequency is shifted by f0,
which transforms to the phase function at the moment k in the following form

θk = 2πf0kuk (8.50)

The Z-transform of (8.50) is

�(z) = 2πf0z

(z − 1)2
(8.51)

After substituting it in (8.46) we achieve the expression

e∞ = lim
z→1

2πf0z

H(z) + z − 1
(8.52)

This error will be equal to zero if the loop transfer function has a pole for z = 1.
Let us stress once more that the performed analysis is valid for a linear system. The

system can be considered linear if the loop is in the locked mode and the phase error is so
small that even if a nonlinear phase detector is applied its functioning can be approximated
by a linear operation.

As we show below, the PLL is a basic block used for the phase, frequency and timing
recovery in receivers of digitally modulated signals.

8.4 Maximum Likelihood Carrier Phase Estimation

Let us recall that we derived the maximum likelihood rule when considering the decision
rules in Chapter 2. We applied it in the decoding of the channel codes and in sequen-
tial detection of signals corrupted by intersymbol interference. However, the maximum
likelihood rule can also be applied in the estimation of signal parameters such as carrier
phase or signal timing.
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First, let us consider a general model of the received signal for which the signal param-
eter θ is estimated. Let the signal y(t) observed on the receiver input be given by the
following general formula

y(t) = x(t, θ) + ν(t) (8.53)

which is the sum of the transmitted signal x(t, θ), where θ is unknown, and of additive
noise ν(t). Let us assume that ν(t) is a white Gaussian noise of power density equal
to N0/2. Let us also introduce the set of functions {ψi(t)} that are orthonormal in the
interval (0, Ts). In other words, they have the following property

Ts∫
0

ψi(t)ψj (t)dt =
{

1 for i = j

0 for i �= j
(8.54)

The signal observed on the receiver input can be expressed in the form of an expansion
using orthonormal functions (8.54) in the following way

y(t) =
∞∑

k=1

xk(θ)ψk(t) +
∞∑

k=1

νkψk(t)

=
∑

k

[xk(θ) + νk]ψk(t) =
∑

k

ykψk(t) (8.55)

where

xk(θ) =
Ts∫

0

x(t, θ)ψk(t)dt νk =
Ts∫

0

ν(t)ψk(t)dt yk = xk(θ) + νk (8.56)

The Gaussian additive noise is white, so its expansion coefficients are mutually uncorre-
lated, i.e.

E[νkνj ] = N0

2
δk,j (8.57)

where δk,j is a Kronecker delta function. Let us also note that because yk = xk(θ) + nk,
and the noise has a zero mean, we have E[yk|θ ] = xk(θ).

Now let us consider the random vector y = [y1, y2, . . .] consisting of expansion coeffi-
cients in the set of orthonormal functions. Its joint conditional probability density function
for a given value of parameter θ is given by the formula

p(y|θ) = lim
n→∞

(
1

σ
√

2π

)n

exp

{
− 1

2σ 2

n∑
k=1

[
yk − xk(θ)

]2

}
(8.58)
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whereas the probability density function of the vector y is described by the expression

p(y) = lim
n→∞

(
1

σ
√

2π

)n

exp

[
− 1

2σ 2

n∑
k=1

(
yk

)2

]
(8.59)

In accordance with the maximum likelihood rule, we wish to find the value of θ that
maximizes the conditional probability density function p(y|θ) or, equivalently, maximizes
the ratio p(y|θ)/p(y) given by the formula

p(y|θ)

p(y)
= lim

n→∞ exp

〈
1

2σ 2

n∑
k=1

{
y2

k − [
yk − xk(θ)

]}2
〉

(8.60)

Since the logarithmic function is monotonic, the result of the search for the optimum
value of parameter θ will be the same if the maximized object is in the form of the
logarithmic likelihood ratio, i.e.

L(θ) = ln
p(y|θ)

p(y)
= lim

n→∞

〈
1

2σ 2

n∑
k=1

{
y2

k − [
yk − xk(θ)

]}2
〉

= lim
n→∞

{
1

2σ 2

n∑
k=1

[
2ykxk(θ) − x2

k (θ)
]}

(8.61)

Taking advantage of the Parseval theorem, we can show that

Ts∫
0

x2(t, θ)dt =
∞∑

k=1

x2
k (θ) and

Ts∫
0

x(t, θ)y(t)dt =
∞∑

k=1

xk(θ)yk (8.62)

therefore

L(θ) = 1

2σ 2

Ts∫
0

[
2x(t, θ)y(t) − x2(t, θ)

]
dt (8.63)

For the optimum value of parameter θ , for which the logarithmic likelihood ratio L(θ) is
maximized, the following equation holds

∂L(θ)

∂θ
= 0 (8.64)

We conclude from (8.64) that θ can be calculated from the equation

1

2σ 2

Ts∫
0

[
2
∂x(t, θ)

∂θ
y(t) − 2x(t, θ)

∂x(t, θ)

∂θ

]
dt

= 1

σ 2

Ts∫
0

[
y(t) − x(t, θ)

]∂x(t, θ)

∂θ
dt = 0 (8.65)
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Finally, the expression from which the estimate of θ can be calculated has the form

Ts∫
0

[
y(t) − x(t, θ)

]∂x(t, θ)

∂θ
dt = 0 (8.66)

Similarly, on the basis of (8.61), the expression from which the optimum value of θ can
be derived is given by the formula

lim
n→∞

n∑
k=1

[
yk − xk(θ)

]∂xk(θ)

∂θ
= 0 (8.67)

The above general expressions can now be used to estimate parameters of particular
signals. First, let us consider estimation of the carrier phase of the signal received in the
presence of noise. Let the received signal have the form

y(t) = A cos(2πfct + θ) + ν(t), where fc = 1

Ts

(8.68)

In order to derive the maximum likelihood carrier phase estimate it is sufficient to apply
formula (8.66) directly. We have

∂x(t, θ)

∂θ
= −A sin(2πfct + θ) (8.69)

and condition (8.66) achieves the form

−
Ts∫

0

[
y(t) − A cos(2πfct + θ̂ )

]
A sin(2πfct + θ̂ )dt

= −A

Ts∫
0

y(t) sin(2πfct + θ̂ )dt + A2

T2∫
0

cos(2πfct + θ̂ ) sin(2πfct + θ̂ )dt (8.70)

= −A

Ts∫
0

y(t) sin(2πfct + θ̂ )dt + A2

2

T2∫
0

sin(4πfct + 2θ̂ )dt = 0

Since integration in the second integral of (8.70) is performed over an integer number of
sinusoidal cycles, its result is equal to zero. Therefore the final form of the equation from
which the maximum likelihood carrier phase estimate is derived is

Ts∫
0

y(t) sin(2πfct + θ̂ )dt = 0 (8.71)
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Using the formula for the sine of a sum of two angles, we obtain

cos θ̂

Ts∫
0

y(t) sin 2πfctdt + sin θ̂

Ts∫
0

y(t) cos 2πfctdt = 0 (8.72)

From this formula we conclude that the phase estimate θ̂ can be derived on the basis of
the expression

θ̂ = − arctg

Ts∫
0

y(t) sin 2πfctdt

Ts∫
0

y(t) cos 2πfctdt

(8.73)

Formula (8.73) implies the block diagram of the circuit calculating the carrier phase
estimate θ̂ and shown in Figure 8.7.

y (t )

90°

cos2pfct

q

−sin2pfct

( )dt.

0

Ts

(.)dt

0

Ts

X

Y

X
Yarctg( )

^

Generator

Figure 8.7 Block diagram of the circuit for maximum likelihood carrier phase estimation

As we see, the circuit calculating the carrier phase estimate consists of two correlators
that use mutually orthogonal reference signals. The results of correlations are applied to
calculate the arc tangent of their quotient.

Let us inspect once more formula (8.71), which suggests the application of the
phase-locked loop in which the VCO generator produces the signal sin(2πfct + θ̂ ), and
where the loop filter is an integrating circuit calculating the integral over the period Ts .
As we see, the PLL can be applied to generate the reference signal whose phase is the
maximum likelihood phase estimate of the unmodulated input signal that is disturbed
by the additive noise, under the condition that the appropriate loop filter is applied
(Figure 8.8). Typically, instead of the integrator, a carefully selected lowpass filter is
applied, which approximates the operation of the integrator sufficiently well.
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VCO
e(t)

y(t)=Aincos(2pfct+q)

c(t)
(.)dt

0

Ts

v(t)=sin(2pfct+q)
^

Figure 8.8 Application of the PLL in derivation of the maximum likelihood phase estimate θ̂ of
an unmodulated signal

8.5 Practical Carrier Phase Synchronization Solutions

As we know, the phase of the received signal is recovered on the basis of the signal
containing a random component that is a transmitted data sequence. An additional ran-
dom component is additive noise. As shown in Proakis (2000), in practice there are two
approaches to finding the carrier phase in the presence of random data and noise. The first
one relies on averaging the received signal, taking into account the statistical properties
of data symbols. One can also perform some operations on the received signal, which
aim to get rid of its dependence on the data symbols. The second approach relies on the
assumption that sufficiently reliable estimates of the transmitted data symbols are already
available in the receiver. These estimates are subsequently used in the carrier phase esti-
mation and correction. Circuits belonging to the first group have no decision feedback,
whereas the second group of solutions inherently use the feedback in the estimation and
correction process. Below we consider some representative examples of both types of
carrier phase estimators and correctors.

8.5.1 Carrier Phase Synchronization without Decision Feedback

So far we have considered carrier phase recovery for an unmodulated signal. Typically,
the carrier synchronization block in the receiver has to estimate the phase on the basis of
the digitally modulated signal with additive noise. Let us consider a simple example of
synchronization when a cosinusoidal carrier is modulated by the PAM signal, i.e. when
the modulated signal has the form

x(t, θ) = A(t) cos(2πfct + θ) (8.74)

Let us note that this case comprises, among others, the BPSK modulation, for which
A(t) = ±A. Let us assume that E[A(t)] = 0. This means that we are not able to create
a spectral line at frequency fc or its multiple, which would allow us to estimate the
carrier phase through averaging the received signal. However, such a spectral line can be
generated by nonlinear processing of the received signal followed by application of the
PLL, which generates the reference signal in an analogous way to that presented in the
previous section. A nonlinear circuit that could be applied for this purpose is a memoryless
block with a quadratic input/output characteristic. Figure 8.9 presents a typical scheme of
carrier phase recovery with a quadratic circuit.

The signal (8.74) received in the presence of noise is squared and the result of this
operation is

y(t) = x2(t, θ) + 2x(t, θ)ν(t) + ν2(t) (8.75)
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Figure 8.9 Block diagram of the carrier phase recovery system with the circuit that squares the
received signal

The signal x2(t, θ) is the desired component whereas the remaining two components can
be considered as a disturbance. Assuming a lack of correlation between the modulated
signal and noise and knowing that E[ν(t)] = 0, we obtain

E[y(t)] = E[x2(t, θ)] + E[ν2(t)] (8.76)

In turn, taking into account (8.74) we have

E[x2(t, θ)] = E[A(t)2]

2
+ E[A(t)2]

2
cos(4πfct + 2θ) (8.77)

The bandpass filter of center frequency 2fc extracts the component concentrated around
2fc from the signal y2(t). Its mean amplitude is equal to E[A(t)2]|H(2fc)|/2. The filter
output signal is the input signal for the PLL, whose VCO generates a periodic signal
of free-running frequency equal to 2fc. The PLL estimates the phase 2θ̂ of the signal
extracted by the bandpass filter. The loop bandwidth should be sufficiently narrow for
the PLL to average the part of the noise that passes through this bandpass filter. Thus,
the PLL approximately generates the signal sin(4πfct + 2θ̂ ). The frequency of this signal
has to be divided by 2 in order for the signal to be useful in synchronous demodulation.
However, the process of frequency division by 2 has a side effect, which is the phase
ambiguity equal to 180◦. Frequency division of the logical signal of a given phase 2θ̂

can be realized by a logical circuit based on a counter to 2. However, depending on the
initial state of the counter flip-flop we can receive the counter output signal with the
correct phase equal to θ̂ or with the opposite phase equal to θ̂ + π . The latter can lead
to decision errors. In order to counteract this effect, differential coding is usually applied.
Alternatively, the user data sequence is preceded by a reference signal (preamble) that
allows the receiver to estimate the carrier phase correctly.

The synchronization scheme shown above can be generalized. In general, the nonlinear
ciruit raises the received signal to the Mth power, the bandpass filter has a center frequency
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Figure 8.10 Costas loop used in carrier phase recovery

of Mfc, the PLL operates around this frequency too, and on the output there is a frequency
divisor by M . Owing to such a configuration, it is possible to perform carrier phase
recovery of M-PSK signals.

Another example of a carrier phase recovery circuit for a PAM-modulated carrier signal
is the so-called Costas loop, shown in Figure 8.10. Let us assume that the following
signal is given to its input

y(t) = x(t, θ) + ν(t) = A(t) cos(2πfct + θ) + ν(t)

= A(t) cos(2πfct + θ) + νI (t) cos(2πfct + θ) + νQ(t) sin(2πfct + θ) (8.78)

This signal is multiplied in two parallel branches by cos(2πfct + θ̂ ) and sin(2πfct + θ̂ ),
respectively. As a result, we obtain the following signals in the in-phase and quadrature
branches

yI (t) = [x(t, θ) + ν(t)] cos(2πfct + θ̂ )

= 1

2
[A(t) + νI (t)] cos(θ̂ − θ) + 1

2
νQ(t) sin(θ̂ − θ)

+ components around frequency 2fc (8.79)

yQ(t) = [x(t, θ) + ν(t)] sin(2πfct + θ̂ )

= 1

2
[A(t) + νI (t)] sin(θ̂ − θ) − 1

2
νQ(t) cos(θ̂ − θ)

+ components around frequency 2fc (8.80)

Passband components of both signals around 2fc are eliminated by the lowpass filters
applied in each branch. The lowpass filter output signals are multiplied by each other,
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resulting in the error signal e(t) that is subsequently filtered by the loop filter. The loop
filter output signal controls the VCO. Simple calculations based on formulas (8.79) and
(8.80) prove that the error signal e(t) is given by the expression

e(t) = 1

8

{[
A(t) + νI (t)

]2 − [
νQ(t)

]2
}

sin 2(θ̂ − θ)

− 1

4

[
A(t) + νI (t)

]
νQ(t) cos 2(θ̂ − θ) (8.81)

The error signal comprises the desired component of form 1
8A2(t) sin 2(θ̂ − θ) and the

components that consist of the products of the data signal and noise or the products of
noise signals. The loop filter should eliminate the latter by averaging. As stated in Proakis
(2000), if the loop filters applied in the Costas loop and the squaring loop are identical,
then both loops are equivalent. The optimal lowpass filter applied in both loop branches
is a filter that is matched to the data pulse contained in the signal x(t, θ). If it is used,
then both filter outputs can be sampled once per modulation period and the VCO can be
controlled using these samples.

8.5.2 Carrier Phase Synchronization using Decision Feedback

Let us consider the practical case of digital transmission in which the passband digitally
modulated signal reaching the receiver has the form

x(t) = Re

{
exp[j2πfct + θ(t)]

∞∑
i=−∞

dih(t − iT ) + ν(t)

}
(8.82)

We assume that data symbols di , the pulse h(t) and the noise ν(t) are complex-valued.
Complex data symbols allow us to treat such modulations as BPSK, QPSK, QAM, etc.
In digitally implemented receivers, the in-phase and quadrature passband components
located around the carrier frequency fc are achieved on the basis of the signal x(t) owing
to a pair of bandpass filters, for which the impulse response of the second filter is the
Hilbert transform of the response of the first filter. Let us recall that if g(t) = F−1{G(f )}
is the impulse response of the first filter, the second filter has the impulse response given
by the formula

g̃(t) = F−1{−j sgn(f )G(f )} (8.83)

Operation in the frequency domain, which is described by the function −j sgn(f ), is in
fact the shifting of the signal phase in its whole spectral range by 90◦. Therefore the
signals on both filter outputs are in quadrature to each other, so they can be represented
in the form of real and imaginary parts of the following complex function of time

xP (t) = exp[j2πfct + θ(t)]
∞∑

i=−∞
dihg(t − iT ) + νg(t) (8.84)

where hg(t) is the impulse response of the complex joint channel and passband filters
G(f ) and G̃(f ). In turn, νg(t) is filtered noise.
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Figure 8.11 Block diagram of the receiver with the adaptive equalizer and the carrier phase
correction on the equalizer output

The block diagram of a typical receiver in which both filters considered above are
applied is shown in Figure 8.11. The passband signal xP (t) is converted to the baseband.
This operation is performed by multiplying signal xP (t) by the function exp(−j2πfct).
Let us note that in this operation the correct carrier phase is not applied. A possible
frequency difference between the received signal and that used in the conversion of the
signal xP (t) to the baseband is contained in the phase function θ(t). If the pulse hg(t)

introduces intersymbol interference, then an equalizer is necessary. The equalizer is also
complex-valued.3 As we remember, the equalizer is usually implemented by transversal
filters. Similar to most transversal filters, in which the main tap is located somewhere in
the middle of the delay line, such an equalizer introduces a significant delay. For that
reason the correction of the signal phase is performed on the output of the equalizer. A
decision feedback loop is applied in the phase correction circuit. In the other possible
configuration of the phase correction we should modify the carrier phase in front of the
equalizer on the basis of the decisions made on the equalizer output. As a result, the
equalizer would introduce a significant delay in the phase synchronization loop. This
delay would have a serious influence on the loop stability, its rate of reaction to the
changes in carrier phase or frequency of the received signal. The considered receiver
scheme with the decision feedback loop on the output of the equalizer was first proposed
by Falconer (1976).

Let us assume for simplicity that the equalizer has already minimized the intersymbol
interference to such an extent that the ISI residual values can be incorporated into the
noise component. Since data decisions are performed once per modulation period T , it is
sufficient to process the complex samples from the equalizer output with the same interval
T . Thus, the sample on the equalizer output at the kth moment can be written as

yk = exp(jθk)dkp0 + nk (8.85)

where p0 is a central sample of the joint channel hg(t) and equalizer impulse response.
We can assume that owing to the appropriately adjusted equalizer we have approximately

3 Compare with our considerations on a complex equalizer in Chapter 6.
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pi = 0 for i �= 0, and p0 = 1. The second component of formula (8.85) is a noise sample
on the equalizer output in the kth moment. We conclude from expression (8.85) that the
equalizer output sample in the kth moment is the data symbol dk, which is rotated by the
angle θk and disturbed by an additive noise sample. The carrier synchronization circuit
rotates the complex signal by the angle −θ̂ . As a result, we obtain the sample

zk = exp[j (θk − θ̂k)]dk + n′
k (8.86)

Based on zk the decision device calculates the estimate d̂k of the data symbol dk. Assume
that the signal-to-noise ratio is so high that the symbol error rate Pr{d̂k �= dk} is very
small. Under this assumpion the noise sample is negligible. Then, based on the signal

zk = exp[j (θk − θ̂k)]dk (8.87)

we can determine the angle θ̂k − θk in the following way. First, we multiply both sides
of (8.87) by the expression d̂∗

k /|d̂k|2 = d∗
k /|dk|2. As a result we obtain

exp[j (θk − θ̂k)] = zkd
∗
k

|dk|2 (8.88)

Therefore, if we extract the imaginary part of the signal (8.88), we obtain the phase error
signal, which is similar to that achievable on the output of the phase detector based on
the multiplier. Namely, we have

Im{exp[j (θk − θ̂k)]} = sin(θk − θ̂k) = Im

{
zkd

∗
k

|dk|2
}

(8.89)

As a result, the error sample fed to the loop filter is given by the formula

ek = θk − θ̂k = arcsin

{
Im[zkd

∗
k ]

|dk|2
}

(8.90)

For small angle differences θk − θ̂k for which sin(θk − θ̂k) ≈ θk − θ̂k we obtain

ek ≈ Im[zkd
∗
k ]

|dk|2 (8.91)

Normalization of the error signal with respect to the power of the current data symbol is
not needed if |dk|2 is constant, which occurs for all PSK modulations.

Dynamic properties of the phase loop are determined by the transfer function of the
applied loop filter. In order for the loop to be able to compensate for the frequency offset,
which shows itself by a monotonically increasing phase offset resulting in gradual rotation
of the signal constellation, the loop filter should contain an integrating element.

Let us note a certain drawback of the decision feedback synchronization loop. Suppose
that the QPSK modulation has been applied. The angle between neighboring decision
thresholds is equal to π/2. Consequently, if the phase error is higher than π/4, a symbol
error is committed in the decision process and the error signal given to the loop filter
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input will indicate the wrong direction of the change in phase. Possibly, then, the decision
feedback loop will synchronize to the carrier phase, which generally differs from the real
one by kπ/2. The decision device will then generate decisions that differ from the correct
data symbol by kπ/2. As we see, phase ambiguity occurs. Fortunately, its influence can
be eliminated by the application of differential encoding.

At the end of our considerations on carrier phase recovery let us analyze how the carrier
phase recovery block influences the adaptation process of the adaptive equalizer. First, let
us recall a simple case of the linear equalizer, whose coefficients ci (i = 0, 1, . . . , N − 1)

are updated using the gradient algorithm if there is no carrier phase offset. The gradient
algorithm would have the following form for the complex equalizer

ck+1,i = ck,i − αεkx
∗
k−i for i = 0, 1, . . . , N − 1 (8.92)

where εk = yk − dk and α is the adaptation step size. However, in the case of carrier
phase offset the equalizer output sample yk is rotated by the angle −θ̂ , therefore the only
error that can be calculated is

εk = zk − dk (8.93)

In this context algorithm (8.92) achieves the form

ck+1,i = ck,i − αεk exp(j θ̂)x∗
k−i for i = 0, 1, . . . , N − 1 (8.94)

In the literature we can find many other solutions of the carrier phase synchroniza-
tion using the decision feedback loop. Examples can be found in Kurzweil (2000) and
Proakis (2000). However, modern digital receivers most often use the decision feedback
synchronization circuit shown in this section.

8.6 Timing Synchronization

Besides carrier phase and frequency synchronization, timing synchronization plays an
important role in digital transmission. Decisions upon transmitted data are made by the
receiver for every data symbol. They are performed once every modulation period T ,
therefore it is extremely important to determine the time instant τ within the modulation
period T that ensures maximum decision quality. As for carrier phase synchronization,
we can categorize timing recovery circuits as those that use the decision feedback and
that do not.

8.6.1 Timing Recovery with Decision Feedback

Let us consider the problem of finding the optimum sample timing according to the
maximum likelihood criterion. Let us focus on the baseband transmission model. The
basic equation describing the received signal has the form

y(t) = x(t, τ ) + n(t) =
∞∑

i=−∞
dih(t − iT − τ) + n(t) (8.95)
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Let us assume that subsequent data symbols are uncorrelated and equiprobable and n(t) is
the additive white Gaussian noise. Let us also assume that in our search for the best timing
phase τ̂ in the maximum likelihood sense we consider the finite time interval (0, NT ).
Thus, we can perform a series of operations that are analogous to those described by
formulas (8.55)–(8.65). These operations lead to the final definition of the likelihood
function in the form

�(τ) = exp

− 1

2σ 2

NT∫
0

[
y(t) − x(t, τ )

]2
dt

 (8.96)

which results from the assumed Gaussian noise distribution. This function should be
maximized with respect to the timing phase τ . Let us note that this time

x(t, τ ) =
∑

i

dih(t − iT − τ) (8.97)

where the time index i is related to data symbols from the integration interval (0, NT ).
By expanding the expression under the integral in (8.96) we get

�(τ) = exp

− 1

2σ 2

NT∫
0

[
y2(t) − 2y(t)x(t, τ ) + x2(t, τ )

]
dt


= exp

− 1

2σ 2

NT∫
0

y2(t)dt

 exp

 1

σ 2

NT∫
0

y(t)x(t, τ )dt

 exp

− 1

2σ 2

NT∫
0

x2(t, τ )dt


= C exp

 1

σ 2

NT∫
0

y(t)x(t, τ )dt

 (8.98)

The reason for the simplification applied in the last part of formula (8.98) is the following.
The likelihood function �(τ) can be represented as the product of three factors, as shown
in the second part of (8.98). The first factor does not depend on the timing phase τ , so
it can be treated as a constant. If the integration interval (0, NT ) is sufficiently long, the
integral in the third factor can be treated as the energy of signal x(t, τ ). Its value does not
depend on τ either. Thus, these two factors are excluded from the optimization process
and they are futher represented as a constant C. If we apply (8.97) in (8.98), calculate
the logarithm of both sides of (8.98) and drop the constant C (which does not have any
influence on finding the optimum timing phase τ̂ ), we obtain the logarithmic likelihood
function of the form

�log(τ ) = Clog

∑
i

di

NT∫
0

y(t)h(t − iT − τ)dt

= Clog

∑
i

dizi(τ ) (8.99)
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For a sufficiently long integration interval, the following signal

zi(τ ) =
NT∫
0

y(t)h(t − iT − τ)dt (8.100)

can be treated as a signal seen on the output of the filter matched to the pulse h(t), whereas
the matched filter input signal is y(t). The matched filter output signal is acquired at the
sampling moments iT + τ . The necessary condition for finding the maximum likelihood
timing phase is

d�log(τ )

dτ
= 0 (8.101)

From this condition we derive the equality that has to be fulfilled for the best timing
phase τ̂

∑
i

di

d

dτ

 NT∫
0

y(t)h(t − iT − τ̂ )

 =
∑

i

di

d

dτ
[zi (̂τ )] = 0 (8.102)

The timing recovery block diagram shown in Figure 8.12 is a simple consequence of
formula (8.102). This solution requires the knowledge of data symbols, so it belongs to
the category of decision feedback timing recovery circuits. As we see, the filter matched
to the pulse h(t) is placed at the input. Such a filter can often be found in the receiver
anyway. The matched filter output is differentiated and sampled with the timing interval
T and the sampling phase τ̂ . These samples are subsequently multiplied by known data
symbols (the switch in position 1), or by data decisions featuring low symbol error rate
(the switch in position 2). The multiplication results are accumulated in the interval of

VCO

d ( )

Sampling
phase t

y(t) Matched
filter
h(−t)

i
Σ

zi(t)

dzi(t)

1

2dt

dt

di

di

^

Figure 8.12 Block diagram of the maximum likelihood timing recovery circuit with decision
feedback
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N modulation periods. The result of this accumulation is a control signal for the VCO,
which in turn generates sampling pulses with period T and timing phase τ̂ . As we see,
the time-discrete PLL is applied in the timing recovery circuit. The role of the loop filter
is performed by the accumulator. The averaging and dynamic loop properties depend on
the length of the window (0, NT ) in which averaging takes place.

Let us consider another timing recovery method that also requires knowledge of data
symbols. This method is iterative, so it is realized in the time instants in every modulation
period T . The choice of the timing phase τ is based on minimization of the mean square
error E(τ ) on the input of the decision device, i.e.

τopt = arg min
τ

E(τ ) = arg min
τ

E[|zi(τ ) − di |2] (8.103)

where zi(τ ) = z(iT + τ) is the sample on the input of the decision device in the ith
modulation period. Let the receiver have the scheme shown in Figure 8.11. Besides the
timing recovery circuit there is also a carrier phase recovery circuit and an adaptive
equalizer. The receiver front-end is usually implemented in analog technology, but its
remaining part is in most cases implemented digitally. Therefore, the sampling process
with adjustable sampling phase usually takes place in front of the filters g(t) and g̃(t),
which extract the in-phase and quadrature signal components, respectively. As we see,
the receiver is a rather complex digital structure in which several dynamic processes take
place concurrently: carrier phase estimation and correction, compensation of intersym-
bol interference introduced by the transmission channel and timing phase selection. The
minimum mean square error criterion can be applied concurrently in all these processes,
which results in their mutual interaction. Usually a training sequence is used in the pro-
cess of establishing a link. Owing to knowledge of the transmitted data sequence, the
receiver gradually acquires carrier phase correction, appropriate timing phase and finally
the suboptimal equalizer coefficients. The optimum solution would be joint optimization
of all three processes.

Now we will focus on finding the best timing phase τ̂ in the sense of criterion (8.103).
As opposed to the case of an adaptive equalizer considered in Chapter 6, criterion (8.103)
is not a convex function of the optimized parameter, so adjusting the timing phase in
such a way that the derivative of the mean square error E(τ ) with respect to this phase is
equal to zero does not guarantee finding the mean square error minimum. However, using
the derivative is sensible if the timing recovery circuit already operates in the tracking
mode in which the current timing phase is close to the optimum. In general, the applied
algorithm updates the sampling moment with respect to the current moment by subtracting
the correction term, whose value is proportional to the derivative of the mean square error
with respect to τ , calculated for the error at the current timing phase τ = τi . Thus, the
applied algorithm is a gradient algorithm, which in the ideal case would be determined
by the formula

τi+1 = τi − α
∂E(τ )

∂τ

∣∣∣∣
τ=τi

(8.104)
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Signals shown in Figure 8.11 are complex-valued, therefore the derivative of the mean
square error needs more detailed treatment. Denoting εi(τ ) = zi(τ ) − di we have

∂E(τ )

∂τ
= ∂E[|εi(τ )|2]

∂τ
= ∂E[εi(τ )ε∗

i (τ )]

∂τ

= E

[
εi(τ )

∂ε∗
i (τ )

∂τ
+ ε∗

i (τ )
∂εi(τ )

∂τ

]
= 2 Re E

[
ε∗
i (τ )

∂εi(τ )

∂τ

]
(8.105)

Since the data symbol applied in the expression for εi(τ ) does not depend on the timing
phase τ , algorithm (8.104) achieves the form

τi+1 = τi − α Re

{
E

[
ε∗
i (τ )

∂zi(τ )

∂τ

]}∣∣∣∣
τ=τi

(8.106)

where the factor 2 is included in the constant α. However, estimating the ensemble average
is difficult and it is a time consuming process, so usually the ensemble average is replaced
by its stochastic estimate. Thus, the algorithm is described by the expression

τi+1 = τi − α Re

{
[zi(τ ) − di]

∗ ∂zi(τ )

∂τ

}∣∣∣∣
τ=τi

(8.107)

The timing phase recovery circuit shown in Figure 8.13 is a natural consequence of
formula (8.107).
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Figure 8.13 Timing recovery using the gradient algorithm that minimizes the mean square error
(based on Barry et al. (2003))
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It is worth mentioning again that most algorithms in the receivers are realized in the
digital domain. Therefore, at the input of the scheme shown in Figure 8.13 there is
a sampling block that acquires the signal at moments tk,i = kT /m + τi . The sampling
process is performed with the rate at least equal to the Nyquist frequency, e.g. m times
within the modulation period. The index k is the number of samples in one modulation
period, whereas the index i denotes the number of modulation periods. Let us note that
the decision process is performed once per modulation period, therefore this is the period
at which the timing phase correction is performed.

8.6.2 Timing Recovery Circuits without Decision Feedback

Besides the timing phase recovery schemes in which data symbols are applied, there are
also other schemes that do not require them. The latter schemes rely on application of
the appropriate criterion which is ensemble averaged with respect to data sequences.

Let us come back again to our considerations of the maximum likelihood criterion
applied for the time interval (0, NT ). As we remember, the likelihood function �(τ) is
expressed by formula (8.98). Putting (8.100) in (8.98), we obtain

�(τ) = C exp

[
1

σ 2

∑
i

dizi(τ )

]
(8.108)

where zi(τ ) is the matched filter output signal sampled at the moment iT + τ and given
by formula (8.100). On the basis of (8.108) we obtain

�(τ) = C
∏

i

exp

[
1

σ 2
dizi(τ )

]
(8.109)

Assume that binary data symbols are bipolar, equiprobable and statistically independent,
i.e. Pr{di = 1} = Pr{di = −1} = 1/2. Then we are able to calculate the ensemble average
of the likelihood function with respect to the data symbols in the following way

�(τ) = E

{
C
∏

i

exp

[
1

σ 2
dizi(τ )

]}
= C

∏
i

E

{
exp

[
1

σ 2
dizi(τ )

]}

= C
∏

i

{
1

2
exp

[
1

σ 2
zi(τ )

]
+ 1

2
exp

[−1

σ 2
zi(τ )

]}

= C
∏

i

cosh
1

σ 2
zi(τ ) (8.110)

Searching for the optimum sampling moment for which the likelihood is maximum can
be done after finding the logarithm of the average likelihood function. We get

�log(τ ) = ln �(τ) =
∑

i

ln

[
cosh

1

σ 2
zi(τ )

]
(8.111)
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As before, we obtain the optimum timing phase from the condition resulting from setting
the derivative of the function �log(τ ) to zero. As a result, we achieve the expression

∂�log(τ )

∂τ
=

∑
i

∂

∂τ
ln

[
cosh

1

σ 2
zi(τ )

]
= 1

σ 2

∑
i

sinh
1

σ 2
zi(τ )

cosh
1

σ 2
zi(τ )

∂zi(τ )

∂τ

= 1

σ 2

∑
i

tanh

[
1

σ 2
zi(τ )

]
∂zi(τ )

∂τ
= 0 (8.112)

From this formula we can derive the scheme of timing phase recovery for binary PAM
transmission, shown in Figure 8.14.
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d ( )
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ti=iT+t

Figure 8.14 Maximum likelihood timing phase recovery scheme without decision feedback

As we see in Figure 8.14, the received signal is fed to the input of the matched filter. The
filter output signal is differentiated in time and sampled with the phase τ . In the parallel
branch, the signal is also sampled with the same phase τ, and subsequently processed
in the nonlinear circuit with the characteristics tanh(x). The multiplied samples of both
branches are accumulated in the interval of NT and the resulting value is a signal that
controls the phase of the timing clock.

There also exist many suboptimum timing phase recovery schemes and we will briefly
describe two of them.

The first scheme (Figure 8.15) is appropriate for baseband signals and takes advantage
of the fact that the data signals are periodically sent every T seconds. Let us assume that
the signal-to-noise ratio is so high that we can omit the noise component in the expression
for the received baseband-equivalent signal. Then we have

y(t) =
∞∑

i=−∞
dih(t − iT − τ) (8.113)
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Assuming that data symbols are zero-mean and uncorrelated, we can calculate the
ensemble average of the squared magnitude of the signal y(t), which results in the
expression

E[|y(t)|2] = E

[ ∞∑
i=−∞

dih(t − iT − τ)

∞∑
k=−∞

dkh(t − kT − τ)

]

=
∞∑

i=−∞
E[|di |2]|h(t − iT − τ)|2 = E[|di|2]

∞∑
i=−∞

|h(t − iT − τ)|2 (8.114)

As we see, the ensemble average of the squared magnitude of the signal y(t) is a periodical
signal with the period equal to T and the phase resulting from the time phase τ , regardless
of the pulse shape h(t). The signal of this frequency can be extracted by using the bandpass
filter with the center frequency equal to 1/T . Temporary phase variations on the filter
output can be minimized if an additional averaging phase-locked loop is applied. The
result of our considerations is shown in Figure 8.15.

|.|2

Detector

BPF
fcenter=1/T

|y(t)|2

PLL

y(t)

ti=iT+t

Figure 8.15 Timing phase recovery with the application of a spectral line created by a nonlinear
circuit

The last method of timing recovery described in this chapter attempts to establish the
sampling moment in the maximum of the pulse observed on the output of the matched
filter. If the filter applied in the receiver is really matched to the pulses appearing on
its input, then a single pulse seen on the filter output is symmetric with respect to its
maximum. Therefore, by taking the signal samples shifted on the time axis by δ in
forward and backward directions we should receive samples of the same magnitude, so
their difference should be zero. This observation is reflected in the block diagram shown
in Figure 8.16. The input signal is given to the matched filter input. Its output is sampled
at two phases – the phase delayed by δ and the phase advanced by δ with respect to the
current timing clock. The magnitudes of the received samples are determined and their
values are compared in the subtracting block. The resulting difference between them is
averaged in the loop filter and its output signal controls the timing phase of the VCO.

* * *

In this chapter we have presented examples of methods used in carrier and timing syn-
chronization. The optimal methods are derived from the applied criteria such as minimum
mean square error, maximum likelihood, etc. Generally, some methods take advantage of
the knowledge of data symbols or decisions related to them, while others find the carrier
phase or timing phase in a different way. Specific synchronization methods are also asso-
ciated with multicarrier (OFDM) transmission. Although they have not been discussed in
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Figure 8.16 Timing phase recovery scheme with the application of early–late gates

this chapter, they were briefly described in the section devoted to OFDM modulation in
Chapter 5.

The examples presented in this chapter mostly show the rules of functioning of syn-
chronization recovery systems. Their performance is not analyzed. The examples cover
all synchronization issues that appear in many comunication systems and networks. Gen-
erally, synchronization is one of the key issues in the design of digital communication
systems and networks.

Problems

Problem 8.1 The one-sided noise equivalent bandwidth of the system characterized by
the transfer function H(f ) is given by the formula

Beq = 1

max
f

|H(f )|

∞∫
0

H(f )df

Find the one-sided equivalent bandwidth of the first-order and second-order PLLs whose
transfer functions are given by formulas (8.14) and (8.27), respectively.

Problem 8.2 Consider the second-order PLL with the transfer function of the loop filter
given by (8.23), so the closed loop transfer function of the PLL is described by (8.25).
Prove the conditions for loop stability expressed by (8.26).
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Problem 8.3 For the second-order PLL with the proportional-integral filter given by
formula (8.29), find the loop transfer function, the stability condition and determine the
expression for the one-sided noise equivalent bandwidth.

Problem 8.4 Solve Problem 8.3 if the transfer function H(s) of the loop filter is

H(s) = K1

s + K2

Problem 8.5 Let us consider the discrete time PLL whose closed loop transfer function is
determined by formula (8.44). Simulate its operation using Matlab. Assume that the phase
detector has linear characteristics W(α) for −π ≤ α ≤ π .

1. For the first-order discrete time PLL the loop filter has the transfer function H(z) =K .
Plot the magnitude of the closed loop transfer function by applying substitution z =
exp(j2πf TS), where TS is the sampling period and the coefficient K takes values 0.6, 1
and 1.4. Find the one-sided equivalent PLL bandwidth as a function of K1 and K2.
Calculate and subsequently plot the PLL response to the phase shift θ and frequency
shift 	f that occurred at the moment n = 0. Perform calculations for 1/TS = 2400 Hz,
θ = 45◦ and 	f = 50 Hz.

2. Apply the PLL filter whose transfer function is H(z) = K1(1 + K2
z−1 ). Calculate the

closed loop transfer function and find the conditions for the PLL to be stable. Find
the one-sided equivalent PLL bandwidth as a function of K1 and K2. For the selected
parameters K1 and K2 calculate and subsequently plot the PLL response to the phase
shift θ and frequency shift 	f that occurred at the moment n = 0. Compare the results
with the first-order PLL. Repeat the calculations and plots for a few sets of K1 and K2

to obtain the desired dynamic properties of the loop. Perform calculations for 1/TS =
2400 Hz, θ = 45◦ and 	f = 50 Hz.

Problem 8.6 Consider the QPSK transmission and the carrier phase recovery circuit
based on a nonlinear quadratic circuit similar to that shown in Figure 8.9. Draw a block
diagram of this modified circuit. Assume the ideal QPSK signal arrives at the input of this
circuit. Draw the waveforms at the output of each functional block. What are the factors
determining the parameters of the bandpass filter with its band centered around 4fc, where
fc is the carrier frequency of the QPSK signal? What is the carrier phase ambiguity of the
reference signal produced by this circuit?

Problem 8.7 Write a computer program (possibly in Matlab) that models the baseband
equivalent digital transmission system shown in Figure 8.17a. The system consists of a
source of 16-QAM signals distorted by the carrier frequency and phase offset. Additive
white Gaussian noise is added to the signal at the receiver input. Since transmit and
receive filters with square root raised cosine characteristics are applied and we assume an
ideal timing phase once per signaling period T , resulting in no intersymbol interference,
we can simplify the system model to the form shown in Figure 8.17b.

1. Send the appropriately large number of 16-QAM data symbols (say, 1000 or more) and
plot the distorted constellation points at the input of the carrier recovery circuit. The
function scatter in Matlab is useful for that purpose. Observe the influence of additive
noise on the spread of the constellation points (assume zero phase and frequency shifts
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Figure 8.17 Block diagram of the data transmission system with the carrier recovery circuit (a),
the simplified block diagram (b)

for a while). Next, observe the influence of the phase shift and later of the frequency
shift on the form of the received in-phase and quadrature signal coordinates and their
spread around the correct constellation points.

2. The receiver applies a decision feedback carrier phase and frequency recovery circuit,
similar to that drawn in Figure 8.11. Draw a detailed block diagram of the carrier
recovery circuit. Apply a discrete proportional-integral loop filter H(z) in it. Select
the filter parameters that ensure stability of the digital phase-locked loop and allow
the phase θ and frequency offset 	f to be acquired and tracked for the following
transmission parameters: 1/TS = 2400 Hz, θ = 45◦ and 	f = 50 Hz. Plot the PLL
error ek as a function of the timing index k, showing that the carrier recovery circuit is
stable and gradually compensates for the phase and constant frequency offset. Estimate
the steady-state mean square error of the loop on the loop filter.

Problem 8.8 Apply the simulation program of a baseband binary bipolar transmission
system that was previously developed in Problem 6.1 to investigate the timing phase
recovery circuit based on the PLL with the early–late gates. As previously, apply the
oversampling rate Ns = 16 (there are Ns samples per signaling period T ). Perform the
following experiments.

1. First, assume that the channel does not introduce amplitude or phase distortion (i.e.
in the channel model a = 0 dB, β = 0). Thus, assuming additive white Gaussian noise
as the only signal impairment, notice that the receive filter is strictly matched to the
received pulses. Design the timing phase recovery circuit using the early–late gates
shown in Figure 8.16 by selecting the timing phase advancement/delay δ (as one of
the Ns possible timing phases) and the parameters of the loop filter. What is the main
task of this filter? In the simulation run, let the transmitter send an appropriately long
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data sequence to make an observation of how the best timing phase (out of Ns possible
phases) is gradually being achieved. How do the parameters of the loop filter influence
the dynamic behavior of the timing recovery circuit? Run your simulations starting from
different initial timing phases. Run them for SNR = 15, 10 and 5 dB. Plot the timing
phase as a function of the number of signaling periods.

2. Repeat similar simulation experiments using the timing recovery circuit and applying
the early–late gates for the case when the channel introduces amplitude and phase
distortions. Apply the channel parameters similar to those used in Problem 6.1: R =
2400 symb/s, a = 5 dB, SNR = 15 dB and β having such a value that the group delay
τ is equal to 1 ms at the frequency R/2 Hz.

Problem 8.9 One of the practical methods of achieving timing recovery is based on zero
crossings of the data pulses. In general, timing positions of zero crossings depend on the
pulse-shaping filter properties, the noise level and amplitude and phase distortions of the
transmission channel. If the zero crossing detector generates short timing pulses at the
moments in which such crossings occur, these pulses can be treated as the excitations
for the averaging PLL, which generates a stabilized timing clock. Based on this clock,
the appropriate timing (e.g. in the half of the period between subsequent PLL pulses) can
be achieved. Apply again the simulation program used in Problem 8.8 and observe the
eye pattern at the receive filter output. Supplement the simulated receiver with the timing
recovery curcuit based on the above-described principle. Design the whole timing recovery
circuit and determine the properties of the applied averaging PLL. Run the simulations as
in points 1 and 2 of Problem 8.8 and plot the estimated timing phase that is applied in the
decision process. Draw a plot of the squared difference between the signal sample at the
decision input and the transmitted data symbol as a function of the number of signaling
periods.



 

9
Multiple Access Techniques

9.1 Introduction

Resources that are used by communication systems, such as the electromagnetic spectrum
and time, are mostly very limited and have to be efficiently shared by many communication
links. In typical communication networks the number of links that can be potentially
established is much higher than that which is allowed by the amount of network resources.
Therefore, a communication system designer has to decide not only about the configuration
of communication links but also on the applied method of sharing the resources among
simultaneous links. The latter is done by selection of a multiple access scheme. Although
the problem has to be solved for most of the systems, it is particularly important in the
case of radio systems. Owing to the application of the selected multiple access scheme
the signals generated by system users can use common system resources such as time
and frequency band, and the signals of the particular user can be effectively extracted
at the receiver. In radio systems the multiple access scheme largely influences the total
system design, including the typically deployed fixed part of the network, and substantially
determines the cost and quality of the system operation.

There are three basic multiple access schemes: FDMA – Frequency Division Multi-
ple Access; TDMA – Time Division Multiple Access; CDMA – Code Division Multiple
Access . They often appear in a hybrid form as a combination of at least two of them. In
radio systems they can be additionally supported by multiple antennas forming antenna
arrays that enable SDMA – Space Division Multiple Access – to be applied. OFDMA
(Orthogonal Frequency Division Multiple Access), which can be considered as a special
type of FDMA, is another multiple access scheme that is very attractive in certain appli-
cations. Basic multiple access schemes have been described in many books on digital
communication systems or wireless communications (see Rappaport 1996; Proakis 2000;
Sklar 1988; Barry et al. 2003; Wesołowski 2002; Pahlavan and Levesque 1995).

With respect to sharing common spectral resources among many users, some authors
distinguish the concepts of multiple access from multiplexing (Sari et al. 2000). The
latter term refers to the function performed at the communication transmitter (such as
a base station) in which the signals available locally are distributed to the receivers
located in different places. The former term, i.e. multiple access, refers to the function

Introduction to Digital Communication Systems Krzysztof Wesołowski
 2009 John Wiley & Sons, Ltd
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performed by transmitters of user terminals communicating with the main station (e.g. a
base station). In this case the signals originate from transmitters that are mostly placed in
different geographical locations. As a result, their carrier frequencies and/or timing and
power have to be adjusted so that the signals arrive at the main station receiver within
the assigned frequency band or time frame and at approximately the same power.

Multiple access schemes are mostly accompanied by duplexing techniques
(Figure 9.1), which allow the terminals to send and receive signals simultaneously
or quasi-simultaneously. There are two basic techniques: FDD (Frequency Division
Duplex ) and TDD Time Division Duplex ). In the first method transmission directions
are separated on the frequency axis by having different bands assigned to them, whereas
in TDD the direction of transmission is periodically reversed using the same frequency
band.
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of other systems
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Figure 9.1 Illustration of basic duplexing techniques: (a) FDD and (b) TDD

Multiple access schemes can be applied jointly with several types of modulation. Both
single- and multi-carrier transmission techniques are applied in various systems.

Below we provide an overview of basic multiple access schemes. Part of the mate-
rial presented in this chapter was earlier contained in the public domain deliverable on
multiple access schemes prepared within the European Union Sixth Framework project
WINNER – World Wireless Initiative New Radio (WINNER Deliverable 2.6 2004).

9.2 Frequency Division Multiple Access

FDMA is historically the first multiple access scheme. Initially, it was applied in analogue
telephony transmission (Sklar 1988). For a long time, due to the level of communica-
tion technology, it was the only method possible. Introduction of digital communication
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systems made it possible to use other methods, in particular TDMA and CDMA.
Although FDMA is widely known, there are not so many literature positions in which

FDMA is treated in detail compared to other multiple access schemes. In FDMA, indi-
vidual frequency bands that define transmission channels are assigned to individual users
(Figure 9.2). Except for unidirectional systems, such as TV or radio broadcasting, in
bidirectional transmission each user is assigned a pair of channels characterized by two
different carrier frequencies, so FDD is almost exclusively associated with FDMA.
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Figure 9.2 Illustration of Frequency Division Multiple Access

In Rappaport (1996) one can find basic features of the FDMA scheme considered from
the point of view of wireless systems. The most important features are:

• Each FDMA channel provides only one connection at a time.
• FDMA requires tight RF filtering to separate the user signals and minimize adjacent

channel interference. Adjacent channels are separated on the frequency axis by guard
bands, which are necessary due to the finite slope between the passband and stop-
band of the channel filter characteristics. This in turn decreases the FDMA spectral
efficiency.
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• Due to simultaneous operation of transmitters and receivers when using FDMA in
combination with FDD, duplex filters are necessary in terminals and base stations,
which increases the cost of the whole system.

• After channel assignment, the base station and terminals transmit simultaneously and
continuously.

• The bandwidths of FDMA channels are relatively narrow because each channel is used
by only one connection at a time. In this sense, FDMA can be analyzed as a narrowband
approach, although the total bandwidth of the whole system may be large.

• In traditional narrowband FDMA systems the channel characteristics are often almost
flat. Therefore, inter-symbol interference is small or moderate and in such cases only
simple channel equalization, or no equalization at all, is needed.

• FDMA, being a continuous transmission scheme, requires a small number of bits for
synchronization and framing.

• A base station power amplifier amplifies the signal, which is the sum of many indi-
vidual channel signals; thus, the amplifier has to be highly linear because of the high
Peak-to-Average Power Ratio (PAPR) of the aggregated signal.

In mobile communications FDMA has been applied in many older systems, such as
the first generation cellular systems AMPS (Bell System Technical Journal 1979), NMT
(Westin 1993) or others. Frequency division multiplexing is widely applied in analog TV
and radio broadcasting.

It is important to stress that if we consider both mobile terminals and base stations in
wireless communication systems, FDMA is present as a natural component of virtually
all practical schemes using TDMA or CDMA (Baier et al. 1996). The reason for this is
that the total bandwidth of a typical mobile communication system would be difficult to
manage if TDMA or CDMA was applied exclusively. In the case of TDMA this would
result in very short burst lengths in order to support an adequate number of simultaneous
users. Application of FDMA as a multiple access component relaxes these requirements
and allows for higher flexibility of resource management (Baier et al. 1996).

In the systems characterized by a large coverage area, such as TV broadcasting systems
or cellular systems, the choice of FDMA as a multiple access scheme results in the
necessity for sophisticated radio network design in which frequency planning is taken
into account. The same carrier frequencies that identify particular FDMA channels can be
applied by the stations, which are separated adequately in space to prevent interference
among them. A so-called frequency re-use factor lower than 1 has to be applied. All these
design factors are considered as drawbacks of this multiple access scheme.

9.3 Time Division Multiple Access

TDMA is a well-known access technology that has been successfully applied in many
wired and wireless digital transmission systems. In TDMA, the time axis is typically
divided into a sequence of periodically repeating time slots (Figure 9.3). In each slot,
only one user is allowed to transmit or receive. Typically, a user has periodical access to
the time slot assigned to him. The time slots are organized in frames. Very often higher
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Figure 9.3 Illustration of Time Division Multiple Access

hierarchy time structures are defined, which allow for efficient resource management,
signaling and network and frame synchronization. TDMA is accompanied by either TDD
or FDD duplex schemes. The hybrid TDMA/FDMA/FDD version is used in GSM mobile
telephony.

A basic description of TDMA with emphasis on wireless systems can be found in
Rappaport (1996). TDMA applied in mobile communications is characterized by the
following main properties:

• A single-carrier frequency is shared by a number of users. Each of them transmits or
receives a signal in nonoverlapping time slots.

• Data transmission has a bursty nature, so transmission is exclusively digital. For a
certain fraction of time the mobile station can be in an idle state, thus the battery
can be saved. Outside the slots in which the mobile station transmits or receives, it
can monitor surrounding base stations. This enables and simplifies a mobile-assisted
procedure of changing the base station during the call (i.e. the so-called handover
procedure performed in cellular systems).
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• Duplexing filters, i.e. the filters that separate the transmission directions, are not needed
in terminals, due to the fact that transmission and reception take place in different time
slots, regardless of the duplexing method used. However, TDMA applied jointly with
FDD could require duplexing filters.

• Due to the shorter fraction of time assigned to a single user, a larger bandwidth is needed
to transmit the same amount of data compared with FDMA. Practically, this results in
the necessity of (adaptive) equalization of the transmission channel and sending a
training sequence within the data burst.

• Data bursts transmitted in the uplink (i.e. from a user terminal to the base station) have
to be separated by guard periods to take into account possible time misalignments as
a consequence of synchronization imperfections in the terminals. In the case of TDD,
a guard period is also required to take into account the time interval needed to switch
from receive to transmit mode, and vice versa.

• A relatively large overhead in the transmitted block is required for frame and slot
synchronization.

Application of TDMA allows for flexible time slot assignment, so the number of time
slots can be adjusted to the needs of particular users (see data transmission in the GPRS
mode of the GSM system; Seurre et al. 2003). When TDMA is combined with FDMA,
as is common in mobile communication cellular systems, careful frequency planning has
to be performed.

9.4 Code Division Multiple Access

There are several types of CDMA schemes. The first category of schemes, which currently
is the most popular, is based on transmission using a single carrier (Figure 9.4). This
category contains the spread spectrum methods briefly explained in Chapter 7. The second
category of CDMA schemes applies multi-carrier transmission as a base. We start our
overview with the first category.

9.4.1 Single-Carrier CDMA

CDMA is a multiple access scheme (Prasad 1996) that originates from the direct sequence
spread spectrum systems (DS-SS) (Dixon 1984) described in Chapter 7. As we remember,
the essential feature of the DS-SS systems used in a CDMA scheme is the robustness of
the transmitted signal to jamming. All users transmit and receive signals in the same band,
applying unique code sequences assigned to them (Viterbi 1995). The code sequence chip
rate is N times higher than the data rate. All applied user code sequences are mutually
strictly orthogonal or quasi-orthogonal. Good examples of strictly orthogonal sequences
are the Walsh-Hadamard sequences applied as channelization codes in the second gener-
ation American cellular system IS-95 (Lee and Miller 1998) and the OVSF (Orthogonal
Variable Spreading Factor) codes applied in UMTS (Universal Mobile Telecommunica-
tion System) (Holma and Toskala 2004; Springer and Weigel 2002). Quasi-orthogonal
sequences are pseudonoise (PN) m-sequences or Gold sequences derived from maximum
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Figure 9.4 Illustration of Code Division Multiple Access using single-carrier transmission

length linear feedback shift registers (LFSR). Particular cells of a cellular CDMA system
are typically distinguished among themselves by the application of appropriate scrambling
codes based on PN or Gold sequences, in addition to the channelization codes.

The Walsh-Hadamard sequences can be derived recurrently from the following formula

H1 =
[

1 1
1 −1

]
, Hk =

[
Hk−1 Hk−1

Hk−1 −Hk−1

]
(9.1)

Each sequence is formed by a row of the matrix Hk . The 2k-symbol-long sequences
contained in different rows of the matrix Hk are mutually orthogonal. However, their
orthogonality is lost if one of these sequences is cyclically shifted with respect to the other
one. Figure 9.5 graphically illustrates the Walsh-Hadamard sequences Wi (i = 0, . . . , 63)

of length 64 for k = 5.
The OVSF codes are defined by the tree shown in Figure 9.6. Considering any node

of the tree, we see that new codewords are created by appending the preceding code-
word with itself (in the upper branch originating from the node) or with its negation (in
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the lower branch growing from this node). Mutual orthogonality of different codewords is
achieved by their appropriate selection from the code tree. One can prove that a codeword
ci is orthogonal to a codeword cj , if and only if the codeword cj is not associated with
the branch leading from the branch associated with the code ci to the root of the tree or
is not located in the subtree below the codeword ci . For example, if bits of a particular
data stream are spread using the codeword c8,5 = (1, −1, 1, −1, 1,−1, 1, −1) with the
spreading factor SF = 8, then for another data stream requiring the spreading factor
SF = 4 all the code words ck,i except c4,3 can be applied.

Figure 9.7 explains the concept of channelization codes and spreading codes with the
example of transmission used in the uplink of the UMTS system. The OVSF codes are
uniquely associated with a transmission channel (recall that in FDMA the channel is
associated with a carrier frequency, whereas in TDMA the channel is determined by
selection of the time slot). Depending on the selected data rate, several spreading factors
SF of the assigned OVSF codes can be applied but the chip rate remains constant.
The complex scrambling sequence applied in the transmitter has the same chip rate as
the channelization codes, which is equal to 3.84 Mbit/s. The reason for application of
scrambling codes is the quasi-orthogonalization of signals generated by different CDMA
terminals sending their signals to different base stations. This makes it possible to apply
the same carrier frequency fc in transmissions to all base stations.
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×

×
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Figure 9.7 The basic scheme of a UMTS uplink transmitter using channelization and scrambling
codes

Selection of either a fully orthogonal or a quasi-orthogonal set of spreading sequences
is an important factor of a CDMA system design. In the first case, if the sequence period
is equal to N , at most N users can transmit simultaneously over flat (nondispersive) and
time-invariant channels without mutual interference. In the second case, due to residual
cross-correlation between spreading sequences, the number of active users is limited by the
tolerated noise level in the receivers and the system performance gradually decreases with
increasing number of simultaneous users. The performance is furthermore significantly
affected by the presence of multipath propagation. Reception of delayed copies of the
codewords will then reduce the performance of single-user receivers.
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In Rappaport (1996), the basic features of a classical single-carrier CDMA scheme have
been summarized. The most important features are:

• CDMA users share the same frequency band. Both FDD or TDD duplexing methods
are applicable.

• In CDMA systems in which pseudo-noise sequences are applied for spreading, the
number of users is “soft”.

• Influence of multipath fading is potentially reduced due to signal spreading over a large
spectrum. This is achieved by applying a RAKE receiver, described in Chapter 7.

• Due to a very high chip rate applied in spreading codes, the receiver is able to extract
separate path signals arriving through the multipath channel. Therefore it is possible to
combine them efficiently in a RAKE receiver.

• Knowledge of all spreading (channelization) codes of the users in a cell allows for
joint (multi-user) detection (Verdù 1998) of user signals, taking into account residual
cross-correlation between the spreading codes and loss of orthogonality due to multipath
propagation.

• In CDMA cellular systems the carrier frequencies applied by different base stations
can be the same, so all surrounding cells use the same frequency band. As a result,
the terminal that is located a comparable distance to two different base stations can
temporarily transmit to both of them and receive signals from both base stations at the
same time. The only requirement is to properly combine the signals arriving from/to
both base stations.

• Because of residual cross-correlation of the spreading sequences, or loss of mutual
orthogonality caused by a multipath channel, it is desirable that the signals sent by
different users arrive with the same mean power, otherwise residual cross-correlation
of the stronger signal constitutes a substantial noise in reception of a weaker signal.
Thus, the performance of CDMA receivers is very sensitive to the quality of power
control. This phenomenon is called the near–far effect and is of special concern in
CDMA receivers.

So far we have considered CDMA based on direct sequence spreading. However, other
spreading methods are also known. The most important among them is frequency hopping
(FH), which is the second basic type of spread spectrum transmission. As we remember,
in FH systems the available spectrum is divided into contiguous frequency slots (Proakis
2000). During transmission of a data symbol, one or more frequency slots are selected
in a pseudo-random manner. Typically, the carrier is FSK modulated. An example of an
FH system is included in the wireless local area network IEEE 802.11 standard (IEEE
2007). Two- or four-level Gaussian FSK is applied, resulting in transmission rates of
1 or 2 Mbit/s. Terminals select different hopping patterns resulting in multiple access.
Generally, the application of FH methods allows for asynchronous reception and results
in less expensive implementation of mobile transceivers.

Example 9.4.1 Let us consider the example of an FH-SS system such as Bluetooth (Haart-
sen 2000; Wesołowski 2002). This system applies frequency hopping with the time division
duplex (FH/TDD). Time is divided into 625-µs slots. The system band is divided into 79
1-MHz frequency channels. During each time slot the signal occupies one of these channels
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according to the selected hopping pattern. As a result, there are 1600 hops per second.
The direction of transmission alternates from slot to slot. In the Bluetooth system, mobile
terminals are organized in the so-called piconets, which may consist of up to eight termi-
nals. Different piconets use different hop sequences. The sequences are carefully selected
to ensure their statistical properties and immunity to mutual interference. At the same
time, their number is so large that they are not fully orthogonal. Lack of orthogonality is
compensated by coding and ARQ techniques.

Frequency hopping systems are typically applied in a difficult environment in which
asynchronous reception is preferable and in small-range wireless systems such as Blue-
tooth, in which system capacity is not a critical issue. In cellular systems, direct sequence
spreading is the common technique used to implement CDMA.

As we said earlier, ultra-wideband (UWB) communication has recently become a sub-
ject of intensive research and implementation (Siwiak and McKeown 2004). In some
proposals for UWB transmission, multiple access can be achieved by application of dif-
ferent patterns of time division spreading sequences (TD-SS). In this arrangement, time
is divided into frames, which in turn are divided into narrow slots. The slot in which
a signal from the given transmitter will be emitted in the current frame is selected in a
pseudorandom fashion. Within the slot a very narrow, properly modulated pulse is trans-
mitted. Due to a large number of slots and short duration of applied pulses, the system
can feature an extremely wide bandwidth. Multiple access can be achieved by selection
of mutually orthogonal sequences of time slots. The UWB system is a potentially good
solution for short-range communications.

9.4.2 Multi-Carrier CDMA

Multi-carrier CDMA (Fazel and Kaiser 2003; Hara and Prasad 1997) is a multiple access
technique strictly related to CDMA using direct sequence spreading (DS-SS). This multi-
ple access scheme applies a multi-carrier modulation, mostly OFDM, as a tool for efficient
use of the available spectrum. Multi-carrier CDMA was considered for use in third gener-
ation cellular radio access networks; however, at the time of technology selection, CDMA
based on the single-carrier DS-SS principle was a more mature technology.

Multi-carrier CDMA schemes can be divided into two types. In multiple access schemes
of the first type the original data stream is spread using a given spreading code and then a
different subcarrier is modulated with each chip (the spreading operation is performed in
the frequency domain). As a result, the MC-CDMA can be treated as a serial concatenation
of DS spreading and multi-carrier modulation. The transmitter structure of the MC-CDMA
scheme is similar to that of a regular OFDM scheme. The main difference is the usage of
subcarriers in data transmission. An MC-CDMA scheme transmits the same data symbol in
parallel on many subcarriers. Figure 9.8a shows the scheme of the MC-CDMA transmitter
used in downlink transmission, so the configuration of transmission is equivalent to a
multiplexing scheme.

Data sequences directed to individual terminals (numbered 1 to k) are first spread using
different mutually orthogonal PN spreading sequences. The arithmetic sum of the spread
sequences is formed into blocks that are subsequently processed in parallel. In the next
step block interleaving is performed and the resulting data block constitutes the input
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Figure 9.8 Transmitter (a) and receiver (b) of the first type of multi-carrier CDMA scheme in
downlink transmission

to the OFDM modulator based on IFFT transformation. A cyclic prefix is added to the
resulting time domain signal block.

The receiver performs operations dual to those made in the transmitter. However, only
one spread data sequence is intended for a particular receiver, so a single de-spreader is
applied, as shown in Figure 9.8b. As we see, the MC-CDMA receiver requires coherent
detection to perform the de-spreading operation successfully.

In the second type of MC-CDMA scheme the data stream is initially serial-to-parallel
converted into low-rate substreams. The resulting substreams are subsequently spread
using a given spreading code and then each spread substream modulates its own subcarrier
(the spreading operation is performed in the time domain). Figure 9.9 presents the general
scheme of this type of MC-CDMA transmitter and receiver.

9.5 Orthogonal Frequency Division Multiple Access

OFDMA, as with MC-CDMA, is also derived from OFDM. The idea of OFDMA was
probably first presented by Sari et al. (1996, 1997).

In OFDMA, an individual subcarrier or, more often, a group of subcarriers is assigned
to different users. There are several methods for allocating subcarriers to users. Two
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Figure 9.10 Two methods of assigning subcarriers in OFDMA: (a) grouped subcarriers and (b)
spread interleaved subcarriers

most common subcarrier configurations are: grouped subcarriers and interleaved spread
subcarriers. If the method of grouped subcarriers is used, each user is assigned a group
of contiguous subcarriers. In the spread subcarriers method, subcarriers are allocated in
a fixed comb pattern, which means that they are spread over the system bandwidth.
Figure 9.10 illustrates both types of subcarrier assignment. Let us note that the users
can have different numbers of subcarriers at their disposal. They can also apply different
modulations and error correction coding with selected coding rates. This makes it possible
to assign different radio resources to users, depending on their requirements. The grouped
subcarriers method minimizes inter-user interference, but is more sensitive to fading,
because a whole group of subcarriers assigned to a given user may suffer from a null in
the channel characteristics. The use of spread subcarriers minimizes the sensitivity of the
transmission performance to fading, but in the case of transmission from many terminals
to a single base station this method is more susceptible to inter-user interference if the
users are imperfectly synchronized in frequency and time.

OFDMA can be applied jointly with TDMA, so the hybrid TDMA/OFDMA method
can also be used to allocate resources both along time and frequency axes.

The most important advantages of OFDMA and hybrid TDMA/OFDMA are:

• no inter-code interference, since transmission in OFDMA is performed on fully orthog-
onal subcarriers (as opposed to typical CDMA-based schemes);

• much more flexible radio resource assignment as compared with TDMA;
• a possibility of adaptive radio resource assignment depending on the user’s requirements

and on channel characteristics;
• high spectral efficiency with respect to FDMA as no guard bands are needed between

the user’s spectra.

In turn, the disadvantages are:

• sensitivity to frequency offset and high peak-to-average power ratio (PAPR), i.e. the
same as for a typical OFDM system;
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• difficulty in providing subcarrier synchronization;
• the need for coordinated subcarrier assignments.

Figure 9.11 presents a block diagram of a typical transmitter and receiver for the case
of transmission from the base station to the user terminal using the OFDMA method. In
the base station, signals are directed to k user terminals. They are placed in a block or
spread fashion in the subcarrier mapping block, as shown in Figure 9.10. The OFDM
modulator implemented via N -point IDFT (or IFFT) produces the aggregated signal in
the time domain. The other blocks are analogous to those in the OFDM transmitter.

Decision N-point
DFT

N -point
IDFT

Remove
CP

Add
CP/PS

RF/A/D

. .
 .

User terminal receiver

Base station transmitter
Channel

User 1 {xn
1}

User k {xn
k}

User j {x^n
j
}

Subcarrier
mapping D/A/RF

Equalization/
selected

subcarrier
demapping

Figure 9.11 Transmitter and receiver for wireless link from a base station to a user terminal

The receiver of the j th user terminal has to detect the data destined for it. Thus, a regular
OFDM receiver is applied but it processes the data samples only on those subcarriers that
have been assigned to the j th user.

It is worth mentioning that OFDMA is considered to be one of the most promising
multiple access schemes for fourth generation cellular radio systems. It has been selected
for a broadband wireless access system known as IEEE 802.16 WiMAX (Koffman and
Roman 2002).

9.6 Single-Carrier FDMA

Although OFDMA is spectrally very efficient, as we said earlier, it suffers from a high
PAPR resulting from inherent properties of the OFDM modulation. Consequently, the
transmitter emitting an OFDMA/OFDM signal requires a highly linear amplifier. How-
ever, its power efficiency is relatively low. This is a disadvantage that is particularly
important for user terminals whose energy source, such as a battery, has a limited capac-
ity. The remedy for this disadvantage is the application of the SC-FDMA (Single-Carrier
Frequency Division Multiple Access) method (Myung et al. 2006) in transmission from
user terminals to a base station (Figure 9.12). This method retains many OFDMA features
such as spectral efficiency and complexity and uses functional blocks that are typical for
OFDMA; however, the value of PAPR results directly from the applied signal constellation
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Figure 9.12 Transmitter and receiver for SC-FDMA transmission from a user terminal to the base
station

in the time domain and it is significantly lower than in OFDMA systems (Danilo-Lemoine
et al. 2008).

The transmitter of the user terminal using the SC-FDMA method operates as follows.
The j th user’s data in the form of the M-element time domain block of QPSK or QAM
symbols {xj

n} are the subject of DFT transformation resulting in M samples in the fre-
quency domain. In the subcarrier mapping block the spectral samples are placed in the
spectral region assigned to the j th user, which means that M selected subcarriers carry
data of the j th user. The remaining N − M subcarriers are unmodulated. After IDFT
operation of size N , a time domain sequence of N samples is received. Subsequently
a cyclic prefix and (possibly) postfix are appended to the time domain block and the
resulting sequence is converted into a continuous signal, amplified and up-converted to
the RF frequency range in the RF front-end. Let us note that the transmitted signal is a
passband version of the sequence of QPSK or QAM data symbols, so its PAPR value is
moderate.

The SC-FDMA receiver is usually located in the base station so data from several
user terminal transmitters arrive at its antenna. After down-conversion to the baseband
and analog-to-digital conversion the samples are appropriately grouped into blocks. The
cyclic prefix is removed and the resulting blocks are the subject of DFT transformation.
The received blocks can also be equalized. Sample blocks assigned to different users can
be extracted from the received frequency domain block of samples. Thus, after subcarrier
de-mapping the extracted user blocks are individually converted into the time domain
using M-point IDFT. Finally, decisions on data blocks of each user are made.

Typically, the data traffic from user terminals to base station is lower than in the oppo-
site direction. Thus, if block subcarrier assignment is performed, it is easy to assign
subcarrier blocks in a given band in such a way that there are some unoccupied spec-
tral spaces between the user bands. Such a strategy relaxes the stringent requirements
on frequency offset compensation and decreases intercarrier interference. Thus, the sub-
carrier block assignment in the SC-FDMA method can be similar to that shown in
Figure 9.10a.
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The process of assigning the spectral blocks to users depends on the strategy applied
in the considered system. If the wireless channel is assumed to be slowly time-varying
with respect to the signaling rate, the base station should estimate the wireless channel
properties and assign the spectral resources on the basis of the quality of the channel
between a given user and the base station. Several strategies are possible both for OFDMA
and SC-FDMA but they are beyond the scope of this introductory section.

9.7 Space Division Multiple Access

SDMA is a multiple access scheme that can enrich the previously described multiple
access methods. Besides frequency, time and code, space becomes an additional dimension
to be used in the assignment of the system resources. The latter is possible if user terminals
are sufficiently separated in angle with respect to the base station antennas. The base
station is equipped with the antenna array, which allows it to form highly directional
beams that can reach given terminals without interfering with each other. Depending on the
advancement of the applied technique, beamforming can be applied in the uplink or in both
uplink and downlink. The efficiency of SDMA strongly depends on the angular distribution
of terminals located in the area served by a given base station. If the angular separation is
sufficiently good, the same channels can be reused by different users. Figure 9.13 shows
a simple SDMA arrangment.

Base
Station

Figure 9.13 The SDMA principle

The antenna array in the base station consists of a certain number of antennas, say M ,
cooperating with the amplifiers and phase shifters. Their operation can be symbolized by
a set of complex gain coefficients. Figure 9.14 illustrates the operation of such an antenna
array applied for reception of a single user signal in the base station receiver. The signals
received by each antenna are converted into the sampled baseband in-phase and quadrature
components, which can be treated as complex samples xi,n (i = 1, . . . ,M). Such samples
are weighted by the complex coefficients wi,n (i = 1, . . . , M) and summed, resulting
in the complex signal sample yn = ∑M

i=1 wi,nxi,n. The block that performs control of
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Figure 9.14 General scheme of the receiving part of the antenna array with the control system
that can be applied in SDMA (Wesołowski 2002)

direction of arrival and beamforming adaptively tracks the position of a given user by
adjusting the set of coefficients wi,n (i = 1, . . . , M). Such a scheme of functioning has
to be applied for all users served simultaneously, unless the blocks can be shared among
users if TDMA is applied as an additional multiple access method. Thus, the coefficient
settings for each user can be used sequentially.
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9.8 Case Study: Multiple Access Scheme in the 3GPP LTE Cellular
System

Future wireless communication systems are being discussed on international forums. Inter-
national cooperation should lead to establishing a universal standard defining the basic
rules of operation of the system following UMTS (in Europe and many other countries)
or cdma2000 (on the American continent). There is an international organization called
3GPP (3rd Generation Partnership Project) that defines improvements and modifications
of the UMTS system and whose aim is also to define the path towards the fourth genera-
tion wireless communication system following UMTS. A significant step in this direction
is the definition of the so-called 3GPP LTE (Long-Term Evolution of UMTS ). Let us con-
sider basic requirements and parameters of the LTE system in the context of the multiple
access method that is to be applied in it.

The assumed peak data rate in the direction from a base station to mobile stations is
100 Mbit/s in a 20-MHz channel. If the channel has a lower bandwidth the maximum rate
is proportionally scaled down. The spectral efficiency should be 5 bit/s/Hz in the direction
towards mobile stations and 2.5 bit/s/Hz in the opposite direction. Both FDD and TDD
duplexing schemes should be available for use. The proposed channel bandwidths are
1.25, 2.5, 5, 10, 15 and 20 MHz.

Such stringent requirements on data rates and spectral efficiency indicate that a DS-SS
technique and CDMA are no longer efficient as transmission and multiple access methods.
Additionally, a sufficiently dense granulation of data rates has to be supported, which
results from the variety of offered services. As a result, OFDM has been selected as a
transmission method and OFDMA in conjunction with TDMA as a proposed multiple
access scheme. In this way, it is possible to introduce continuous resource management
on the frequency and time axis (dynamic assignment of OFDM subcarriers and time slots),
called scheduling .

Let us consider the time–frequency transmission arrangement in the downlink, i.e. in
the direction from a base station to mobile stations. The transmission is organized in
10-ms frames consisting of 20 1/2-ms time slots. Each slot contains six or seven OFDM

1 2 3

0 1 2 6543 0 1 2 6543

0

cyclic prefixes

7 OFDM symbols

(short cyclic prefix)

Frame (10 ms)

Subframe (1 ms) Slot (0.5 ms)

10 11 19

Figure 9.15 Frame structure of the 3GPP LTE system ( 2007. 3GPP TSs and TRs are the
property of ARIB, ATIS, CCSA, ETSI, TTA and TTC, who jointly own the copyright in them)
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symbols, depending on the length of the applied cyclic prefix. Figure 9.15 shows the
frame organization.

As we said earlier, a combination of OFDMA and TDMA is applied as a multiple
access method. A sufficiently dense granulation of possible data rates is ensured owing to
the assignment of the system resources in the form of multiples of resource blocks. Such
a resource block is presented in Figure 9.16. After drawing the system resources along
time and frequency axes we can interpret a resource block as a rectangle of NDL

RB = 12
subcarriers and NDL

symb = 6 or 7 OFDM symbols, depending on the length of the cyclic
prefix. Table 9.1 indicates how many resource blocks can be applied in a channel of a
given bandwidth. Let us note that the distance between neighboring subcarriers is equal
to 15 kHz and it remains constant for any OFDM signal configuration. Thus, 180 kHz is
the bandwidth of a single resource block.

Depending on the negotiated service conditions, channel conditions and traffic intensity,
a number of resource blocks can be assigned to each link. The amount of radio resources
given to the link can be changed dynamically and can be assigned according to temporary
needs, thus increasing the overall system throughput.

In the opposite direction, i.e. from mobile terminals to a base station, SC-FDMA is
used as the multiple access method. The same rule of division of radio resources among
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Figure 9.16 Map of the radio resources along time and frequency axes.  2007. 3GPP TSs and
TRs are the property of ARIB, ATIS, CCSA, ETSI, TTA and TTC who jointly own the copyright
in them. They are subject to further modifications and are therefore provided to you “as is” for
information purposes only. Further use is strictly prohibited
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Table 9.1 Basic transmission parameters of the 3GPP LTE system

Channel bandwidth [MHz] 1.25 2.5 5 10 15 20

Subframe length 0.5 ms
Subcarrier separation 15 kHz
FFT size 128 256 512 1024 1536 2048
Number of OFDM symbols in the frame 7 (short CP) or 6 (long CP)
Number of short CP samplesa 9(10) 18(20) 36(40) 72(80) 108(120) 144(160)
Number of long CP samples 32 64 128 256 384 512
Size of the resource block 12 × 15 = 180 kHz
Number of available resource blocks 6 12 25 50 75 100

aNumbers in parentheses describe the cyclic prefix length of the first OFDM symbol in the frame.

the user terminals is valid, i.e. the resource block is 12 subcarriers high and 7 or 6 OFDM
symbols long, depending on the number of OFDM symbols applied in a time slot.

9.9 Conclusions

In this chapter we have sketched basic multiple access methods without considering
the system capacity and performance evaluation. We concentrated on general rules of
operation of these methods, without going into details. Continuous progress in technology
has made it possible to apply more and more complicated modulations and multiple access
schemes, which leads to more efficient use of the limited resources. This is particularly
important in the case of wireless transmission.

Problems

Problem 9.1 Let us analyze an ideal FDMA system in which the available bandwidth
W is equally divided without guard bands between K users, as shown in Figure 9.17.
Assume additive white Gaussian noise as a disturbance in the channel. Recalling our
considerations on the capacity of a band-limited channel from Chapter 1, calculate the
total capacity Ctot of the system for two cases:

1. Each user is assigned an average power Pu, regardless of the number of users. Find the
capacity Cu per user and the total capacity as the sum of the capacities of all system
users. Plot the total capacity Ctot normalized with respect to the bandwidth as a function
of Eb/N0 for the number of users K = 1, 2, 5 and 10.

. . .

. . .

W
1 2 3 4 5 K f

G (f )

Figure 9.17 FDMA spectrum assignment
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2. Assume that due to administrative or technical limitations the overall power transmitted
in the frequency band W assigned to the system is limited to the average power P . Thus,
each of K users is able to use the average power P/K . Calculate the capacity of a
single user, Cu, and the total capacity Ctot as a function of Eb/N0 for the number of
users K = 1, 2, 5 and 10. Compare the results obtained with those from Point 1.

Problem 9.2 Let us analyze an ideal TDMA system in which the time period T is equally
divided without guard intervals between K users, as shown in Figure 9.18. Assume additive
white Gaussian noise as a disturbance in the channel. Calculate the total capacity, Ctot ,
for two cases:

1. Each user is assigned an average power Pu per time period T , regardless of the number
of users, although the transmission takes place in a single time slot only. Find the
capacity Cu per user and the total capacity as the sum of the capacities of all system
users. Plot the total capacity Ctot normalized with respect to the bandwidth as a function
of Eb/N0 for the number of users K = 1, 2, 5 and 10.

2. Assume that due to administrative or technical limitations the overall power transmitted
in the frequency band W assigned to the system is limited to the average power P . Thus,
each of K users is able to use the average power P/K . Calculate the capacity of a
single user, Cu, and the total capacity Ctot as a function of Eb/N0 for the number of
users K = 1, 2, 5 and 10. Compare the results obtained with those from Point 1.

3. Compare the results obtained for TDMA with those obtained for FDMA in Problem 9.1.

. . .

. . .

T
1 2 3 4 5 K t

X(t )

Figure 9.18 TDMA time slot assignment

Problem 9.3 Let us analyze digital transmission in the GSM system that operates in the
TDMA/FDMA multiple access mode. Basic transmission parameters of the GSM system
are described in Section 6.10. The spectrum assigned to the GSM system in each direction
in the 900 MHz band is divided into 124 FDMA channels of 200 kHz each. Inspect the time
structure of the GSM transmission in a single time slot and check how many bits per slot
are available for transmission of user data (analyze Figure 6.14).

1. Consider a rural area GSM cell in which a single FDMA channel is applied (all con-
nections are performed on the same carrier frequency in the TDMA mode). The TDMA
slot #0 is used for control, maintenance and setting of the connections. The remaining
slots are used to carry user traffic. Calculate the spectral efficiency in bit/s/Hz, taking
into account all bits transmitted in a single frame in all slots.

2. Repeat the calculations, taking into account bits transmitted by the users only. How
large is the overhead, expressed as a percentage of the overall transmitted bits on a
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single FDMA channel, that is needed to maintain and organize transmission in the GSM
system?

3. Repeat calculations from Points 1 and 2 for a larger cell in which four FDMA channels
are applied (transmission takes place on four carriers) and two slots on one of the
carriers are used for control, maintenance and setting of the connections.

4. In the GSM system a special burst, called an access burst (shown in Figure 9.19), is used
by a mobile station to inform the base station about the need for information exchange
and connection setting. At the moment of its sending the mobile station does not know
the distance to the base station. Assuming that electromagnetic waves propagate at the
speed of light, calculate how far the mobile station can be located from the base station
so that the access burst sent at the beginning of the slot arrives at the base station still
within the same time slot.

Time slot

TDMA frame

Synchronization
bits
41

Encrypted 
bits
36

Access burst

= Tail bits (3 bits)= Extended tail bits (8 bits)

Guard time

68.25 bit

Figure 9.19 GSM access burst

Problem 9.4 Consider a discrete time synchronous CDMA system. Each user spreads
its data symbol di,n (i is the index of the user, whereas n is a data symbol time index)
by the unique bipolar sequence based on the m-sequence of length Ns = 2m − 1. Denote
the bipolar spreading sequence of the ith user as ci = [ci,1, ci,2, . . . , ci,Ns ]. Assume that
data symbols of K system users are zero mean and mutually uncorrelated. Their variance
is σ 2

d . The signals from all users arrive at the receiver jointly with the additive Gaussian
noise, denoted by the vector of samples νn = [ν1, ν2, . . . , νNs ]. The noise samples are zero
mean and mutually uncorrelated with the variance σ 2

ν . The receiver extracts the signal of
the j th user by applying a simple correlator and using the j th user spreading sequence
cj . Recall the properties of the spreading bipolar sequences resulting from the application
of m-sequences of length Ns:

cicT
j =

{
Ns for i = j

−1 for i �= j
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Find the signal-to-noise plus interference power ratio P/(I + N) at the output of the
correlator as a function of the spreading length Ns , the number of users K and the data
and noise powers.

Problem 9.5 Generate, by applying Matlab, the set of Walsh-Hadamard spreading
sequences of length Ns = 64 using formula (9.1). Calculate the value of cross-correlation
for two selected sequences ci and cj (i, j = 0, . . . , Ns − 1). Next calculate the value of
the cross-correlation for the sequence anci and the sequences bn−1cj and bncj delayed
by, say, two or four chips (see Figure 9.20), where an,bn, bn−1 = ±1 are data symbols
transmitted using sequences ci and cj , n is the data time index and c

′
j is the cyclically

shifted version of cj . Is orthogonality of the signals further preserved? Perform your
calculations for a few pairs of indices i and j .

an

bn

cj cj cj

cj cj cj

Cross-correlation
window

t

t

an−1 an+1

bn−1 bn+1

Figure 9.20 Allocation of spreading sequences of the ith and j th user on the time axis

Problem 9.6 Analyze the orthogonality of several OVSF spreading sequences. Write a
program that generates the OVSF tree up to sequences of length 16. Let the spreading code
in the ith transmission channel have the spreading factor Ns = 4 and the spreading code
in the j th transmission channel have the spreading factor Ns = 16. Select two spreading
sequences having these spreading factors that are allowable due to the OVSF code selection
rule. Draw the spread data sequences of the ith user and the j th user if they are equal
to an = (1, −1, 1, 1) and bn = 1, respectively. Check their mutual orthogonality. Check
the orthogonality if the signal of the j th user is delayed by one chip and the symbol bn−1

preceding the main data symbol is equal to −1.



 
Appendix

Let us consider a normalized Gaussian random variable X of zero mean and unit variance.
The probability that a value of the random variable X is greater than x is given by the
formula known as the Q-function:

Q(x) = 1√
2π

∞∫
x

exp

(
− t2

2

)
dt

The value of the Q-function is the area under the tail of the normalized Gaussian proba-
bility distribution.

Alternatively, the complementary error function , the so-called erfc-function, is often
used in calculations of error probabilities. This is described by the formula

erfc(x) = 2√
π

∞∫
x

exp
(−t2) dt

One can easily show using substitution of variables that both functions are related to each
other by the equations

Q(x) = 1

2
erfc

(
x√
2

)
erfc(x) = 2Q

(√
2x

)
Below we show the tables of both functions because they can be useful in problem
solutions. They are often contained as special functions in software packages. For example
in Matlab they can be invoked as y = qfunc(x) and y = erfc(x), respectively.
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Table A.1 The Q-function values

x Q(x) x Q(x) x Q(x)

0.00 0.50000000 1.35 0.08850799 2.70 0.00346697
0.05 0.48006119 1.40 0.08075666 2.75 0.00297976
0.10 0.46017216 1.45 0.07352926 2.80 0.00255513
0.15 0.44038231 1.50 0.06680720 2.85 0.00218596
0.20 0.42074029 1.55 0.06057076 2.90 0.00186581
0.25 0.40129367 1.60 0.05479929 2.95 0.00158887
0.30 0.38208858 1.65 0.04947147 3.00 0.00134990
0.35 0.36316935 1.70 0.04456546 3.05 0.00114421
0.40 0.34457826 1.75 0.04005916 3.10 0.00096760
0.45 0.32635522 1.80 0.03593032 3.15 0.00081635
0.50 0.30853754 1.85 0.03215677 3.20 0.00068714
0.55 0.29115969 1.90 0.02871656 3.25 0.00057703
0.60 0.27425312 1.95 0.02558806 3.30 0.00048342
0.65 0.25784611 2.00 0.02275013 3.35 0.00040406
0.70 0.24196365 2.05 0.02018222 3.40 0.00033693
0.75 0.22662735 2.10 0.01786442 3.45 0.00028029
0.80 0.21185540 2.15 0.01577761 3.50 0.00023263
0.85 0.19766254 2.20 0.01390345 3.55 0.00019262
0.90 0.18406013 2.25 0.01222447 3.60 0.00015911
0.95 0.17105613 2.30 0.01072411 3.65 0.00013112
1.00 0.15865525 2.35 0.00938671 3.70 0.00010780
1.05 0.14685906 2.40 0.00819754 3.75 0.00008842
1.10 0.13566606 2.45 0.00714281 3.80 0.00007235
1.15 0.12507194 2.50 0.00620967 3.85 0.00005906
1.20 0.11506967 2.55 0.00538615 3.90 0.00004810
1.25 0.10564977 2.60 0.00466119 3.95 0.00003908
1.30 0.09680048 2.65 0.00402459 4.00 0.00003167
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Table A.2 The erfc-function values

x erfc(x) x erfc(x) x erfc(x)

0.00 1.00000000 1.35 0.05623780 2.70 0.00013433
0.05 0.94362802 1.40 0.04771488 2.75 0.00010062
0.10 0.88753708 1.45 0.04030497 2.80 0.00007501
0.15 0.83200403 1.50 0.03389485 2.85 0.00005566
0.20 0.77729741 1.55 0.02837727 2.90 0.00004110
0.25 0.72367361 1.60 0.02365162 2.95 0.00003020
0.30 0.67137324 1.65 0.01962441 3.00 0.00002209
0.35 0.62061795 1.70 0.01620954 3.05 0.00001608
0.40 0.57160764 1.75 0.01332833 3.10 0.00001165
0.45 0.52451828 1.80 0.01090950 3.15 0.00000840
0.50 0.47950012 1.85 0.00888897 3.20 0.00000603
0.55 0.43667663 1.90 0.00720957 3.25 0.00000430
0.60 0.39614391 1.95 0.00582067 3.30 0.00000306
0.65 0.35797067 2.00 0.00467773 3.35 0.00000216
0.70 0.32219881 2.05 0.00374190 3.40 0.00000152
0.75 0.28884437 2.10 0.00297947 3.45 0.00000107
0.80 0.25789904 2.15 0.00236139 3.50 0.00000074
0.85 0.22933194 2.20 0.00186285 3.55 0.00000052
0.90 0.20309179 2.25 0.00146272 3.60 0.00000036
0.95 0.17910919 2.30 0.00114318 3.65 0.00000024
1.00 0.15729921 2.35 0.00088927 3.70 0.00000017
1.05 0.13756389 2.40 0.00068851 3.75 0.00000011
1.10 0.11979493 2.45 0.00053058 3.80 0.00000008
1.15 0.10387616 2.50 0.00040695 3.85 0.00000005
1.20 0.08968602 2.55 0.00031066 3.90 0.00000003
1.25 0.07709987 2.60 0.00023603 3.95 0.00000002
1.30 0.06599206 2.65 0.00017849 4.00 0.00000002
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