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Preface 

After nearly a quarter-century of active research, residual stress measurement by neutron 
diffraction has come of age. There are now instruments where engineering measurements 
can be made at nearly all neutron facilities, the first generation of dedicated instruments 
designed to measure strain in engineering components has been commissioned, and 
industrial standards for the reliable and repeatable measurement of strain have been 
drafted. This book provides an introduction to the techniques used, and a handbook for all 
those interested in undertaking neutron strain measurements. It is written in particular for 
engineers and materials scientists who have little prior knowledge of neutron scattering 
techniques. 

Many books outlining the principles and application of neutron diffraction have been 
published, but few thus far have considered the application of neutron diffraction to 
problems arising in engineering. Moreover, essentially none aims specifically at residual 
stress measurement by neutron diffraction. The principal objectives of the present volume 
are to correct that omission and provide the first textbook devoted entirely to the 
treatment of the neutron diffraction technique for stress measurement. In order to put the 
technique in context, brief reference will be made to complementary methods, where 
appropriate, particularly to the rapidly developing techniques using high-intensity 
synchrotron x-ray diffraction. 

Rather than being a diverse collection of articles of relevance to the technique, this 
book is therefore written as a coherent tutorial guide to prepare students, engineers, and 
other newcomers to the field for their first neutron diffraction experiment. It will also 
serve as a reference book for those with more experience in the field. Following the 
introduction to the subject given in Chapter 1, Chapter 2 focuses on the basic physics of 
neutron diffraction, especially the particular features of neutron radiation that make it 
useful as a tool for probing strains and stresses inside solids. After reading this chapter, 
researchers will be well equipped to understand the physical principles underlying how 
neutrons are scattered. They will possess the basic groundwork necessary in order to 
appreciate the extent and limitations of what can be derived from the data, and thus take 
full advantage of the opportunities that the technique provides. Building on this 
knowledge, an introduction to the instrumentation and techniques available are given in 
Chapter 3. This chapter covers the types of sources available, basic elements of the 
various types of instrument, and a description of the different detector arrangements 
employed in practice. Through this chapter the reader will acquire a broad insight into the 
various instrument designs available, and will be helped to understand the benefits and 
drawbacks of various instrumental configurations, and thereby assisted in identifying the 
optimum experimental conditions for a given application. At this point the focus turns 
toward the collection and analysis of data. In Chapter 4, the measurement strategy for the 
determination of lattice strain is discussed. In Chapter 5, a framework is presented for the 
reliable interpretation of strain data and the derivation of stress from strain data, in terms 
of the micromechanics of polycrystalline deformation. Only by taking into account the 



mechanics of materials at the scale at which the experimental technique probes the strains 
are we able to reliably interpret and analyze the data obtained. Examples of strategies for 
modeling the micromechanics are supported by experimental data showing how neutron 
diffraction may be used in the evaluation of modeling schemes, and how the technique 
offers opportunities for their refinement. While Chapter 5 focuses on the fundamental 
aspects of data interpretation, we turn to more practical examples of how the technique 
may be applied in Chapter 6. By considering selected examples, the reader is introduced 
to the various scientific and engineering challenges involved in collecting and utilizing 
the results for the optimization of materials processing, product manufacture, and 
engineering performance. 

It is our hope that this volume will serve as an appetizer for people joining the field as 
well as a reference book for established experts, and that it will be a useful guide for 
undertaking successful experiments and data analysis as well as serve as an inspiration 
for novel applications in the future.  
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1  
Introduction 

In this chapter a brief historical overview of the development of the subject is provided, 
and the features that make neutron strain measurement a unique tool are examined. While 
it is not the aim of this book to discuss the nature and origins of residual stress in detail, 
the latter sections of this chapter illustrate briefly how residual stress can arise, and how 
they may affect mechanical properties. 

1.1 Residual Stress: Friend or Foe? 

Residual stresses are self-equilibrating stresses within a stationary solid body when no 
external forces are applied. As such they are not usually immediately apparent, can be 
difficult to measure, are hard to predict, and can give rise to unexpected failure if not 
accounted for. On the other hand, if the origins are fully understood, residual stress can 
be deliberately introduced into a component in order to lengthen its service life. In view 
of this, residual stresses have caught the interest of engineers and scientists for many 
decades. Indeed, it is very rare to encounter engineered components that do not contain 
residual stresses, caused either by fabrication, joining, assembly, heat or surface 
treatment, service use, or more probably, by a complex combination of all of these. 

In many cases, the stresses are not life-limiting and need not be considered at all. In 
others, the stresses must be monitored, modified, introduced, and managed intelligently 
to maximize life. Often, in the past, the question of residual stress has only become an 
issue because of premature failure of a component, or after other observations had 
indicated that the structure did not perform as previously expected. In many cases, the 
influence of unquantified residual stresses has provided a handy catch-all explanation to 
account for mechanical behavior when all other explanations failed. This situation arose 
largely because only rarely could residual stress be quantified experimentally. As a result, 
it remained a feature that engineers knew were present but tried to ignore.  

For many years, the calculation of residual stresses and their effects, often termed the 
“assessment” of residual stress, was limited by the lack of numerical algorithms and 
computers. Even today calculation of residual stress is rarely found to play a role in the 
design of structures, and consequently, assumptions are made that often result in an 
unnecessarily conservative and expensive design. This is no longer due to the lack of 
numerical tools or powerful computers, since modern computational and analytical 
approaches to the assessment of residual stress are becoming quite reliable, but rather is 
more the result of the lack of data characterizing fully the process or processes by which 
residual stresses are generated. In addition, insufficient knowledge of the constitutive 
parameters for describing the behavior of materials under the complex deformation 
history that they experience, during manufacturing and/or in service, often prevents 



reliable residual stress analysis. As a consequence, the study of residual stress has tended 
to be essentially a research topic away from the engineering shop floor. This is a great 
pity because of the potential impact on the structural integrity of engineering components 
that knowledge of the residual stresses present would provide, helping engineers in the 
design of structures and in the optimization of manufacturing processes. However, the 
availability of a suite of standardized destructive and nondestructive experimental tools 
for stress measurement combined with a drive for finer safety margins is leading to a 
greater appreciation of residual stresses and their potentially detrimental and beneficial 
effects. In this respect, diffraction-based techniques are a useful component of an 
engineer's toolbox since they are able to quantify the distances between atomic planes 
very accurately, and thereby provide a nondestructive probe for elastic strain and thus 
stress characterization. In particular, the penetration of thermal neutron radiation makes 
neutron diffraction an increasingly important technique in assisting engineering design 
and the advancement of engineering materials. 

1.2 Historical Development of Stress Measurement by Diffraction 

As discussed in Section 2.3, the basic concepts of diffraction rest on the fundamental 
relation formulated by W.H.Bragg in 1913 [1,2], namely a relationship between the 
wavelength of the radiation, λ, the distance between selected lattice planes hkl in a 
crystalline material, dhkl, and the angle, at which the radiation is scattered 
coherently and elastically by the correctly oriented crystal lattice planes hkl (see Sections 
2.3.1 and 2.32): 

 
(1.1) 

In a sense, the crystal lattice, which constitutes a natural building block of crystalline 
solids, is adopted as a natural and ever-present atomic plane strain gauge embedded in 
each crystallite or grain. Although the technique does not probe the deformation with 
atomic spatial resolution, it does probe the average deformation of the lattice planes in a 
certain sampled volume, as discussed in Sections 3.5.2 and 3.6.1. 

Detailed descriptions of the scattering of waves by regular arrangements of atoms can 
be found in textbooks on solid state physics [3], but Equation (1.1) is, in its simplicity, 
the essential basis for diffraction-based techniques for strain and hence stress 
characterization. The average elastic lattice strain in the sampled volume of the 
component under examination is given in terms of the difference in its lattice plane 

spacing dhkl relative to that of a strain-free or stress-free reference, For measurements 
made on a continuous source diffractometer, this difference manifests itself in a 
difference or “shift” as it is often termed, in the measured Bragg diffraction angle θB of 
the stressed sample from that measured of the reference sample, as given in Equation 
(3.8). 
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1.2.1 Laboratory X-Ray Diffraction 

As x-ray diffraction predates and is closely related to the use of neutron diffraction for 
residual stress measurement, it is useful first to review briefly this technique. 

About 20 years after the discovery of x-ray radiation in 1896 [4], the work by Bragg 
stimulated scientists to pursue the task of residual strain determination using this novel 
technique. It was not until the 1920s that the topic was addressed in a number of articles, 
primarily originating in Germany [5–7], as retold in a comprehensive review of its 
historical development [8]. Since then, laboratory-based x-ray techniques have been used 
extensively in both scientific and engineering fields, and many important topics have 
been addressed over the years [9]. However, the major shortcoming of laboratory-based 
x-ray techniques for stress measurement remains the lack of capability to penetrate 
deeply into typical crystalline materials used in the engineering industry. Such materials 
will be termed “engineering” or “industrial” materials in this book, and components and 
materials under investigation will be referred to as samples. The penetration path length 
is, to some extent, adjustable by appropriate selection of specific x-ray producing targets, 
and hence the x-ray energies and wavelengths, but in general the technique is limited to 
penetrations of a few tens of microns as summarized in Table 1.1. Hence, nondestructive 
laboratory x-ray measurements have been limited to studies of near-surface effects or 
otherwise thin structures. Only by successively removing surface layers, either by 
etching, polishing, or gentle machining, can the technique be adapted to probe stresses 
farther below the surface of a material or component, and correction must then be made 
to the measured data to compensate for the effect of material removed.  

TABLE 1.1 Comparison of Various Properties 
Important for Diffraction Strain Measurement of 
the Electron, X-ray Photon, and Neutron 

Laboratory X-rays Hard X-rays Electrons Neutrons Energy 
(E) 
(Target 
Used) 

6.40 
keV 
(Fe) 

8.04 
keV 
(Cu) 

17.4 
keV 
(Mo) 

35 
keV 

80 
keV 

250 
keV 

100 
keV 

200 
keV 

500 
keV 

1 
meV

10 me 
V 

100 
meV 

Relativistic 
mass (in 
me) 

0.012 0.016 0.034 0.068 0.16 0.48 1.2 1.4 2.0 1839 1839 1839 

Wave 
length (Å) 

1.94 1.54 0.71 0.35 0.15 0.05 0.037 0.025 0.014 9.0 2.9 0.9 

Velocity 
(m/s) 

3×108 3×108 3×108 3×108 3×108 3×108 1.65×108 2.1×108 2.6×108 437 1390 4370 

Tempe 
rature 
(K)=E/kB 

0.74×108 0.93×108 2.0×108 4.1×108 9.2×108 29×108 11×108 23×108 57×108 12 116 1160 

Attenuation 
length in 
Fe 

18 µm 4 µm 34 µm 0.24 
mm 

2.18 
mm 

10.5 
mm 

  ~100 
nm 

    ~0.8cm   
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Typical gauge volume 1×5×0.01(deep) mm3 50×50×1000 µm3 5×5×100(thick) nm3 1×1×1 mm3 
Note: Relativistic masses are in units of the rest mass of the electron. The neutron attenuation length cited is 
for a neutron wavelength of 1.8 Å (25 meV). 

1.2.2 Synchrotron X-Ray Diffraction 

Today many of the limitations of the laboratory-based x-ray techniques have been 
overcome by the rapid introduction of third-generation synchrotron sources [10]; Figure 
1.1 illustrates their historical development. These sources provide access to higher x-ray 
energies, or hard x-rays as they are commonly known. At these high energies where there 
are no absorption edges, the attenuation length, defined as the path length over which the 
intensity falls to e−1 or 36.8% of the incident intensity, increases markedly with 
increasing energy (Table 1.1). This combined with the relatively very high x-ray 
intensities that they produce leads to path lengths of centimeters in steel and even tens of 
centimeters in aluminum. As a probe of samples important to engineering and materials 
science, synchrotron sources now offer the opportunity to study phenomena within most 
samples. The main advantages, however, are the high intensity and the high collimation 
of the beam that allow data acquisition rates on the order of seconds if not milliseconds, 
and the definition of millimeter- to micron-size sampled gauge dimensions. For certain 
engineering and materials science problems, such as the study of thin films or coatings, 
hard x-rays may be the optimum choice, although the grain size of many materials sets a 
lower limit on the sampled volume that can be used with powder diffraction techniques. 
However, for many engineering problems requiring residual stress measurement, such an 
extremely high data acquisition rate is not necessary and submillimeter-size spatial 
resolution is not essential. Employing a lower spatial resolution combined with a higher 
level of penetration reaching to several centimeters into materials like steel, nickel, or 
titanium is often necessary. This is not readily achievable even with the hard x-rays 
available today. Furthermore, a general consequence of using high x-ray energies is that 
they lead to very small (<10°) scattering angles, resulting in extended diamond-shaped 
instrumental gauge volumes (see Section 3.5.2). These can lead to impracticably high 
path lengths required to measure strain in more than one or two directions, even for 
simple component geometries. Since the determination of stress requires strain 
measurement in a number of directions, this can pose severe problems if stress rather than 
strain is the object of measurement. 

1.2.3 Neutron Diffraction 

Within the last two decades neutron diffraction has been developed as an alternative and 
complementary technique to the conventional x-ray method. Neutron diffraction has been 
an important tool in solid-state physics research ever since the pioneering investigations 
by Nobel Prize winners Brockhouse and Schull. An historical perspective was given in 
the lectures delivered on the occasion of the presentation of the 1994 Nobel Prize in 
physics [11,12]. However, not until the early 1980s was an experimental setup for the 
measurement of residual strain reported. The first papers appeared in 1981 by Allen et al. 
[13], Pintschovius et al. [14], and Krawitz et al. [15], soon to be  
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FIGURE 1.1 Historical overview of 
the development of the brightness of x-
ray sources adapted from [10]. 

followed by further contributions [16–22]. A comprehensive review was given in 1985 
[23]. The first conference paying some attention to this emerging technique was the 28th 
Army Sagamore conference in the United States in 1981 (see, for example, [14], [15]). A 
NATO Advanced Research Workshop, titled “Measurement of Residual and Applied 
Stress Using Neutron Diffraction,” held in Oxford in 1991, reviewed the progress and 
emerging questions at that date [24]. Since then, the most popular public fora are the 
International and European Conferences on Residual Stresses—the ICRS and ECRS 
conference series, respectively. A recent book edited by Fitzpatrick and Lodini has 
reviewed the use of neutrons and x-rays for stress management. The preeminent journals 
reporting neutron strain measurements and analysis are Acta Materialia, Materials 
Science and Engineering A, Journal of Neutron Research, Journal of Strain Analysis, 
Materials Science and Technology, Journal of Applied Crystallography, and Journal of 
Applied Physics. 
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1.3 Special Characteristics of Neutron Strain Measurement 

Neutron diffraction is an experimental technique with immense potential for the 
characterization of residual stress via probing the interior of solids. It brings the 
opportunity to acquire otherwise inaccessible information on the state of strain within the 
bulk of a structure, and it has been attributed to be “the engineer’s dream come true” [25]. 
The main advantages of the technique are: 

• Penetration power of the order of centimeters in most engineering materials 
• Nondestructive and can be used to monitor the evolution of residual stress in realistic 

environments and loading conditions 
• Provides a spatial resolution that is readily adjustable and can be adequate for resolving 

strain gradients in engineering components 
• Can be used to infer bulk macroscopic engineering stresses, average phase-specific 

stresses, and intergranular stresses. 

The benefits of these advantages are elaborated in the remainder of this section. 
The high neutron penetration power, which is about three orders of magnitude higher 

than that for conventional laboratory-based x-rays for most materials (Table 1.1 and 
Figure 2.2), provides access to the interior of solids. For engineering applications, it can 
therefore provide access to residual elastic strain profiles extending centimeters into 
structural components. Moreover, the penetrating power in principle enables a free choice 
of the strain measurement direction. The technique has proved to be a valuable 
engineering tool used in product design and development, process optimization, and for 
postfailure evaluation. Common applications, some of which are discussed in detail in 
Chapter 6, include measurement of stresses due to welding, plastically deformed 
structures such as autofrettaged tubes and cold expanded holes, shrink-fit assemblies, 
automotive components such as crank shafts, centrifuges and sheet metal-formed 
products, and surface treatments such as nitriding and peening. 

Through the nature of the diffraction process, which focuses on specific lattice plane 
spacings of a subset of crystallites, or grains, with specific orientations relative to the 
scattering geometry, the technique provides unique insights for both fundamental and 
applied materials science studies. This grain-selective character facilitates the separation 
of the strain response of different phases in a multiphase material, provided that the 
phases are distinguishable in a crystallographic sense. A typical example of a multiphase 
engineering material is duplex stainless steel, which consists of a 50/50 mixture of a face-
centered cubic austenitic phase and a body-centered cubic ferritic phase. Neutron 
diffraction facilitates the investigation of the stress/strain response of the two phases 
separately, and thereby can provide valuable insight into, for example, the mechanisms of 
low-cycle fatigue [26,27]. Indeed, many engineering materials comprise two or more 
phases, whether by design or as a result of their production process. 

Composite materials are another class of multi-phase materials for which important 
information has been provided by neutron diffraction as described fully in Section 6.3. In 
this case, the properties of one phase, the matrix, are modified by the addition of another, 
often called the reinforcement. This reinforcing phase may have various morphologies 
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ranging from small sub-micron-sized particles to continuous fibers or layers having 
dimensions comparable to the structure itself. Whatever the composition, provided that 
the phases are crystalline, the neutron diffraction technique gives access to the strain 
response of the various constituents separately. A common example is the Al/SiC family 
of metal matrix composite materials, the micromechanics of which has been widely 
studied by neutron diffraction [28–31]. 

Sensitivity to the crystallographic character of the phases also makes the technique an 
attractive probe for the investigation of these composite systems where one phase may be 
actuated through imposed variations in some external field, the so-called “smart” 
composites. An example is a system where one phase possesses piezoelectric, 
magnetostrictive, or shape-memory properties, the last group being an example of using a 
phase transformation. While phase transformations have been studied by diffraction for a 
long time, it is only in recent years that neutron diffraction has been brought into play in 
studying their micromechanical aspects. By providing access to the interior of solids, the 
technique is especially attractive for studies of the micromechanical effects associated 
with ongoing phase transformations of embedded phases. As an example of this, neutron 
diffraction has been used to monitor the ongoing phase transformation of embedded NiTi 
fibers, and this transformation was related directly to observations of the macroscopic 
response of the composite [32,33]. In this case, the flexibility of the neutron technique 
with regard to various sample environments is also important due to the neutron’s easy 
penetration of the walls of cells and furnace heat shields and the consequent relative ease 
with which in situ studies can be undertaken. 

The selective nature of the technique also adds a new dimension to fundamental 
investigations into the micromechanics of monolithic materials at the grain level. 
Through its sensitivity to specific lattice plane spacing and crystallite orientation, the 
technique facilitates the probing of the strain response of selected families of grain 
orientations in polycrystalline aggregates as discussed in Sections 5.5, 5.6, and 6.4. While 
the typical spatial resolution of the neutron technique does not usually facilitate 
measurements at the individual grain scale, it does allow monitoring of the volume 
average strain response of families of grains with identical plane orientation within a 
specified gauge volume, typically a few cubic millimeters. Such investigations now 
provide valuable insights enhancing our understanding of polycrystal deformation, and 
are stimulating the refinement of existing modeling techniques as described in Sections 
5.5 and 5.6. 

Without doubt, the use of neutron diffraction for the characterization of residual stress 
has now matured to a state where it is used widely in materials research and in related 
aspects of education. Moreover, it is rapidly being accepted and approved by the 
engineering industry as a readily available tool. This is leading to its adoption for 
publicly funded research and development, as well as to direct use by industry for wholly 
privatesector funded stress measurement. This commercial exploitation of the technique 
is being accelerated by the establishment of global standards for reliable and repeatable 
measurement of stress by neutron diffraction. Indeed, at the time this book went to press, 
a draft standard, “Standard Test Method for Determining Residual Stresses by Neutron 
Diffraction” (Technology Trends Assessment, ISO VAMAS 2001) [34] had been 
prepared. Where possible, this book adopts the conventions and approaches 
recommended by this draft standard. 
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Residual stress characterization using neutron diffraction is, however, a flux-limited 
application of a neutron source. As a result the development of the method has depended 
on the availability of sources with sufficient thermal neutron flux. Further progress and 
prospects for new applications in the fields of materials science and engineering rely 
heavily on future developments of new sources with enhanced thermal neutron flux. The 
advancement of the flux of thermal neutron sources since the discovery of the neutron is 
shown in Figure 1.2, indicating that fluxes now reach 1015 neutrons/cm2 for some of 
today’s most brilliant sources [35]. The trend line, showing prospects for a further three 
orders of magnitude with the next generation of pulsed sources such as the Spallation 
Neutron Source (SNS) at Oak Ridge, Tennessee, and plans for a possible European 
Spallation Source (ESS), indicates a potential giant leap forward with respect to industrial 
applications and the exploitation of neutron beams for measuring residual stresses.  

 

FIGURE 1.2 Historical overview of 
the development of the intensity of 
neutron sources (updated from 
Carpenter and Yelon [35]). Spallation 
sources are characterized by their peak 
thermal flux. 
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1.4 Nature and Origin of Residual Stress 

While this book is focused on the measurement of residual strain and hence stress, it is 
perhaps appropriate at this early stage to examine their nature and origins, if only briefly. 
Residual stresses arise because of shape misfits, sometimes called “eigenstrains,” 
between the unstressed shapes of different parts, different regions, or different phases of 
the component. Shape misfits can arise in many ways, as illustrated in Figure 1.3. Often 
these regions span large distances, such as misfits caused by the plastic bending of a bar, 
or from sharp thermal gradients such as those caused during welding or heat treatment 
operations. On the other hand, they can arise on a much shorter scale, such as between 
the matrix and reinforcement of a composite material, due to differences in properties 
between the phases. These short-range stresses add to any long-range macrostresses. 

Residual stresses may be categorized in several ways: 

• By cause, such as thermal or elastic misfits 
• By the scale (a) of the size of the misfitting region (see Figure 1.3), which determines 

the scale over which the stress varies rapidly, l0; or (b) over which the stress self-
equilibrates, L0 

• According to the method by which they are measured. 

 

FIGURE 1.3 Residual stresses arise 
from misfits, either between different 
regions of a material or between 
different phases within the material. 
Examples of different types of residual 
macro- and micro-residual stress are 
illustrated schematically. In each case, 
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the process is indicated on the left, the 
misfit in the center, and the resulting 
stress pattern on the right. 

 

FIGURE 1.4 Schematic showing that 
(a) the normal stress, σn must average 
to zero over any cross-sectional plane, 
A, within the body, and (b) a stress 
component, σij, must average to zero 
over the sample volume, V. 

All categories are reviewed here from a length-scale perspective. The stresses are 
commonly divided into three classes, or types, by the length scales over which they vary 
and over which they self-equilibrate, namely, Type I, Type II, and Type III stresses. They 
are often categorized as macrostresses (Type I) and microstresses (Types II and III). 

1.4.1 Macrostresses and Microstresses 

Since residual stress, is self-equilibrating it must balance across any cross-section, A, 
within the body, as illustrated in Figure 1.4a. As a result, it must obey the relation 

 (1.2) 

where is a unit vector normal to the area A. In fact, any component of the stress σij 
must average to zero over the whole volume, V, of the body (Figure 1.4b). 

 (1.3) 

As noted above, residual stress arises from shape misfits. The residual stress arising from 
a single misfitting region will fall off with distance from it. In fact, the range of the 
residual stress field tends to scale with the extent of the misfitting region, l0, such that 
beyond 2l0 to 3l0 the residual stress field caused by it is small. As a consequence, the 
stress caused by a misfit will often essentially average to zero over a volume, V0, 
including the misfit, which is much smaller than the sample volume, V, in Equation (1.3). 
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The distance normal to a stress component over which it averages to zero is denoted L0. It 
should be noted that the characteristic lengths, l0 and L0, may  

 

FIGURE 1.5 Type I stress varies on a 
length scale which is a considerable 
fraction of the sample size. In this 
example, the misfit has been 
introduced by quenching rapidly, 
setting up long-range misfits. Type I 
stresses are considered to be 
continuous even across grain and 
phase boundaries. 

vary with direction in the sample, and in order to satisfy Equation (1.2), it is the variation 
perpendicular to the direction of the component of stress that is of concern. [36] 

Type I stresses self-equilibrate over a length which is comparable to the 
macroscopic dimension of the structure or component in question. These stresses are 
typically a consequence of macroscopic misfits generated, for example, by macroscopic 
plastic deformation or quenching of a hot sample. They are often referred to as 
macrostresses. They are assumed to be continuous from grain to grain, and indeed, even 

Introduction     11



from phase to phase as illustrated in Figure 1.5. Provided that the spatial extent of the 
sampled gauge volume Vv is much smaller than these stresses generally give rise to 
detectable diffraction peak shifts. 

Type II stresses self-equilibrate over a length scale of comparable to that of the 
grain structure. They arise from misfits having a characteristic length scale, 
comparable to the grain size of polycrystalline solids, usually a few tens of microns. Type 
II stresses are discontinuous from grain to grain as shown in Figure 1.6. Low-level Type 
II stresses nearly always exist in polycrystalline materials, simply because elastic—and 
for symmetries lower than cubic, thermal properties of differently oriented neighboring 
grains are different. Because of the propensity for large property mismatches between the 
phases,  

 

FIGURE 1.6 Type II stress varies on a 
length scale which is of the order of 
the grain size. The grain-to-grain and 
phase-to-phase misfits are shown 
schematically by separating the ill-
fitting grains. In this example, the 
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major Type II misfit is caused by 
differential thermal contraction, which 
on average, generates tensile stresses 

in the matrix (white) and 
compressive average phase stresses 

in the reinforcement (grey). 
Elastic mismatches between grains, or 
phases, in combination with 
macrostresses will also generate Type 
II stress. 

more significant grain-scale stresses occur in multiphase materials or when phase 
transformations take place. Note that despite the common name intergranular stresses 
given to some of these stresses, they have nothing to do with stresses directly associated 
with the grain boundary region. 

Type III stresses self-equilibrate over a length scale smaller than the characteristic 
length scale of the microstructure; that is, the grain size or the fiber/particle spacing for 
composite materials. These could be stresses varying within a specific grain, such as due 
to grain subdivision into cell structures. In this case, their origin is misfits, such as crystal 
defects, with a scale shorter than the grain scale shown in Figure 1.7. The Type III 
category typically includes stresses due to coherency at interfaces and dislocation stress 
fields. 

Types II and III stresses are also sometimes referred to collectively as microstresses 
and can vary in the manner shown in Figure 1.8. The sampled gauge of neutron 
diffraction is usually too coarse to resolve these, so that they generally give rise to 
diffraction peak broadening.  
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FIGURE 1.7 Type III stress varies on 
a subgrain length scale which is 
much less than the grain size and 
equilibrate over a length scale In 
this example, the misfits are introduced 
by dislocations, vacancies, and 
interstitials. 

1.4.2 Measurement of Macrostresses and Microstresses 

Clearly, considerable care must be taken when selecting the most appropriate residual 
stress measurement technique to gain insight into a particular mechanical problem. First, 
it is important to ask what components of the stress tensor and types of stress are required 
by the materials designer to improve performance, or for the engineer to make structural 
integrity assessment. For example, the designer of composite materials might be 
interested in the development of Type II volume-averaged phase stresses in order to learn 
about the transfer of load from the matrix to the reinforcement. In contrast, in the life 
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assessment of monolithic metallic components, Types II and III are often unimportant 
and attention is focused on Type I macrostresses. According to the problem under 
consideration, this might, for exam-ple, be the hydrostatic tensile component responsible 
for creep cavitation, or the Mode I crack opening stress component affecting crack 
growth. It may therefore happen that an unexpected behavior of a piece of equipment or  

 

FIGURE 1.8 Type II and Type III 
stresses are often grouped together and 
termed microstresses as shown here. 

plant may not in fact be due to an incorrect measurement of stress, but to the 
measurement of the wrong stress contribution caused by an inappropriate choice of 
technique. A few of the more common destructive and nondestructive stress measurement 
techniques are summarized in Chapter 6 and by Withers and Bhadeshia [37]. 

1.4.2.1 Diffraction Techniques 

No measurement technique can measure the strain at a single point in a component 
sample. Diffraction techniques measure a strain averaged over a sampled gauge volume, 
Vv, usually defined by apertures or collimators as described in Section 3.6.1. Typical 
sizes of the sampled gauge volume can range from 0.2 to 1000 mm3. 
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The manner in which neutron diffraction samples the different types of strain can be 
understood by comparing the size of the sampled gauge volume, Vv, with the 

characteristic volume, [38], over which a given type of stress, j, associated with 
the stress-causing misfit averages to zero. If the sampled gauge volume is greater than the 
characteristic volume, then the corresponding strain will not be measured since it 
averages to zero. In general, neutron diffraction can only record a peak shift for strains 
and stresses for which the characteristic volume is larger than the sampled gauge 

dimension, that is, However, since the sampled gauge volume is usually much 
larger than the grain size, as indeed it must be for true powder diffraction, it is also much 
larger than the characteristic volumes for Type II and III microstresses. Thus, 
microstresses, for which and are less than Vv, give rise only to peak broadening. 
However, because diffraction is selective with respect to phase and to grain orientation, 
net peak shifts can in fact be recorded for a given reflection when that phase, or family of 

diffracting grains, is strained differently from the average, even when Of course 
in such cases, the average over all phases or grain orientations within V0 would indeed be 
zero. 

A useful concept is the local strain, and hence associated stress, averaged over the 
sampled gauge volume. In practice, this is determined either from a family of planes 
{hkl} contributing to the diffracted intensity from a monolithic material, or for a given 
phase from a multi-phase material. The average over all suitably oriented planes within 

the sampled volume will be implicitly assumed when we write and for the strain 
and stress determined from the {hkl} lattice planes. In the case of a multi-phase material, 
the average stress, derived from the average strain as measured by diffraction, will be 

represented by for phase i. This average stress is the superposition of the macrostress, 

(as in Figure 1.5) and the mean phase, or grain family, Type 
II stress. 

 (1.4) 

In this way the phase-independent macrostress and the phase-dependent microstresses 
can be measured separately, as discussed in Section 6.3.3. By studying more than one 
grain family, or more than one phase, it is possible to obtain information about the bulk 
engineering macrostress variation, as well as the extent of interphase or intergranular 
stressing. 

1.4.2.2 Other Measurement Techniques 

When considering other techniques for measurement of stress, as for diffraction methods 

it is useful to consider the characteristic volume over which a given type of stress, j, 
averages to zero. If the measurement volume sampled by the destructive technique Vv is 

greater than then no stress will be recorded. For example, most material-removal 
techniques, such as hole drilling and layer removal, remove macroscopically sized 
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regions of volume so that so that only the macrostress is recorded. 
Destructive methods are not phase- or grain-family selective, and so phase-specific 
average stresses cannot normally be determined using these methods.  

1.5 Effects of Residual Stress 

Although it is not the aim of this book to discuss the effects of residual stress on 
performance of engineering components in detail, it is important to examine briefly why 
residual stress needs to be known so that the appropriate types of stress as defined in the 
previous section can be measured. 

1.5.1 Static Loading 

The static loading performance of brittle materials can be improved markedly by the 
intelligent use of beneficial residual stresses. Common examples include thermally 
toughened glass and prestressed concrete. In the former, rapid cooling of the glass from 
elevated temperature generates compressive surface stress that is counterbalanced by 
tensile stress in the interior. The surface compressive stress, typically of ~100 MPa, 
means that any surface flaws that would otherwise cause failure at very low levels of 
applied tensile stress experience in-plane compression. While the interior experiences 
counterbalancing tensile stress this region is largely defect-free, and so the inherent 
strength of the glass is sufficient to prevent failure. Of course, once a crack penetrates to 
the interior of the material that is under tension, it can grow rapidly and catastrophically 
to give the characteristic shattered mosaiclike pattern. In fact, it is possible to assess the 
original residual stress from the average dimensions of the shattered pieces, since the 
greater the original elastic energy the smaller the pieces. Like glass, concrete is also 
brittle and hence has low defect tolerance and an associated low tensile strength. 
Concrete can nevertheless be used in tension, as in cantilever beams, after it has been 
prestressed in compression. Considerable applied tensile stress can then be tolerated 
before the superposition of the applied and residual stresses lead to a net tension of the 
concrete. 

For plastically deformable materials, the residual and applied stresses can only be 
added together directly until the yield strength is reached. In this respect, residual stress 
may accelerate or delay the onset of plastic deformation and can be important in 
situations where failure is by plastic collapse. However, the effect of residual stress on 
static ductile fracture is often small because the residual elastic misfit strains are usually 
small compared with the plastic strains generated prior to failure. As a result, they are 
obliterated long before failure occurs. Indeed, uniform plastic prestraining is an accepted 
means of residual stress leveling [39]. 

Neutron diffraction has proved to be an important tool in the study of the mechanical 
behavior of composite materials under static loading. Here the phase selectivity is 
invaluable, allowing the experimenter to separate the Type II stress behavior of the 
various phases in order to optimize composite performance [40]. Issues such as 
reinforcement cracking, de-bonding, matrix yielding, and the effects of thermal residual 
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stresses have all been elucidated by neutron diffraction measurements of Type II average 
phase stresses. Some examples are given in Chapter 6. 

1.5.2 Fatigue Loading 

Most components do not fail immediately under static loads, but fail at lower stresses by 
cyclic fatigue processes. The effects of residual stress on fatigue lifetimes are covered in 
detail in, for example, Bouchard [41]. There are many types of fatigue processes, 
including cyclic fatigue, fretting fatigue, thermomechanical fatigue, and stress corrosion 
fatigue. Here we will consider only cyclic tension-tension fatigue (σmax and σmin≥0), as in 
Figure 1.10, but many of the principles are transferable to understanding other fatigue 
processes. Fatigue is generally divided into two types [42]: low-cycle fatigue (LCF) and 
high-cycle fatigue (HCF). Furthermore, it depends on whether the component is already 
cracked, in which case crack propagation is life controlling, or uncracked, in which case 
crack initiation may comprise a significant part of fatigue life. 

LCF includes fatigue at stresses above the general yield point and involves less than 
10,000 cycles to failure. This usually occurs under imposed plastic strain-controlled 
cycling, such as the thermal cycling of constrained parts. Generally, mean stress, and 
therefore residual stress, has a negligible effect on LCF life, as the original residual 
stresses tend to be obliterated within the first or second cycle by the large amplitude of 
the oscillating strains. 

HCF involves larger numbers of cycles below general yield, is generally stress 
controlled, and includes rotating or vibrating systems such as axles. HCF is sensitive to 
residual stress levels. At least two important parameters govern HCF life: the mean stress 
σmean=(σmax+σmin)/2, and the cyclic stress amplitude, ∆σ=(σmax−σmin). For uncracked 
samples, Basquin’s Law states that for zero mean stress the number of cycles to failure, 
Nf, can be expressed in the form 

∆σ (Nf)n=C 
(1.5) 

where n and C are empirical constants [42]. A macroresidual stress will superimpose a 
mean stress, as a constant offset, on any fatigue loading. Two empirical relationships 
have been developed to quantify the detrimental effect of mean stress on fatigue life. 
These are the linear Goodman relation proposed in 1899 and the Gerber parabolic 
relation proposed in 1874 [43], shown in Figure 1.9. From these it can be seen that 
because a tensile residual stress increases the mean stress, the stress amplitude must be 
reduced accordingly if lifetime is to be unaffected. On the other hand, in combination 
with Equation (1.5) they quantify the extent to which compressive residual stress may 
extend fatigue life. 

Large engineering structures usually contain cracks, or defects or stress concentrators, 
from which cracks can readily propagate. In such  
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FIGURE 1.9 In practice, it is observed 
that the fatigue life under HCF is 
sensitive to the mean stress as well as 
the stress amplitude. In order to 
estimate a specific fatigue life, Nf 
cycles for a previously uncracked 
sample, two empirical relations have 
been developed by Goodman 
(continuous line) and Gerber (dashed 
line) describing how the amplitude of 
the fluctuating stress must be reduced 
as the mean stress increases. The 
stresses are normalized by the ultimate 
tensile stress, σUTS. The data points 
correspond to Wohler’s data for Krupp 
steel, after Sendeckyj [43]. 
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FIGURE 1.10 Graph showing the way 
that the effective stress intensity range 
∆Keff resulting from an applied fatigue 
cycle ∆Kappl is modified by a 
compressive residual stress. Both 
levels of compressive residual stress 
(A and B) act to reduce the tensile 
mean stress Kmean, eff. In contrast to 
Case A, in Case B the compressive 
residual stress (equivalent to KresB) is 
sufficient to close the crack for part of 
the cycle, reducing the stress intensity 
range experienced at the crack tip, and 
thereby retarding the steady-state crack 
growth rate described in Equation 
(1.7). 

circumstances, one needs to know how many cycles (i.e., how much time) it will take for 
one of these cracks to grow to such an extent that catastrophic fracture can occur. 
Because the stress felt at the crack-tip is related to the current crack length as well as the 
loading geometry, the loading of the crack tip is usually expressed in terms of the “stress 
intensity factor,” K, rather than the applied stress σ, where  

 (1.6) 

Here, a is the length of an edge crack or half the length of an internal crack, and Y is a 
geometrical constant approximately equal to 1. The applied mean stress intensity factor 
Kmean, and the applied stress intensity range ∆K are important (Figure (1.10)). Residual 
stress can raise or lower the mean stress experienced over a fatigue cycle. Free surfaces 
are often a preferred site for the initiation of a fatigue crack, which means that 
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considerable advantage can be gained by engineering a compressive in-plane stress in the 
near-surface region, such as by peening, auto-frettage, cold-hole expansion, or case 
hardening. During fatigue crack growth, the “near threshold” that is, ∆K just large enough 
to propagate a fatigue crack, and “high-growth” rate, large ∆K regimes are strongly 
affected by mean stress. In the intermediate steady-state “Paris” regime, the crack growth 
rate da/dN is given by [42] 

 (1.7) 

where A and m are constants and is largely insensitive to mean stress. As shown in 
Figure 1.10, imposed macro residual stress alters the mean stress, but does not necessarily 
affect ∆K. However, if the residual stress causes the crack to close over part of the fatigue 
cycle, the stress intensity range experienced by the crack decreases, slowing the crack 
growth rate. Thus, unless a change in the mean stress brings about crack closure, residual 
stress has little effect on crack growth rates in the Paris regime [44]. 

On the whole, unless the crack-tip plastic zone is smaller than Type II and Type 
III stresses tend to be relieved by crack-tip plasticity, so that only Type I stress need be 
considered from a fatigue viewpoint. As a result, it is important to be able to derive an 
accurate measure of the engineering macrostress when making residual stress 
measurements by neutron diffraction, although this is not always easy because one must 
make sure to account for the possibility of intergranular stresses, discussed in Chapter 5. 
This is not true for short crack growth, where the crack is comparable in length to the 
scale of the microstructure. In this regime, crack volume is comparable to and is 
microstructurally Type II stress dependent. Furthermore, Type II stresses can be 
important when considering the fatigue of composite materials for which crack bridging, 
crack deflection, and microcracking can all be important crack-retarding mechanisms. 
Another example where Type II stresses may become important is in stress corrosion 
cracking, which can often be intergranular in nature. 

These examples illustrate that the effects of residual stress on structural integrity must 
be taken seriously where component life and safety are important. They influence crack 
initiation, crack growth and fracture processes. For accurate assessments of component 
life and structural integrity, it is therefore important to characterize the residual stress 
field and quantify its effect on degradation processes. Neutron diffraction provides an 
excellent nondestructive means of doing this, and recently great progress has been made 
in standardizing measurement techniques to arrive at reliable stress values for 
incorporation into lifing assessments. Indeed, at the present time, more sophisticated 
methods are required for the inclusion of measured residual stress into lifing assessments 
in order to exploit the recent gains in experimental measurement, and thereby to 
maximize economic advantage and safe component operating lifetimes. 
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2  
Fundamentals of Neutron Diffraction 

A neutron beam has a unique character which makes it a powerful nondestructive probe 
of materials. Neutron scattering is a large and important field, but here we concentrate 
only on aspects that relate directly to the strain measurement technique. In this chapter, 
the concepts of diffraction are introduced, and the formulation of the scattering and 
absorption cross-sections described. In each section, formal expressions are introduced, 
and if there are important experimental consequences of the theory, reference is made to 
the following chapters in which they are discussed in more detail. 

2.1 Introduction 

The widespread use of both thermal neutrons and x-rays for investigating the 
arrangement of atoms in solids stems from the fact that they both have wavelengths of the 
same order as the separations of the atoms in crystalline materials. In a scattering process, 
a neutron may be described by its wave vector k, of magnitude 2π/λ and directed along its 
velocity path. Because of the wave nature of matter, the de Broglie wavelength of the 
neutron, λ, is related to the momentum, p, of the particle, by 

p=mnv=hk/2π=hk 
(2.2) 

where mn and v are the mass and velocity of the neutron, and h is Planck’s constant. The 
energy of the neutron is E=1/2 mnv2=hv where ν is the frequency of the radiation. These 
relations are discussed further in Section 2.3. 

Table 2.1 gives a summary of the common units used in neutron scattering and the 
conversion between them. Note from the table that a neutron of energy 1 meV has an 
equivalent temperature of 11.60 K, a wavelength of 9.045 Å and a velocity of 437 m/s. It 
can be seen from Table 2.1 that a wavelength of 1.8 Å corresponds to a neutron velocity 
of 2198 m/s. This  



TABLE 2.1 Conversion Factors Between Neutron 
Energy (in meV), Temperature T (=E/kB) (in K), 
Wavelength (in Å), Wave Vector (in Å−1), and 
Velocity (m/s) 

  E 
(meV)

T(K) λ (Å) k (Å)−1 v (m/s) 

E 
(meV)

— 0.0862T 81.80/λ2 2.0721k2 5.227×10−6

v2

T(K) 11.60E — 949.3/λ2 24.05k2 60.66×10−6v2

λ (Å) 9.045/√E 30.81/√T — 6.2832/k 3.956×103/v
k 
(Å)−1 

0.695√E 0.2039√T 6.2832/λ — 1.588×10−3v

v 
(m/s) 

437.4√E 128.4√T 3.956×103/λ 0.630×103k —

Note: 1 meV=0.2418 THz. 

wavelength is frequently chosen as a standard reference value. This typical neutron 
velocity is somewhat faster than the speed of sound in air, and can easily be measured 
from the flight time over a known distance—the basis of all pulsed neutron techniques 
(Section 3.3.2). 

By comparison, in the case of the x-ray photon, the momentum is p=h/λ, and the 
energy E=hv. The wavelength is given by 

λ=c/v=12.398/E,  
(2.2) 

where c is the speed of light and ν the frequency of the radiation. Here the numerator is 
for λ, in Å and E in keV. Note that for wavelengths useful for diffraction, thermalized 
neutron energies are orders of magnitude less than the corresponding energies of x-rays 
or electrons, as seen from Table 1.1. 

Many textbooks have been written on the theory and applications of neutron scattering 
over the 40 years that intense beams of neutrons have been available, including those by 
Bacon [1], Egelstaff [2], Lovesey [3], Squires [4], Windsor [5], Sköld and Price [6], and 
Sears [7]. Windsor [5] concentrates on pulsed neutrons, while Sears’s [7] theoretical 
treatment is especially thorough. A recent review of neutron diffraction by Von Dreele 
[8] covers many of the topics treated here. All these primary references contain complete 
descriptions of the technique, and have been drawn upon in selecting aspects that are 
relevant to the accurate measurement of strain by neutron diffraction. 

An historical treatment of diffraction was given in Chapter 1, with the applications of 
x-ray diffraction for the measurement of strain dating back almost as long as the concept 
of Bragg diffraction itself. To the present day, strain measurement by x-ray diffraction is 
more widely practiced than that by neutron diffraction. The textbook by Cullity [9] on x-
ray diffraction remains a classic in the field for its comprehensive treatment and 
simplicity. The textbook by Noyan and Cohen [10] gives an excellent treatment of the 
topic of stress measurement, principally by x-ray diffraction.  
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2.2 Scattering and Absorption of Neutrons and X-Rays by Atoms 

2.2.1 Neutron Scattering 

As charge-neutral particles, neutrons are scattered by a nuclear interaction with the nuclei 
of atoms. The strength of this nuclear scattering is described by the magnitude of an 
experimentally determined nuclear scattering length, b, which has order of magnitude 
~10−12cm. The scattering event is described in terms of a cross-section, defined as the rate 
of occurrence of the event per incident flux Φ0. The flux Φ0 is the number of neutrons 
incident on the atom per unit area per unit time, usually expressed as number/cm2 s. The 
cross-section has the dimensions of area [L]2 with order of magnitude ~10−24 cm2, and the 
unit 10−24cm2 is called a “barn.” In some sense, it represents the area of each nucleus as 
seen by the neutron. If we consider the event as neutron scattering by a single stationary 
atom, of one isotope, and no nuclear spin, the scattering is isotropic since the wavelength 
of the neutron is very much larger than the size of the nucleus. We can define a total 
cross-section a as 

σ=(No. of neutrons scattered into 4π solid angle/sec)/Φ0 
(2.3a) 

In this case, 
σ=4πb2 

(2.3b) 

It is more helpful when considering diffraction to define a differential cross-section 
dσ/dΩ per atom, where the event is the scattering of a neutron by the atom into a solid 
angle dΩ. This will give the detection count rate of a 100%-efficient detector accepting 
the solid angle dΩ. In this simple case, 

 (2.4) 

As the neutron possesses a spin of S=1/2 and a magnetic moment, it can also be 
magnetically scattered by the dipolar interaction with any moment the atom might 
possess through magnetic electrons in unfilled shells. The atoms in ferritic iron and nickel 
carry a moment, for example. If absolute scattering intensities need be considered, this 
interaction must be also taken into account through a magnetic scattering cross-section. 
However, for strain measurement we are usually not concerned with absolute intensities 
of scattering, and we shall largely ignore this magnetism as it normally does not affect the 
lattice spacing of engineering materials. The magnetic scattering intensity is usually less 
than that from the nuclear scattering in most industrial materials. It is confined to the low-
order, low-angle, diffraction peaks since it is governed by a magnetic form factor, 
analogous to the x-ray form factor (see Section 2.2.2), arising from the spatial distribution 
of the magnetic moment of the order of an atomic radius. 

It is often appropriate to consider a macroscopic, rather than the atomic, cross-section, 
particularly when considering attenuation of a neutron beam by a sample. This is 
designated by Σ or dΣ/dΩ for the total or differential macroscopic cross-section, 
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respectively. It is defined as the scattering per unit volume of the material, and is related 
to the atomic cross-section by 

Σ=σNa, 
(2.5) 

where Na is the number of atoms per unit volume. The macroscopic cross-sections have 
the dimensions of [L]−1, and the usual units are cm−1. 

Whereas the above relations for the scattering of a neutron from a single atomic 
nucleus are quite straightforward, in practice atoms often have several isotopes, some of 
which may have a nuclear spin, and the scattering length differs for each isotope and 
nuclear spin. Also, many materials contain more than one type of atom as a compound or 
as an alloy, and in our case of interest they are present as an ordered crystalline array. We 
will first discuss the effect of nuclear spin and isotopic constituency. 

If the isotope has a nonzero nuclear spin, the value of b is different when the spin of 
the neutron is parallel or antiparallel to the nuclear spin. For an unpolarized neutron 
beam, the scattering length of an assembly of nuclei of an isotope, i, for which the 

nuclear spin is nonzero, may be written in terms of an average value If there are 
several isotopes, then the average scattering length is 

 (2.6) 

where the sum is over the relative abundance of each isotope i. 
There are two important cross-sections for the atom, these involve the average for an 

atom, and the mean square deviation of the b’s from this average, 

 
  

They are rigorously derived from the detailed theory of neutron scattering (not discussed 
here). The square of the average scattering length, appears as the coefficient of the 
coherent scattering from an assembly of atoms of the same element, that is, when there 
are definite correlations in the positions of different atoms in a material such as when 
they are positioned on a lattice.  

There is then a well-defined phase difference between the neutron waves scattered 
from each atom. In the simplest case of an assembly of fixed uncorrelated isolated atoms 
with a range of isotopes, some with nuclear spin, the average coherent total cross-section 
and differential cross-section per atom are 

 (2.7) 

The mean square deviation of the random distribution of scattering lengths over spin and 

isotopes, appears as the coefficient of the incoherent cross-section of an 
assembly of atoms. This incoherent cross-section represents the scattering from 
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individual atoms, and is present if the positions of the atoms are correlated or not. Thus, 
for any assembly of atoms, 

 (2.8) 

In general, coherent scattering tells us about the correlations in space and time between 
all the atoms, including each atom with itself, whereas incoherent scattering tells us about 
the self spatial and time correlations of each individual atom. We are mainly concerned 
with the coherent elastic scattering, which concerns the time-averaged spatial positions of 
the atoms. 

As well as being scattered, a neutron may be absorbed by a nucleus to form a 
compound nucleus with emission of daughter products and γ-rays. The products may 
radioactively decay. The cross-section per atom for the absorption event is σabs. 
Absorption removes the neutron from the beam, and so contributes to the beam 
attenuation. In general, the absorption of neutrons by most nuclei is small, and for most 
industrially relevant materials neutrons penetrate on the order of tens of millimeters 
through the material (e.g., Table 2.2). However, there are some notable exceptions such 
as B, Li, Cd, and Gd, which are put to good use in the construction of neutron counters 
and shielding. 

Thus, when a neutron approaches a single nucleus, four events are possible: 

• The neutron passes by the atom unscattered if the separation is large compared to the 
nuclear interaction distance, which is the most likely outcome 

• The neutron can be coherently scattered 
• The neutron can be incoherently scattered 
• The neutron can be absorbed by the nucleus. 

TABLE 2.2 Comparison of Distances in Several 
Engineering Materials Over Which Beam Intensity 
of Neutrons, Synchrotron X-Rays at 3 Instruments, 
and Laboratory X-Rays, is Attenuated by 63.2% 

Attenuation Length lµ 
(mm) for 63.2% Intensity 
Decrease 

Radiation Energy 
(keV) 

Wavelength 
(Å) 

Al Ti Fe Ni Cu 
Thermal 
neutrons 

2.53×10−5 1.8 96 17 8.3 4.8 10 

ID 15 
(ESRF) x-
rays 

150 0.08 39 14 7 5 5 

ID 11 
(ESRF) x-
rays 

49 0.25 10 1.9 0.7 0.5 0.4 

16.3 SRS x-
rays 

30 0.41 3.3 0.46 0.16 0.11 0.10 

Laboratory 8.05 1.54 0.076 0.011 0.004 0.023 0.021
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x-rays (Cu 
Kα) 
ESRF, European Synchrotron Radiation Facility; SRS, Synchrotron 
Radiation Source, Daresbury Laboratory, UK. 

2.2.1.1 Coherent Scattering Cross-Section 

A major difference, usually advantageous, of neutron diffraction over x-ray diffraction 

methods arises from the fact that the average scattering length, for each element varies 
essentially randomly with atomic number and with atomic mass. The average scattering 
length and coherent scattering cross-section for some common elements in engineering 
materials are listed in Table 2.3. The variation in scattering cross-section with atomic 
number is shown schematically in Figure 2.1. In contrast, the analogous x-ray scattering 
cross-sections increase monotonically with atomic number, Z. The neutron scattering 
length may have positive or negative values. Most nuclei have positive values, but a few, 
notably H, Mn, and Ti, have negative scattering lengths, and the sign must be included 
when calculating the intensity of scattering as discussed in Section 2.2.5. By taking 
appropriate fractions of two isotopes (e.g., titanium and niobium), it is possible to design 
alloys with zero average scattering length, that is, they do not coherently scatter neutrons 
at all. However, they will strongly scatter incoherently. Because of the irregularity of the 
scattering length according to atomic number, the scattering from light atoms such as 
hydrogen may be as strong as that from heavy atoms, such as uranium. Thus, the 
positions of light atoms in the presence of heavy atoms in a material can be determined 
using neutron diffraction. 

2.2.1.2 Incoherent Scattering Cross-Section 

The incoherent scattering cross-section for some common elements is given in Table 2.3. 
Incoherent scattering is almost isotropic and contributes to the background underneath 
the diffraction peaks discussed in Section 2.3. Its contribution to the background is 
usually small relative to diffraction peak  

TABLE 2.3 Atomic Coherent Scattering Length, 
and Coherent, Incoherent, and Absorption Cross-
section for 1.8 Å Neutrons, for Selected Elements 

Element
(10−12 
cm) 

σcoh 
(barn)

σincoh 
(barn) 

σabs(1.8 
Å) 

(barn)

Nv 
(1022) 
cm−3

l0.95 
(mm)

H −0.374 1.758 80.27 0.383 0.0054 
(gas)

 

D 0.667 5.592 2.05 0.0005 0.0054 
(gas)

 

B 0.530 3.54 1.70 767.0 13.04 0.3
C 0.665 5.550 0.001 0.004 9.527 47
N 0.936 11.01 0.5 1.9 0.0054  
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(gas)
O 0.580 4.232 0.000 0.0002 0.0054 

(gas)
 

Al 0.345 1.495 0.008 0.231 6.024 287
Ti −0.344 1.485 2.87 6.09 5.708 50
V −0.038 0.018 5.07 5.08 7.222 41
Cr 0.364 1.66 1.83 3.05 8.316 55
Mn −0.373 1.75 0.4 13.3 7.9 24
Fe 0.945 11.22 0.4 2.56 8.491 25
Ni 1.03 13.3 5.2 4.49 9.131 14
Cu 0.772 7.485 0.55 3.78 8.491 30
Zr 0.716 6.44 0.02 0.185 4.295 105
Nb 0.7054 6.253 0.0024 1.15 5.54 73
Mo 0.672 5.67 0.04 2.48 6.415 57
Cd 0.487 3.04 3.46 2520 4.634 0.27
Sn 0.623 4.87 0.022 0.626 2.92 

(gray)
147

Gd 0.65 29.3 151 49700 3.026 0.03
Ta 0.691 6.00 0.01 20.6 5.543 20
W 0.486 2.97 1.63 18.3 6.322 21
Pb 0.941 11.115 0.003 0.171 3.299 81
U 0.842 8.903 0.005 7.57 4.794 38
Note: Macroscopic values are provided in Appendix 4. 
The number of atoms per unit volume, Nv, at normal 
temperature and pressure (NTP), and the distance in 
millimeters, l0.95 over which a neutron beam is attenuated 
by 95% of its initial value (l0.95=3lu) are also tabulated 
[12]. 

heights, partly because the incoherent scattering is isotropic, whereas all the coherent 
scattering occurs at specific well-defined scattering angles, and also because σcoh is often 
greater than σincoh. However, the value of the spinincoherent cross-section for vanadium is 
5.07 barns, while that for hydrogen is the largest of all the elements with a value of 80.27 
barns. 

2.2.1.3 Absorption Cross-Section 

The cross-sections for absorption of neutrons for a number of common elements, at 
the standard wavelength of 1.8 Å, are also tabulated in Table 2.3. The absorption cross-

section is proportional to wavelength, so that at wavelength λ, the cross-section, is 
given by  

 (2.9) 
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FIGURE 2.1 Illustrating the variation 
of coherent x-ray and neutron-
scattering cross-sections for various 
elements and their isotopes. The x-ray 
cross-sections, which are not scaled 
relative to the neutron cross-sections, 
are represented by open circles whose 
radii are proportional to the atomic 
number Z given below the element. 
The neutron cross-sections are 
represented by shaded circles whose 
radii are proportional to the coherent 
scattering length. A black circle 
indicates a negative scattering length. 
The second row shows the average 
neutron scattering cross-section of 
each element as a shaded circle. Where 
several isotopes contribute, the 
individual cross-sections are labeled by 
the mass number A in italics (adapted 
from Bacon [1]). 
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2.2.1.4 Tabulation of Neutron Cross-Sections 

The average coherent scattering length, incoherent scattering cross-section, and 
absorption cross-section for all the elements, as well as the values for the individual 
isotopes are available in many places, including Sears [11,12] and in the “Barn Book” 
[13]. Table 2.3 provides a list of these properties for a number of industrially relevant 
materials. A more complete list is given in Appendix 4, Table A.4.1. 

2.2.2 X-Ray Scattering 

It is useful to compare the above neutron cross-sections with corresponding cross-
sections for x-ray diffraction. In contrast to the nuclear scattering of neutrons, x-rays are 
scattered by the electron cloud surrounding the nucleus. The atomic scattering factor, 
analogous to the scattering length for neutrons, increases systematically with atomic 
number Z. Since the distribution of electrons in space, of the order of the atomic radius, is 
comparable in dimension to the x-ray wavelength, interference between the wavelets 
scattered by the electrons around an atomic site gives rise to a reduction of the atomic 
scattering as the angle of scattering increases. This is expressed as a form factor. 
Although neutron scattering from a nucleus is isotropic, there is an analogous form factor 
for neutron magnetic scattering from the magnetic  

 

FIGURE 2.2 The penetration depth, or 
attenuation length lµ, over which the 
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intensity falls to 1/e of that incident, 
for cold neutrons (closed circles), 
thermal neutrons (open circles), x-rays 
(crosses), and electrons (dots), as a 
function of atomic number (adapted 
from Hutchings and Windsor [24]). 

electrons as mentioned above. Generally, the atomic scattering factor for x-rays far 
exceeds the corresponding scattering length for neutrons, which reflects the much greater 
probability of an x-ray being scattered by an atom. However, because of x-ray 
dependence of the atomic scattering factor on atomic number, it is hard to distinguish 
between two elements with close atomic numbers, and to identify the scattering from 
light elements in the presence of heavy elements (Figures 2.1 and 2.2). 

The absorption of characteristic laboratory x-rays of wavelength around 1 Å in solids 
is extremely high compared with neutrons, as illustrated in Table 2.2. This absorption is 
associated with electronic transitions between the electron levels in the material, such as 
the K-levels of the atom, and varies as λ3Z4. An exchange of energy occurs between the 
x-rays and the electrons, and a photoelectron is emitted, accompanied by fluorescent 
radiation as the atom returns to its ground state. As a result, for x-rays from conventional 
laboratory sources, the penetration of the radiation into solids is in general measured in 
microns, whereas for neutrons the penetration is of the order of tens of millimeters 
(Tables 1.1 and 2.2). This means that neutrons provide a method of measuring lattice 
spacing, and hence strain, at depth in samples such as industrial components, while 
conventional x-rays provide the spacing and the strain at the surface. One advantage of 
laboratory-type x-ray  

 

FIGURE 2.3 (a) Vector representation 
of the incident and scattered neutron 
wave vectors, and the scattering vector, 
Q, for elastic scattering. The scattering 
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angle, is the angle between the 
incident and scattered beams. The 
direction of the scattering vector is 
along the bisector of the nonincluded 
angle, (180−2θs)°, between the 
incident and scattered neutron beam, 
(b) Showing the incident and scattered 
neutron wavevectors in the Bragg 
reflection condition, with the hkl lattice 
planes and their normal vector Ghkl. 

systems is that portable sources and detectors are available, and so measurement of near-
surface strains and stresses can be made in situ on structures in the field. However, for 
short wavelength x-rays, the absorption becomes orders of magnitude smaller. This is of 
major significance for strain measurements at synchrotron sources where short-
wavelength x-rays are copious [14–16]. Short wavelength x-rays penetrate much farther 
than laboratory x-rays, and permit strain measurement at depth (Table 2.2). 

2.3 Neutron Diffraction from Crystalline Solids 

The direction of a beam of neutrons incident on a sample or scattered from it, and hence 
the direction of its associated wave vector k, is determined by apertures or collimators 
placed in the beam path, as discussed in Section 3.2. If a neutron is scattered by a sample, 
there is, in general, an interchange of momentum and energy between them. If the 
incident and scattered neutrons are described by wave vectors ki and kf, as shown in 
Figure 2.3a, and energy Ei and Ef, respectively, the change in momentum and energy of 
the neutron is given by the conservation equations  

 (2.10) 

and 

 (2.11) 

The quantity Q=ki−kf is the wave vector transfer to the sample, called the scattering 
vector. As this book is concerned almost entirely with elastic scattering of the neutron 
from the sample, in which there is no energy change, we mainly consider the case where 
Ei=Ef and so ν=ω=0, and hence |ki|= |kf|. The incident and scattered neutron wave vectors 
and the scattering vector are shown in Figure 2.3a for this case. The angle, 2θs, between 
the incident and scattered wave vectors is called the scattering angle, often designated as 

is also shown in Figure 2.3a. It follows from Equation (2.10) and Figure 2.3a that the 
magnitude of the scattering vector to the sample, |Q|, is 
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|Q|=2k sinθs=4π sinθs\λ 
(2.12) 

The direction of Q is along the bisector of the nonincluded angle, that is, (180–2θ)° 
between the incident and scattered neutron wave vectors. 

2.3.1 Crystal Lattice 

The crystalline structure of materials and conditions for diffraction are dealt with in detail 
in a number of standard textbooks (e.g., Kittel [17] and Ashcroft and Mermin [18]), or 
classic crystallography textbooks (e.g., Buerger [19]). A good introduction to diffraction 
is given by Krawitz [20]. Therefore, we outline only the main points here. 

Every crystalline structure describing the regular position of atoms in a crystalline 
material may be considered in terms of a lattice of points in real space. Associated with 
each point is an array of atoms called a basis. Thus, a structure comprises a lattice with a 
basis. The lattice of points is described in terms of lattice vectors in real space, with every 
point on the lattice l given in terms of the fundamental translation vectors, or crystal axes, 
a, b, and c, which are chosen so that 

l=n1a+n2b+n3c 
(2.13) 

where n1, n2, and n3 are integers. The lattice points can thus be said to have translational 
symmetry. The magnitudes of a, b, c, namely a, b, c, are termed the lattice constants, 
which define the lattice together with the angles between these axes, a, β, and γ, where a 
is the angle between b and c and so on. 

Associated with the lattice is the concept of a unit cell, a building block that by 
repetition through linear translation, covers all points on that lattice, that is, all the crystal. 
The smallest such unit cell is called the primitive unit  

 

FIGURE 2.4 (a) Primitive cubic (e.g., 
Ni3Al), (b) body-centered cubic (e.g., 
ferritic steel), (c) face-centered cubic 
(e.g., Al, Cu, Ni, austenitic steel), and 
(d) hexagonal (e.g., titanium) crystal 

Introduction to the characterization of residual stress by neutron diffraction     36



structures showing the position of the 
lattice points. The solid lines indicate 
the conventional cubic nonprimitive 
cells for the bcc and fcc structures, 
while the lattice vectors describing the 
primitive unit cells are shown as 
dashed lines. 

cell, usually chosen to have one lattice point at each corner; the lattice points will then lie 
on what is called a primitive lattice. Sometimes it is more convenient to use a larger 
building block. For cubic lattices, it is more intuitive to use three perpendicular 
translational vectors rather than the primitive ones, with the cubic cell referred to as a 
“conventional” unit cell. While the description of the crystal structure is the same, there 
will now be a larger basis of atoms associated with each conventional lattice point and 
unit cell. 

The simplest monatomic cubic materials have a basis of just one atom situated at each 
lattice point of the primitive cell, but more complex structures and compounds have a 
basis of several atoms. In fact, in the case of the hexagonal close-packed structure, there 
must always be at least two atoms per lattice point. For example, for Ti there is a basis of 
two atoms per lattice point, at (0, 0, 0) and (2/3, 1/3, 1/2). There are 14 crystal space 
lattices, called Bravais lattices, distinguished according to their symmetry properties or 
space group, that is, the group of translation, reflection, and rotational operations that 
takes the lattice into itself (e.g., Kittel [17]). The face-centered cubic, body-centered 
cubic, and hexagonal are the most common Bravais lattices for engineering materials 
(Figure 2.4). 

One may consider all lattice points as lying on a series of planes in the crystal. A two-
dimensional everyday analog is the rows of trees observed when passing the edge of a 
woodland planted in a regular array The accepted description of the planes was originally 
proposed by W.H. Miller at Cambridge in 1839 to describe the faces of naturally 
occurring crystals. In this system, the planes are described by Miller indices, denoted hkl. 
The plane (hkl) intersects the axes of the unit cell at a/h, b/k, and c/l, respectively, as 
shown in Figure 2.5, where hkl are the smallest integers giving the correct ratio of 
intercepts. The perpendicular distance between lattice planes of type (hkl), one of which 
passes through the origin, is given by dhkl, and is also shown in Figure 2.5.  
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FIGURE 2.5 A schematic 
representation in real space of lattice 
planes described by the Miller indices 
(hkl) for a general structure. The 
perpendicular spacing between planes 
dhkl is shown. 

2.3.2 Diffraction from Crystal Lattice Planes 

Coherent elastic scattering, or diffraction, from atoms arranged in crystal planes with 
spacing d is very strong only for certain specific, well-defined scattering angles. This can 
be seen schematically by considering a plane wave of radiation of wavelength λ incident 
at an angle θs to the atomic planes as shown in Figure 2.6, and scattered at an equal angle. 
We have already seen that individual atoms scatter both x-rays and neutrons in all 
directions. Consider the scattering from two atoms lying in successive atomic lattice 
planes vertically above one another; each will scatter radiation coherently with a phase 
relationship maintained between the incident and scattered waves. If we consider the sum 
of their scattered amplitudes at a diffraction angle θ, that is, a scattering angle of 

the two scattered waves will have traveled distances different by 2dsinθs, and 
will ordinarily be out of phase with each other. However, if this extra path length for 
scattering from successive lattice planes is equal to a whole integral number, n, of 
wavelengths nλ, then the scattered waves will be in phase and the total scattered 
amplitude will simply be the sum from each scattering event. This occurs when 

nλ=2d sinθB 
(2.14) 

which is a form of the familiar condition for diffraction known as Bragg’s Law. 
In describing diffraction from planes with Miller indices hkl, it is conventional to 

include the order n into the lattice spacing. For example, consider the case that the lattice 
spacing d gives rise to a path length 2λ between successive lattice planes for a scattering 
angle corresponding to n=2. We can consider this to arise from a first-order 
(n=1) diffraction plane of spacing d/2. For example, in a case where the cubic (111) 
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reflection gives a path length of 2λ, the (222) reflection gives a path length of λ. 
Therefore, in general,  

 
(2.15) 

 

FIGURE 2.6 Schematic showing how 
the waves scatter and combine 
coherently from adjacent atomic lattice 
planes to give Bragg diffraction. 
Coherent reinforcement occurs when 
there is an integral number of 
wavelengths, nλ, in the path difference 
for planes separated by d. The situation 
shown here is for n=1. 

Equation (2.15) is Bragg’s Law, and is the basis of all diffraction measurements of lattice 
spacing, and hence of strain in polycrystalline materials. A more rigorous derivation of 
Bragg’s Law is given in Section 2.3.3. 

That the diffracted intensity is much larger at an angle θs=θB satisfying Bragg’s Law 
than at all other angles arises because the diffracted beam comprises many scattered 
wavelets, each reinforcing one another perfectly. Indeed, for a reasonably sized crystallite 
there will be many thousands of lattice planes contributing. We can estimate the angular 
width of the diffraction peak by considering the difference in path length between the 
first and the (N+1)th lattice plane for a crystal 2N planes thick, for a scattering angle 
slightly larger, by 2δθ, than that giving a diffraction peak at 2θB. This will be: 
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2 Ndhkl sin(θB+δθ)=2Ndhkl sinθB cosδθ+2 Ndhkl sinδθcosθB 
≈2 Ndhkl sinθB+2 Ndhkl δθcosθB 
≈Nλ+2 Ndhkl δθ cosθB 

(2.16) 

The first term gives the coherence condition, but if the second term is equal to λ/2, the 
wavelets from the first and N+1th planes will be exactly out of phase and will sum to 
zero. Likewise, the second and N+2th will cancel, as will the Nth and 2Nth, and so on, 
giving no diffracted signal at all. This occurs when  

2δθ=λ2(Ndhkl cosθB)=λ/tc cosθB) 
(2.17) 

As 2δθ is inversely proportional to the thickness of the crystal, tc, the range of angles over 
which the wavelets diffract constructively is very narrow for all but the smallest of 
crystallites. Diffraction is a scattering process in which all atoms within a crystallite 
cooperate to give a very strong cumulative effect. 

The diffraction peaks thus occur only under very special conditions, that is, when the 
Bragg’s Law equation is satisfied and the planes are oriented correctly at an angle θB to 
the incident beam, or what is equivalent, the normal to the plane hkl is parallel to Q, as 
shown in Figure 2.3b. Although there are some very important differences between 
diffraction and reflection, the diffraction peak corresponding to the lattice spacing hkl is 
often referred to as the hkl reflection because of the orientational condition. 

2.3.2.1 Observation of Diffraction Peaks 

In order to observe diffraction of a given wavelength of radiation from a single crystal, 
the crystal must be oriented such that a plane hkl satisfies the “reflection” condition. 
However, in the case of a polycrystalline sample, with a large number of small 
crystallites in random orientations, there will usually be a substantial fraction, or subset, 
of crystallites which are in this correct orientation. In brief, they will lie with their hkl 

planes at an angle of to the incident beam, but at all azimuthal angles around it. The 
diffracted intensity therefore occurs in a series of cones, known as Debye-Scherrer cones 

with semiangle at the sample position about the direction of the incident beam as 
axis (Figure 2.7). Using a monochromatic incident beam (e.g., from a steady reactor 

source), the scattering angle corresponding to the peak intensity, is 
determined by scanning a detector angle through the peak, or by a fixed position 
sensitive detector as discussed in Sections 3.2.1 and 3.3.1. 

At a spallation source, a single time pulse contains a continuous spectrum of 
wavelengths, and the wavelength of each detected neutron is established by measuring 
the time of flight, t, from the instant at which the pulse of thermal neutrons is generated 
in the moderator to the instant at which the neutron is captured in the detector. If the total 
flight path distance between the moderator and detector via the sample is L, then the 
wavelength is given from Equation (2.1) by 

λ=ht/mn L 
(2.18) 
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The pulse of incident neutrons spreads out in time as it travels toward the sample, and the 
neutrons of highest velocity and hence shortest wavelength arrive first. As a result, each 
Debye-Scherrer cone moves from low scattering angles at short times (high 
energies/short wavelengths) to high angles at long times (low energies/long wavelengths) 
during each pulse. A detector at a spallation source records the time of arrival of all the 
scattered neutrons at a fixed scattering angle during the pulse, which arise as the Debye-
Scherrer cones scan through its aperture. The advantage of this mode of operation  

 

FIGURE 2.7 Neutron powder 
diffraction from a polycrystalline 
sample with random orientation of 
grains. The monochromatic neutron 
beam is Bragg diffracted by crystallites 
with the correct lattice spacing and 
orientation to give rise to Debye-
Scherrer cones of scattered intensity, 
each corresponding to a lattice spacing 
hkl (adapted from Allen et al. [21]). 

is that all lattice spacings dhkl, and therefore strains, corresponding to different 
crystallographic planes hkl of the grains in a sample with plane normals in a direction Q 
defined relative to the sample, can be measured during the counting period. This may 
include several orders of reflection of the peaks, that is, 2h2k2l, 3h3k3l, and so on, as 
well as hkl. These methods of measuring diffraction intensities are discussed further in 
Section 3.2.2. 
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2.3.3 Reciprocal Lattice Approach to Diffraction Theory 

2.3.3.1 Reciprocal Lattice 

An alternative approach to the theory of diffraction from a crystal lattice is to use the 
concept of reciprocal space rather than the more easily visualized real space. This section 
may be omitted on first reading, but is included since it leads more easily to several of the 
concepts introduced in the preceding sections. The concept of reciprocal space is 
essential for the detailed theory of radiation scattering events, and is also used in the 
theory of the behavior of electrons, and of excitations such as lattice vibrations, in 
crystalline materials with translational symmetry. 

In reciprocal space, the variables wave vector and frequency replace realspace 
variables distance and time. Thus, the variables in the two spaces are related by 
reciprocals. Functions of these variables in the two spaces are related by a Fourier 
transform. Vectors such as ki and kf that describe the direction of travel of the neutrons 
before and after scattering, and the scattering vector Q, are directions in reciprocal space 
as well as real space. As a single nucleus is extremely small compared with the neutron 
wavelength, it can be represented effectively by a delta function at the origin of real 
space, the Fourier transform of which gives the variation of (static) nuclear scattering 
with Q, and is a constant function independent of Q in reciprocal space. On the other 
hand, magnetic scattering of neutrons by atoms, which arises from unpaired electron 
spins, has intensity enveloped by a magnetic form factor reflecting the Fourier transform 
of their spatial extent, in the same way as scattering of x-rays by the atoms’ electrons. For 
our purposes, it is only necessary to consider the time-averaged spatial position of the 
atoms, that is in Equation (2.11), corresponding to elastic scattering, 
and the relation between real spatial vectors r and scattering vectors Q. 

For any lattice of points in real space, given by l (Equation (2.13)), a reciprocal lattice 
of points is defined by 

G=hA+kB+lC 
(2.19) 

where h, k, and l are integers (with notation chosen anticipating their relationship to the 
Miller indices, as in Equation (2.27)). The vectors A, B, and C define the reciprocal 
lattice axes and are related to the axes defining a unit cell in the real lattice, a, b, and c, by 

 
(2.20) 

where is the scalar triple product giving the volume of the unit cell of the 
real lattice. The set of vectors A, B, and C are orthogonal only for cubic, tetragonal, and 
orthorhombic lattices. These relations are valid for all unit cells in the real lattice, but 
they take on special significance if they are used with reference to the primitive real 
lattice unit cell. It is easily seen from these definitions that the real and reciprocal lattice 
vectors satisfy the relation 
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exp[iG·l]=exp[i2π(hn1+kn2+ln3)]=1 
(2.21) 

The scattering vector Q may be written as a vector in the reciprocal space of the crystal 
that is scattering radiation, as follows: 

Q=QAA+QBB+QCC 
(2.22) 

where QA and so on are the components along A and so on, and are only integers when 
Q=G. 

2.3.3.2 Neutron Coherent Elastic Cross-Section 

In general, the neutron elastic scattering cross-section, now for the crystal as a whole 
rather than per atom, may be written as [3,4]  

 
(2.23) 

where Ri is the position vector of atom i, with average scattering length in real space, 
and the sum is over all the atoms i, j in the crystal. We may write Ri=li+ru. Here ru is the 

position of the atom, with average scattering length in the basis in the unit cell 
associated with each lattice vector li, and can be written 

ru=ruaa+rubb+rucc 
(2.24) 

where rua, rub, and ruc are real but not necessarily integer numbers. Here we ignore small 
displacements of the atoms due to thermal vibration, but in Section 2.5 we discuss the 
effect of these vibrations and how they give rise to an extra factor, the Debye-Waller 
factor, in the nuclear structure factor defined in Equation (2.30) below. Substituting into 
Equation (2.23), 

 
(2.25) 

where i,j are now summed over the lattice points and u over the basis. However, the 
summation over the basis atoms in each unit cell is the same for each lattice point, so that 

(2.26) 

In general, the phases of the first term will vary randomly, and the summation will be 
zero. However, if 
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Q=G 
(2.27) 

it follows from Equation (2.21) that the exponential becomes unity, and the cross-section 
becomes nonzero. This is just the condition for coherent diffraction, and indeed expresses 
the Bragg condition. It gives rise to the term δ(Q−G) in the total differential cross-
section, which is summed over all G. In fact, 

 

(2.28) 

where δ(x) is the Dirac delta function, which is unity if the argument x=0 and zero 
otherwise, and Nc is the number of unit cells in the crystal of volume V=Nc v0. From 
Equation (2.21), the condition Q=G states that for coherent diffraction the components of 
Q along each of the reciprocal lattice vectors are the integers, h, k, and l. These integers 
are the Miller indices of the Bragg peak, or reflection, associated with this reciprocal 
lattice point. Indeed, there will be diffraction whenever Q ends on a reciprocal lattice 
point, hkl, although the intensity may yet be zero. The differential cross-section for 
scattering from the whole crystal into each peak hkl is then given by 

 
(2.29) 

where 

 (2.30) 

is called the nuclear structure factor for the unit cell, and involves the summation over all 
the atoms u in the basis, that is, over the atoms in the unit cell. The asterisk in Equation 
(2.29) denotes the complex conjugate. As noted above, the lattice vibration of each atom 
gives rise to an additional multiplicative factor of [exp(−Wu(Q)] in the summation on the 
right side of Equation (2.30), which is discussed further in Section 2.5. 

The nuclear structure factor has to be evaluated for Q=Ghkl, in which case (from 
Equation (2.30)), 

 (2.31) 

The corresponding expression, including an average Debye-Waller factor is given by 
Equation (2.49). 

A few observations are worthwhile at this point. For a monatomic crystal with a basis 
of one atom at each real primitive lattice point, that is, for a Bravais lattice, there will be a 
finite Bragg intensity for all Q=Ghkl. The simplest example is a primitive, or simple, cubic 
structure with lattice constant a0, in which case the reciprocal lattice is again a simple 
cubic array of points, with spacing 2π/a0. A primitive cell for the face-centered cubic (fcc) 
structure may be chosen, in which a, b, and c are the nonorthogonal vectors to each face 
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center (Figure 2.4c). The reciprocal lattice of the primitive real lattice is, in fact, body-
centered cubic (bcc). Conversely, the body-centered structure has a face-centered 
reciprocal lattice. 

In practice, a nonprimitive “conventional” cubic lattice is often chosen to describe the 
face-centered structure, with side a0 but with a basis of four atoms, one at the origin point 
and one at each face center. From Equation (2.31), one then finds that for the 
corresponding cubic reciprocal lattice of points separated by 2π/a0, not every hkl has 
intensity, that is, some reflections are systematically absent. Indeed, the structure factor 
for fcc is  

TABLE 2.4 Summary of Structure Factors 
Evaluated for Unit Cell and Basis Calculated Using 
Equation (2.31) for Selected Simple Monatomic 
Crystal Structures 

Structure Unit Cell Number 
of Basis 
Atoms 

Selection 
Rule for 
Bragg 
Intensity 

Example |F(hkl)|2

Primitive 
cubic 

Primitive 
cubic 

1 All hkl 100  

All hkl 
even or all 
odd 

111  Face 
centered 
cubic (fcc)

Conventional 
cubic 

4 

Otherwise 100 0 
h+k+l even 200  Body 

centered 
cubic (bcc)

Conventional 
cubic 

2 
h+k+l odd 111 0 

Hexagonal Primitive 
hexagonal 

2 h+2k=3n, l 
odd 

 0  

  h+2k=3n±l,
l even 

  

  h+2k=3n±l, 
l odd 

  

  h+2k=3n, l 
even 

  

zero for all points, unless h, k, and l. are either all odd or all even. These are the so-called 
selection rules. In other words, the reciprocal lattice points giving intensity do indeed lie 
on a body-centered cubic reciprocal lattice, but with sides of twice the cubic reciprocal 
lattice point spacing (2.2π/a0). The corresponding selection rules for a bcc structure 
indexed on a conventional cubic reciprocal lattice of side 2π/a0 are that (h+k+l) must be 
an even integer. The derivation of the reciprocal lattice directly from the primitive real 
lattice for fcc, bcc, and hexagonal materials is given by Kittel [17]. It involves defining an 
appropriate orthogonal coordinate system to which the primitive lattice vectors can be 
referred, and calculating the reciprocal lattice axes using the expressions in Equation 
(2.20). Factors for some common structures are summarized in Table 2.4. 
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If we consider the coherent diffraction condition in reciprocal space (Equation (2.27)) 
a little further, we have 

 (2.32) 

Using vector algebra, it can readily be shown [17] that the vector Ghkl is normal to the 
plane hkl in the real lattice, as shown in Figure 2.3b, and that it has a magnitude given by 
the reciprocal relation 

|Ghkl|=(G.G)1/2=2π/dhkl 
(2.33) 

where dhkl is the lattice spacing of the hkl planes in the real space lattice.  

 

FIGURE 2.8 A section of the 
reciprocal lattice for a face-centered 
cubic crystal perpendicular to the 
direction. The incident ki and scattered 
kf neutron wavevectors are shown. The 
condition for diffraction from 333 
planes is that the scattering vector Q 
should exactly equal the reciprocal 
lattice vector G333. 
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Combining Equations (2.32) and (2.33), one finds that 

 (2.34) 

and by substituting k=2π/λ, one sees that the reciprocal space condition (Equations (2.27) 
and (2.32)), is indeed just the Bragg’s Law expression in real space (Equation (2.15)): 

   

Figure 2.8 shows a section of the reciprocal lattice representing a single crystal of a face-

centered cubic material normal to the direction. Also shown are the incident and 
scattered neutron wave vectors and the condition that the scattering vector Q should 
exactly match the reciprocal lattice vector G333. This illustrates in reciprocal space the 
diffraction condition for a single crystal, with the magnitude of Q and orientation of the 
crystal satisfying Equation (2.27). Q is perpendicular to the 333 lattice planes. 

One important feature of Bragg’s Law is that as the wavelength is increased above 
Equation (2.15) can no longer be satisfied, and thus diffraction can no longer 

occur for the hkl planes with the result that the diffracted intensity drops to zero. This is 
accompanied by an increase in the transmitted intensity as fewer neutrons are diffracted 
out of the straight-through beam.  

 

FIGURE 2.9 Total neutron cross-
section of polycrystalline iron as a 
function of wavelength. The rapid 
variations in cross-section occur at the 
Bragg cut-off wavelengths at which a 
given plane can no longer diffract. 
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This effect is called the Bragg cut-off or edge, and successive Bragg cut-offs result in the 
pattern in the total cross-section for polycrystalline iron shown in Figure 2.9. The Bragg 
cut-off can be used for strain measurement with the transmission technique discussed in 
Section 3.7.4. However, it can also have an adverse effect on normal strain measurement 
if the incident wavelength is not chosen carefully, as discussed in Section 4.2.2. 

In the reciprocal lattice representation of the case of diffraction from a random 
polycrystalline sample, all possible orientations of the grains are equally likely, so each 
reciprocal lattice point becomes an hkl sphere in reciprocal space, concentric about the 
origin. Depending on the crystal symmetry, some of these spheres may coincide, such as 
333 and 115 for the face-centered cubic structure, since these have the same lattice plane 
spacings. The diffraction condition for some of the grains to diffract in a polycrystal then 
becomes simply 

|Q|=|Ghkl| 
(2.35) 

since only the magnitude of the scattering vector has to match the radius of the sphere. 
However, only the subset of grains that are oriented so that their plane normals are, 
within the instrumental resolution, parallel to the scattering vector will diffract. 

2.3.4 Lattice Plane Spacings 

It is useful to list the lattice plane spacing dhkl for a few common crystal structures. These 
may be calculated using Equations (2.19) and (2.33), and are summarized in Table 2.5.  

TABLE 2.5 Expressions to Calculate Lattice Plane 
Spacings for hkl Lattice Planes in Some Important 
Crystal Structures 

Cubic 

 
Tetragonal 

 
Orthorhombic

 
Hexagonal 

 
Rhombohedral

Monoclinic 
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2.3.4.1 Orthogonal Crystal Structures 

Since the axes of the unit cells are at right angles (α=β=γ=90°), the lattice spacings for 
cubic (a=b=c), tetragonal (a=b≠c) and orthorhombic (a≠b≠c) crystal structures are 
particularly simple to calculate. The spacing, dhkl, for the hkl lattice plane is given by 

 
(2.36) 

For cubic materials, this simplifies to 
dhkl=a/(h2+k2+l2)1/2 

(2.37) 

It is clear from this formulation that many cubic symmetry reflections have the same 
lattice spacing, as in and so on. These 24 lattice planes are 
said to belong to a symmetry-related form, indicated by {121}. In a randomly oriented 
powder, all 24 such reflections will contribute to the diffracted intensity corresponding to 
these 24 different crystallite orientations. In general, the number of such equivalent peaks 
having the  

TABLE 2.6 Multiplicities,;, of Reflections hkl for 
Random Polycrystalline Samples of Selected 
Important Crystal Structures 

Cubic hkl: 
j=48

hhl: 
j=24 

hk0: 
j=24 

hh0:j=12 hhh: 
j=8 

h00: 
j=6 

  

Tetragonal hkl: 
j=16

hhl: j=8 hk0: 
j=8 

hh0: j=4 0kl: 
j=8 

h00: 
j=4 

001: 
j=2 

Orthorhombic hkl: 
j=8 

0kl: j=4 hk0: 
j=4 

h0l: j=4 h00: 
j=2 

0k0: 
j=2 

00l: 
j=2 

Hexagonal 
and 
rhombohedral

hkl: 
j=24

hhl:j=12 hk0: 
j=12 

hh0:j=6 h0l: 
j=12

h00: 
j=6 

00l: 
j=2 

Monoclinic hkl: 
j=4 

h0l: j=2 0k0: 
j=2 

  

Triclinic hkl: 
j=2 

      

same lattice spacing is termed the multiplicity, j, and j occurs as a factor in the expression 
for the diffracted intensity from a powder. The multiplicities of reflections hkl for various 
structures are given in Table 2.6. 

Brackets are commonly used to denote planes and directions in the crystal lattice, 
which we illustrate here with reference to cubic systems, (hkl) denotes the plane hkl, and 
{hkl} denotes the family of planes with the same symmetry-related indices that contribute 
to the hkl reflection of a polycrystalline assembly, or random powder, of grains. For 

example, in cubic systems, {002} denotes the family (002), (020), (200), 
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and Frequently in the literature, in unambiguous cases of powder diffraction, the 
simple notation hkl or (hkl) is used for the more correct {hkl} to denote Bragg reflections. 
A direction in a crystal is denoted as [uvw], where uvw is the set of smallest integers 
having the same ratios as the components of a vector in that direction resolved along the 
crystal lattice vectors. The full set of equivalent directions is denoted as <uυw>. 
Specifically, in the case of cubic crystals the [uvw] direction has direction ratios u, ν, and 
w, referred to the cubic axes, and the [hkl] direction is perpendicular to the (hkl) plane, 
but this is not generally true for other crystal symmetries. 

2.3.4.2 Hexagonal Structures 

Hexagonal structures are defined as a=b≠c and (α=β=90°; γ=120). For such 
nonorthogonal systems, the lattice spacings and multiplicities are less self-evident. While 
planes in all symmetries may be described by three indices, hkl, it is common to find 
planes in hexagonal structures described using a four-index notation hkil, where 
i=−(h+k). This Miller-Bravais notation serves to identify planes of equivalent symmetry. 

For example, it is readily seen that and are related by symmetry, 
and have the same lattice spacing, whereas this would not be so evident from the 

corresponding three Miller indices (100), (010), and  

2.3.4.3 Lower Symmetry Structures 

For rhombohedral or trigonal structures ((a=b=c); (α=β=γ <120°, ≠90°)), monoclinic 
structures ((a≠b≠c), (α=γ=90°; β≠90°)), and triclinic structures ((a≠b≠c), (α≠β≠γ≠90°)), 
the multiplicities decrease as the symmetry decreases, as seen in Table 2.6. As a result, 
the diffracted intensity of individual triclinic reflections tends to be low, as the total 
diffracted intensity is spread over more peaks. 

2.3.5 Diffracted Intensity 

From the conditions for diffraction and the form of the differential cross-section for 
coherent Bragg diffraction from a polycrystalline sample given in Section 2.3.3, the 
intensity of the diffracted beam from a particular sample may be calculated as the number 
of neutrons detected per unit time. With reference to a basic two-axis instrument on a 
continuous source, two sample-instrument configurations relevant to strain measurement 
are considered here, together with the special case of a plate sample. These are shown 
schematically in Figure 2.10. The first (Figure 2.10a) corresponds to the case where the 
strain profile inside the sample is being mapped, in which the whole of the instrumental 
gauge volume, Vg, defined by the beam apertures as described in Section 3.5.2, is filled 
by a part of the sample and contributes to the intensity. The second (Figure 2.10b) is 
when the complete sample, typically in cylindrical form, lies centered within the 
instrumental gauge volume and gives rise to the scattering. In each case, nhkl, the number 
of neutrons from the hkl lattice planes per unit time falling on the detector, is given by 
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 (2.38) 

where Φ0 is the incident flux, Vv is the volume of the sample that is scattering the incident 
beam and is contributing to the detected intensity, and ∆Ω is the element of solid angle 
subtended by the detector at the sample. We here assume the detector to be 100% 
efficient, but an efficiency factor can easily be included on the right side of the equation. 
The derivation of the expression for nhkl is given by Squires [4], and involves determining 
the macroscopic cross-section for scattering by the polycrystalline sample into the whole 
of each Debye-Scherrer cone corresponding to | G|, or a scattering angle This 
is given by 

 
(2.39) 

where the summation is over all hkl with the same |G|, that is all planes contributing to 
the same cone at such as the cubic 333 and 115 reflections mentioned in the previous 
section, with their respective multiplicities j. As defined previously, Fhkl is the structure 
factor, and v0 is the volume of the unit cell.  
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FIGURE 2.10 Schematic illustrating 
three commonly encountered sample 
configurations on a simple 
diffractometer shown in Figure 3.8, in 
plan view. The direction of the beams 
is defined by collimators (not shown), 
(a) Sample completely fills the 
instrumental gauge volume Vg (=Vv) 
(shaded), as might occur during strain 
profile mapping, (b) Cylindrical 
sample (shaded) centred in the 
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instrumental gauge volume completely 
bathed by the incident beam, Vv is the 
sampled gauge volume, (c) A thin 
plate sample is placed symmetrically 
in the instrumental gauge volume in 
transmission geometry. The shaded 
sampled volume Vv contributes to the 
diffracted intensity. 

A fraction of each cone given by is detected, where Lf is the 
distance from sample to detector, and hd is the height of the detector. It is then found that 
for each set of contributing planes {hkl}, 

 
(2.40) 

We assume that the density of the sample is the theoretical density, but a simple ratio 

correction may be made if this is not so (see Bacon [1]). is an absorption factor that 
depends on the configuration of the sample. It should be noted that absorption in a sample 
can cause a shift of the effective scattering center of the sample and a spurious shift in the 
diffraction angle, as discussed in Section 3.6. 

In the first case shown in Figure 2.10a, Vv is equal to the volume of the instrumental 

gauge Vg (see Section 3.5.2). has to be evaluated numerically by summing all path 
lengths, with the appropriate linear attenuation coefficient µa discussed in Section 2.4, in 
the sample for each wavelength and scattering angle. In the simple case shown 
schematically in Figure 2.10a, the sample is symmetrically in the transmission 
configuration, and all path lengths will be the same, but in most cases the sample will be 
irregular in shape. 

In the second case of a cylindrical sample fully bathed by the beam (Figure 2.10b), Vv 

will be the volume of the sample in the beam, and the absorption factor has been 
tabulated for a range of sample radii and linear absorption coefficients [1,22]. 

One case that is sometimes encountered in microstrain measurement is a plate sample 
of thickness ts measured in transmission and set symmetrically in the instrumental gauge 
volume, which is only filled in the vertical direction (Figure 2.10c). In this case, the 
absorption factor is constant for beam paths from each element of the sample, and 

and where Ai is the area of the incident 
beam [1]. 

The flux and factors involving the instrument dimensions are constant for a given 
instrument configuration, and an intensity calibration constant can be obtained, if 
necessary, by carrying out a powder diffraction experiment from a standard sample of 
known structure factor, multiplicity, and unit cell volume, such as silicon, Si, alumina, 
Al2O3, or ceria, CeO. A comparison of the measured intensities under the same 
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conditions allows the intensities from the sample to be placed on an absolute scale, since 
the ratio of the measured intensities is equal to the ratio of the theoretical intensities 
(Equation (2.40)), in which the constant instrumental parameters cancel out. Equation 
(2.40) shows that the diffracted intensity from a given set of planes increases with the 
volume of the sample in the gauge and as the cube of the wavelength, however the linear 
attenuation coefficient increases linearly with wavelength. The corresponding relation for 
an instrument on a pulsed source is given by David [23].  

2.3.6 Scattering from Engineering Materials 

It is instructive to consider the nature of the scattering from a few important engineering 
materials. 

2.3.6.1 Scattering from Elements 

Naturally occurring iron (Fe) is made up of the isotopes 54Fe, 56Fe, 57Fe, and 58Fe, with 
abundances of 5.8%, 91.7%, 2.2%, and 0.3%, respectively, which are distributed 
randomly on the atomic lattice each with its characteristic scattering length [13,24]. Of 
these isotopes, only 57Fe possesses nuclear spin I=1/2. Naturally occurring iron may then 
be described by an average value cm on each atomic site that gives 
rise to the Bragg diffraction intensity. The coherent scattering cross-section is 11.22 
barns/atom. The incoherent scattering from iron atoms, with cross-section σincoh=0.40 
barns, only contributes to the isotropic background at all scattering angles. 

Naturally occurring nickel (Ni) has six isotopes with various scattering lengths, and 
one isotope 61Ni with nuclear spin I=3/2. The average scattering length 

and the corresponding coherent cross-section is 13.3 barns/atom. 
The deviations from this average, together with the nuclear spin incoherent scattering, 
give rise to a larger incoherent cross-section per atom than for iron of σincoh=5.2 barns. 
Thus, nickel and its alloys give much larger background levels than iron. 

2.3.6.2 Scattering from Alloys 

In designing materials for engineering applications, elements are usually alloyed to 
impart strength, and there is often more than one type of atomic site in the unit cell. For 
example, in the simple cubic Ni3Al phase (Figure 2.4a) that strengthens face-centered 
cubic (Figure 2.4c) Ni superalloys used in high-temperature aerospace applications, there 
is a basis of four atoms per primitive simple cubic cell, with Al atoms at the corner, A, 
sites and three Ni atoms at the face center, B, sites. The actual alloy used in practice has a 
number of other chemical constituents, some of which reside on the B sites and some on 
the A sites. In order to calculate the diffraction intensity, the average coherent scattering 

length must be calculated for each site: the average over the elements occupying the A 
sites and the average over the elements occupying the B sites. These mean values are 
then substituted in the expression for the scattering amplitude Fhkl, Equation (2.31) or 
(2.49), which in turn is used in Equation (2.40) to determine the Bragg diffraction 
intensity. 
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Any random occupation of the sites in an alloy also gives rise to diffuse elastic 
scattering from the random distribution of coherent scattering lengths Q. Considering an 
example of a binary alloy with atomic fractions a1 and a2 of elements, with mean 

scattering lengths and and incoherent scattering cross-sections and 
respectively, situated on a Bravais lattice, this coherent diffuse scattering, sometimes 
referred to as Laue monotonic diffuse scattering, is given by [3] 

 (2.41) 

The total coherent scattering therefore comprises the Bragg scattering, in which the 

average scattering length replaces the monatomic scattering length, 
plus this diffuse term. The Laue diffuse scattering gives rise to an isotropic background 
which is in addition to the nuclear incoherent scattering described by 

 (2.42) 

An example occurs when iron atoms are replaced by silicon atoms with their different 
scattering lengths in an iron-silicon alloy, giving rise to additional isotropic background. 
Any small distortions of the lattice that might arise around the various atoms in an alloy, 
as well as thermal vibrations, will reduce the Bragg scattering and give additional factors 
or diffuse terms that can be angle dependent. 

2.3.6.3 Application to Titanium Alloys 

A case of practical importance is the study of components made from Ti-6Al-4V. Here, 
the addition of Al and V, with scattering lengths of 0.345 and −0.038×10−12 cm, 
respectively, to Ti with reduces the average scattering length in 
the alloy but augments the large intrinsic incoherent cross-section for Ti of 2.87 barns. In 
this case, the average coherent scattering length is only −0.263×10−12 cm, but the average 
incoherent and diffuse cross-section per atom is ~3.1 barns. As a result, even the strong 
reflections in randomly oriented polycrystalline titanium alloys are only two to three 
times higher than the background, and this makes strain studies very difficult in these 
materials as discussed in Sections 4.4.1 and 4.4.2. 

2.3.7 Macroscopic Cross-Section 

2.3.7.1 Elements 

Total macroscopic cross-sections Σcoh, Σincoh, and Σabs are particularly useful for 
calculating the attenuation of the neutron beam through a sample due to coherent 
scattering, incoherent scattering, and absorption, respectively [24]. They are listed in 
Appendix 4 for all the elements. For a single elemental material, the corresponding 
microscopic cross-section of each element, σj, is multiplied by the number of atoms per 
unit volume. For an element j, with density ρj and atomic weight Wj, the number of atoms 
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per unit volume is given by NA ρj/Wj, where NA is Avogadro’s number (6.022×1023 
mole−1). Then the corresponding macroscopic cross-section is given by 

∑j=σj NA ρj/Wj 
(2.43) 

2.3.7.2 Alloys 

For a material of more than one element (compound or alloy), the macroscopic 
incoherent scattering cross-section and the macroscopic absorption cross-section may be 
calculated directly from a weighted summation of the contribution from the individual 
constituents. The corresponding macroscopic cross-sections are given by 

 
(2.44) 

where is the mean density, σj the microscopic incoherent or absorption cross-section, wj 
the weight fraction, and Wj the atomic weight of atom j. Alternatively, they can be 
expressed in terms of atomic fraction, aj, of each constituent: 

 

(2.45) 

The total macroscopic coherent scattering cross-section of a compound or random alloy 
may also, in the short wavelength limit, be given by the above expressions in terms of the 
total microscopic coherent cross-sections. In the case of random alloys, this total coherent 
scattering will include both the Bragg and Laue diffuse terms discussed in the previous 
section. However, the total coherent cross-section will in general be wavelength 
dependent as discussed in Section 2.3.3, in particular due to the variation in the coherent 
cross-section that arises from the Bragg cut-off for those atomic planes hkl for which 
λ>2dhkl as shown in Figure 2.9. When the short wavelength limit cannot be applied, the 
total coherent diffraction cross-section, must be found by integration of the 
expression given in Equation (2.39), with the appropriate structure factor containing 
averaged scattering lengths, over all the Debye-Scherrer cones corresponding to different 
Bragg peaks up to the Bragg cut-off. For random alloys, the Laue diffuse scattering, 
discussed in the previous section, must also be included. 

Together, the three macroscopic cross-sections contribute to the total linear attenuation 
as described in the next section.  

2.4 Penetration of Neutron Beams 

As already remarked with reference to Table 2.2, one of the major attributes of neutrons 
compared to other radiation probes is their high penetration in most engineering 
materials, making them a useful tool for making measurements deep within samples. 
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When embarking on a series of strain measurements, it is important therefore to be able 
to predict the extent to which the incident and diffracted beam will be attenuated over the 
total path length in the material. The variation of the neutron flux Φl compared to the 
incident flux Φ0 with path length, l, through a sample is given in terms of the linear 
attenuation factor, µa, by 

 (2.46) 

The linear attenuation factor is equal to the sum of all the macroscopic cross-sections that 
remove neutrons from the beam, that is, coherent and incoherent scattering and 
absorption, as discussed in the previous section: 

 (2.47) 

An attenuation length, lµ, can be defined as the distance over which the incident neutron 
flux declines by a factor 1/e. This is the reciprocal of the linear attenuation factor and is 
quoted in centimeters: 

 (2.48) 

This is shown schematically in Figure 2.11. The macroscopic cross-sections are 
calculated as described in the previous section, and are given with values of lµ in 
Appendix 4. As they depend on nuclear properties, the attenuation lengths of different 
nuclei vary erratically from element to element in the periodic table, as shown in Figure 
2.2. In perfect crystals, extinction effects cause the coherent diffraction cross-section to 
dominate the attenuation as discussed in Section 2.6.1. 

Figure 2.9 shows the total cross-section per atom for iron, including coherent 
diffraction, nuclear as well as magnetic, incoherent scattering and absorption, as a 
function of wavelength [25]. For iron, the dominating factor depleting the beam is the 
coherent diffraction term. Note that at a wavelength slightly greater than 4.1 Å, all 
reflections have exceeded the Bragg cut-off (Section 2.3.3) so that Bragg diffraction is no 
longer possible and the transmitted intensity increases sharply. Upon further increasing 
the wavelength (lowering the energy), the transmission falls, due mainly to the increase 
in true absorption.  
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FIGURE 2.11 The transmitted neutron 
flux normalized by the incident flux 
(Φl,/Φ0) as a function of the normalised 
path length (l/lµ). As indicated by the 
circles, path lengths of one, two, three, 
and four times the attenuation length lµ 
correspond to reductions in the 
transmitted flux to 36.8, 13.5, 5.0, and 
1.8%, respectively. 

The penetration in millimeters for which a neutron beam is attenuated to 5% of its initial 
value, calculated from Equation (2.48), is given in Table 2.3. It is usually still possible to 
carry out strain measurements at this level of attenuation. More sophisticated estimates of 
the maximum path length at which it is feasible to make strain measurements are given in 
Section 4.4.2. 

2.5 Effects of Lattice Vibrations 

As mentioned in Section 2.3.3, atoms are not positioned rigidly within the crystal 
structure, but instead vibrate about their mean lattice site ru with an amplitude that 
increases with temperature. Thus, the time-averaged atomic nuclei positions are smeared 
and this gives rise to a term in intensity analogous to the atomic form factor for x-rays or 
neutrons, but as the spatial extent is much smaller than that of the atomic electrons, the Q 
dependence of this term is usually very much less. The full theoretical treatment of the 
thermal vibration of the atoms [26] gives rise to a temperature factor that multiplies the 

Introduction to the characterization of residual stress by neutron diffraction     58



exponential term for each atom in the summation in the structure factor. However, an 
average term for harmonic vibrations may be taken out of the summation so that the 
structure factor is given by  

 (2.49) 

The extra term therefore appears as a factor, exp(−2W(Q)), called the Debye-Waller 
factor, in the expression for the cross-section and intensity of diffraction in Equation 
(2.40). 

The quantity W(Q) may be written in terms of the mean square amplitude of vibration 
of the atoms, <u2>, and for cubic or spherical site symmetry is 

 (2.50) 

The Debye model may be used to calculate <u2> for a simple lattice of atoms of mass M 
(see, for example, Ghatak and Khotari [26]), resulting in 

 
(2.51) 

Here, θD is called the Debye temperature, and is the Debye function [27]. The 
first term shows that the factor causes the Bragg peak intensity to decrease as the 
scattering vector Q increases. The Debye function gives the temperature dependence; it 
increases as T increases causing the intensity to decrease with increasing temperature. 
However, the Bragg peak width does not broaden and is independent of temperature. The 
Debye-Waller factor exp(−2W(Q) must also be included in the incoherent scattering 
cross-section, and so gives rise to a small Q dependence to this scattering. 

The atomic lattice vibrations in a crystal may be described in terms of quantized 
excitations called phonons. In an inelastic scattering process, in which both the neutron 
energy and wave vector are changed, the neutron may excite or deexcite lattice 
vibrations, that is, cause the creation or annihilation of phonons. Inelastic scattering is 
weaker than Bragg diffraction, and from a polycrystalline sample contributes mainly 
under and near the Bragg peaks, and is referred to as thermal diffuse scattering (TDS). As 
the temperature increases, the TDS increases and, through the Debye-Waller factor, the 
Bragg peak intensity decreases. 

These effects of lattice vibrations must be included in the analysis of Bragg peak 
intensity data aimed at determining crystal structures, and indeed give important 
additional information on the structure. However, they are not usually of great 
importance in neutron diffraction strain measurements, although fitting a Debye—Waller 
factor may be used to establish the temperature of the measurement [27,28].  
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2.6 Extinction, Texture, and Multiple Scattering 

We now mention three other important effects that may alter a sample diffraction 
intensity from that expected in the ideal case. These are extinction, texture, and multiple 
scattering. 

2.6.1 Extinction 

If a monochromatic neutron beam falls on a highly perfect single crystal oriented in the 
reflection condition for Bragg diffraction, the incident beam will be diffracted by 
successive lattice planes and consequently will diminish in intensity as it penetrates into 
the crystal, as shown schematically in Figure 2.12a. The whole of the crystal will 
therefore not experience the same incident intensity, which may even be exhausted in the 
near-surface region. This attenuation due to diffraction is termed primary extinction. As 
an example, an estimate of the extinction distance over which the attenuation is 
appreciable for 2 Å neutrons diffracted by the 111 reflection from Ni at a scattering angle 
of is ~2.2 µm [4]. Since this is only a very small volume of crystal, there is a 
consequent size broadening of the diffraction peak of ~3 s of arc (see Equation (2.17)), 
and the peak profile becomes flatter. However, most crystals contain dislocations that 
break the perfect regions up into a mosaic of small volumes at small angles to each other, 
making primary extinction small. Indeed, a mosaic structure is important for crystal 
monochromators, as discussed in Section 3.2.1. As a result, only a relatively few 
successive lattice planes diffract before the incident beam meets a new mosaic at a slight 
angle. It is not until the beam meets another mosaic volume at exactly the correct angle 
that extinction attenuation will continue as illustrated in Figure 2.12b. Such extinction is 
termed secondary extinction. The intensity of the diffraction peak from the mosaic crystal 
may be affected, but the width of the peak is determined by the angular mosaic spread. 

Although extinction is of prime importance in single crystal diffraction, it is usually 
very much less important for powder diffraction and can often be neglected. However, if 
the grains in a polycrystalline sample are sufficiently large and perfect, then extinction 
could affect the diffraction peak intensities. For example, austenitic steel weldments often 
have a large grain size in the weld itself. 

Extinction may also affect the wavelength composition of the beam penetrating a large 
sample, since one component in a distribution of λ, may be strongly diffracted out of the 
beam by a large grain. Secondary extinction may also be present over a long path length 
in the polycrystalline sample, since although the grains may be randomly oriented in 
contrast to lying small angles in a mosaic crystal, there is still a chance of the beam 
encountering further grains in the same orientation.  
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FIGURE 2.12 Schematic showing the 
loss of transmitted neutron flux due to 
(a) primary and (b) secondary 
extinction on passing through a single 
crystal. In (b), the grain has 
polygonized into slightly misoriented 
subgrains so that it is broken up into a 
mosaic crystal, only the shaded 
subgrains are oriented to satisfy the 
diffraction condition. 

In accurate structure determination, the effects of extinction should be included in 
procedures that fit the complete powder diffraction pattern such as the Rietveld method, 
described further in Sections 3.2.2 and 4.5 [29]. In strain measurements performed at a 
reactor, it would be hard to detect extinction if only one order of reflection is measured. 
In time-of-flight measurements, however, where several orders of a given reflection may 
be collected simultaneously, the relative intensity of different orders of a reflection will 
reveal the presence of extinction. Further discussion of extinction is provided by Bacon 
[1] and Sears [7]. 

2.6.2 Texture 

The crystallographic texture is a measure of the degree to which the grains in a 
polycrystalline sample are not randomly oriented. Engineering components are often 
textured, since manufacturing processes generally involve plastic deformation, and this 
has the effect of modifying the crystallographic orientation of the grains, causing 
preferred orientation of the grains along certain macroscopic sample directions, such as 
the case of rolled plate in the directions of rolling and normal to the rolling plane. Other 

Fundamentals of neutron diffraction     61



examples include extruded wires and tubes, and welds where there has been 
recrystallisation from the melt. Texture can also arise from other causes, such as oriented 
growth in the casting of metals, and controlled vapor deposition of ceramics. As a result 
of texture, the relative intensities of diffraction peaks are changed from those anticipated 
on the basis of the multiplicity of the planes, j, given in Table 2.6, which were based on 
random grain orientation. 

In order to measure the degree of texture in a sample using a continuous 
monochromatic neutron beam from a reactor, the detector on the diffractometer is 
positioned at the scattering angle corresponding to the center of a diffraction peak hkl, 
and the diffracted intensity is measured as a function of sample orientation over a 
hemisphere. The data are presented as contours of intensity of the Bragg reflection as a 
function of sample direction along the corresponding Q on what is termed a pole figure; 
an example is shown in Figure 2.13. Alternatively, particularly when using time-of-flight 
diffraction, the intensities for many different reflections can be collected at the same time 
for just one sample direction. The data are presented as points or contours of intensity of 
the different Bragg peaks lying along the direction of Q on a triangular plot of the 
crystallographic directions. This is termed an inverse pole figure, and is particularly 
useful for fiber textures in which there is one main direction of crystallite alignment in 
the sample. Different orders of reflection, such as 111 and 222, will display the same 
angular dependence of intensity since they correspond to the same grain orientation. A 
quantitative description of the distribution of crystalite orientations, the degree of texture, 
in a polycrystalline aggregate is given by the orientation distribution function (ODF) 
which is determined from the measured pole figures. The study of crystallographic 
texture is a well-developed field with many applications in materials science that have 
been dealt with recently in the textbook by Kocks et al. [30]. The avoidance of, or 
correction for, extinction effects can be important when determining texture from the 
variation in peak intensities with sample orientation. 

When determining crystal structures from a powder diffraction pattern, using for 
example, the Rietveld method, a texture coefficient may be included as a parameter to 
correct for weak texture effects. When measuring strain, and in converting strain data to 
stress, texture in a sample can have important consequences. Strong texture may prevent 
the observation of one Bragg reflection in all the directions in the sample for which strain 
data are required. Consequently, more than one reflection may have to be used. The 
conversion of strain to stress, discussed in Chapter 5, requires a knowledge of the texture 
if it is not random as it can affect the elastic constants to be used. Texture may arise from, 
and be an indication of, plastic deformation of a sample. As plastic deformation may 
cause intergranular stresses, texture indicates when careful data analysis for intergranular 
effects may be required, as discussed in Section 4.2.2 and Chapter 5. Finally, texture 
gradients in a sample can affect data interpretation, as discussed in Section 3.6.4. 

2.6.3 Multiple Scattering 

The most intense scattering process from most polycrystalline samples is the coherent 
diffraction into Debye-Scherrer cones. In general, strain  
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FIGURE 2.13 The (a) (0002) and (b) 
pole figures for a highly textured 

rolled Zircaloy-2 plate. The two 
regions of intensity in the (0002) pole 
figure between the normal and 
transverse directions correspond to the 
two “families” of grains in the 
material. There is correspondence 
between sample direction and 
crystallographic plane in a strongly 
textured sample such as this plate. The 
contour levels are 0.1, 0.6, 1.1, etc., 
multiples of random distribution. 

measurements are made on large samples with long paths through the material, and as a 
consequence neutrons scattered from the incident beam into Debye–Scherrer cones will 
have a finite probability of being diffracted a second time into a different direction. The 
net effect of double and higher-order scattering in a polycrystalline solid is to add to the 
incoherent background between the peaks. For a single crystal, however, double Bragg 
scattering can give rise to extra weak peaks, as well as changing the intensity of the 
primary Bragg peaks. In a large polycrystalline sample with a large coherent cross-
section and a low incoherent cross-section such as iron, the major source of background 
between Bragg peaks is likely to be multiple diffraction. 

The extent of multiple scattering has been considered for conventional powder 
diffraction for which the samples are usually ~10 mm thick. It has been calculated by 
Vineyard [31] for plate geometry, and for fully bathed cylinders (see Figure 2.10b) by 
Blech and Averbach [32], as described by Bacon [1]. The latter results are shown in 
Figure 2.14. Note that for a 2 cm high copper cylinder, multiple scattering accounts for 
85% of the diffuse scattering, while for vanadium, which has a higher incoherent 
contribution, it is only around 20%. However, when making strain measurements, the 
sampled volume is typically smaller than the entire sample volume, which is the 
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configuration shown in Figure 2.10a. In this case, it is more difficult to calculate the 
multiple scattering contribution.  

 

FIGURE 2.14 Relative multiple 
scattering calculated for the sample 
configuration shown in Figure 2.10b 
from 1 cm radius cylinders of copper 
and vanadium of various heights. The 
broken horizontal lines show the 
calculated sum of the incoherent and 
thermal diffuse scattering, while the 
contribution from predicted multiple 
scattering has been added to give the 
full-line curves, which are in good 
agreement with the experiment 
(adapted from Bacon [1]). 
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3  
Diffraction Techniques and Instrument 

Design 

In this chapter the practical instrumentation for neutron diffraction strain measurement is 
described, based on the general principles of neutron scattering developed in the previous 
chapter. Details of the types of sources available are outlined, followed by a description 
of the basic elements of the types of instruments and a description of the various detector 
arrangements used in practice. Methods are divided into those appropriate for either a 
continuous or time-pulsed flux source, although many of the elements are common to 
both. The aim is to provide the reader with a basis for the selection of the optimal 
experimental arrangement for a given application. 

3.1 Neutron Sources 

At the present time, the two principal types of neutron sources that have sufficient 
neutron flux to be suitable for the measurement of strain, and hence stress, are nuclear 
reactors incorporating neutron beam tubes, and spallation neutron sources. These are 
major facilities and are located at national or international laboratory sites. However, 
access to these neutron facilities is now relatively straightforward for anyone with an 
innovative experiment to carry out, and expert assistance is usually available. Most 
laboratories are open to applications for beam-time usage from a range of participating 
countries, and simply require a proposal to be written that goes before a peer review 
committee held at regular intervals. Providing that the proposal is generic and sound, 
available beam time is granted, sometimes with a contribution toward the expenses of 
visiting the site. Industrial users can usually perform measurements with full commercial 
confidentiality by paying for the beam time. Although perhaps a little daunting at first 
sight to those used to working in a small laboratory, the environment of the neutron beam 
facility soon becomes familiar and once the safety formalities are overwith, one is 
concerned only with the instrument for strain measurement, which is often no more 
complex or larger than a piece of conventional laboratory equipment. It is indicative of 
the rise in the use of neutron diffraction for engineering and materials problems 
associated with the measurement of residual stress that at almost every neutron source 
facility a state-of-the-art dedicated strain measurement instrument is either in use or is 
being planned. 

An inevitable question from all interested in stress measurement is whether portable 
neutron sources are ever likely to become available that can make measurements in situ. 
Unfortunately, at present and for the foreseeable future, these are too low in neutron 
intensity, and are suitable only for radiography and other unsophisticated uses. 



Nevertheless, the flux of portable sources has increased markedly in recent years, and 
while falling far short of that needed for detailed strain and stress measurement, may one 
day approach the required levels for stress measurement in specialized cases. 

3.1.1 Steady-State Reactor Neutron Source 

The most intense continuous beams of neutrons, in terms of the total integrated neutron 
flux, are those emanating from the beam tubes of a nuclear reactor producing a 
continuous high flux of neutrons from fission of U235, which has been specially designed 
for neutron research [1–3]. Most early research reactors, or “materials testing reactors” 
(MTRs), were designed to provide a range of facilities with many vertical tubes in and 
around the reactor core in which irradiation experiments could be performed and isotopes 
produced. Often, horizontal beam tubes were provided as an additional facility for 
irradiations, as well as to provide external beams of thermally moderated neutrons. The 
beam tubes view a source inside the reactor situated in the moderator/reflector in a region 
of high thermal flux. However, they were rarely optimized for maximum external neutron 
flux, and in some cases viewed the reactor core, and thus their beams had a high fast 
neutron and γ-ray content. 

As the importance of neutron scattering techniques has gained recognition, research 
reactors designed primarily to provide high-flux neutron beams have been constructed. 
These have horizontal, and sometimes a few angled, beam tubes that are tangential to the 
core, to reduce the fast neutron and γ-ray component of the beam. Their source originates 
in an area of the moderator/reflector specially designed to optimize the thermal neutron 
flux. A typical layout of such a reactor is shown in Figure 3.1. Sometimes the beam tubes 
pass right through the reactor, and such “through” beam tubes house source blocks 
positioned in the region of maximum thermal flux to scatter out the neutrons. The beam 
tubes transport the neutrons from the source to the region beyond the outer shielding of 
the reactor where neutron scattering instruments are situated. Early beam tubes were 
circular in cross-section, but as most instruments use relaxed vertical resolution, elliptical 
or rectangular cross-sections are often used to enhance the flux on the instrument. The 
beam tube usually contains an absorbing shutter to switch off most of the beam, or can be 
flooded with water to reduce the beam intensity  
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FIGURE 3.1 The arrangement of 
beam tubes and moderator sources in 
high-flux reactor at the Institut Laue 
Langevin, Grenoble. (1) Core. (2) Hot 
source. (3) Cold source. (4) Neutron 
guide tubes. (5) Vertical beam tubes. 
(6) Pneumatic post for irradiations [2]. 
A second cold source has now been 
added. 

to very low levels. The latter allows work to be carried out safely in the instrument’s 
beam exit region, where monochromating crystals or choppers may be located. 

3.1.1.1 Moderation 

The energy of the neutrons in the core of a reactor (~2 to 3 MeV) is much too high to be 
useful for diffraction experiments. The neutron energies are therefore thermalized by a 
moderator. When in equilibrium with the moderator at a thermal temperature T, the 
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distribution of neutron velocities in the beam is given by the Maxwell-Boltzmann 
distribution (Appendix 1). The flux distribution, Φ(E), can then be determined as a 
function of neutron energy so that Φ(E)dE is the flux of neutrons with energy between E 
and E+dE. There is also a contribution from the unmoderated reactor spectrum that gives 
rise to a high-energy 1/E epithermal “tail” to the spectrum. Thus, the flux distribution is 
given by:  

 
(3.1) 

Here kB is Boltzmann’s constant, ΦF is the total thermalized flux, and ηf (typically 
<1/100) the fraction of epithermal flux. The maximum thermal neutron flux Φ(E) occurs 
at an energy E~kBT. However, it should be noted that “undermoderation” may occur, in 
which case the peak in flux corresponds to a slightly higher temperature than the nominal 
moderator value. 

When the moderator and source block are at reactor ambient temperature, that is, when 
the moderator temperature T lies between 300 K and 430 K, depending on the type of 
moderator, the distribution is called “thermal.” Typically, for T~330 K, the thermalized 
neutron energy is of order E~28 meV, and the corresponding neutron wavelength is 
λT~1.7 Å. 

The flux distribution is often given as a function of neutron velocity or wavelength, as 
described in Appendix 1. It should be noted that the function Φ(λ), which gives the flux 
per wavelength interval dλ rather than energy interval dE, peaks at a wavelength 
λf(maxflux)=λT√(2/5), where λT is the wavelength corresponding to the peak in Φ(E) at 
E(maxflux)~kBT. Thus, the peak in a thermally moderated flux distribution, typically 
shown in Figure 3.2, is at a wavelength of λf(maxflux)=1.7×0.632 ~1.1 Å. Relations 
between the flux distributions expressed in terms of the different variables are given in 
Appendix 1. 

Consideration of the flux distribution with respect to wavelength rather than energy is 
more appropriate when considering a crystal monochromator, since the latter selects a 
range of wavelengths dλ=2dhkl cosθMdθM out of the spectrum corresponding to the 
effective collimation angle dθM, as discussed in Section 3.2.1. 

Specialized source blocks may be provided in the reactor at the end of the beam tube, 
which are cooled, typically by liquid hydrogen at 20 K (“cold source”), or warmed, 
typically by nuclear heating to 2300 K (“hot source”),  
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FIGURE 3.2 Maxwellian flux 
distribution for a moderator at 300K 
calculated according to Equation 3.1. 
Note that the maximum in the 
wavelength distribution is around 1.1 
Å (see Appendix 1). 

 

FIGURE 3.3 The neutron flux spectra, 
Φ(λ), from the thermal (heavy water 
~330K), hot (~2300 K), and cold (~20 
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K) moderator sources at high-flux 
reactor, Institut Laue Langevin, 
Grenoble, France [2]. The bottom 
abscissa scale denotes the neutron 
energy corresponding to the neutron 
wavelength of the top scale (Table 
2.1). 

to give a spread of wavelengths biased toward longer or shorter values, respectively. 
Typical neutron flux distributions from these sources, given in the form Φ(λ) versus λ, 
are shown in Figure 3.3. 

Many dedicated beam reactors are available or are under construction around the 
world; that at the Institut Laue-Langevin (ILL) in Grenoble, France, is a prime example 
of a 58-MW reactor with a very high neutron flux of 3×1015 ncm−2s−1. The High Flux 
Isotope Reactor at the Oak Ridge National Laboratory (Oak Ridge, Tennessee) has a flux 
close to that of the ILL, whereas medium-flux reactors—such as those at the Laboratoire 
Léon Brillouin in Saclay, France; the National Institute for Standards and Technology 
(NIST), Gaithers-burg, Maryland; the University of Missouri, Columbia, Missouri; the 
NRU reactor at Chalk River, Ontario, Canada, and the FRM II reactor in Munich, 
Germany—have fluxes in the range of 2 to 3×1014 cm−2s−1 (Figure 1.2). 

3.1.1.2 Neutron Guide Tubes 

Neutron guides provide an efficient means of transporting the useful moderated neutrons 
over short or long distances. They act as filters in that they alter the composition of the 
neutron’s spectrum since their transmission is very wavelength dependent. The principle 
of the guide is to utilize the total external reflection of neutrons impinging at low angles 
on a smooth surface, which occurs because the refractive index of the surface material, 
n(λ), for neutrons of wavelength λ is slightly less than unity: 

 (3.2) 

For a given neutron wavelength, there is therefore a critical angle θc(λ) between the 
incident beam and the surface. 

 (3.3) 

Here θc(λ) is in radians, and the surface material has a number density of atoms ρn with 
scattering length This angle is very small, of the order of one degree, for neutrons 
because n(λ) is only slightly less than unity. There is an analogy with light rays that are 
totally reflected below the Brewster angle at an optically dense to rare interface. 

Neutrons impinging at smaller angles, θ<θc(λ), are totally externally reflected at the 
wall surface, whereas those at greater angles enter the surface. Guide tubes are usually of 
rectangular cross-sections and, as the walls must be optically flat, made of float glass 
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usually coated with a metal such as nickel. The neutrons are transmitted along the guide 
by multiple reflections at the coated walls. Some typical neutron guides are shown in 
Figure 3.4. By using a slightly bent guide, of several kilometers radius, unwanted γ and 
fast neutron background can be removed from the useful beam, being transmitted through 
the walls into a biological shielding absorber surrounding the guide. The effective 
collimation angle of a natural nickel guide, a, can be calculated using Equation (3.3) with 
ρn=0.0914×1024 cm−3, Thus, as a rule of thumb, 

α=θc=0.1 λ, or α=0.6/k 
(3.4) 

where α is in degrees, λ is in Å, and the wave vector, k, is in Å−1. For example, α=0.3° for 
3 Å neutrons. A characteristic guide wavelength, λc, may be defined, below which there 
is low transmission, given by: 

 (3.5) 

where W is the width of the guide and R the radius of curvature [4,5]. 
Using 58Ni coatings gives a 17% increase in θc, because it has a higher scattering 

length. However, through the use of many deposited layers of graded thickness of various 
materials, notably Ni or Ni-C, and Ti, the value  
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FIGURE 3.4 (a) Neutron guides with 
various cross-sections, and (b) 
utilization of guides at Orphée Reactor, 
Laboratoire Léon Brillouin, CEA 
Saclay, France. (Photos courtesy of 
Celas.) 

of θc and λc may be increased by factors of 2 to 3, in what are sometimes referred to as 
“m=2 or 3” guides [4]. Although most efficient for cold neutrons, these “supermirror” 
guide tubes can be fabricated to transport thermal neutrons efficiently. 

The use of guides enables neutron beams to be transported to “guide halls,” which are 
located outside the main reactor shell. Here, many instruments can be located on each 
guide in a region of low radiation levels and low instrument background, as shown in 
Figure 3.5 [6]. The various instruments on the same guide may take different vertical 
sections of the guided beam, or the part of the beam transmitted through the 
monochromator of an upstream instrument. In principle, less shielding is required in the 
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guide hall region than in the reactor shell. Multilayer neutron guides may also be used on 
time-pulsed sources, discussed in Section 3.1.2, to transport a beam  

 

FIGURE 3.5 Instrument layout at the 
JRR-3M reactor at the Japanese 
Atomic Energy Research Institute, 
Tokai, Japan, illustrating the use of 
guides to transport beams to a guide 
hall [6]. 

away from the shielded moderator region to a distant instrument. Typically, useful fluxes 
of neutrons of wavelengths ~0.7 Å and above may be delivered to an instrument. 

By using multilayers of ferromagnetic materials, short bent guides a few tens of 
centimeters long may be used to provide beams of polarized neutrons. The surface of 
such “polarizing supermirror” guides may be built up from several hundred layers of 
magnetized Fe/Si, Ni/Ti, or Co/Ti. However, the use of polarized neutrons in instruments 
for strain measurement has only recently begun to be developed for specialized cases of 
very high strain resolution using neutron Larmor precession techniques [7]. 

3.1.1.3 Neutron Lenses 

Recently, much attention has been focused on the design of neutron “lenses,” with the 
aim of focusing the neutron flux over a range of wavelengths and a large beam area into a 
smaller area of the size of the sample being studied. Two possibly useful methods are 
being developed. The first is to use many curved, hollow, glass capillary tubes that act as 
miniature neutron guides to focus the beam onto a spot. The second is to use curved 
multiple thin layer films acting as stacked bent microguides. Staggered [8] or stacked [9] 
lengths of nickel deposited on aluminum, or single crystal Si, have been used as the 
mirror to give a focused line of intensity. A variation of these is the “lobster’s eye” 
system of stacked square capillary tubes, with deposits on two sides [10]. 

A simpler way of concentrating a guided beam is to have a curved supermirror “nose” 
on the end of the guide before the instrument. This can be designed to concentrate the 
vertical extent of the beam onto the sample at the expense of increasing the vertical 
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divergence, and is most suited to spallation source instruments. In the case of 
monochromated beams, bent or tilted monochromator crystals can be used to focus the 
beam onto the sample as discussed in Section 3.2.1. 

3.1.2 Time-Pulsed Neutron Source 

Beams of short bursts of neutron intensity (a few microseconds) in time separated by 
much longer periods (tens of milliseconds) may be produced in a number of ways, and 
may comprise pulses of a polychromatic spectrum of neutrons or of monochromated 
neutrons [2,11]. The beam from steady reactor sources may be time pulsed using velocity 
selectors or “choppers” (Section 3.2.2). The reactor itself may be time pulsed into 
criticality, such as the IBR-I reactor at Dubna near Moscow, where a critical part of the 
fuel was rotated through a subcritical core on rotating arms, producing pulsed 
polychromatic beams of neutrons every time criticality was reached. The newer IBR-II 
reactor has rotating neutron reflectors that cause the reactor to achieve criticality each 
time they pass the core. In this way, extremely intense beams corresponding to 1016 
neutrons/cm2 s at the moderator surface are produced for a relatively low mean power 
rating (~2 MW). However, the 5-Hz or 25-Hz pulse width of up to 320 µs is long for 
high-resolution diffraction work. 

Linear electron accelerators (LINACs) can be used to produce pulses of electrons that 
impinge onto a heavy metal target such as tungsten to produce bursts of γ-rays or 
bremsstrahlung, which in turn may be used to produce neutrons by a (γ, n) reaction in the 
metal target, or from a uranium “booster” target. 

The steady-state reactor as a neutron beam source has nearly reached its limits at the 
ILL facility, due to the requirement of dissipating more than 60 MW of power by 
continuous cooling. A proposal for “the ultimate reactor” or “king” reactor at Oak Ridge 
National Laboratory, which would have operated at ~100 MW, was considered too 
expensive. The latter has been supplanted by a new spallation neutron source, known as 
the SNS. Such pulsed sources now seem likely to provide the most intense neutron beams 
in the future, since the time-pulsed nature of the beams can be used to advantage to rival 
those from steady-state reactors, and the mean power dissipation requirements are in the 
region of only hundreds of kilowatts (Figure 1.2). 

Spallation neutron sources use the spallation of neutrons from a heavy metal target 
such as tantalum or tungsten, by a beam of time-pulsed high-energy particles, usually 
protons, from a synchrotron source. The process is more efficient if natural uranium is 
used as the target, although irradiation and thermal damage effects are more severe, 
which foreshorten target life. Future sources are likely to use circulating liquid mercury 
targets. In the spallation process, the neutrons are stripped off the metal nucleus. These 
neutrons have very high energies and require moderation to thermal energies before they 
can be used for diffraction. The ISIS spallation source at the Rutherford Appleton 
Laboratory (Oxfordshire, UK) is currently the world’s most intense, or “bright,” 
spallation neutron source [12]. At this facility, the protons start life as negative hydrogen 
ions that are accelerated in an injector column and linear accelerator to ~70 MeV. The 
electrons are then stripped off by passage through a 0.25-µm alumina foil, and the 
protons are accelerated to ~800 MeV in a 52-m diameter proton synchrotron to give a 
time-pulsed beam of protons containing 2.5×1013 protons/pulse at 50 Hz. Each pulse has 
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a time extent of 0.4 µs. On impact with a tantalum target, each proton produces on the 
order of 25 neutrons. These neutrons have a broad spectrum of high energies, on average 
3 to 4 MeV, and are moderated for use in beam experiments by moderators fabricated 
from hydrogenous materials that must be carefully designed to slow down the neutrons 
but to not significantly increase the pulse width in time. At the ISIS source, they are 
typically of size ~10×10×5 cm3, and of water at 316 K, liquid methane at 100 K, and 
liquid hydrogen at 20 K, so that the neutron intensity in each pulse will peak near the 
corresponding energies. It should be noted that the useful lower-energy neutrons in beam 
experiments at pulsed sources are detected at significant time intervals after the 
production of each pulse. As a result, the initial gamma and fast neutron bursts can be 
discounted, and  

 

FIGURE 3.6 Incident flux spectrum 
measured on the ENGIN-X beamline 
at the ISIS pulsed neutron source. 
(Courtesy of M.R.Daymond.) 

therefore do not contribute to the measured background levels. A typical flux distribution 
in a beam arising from a liquid methane (CH4) moderator at 100 K at the pulsed source, 
ISIS, is shown in Figure 3.6. 

The general layout of the ISIS facility is shown in Figure 3.7 [13]. A second target 
station will be operational in 2006. This will take every fifth proton pulse to impinge on 
two types of cold moderator to provide high flux pulses of long-wavelength neutrons for 
an additional suite of new instruments [14]. However, these are unlikely to include an 
instrument for strain measurement. Other current spallation sources include the IPNS 
facility at the Argonne National Laboratory (Argonne, Illinois) [3,15], LANSCE at Los 
Alamos National Laboratory (Los Alamos, New Mexico) [16], and KEK (Tsukuba, 
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Japan) [17]. Next-generation sources are now being built, including the SNS at Oak 
Ridge National Laboratory, a joint KEK/JAERI facility at Tokai, Japan, and the 
abovementioned second target station at ISIS (United Kingdom). The new Swiss 
Spallation Neutron Source (SINQ) facility at the Paul Scherrer Institut (PSI), Villigen, 
Switzerland, is a novel variation on the pulsed source concept. This spallation source 
provides long time pulses used to give an essentially continuous beam, and the 
instruments use the average flux as on a reactor source without time resolution [18]. The 
time-averaged flux of thermal neutrons in a spallation source ranges from about 5×1011 n 
cm−2s−1 at the KEK source in Japan and the IPNS source at Argonne National Laboratory, 
to 5×1012n cm−2S−1 at ISIS and LANSCE at Los Alamos National Laboratory. The peak 
thermal flux of several pulsed sources is shown in Figure 1.2 along with the flux in 
continuous reactor sources.  

 

FIGURE 3.7 Layout of instruments on 
target station 1 of the ISIS spallation 
neutron source [13]. 

3.1.3 Safety 

In using any large facility to carry out experiments, the safety of all staff and visiting 
scientists is of overriding importance. The hazards of working with radiation are very 
well known and documented, and the resident health physicists will ensure that rules and 
regulations are in place. Needless to say, these must be strictly adhered to. Usually 
regular users of neutron facilities must be “registered radiation workers” which means 
that they will have undergone a basic course on working with radiation and have had an 
annual general health examination. Less regular users may be given temporary status. All 
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users are given an introduction to the notices and regulations to be observed at each site, 
and issued with local radiation dose monitors and/or film badges. 

Usually the danger of contamination at a neutron facility is minimal, and that from 
radiation is of most concern. In carrying out experiments it is essential to be aware of 
radiation levels around the instrument, and radiation monitors are to be found at most 
instruments with which to undertake a survey. Often access to the instrument is 
impossible unless the beam is switched off through the use of interlocks. One overriding 
feature of instruments situated on a pulsed beam from a spallation neutron source is the 
very high level of neutron intensity in the pulse often accompanied by high γ-ray levels. 
This has led to safety features that do not allow any human access to the sample area, 
usually in an interlocked “hut”, while the beam is open. Consequently, all movements of 
the sample and variation of the apertures must be made remotely. On the more accessible 
reactor based instruments, the temptation to return to adjust apertures and samples with 
the beam “on” must be resisted. In general it is always advisable to seek the advice of the 
health physicist and scientist responsible for the instrument before undertaking any 
nonroutine action. The background level of radiation at pulsed sources and experimental 
guide halls are often well below those natural levels tolerated in certain geographical 
regions. However, this and the fact that thermal neutron irradiation carries relatively low 
levels of risk should not be allowed to breed an atmosphere of complacency. All radiation 
should be regarded as potentially dangerous, and exposure kept to a minimum. In brief, 
the ALARA (as low as reasonably achievable) principle of exposure to radiation must be 
adhered to. 

At the end of every set of measurements, the sample should be monitored for any 
activity induced by neutron absorption before removal from the instrument area. Certain 
elements, which may be present in an alloy, are particularly prone to induced activity 
with long lifetimes. Some typical examples are given in Table 3.1 [19]. At most sources, 
the likely activity profile of the sample after irradiation will be assessed by a health 
physicist, who will either allow its immediate removal from the site, or request that it 
remain for a period of activity decay. In the latter case, it will be placed in a radioactive 
material store until the activity, usually short-lived, has died away before it can be 
removed from the facility. Typically, the sample will not be allowed  

TABLE 3.1 Selected Typical Activities Induced in 
5 cm Cube of Parent Material After 1-Day 
Exposure in ISIS Neutron Beam 2 Minutes 
Following Shutter Closing 

Parent 
Element

Activated 
Isotope 

Natural 
Abundance 

(%) 

Induced 
Isotope

Induced 
Activity 

(Bq) 

Half-
Life 

Al 27A1 100 28Si 1×105 2.2 
min 

Mn 55Mn 100 56Fe 7×106 2.6 h 
Fe 54Fe 6.0 55Mn 8×101 27 

years
  58Fe 0.3 59Co 5×101 45 

days 
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Co 59Co 100 60Co 4×106* 5.3 
years

Ni 62Ni 3.6 63Cu 1×104 2.5 h 
  64Ni 0.9 65Cu ~1.0 100 

years
Cu 63Cu 69 64Zn/64Ni 2×106 12.7 

h 
  65Cu 31 66Zn 6×105 5.1 

min 
Note: Where more than one isotope is activated, an additional 
row is given [81]. *=estimated. 

to leave the facility until its activity has fallen to give a radiation level of 0.1 µSv at its 
surface. If it is really necessary to remove a sample that has a higher activity, then there 
are certain shielding, packaging, and certification requirements that must be met to 
comply with international regulations. Typically, a package must have less than 0.1 µSv 
at the package surface. 

In addition to radiation levels, other safety aspects should be kept in mind, particularly 
those concerned with lifting and handling heavy engineering samples for strain 
measurement. 

3.2 Diffractometers for Strain Measurement 

The first measurements of strain were made using slightly modified conventional neutron 
powder diffractometers on steady-state sources, although some special designs were tried 
from the outset. Much of the early development of strain measurement was carried out in 
this way (see, e.g., Allen et al. [20,21]). However, it soon became apparent that the 
special needs of defining the beam size, observing only a restricted range of scattering 
angles, and positioning and moving sometimes heavy samples through the beam, would 
require dedicated instruments, and these are now installed at most neutron facilities. The 
demands of strain measurement have provided a new challenge to the instrument 
designer, and have required a new approach and a more comprehensive understanding of 
the details of the diffraction principles, particularly concerning beam profiles over the 
gauge volume. The result has been the practical implementation of a large number of new 
ideas in neutron scattering. 

Although the principles used in the design of continuous beam and pulsed beam 
instruments differ, many of the instrument components are the same. The reactor-based 
instrument will be discussed first in the next section, followed by the time-pulsed beam 
instrument in Section 3.2.2. Neutron detectors that are largely common to both types of 
instrument are described in Section 3.3. 
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3.2.1 Reactor-Based Continuous Beam Instrument for Strain 
Measurement 

3.2.1.1 Basic Instrument 

The simplest instrument for strain measurement on a continuous beam from a reactor is 
shown schematically in Figure 3.8. The principal feature of the thermal neutron beam 
from a reactor source is its wide spectrum of neutron flux as a function of wavelength, 
shown in Figure 3.2. From this continuous distribution of wavelengths, a small range of 
wavelengths λ is extracted by a large single-crystal monochromator using the principle of 
Bragg’s Law described in Section 2.3: 

 (3.6) 

A monochromator crystal or array of monochromator crystals that is large enough to fill 
as much of the beam as possible is oriented so that a chosen  

 

FIGURE 3.8 Schematic layout of a 
standard two-axis instrument for strain 
measurement on a reactor neutron 
source. 

lattice plane (hkl), with lattice spacing contains the vertical direction, and is in the 
reflecting condition. In this way, it can diffract a beam of mean wavelength λ down a 
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collimated beam path at a scattering angle to the incident reactor beam in the 
horizontal plane, as shown in Figure 3.8. The spread of wavelengths selected will depend 
on the collimation angles before and after the monochromator, α1 and α2, and the angular 
mosaic spread of the monochromator crystal, ηM, discussed in Section 3.4.1. Typically, 
the spread is about ±0.02 Å and only includes about 0.5% of the total number of neutrons 
falling on the monochromator crystal. On most instruments the monochromator take-off 

angle is variable to allow a range of wavelengths to be selected. A low efficiency 
monitor counter is usually placed in the beam after the monochromator in order to 
monitor the neutron flux incident on the sample. An estimate of the typical 
monochromated beam intensity may be made as follows. The size of the beam from the 
core of the reactor to the monochromator is typically about 12×12 cm2 by section, and the 
distance, r, from the source to the monochromator is about 6 m. The element of solid 
angle, dΩ/4πr2, subtended at the monochromator is then about 3×10−5. If the neutron flux 
in the core is 3×1014 neutrons cm−2s−1, the number of monochromatic neutrons leaving 
the monochromator is about 3×107 neutrons s−1. 

The monochromated beam direction is defined by a collimator, and/or by apertures to 
pass over the sample axis about which the detector rotates. The detector counts neutrons 
scattered through an angle with the scattered beam again defined in direction by a 
collimator between sample and detector. Both the beam incident on the sample and the 
beam entering the detector are usually defined in area by the horizontal and vertical 
extent of apertures in neutron absorbing masks, made for example of cadmium. The 
“gauge volume” or “Volume sampled” is defined by the intersection of the incident and 
scattered beam, as shown in Figure 3.9 and discussed further in Section 3.5. As discussed 
in Section 1.4.2, the quantity measured depends on the ratio of the sampled volume Vv to 
the scale of the variation of the property being measured. If the sample is placed wholly 
within the gauge volume, then only properties averaged over the whole sample can be 
determined and other shorter-range variations will be averaged out. On the other hand, a 
large sample may be moved through the gauge volume in order to obtain a profile of a 
property such as the macrostrain. 

Following Section 2.3, Bragg’s Law may be rewritten in terms of the scattering vector 
Q=(ki−kf), where ki and kf are the incident and scattered neutron wave vectors, as shown 
in Figure 2.3. For Bragg reflection, Q is normal to the diffracting planes, and of 
magnitude equal to that of the reciprocal lattice vector G of the planes, |Q|=|Ghkl|. Thus, 

 (3.7) 

Polycrystalline materials give rise to Debye-Scherrer cones of diffracted neutrons at 

angles about the incident beam on the sample as  
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FIGURE 3.9 Sections of the nominal 
gauge volume defined in the scattering 
plane by incident and diffracted beam 
slit apertures of widths ISW and DSW, 
respectively, shown shaded. Three 
values of scattering angle are shown: 
(a) (b) and (c) The 
most symmetric shape is at but 
other shapes may be appropriate in 
certain cases. 

illustrated in Figure 2.7, where dhkl is the lattice spacing of planes with Miller indices hkl. 
The cone of scattering arises from a subset of the randomly oriented crystallites, or 
grains, in the sample that satisfy Bragg’s Law, and which are oriented so that the planes 

are at an angle to the incident beam. It is usually assumed that the grains of the 
sample are sufficiently small that within the gauge volume there is a sufficient number of 
them to give a uniform intensity around the cone. Although this is normally the case in 
conventional powder diffraction, it may not be so for small gauge volumes within 
engineering samples having large grain size. 

In the simplest case, a single detector is scanned in through the cone of hkl Bragg 
reflection scattering intensity in the “focused” configuration discussed in Section 3.4.1. 
Intensity, which is measured in detected counts per fixed number of monitor counts or 
per fixed unit of time, is recorded as a function of Normalization to monitor counts is 
more usual in order to correct for any variation in reactor power and hence incident flux. 
Typical Bragg peaks give count rates from 0.1 to 1 count per second as recorded by a 
single detector, and in general adequate statistics are normally acquired on a time scale of 
minutes. In the case of a large sample, the observed peak corresponds to the average 
lattice spacing, dhkl, of the grains in the sampled gauge volume (SGV). Usually a fitting 
routine incorporating least-squares minimization is used to determine the peak center 
angle and angular width from the profile of detected count intensity variation with angle 

which is often represented by a Gaussian function, as discussed in Section 4.3. The 
average elastic lattice macrostrain in the volume sampled is then given in terms of the 

diffraction peak shift by 
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 (3.8) 

where is the lattice spacing of a stress-free sample of the same material composition, 
and the corresponding Bragg scattering angle in radians. Note that as most lattice 
strains are small, ~10−4 to ~10−2, we adopt the “engineering” strain concept where the 

change from zero strain is measured, rather than an incremental strain. Typical 
angular widths of Bragg peaks are ~1.0° under focusing conditions discussed in 
Section 3.4.1. Peak shifts can be measured to about 1% of the angular width in θB, that is 
to ±0.005° for a well-constructed spectrometer, corresponding to an accuracy in strain 
measurement of ~100 µε, where the unit of µε is 10−6. The direction in which the lattice 
strain εhkl is measured is parallel to the scattering vector Q. The measured strains in at 
least three directions are combined with the elastic constants of the sample material to 
determine the stress as discussed in Chapter 5. If the sample is stressed in the elastic 
regime, then the strainstress relationship is straightforward. However, if the elastic limit 
is, or has been, exceeded, complications can arise due to intergranular stress effects, 
which are described in Chapter 5. 

Since Type II and III microstrains (see Section 1.4.1) vary over distances much 
smaller than the sampled volume, Vv, the mean lattice microstrain in the sampled volume 
is related to the angular peak width. This also has contributions from the instrument 
angular resolution width, possibly from small grain size, and from steep strain gradients 
causing the angle to vary over the gauge volume. The observed peak width will be a 
convolution of all these contributions as discussed in Section 5.7. If an accurate value of 

can be measured, the Type I macrostrain determined is absolute. However, 

obtaining a true can prove difficult in practice, as discussed in Section 4.6. 
In order to determine the strain in different directions in the sample, the sample must 

be rotated accurately about the center of the gauge volume so that each required direction 
lies along Q. This requires very careful alignment and centering of the sample, and is a 
major challenge to the instrument designer and to the experimentalist. This is discussed 
further in Section 3.6.3. 

At the diffracting Debye-Scherrer cone becomes a plane disk (see 
Figure 2.7). This is also the scattering angle for definition of the most symmetric (i.e., 
cuboidal) and simplest gauge volume, as demonstrated in Figure 3.9b. Clearly, the gauge 
volume should be as closely as possible the same for all orientations of the sample if error 
from combining strains in different directions to give stress is to be minimized. The 
resolution in strain increases with and is highest toward but the gauge then 
becomes an elongated diamond. As discussed in the Section 3.4.1, using 
scattering at both monochromator and sample is often a good compromise between 
resolution and gauge shape. However, an angle of greater or less than 90° may be used 
to advantage in cases where it can provide more ready access to a point in the sample at 
which the strain is to be measured. 
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These conventional angle-scanning diffractometers may be calibrated by measurement 
of several diffraction peaks from a standard powder sample, such as Si, CeO, Al2O3, or 
CaF2, which have accurately known lattice spacings. With the aid of Bragg’s Law, a 
precise measurement of the selected wavelength can be obtained, together with the zero-
angle reading of the arm encoder. As strain measurements are always made relative to 
a stress-free sample, the wavelength and zero-angle reading need not be known precisely, 
as long as they remain constant. However, such accurate standard sample measurements 
are very useful for checking consistency, and for normalization of data taken under 
different conditions or at different times. If different instruments are used, any such 
normalization using a standard sample will require accurate wavelength and zero angle 
determination. 

An alternative mode of operation of a two-axis diffractometer is to scan the incident 
wavelength through the Bragg reflection keeping the scattering angle fixed. In this way, 
the measurement becomes similar to that made using a time-pulsed polychromatic 
neutron beam discussed below, albeit using one Bragg peak only. Although less often 
used in practice, this mode of operation may be advantageous if the scattering angle must 
be fixed for special reasons, such as viewing the gauge volume through a small aperture 
cut in the sample or sample containment vessel in order to reduce attenuation of the 
incident or diffracted beam. 

3.2.1.2 Instrument Construction 

The construction of instruments has varied considerably over the past 40 years. In 
particular, the use of beam guide tubes to guide halls has reduced the necessity of 
massive monochromator shielding, needed when the instrument is adjacent to the reactor. 
The latter requires complex lifting segments to allow the monochromator take-off angle 
to vary. In early instrument design, the sample table rotated around the monochromator, 
and the detector rotated about the sample table, on heavy counterbalanced arms or on 
wheels running on tracks. Even gun mountings were used! However, the use of the 
hovercraft principle pioneered by the United Kingdom Atomic Energy Authority 
(UKAEA) (Harwell, UK), in which heavy components are supported on air cushions 
running on smooth steel or marble floors, has made the controlled movement of the 
instrument components much easier. This “tanzboden” principle has been developed 
extensively on many instruments at the Institut Laue-Langevin (Grenoble, France), and is 
now found at most facilities. 

A further important logistic development has been the use of “optical benches,” or 
accurately machined metal beams, on which components such as collimators, aperture 
masks, and shielding apertures can be positioned accurately and reproducibly. These are 
placed on the rotating arms between monochromator and sample, and between sample 
and detector. 

Computer control of the instrument has developed in sophistication along with the 
availability of the increasing power and decreasing size of computers. Originally a central 
mainframe computer was often used to control several instruments, with obvious 
disadvantages. Now dedicated computers control each instrument, and not only the 
angles of the instrument components and the position of the sample, but also the size and 
positions of  
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FIGURE 3.10 The double-crystal 
monochromator configuration at two 
take-off angles. Note that the sample 
axis and instrument reference point can 
be fixed. 

apertures, can often be set automatically for each measurement. This means that complete 
measurement schedules can be defined to acquire data automatically 24 h/day. The data 
may be analyzed using peak profile fitting, “online” and the results used to define 
subsequent measurements. Thus, automatic alignment of the instrument is possible. 
Usually the data are backed up on a central computer. 

3.2.1.3 Monochromator and Choice of Wavelength 

Single-crystal monochromators are most commonly used, but the double-crystal 
monochromator configuration, shown in Figure 3.10, has advantages in certain cases. In 
this configuration, the beam onto the sample is deflected sideways, so that heavy 
shielding can be placed after the first monochromator to cut incident fast neutron and γ-
ray background. The instrument is more compact and the sample table does not need to 
move. However, beam intensity is lost at the second monochromator reflection, and the 
range of available wavelengths is limited. 

The choice of monochromator crystal is very important in strain measurement. As a 
rule of thumb, one requires the lattice spacing of the monochromator to be close to that of 
the material of which the sample under measurement is made. This is the “focusing” 
condition for the best resolution in powder diffraction, described in Section 3.4.1. This 
means that the takeoff angle from the monochromator should be approximately equal to 
the sample scattering angle, However, a larger may optimize strain 
measurements at as discussed in Section 3.4.1. Often a monochromator crystal 
is cut in a manner that allows a range of useful diffracting planes, and therefore 
wavelengths, to be selected. This is accomplished by rotation about an axis of a chosen 
lattice direction (the zone axis [uvw])—usually vertical—allowing access in the 
horizontal plane to all the reflections hkl whose lattice planes contain this axis. As 
mentioned in Section 2.6.1, single crystals are rarely perfect. Instead, they tend to be 
broken up into little blocks, each having slightly different orientations; the spread of these 
orientations is called mosaic spread. Besides considering the range of lattice spacings 
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available, there are at least four important characteristics to consider when selecting the 
most appropriate material for a monochromator: 

• Easy-to-grow large crystals 
• High scattering length density 
• Low absorption and incoherent scattering 
• Uniform mosaic angular spread that matches the collimation angles. 

Some examples of commonly used monochromator crystal planes are given in the Table 
3.2, and their selection to provide a wavelength appropriate for a measurement is 
discussed in Section 4.2. One material that satisfies most of the above criteria is pyrolytic 
graphite (PG), which has an unusual layer structure in which uncorrelated two-
dimensional arrays of carbon atoms are stacked regularly along the c-axis. This gives rise 
only to sharp 00l reflections, where l is even, and powder-like “rings” of reciprocal lattice 
points in the planes perpendicular to the c-axis. The mosaic can be accurately controlled 
during growth, and monochromators with areas up to 50×75 mm2, and 1 to 2 mm thick, 
are grown commercially. The high scattering length and low absorption make PG an ideal 
monochromator for relatively long wavelengths. 

Arrays of carefully aligned crystals may be used to extend the dimensions of a 
monochromator. For example PG crystals are often used in such arrays, and if the relative 
angles of each component crystal can be adjusted, often under computer control, 
“focusing” monochromators can be constructed. As this increases the divergence of the 
incident beam on the sample, a compromise between an increase in intensity and a 
decrease in resolution must be made. By curving such an array about a horizontal axis to 
act like a concave mirror, focusing in the vertical direction can be attained, and as the 
vertical resolution can often be relaxed, such a monochromatic beam focused onto the 
gauge volume can increase the intensity several fold. Focusing in the horizontal plane is 
also used in specialized instruments, and examples are given in Section 3.7.2. Such a 
focused array is shown in Figure 3.11 [22]. 

The mosaic angular spread of the monochromator crystal together with the angular 
spread of the incident beam determines the range of wavelength selected. Unlike 
pyrolytic graphite, many crystals grow with a small mosaic spread. Germanium, for 
example, which has a range of lattice spacings very suitable for producing useful 
wavelengths, is normally grown with a mosaic spread of only a few minutes. This gives 
excellent wavelength definition but very little intensity, as only a very narrow region of 
the incident flux is diffracted into useful beam. A great deal of effort has therefore been 
made to uniformly increase the angular mosaic spread of monochromator crystals by 
controlled cooling during crystallization, alloying, and treatment of pressure and 
temperature. Until recently, germanium crystals with appropriate mosaic spread could 
only be produced by applying pressure at high temperature, with varying results that were 
only rarely successful although Chalk River Laboratories have had considerable success. 
However, methods  
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TABLE 3.2 Lattice Spacings for Selected Typical 
Monochromator Planes and Resulting Wavelengths 
at  

Monochromator 
Plane (hkl) 

dhkl 
Spacing 

(Å) 

Wavelength 
λ(Å) a0=2.877 Å 

d110=2.0343 Å 
a0=2.877 Å 
d112=1.1745 

Å 

a0=3.592 Å 
d111=2.0738 

Å 

a0=3.592 Å 
d113=1.0830 

Å 
PG 002 3.3528 4.7416 — — — — 
PG 004 1.6764 2.3708 71.28 — 69.72 — 
Germanium 111b 3.2663 4.6192 — — — — 
Germanium 113b 1.7058 2.4124 72.73 — 71.13 — 
Germanium 115b 1.0888 1.5398 44.48 81.92 43.58 90.62 
Silicon 111b 3.1356 4.4344 — — — — 
Silicon 113b 1.6375 2.3158 69.39 160.71 67.883 — 
Silicon 115b 1.0452 1.4781 42.61 77.99 41.76 86.06 
Copper 002 1.8074 2.5560 77.84 — 76.09 — 
Copper 220 1.2780 1.8074 52.75 100.60 51.67 113.11 
Beryllium 0002 1.7916 2.5337 77.03 — 75.31 — 
Beryllium 11–20 1.1428 1.6162 46.81 86.94 45.87 96.51 
Aluminum 002 2.0248 2.8635 89.46 — 87.32 — 
Aluminum 111 2.3380 3.3064 108.71 — 105.72 — 
a The Bragg scattering angles at these wavelengths for two planes of ferritic and austenitic steel are also 
given. 
b No second-order (λ/2) contamination. 

 

FIGURE 3.11 (a) An example of an 
array, typically ~140×300 mm2, of 
7×15 of 2 cm2 monochromator crystals 
of pyrolytic graphite. In this case, both 
the vertical and horizontal curvatures 
are motor controlled, (b) The 
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mechanism for one of 15 columns of 
crystals is shown on the left [22]. 

of increasing the mosaic spread of germanium crystals have been developed at 
Brookhaven National Laboratory [23,24] and reproduced with success elsewhere [25]. 
Thin slices of perfect crystals of area ~10×70 mm and a few hundred microns thick are 
cut in the required reflection plane, 511 or 311, from a perfect crystal. Each slice is 
heated to ~870°C, close to the melting temperature of 938°C, and subjected to plastic 
bending in two opposite senses with flattening after each bend before cooling. This 
plastic bending treatment increases the mosaic spread to ~10' to 15'. Around five of these 
slices are then stacked on top of each other and bound together by tin foil to form a small 
monochromator with the desired mosaic spread. Each such multiple wafer is aligned and 
then stuck onto formers to stack them in arrays. The curvature of these arrays about 
horizontal or vertical axes can be computer controlled, thus forming an extended 
monochromator that can provide a focused beam. Such arrays are quite expensive to 
produce, but a factor of 3 or 4 in intensity is obtained at a price much cheaper than that of 
increasing the flux of a reactor by the same factor! 

In the orientation required to give a neutron wavelength of λ from the hkl lattice 
planes, the monochromator crystal may also diffract neutrons of wavelength λ/2, λ/3, and 
so on, if there exist lattice planes (2h, 2k, 21) and (3h, 3k, 3l) and so on in the structure. 
These higher orders will have different intensities from that of wavelength λ depending 
on their position in the flux distribution in the beam. Although of major concern in 
powder diffraction measurements concerning structure determination, which demands 
that these higher orders are reduced to a minimum using filters or crystals of a particular 
structure, they are usually of no consequence to macrostrain measurement, and indeed 
may add to the useful intensity. 

In choosing the wavelength for a set of measurements, it is important to check that it 
does not lie close to an absorption Bragg edge for a lattice plane in the sample. This is 
because the rapid change in attenuation in the sample near the edge can give anomalous 
effective shifts in the Bragg peak diffraction angle used to measure the lattice strain at 
different depths. As a general rule, the wavelength must not lie within 2% of such a 
wavelength [26]. This effect is discussed further in Section 4.2.2. 

One further consideration if the beam is shared with another instrument nearer the 
source is to ensure that the monochromator on that instrument does not vary in a manner 
that might affect the wavelength composition of the beam on the instrument being used 
for strain measurement. 

3.2.1.4 Collimation 

The monochromated beam is defined in direction by the collimator between the 
monochromator and sample position (M-S). The collimation may be made by an 
arrangement of closely spaced parallel sheets of absorbing material, termed a “seller” 
collimator. Early collimators were made from many cadmium sheets or gadolinium 
coated steel sheets, and separated by a distance dc and of length lc, to give a collimation 
angle of α=dc/lc. The transmission of such collimators, particularly for small or “tight” 
collimation angles, can be low on account of the thickness of the sheets relative to the 
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apertures between them. Thin stretched Mylar films coated with gadolinium oxide are 
therefore now used extensively. Coated very thin steel sheets are now also being used. An 
alternative possibility is to collimate by using two apertures of greater width dc placed a 
larger distance lc apart. Usually horizontal collimation is achieved by soller collimators, 
whereas vertical collimation occurs via apertures or indeed a fixed dimension such as the 
monochromator and/or sample height. The angle of the scattered beam, is defined in a 
similar manner by a collimator between the sample and detector (S-D) if a single detector 
is used. A typical collimation arrangement is shown in Figure 3.8. Each soller collimator 
must have some angular adjustment about a vertical axis so that it may be accurately 
aligned along the direction between axes of rotation of the monochromator and sample 
table, and of the sample table axis and detector. A convenient way of mounting them, 
along with other beam components such as apertures, is by clamping them to an 
accurately machined “optical bench.” 

In conjunction with position-sensitive detectors (PSDs), discussed later in Section 3.3, 
a single aperture slit may be used, although it can give rise to severe problems in defining 
the gauge volumes precisely as discussed in Section 3.5.2. It is usually advantageous to 
use “radial,” sometimes referred to as “focusing,” collimators in which the vertical 
absorbing thin sheets are angled so that they converge on a point at, or close to, the center 
of the gauge volume [27,28] (see Figure 3.18). These may be oscillated over a small 
range of angle with time so that the PSD is uniformly illuminated. Typical instrument 
setups are shown in Figure 3.12. Radial collimators must be used if PSDs are used in 
conjunction with a time-pulsed polychromatic beam source [29]. Such collimators can 
also be used between monochromator and sample when using a monochromator focusing 
in the horizontal plane.  

 

FIGURE 3.12 Schematic showing the 
use of a position-sensitive detector 
with a standard two-axis instrument for 
strain measurement, with (a) single 
slit, and (b) radial collimator. 
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3.2.1.5 Apertures and Beam Area Definition 

The beam may be defined in area by carefully machined apertures in masks made of 
neutron-absorbing material. These are usually placed in mounts on optical benches, in the 
incident beam after the soller collimator before the sample, and in the diffracted beam 
after the sample. These apertures define the gauge volume as discussed later in the 
section. The traditional aperture design is an aperture cut in a standard sized cadmium 
plate that slots accurately into a holder, or four separate thick cadmium plates that are 
moveable in pairs in slots using screw threads. However, while these are useful for 
cutting background and are often used close to the monochromator, strain measurement 
requires, in addition, finer adjustment and accurate reproducibility of a sharp-edged 
aperture to define the beam size. For very fine apertures sharp edges are required and 
cleaved BN crystals have been used. It is usually advantageous to place these apertures 
reproducibly as close to the sample as possible, allowing for the necessary movement of 
the sample. If the adjustments are manual, a vernier slide on the holder is used to enable 
the apertures to be positioned along the beam directions, and the aperture can be 
positioned transversely and vertically by use of lockable calibrated screw threads. In this 
way, the beam can be adjusted to pass centrally over the reference point, as discussed in 
the next Section 3.2.1.6 [30]. Ideally, all adjustments of aperture size and position should 
be computer controlled for repeatability and to allow automated acquisition schemes. 

For measurement of strain very close to a vertical surface of a sample, the aperture 
must be narrow in width and placed very close to the sample in order to minimize 
penumbra effects. As the angle of approach is often ~45°, a pointed design in which the 
absorbers tend to a narrow opening of horizontal width as small as 0.25 mm may be 
necessary. Clearly, the vertical edges of the sample and apertures must be very accurately 
aligned. Some typical aperture systems are shown in Figure 3.13.  
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FIGURE 3.13 Some typical slit 
systems used to reduce background 
and to define the instrument gauge 
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volume, (a) A motorized adjustable 
aperture for course beam definition. 
(Grenoble Modular Instruments), (b) 
An early fine slit system, illustrating 
the use of an optical bench for 
alignment of instrument components 
(Risø). (c) An adjustable fine slit 
system enabling close approach to the 
sample (Studsvik). 

3.2.1.6 Shielding 

There is rarely a measurement where good shielding to reduce background counts to an 
absolute minimum is not beneficial, and it is often essential. Indeed, it is usually the 
background level that determines the maximum depth to which one can probe as 
discussed in Section 4.4.1. Shielding is best accomplished as near to the neutron source 
as possible, so most monochromator housings have heavy and often complex shielding 
enclosing them, particularly if close to the reactor. Materials are usually borated concrete 
or borated polymer resin with lead shot, so that fast neutrons are first slowed by 
moderation by the hydrogen and then absorbed by the boron, and the γ-rays are absorbed 
by the lead. It is essential that all the moderated fast neutrons are absorbed; otherwise, the 
moderating shielding can actually increase the background in a thermal neutron detector. 
The presence of a detected neutron background originating from fast neutrons in the 
incident beam on a sample can be tested by placing a cadmium sheet in the incident 
beam. As cadmium is transparent to fast neutrons, but absorbs thermal neutrons, any 
background still present must originate from fast neutrons. 

Shielding along the beam path in the instrument is usually by borated polymer resin, 
either built into the form of the components such as aperture holders, flexible sheets, or 
solid blocks. Borated material without hydrogenous binders is available in the form of 
sintered BC castings (called “crispy”), and should be used in regions where any slight 
amount of scattering from hydrogen would be harmful to background. Cadmium is also 
used extensively for apertures and some shielding, however, the absorption of neutrons 
by cadmium gives rise to γ-rays, and cadmium should never be placed directly in the 
primary beam from the neutron source. 

The use of guide tubes to locate the instrument in a remote guide hall reduces the 
source of background considerably, but one should not be led into a false sense of 
immunity. Some background can arise from that part of the beam not transmitted by the 
guide. Air scattering from the beam incident on the sample can be appreciable and needs 
to be shielded against by use of borated resin tunnels or sheets. Nearby instruments, and 
even nearby samples if radioactive, can also give rise to background and stray beams. A 
simple test with their beam shut off will reveal whether a problem exists. The detector is 
a very important component requiring careful shielding, and its mounting and 
surrounding shielding material should be carefully designed. As discussed in Section 3.3, 
the detector electronics must be set to detect neutrons only, and to discriminate against 
electronic noise and γ-rays. 
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In general, every set of measurements should be preceded by a few checks to ensure 
that the background is minimized. The beam may be blocked off at different points along 
its path in order to see how the background level is made up. At all instruments, care 
must be taken to ensure that the unwanted beam leaving the monochromator is absorbed 
as close as possible to the monochromator, and the only beam on the sample is that 
defining the desired gauge volume. It is therefore important to check that when this beam 
on the sample is blocked, for example, by a piece of cadmium over the incident beam 
aperture, no counts above background are recorded in the detector. Another useful check 
is to ensure that with the beam open into the gauge volume when no sample is present, 
only the expected background level is measured. Both these checks may require 
measuring counts while rotating the detector through the sample diffraction peak angle 

 

3.2.2 Time-Pulsed Beam Instrument for Strain Measurement 

Time-pulsed beams use the neutron’s velocity, which is measured by timing its passage 
over a known distance, to determine its energy and wavelength. The beams are usually 
polychromatic in wavelength—often termed “white”—for diffraction experiments 
(Figure 3.6), and may originate from pulsing a continuous flux reactor beam or from a 
pulsed neutron source. Each pulse therefore contains a wide range of wavelengths. A 
detector placed to collect neutrons diffracted from a sample at a fixed angle to the 
incident pulsed beam will build up, over many pulses, a complete diffraction pattern of 
Bragg peak intensity as a function of time of arrival, or wavelength, as described in more 
detail in the following sections. In general, a single Bragg peak can be measured faster 
using a constant flux monochromatic beam from a reactor, but if more than one peak is 
required pulsed beam instruments outperform constant flux instruments. 

3.2.2.1 Time-Pulsed Neutron Beams on Reactors 

An alternative to the continuous flux crystal-monochromator instrument, used on most 
reactor facilities, is to vary the intensity of the polychromatic neutron beam from the 
reactor with time. This is accomplished by using a rotating “chopper” velocity selector, 
which absorbs the neutrons except for a short duration when its window is open. Such a 
velocity selector may take the form of a thin disk, made of absorbing material, which 
rotates about a horizontal axis parallel to the neutron beams such that the beam passes 
through slots in its outer periphery. Alternatively, it may be a thick cylinder with helical 
slots cut in its outer surface. A different configuration is to use a thicker disk rotating 
about a vertical axis through which is cut a curved slot to allow neutron pulse through 
once each cycle, called a “Fermi” chopper. Depending on the nature of the diffraction 
instrument, one or two choppers, separated by a short flight path, are usually used. Two 
phased choppers can be used to monochromate the neutrons with good wavelength 
resolution, the rotating discs acting like phased traffic lights so that neutrons of only a 
desired velocity are transmitted. Alternatively, the slots in a single disk may be used to 
vary the intensity profile with time, as discussed further in Section 3.7.3. Some typical 
chopper devices are shown in Figure 3.14a, b, and c.  
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FIGURE 3.14 Some types of neutron 
chopper design: (a) Fermi chopper 
[Copyright UKAEA, 31], (b) helical 
velocity selector [32], and (c) Fourier 
disk chopper [33]. 

In the following discussion, we take the case where a single chopper is used to provide a 
pulsed “polychromatic” beam of a wide range of wavelengths. As discussed in Section 
2.3.2, the wavelength of the neutron corresponding to its flight time t over a distance L is 
λ=h t/(mn L) 

(3.9) 

As thermal neutrons have velocities of the order of hundreds of meters per second (Table 
1.1) their flight time can be readily measured, however, neutron detectors with as near 
instantaneous response and as little dead time as possible are required, and usually 
scintillator counters are used. Typical precision of measurement of peak positions in 
time-of-flight (tof) diffraction is 5 µs in 15,000 us. 

Neutron diffractometers that use time-pulsed neutrons are called tof instruments, and 
by using sufficiently long flight paths, L, in neutron guides, very high resolution can be 
attained through the accurate definition of wavelength. The flight path L=Li+Lf, where Li 
is the length of the incident path from chopper, or moderator in a pulsed source, to 
sample, and Lf the path from sample to detector. 

3.2.2.2 Time-Pulsed Neutron Beams from Pulsed Sources 

Although a time-pulsed beam can be engineered on reactors, such a polychromatic beam 
is provided directly by pulsed neutron sources. The brightest sources of this type, the 
spallation neutron source was described in Section 3.1.2. The very high intensity and high 
time resolution available from such sources can enable transient phenomena, such as 
stress relaxation processes, to be observed.  

The diffraction pattern from a sample obtained using a time-pulsed polychromatic 
beam is recorded as the diffracted intensity at fixed scattering angle, the so-called “fixed 

Diffraction techniques and instrument design     95



geometry” configuration, as a function of time after a start signal. The detected neutron 
counts are recorded in a series of time channels, each corresponding to a certain velocity 
or wavelength. Only rarely does a single pulse provide sufficient scattered neutrons for 
quantitative analysis, instead the integrated profile is built up from many pulses over a 
period of time. A single detector at a scattering angle will record intensity (I(t)) versus 
time, corresponding to intensity versus wavelength giving diffraction peaks hkl in I(t) at 
time thkl whenever Bragg’s Law is satisfied by a certain lattice spacing: 

 (3.10) 

Here L is the total flight path distance over which the pulse is timed, and thkl is the flight 
time of the hkl peak center. The start of timing is usually triggered by the source beam 
pulse on a pulsed source, or a pulse recorded in a low-efficiency monitor counter placed 
near the chopper in a reactor instrument. Typical diffraction patterns are shown in Figures 
3.15a and b. As the diffraction pattern is collected at just one angular setting and is built 
up over a period of time, the counting period can be adjusted to give the desired 
measurement accuracy. The more intense the original polychromatic beam of neutrons, 
the more quickly the pattern is obtained. For conventional powder diffraction, the 
detection rate can be accelerated by using a large number of detectors spread over many 
angles. Usually these are placed around the back reflection angles, of since 
these give the greatest resolution in the measured dhkl. The resolution of tof instruments is 
discussed in Section 3.4.2. At the fixed scattering angle the strain is given by 

 (3.11)  

where thkl and are the measured tof for the hkl peak of the sample and stress-free 
reference, respectively. Note that 

∆d/d=∆λ\λ=∆t/t=v.∆t/L=h ∆t/(L.mn.λ) 
(3.12) 

In order to obtain good resolution, a short time pulse, a long flight path L, and large 
scattering angle are necessary. The flight path, Li, from the source to the instrument is 
usually along a curved neutron guide to remove fast γ-rays. Figure 3.16 shows schematic 
layouts of some typical time-of flight instruments. 

The use of many detectors poses a problem of collating the data obtained from each 
detector, or detector element, because due to their specific locations having different 
scattering angles and path lengths, a different pattern  
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FIGURE 3.15 A typical time-of-flight 
diffraction pattern from stainless steel 
under uniaxial loading of (a) 5 MPa 
tensile stress, and (b) 340 MPa tensile 
stress. In each case, an average lattice 
parameter is fitted using the Rietveld 
technique. The fitted background has 
been subtracted, and the upper curves 
are the experimental (crosses) and 
fitted (line) profiles. Underneath each 
is the difference curve on the same 
scale. It is seen from (b) that the fitted 
curve using an average lattice 
parameter does not account for the 
elastic anisotropy (see Section 5.5) of 
the 111 and 200 peaks, which show a 
variance in the opposite sense as 
expected [41]. 

 

FIGURE 3.16 Schematic layout of 
three time-of flight instruments: (a) on 
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a reactor using a single detector; (b) on 
a pulsed source with single detector; 
and (c) with PSD with focusing radial 
collimators. 

of intensity versus time is obtained for each. Two methods of data combination are used. 
The first is to use software to convert the pattern from each detector to the required form 
of binning, that is, intensity versus λ or d, before adding together. The second is to use 
hardware to arrange the spatial layout of the detectors to give “time-focusing,” described 
further in Section 3.4.2. In practice, a combination of these methods is often used. When 
combining information from many detectors in a detector bank, it should be remembered 
that each will have a slightly different Q vector, and thus the strain measurement 
direction will be averaged over a region of solid angle. 

3.2.2.3 Instruments on a Spallation Source 

As the most intense neutron sources in the future will likely be of the spallation type, this 
type of instrument will become increasingly important. Similar to steady-state 
instruments, the early measurements of elastic lattice strain in a sample were carried out 
using conventional powder diffractometers that often had detectors in the back-scattering 
configuration These gave a scattering vector Q approximately along the 
incident beam direction. Furthermore, the sample was contained within an evacuated 
chamber suspended from, and accessed via, a manhole cover from above. This has been 
described as working upside down, in the dark, in a vacuum, down a manhole! It soon 
became clear that the ideal arrangement for making engineering measurements required 
more space, better access, and an arrangement of detectors optimized for strain 
measurement. Today’s dedicated instruments are radically different from the powder 
diffractometers from which they evolved. ENGIN [34] at ISIS was the first (~1994) of 
several dedicated pulsed source instruments that have now been constructed, the most 
recent of which include ENGIN-X at ISIS [35–37] and SMARTS at LANSCE [38], with 
VULCAN at the design stage at the SNS. The detectors are usually clustered in banks set 
at the most favorable angles, usually ~90° for the required strain directions. The use of 
many detectors for strain measurement is limited by the acceptable range of Q, and hence 
strain, direction relative to the sample, and by the definition of the gauge volume. This 
has led to use of radial collimators, rather than apertures, in the scattered beam to define 
the gauge volume [29]. Detection of scattering both sides of the incident beam is possible 
as there is no resolution focusing effect to consider, in contrast to instruments using a 
monochromator crystal (see Section 3.4.1). As a consequence, simultaneous 
measurement of strain with Q in two directions in the sample at 90° to each other can be 
made. For large samples one detector bank can be removed. Such an arrangement, as 
adapted on the ENGIN-X instrument at ISIS, is shown in Figure 3.17a and b.  

The ENGIN-X beam line is on a 50m-curved supermirror guide. This optimum length 
of guide was determined using the Figure of Merit concept discussed in Section 4.4.2, 
maximizing strain resolution through a combination of high intensity and good time 
(wavelength) resolution [39,40]. With only thermal neutrons reaching the sample, the 
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shielding requirements in the instrument blockhouse are closer to those found on a 
reactor guide hall instrument than typical pulsed source instruments. Large arrays of 
scintillator detectors are centered on An array of interchangeable radial 
collimators can be easily and accurately swung into place in front of the detectors, which 
provides gauge dimensions of 0.5 to 5 mm. Moveable sintered boron carbide shielding is 
placed between the collimators and the detectors to maintain a low background. The 
positioning table is capable of moving 500 kg to within 10 microns over 100 mm, with 
translation ranges of ±250 mm in X and Y, 600 mm in Z and 370° rotation. The incident 
beam is defined in area using fully motorized boron carbide slits, which can define the 
beam from 0.3 to 20 mm vertical and 0.3 to 10 mm horizontal. A remotely steerable web 
camera allows monitoring of experimental progress. 

In principle, strains in three perpendicular directions can be measured simultaneously 
at one sample setting if three banks of counters are used. This can be seen by considering 
a cube in which the incident beam is in the [111] direction and the banks of detectors are 
positioned at angles of ~109.5° to this incident beam, corresponding to in 
each of the <110> planes containing this [111]. In this arrangement the strain is measured 
in each of the three <001> directions. However, shape considerations and path lengths 
would make it unlikely that many suitable engineering component samples would be 
found to benefit from measurement using such an arrangement. 

The profile of intensity versus time for a Bragg peak on a spallation source instrument 
is more complex than the Gaussian function usually adequate to describe the peak profile 
on a continuous beam instrument [2,11]. This is because the moderating process 
introduces a time broadening, which is in addition to the broadening introduced by the 
instrument components (discussed in Section 4.3.1). Any additional intrinsic broadening 
such as that from microstrain is usually represented by a Gaussian function convolved 
with this profile. If only one peak hkl is of concern, the strain measurement  
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FIGURE 3.17 (a) A CAD image of 
the ENGIN-X instrument at ISIS, 
showing the two detector banks at 90° 
scattering angle, the radial collimators 
and the x-y-z-Ω sample positioner, (b) 
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Photograph of the ENGIN-X 
instrument at ISIS showing a large 
aircraft component sample undergoing 
strain measurement. (Courtesy of 
M.R.Daymond.) 

is obtained from ∆t as in Equation (3.11), and this difference can be determined more 
accurately than the absolute time or d-spacing by fitting the same profile function to the 
both sample and reference peak. The error in the latter only affects the overall error in 
strain. 

The detected counts are normalized to the intensity of the incident spectrum of 
neutrons, and to account for detector efficiency and put on an absolute scale if required, 
by comparing the measured intensity to that from an incoherent scatterer, such as 
vanadium, which has a known cross-section of σincoh/4π=0.403 barns/steradian atom. 
Subtraction of containment cans and background must be made for both the sample and 
the vanadium placed at the same sample position. Likewise, by measurements of the 
complete diffraction pattern from a standard powder sample such as Si or CeO at exactly 
the same position, the true angles of the many counters on tof instruments and the true 
time of origin of the neutron pulse may be calibrated. 

Although the whole diffraction pattern of many peaks, and therefore many elastic 
lattice plane strains, can be measured at one setting of the sample, time considerations 
often mean that the desired accuracy can only be attained for the most intense of these 
peaks. The asymmetric nature of the peak profiles means that longer counting times are 
required than for symmetric peaks. Nevertheless, the fact that many peaks are collected, 
gives a decided advantage in this respect over a steady-state instrument, since as 
discussed in Chapter 5, the response to stress of different lattice planes can give 
important information on texture, elastic anisotropy and plasticity. An alternative is to fit 
an average lattice spacing to all the measured diffraction peaks, and this has been found 
to give a value close to the macroscopic strain in both elastic and plastic regimes, and 
hence related by the macroscopic bulk elastic constants to the stress in the sample 
component [41]. Such analysis is accomplished using the Rietveld [42] technique in 
which the theoretical intensity profile of the whole diffraction pattern I(t) versus t—
including peak profiles, unit cell parameters, structure and multiplicity factors, and 
absorption and background—is fitted to the observed data. A texture factor is also 
included in the theory to allow for preferred orientation of the grains in the sample. The 
Rietveld method is used extensively in structure determination from powder diffraction 
patterns. The mean lattice parameters are obtained from such fitting, shown in Figure 
3.15, and can be compared with those from a “stress-free” sample to enable strains to be 
deduced. Further details on the Rietveld analysis technique are given in Section 4.5. 

An alternative fitting procedure is not to constrain the calculated intensities of the 
peaks to the theoretical functions but to allow each to be fitted independently, with only 
the positions in time (wavelength) constrained to give the unit cell parameters required 
for strain measurement. This procedure was first used by Pawley, and is known as a 
“Pawley-Rietveld” analysis; it is very useful for strain measurement when the intensity of 
the peaks is not of prime importance [43]. 
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3.2.2.4 Collimation 

To utilize fully the time-pulsed polychromatic neutron beam on a spallation source as 
many detectors as can give useful information are used. Since a  

 

FIGURE 3.18 Plan view diagram of 
the first radial collimator built for the 
ENGIN instrument at ISIS based on 
Withers et al. [29]. 

sample placed in a polychromatic pulsed beam will diffract at all angles as a function of 
time, the scattering angles (and the gauge volume) are defined using a radial soller when 
using arrays of detectors [29]. A typical “focusing” or “radial” collimator is shown in 
Figure 3.18. The vanes of GD- or Gd2O3-coated stretched Mylar or shim steel are 
accurately set at angles to converge on the instrument reference point. The only drawback 
is that a different radial collimator is required for each size of gauge volume. In practice 
the radial collimators can be slightly defocused so as not to converge on the reference 
point to increase the gauge volume size. 

3.3 Neutron Detectors 

Neutrons cannot be detected directly and must be detected by their nuclear interaction 
with an absorbing nucleus to produce charged particles with energies in the MeV range. 
These can then be detected by gas counters acting in the proportional mode, or by 
production of a photon detected by a scintillation detector. The principal reactions used 
follow: 

n+10B →α+7Li+γ+2.3 MeV I 
n+3He →p+3H++0.77 MeV II 
n+6Li →α+3H+4.79 MeV III 

  

Reactions I and II are used with 10B in BF3 gas detectors or 3He gas detectors [3,15]. In 
these detectors, the anode is a wire held at high voltage relative to the surrounding sheet 
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cathode in cylindrical or rectangular shape. Although BF3 has the advantage of relative 
insensitivity to γ-rays, owing to its toxicity it is now almost fully superseded by 3He, 
which is somewhat more γ-ray sensitive. The γ-rays may be isolated by use of a voltage 
discriminator since they give smaller voltage pulses than neutrons. The detector must 
absorb most of the neutrons in order to be efficient, and therefore must contain gas at 
high pressure and have dimensions of a few centimeters along the neutron path. Early 
detectors had ceramic end windows and were used in an axial configuration surrounded 
by shielding material of borated paraffin and steel. However, the more that the diffracted 
beam cone is intercepted by the detector, the higher the measured intensity; thus, it is 
common now to use detectors containing the higher absorbing 3He at pressure of ~8 bar 
with their axis vertical. In the simplest diffractometer design, the neutrons are detected by 
a single detector tube (as shown in Figure 3.8) placed after the collimator in the diffracted 
beam. 

Scintillator detectors [44] are used extensively in instruments on pulsed neutron 
beams, where tof techniques demand good time resolution. The principle of these 
detectors is the absorption of the neutron to give rise to a pulse of electromagnetic 
radiation in the visible or ultraviolet region. There are two types of scintillation neutron 
detectors commonly used. The first comprises 6Li-loaded glass containing a Ce activator. 
The second comprises bound powders of 6LiF mixed with ZnS doped with Ag. In both 
the energetic products of reaction III excites an atom of the surrounding material into an 
excited state, which decays by emission of a visible or ultra violet photon. This photon 
pulse is fed by fiber optics to the photocathode of a photomultiplier that converts it to a 
pulse of electrons and amplifies it, resulting in a voltage pulse. The speed of conversion 
is important to give good time resolution. The glass scintillator has better pulse pair 
resolution but higher γ-ray sensitivity and background than the LiF/ZnS powder 
scintillator. The γ-ray and neutron pulses must be separated by height and shape 
discrimination. 

In using any type of detector, it is important to ensure that the dead time after each 
detected neutron is sufficiently short not to affect the accuracy of the measured count. 
The extreme situation is saturation, when the count rate recorded can actually reduce 
because of the high rate of incoming neutron counts. In such cases, usually when making 
initial instrument alignments with intense beams, absorbers with calibrated attenuation 
must be placed in the beam. Especially high count rates are encountered when making 
transmission measurements, and special detectors are required as discussed in Section 
3.7.4 [45]. 

3.3.1 Position-Sensitive Detectors and Detector Arrays 

In recent years, position-sensitive detectors (PSDs) have been developed to accept a wide 
angular range from the sample so that the angular scanning of such a detector on a 
monochromated beam instrument is necessary over only a small range or is not necessary 
at all [46,47]. The earliest PSDs took the form of a horizontal gas-filled detector with a 
resistive anode wire, with the charge resulting from the detection of a neutron at each 
end, which is measured by low-impedance charge-sensitive amplifiers. From the size of 
the voltage pulses at each end, the position along the detector at which the neutron was 
detected can be deduced—the so-called charge division technique. A different technique 
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is to use the rate at which charge is accumulated at each end, which is measured by 
timing circuits incorporating delay line techniques. 

Stability is the key problem with such detectors, but with modern electronics this 
problem is now largely overcome, and indeed two-dimensional arrays of resistive wires 
forming anodes and cathodes are used on most small-angle neutron scattering (SANS) 
instruments. The spatial resolution can be better than the spacing of the wires. Two-
dimensional PSDs can be used for diffraction instruments by summing the neutron count 
over the vertical cells. Ideally, on a monochromated beam the horizontal angular width of 
the cone of scattering is intercepted by the PSD with an angular aperture in large 
enough to cover it and some adjacent background. This has the obvious advantage of 
speed of measurement. However, the wider aperture can lead to a higher background 
count. 

An alternative form of PSD is to use an array of small-diameter vertically oriented gas 
counters, or an equivalent array of vertical anode wires in a single encasing cathode 
housing—the so-called “banana” configuration [46]. Arrays of horizontal linear detectors 
are used at the Missouri University Research Reactor [48]. Most recently microstrip gas 
detectors have been developed using photolithographic techniques, in which thin strips of 
electrodes are deposited on glass or polymer bases. Originally developed for x-ray work, 
these detectors are being increasingly used for neutron diffraction [46,49]. Figure 3.19 
illustrates some typical detectors. 

PSDs can be used on time-pulsed polychromatic beam instruments using an array of 
scintillator counters, and these are generally favored for strain measurement. The 
6LiF/ZnS scintillator elements of the PSDs on ENGIN-X at ISIS are oriented like 
Venetian blind shutters. Each of the two detector banks is made up of five modules of 
240 scintillator elements. Each scintillator element is 3 mm wide, and approximately 150 
mm high [36]. The efficiency of such detectors can be as high as 60% for 1 Å neutrons. 
The electromagnetic radiation pulses are viewed by bundles of optic fibers, connected to 
32 photomultiplier tubes per module, and coded in such a way that the signal from any 
pair of tubes uniquely identifies the activated detector element. The total detector 
coverage is roughly ±15° horizontally and ±20° vertically around Software 
corrects for the variation of the instrumental contribution to the tof, Lsinθs, to each cell in 
the detector. These values of Lsinθs are determined empirically by diffraction from a 
standard sample, usually Si, Al2O3, or CeO.  
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FIGURE 3.19 Schematic drawings of 
selected neutron gas detector systems: 
(a) linear PSD consisting of an array of 
individual detectors; (b) two-
dimensional PSD consisting of a 
number of anode wires and a 
segmented second cathode; and (c) a 
microstrip detector. Charges on the 
cathode or anode strips encode the X 
spatial coordinate. Charges induced on 
the rear strips, orthogonal to the 
microstrip anodes and cathodes, allow 
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the Y spatial coordinate to be encoded 
[46]. 

3.4 The Instrumental Resolution 

The uncertainty in the determination of the angle of the Bragg reflection, or the 
uncertainty in timing of a detected neutron, determines the error in the measured strain. 
This needs to be determined to an accuracy of ∆d/d~10−4, or 100 µε, in order to give an 
accuracy of ~20 MPa in stress in steel, for example. The contributions to the error from 
fitting a function to the peak shape and background are discussed in Chapter 4. One of 
the most important factors is the inherent instrument contribution to the angular, or time, 
width of the Bragg peak. This will be briefly discussed in this section as it gives rise to a 
number of important points to be taken into consideration when designing 
instrumentation and carrying out measurements. 

Measurement of Type I macrostrain, defined in Section 1.4.1, is concerned with 
accurate measurement of the shift, or difference in angle or time of the Bragg peak center 
from that from the reference sample, rather than the absolute peak center. Good 
instrument resolution is important in the region of scattering angle used, because the 
uncertainty of peak position determination is proportional to the full width at half 
maximum (FWHM) of the peak, but improves only as the square root of the integrated 
intensity (Section 4.4). It is also particularly important in order to isolate the reflection 
being measured from others close by in angle, or time, and it may be vital if there are 
several closely related structures in which a material may exist, for example the different 
polytypes of SiC in metal matrix composites. Depending on the type of sample-induced 
background, good resolution can increase the “signal height to background” ratio of a 
peak. The measurement of Type II or III microstrain through the measurement of Bragg 
peak widths requires excellent instrument resolution, so that the inherent sample 
broadening can be more easily isolated. 

The aim of an instrument designed for strain measurement is to maximize the useful 
intensity while giving the required resolution. This will involve relaxing resolution 
elements where they are not critical, such as in the vertical, out-of-scattering plane 
direction. Only the resolution in the horizontal scattering plane will be considered here. 

3.4.1 Continuous Beam Instrument 

A simple approach that indicates the main factors governing resolution is given by 
differentiating Bragg’s Law equation for the sample (Equations (1.1) and (2.15)), and 
dividing by λ: 

∆λ/λ=∆d/d+cotθs ∆θs, or ∆d/d=∆λ/λ−cotθs ∆θs=cotθM

∆θM−cotθs ∆θs (3.13) 

Thus, the variation of d depends on the angular spread of the beams from the 
monochromator and entering the detector. For a random variation of each term, they may 
be combined by convolution, in which case the widths add as the sum of squares:  
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(∆d/d)2=(∆λ/λ)2+(cotθs ∆θ)2=(cotθM ∆θM)2+(cotθs ∆θ)2 
(3.14) 

This simple equation shows that the resolution improves as θs gets larger at the 
monochromator and at the sample, with the best resolution in a “back scattering” or a 

configuration. Some of the first strain measurements were made in this 
way [20,21]. 

A detailed treatment must consider the correlation between angular spread and 
wavelength, since the above terms are not strictly independent. The instrument resolution 
in the scattering plane is of major concern. There are contributions from the horizontal 
angular spread, FWHM, of the neutron beam onto the monochromator, α1, between the 
monochromator to sample, α2, and sample to detector, α3, together with the mosaic spread 
of the monochromator, ηM (Figure 3.8). There are corresponding but uncorrelated angular 
spreads in the vertical plane, which are not very important in strain measurement, 
especially if The combination of these angular collimations gives rise to a 
spread in the angle and wavelength of the rays that make up the neutron beam incident on 
the sample. There is a spatial correlation among angle, wavelength, and position of the 
rays throughout the instrumental gauge volume (IGV), and, from Bragg’s Law, with 
those rays diffracted into the detector. 

There has been much discussion of the instrument peak widths in conventional powder 
diffraction instruments where the spatial correlation between angle and wavelength 
across the beams are less important, as the usually large IGV is filled by the sample. The 
same theoretical approach may be adapted to the case of strain measurement, but there is 
the important additional consideration that the IGV plays a more vital role in that it may 
be only partially filled, or that the strain may vary over the SGV. A partly filled 
instrument gauge volume can give rise to a systematic shift in peak angle and can have a 
critical effect on the error in strain determined, as discussed in Section 3.6.4. 

For a fully filled IGV centered at the instrument reference point, the conventional 
treatment in real space was first provided by Caglioti [50,51]. One may consider each 
component in the neutron beam path as giving rise to a probability function that a neutron 
will be transmitted. The transmission of each component i, with collimation angle αi, is 
written in the Gaussian approximation in the form 

 
(3.15) 

where αι′=αi/[2(ln2)1/2]. Here is the deviation in angle from the principal straight 
through ray. These functions are multiplied together and the angles related by Bragg’s 
Law. An integration is then made over all in-pile ray wavelengths and directions. The 
result is a function for the FWHM of the powder diffraction peak in The expression 
given by Caglioti [50,51] is 

(FWHM)2=U (tanθs/tanθM)2+V (tanθs/tanθM)+W 
(3.16) 

where 
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and 

 
  

Furthermore, the intensity of the peak is proportional to the instrument factor L, where 

 (3.17) 

Several points emerge from the above equations. 

1. The peak width is narrower for the “focused” condition where diffraction at the sample 
is such that the diffracted beam from the sample is in a direction close to parallel to 
that incident on the monochromator, so that the second term, V(tanθs/tanθM), is then 
negative. 

2. The best choice of collimation angles with a view to optimizing the intensity/resolution 
compromise has been discussed by many authors. Often the mosaic width ηM is 
difficult to adjust, as discussed in Section 3.2.1. The FWHM has a minimum in the 
region of θM= θs, the so-called “focusing” condition. The value of α2 may often be 
relaxed without a great effect on the resolution. Margagça [52] and others have 
considered the setup giving optimum resolution and intensity for strain measurement 
when 2θs=90°. For their assumptions made, it is found that on a guide with a1~10', 
2θM should be ~127°, whereas on a beam tube with large α1 it should be ~150°. 

3. In the special case of α1=α2=α3=ηM=α, whereas . This shows 
that the intensity varies as the cube of the resolution, and illustrates the fact that there 
is always a compromise to be made between resolution and intensity. Each component 
must be “matched” to the others to give the best compromise solution. As discussed in 
Section 4.4.2, it has been suggested that a good “quality factor” or Figure of Merit 
(FoM) for a diffractometer in cases where the background is negligible compared to 
the height of the diffraction peak is given, for a required uncertainty in angle, by the 
ratio  

 
(3.18) 

where IC is the integrated count, and tM is the measurement time (Equation 
(4.17)). The FoM should be maximized and is inversely proportional to the time 
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to make a measurement to the specified uncertainty. In the above (very) special 

case,  

An alternative approach to considering the resolution has been given by Cooper and 
Nathans [53,54], who treated the problem in reciprocal space. They define a resolution 
function of the instrument which gives the probability that a scattering vector Q0+∆Q will 
be detected when the instrument is set to measure a scattering vector Q0. Using the same 
Gaussian transmission functions of each component, they show that this resolution 
function takes the form of a three-dimensional ellipsoid, or a two-dimensional ellipse in 
the scattering plane, centered on the tip of Q. During a conventional powder scan, this 
ellipsoid tracks through the thin spherical shells of reciprocal lattice points, and the 
intensity at any setting is the convolution of the resolution function and the scattering 
cross-section for each shell. This resolution function approach is particularly useful when 
considering the optimization of required resolution in certain directions, and in which 
directions it may be relaxed to increase intensity. 

3.4.2 Time-Pulsed Beam Instrument 

The resolution of tof instruments is discussed in some detail by Windsor [11]. In a tof 
instrument, the lattice spacing d is given by Equation (3.10), and on differentiating, 

∆d/d=∆t/t−[∆(L.sinθs)/(L.sinθs)]=∆t/t−[∆L/L+cot θs

∆θs]=−∆Q/Q (3.19) 

The resolution is given by 
(∆d/d)2=(∆t/t)2+[∆(L.sinθs)/(L.sinθs)]2=(∆t/t)2+(∆L/L)2+(cot θs

∆θs)2=(∆Q/Q)2 (3.20) 

However, this is an approximation since the terms, as in the case of the steady-source 
instrument, are not independent. One feature of a tof instrument is to use “time focusing” 
in which the distance to, and angle of, each detector is arranged so that distance term 
cancels the angle term in the expression for ∆d/d. In other words, the terms in square 
brackets in Equation (3.19) are zero. For all such time-focused detectors, each time 
channel corresponds to the same |Q|. However, in practice it often is easier to use 
software to calculate the Q corresponding to each time channel for each detector, and to 
bin the counts in increments of Q, to give I(Q). The data can be similarly binned to give 
I(d) or I(λ). 

In the above expression, the uncertainty in time t arises from the neutron energy 
moderation process and from the time channel bin width. The uncertainty in length L has 
contributions from the sample size and position, and from the detector thickness. The 
angular uncertainty arises from the angular collimation. The resolution can be increased 
by increasing the overall length of the instrument L. However, because the flight time 
increases, frame overlap can occur. This happens when the fastest neutrons of a new 
pulse arrive at the detector before the slowest neutrons from the previous pulse. Should 
this occur, it is necessary to reduce the utilized pulse frequency from 50 to 25 Hz (one in 
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two pulses) or 16.67 Hz (one in three pulses), by the use of two “frame-definition” 
phased disk choppers a few meters apart early in the flight path from the moderator. On 
the high-resolution powder diffractometer (HRPD) at ISIS, the flight path is very long 
and only one pulse in five is used. The new ENGIN-X strain measurement instrument at 
the 50-m flight path has a measurable d spacing range of 1.1 Å at 50 Hz or 2.2 Å at 25 
Hz. These can be shifted in time to cover various intervals, such as 2.3 to 1.2 Å, which 
correspond to (111) to (311) reflections for aluminum. 

Frame overlap can be used to advantage by increasing the duty cycle of an instrument, 
but necessitates the correct isolation and identification of each peak. An instrument that 
uses frame overlap in this way is the POLDI diffractometer on the SINQ neutron source 
at PSI described in Section 3.7.3. 

3.5 Instrument Gauge Volumes 

In this section, some important concepts and procedures are discussed with regard to the 
positioning of the sample on the instrument, as well as the definition of that part of it that 
gives rise to diffracted intensity. Consequences for the measured diffraction angle are 
discussed in Section 3.6. These aspects of strain measurement require a full 
understanding of how the diffracted beam intensity arises from grains in different parts of 
the sample that are located in the incident beam, particularly when the sample only partly 
fills the instrument gauge volume. This has necessitated new applications of diffraction 
theory and experimental work. Such detailed considerations are not usually important in 
conventional powder diffraction, where the sample is usually placed symmetrically and 
fully bathed by the beam (e.g., Figure 2.10b). Although neutron diffraction is unique 
because of its penetration power for accessing information on the strain and stress state 
within the bulk of a crystalline sample, the technique has also been developed to include 
investigations in near-surface regions by using small gauge volumes. Measurement of 
these near-surface strains gives important information on surface stress modification 
processes like shot-peening, or by various kinds of coatings, made in order to enhance 
structural properties. 

3.5.1 Instrument Reference Point 

For every instrument it is necessary to define a reference axis and a reference point on 
this axis which is at the center of the instrumental gauge volume (IGV), and to which the 
position of the sample may be referred. The usual convention is to adopt as reference axis 
the vertical axis about which the sample table and the sample to detector arm rotates. The 
reference point on this axis is the center of the incident beam in the vertical direction. The 
gauge volume is then arranged to have this reference point as its center by carefully 
positioning the apertures in the horizontal and vertical planes. There are a number of 
ways of accomplishing this [30] using an x-y translator, or “slide” on the sample table 
(described in Section 3.6.3). 

One method is to first center an accurately machined vertical pin on the sample 
rotation table so that its tip defines the reference point. This centering can be performed 
by viewing the pin through a theodolite, or using a micrometer contact gauge, and 
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adjusting the position of the x-y translator until there is no movement of the tip while 
rotating the sample table Ω-axis. The x and y encoder values then define the reference 
axis position. In general, the reference point should be defined in position to ~10% of the 
minimum gauge volume dimension [55]. The pin and aperture are then viewed by a 
theodolite aligned along each of the incident and scattered beams in turn, and the 
corresponding aperture adjusted for coincidence of its midpoint with the axis. The use of 
a fine laser beam aligned along the beam and mounted on the M-S and S-D optical 
benches can assist this procedure. A theodolite mounted in a similar fashion on the bench 
can be used to view the pin through the aperture. 

3.5.2 Gauge Volume 

The extent of the gauge volume is defined by the size of the apertures before the sample 
in the incident beam, and after the sample in the diffracted beam, together with the 
angular divergence of the incident and diffracted beam and the wavelength spread of the 
incident beam. 

The neutron beam itself may be used to set or verify the center of the gauge volume at 
the reference point by observing the diffraction from a cylindrical sample of diameter 
close to the aperture dimension, with its axis on the reference axis. With the detector at 
the correct scattering angle, the sample is tracked in position in a direction perpendicular 
to the incident and diffracted beam in turn, and the corresponding horizontal aperture 
position adjusted to ensure that the center of the intensity profile versus the translator 
position is at the encoder values corresponding to the reference axis position. If the 
aperture position is capable of being scanned, an alternative method is to center the 
sample at the reference axis position and then scan each aperture position. The 
positioning in the vertical direction can be carried out in a similar fashion. 

The alignment of radial collimators with the reference point can be made using a 
nylon thread which scatters neutrons incoherently, first positioned on the reference axis, 
and then scanned in position along the incident beam. The collimators are adjusted to 
give maximum summed detector intensity when the thread is at the central axis position. 
Positioning of radial collimators, and of the IGV, is particularly important on a time-
pulsed source instrument, since any change in flight path may be interpreted as a strain. 
In fact, the path length L=Li+Lf will vary over the gauge volume, and calibration using a 
centered standard Si, or other reference sample, will give the average value. 

Three distinct gauge volumes defined in accordance with VAMAS, TWA20, [55] (see 
Section 4.1) are discussed in the following subsections: 

• The nominal gauge volume (NGV) 
• The instrument gauge volume (IGV) 
• The sampled gauge volume (SGV). 

3.5.2.1 Nominal Gauge Volume 

Perfectly parallel beams, that is, with perfect collimation and of uniform wavelength, 
would give rise to a volume defined in horizontal area by the incident slit width (ISW) 
and the diffracted slit width (DSW), as shown in Figure 3.20, and in height by the height 
of the incident aperture. This geometrically defined volume is called the nominal gauge 
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volume (NGV), and may be calculated simply from the aperture dimensions. The 
centroid of the NGV may be made to coincide with the instrument reference point using 
the optical methods described above. 

It should be noted that as the diffracted beam is by nature a cone of intensity 
emanating from every part of the sample within the gauge volume, it is not easy to define 
the height of a gauge volume by an aperture in the diffracted beam. In practice, the height 
of the outgoing aperture and the height of the detector will limit the overall extent of the 
vertical beam detected. In order to increase intensity, it is usual to accept as large a 
portion of the cone as possible consistent with the acceptable spread on the definition of 
the strain direction measured. An angular extent of ±βV in the vertical plane will give rise 
to a component of out of the plane in the scattering vector Q. In 
standard powder diffraction, there is a problem of defining the angle of scattering if the 
vertical spread of the detected beam is too high because of the curvature of the cone, 
which is particularly important at low angles. For strain measurement, values of are 
usually around 90°, the angle at which cone becomes close to a disk of intensity, and this 
problem is minimized. Also, in strain measurement one is always measuring small shifts 
in angle under the same conditions, so that the absolute value  

 

FIGURE 3.20 Schematic illustration 
of the section of the ‘instrument gauge 
volume’ in the scattering plane arising 
from the angular spread in the beam 
definition, and its relation to the 
‘nominal gauge volume’. 

Introduction to the characterization of residual stress by neutron diffraction     112



of the angle is not so critical as in structure determination, and the vertical extent of the 
detected beam may be relaxed. 

3.5.2.2 Instrumental Gauge Volume 

Since the angular divergence of the beams and the wavelength spread across them give 
rise to a penumbra, as shown diagrammatically in Figure 3.20, there is a gradual decline 
in the contribution to the diffracted peak intensity from grains in the sample situated at 
the edge of the volume. The effective gauge volume over which the average strain is 
measured in a sample filling the gauge volume is larger than the NGV, and is taken to be 
the definition of the instrument gauge volume (IGV). Conventionally, the IGV is defined 
in terms of a contour map, and the edge is taken to be where the contributing intensity has 
fallen to a fraction of that recorded at the center, such as 1/e, that is, by 63%. The vertical 
divergence of the incident beam is often greater than that in the scattering plane, giving a 
larger vertical penumbra. This is altered in shape if a vertically focusing monochromator 
is used, when it is essential to focus the beam onto the reference point. For some 
applications it may be necessary to reduce the vertical divergence or avoid focusing the 
incident beam. The IGV contours may be calculated by analytic consideration of the 
range of possible beam paths contributing to the diffracted beam profile, as shown in 
Figure 3.21 [56], or by Monte Carlo-type techniques. In the case of a monochromated 
continuous beam diffractometer the IGV will change very slightly as the detector arm 
rotates through a Bragg peak scattering angle, but this variation is usually neglected.  
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FIGURE 3.21 Illustration of the IGV 
profile calculated analytically: (a) for a 
two-axis diffractometer on a 
continuous beam, with beam defined 
by a pair of slit apertures with 
ISW=0.5 mm and DSW=0.5 mm [56]; 
(b) Monte Carlo calculation of the IGV 
profiles on a pulsed source instrument, 
ENGIN, with the radial collimator 
shown in Figure 3.18 for an open 
incident aperture; and (c) measured 
intensity contours on ENGIN with a 2 
mm incident slit aperture [29]. In each 
case, the origin (0, 0) is at the 
instrument reference point and the 
scattering angle is 90°. The contours 
give the contribution to the scattered 
intensity as a function of position. 

The IGV contours can be measured experimentally in a number of ways. The most 
important horizontal section may be measured by tracking through it a scatterer of much 
smaller dimension, using an x-y translation stage. Ideally, the scatterer should be of the 
same material as the sample under measurement, for example a thin wire, but the grain 
size must be relatively very small in order to diffract uniformly. An incoherent scattering 
sample such as a nylon thread can be used in the case where there is a seller collimator in 
the outgoing beam, but in this case any wavelength dependence will not be reproduced. 
An anomalous large grain of say 50 µm in an otherwise small grain polycrystalline 
sample may also be used. If such a grain is carefully orientated to give maximum 
intensity when positioned at the center  
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of the gauge volume, the intensity is high and the scans can be made very quickly. 
However, only those wavelengths and angular direction of rays in the beam that satisfy 
Bragg’s Law will be selected. Although not ideal, these methods give a good estimate of 
the horizontal dimension of the gauge volume. The vertical dimension may be measured 
by using similar horizontal wires or thread. 
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3.5.2.3 Definition of Instrumental Gauge Volume When Using a 
Position-Sensitive Detector 

There is a potential difficulty over the definition of the gauge volume when using a PSD. 
If only one aperture in the diffracted beam is placed between the sample and detector, this 
and the diffracted beam angle define the peak shape, the gauge volume, and indeed its 
center as recorded on the PSD. This is because the aperture selects a part of the diffracted 
beam from the sample along the incident beam at angles defined by Bragg’s Law and the 
incident collimation. This is shown schematically in Figures 3.22a and b. Figure 3.22b 
illustrates the loss in definition of the IGV with increasing distance of the aperture from 
the sample. If such an aperture is placed as close to the sample as possible, errors 
introduced in the definition of the gauge volume are usually small. However, the shape of 
the gauge volume is also dependent on the angular FWHM of the diffraction peak, which 
arises from incident collimation, wavelength spread, and the sample itself (e.g., from 
microstress), as well as the aperture size and aperture-detector distance. If the diffraction 
peak angular FWHM is large, then neutrons can find their way to the detector from a 
larger region of the sample. This is illustrated in Figure 3.22a and b. As a result, the IGV 
would vary when investigating a component having regions with different levels of work 
hardening, such as peened or forged components. 

Partially filled gauge volumes can give rise to serious errors in the measured scattering 
angle [57], as discussed in Section 3.6.4. One way of reducing the background and 
improving the definition of the gauge volume is to use a radial collimator as mentioned in 
Section 3.2.2. In this case there is no umbra; instead the penumbra describes a Gaussian 
IGV profile, as seen in Figure 3.21b and c. 

Not all the methods of measuring the IGV described in the previous subsection will 
apply to the case of an instrument with a PSD. For example, in the case of a single 
aperture and no radial collimator, an incoherent scatterer will not define in the same 
way as a diffracted beam, and so cannot be used to measure the IGV. 

3.6 Sampled Gauge Volume and Effective Measurement Position 

3.6.1 Sampled Gauge Volume 

The SGV is the part of the sample in the IGV from which a measurement of the 
diffraction peak is obtained. It is the volume of sample over which the strain 
measurement is averaged, and is affected by [55]: 

• Partial filling of the gauge volume 
• The wavelength distribution of neutrons across the incident beam  
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FIGURE 3.22 (a) Schematic showing 
the use of a PSD with a slit aperture, 
showing how the aperture size and the 
angular peak width together define the 
instrument gauge volume and peak 
profile on a continuous source 
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instrument. The solid line is for no 
angular width, the dashed line for a 
large (exaggerated for clarity) angular 
width, (b) The percentage contribution 
to the total peak signal (ordinate) 
detected by a PSD arising from 
diffraction at positions within the 
sample along ki as a function of that 
position relative to the centre of the 
NGV (abscissa). The angular 
divergence of the diffracted beam is 
taken to be 1° FWHM in and the 
beam is defined by a 1 mm slit 
aperture positioned at 5, 15, 30, and 60 
mm from the instrument reference 
point. 

• Attenuation of neutrons within the sample 
• A high gradient in texture in the sample 

A sample placed on the instrument sample table may wholly or partly fill the IGV. For a 
sample wholly filling the IGV and exhibiting no texture variation or attenuation of the 
beams, the SGV will coincide with the IGV, and the point of measurement will be at their 
centroid, which, by adjustment, is usually the instrument reference point. However, if the 
sample only partly fills the IGV, the SGV will depend on the fraction filled, and the 
actual, or effective, measurement point in the sample will be the geometric centroid of the 
SGV. 

In cases where attenuation across the gauge is significant, or the wavelength 
distribution is uneven across the gauge, these effects must also be included in the 
contribution to the measured intensity, to give a weighted average, or effective, centroid 
of the SGV. A high gradient of texture in the sample can give rise to a similar effect. The 
average strain measured will then be that corresponding to the position in the sample at 
the effective centroid. Even if the sample fills the IGV, these contributions will mean that 
the effective centroid of the SGV no longer lies at the centroid of the IGV. 

The SGV is illustrated schematically in Figure 3.23 for the case of a sample translated 
into the IGV in reflection geometry with no beam divergence so that the IGV is the same 
as NGV. The effects of attenuation on the position of the SGV centroid are discussed in 
the next section. As well as affecting the position of the representative strain 
measurement, the fact that the effective centroid is not at the instrument reference point 
causes an anomalous shift in the measured diffraction angle, which if not corrected for 
can give rise to spurious values of strain. This correction to the measured scattering angle 
is discussed in Section 3.6.4 with particular reference to the partially filled IGV. The 
SGV and its effective centroid, the location in the sample at which the strain averaged 
over the SGV is measured, can only be determined by calculation, the anomalous angular 
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shift can also be calculated although its accurate value is often difficult to determine. It 
can be minimized or compensated for by the experimental techniques discussed in 
Section 3.6.4. 

3.6.2 Effects of Beam Attenuation in Sample 

The intensity from that part of the sample filling the IGV may be modified by the 
attenuation of the beam through absorption and scattering, both coherent and incoherent. 
As a result, the intensity of the beam will decrease along each incident and diffracted 
path. Some typical attenuation lengths, lµ, are given in Table 2.2 and Appendix 4. The 
attenuation imposes a limit on the size of gauge volume used. It has been recommended 
that the maximum dimensions of the NGV should be restricted so that the ratio of 
intensity from the front to the back of the gauge volume due to attenuation is less than 
1/e; in other words, the gauge dimensions in the scattering plane should be smaller than lµ 
[55]. Thus, for example, 8×8 mm2 in the horizontal plane is a practical upper limit for 
large steel samples and little is to be gained from anything larger. Clearly, in such a case 
a calculation of the effect  

 

FIGURE 3.23 Illustration of sampled 
gauge volume (dark) due to partial 
filling of the nominal gauge volume 
(lightly shaded) by the sample as it is 
translated in the direction of the arrow 
in reflection geometry. The distance 
between the cross and the spot shows 
the difference between the locations of 
the geometric centroid of the nominal 
gauge volume (NGV) and the centroid 
of the sampled gauge volume as the 
NGV is increasingly filled. In 
reflection geometry, even when 
completely filled, the two centroids 
will not be coincident unless the 
attenuation over the gauge dimensions 
is negligible (see Figure 3.25). 
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of attenuation on the position of the centroid of the SGV is essential. In order to reduce 
the size of the correction and increase its accuracy, an NGV dimension of ~lµ/3 is more 
typical. Since the sample must be reoriented, usually about the instrument reference 
point, in at least three directions at right angles, in order to measure the strain 
components and calculate the stress, as discussed in Chapters 4 and 5, the attenuation 
related shift of the SGV centroid may mean that each component of strain is effectively 
measured at a slightly different position in the sample. 

A subtle effect on the wavelength distribution over the gauge volume may occur if the 
polycrystalline sample contains a few large grains. If they are correctly oriented to give 
Bragg diffraction from a wavelength component of the beam, they may diffract out a 
large part of that component from the rays incident on them. This effect is called 
extinction and is discussed in Section 2.6.1. The resulting change in wavelength 
composition of the beam can affect the diffraction from the subsequent crystallites in the 
beam path, causing an anomalous shift in diffraction angle. Another way in which the 
wavelength composition of the beam can be altered is if it contains a wavelength close to 
a Bragg edge of the material. This is discussed further, with examples in Section 4.2.2. 

It should also be mentioned that in samples with appreciable attenuation due to 
absorption or scattering, the change in attenuation due to the variation in the average 
diffracted beam path length in the sample over a scan of scattering angle even over 
only a few degrees, can also give rise to small distortions of the peak profile causing an 
apparent shift in the center. A correction for this effect is easily calculated. 

On tof instruments, the effect of attenuation can cause an error in the results of 
routines used for binning the data into intervals of wavelength or d-spacing. In normal 
powder diffraction, the spectrum from a nonattenuating Si, or similar reference sample, is 
used to calibrate and set up the binning. However, if such a reference sample were used 
to calibrate an instrument to be used to measure strain in a highly attenuating material, 
the attenuation-related shift of the centroid of the SGV from its nominal position would 
introduce errors in the binning. Typically, for a 2×2 mm2 gauge volume area, errors in 
positioning are estimated to be of the order of 0.1 mm for steel (see Figure 3.25) and 0.2 
mm for nickel [55]. Even if binned correctly, such a variation in the path length could be 
interpreted as a change in lattice spacing, but the effect on the strain is generally small. 

In view of all these effects, the IGV shape and size must resulting be chosen with due 
consideration paid to the size of the grains in the sample and the attenuation of the 
sample, as well as the direction and magnitude of the strain and strain gradient, and the 
intensity of Bragg scattering and consequent measurement time. These points are 
discussed further in Chapter 4.  
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FIGURE 3.24 Schematic illustration 
showing the surface of a sample 
translated in reflection configuration 
into the nominal gauge volume (NGV) 
(lightly shaded) with the centroid of 
the NGV as instrument reference point. 
The relation between the distances 
among the sampled gauge volume 
centroid, reference point, sample 
surface, and translator reading are 
discussed here in terms of a convention 
where distances to the right of the 
reference point are positive. 
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3.6.2.1 Geometric and Attenuation Shifts of Effective Centroid of 
Sampled Gauge Volume 

We have seen that the centroid of the SGV represents the effective location of a 
measurement of strain within the sample. The geometric and attenuation related shifts of 
the centroid are illustrated by considering the translation of the surface edge of a sample 
through the NGV in a “reflection” configuration, as in Figure 3.23. Figure 3.24 shows in 
detail the relative location of the sample surface edge, the NGV with the instrument 
reference point at its center, and the centroid of the SGV. The sample translator reading, 
T, records the position of the sample and this is usually made relative to the translator 
reading when the edge is at the reference point, T=TR. Often this is reset to zero in the 
software for convenience. The way in which TR can be determined is described in Section 
6.5.2. In Figure 3.24, distances to the right of the reference point are taken as positive, so 
that [T−TR] as shown is negative, and dCS the distance of the SGV centroid from the 
surface edge will always be negative in this convention. We then have dSR, the distance of 
the surface edge to the reference point, and dCR, the distance of the centroid of the SGV to 
the reference point, related by 

dSR=T−TR=dCR−dCS 
(3.21) 

In the situation shown in Figure 3.24, dCR and dSR are also negative, but as the NGV fills, 
for a sample with no attenuation, C moves toward R, and once the NGV is filled, 
dcs=−dSR as the sample is translated to the right. 

The general relation between the distance of the centroid from the surface and the 
translator position is given in Appendix 2. By way of an example, the separation of the 
position of the centroid of the SGV and the surface edge |dCS| has been calculated for a 
2×2 mm2 cross-section NGV and a scattering angle This distance is shown in 
Figure 3.25 as a function of dSR. With no attenuation, the separation |dCS |increases 
linearly with a slope of one-third as the sample edge moves into the NGV until it is half 
filled, it then increases more rapidly until it is completely filled after which it increases 
linearly with a slope of unity. If we now also consider the effect of attenuation, this will 
be small when the NGV is only partially filled because in reflection the scattered 
neutrons originate predominantly from near the surface. However, the attenuation related 
shift becomes more marked, reducing the separation, when the NGV is more nearly filled 
as shown in Figure 3.25, since increasing attenuation with path length causes the 
weighted centroid to be biased toward the free surface. For a plate sample in the 
transmission configuration, only geometric shifting occurs, as given by the µ=0 line, 
because the attenuation path lengths in the sample are the same for all diffracting 
positions in the SGV 

In practice, the correction for the geometrical shift of the SGV centroid, the zero 
attenuation line in the example of Figure 3.25, is relatively easy to calculate and is 
usually made. However, the correction for attenuation is seldom made. In fact, it must be 
considered for measurements made on highly attenuating materials, or in cases where 
high positional accuracy is required. From Figure 3.25, it is clear that with the surface 
centered on the IGV centroid, that is, the translator positioned at zero, neglect of 
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attenuation results in error of ~100 µm in the position of the calculated SGV centroid, 
compared with an error of ~400 µm for deeper measurements in highly attenuating 
materials when the IGV is filled by the sample. 

3.6.3 Sample Positioning 

3.6.3.1 Sample Positioning, Orientation, and Movement 

An accurate knowledge of the effective position in the sample at which the strain is 
measured is equally as important as the accurate measurement of strain itself. This 
involves (a) positioning a nominal point of measurement in the sample, which is in the 
correct orientation, accurately with respect to the instrument reference point at the center 
of the IGV, and (b) calculating  

 

FIGURE 3.25 The relationship 
between the distance of effective 
centroid of a diffracting samples SGV 
and the position of the surface edge of 
the sample |dcs| and the translator 
position, dSR, for various sample 
materials with different linear 
attenuation coefficients, µa. The 
distances dCS and dSR are defined in 
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Figure 3.24. The calculation is for a 
2×2mm square NGV with the 
sample in the reflection configuration. 
With µa=0.087 cm−1, corresponding to 
Al, the relation is essentially 
coincident with the µa=0 cm−1 line. 
The µa=1.2 cm−1 curve is 
representative of Fe [29]. 

the effective point of measurement at the centroid of the SGV relative to the nominal 
point, as in the example above. Thus, the mounting of the sample and its movement 
through the IGV is one of the most important aspects of strain measurement, and calls for 
a quite different approach from that for structural powder diffraction when the sample is 
usually symmetric and fully bathed in the neutron beam. 

Positioning requires appropriate coordinate axes and an origin to be chosen in the 
sample, such as the cylindrical coordinates shown in Figure 3.26. Also, a reference point 
in the sample—the sample reference point—must be defined, which may or may not be 
the origin of sample coordinates to which all positions of measurement can be referred. 
This must be easily accessible, and marked to the accuracy of the desired positioning. A 
well-defined feature of the sample, or at the intersection of two lines scribed onto the 
surface, is usual for samples with simple geometries. 

As well as the normal rotation Ω of the sample table about a vertical axis, it is 
necessary to be able to translate the sample in three mutually perpendicular directions 
relative to the incident beam. Ideally, such an “x-y-z” translator, and the sample 
rotational axis on which it is mounted, should be capable of moving a weight of ~100 to 
200 kg and to position the sample to  
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FIGURE 3.26 Definition of axes, and 
the three orientations of a cylindrical 
sample relative to the Q vector 
necessary to measure the principal 
strains assumed to lie along the 
symmetry axes. 

better than 10% of the minimum gauge volume dimension [55]. This means to 0.1 mm 
for many cases, but even 0.01 mm if very-fine-gauge volumes are used, such as for 
measurement near the surface of a sample, or if there are high strain gradients in the 
sample. A positional error of 0.05 mm would give a strain error of 100 µε if the strain 
gradient were 2000 µε/mm, such as in the vicinity of a shot-peened surface. Since 
samples vary in size and weight, not all the extreme requirements of accuracy and weight 
may be required at the same time, and a number of different translators may be needed. 
One fundamental requirement when designing a new instrument is to ensure that there is 
enough space for the sample tables and translators. Thus, the basic sample rotational table 
should be as low as possible below the beam height. Usually it is the reactor building 
floor that limits this distance. Whereas horizontal movement of the sample is relatively 
straight-forward, automated vertical movement calls for more careful design. All 
rotations and translations must be computer controlled. Stepper motors are often used to 
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record angles and positions, but absolute encoders should be used to ensure perfect 
reproductibility. Some mounting and translation devices are shown in Figure 3.27a, b, 
and c, and the translation stage on ENGIN-X can be seen in Figure 3.17b. The use of 
commercial robots, or multiaxis Stewart platforms shown in Figure 3.27d and e, are now 
being tried at some facilities as an alternative to conventional xyzΩ positioning devices 
[58]. 

In cases where the beam and instrument sample table cannot be easily viewed directly 
because of shielding, in particular on spallation source instruments, it is usual to have 
closed-circuit TV cameras trained on the sample environment so that the situation can be 
monitored. In all cases, the possibility of a collision between the moving sample and 
instrument hardware is an important consideration, since careful alignment may be 
destroyed. Software programs that simulate the situation and limit the range and sequence 
of positioning movements are important aids in avoiding collisions. An example is the 
software being developed for the ENGIN-X instrument at the ISIS facility [59]. During 
an extended set of measurements, it is advisable to repeat a measurement at a standard 
position in the sample at suitable intervals in order to check that no unwanted movement 
of the sample has occurred. 

3.6.3.2 Mounting the Sample 

As discussed above, the sample must be mounted accurately on the translation table, with 
its reference point or origin of coordinates at a known position relative to the instrument 
reference point at the center of the IGV, so that the position of strain measurement can be 
determined as the sample is translated and rotated. Ultimately, this entails locating the 
centroid of the SGV with respect to the centroid of the IGV for each measurement point, 
but usually a nominal sample position is positioned at the centroid of the IGV for the 
strain measurement, and then geometric and attenuation corrections made to determine 
the actual SGV centroid. The positioning of the sample relative to the centroid of the IGV 
is usually accomplished by use of at least two theodolites at ~90°. These are first set with 
the cross-wires focused on a pin mounted on the translator at the reference position, and 
then the sample is fixed to the sample table and moved to give a well-defined position, 
such as the sample reference point, at the same point as viewed by the theodolites. Lasers 
positioned on the optical benches and accurately aligned along the incoming and 
scattered beam paths may also be used. Theodolites accurately aligned on the optical 
benches can be used to view the sample through the apertures along each neutron beam 
path. Scanning a well-defined edge of the sample through the IGV and recording 
intensity versus position is probably the most accurate technique, as it uses the neutron 
beam itself, although it is time consuming and allowance must be made for absorption 
causing the intensity to vary with beam depth in the sample, as described in Section 6.5.2. 
If the sample is relatively small and of simple geometry, it can be positioned on the 
translator table relative to previously calibrated marks that define the instrumental gauge 
volume center.  

Introduction to the characterization of residual stress by neutron diffraction     126



 

FIGURE 3.27 (a) Typical sample 
table components allowing x-y-z-Ω 
movement of the sample, on the TAS 8 
instrument at Risø National 
Laboratory, Denmark, (b) A simple Ω 
rotation stage, (c) Two-axis tilting 
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stage. (Courtesy of Grenoble Modular 
Instruments.) (d) An outline diagram 
of a prototype design of a hexapod 
(Stewart platform) installed at the new 
strain mapping instrument, SALSA at 
the ILL, which enables six-axis 
movement of the sample through the 
action of six rams, (e) A photograph of 
the hexapod [58]. 

 

Since the shape and size of different samples varies considerably and is rarely of a perfect 
geometry, accurately mounting and aligning the sample is a time-consuming task. 
Methods of speeding up this procedure are therefore being developed. One such method 
involves the accurate off-line mounting of a sample onto a base plate, which then may be 
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located onto a matching plate on the translator table of a diffractometer using accurately 
aligned bolt holes and spigots. Instruments that can characterize accurately the shape of a 
sample by coordinate measurement and locate it on a removable base plate are being 
developed [60]. Such coordinate measurement machines are normally used in workshops 
to make accurate geometric measurements of samples, in order to compare actual 
geometries with CAD models and to register components for accurate machining. 

The accuracy to which the sample must be aligned to ensure that the measurement 
position is correct is illustrated by considering the case where it is to be moved 
horizontally a distance xp during measurements. An error in alignment of αe degrees will 
give a perpendicular error in position of (xp•αe• π/180). In the extreme case, over a 100 
mm distance, αe needs to be less than 0.006° to ensure that the error is less than 10 µm. 
However, although affecting the position of measurement in the sample, an angular error 
in alignment will not give rise to a serious error in strain if it is about a principal 
direction. For example, a misalignment relative to Q of 7.5° corresponds to an error in 
strain of only ~2% from a principal value. However, if a full angular variation of strain 
such as that using the sin2ψ method discussed in Section 5.1.3 is used then the alignment 
must be better than 1°. 

The orientation of the sample is defined by the angles between the sample coordinate 
axes and the axes of the instrument; in particular the direction of Q and the vertical 
direction. In order to obtain the stress, the sample needs to be oriented about the 
measurement point so that at least three directions, usually the assumed principal strain 
axes, lie along Q (Figure 3.26). Whereas it is often possible to obtain two of the three 
principal orientations by rotation of the sample about a vertical axis, the third involves 
remounting the sample unless rotation about a horizontal axis is, exceptionally, available. 
One major consideration in mounting and orienting a sample is to minimize the total path 
length of the incident and diffracted beams through the sample. For cylindrical samples, 
it is the hoop strain component that usually involves the maximum path length. 

As the strains measured in these directions are combined to determine the stress at a 
point in the sample, it is necessary that the gauge volume is as symmetric as possible, and 
that the positioning ensures that there is no displacement of the nominal point in the 
sample from the center of the IGV during rotation. This usually means that the scattering 
angle and that the aperture size in the horizontal plane is the same on the 
incoming and outgoing beams (i.e., ISW=DSW). The incident vertical aperture can only 
be relaxed if the strain variation in the vertical direction is small. Whereas this is often 
the case for the measurement of two strain components (e.g., axial and radial components 
of a cylindrical sample), it cannot also be so for the third, or hoop direction, which must 
be measured with a small vertical dimension of the gauge volume with consequent 
increase in measurement time. 

An example of sample mounting, shown in Figure 3.26, is the orientation of a cylinder 
relative to Q to determine the three principal strains that are assumed to lie along the 
symmetry directions. Photographs of a cylindrical weldment in these three orientations on 
the TAS 8 diffractometer at Risø National Laboratory are shown in Figure 3.28. 
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3.6.4 Anomalous Angular Shifts Due to Surface Effects 

It was apparent from the earliest attempts to measure strains near the surface of a sample, 
or at an interface between two materials, that anomalous shifts in Bragg peak angles may 
occur that could not be attributed to stresses and strains. These shifts arise from the fact 
(discussed in Sections 3.6.1 and 3.6.2) that when the sample partly fills the gauge 
volume, the position of the effective centroid of the SGV is not at the center of the IGV, 
usually the  

 

FIGURE 3.28 Setup of a large 
cylindrical weldment on the TAS 8 
instrument at Risø National 
Laboratory, Denmark, in order to 
measure (a) the radial, (b) the axial, 
and (c) the hoop strains with the 
direction of the neutrons indicated by 
arrows. The seller collimators and 
aperture holders, mounted on an 
optical bench, can be seen. In 
configuration (c), the incident beam 
passes into the cylinder through a hole 
cut in the cylinder, and the incident 
aperture is positioned inside the 
cylinder [61]. 

reference point of the instrument, due to geometric and attenuation effects. As a result, in 
addition to the fact that the effective position of measurement is not the nominal one, the 
strain is incorrectly measured prior to applying a correction for these effects. The term 
“surface effect” will be used here as a generic term for all possible errors introduced 
when measuring near-surfaces, either in the value of strain measured or the position of 
measurement, or both. To distinguish strain and position errors, we say that surface 
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effects give rise to spurious near-surface strains and spurious near-surface locations, 
referred to more concisely as spurious strains and spurious locations. Indeed, we have 
seen that even if the IGV is filled by the sample, attenuation effects can shift the position 
of the SGV centroid (Figure 3.25), and thus can also give rise to anomalous angular 
shifts, which if combined with peak positions recorded for a correctly centered stress-free 
reference sample, will give rise to spurious values of strain unless accounted for. Note 
that spurious strains recorded near the surface for stress-free samples are sometimes 
called “apparent” strains or “pseudo strains,” but we reserve the latter term to denote the 
anomalous strains arising from intergranular effects as discussed in Chapter 5. The term 
“surface effect” is also often used in the literature to describe just the occurrence of 
spurious strains. 

The magnitude of the anomalous shift in measured angle, and thus the related spurious 
strain, is dependent on the configuration and type of the instrument used. The effect is 
most easily understood in the case of a simple monochromated, continuous-beam, two-
axis diffractometer with a single detector, as in Figure 3.8. If one imagines the case of 
perfect resolution (i.e., no angular or wavelength spread in the incident or diffracted beam 
path), there would be no anomalous shift, as in, for example, an offset sample in 
reflection configuration at the corner of the IGV (Figure 3.23), since the detector would 
respond only at the correct Bragg scattering angle. Two effects can give rise to spurious 
strains from surface effects, the first arising because of a wavelength spread across the 
incident beam on the IGV, and the second because the instrument has imperfect angular 
resolution. The former means that the part of the IGV filled by the SGV determines the 
relevant wavelength profile, causing a shift in the mean wavelength. This is sometimes 
termed the wavelength effect (WE). The wavelength distribution is properly averaged 
only when the IGV is completely filled. The second effect, termed here the positional 
discrimination effect (PDE), means that the signal recorded by the detector is dependent 
on where within the IGV the diffracting grains are positioned, that is, on the position of 
the SGV in the IGV. If the scattering event occurs within the IGV at a position farthest 
from the monochromator, it will be measured as occurring at a lower angle of the detector 
than if it occurred within the IGV nearest the monochromator. Consequently, in the 
former case one obtains a negative anomalous shift in angle corresponding to a spurious 
tensile strain. By the same argument, a compressive spurious strain is recorded in the 
latter case. Examples of measurements are shown in Figures 3.30 and 3.32. This effect 
can be minimized by increasing the sample-detector distance and thus decreasing the 
positional discrimination relative to the angular discrimination. 

The anomalous shifts in angle due to surface effects have been treated theoretically by 
simulation using ray-tracing techniques or Monte-Carlo codes [62,63] in order to identify 
the causes and characteristics of the problem, and to guide the selection of appropriate 
experimental configurations that can be used to minimize the effects. By way of an 
example, we discuss the results of Lorentzen [62] who carried out simulations for a 
simple, monochromatic continuous beam instrument in order to illustrate how the two 
different effects, the WE and PDE, contribute to the anomalous peak shifts. The 
calculations, which did not include attenuation of the rays in the sample, were made for 
various combinations of take-off angles from the monochromator and the sample. They 
show that the peak shifts are strongly correlated with the experimental configuration. The 
positional discrimination effect, referred to in his article as the “center of gravity” effect, 
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is larger than the “wavelength effect” and as expected, reduces as the size of gauge 
volume is reduced. The two effects may add or subtract depending on the relative 
scattering angles at the monochromator and sample. In particular, it was found that the 
wavelength effect can be nullified by matching the two takeoff angles, 
Thus, by using this focusing condition part of the problem can be overcome for the 
configurations considered, but the positional discrimination remains, causing peak shifts 
related to partial gauge filling. The surface-related spurious strains for a 90° scattering 
angle, when a plate sample is translated through the IGV in either the transmission or 
reflection configuration are shown in Figure 3.29a and b, respectively. These two 
situations arise when measuring the in-plane and out-of-plane strains in the plate, 
respectively. The consequent spurious surface shifts in strain have an antisymmetric 
profile as the sample is translated through the IGV,  

 

FIGURE 3.29 Illustration of spurious 
strains due to WE and PDE effects. 
Numerical results are shown for the 
simulation of a configuration mm wide 
apertures on both the incident and 
diffracted beams, situated at 5 mm 
distance from the centroid of the NGV, 
sample scattering angle and 
various scattering angles at the 
monochromator. The beam is incident 
from the top of the diagram, and the 
detector is to the right. A plate of 
thickness 1/√2mm is translated through 
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the NGV in (a) transmission, and (b) 
reflection configuration. The hatched 
areas indicate the sampled gauge 
volume in each case [62]. 

 

FIGURE 3.30 The 311 measured 
Bragg peak angle and intensity, from a 
strain-free nickel powder contained 
between aluminum sheets in cell 4 mm 
wide and 0.5 mm thick, as a function 
of translator position. The NGV was a 
0.5×0.5×20 mm3 with square 
horizontal cross-section. The sample 
was moved in 0.4-mm steps through 
the NGV from one side to the other in 
the transmission configuration used for 
measuring the ‘in-plane’ strain 
component. The variation reflects the 
anomalous angular shift [64]. Near the 
surfaces, the translator position does 
not accurately reflect the centroid of 
the sampled gauge volume. The correct 
locations of the centroid can be found 
using Equations (A.2.1a–d). 
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shifting from tension to compression as the centroid of the SGV moves toward the 
source. The magnitude of the spurious strain depends on the take-off angles at both the 
monochromator and sample. 

The results of these simulations are in good agreement with experimental evidence 
obtained from a scan of a Ni powder, for which no elastic strains would be expected 
(Figure 3.30). They confirm the predicted antisymmetric nature of the angular peak 
shifts, and show that these can lead to values of the spurious strain exceeding 1.6×10−3, or 
1600 µε, even for a relatively small-gauge cross-section (0.5×0.5 mm2). Clearly, it is 
extremely important to minimize and correct for these effects. 

In addition to surface effects, it was seen in Section 3.6.2 that for attenuating materials 
the SGV centroid is shifted from the center of the IGV even when the sample fills the 
IGV. This will give rise to anomalous shifts in angle which must be corrected for. 
Systematic shifts in the angle of diffraction peaks can also occur if there is a strong 
texture gradient in the sample as a function either of position or sample angle. There is 
then a variation of the strength of the scattering across the SGV that will bias the peak 
position to lower or higher angles. An example where this is important is in the 
measurement of strain components at positions across the radius of an extruded rod, 
where there is a texture gradient due to the variation of plastic deformation with depth. 

The above discussion pertains to monochromatic beam continuous source instruments 
with a single detector. When a PSD is used, the situation is more difficult to analyze, as 
the IGV, SGV, and observed peak profile are interdependent, and geometric effects due 
to an off-center centroid of the SGV can be large [57]. If the divergence of the diffracted 
beam is larger than the angle that the aperture in the diffracted beam subtends at the 
reference point, shifts in the peak profile can occur due to asymmetric peak “clipping” 
[57]. The use of radial collimators helps to lessen this interdependence. Simulation using 
ray tracing is the best means of description, and an example is given in Section 6.5.2. 

The use of pulsed source instruments with a PSD to measure near-surface strains 
requires further careful consideration. The channels of the radial collimator are associated 
with different elements of the detector and are combined to give the Bragg peak profile as 
a function of time of flight. A partly filled IGV will cause a change in the angular 
illumination of the detector elements, giving rise to a shift in the peak profile when the 
intensities are combined. This so-called “shadowing” effect is illustrated in Figure 3.31. 
The geometric spurious strains arising from these effects can, however, also be calculated 
using a ray tracing routine, and corrected for [29]. 

3.6.4.1 Corrections for Anomalous Angle Shifts 

Model-Based Correction. One may model surface effects 
by ray tracing or Monte Carlo techniques, as mentioned 
above. However, this requires extremely accurate and 
reliable calculated predictions of the anomalous angle 
shifts, as the strain resolution sought in the measurement 
may amount to only a few percent of the magnitude of the 
anomalous shifts. 
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As an alternative to correcting anomalous angle shifts by simulation calculations, there 
are a number of ways in which the anomalous angle shifts from partially filled IGVs can 
be corrected or compensated for experimentally. 

Exploiting Symmetry. In the case of relatively thin plate samples that have 
the same stress state on both surfaces, the symmetry of surface anomalies 
shown in Figure 3.29 can be exploited. Since the anomalous shifts in 
diffraction angle or time of flight on entry and exit of the sample are 
antisymmetric, the true strain profile can be deduced by taking the mean 
of the measured angular shifts on the entry and exit sides of the scan [64]. 
Clearly, this method requires the accurate location of the sample center. 
The principle of this technique, and an example actually taken from 
analogous measurements made using synchrotron x-rays rather than 
neutrons, is shown in Figure 3.32. 

Sample Surface Reversal. The above method requires similarly treated 
surfaces and a thin sample. More generally, the measured strains  

 

FIGURE 3.31 Schematic illustration 
of the ‘shadowing’ effect caused by 
five radial collimator foils when the 
normal instrument gauge volume is 
only partially filled on a pulsed source 
instrument. This causes a beating 
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effect on the detector bank as shown 
on the right for the 41 foils of the 
ENGIN instrument (Figure 3.18). This 
causes the peak profiles for each 
detector to be shifted relative to each 
other, giving an overall anomalous 
peak angle when they are combined, 
which must be corrected [29]. 

near one surface of a plate sample may be corrected experimentally by 
first scanning the surface of the sample into the IGV, and then reversing it 
by rotation of 180° about the vertical axis and scanning the same surface 
out of the gauge volume. If absorption effects are small, equal and 
opposite geometric shifts are measured and may be averaged to give the 
true perpendicular strain as a function of depth. Unfortunately, such 
averaging approaches require one to subtract two large values of strain 
aimed at arriving at a very small value with high accuracy (Figure 3.32b). 
Such methods are vulnerable to large errors, either in the peak shift 
measurements or the exact location of the surface. 
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FIGURE 3.32 (a) Spurious lattice 
strain recorded from the 311 peak from 
a 2 mm thick Si powder sample, as it is 
scanned in the transmission 
configuration through the indicated 
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nominal gauge volume (NGV) of the 
standard diffractometer 16.3 without 
an analyzer on the Synchrotron 
Radiation Source at Daresbury 
Laboratory (UK), and from the 220 
peak on the BM16 instrument at the 
European Synchrotron Radiation 
Facility, Grenoble, France, with a 
perfect Si crystal analyzer, which gives 
excellent scattering angular resolution 
that minimizes positional 
discrimination effects. The vertical 
dashed lines indicate the translator 
readings when the surfaces of the 
powder are at the IGV centroid. The 
spurious strains are of geometric origin 
(PDE), and occur until the point at 
which the NGV is totally filled, (b) 
When a symmetric strain field is 
expected from edge to edge, the 
spurious surface effect can be removed 
by taking the mean of the ‘entry’ and 
‘exit’ strains, as shown here for the 
data in (a) [64]. 

Use of an Identical Reference Sample. Another method is to use a 
strain free reference sample, such as a contained powder, having the 
exactly same geometry of the sample under strain measurement and, at 
each sample position, to subtract the two measured angles. As both 
include the same anomalous shifts, the corrected strain is obtained. Again, 
this requires very careful sample positioning. 

3.6.4.2 Minimizing Anomalous Angle Shifts 

It is clearly always important to minimize anomalous surface shifts due to partially filled 
IGVs by the experimental setup used. If the shifts can be drastically reduced, correction 
may not be necessary; minimizing these shifts will certainly help to reduce errors when 
using a calculated correction. The anomalous shifts may be minimized by using an 
experimental configuration that has the following characteristics: 

• Reduces the gauge volume cross-section area in the scattering plane 
• Reduced the angular divergence of the incident beam 
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• Increased the angular discrimination of the detector 
• Minimal distance between the apertures defining the IGV and its centroid and therefore 

the sample surface 
•Similar scattering angles and  

Figure 3.29 shows how such configurational changes can reduce the (calculated) spurious 
strains. 

Use of an Analyzer Crystal Also illustrated in Figure 3.32a is the effect of using a 
perfect Si crystal analyzer in a three-axis configuration, discussed in Section 3.7.1, set to 
diffract x-rays at the mean incident beam wavelength. A perfect crystal has a mosaic of 
less than a minute of arc, and so only scattered rays from the sample that are parallel to 
within this angle will be diffracted by the analyzer into the detector. In this way, the 
combination of a perfect crystal analyzer and detector set at its diffraction angle acts like 
the ideal collimator mentioned at the beginning of this section, and so essentially avoids 
positional discrimination. Such an arrangement can be used with effect on a synchrotron-
source instrument with its extremely high incident flux of photons. However, neutron 
instruments have neutron fluxes of many orders of magnitude less, and so perfect Si or 
Ge crystals are not practical, as we have mentioned in Section 3.2.1. The use of a mosaic 
analyzer on a neutron diffractometer will not provide a marked increase in diffraction 
angle resolution. Since an analyzer crystal is energy selective it may help to minimize the 
WE-related shift in some cases. 

Z-Scan Method. Experimental methods have been developed for near-surface 
measurements that avoid spurious near-surface strains, although they  

 

FIGURE 3.33 The Z-scan technique, 
where the sample is scanned in the z 
direction, gradually raising the sample 
surface into the gauge volume. The 
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vertical extent of the related, here 
shown tightly defined, diffracted beam 
can be released to give more intensity 
in most cases [66]. 

do restrict somewhat the flexibility of the strain investigation. One such method is the Z-
scan technique [65,66], where the sample surface is gradually raised into the IGV by 
scanning the sample in the vertical z-direction perpendicular to the horizontal scattering 
plane. The IGV is designed to have a very small vertical dimension, and there must be 
minimum vertical divergence of the incident beam, that is, no vertical focusing. Provided 
the incident beam fully defines the IGV in the vertical direction, the vertical aperture in 
the scattered beam may be relaxed to increase the detected intensity. The principle is 
illustrated in Figure 3.33. Clearly, the surface of the sample must be accurately aligned in 
the horizontal plane of the narrow incident aperture. Since the IGV is fully filled in the 
horizontal scattering plane, the centroid of the SGV is always on the reference axis, and 
consequently there are no geometric shifts. 

The technique is restricted in flexibility in the sense that the gauge volume necessarily 
must be located near the sample’s vertical edges; otherwise, the neutron beam path 
becomes prohibitively large and sample absorption must be low. On the other hand, it has 
the advantage that when the surface is gradually raised into the IGV, the scattered 
intensity increases with depth in a linear manner. This is in contrast to the severe rise in 
intensity occurring when translating the surface of a sample horizontally into an IGV 
with a square- or diamond-shaped cross-section. Near-surface measurements using this 
technique have been carried out to great accuracy as illustrated in Figure 3.34, where the 
steep gradient of the stress fields of a shot-peened surface have been measured with the 
SGV centroid approaching within 45 µm of the actual surface [67].  
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FIGURE 3.34 The near surface bi-
axial stress profile from strains 
measured using the vertical Z-scan 
technique on a shot-peened nickel 
alloy (IN 718) plate sample. This 
sample was used for a round robin 
exercise in the VAMAS Technical 
Working Area 20 [67]. 

3.7 Specialized Instruments for Strain Measurement 

3.7.1 Triple-Axis Spectrometer 

The triple-axis spectrometer is a steady-state reactor source instrument used primarily for 
inelastic neutron scattering, in which the wavelength or energy, of the neutrons incident 
on, or scattered by, the sample may be scanned. The layout of the instrument is shown in 
Figure 3.35. The monochromator and analyzer crystals are set in the reflection condition, 
and their angle and that of corresponding diffracted beam direction are rotated in the ratio 
1:2, which maintains the Bragg condition, to vary the wavelength. The detector may be a 
single detector or a PSD. 

For strain measurement, the triple-axis instrument is normally set so that the analyzer 
diffracts neutrons with the same wavelength (energy) as those incident on the sample—
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that is, for elastic scattering from the sample. The analyzer-detector angles are held fixed 
as the scattering angle is scanned. While the third axis is an unnecessary complication 
for most strain measurements, it can prove advantageous if the sample is radioactive 
steel, when the Co60γ-rays can be shielded from the detector as they pass through the 
analyzer  

 

FIGURE 3.35 Schematic layout of a 
three-axis instrument with (a) a single 
detector and (b) a position-sensitive 
detector. 

crystal that will only diffract the neutrons. Another use is to filter out unwanted neutrons 
that may be in the incident beam from the monochromator by setting the analyzer to only 
diffract the required wavelength. Whereas higher orders are not usually a problem, if the 
higher order of a monochromator is used as the main incident beam there may also be 
wavelengths of 2λ present in the beam. An example is when the 004 reflection planes 
from pyrolytic graphite (PG) monochromator are used to provide the desired incident 
wavelength, λ, giving better resolution than the 002 reflection because of its higher 
monochromator scattering angle In this case, the 002 planes will usually give a more 
intense incident beam of 2λ, which may be incoherently scattered by the sample with a 
resulting increase in background. If the analyzer crystal PG 002 planes are set to detect 
only λ, the 2λ neutrons will not be detected. 

Use of an analyzer can also help to improve the angular resolution in scattering angle 
of an instrument if the mosaic spread of the analyzer crystal is smaller than the 
collimation angle. However, as always, this improvement is at the expense of detected 
neutron intensity. The use of a perfect Si crystal analyzer on a synchrotron x-ray 
instrument was described above. 

The conventional triple axis spectrometer can be used in two other modes in order to 
measure strain. The first is to scan both the wavelength incident on the sample and that 
diffracted from it, holding the scattering angle fixed at corresponding to the mean 
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wavelength. In this configuration, the instrument is being used rather like a time-of-flight 
instrument. An alternative is to open up the resolution of either the monochromator or 
analyzer system so that the broad range of wavelengths in a scan is fully accepted, and to 
scan the other system with tight resolution. A specialized use of the conventional 
instrument with a PSD is described in the following section.  

3.7.2 Use of Horizontally Curved Silicon Crystals 

Attempts to improve strain measurement efficiency in terms of high detection rates of 
useful neutrons of a continuous beam diffractometer have led to the development of 
vertically bent extended monochromators and PSDs, as described in Sections 3.2.1 and 
3.3. However, in order to obtain very good resolution, high monochromator scattering 
angles, 2θM, are necessary, with consequent loss of monochromated neutron flux. A 
compromise between resolution and intensity is always present, but as remarked in 
Section 3.4, one method of improving count rate is to relax unnecessarily tight resolution 
components. Since strain measurement requires only a small range of scattering angles 

to be detected and gauge volumes are usually small, this has led several groups to 
consider the use of monochromator crystals bent about a vertical axis to focus neutron in 
the horizontal plane onto a small IGV, with no intervening soller collimator. Such 
horizontally bent monochromators can give optimum resolution over a narrow range of 

 
Silicon and germanium crystals can be readily grown to large dimensions, but as 

remarked in Section 3.2.1, only with small mosaic angular spread. By bending the crystal, 
the effective mosaic can be increased for certain configurations of use, and the neutrons 
can be focused onto a small volume. Silicon has been used in this way, primarily by 
groups at the Nuclear Physics Institute Rež, near Prague, in the Czech Republic, in 
collaboration with Physikalisch-Techniche Bundesanstalt, Braunschweig, Germany [68–
70], and at the University of Missouri [71]. Silicon single-crystal plates, typically of 
dimensions up to ~5×30×200 mm3 are cut from a large crystal in well-defined 
orientations and bent with a variable radius between ~10 m and infinity using a four-point 
mechanical bend [68,70,71]. Vacuum and pneumatic techniques have also been used to 
produce the bending [71]. The bent crystals may be stacked vertically at tilt angles to 

each other to give focusing also in the vertical plane. If the crystals are cut with a 
axis vertical, various monochromator planes (hkk) may be brought into use by rotating 
the assembly about a vertical axis to give different wavelengths. A typical focusing 
silicon monochromator is shown in Figure 3.36. 

As examples of the use of these crystals by the Rež group, a two-axis instrument [68] 
is shown in Figure 3.37, and a three-axis instrument [69] in Figure 3.38. These have very 
good angular resolution, enabling both microstrains from Bragg peak line widths and 
macrostrains from Bragg peak angular shifts to be measured. The two-axis instrument 
comprises the bent Si monochromator, with of 90° and a PSD. The PSD can be set to 
cover the required range of and so there are no moving parts. The three-axis 
instrument utilizes two bent Si crystals as monochromator and analyzer in symmetrical 
geometry, and a conventional detector. The analyzer system is scanned in around the 
sample. The symmetric geometry is shown by theory to give the optimum resolution [69], 
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so a choice of monochromator and analyzer plane is made to match that of the sample to 
give this symmetric scattering. However, this means that the scattering angle is ~50°,  

 

FIGURE 3.36 (a) Schematic and (b) 
photograph of the doubly bent Si 
monochromator made at the Missouri 
University Research Reactor for the 
new strain measurement instrument 
(SALSA) at the Institut Laue-
Langevin. It comprises 39 perfect Si 
crystal pieces of 12×165×5 mm 
dimensions. The fixed vertical 
curvature is realized by shaped posts, 
the variable horizontal curvature by a 
four-point bending mechanism. 
(Courtesy G.Bruno.) 
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FIGURE 3.37 The layout of a high-
resolution two-axis instrument strain 
measurement using a bent silicon 
crystal monochromator [68]. 

 

FIGURE 3.38 Schematic layout of the 
use of two bent silicon single crystals 
in a three-axis arrangement [69]. 
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with consequent nonideal gauge volume. Bragg peak instrumental widths in can be as 
low as FWHM of ~6', corresponding to an instrument resolution of ∆d/d ~2×10−3, which 
is essentially the closest that two peaks can be before they can no longer be distinguished. 
It can be seen from the Figure of Merit, expressed in Equation (4.17), that this can be 
beneficial for strain measurement. As a guide, the peak position can be measured to an 
accuracy of about 1/100th of this FWHM. 

3.7.3 Specialized Time-of-Flight Techniques 

A conventional neutron chopper in a reactor beam or time-pulsed source beam uses only 
a very small duty cycle, ~1% to 5%, albeit with a full range of wavelengths. The 
spallation neutron source compensates for this by the very high intensity, or brightness, 
of each pulse. For high-resolution work, this must be reduced further by shortening the 
pulse time or pulse rate. This is compared to a 100% duty cycle using just a small 
wavelength range in a conventional steady-beam instrument. Attempts to improve the 
duty cycle of a time-pulsed reactor beam have been made by using choppers with “open” 
and “closed” segments that give a sequence of intensity pulses of different duration with 
time. The sequence may be either “pseudo random” or “sinusoidal,” and in each case 
cross-correlation techniques are used to extract the useful signal at the detector, and the 
duty cycle rises to ~25%. One disadvantage of this method is systematic background 
levels arising from the analysis algorithms, which can give rise to problems in detecting 
small Bragg peaks. However, for strain measurement, a strong peak can be selected and 
the technique can be used to give high resolution.  

 

FIGURE 3.39 Schematic layout of the 
reverse-time-of-flight diffractometer 
FSS at GKSS. The detectors are 
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positioned accurately to give time 
focusing [33]. 

Researchers at the GKSS Research Centre (Geesthacht, Germany) have developed the 
technique for strain measurement by using the principle of Fourier analysis in which the 
beam is sinusoidally modulated, and the diffraction spectrum is analyzed in terms of sine 
and cosine components. The instrument, called the Fourier Strain Spectrometer (FSS) 
[33], uses the reverse tof (RTOF) method [72,73], in which the timing trigger is set by the 
detected neutron rather than the source pulse or rotor position. This allows a range of 
rotation frequencies to be used. The detected neutron intensity and phase relative to the 
chopper modulation is measured as a function of frequency. The chopper, shown in 
Figure 3.14c, is in the form of a disk with a comblike pattern of alternating absorbing 
gadolinium and transmitting aluminum segments around the periphery, which rotates 
about a horizontal axis in front of a similar stator. The detector banks of 6Li-glass 
scintillators are arranged in time-focusing geometry at on either side of the beam 
incident on the sample [73]. This time focusing must be done by hardware arrangement, 
as software corrections cannot be made in RTOF. The IGV is defined by apertures in 
both incident and diffracted beams, and the instrument layout is shown in Figure 3.39. 
The analysis of raw data is carried out by online computers to give line shapes that are 
close to the derivative of Gaussian shapes, so that the point of crossing the axis defines 
the center [72,73]. The resolution is better than ∆d/d=10−4.  

A method using frame overlap to increase the duty cycle of a conventional tof 
instrument on a continuous flux neutron source, to 5.8%, has been developed by Stuhr at 
SINQ [74,75]. The POLDI instrument uses a disk chopper with eight apertures cut at 
random angular spacing around the edge over a 90° sector; these are accurately repeated 
over the other quadrants to give short (8 µs) time pulses. The neutron counts from the 
eight overlapping frames are collected from a time-focused He3 PSD detector over a 30° 
range of scattering angle. The overlapping tof diffraction patterns are deconvolved by 
identifying their time origin from their time intervals, and from the slope of peak 
intensity contours in a plot of intensity versus time of arrival and angle Using neutron 
optics to define the beam, a resolution of ∆d/d ~2×10−3 FWHM can be attained. As a 
large range of is required the instrument is best used for strain measurement along a 
principal strain direction. It has advantages for measurements in large grained samples. 

3.7.4 Transmission Techniques 

The sharp increase in transmission through a sample as the wavelength is increased and 
no longer fulfills the Bragg condition for each lattice plane, described in Section 2.3.3, 
can be used to measure strain. The edges occur at wavelengths for each 
lattice plane of spacing dhkl. As each edge corresponds to a back-scattering angle 

the resolution is high, and the scattering vector and measured strain direction 
lie along the incident beam. There is a Bragg edge in transmission corresponding to each 
Bragg peak in the normal diffraction pattern, and the step change in transmission at each 
edge is analogous to the height of the Bragg peak at and the steepness of the 
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edge is related to the Bragg peak width. The edge profile may be parameterized and a 
Rietveld-type fit may be made to the spectrum of edges as shown in Figure 3.40 or to the 
differentiated spectrum [77]. 

Following early tests made at the Harwell LINAC in the 1980s, the technique known 
as “strain radiography” has recently been developed as a method of strain measurement at 
GKSS and LANSCE, and at ISIS [76]. As the intensity in transmission is very high, it is 
possible to observe the Bragg edge pattern after a single pulse of neutrons, so that 
transient effects during loading or relaxation can be studied on a millisecond or even 100 
µs time scale [77,78]. 

The technique is best applied to plate samples exhibiting plane stress, so that the 
through-thickness stress component normal to the surfaces may be taken as zero. If an 
area detector is used to measure the transmitted neutron intensity and pixels are grouped 
in fine spatial regions, a transmission image may be obtained. Such pixellated detectors 
allow maps of the normal strain (edge shifts), textural components (edge shapes and 
strength), or crystallographic phase analysis (relative strengths of edges corresponding to 
different phases) over the area of the sample illuminated by the incident beam that is 
imaged at one setting [76,77,79]. An example of such a map of strain is  

 

FIGURE 3.40 The normalized powder 
transmission spectrum from a ferritic 
steel sample observed on the ISIS 
transmission facility. The profile of the 
Bragg edges is fitted by the theoretical 
attenuation cross-section [76]. 
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FIGURE 3.41 Illustrating results of 
the use of the transmission imaging 
technique using a pixelated detector, 
(a) Variation of the, through-thickness 
average, out-of-plane elastic strain 
component around a cold expanded 
hole in a 12 mm thick steel plate [79]. 
(b) Phase selective imaging of neutron 
path lengths through the test sample 
shown in (iv). (i) In Fe, (ii) in Cu, (iii) 
total path length [82]. 

shown in Figure 3.41a. The strain components in the plane of the sample may be deduced 
by tilting the sample about the two perpendicular directions as shown in Figure 4.22. In 
this way, it resembles the sin2ψ technique used in x-ray diffraction stress measurement, 
which uses the fact that the normal stress at the surface is zero to obtain a zero-stress 
reference. As discussed in Section 4.6.3, another application is as a means of determining 

the zero-stress reference lattice spacing of a material, by making a number of 
measurements at different tilt angles [76,80]. 

The relative strengths of the transmitted Bragg edges in the pattern from a two phase 
material can be determined from a two phase Rietveld-like profile fit. The transmitted 
intensity from each phase recorded on a two dimensional pixellated detector can then be 
used to build up a two dimensional phase sensitive radiograph, with intensities from each 
phase related to their path length as a function of position. The results of a demonstration 
experiment on a cylindrical sample of copper surrounded by iron are shown in Figure 
3.41b. The beam is incident perpendicular to the axis of the sample. This technique opens 
up the possibility of phase selective tomographic imaging [82]. 
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4  
Practical Aspects of Strain Measurement 

Using Neutron Diffraction 

The principles of neutron diffraction and the instrumentation needed to undertake 
experiments are described in Chapters 2 and 3. In this chapter, the practical aspects of 
diffraction peak measurement and the analysis of the raw data required to determine 
accurate lattice strain are described. Appendix 3 provides a checklist of points for 
consideration when embarking on a strain measurement that builds on many of the 
aspects discussed in this and the previous chapter. 

4.1 Introduction 

In this chapter, considerations crucial to the acquisition of reliable strain measurement are 
discussed. These include the instrument setup, the practical choice of suitable diffraction 
peaks to evaluate lattice strain, the optimum choice of parameters defining the scan of the 
peak, and the method of peak profile analysis. The main points for consideration and a 
sequence for procedure are summarized in Appendix 3. 

During the 1997–2000 period, a committee comprising of scientists and engineers 
from around the world involved in stress measurement using neutron diffraction, met and 
discussed the procedures currently used with a view to setting up a standardized 
approach. This committee worked within the framework of VAMAS, the Versailles 
Agreement on Advanced Materials and Standards, as Technical Working Area (TWA) 
20, “Measurement of Residual Stress” Their draft report was published in 2000, and 
contains details of their recommended standard procedures [1]. The topics discussed in 
this chapter amplify and build on some of the VAMAS committee’s work and enlarge on 
aspects touched on in Chapter 3. In this discussion, it is necessary to anticipate important 
aspects of the conversion of strain to stress described fully in Chapter 5, and in particular 
the effects of elastic and plastic anisotropy and intergranular stresses.  

The equation for lattice strain, εhkl (Equation (3.8)), 

 (4.1) 

is very similar to that for the continuum engineering strain. However, it is important to 
remember that while diffraction does allow one to probe the atomic lattice spacings with 
great precision, it has quite different characteristics from a conventional strain gauge. For 
this reason, the analysis of diffraction data is far from straightforward. In fact, a great 
deal of information of importance to engineers and materials scientists can be obtained 
from the behavior of a diffraction peak profile from a sample under load, including its 



shape, center, width, and height. The interpretation, from both the engineering and 
materials science perspectives, of the lattice strain data in terms of stress using the 
appropriate diffraction elastic constants is the main topic of Chapter 5. 

It is essential for both the measurement and interpretation of strain data from a 
polycrystalline sample, especially in the process of converting Bragg peak angles into 
strains and thence calculating stresses, to appreciate the highly selective nature of the 
diffraction technique. As has been mentioned in Chapters 2 and 3, using the powder 
method, a single hkl diffraction peak is inherently associated with a subset, or family, of 
the order of several thousand grains within the sampled gauge volume of, typically, a few 
cubic millimeters. This subset consists of grains with hkl plane-normal oriented in the 
direction of the scattering vector Q, and the technique thus provides a very selective 
measurement. As described in Section 1.4.1, strain variations occurring over a 
characteristic distance l0 greater than the corresponding sampling gauge volume 
dimension are recorded as shifts in the angle or wavelength at which a diffraction peak is 
measured, whereas those having a characteristic length shorter than the corresponding 
sampling gauge dimension, often termed microstrains, are evidenced by changes in the 
profile of the diffraction peak in width or shape. As a result, the angle representative of 
the center of the peak provides the lattice strain in this subset averaged over the gauge 
volume. While it should always be remembered that the measured lattice strain is an 
average, it is often termed simply the lattice strain and will for reasons of brevity often 
be referred to as such in this book. That the lattice strain is proportional to the 
macroscopically applied stress, at least below the proportional (elastic) limit, is evident in 
Figure 4.1. The consequence of the selective nature of the individual different reflections 
is also clear from the figure, which shows their different average lattice strain response 
from that of a conventional strain gauge to applied loading, even at low loads. The 
different slopes of the strain-stress curves before macroscopic plastic yielding in Figure 
4.1 is called elastic anisotropy, and arises from the different elastic properties of the 
various crystal lattice planes. Clearly,  

 

FIGURE 4.1 The elastic lattice strain 
response for austenitic stainless steel 

Introduction to the characterization of residual stress by neutron diffraction     156



parallel to uniaxial loading as 
determined from individual peak 
analysis and by Rietveld analysis of 
the whole diffraction profile. The latter 
is in good correspondence with the 
macroscopic strain gauge in the elastic 
regime, and is linear with the applied 
stress in the plastic regime. It is clear 
that the departure from linearity in the 
macroscopic strain response (same 
abscissa scale) occurred at around 200 
MPa, and the 0.2% yield stress occurs 
at around 260 MPa [2], 

this elastic anisotropy must be taken into account when interpreting diffraction data, and 
is discussed fully in Section 5.5. 

It is also clear from Figure 4.1 that unlike a conventional strain gauge, firstorder lattice 
strains—which by their nature must be elastic—are not sensitive to macroscopic plastic 
strain. This is because plastic strain occurs by slip processes and the passage of 
dislocations through the crystalline lattice, and does not give rise to any increase in the 
lattice spacing per se. However, plastic strain can give rise to intergranular misfits 
leading to Type II intergranular stresses. As a result, lattice strain gives a measurement of 
the stress even in the plastic regime. As to whether this stress is representative of the bulk 
stress depends on whether there are intergranular stresses formed that cause the elastic 
lattice strain for that particular reflection to differ from the bulk elastic strain. 
Intergranular strains generated by plastic straining give rise to the nonlinearities in the 
applied stress versus lattice strain curves seen in Figure 4.1. These nonlinearities are 
termed plastic anisotropy and also need to be accounted for when interpreting strain data 
in terms of stress. The complete understanding of intergranular stresses is an important 
and ongoing challenge, and the current situation is discussed in Section 5.6.  

4.2 Measurement of Diffraction Bragg Peak Profile 

In this section, a number of factors affecting the approach to making a measurement of 
strain are enumerated and discussed. The questions to be asked when embarking on a 
series of stress measurements are summarizesummarized in a logical sequence in 
Appendix 3. 

4.2.1 Choosing an Appropriate Gauge Volume 

The factors that must be considered when deciding on an appropriate gauge volume have 
been introduced in Section 3.5. On the one hand, as large a gauge volume as possible is 
desirable to maximize the data acquisition rate, but on the other, restricting the gauge 
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volume in certain directions to maximize spatial resolution is also desirable, such as in 
directions of high strain gradient. At the present time, a practical lower limit of the 
sampled gauge volume, Vv, for neutron diffraction is a minimum dimension of ~0.33 mm, 
and a sampled volume of ~1 mm3. As mentioned in Chapter 3, one way of finding a 
balance between these competing demands is to use a “matchstick” shape gauge volume 
where possible, aligned with the long axis parallel to a direction in which the strain field 
is not expected to vary steeply—that is, it has a large characteristic length l0 (Section 
1.4.1). It is also important to consider the type of stress of interest. In general, neutron 
diffractometer gauge volumes tend to measure macroscopic Type I stress variations for 
monolithic materials and phase-averaged Type II stresses for multiphase materials, that 
is,  

The grain size in the sample material may place a limit on the minimum gauge volume 
possible if the conventional powder method is to be employed. The number of grains in 
the gauge volume is important in determining the quality of the diffraction pattern. 
Whether a sufficient number of grains lies within the gauge volume to achieve powder 
diffraction can be assessed by recording the diffraction pattern on a two-dimensional 
positional sensitive detector, as seen in Figure 4.2 for the low scattering angles 
characteristic of high-energy synchrotron x-ray data when uneven cone intensity becomes 
apparent. The same effect would be seen for neutron data; however, at the present time it 
is rare that two-dimensional data are collected. An effective way to determine if the grain 
size is sufficiently small is to monitor the variation in integrated intensity as the sample is 
translated through the gauge volume, as shown in Figure 4.2c and d. The desired outcome 
is a diffraction peak intensity variation that is within counting statistical uncertainty (see 
Section 4.4.3.3). Alternatively, the sample may be rotated in the beam over 10 to 15° 
about the vertical Ω axis, and a peak intensity monitored every 0.5°. Grains that are too 
large will produce large intensity variations, that is, variations which exceed those 
expected from counting statistics [1]. Texture, on the other hand, causes a gradual change 
of peak intensity over  
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FIGURE 4.2 Typical quarter 
diffraction patterns recorded using 
synchrotron x-ray diffraction for Al 
characteristic of (a) an instrumental 
gauge volume (IGV) large enough to 
meet the powder criterion, and (b) an 
IGV smaller than that necessary for a 
powder pattern. In (c) and (d), 
respectively, schematic intensity 
profiles representative of cases (a) and 
(b) on translating the sample through 
these IGVs. 

small ranges of sample rotation. In broad terms, a point-to-point integrated intensity 
variation of more than 25% is suggestive of an insufficient number of grains in the 
diffracting condition, and a larger gauge volume should be tried. Alternatively, if 
feasible, data from a large number of equivalent positions could be averaged. 
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4.2.2 Choosing an Appropriate Reflection 

In order to obtain a high-intensity peak representative of a large number of grains, it is 
usually advisable to choose a peak with a high structure factor and multiplicity (see 
Section 2.3.5). While these are clearly important factors, the effects of texture, elastic 
anisotropy, and plastic anisotropy due to intergranular stresses mean that the choice of 
Bragg reflection to measure strain must be made with great care, since these affect the 
subsequent conversion to stress, as discussed in Section 5.2. Whereas the influence of 
elastic anisotropy of poly crystals, discussed in Section 5.5, is understood quantitatively, 
that of plastic anisotropy is only qualitatively understood for most materials (Section 5.6).  

4.2.2.1 Elastic Regime 

It is clear from Figure 4.1 that in the macroscopically elastic regime, crystalline 
anisotropy effects are linear; therefore, in principle, any lattice reflection can be chosen 
for macroscopic strain determination within this region [1]. From one point of view, the 
goal is to find, and use, a reflection showing a linear behavior that resembles the 
macroscopic response of the aggregate so that the bulk engineering strain and the lattice 
strain are in 1:1 correspondence. However, it could be argued that by specifically 
selecting an hkl reflection corresponding to a compliant plane, we exploit the most 
sensitive gauge with the largest amplitude in lattice strains in response to the macroscopic 
deformation. Either way, since the responses are linear, the choice is not critical in the 
elastic regime as long as it is known that the sample has not previously undergone plastic 
deformation. However, in the conversion from strain to stress, we must address the 
inherent elastic anisotropy and use the correct diffraction elastic constants. These elastic 
constants may be determined by a calibration experiment in which a test sample of the 
material is subjected to known elastic loading in situ on a diffractometer, or they may be 
calculated as discussed in Section 5.5. 

4.2.2.2 Plastic Regime 

As discussed in detail in Section 5.6, there is at present insufficient understanding of the 
nature of intergranular stresses to accurately account for and to separate out analytically 
their contribution to the measured lattice strain in the plastic regime. Thus, the safest 
approach to relate the measured lattice strain to the macrostress in the plastic regime is to 
utilize as an internal lattice strain gauge one of those lattice planes that have been 
calibrated experimentally and known to develop the smallest residual intergranular 
stresses. In other words, use a reflection that is essentially insensitive to plastic 
deformation in that it provides an essentially linear lattice strain-stress response in both 
the elastic and the plastic regime. However, linearity in the lattice strain parallel to the 
applied load direction does not always mean that there is also linearity in the lattice strain 
measured perpendicular to the load direction. The former is usually taken to be sufficient. 
Advice on the most appropriate lattice planes to use for different crystal structures is 
given in the draft VAMAS standard [1]. Examples of the suitable reflections that are now 
known to exhibit good linearity for different materials, and some which do not, are 
summarized in Table 4.1. It should be pointed out that unless it is known for certain that 
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the sample has not undergone plastic deformation, only these reflections should be used 
to determine macrostress in an engineering component. 

One indication that a sample might have undergone plastic deformation is the presence 
of texture due to reorientation of the grains. The presence of texture in a sample 
influences the choice of Bragg reflection, because it may be necessary to use different 
reflections to obtain sufficient intensity to measure strains in different directions. Texture 
may also influence the  

TABLE 4.1 Lattice Planes Weakly and Strongly 
Affected by Intergranular Strains 

Material Recommended 
Planes (Weakly 
Affected by 
Intergranular 
Strains) 

Problematic 
Planes 
(Strongly 
Affected by 
Intergranular 
Strains) 

fcc (Ni 
[43], Fe 
[44], Cu 
[45]) 

(111), (311), (422) (200) 

fcc (Al 
[46], [47]) 

(311), (422), (220) (200) 

bcc(Fe[47]) (110), (211) (200) 
hcp Ti [31]) Pyramidal 

 
Basal (0002) and 

prism 
 

hcp (Be 
[49]) 

Second-order 
pyramidal 

 

Basal, prism, and 
first-order 
pyramidal 

 
Note: Only those that are weakly affected, and 
thus show good linearity of strain under at least 
uniaxial loading, are recommended for stress 
measurement. Note that hcp materials may be 
strongly affected by texture [1]. 

determination of stress from measured strains in both the elastic and plastic regimes, 
since it restricts the subset of grains contributing to a reflection and affects the averaging 
in the calculation of elastic constants. 

4.2.2.3 Avoidance of Anomalous Shifts of Angle Due to Bragg Edges 

The occurrence of a rapid change in transmission of neutrons at a Bragg edge, described 
in Section 2.3.3, can give serious anomalies in the conventional method of neutron strain 
measurement. This occurs when the neutron path through the sample is long and the 
scattering cross-section is large, as in the case of iron. Suppose that the wavelength 
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selected for the measurement is 2.86Å, as might be a natural choice of wavelength for 
measurements in bcc steel components since the 110 reflection is then at 
Unfortunately, as can be seen from Figure 3.40, this wavelength coincides exactly with 
the Bragg edge for the 002 reflection. If the wavelength distribution in the incident beam 
has a spread of about 0.05 Å neutrons on the short wavelength side are removed from the 
beam relative to those on the long wavelength side because of the higher cross-section on 
the short wavelength side. Thus, the average wavelength of the incident beam varies with 
path length through the material. In principle, this effect occurs at all wavelengths since 
the cross-section is never flat, but it is very marked at Bragg edges. If the nominal 
wavelength, which might well have been carefully measured in a calibration experiment 
with a standard powder such as silicon, is used to derive the lattice spacing and the strain 
from the peak positions, then a serious systematic error will occur. Although the effect 
may lead to peak asymmetry, it is unlikely that the experimenter would be able to 
differentiate it from other sources of asymmetry and the resulting effect on peak position 
could go unnoticed. 

An experiment demonstrating these effects for body-centered cubic steel was 
performed by Hsu et al. [3]. The average apparent strain was measured for three 
wavelengths, one exactly at the Bragg edge for the 112 peak, 2.34 Å as is shown in 
Figure 3.40, one just above at 2.50 Å and one below the cutoff at 2.28 Å. The steel 
sample was strain-free and was arranged in reflection geometry with a path length of 34 
mm. An anomalous shift in strain of more than 1000×10−6 was found when the 
wavelength corresponds exactly to the Bragg cut-off. The negative sign of the anomalous 
shift was consistent with the fact that the average wavelength was shifted to a higher 
value as the beam traversed the long beam path, although the apparent compressive shift 
was larger than expected. Anomalous shifts will be found for samples in both reflection 
and transmission geometries. As a general rule, the wavelength chosen must not lie 
within a range where corresponds to a Bragg edge [3]. 

Figure 4.3 shows the variation of the integrated intensity of the 110 peak in the steel 
sample as a function of wavelength. This result indicates a simple strategy for improving 
the penetration into thick samples, or alternatively improving the intensity for a given 
path length, by choosing the wavelength for the experiment for which the total cross-
section is smallest. This will be close to a minimum in the cross-section versus 
wavelength (Figure 3.40), but will avoid the actual Bragg edge. It is clear from Figure 4.3 
that the penetration may be improved by 50% simply by choosing the wavelength 
appropriately.  
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FIGURE 4.3 Integrated intensity of 
the 110 diffraction peak for 
polycrystalline iron as a function of 
wavelength near the 112 Bragg cut 
edge at 2.34Å (see Figure 3.40). The 
total path length through the sample 
was 13 mm. The open circles and 
triangles represent two different scans 
though the wavelength range [3]. 

4.2.2.4 Measurement of Many Peaks in a Diffraction Pattern 

In contrast to the single peak measurement described above, there are some advantages if 
several peaks are measured together in the form of a diffraction pattern profile. Such a 
profile could be the result of successive recording of a number of peaks by scanning the 
neutron wavelength or diffraction angle at a powder diffractometer on a steady-state 
neutron source. More commonly, however, it is the result of a time-of-flight experiment 
from a pulsed source, where the experimental data are always in the form of a diffraction 
profile including many Bragg peaks. These can be used individually, or more usually 
together for determining the lattice strain. A Rietveld profile analysis may be carried out 
on the entire pattern recorded, as described in Section 3.2.2, with further details given in 
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Section 4.5 below. This provides average lattice parameters over the range of peaks, with 
smaller uncertainties per given measurement time than on a continuous source 
instrument. 

In general, if it is thought that intergranular stresses are important, the collection of 
data from a number of peaks is recommended whether the measurement is made using an 
instrument on a pulsed or continuous neutron source. Other more practical factors also 
determine the choice of reflection as described in Appendix 3. 

4.2.3 Scanning the Diffraction Peak 

In order to scan a single Bragg reflection on a simple diffractometer efficiently, one must 
make a choice of the range of angles covered, the size of angular steps, and the duration 
of the count at each angle—all with a view to determining the peak center to the desired 
accuracy. If a position-sensitive detector is used that covers an adequate range of angles, 
the step size is defined by the pixel resolution, although these may be later binned 
together, and one can determine the count time by observing the build up of counts in the 
peak and consequent accuracy in determining its center. The same is true for most 
instruments on a pulsed neutron beam. The intensity and width of the peak, and the 
intensity of the background are determining factors. However, the overall time that needs 
to be allocated to the measurements and the consequent cost are usually the overriding 
considerations. Optimum use of that time is therefore paramount, and is discussed in the 
next section. 

4.3 Analyzing Bragg Peak Profiles 

The following sections discuss the analysis of diffraction peak profiles, and using the 
theory of statistical fitting how one can decide on the optimum scan parameters. Of 
course, in many cases it is sufficient to proceed empirically by trial and error, acquiring 
continuously and repeatedly fitting  

 

FIGURE 4.4 Typical diffraction peaks 
measured for the 002 peak of austenitic 
steel on a diffractometer operating on a 
steady-state neutron source, (a) by a 
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scan at a wavelength of 2.86Å, 
and (b) by a λ-scan at an angle of 

The solid lines are Gaussian 
functions fitted to the profile. 

the diffraction peaks until the required accuracy is achieved. However, it is often useful 
to be able to determine a priori the expected level of accuracy for a given signal, either to 
plan experiments ahead of time, to compare the capabilities of different instruments or to 
design new ones, or to check the performance and reliability of a chosen peak-fitting 
routine. Simple analytical expressions are available for predicting the precision of peak 
center in terms of the diffracted intensity, the peak width, and the peak-to-background 
signal [4]. The expressions are derived using standard procedures [5,6] applied to 
Gaussian peak shapes, but appear to be broadly applicable to other similar peak shapes. 

The diffraction peak can be measured as a function of angle or wavelength using 
steady-state or pulsed neutron sources. Whichever the approach, the outcome is a 
diffraction peak, or a diffraction profile over a series of peaks, for which the number of 
neutrons detected varies as a function of diffraction angle or wavelength. Typical peaks 
measured by scanning and λ using a continuous source instrument are illustrated in 
Figure 4.4. 

In this section the task of obtaining a measure of strain from the recorded profiles over 
one diffraction peak, or over several peaks, is considered. Although, as discussed in 
Section 5.7, the diffraction peak contains a lot more information about the state of strain 
within the sampled gauge volume than just the average value, the task of determining a 
representative peak center is emphasized here, since it is the shift in the peak center from 
that of a stress-free sample that is most simply related to a representative lattice strain. 
This is true whether the strain εhkl has been recorded as a shift, from that of a stress-free 
sample; in angle, θB; wavelength, λ; or time-of-flight, t, for the hkl reflection (see 
Equations (3.8) and (3.12)): 

 (4.2) 

In much of the following we shall focus on the standard continuous source diffractometer 
as the main example for discussion. 

4.3.1 Expressions for Peak Profiles 

4.3.1.1 Symmetric Peaks from Continuous Source Diffractometers 

Having obtained the raw experimental data in the form of diffraction peaks measured in 
terms of counts at successive angular positions of a detector, the task of obtaining the best 
estimate of the peak center is best achieved through a curve-fitting procedure. This 
involves the selection of an appropriate profile function to be fitted to the data. 

For powder diffractometers at steady-state sources, most of the elements defining the 
instrument resolution function can adequately be described by symmetric functions, as 
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discussed in Sections 3.2.1 and 3.4.1. Consequently, it is usually adequate to select a 
symmetric fitting function, the most common choice being a Gaussian-shaped function: 

 (4.3) 

where H0 is the fitted peak height, ux the standard deviation, xo the derived peak center (in 
angle, time, or wavelength), and B0 the fitted flat background at each point. In practice, 
the peak profile is measured at angular, time or wavelength intervals, xi, stepped in n 
increments ∆x. This profile has a full width at half maximum (FWHM) of 
[2√(21n2)ux=2.355 ux. The integrated area, I, under the peak itself is given by 

 
(4.4) 

However, of more significance is the total number of counts in the measured peak, as this 
dictates the accuracy of measurement, defined here as the summed or integrated count, Ic, 

 
(4.5) 

In the above expression, the integrated count has been calculated from the best-fit curve; 
it could also be calculated directly from the actual counts. Measured peak profiles 
sometimes appear to have tail sections more closely resembling a Lorentzian-shaped 
curve, as in  

 
(4.6) 

where the symbols, apart from ux have the same meanings as above. For this profile the 
FWHM=2ux, but the integrated intensity is not well defined because of the infinite tails. 
Typical Gaussian and Lorentzian peak profiles are shown in Figure 4.5. 

Often in the elastic regime, the peak profile is well represented by a Gaussian 
function, but in the plastic regime the profile may become more Lorentzian in shape. 
Combinations of these two functions are often used, most commonly the “Voigt” or the 
so-called “Pearson Type VII” functions; both provide a scheme for a gradual variation in 
shape from a Lorentzian to a Gaussian. The Voigt function is a convolution of a Gaussian 
and a Lorentzian function, and because it involves a convolution it is rather more difficult 
to implement in curve-fitting routines. A typical formulation of the “Pearson Type VII” 
function is given by 

 

(4.7) 
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FIGURE 4.5 Gaussian (filled circles) 
and Lorentzen (open squares) curves 
according to Equations (4.3) and (4.6), 
with H0=1, ux=1 and x0=0 and B0=0.1 
with ∆x=0.1. 

where m is the shape factor governing the balance between a Gaussian (m=∞) and a 
Lorentzian (m=1) shape. For further details, see Snyder [7] and Hall et al. [8]. 

The common statistical term for describing the width of a distribution is the standard 
deviation, ux. For diffraction peak analysis, however, it is common to use the FWHM. In 
all cases as exemplified above, simple relations can be established between the standard 
deviation and the FWHM, but is crucial that the quantity quoted is made quite clear at all 
times when describing uncertainty in results. 

4.3.1.2 Asymmetric Peaks from Time-Pulsed Source Instruments 

In contrast to symmetric peak functions which are normally adequate for describing data 
originating from steady-state sources as shown in Figure 4.4, diffraction peaks from 
pulsed sources tend to be asymmetric in character due to the moderation process, as 
mentioned in Section 3.2.2, necessitating a more complicated function. A typical example 
of a pulsed-source single-peak profile from Si powder is shown in Figure 4.6. As fitting 
the whole diffraction pattern profile simultaneously using a Rietveld type approach is 
often required, the wavelength-dependent evolution of the peak profile must also be taken 
into account.  
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FIGURE 4.6 A Si 220 Bragg peak 
recorded on the ENGIN beamline at 
the ISIS time-of-flight source. 
(Courtesy of M.R.Daymond.) The 
solid line is the best fit of the function 
given by Carpenter et al. [11]. 

Incorporating the basic physics behind the asymmetry, a function consisting of leading 
and trailing exponentials joined back to back convolved with a shifted symmetric 
Gaussian, was the first peak shape function that enjoyed widespread use [9,10]. This 
approach is particularly useful for heavily polyethylene-moderated sources, such as some 
of those at Los Alamos National Laboratory. To achieve better fits to the data on high-
resolution instruments across the full range of wavelengths and characteristics of 
different types of moderator, more complicated fitting functions have been developed. 
The function developed by Carpenter et al. [11] fits the peak profile by a function 
consisting of a sharp rise followed by the sum of two exponential decays, convolved with 
a shifted Gaussian. This function is shown as the solid line fit to the data in Figure 4.6, 
and is currently used to fit much of the data collected on ENGIN-X. The approach by 
Ikeda and Carpenter [12] has been developed to include a more physical and detailed 
account of the incident wavelength spectrum resulting from a short-wavelength 
epithermal contribution and a longer-wavelength moderated contribution. The function 
consists of the sum of a delta function and a decaying exponential with arbitrary relative 
areas, convolved with a “slowing down” function, and involves four wavelength-
dependent parameters. This function is better for undermoderated sources, which are 
common at ISIS. These three functions are discussed by Carpenter and Yelon [13], and 
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are illustrated schematically in Figure 4.7. A more comprehensive list of common fitting 
functions is given in Young [14]. 

It is clearly very important to record carefully the parameters defining the peak profile 
used in the analysis of pulsed source diffraction data. With such complicated functions, it 
is not appropriate to define a “center” for each profile but rather a well-characterized 
feature such as the channel corresponding to the steepest slope of the leading edge or the 
peak intensity. As long as this characteristic feature is the same for corresponding peaks 
from the sample and reference, it can be used to determine shifts in the time channel, and 
hence macrostrain, with very good accuracy. If the absolute lattice spacings, or intrinsic 
widths of the peaks, are required, it is necessary to fit the same peak profile function with 
the same instrumental parameters to all corresponding peaks from the calibration sample, 
sample under study, and the reference sample. 

4.3.2 Fitting a Profile to a Single Diffraction Peak 

Using the basic continuous source diffractometer as an example, once the form of the 
peak profile has been chosen, the next step is to fit this to the data in order to extract the 
essential peak parameters. This is a well-defined problem in the field of statistics, and 
usually involves the method of nonlinear least squares or linear regression, described in 
many textbooks on the statistical analysis of experimental data. Most software codes are 
based on the so-called Levenberg-Marquardt method [15], which has become the 
standard in the field. A detailed description is found in Numerical Recipes [6], which also  

 

FIGURE 4.7 Schematic representation 
of three functions used to fit diffraction 
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peak profiles on a spallation source 
diffraction instrument. The asterisk 
denotes a convolution: (a) Jorgensen 
[10]; (b) Carpenter et al. [11]; and (c) 
Carpenter and Ikeda [12]. (Based on 
Carpenter and Yelon [13].) 

includes written procedures and instructions for incorporating them into a curve-fitting 
computer code. 

In fitting the theoretical profile F(xi) to the measured counts C(xi) at each of n angles 
xi, the function χ2, defined by 

 
(4.8) 

is usually minimized by varying the parameters in the function F(xi) in order to obtain 
their optimum values. ∆C(xi) is the uncertainty in the measured value C(xi). Clearly, if the 
fit is such that each calculated intensity is equal to the measured value within the 
expected uncertainty, the numerator and denominator at each point will on average be 
equal to unity, and the summation will equal the number of points on the scan, χ2=n. 
Indeed, χ2 is often defined with a prefactor 1/n multiplying the summation, so that χ2= 1 
for the statistically best fit. An alternative prefactor sometimes used is 1/(n −m), where m 
is the number of parameters fitted.  

4.4 Accuracy of Diffraction Peak Center Determination 

4.4.1 Accuracy of Fitted Parameters 

Following the above discussion of profile fitting, we can now consider uncertainty in the 
fitted parameters, and the optimization of a scan through a peak to give a desired 
accuracy We first consider the minimum total number of counts required for 
determination of the peak center to a desired accuracy This makes possible estimation of 
the required counting time, tM, and thus prevents counting for longer than necessary 

As we have seen, in a wide range of cases a Gaussian profile superimposed on a flat 
background is often an acceptable approximation for a continuous source diffractometer. 
We therefore describe the theoretical intensity count at an angle xi as given by Equation 
(4.3), which we may write in the form 

 

(4.9) 

This function has the advantage that the peak can be defined by four parameters: height 
H0=IC∆x/[ux(2π)1/2], standard deviation (ux), peak center (x0), and background (B0). Also 
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of importance is the measurement time to acquire the peak profile, tM; the integrated 
count, IC; the number of points measured, n; and their spacing, ∆x. 

4.4.1.1 Uncertainty in Case of Negligible Background 

Defining a “goodness-of-fit” function χ2 as in Equation (4.8), the maximum probability 
that is the “best fit” is obtained when χ2 is a minimum, that is when ∂χ2/∂x0=0, and 
strictly also ∂χ2/∂I=0, ∂χ2/∂ux=0, and ∂χ2/∂B0=0. The uncertainty in the best fit can be 
determined by considering the spread of probability around this optimal point. The 
approach is given in full in Withers et al. [4]; here we give only the basic results. 
Provided the Gaussian peak shape model is appropriate, they found that the center 
position of the peak is not strongly correlated with the width. Three assumptions were 
made: (a) the detected signal counts follow Poisson-type statistics, that is, the uncertainty 
of a recorded count is equal to the square root of its magnitude, true for fully statistical 
counting events; (b) there are sufficient points n present within the peak to allow the 
summation in Equation (4.5) to be approximated by an integral; and (c) that the 
background is negligible compared to the signal (H0>>B0). In this case, we obtain the 
expression for the uncertainty ∆u(x0) in fitted peak position x0:  

 (4.10) 
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FIGURE 4.8 Collection of data from 
many different published strain 
measurements, showing the logarithm 
of the ratio of uncertainty in the peak 
position to the peak width versus the 
logarithm of the total number of counts 
in a diffraction peak [16]. 

This expression has been used in defining a figure of merit for instrument design and 
optimization, discussed in Section 4.4.2. It is interesting to note that an empirical 
approximate form of this relation has also been determined by Webster and Kang [16], 
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who plotted the uncertainty in measured peak position, as a percentage of the FWHM, 
against peak intensity, for a large body of data, as shown in Figure 4.8. Their graphical 
results can be fitted by the relationship: 

∆u(x0)=1.05 ux/(Ic)0.45 
(4.11) 

where IC is the integrated count in the peak, a result that is in very close agreement with 
the analytical form.  

 

FIGURE 4.9 The increase in peak 
position uncertainty, ∆u(x0), predicted 
by Equation (4.12), normalized by that 
expected on the basis of zero 
background level, given by Equation 
(4.10), as a function of height-to-
background ratio. The ordinate 
expresses the penalty factor incurred as 
increased uncertainty for increasing 
levels of background. 

4.4.1.2 Effects of Background on Strain Uncertainty 

In the above discussion, the background B0 was assumed negligible. However, when a 
significant background is present, one commonly must acquire a larger signal count to 
achieve the same uncertainty in peak position as when there is no background. Withers et 
al. [4] have shown that in this case, the uncertainty is modified: 

 
(4.12) 
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It is clear that the accuracy expected on the basis of the signal alone (Equation (4.10)) is 
overly optimistic by a factor of (1+2√2 B0/H0)1/2. This penalty of greater uncertainty in 
peak position with decreasing peak height to background is shown in Figure 4.9. To 
achieve a prescribed uncertainty in the peak position, one must counteract this with 
longer count times to increase IC. For example, a signal-to-background ratio H0/B0 of 1 
gives approximately twice the uncertainty of that with no background, and would require 
an acquisition time four times longer to achieve the same accuracy. Given the rapidly 
increasing uncertainty in peak position for a given acquisition time, measurements for 
which H0/B0<1 can normally be regarded as unfeasible. 

As part of an empirical study, Stoica et al. [17] independently developed a very similar 
formulation:  

 
(4.13) 

This is in very good agreement with the analytical approach. Similar analytical 
expressions have been derived for the uncertainty in peak integral counts, ∆u(IC), and in 
peak width, ∆u(ux), taking a scan width of ±2.5ux [4]: 

 
(4.14) 

 
(4.15) 

The above analytical formulations express succinctly the uncertainty penalty of fitted 
parameters that is paid when the background level becomes significant compared to the 
peak height. The analytical approach is only strictly valid as B0/H0 approaches 0 or ∞. For 
more general ratios, Monte Carlo simulations have therefore been used; these study the 
effect of background level on the uncertainties in fitting a peak profile of fixed total 
counts IC [14]. The background level was varied systematically for a simulated peak 
profile with amplitude H0=1×105 counts and width given by ux=1.0, ∆xi= 0.1, so that 
IC=2.5×106 counts. Four Gaussian profile parameters (x0, H0, B0, ux) were fitted to the 
simulated counts, C(xi), which varied with Poisson uncertainties at each angle xi. The 
results are shown in Figure 4.10, where the determined uncertainty in peak position, 
intensity, and standard deviation is divided by that calculated from Equations (4.12), 
(4.14), and (4.15), and plotted against the height-to-background ratio (H0/B0). The 
deviations from the dashed lines in Figure 4.10 show how the analytic expressions are in 
error by only 8% (at H0/B0≈5), 3% (at H0/B0≈2), and 14% (at H0/B0≈ 9) for the peak 
position, intensity, and standard deviation, respectively. 

The expressions given above cannot be expected to be correct if the peak profile 
assumed is not an accurate description of the data, since some element of the uncertainty 
will then also arise from the incorrect profile [6]. Nevertheless, using the simple Gaussian 
formulation, Equation (4.9), good agreement is observed between the expression given in 
Equation (4.13) and data from a round-robin exercise on strain measurement for a 
ceramic composite. This is seen in Figure 4.11, where the effect of the background 
“penalty factor” is clear at low signal-to-background ratios. It is important to note that 
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this increase in uncertainty in peak position arises because of the uncertainty in 
background count at each point, even if the average background level is well known. In 
other words, increasing the width of the scan to include a large section of the background 
profile will not improve peak position uncertainty. Even if the profile is not Gaussian, it 
appears that as long as the “correct” peak profile is used in the fitting procedure, the 
above expressions are still likely to be useful. This has been shown to be true for an 
arbitrary, not necessarily symmetric, peak profile in the case of negligible background 
[18].  

 

FIGURE 4.10 The results of a four-
parameter fit of a Gaussian profile to a 
large series of Monte Carlo peak 
simulations made with constant 
IC=2.5×106, with H0=1×105, ux=1.0, 
and step size ∆xi=0.1, and various 
background levels B0. The resulting 
uncertainty in peak angle, normalized 
to that calculated from Equation 
(4.12), is plotted as a solid line as a 
function of signal to background ratio 
(H0/B0). Also shown are the variations 
in expected intensity and peak width 
normalized respectively by Equations 
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(4.14) and (4.15), displaced upward by 
0.2 and 0.4 [4]. 

 

FIGURE 4.11 The measured 
uncertainty in the determination of 
peak angle, or peak position in time, 
normalized by (ux/√IC) for the two 
phases of an Al2O3/SiC nanocomposite 
sample plotted against measured peak 
height to background. The data points 
were acquired from many neutron 
facilities around the world as part of 
the VAMAS TWA20 standardization 
exercise. As in Figure 4.9, the curve 
represents the function (1+2√2B0/H0) 
[4]. 

4.4.1.3 Systematic Uncertainties 

A vital part of any exercise in fitting a theoretical profile to experimental data, whether it 
is a single peak or a diffraction pattern, is to take great care to judge the validity of the 
results obtained. Even if it is felt that there is an acceptably small uncertainty in the fitted 
peak centers, the strain measurement may not necessarily be accurate, since many 
possible systematic effects, discussed in Chapter 3, may affect the interpretation. These 
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include instrument resolution, nonhomogeneous materials properties, an off-center 
centroid of the sampled gauge volume due to attenuation or texture effects, or a partially 
filled instrument gauge volume and uncertainties in positioning of the sample—especially 
in the case of steep strain gradients. It is therefore advisable to test for systematic 
uncertainties by empirical means, measuring the strain at the same position using 
different configurations of the sample and instrument. 

4.4.2 Time Required to Achieve a Given Accuracy in Peak Center 
Measurement 

Results of the above discussion of strain measurement accuracy can be used to assess the 
time required, tM, to achieve a specified uncertainty, ∆u(x0), in the derived peak center 
position, x0. From Equation (4.12), 

 
(4.16) 

where Ic, H0, and B0 are the rates at which total count, peak height, and background are 
acquired, respectively; that is, IC=ICtM, H0=H0tM, and B0 =B0 tM. This gives the well-
known result that the acquisition time is inversely proportional to the square of the 
required uncertainty. In other words, it takes four times as long to achieve twice the 
accuracy in angle or strain. The equation also highlights the need to minimize the 
background, especially when the signal intensity is low, as for example, when making 
measurements at positions deep within a component [19]. 

In order to compare the performance for strain measurement of different instruments, 
it is useful to define a Figure of Merit (FoM), as the “Inverse of the time taken to measure 
a lattice spacing to a given accuracy” [18]. From Equation (4.16),  

 

(4.17) 

This is of more widespread applicability than the simpler form given in Section 3.4.1, 
which is only valid for low background levels compared to the peak height. This FoM 
should be maximized when designing an instrument, and is especially important when 
considering an instrument for making measurements of strain at positions very deep 
within a sample, because at large depths the background level will be comparable to the 
signal. In such cases, an instrument with inherently low background will have a high 
FoM. For more general peak shapes, a proportionality constant can be introduced in the 
denominator. Of course, the peak width has both an instrument- and sample-dependent 
contribution, but this formulation reminds us that an efficient instrument for strain 
measurement should combine high detected count rate (IC), narrow instrument peak width 
(ux), and low background count rate (B0). A high detected count rate requires a high 
incident flux combined with a large solid angle of high-efficiency detectors. 
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4.4.2.1 Measuring at Positions Deep within a Sample 

As the path length through the sample increases, such as when making measurements at 
increasing depths in reflection geometry, beam attenuation causes an exponential 
decrease in the diffracted intensity (see Figure 2.11). This means that the time to acquire 
a given integrated peak count (IC) increases exponentially with depth. As a result, when 
making measurements at depth it is normally assumed that as the effective position 
sampled moves deeper into the sample, the measurement time must be increased 
exponentially to offset the increase in attenuation. However, this is oversimplistic since it 
does not take into account the background signal (B0) that Equation (4.16) shows must 
also be considered when estimating the acquisition time required to achieve a given strain 
uncertainty. For measurements made at positions deep in the sample where the signal per 
unit time may be low, the penalty factor (1+2√2B0/H0) becomes increasingly large. 
Consequently, it is often the background level that limits the depth to which practical 
measurements can be made and, as mentioned above, characterizes a good instrument for 
measuring strain. 

This practical limitation to the depth of the measurement position is now considered 
further with reference to measurements made on a 4.5-mm thick Ni powder sample at 
increasing depths, as it is translated through a small instrumental gauge volume. Figure 
4.12 shows the variation in the log of the count rate for the integrated peak counts (IC), 
peak height (H0), and background level (B0) as the sample is moved through the 
instrument gauge volume in reflection geometry. As expected, there is an exponential 
decay of count rate with increasing depth. In this case, the background count rate also 
decreases essentially exponentially. This is often the case, as noted by Withers [19], who 
has modeled the variation in background level as comprising: a constant instrument 
component Binst, which arises even when there is no sample present, and several sample 
dependent contributions Bsample. Taking into account the decrease in both the diffraction 
peak count rate and  
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FIGURE 4.12 The variation, with 
depth of the sampled position, of the 
count rate for the integrated Ni (311) 
count, IC, the peak height, H0, and the 
background, B0, as a 4.5-mm thick Ni 
powder sample is translated in 
reflection geometry through a 
0.5×0.5×5mm3 instrumental gauge 
volume. Corrections have been made 
for surface effects as described in 
Section 3.6. The measurements were 
made using the Chalk River, Canada, 
E3 strain instrument, with 
(Courtesy of P.J.Webster and 
P.Browne.) Instrumental and sample 
contributions to the total background 
level B0 are distinguished (based on 
Withers [19]). 

the background count rate with increasing depth it is possible to use Equation (4.16) to 
calculate the time required to achieve a stated strain measurement accuracy as a function 
of depth. For the data shown in Figure 4.12, the time required to attain a strain accuracy 
of 10−4 as a function of depth is shown in Figure 4.13. In the latter case the sampled 
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gauge volume considered is 1×1×40×=40 mm3. As one would expect, in the absence of 
background, the time would increase exponentially. On the other hand, if the background 
level were to remain constant, equal to that encountered near the surface, the time 
required would soon become prohibitive. However, the time for a decreasing background, 
which is commonly observed experimentally, is parallel to the zero background curve for 
positions near the surface because the background rate falls off almost exponentially in 
proportion to the counts in the peak (Figure 4.12). However, at large depths the flat 
background component dominates; consequently, the response becomes parallel to the 
constant background curve. 

It is clear from Figure 4.13 that at some point it becomes economically impractical to 
probe any deeper into the sample. Few scientists or engineers would consider it feasible 
to count for more than 12 h on a single point, and from Figure 4.13 this places the 
maximum depth of the position of measurement at about 9.8 mm for a gauge volume of 
40 mm3. This introduces the  

 

FIGURE 4.13 The time needed to 
attain a 10−4 strain accuracy at Chalk 
River for Ni measured in reflection 
geometry using data extracted from 
Figure 4.12, but with a 1×1×40 mm3 
sampled gauge volume. Predictions are 
shown for the cases of no background, 
a background level equal to that 
encountered near the surface, and one 
that decreases with depth. 
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concept of the economically feasible path length of the neutron in the material, including 
both incident and diffracted beams, which here is ~28 mm, as a useful benchmark. As the 
path length for is 2√2 times the depth for the reflection configuration, this 
governs the maximum depth at which meaningful measurements can be made on a given 
instrument for a given material and scattering angle. If times longer than 1 h are 
unacceptable, then the maximum depth would be 7.5 mm for this gauge volume. Withers 
[19] has suggested that a peak height-to-background ratio (H0/B0) of 1 might be a more 
appropriate criterion than a time-based one, because beyond this ratio the penalty factor 
in Equation (4.16) becomes prohibitive. Based on the same incident flux and instrument 
setup as that used to acquire the data for Ni powder in Figure 4.12, it is possible to 
estimate the count rate for the diffraction peak and background with increasing depth for 
any material [20]. The diffraction peak height and background count rates for three 
engineering materials are shown in Figure 4.14 for a scattering angle 90°. Note that for 
the Chalk River instrument used, the exponentially falling sample-dependent component 
of the background is not very important in determining the maximum feasible depth, that 
is, the point at which B0/H0=1. In such a case, the depth capability of the instrument could 
be improved by lowering the instrument background, although in this example only with 
difficulty as the instrument is saturated on a beam tube which passes through the reactor 
core. 

Using the above maximum allowable time and peak-to-background ratio criteria, some 
economically feasible path lengths for 1–8Å neutrons in a range  

 

FIGURE 4.14 The predicted variation 
in count rates for the diffraction peak 
height (solid symbols) and the 
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background level (open symbols) with 
increasing depth penetration of the 
sampled gauge volume for a range of 
engineering materials, based on 
Withers [20]. The predictions are 
based on and a sampling gauge 
of 1×1×40 mm3 for the Al(311), 
Ti(100), and Fe(211) peaks, with 
incident flux and instrumental 
background representative of the Chalk 
River, Canada, E3 instrument for strain 
measurement. 

TABLE 4.2 Maximum Economically Feasible Path 
Lengths for Selected Common Engineering 
Materials (mm) 

Criterion Al Ti Fe Ni Cu 
H0/B0=1 185 24 43 21 39 
12 h 297 48 52 27 51 
1h 160 22 40 20 36 
Webster 237 23 37 21 40 
Note: These are based on a gauge volume of 
40mm3, 90° scattering angle, 10−4 accuracy, and 
are calculated either for a height to background 
ratio of 1, or for a 12-h or 1-h measurement time 
[20]. These are compared with Webster’s rule-of-
thumb estimate [21]. 

of engineering materials are given in Table 4.2 [19]. Those for Fe, Al, and Ti can be read 
off the graph in Figure 4.14 using the B0/H0 criterion. The 1 hour values in Table 4.2 are 
in good agreement with a largely empirical relation for the economically feasible path 
length (x) obtained from the expression,  

 
  

derived by Webster et al. [21]. Here µa is the linear attenuation length. Note that the high 
incoherent scattering component characteristic of Ti compromises the maximum depth at 
1 h because of the large background rate, but not at the larger depths characteristic of the 
12-h and B0/H0 criteria, because the sample dependent background has decayed such that 
it is only a minor contribution to the total background count at such depths. While in 
practice, the maximum path length will depend on the instrument, maximum allowable 
gauge volume, required strain accuracy, and a number of other factors, the exponential 
decrease in intensity with depth means that their effects are relatively weak, and so the 
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values in Table 4.2 provide a useful indication of what is currently achievable by neutron 
diffraction. 

4.4.3 Analytical and Empirical Studies of Scan Optimization 

From the previous sections, it is clear that determining the best estimate of a peak’s 
angular center from the fitting procedure and hence deriving the lattice strain are not 
always trivial matters. It is important to evaluate the sensitivity of the entire fitting 
procedure to the choices made, and the extent to which this sensitivity is of concern when 
the data are converted to lattice strains. Windsor [22], with the use of an analytical 
approach, and Brand [23], by using numerical methods, have considered the dependence 
of strain accuracy obtained by fitting a peak center on the main scan parameters for the 
case when a fixed time has been allocated for performing a peak scan. Webster and Kang 
[16] have studied the problem by trial-fitting techniques. We here summarize the latter 
authors’ results. 

4.4.3.1 Range of Scan 

Webster and Kang [16], assuming a Gaussian peak profile, recommend that for good 
determination of a peak center the peak should be measured over a range of around seven 
times the standard deviation, ux, that is a measurement range of ±3.5 ux about the center 
of the diffraction peak or, equivalently, about three times the peak FWHM. They also 
suggest that around 20 points should be measured over this range. For a single detector 
that is scanned in angle, the larger the range the longer the acquisition time, so that there 
is some advantage in reducing the range somewhat, provided that the data are sufficient 
to confirm that a flat background is present. The fractions of the total integrated intensity, 
I, under a Gaussian profile within various ranges of angle xi are summarized in Table 4.3. 
Because a significant fraction of the signal lies within ±2.5ux, a range of this size may be 
sufficient, provided that the background is a simple flat level. For detectors that record 
the whole diffraction peak at once, such as position-sensitive detectors using 
monochromatic sources and time-sensitive detectors using polychromatic beams, there is 
no time penalty for recording over a larger range.  

TABLE 4.3 Fraction of Total Signal Intensity I in 
Gaussian Profile Lying Within Various Angular 
Measurement Ranges 

Range ±1ux ±1.5 
ux 

±2ux ±2.5ux ±3ux ±3.5 
ux 

Fraction 
within 
range 

0.682 0.866 0.954 0.988 0.997 0.999
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TABLE 4.4 Numerical Results of Fitting Gaussian 
Profile Function with Various Background 
Functions to Measured Bragg Peak Superimposed 
on Nonuniform Background Shown in Figure 4.15 

Background 
Function 

Peak 
Center 
(deg.) 

Uncertainty 
(deg.) 

Flat 95.6794 ±0.0491 
Linear 95.6726 ±0.0281 
Parabola 95.6510 ±0.0181 

4.4.3.2 Fitting a Sloping Background 

The sensitivity of the fitted peak center to a nonuniform background is exemplified by 
fitting a Gaussian with a range of plausible background functions to the same 
experimental data set, as shown in Figure 4.15. Note the large changes in fitted peak 
position given in Table 4.4 and the associated uncertainties. Visually, from the graphs 
presented in Figure 4.15, all choices appear to render acceptable fits to the data, but some 
marked differences are observed in the fitted peak centers with uncertainties (Table 4.4). 
It is important to bear in mind that the calculated uncertainties in the peak centers reflect 
how well the fitting function resembles the experimental data, as well as the statistical 
quality of the data set. Clearly, the strains reported from a diffraction experiment are 
never more accurate than the statistical accuracy by which one is able to calculate 
characteristic features of the peaks such as peak center angles. From the numerical results 
of Table 4.4, we note that the uncertainties, representing one standard deviation, do in 
fact overlap, so that normal statistical analysis would claim a rather high likelihood that 
the three positions found are correct within the experimental accuracy. However, the 
scientist analyzing the data will have to pick one approach to describe the background. 
The differences in the fitted angles may not seem large, but note that at an 
absolute difference of more than 0.03° in corresponds to a difference in strain on the 
order of 250×10−6. This far exceeds the typical ideal accuracy aimed for, which is of the 
order of ±100×10−6. 

The correlation between various fitting parameters and individual uncertainties are 
equally important. These correlations are calculated from the off-diagonal elements of the 
inverse variance-covariance matrix, and in general, high correlations will simply add to 
the uncertainties in the parameters concerned. For example, correlations between two 
parameters will give a  
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FIGURE 4.15 Examples of fitting a 
measured peak profile with a Gaussian 
function using different descriptions of 
the observed irregular background: (a) 
flat, (b) linear, and (c) parabolic. 

range of possible values that may be represented by an ellipse in parameter space. 
As an example of the effect of correlated parameters, consider the cases in Figure 4.15 

with either a flat or linear sloping background. It is clear that the latter will gives a better 
fit to the data. However, in that case, the uncertainty in the peak center is strongly linked 
to the uncertainty in the slope of the background. This is because as the slope of the 
background is altered, the peak center angle adjusts proportionately to obtain the best fit. 
This means that if the background is poorly known, it may increase the scatter in the 
fitted peak center. Similarly, if the peak is slightly asymmetric, and the background not 
sufficiently defined outside the range of the peak, changes in asymmetry may be fitted by 
changes in the slope of the background. This can lead to a low statistical uncertainty in 
the peak position, but larger point-to-point variations in the inferred strain due to the 
combined effect of coupled background gradient and peak positional errors. In such 
cases, a flat background may be preferable since there is then no coupling between the 
peak center and the background parameters, and so the variations in the determined peak 
center will be less affected by the background. As a result, the point-to-point scatter in 
the strain may in fact be less, despite a larger quoted statistical uncertainty in the peak 
position. An alternative strategy to counter this problem is to fit all data within a scan 
using a sloping background of fixed gradient. 

An alternative approach to improving the fit to the profile would be to fit more than 
one peak while keeping the background gradient fixed. However, it is important to 
remember that the aim is not to achieve the best fit per se, since this could be achieved by 
using tens of fitting parameters, but to obtain the most reliable estimates of strain, or less 
commonly, peak width or integrated intensity. It is rare for an accurate representation of 
the background to be an end in itself. The art is to get an acceptable fit using the least 
number of fitted parameters. It should also be kept in mind that strain requires the 
subtraction of two peak angle positions. Thus, if both the sample under examination and 
the stress-free sample are fitted in the same manner, the shift in angle can be determined 
to greater accuracy than the individual peak angles. 

A general rule of thumb, which under normal conditions has proven to render good-
quality strain measurements, is to aim that uncertainties in the are of the order of 0.01° 
or better, for the situation when This corresponds to ~100x10−6 uncertainty in 
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strain. Using this guideline, none of the profile fits in these examples has sufficient 
statistical accuracy, and the measurement should probably be repeated using a longer 
acquisition period to improve the statistics! 

4.4.3.3 Weighting 

In order to find the correct statistical fit to the data, it is very important to use the correct 
uncertainties that weight each data point term in Equation (4.8).  

Many commercially available peak fitting routines automatically give each data point 
equal weighting irrespective of the number of counts. The correct statistical error on a 
count of C(xi) is ∆C(xi)=√C(xi). Failure to correctly assign these individual weights can 
result in calculated uncertainties in peak position that are significantly below the 
theoretical limit given by Equation (4.12). In judging the validity of reported 
uncertainties in derived peak positions, and hence strain, the algorithm used to define the 
weights must therefore be carefully assessed. 

4.4.4 VAMAS Recommendations on Peak Fitting 

The VAMAS Technology Trends Assessment document [1] offers some practical advice 
and warnings in situations where fitting a profile to the measured peak is difficult. These 
are summarized here to supplement to the points already made in the previous sections. 
The following cases were considered: 

Poor Peak to Background Ratio: If the ratio of the peak count, with 
background subtracted, to the background is less than two (H0/B0<2), it 
may prove difficult to determine the diffraction peak position (Figure 4.9). 
Note that in Section 4.4.2, we suggested that in most cases prohibitively 
long acquisition times are required to obtain good strain accuracy for 
H0/B0<1. 

Overlapping Peaks: Fitting overlapping peak profiles should be 
avoided wherever possible. However, in the study of multiphase 
materials, overlapping peaks are sometimes unavoidable. Within the 
VAMAS program, a study was undertaken to look at the effect of a 
contaminant peak (Peak 2) on a major Gaussian peak (Peak 1) having 
center FWHM1=0.5°, H01=1000, B01=200, and 
∆x=0.1°. Three different fitting strategies, described below, were 
examined. In order to follow this analysis, two cases are considered in 
which the contaminant (Gaussian) peak has H02/H01=1 and 
FWHM2/FWHM1=1. 

Case I: The contaminant peak is centered at at 1.8×FWHM1 from the major 
peak center, as plotted in Figure 4.16a and Figure 4.17a. 

Case II: The contaminant peak is centered at at 1.3×FWHM1 from the 
major peak center as plotted in Figure 4.16b and Figure 4.17b. 
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(i) Using a single Gaussian peak to the whole profile of Peak 1. Taking an uncertainty in 
diffraction peak position corresponding to no more than 100×10−6in strain as 
acceptable, it is possible to evaluate the conditions under which a satisfactory peak fit 
is obtained. The condition under which this is achieved for the  

 

FIGURE 4.16 Truncated peak fits to 
the data conforming to (a) Case I and 
(b) Case II based on the primary peak 
parameters given in the text. In both 
cases, H02/H01=1, and 
FWHM2/FWHM1=1; Case II lies 
outside the acceptable limit defined in 
Table 4.5. 

 

FIGURE 4.17 Two Gaussian peak fits 
to the data conforming to (a) Case I 
and (b) Case II based on the primary 
peak parameters given in the text. In 
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both cases, H02/H01=1, and 
FWHM2/FWHM1=1. 

above conditions is almost independent of H02/H01 (in the range 0.1 to 1.0) and 
can be approximated by 

(2θ02–2θ01)>(FWHM1+0.8 FWHM2) (4.18) 

This means that an error of around 100×10−6 is expected for a separation of 
1.8×FWHM1, making Case I just acceptable, with a much larger uncertainty in 
Case II, of ~1000×10−6. This analysis would suggest that using a single peak is 
only a good strategy when the two peaks have almost no overlap.  

(ii) Truncated Peak Fit. The effect of an overlapping peak can be minimized by 
performing a single peak fit to an incomplete profile of the major peak of interest, in 
which the side that is influenced by the nuisance peak is truncated, as shown in Figure 
4.16. A study looking at the effect of the contaminant peak (Peak 2) on the primary 
peak (Peak 1) having has indicated that the optimum “cut-off” point for a 
truncated peak is 0.5×FWHM1 from the Peak 1 center position on the contaminated 
side. The feasibility of this method depends on the peak separation, width and 
intensity ratios of the two peaks. Table 4.5 provides a guideline for the case where a fit 
to a truncated peak gives strains within 100×10−6 of the “true” values, and indicates 
that Case I is acceptable and Case II unacceptable. In Figure 4.16a, the uncertainty in 
the fitted in Figure 4.16b, it is ~130×10−6. 

(iii) Double Peak Fit. A profile comprising two peaks is fitted to the whole range of 
measurement over the two overlapping peaks as shown in Figure 4.17. Use of such a 
profile leads to a large number of parameters to be fitted, and a consequent large 
increase in their collective uncertainties. In this case, peak fitting can achieve a 
satisfactory strain error for peak position for both Figure 4.17a of ~40×10−6, and 
Figure 4.17b of ~70×10−6. However, since the errors in peak position are coupled to 
each other and to other fit parameters, such uncertainty can only be achieved if all the 
other peak fit parameters are held constant. In general, uncertainties become large for 
peak ratios H02/H01<1 when (2θ02−2θ01)/FWHM1<1. In certain cases, some of the fitted 
parameters can be fixed or related to each other. For instance, if the volume fraction of 
a two-phase material is known, the intensity ratio of the two peaks can be calculated. It 
may also be valid to apply constraints to some of the parameters; this can significantly 
improve the stability of the fits. 

Asymmetric Peak Profiles. The asymmetric peaks characteristic of 
spallation source instruments are discussed in Section 4.3.1. However, 
asymmetry in a peak profile may also be found on a continuous source 
instrument. It may arise due to sample-dependent effects such as 
nonhomogeneities and stacking faults, as well as instrument effects. 
Unless the origin and behavior of this asymmetry is fully understood, the 
use of asymmetric peaks should be avoided for strain measurements 
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because the degree of asymmetry and the peak position are strongly 
coupled. 

TABLE 4.5 Guideline to Limits of Applicability of 
Truncated Peak Fit to Major Peak (Peak 1), 
Contaminated by Minor Peak (Peak 2) 

H02/H01 FWHM2/ 
FWHM1

(2θ02–
2θ01)/ 

FWHM1

H02/H01 FWHM2/ 
FWHM1

(2θ02–
2θ01)/ 

FWHM1
0.1 0.1 0.5 0.3 0.1 0.5 
0.1 0.5 0.5 0.3 0.5 0.5 
0.1 1.0 0.5 0.3 1.0 0.5 
0.5 0.1 0.5 1.0 0.1 0.7 
0.5 0.5 1.0 1.0 0.5 1.0 
0.5 1.0 1.5 1.0 1.0 1.5 
Note: The parameters fitted are discussed in the text: H0i, 
FWHMi and denote the peak amplitude, width, 
and peak center position, respectively, with subscripts 1 and 
2 referring to the two peaks. For height ratios H02/H01 smaller 
than those given, or peak separation (2θ02−2θ01)/FWHM1 
closer than given, the fitted Peak 1 angle deviates from the 
true value by more than an amount equivalent to a strain of 
100×10−6. (Courtesy J.W.L.Pang and P.J.Withers.) 

4.4.4. Strategy of Peak Fitting 

It must be emphasized that it is crucial to consider carefully the strategy to be adopted 
prior to undertaking lengthy fitting analysis. While the actual peak centers deduced may 
differ according to the approach taken, if the strategy is sensible and is the same for both 
sample and stress-free peaks, then the strains obtained should be correct within an 
acceptable error. Naturally, for well-defined diffraction peaks on a regular background, 
the issue is less important than for weaker peaks on a poorly defined background. In 
developing a strategy, the following activities are helpful: 

• First, undertake trial fitting procedures on a limited data set using a range of fitting 
strategies, and then keep to a consistent plan throughout the whole analysis. 

• Perform a sensitivity analysis to ascertain how sensitive the derived peak centers are to 
the selection of the fitting function and its free parameters. 

• Use the same fitting function and number of free parameters for all diffraction peaks of 
a data set, including the strain-free reference sample, as far as possible. 

• Aim to obtain calculated uncertainties in the fitted peak centers of ~0.01° or better, for 
This corresponds to strain uncertainty of ~100×10–6. 

• Validate uncertainties in peak centers obtained by checking the reproducibility of 
measuring and fitting a selected peak. 

• Visually inspect all peak fits and objectively evaluate how well the fits resemble the 
data. Note any sudden or progressive alteration in the uncertainties on all freely fitted 
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parameters. This should help identify if, when, and why the fits to peaks become less 
trustworthy. 

• Check the correlation matrix off-diagonal components, which if they approach unity, 
indicate a high correlation between fitted parameters. If a parameter correlates 
strongly with the peak center position, consider using a fixed value for this parameter 
for all fits. 

4.4.5 Sources of Background Counts 

In many practical cases, appreciable background contributions to the measured counts are 
unavoidable, especially when undertaking measurements at positions deep within the 
sample. It should be noted that there will always be a continuous background originating 
from incoherent elastic scattering and inelastic scattering from the sample, and for 
elements with large coherent cross-sections, multiple scattering as the beam passes 
through the sample will contribute (Section 2.6). In addition, there will be a thermal and 
fast neutron background from the instrument and surroundings, and air scattering from 
the neutron beam path. If the discrimination in the detector is not perfect γ-rays will be 
detected, and there may be inherent electrical noise from the amplifiers. As we have seen 
in the previous section, there is always the possibility of anomalous shifts in Bragg angles 
from uneven background contributions, stray beams, or stray background, and such 
effects should always be tested for. 

4.5 Analysis of Complete Diffraction Profiles for Strain 

In the discussions of accuracy above, we have concentrated on the analysis of single 
diffraction peaks on a continuous source instrument. When a more complete diffraction 
pattern has been measured, for example, on a spallation source time of flight instrument, 
it is more usual to fit the whole diffraction pattern using a Rietveld or Pawley-Rietveld 
approach mentioned in Section 3.2.2. Consequently, there has not been much work 
carried out on the accuracy of individual time-of-flight peaks. It is possible to fit the 
instrument-dependent parameters—such as the leading and trailing moderator-dependent 
exponentials in Carpenter’s [9] expression—globally for all peaks, and the plane-specific 
ones such as peak position expressed in time of flight and if necessary peak intensity, on 
a peak-by-peak basis. 

Several computer codes for performing Rietveld refinement of diffraction patterns are 
available free of charge. Among the most common ones are the Generalized Structure 
Analysis System (GSAS) by Larson and Von Dreele [25], the DBWS code by Wiles and 
Young [26], and the RIETAN code by Izumi et al. [27]. A more comprehensive list is 
found in a survey by the IUCr (Commission on Powder Diffraction) by Smith et al. [28]. 
For further reading on the Rietveld refinement method, see, for instance, Young [29]. 

Just as when fitting a fitting a single peak, performing the Rietveld refinement on a 
diffraction pattern is potentially a delicate matter, where the choices made can have a 
strong impact on the stresses and strains deduced from the data. The software codes have 
numerical criteria for finalizing the fitting procedure, but to cite Young [14]: “Numerical 
criteria are important, but numbers are blind; it is imperative to use graphical criteria 
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also” This, of course, is universally true for any fitting procedure; the experimenter 
should always visually compare the result of the fitting procedure to the actual data. As 
stated in Section 4.3.2, the calculated uncertainties in the fitted parameters merely tell one 
part of the story; to quote Prince [30], “If the fit of the assumed model is not adequate, 
the precision and accuracy of the parameters cannot be validly assessed by statistical 
methods.” 

For the purpose of residual stress determination from a Rietveld analysis, a number of 
strategies can be chosen. The refinement can be constrained to the known crystal 
structure, such as face-centered cubic, so that the method combines all the peak 
information to achieve the most representative average lattice parameter or parameters, 
such as a for a cubic system. Alternatively, it can be allowed to accommodate the 
anisotropic variation with hkl which might be expected from any elastic or plastic 
anisotropy, discussed in Sections 5.5 and 5.6. For cubic materials the average lattice 
parameter obtained from a Rietveld or Pawley-Rietveld analysis has been shown 
empirically to be largely independent of intergranular effects, even to several percent 
plastic strain; that is, it is linear as a function of stress as seen from Figure 4.1. Since the 
Rietveld fit produces a weighted average of the strain determined from all peaks in the 
diffraction pattern, one might expect it to be similar to the bulk macroscopic strain 
measured in that direction. In practice, the elastic modulus thus determined is usually 
found to be close to the macroscopic Young’s modulus. For noncubic materials, it is 
necessary to identify a suitable parameter that is linear in strain. For example, for 
hexagonal materials an appropriate linear parameter is (2εa+εc)/3, where εa, and εc are the 
strains determined from the a and c lattice parameters, respectively [31]. The 
interpretation of such strain data is described further in Sections 5.6.6 and 6.6.1. 

4.6 Strain-Free Reference 

4.6.1 Requirement 

All diffraction-based measurements of internal strain, and hence absolute residual stress, 
are based on a comparison of a lattice plane spacing measured in the sample, dhkl, with a 

reference value measured in a “stress-free” sample of identical material, as 
given in Equation (4.1). In the case of a Rietveld refinement of a diffraction pattern, 
average lattice constants a, b, and c are often measured from many reflections, and these 
are compared with the “stress-free” values a0, b0, and c0 to give a bulk strain. 

Although the reference is usually denoted a “stress-free” d-spacing, this only 
corresponds to “strain-free” in the full triaxial case, when all three principal values of the 
macroscopic stress and strain tensors are zero, and the reference value is needed to 
establish the absolute strain and stress tensors. There are cases when one component of 
the stress tensor may be zero and “stress-free,” but this does not necessarily relate to a 
corresponding “strain-free” component, as in the case of the out-of-plane strain 
component at a free surface of a biaxial in-plane stress state (plane stress). The case of 
plane-strain represents the converse example. 

In certain cases, an actual measurement of the reference d-spacing on a zero-stress 
sample may be unnecessary If it is known that a component of stress is strictly zero, this 
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may be used to obviate the need for an accurate value. Such a case is the boundary 
condition that the normal stress component at a free surface must be zero, a condition that 
is used extensively in laboratory-based x-ray investigations of near-surface stress fields, 
using the so-called sin2ψ technique described in Section 5.1.3. A less strict condition is 
that the normal stress in a thin plate is approximately zero, as mentioned above. In the 
general triaxial case, if only the deviatory stress is required without the hydrostatic 
component, any reference d-spacing can be used. The average of the three diagonal strain 
components (ε11, ε22, ε33) measured relative to this arbitrary reference can then be 
subtracted from the diagonal elements of the measured strain tensor to yield the traceless 
deviatory strain tensor. This is described further in Section 5.1.1. 

4.6.2 Other Factors That Can Affect Lattice Spacing 

There are many factors that can give rise to a change in the lattice spacing of a material 
that are not stress related whether on a local or overall scale. Care must be taken that 
these do not mask or affect the required measurement of true strain in either the sample 
under investigation or the reference sample. These factors include the following: 

Compositional Changes. Changes in composition brought about by the 
precipitation or dissolution of second phases during heat treatment, such 
as during welding, or by segregation during casting. These can cause 
variation in d-spacing with position, which can be an important problem 
in many practical cases, especially for heat-treatable alloys discussed in 
Section 6.2.3. An example of the scale of this problem is the effect of 
copper content on the d-spacing of an aluminum alloy shown in Figure 
4.18a. Compared to typical strain-induced changes to the d-spacing, the 
changes due to varying alloy content are dramatic, and would be 
detrimental to any accurate  
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FIGURE 4.18 (a) Typical shifts of the 
Al 311 Bragg peak in aluminum 
copper alloys with increasing copper 
content, indicating that the aluminum 
lattice shrinks as Cu is added. 
Measurements were made using the 
time-of-flight diffractometer at the 
FRG-I reactor, GKSS Research Center, 
Geesthacht, Germany [32]. (b) The 
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variation (expressed in microstrain) of 
the unstrained lattice parameter with 
solute content for different solutes in 
aluminum [33]. 

derivation of strains from measures of d-spacing. By way of examples, 
a change of 0.005 wt% in carbon solute content in austenitic steel induces 
a change in a equivalent to 600 µε, while the effects of various solute 
elements on the lattice spacing of aluminum are summarized in Figure 
4.18b. 

Phase Transformations. Phase transformations can occur when a 
sample has undergone large temperature changes, such as during welding, 
which may cause compositional changes in the form of the presence of 
different phases that are uneven across the sample. In this case, a global 
reference sample d0-spacing cannot be assumed. Reference samples 
fabricated from a range of positions in a similar weldment may be 
necessary as outlined below. In other cases of uniform heat treatment, it is 
essential to ensure that the reference sample has undergone the same 
treatment. 

Changes in Temperature. Any variation in temperature can give rise to 
an apparent strain, and, if rapid, peak broadening. Typically for metals, a 
change in temperature of 1° gives a fractional change in lattice spacing, or 
apparent strain, of order 10×10−6 or 10 µε. It is therefore important that 
sample being investigated and the reference sample are at the same 
temperature. 

Geometrical Effects. The geometric effects discussed in Section 3.6 
can give rise to anomalous shifts in measured diffraction angles, and thus 
give spurious strains. These are particularly severe for cases where the 
sample partly fills the instrument gauge volume. 

Intergranular Strains. Intergranular strains caused by prior plastic 
deformation are discussed in Section 5.6. If not avoided or corrected for, 
they can give rise to “pseudo-strains,” which mask the true macroscopic 
strain. They can exist and vary on a length scale approximately equal to 
the grain size and so can reside even in the relatively small blocks of 
material used as “stress-free” samples. 

4.6.3 Measurement of Reference d0-Spacing 

The optimum method of determining or dref, for each reflection used to measure 
strain will depend on the particular application under consideration. Since the value of the 
reference d-spacing occurs in the calculation of every strain, it is essential to spend 
adequate time on its measurement in order to determine its value with sufficient accuracy. 
It has been suggested that ten times the time used to acquire the other data points should 
be allocated to its measurement, so that it has three times smaller uncertainty (see 
Equation (4.16)). Appropriate measurement methods include: 
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• Measuring a far-field value in the sample where it is expected that the stress is likely to 
be very small 

• Measurement on stress-free powders or filings 
• Cutting stress-free reference cubes or combs from the sample 
• Application of force/moment balance. 

These methods and some practical applications are described below, and further 
examples are provided in Chapter 6. Careful measurements of a standard sample, such as 
Si powder, to accurately calibrate the wavelength  

 

FIGURE 4.19 The axial, radial, and 
hoop strain components (solid 
symbols) measured 3 mm below the 
surface at positions radially from the 
axis of a 3 mm radius 2124 Al rivet 
joining two 7010 Al plates (see inset). 
The rivet spacing was 30 mm and the 
strain-free d0 value was measured 
laterally towards the edge of the plate, 
far from the line of rivets. The closely 
spaced open symbols represent the 
predictions from a finite element 
model smeared to match the spatial 
resolution of the sampling gauge. The 
good agreement with the data validates 
the use of the far field measurement of 
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d0. (Courtesy of P.J.Withers and 
R.V.Preston.) 

and zero encoder angle of so that measured d-spacings are absolute, can enable a value 
of d0 measured on one instrument to be used on another. 

4.6.3.1 Far-Field Reference 

A common approach is to use a far-field value of d-spacing as a reference. Typically, this 
reference value is measured in a region of the sample that is considered unlikely to be 
affected by the process from which the residual stress field in question originated. A 
typical example is the strain field around a rivet holding together two plates. Because the 
field is mechanically induced and would be expected to fall off rapidly with distance 
from the rivet, a representative far-field d-value can be obtained as far away from the 
rivet as possible, and the reference level is established by averaging the d-spacing 
measured through thickness, or by averaging over a number of orientations. The example 
in Figure 4.19 shows the strains measured radially from a 2124 Al rivet holding together 
two 7010 Al plates. Strictly, stress balance should be applied to ensure that the far-field 
region is indeed in a state of low stress. That this is the case here is evident from the good 
agreement with the finite element (FE) model, which necessarily obeys stress balance. 
Note that this method of globally fixing d0 can be very inappropriate in cases where there 
maybe localized heating, such as near a weld, due to possible local compositional 
changes (discussed above). 

4.6.3.2 Powders, Cubes, and Combs 

In this approach, pieces of the material freed from the constraint of the surrounding 
macroscopic stress field, as shown in Figure 4.20, are used to measure dref. Several 
methods of obtaining such samples can be used, including powders or filings, small 
reference cubes, or “combs” prepared from an identical material to that under 
measurement or, destructively, the same sample. As discussed in Chapter 1, the shorter 
the range of the stress field, the finer the sample must be sectioned to relieve the stress. 

Use of Powder Reference Samples. The powder approach is based on the assumption 
that small particles of a powder are unable to sustain any macroscopic stress state—that 
is, they are stress-free. However, care must be taken to ensure that the mechanical 
process of producing the powder or filings in itself does not give rise to residual stresses 
due to plastic deformation, especially short-range intergranular stresses, which even in 
fine powders may not be fully relaxed. The powder approach is attractive in the sense that 
powders are easy to handle when contained in vanadium or quartz containers. However, 
they must completely fill the IGV, or be very accurately centered at the instrument 
reference point to avoid any geometrical shift in measured diffraction angle. Any 
absorption in the powder may move the effective centroid of the powder sample away 
from the reference point. 

Use of Small Cuboid Reference Samples. An alternative is to cut, using 
electrodischarge machining (EDM) for example, small reference cuboids from the part of 
the sample or an identical one, at positions where measurements have been made to 
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measure d0. Generally, cubes are used, and the smaller the better as long as the grain size 
is sufficiently small. However, compared to the powder approach, small cubes are more 
difficult to handle and to accurately position at the instrument reference point. If there is a 
variation in composition in the sample, the reference strain-free lattice spacings, d0, must 
be measured at exactly the locations of the strain data points themselves. This calls for an 
extensive process of extracting small reference cubes throughout, for example, weld 
region, and subsequently measuring them individually. A practical example of this 
cumbersome method is given by Krawitz et al. [34], who showed from experimental 
measurements that it was necessary to obtain individual reference values for each 
location in question. 

Another example of the technique was applied to a mock-up double-“V” weldment, 
shown in Figure 4.21a, between two ~781 mm, 16 mm thick, Type 316 stainless steel 
tubes. Depending on their proximity to the weld, different regions had been subjected to a 
different heat treatment. The measurement of triaxial strain near the weld line was made 
using the 111 reflection on the  
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FIGURE 4.20 Powders, cubes, and 
combs for the determination of strain-
free reference values, (a) Powder along 
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with powder sample can; stress-free 
cubes and a typical tensile specimen, 
(b) A comb and its “negative” cut at 
mid-plate thickness with the teeth 
parallel to the welding direction of an 
Al friction-stir weldment (see Figure 
6.14), and a disc-like structure cut 
from a steel automotive crank shaft 
from which a series of small stress-free 
reference cubes are being cut at 
different radial distances. 

 

FIGURE 4.21 (a) A double “V” butt 
weld joining two 16-mm thick AISI 
type 316L austenitic steel pipes. 
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Squares denote positions at which 
“matchstick” 2×2×16mm3 samples 
were taken, (b) Pseudostrains 
measured in the “matchstick” samples 
taken from positions (crossed squares 
in (a)) away from the weld along a line 
2 mm below the outer surface [35]. 

TAS 8 conventional, continuous-source, diffractometer at Risø National Laboratory [35]. 
In order to test for variation of d0 with position, small “matchstick” samples, 2×2×16 
mm3 with a long axis in the hoop direction, of parent heat affected zone (HAZ) and weld 
material were cut from the mock-up weldment by a “stress-free” electrodischarge 
machining technique at positions 2 mm from the outer surface. Lattice parameter 
variations in planes oriented at 45° to the cylinder radial-axial directions were measured 
for each matchstick on the ENGIN instrument. Both a full Rietveld analysis using all the 
diffraction peaks and separate analyses of four individual diffraction peaks (111, 200, 022 
and 311) were carried out for each matchstick. Any residual “strains” in the matchstick 
samples were determined by reference to measurements of d0 made at a far-field point at 
48 mm from the weld center line, assumed to be at zero strain. Strains at this location 
were assumed to be unaffected by local compositional variations and by plastic strain-
induced residual microstresses. The results of a hardness survey confirmed that no 
significant plastic strain had been induced this far from the weld. 

The measured strains for the matchsticks are shown in Figure 4.21b. Except in the 
weld itself, at a distances below ~12 mm from the weld line, where compositionally 
induced changes in d0 are likely, the strains determined from a Rietveld analysis are 
negligible. However, in the heat-affected zone at distances from 12 to 30 mm, 
considerable intergranular strains are evident as different strains as a function of hkl. 
These are most probably due to plastic anisotropy, discussed in Section 5.6, and are most 
marked for the 200 reflection and least for the 111 reflection. This is characteristic of 
plastic anisotropy in stainless steel, with 200 exhibiting the largest intergranular strains 
and 220 smaller strains in the opposite sense. It is seen that the variations in strain from 
these peaks bound the Rietveld curve in both the weld and heat-affected zone. As noted 
in Table 4.1, use of 111 or 311, and not 200, is recommended for macrostrain 
measurement in plastically strained stainless steel. 

It is clear from these results that if single diffraction peak measurements of d0 from 
small-cut reference samples are used as the “zero strain” reference, they will incorporate 
a contribution from residual intergranular strains, pseudo strains discussed in Section 5.6, 
if plasticity has occurred. Provided that the extent of plasticity is exactly the same as that 
in the original sample, they will have essentially the same intergranular strain. As a 
result, the use of d0 measured in the same locations will give the correct elastic lattice 
strains in the sample, since the intergranular strains—as indeed will any compositional 
variations—in sample and reference will cancel out. However, if a far-field zero strain 
reference d0 is used, any possible intergranular strains in the measurements on the sample 
must be corrected for in the analysis. 
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Use of Comb Reference Samples. An elegant alternative approach, which is suitable in 
appropriate circumstances, is to manufacture so-called reference “combs” from a similar 
sample, examples of which are shown in Figure 4.20b. The comb may be cut in an 
appropriate manner corresponding to the expected stress state. Small regions of the 
material are thus made almost free from the constraint of the surroundings, but left in 
registry through a small mechanical connection to the base material. Such structures 
circumvent the problems associated with handling small reference cubes, and at the same 
time retain the positional relationship between each “tooth.” The comb design is effective 
when it is anticipated that no steep variation in d0 is expected in the direction chosen to 
be the “long” axis of the “teeth,” as, for example, parallel to the welding direction for a 
weldment. In such cases, because the stress changes only over relatively long distances, 
the long axis of the tooth does not inhibit stress relaxation. In Figure 4.20b, the teeth are 
more closely spaced in the near-weld region for better spatial resolution. As with the use 
of cubes of material, compositional variation and the effect of intergranular strains will be 
corrected. 

4.6.3.3 d0 Measurement Using X-Rays 

At the low-surface penetrations typical of laboratory x-rays, for example, about ~23 µm 
into Ni, an in-plane biaxial stress field (σ33=0) can be assumed. The sin2ψ technique, 
described in Section 5.1.3 where the notation is given, is commonly used to measure the 
principal in-plane stresses σ11 and σ22. However, as well as the in-plane principal stress 
values, d0 can also be determined from the relation [33] 

 
(4.19) 

where and are the d-spacings measured at a polar angle ψ from the surface 
normal and at azimuthal angles and to the in-plane x-axis. Note that this 
equation, which follows from Equation (5.14a) and the invariance of the trace of the 

biaxial stress tensor under rotation of axes so that is 
independent of the actual azimuthal  angle chosen, and thus requires no knowledge of 
the principal in-plane stress directions [33,36]. At first glance, it would appear that 
Poisson’s ratio ν is generally not known with sufficient accuracy to apply Equation (4.19) 
for the precise measurement of d0; however, the first term acts as a small correction to the 
second, and so the method can normally give a value of d0 that is accurate enough to be 
used to determine the strain. 

4.6.3.4 d0 Measurement by Neutron Transmission 

Since the normal stress component is zero (σ33=0) for the case of plane stress, such as for 
a thin slice or plate sample, the sin2ψ technique can be applied in such cases using 
neutron techniques. This method is particularly well suited to the examination of thin 
slices using the neutron transmission technique described in Section 3.7.4. The real 
potential of the transmission geometry for the determination of the unstressed lattice 

Practical aspects of strain measurement using neutron diffraction     201



parameter is revealed when the technique is used in combination with an array of 
detectors to produce a spatial radiographic-like “image” of d0. Measurements are made at 
different tilts ψ and at each of two angles and As an example of the neutron 
transmission technique the experimental setup used on the ENGIN instrument at ISIS to 
determine d0 is shown in Figure 4.22, where the corresponding angles and ψ are 
indicated. Measured hkl Bragg edges at each angle can be fitted individually to enable the 
corresponding values in Equation (4.19) to be determined. Alternatively, a Rietveld-
type multiple peak fit can be made to determine an average stress free constant a0 from an 

equation corresponding to Equation (4.19) in which replaces  

 

FIGURE 4.22 Schematic showing the 
set up for a two-dimensional full-field 
measurement of d0 on the weld sample 
in Figure 4.23 by transmission using 
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the sin2ψ method on the ENGIN 
instrument at ISIS. Two orthogonal 
axes must be used for the sin2ψ tilts as 
shown by rotating the sample 90° 
about but since it is not necessary for 
these to have a special relationship to 
the in-plane principal axes, it is 
possible to map d0 with no prior 
knowledge of these, even when the 
inplane stress field is complex [37]. 

This method is best illustrated by an example, this is provided by the mapping of a0 for a 
slice taken from a ferritic weldment, used as a round-robin sample in the VAMAS TWA 
20 program [1]. A number of samples were cut from a weld laid down at TWI Ltd. 
(United Kingdom), in a 6 mm wide, 8.5 mm deep, U-groove machined in the middle of a 
BS 4360 50D ferritic steel plate 1000×150×12.5 mm3 in size. The groove was filled by a 
12-pass, mechanized, tungsten inert gas (TIG) weld. A 3 mm thick, 40 mm long, slice 
was electrodischarge machined from the 12.5 mm thick plate and weldment for the 
transmission measurements. This slice was placed in front of a two-dimensional 
pixellated detector comprising a 10×10 array of 2×2 mm2 scintillation detectors on a 2.5 
mm pitch, and tilted around the transverse (TD) and short transverse (STD) directions of 
the original plate, as shown in Figure 4.22. In this way, each pixel recorded a 
transmission Bragg edge spectrum which was refined to yield an average at each 
angle ψ, corresponding to a region not smaller than 2×2×3 mm3 of a sampled gauge 
volume. The area examined in the experiment is shown as a white rectangle in Figure 
4.23a, superimposed on the etched macrograph of the weld. Not all available pixels were 
used in the experiment due to the smaller dimension of the sample in the STD direction, 
ψ angles of 0°, 18.4°, 24.4°, and 28.4° were used for the definition of the slopes of the 

versus sin2ψ graph. Relatively low angles were chosen in order to minimize excessive 
distortion of the mapped area. Since the distortion is proportional to distance from the 
rotation axis, pixels located more than 10 mm from the axis of rotation were not included 
in the map of a0. In principle, it would be possible to correct for the spatial distortion by 
interpolation of the results taken at each ψ angle. 

The map of the unstressed lattice parameter a0 is shown in Figure 4.23b; this is 
expressed as spurious strain relative to the value of a0 measured far away from the weld. 
This map has been interpolated from an original grid of seven by four points. The map 
resembles the shape of the weld, but is asymmetric relative to the weld center presumably 
due to the welding sequence. The extent of the lattice parameter variation found was 
equivalent to 600 µε. Neglecting this difference and assuming a single constant value for 
a0 would introduce an error of 130 MPa in the residual stress, which is of the same order 
of magnitude as typical stresses found in practice. 

In the special case of a uniaxial stress field, Equation (4.19) can be simplified: 
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(4.20) 

In this case, the principal axes are known and the sample need only be tilted to one angle. 
An important aspect of this approach is the angle ψ* for which 

 (4.21) 

The angle ψ* is called the point of invariance [38,39], and at this point dψ* is equal to d0. 
In the case of a Rietveld-type fit to a transmission spectrum, d may again be replaced by 
the average lattice parameter a. 

The validity of Equation (4.20) has been demonstrated by determining the stress-free 
lattice parameter of an austenitic stainless steel sample while subjected to uniaxial 
loading to 131 MPa and 210 MPa [37]. Measurements of ten Bragg edges were made on 
the ENGIN instrument at ISIS, and the average  

 

FIGURE 4.23 (a) Etched macrograph 
of the 12-pass ferritic steel weld. The 

Introduction to the characterization of residual stress by neutron diffraction     204



dotted rectangle indicates the area 
studied, (b) Interpolated map of the 
unstressed lattice parameter a0 for the 
area indicated in (a). The change in a0 
is expressed in term of a spurious 
strain relative to the value far away 
from the weld, in the parent material. 
The numbers and solid lines in (b) 
indicate the weld pass sequence [37]. 

lattice constants aψ, determined. From the slopes of the lines fitted to aψ versus sin2ψ in 
Figure 4.24, and using an effective Poisson’s ratio for stainless steel of about ν=0.3, 
values of a0 determined from Equation (4.20) under the two different loading conditions 
are 3.60891Å and 3.60889 ± 0.0001. These are equal within an equivalent strain of 5µε, 
and are close to the value obtained directly by measurement on the sample with no load 
applied, a0=3.60873Å, differing by an amount equivalent to ~45 µε. The point of 
invariance, as given by Equation (4.21), for ν=0.3is sin2ψ*=0.3/1.3 ~0.23, and is marked 
by the dashed line in Figure 4.24. Strictly speaking, the sin2ψ line should rotate about 
this pivot point at ψ*, with the intercept of the fitted line at sin2ψ= 0 increasing as the 
slope decreases. The vertical line denotes the point of invariance, giving the reference a0 
values at the ordinate. In principle, these should be the same but in actual fact they differ 
by an equivalent strain of about 5 µε. The  

 

FIGURE 4.24 The average lattice 
parameter aψ, measured from a Pawley 
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refinement of the lowest ten Bragg 
edges, plotted against sin2ψ, from a 
stainless steel sample uniaxially loaded 
to 131 MPa (solid squares) and 210 
MPa (open squares). The full and long 
broken lines are the best linear fit to 
the data. The vertical line denotes the 
point of invariance, giving the 
reference values at the ordinate. The 
value of the reference a0 determined 
from a single measurement at zero load 
at ψ=0 is denoted by the open circle 
[42]. 

estimates of a0 determined from the point of invariance are also in close agreement with 
that determined with no stress applied. 

4.6.3.5 Imposing Stress Balance 

An approach to the determination of reference d-spacings, which precludes the need for 
their measurement, is to adopt the fundamental continuum mechanics-based requirement 
that force and moment balance across one or more selected cross-sections of the sample. 
The approach is to measure the required field of d-spacings, or diffraction angles, in the 
sample, and, using a nominal dref, or angle, to calculate the triaxial strain and stress in the 
sample. Subsequently, the reference value is varied iteratively in order to find the true 
reference value, that is, the value that renders a stress field in which force and moment 
balance occur. The principle, shown in Figure 4.25, is to imagine cutting the sample 
along a certain plane and replacing the actions of the cutaway part on the remaining part 
by tractions and moments in this plane. It is a necessary requirement for mechanical 
equilibrium of a stationary object that force and moment are balanced across such a plane 
section. In adopting this approach, great care must be taken in selecting appropriate 
cross-sections  
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FIGURE 4.25 Schematic sectioning of 
a tubular structure across the section 
AA, over which tractions, T, and 
moments, M, are required to balance in 
order to retain motion stability. 

over which to require forces and moments to balance. It must be ensured that the 
experimental data set covers the entire cross-section, and not just a part of it, and also that 
a single value of dref is appropriate throughout. 

This method is best held in reserve to check the validity of the d0 value obtained from 
one of the primary methods described above. Indeed, it should always be used, when 
applicable, to check the validity of a measured stress field [40]. 

4.7 Reproducibility Tests 

As part of the initial phase of the Versailles Project on Advanced Materials and Standards 
(VAMAS) Technical Working Area 20, before the final establishment of a protocol for 
measurement, a round-robin study was undertaken [41]. The aim of the study was to 
assess the efficacy of the various approaches to strain measurement taken at different 
facilities, and hence the reproducibility and reliability of the data. Eighteen facilities 
worldwide participated in the study. It involved the measurement of the strain and stress 
distribution in a shrink-fit aluminum ring and plug sample in which the elastic strain and 
stress can be analytically predicted. The sample comprised a ring of outer and inner 
diameters of 50 and 25 mm respectively, into which a plug, oversized by 0.015 mm, had 
been cooled and inserted. A range of reflections, 111, 002, 311, and so on, were used to 
determine lattice strains, and the instrumental gauge volume used at the different 
facilities ranged from 2 mm3 to 480 mm3. The averaged hoop strain measurements are 
shown in Figure 4.26a. The best estimate of the three principal stresses shown on Figure 
4.26b were obtained from a Bayesian best fit to all the data. The stresses were obtained  
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FIGURE 4.26 (a) The measurements 
(points) of the hoop strain component, 
obtained at 18 facilities worldwide on 
two identical shrink fit Al plug 
samples, across a mid-plane diameter 
(A-B in inset). The bold line shows the 
averaged strain variation, and the other 
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lines the uncertainties of one standard 
deviation, about 75 µε from the mean. 
Note how surface effects lead to larger 
errors at the edges of the ring, (b) The 
best estimate of the three principal 
stresses (points) obtained from the 
measured principal strains, compared 
with results of an analytical calculation 
(bold and broken lines) assuming an 
interference between ring and plug of 
21.5 µm. The sloping lines at the 
interface represent smoothing of the 
calculated stress variation by the 
instrumental gauge volume [41]. 

from the principal strains using Equation (5.8) and appropriate values of Ehkl and vhkl. The 
overall standard error of the results was 75 µε in strain and 7 MPa in stress, giving 
confidence that if the points discussed in this chapter are followed, reliable data can be 
obtained. Accurate results rely not just on accurate strain measurement, but also on 
accurate sample location, especially at surfaces and regions of steep strain gradients as 
discussed in Section 3.6.3. The positioning error in this study was found to have a 
standard deviation of 90 µm if data from four laboratories were excluded, and 230 µm if 
results of the whole group were considered. 

4.7.1 Recording Measurement Details 

When carrying out neutron diffraction strain and stress measurements, it is extremely 
important to record the instrument setup used in every detail, and to note exactly how 
each measurement was made. The extensive round-robin exercise described above 
illustrates this point. Some facilities have aspects of this record-keeping formalized as 
part of a quality assurance (QA) system, while others leave it entirely to the user! The 
key rule is that records should be sufficient to enable another user, who is intelligent but 
inexperienced, to repeat the measurement in the same manner so that the same results are 
obtained within statistical uncertainties. It is often the case that “obvious” points in the 
procedure, or setups that are “standard” go unrecorded, only to cause great problems 
when repeating or continuing measurements after a period of time. Thus, the rule to 
follow is—“record everything.” The advent of digital photography enables visual records 
to be readily kept of the instrument, sample, and setup. The VAMAS TWA20 group has 
formally listed full details of exactly what should be recorded [1]. 
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5  
Interpretation and Analysis of Lattice Strain 

Data 

Neutron diffraction lattice strain measurement provides much more information than a 
conventional strain gauge. By sampling a well-defined subset of grains, each diffraction 
peak provides insight into the Type I, II, and III elastic strains within the sample. While 
of special interest to the materials scientist, this level of detail presents a complication to 
the engineer wishing to interpret strain data in terms of macrostress. In this chapter, the 
interpretation of measured strains in terms of the macrostress and microstress in the 
sample is described. Although the determination of stress from strain using a continuum 
model is straightforward, the appropriate elastic constants must be used. These are 
discussed in terms of basic micromechanics and models that enable reliable interpretation 
of data in both the elastic and plastic regimes. 

5.1 Inferring Stresses from Lattice Strains 

5.1.1 Basic Continuum Relationship between Strain and Stress 

Stress and strain are tensor quantities related to one another by the elastic stiffness 

tensor and the elastic compliance tensor  

 (5.1) 

where and have 3×3 components, 6 of which are independent, and and have 
3×3×3×3 components, of which as many as 36 can be independent [1]. As a result, the 
conversion of measured strain components to stress is an inherently difficult task, 
requiring measurement of the strain in many directions at a point in a sample before the 
stress at that point can be inferred. Systematic and statistical errors in the individual strain 
measurements combine to reduce the accuracy of the inferred stresses. Furthermore, for 
reasons of sample texture, it may not be possible to measure strain in sufficient directions 
using a single reflection, while the presence of intergranular stresses may complicate the 
interpretation of the measured lattice strain. In some cases, the measured strains can be 
used directly. For example, the validation of a finite element model is clearly best 
undertaken in strain rather than in stress. In many circumstances, however, it is the 
macrostress in a component that is of ultimate importance, and it is necessary to infer this 
stress from measured strains. This necessitates a full understanding of the effects of 



elastic and plastic anisotropy in crystals, and how these are averaged in relating strain to 
stress in polycrystalline samples. 

Essentially, most engineering investigations are based on isotropic continuum 

mechanics. In this case, can be written in terms of just two independent elastic 
components, such as Young’s modulus, E, and Poisson’s ratio, ν. Consequently, the 
relationship between stress and strain can be expressed using the generalized Hooke’s 
law equations as 

 
(5.2) 

where i, j =1,2,3 indicate the components relative to chosen axes. 
From the above expression, it is clear that in order to derive the stress tensor, the strain 

tensor must first be evaluated. In the general case, this can be done by relating a specific 
strain component, ε(lmn), measured in the direction for which l, m, and n are the direction 
cosines to orthogonal sample coordinate axes Ox, Oy, and Oz, to the six components of 
the strain tensor εij referred to these axes by [2]: 
ε(lmn)=l2.ε11+m2.ε22+n2.ε33+2lm.ε12+2mn.ε23+2nl.ε31 

(5.3) 

Hence, the measurement of strain components in six different directions, 
d′= 1,6, leads to a system of six linear equations in the six unknown components of the 
strain tensor, from which the latter can be determined:  

(5.4) 

Note that the off-diagonal (i≠j), or shear, components of the strain tensor are sometimes 
written in terms of an ‘engineering shear strain’ γij, with γij=2εij. Similarly, the shear 
stress σij is written as τij and the shear modulus, µ, defined by γij=2εij=τij/µ For isotropic 
materials, 2µ=E/(1+ν). 

For subsequent determination of the stress tensor great care must be taken in selecting 
those directions that give truly independent strain components, and which 
render the highest accuracy of the stress tensor. Considering the inherent measurement 
uncertainty associated with individual strain measurements, it is generally best to 
overdetermine the problem by measuring more components than theoretically needed to 
solve the mathematical problem. Eight to ten carefully selected strain directions typically 
render reasonable accuracy in the calculation of the stress tensor [3]. 

From this strain tensor determination, components of the stress tensor using Equation 
(5.2) can be calculated. However, in many cases symmetry considerations enable 
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assumptions about the principal stress and strain directions to be made, and then the 
elaborate and time-consuming process of measuring the full strain tensor based on six or 
more measurements is avoided. In this case, because the stress tensor is diagonal, only 
the three orthogonal principal strain components need be measured. If this is not possible, 
the full strain tensor, determined from Equation (5.4) must be diagonalized to find the 
principal axes OxD, OyD, and OzD. The expression for the calculation of the principal 
stress components follows from Equation (5.2), written in terms of three orthogonal 
principal strain components as 

(5.5a) 

 
(5.5b) 

(5.5c) 

It should be noted that a consequence of the form of Equation (5.2), and the invariance of 
the trace of a tensor under axes rotation, is that any three measured orthogonal normal 
strain components, ε11, ε22, and ε33, can form the basis for calculating the corresponding 
three orthogonal stress components without any knowledge of the shear (off-diagonal) 
strain components. Thus, these three orthogonal stress components are correctly 
determined from the orthogonal strain components with respect to any axes even when 
they are not the principal ones. Of course, the principal stresses can only be determined 
by a full stress tensor determination as described above without simplifying assumptions. 

The strain and stress tensor may be written as the sum of two parts: a traceless part, 
termed the deviatory or deviatoric strain or stress, obtained by subtraction of the mean of 
the diagonal terms of the full tensor, and an isotropic part equal to this mean of the 
diagonal terms, termed the hydrostatic strain or stress. Since the trace is independent of 
any transformation orthogonal axes of this is also true for the diagonalized tensors giving 
the principal stresses. Thus, the principal strains can be written in terms of the deviatory 

strain, and the hydrostatic strain, as 

 (5.6) 

Substituting in Equations (5.5a), (5.5b), and (5.5c), the principal stress tensor becomes 

(57) 

where the first term is the deviatory stress and the second the hydrostatic stress. It is 
worth noting that if only relative stress components are of interest (i.e., only the deviatory 
stress), the strain-free lattice spacing, d0, is not required in diffraction measurements. The 
deviatory stresses are important when considering the onset of plastic flow. 
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5.1.2 Diffraction-Specific Elastic Constants 

As was observed in Figure 4.1 for austenitic steel, the applied stress versus elastic strain 
response characteristic of each lattice plane family hkl is usually different, because in 
general, the stiffness of a single crystal is not isotropic. At first glance, it is tempting to 
replace the continuum elastic strain in the equations given in the preceding section with 

the lattice strain measured from the hkl reflection. However, the question then arises 
as to the most appropriate elastic constants to replace the isotropic values E, ν. As 
discussed in Sections 5.3 through 5.6, the single crystal values are not representative of 
the behavior of grains within a poly crystal because of intergranular strains generated 
between the differently oriented grains. For the moment, we defer a discussion of the 
subtleties of intergranular strain and take the pragmatic view that representative elastic 
constants for a polycrystal can be derived that relate the lattice strains to the macrostress 
during elastic loading. These are termed the diffraction peak-specific elastic constants 
(DECs), Ehkl and vhkl for texture-free materials. If these are substituted in the generalized 
Hooke’s law equations, then—at least in the elastic loading regime—the strain evaluated 

for each reflection can be converted to a single valued estimate of the macrostress, 

where 

 
(5.8) 

In fact, all the equations in Section 5.1.1 have hkl diffraction peak-specific analogs. The 
diffraction elastic constants can be measured from calibration experiments in which a 
polycrystalline sample is subjected to known uniaxial loading. They can also be 
calculated as discussed in Section 5.5, and those based on the Kröner model are given in 
Tables 5.8 and 5.9. 

5.1.3 X-Ray Measurement of Stress 

An alternative formulation commonly used when making x-ray diffraction investigations 
of stresses and strains is based on a definition of the direction in which the strain is 
measured through the two angles and ψ, as shown in Figure 5.1. Henceforth, the 
explicit labeling of strain, ε, and lattice spacing, d, with the reflection hkl will be 
dropped—it is taken as understood. Using this system, the expression relating the strain, 

along the direction of the scattering vector, −Q, parallel to L3 as a function of strain 
components, εij, in the sample coordinate system, P1, P2, P3, is given by substituting  

 
(5.9) 
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FIGURE 5.1 Definition of sample 
coordinate system, Pi, and the angles 
and ψ. The strain is measured along 
direction L3, which is anti-parallel to 
the scattering vector, Q. (Based on 
Noyan and Cohen [5].) 

in Equation (5.3): 

(5.10) 

For materials isotropic at the continuum level, using the generalized form of Hooke’s law 
and the diffraction elastic constants Ehkl and νhkl, we can relate the strain component 

to the components of the stress tensor as 

(5.11) 

As noted above, in general six independent components of lattice strain must be 
measured in order to derive the full strain tensor. However, for special stress states, fewer 
measurements are needed. A free surface is a case in point because the normal stress is 
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zero, σ33=0, and there are no σ13 and σ23 shear components. Here the normal direction, P3, 
is a principal axis and Equation (5.11) becomes linear in sin2ψ: 

(5.12a) 

where is given by 

 (5.12b) 

This expression forms the basis for the so-called sin2ψ technique, which has been used 
extensively for stress measurement using x-ray diffraction since the mid-1920s. Often it 
is used with the elastic constants expressed in the form 

 
(5.13) 

S1 and S2 are sometimes called x-ray elastic constants (XECs) or diffraction elastic 
constants (DECs) (see, for example, Hauk and Macherauch [4], Noyan and Cohen [5], 
and Cullity [6]), although we shall reserve the latter term for the constants Ehkl, vhkl, and 
µhkl. S1 and S2 are not to be confused with elements of the compliance tensor Sijkl. The 
attractive nature of Equation (5.12a) is the linearity in sin2ψ. 

 (5.14a) 

Now at ψ=0, 

 
(5.14b) 

Thus, 

 (5.14c) 

Hence, from a series of measurements of at a number of different angles ψ, including 

ψ=0, for a specific angle we may generate a linear plot of versus 
sin2ψ. The slope of this line renders a measure of the in-plane stress component 
Although this procedure requires the knowledge of the reference lattice plane spacing, d0, 
since d0 is simply a multiplying factor of the slope when determining it may be 
approximated by giving rise to errors in the stress of only fractions of a percent. If 
the principal stress directions in the plane are unknown, they may be determined by 
making measurements at a number of different angles and solving Equation (5.12b). 
This approach has been used in numerous applications throughout the years, and 
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procedures have been proposed for its use in the more general case of bulk 
measurements, and in the case of textured materials. For further information, see for 
instance, Noyan and Cohen [5]. Of course, for triaxial stress fields, when σ33≠0, the full 
expression given in Equation (5.11) must be used, and an accurate value of d0 is required, 
as in the case of most neutron diffraction strain measurements. 

Although this method cannot be used in neutron diffraction stress measurement so 
easily because of the depth penetration of the sampled gauge volume, it can be applied to 
the case of very thin plates when the normal stress can be taken to be zero through the 
thickness, that is, in the case of plane stress. An example using the transmission 
technique was discussed in Section 4.6.3. The basic sin2ψ principle can also be used 
when measuring the strain variation between two known principal axes, denoted 1 and 2, 
at a point within a sample, since from Equation (5.3) there are only two terms for strain 
measurement perpendicular to the third principal axis:  

ε(ψ)=ε11cos2ψ+ε22sin2ψ=ε11+[ε22−ε11] sin2ψ 
(5.15) 

Here ψ is the angle between the scattering vector Q and principal axis 1 in the sample. 
Since it involves a number of measurements at different angles ψ, this method can give 
very accurate results [7]. 

5.2 Introduction to Mechanics of Crystallite Deformation 

Having selected the atomic lattice planes as an internal gauge for monitoring strains by 
diffraction techniques, a thorough examination of the mechanics of materials at the 
appropriate length scale is demanded in order to ensure reliable interpretation of the data. 
As emphasized in Section 1.4.2, diffraction is a selective technique that monitors an 
average response over the sampled gauge volume of a selected subset of typically several 
thousand grains, identified by their identity in hkl and similarity in orientation. Because 
crystals have anisotropic elastic and plastic properties, only very rarely does such a subset 
faithfully reproduce the macroscopic deformation of the body as a whole. 

Consequently, in bridging the gap between probing strains at a scale relevant to the 
microstructure, and the engineers’ vision of macroscopic stresses and strains in 
structures, it is necessary to acquire both theoretical and experimental insight into the 
micromechanics of crystalline solids. In the following sections, these aspects are first 
addressed through a review of the theory of the elastic anisotropy of single crystals. This 
single crystal anisotropy lies at the root of differences between the strains measured by 
diffraction and the macroscopic engineering strains in polycrystalline samples, due to the 
so-called intergranular strains. As engineering components are only rarely single 
crystalline, it is therefore necessary to study the micromechanics of poly crystal 
deformation to support the interpretation of diffraction data. Hence, models for the 
deformation of polycrystals will need to be introduced. Such models can guide 
experimental research, which in turn may provide valuable insight into the validation and 
refinement of the models. 

The importance of the anisotropy in lattice strain response, observed when performing 
diffraction measurements, has become increasingly evident to those using the neutron 
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diffraction technique to measure strain. Although appreciated in the early days of the 
technique [8], from the mid-1990’s it has drawn increasing attention, both from the point 
of view of understanding deformation mechanisms and for the correct interpretation and 
analysis of diffraction data. 

Of course, identification of the effects of anisotropy goes back further than the use of 
the neutron diffraction technique. Glocker [9] addressed the issue of elastic anisotropy in 
x-ray diffraction experiments as early as 1938, and in several subsequent publications 
Bollenrath et al. [10–12] and Smith and Wood [13,14] observed anisotropy-related 
effects following plastic deformation during bending, tension, and compression. The first 
direct demonstration of the existence of residual intergranular stresses following plastic 
strain caused by interactions between grains of different orientations, came in 1946 by 
Greenough [15], followed by a number of subsequent publications [16–18]. In fact, much 
of this work was probably inspired by Heyn [19], who already in 1921, in studying work 
hardening of metals, arrived at the conclusion that following plastic deformation, some 
kind of internal self-equilibrating stress-strain state pertained. Despite the fact that Heyn 
named these stresses and strains ‘hidden elastic strains’ and ‘hidden (latent) stresses/they 
were more commonly known as ‘Heyn stresses’ in Germany. He wrote: 

When fully unloading a metallic material, which has been strained beyond 
the yield point, a certain amount of elastic strain and therefore stress is 
still apparent. This is due to a frictional force acting as an obstacle and 
keeping the system in balance. It is this elastic strain and stress that I call 
hidden strain and hidden (latent) stress. (Translation from German 
courtesy of Dr. M.Preuss.) 

The issue of intergranular stress, a Type II microstress, has therefore been acknowledged 
since the early 1920s, but only in recent years has the problem of measuring and 
calculating its effects in detail been taken up by those using neutron diffraction to 
measure strain and interpreting the data in terms of stress. This interplay between 
experiment and modeling has improved our understanding of the mechanics of the 
deformation of polycrystalline materials, and the field advanced rapidly toward the end of 
the 20th century. 

In general, intergranular stresses generated during loading have two origins: 

• Elastic anisotropy due to variation in elastic properties of single crystals with direction 
• Plastic anisotropy due to the fact that crystals do not deform homogeneously, but rather 

only on specific well-defined crystal planes (slip planes) in specific directions (slip 
directions) 

That different Bragg reflections behave differently under plastic strain has been 
catalogued by those using neutron diffraction for some time, perhaps beginning with 
Sayers in 1984 [8], who addressed the topic from a theoretical perspective, while 
realizing its practical implications. An example of some of these early observations is 
given in the work of Allen et al. [20], which is summarized in Figure 5.2 showing how 
the diffraction peaks for different hkl reflections of a duplex alloy respond differently to 
an externally applied load. 
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The duplex alloy is a two-phase system, but even within each phase of the alloy, the 
anisotropy in lattice strain between different reflections is marked. The observed hkl 
dependency may be presented by plotting the effective stiffness of the various hkl 
reflections as a function the anisotropy parameter  

 

FIGURE 5.2 Lattice strain response 
from several Bragg reflections 
measured parallel to an applied 
uniaxial stress in each of the two 
phases of a duplex alloy: (a) α-ferritic 
phase, and (b) γ-austenitic phase. 
Residual strains upon unloading are 
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marked on the abscissa and the 
anisotropy factors, AM, (Equation 
(5.24)) are also shown [20]. 

Ahkl defined in Section 5.3.1, Equation (5.24). This is shown in Figure 5.3, from which 
we observe a large variation in the effective modulus with Ahkl for strain responses in 
both the longitudinal and transverse directions to an applied load, discussed more detail 
in Section 5.5. 

Nonlinearities in the applied stress-lattice strain response occurring as a consequence 
of the onset of plastic flow have been well documented. An  

 

FIGURE 5.3 (a) Anisotropic variation 
of elastic compliance constants parallel 
and perpendicular to an applied 
uniaxial tensile stress for as-received 
(unannealed), and annealed mild steel, 
(b) Anisotropic variation of elastic 
compliance constants for the α and γ 
phase of duplex steel alloy. Solid lines 
are drawn through the measured 
points, and are related by ν=0.3. 
Broken lines are calculated from the 
Voigt and Reuss expressions [20]. 
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FIGURE 5.4 Lattice strain response 
from the (310) Bragg reflection in 
annealed mild steel measured parallel 
and perpendicular to a uniaxial applied 
load. Uncertainties are denoted by 
point sizes. The microstrain (Types II 
and III) parallel to the stress, evaluated 
in terms of peak broadening (full width 
at half of maximum intensity), is also 
shown [20]. 

example is the marked ‘kink’ observed for the (310) reflection for annealed mild steel 
upon exceeding the elastic limit in Figure 5.4, which is possibly associated with the 
macroscopic phenomena of Lüders bands. We will return to these aspects of nonlinear 
lattice strain response when discussing theoretical means of addressing the plastic 
anisotropy of polycrystalline aggregates in Section 5.6. 

Many other observations have now been made of the anisotropy in lattice strain 
response, leading to discussions of how to interpret measured hkl-specific strains in order 
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to obtain macrostrain. Without trying to cover every possible model, in the following 
sections the basic grain-to-grain micromechanics are introduced through models of 
increasing complexity, moving from the elastic behavior of single crystals through to the 
plastic deformation of polycrystalline materials, as outlined in Figure 5.5.  

 

FIGURE 5.5 Established models for 
describing anisotropies in polycrystals 
based on single crystal behavior. 

5.3 Elastic Anisotropy of Single Crystals 

In order to understand the mechanics of elastic deformation of polycrystals from the 
perspective of strain measurement by diffraction, the most important property is the 
anisotropy in elastic constants. In an actual diffraction experiment, the effective elastic 
properties of a selected subset of grain orientations is sampled, and identified by a 
specific hkl reflection from a polycrystalline aggregate. Before addressing these effective 
properties, it is helpful to understand the underlying anisotropy in single-crystal elastic 
properties. The treatment here does not attempt to treat elastic anisotropy of crystal 
structures in general, which is well covered in texts such as Nye [1]. Instead, we focus on 
cubic and hexagonal structures that cover the majority of engineering materials. The 
discussion of the elastic anisotropy of single crystals and polycrystals in this and the next 
two sections closely follows that given by Noyan and Cohen [5]. 

The standard way of expressing the elastic properties of such crystals is to relate the 
strain components, εij, to the stress components, σij, through the fourth-rank compliance 
tensor, Sijkl, or through the inverse expression giving the relation in terms of the fourth-
rank stiffness tensor, Cijkl, as given in Equation (5.1). These relations may be written in 
the form where a summation over repeated indices, here k and l, shown explicitly in 
Equation (5.1), is implied: 

εij=Sijkl σkl and σij=Cijkl εkl 
(5.16) 

Note that the conventional symbol for these fourth-rank tensors is just the opposite of the 
first letter in their names! It is common practice to express the fourth-rank tensor 

Introduction to the characterization of residual stress by neutron diffraction     224



quantities and in terms of matrices, Smn and Cmn, and the second-rank tensors and 
as σm and εm where the former and latter pair of suffixes reduce according to 

(5.17) 

In going from tensor to matrix notation, a few additional rules are needed for the 
compliance constants, but not the stiffness constants [1]. These are that Sijkl=1/2 Smn when 
either m or n is 4, 5, or 6; and Sijkl=1/4 Smn when both m and n are 4, 5, or 6. Similarly, the 
strain components are adjusted so that εij=1/2 εm when m is 4, 5, or 6. 

It should be noted that when the fourth (second) rank compliance or stiffness (stress 
and strain) tensors, Sijkl and Cijkl (σij and εij), are converted into matrix notation, following 
the rules given above, then the matrices Smn and Cmn (σm and εm) are not tensors. When it 
is necessary to transform these properties to another reference frame, it is necessary to 
return to the fourth (second) rank tensor notation, and follow the standard rules for tensor 
transformation. 

5.3.1 Elastic Anisotropy of Cubic Single Crystals 

The conventional method for denoting or indexing lattice planes using Miller indices, hkl, 
was described in Sections 2.3.1 and 2.3.3. In the cubic system, whether it is face-centered 
cubic, body-centered cubic, or primitive cubic, the hkl lattice direction, denoted [hkl], 
and the normal to the hkl lattice planes, are parallel. To illustrate the Miller indexing 
notation, some commonly used planes are indexed in Figure 5.6. Due to symmetry in the 
properties of cubic crystal structures, the number of independent elastic constants is only 
three. This is described in greater detail in Nye [1], who also provides a graphical matrix 
representation of the distribution and relation between these constants, as reproduced in 
Figure 5.7 for some of the simpler crystal structures. 

For a specific crystal direction [hkl] relative to crystal axes along direction 1 of a new 
reference coordinate system, the strain component is related to the stress component in 
that direction by Hooke’s Law: 

ε11=(1/E)hkl σ11=S′ 1111 σ11 
(5.18) 

The reciprocal of the appropriate Young’s modulus—the compliance S′1111 here indicated 
by the prime—may be expressed in terms of the compliance tensor referred to the crystal 
axes, Smnop, following standard transformation rules for rotating the axes of fourth-rank 
tensors, with summation implied over m, n, o, and p:  

(1/E)hkl=S′1111=l1ml1nl1ol1p Smnop 
(5. 

19) 
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FIGURE 5.6 Selected crystallographic 
planes of cubic system indexed by 
Miller indices (hkl) notation. 

Here l1j=1, 2, or 3, are the direction cosines between the specific direction in question 
[hkl] and the crystal axes. Adopting the tensor contraction rules given above, and 
expressing the transformation in matrix notation, one finds for cubic crystals that 
S1111=S11, S1122=S12, and S1212=S66/4=S44/4. Thus, the reciprocal Young’s modulus is given 
by: 

(1/E)hkl=S′1111=S11–2[S11−S12–1/2 S44] (l11l12+l12l13+l13 l11) 
(5.20) 

The orientation dependency of the elastic anisotropy with direction [hkl], normally 
denoted Ahkl, is governed by the latter term in round brackets, which varies between 0 and 
1/3. 

Ahkl=(l11l12+l12l13+l13l11), 
(5.21) 

whereas the amount of anisotropy is governed by the term:  
S0=[S11−S12−1/2 S44] 

(5.22) 
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FIGURE 5.7 A “matrix” 
representation of the number and 
distribution of independent elastic 
coefficients for the Smn and Cmn 
matrices for cubic and hexagonal 
structures [1]. The number of 
independent elastic constants is 
indicated in brackets. 

The former is dependent on the crystallographic plane, and the latter on the specific 
material. The degree of anisotropy can be expressed in terms of the ratio 

2(S11−S12)/S44 
(5.23) 

This is equal to 1 for isotropic crystal properties, and deviates increasingly from 1 with 
increasing degree of anisotropy. 

The above expressions are all given in terms of direction cosines of any direction in 
the crystal. However, with regard to diffraction experiments, only specific crystal 
directions are of interest, namely those directions corresponding to allowed reflections 
hkl according to the selection rules. Expressing the direction cosines in Equation (5.21) in 
terms of these Miller indices, the Ahkl parameter is given by 

Ahkl=(h2k2+k2l2+l2h2)/(h2+k2+l2)2 
(5.24) 
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This quantity is seen to vary from a value of 0 for the [100] crystal direction to 1/3 for the 
[111] direction. It should be noted that although some reflections, such as the fcc (333) 
and (511), may have the same stress-free lattice spacing, their lattice planes have 
different elastic anisotropies, since A333 ≠ A511. The most common situation for most 
metals is that the term in square  

 

FIGURE 5.8 The radius vector in each 
figure is proportional to the magnitude 
of Young’s modulus relating uniaxial 
stress to strain in that direction for 
various cubic crystal structures: (a) 
copper, (b) diamond, and (c) rock salt 
[21]. The axes are defined in Figure 
5.6. 

brackets, given in Equation (5.22), which precedes the orientation term in Equation 
(5.20), is positive, in which case the [111] direction is found to be the most stiff and the 
[100] direction the most compliant. However, for certain combinations of compliance 
constants, this term will be negative, in which case the stiff and compliant directions are 
interchanged. The variation in Young’s modulus with direction of the strain and stress for 
some cubic crystals is shown in Figure 5.8. 

Typical values of the elastic constants and Young’s modulus for selected 
crystallographic directions [hkl] in fcc crystals [22–24], as well as values of the ratio 
given in Equation (5.23) as a measure of the anisotropy, are summarized in Table 5.1. 
The materials included in Table 5.1 represent a broad range in terms of the degree of 
anisotropy, from aluminum, which is nearly isotropic, to copper and austenitic stainless 
steel, here denoted Feγ, which are highly anisotropic. For aluminum, we note that the 
maximum deviation in stiffness from the typical isotropic macroscopic value of 70 GPa, 
only amounts to around 8% to 9%, whereas for stainless steel, with a typical bulk 
polycrystalline Young’s modulus of, say, 195 GPa, the deviation in stiffness exceeds 
50%. Note also that for all the four materials selected here, the parameter describing the 
degree of anisotropy is positive, with the consequence that the [111] is the stiffest 
direction, and the [200] the most compliant one. 
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In Table 5.2, corresponding data are given for common bcc materials. Note that in 
contrast to the fcc materials, not all of bcc materials show the [111] direction to be the 
stiffest. For materials such as molybdenum (Mo) and chromium (Cr), the degree of 
anisotropy is less than unity so that the [111] direction becomes the most compliant one, 
and the [200] direction the stiffest. Vanadium, V, and niobium, Nb, also fall into this 
category of bcc elements. For ferritic iron (Feα), the maximum deviation from a typical 
bulk polycrystalline modulus of 210 GPa, amounts to 30% to 40%; hence, ferritic steel  

TABLE 5.1 Values of Single-Crystal Elastic 
Constants and Ehkl for Selected hkl Reflections of 
Common fcc Cubic Crystals 

Modulus Units Ala Cua Nib Feγc

C11 ×1010 
Pa 

10.82 16.84 24.40 20.46

C12 ×1010 
Pa 

6.13 12.14 15.80 13.77

C44 ×1010 
Pa 

2.85 7.54 10.20 12.62

S11 ×10−11 
Pa−1 

1.57 1.50 0.83 1.07

S12 ×10−11 
Pa−1 

−0.57 −0.63 −0.33 −0.43

S44 ×10−11 
Pa−1 

3.51 1.33 0.98 0.79

2(S11−S12)/S44   1.22 3.20 2.37 3.80
E200 GPa 63.7 66.7 120.5 93.5
E311 GPa 69.0 96.2 161.4 138.3
E420 GPa 69.1 97.0 162.4 139.6
E531 GPa 71.1 113.6 182.9 165.9
E220 GPa 72.6 130.3 202.0 193.2
E331 GPa 73.6 143.6 216.2 215.5
E111 GPa 76.1 191.1 260.9 300.0
a From Hertzberg [22]. b From Ledbetter [24]. c 

From Simmons and Wang [23]. 

TABLE 5.2 Values of Single-Crystal Elastic 
Constants and Ehkl for Selected hkl Reflections of 
Common bcc Cubic Crystals 

Modulus Units Feαa Vb Moa Crb

C11 ×1010 Pa 23.70 19.60 46.0 35.0
C12 ×1010 Pa 14.10 13.30 17.6 6.78
C44 ×1010 Pa 11.60 6.70 11.0 10.08
S11 ×10−11 

Pa−1 
0.80 1.13 0.28 0.30

S12 ×10−11 −0.28 −0.46 −0.08 −0.05
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Pa−1 
S44 ×10−11 

Pa−1 
0.86 1.49 0.91 0.99

2(S11−S12)/S44   2.51 2.13 0.79 0.71
E200 GPa 125.0 88.5 357.1 333.3
E310 GPa 146.4 102.3 336.6 306.7
E411 GPa 149.8 104.4 334.1 303.5
E321 GPa 210.5 141.3 305.3 268.5
E112 GPa 210.5 141.3 305.3 268.5
E110 GPa 210.5 141.3 305.3 268.5
E222 GPa 272.7 176.5 291.3 252.1
a From Hertzberg [22]. b From Simmons and 
Wang [23]. 

displays a smaller degree of elastic anisotropy than does austenitic steel. Tungsten, for 
which the ratio in Equation (5.23) is equal to 1, is the ultimate case having perfectly 
isotropic properties. Accordingly, a plot similar to those in Figure 5.8 would give a 
sphere.  

 

FIGURE 5.9 Selected crystallographic 
planes in hexagonal system indexed by 
the Miller-Bravais indexing system. 
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5.3.2 Elastic Anisotropy of Hexagonal Crystals 

The most common way of identifying crystal directions and lattice plane normals in the 
hexagonal crystal structure is to introduce an extra index, i, described in Section 2.3.4. To 
illustrate the indexing of lattice planes in the hexagonal crystal structure, some commonly 
used planes are indexed in Figure 5.9. Symmetry considerations mean that the number of 
independent elastic constants for the hexagonal system is five, and the matrix 
representation is shown in Figure 5.7. 

Following the approach given above for the cubic system, the strain component due to 

stress applied along a specific direction of the crystallite given by the unit vector, is 
given by the elastic compliance [1]: 

 
(5.25) 

where l3 is the cosine of the angle between the unit vector, and the c-axis of the crystal. 
It is evident from the above equation that the Young’s modulus varies only with angle 
between the direction of the strain and stress and the c-axis. This is illustrated in Figure 
5.10 for selected hexagonal crystals.  

 

FIGURE 5.10 The radius vector in 
each figure is proportional to the 
magnitude of Young’s modulus 
relating the stress to strain in that 
direction for hexagonal (a) cadmium 
and (b) zinc [21]. 
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5.4 The Bulk Elastic Response of Polycrystals 

In Section 4.2.2 and in Figures 5.2, 5.3, and 5.4, it was seen that even under elastic 
loading, the strains measured using different lattice planes in a polycrystalline material 
are different. In fact, it is found that the slope of the lattice strain response to an applied 
stress usually lies between the bulk value and the single crystal value. While the strains 

can be related to a single value of the applied (macro)stress using diffraction elastic 
constants (Section 5.1.2) calibrated by measuring the lattice strains induced under 
uniaxial loading of a sample of the material, their variation with hkl can tell us much 
about fundamental aspects of the level of inhomogeneous formation developing within 
the polycrystal. 

In modeling the mechanical response of a polycrystalline aggregate, we have to 
distinguish between whether the aim is to predict macroscopic properties, such as the 
bulk Young’s modulus and shear modulus, or whether the aim is to predict or estimate the 
hkl lattice strain response of selected families of grains having a specific orientation as 
measured in diffraction experiments. The latter case is relevant even from an engineering 
perspective, as we are interrogating the mechanical response of a polycrystalline 
aggregate through the hkl reflections, and failure to understand this can lead to 
misinterpretation. It also provides insight into how microstructural aspects, such as 
anisotropy in single crystal properties and nonrandom distribution of grain orientations, 
affect the macroscopic response of the materials. Nevertheless, we shall begin by 
outlining the theoretical approaches to predicting the overall bulk macroscopic properties. 
Of the many schemes that have been proposed, the most important are those of Voigt and 
Reuss, which render theoretical bounds on stiffness, and the more sophisticated approach 
of Kröner. 

5.4.1 Voigt and Reuss Models for Macroscopic Bulk Properties 

5.4.1.1 Voigt Model for Bulk Properties 

In the Voigt modeling scheme, each grain in the aggregate is assumed to experience the 
same uniform strain, and the aggregate’s elastic properties are calculated by averaging 
the elastic stiffness, Cij, over all elements of the aggregate [25]. This results in 
expressions for the macroscopic bulk modulus, K, and shear modulus, µ, written with 
superscript V to denote Voigt [23]: 

 (5.26) 

 (5.27) 

where the constants F, G, and H are given in terms of the elastic properties of the single 
crystal by 
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3F=C11+C22+C33 
(5.28a) 

3G=C23+C31+C12 
(5.28b) 

3H=C44+C55+C66 
(5.28c) 

In this isotropic polycrystalline average case, the bulk and shear moduli are directly 
related to Young’s modulus, Ev, and Poisson’s ratio, νv, through the expressions 
connecting the moduli of isotropic materials [26]: 

Ev=3KV (1–2νv)=2(1+νv)µv 
(5.29) 

 
(5.30) 

For cubic materials these become  
Kv=(C11+2C12)/3 

(5.31) 
µV=[(C11−C12)+3C44l/5 

(5.32) 

TABLE 5.3 Bulk, Shear, Young’s Moduli, and 
Poisson’s Ratio for Polycrystalline Aggregates 
Following the Voigt Modeling Scheme 
  Units Al Cu Ni Feγ Feα V Mo Cr
Kv GPa 76.9 137.10 186.7 160.0 173.0 154.0 270.7 161.9
µv GPa 26.5 54.6 78.4 89.1 88.8 52.8 122.8 116.9
Ev GPa 71.3 144.7 206.3 225.5 227.5 142.2 320.0 282.7
νv   0.35 0.32 0.32 0.27 0.28 0.35 0.30 0.21

Based on these expressions, and the elastic constants of Table 5.1 and Table 5.2, the 
overall elastic properties have been calculated for a range of common fcc and bcc 
materials, and the results are presented in Table 5.3. 

5.4.1.2 Reuss Model for Bulk Properties 

In the Reuss modeling scheme, each grain is assumed to experience the average stress 
applied to the aggregate, and the aggregate properties are calculated by averaging the 
elastic compliances, Sij, over all elements of the aggregate [27]. However, the model 
does not allow for continuity of displacement at grain boundaries, as the strains in two 
adjacent crystallites are different. The bulk and shear modulus are given by expressions 
of the form [23]: 
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 (5.33) 

 (5.34) 

where the constants a, b, and c are given in terms of the elastic properties of the single 
crystal by 

3a=S11+S22+S33 
(5.35a) 

3b=S23+S31+S12 
(5.35b) 

3c=S44+S55+S66 
(5.35c) 

The expressions for ER and νR follow from the isotropic bulk average expressions 
Equations (5.29) and (5.30). For polycrystalline cubic materials,  

KR=(C11+2C12)/3=Kv 
(5.36) 

µR=5/[4(S11−S12)+3S44] 
(5.37) 

TABLE 5.4 Bulk, Shear, Young’s Moduli, and 
Poisson’s Ratio for Polycrystalline Aggregates 
Following the Reuss Modeling Scheme Using Data 
from Tables 5.1 and 5.2 
  Units Al Cu Ni Feγ Feα V Mo Cr
KR GPa 76.9 137.1 186.7 160.0 173.0 154.0 270.7 161.9
µR GPa 26.2 40.0 66.0 59.7 72.5 46.2 119.9 114.4
ER GPa 70.6 109.4 177.9 159.2 185.2 126.3 314.5 279.3
νR   0.35 0.37 0.34 0.33 0.32 0.36 0.31 0.21

The overall elastic properties have been calculated for selected fcc and bcc materials, and 
the results are presented in Table 5.4. The Voigt and Reuss models have been shown by 
Hill [28] to render lower and upper bounds on the aggregate elastic properties, and in fact 
the average of the two is in quite close correspondence with experimental observations 
for texture-free aggregates. Hashin and Shtrikman [29,30] proposed more narrow bounds 
based on a variational principle, but by far the most accepted approach is the one 
suggested by Kröner in 1958 [31]. 

5.4.2 Kröner Model for Macroscopic Bulk Properties 

In contrast to the idealized approach by Voigt and Reuss, which prescribes either the 
strain or the stress to be identical in all constituents of the aggregate, the Kröner model 
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allows both stresses and strains to vary from grain to grain. In the self-consistent scheme 
proposed by Kröner [31], it is merely prescribed that the whole aggregate is exposed to a 
specific homogeneous average stress field and an associated homogeneous average strain 

field. In essence, this average stress, for a single-phase material is analogous to the 

concept of a Type I macrostress, such as would arise throughout the gauge section of 
a tensile test specimen. This average stress does not prevent the stress or the strain of the 
individual constituent grains, Ω, σij(Ω) and εij(Ω), from varying with grain orientation or 
shape. Indeed, in the elastic regime a linear relationship exists between this homogeneous 
average stress, or strain, field, and the stress, or strain, of the individual constituent 
grains: 

 (5.38) 

 (5.39) 

Specifically, Kröner chose to express this linear relationship, that is, pijkl and qijkl, in terms 
of the average elastic properties of the aggregate, Cijkl and Sijkl, respectively, modified or 
perturbed by the addition of grain interaction tensors that take into account the anisotropy 
and particular shape of the grains. This modification can be interpreted by saying that 
apart from the  

TABLE 5.5 Bulk, Shear, Young’s Moduli, and 
Poisson’s Ratio for Polycrystalline Aggregates 
Following the Kröner Modeling Scheme Using 
Data from Tables 5.1 and 5.2 
  Units Al Cu Ni Feγ Feα V Mo Cr
KK GPa 76.9 137.1 186.7 160.0 173.0 154.0 270.7 161.9
µK GPa 26.4 48.2 72.8 75.6 82.1 49.9 121.9 115.3
EK GPa 71.0 129.4 193.3 195.9 212.7 135.1 318.0 279.5
νK   0.35 0.34 0.33 0.30 0.30 0.35 0.30 0.21

normal Hooke’s Law relationship between εij(Ω) and through the average elastic 
compliance tensor of the aggregate, Sijkl, an additional contribution stems from the fact 
that the elastic constants of the specific grain deviates from the values of the aggregate. 
Considering the special case of an anisotropic spherical inclusion in a homogeneous 
effective medium, the solution to this interaction problem was proposed by Eshelby in 
1957 [32], in terms of the elastic properties of the grain, those of the effective medium, 
and the grain shape. 

Restricting our discussion to cubic crystallites, the bulk modulus is identical to the 
single crystal bulk modulus: 

 (5.40) 
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A more involved relation exists for µK, which can be solved either graphically or 
numerically [5,33], Having determined the overall isotropic bulk and shear modulus, 
Young’s modulus and Poisson’s ratio are found through Equations (5.29) and (5.30). 
Using the single crystal elastic constants of Tables 5.1 and 5.2, these aggregate properties 
have been calculated for selected materials, and the results are given in Table 5.5. 

Note the slight variations in the bulk modulus, K, between the Reuss model and the 
results of the Voigt and Kröner models, given in the tables. All models ought to render an 
identical bulk modulus, and the differences stem from the fact that the Reuss model 
predictions are based on compliance constants, whereas the latter two model predictions 
are based on stiffness constants. The differences in K indicate that the single crystal data 
reported in Tables 5.1 and 5.2 are not precisely the inverse of one another, but rather 
originate from different sources. 

On comparing the predictions of the three modeling schemes, we observe that average 
Reuss and Voigt model results are at no point more than 3% away from the predictions of 
the more realistic and elaborate Kröner model, which is known to render properties 
closely resembling experimental observations. As Hill suggested, using the average of the 
Reuss and Voigt models would be sufficiently accurate for all practical purposes. 

Note that the macroscopic bulk aggregate moduli have been calculated in the three 
cases above on the basis of negligible preferred orientation or texture. It is possible to 
modify the Kröner model and the other models to take texture into account by performing 
averaging integrals over the orientation distribution function rather than over all random 
orientations [34]. 

5.5 hkl-Specific Response in a Polycrystal Undergoing Elastic 
Deformation 

In the previous section, we examined the overall bulk elastic moduli of homogeneous 
polycrystalline aggregates predicted by three models, which by averaging all crystallite 
orientations are isotropic for a nontextured material. However, of more direct relevance 
to the interpretation of lattice strain measurements by diffraction are the model 
predictions of the elastic response of the specific hkl reflections used in converting strain 
to stress. It is important to remember that in collecting diffracted intensity from a 
reflection hkl, one is measuring the average lattice strain response of all crystallites 
whose hkl plane normals are in the appropriate direction, irrespective of the crystal 
orientations perpendicular to the hkl plane normal. Here we consider the plane-specific 
Young’s modulus Ehkl parallel to an applied uniaxial load, and Poisson’s ratio vhkl giving 
the strain measured perpendicular to an applied loading stress in terms of the strain 
measured parallel to the loading direction. 

5.5.1 Voigt and Reuss Models 

5.5.1.1 Voigt Model 

As the Voigt model rests on the assumption that all grains in a polycrystalline aggregate 
experience the same uniform strain, this model does not provide any orientation 

Introduction to the characterization of residual stress by neutron diffraction     236



dependency, and all hkl reflections inherently render the same lattice strain response 
parallel to an external load. Thus, Young’s modulus and Poisson’s ratio are isotropic and 
the same for all hkl, and are given by Equations (5.29) through (5.32). 

5.5.1.2 Reuss Model 

In applying the Reuss model, all crystallites will experience the same stress. In order to 
determine the strain response to an applied uniaxial stress experienced by cubic 
crystallites giving rise to the hkl reflection, the contributions from all crystallites with hkl 
planes perpendicular to the [hkl] direction are averaged. Two important cases are when 
these hkl planes are perpendicular to the applied stress (i.e., when the lattice strain is 
measured in the loading stress direction), and when the hkl planes contain the loading 
stress direction (i.e., when this is perpendicular to the [hkl] direction).  

The polycrystalline average strain measured parallel to the applied uniaxial stress σA 

in the [hkl] direction, will be the same as that for a single crystal given by 
Equations (5.18), (5.20), and (5.24), since the response is the same for all orientations of 
the contributing crystallites perpendicular to the stress direction [hkl]. From Equation 
(5.20), 

 (5.41) 

and Young’s modulus is given by 

 
(5.42) 

The strain response perpendicular to a loading stress, is more complicated, and 
is the equivalent to that obtained by averaging the strain in the [hkl] direction of the 
crystallites for all load directions in the plane normal to [hkl]. Averaging over all these 
possible rotations about the hkl lattice plane normal renders the average strain, 

of the aggregate as function of the parameter Ahkl as 

 (5.43) 

We can define a Poisson’s ratio relating the lattice strains perpendicular and parallel to 
the loading stress as follows: 

 
(5.44) 

The hkl specific elastic moduli of the Reuss modeling scheme have been calculated for a 
selected range of fcc and bcc materials representing a wide range in degrees of elastic 
anisotropy and given in Tables 5.6 and 5.7. Recalling the conceptual flaws inherent in the 
Reuss modeling scheme, these numerical estimates provide only a bound on the elastic 

Interpretation and analysis of lattice strain data     237



properties. More refined approaches and algorithms for the calculation of the hkl specific 
lattice strain response of polycrystalline aggregates have therefore been developed. The 
Kröner approach is discussed below. 

5.5.2 Kröner Model 

The derivation of hkl-specific elastic moduli following the Kröner model rests on the 
basic principles given for the overall bulk response reviewed in Section 5.4.2. An 
expression for the strain in a specific sample direction, the measurement direction [hkl], 
is found by averaging this strain over contributing  

TABLE 5.6 Tabulated Values of hkl-Specific for 
Selected hkl (in GPa) and Poisson’s Ratio for 

Common Polycrystalline fcc Engineering Materials 
Following the Reuss Modeling Scheme 

  (200) (311) (420) (531) (220) (422) (331) (111)
Al 63.7 69.0 69.1 71.1 72.6 72.6 73.6 76.1

  Cu 66.7 96.2 97.0 113.6 130.3 130.3 143.6 191.1
  Ni 120.5 161.4 162.4 182.9 202.0 202.0 216.2 260.9
  Feγ 93.5 138.3 139.6 165.9 193.2 193.2 215.5 300.0
  Al 0.36 0.35 0.35 0.35 0.34 0.34 0.34 0.34

 Cu 0.42 0.38 0.38 0.36 0.34 0.34 0.33 0.27
Ni 0.40 0.36 0.36 0.34 0.33 0.33 0.32 0.28  
Feγ 0.40 0.35 0.35 0.33 0.30 0.30 0.27 0.19

TABLE 5.7 Tabulated Values of hkl-specific for 
Selected hkl (in GPa) and Poisson’s Ratio for 
Common Polycrystalline bcc Engineering Materials 
Following the Reuss Modeling Scheme 

  (200) (310) (411) (420) (321) (112) (110) (222)

 Feα 125.0 146.4 149.8 168.9 210.5 210.5 210.5 272.7

  V 88.5 102.3 104.4 116.3 141.3 141.3 141.3 176.5
  Mo 357.1 336.6 334.1 322.2 305.3 305.3 305.3 291.3
  Cr 333.3 306.7 303.5 288.7 268.5 268.5 268.5 252.1

 Feα 0.35 0.32 0.32 0.30 0.25 0.25 0.25 0.17
  V 0.41 0.39 0.39 0.38 0.35 0.35 0.35 0.31

Mo 0.29 0.30 0.30 0.31 0.32 0.32 0.32 0.33  
Cr 0.17 0.19 0.20 0.21 0.23 0.23 0.23 0.25

crystallites with all orientations in the plane perpendicular to this direction. This is related 
to the average stress in a similar way to the one used for the bulk response. The 
somewhat complicated calculation procedure has been given explicitly for the case of 
crystalline aggregates having a cubic structure [35]. 
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The Kröner elastic modulus and Poisson’s ratio have been calculated as a function of 
Ahkl for selected materials, and are listed in Tables 5.8 and 5.9. The results are also 
illustrated graphically in Figure 5.11 for three materials: aluminum (Al), ferritic iron 
(Feα), and stainless steel (Feγ) representing a range in degree of elastic anisotropy. 
Observe the monotonic variation in modulus and Poisson’s ratio with Ahkl, as well as the 
large differences in magnitude between the different materials. As already mentioned in 
discussing single-crystal properties, the dependency of Young’s modulus and Poisson’s 
ratio on Ahkl can be positive or negative, according to the specific values of the elastic 
constants. Accordingly, the corresponding variations for molybdenum and chromium 
display the opposite functional dependency on Ahkl. The Kröner predictions of the hkl-
specific lattice strain response find widespread use in the analysis of diffraction data, as 
will be discussed in further detail in Section 5.6.4.  

TABLE 5.8 Tabulated Values of hkl-specific for 
Selected hkl (in GPa) and Poisson’s Ratio for 
Common fcc Engineering Materials Following the 
Kröner Modeling Scheme 

    (200) (311) (420) (531) (220) (422) (331) (111)
  Al 67.6 70.2 70.3 71.2 71.9 71.9 72.3 73.4

Cu 101.1 122.0 122.5 131.5 139.1 139.1 144.3 159.0

  Ni 160.0 185.0 185.6 195.6 203.9 203.9 209.5 224.6
  Feγ 149.1 183.5 184.4 199.5 212.7 212.7 221.8 247.9

 Al 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.34
  Cu 0.38 0.35 0.35 0.34 0.33 0.33 0.32 0.31

Ni 0.36 0.33 0.33 0.33 0.33 0.33 0.31 0.30  
Feγ 0.34 0.31 0.31 0.29 0.28 0.28 0.27 0.24

TABLE 5.9 Tabulated Values of hkl-Specific 
for Selected hkl (in GPa) and Poisson’s Ratio for 
Tabulated V Common bcc Engineering Materials 
Following the Kröner Modeling Scheme 

  (200) (310) (411) (420) (321) (112) (110) (222)

 Feα 173.3 189.1 191.3 203.0 225.5 225.5 225.5 250.6
  V 114.0 122.6 123.9 130.3 141.7 141.7 141.7 154.1
  Mo 336.1 327.7 326.6 321.4 313.7 313.7 313.7 306.9
  Cr 305.8 293.4 291.8 284.4 273.7 273.7 273.7 264.4

 Feα 0.33 0.32 0.32 0.30 0.28 0.28 0.28 0.26

  V 0.38 0.37 0.37 0.36 0.35 0.35 0.35 0.33
Mo 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31  
Cr 0.19 0.20 0.20 0.21 0.22 0.22 0.22 0.23
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5.6 hkl-Specific Response in a Polycrystal Undergoing Plastic 
Deformation 

As seen in Figures 5.2 and 5.4, with the onset of plastic deformation the lattice responses 
of different hkl reflections to an applied uniaxial load become markedly different. This is 
due to the creation of intergranular stresses caused by the heterogeneous nature of plastic 
flow at the grain level. Without a proper understanding of how the various reflections are 
affected by plastic deformation, there is a high risk of unreliable interpretation of strain 
data for samples that have been plastically deformed at some stage in their life. In 
addition to the increasing range of experiments, modeling plays an important role in 
helping to understand these effects. To date, most of the experimental and modeling work 
has focused on characterization of plastic anisotropy effects in cubic materials under 
uniaxial tension. It is expected that the scope of study will be widened as understanding 
of the phenomena improves.  
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FIGURE 5.11 Young’s modulii 
calculated from the Kröner model, 
as a function of the orientation 
parameter Ahkl for (a) fcc Feγ (referred 
to left axis) and Al (referred to right 
axis), and (b) for bcc Feα compared to 
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the Kröner prediction of the overall 
macroscopic aggregate stiffness, EK. 

One of the most fundamental issues in modeling the mechanics of polycrystal 
deformation is to take proper account of the interaction between a grain and its 
surroundings. This is a complex task, as it depends on the orientation relationship of the 
grain with each of its neighbors and the shape of the grain boundaries, as well as their 
crystallographic orientations. Given this complexity, it is not surprising that the most 
common approach to modeling polycrystal deformation is through so-called one-site 
modeling schemes, which do not consider direct grain-to-grain interactions explicitly, but 
rather take each grain in the aggregate to interact, in some more or less idealized way, 
with its surroundings. 

The early models of Taylor [36] and Sachs [37] constitute simplified representations. 
In a sense, these are plastic analogs of the Voigt and Reuss models for elastic behavior, 
since either strain or stress, respectively, is considered uniform throughout the aggregate 
in these models. Similarly, their description of the way that grains interact with their 
surroundings is seriously flawed. Hence, like their elastic analogs, they serve as bounds 
for the real behavior of a polycrystal. 

The Taylor-Bishop-Hill [38,39] approach is based on the assumption that every grain 
in the polycrystal experiences the same strain and is not allowed to deviate from the 
average strain in the aggregate. This approach neglects the fact that the behavior of 
individual grains may be affected by the elastic anisotropy in the grain, and is not solely 
dictated by its surroundings. 

An important step toward a more realistic consideration of the interaction between a 
grain and its surroundings was taken by Kröner in 1961 [35] and Budianski and Wu in 
1962 [40]. They considered the surroundings to be an elastic medium, retaining the initial 
elastic properties of the aggregate with which the individual grain interacted. They 
allowed stresses and strains in each grain to deviate from the average, taking into account 
the anisotropy in and orientation of the individual grain. This appears to be a very 
reasonable assumption in the elastic regime of deformation, but naturally it becomes less 
realistic as the plastic part of deformation becomes dominant. 

The Kröner and Budianski-Wu approach renders a very stiff coupling between a grain 
and its surroundings, and, especially when considering stresses and strains at a grain size 
scale, more compliant models are required. More realistic approaches to the modeling of 
the mechanics of polycrystalline aggregates are the so-called elastoplastic self-consistent 
(EPSC) modeling schemes. In contrast to the Kröner and Budianski-Wu approach, these 
EPSC schemes take full account of the changes in material properties of the surroundings 
brought about as a consequence of progressive plastic deformation of the aggregate. The 
principles behind them rest on the equivalent inclusion method by Eshelby [32,41], which 
formulates how an elastically anisotropic inclusion in a homogeneous effective medium 
accommodates deformation brought about by some external loading of the medium. 
Among the many reviews of the Eshelby formulation, especially noteworthy are Mura 
[42], Taya and Arsenault [43], and Clyne and Withers [44].  

The EPSC approaches are described in some detail in the following sections as a 
means of exploring phenomena that depend on the average orientation of the grains 
giving rise to the diffraction peaks hkl. However, the EPSC models neglect nearest-
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neighbor grain-to-grain interactions. Finite element modeling, on the other hand, enables 
one to consider the effect on each grain, or subvolume of a grain, of its specific 
neighbors. Although finite element approaches require consideration of more grains to 
achieve a statistically representative ensemble, they do enable actual intergranular, grain 
to grain, interactions to be described. By using constitutive equations based on slip 
deformation, crystal-plasticity finite element modeling (CPFEM) has been used to reveal 
the significance of intergranular strain nonhomogeneity on the development of texture 
through deformation [45–47], as well as to model the development of internal strains 
[48,49], This method holds tremendous promise for the future as computing power 
increases, but it is not referred to further in this section because the computationally 
simpler EPSC models demonstrate the important phenomena more transparently. 

5.6.1 Elastoplastic Self-Consistent Models 

In EPSC models, each grain is considered as an inclusion of regular shape (i.e., 
ellipsoidal or spherical) embedded in a homogeneous effective medium having the 
instantaneous properties of the poly crystalline aggregate. Neither stresses nor strains are 
prescribed a priori in the individual grains; instead, the boundary conditions on the 
aggregate are prescribed, as well as the external loading in the form of stress or strain 
increments. In a stepwise manner, each grain is then considered successively, with the 
underlying requirement that the weighted average of the stress increments and strain 
increments of all grains corresponds to the macroscopic stress and strain increments 
imposed on the aggregate. 

EPSC models are essentially all based on the same formalism given by Hill in 1965–
1967 [50–53], which was addressed comprehensively by Hutchinson in 1970 [54]. The 
original focus in the earlier modeling approach was on predicting macroscopic stress-
strain curves, texture, and yield loci [55–58]. Not until the late 1980s were modeling 
schemes proposed with specific emphasis on lattice strains and stresses in poly crystalline 
aggregates [59,60]. Two implementations that specifically addressed the lattice strain 
evolution under elastoplastic loading of polycrystalline aggregates have found 
widespread use in recent years with regard to neutron diffraction strain-stress 
measurement. Both of these address the interpretation of hkl-specific lattice strains as 
monitored by diffraction techniques. They are based on essentially the same foundations 
as those provided by Hill and Hutchinson. Lebensohn and Tomé presented a modeling 
scheme in 1993 [57]; a detailed description of its implementation was provided by Turner 
and Tomé in 1994 [61], and subsequently by Turner et al. in 1995 [62]. The second 
modeling scheme was given by Clausen and Lorentzen in 1997 [63,64]. In the following 
sections, the mechanics of plastic deformation are discussed using the latter formulation. 
While much can be gained from a consideration of the model, those interested only in its 
predictive capabilities could move straight to Section 5.6.3. 

5.6.2 Implementation of EPSC Model 

The basic principles and physics behind the EPSC modeling scheme involve 
consideration of the crystallographic slip mechanisms by which the grains of the 
polycrystalline material, with lattice planes, hkl, having a specific orientation to an 
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applied uniaxial load, accommodate plastic deformation. The elastic part of deformation 
is modeled by standard continuum mechanics principles, whereas the modeling of plastic 
deformation considers crystallographic slip only along specific slip directions on specific 
slip planes. Provided that these slip systems are known, a material with any crystal 
structure can be modeled. However, in some materials the available slip mechanisms are 
more easily characterized experimentally than in others. It is for this reason that the initial 
implementations of the method have focused on materials with crystal structures having 
well-defined slip mechanisms such as in hexagonal and fcc materials. For purpose of 
clarity, we will limit the discussion here to fcc systems, where the primary mode of 
crystallographic slip is on the four {111} planes, each having three close-packed <110> 
directions. 

Having defined the permissible modes of crystallographic slip, each grain in the 
aggregate is considered as a spherical inclusion having the elastic anisotropy of a single 
crystal. Each is embedded in a homogeneous effective medium, with the effective 
isotropic properties derived as an average of all grains in the aggregate. This situation is 
exactly the one pictured by Eshelby through his equivalent inclusion theory, which is 
shown schematically in Figure 5.12. 

Eshelby realized that when an inclusion misfitting by (top left in Figure 5.12) is 
placed into an ellipsoidal hole, the strain field inside it is the same throughout; that is, an 

ellipsoid when constrained in a matrix takes up an ellipsoidal shape, (top right). This 
means that for any constrained uniform ellipsoidal inclusion, it is always possible to 
identify a ‘ghost’ or ‘equivalent’ inclusion (bottom left) having the same elastic 
properties as that of the matrix such that when it is deformed to the same shape as the 
constrained inclusion it has the same stress field (bottom right). Thus, the two inclusions 
could be interchanged without disturbing the stress in the matrix. The equivalent 
elastically homogeneous problem is relatively easy to solve analytically. The trick is to 
find the elastically homogeneous inclusion that is equivalent to a given situation. The 
relationship between the equivalent stress-free misfit and the constrained shape is given 

by the Eshelby tensor, where Eshelby’s continuum approach is scale 
independent, so that there is information about grain shape but not size. The resulting 
stress in the inclusion  
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FIGURE 5.12 Illustration of 
Eshelby’s cutting and welding exercise 
for an idealized stress-free misfit, εT*, 
between an elastically different grain 
(above) and the effective medium 
representing all other grains. The 
equivalent elastically homogeneous 
inclusion (below) having the same 
elastic properties as the effective 
medium has a stress-free misfit strain 

This misfit is chosen so as to give 
the same constrained stress field as the 
elastically different grain. Eshelby 
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related the stressfree shape misfit of 
the equivalent inclusion, the final 
elastically constrained inclusion strain, 

This relationship is described by the 
Eshelby tensor, [44], and lies at the 
core of elastoplastic self-consistent 
models. 

caused by this constraint is then where is the stiffness tensor 
representative of the aggregate. This simple situation is only appropriate for a single grain 
embedded in a matrix. In practice, for a poly crystalline material a solution must be found 
iteratively by modifying the properties of the matrix, sometimes termed the effective 
medium, until it is consistent with properties of all the grains in the polycrystal, as 
discussed in Section 5.6.1. 

Having identified the available modes of crystallographic slip, plasticity is considered 
in a stepwise fashion. The increment in the plastic strain tensor of each constituent grain, 

is determined as the sum of all increments in crystallographic slip, where i 
represents all the available slip systems. The total increment in strain of the grain is then 
found by adding the plastic part and the elastic part, where the latter is defined by the 

stress increment, The increments and represent the increments during a 
step in the calculation procedure. (An alternative notation in which these increments are 
represented by a dot above the variable is sometimes used, and the term “rate” is used 
rather than “increment.” However, this should not be confused with a time derivative, as 
the modeling scheme in this formulation is time independent). 

As in the models of Taylor and Sachs, the initiation of plastic flow is governed by the 
specification of a critical resolved shear stress, τi, for each slip system i. In the current 
incremental form, this is through a definition of the current increment in this quantity, 
∆τi. It appears natural to relate the incremental growth of ∆τi to the deformation history 
analogous to conventional work hardening. This has been expressed in terms of summing 
the contribution of slip on all slip systems, i, in the grain [52]. At this point, it is 
important to ask whether hardening on one slip system affects hardening on the other slip 
systems, so-called latent hardening, or whether slip on each slip system should be 
completely independent of the history of slip on other slip systems, so-called self-
hardening. 

Deformation history is introduced through the definition of hγ, a parameter describing 
the hardening of slip on each system. One choice is to make the hardening of system i 
depend linearly on the accumulated crystallographic slip on all slip systems. This has 
proven to be very accurate in reproducing both the elastic-plastic transition and the 
plastic regime [65]. The exact form of hγ is a matter of choice [64]. It should be 
remembered that while the calculation procedure is based on a physically meaningful 
definition of crystallographic slip, the definition of the hardening behavior is essentially 
empirical in nature. The relationship between the increment in critical resolved shear 
stress, ∆τi, and the accumulated slip is an empirical expression of the fact that the critical 
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resolved shear stress ought to increase with plastic deformation much like the description 
of work hardening in a continuum mechanics sense. The various formulations are not 
founded upon the physical mechanisms of hardening by crystallographic slip and the 
associated pile-up of dislocations, they merely express an empirical rule for the evolution 
of the critical resolved shear stress. Nor do the various hardening parameters involved 
have any physical meaning, and as will become apparent in the subsequent description of 
the practical calculation procedure, they are considered as free-fitting parameters. 

Having defined the relationships between the increments in shear and the plastic strain 
increment, the hardening behavior and dependency on deformation history, we can now 
turn to the calculation of the stress and strain increments of the constituents, which is 
done via the so-called concentration tensor proposed by Hill in 1965 [50,51]. The 
procedure incorporates the Eshelby formulation for the equivalent inclusion problem, 
which expresses the stress arising from a given misfit between the grain and its 
neighborhood.  

Once the stress and strain increments in the individual constituent grains have been 
determined, the poly crystal stress and strain increments are found as the weighted 
averages of the stress and strain increments of all grains. In the actual procedure of 
calculating the aggregate response, the loading is simulated by prescribing an increment, 

in the overall strain At a certain point of loading, the current stress states in all 
constituent grains are known, and the potential active slip systems can be specified. From 

this the increment in stress and strain within the grain can be determined, and 
as well as the instantaneous modulus, Lc. This makes it possible to calculate the overall 

aggregate stress increment, associated with the prescribed strain increments, as 

well as to determine the current aggregate stiffness tensor, More detailed descriptions 
of this procedure can be found in [64], and flow diagrams of the entire procedure are 
given in Clausen and Lorentzen [63]. 

Having established an operational method, a realistic representation of the orientation 
of the grains in the polycrystalline aggregate is required. The ODF described in Section 
2.6.2. represents the preferred orientation within the material, and forms the basis for 
defining a discrete set of grain orientations in the model that represent the true texture of 
the material. For a random homogeneous isotropic assembly of grains, this function is 
unity. 

With the orientations of the grains within the polycrystalline aggregate defined, the 
calculations can begin, based in this case on the three single crystal stiffness constants, 
Cij, an initial value of the critical resolved shear stress, τ0, a quantitative expression 
determining the extent of latent and self-hardening, and a constitutive equation for 
hardening response. Rather than selecting these parameters at random, they are chosen so 
as to simulate the macroscopic stress-strain curve. Based on a reduced set of grains, such 
calculations are rather quick, and through an iterative approach the parameters are easily 
established. This approach can be justified as such a model must be able to capture the 
macroscopic deformation characteristics before it can be used to make predictions at a 
microstructural level about stresses and strains in individual grains or families of grains. 
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5.6.3 Predicting Crystallographic Slip 

While the main aim is to obtain model predictions for the interpretation of lattice strain 
evolution during polycrystal deformation, it is useful to pay attention to some of the 
crystallographic features associated with the complex anisotropic evolution of lattice 
strains. Since plastic deformation occurs by crystallographic slip, it is useful to know for 
each grain the number of slip systems that have become active at any given stage, and in 
particular the orientation dependency of the slip activity necessary to accommodate the 
imposed overall deformation (Figure 5.13). The most noticeable feature is the large 
percentage of grains with three or four slip systems activated. At about 0.5% plastic 
strain, approximately 90% of the grains accommodate the deformation using less than the 
active slip systems.  

 

FIGURE 5.13 Percentage of grains 
having different numbers of active slip 
systems shown as a result of 
macroscopic uniaxial plastic strain for 
a typical fcc material [66]. 

An example of the orientation dependency of slip activity is given in Figure 5.14 for 
aluminum and copper. From this early stage of plastic deformation, it can be seen that for 
aluminum (Figure 5.14a) slip commences in crystallites with <100> and <110> directions 
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along the uniaxial loading axis, which have identical Schmid factors describing the 
resolved shear stress on the slip plane. A large Schmid factor indicates an orientation 
such that the applied stress exerts a large shear stress component in a slip direction on a 
slip plane [67]. On the other hand, slip activity is minimal near the <111> corresponding 
to a lower Schmid factor. The picture is quite different for copper because it has a much 
higher degree of elastic anisotropy (Figure 5.14b). At this early stage of plasticity, 
activity is concentrated around the <111> orientation, with hardly any grains oriented 
with <100> parallel to the tensile axis slipping despite the much larger Schmid factor. 
Although grains are less favorably oriented for slip near the <111> orientation than near 
the <100> orientation, slip starts here, in contradiction to the concept behind the Taylor 
model. This difference is related to the higher elastic anisotropy of copper (see Table 
5.1), which means that this direction is much stiffer so that it attains a higher stress 
despite being less favorably oriented for slip. 

Another common measure of the slip activity is the so-called Taylor factor, or m 
factor. It is given by 

 (5.45) 

 

FIGURE 5.14 Number of active slip 
systems plotted according to the 
direction in the crystallite lying 
parallel to the tensile axis for (a) 
aluminum and (b) copper, at a plastic 
strain of 0.011% [66]. 

which is the ratio of the sum of the incremental slips to the incremental plastic strain. It 
can be interpreted as a reciprocal of the efficiency to accommodate deformation by 
crystallographic slip. A large m factor shows that a high degree of slip is required to 
accommodate a specific increment in plastic strain in a specific grain. In other words, the 
orientation is rather inefficient in accommodating the strain increment by slip. The cubic 
directions <110> and <111> have high m factors, and <100> a low m factor. This 
correlates nicely with the self-consistent calculations of the slip activity. The results for 
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copper are contrary to this at the very early stage of plastic straining, where elastic 
anisotropy plays a role. These features, attributed to the differences in elastic anisotropy, 
are only significant at the very early stage of plasticity. In fact, even before 0.5% strain, 
results for aluminum and copper become similar. Thus, the plastic deformation 
characteristics, as measured by the number of active slip systems and their orientation 
dependency, appear to be a characteristic of the fcc crystal structure rather than the 
degree of elastic anisotropy. 

5.6.4 EPSC Predictions of Lattice Strains under Plastic Straining 

The EPSC models described above provide a description of lattice strain evolution of 
direct relevance to the interpretation of lattice strains measured by neutron diffraction. 
Indeed, as noted above, the development of the neutron diffraction technique for 
measuring lattice strains has stimulated interest in these modeling schemes from an 
entirely new perspective. 

As the principles behind EPSC schemes are based on the Eshelby-Kröner model, the 
predictions in the elastic regime are the same as from that model. As discussed in Section 
4.2.2, an hkl reflection can be used for strain measurement in the linear regime of the 
stress-lattice strain relation provided that the appropriate effective stiffness is used to 
interpret the result in terms of stress. Much more important is to check the extent of the 
deformation regime over which these elastic properties are appropriate to use. Figure 5.15 
shows self-consistent calculations of the (elastic) lattice strain response parallel and 
perpendicular to the loading stress direction, for the deformation of three materials of 
varying degree of anisotropy: aluminum, copper, and stainless steel [64,68]. In each case, 
there is a marked nonlinear repartitioning of stress upon the onset of plastic deformation. 
While none of the reflections are absolutely linear throughout both elastic and plastic 
deformation, some are sufficiently so to enable one to make a wise choice for elastic 
strain determination in different materials, as listed in Table 4.1. 

The nonlinearities in Figure 5.15 are brought about by changes in the intergranular 
stresses. The most noticeable feature of the numerical predictions is the rather strong 
nonlinearity of the 111 reflection in aluminum, and of the 200 reflection in copper and 
stainless steel. At the onset of plasticity (i.e., the onset of slip), grains with these 
orientations increase their rate of lattice strain accumulation. This nonlinearity can be 
understood in terms of Figure 5.14, which indicates that grains close to these orientations 
are the last to slip, and as a result the load is repartitioned toward them away from the 
slipping grains. This increases the proportion of the external load that they carry. The 
nonlinearity thus does not reflect plasticity in these specific hkl grain orientations 
themselves, but rather the contrary, that is, an ability to continue to strain elastically with 
little accumulated plasticity and associated hardening, as grains of other orientations 
begin to slip. With further plastic straining, all hkl reflections appear to enter another 
regime of essentially linear behavior as grains of all orientations slip, as indicated in 
Figure 5.15. 

Since the onset of nonlinear behavior closely correlates with the onset of 
crystallographic slip at the local scale (i.e., the first slip activity in any grain), the 
evolution of nonlinear lattice strain response is a sensitive indicator of the onset of 
plasticity. In fact, the nonlinear behavior commences well before reaching the 
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macroscopic engineering definition of yielding at 0.2% permanent offset. This is 
exemplified by the stainless steel response shown in Figure 5.15e and f, where the 0.2% 
macroscopic offset, or proof, yield stress, σ0.2, is 265 MPa, while the onset of nonlinearity 
is predicted at an applied stress of only 160 MPa. 

As an illustration of how this nonlinear effect can mislead interpretation of a measured 
lattice strain in terms of a Type I macrostress, we consider the lattice strains parallel to 
the applied stress in a uniaxially loaded stainless steel component, where the predicted 
strains are shown in Figure 5.15e. Suppose that a lattice strain of 2000 µε was measured 
using the 200 reflection. Using an estimate of the effective elastic modulus based the 
Kröner model of 149 GPa, this would suggest a stress level of 298 MPa. However, from 
Figure 5.15e it can be seen that 2000 µε is associated with an applied stress of only 239 
MPa. As a result, the effective elastic modulus gives an error of 25%. Considering that 
these nonlinearities occur well in advance of the σ0.2  
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FIGURE 5.15 The evolution of lattice 
strain component parallel to the load 
axis predicted by elastoplastic self-
consistent model, as a function of 
applied uniaxial tensile stress, for 
texture-free polycrystalline aggregates 
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of (a) aluminum, (c) copper, and (e) 
stainless steel. The corresponding 
lattice strain components perpendicular 
to the load axis are shown in (b), (d), 
and (f) respectively. In each case, the 
deviations from linearity occur at the 
onset of plastic deformation. The 
“points” simply label each curve 
[64,66,68]. 

limit, this severely limits the window for safe conversion of lattice strain to stress through 
the use of diffraction elastic constants for those reflections that strongly show nonlinear 
behavior through the plastic regime. This is the basis for discouraging the use of certain 
reflections for stress measurement in Table 4.1. 

5.6.5 EPSC Predictions of Residual Intergranular Strains 

The illustrative ‘thought experiment’ of the previous section indicates that unloading a 
stainless steel sample from an applied load of 239 MPa would lead to the existence of 
residual lattice strains. This is because the nonlinearities in Figure 5.15 during straining 
are caused by intergranular shape misfits generated by differential slipping during 
deformation. Unless there is reverse slip, these will be entirely retained upon unloading. 
In other words, if there is no reverse plasticity the unloading curve will be linear, with a 
slope equal to that of the elastic response for each particular reflection. Hence, the 
deviation from linearity during forward loading corresponds exactly to the level of 
residual intergranular lattice strains retained upon unloading. From Figure 5.15e upon 
unloading from 239 MPa, the 200 reflection from stainless steel would thus record axial 
tensile strains of around +400 µε. Taken at face value, such a measured strain in this 
sample would be indicative of an applied elastic stress of 59 MPa, whereas in fact no 
applied stress is acting. We term such a strain due to plasticity and the resulting 
intergranular stresses a “pseudo strain,” and the inferred stress as a “pseudo stress.” 

By measuring the deviation of the predicted lattice response from the extrapolated 
elastic response for each reflection in Figures 5.15, one may determine how the residual 
intergranular “pseudo” lattice strains accumulate as a function of a prior forward tensile-
loading lattice strain. These deviations from linearity, which represent the residual lattice 
strains on unloading, are plotted as a function of calculated macroscopic plastic strain, 
that is, the deviation from linearity of the bulk macroscopic strain or equivalently, the 
residual bulk macroscopic strain on unloading in Figure 5.16 a through f. The most 
noticeable feature of these predictions is the partitioning of residual intergranular strains 
into tensile or compressive strains, and a group of lattice planes showing essentially no 
residual intergranular strains at all. In terms of the residual strains along the loading axis, 
shown in Figures 5.16a, c, and e, copper appears to behave much like stainless steel, 
whereas the grouping is different for aluminum. For aluminum, the 111 reflection 
develops the highest tensile residual intergranular strain, while the 200 reflection 
develops the most compressive, and the 331 reflection appears to develop essentially no 
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residual strains. In other words, the 331 reflection is largely insensitive to plastic strain, 
having no memory of the plastic strain that the poly crystalline aggregate has 
experienced. However, these observations of the partitioning of residual intergranular 
strains parallel to the loading axis cannot be generalized to any state of deformation. This 
is illustrated by considering  

 

FIGURE 5.16 Evolution of residual 
intergranular lattice strains parallel to 
the tensile stress axis predicted by the 
elastoplastic self-consistent model, 
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assuming elastic unloading for six 
reflections, as a function of the 
macroscopic plastic strain experienced 
during forward loading for (a) 
aluminum, (c) copper, and (e) stainless 
steel. Corresponding strain 
components perpendicular to the load 
axis are shown in (b), (d), and (f) 
respectively. The “points” are merely 
labels [64,66,68]. 

the strain response perpendicular to the loading axis, shown in Figure 5.16b, d, and f, 
where the grouping of hkl reflections into those with tensile and compressive residual 
intergranular strains is different. It is worthwhile noting that Dawson et al. [49] obtain the 
same trends for the 111, 200, 220, and 311 reflections in the axial and transverse 
directions for aluminum 5182 alloy using a crystal plasticity finite element model. 
However, reasonable agreement with neutron diffraction data was only found when a 
single-crystal anisotropy higher than that reported for pure aluminum single crystals was 
used. 

As illustrated in our thought example for a stainless steel above, residual intergranular 
‘pseudo strains’ may be present at zero load if the sample has been previously plastically 
deformed, and these will superimpose on those introduced by subsequent applied loading. 
They may be present in ‘stress-free’ reference samples cut from a previously plastically 
deformed sample, giving rise to a false reference. However, as mentioned in Section 
4.6.3, if such a reference sample is taken in the form of a comb cut to relax the 
macrostresses from an identical sample to that being measured, the same pseudo strains 
will be present in both and will cancel out. Furthermore, they will vary spatially with any 
spatial variation of accumulated plastic strain throughout the sample. Clearly, when 
unaccounted for, they can lead to large errors when converting the measured lattice strain 
to macrostress if one simply uses the hkl-dependent, elastic effective stiffness of the 
polycrystal. If the sole purpose of an experiment is to determine the macrostress, then a 
reflection showing minimal nonlinearity in both the axial and transverse response should 
be selected. On the other hand, reflections that show large nonlinearities retain 
information about the plastic strain history. By comparing measurements of strain using 
different reflections, it may be possible a priori to deduce the extent of plastic strain that 
a sample has undergone, as well as its macrostress distribution [69]. In this respect, time-
of-flight data are ideal because many peaks are measured simultaneously. 

5.6.6 Analysis of Experimental Data 

In this section, examples are given of the neutron diffraction measurement of lattice 
strains in samples under controlled loading in both the elastic and plastic regimes. Further 
examples are given in Section 6.4. These examples serve to highlight the important role 
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of modeling polycrystalline deformation in interpreting lattice strain data from both 
macroscopic and microscopic perspectives. 

5.6.6.1 Uniaxial Tensile Loading of Aluminum 

In many ways, aluminum is an ideal material for studying the effects of plastic 
anisotropy. Most importantly, it has a very low degree of elastic anisotropy (Table 5.1) so 
that plastic effects can be clearly discerned in simple  

 

FIGURE 5.17 Residual lattice strains 
measured at zero load after plastic 
straining to various extents (a) parallel 
and (b) perpendicular to the straining 
direction at the Chalk River facility on 
an A17050 sample. The predictions of 
an elastoplastic self-consistent model 
are shown as continuous lines [70]. 

uniaxial loading experiments monitored in situ by neutron diffraction. As discussed in the 
previous section, one way in which the intergranular strains may be isolated is to subtract 
from the measured lattice strain the linear, fully elastic response to the applied stress (σA). 

In other words, is subtracted from the axial response, and added to the 
transverse response. An experiment was undertaken on aluminum 7050 by Pang et al. 
[70], in which a rod sample, cut from a plate in the normal direction, was subjected to 
progressive loading and unloading cycles. It was found that, as one would expect, during 
solely elastic loading no plastic intergranular strain was generated with increased loading. 
When the applied stress exceeded 300–400 MPa, intergranular strains were found to 
develop. The intergranular lattice strain component measured at the Chalk River facility 
parallel and perpendicular to the loading direction for four reflections (111, 002, 113, and 
220) as a function of bulk macroscopic plastic strain are shown in Figure 5.17. Note that 
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the intergranular strains are much larger than in Figure 5.16a and b, presumably because 
7050 Al alloy is a high-strength alloy and so can maintain large intergranular strains. 

The predicted intergranular lattice strains were also calculated using an EPSC model 
constructed along the lines described in Section 5.6.2. The model appears to be in 
qualitative agreement with experiments and captures the main features, but for specific 
reflections large discrepancies were observed. This is most noticeable for the 220 
reflection, and is probably attributable to uncertainties in selecting an appropriate 
crystallographic hardening behavior, as discussed in Section 5.6.2, and the difficulty in 
modeling the initial strain state of a sample taken from a rolled plate. Discrepancies of a 
similar magnitude have also been observed between neutron diffraction data and multisite 
models [71], as well as crystal-plasticity finite element models, both of which take into 
account nearest-neighbor grain-to-grain interactions explicitly [49]. At the present time, 
neutron diffraction strain data of sufficient quality have not been acquired to determine 
incontrovertibly whether these discrepancies are due to shortcomings in the slip models 
on which the models are based. 

5.6.6.2 Uniaxial Tensile Loading of Stainless Steel 

For stainless steel, the elastic anisotropy is much more pronounced than for aluminum. 
Figure 5.18 shows a comparison between self-consistent EPSC model predictions of 
lattice strain components in both the longitudinal and the transverse direction arising 
from an applied uniaxial tensile load, and the results of neutron diffraction lattice strain 
measurements for eight different hkl reflections [72]. The measurements were made using 
a dedicated stress rig on the NPD powder time-of-flight diffractometer at LANSCE, Los 
Alamos National Laboratory (Los Alamos, New Mexico). 

Comparing the lattice strain data with the predicted curves for the direction parallel to 
the tensile loading axis, shown in Figure 5.18a and b, the most striking feature is the 
capacity of the EPSC model to capture the highly nonlinear behavior of the 200 
reflection. Also, results for the 311, 420, 220, and 531 reflections are in excellent 
agreement, although minor discrepancies are seen to develop at the higher loads. Note, 
however, that the model fails to capture the experimental observations for the 331 
reflection. For the transverse response shown in Figure 5.18c and d, the discrepancies are 
more striking. In particular, large deviations from the experimental data are seen to 
develop for the 331, 420, and 531 reflections. 

It is possible to extend such studies to include preferred texture in a sample [73,74]. 
Other studies of intergranular strains in fcc materials include those on Monel and Inconel 
[75–77]. 

5.6.6.3 Hexagonal Materials 

The measurement of residual stress in hexagonal systems has been studied for a range of 
materials, including titanium [78,79], beryllium [80], and zirconium [81–84]. The latter 
has attracted particular interest because the presence of residual stress affects creep, 
fracture toughness, corrosion, and dimensional stability. This is of especial concern in the 
reactor industry where the use of zirconium and its alloys is widespread. For hexagonal 
materials such as Zr, Be, and Zn, anisotropic thermal expansion can generate large 
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intergranular stresses even in the absence of plasticity. Hence, whereas annealing is 
normally used to relieve residual stresses, for these materials it is the cause of residual 
stresses, and may lead to unacceptable changes in dimension. Another consequence is 
progressive distortion under thermal cycling. Furthermore, because hexagonal materials 
have just one close-packed slip plane, other mechanisms of slip are required to achieve 
three-dimensional deformation of a polycrystal. The unavailability of low-energy  

 

FIGURE 5.18 Lattice strain response 
to an applied uniaxial tensile stress for 
eight reflections from a texture-free 
polycrystalline stainless steel sample. 
The lattice strains were measured 
parallel (a and b), and perpendicular (c 
and d), to the tensile loading axis. The 
symbols denote measurements and the 
lines denote elastoplastic self-
consistent model predictions. The 
horizontal dashed line at ~265 MPa 
represents the 0.2% proof macroscopic 
yield stress [64,72]. 
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slip mechanisms leads to highly anisotropic and gram-orientation-dependent plastic 
behavior, which further affects the development of residual intergranular stresses. 

The measurements of residual intergranular strain as a function of plastic deformation 
on Zircaloy were among the first measurements of intergranular effects [81–84]. The 
measured residual strains perpendicular to the uniaxial loading axis along a rod sample 
proved to be highly orientation dependent (Figure 5.19). Note how grains oriented with 

their <0002>, or directions perpendicular to the rod axis 
develop compressive residual intergranular strains monotonically, while counterbalancing 

tensile strains develop in grains with or perpendicular to 
the rod axis. Comparison of Figure 5.19 with corresponding curves for fcc materials in 
Figure 5.16 emphasizes the magnitude of intergranular stresses. Indeed, residual strains 
exceeding 2000×10−6 are seen for  

 

FIGURE 5.19 Evolution of 
intergranular residual strains due to 
various macroscopic plastic 
deformations measured in annealed 
Zircaloy-2. The strain component 
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transverse to the loading direction is 
shown for various hkil planes in grains 
belonging to the fibre 
component. The solid symbols 
correspond to measurements made on 
specimens loaded in tension to 1%, 
2%, 3%, and 4% total macroscopic 
strain, and then unloaded. The open 
symbols correspond to measurements 
carried out on specimens first 
deformed to 4% strain in tension, and 
then compressed by 1%, 2%, and 3% 
before unloading [83,84]. 

certain reflections following a macroscopic plastic deformation of just 3.5%. Such strains 
correspond to stresses in excess of 200 MPa compared with 0.2% yield stress of 190 MPa 
in tension and 325 MPa in compression. 

5.6.6.4 Cyclical Loading 

To date, most investigations of lattice strain development under plastic deformation have 
been limited to monotonic uniaxial loading in tension, and subsequent unloading. Little 
work has focused on cyclic loading. One example of cycling between tension and 
compression is provided by the tensile/compressive straining of a stainless steel sample 
[85]. The sample was cycled between fixed total strain limits of +0.4% and −0.5% for 
eight successive cycles. The corresponding plastic strain envelope extended to +0.3 and 
−0.4%. The sample was loaded using a dedicated Instron hydraulic load frame on the 
ENGIN station of the PEARL beam line at the ISIS facility of the Rutherford Appleton 
Laboratory. In total, about eight complete tension/compression cycles were applied. The 
cycling was very slow due to the need to halt the deformation for 40 minutes in order to 
acquire diffraction data at each load level during the deformation cycle. During the initial 
three cycles, diffraction patterns were monitored at approximately 24 load levels during 
each cycle. Thereafter, diffraction patterns were collected only at the extreme tensile and 
compression levels, and when passing through zero load. Single peak fitting of six to 
eight statistically well-defined reflections hkl was made for each load step. Typical 
experimental results for the measured lattice strain component in the loading direction are 
shown in Figure 5.20a and b, while the corresponding transverse results are shown in 
Figure 5.20c and d. The experimental data show very noticeable differences in the lattice 
strain loops. The loop corresponding to the longitudinal 200 reflection (Figure 5.20a) 
displays an open loop with clear hysteresis-like behavior, as to a lesser extent do those for 
331 and 220 (not shown). However, the strain measured from the 111, 311, and 420 
reflections shows an essentially linear, closed-loop behavior. For strain components 
perpendicular to the loading axis, these features are still found, but to a lesser extent. 
These differing hysteresis curves arise because some grain families such as 111 for 
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stainless steel generate very little intergranular strain when strained to 0.4%, whereas 
others such as 200 generate a more significant plastic misfit, as seen in Figure 5.16e. As 
discussed in Section 5.6.4, this is due to the fact that some families of grain yield at low 
applied loads, while others are deforming only elastically, causing load repartitioning and 
nonlinearities in the applied stress-lattice strain curves. 

One of the most striking features is that the lattice strain loops measured over eight 
consecutive cycles essentially stabilize during the first cycle, and do not evolve 
significantly with the number of cycles. It would appear that work hardening does not 
cause the loops to narrow or the peak loads to rise with increasing numbers of cycles. 
These experimental results have been compared to self-consistent model predictions, 
where they have guided the specification of cyclic hardening rules [85]. 

5.6.6.5 Rietveld Analysis of Diffraction Patterns 

Although there has been good progress in understanding the effects of intergranular 
stresses on lattice strain, they are not yet so fully understood that the relationship between 
intergranular stresses and deformation history can be incorporated quantitatively and 
accurately into the analysis of diffraction results from samples that have been plastically 
strained. In the standard Rietveld refinement of powder diffraction patterns, as described 
in Sections 3.2.2 and 4.5, the measured intensity distribution is assumed to resemble an 
ideal crystal structure, such as fcc, bcc, or hcp, and the best fit to  

 

FIGURE 5.20 The measured lattice 
strain component parallel and 
perpendicular to the uniaxial loading 
direction of a stainless steel sample 
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during plastic cycling. The response is 
shown for reflections (a) 200 strain 
parallel to applied load, (b) 111 
parallel strain to applied load, (c) 200 
strain perpendicular to applied load, 
and (d) 111 strain perpendicular to 
applied load [85]. 

match this structure is determined by adjusting the lattice parameters and positions of 
atoms in the structure. As discussed in Section 4.5, this represents a weighted average of 
the strain taken over all the peaks in the profile. However, as a consequence of 
deformation of a sample, whether it is elastic or plastic, the basic physical relationship 
between the lattice spacing of various hkl diffraction peaks and the strain changes. One 
method of analysis, mentioned in Section 4.5, is, in the case of cubic systems, for 
example, to simply fit an overall lattice parameter, a, and to obtain an overall strain from 
this. Indeed, it is found that by using this overall strain and the macroscopic bulk elastic 
moduli, a good value of the stress is obtained even into the plastic regime, the anisotropy 
having been averaged out. 

Another approach is to realize that each reflection will behave differently as a 
consequence of the elastically and plastically generated intergranular misfits, and to 
incorporate these effects into the refinement. As a first step, attempts have been made to 
incorporate the inherent elastic anisotropy, which is relatively well understood [69]. 
Again, the results of the lattice strain behavior of samples stressed in situ by uniaxial 
loading has proved useful. Because the elastic anisotropy would be expected to account 
for the deviation from a stress-free refinement correctly only for solely elastic 
deformation, it is possible to fit the diffraction pattern by a model for the lattice spacings 
exhibiting the expected elastic anisotropy. From the quality of the fit obtained, one may 
deduce whether previous deformation has exceeded the elastic limit [69]. For example, 
for a uniaxial elastic deformation, the diffraction peaks shift according to their specific 
stiffness, and this may be described by the Kröner relations for the elastic moduli that 
involve the Ahkl parameter (Equation (5.24)). 

Alternatively, the elastic anisotropy may be introduced into the Rietveld refinement by 
incorporating a new fitting parameter, γ, called the “anisotropy strain” parameter, into 
the refinement. The way in which specific diffraction peaks shift according to their elastic 
stiffness is governed by the term γAhkl. Rather than refining the diffraction pattern toward 
an average ideal crystal structure, it is now modified so that the lattice spacings track the 
strain in the <h00> direction. The other reflections are assumed to deviate from this εh00 
term according to the relation 

εhkl=εh00—(γAhkl/C0) 
(5.46) 

where C0 is an instrument-related constant. 
In the elastic regime, this anisotropy strain parameter, (γ/C0), should develop linearly 

and correlate solely as a multiplicative factor, with the elastic anisotropy factor Ahkl. As 
soon as deformation exceeds a limit where elastic anisotropy given by Ahkl can no longer 
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explain all the elasticity related deviations from the ideal, unstrained crystal structure, the 
fitted anisotropy strain is expected to start deviating from this linear behavior. This has 
been tested on data measured from in situ uniaxial loading of a stainless steel  

 

FIGURE 5.21 Evolution of the 
anisotropy strain parameter (γ/C0) 
(lower abscissa) with applied uniaxial 
tensile stress on a stainless steel 
sample. Also plotted is the macrostrain 
obtained from a strain gauge (upper 
abscissa) [69]. 

sample; results are shown in Figure 5.21. The expected deviation from the initial linear 
behavior (broken line) correlates directly with the commencement of a noticeable 
deviation from linearity in the hkl-specific lattice strain response as seen in Figure 5.18. 

To incorporate plastic strain, it has therefore been suggested that the fitting parameter, 
γ, could be split into an elastic, γel, and a plastic, γpl, component, 

γ=γel+γpl 
(5.47) 

The result is illustrated in Figure 5.22, where the anisotropy strain is plotted against the 
elastic strain derived from an overall traditional Rietveld refinement performed without 
taking account of the elastic anisotropy. This empirical factor, γpl, clearly captures the 
transition from elastic to plastic deformation, providing a metric for the extent of the 
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deviation from an elastic response. This suggests that one might be able to determine the 
extent of plastic deformation from a single diffraction profile. To date, only 
semiquantitative success has been achieved.  

 

FIGURE 5.22 The variation of the 
anisotropy strain parameter (γ/C0) in 
the elastic and plastic regimes of a 
stainless steel sample under applied 
uniaxial tensile stress with the internal 
phase strain obtained from an overall 
Rietveld fit without including elastic 
anisotropy. The vertical broken lines 
indicate the Rietveld elastic strains 
corresponding to macroscopic plastic 
strains of 0%, 0.2%, and 2% [69]. 

5.6.7 Summary 

Elastic anisotropy strongly affects the magnitude of measured lattice strains, and when 
materials have been exposed to plastic deformation, this leads to the development of 
residual intergranular stresses even in the case of homogeneous plastic deformation of the 
sample. The interaction between neutron diffraction lattice strain measurement and 
modeling has provided valuable insights into the micromechanics of polycrystal 
deformation, and has shed light on some of the uncertainties in the implementation of 
polycrystal modeling schemes. Whereas existing analytical theories of the anisotropy of 
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polycrystals under elastic strain account well for experimental lattice strain data, self-
consistent modeling schemes are currently being developed to explore the main effects of 
plastic anisotropy. In many cases, these can provide numerical results in good 
quantitative agreement with experimental observations. They may be used as a guide in 
the interpretation of diffraction data on residual stresses and strains in engineering 
components, but they are not, at the present stage, refined to a state where they can be 
relied on quantitatively in the general case. When wishing to determine the macrostress in 
an engineering sample, one is not aware a priori of its previous strain history, or whether 
the elastic limit has been exceeded in all or parts of the component. It is therefore 
recommended that the Bragg reflections chosen to measure the lattice strain should 
exhibit, experimentally or theoretically, minimal intergranular stresses under uniaxial 
loading. These are listed for some common materials in Table 4.1. 

Deformation is a highly complicated process. Much remains to be explored in terms of 
the micromechanical mechanisms of accommodating slip, the influence of texture and 
grain size, and other aspects influencing the heterogeneity of deformation for 
polycrystalline aggregates. Future model refinements are expected to come about through 
a symbiotic interplay between diffraction-based experiments and modeling work, 
including self consistent and finite element models of crystal plasticity, which are able to 
capture individual grain to grain interactions as well as the behavior of assembly in poly 
crystals. 

5.7 Analysis of Bragg Peak Broadening 

Most of the discussion thus far has been concerned with the measurement and 
interpretation of small shifts in Bragg diffraction peak angles, or flight times, from a 
sample under examination compared with those from a stress-free reference. However, 
the diffraction peak profile itself may contain important information for both the 
materials scientist and the engineer, relating to the microstructure and the inhomogeneous 
state of stress within the gauge volume. Even if the main object is to extract a 
measurement of macrostrain, it is important to understand how changes in peak shape 
may affect reliable analysis of the data. A change in profile might be interpreted by a 
curve-fitting routine as a shift in peak position. An appreciation of the reasons why 
particular diffraction peaks or peaks measured under specific conditions may appear to 
change shape is therefore important. 

Relatively poorer instrument resolution causes neutron diffraction peaks typically to 
be broader than those recorded by x-rays, as discussed in Chapter 3. For example, on a 
continuous source instrument, the full width at half the maximum intensity (FWHM), is 
typically at best ~0.2° in scattering angle at Although intrinsic broadening 
can be observed at this resolution, if peak profile changes are of primary interest one 
should consider using laboratory x-ray, or better still synchrotron x-ray, studies. In the 
latter case, peak widths as narrow as FWHM ~0.001° in at have been 
recorded from engineering materials [86]. 

Intrinsic peak shape broadening can have several origins, and the actual profile may be 
a convolution of more than one of these with the instrumental broadening. Their 
individual separation is not always possible. Major contributions include:  
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• Particle size broadening 
• Dislocations 
• Stacking faults 
• Microstrain broadening 
• Steep strain gradients. 

The last of these, steep macrostrain gradients within the sampled gauge volume, is the 
most straightforward contribution to peak broadening. It has been known since the early 
part of the 20th century that peak widths are affected by the size of the coherently 
diffracting volumes, which can give rise to so-called particle size broadening [87]. 
Particle size broadening, as measured by the increase in FWHM over the instrument 
value, may be taken to be inversely proportional to the mean size of the crystallites 
making up the polycrystalline aggregate. As discussed in Section 2.3.2 and expressed in 
Equation (2.17), the width of the peak in scattering angle, given by FWHM 
=λ/(tccosθB), is inversely proportional to the size of the crystal tc. Consequently, for small 
crystallite sizes, the Bragg peaks become sharper with increasing crystallite size, until the 
peak width becomes limited by the instrument resolution. In fact, it is not normally the 
size of the crystallites that is important, but rather the mosaic spread within which the 
crystallite or grain can be considered to act as a single diffracting entity. Any increase in 
dislocations or stacking faults will reduce the size of this entity. For plastically deformed 
materials, this can be substantially smaller than the grain size, and consequently, gives a 
contribution to peak broadening which increases with plastic deformation. The angular 
width due to particle size broadening alone is independent of the scattering angle, or 
equivalently, the scattering vector. 

Strain fields that vary over a scale much smaller than the gauge volume also give rise 
to broadening, as mentioned in Section 1.4.2, and discussed in Section 6.3.8. An example 
of this is the grain interaction stresses caused by anisotropy in elastic, plastic, and thermal 
properties at the grain size scale. These interaction stresses are brought about by 
mismatches in stiffness, plasticity, coefficient of thermal expansion, and so on among 
individual grains. For example, peak broadening is observed to depend on plastic 
deformation, as illustrated in Figures 5.4 and 5.23, and this can be due to a combination 
of smaller diffraction entities and microstress variation within them. In the simplest case, 
strain broadening alone will give an angular width that is proportional to the scattering 
vector Q for different reflections. 

Strain broadening is often categorized by the root mean square (rms) strain and 
termed the microstrain. Here ∆εi is the deviation from the long-range macrostrain at 
points i within the grains. As the characteristic length over which this average is carried 
out decreases, the root mean square strain increases. In fact, because a dislocation causes 
a very severe short-range elastic strain, it is possible to infer the dislocation density from 
measurements of the rms strain [88]. However, this is not valid if the dislocations are  
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FIGURE 5.23 The 211 Bragg 
reflection profile from an annealed 
mild steel sample subjected to 
successive stress levels, observed by 
time-of-flight diffraction on the High-
Resolution Powder Diffractometer 
instrument at the ISIS facility. The 
strain component perpendicular to the 
applied stress is measured, and the 
peak is seen to broaden rapidly above 
the yield stress of 240 MPa [97]. 

clustered into cells or boundaries. Stacking faults upset the natural sequence of the atomic 
lattice planes causing broadening. Because stacking faults only occur on specific lattice 
planes, their effect is hkl related. 

Peak broadening due to plastic deformation can also be highly grain-orientation 
specific, or equivalently, hkl specific. This is illustrated in Figure 5.24, which shows 
experimental data for the uniaxial deformation of annealed polycrystalline hexagonal 
Zircaloy-2. As in Figure 5.19, data are given for both forward and reverse loading, and 
show a monotonic increase in width with plastic straining. The rate of increase in FWHM 
with strain is observed to be highly orientation specific. Depending on the strain level, 
several different features can be observed. Most noticeable is the strong increase in the 
rate of basal plane peak broadening (0002) in the interval between 0.5% and 1.5%, and 
the effect of load reversal, which initially tends to reduce the peak width; however, upon 
further straining into compression, it broadens the peak again. 

One of the fundamental analytical schemes for separating several of the 
microstructure-related effects that alter the peak shape, including particle size 
broadening, strain broadening, dislocation density effects, and stacking faults, is a 
conventional Fourier expansion of the observed profile developed by Warren and 
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Averbach [89–93]. Greater detail on this issue is beyond the scope of this text; the reader 
is referred to the original references for further information. A more detailed historical 
overview of the field of Bragg peak profile analysis is provided by Genzel [94]. 
Klimanek [95,96] has proposed one of the most recent methods for peak profile analysis 
based on so-called diffraction multiplets, which gives further insight into the phenomena.  

 

FIGURE 5.24 Effect of uniaxial 
plastic deformation on the measured 
FWHM in time of flight of the (0002), 

and diffraction peaks of 
annealed hexagonal Zircaloy-2 
measured perpendicular to the applied 
stress. Solid symbols correspond to 
measurements made on specimens 
loaded in tension to total strains of 1%, 
2%, 3%, and 4%, and then unloaded. 
The open symbols correspond to 
measurements carried out on 
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specimens first deformed to strains of 
4% in tension, followed by 
compressive strains of 1%, 2%, and 
3%, and then unloaded [84]. 
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6  
Applications to Problems in Materials 

Science and Engineering 

In this chapter, a range of applications for strain measurement by neutron diffraction is 
described. These examples have been selected across numerous fields in order to 
demonstrate the scope of problems that can be tackled, and to illustrate practical 
applications of the methods introduced in earlier chapters. Even so it is not possible to 
cover all possible applications of neutron strain measurement. In each section, the 
important aspects that must be considered to give reliable strain measurement are 
emphasized, and potential avenues for further exploitation outlined. These include many 
future exciting areas of application that will emerge from the new dedicated facilities 
now becoming available. 

6.1 Introduction 

The importance of both long- and short-range residual stresses on component 
performance means that considerable effort is now being devoted to the development of 
methods by which a knowledge of the residual stress field can be incorporated into 
design, especially in aerospace, nuclear and other safety critical engineering industries. 
As seen in earlier chapters, neutron diffraction is one of very few techniques that enables 
the engineer or materials scientist to obtain information about the state of residual stress 
relatively deep within the material, absolutely and nondestructively. In this chapter, we 
will review the application of neutron diffraction techniques to real engineering 
problems, with emphasis on the challenges that arise from measurement and 
interpretation, and how to meet such challenges. 

There has been a marked increase in the use of neutron diffraction for engineering 
stress measurements in recent years as demonstrated in Figure 6.1, which summarizes 
publications by year. Recently, the number of synchrotron x-ray diffraction 
measurements of strain, which have much in  

TABLE 6.1 Percent of Publicationsa on Strain 
Measurements by Neutron and Synchrotron X-Ray 
Techniques, with Areas of Application, 1982–2002b 

  Welds and 
Components

Multiphase Intergranular Surfaces 
and 

Coatings

General

Neutron 
techniques 

24 30 22 5 19



Synchrotron 
x-ray 
techniques 

9 21 20 32 18

a Publications pertaining to neutron and synchrotron techniques totalled 413 
and 92, respectively. 
b As registered by Web of Science online citation service. 

common with neutron diffraction methods, has also increased sharply, boosted by the 
arrival of third-generation sources, such as the European Synchrotron Radiation Facility 
in Grenoble. The trends in the use of neutron and synchrotron x-ray strain mapping usage 
in recent years are summarized in Table 6.1, which highlights the differences in their 
capabilities. Through their phase- and grain-orientation selectivity, both are well suited to 
the measurement of interphase stresses in composites, and of intergranular stresses. With 
respect to the first of these, attention has traditionally been focused on metal matrix 
composites, but functional composites such as shape memory and ferroelectric materials 
are currently receiving increased attention. Neutron diffraction is currently the method of 
choice for measuring long-range stresses in large components, because of the greater 
penetration depth and higher diffraction angles, which allow deeper measurements in 
reflection geometry than is possible with high-energy x-rays. Synchrotron x-ray methods, 
on the other hand, are perhaps better suited to measurements on thin surface coatings or 
treatments because of the smaller gauge volumes possible and faster data acquisition 
times. The neutron diffraction work listed in the general classification in Figure 6.1 
includes papers developing new techniques or reviewing existing capabilities. 

Each of the generic areas listed in Table 6.1 is examined in turn in the following 
sections. The examples chosen are not exhaustive, but rather illustrative of the 
opportunities and challenges posed in applying the neutron diffraction technique to stress 
measurement. In each section, the origin and nature of the different stress fields are 
examined, and through practical examples the measurement options and challenges of 
each are discussed before reviewing the current state of the art and potential future 
directions. Some basic ideas and principles given in earlier chapters are repeated and 
enlarged as when appropriate.  
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FIGURE 6.1 Number of papers that 
describe engineering residual stress 
measurements by neutron diffraction 
published per year in major journals. 
The papers are categorized as follows: 
general papers, measurements on 
engineering components, welds, 
multiphase materials (composites), 
intergranular stresses, and coatings and 
near surface regions. 

 

FIGURE 6.2 Examples of various 
types of distortion caused by weld 
stresses, for (a) butt, and (b) fillet 
welds [1]. 
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6.2 Welded Structures 

Welds and other types of joints are often locations of stress concentration. Add to this the 
fact that the localized heating required to make a weld can lead both to high levels of 
stress and softening of the parent metal within the heat-affected zone (HAZ), and one has 
all the ingredients necessary for unexpected failure. Sometimes this occurs by sudden 
fracture, but is much more likely to occur by fatigue, stress corrosion cracking, or even 
creep cavitation. Not only can residual stress give rise to failure but it can also lead to 
weld distortion, and thus nonconformance causing costly rejection (Figures 6.2 [1] and 
6.13). It is therefore not surprising that studies of stress in weldments and similar 
components represent a quarter of all publications on neutron diffraction in Table 6.1. 
The task of making accurate measurements of residual stress in weldments presents 
particular challenges.  

6.2.1 Origin and Nature of Weld Stresses 

In order to understand the origin of residual stress in a weldment, it is helpful to consider 
the changes in temperature that occur for a weld bead laid down on a plate, either at a 
given point as a function of time, or alternatively, at different locations at a given instant 
in time, as shown in Figure 6.3. Well ahead of the welding arc (A–A) in Figure 6.3, the 
section is uniformly at ambient temperature and no residual stress is present. Across the 
line of the weld pool (B–B), the temperature distribution is necessarily very steep. In and 
near the molten zone the stresses are essentially zero because of the zero or very-low-
yield stress. As a result, misfits near the weld are accommodated by local plastic 
deformation. Compressive stresses develop in the HAZ because of the expansion in the 
vicinity of the weld pool, while stress balance requires that this region be constrained by 
tensile forces farther from the weld. Behind the weld zone (C–C), the temperature profile 
is less severe and tensile stresses begin to develop near the weld line. This occurs because 
as the weld cools and the weld metal and HAZ begin to shrink, tensile stresses are 
introduced locally due to the misfit between the plastically deformed region created when 
the near-weld region was hot and the remainder of the plate. Once the weld torch has 
passed and the weldment has returned to room temperature (D–D), the final distribution 
of the longitudinal stress distribution is obtained, being tensile in the weld and HAZ, and 
compressive in the far field. 

It is important to remember that residual stresses arise from misfits (Section 1.4). 
Consequently, while localized heating does create transient residual stresses, these would 
disappear on cooling back to room temperature were it not for the permanent misfit 
between the near-weld region and rest of the plate created by these transient stresses. In 
other words, if the spatial gradient in temperature were insufficient to cause plastic 
deformation, then there would be no final residual stresses. This is the basis of various 
strategies developed to limit weld residual stress. Clearly, the thermal and mechanical 
behavior of the weld is complex, depending on the thermomechanical properties of the 
parent plate, plate size and thickness, heating characteristics of the torch, jigging of the 
plates, metal flow within the molten region, and so on. This makes the construction of 
finite element models to predict weld stresses in weldments very difficult without 
information from direct measurements. Neutron diffraction can provide just the right 
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level of two- or three-dimensional information to compare with the predicted strain or 
stress  

 

FIGURE 6.3 (a) Various positions at a 
given instant of time along a welding 
line caused by forming a typical bead 
on plate weld progressing along OX. 
The locations A-A and so on are 
discussed in the text, (b) Distribution 
of temperature, T, and (c) longitudinal 
residual stress component, σx [1], 

fields, leading to more robust finite element models. Indeed, finite element models are 
now able to capture the essence of both the thermal profile and the resultant stress 
distribution [2,3]. An example is the prediction of temperature and stress profiles for a 
TIG bead on plate weldment in aluminum shown in Figure 6.4. In this case, the 
thermocouple readings have been used to refine the heat sink model of the copper-
backing plate. It can be seen in Figure 6.4b that the backing plate gets progressively 
warmer as the TIG weld proceeds. This causes a reduction in the final near-weld stresses 
along the plate. 

In reality, a number of complicating factors can affect the reliability of weld residual-
stress predictions, most notably: 
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• Transformations can occur within the weld zone as the metal cools. 
• Softening due to annealing, recrystallization, grain growth, and, for heat-treatable 

alloys, dissolution of the strengthening precipitates. 
• Addition of weld filler material, which is usually of a different composition than the 

parent metal. 

Unfortunately, as well as complicating predictive modeling, each of these factors also 
complicates the accurate measurement of residual stress by  

 

FIGURE 6.4 (a) Schematic of an 
approximately 8 mm wide autogenous 
bead on plate TIG weld in 3.2 mm Al 
plate from 10 to 150 mm showing 
thermocouple positions and 
representative symbols, (b) Three 
thermocouple readings plotted against 
time. The finite element calculations 
that include gradual warming of the 
copper baseplate are shown by the 
continuous lines, (c) The longitudinal 
elastic strain field component, in units 
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of 10−6, predicted from finite element 
analysis for one-half of plate [4]. 

neutron diffraction by influencing the reference lattice spacing as discussed in Section 
4.6. 

6.2.2 Comparison of Various Stress Measurement Techniques 

Traditionally, many measurement techniques have been used to characterize the state of 
stress in welded structures. A brief outline of these is useful to put the neutron diffraction 
technique into context. Masubuchi [5] classified these techniques into three types: (a) 
stress relaxation [6]; (b) diffraction, which we expand here to include other 
nondestructive methods; and (c) cracking-related methods. The techniques are listed in 
Tables 6.2, 6.3, and 6.4, respectively. The first are essentially destructive methods, 
relying on measuring the distortion brought about when cutting disturbs the stress field 
[7], while the last group involves the deduction of aspects of the stress field from the 
observation of cracks on the surface of the sample. These cracks may occur by stress 
corrosion or be hydrogen induced [8]. However, this method can only provide qualitative 
information. One method receiving  

TABLE 6.2 Destructive Stress Determination 
Techniques Using Stress Relaxation Applicable to 
Stress in Weldments 

Technique Principle Application Advantages Disadvantages
Sectioning 
using strain 
gauging 

Strain 
gauges 
mounted 
and 
location 
cut out 
completely

Plates Reliable 
Simple 
principle 
High 
measurement 
accuracy 

Machining 
expensive and 
time consuming 
Gives average 
over area 
removed 

Mathar-
Soete hole 
drilling 

Small hole 
is drilled 
and strain 
gauge 
rosette 
records 
relaxation.
Stresses 
back 
calculated 
[7] 

Laboratory 
and field tool 
for plates 

Simple 
principle 
Cheap 
Causes little 
damage 
Accepted by 
engineers 

Drilling causes 
plastic strains at 
hole periphery, 
displacing 
results 
Provides 
information to a 
depth equal to 
diameter of hole
Provides spot 
measurement 
Only in-plane 
stresses 
Holes cannot be 
close together, 
giving poor 
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spatial 
resolution 
Method must be 
used with 
extreme care 

Contour 
method 

Section is 
cut by 
electro-
discharge 
machining, 
and 
deviations 
in flatness 
from 
surface 
interpreted 
in terms of 
out-of-
plane 
stresses 

Laboratory Simple 
apparatus 
Provides stress 
field normal to 
cut 

Sample 
movement 
during cutting 
must be 
prevented 
Best applied 
normal to 
principal axis, as 
in, for example, 
measuring 
longitudinal 
weld stress for a 
long weld 

Gunnert 
drilling 

Four holes 
located in 
circle 
drilled 
through 
plate and 
diametrical 
distance 
between 
holes 
measured, 
and then 
circular 
groove 
trepanned 
around 
holes 

Laboratory 
and field tool 
for plates and 
three-
dimensional 
solids 

Robust and 
simple 
apparatus 
Semidestructive
Damage to 
object can be 
repaired 

Relatively large 
margin of error 
in perpendicular 
direction 
Underside of 
weldment must 
be accessible to 
apply fixture 

Rosenthal 
Norton 
sectioning 

Two 
narrow 
blocks, 
one 
parallel to 
weld and 
one 
transverse 
are cut, 
stresses 
calculated 
from strain 
changes 
while 

Laboratory 
measurements 
in thick 
weldments 
and three-
dimensional 
solids 

Fairly accurate Troublesome, 
time consuming 
Completely 
destructive 
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cutting [6]
Adapted from Masubuchi [5]. 

TABLE 6.3 Nondestructive Methods of Stress 
Determination Applied to Welds 

Technique Principle Application Advantages Disadvantages
Magnetic Magnetic 

properties and 
elastic strain are 
coupled through 
magnetostriction

Laboratory 
and field 

Cheap 
Online 
monitoring 
Some 
magnetic 
techniques—
depth sensitive

Sensitive to 
microstructure 
and chemistry 
changes 
Complex 
relationship 
between 
magnetic 
parameters and 
stress 
No universally 
agreed method 
of data 
interpretation 

X-ray 
diffraction 

Often uses 
sin2ψ technique, 
which assumes 
that because of 
low penetration, 
the normal 
stress is zero 

Laboratory 
technique 
that can also 
be used in the 
field 

Well-accepted, 
standard 
method 
Nondestructive 
for surface 
stresses 
Does not 
require strain-
free reference 
Can provide 
surface strain 
fields 

Provides only 
near-surface 
information 
Sensitive to 
surface 
preparation 

High-
energy 
synchrotron 
x-ray 
diffraction 

Determine strain 
with reference 
to strain-free 
zero lattice 
spacing 

Specialized 
large-scale 
facility 
technique 

Provide two-
dimensional 
stress fields 
Quick 
High 
resolution 
(better than 1 
mm) 

Best applied to 
plates since low 
diffracting 
angles mean 
transmission 
geometry only is 
generally 
preferable 
Measuring 
triaxial strains is 
difficult 
Difficult access 

Neutron 
diffraction 

Determine strain 
from measured 
lattice spacing 
with reference 
to strain-free 
lattice spacing 

Specialized 
large-scale 
facility 
technique 

Provide three-
dimensional 
stress fields 
Probes depth 
of many 
centimeters 

Relatively 
expensive 
Access difficult 
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Standard 
definition is 
underway 

Adapted from Masubuchi [5]. 

TABLE 6.4 Methods of Stress Determination 
Based on Cracking Applied to Welds 

Technique Principle Application Advantages Disadvantages
Hydrogen-
induced 
cracks 

Assess 
distribution 
and level 
of residual 
stress from 
distribution 
and 
number of 
cracks [8] 

Laboratory 
and field 

Provides two-
dimensional 
‘map’ 
indicating 
largest 
stresses 
Well suited to 
environmental 
fatigue 

Not quantitative
Expensive, 
destructive 
method 

Stress 
corrosion-
induced 
cracks 

Assess 
distribution 
and level 
of residual 
stress from 
distribution 
and 
number of 
cracks [8] 

Laboratory 
and field 

Provides two-
dimensional 
‘map’ 
indicating 
largest 
stresses 
Well suited to 
environmental 
fatigue 

Not quantitative
Expensive, 
destructive 
method 

Adapted from Masubuchi [5]. 

considerable attention recently is the contour method, which can give a measure of the 
residual stress field in a plane before making a cut across that plane. It is based on 
inferring the prior residual stresses from the cut’s deviations from flatness. Neutron 
diffraction methods have been used to validate this method for evaluating longitudinal 
weld stresses, as shown in Figure 6.5. One of its main advantages over most destructive 
techniques is that it provides a two-dimensional stress map with a single cut. Of all these 
methods the most widely used in industry is hole drilling. This method can provide 
subsurface information, but is normally restricted to a depth approximately equal to the 
diameter of the hole, usually less than 1 mm. The separation of the strain gauges forming 
the rosette around the hole defines the spatial resolution, typically around 5 mm. 
Conventional x-ray diffraction can also provide near-surface information if combined 
with layer removal. Portable x-ray units that enable stress measurements to be made in 
situ at the plant are commercially available. 

The only truly nondestructive techniques for measurement at positions within a sample 
are neutron diffraction and high-energy synchrotron x-ray diffraction. However, 
magnetic techniques are being successfully developed to measure biaxial stress in 
magnetic materials to depths of 6 mm or more [10]. Synchrotron x-ray diffraction can 
provide very good spatial resolution combined with fast measurement times. For 
example, in Figure 6.6 the longitudinal strain field around the end of an Al bead on a 
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plate TIG weld was mapped over 40×20 mm on the BM16 beam line at the ESRF with a 
1 mm beam area size, and involved 800 measurements in 8 hours, exploiting the small 
probe size and fast data acquisition [11]. While well suited to the study of Al alloys, 
synchrotron x-ray radiation is rather limited in applicability to other metals because of the 
increase in attenuation with increasing atomic number, as seen in Table 2.2. At the high 
energies needed for deep penetration, the corresponding wavelengths are in the 0.3 to 
0.08Å range, so that the scattering angles are usually low, from ~4 to 30°. As a result, 
long path lengths are often unavoidable for strain measurements in certain directions, and 
the instrumental gauge volume is elongated into a thin diamond shape in the horizontal 
scattering plane. Consequently, although measurements of in-plane strain components 
can be made relatively easily in plate samples, because of the long path lengths 
associated with what are essentially grazing-incidence measurements of out-of-plane 
strain components cannot be made at significant depths (>1 mm). 

Neutron diffraction on the other hand can provide line, two-dimensional (2D) or three-
dimensional (3D) strain or stress maps, and is ideal for direct comparison with finite 
element predictions. A good example of this is provided by measurement of the strain 
components as a function of distance from the centerline of a bead on a plate electron 
beam weld (EBW) in a Ni superalloy (waspaloy) plate, following a superficial cosmetic 
weld pass used to improve the surface finish [12]. The resulting variation of the 
longitudinal residual stress component is shown in Figure 6.7. The measurements were 
made at a depth of 0.5 mm beneath the surface by neutron diffraction from  
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FIGURE 6.5 Contour method for 
longitudinal weld stress measurement 
on a 12.5 mm thick ferritic plate 
containing a 12-pass TIG weld made 
by the TWI, Cambridge, UK, showing 
(a) how to electro-discharge machine 
the weld, (b) the relaxation caused by 
the cut, magnified 40 times, and (c) the 
inferred residual stress before making 
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the cut, as compared with results of 
neutron diffraction measurements [9]. 

 

FIGURE 6.6 (a) Contour map of 
longitudinal residual strain component 
in units of 10−6 around the end, located 
at (0 mm, 145 mm) of an 8 mm wide 
bead on plate TIG weld in 3 mm thick 
Al plate (inset photo). These were 
measured by synchrotron x-ray 
diffraction on the BM16 instrument at 
the ESRF. (b) Comparison with results 
of finite element calculations [11]. 

the 111 planes, at the surface by laboratory x-ray diffraction from the 311 planes, and 
also by the conventional hole-drilling technique. Strain-free reference values for the 
neutron data were measured using matchstick samples cut from the weldment, and 
showed the variation of the strain-free lattice parameter across the plate to be small. 

Applications to problems in materials sience and engineering     287



Because of intergranular and interphase strains, only after changing from the 111 to the 
311 reflection using Fe target radiation did the x-ray results come into agreement with the 
neutron data. These measurements were made in order to provide benchmark results for 
comparison with finite element models designed to calculate welding stresses and 
distortions in waspaloy welds [3]. 

6.2.3 Challenges to Accurate Neutron Diffraction Measurement of 
Weldment Stresses 

The main challenge for accurate measurement of stress fields in weldments using neutron 
diffraction lies in the accurate determination of strain-free  

 

FIGURE 6.7 Variation of longitudinal 
residual stress component in an 
electron beam weldment of waspaloy 
4.3 mm thick plate as a function of 
distance lateral from the weld 
centerline, measured near the top 
surface using three techniques. The 
majority of measurements were made 
outside the ~2 mm wide melted part of 
the weld. The continuous line refers to 
a finite element model calculation [13]. 

lattice spacing d0. When examining welds, it is not usually advisable to use the balance of 
stress and bending moments described in Section 4.6.3 to determine a global strain-free 
reference value. This is because the different regions experience very different thermal 
histories, as illustrated in Figure 6.3b. In addition, variations in composition and 
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microstructure in the near-weld region can occur in cases where filler material has been 
added. In fact, the strain-free lattice parameter may vary from point to point due to at 
least three of the mechanisms discussed in Section 4.6.2. 

Changes in precipitate fraction and solute composition as a result of heat treatment 
are particularly important for heat-treatable alloys such as Cu containing Al 2XXX series 
alloys, since they have been specifically designed so that the precipitate microstructure 
and the fraction of alloying elements in solution can evolve according to heat treatment. 
In fact, many Al alloys can age even at room temperature. The changes in matrix 
composition can have significant effects on the strain-free reference lattice spacings, 
which if not taken into account, can lead to significant error in the resulting residual 
stress. The lattice parameter variation for aluminum with copper content, measured by 
Mohr and Priesmeyer [14], is shown in Figure 4.18. Note that if interpreted directly as an 
apparent macrostrain, without any correction to account for the Cu in solution, a change 
of 1% Cu solute content is equivalent to about 1500×10−6 error. While it is unlikely that 
heat treatments would bring about such large changes in the amount of Cu in solution 
through changes in precipitation, care should always be exercised when examining heat-
treatable aluminum alloys. Another system prone to similar errors is that of Fe-C. Small 
changes in dissolved carbon can again cause large changes in the lattice parameter. This 
problem can also extend to welds which have been post-weld heat treated (PWHT) to 
reduce the weld stresses, in that the heat treatment may have altered the relative fractions 
of elements in solid solution and thus altered the strain-free lattice spacing. 

Filler material is often added to improve the quality of the weld. Clearly, filler 
material can have a drastic effect on composition in the weld zone. Indeed, in many cases 
certain elements are added to the filler specifically to control weld microstructure. In all 
cases, this must be accounted for if meaningful strains are to be recorded in this region. 

Phase transformation can occur. In certain alloys, especially in steels, the dramatic 
thermal excursion experienced by the weld and HAZ can cause diffusionless phase 
transformations to occur. Diffusionless transformations occur by coordinated 
displacement of the crystalline lattice. Such transformations can have a marked effect on 
the residual macrostresses, as illustrated by the experiments of Jones and Alberry [15,16] 
on martensitic (high Cr), bainitic (low Cr), and austenitic (AISI 316) steels whose results 
are summarized in Figure 6.8a. During cooling of a uniaxially constrained specimen from 
the austenite phase, tensile stresses develop due to thermal contraction. Between 600 and 
300°C, martensitic transformation takes place. Note also that the high-temperature part of 
the austenite curve follows the yield stress. On the other hand, the ferrite that forms has a 
much higher yield stress. This means that the slope of the ferrite part of the stress-
temperature graph is steeper consistent with the larger thermal contractions strains 
(thermal expansivity of ferrite ~12×10−6/K). In the region of the stress-temperature plot 
where the transformation occurs, the interpretation is difficult; a schematic interpretation 
is given in Figure 6.8b. This diffusionless transformation has a shear component that is 
much larger than the dilatational term, giving rise to significant intergranular stresses and 
dominating plastic flow. Figure 6.8 shows that that if the transformation is completed at a 
high temperature, then the ultimate level of stress at room temperature will be large, since 
the fully ferritic specimen contracts over a large temperature range. Conversely, as work 
in Japan has demonstrated, when using welding consumables with very low 
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transformation temperatures it is possible not only to reduce the residual tensile stresses, 
but also even to introduce residual compression into the weld [18]. 

Besides influencing the macrostresses, the transformation to form a second phase will 
set up Type II stresses where previously only macrostresses were being generated. 
Consequently, both the transformed phase and any residual untransformed phase should 
be considered, and the separation of the two types of stress should be included in the 
analysis. Finally, not only does the extent of such a transformation affect the magnitude 
and nature of the stress field, it may also affect the strain-free lattice spacings of the 
constituent phases, possibly leading to a misleading interpretation. In order to dispel 
concerns regarding the possible point-to-point variation in the strain-free lattice 
parameter d0 in the weld and HAZ, it is therefore highly advisable to  

 

FIGURE 6.8 (a) Axial component of 
microstress that develops in unixially 
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constrained specimens during cooling 
of martensitic (high Cr), bainitic (low 
Cr), and austenitic (AISI 316) steels. 
Also shown are experimental data for 
the yield stress of austenite in low-
alloy steel [15,16]. (b) A schematic 
interpretation of Jones and Alberry’s 
experiments [17]. 

measure d0 as a function of position in the actual weld or a comparison weld. Various 
methods of doing this were discussed in Section 4.6.3. 

An added complication may occur if the weld region contains very large columnar 
grains that can form during cooling of the weld pool. The extreme texture may cause 
certain reflections to be unobservable, or the effects of large grains may give rise to 
anomalous effects as discussed in Section 3.6. In addition, the diffraction elastic 
constants appropriate to the extreme texture must be used in the conversion of strain to 
stress. Welds in austenitic steel are particularly prone to these effects. However, if the 
region of the parent plate outside the HAZ is of primary interest, as is often the case, the 
strain-free lattice spacing is unlikely to vary appreciably, and so mapping its variation 
may not be necessary.  

 

FIGURE 6.9 Magnetic measurements 
showing the principal in-plane stress 
vectors for positions in a butt-welded 
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steel plate. Only near the symmetry 
lines are the principal axes of stress 
aligned with the weld line and 
transverse directions of the plate. 
(Courtesy of D.J.Buttle.) 

If the primary interest is the determination of residual stresses rather than strains, an 
important issue is the number of strain directions in which it is necessary to make 
measurements in order to accurately convert the strain to stress, as discussed in Section 
5.1. In practice, often the strain is measured in only three orthogonal directions that are 
assumed to be the principal axes, usually the symmetry axes longitudinal and transverse 
to the weld path, and through thickness. However, these may be the principal axes only 
down the symmetry line of the weld, although they may also be close to the principal 
axes in the far-field region. It is certainly not true throughout the near-weld zone, 
especially for narrow welds in thick plate, or toward the edges of the plate, as seen from 
the results of magnetic measurements shown in Figure 6.9. For general positions, 
measurements of strain in at least three, and preferably more, additional directions must 
be made. 

6.2.4 Examples of Stress Measurement in Weldments 

6.2.4.1 Alumino-Thermic Welds 

Railway rails are now welded together in preference to the traditional method of bolting, 
giving rise to a smoother ride for the passenger. This process involves the placement of a 
ceramic mold around the gap between  

 

FIGURE 6.10 Variation with position 
along the rail direction (x) of the 
longitudinal residual stress component 
at a vertical height of 76 mm from the 
base, approximately the mid-height of 
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the rail, after alumino-thermic welding. 
The weld zone represented by the 
vertical dashed lines is 40 to 50 mm 
wide [19]. 

two rails, and a mixture of iron alloy, iron oxide, and aluminum-based powder being 
poured into a small hopper above it. The mixture is ignited and the molten steel flows 
downward to make the weld, as if by casting. This is a process that is found to set up 
stresses within and near the weld region. Figure 6.10 shows typical results from 
measurements made on the L3 instrument at the NRU facility in Chalk River, Canada, for 
the variation along the rail direction of the longitudinal residual stress component at 
approximately the mid-height on the rail after welding [19]. The weld zone is shown, and 
the adjacent HAZ is 15 to 25 mm on either side. The mold assembly is about 100 mm 
wide. Although tensile at mid-height, it was found that the stress component longitudinal 
to the rail was compressive at the top and bottom of the rail. A strain-free reference 
sample was taken from each rail and used outside the weld region. By balancing forces 
and moments and averaging all results for each area, as described in Section 4.6.3, a 
global strain-free reference was chosen for the weld region. While this may not be 
exactly correct, it is much more accurate than assuming a global strain-free value over the 
entire weldment, and does ensure stress equilibrium. It is interesting to note that steep 
change in stress occurs not at the weld boundaries nor at the heat-affected zone, but at the 
extremity of the mold assembly. Near the rail at mid-height as shown, it even extends 
beyond the mold assembly, and is at the location of the steepest longitudinal temperature 
gradient. For welded joints, the region of steepest thermal gradient is commonly 
important in determining the extent of the tensile stress region. 

6.2.4.2 Manual Metal Arc Repair Welds 

In power plant and other high-performance applications, it is not uncommon for welded 
regions to crack under a combination of the initial residual stresses and applied service 
stresses. The remedy is not always straightforward. If a repair is undertaken, the residual 
stresses tend to be regenerated,  

 

FIGURE 6.11 (a) Finite element 
calculations of the distribution of hoop 
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stress component (in MPa) in a 
multipass girth weld on a pipe before 
repair, (b) Measured change in residual 
stress distribution brought about by the 
repair, as a function of radial distance 
from inner surface of the tube along 
line marked in (a) [20]. 

increasing the magnitude and triaxial nature of the residual stress field in the weld that 
had, to a large extent, relaxed through the generation of the crack! This may markedly 
increase the susceptibility of the region to reheat cracking. The following questions must 
then be answered: “If a crack is found, is it better to leave it and monitor its progress by 
nondestructive testing, confident that much of the original weld stress has died away, 
leaving little driving force for growth? Alternatively, should it be repaired, with the risk 
that the new residual stress field caused by the repair cycle will generate further stresses 
and foreshorten life?” 

Finite element models of the three-dimensional stress state in the vicinity of repair 
welds have progressed significantly in recent years. Nevertheless, without accurate 
measurements of stress deep within the welds, it is not possible to validate such models 
and thus make reliable decisions as to the best strategy. Neutron diffraction is ideal in 
such cases because it can reveal the state of stress even centimeters beneath the surface. 
A good example is provided by the study of a 60 mm long, 50% depth, circumferential 
eight-pass repair weld deposited in an excavated region of a double V-shaped girth weld 
in a 316L stainless steel pipe of wall thickness 20 mm and 170 mm diameter [20]. Finite 
element calculations of the hoop stress before repair are shown in Figure 6.11a. The 
stress field was measured before and after repair along a line 10.5 mm from the weld line. 
The axial stress component was found to be increased significantly, especially over the 
inner half of the pipe thickness, that is, deeper than the repair depth. Results for the 
changes in stress components are shown in Figure 6.11b. The residual stresses formed are 
also more hydrostatic, leading to creep ductility that may be as little as 20% of that found 
from uniaxial load testing. This indicates that in this particular case, reparing the weld 
may not be advisable.  

6.2.4.3 Electron Beam Welds 

Electron beam welding is an important joining process for the assembly of Ni-base 
superalloy aeroengine disks. Furthermore, because disk assemblies are safety-critical 
components, the effect of weld stresses on structural integrity is a key issue. Neutron-
diffraction strain measurements have played an important role in the evaluation of 
residual stresses, and in the development of finite element models of the stress developed 
during the welding process. In one example, 2 mm wide through-thickness electron beam 
beads-on-plate welds introduced along the length of 50 mm wide by 200 mm long, 4.3 
mm thick, test plates of nickel superalloy were examined by neutron diffraction. The 
results are compared with those from hole drilling and conventional x-ray diffraction 
measurements in Figure 6.7. Ni superalloys present some challenges for the measurement 

Introduction to the characterization of residual stress by neutron diffraction     294



of Type I macrostresses because they are essentially two-phase composites, comprising 
coherent γ' precipitates in a matrix of γ phase. As is discussed in Section 6.3.3, mean 
phase Type II stresses can arise hindering unambiguous interpretation of peak shifts in 
terms of the macrostress. However, it has been shown by in situ loading experiments 
[21,22] of the type discussed in Section 5.6.6, that when suitable reflections are used—
such as 111 or 311 for neutron diffraction, and 311 for laboratory x-ray diffraction using 
an iron target tube—good agreement between the techniques can be achieved. This is 
largely because both the γ and ordered γ' phases contribute to these peaks. 

One of the main advantages of using a nondestructive technique such as neutron 
diffraction is that the evolution of residual stress can be tracked from the initial fully 
penetrating weld pass, through a cosmetic nonpenetrating pass used to improve top 
surface finish, to the effect of the final stress relief heat treatment. Results of the three 
sets of measurements are shown in Figure 6.12. From this figure it is clear that the 
cosmetic pass increases the tensile residual stress near the top surface in the weld region. 
In addition, it is also a cause of distortion. The subsequent heat treatment reduces the 
stresses by about 60%. In relatively thin plates such as these, the misfit strains generated 
in the weld region are partially accommodated by distortion rather than stress. The level 
of distortion of the fully penetrating weld pass is shown in Figure 6.13a. This type of 
distortion is sometimes termed a saddle distortion. Figure 6.13b shows the level of this 
distortion as a function of the defocus of the electron beam. 

6.2.4.4 Friction-Based Welds 

A number of friction-based welding methods, including linear, inertial, and friction stir, 
are being developed at the present time. The joint is formed by friction heating-induced 
plasticity, which creates clean metallic surfaces capable of metallic bonding to one 
another without the need for the weld material to reach melting temperature. This has the 
advantage that weld cracking, often caused by incipient melting or by poor melt pool 
characteristics, can be avoided. In fact, it has been demonstrated that many alloys which 
are  

 

FIGURE 6.12 A 50 mm wide by 200 
mm long, 4.3-mm thick, nickel 
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superalloy plate containing a 2 mm 
wide through-thickness electron beam 
bead-on-plate weld along its length, (a) 
The longitudinal residual strain 
component, in units of 10−6, measured 
over half the 50×4.3 mm cross-section 
at mid-length (weld at extreme left). 
The same strain component, (b) after a 
subsequent partially penetrating 
cosmetic pass, and (c) after a post-weld 
heat treatment. (Courtesy H.Stone.) 

difficult to fusion weld can be satisfactorily joined by friction-based welding techniques. 
In addition, it is relatively simple to join dissimilar alloys to one another. Linear friction 
welds involve the linear rubbing under pressure of two metal surfaces, axisymmetric 
inertia welds can be formed by bringing into contact a rotating and a stationary part, 
while for friction stir welding (FSW), a rotating tool piece is inserted into the join line 
and by a combination of rotational and linear motion “stirs” and extrudes the weld zone. 
In FSW, a butt weld can be formed by the passage of the rotating tool with a pin that 
“stirs” the two materials together, as shown in Figure 6.14a. In actual fact, the shoulder in 
contact with the top surface generates much of the heat, and the plasticized metal 
“extrudes” past the pin confined to the plane of the plate by a backing plate below (not 
shown) and the shoulder of the tool above. 

A good example of the challenges presented by the accurate measurement of the strain 
field associated with friction welding is provided by a study of friction-stir butt welding 
of 13 mm thick 7010 plate [24]. This was undertaken using a rotational speed of 270 rpm, 
traverse speed 81 mm/min, and vertical (downward) force of approximately 36 kN. The 
tool had a 18 mm diameter shoulder and an M5-threaded pin 5 mm wide and 0.8 mm 
pitch. The weld direction was parallel to the rolling direction of the plates. FSW is a 
candidate for the welding of aerospace alloys such as 7010. However, typical of high-
strength aerospace aluminum alloys, 7010 (5.7% to 6.7% Zn, 2.1% to 2.6% Mg, 1.5% to 
2.0% Cu, 0% to 0.12% Si, 0% to 0.15% Fe, 0% to 0.10% Mg, 0% to 0.05% Cr, 0.10% to 
0.16% Zr) is a heat-treatable alloy. The T7651 thermo-mechanical treatment comprises a 
solution heat treatment around 465 to 485°C followed by water quenching, controlled 
stretching (1.5% to 3%), and a two-stage artificial aging procedure (10 h at 120°C+8 h at 
170°C). This  
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FIGURE 6.13 (a) Topography of a 50 
mm wide by 200 mm long, 4.3 mm 
thick, nickel superalloy plate 
containing a 2 mm wide through-
thickness electron beam bead on plate 
weld along its length. The longitudinal 
residual stress and strain components 
are shown in Figures 6.7 and 6.12, 
respectively. The definition of the 
butterfly angle, is shown, (b) 
Variation in butterfly angle across the 
mid-length, 100 mm position, with 
electron beam defocus [23]. 

treatment results in the formation of fine coherent Guinier-Preston zones after the first 
aging stage, followed by strengthening precipitates of homogeneous η' Mg(Zn,Cu,Al)2 
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and grain-boundary precipitation of η MgZn2. Now, the unstrained lattice parameter of 
aluminum varies markedly with the solution of other elements (Figure 4.18). An increase 
by 1% of the amount of Mg in solution changes the aluminum matrix lattice parameter by 
approximately 0.00375 Å, equivalent to a spurious strain of 927 µε. Similarly, a 1% 
increase in the level of Zn in solution is estimated to lead to a decrease of the lattice 
parameter by 0.00066 Å or 165 µε. Thus, the complete precipitation or dissolution of 
2.1% to 2.6%wt of Mg to η MgZn2 would lead to a net change in the lattice parameter in 
the HAZ or in the thermomechanically affected zone (TMAZ), which corresponded to a 
spurious strain of between 1250 and 1550 µε. This change is, of course, only an extreme 
boundary, since these elements are never present fully in solution.  

 

FIGURE 6.14 (a) Schematic of 
friction stir welding process, (b) The 
variation of the unstrained lattice 
parameter calculated from the 
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measured 311 lattice plane spacings 
measured by synchrotron X-rays using 
Equation (4.19) for a thin cross-
sectional slice of an AE7010 friction 
stir weld, (c) The variation of the 
longitudinal residual strain component 
2 mm from the top (2 mm) and bottom 
(11 mm) surfaces of the plate 
calculated from the measured lattice 
spacings on the basis of a global stress-
free lattice parameter (left), and taking 
into account the spatial variation in 
stress-free lattice parameter shown in 
(b) (right). 

Many of the methods outlined in Section 4.6.3 have been used to determine the variation 
in the stress-free lattice parameter d0 across FSWs, including the use of fabricated combs. 
In the case of the 7010 plate weld described above, a 1 mm thick cross-sectional slice 
was cut midway along the FSW in order to use the transmission sin2ψ method described 
in Section 4.6.3 using high-energy synchrotron x-rays, and the results for d0 are shown in 
Figure 6.14b. It is evident that the changes in stress-free lattice parameter are  

 

significant. If a global value of d0 were used as a reference, such a variation in stress-free 
lattice spacing would give a spurious strain of up to 2000×10−6, corresponding to a 
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spurious stress of 140 MPa. The longitudinal component of residual strain across the 
weld line, determined from neutron diffraction strain measurements, is shown in Figure 
6.14c. It is clear that if the variation in stress-free lattice parameter were not taken into 
account, the tensile strains near the weld centerline would be significantly 
underestimated. Note that the variation in unstrained lattice parameter has the same shape 
as the Vickers hardness map shown in Figure 6.15a. Both reflect changes in precipitate 
microstructure in the TMAZ and the HAZ of the weld shown in Figure 6.15b, c, d, and e. 
In the scanning electron micrographs, the precipitates in the parent plate are too fine to be 
resolved, but can be seen in the weld zone. It is also noteworthy that both the 
microstructure and the residual stress variations show the dimensions of the shoulder of 
the tool to be more important than the pin width. This is because both are determined 
primarily by the thermal history rather than by the mechanical deformation. As was the 
case for the alumino-thermic weldments, the major cause of the residual stress is the 
steep thermal gradient, in this case between the region directly under the 18 mm diameter 
shoulder and that outside it. The smaller TMAZ cannot be discerned from the measured 
stress field, although it was found to have a clear effect on the diffraction peak widths. 

A recent study of the stresses generated when Ni superalloy is linear-friction welded 
has been the subject of a round robin study to examine the reproducibility and reliability 
of neutron diffraction measurements made at facilities around the world under the 
auspices of the VAMAS TWA 20 working group. One of the challenges of reliable 
interpretation of the data was  

 

FIGURE 6.15 (a) Variation in Vickers 
hardness in near-weld zone of friction 
stir-welded 7010 plate, (b) 
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Lowresolution optical micrograph 
showing the macrostructure of the 
weld zone. Field emission gun-
scanning electron micrographs of the 
microstructure taken at mid-thickness: 
(c) on the weld centerline, (d) 15 mm 
from the center line, and (e) in the 
parent plate. 

 

FIGURE 6.16 Variation of three 
components of residual strain, 
longitudinal, transverse, and through 
thickness, across a sample in which 
forged and cast Ni superalloy blocks 
were joined by linear friction welding. 
Different strain free-lattice parameters 
were used on each side of the weld. 
[25]. 

the fact that two different materials, one forged and one cast Ni superalloy, were joined 
together. In this case, different strain-free zero values were used for the two materials. 
The results are shown in Figure 6.16, where it can be seen that the residual strain levels 
are very high, despite the fact that melting did not occur [25]. 
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6.2.5 Future Directions for Neutron Diffraction Studies of Weldments 

As seen above, neutron diffraction is proving to be a useful tool for the development of 
new joining processes, as well as for the optimization of more traditional methods. 
Further examples of its use include: 

• Validation of finite element models used for weld process optimization 
• In situ studies of postweld heat treatments 
• Studies of the effects of phase transformations during welding 
• Improved strategies for prolonging component and plant lifetime. 

6.2.5.1 Validation of Finite Element Models 

Commercial pressures mean that new joining processes must be introduced quickly and 
safely. However, there are often many parameters that can be varied in the attempt to 
minimize weld residual stress and distortion. Finite element models are key to this 
optimization procedure. A good example of this is thermal tensioning for low stress and 
low distortion. This is a technique by which the near-weld zone is either heated or cooled 
to thermally “tension” the weld during welding, thereby optimizing the final weld stress 
state. This can be carried out in a number of ways, such as by heating using a laser, and 
cooling using jets of chilled air or nitrogen. In addition, to the normal process parameters, 
such as welding speed, jigging, heat extraction, weld speed, and weld power, this 
introduces new parameters, such as the degree, area, and lateral and anterior location of 
heating/cooling. Finite element modeling is an important tool for calculating the stress 
response in such a multiparametric space, and thus of accelerating process optimization. 
A good example is provided by the modeling of low-stress no-distortion welding of 
aluminum plates in which two lasers have been run alongside the TIG torch to give a 
temperature field shown in Figure 6.17a in order to prestress the weld [26]. As is clear 
from the results of neutron diffraction measurements on a conventionally TIG welded 
plate shown in Figure 6.17b, without thermal tensioning large stresses are generated. 
From the calculations, the thermal tensioning is predicted to reduce the stress in the weld, 
in this case by a factor of 4. Neutron diffraction is proving to be a valuable means of 
testing and improving the reliability of such models.  
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FIGURE 6.17 (a) Finite element 
predictions of the thermal temperature 
field in degrees Centigrade for a low-
stress, no-distortion (LSND) aluminum 
bead on plate weldment, 320 mm by 
300 mm by 3.2 mm thick, using laser 
heating. An absorbed laser power of 
400 W was assumed to be uniformly 
distributed over two 60 mm diameter 
spots, 30 mm ahead of the arc and 50 
mm either side of the weld centerline 
at the bottom of the figure, (b) The 
variation of the longitudinal stress 
component laterally from the weld line 
at a position 160 mm along the weld in 
a conventional tungsten-inert-gas weld 
measured by neutron diffraction. The 
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calculations (solid lines) predict that 
thermal tensioning reduces the tensile 
peak stresses in the weld by ~150 MPa 
[26]. 

6.2.5.2 Postweld Heat Treatment 

Residual stress levels resulting from welding in a component are often far too high for 
practical use, and have to be reduced by effective heat treatment procedures. With the use 
of neutron diffraction, it is now possible to study the effect of postweld heat treatments in 
real time. This may offer a means of optimizing heat treatments so as to maximize stress 
relief and minimize microstructural changes occurring during the process [27]. 

6.2.5.3 Phase Transformations 

Relatively little work has been carried out specifically on welds in which significant 
phase transformations occur in the weld zone. Here the ability to use the relative peak 
intensities to measure the volume fraction of the transformed products, in addition to 
measuring the stresses in each phase, makes neutron diffraction a very important tool. In 
tandem, finite element modeling packages now exist that can take into account changes 
brought about by phase transformations. 

6.2.5.4 Strategies for Improved Lifetime 

Another area ripe for exploitation is the definition and testing of better lifing models 
based on residual stress maps provided by a combination of finite element modeling and 
neutron diffraction measurements. Until recently, it has not been possible to obtain such 
detailed information about the three-dimensional state of stress in the vicinity of welds, 
and so at the present time lifing models tend to be relatively unsophisticated and thus 
unnecessarily conservative. 

6.3 Composites and Other Multiphase Materials 

The presence of residual (internal) stresses must be taken into account when considering 
the mechanical properties of almost any system that is mechanically nonhomogeneous. 
This is especially true of composite materials used in engineering applications. Indeed, 
the term “reinforcement” via inclusions in a composite implies an unequal sharing of any 
applied load toward the stronger or stiffer phase. For the majority of composites, the 
second phase is added with a view to bringing to the composite attributes not present in 
the matrix alone, such as stiffness, strength, low thermal expansivity, and so on. In each 
case, the degree of success to which this is achieved is, at least partly, dependent on the 
generation of internal stresses between the phases. Similarly, many of the performance-
limiting characteristics are also related to the generation of internal stresses—for 
example, poor resistance to thermal cycling, premature microyielding, microcracking, 
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and so on. If the behavior of a composite is to be optimized for a particular application, it 
is therefore important to be able to monitor the levels of internal stress and thus to learn 
how to tailor them to advantage. This might occur by changing the morphology, 
diameter, or aspect ratio of the reinforcing phase, by modification of the matrix by alloy 
or heat treatment, or by modification of the interface (e.g., to encourage crack bridging by 
pulled-out fibers, or to increase the efficacy of load transfer). In this section, we examine 
the level of information that neutron diffraction can provide on composite behavior, and 
the challenges of accurate strain and stress measurement through the reliable 
interpretation of diffraction data. 

6.3.1 Nature and Origins 

In the solid state, composite materials are almost never stress-free. In fact, there is a host 
of ways in which stresses can be introduced into composite materials; an example is 
shown in Figure 1.3. Most commonly, one must consider 

• Elastic mismatch stresses 
• Thermal misfits 
• Plastic misfits 
• Transformations. 

Because there are so many different opportunities for generating residual stresses in 
multiphase materials, the examples of studies in this section are grouped together into 
subsections according to the above broad categories. Furthermore, these stresses normally 
arise across the full range of length scales because the heterogeneous nature of a 
composite material means that uniform stresses almost never arise. According to the 
scheme presented in Section 1.4.1, it is useful to identify the characteristic length scale l0 
over which the various types of stress vary. 

Long-range macrostress (Type I) is the stress that would occur in a single-phase 
homogeneous body. In other words, it is the stress that would be predicted using a 
continuum finite element model based on the overall homogeneous, but not necessarily 
isotropic, composite properties. The length scale over which the Type I stress field 
varies is comparable with the scale of the body, and is, in most cases, much coarser than 
the scale of the reinforcement. 

Short-range microstress (Types II and III) comprises all the stress types inherently 
connected to the inhomogeneity that is introduced by the incorporation of the reinforcing 
phase. Normally, for single-phase materials, Type II stresses are taken to vary over length 
scales corresponding to the grain scale. For composites, however, the major 
microstructural scale corresponds to the scale of the reinforcement. In such cases, it is 
more sensible to define the Type II stresses as corresponding to the scale of the fibers 
rather than the grains, since this is the dominant level of heterogeneity. Under this 
definition, matrix Type II stresses will normally fluctuate over the interparticle spacing, 
as sketched in Figure 1.6. For single crystal-reinforcing particles, the reinforcement scale 
and grain scales are the same. In some cases, the reinforcement scale is much greater than 
the grain scale, as in long fibers such as SCS6 SiC monofilaments that have a 
nanocrystalline structure. In this case, if the fibers are all aligned along direction 1, the 
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characteristic lengths perpendicular to the fiber direction, are approximately 

equal to the interfiber spacing, but in the fiber direction, the characteristic length, is 
approximately equal to the fiber length and can even be comparable to the scale of the 
Type I stresses.  

6.3.1.1 Mean Phase-Specific Microstresses 

While the stress field normally varies sharply from point to point within either phase, it is 
often helpful to consider the volume averaged stresses in each phase because many 
mechanical properties such as stiffness and the coefficient of thermal expansion are 
dependent on the volume averaged stresses. For example, if a metal matrix containing 
spherical ceramic particles of smaller thermal expansivity is cooled, on average the 
matrix will be in net hydrostatic tension, with the particles in hydrostatic compression as 
illustrated in Figure 1.6. In order to balance Type II stresses, the following equation must 

hold for the mean phase i microstress, denoted by provided the volume considered 
is larger than  

 (6.1) 

where f is the volume fraction of the reinforcement, and and volume mean 
phase microstress of the matrix and reinforcement, respectively [28]. 

6.3.2 Methods for Measurement of Stress in Composites 

Only a few direct methods are available for nondestructive measurement of internal 
phase-specific strains or stresses in composites. 

6.3.2.1 Raman Spectroscopy 

Raman Spectroscopy has been developed to measure the internal strain in organic fiber 
systems [29–31], and has been extended to study SiC reinforcements. The technique 
exploits shifts in the Raman spectrum, that is shifts in the characteristic frequency 
response of inelastically scattered light, under the application of elastic strain. Spatial 
resolution is excellent at around 1 µm, as is seen from the example of the strain along a 
carbon fiber in a resin composite under load before and after the fiber is fractured, shown 
in Figure 6.18. However, the approach is limited to reinforcing species that produce 
Raman or fluorescence spectra, such as Al2O3, and, except for transparent matrices, to the 
observation of reinforcements near the surface. 
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6.3.2.2 Photoelasticity 

Photoelasticity is an invaluable tool for the measurement of stress in optically transparent 
systems, and while this precludes its application to most inorganic composites, it has 
been used to develop and validate predictive models for polymer composites [33].  

 

FIGURE 6.18 Distribution of elastic 
strain component along a 
reinforcement fiber determined by 
Raman spectral shifts from a single 
3.25 mm long polyacrylonitrile (T50) 
grade carbon fiber in an epoxy resin 
under uniaxial loading, (a) Just before 
first fracture at an applied composite 
strain of 0.6%. (b) After multiple 
fracture at 1% applied composite strain 
[32]. 

6.3.2.3 Diffraction Techniques 

Diffraction techniques have played a major role in increasing our understanding of 
internal stress partitioning in composites due to their advantage of phase and grain 
orientation selectivity at depth. They are, of course, restricted to crystalline materials, 
although it is possible to study the behavior of polymer composites if fugitive crystalline 
powders are incorporated as strain markers. As discussed in Section 1.4.2, despite the fact 
that the sampled gauge volume is usually larger than the characteristic volume over 
which the interphase Type II residual stresses self-equilibrate, the fact that 
each diffraction peak is phase specific means that diffraction can be used to measure the 
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average stresses in each phase of a multiphase material. This makes diffraction an 
especially useful tool for the study of composite materials as indicated by Figure 6.1. 

Electron diffraction is generally of little use due to its poor penetration, of the order of 
only hundreds of nanometers (Table 1.1) relative to the scale of most composite 
microstructures. Nevertheless, the method provides a way of measuring Type II and Type 
III stresses, such as the misfit strains between γ/γ' phases in nickel superalloys [34–37]. 

X-ray diffraction has found considerable use, and much information has been obtained 
using x-rays on a wide range of composite systems [38–42]. However, penetration is 
severely limited, especially with higher-atomic-weight matrix materials such as titanium 
and nickel, where it is less than 10 µm, which restricts its use with these materials. In all 
cases, great care must be taken in surface preparation to minimize disruption to the near-
surface stress state that is being measured. It is interesting to consider the use of x- 

 

FIGURE 6.19 Predicted profiles of 
thermally induced particle stress, 
normalized by that for a particle in the 
bulk, for SiC particles in an Al matrix 
with normalized depth, z/lp, from the 
surface. The calculations are for the in-
plane (filled symbols) and normal 
(open symbols) components of stress 
for a three-dimensional arrangement of 
particles having spacing lp. They are 
based on either a sine fluctuation of 
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stress (Hanabusa [43]), or a step 
function (Watts [44]) as depicted in the 
inset. A normalized distance of 0.8 
corresponds to 50 µm for 20 vol% of 
20 µm particles. 

ray diffraction in some detail in order to see how it complements the use of neutron 
diffraction to study composites. 

The assumption made when applying the traditional sin2ψ approach—that the normal 
component of the macrostress is zero over the penetration depth of x-rays—is usually 
valid for single-phase materials, as described in Section 5.1.3. However, it has been 
realized for some time that it may not be so for composites and other microstructurally 
nonhomogeneous materials. This is because the mean phase Type II stresses are expected 
to decay toward the surface of a composite over a distance comparable to the interparticle 
spacing, lp, as illustrated in Figure 6.19. Hanabusa et al. [43] were among the first to 
examine quantitatively the interpretation of x-ray data for composite systems as a 
function of penetration depth and the scale of the composite microstructure. They 
modeled the fluctuation in stress from particle center to particle center as a sine wave, 
while more recent analytical and computational work by Watts and Withers [44] has 
identified some errors in the original analysis, and has extended the approach to represent 
more accurately the decrease in normal stress as a free surface is approached; however, 
the conclusions on the basic trends remain unchanged. Figure 6.19 shows that the 
assumption that the stress normal to the surface is zero is only acceptable over a distance 
equal to about a tenth of the interparticle spacing. Even if the x-ray penetration is 
sufficiently low for this condition to be satisfied, since the in-plane stresses are 
significantly relieved at this shallow depth, the measured matrix or particle thermal 
stresses are unfortunately not representative of the bulk. At depths greater than half the 
interparticle spacing, the mean particle and matrix stresses are approximately hydrostatic 
and the sin2ψ method is invalid. Furthermore, partly because the depth varies as a 
function of ψ angle, in many cases a sin2ψ curve will be found to be nonlinear, making 
any analysis invalid, and even if linear the graph may give apparent internal stresses of 
the opposite sign to those actually existing within the bulk. 

In view of the fact that the interparticle spacing of many composite systems is of the 
order of the x-ray penetration, it is often difficult to know what analysis method is 
appropriate. The fraction, Gz, of the total diffracted intensity that comes from a surface 
layer of depth z is [45] 

 (6.2) 

For example, for Cu x-ray radiation 50% of the diffracted intensity for Al at θ ≈90° 
comes from a surface layer of only 25 µm. 

In summary, there are three important regimes, depending on the interparticle spacing 
lp: 
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If x-ray penetration depth z<0.1 lp: The thermal stress state is almost fully 
relaxed over the examined region so that little stress is determined by 
either the sin2ψ or by a triaxial analysis. 

If x-ray penetration depth z lies between 0.1 lp and 0.5 lp: Both the 
sin2ψ and triaxial analyses are invalid because at each different ψ tilt 
different depths are sampled, giving nonlinear sin2ψ plots. Large errors 
result if the measured curves are fitted by a “best” straight line. 

If x-ray penetration depth z>0.5 lp: The bulk triaxial mean phase 
microstress state is sampled. The sin2ψ method is not valid, since σ33≠ 0. 
If, nevertheless, it were applied, it would indicate zero in-plane stress. 
Only a full triaxial method of analysis gives the correct results [46]. 

The same problems occur for aligned fiber composites when attempting to measure 
thermally induced matrix and fiber stress components transverse to the fiber direction. 
However, the interpretation of data is a little more straightforward for measurement of the 
axial stress component along the fiber. In this case, the sin2ψ method yields σaxial when 
the penetration depth is small, and (σaxial−σtransverse) when it is large compared to the fiber 
spacing. 

Fortunately, for long-range macrostresses rather than thermal stresses, the errors 
introduced by the biaxial sin2ψ are not so large [44]. As a result, much has been achieved 
with conventional x-ray techniques, even for relatively high atomic number systems such 
as Ti/SiC. Indeed, x-ray studies have been providing important insights into the behavior 
of continuous fiber metal matrix composites since the 1960s [39].  

 

FIGURE 6.20 Reconstructed 
synchrotron x-ray tomographic images 
of a region of six-ply, Ti/140 µm 
diameter, SiC unidirectional fiber 
composite containing a fatigue crack, 
(a) Three-dimensional view, (b) The 
same volume aligned so as to look 
along the fiber direction, rendered with 
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the matrix and fibers transparent, but 
with interfaces in sharp relief so that 
the progress of the matrix crack can be 
clearly visualized. The three broken 
fibers in the first ply, caused by fatigue 
cycling, are indicated [47]. 

As summarized in Table 1.1, the extremely intense beams of high-energy synchrotron x-
ray diffraction (very hard x-rays) enable relatively large penetration depths of many 
millimeters. A good example of the capability of the technique is a study of a Ti/SiC 
composite that combined three-dimensional tomography and strain measurement at 
extremely high spatial resolution to analyze fiber bridging of a matrix fatigue crack [47]. 
Fiber bridging is very important under fatigue because it shields the matrix crack from 
the full effect of the applied fatigue loading cycle. As the crack grows longer, it becomes 
bridged by more and more fibers, provided that they do not break, increasing the extent 
of crack-tip shielding. As a result, the rate of growth of the matrix fatigue crack slows 
until crack arrest occurs [48]. In this study, a matrix fatigue crack was grown 
perpendicular to the fiber direction under a loading amplitude just sufficient to cause 
fiber breakage in the first ply. The fatigue crack was grown until it had advanced past 
three rows (plies) of fibers, as shown in Figure 6.20b. The tomograph in Figure 6.20 was 
taken on instrument ID19 at the ESRF with the composite under the maximum crack-
opening load encountered during the fatigue cycle. It is clear that three fibers out of five 
in the first ply are broken. 

In order to define a small enough gauge volume to map strains in individual fibers 
over reasonable time scales, a 5 µm focused incident beam along with narrow (30 µm) 
receiving slits were used on the ID11 beam line at the ESRF with an x-ray wavelength of 
0.24 Å. The sample was aligned with Oz, the fiber axis and loading direction along the 
scattering vector. By setting the receiving slit height to 30 µm, at a scattering angle of 
9.8° about a horizontal axis, a small diamond-shaped gauge volume, 340 µm in the long 
dimension, along Oy is defined by the intersection of the allowed incident and diffracted 
beam paths. By ensuring that only one 140 µm diameter fiber  
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FIGURE 6.21 Axial component 
elastic fiber strain data (points) and a 
modified partial debonding model 
(solid lines) showing the strain 
distribution in bridging fiber ply 1 
labeled as 1b in Figure 6.20, in the 
loaded and unloaded states. Sliding 
positions were derived directly from 
the data. Note that the matrix crack lies 
at z=0 [49]. 

lies within the gauge, data can be collected from one fiber at a time. Each data point took 
5 min to collect and by scanning the sample it was possible to measure along each fiber 
in turn in 10 to 25 µm increments. The measured strain distribution in the intact ply 1 
fiber, labeled 1b in Figure 6.20, is shown in Figure 6.21 both at nominal Kmax (1400 
MPa) and minimum tensile load Kmin (0 MPa). Note the constant gradient in the forward 
sliding region. This is characteristic of frictional sliding between the matrix and fiber 
equivalent to a shear sliding stress of around 70 MPa. Upon unloading, reverse sliding 
has occurred. The sawtooth features are suggestive of a number of sticking points [49]. 
Figure 6.22a shows the individual fiber axial strain components at the maximum applied 
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load for the intact ply 1 fiber 1b and those immediately behind it in plies 2, 3, 4, 5, and 6, 
compared in Figure 6.22b with those for the broken fiber 1d and those immediately 
behind it. The peak strain (~0.8%) in the unbroken ply 1 fibers corresponds to a stress of 
3.6 GPa, close to the fiber breaking strength. Unsurprisingly, the stress in the broken fiber 
is small near the matrix crack. The matrix strain builds up from essentially zero at the 
point of the fiber break over a distance of around ±1 mm. Were the intact fibers to break, 
fatigue failure would soon occur. However, for the stress-intensity range studied, they 
carry significant load, which reduces the opening of the crack and, along with the 
unbroken fibers in plies 2 and 3,  

 

FIGURE 6.22 Tomographic slices 
through the Ti/SiC fiber composite 
shown in Figure 6.20 with the fiber 
strains at Kmax superimposed (shades) 
on the locations of each of the fibers. 
In slice (a), including fiber 1b, all the 
fibers are intact, whereas in slice (b), 
the ply 1 fiber, fiber 1d, was broken 
[49]. 

shield the matrix crack from the full opening load. This has a significant effect in 
retarding crack growth. Note also that the ply 2 fiber immediately behind the broken one 
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in Figure 6.22b is more strained than the corresponding fiber behind the intact fiber in 
Figure 6.22a. 

These results illustrate the very high spatial resolution and fast data acquisition times 
available using synchrotron x-ray diffraction. However, the major disadvantage for 
mapping the strain in engineering components is that as the diffraction angles can be very 
small, typically strain measurement in certain directions is not feasible 
due to the long path lengths in the material. 

Neutron diffraction has several major advantages over the use of synchrotron x-rays 
for the study of crystalline composite materials, and the two techniques complement each 
other well. The main strengths of neutron diffraction in this context follow: 

• Penetration, typically of the order of many centimeters, allowing the nondestructive 
measurement of phase-specific strains representative of the bulk average 

• The capability to monitor strains under in-service conditions, or under load in simple 
rigs and furnaces 

• The opportunity of measuring strains in more than one phase simultaneously, often 
using time-of-flight methods. 

 

FIGURE 6.23 Schematic illustrating 
how neutron diffraction can measure 
volume-averaged (a) fiber, and (b) 
matrix, phase-longitudinal strains over 
a large gauge volume for a composite 
under uniaxial load. 

In all but the coarsest of composites, the sampled gauge volumes, Vv, of the order of 
several cubed millimeters characteristic of neutron diffraction are too large to provide 
information about the point-to-point variation of microstress, since 
Instead, in most cases the gauge volume provides information about the strain variation 
averaged over a significant number of particles, or an extensive region of the matrix with 
the correct grain orientation, as shown schematically for a whisker reinforced composite 
under uniaxial load in Figure 6.23. The measured strains are the volume average phase-

specific strains in the matrix and reinforcement Often position-dependent 
information is not required, and a large sampled gauge volume is used so that the 
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measured internal strains are averaged over many reinforcement particles and matrix 
grains with the correct grain orientation. 

Time-of-flight instruments enable diffraction peaks from both phases to be acquired 
simultaneously, as illustrated in Figure 6.24, and so in many cases are better suited to 
studies of residual strain in composites. However, if only one specific peak from each 
phase is sufficient, an instrument on a continuous source may be just as efficient at 
acquiring the required data. In both cases, it is important that anomalous shifts due to 
sample positioning are avoided by careful centering of the sample. 

One of the main challenges when evaluating the mean phase strains from the measured 
diffraction peak lattice spacings is the determination of an appropriate strain-free 
reference lattice spacing. As explained in Section 4.6.3, it is common practice to use 
annealed powders in order to avoid macro-stresses, but strain-free reference values are 
notoriously difficult to obtain, and this situation is worsened when considering metal 
matrix composites because of the sensitivity of the strain-free lattice parameter to the 
addition of trace elements in solution. Even if the elemental composition is the same, the 
proportion of the alloying elements actually in solution is difficult to quantify, especially 
in cases such as for many aluminum alloys where the ageing response is accelerated in 
the composite relative to the unreinforced alloy. For ceramics, powders provide 
somewhat more reliable strain-free  

 

FIGURE 6.24 The time-of-flight 
diffraction pattern for an Al/SiC 
particulate composite acquired on 
ENGIN at the ISIS pulsed neutron 
source, illustrating the simultaneous 
measurement of many peaks from both 
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the matrix and reinforcement. The 
Rietveld fit to the data is shown. 

values, both because the chemistry is less variant and because they tend to be simpler 
microstructurally. 

6.3.3 Separation of Different Stress Contributions in Composites 

In this section, we consider the various origins of stress in composites. As mentioned in 
Section 6.3.1, since composites are often inhomogeneous in a number of respects, 
including elastically, plastically, and in terms of expansivity, there are many 
opportunities for internal stresses to develop at all levels of scale. Both macrostresses and 
average phase microstresses can cause the shifting of a diffraction peak, but provided that 
the average strains are measured in both phases, it is possible to separate them. This is 

because the mean phase microstresses, and in the matrix, M, or reinforcing 
inclusions, R, must average to zero over the sampling volume, as described by Equation 

(6.1), while the macrostress, must be the same in both phases. 
Diffraction measurements yield the average, or total, lattice strain components for a 

given hkl for each phase, in the three principal strain directions, j, and (in 
contracted notation, see Section 5.3), over the sampled gauge volume. The average lattice 
strains are converted to average phase stress components and using the relations 
written generally in the form:  

 (6.3) 

where and are the relevant hkl (superscript) stiffness matrix components for the 
individual free matrix and inclusions, respectively, in contracted notation (Section 5.3). 
Equations (5.2), and (5.5) through (5.7) give these general relations more specifically in 
terms of the elastic moduli. 

The average or total phase stresses, in the matrix, i=M, and reinforcement or 
inclusion, i=R, are given by the tensor relations 

 (6.4) 

and 

 (6.5) 

Adding these two equations and using Equation (6.1), the macrostress is given by 

 (6.6) 

Introduction to the characterization of residual stress by neutron diffraction     316



The average phase stress tensor components are determined from the measured 

average phase strain tensor components, which are in turn determined from the hkl 
reflections by using the relations in Equation (6.3), with the corresponding free material 
elastic constants Ehkl and vhkl. 

In practice, it may be possible to take these elastic constants as isotropic to a good 
approximation. Thus, if the volume fraction of the reinforcing inclusions, f, is known, the 
macroscopic stress may be readily determined from the measured strains. Once having 
converted from strain to stress, it is best to continue the analysis in terms of stress, as the 
individual different contributions to stress discussed below are not individually related to 
those of strain. It is more difficult to isolate the individual contributions to the 
microstress, and these are now considered. 

The mean phase microstresses and may have a number of possible 
contributions: 

• Elastic mismatch stress arises from the mismatch in elastic constants and the 
macrostress. 

• Plastic misfit stress arises from different plastic behaviors of the matrix and 
reinforcement. 

• Transformation misfit stresses arise from misfits generated by phase 
transformation of one or more of the phases. 

• Thermal misfit stresses arise after changes in temperature from misfits 
generated by different expansion coefficients between matrix and reinforcement. 

Thus, 

 (6.7a) 

and 

 (6.7b) 

with corresponding equations for It is helpful to differentiate between contributions 

caused by mismatches in stiffness between matrix and reinforcement (i.e., ), which 
disappear when any applied stress or macrostress is removed, and those arising from 
misfits between the matrix and ill-fitting reinforcement, including those resulting from 

differential thermal expansion, plasticity, transformation, and so 
forth. Only the misfits give rise to residual stress. 

It is possible to separate out the contribution arising directly as a result of the 
macrostress (i.e., the elastic mismatch microstress) from the terms arising from the shape 
misfits between stress-free shapes of the matrix and reinforcements, provided that a 
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reliable predictive model of the relationship between macrostress and elastic mismatch 
stress [28] exists, such as the Eshelby model which relates them directly. 

In the following sections, we consider each type of microstress in turn, looking at their 
origin, prediction, and measurement. 

6.3.4 Elastic Mismatch Stresses 

Many engineering composites achieve an increase in stiffness and strength over the 
matrix by including a stiffer and stronger reinforcing phase. As a result, applied loads are 
not distributed evenly between the phases. Instead, load is transferred from the more 
compliant matrix to the stiffer reinforcement. The extent of this load transfer is dependent 
on the mismatch in stiffnesses between the phases, phase geometry, and integrity of the 
interface between them. While the point-to-point variation in matrix stress is dependent 
on the local arrangement of the reinforcement, neutron diffraction samples the local 

average, or total, matrix and reinforcement stresses, and These are not so 
dependent on the local arrangement, and can be predicted with good reliability using 
finite element or Eshelby-type models [33]. The mismatch stresses are proportional to the 

local macrostress with the components j given by:  

(6.8)  

 

FIGURE 6.25 Response of the lattice 
strain component parallel to an applied 
uniaxial stress, of an Al matrix (111) 
reflection (open circles), and (a) 5%, 
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(b) 10%, and (c) 15% SiC whiskers 
(111) reflection (solid squares), 
measured by neutron diffraction [50]. 

Here the tensor describes the strength of the proportional relationship. Thus, in the case 

of a previously strain-free composite subjected to a uniform applied stress the 
components of the internal mean phase stresses are 

 (6.9) 

It is evident that in this case the mean phase stresses are not residual stresses in that upon 
unloading the internal stresses disappear. Clearly, for an effective composite, the diagonal 
components of BMjk should be large and negative in sign since this reflects an effective 
transfer of load from the matrix to the reinforcement. Neutron diffraction has been used 
extensively to measure the extent of load transfer for particulate, whisker, and 
continuously aligned composites. An example of the elastic and plastic loading response 
is shown in Figure 6.25. Note that the SiC whiskers are initially in residual compression 
and the matrix in tension due to thermal residual stresses. The whisker thermal strains 
decrease and the matrix strains increase, as the whisker content is increased from 5% to 
15%, consistent with expectations [51]. Upon loading, the two phases extend elastically 
at first, but soon the matrix begins to yield, aided by the thermal stresses, causing the 
responses to curve. Beyond the yield point for the matrix, the composite extends 
plastically after which the measured elastic strain in the matrix remains approximately 
constant. As a consequence, the load is taken increasingly by the SiC whiskers. Note that 
while the composite is able to carry more load as the whisker fraction increases, the 
maximum strains in the whiskers and fibers are fairly similar for all three whisker 
contents. In other words, the maximum stress in the fibers, ~1250 MPa, is similar, but the 
total load borne by the fibers is three times larger in the 15% SiC composite relative to 
the 5% SiC composite. On unloading, it is seen that the residual phase strains have 
reversed sign due to a permanent retained plastic misfit strain [50]. 

Often it is helpful to compare the measured response with finite element or Eshelby 
model predictions in order to evaluate the efficacy of the matrix-reinforcement coupling. 
For elastic load transfer, the Eshelby model is quite sufficient [33]: 

(6.10) 

where and are the Eshelby, identity, matrix and reinforcement stiffness, 
tensors respectively, represented in the contracted matrix notation (Section 5.3 [52]). 

Fitzpatrick et al. [53] have used this equation to calculate the matrices BMjk, BRjk for the 
Al/SiC system, as given in Table 6.5. Each coefficient Bjk describes the matrix (M) or 
reinforcement (R) mean phase stress in the direction j caused by an applied stress of 1 Pa 
in the direction k. Note from Table 6.5 how the axial stress in the reinforcement increases 
with aspect ratio, but decreases with increasing volume fraction. This occurs because 
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while more load is transferred from the matrix at higher reinforcement fractions, there are 
more reinforcements to carry the increased load. 

6.3.5 Thermal Microstresses 

Thermal residual stress is an inevitable consequence of processing composite materials at 
elevated temperatures. Residual stress measurements have been made on a very wide 
range of inorganic composite systems, as reviewed by Kupperman et al. [54]. The Type II 
mean phase thermal stresses are proportional to the effective thermal misfit between the 
phases and can be estimated using Eshelby’s approach or by finite element analysis: 

(6.11) 

Here the subscripts j, k again denote the component directions. ∆α=(αM−αR) is the 
difference in thermal expansivity between the matrix (αM) and reinforcing inclusions (αR), 
and ∆T is the temperature drop. In practice, ∆T=  

TABLE 6.5 Coefficients BMjk and BRjk Calculated 
for Al/SiC Composite for Three Reinforcement 
Volume Fractions and Reinforcement Aspect 
Ratios [53] 

  Particles 
(AR=1) 

Short Fibers 
(AR=5) 

Long Fibers 
(AR=∞) 

  Al SiC Al SiC Al SiC 
f=0.05 B11 −0.032 0.606 −0.125 2.379 −0.206 3.914 
  B22=B33−0.032 0.606 −0.019 0.368 −0.019 0.354 
  B21=B31 0.0088 −0.168 0.0035 −0.0667 0.0051 −0.096 
  B12=B13 0.0088 −0.168 0.0431 −0.819 0.0735 −1.397 
  B23=B32 0.0088 −0.168 0.0057 −0.109 0.0045 −0.0864
  B44=B55−0.041 0.775 −0.0403 0.767 −0.036 0.694 
  B66 −0.041 0.775 −0.025 0.472 −0.023 0.437 
f=0.09 B11 −0.056 0.564 −0.204 2.068 −0.318 3.211 
  B22=B33−0.056 0.564 −0.034 0.344 −0.033 0.330 
  B21=B31 0.0153 −0.154 0.0057 −0.057 0.0078 −0.079 
  B12=B13 0.0153 −0.154 0.0698 −0.706 0.112 −1.136 
  B23=B32 0.0153 −0.154 0.0102 −0.103 0.0084 −0.0849
  B44=B55 −0.071 0.719 −0.070 0.712 −0.0659 0.646 
  B66 −0.071 0.719 −0.044 0.443 −0.0406 0.411 
f=0.17 B11 −0.10 −0.487−0.326 1.592 −0.466 2.276 
  B22=B33−0.10 −0.487−0.062 0.301 −0.059 0.286 
  B21=B31 0.0265 −0.129 0.0089 −0.043 0.011 −0.055 
  B12=B13 0.0265 −0.129 0.109 −0.533 0.162 −0.792 
  B23=B32 0.0265 −0.129 0.0187 −0.091 0.0161 −0.0785
  B44=B55−0.126 0.617 −0.125 0.611 −0.114 0.558 

Introduction to the characterization of residual stress by neutron diffraction     320



  B66 −0.126 0.617 −0.079 0.389 −0.074 0.364 
Note: The fibers are taken to be all aligned in one direction, 1. 
AR, aspect ratio; f, volume fraction. 

∆Tesf=Tesf−T, where Tesf is effective stress-free temperature, that is, the temperature at 
which the composite would be free of residual stress, and T is the temperature at which 
the stress is to be calculated. As a result, ∆αj ∆Tesf is the effective thermal expansion 
misfit that is accommodated elastically. ΣAMjk∆αk and ΣARjk∆αk. describe the level of 
mean stress in matrix and reinforcement in the direction j generated by a 1K change in 
temperature. They reflect the influences of reinforcement volume fraction, phase 
stiffnesses, and phase geometry on the level of internal stress generated. 

The Eshelby model predicts that the stresses will have the form [33] 

(6.12) 

where the matrices and are defined as in Equation (6.11). These equations 
have been used to calculate AMjk, ARjk for Al/SiC given in Table 6.6. Not surprisingly, the 
axial stress in both phases increases in magnitude with aspect ratio and reinforcement 
volume fraction, with opposite sign, being tensile in the Al matrix and compressive in the 
SiC inclusions. In some cases, the thermal expansivity is a strong function of 
temperature, in which case  

TABLE 6.6 Calculated Stress in MPa Developed in 
Each Phase of Al/SiC Composite per Degree Drop 
in Temperature for Three Volume Fractions and 
Aspect Ratios [53] 

  Particles 
(AR=1) 

Short 
Fibers 
(AR=5) 

Long 
Fibers 

(AR=∞) 
  Al SiC Al SiC Al SiC 
f=0.05∆αA11 0.089−1.685 0.238−4.662 0.342−6.603
  ∆αA22=∆αA33 0.089−1.685 0.063−1.197 0.057−1.091
f=0.09∆αA11 0.157−1.597 0.400−4.125 0.551−5.543
  ∆αA22=∆αA33 0.157−1.597 0.113 -1.146 0.105−1.054
f=0.17∆αA11 0.293−1.423 0.670−3.284 0.847−4.175
  ∆αA22=∆αA33 0.293−1.423 0.213−1.040 0.198−0.967
Note: The fibers are taken to be all aligned in one direction, 
1. AR, aspect ratio; f, volume fraction. 

the accumulated misfit must be calculated by integration over the relevant temperature 
range. 

By comparing neutron diffraction measurements of thermal stress with model 
predictions it is possible to identify the effective stress-free temperature, Tesf. This is not 
usually the temperature at which the composite was made, because relaxation effects 
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such as creep at high temperatures, or plasticity when the misfit stresses become large, 
will tend to limit the build up of thermal stress. Nevertheless, the effective stress-free 
temperature is a useful concept for representing the magnitude of thermal stresses. It 
reflects the opportunities for relaxing the misfit by creep and yielding at high 
temperatures, and yielding, cracking, de-bonding, and so forth at low temperatures. 
Effective stress-free temperatures of around 200°C, 700°C, and 1300°C are typical of 
aluminum [55], titanium [56], and alumina [57] matrix systems, respectively, as 
measured by neutron diffraction. A related issue is the short lifetimes of uranium targets 
for neutron production in a spallation source that may be partly caused by thermal cycle 
intergranular stress-driven effects that result from large anisotropic thermal expansion 
stresses between the grains. 

While the majority of studies made to date have focused on the measurement of the 
residual strain in one or both of the phases at room temperature, it is also possible to 
measure the thermal residual stresses at elevated temperatures provided that one allows 
for the stress-free changes in the reference lattice spacing due to thermal expansion. This 
is best done using single-phase reference samples, and requires accurate knowledge of 
temperature. For aluminum, an error in temperature of only 4°C between a strain-free 
reference and the composite would lead to a 100 µε error. The difference in lattice plane 
spacing between the reference and the composite then allows the variation of thermal 
stress to be deduced, as shown in Figure 6.26. For materials of relatively low thermal 
expansion coefficient, it may be possible to calculate rather than measure the strain-free 
lattice parameter as a function of temperature from the room temperature value without 
serious error.  
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FIGURE 6.26 The variation in Al 111 
lattice spacing (open squares) as a 
function of rising and descending 
temperature for the Al matrix of 
Al/5vol%SiCw, compared with an 
unreinforced Al reference sample of 
the same alloy (open circles). The 
difference between the continuous and 
dashed curves is due to thermal 
residual stresses in the composite. The 
concomitant residual strains are shown 
in Figure 6.28. 
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6.3.5.1 Particulate Composites 

Particulate metal matrix composites are economically attractive and a number of systems 
have received attention, most notably Al/SiCP [58]. Ceramic matrix composites, 
especially those containing participate zirconia as inclusions, are of great interest because 
of the potential for increasing their fracture toughness through the exploitation of the 
structural phase transformation from tetragonal to monoclinic form. Wang et al. [59] have 
studied the thermal residual stresses in Al2O3/ZrO2 composites as a function of the ZrO2 
volume fraction. In this case, the zirconia is in residual tension and the alumina in 
compression because the former has the larger coefficient of thermal expansion. Their 
results are shown in Figure 6.27, where it is seen that the macrostress calculated from 
Equation (6.6) is zero within the uncertainty, indicating that the thermal stresses self-
equilibrate, as would be expected.  

 

FIGURE 6.27 The variation in the 
residual hydrostatic thermal mean 
stresses in composites of an Al2O3 
matrix containing ZrO2 participate, as 
a function of the ZrO2 volume fraction. 
The macrostress is calculated from 
Equation (6.6) [59]. 
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FIGURE 6.28 Neutron strain 
measurements of the mean Al and SiC 
axial 111 lattice strain components in 
(a) the whiskers, and (b) the matrix, for 
an Al/5%SiCw, composite made over a 
thermal cycle. The arrows show the 
heating (solid) and cooling (dashed) 
curves [55]. The effectively stress-free 
temperature is approximately the point 
at which the heating curve crosses zero 
strain. 

6.3.5.2 Whisker Composites 

Perhaps the earliest neutron diffraction measurements of the variation of thermal residual 
strains with temperature in metal matrix composites were made on the Al/SiCw system. It 
was the high penetration of neutrons that made in situ studies within a furnace possible 
[55]. The evolution of internal strain within the two phases is found to be nonlinear, as 
shown in Figure 6.28. This is for two reasons. First, the matrix is plastically deformable. 
At temperatures in excess of 300°C, a sharp reduction in the Al yield stress accounts for 
the large decrease in the size of the residual strain in the matrix as the temperature rises. 
Second, the melting point of the Al is much lower than  
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FIGURE 6.29 Variation in elastic 
axial strain component of the two 
phases in an Al/10vol%SiCw 
composite during a 175 to 400°C 
thermal cycle shown by the solid line. 
The data were accumulated using a 
strobe technique over many 
consecutive cycles. The dashed lines 
represent the predictions of finite 
element calculations incorporating 
both creep and plasticity. The thermal 
dwell periods are shaded [63]. 

is typical for a ceramic, giving rise to creep during the experiment. In view of the 
capacity for matrix creep, the effectively stress-free temperature for particulate and 
whisker-reinforced Al matrix systems tends to be between 100 and 200°C, as seen from 
the response shown in Figure 6.28. The presence of such thermal microstresses has been 
shown to influence mechanical behavior, but these microstresses become even more 
important when they are continually regenerated, such as when the temperature is 
thermally cycled. In these circumstances, composites have been observed to 
progressively distort [60,61], and, in the presence of small applied loads, to deform 
superplastically to large extensions in excess of 400% [62]. 

The strain changes occurring during thermal cycling can be studied by neutron 
diffraction. However, because the fastest measurement times for peaks in both phases of 
a composite are currently of the order of minutes, this places a limit on the shortest period 
of the thermal cycle that can be followed. This restriction can be overcome using 
stroboscopic techniques [63]. By accumulating diffracted signals acquired over many 
cycles into 16 time bins evenly distributed over each cycle, it is possible to accumulate 
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sufficient diffracted intensity to obtain accurate strain measurements as illustrated in 
Figure 6.29. In this case, the variation in elastic lattice strain of the 111 reflections for the 
two phases of an Al/10vol%SiCw composite is shown at different times over a 
temperature cycle from 175 to 400°C. The temperature profile during the cycle period is 
plotted. The data were acquired over 175 cycles, with 50°C/min minimum ramp rate and 
a 100 s dwell time at the top and bottom of each cycle. The temperature variation of the 
reference strain-free lattice plane spacing has been subtracted to provide the plotted strain 
data. The data are compared with results of finite element predictions  

 

FIGURE 6.30 The evolution of 
internal strain components along the 
fiber direction in Ti-14Al-
21Nb/35%SiC aligned fiber composite 
as a function of temperature [64]. 

incorporating creep, occurring mostly at high temperatures during the dwell, and 
plasticity, occurring mostly at the bottom of the cooling cycle. 

6.3.5.3 Continuous Fiber Composites 

The earliest internal stress studies using x-rays on aligned continuous fiber metal matrix 
composites focused on Al and Cu matrices [39]. More recent work, however, has focused 
on Ti- and Ni-based matrix systems, usually with SiC monofilamentary reinforcement, 
such as the textron SCS-6 fiber. As a result of the high melting point of their matrices and 
the difference in thermal expansion coefficients, these systems often have very large 
thermal residual stresses. These can severely limit their performance. The residual strains 
for the titanium aluminide matrix system, Ti-14Al-21Nb/35%SCS-6 SiC, shown in 
Figure 6.30 as a function of temperature, clearly point to a stress-free temperature of 
~800°C [64]. Above this temperature, stress relaxation would seem to prevent the buildup 
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of stress on the time scale of the neutron experiment. In a similar experiment on 
conventional titanium Ti-6Al-4V/35% SCS-6 SiC fiber composite, the stress-free 
temperature was found to be somewhat lower at around 630°C [65]. 

6.3.6 Plastic Misfit Stresses 

Plastically generated misfit microstresses can occur when at least one of the phases is 
plastically deformable. The effect of plastically generated misfit stresses can be well 
characterized by neutron diffraction, since deformation studies can be made using the 
advantage of in situ measurements on the diffractometers (e.g., Figure 6.25). Plastic 
misfit stresses are rather difficult to predict a priori, partly because of difficulties in 
predicting the matrix yield  

 

FIGURE 6.31 The response of the 
lattice strain component along the 
uniaxial loading direction, which is 
parallel to the fiber direction, of a Ti-
6Al-4V/35%SiC aligned fiber 
composite in (a) the matrix, and (b) the 
fibers. The response of the lattice strain 
along the uniaxial loading direction, 
which is perpendicular to the fiber 
direction of the composite in (c) the 
matrix and (d) the fibers. The strains 
are shown relative to the unloaded 
state [56]. 
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stress, which can be very different from the unreinforced alloy due to micro-structural 
effects caused by the presence of the second phase. Nevertheless, finite element [66–68] 
and Eshelby models [69] have been used successfully to interpret experimental neutron 
data. As one might expect, it is evident from the following sections that the geometry of 
the reinforcement and the integrity of the interface are key parameters in determining the 
redistribution of load caused by plastically generated misfits. 

6.3.6.1 Continuous Fiber Metal Matrix Systems 

A good example of the use of neutron diffraction for investigating the plastic response of 
composite materials is given by a study of Ti/SiC continuous fiber composite carried out 
at Chalk River [56]. For loading parallel to the fiber direction, the elastic fiber strain 
component is equal to the composite strain. Significant matrix plasticity is observed at an 
applied stress, σA, of around 900 MPa. Following the approach of Section 6.3.4, the 
parallel stress component in the matrix arising from the applied load is predicted to be 
approximately 0.53σA, and the original thermal residual stresses were found to be about 
+450 MPa, giving a total load of around 930 MPa. This is in good agreement with the 
unreinforced Ti yield stress of around 850 MPa. Above 900 MPa, matrix plasticity causes 
a transfer of load from matrix to fiber (Figure 6.31). This causes the matrix lattice strain 
component along the loading direction to curve upward (Figure 6.31a), reducing its rate 
of straining, and the corresponding SiC lattice strain response to curve toward greater 
elastic strain to compensate (Figure 6.31b). As a consequence of this plastic extension, 
upon unloading the matrix resides in compression and the fibers in tension. 

The situation is quite different for loading perpendicular to the fiber direction. In this 
case, the curves deviate from a linear response at an applied stress of only 300 MPa. 
Because the fibers are less effective when loaded perpendicular to their length, the 
fraction of the applied stress borne by the matrix in the elastic regime is higher, at 
approximately 0.92σA, and the thermal residual stress component in the matrix is around 
155 MPa, so that the matrix stress component along the loading direction is around 430 
MPa, which is significantly below the matrix yield stress. It is clear that the curvature in 
strain response is not due to macroscopic matrix yielding, but rather is due to matrix-fiber 
interface de-bonding. This can also be deduced from the shape of the curves. The sense 
of load transfer in Figure 6.31c and d is contrary to that in Figure 6.31a and b. In the case 
of loading perpendicular to the fiber direction, the load is transferred from fiber to matrix 
as debonding progresses. Recent work using the ENGIN-X instrument has extended this 
study from test pieces to aeroengine components [70]. ENGINX is particularly well 
suited to such studies because it has excellent flux and diffraction peak resolution, 
allowing large penetration depths even in titanium and the simultaneous measurement of 
diffraction peaks from both Ti and SiC (see Sections 6.3.9 and 6.6.1). 

6.3.7 Phase Transformation Stresses 

Steels are perhaps the best developed and exploited family of multiphase metal 
composites of all. Key to their excellent performance is an understanding about the role 
of transforming phases. Martensitic transformations, or more generally displacive 
transformations, have important effects on the mechanical properties of many types of 
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materials. Unlike diffusive transformations, they involve the ordered reorganization of a 
structure and they are accompanied by significant residual stresses. As a result, the extent 
of transformation, morphology, and texture of the transformed phase all depend on 
internal stress. How such a transformation can affect the state of residual stress during 
welding was discussed in Section 6.2.3. An understanding of such transformations is also 
important for understanding the behavior of superelastic, shape memory, and ferroelectric 
materials, all of which are currently being investigated as active components for smart 
structures. 

A good example of the use of neutron diffraction is provided by a study on NiTi, 
which is superelastic [71]. Superelastic materials have the ability to absorb large amounts 
of strain energy and release it as the applied strain is removed, as shown schematically in 
the Figure 6.32. For example, the  

 

FIGURE 6.32 Schematic illustration 
of superelastic behaviour, by which a 
large recoverable strain can be 
introduced by “elastic” loading. The 
gray region has undergone a reversible 
displacive transformation. 

elasticity of NiTi is approximately ten times that of steel. The use of neutron diffraction 
to monitor the extent of transformation, texture, and internal stresses caused by a phase 
transformation is illustrated by the results shown in Figure 6.33. Figure 6.33a shows the 
bulk superelastic strain behavior of the response to loading stress. In Figure 6.33b, the 
extent of the austenite to martensite transformation is plotted as deduced from their 
relative diffraction peak intensities. The transformation is linear with strain and shows no 
apparent hysteresis as a function of superelastic strain. In Figure 6.33c, the preferred 
orientation of the martensite can be seen in terms of the variation in diffraction peak 
intensity as a function of sample orientation. This is due to the fact that the most 
favorable austenite orientations transform first. Note that values below zero are an artifact 
of the normalization used. In Figure 6.33d, the elastic strain in the residual austenite, as 
measured by diffraction peak shifts, remains essentially linear even after significant 
transformation has occurred. This is thought to be because the martensite that forms 
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initially comprises favorable variants with low internal stress. A small amount of load 
transfer to martensite occurs at large strains when the remainder transforms. 

It is anticipated that diffraction techniques will play an increasingly important role in 
the development of smart materials containing transforming materials because of their 
capability to reveal the extent and orientation of the transformed products, as well as the 
internal stresses that play a role in governing the transformation. 

6.3.8 Microstress-Related Peak Broadening 

As described in Section 5.7, broadening of the intrinsic Bragg diffraction peak width can 
arise for many reasons. These can be divided into three groups:  

 

FIGURE 6.33 (a) Stress-strain curve 
of polycrystalline NiTi showing 
characteristic superelastic response. (b) 
Variation in volume fraction of 
martensite during superelastic loading 
and unloading, (c) Martensite and 
austenite (100) peak intensity as a 
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function of angle to the loading axis 
normalized by the intensity expected 
for a random texture, (d) The variation 
in (100) austenite lattice strain with 
applied Compressive stress [71]. 

• Type II stresses, arising from microscale mismatches, such as are common in 
composites 

• Type III stresses, arising from defects such as dislocations and twins 
• Size effects such as grain size broadening that may arise from dislocations due to 

plasticity 

A unique interpretation of peak broadening effects is therefore very difficult, and while a 
number of theories exist—for example, Warren and Averbach [72]—they are difficult to 
apply. They require high quality, high resolution, data over a number of reflections, and 
rely heavily on information in the tails of peaks for which good counting statistics are 
difficult to obtain. In addition, due to the poorer instrumental resolution, neutron 
diffraction  

 

FIGURE 6.34 Full-width at half-
maximum variation for 311 Ni 
reflection from a 6 µm WC/26wt%Ni 
composite, and from free powder, as a 
function of temperature. Widths are 
given in terms of time of flight [74]. 

peaks are typically much broader than x-ray peaks, further complicating the task. 
Nevertheless, it is possible to see that reflections are much broader in composites than are 
observed from for the separate phases, and that this broadening can provide the materials 
scientist with important information. 

Todd and Derby [73] interpreted peak asymmetries for alumina/SiC composites (i.e., a 
compressive tail for the alumina phase) directly in terms of the strain distribution. 
Krawitz [74] reported large changes in full-width half-maximum with increasing 
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temperature for cermets. These changes, which are shown for the 311 Ni reflection in a 6 
µm WC/26wt%Ni composite in Figure 6.34, are reversible upon heating and cooling. 
This is consistent with the evidence from analytical methods of separation of the strain 
and size effect contributions, which point to the broadening being almost entirely due to 
elastic strain [74]. 

6.3.9 Future Directions for Neutron Diffraction Measurements of 
Composites 

Neutron diffraction measurements have provided key information on residual stress in 
metal and ceramic matrix composites, and thus have been instrumental to understanding 
their development. To date, this work has focused primarily on the characterization of 
thermal residual stresses, and on individual phase responses to tensile loading. As 
composite materials find more widespread applications, greater emphasis will be placed 
on their in-service performance. Neutron diffraction can provide information both about 
the stress distribution during in-service loading, fatigue, thermal fatigue, creep, and so on, 
and postmortem after-service loading. Although much work has concentrated on the 
study of test samples, in future neutron diffraction will become more focused on studies 
of real composite components as the materials find new applications.  
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FIGURE 6.35 A hoop-wound Ti-6Al-
4V/SiC fiber integrally bladed ring, or 
bling, prototype aeroengine 
component. Neutron strain mapping is 
able to examine the strains in matrix 
and fibers even when the fibers are 
well below the surface. The inset 
shows the microstructure of the 
reinforced region. (Photograph 
courtesy of P.Doorbar.) 

One example of this is the drive to develop integrally bladed ring structures, called blings 
(Figure 6.35), to replace the traditional blade and aeroengine turbine disk designs. Weight 
savings as great as 75% are possible, but this requires the application of Ti/SiC 
composites in order to obtain sufficient high-temperature strength and creep resistance 
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[33]. In this application, the fibers can be as deep as 10 mm from the surface, and in such 
cases only neutron diffraction has sufficient penetration to measure their stresses. The 
move away from test samples to real components also involves a step jump in geometric 
complexity. Simple manipulation of the sample and the need for reduced setup times 
could well lead to the use of coordinate measurement technology, or the next generation 
of laser location devices, to ensure accurate and repeatable placement of the sample on 
the instrument’s stage (see Section 3.6.3).  

6.4 Plastically Deformed Components and Materials 

While residual stresses are often detrimental to component life, in certain circumstances 
it is possible to introduce residual stresses that can prolong life. In many cases, these 
stresses are introduced by plastic deformation. In this section, we consider the 
measurement of stress in plastically deformed samples. 

6.4.1 Origin and Nature of Plastic Misfit Stresses 

As demonstrated in Figure 1.3, residual stresses usually arise because of misfits between 
regions within a component or material. These can be generated plastically at the 
macroscale by, for example, the plastic bending of a bar, or at the microscale due to the 
inhomogeneous grain-to-grain plasticity of a poly crystalline metal. In this section, we 
first consider the challenges posed by microstresses termed intergranular stresses. These 
were discussed at length in Section 5.6 because they are almost always an important 
consideration when trying to determine macrostress. We then examine some cases where 
residual stresses have been introduced by plastic deformation. 

6.4.2 Challenges to Accurate Neutron Diffraction Measurement of 
Stress in Plastically Deformed Components 

The main challenges to the accurate application of neutron diffraction to the measurement 
of residual stresses in plastically deformed structures lie in the accurate analysis of 
intergranular stresses. In Chapter 5, it was seen that these can have two origins, namely, 
elastic mismatch strains due to the anisotropy of single crystal stiffness with crystal 
direction, and plastically generated misfit stresses because of the anisotropy of plastic 
behavior. The former is often termed elastic anisotropy, and the latter plastic anisotropy. 

Elastic anisotropy is usually accounted for relatively easily simply by selecting a 
diffraction elastic constant appropriate for the chosen reflection, as seen in Sections 4.2.2, 
and 5.5. Plastic anisotropy is much more difficult to deal with. The effects of plastic 
anisotropy can be accounted for in a number of ways as discussed in Section 5.6, and 
much further work is required to elucidate the optimum method of analysis for different 
types of material. The following strategies have been used with some success: 

• If the extent of plastic flow is known a priori, then it is sometimes possible to correct 
the measured strains for a given reflection for plastic anisotropy. For example, see the 
measurements on a bent tube described below. 
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• It is possible to carry out calibration measurements of the lattice strain response to 
applied uniaxial loading, and to choose reflections which give relatively linear stress-
lattice strain response for subsequent measurements on engineering samples (i.e., to 
choose reflections that are relatively unaffected by plastic anisotropy). 

• On a time-of-flight instrument it is possible to use a Rietveld refinement as mentioned 
in Section 4.5 in order to fit the lattice parameters using all the available reflections. It 
has been shown that in many cases the refined lattice parameter response is essentially 
linear even in the plastic regime, having an elastic modulus similar to the bulk material 
[75]. This is because the refined value takes into account the behavior of many 
reflections to provide an ensemble average as described in Section 5.6.6. 

• On reactor continuous beam instruments, it may be possible to study more than one 
reflection to minimize the likelihood of obtaining unrepresentative results. 

In most cases, the aim is to remove the effects of plastic anisotropy in order to obtain a 
reliable measure of the macrostrains and stresses. The ultimate challenge is to be able to 
infer, from the measurement of the residual strain from many individual reflections, the 
past history of plastic straining as well as the resulting residual macrostress in a 
component. 

6.4.3 Examples of Stress Measurement in Plastically Deformed 
Materials 

Examples of cases where neutron diffraction has provided important information about 
plastic deformation can be divided into two categories: those for which intergranular 
stresses provide fundamental insight into the micro-mechanics of polycrystalline slip in 
materials, and those in which the long-range residual macrostress caused by plastic 
deformation is important to engineers for understanding component performance, such as 
the fatigue performance of a cold expanded hole. Some basic examples are described in 
Chapter 5; here, we focus more on the application of the understanding developed in that 
chapter. 

6.4.3.1 Studies of Fundamental Aspects of Material Deformation 

As described in Section 5.6, there have been major advances in the theoretical description 
of the response of polycrystalline aggregates of grains to applied loads based on 
elastoplastic self-consistent (EPSC) models, such as that implemented by Lebensohn and 
Tomé [76]. The elastic and plastic deformations of each of many thousands of grains of 
known crystallite orientation are tracked and averaged to find the macroscopic 
deformation in the aggregate. These models represent accurate constitutive models of 
material behavior because they incorporate the correct slip behavior as well as the elastic 
anisotropy at grain level. Lattice strain measurement by diffraction gives the elastic 
deformation of the grains, which is calculated in the model, and so provides a detailed 
check on the model at the grain level, particularly with regard to the strain in different 
crystallographic orientations of grains as seen in Figure 5.18. 

Idealized experiments such as those described in Section 5.6 have now been carried 
out on uniaxial tensile loading of many materials used in industry. These include 
austenitic [77] and ferritic steels, Al alloys [78], and hexagonal close-packed alloys of Zr, 
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Mg, Ti, and Be. Although good agreement between the experimental results and model 
predictions has been achieved for the axial strain components under uniaxial loading 
where the main deformation mode is simple slip, other deformation geometries and 
deformation micromechanisms are much less well understood. Furthermore, the majority 
of work on the elastic response of individual sets of lattice planes to plastic deformation 
has been carried out on randomly oriented textures with no preferred grain orientations. 
However, as Tomé pointed out [79], an important consideration is that plastic anisotropy 
is texture dependent, as is the effective elastic constants of textured polycrystalline 
samples in the elastic regime. If the material under examination is strongly textured, this 
must be taken into consideration, and plastic anisotropies calculated or measured for 
random aggregates will generally not be appropriate. 

6.4.3.2 Practical Example of Intergranular Stresses: Bent Monel Tube 

The stress distribution in a bent bar was one of the early examples of strain measurement 
by neutron diffraction [80,81]. The bending of a tube, while slightly more complex, 
generates similar stresses around the diameter of the tube from the extrados or point of 
least curvature (i.e., the point of maximum tensile stress during bending) through the 
flank to the intrados, or point of most curvature (i.e., the point of maximum compressive 
stress during bending). A study by Holden et al. [82] on a bent fcc Ni/Cu Monel-400 tube 
used in steam generators has highlighted large differences between the axial component 
of residual lattice strains found after bending as recorded by the 002 and 111 reflections 
shown in Figure 6.36a. In fact, direct interpretation of the data from the 002 reflection 
seemed to indicate that the extrados was under tension, contrary to expectations. At a 
practical level, the very large differences between the strains measured from the two 
reflections present difficulties of interpretation. Indeed, if the strain from the 002 were 
used uncorrected, then a tensile stress of around 55 MPa at the extrados would be inferred 
(Figure 6.36c). The reason for the difference is due to the generation of intergranular 
strains between the differently oriented grain subsets in the plastically deformed regions 
near the extrados and intrados regions. Given that the point-to-point variation of plastic 
deformation is easily calculated for a bent tube, it is possible to predict the extent of the 
intergranular stresses and thus to correct for them. This is done either by using a 
calibration experiment in which a Monel-400 sample is subjected to known uniaxial 
tensile loading into the plastic regime, or by calculation directly from models of the type 
mentioned above and described in detail in Chapter 5.  
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FIGURE 6.36 (a) The residual axial 
component of lattice strains measured 
at various positions around a bent 
Monel-400 tube using the 002 and 111 
reflections, (b) The intergranular strain 
component parallel to the stress axis, 
with load applied (solid) and upon 
unloading (open symbols) generated in 
a Monel-400 test piece as a function of 
tensile plastic strain. Solid curves are 
results of self-consistent elastoplastic 
calculations with no adjustable 
parameters, (c) The inferred 
macrostress variation around the pipe 
based on the 111 and 002 reflections 
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using their diffraction elastic constants. 
The 002 is shown with (dashed) and 
without (continuous) a correction for 
intergranular strains [82]. 

Figure 6.36b shows the results of such a calibration experiment in which the intergranular 
strain, determined as the deviation from the linear part of the lattice strain-macroscopic 
strain curve, is plotted against the measured macroscopic plastic strain for uniaxial 
loading. This has been done with the load applied (filled symbols) by drawing a return 
curve parallel to the elastic gradient, and more simply by measuring the residual lattice 
strain after unloading (open symbols). The difference between these values, which is 
especially marked for the 002, is noteworthy, and is due to some redistribution of the 
plastic misfit upon unloading. In other words, the unloading response is not completely 
elastic. More generally, note the variation in intergranular strain, from the large net 
tensile response of 002 lattice planes to the net compressive response of 220 lattice 
planes. For most reflections, the agreement between the EPSC model [83] and 
experiment is as close as the experimental uncertainty However, for some reflections, 
such as (002), there are systematic errors of as much as 30%, indicating that 
improvements to the model are necessary. Using this experimental intergranular strain-
plastic strain response for Monel it is possible to deduce the correct macroscopic stress 
field in the bent tube. First the contribution from intergranular effects strain to the 
measured strain from each reflection at each point around the tube is determined. 
Assuming that the deformation behavior is the same for the bent tube as in the calibration 
uniaxial tensile test, from the measured macroscopic strain around the tube the 
intergranular contribution is found. This can then be subtracted from the total strain 
recorded for the reflection, leaving just the elastic contribution. This elastic contribution 
can then be used to make an estimate of the macrostress using the appropriate plane-
specific diffraction elastic constant. Using the measured strains for the 002 reflection in 
Figure 6.36a and the data in Figure 6.36b, the corrected macrostresses are shown in 
Figure 6.36c. In this case, the corrections are up to 180%, including a change of sign in 
the vicinity of the extrados of the stress inferred from the 002, reflection from +55 MPa 
to −35 MPa. To within the experimental uncertainties, the corrected 002 data and the 111 
data (which do not require correction because the intergranular strains were small) are in 
agreement. Both reflections give a balance of stress and moment. This example illustrates 
how essential it can be to correct for intergranular stress effects in plastically deformed 
samples. 

6.4.3.3 Stress in a Highly Textured Sample 

The existence of texture in a sample may indicate prior plastic deformation since this can 
preferentially orient the grains. Because plastic deformation occurs by crystallographic 
slip, it is normally heterogeneous at the grain level. Unless the sample has undergone a 
stress-relieving heat treatment, residual intergranular strains will exist, being positive in 
some grain families corresponding to certain hkl, and negative in other grain orientations. 
The total intergranular stresses balance for a given sample orientation when integrated 
over a small volume of sample containing a sufficient number of differently oriented 
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grains, but will not normally be zero when evaluated using a single reflection as 
discussed above. 

A different approach to carrying out and interpreting measurements aimed at 
determining the macrostrain must therefore be taken for highly textured samples as 
illustrated by the case of rolled plate [83,84]. Although a quantitative account of the 
effect of texture on strain is beyond the scope of this section, the following qualitative 
ideas are useful. Figure 2.13 shows the  

 

FIGURE 6.37 A schematic 
representation of the two “families” of 
grains in a Zircaloy-2 rolled plate with 
a common crystallographic 
orientation along the rolling direction, 
and the two [0002] orientations at ±40° 
to the plate normal in the normal-
transverse plane [84]. 

(0002) and pole figures of a strongly textured Zircaloy-2 plate. The interpretation 
of the pole figures of the textured plate is illustrated schematically in Figure 6.37, which 
indicates that there are two principal “families” of grain orientations in the rolled plate. 

Both families have orientations along the rolling direction. The first “family” has 
[0002] orientations concentrated around +40° from the normal direction in the normal-
transverse plane, while the second is concentrated around −40° from the normal 

direction. The third orthogonal axis, of the first “family” is not so far removed 
in angle from the [0002] direction for the second “family” and vice versa. In sample 
directions near 40° from the sample normal, there are therefore grains with both [0002] 

and crystal orientations, and these have coefficients of thermal expansion that 
differ by a factor of 2. Because of the difference in thermal expansion, grains with these 
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orientations constrain each other as the sample cools from the annealing temperature, and 

the [0002] grains end up in tension at room temperature with the grains in 
balancing compression. However, in the rolling direction, where there is a preponderance 

of grains with directions, only a few grains have different thermal expansion, so 
there are few constraints to generate residual intergranular strains. Measurements show 

very small intergranular strains in this direction in grains [84]. It is thus clear that 
the nature of the texture can modify the values of strain generated in subsequent 
thermomechanical operations. More generally, however, intergranular stresses are 
generated by the difference in the plastic and elastic response to applied load for different 
crystal orientations. This situation occurs in cooled Zircaloy plate when it is further 
rolled.  

It is worthwhile noting that the lattice strains measured—for example, from the 0002 
reflection, which is a minority orientation in the rolling direction for the textured plate—
will not be characteristic of most of the grains making up the plate. The 0002 reflection 
will be difficult to measure since the intensity will be low. In fact, the 0002 reflection 
may even indicate a strain that balances the strains exhibited by the majority of grains, 
and therefore have the opposite sign. However, knowing the orientations of the grains, it 
was possible to map out the complete strain tensor by examining the strain components 
along the principal crystal coordinates rather than along the obvious geometric sample 
coordinates [85]. In this case, the strains are actually rather small along the principal 
directions in the plate so measurements in these directions alone would give a misleading 
picture of the stress state. However, in the principal crystal directions, for example at 40° 
to the normal direction, the strains are very large since the strain tensor is, in a sense, tied 
to the crystal orientations. 

If the strain tensor describing the macroscopic state of strain in, say, a strongly 
textured Zircaloy tube were required, the measurements would have to be corrected for 
the intergranular effects. These effects could be obtained by examining a small coupon, 
or coupons as necessary, cut from the tube in order to obtain the correct reference d0 
values, since cutting does not destroy the intergranular stresses and strains on the spatial 
scale of the grains, but does destroy the macroscopic stress field. For low-symmetry 
materials such as hexagonal close-packed structures, there is no reflection, analogous to 
the 113 reflection for nickel-based alloys, which can be identified as generally having 
very small intergranular effects. 

6.4.3.4 Intergranular Lattice Strain as an Indicator of Macroscopic 
Plastic Strain 

As discussed in Section 5.6.6, if the deviation from the linear response of lattice strain to 
uniaxial loading beyond yield can be predicted, then it opens the possibility of 
interpreting these deviations in terms of the plastic strain history of a sample component. 
A number of methods of analysis for this are currently being explored. Two simple 
approaches have been investigated by Korsunsky et al. [86]. They have considered the 
deformation of a face-centered cubic Al composite bar that had been plastically bent. 
Following Equation (5.46), they have defined two parameters; the anisotropy strain 
parameter εAn=γ/C0 and the difference strain parameter εD: 
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εhkl=εh00−εAn Ahkl   

and  
εD=ε111−εh00  

(6.13) 

 

FIGURE 6.38 (a) Variation in the 
average matrix lattice strain 
component along the bar with position 
across the thickness of an Al/17%SiC 
particle composite bar in the initial, 
loaded, and unloaded conditions under 
four-point bending, (b) Comparison 
between the measured plastic strain 
(filled circles) and anisotropy strain in 
the loaded (squares) and unloaded 
(triangles) conditions. The solid line is 
a guide to the eye [86]. 

where εhkl is the measured lattice strain for the reflection hkl, and Ahkl is the anisotropy 
factor defined by Equation (5.24). In effect, the anisotropy strain is an extra parameter to 
be fitted in the Rietveld analysis that allows for the hkl variation peak shift arising from 
plastically generated misfits. As discussed in Section 5.6.6, it has been shown to be a 
good descriptor for the shifts for untextured polycrystals under elastic loading [75]. 

By way of an example case, residual plastic and elastic strain were introduced into a 
10 mm thick Al/17%SiC composite bar by four-point bending. The average matrix elastic 
lattice strain as determined by a Rietveld fit is shown in Figure 6.38a. It is clear that prior 
to four-point bending, the matrix was under residual tension due to thermal residual 
misfit strains (Section 6.3.5), along with a macroscopic approximately parabolic quench 
stress. The difference between the strains with the bending load applied and after 
unloading is linear across the thickness, which confirms that no reverse plasticity 
occurred on unloading. The most appropriate value of the anisotropy strain was deduced 
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from the Rietveld fitting routine for the time-of-flight diffraction spectrum for each 
sampled gauge volume position. Figure 6.38b shows a comparison between the plastic 
strain variation introduced by bending and the anisotropy strain derived for each time-of-
flight spectrum. The correlation between the plastic strain and the anisotropy strain is 
clear. This suggests that the anisotropy strain is related to the overall inelastic 
deformation, and that it is fairly insensitive to elastic strain or residual strain. This is to be 
expected for aluminum because of its low level of elastic anisotropy (Table 5.1). Good 
agreement was also found between the difference strain parameter, εD, and the plastic 
anisotropy. 

Clearly, the anisotropy strain may not be the best method of analysis for materials that 
show a large elastic anisotropy. However, this simple example illustrates the principle. 
Extensive research is ongoing at the current time, and it is possible that in the future more 
sophisticated analyses may allow the deduction of plastic strain directly from 
measurements of intergranular strain. 

6.4.4 Future Directions for Neutron Diffraction Measurement of 
Stress in Plastically Deformed Components 

It is clear that a thorough understanding of the intergranular stresses induced in 
plastically deformed materials, which will enable detailed predictions of behavior to be 
made, will require much further work on both samples of typical materials under known 
stress loading, and on practical cases of residual stress in engineering components. To 
date, research has focused on uniaxial deformation, whereas many manufacturing and in-
service environments are multiaxial, both in terms of applied stresses and plastic strain. 
In addition, little attention has yet been focused on complex strain paths, such as those 
encountered in forging, rolling, and so on. 

Results will lead to further important contributions to materials science in 
understanding of the behavior of polycrystalline materials under stress, and to a more 
reliable means of interpreting strain data from engineering component samples in terms 
of macrostress. It is anticipated that measurements made on both continuous source 
instruments, where a few chosen reflections can be studied in detail, and on pulsed source 
instruments, where very many reflections can be studied, will both contribute to this 
work. With more intense pulsed sources being planned, the latter promise to provide 
increasingly detailed information on the simultaneous response of many grain 
orientations to plastic loading. 

6.5 Near-Surface Stresses 

One tends to think that the principal advantage of neutron diffraction is its use for 
measurement at positions deep within samples, compared with x-ray diffraction, which is 
mainly useful for near-surface stress measurement. However, neutrons are providing 
important information even in the region within less than 2 mm of the surface. Normally, 
in strain mapping measurements the component completely fills the instrumental gauge 
volume. If, however, the instrumental gauge volume is only partly filled, which can be 
the situation when measuring strains near surfaces resulting from surface stress 
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modification by processes such as shot-peening or carburizing, a number of systematic 
instrumental errors can occur as discussed extensively in Section 3.6. These must be 
avoided by careful design of the experimental procedure or by subsequent correction of 
the data. In general, very high spatial resolution is needed, calling for beam aperture 
dimensions to be 0.5 mm or less to define the instrumental gauge volume. 

6.5.1 Origin and Nature of Near-Surface Stresses 

The near-surface state of stress can have very important consequences for the behavior of 
the component. For example, the failure strength of glass can be increased many times by 
engineering a compressive state of stress into the surface. This is because the surface is 
often a key site for the creation of defects and flaws, which then often propagate into the 
interior at fairly low levels of applied stress. For window glass, this is usually done by 
cooling the glass from above the glass transition temperature—the temperature above 
which it behaves like a liquid—very rapidly using air jets. A similar effect can also be 
introduced by doping the surface with ions such as potassium. 

Peening, quenching, carburizing, nitriding, and coating are just some of the ways in 
which the engineer can manipulate the near-surface residual stresses, and hence 
component behavior. In most cases, the aim is to place the surface in a biaxial state of 
compressive stress. 

6.5.2 Challenges to Accurate Neutron Diffraction Measurement of 
Stress Near Surfaces 

Measurement of near-surface stress has presented a challenge for many years. The 
surface sensitivity and depth capability of various stress measurement methods are 
illustrated in Figure 6.39. In general, diffraction techniques can only be used on 
crystalline materials, Raman techniques on those that produce Raman excitations within 
the appropriate part of the electromagnetic spectrum, and Barkhausen and other magnetic 
techniques are suitable only for ferromagnetic materials. Glancing incidence x-ray 
diffraction is capable of providing submicron surface information. Traditional x-ray 
diffraction can provide measurement of the stress state within the first 5 to 30 µm 
according to the atomic number of the material; layer removal methods are required to 
penetrate deeper. Hole drilling can provide important data, but the surface stresses can 
often be so high that yielding can occur during hole drilling, invalidating the results. 
Furthermore, not all materials are susceptible to hole drilling. The use of synchrotron x-
rays is beginning to have an impact in this area, with over 50% of synchrotron x-ray 
strain measurements to date made on coatings and surface treatments, as summarized in 
Table 6.1. The main advantage of the neutron method over other methods is that it can 
provide information from within 50 µm of the surface to a depth centimeters or even tens 
of centimeters with a spatial resolution of millimeters. 

As seen in Section 3.6, there are at least two important hurdles to be overcome if the 
accurate measurement of stress is to be achieved using  

Introduction to the characterization of residual stress by neutron diffraction     344



 

FIGURE 6.39 Schematic illustrating 
the approximate spatial resolution and 
depth capabilities of various stress 
measurement techniques. Destructive 
techniques are represented by white 
boxes. Image correlation and electronic 
speckle pattern interferometry involve 
the analysis of surface images, while 
the depth of Raman spectroscopy is 
limited by the transparency of the 
object. 

neutron diffraction in the near-surface region: accurate location of the effective position 
of measurement in the sample, and correction of instrumental aberration effects that give 
rise to anomalous shifts in diffraction angle and hence spurious strains. Accurate 
corrections for the aberrations in turn depend on knowledge of exact positioning. It is not 
uncommon for very steep strain and stress gradients to exist in the near-surface region. 
Gradients in excess of 2000 MPa/mm are not exceptional for machined/ground or peened 
surfaces. In such cases, an error in the sample position of just 100 µm represents an error 
in stress measurement of ~200 MPa. 

One way of accurately locating the surface of the sample is to fit the measured 
diffracted intensity profile to the expected variation as the surface is scanned into the 
instrumental gauge volume (IGV) in reflection geometry, as illustrated in Figure 6.40. 
The form of the intensity variation is given in Appendix Section A.2.2, and can be broken 
down into three regions in which the IGV is less than half filled, more than half filled, 
and completely filled by the sample. If there is zero attenuation in the sample, then the 
surface is at the reference point at the centroid of the IGV when the intensity is just half 
of the maximum, as expected. However, if there is attenuation, then the intensity peaks 
earlier and the half-maximum intensity occurs at a position shifted from the centroid. By 
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comparing the observed variation with that calculated from the model, it is possible to 
accurately determine the surface position—that is, the translator reading, T—when the 
surface is at the reference point to better than ±25 µm, and this provides a useful “origin” 
for translator readings. The reading is set to zero in Figure 6.40. 

When scanning the surface through the IGV, the position recorded by the translator 
must be accurately related to the effective centroid of the sampled gauge volume (SGV) 
representative of the material from which neutrons are  

 

FIGURE 6.40 Comparison between 
the variation in measured integrated 
intensity for the 110 reflection at 
=90°, when scanning a steel surface, in 
the reflection configuration, into an 
instrumental gauge volume (IGV) 
defined by 2 mm incoming and 
outgoing apertures, and the calculated 
response for various linear attenuation 
coefficients, µa. For steel, µa=0.12 
mm−1, but the best fit is achieved for 
µa=0.14 mm−1. The translator reading, 
T, is zero when the surface is at the 
reference point at the center of the 
IGV. The intensity in the regions I, II, 
and III is described by the relations 
given in Equations (A.2.2). 
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diffracted. As described in Sections 3.6.1 and 3.6.2, this is the weighted centroid 
calculated by taking into account both the fraction of the IGV occupied by scattering 
material, and the point-to-point variation in intensity of the diffracted signal over the 
SGV that account for attenuation. It is the effective position in the sample at which the 
average strain is measured. The situation is illustrated in Figure 3.24, and an example of 
the way the centroid varies with translator position appears in in Figure 3.25. 

Having located the effective position of strain measurement relative to the surface as 
given by the translator position, it is then necessary to correct each measurement of angle 
or strain at this position for any anomalies resulting from the off-center of this centroid of 
the SGV from the reference point. From the details of the instrumental angular and 
wavelength spreads on a continuous source instrument, and from the geometry of the 
detectors on a pulsed source instrument, the anomalous angular or flight time shifts 
arising from a partially filled IGV can be corrected for by simulation calculations, as 
described in Section 3.6.4. 

An example showing measured and calculated spurious strain as a stress-free sample 
of Al or Fe scanned into the IGV in the reflection configuration is shown in Figure 6.41. 
There is good agreement between the modeled and observed spurious strains, so these 
may be subtracted from the strains measured in a sample with surface stresses to give the 
true surface strain. An accurate knowledge of the position of the surface relative to the 
center of the IGV, determined from the experimental intensity variation as described  

 

FIGURE 6.41 The observed spurious 
surface strains (points) determined 
using a Rietveld refinement of many 
peaks measured on ENGIN at ISIS for 
strain-free steel and aluminum powder 
samples scanned into the ~2×2 mm2 
section of the instrumental gauge 
volume (IGV) in the reflection 
configuration. They are compared with 
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those calculated from a model for 
various linear attenuation coefficients, 
µa (lines). The value for aluminum is 
indistinguishable from the line for 
µa=0 mm−1. The abscissa is the 
distance of the effective centroid of the 
sampled gauge volume from the 
surface, |dCS| of Figure 3.24. This 
distance varies nonlinearly from 0 to 
√2 as the sample fills the IGV 
depending on the attenuation 
coefficient, as described for this size of 
gauge volume in Figure 3.25. 

above, is essential. Note that, even when the sample completely fills the IGV, for strong 
attenuation there will be a shift in position of the centroid of the SGV from the reference 
point at the center of the IGV as seen in Figure 3.25, with spurious strain given by the 
short broken line in Figure 6.41. It can be shown that for ENGIN at the ISIS pulsed 
source, the positional shifts are relatively small, at least until less than half the IGV is 
filled. Even in the extreme case when the IGV is less than 10% filled the spurious strain 
is less than 600 µε. This is partly because the radial collimator on ENGIN closely defines 
the neutron trajectories. However, at reactor source instruments using 2 mm apertures 
with an otherwise unobstructed PSD, the spurious strains can be as large as 10,000 µε. As 
discussed in Section 3.6.4, there are a number of strategies to correct for, or to suppress, 
the effects of spurious strains. 

In the following sections, practical aspects of near-surface stress measurement using 
neutron diffraction are described by considering a series of examples with stress fields 
extending to increasing depths in the sample. 

6.5.3 Examples of Measurement of Stress Near Surfaces 

6.5.3.1 Machining Stresses 

In many cases, machining and grinding stresses have a detrimental effect on component 
life. Normally, machining stresses extend only 100 to 200 µm below the surface. Such a 
shallow range presents significant technical difficulties for accurate measurement by 
neutron diffraction. Nevertheless, in  
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FIGURE 6.42 In-plane stress 
component parallel to the grinding 
direction in a ground EN9 steel plate 
measured by neutron diffraction using 
the vertical Z-scanning method and a 
Rietveld fit on time-of-flight data from 
ENGIN at ISIS, and by Cr x-ray 
diffraction with layer removal using 
the 211 reflection [87]. 

cases where a nondestructive method is required, it is possible to map the depth profile 
reliably. A good example shown in Figure 6.42 is the work by Balart et al. [87] who 
measured the tensile stresses arising from the grinding of EN9, a plain medium C steel. 
They used the Z-scan method, as described in Section 3.6.4, which is not sensitive to 
geometric shifts. Strain-free lattice spacing was measured at a depth of 4 mm. If one 
assumes that the out-of-plane stress is zero, the in-plane stresses can be calculated simply 
from the in-plane strains. 

6.5.3.2 Shot-Peening 

Shot-peening, conventionally carried out by repeatedly impacting the surface with a 
stream of small shot, introduces a compressive residual strain and stress in the surface 
region of components. It is usually carried out to improve their resistance to fatigue, but 
can also be used to introduce stresses that form the shape of components. Measurement 
of the resulting residual stress distribution is desirable both to monitor the shot peening 
procedure and to predict the fatigue life of components. One example of such a study is 
that carried out on the α-β titanium alloy IMI-318, Ti-6Al-4V, which is widely used in 
gas turbine engines. This alloy shows a high neutron attenuation, twice that of iron, a 
substantial incoherent scattering component that increases the general background, and a 
low diffraction intensity, one quarter that of iron, which makes it a difficult material for 
neutron diffraction strain measurement, as mentioned in Section 2.3.6. 
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A 23×20×50 mm3 IMI 318 (TI-6A1–4V) alloy plate was shot-peened using 230R shot 
at an intensity of 20 Almen. The Almen is a measure of shotpeening intensity. For the 
measurements made using the ENGIN instrument at ISIS, it was assumed that a biaxial 
in-plane stress exists in directions in the shot-peened surface. The strain component 
normal to the surface was  

 

FIGURE 6.43 The in-plane stress 
component, measured by neutron 
diffraction at a pulsed source, near the 
shot-peened surface of a Ti-6Al-4V 
alloy sample. The in-plane strains have 
been measured by the z-scan method, 
while the out-of-plane strain has been 
measured in reflection and corrected 
for spurious strain. The results are 
compared with measurements made 
using the reflection of x-rays, 
removing layers to obtain data at depth 
[88]. 

measured in reflection geometry by conventionally translating the sample horizontally 
through the IGV [88]. The low diffraction intensity of this alloy and relatively high 
attenuation results in strong geometric anomalous shifts, and the steep strain gradient 
necessitated accurate positioning to avoid errors. The Z-scan method described in Section 
3.6.4 was then used to measure the in-plane strains, using an IGV of 1.4×20×0.5 mm3. 
The strain-free reference lattice parameter was inferred from a point 2 mm below the 
shotpeened surface. These strain data were combined to give the stress distribution shown 
in Figure 6.43, plotted against the position most representative of measurement, that is, 
the distance of the effective centroid of the SGV from the surface. The stress variation is 
compared with results of destructive x-ray measurements made using layer removal. The 
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two distributions, measured by neutron and x-ray diffraction, agree well. Note that in this 
case the in-plane and out-of-plane strains were combined to calculate the in-plane stress 
and the neutron measurements provide data up to 100 µm from the surface. The fact that 
when combining the three components of the strain, the out-of plane stresses were found 
to be small at all depths suggests that the correction for the geometric shifts in the out-of-
plane strain is appropriate. Another example of the measurement of shot-peening stresses 
determined in this way for IN 718 is given in Figure 3.34. 

6.5.3.3 Carburized Layers 

Carburizing is often used to surface harden steels, with case depths varying depending on 
the application, but 0.4 mm is typical. It is achieved by the diffusion of carbon into the 
steel from a carbon-rich environment, by gas carburizing using a gas rich in CO, or pack 
carburizing using charcoal or coke with alkali carbonates bound together by oil or tar. 
Carburizing presents  

 

FIGURE 6.44 (a) The variation in 
carbon content with depth through a 
carburized zone [89]. (b) The 
compositionally induced spurious 
lattice strain as a function of dissolved 
C content (%) in C steel. If 
unaccounted for, this change in lattice 
parameter would be interpreted as 
elastic strain. 
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FIGURE 6.45 Variation of the in-
plane component of residual stress 
through a carburized layer on a steel 
disk as measured by neutron 
diffraction nondestructively, and by x-
ray diffraction with layer removal [90]. 

a challenge to neutron diffraction measurement of the residual strains since it changes the 
chemical composition of the material near the surface. An example of such variation is 
shown in Figure 6.44a. Furthermore, the lattice parameter of steel is particularly sensitive 
to changes in C concentration, as shown in Figure 6.44b. Carburizing can also introduce 
Type II strains and stresses [89]. Great care therefore needs to be exercised in analyzing 
measured strain data from carburized layers. 

An example is the measurement of strain in a carburized layer on a steel disk [90]. In 
this case, in order to interpret the results of neutron measurements of strain in terms of 
stress, two reasonable assumptions were made: that the stress normal to the surface was 
zero at the surface, and that the gradient of the stress normal to the surface was also zero. 
By adopting these assumptions, the problem of finding the strain-free lattice parameter of 
the steel in the carburized layer as a function of depth was circumvented. Figure 6.45 
shows the residual stress profile thus determined by neutron diffraction, and this is 
compared with that found from x-ray diffraction using the layer removal technique. The 
latter profile was obtained by electropolishing the surface, and subsequently correcting 
for layer removal. In the region very close to the surface, 0 to 50 µm, the x-ray 
measurements have a unique advantage, but at greater depths the neutron results are more 
informative as well as being nondestructive. Indeed, in this case the x-ray results failed to 
show tensile stress at the depth that must be present in order to balance the compression 
near the surface. This failure was partly because of compounded errors in the necessary 
corrections for layer removal with increasing depth. 
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6.5.4 Future Directions for Neutron Diffraction Measurement of 
Stress Near Surfaces 

Neutron diffraction techniques have special advantages for strain and stress measurement 
near surfaces when: 

• Surface stresses or their effects extend beyond 1 mm into the material, and the depth 
profile is required to these depths, which are often up to 15 to 20 mm. 

• Nondestructive information is required, especially on complex/large components. In 
these cases, the geometric restraints of working at high x-ray energies preclude 
synchrotron x-ray diffraction. 

• In situ behavior is required such as the behavior of coatings in high temperature 
environments corresponding to in-service conditions, and the effect of fatigue cycling. 

In each of these cases, improved flux, precise IGV definition, and better positional 
accuracy will extend the power of the technique. All of these will be addressed by the 
next generation of neutron instrumentation. The increasing understanding of corrections 
for near-surface anomalous effects will lead to more reliable data interpretation. 

Standard x-ray diffraction will continue to be the method of choice for determining 
near-surface stress at depths less than 50 to 100 µm, and its portable capabilities make it 
especially attractive. Layer removal can extend the depths it can probe, albeit partially 
destructively and with necessary data corrections. The use of synchrotron x-rays with 
much smaller gauge volumes will increasingly challenge that of neutrons for the cases 
where it is most applicable, although the full advantage of high x-ray energies in terms of 
increased penetration distance is not carried over into near-surface penetration. This can 
be understood if the maximum feasible path lengths calculated on the basis of a 
maximum acceptable count time or minimum acceptable  

 

FIGURE 6.46 The approximate 
maximum feasible depth of 
measurement in several materials for 
neutron and synchrotron x-ray 
diffraction in the reflection geometry 
configuration [91]. 
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peak to background ratio in Section 4.4.2 are used to calculate penetration distances. The 
maximum feasible path lengths for thermal neutrons were summarized in Table 4.2. In 
Figure 6.46, this approach has been used to calculate maximum penetration distances for 
neutrons and high-energy synchrotron x-rays in reflection geometry [91]. The neutron 
estimate is for the L3 instrument at Chalk River, with an SGV of area 40 mm2 in the 
scattering plane and a count time of 1 h. The three x-ray estimates are for instruments at 
the ESRF with an SGV of 1 mm3 and peak to a background ratio of unity. Note that upon 
increasing the x-ray energy from 40 keV typical of BM16 (assuming ) to 
50 keV typical of ID11 (assuming ), and to 60 keV typical of ID31 (assuming 

little advantage in penetration depth is achieved due to the low scattering angles. 
Indeed, angles as low as to 10° are typically used on ID15 at 150 keV. In this 
respect, the arrangement characteristic of neutron measurements is 
advantageous. 

While hole drilling will remain the standard technique for in situ measurement on 
large industrial component samples, the recent development of magnetic techniques that 
are portable and nondestructive in their examination of magnetic materials, will enable 
them to play an increasingly important role [92]. 

6.6 In Situ and Through-Process or Life Studies 

One area in which neutron diffraction is playing an increasingly important role is in 
following the evolution of residual or applied stress either through successive 
manufacturing stages, or as a function of in-service life. This is because the large working 
area available at dedicated neutron strain instruments, combined with the penetrating 
power of thermal neutrons, make neutron diffraction one of the few tools that can probe 
real components to provide in-depth nondestructive stress measurement in three 
dimensions.  

 

FIGURE 6.47 A schematic of the 
machining sequence required to 
machine the bling component shown in 
Figure 6.35. The hoop-wound 
composite region is shown in gray. 
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Stage IV corresponds to the breaking 
of contiguity in the blade region. 

The high penetration can also be utilized for furnaces and stress rigs to simulate 
environmental conditions. 

6.6.1 Manufacturing Process Studies 

An example of a manufacturing study is provided by the progressive machining of an 
integrally bladed ring, or bling, of the type shown in Figure 6.35 [70]. This was made by 
a proprietary route from Ti-6Al-4V-coated SiC fibers, placed within Ti-6Al-4V cladding. 
The approximately 250-mm diameter prototype ring comprised a hoop of continuous SiC 
fiber-reinforced Ti-6A1–4V composite embedded in monolithic Ti-6Al-4V. It was 
consolidated by hot isostatic pressing (HIP) at a temperature above 1173 K. The ring 
geometry after consolidation, Stage I, and subsequent machining, Stages II, III and IV, 
are shown schematically in Figure 6.47. The microstructure of the composite reinforced 
region is shown in Figure 6.35. The overall fiber fractions are approximately 1.5%, 3%, 
12%, and 24% through Stage I to IV, respectively. Since large amounts of monolithic 
material were removed in machining to Stage II, a significant change in the residual 
stress distribution may be expected. Separate samples of coated fibers, uncoated fibers, 
and forged Ti-6Al-4V from parts of the cladding removed after Stage II, were used to 
provide stress-free reference lattice parameters. 

The neutron diffraction measurements were undertaken using the ENGIN instrument 
at ISIS. Diffraction patterns ranging over lattice spacings from 0.5 to 3.0 Å were 
collected at each subsurface measurement location, from which the average lattice 
parameters for each phase, Ti-Al-4V and SiC, were determined by Rietveld refinement. 
The residual elastic strain, ε, in the titanium alloy phase was calculated as described in 
Section 4.5 using the equation  

 (6.14) 

 

FIGURE 6.48 The measured axial 
strain components with depth in Stage 
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I (full symbols), compared with those 
calculated from a finite element model 
(open symbols). The inset shows the 
positions of measurement [70]. 

where a and c are the measured average hexagonal lattice parameters, and a0 and c0, the 
stress-free lattice parameters. For reasons of texture the strain in the SiC phase was 
calculated only from the lattice parameters a and a0. The principal strains were assumed 
to be in the radial, axial and hoop directions with respect to the ring axis. In interpreting 
the measured strains, the stiffnesses of matrix and reinforcement, around 115 and 450 
GPa, respectively, must be kept in mind. 

On cooling from the HIP temperature, large compressive thermal misfit hoop strains 
are set up in the fibers because their volume fraction is low, while lower balancing tensile 
hoop strains are introduced into the matrix. As discussed in Section 2.3.6, Ti-6Al-4V 
alloy is a difficult material for neutron diffraction experiments due to the large incoherent 
scattering of Ti and V. Nevertheless, it was possible to probe the fiber-reinforced region 
in Stage I, as well as to investigate the stress field within the peripheral cladding. 
Excellent agreement with a finite element model was achieved throughout the cladding as 
shown in Figure 6.48. As expected, strain magnitudes within the cladding were small, as 
the locations measured were remote from the reinforcement and the overall reinforcement 
fraction at this stage was low. 

On machining to Stage II, the ring cross-sectional area was reduced by more than 50%. 
Extensive residual strain redistribution was expected in Stages III and IV, especially in 
the region close to the inner diameter of the ring where the volume of the cladding was 
drastically reduced. While FE calculations of strain were in good agreement with neutron 
diffraction measurements in the main region of cladding, poor agreement was found in 
the 1 mm walls due to the difficulty of completely filling the IGV. Synchrotron radiation 
was used to determine the residual strains in this region. Only a small number of the 
locations that were measured in Stage I remain at Stage IV. In Figure 6.49, the variation 
in strain in the reinforced region is shown across the four stages. Note that because the 
relative volume fraction of the fibers increases through machining, the thermal residual 
strains are increasingly accommodated in the matrix and cladding through the progressive 
stages, causing the matrix hoop strain to rise and the fiber strain to fall. Overall, it would 
appear that the finite element model underestimates the fiber and matrix stressing in the 
composite region. 
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FIGURE 6.49 Neutron diffraction 
(full symbols) and synchrotron x-ray 
diffraction (open symbols) 
measurements of the evolution of hoop 
strain components of the matrix and 
fibers in the composite across the four 
stages, compared with finite element 
predictions (lines). 

6.6.2 Heat Treatment 

It is often the case that manufacturing processes generate unacceptable residual stresses 
in a component that must be relieved prior to putting it into service. Welding, for 
example, often introduces large residual stresses, as discussed in Section 6.2. Neutron 
diffraction can be an invaluable tool in the development of stress relief procedures for 
welded joints. A good example where the ability to follow the evolution of weld residual 
stresses through heat treatment has led to better heat treatment procedures, is for the 
inertia welding of new-generation RR1000 Ni-base γ/γ' superalloys [93]. These alloys 
achieve their high-temperature strength primarily by having a very high γ' content. 
Unfortunately, this makes them difficult to weld by traditional fusion welding techniques, 
so friction-based inertia welding was used to join two 50 mm diameter tubes made from 
this alloy. As a result of the higher-temperature capability of these alloys relative to that 
of existing alloys, new postweld heat treatments needed to be developed. Neutron 
diffraction is the only tool able to measure the residual strain components along the axial, 
radial, and hoop directions across the 8 mm tube thickness of a weldment between Ni 
superalloy tubes [27]. As is evident from Figure 6.50a, the microstructure varies 
markedly across the weld line. In the parent, there is a large fraction of secondary (~200 
nm) and tertiary (~20 nm) ordered γ' precipitates. These have been dissolved at the 
welding temperatures such that fine (~8 nm) tertiary γ' has reprecipitated. As a result, the 
overall γ' content, evaluated in terms of the strength of the superlattice (001) γ' reflection 
relative to the (002) reflection for which both γ and γ' contribute, varies significantly in 
the as-welded condition within 2 mm of the weld, as shown  
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FIGURE 6.50 (a) Variation of stress-
free lattice parameter, normalized by 
that for the parent material, with axial 
distance from the weld line in a Ni-
based superalloy inertia friction 
weldment. The points are from 
laboratory x-ray measurements (full 
circles), and from calculations based 
on imposing stress balance (squares) 
on the axial stress component 
measured in the as-welded condition 
[27]. Scanning electron microscope 
images representative of the weld line 
and parent material microstructures are 
shown in inset, (b) Variation in γ' 
content with distance from the weld 
line, given in terms of the relative 
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strength of the γ' (100) superlattice 
reflection, in the as-welded condition 
and after two post-weld heat treatments 
[93]. 

in Figure 6.50b. These data were obtained using synchrotron x-rays at ESRF, Grenoble. 
As a consequence, one might expect that the stress-free lattice parameter would vary as a 
function of position across the weld for the reasons of compositional changes discussed 
in Sections 4.6.2 and 6.2.3. These data were obtained using synchrotron x-rays at ESRF, 
Grenoble. The actual variation with position of the stress-free lattice spacing for the as-
welded sample was determined by x-ray methods as described in Section 4.6.3. As is 
clear from Figure 6.50a, a marked variation, equivalent to 1000×10−6 strain, was 
observed with distance from the weld, with the largest lattice spacing on the weld line. 
On the other hand, little variation was found across the tube radius [27]. As a result, 
stress balance applied to the results of the neutron diffraction measurements could also be 
used to infer the variation of stress-free lattice parameter, as described in Section 4.6.3. 
Figure 6.50a shows that the two methods are equivalent in this case, the latter being 
nondestructive and thus easier to apply. The application of stress balance  

 

FIGURE 6.51 Hoop stress 
components in MPa mapped across the 
tube cross-section of the Ni superalloy 
inertia weldment for (a) the as-inertia 
welded tube, (b) after conventional 
post-weld heat treatment, (c) after 
post-weld heat treatment at +50°C 
above the conventional treatment 
temperature. The strains were 
determined from Rietveld refinements 
of the tof neutron diffraction spectra 
using the axially variant stress-free 
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lattice parameter from Figure 6.50a in 
(a), and a constant value in (b) and (c) 
[27]. 

revealed that for the postweld heat-treated components, there was no variation in lattice 
parameters. This is consistent with the observation that due to the uniform exposure to 
elevated temperatures, the γ' content becomes more uniform across the weld line for the 
PWHT tubes. It is self-evident that failure to account for changes in stress-free lattice 
spacing would lead to incorrect measurement of residual stress. 

The resulting residual stress maps obtained from the neutron diffraction measurements 
are shown in Figure 6.51. The yield stress of the material is ~1050 MPa, and the hoop 
residual stresses near the weld line caused by inertia welding, especially toward the inner 
diameter, are very large. Not unexpectedly, the residual stresses in the sample after the 
conventional heat treatment (PWHT1) for Ni-base superalloys indicate that this treatment 
is not sufficient to relax the residual stresses to safe values. However, a heat treatment of 
50°C above the conventional temperature (PWHT2) is sufficient to relax the stresses to 
within design limits, while retaining acceptable weld microstructures. 

6.6.3 Service Life Studies 

There are many instances where it is advantageous to be able to follow the development 
of residual stresses as a function of in-service life. One such instance may be when 
examining the extent to which residual stresses deliberately introduced to extend life have 
faded, or quantifying the extent to which damaging residual stresses have been 
introduced by the in-service  

 

FIGURE 6.52 Longitudinal residual 
stress component measured by neutron 
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diffraction down the centerline of a 10 
mm thick slice cut longitudinally from 
(a) a new rail (open circles), and (b) a 
used rail (solid circles) [95]. The 
superimposed contour maps of 
longitudinal stress are from more 
recent contour method measurements 
on a similar set of new and used 
British rails. The white contour 
represents zero stress [96]. 

history. Fatigue, fretting or rolling contact fatigue, thermal cycling, and creep fatigue are 
just some of the loading types experienced in service that can have a strong effect on 
residual stresses. 

One of the earliest uses of neutron diffraction to examine the extent to which residual 
stresses change as a function of life was the study of residual stress field in rails [94,95]. 
Residual stresses are generated in the rail during manufacture due to differential cooling 
after hot rolling, and these are modified by roller straightening prior to placement. The 
longitudinal residual stress component in the head is important from the point of view of 
fatigue cracking due to railhead contact with the train wheels. The variation in 
longitudinal stress component has been measured down the center line of a 10 mm thick 
slice taken from a new rail, using the D20 instrument at the Institut Laue-Langevin. The 
results are shown as the points in Figure 6.52a, together with those measured on a 
corresponding slice taken from a used rail in Figure 6.52b. The rails have tensile 
longitudinal stresses in the head and foot balanced by compressive stresses in the web. 
Consistent with expectations, the used rail has a very similar profile except near the 
contact face on the head, where the rolling contact has plastically deformed the near-
surface region, setting up a compressive stress that is balanced by an increased level of 
tension in the center of the railhead. More recent measurements using the contour method 
(Section 6.2.2) have been made on similar rails nearly 15 years after the original 
investigation, and the results are plotted as contour diagrams (Figures 6.52a and 6.52b). 
There is general good agreement between the results of the two sets of measurements, 
both in terms of compressive and tensile regions and stress magnitudes, which is 
reassuring. With the new dedicated high-intensity instruments such as ENGIN-X at ISIS, 
Rutherford Appleton Laboratory, UK, and SMARTS at Los Alamos, USA, now 
available, it is now possible to map longitudinal stresses over much of the railhead of 
larger sections of rail, without needing to take thin slices. 
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7  
The Future 

This book has attempted to provide an introduction to the use of neutron diffraction for 
strain and stress measurement in samples of crystalline materials. It has emphasized the 
progress made over the past 20 years or so, and pointed to where the development and 
understanding of concepts is not complete. There are indeed many important areas of 
future work and development for both the experimentalist and theoretician alike. In 
particular, a thorough understanding of intergranular stresses in the plastic regime is 
required, as is understanding of many aspects of the details of stress in multiphase 
materials, understanding of the contributions to the anomalous effects due to partially 
filled instrumental gauge volumes, and measurement of strain-free lattice constants. 
These areas fall between the traditional lines of the physicist and materials scientist, and 
require an important input from the engineer, both as to his/her requirements and his/her 
ultimate use of the technique in order to improve the manufacture and life expectancy of 
industrial components. 

The applications described in previous chapters were chosen to illustrate the 
capabilities of the neutron strain mapping technique, and the precautions that must be 
taken in various circumstances likely to ensure that accurate and reliable measurements 
and interpretation are made. Guides to future development were given for a number of 
application areas. There is little doubt that in forthcoming years the number and breadth 
of studies are set to increase sharply. 

Two recent developments in particular point to further growth in the application of 
neutron strain mapping to materials development and engineering design. 

• The development of a new generation of both pulsed and constantflux strain mapping 
instruments. These will see an increase in the size and weight of samples that can be 
studied in more complex environments, more accurate sample location procedures 
using laser positioning systems or co-ordinate measurement machines, and better 
gauge definition for improved measurement accuracy. Software developments will 
accelerate analysis procedures and simplify instrument operation and allow virtual 
experimentation to steer data acquisition strategies. Furthermore, they promise better 
strain resolution and reduced data acquisition times relative to existing instruments. 
These aspects will no doubt benefit from parallel development of synchrotron x-ray 
techniques, where instrument positioning times are often so much longer than actual 
counting times that it is imperative to reduce the former. Engineering applications 
require that improving the cost-effectiveness of measurements be of a high priority. 

• The definition of measurement standards for the repeatable and accurate measurement 
of strain by neutron diffraction. This will accelerate the uptake of neutron strain 
measurements into engineering usage. 



The new generation of strain measurement instruments will open up new avenues of 
research and development. Most notably, through submillimeter spatial resolution, faster, 
more economic area scanning, and the capability to study more realistic engineering 
conditions. Many phenomena occur at time scales too short to study using today’s 
instruments, such as phase transformations, thermal and mechanical fatigue effects, 
production processes, and so on. With accredited standards for measurement, area 
mapping of strain and stress promises to play an increasing role in the validation and 
definition of finite element models of the behavior of engineering components and of 
engineering processes, such as joining, milling, and sintering, among others. Another 
field that as yet has received little attention but will no doubt be important in the future, is 
the extension to studies of physical phenomena coupled to stress, such as in the behavior 
of ferroelectrics, piezo-electrics, and shape memory materials. Furthermore, increased 
interaction with other complementary measurement techniques promises to provide extra 
insight into, for example, simultaneous measurement of texture and stress as a function of 
position, and of imaging stress (by diffraction) and structure (by tomography).  
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Symbols and Abbreviations 

The following table provides a summary of the symbols and abbreviations used in this 
book. The section in which each first appears is given. Vectors are in boldface type, and 
tensors and matrices in double-underlined boldface. Symbols for variables only used once 
and defined in the text are not included here.  

Symbol Meaning Section
α1 source-monochromator 

collimation angle 
3.2.1 

α2 monochromator-sample 
collimation angle 

3.2.1 

α3 sample-detector collimation 
angle 

3.2.1 

α, β, γ angles between unit cell axes 2.3.1 
γ anisotropy strain parameter 5.6.6 
γel elastic anisotropy parameter 5.6.6 
γpl plastic anisotropy parameter 5.6.6 
γij ij component engineering 

shear strain 
5.1.1 

δ(x) Dirac delta function 2.3.3 
∆C(xi) uncertainty in count C(xi) at 

point xi 
4.3.2 

∆u(x0) uncertainty in measurement of 
x0 

4.4.1 

∆x increment in xi in profile scan 4.4.1 
ε(l, m, n) continuum strain component 

in direction with cosines l, m, 
n 

5.1.1 

 continuum strain tensor 5.1.1 

 ij component of lattice strain 
tensor for hkl reflection 

1.4.2, 
5.1.2 

 plastic strain in each grain of 
EPSC model 

5.6.2 

 deviatory strain tensor 
component 

5.1.1 

 principal strain component 5.1.1 
ηf fraction of epithermal flux 3.1.1 
ηM mosaic spread of the 

monochromator 
3.2.1 

θc critical angle for neutron total 
external reflection 

3.1.1 

θD Debye temperature 2.5 



 Bragg angle (from sample) 1.2, 2.3.2
θM Bragg angle at 

monochromator 
3.2.1 

Symbol Meaning Section
 scattering angle 2.3.2 

λ neutron wavelength 1.2, 2.1 
λT neutron wavelength 

corresponding to energy at 
peak of flux distribution as 
function of energy 

3.1.1, 
A.1.3 

λc wavelength below which there 
is low transmission down a 
guide tube 

3.1.1 

λhkl wavelength corresponding to 
hkl reflection in tof pattern 

3.2.2 

 wavelength corresponding to 
Bragg edge of hkl planes 

2.3.3 

µ continuum shear modulus 5.1.1 
µX bulk shear modulus calculated 

from theory X=V, R, or K 
5.4 

µa linear attenuation coefficient 2.4 
µε unit of strain=10−6 

(pronounced microstrain) 
4.6.2 

ν wave frequency 2.1 
ν continuum Poisson’s ratio 5.1.1 
νχ bulk Poisson’s ratio calculated 

from theory X=V, R, or K 
5.4 

νhkl plane-specific Poisson’s ratio 5.1.2 

 Poisson’s ratio of 
polycrystalline hkl reflection 
calculated from theory X=V, 
R, K 

5.5 

ρj density of element j 2.3.7 
ρn number density of atoms 3.1.1 
σcoh atomic coherent scattering 

cross-section 
2.2.1 

σincoh atomic incoherent scattering 
cross-section 

2.2.1 

 atomic absorption cross-
section for neutrons of 
wavelength A, 

2.2.1 

 principal stress component 5.1.1 

 
deviatory stress tensor 
component 

5.1.1 

 mean Type II stress for phase 
i (excluding applied 
macrostress) 

1.4.2 
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 average, or total, stress for 
phase i (including 
macrostress) 

1.4.2 

 continuum stress tensor 1.4.1, 
5.1.1 

 Type i stress tensor, i=I, II, III 1.4.2 

 macrostress (Type I stress) 
tensor 

6.3.3 

 stress tensor from hkl lattice 
planes 

1.4.2 

σA uniaxial applied stress 5.5.1 
σ0.2 0.2% macroscopic yield stress 5.6.4 
σ atomic total scattering cross 

section 
2.2.1 

dσ/dΩ. differential atomic scattering 
cross-section 

2.2.1 

Σcoh macroscopic coherent 
scattering cross-section per 
unit volume 

2.3.7 

Symbol Meaning Section
Σincoh macroscopic incoherent 

scattering cross-section per 
unit volume 

2.3.7 

Σabs macroscopic absorption cross-
section per unit volume 

2.3.7 

dΣ/dσ macroscopic differential 
scattering cross-section 

2.2.1 

τi critical resolved shear stress 5.6.2 
τij shear stress component 5.1.1 

 scattering angle (from sample) 2.3.2 
 azimuthal angle between 

diffraction plane normal and 
the × in-plane principal axis 

5.1.3 

 monochromator scattering 
angle 

3.2.2 

Debye function 2.6 
Φ0 incident neutron flux 2.4 
Φ1 flux after path length l 2.4 
Φ(x) flux distribution as function of 

x=v, E, or λ 
3.1.1, 
A.1.2 

ΦF total flux in neutron beam A.1.2 
χ2 goodness-of-fit parameter 4.3.2 
ψ polar angle between 

diffraction plane normal and 
plate normal 

5.1.3 

ψ* point of invariance 4.6.3 
Ω sample rotation axis normal to 3.6.3 
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scattering plane 
dΩ solid angle 2.2.1 
Ω crystallite, or grain, identity 5.4.2 

 angle-dependent absorption 
factor 

2.3.5 

Ahkl orientation dependency of 
elastic anisotropy 

5.3.1 

A, B, C reciprocal lattice vectors 2.3.3 
aj atomic fraction of atom j 2.3.6 
a, b, c unit cell parameters also 

termed lattice constants or 
parameters 

2.3.1 

a, b, c lattice vectors 2.3.1 
 relative abundance of isotope 

i 
2.2.1 

a0, b0, c0 strain-free lattice parameters 4.6.1 
 average nuclear scattering 

length 
2.2.1 

B0 background count 4.4.1 
B0 background count rate 4.4.2 
c speed of light in vacuo 

(2.9979×108 m/s) 
2.1 

C(xi) number of counts recorded for 
diffraction peak at point xi 

4.3.2 

 stiffness tensor 5.1.1 
Cijkl component of stiffness tensor 5.1.1 
Cmn component of stiffness in 

contracted matrix notation 
5.3 

Symbol Meaning Section
dhkl lattice spacing for hkl planes 1.2, 

2.3.1 

 strain-free hkl lattice spacing 1.2, 
3.2.1 

∆d/d lattice strain; resolution 3.2.2, 
3.4.1 

dCS depth of SGV centroid from 
sample surface 

3.6.2 

dCR distance from reference point 
to centroid of SGV 

3.6.2 

dSR distance of reference point 
from sample surface 

3.6.2 

E continuum Young’s modulus 5.1.1 
Ex bulk Young’s modulus 

calculated from theory X=V, 
R, or K 

5.4 

Ehkl plane-specific Young’s 
modulus 

5.1.2 

Symbols and abbreviations     372



 Young’s modulus for 
polycrystalline hkl reflection 
calculated from theory X=V, 
R, or K 

5.5 

E neutron energy 2.1 
fi volume fraction of composite 

phase i 
5.1.3 

f volume fraction of reinforcing 
phase in two-phase 
composite. 

6.3.1 

F(hkl) structure factor 2.3.3 
F(xi) theory (fitted) value of 

diffraction peak profile at 
point xi, 

4.3.1 

Ghkl reciprocal lattice vector 2.3.3, 
3.2.1 

h Planck’s constant 
(6.6261×10−34 Js) 

2.1 

 h/2π (1.0546 ×10–34 JS) 2.1 
hd detector height 2.3.5 
hγ hardening parameter 5.6.2 
hkl Miller indices 2.3.1 
H0 theory (fitted) value of peak 

height 
4.3.1 

H0 rate of acquisition of peak 
height 

4.4.2 

IC total number of signal counts 
in measured peak 

4.4.1 

IC measured peak summed count 
rate 

4.4.2 

I theory (fitted) integrated, 
diffraction peak intensity 

4.3.1 

I(t) intensity profile on a tof 
instrument 

3.2.2 

j multiplicity of crystal plane 2.3.4 
ki incident neutron wave vector 2.3 
kf scattered neutron wave vector 2.3 
kB Boltzmann’s constant 

(1.3807×10−23 J/K) 
3.1.1 

Kχ bulk modulus calculated from 
theory X=V, R, or K 

5.4 

K stress intensity factor   
∆K stress intensity factor range 1.5.2 
Kmin, 
Kmax 

minimum and maximum 
stress-intensity factor 

1.5.2 

Symbol Meaning Section
lµ 1/e attenuation length, or 2.4 
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penetration depth 
l neutron path length through 

sample 
2.4 

lP interparticle spacing in 
composites 

6.3.2 

l lattice translation vector 2.3.1 
l, m, n direction cosines 5.1.1 
l1j j=1,2,3 direction cosines 

between direction 1 and 
crystal axes 

5.3.1 

Li moderator-sample distance 3.2.2 
Lf sample-detector distance 2.3.5, 

3.2.2 
L total neutron flight path 2.3.2 

 characteristic size of 
misfitting region over which 
the residual stress Type j=I, II, 
III varies rapidly 

1.4 

 characteristic distance over 
which Type j=I, II, II residual 
stress self equilibrates 

1.4 

mn neutron rest mass 
(1.6749×10−27kg) 

2.1 

M atomic mass 2.5 
n number of points 4.3.2 
N number of planes 2.3.2 
NA Avagadro’s number 

(6.0221×1023 mole−1). 
2.3.7 

Nc number of unit cells in crystal. 2.3.2 
Na number of atoms per unit 

volume 
2.2.1 

Nf number of cycles to failure 1.5.2 

 unit vector normal to area A 1.4.1 
nhkl number of neutrons scattered 

by hkl planes per unit of time 
falling on detector 

2.3.5 

n(λ) neutron refractive index of 
surface material 

3.1.1 

nd(v) neutron velocity distribution 
function 

A2.1 

nD number of neutrons/unit 
volume in source 

A2.1 

P neutron momentum 2.1 
P1, P2, 
P3 

sample coordinate axes 5.1.3 

Q scattering vector 2.3 
ru position of atom in basis unit 2.3.3 
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cell 
Ri position of atom i in real space 2.3.3 
S1, S2 x-ray or diffraction elastic 

constants 
5.1.3 

 compliance tensor 5.1.1 
Sijkl component of compliance 

tensor 
5.1.1 

 component of transformed 
compliance tensor 

5.3.1 

Symbol Meaning Section
Smn component of compliance in 

contracted matrix notation 
5.3 

 Eshelby tensor 5.6.2 
tc thickness of perfect crystal 2.3.2 
ts thickness of plate sample 2.3.5 
tM measurement time for n points 3.4.1, 

4.4.1 
t time of flight (tof) 2.3.2 
thkl time of flight corresponding to 

hkl peak in tof pattern 
3.2.2 

T temperature 3.1.1 
T sample translator position 3.6.2 
ux standard deviation of 

Gaussian function 
4.3.1 

<u2> mean square amplitude of 
vibrating atom 

2.5 

v0 volume of unit cell 2.3.3 
υ neutron velocity vector 2.1 
vT neutron velocity at peak of 

velocity distribution 
A.1.1 

 characteristic volume over 
which the Type j=I, II, III 
residual stresses self-
equilibrate 

1.4 

Vv sampled gauge volume 1.4.2, 
3.6.1 

Vg instrumental gauge volume 2.3.5, 
3.5.2 

V total volume of sample 1.4.1 
wj weight fraction of atom j 2.3.7 
Wj atomic weight of atom j 2.3.7 
e−2W(Q) Debye-Waller factor 2.5 
xi angle, or time, point on scan 

of peak profile 
4.3.1 

x, y, z coordinate axes, relative to 
sample 

5.1.1 

Z atomic number 2.2.2 
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Abbreviation Meaning Section
ALARA as low as reasonably 

achievable 
3.1.3 

CPFEM crystal plasticity finite 
element modeling 

5.6 

CVD controlled vapor 
deposition 

2.6.2 

DEC diffraction elastic 
constant 

5.1.2, 
5.1.3 

DSW diffracted-beam slit 
width 

3.2.1 

EBW electron beam weld 6.2.2 
EDM electrodischarge 

machining 
4.6.3 

EPSC elastoplastic self-
consistent 

5.6 

FE finite element 4.6.3 
Abbreviation Meaning Section
FoM figure of merit 3.4.1, 

4.4.2 
FSS Fourier strain 

spectrometer 
3.7.3 

FSW friction stir welding 6.2.4 
FWHM full-width half -

maximum 
3.4 

HAZ heat-affected zone 4.3.6.2 
HCF high-cycle fatigue 1.5.2 
HEM homogeneous effective 

medium 
5.4.2 

HFR high flux reactor 3.1.1 
HIP hot isostatic pressing 6.6.1 
HRPD high-resolution powder 

diffractometer 
3.4.2 

IGV instrumental gauge 
volume 

3.5.2 

ISW incident-beam slit 
width 

3.2.1 

LCF low-cycle fatigue 1.5.2 
LINAC linear accelerator 3.1.2 
LSND low stress, no distortion 6.2.5 
MMC metal matrix composite 1.3 
MTR materials testing reactor 3.1.1 
NGV nominal gauge volume 3.5.2 
NTP normal temperature and 

pressure 
2.1 

ODF orientation distribution 
function 

2.6.2 
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PDE positional 
discrimination effect 

3.6.4 

PG pyrolytic graphite 3.2.1 
PSD positional sensitive 

detector 
3.2.1 

PWHT post-weld heat 
treatment 

6.6.2 

QA quality assurance 4.7.1 
rms root mean square 5.7 
RTOF reverse time of flight 3.7.3 
SGV sampled gauge volume 3.6.1 
SNS spallation neutron 

source 
1.3 

TDS thermal diffuse 
scattering 

2.5 

TIG tungsten inert gas 4.6.3 
TMAZ thermomechanically 

affected zone 
6.2.4 

tof time of flight 3.2.2 
UTS ultimate tensile strength 1.5.2 
WE wavelength effect 3.6.4 
XEC x-ray elastic constant 5.1.3 
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Glossary 

The meanings of certain terms used in this book are not yet universally accepted. To 
avoid confusion, the definitions of such terms as used in this book are summarized here, 
along with the section in which each is first used (in parentheses following term). 

Shift (1.2) Difference between the measured Bragg scattering angle or diffraction 
angle θB, from the stressed sample, and that measured from the reference sample, or 
the corresponding difference in time of flight, wavelength, or lattice spacing. 

Sample (1.2.1) Test component under study for strain measurement by neutron 
diffraction. 

Engineering materials (1.2.1) Materials used in industrial plant or components. 
Lattice strain (1.2) Elastic strain measured by diffraction from defined lattice planes. 
Reference axis (3.5.1) Axis of instrument at the intersection of incident and scattered 

neutron beams, and about which the instrument components in these beams rotate. 
Reference point (3.5.1) Point on the reference axis that is at the center of the 

instrumental gauge volume, and to which the position of the sample may be referred. 
Nominal gauge volume (NGV) (3.5.2) Geometric instrumental gauge volume calculated 

from the aperture dimensions, assuming non-divergent beams. 
Instrumental gauge volume (IGV) (3.5.2) Effective measurement gauge volume, 

measured or calculated to include all divergent beams. Due to the penumbra the IGV 
is larger than the NGV. Conventionally, the IGV is defined in terms of a contour map 
of intensity contribution. 

Sampled gauge volume (SGV) (3.6.1) Part of the instrumental gauge volume from 
which a measurement of the sample diffraction peak is obtained. The SGV is the 
volume of sample over which the strain measurement is averaged. The measured strain 
is affected by partial filling of the IGV, wavelength distribution of incident neutrons, 
attenuation of neutrons within the sample, and texture gradient in the sample. 

Effective centroid of SGV (3.6.1 and 3.6.2) Calculated or modeled weighted average 
position in the SGV giving rise to the diffraction peak, including effects of 
wavelength, texture, and attenuation distribution. It is the most representative position 
of strain measurement in the sample. 

Surface effects (3.6.4) Used as a generic term for all possible errors introduced when 
measuring near surfaces, either in the value of strain measured or the location of 
measurement, or both. 

Anomalous shifts (3.6.4 and 4.2.2) Apparent shifts in angle, time of flight, and so on 
due to uncorrected geometric effects, such as those from partially filled gauge 
volumes, the effects of an incorrect reference value of d0, or contaminating Bragg 
edges. 

Wavelength effect (WE) (3.6.4) Contribution to an anomalous shift in diffraction angle 
(etc.) due to the variation in wavelength over the SGV, when a sample partially fills 



the IGV Even if the IGV is filled by the sample, a WE anomalous shift may occur due 
to attenuation effects. 

Positional discrimination effect (PDE) (3.6.4) Contribution to an anomalous shift in 
diffraction angle (etc.) due to the mean position of the diffracting grains in a sample, 
that is, the position of the centroid of the SGV relative to the instrument reference 
point, in a partially filled IGV. Even if the IGV is filled by the sample, a PDE may 
occur. 

Spurious strain (3.6.4) The apparent lattice strain that may be deduced from anomalous 
shifts, but which are not physically present. 

Spurious location (3.6.4) An incorrect position of measurement in the sample, which 
typically does not take into account the effects of partially filled IGV, wavelength, 
texture, or attenuation distribution. 

Pseudo strain (5.6.5) Used only for a residual strain that may be measured correctly, that 
is, after correction for spurious strains, but differs from the true macroscopic residual 
strain solely because the effect of intergranular strains has not been taken into account. 

Macroscopic plastic strain (5.6.5) Deviation from elastic linearity of the bulk 
macroscopic strain on loading. 

Intergranular strain (5.2) Elastic strain arising from misfits between grains. In effect, it 
is the difference in strain between the grain and the polycrystalline aggregate. 

Elastic anisotropy (4.1) Anisotropy in the linear lattice strain response of differently 
oriented crystals, or crystallites in a polycrystalline sample, to an applied load in the 
elastic regime due to anisotropic crystalline elastic properties. 

Plastic anisotropy (4.1) Anisotropy in the lattice response of differently oriented 
crystallites in a polycrystalline sample to an applied load in the plastic regime, due to 
effects of intergranular strains and the anisotropic nature of crystallite slip planes. 

Average (or total) stress (1.4.2 and 6.3.3) Stress averaged over the SGV as deduced 
from the average strain, as measured by diffraction from phase i. It is the sum of the 
macrostress and mean phase i stress. 

Mean phase stress (1.4.2 and 6.3.3) Mean stress in phase i over the SGV, 
excluding any macrostress. 

Economically feasible path length (4.4.2) Maximum total path length of incident and 
diffracted beams in a sample that will allow sufficient peak intensity to give a strain 
measurement to an accepted accuracy. It takes account of the scattering cross-section, 
background counts, and attenuation of the beam. 

Figure of merit (3.4.1 and 4.4.2) For an instrument, the inverse of the time to taken to 
measure a lattice spacing to a given accuracy. 
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Appendix 1  
Note on Reactor Flux Spectrum 

The distribution of thermalized neutron flux can be expressed in terms of the neutron 
velocity, energy, or wavelength. The form of the distribution is slightly different 
according to which form is chosen; the basic formulas given in this Appendix follow the 
approach of Lomer and Low [1]. 

A.1.1 Velocity Distribution 

The neutron velocity distribution nd(v) in equilibrium with a moderator at temperature T 
is given by the Maxwell-Boltzmann distribution. nd(v)dv is the number of neutrons with 
velocities between v and v+dv. 

 

(A.1.1) 

Here, nD is the number of neutrons/unit volume. vT is the equilibrium velocity at which 
this distribution peaks: 

vT=(2kBT/mn) 1/2  
(A.1.2) 

A.1.2 Flux Distribution 

The distribution of flux Φ in terms of velocity, is given by:  
Φ(v)=v.nd(v) 

(A.1.3) 

It can be expressed in terms of energy, E, or wavelength, λ, as variable from the relations: 
Φ(v)dv=Φ(E)dE=Φ(λ)dλ 

(A.1.4) 

where the variables v, E, and λ are related by: 
E=mnv2/2, λ=h/mnv 

(A.1.5) 



A.1.2.1 Flux in Terms of Neutron Velocities 

The reactor flux spectrum may be given as a function of v, Φ(v), where Φ(v) dv is flux of 
neutrons with velocity between v and v+dv. From Φ(v)=v.nd(v), it follows that: 

 

(A.1.6) 

Here, ΦF is the total flux,  

A.1.2.2 Flux in Terms of Neutron Energies 

The flux spectrum can be given as a function of E, Φ(E), where Φ(E)dE is the flux of 
neutrons with energies between E and E+dE: 

 

(A.1.7) 

A.1.2.3 Flux in Terms of Neutron Wavelength 

The flux spectrum can be expressed as a function of λ Φ(λ), where Φ(λ)dλ is the flux of 
neutrons with wavelengths between λ and λ+dλ: 

 
(A.1.8) 

where λT=h/mnvT.  

A.1.3 Peak in Flux Distributions 

The maximum flux per velocity interval is given by a maximum of Φ(v) at 
v=v(maxflux)=(3 kBT/mn)1/2 

(A.1.9) 

The maximum flux per energy interval given by the maximum of Φ(E) at 
E=E(maxflux)=ET=kBT 

(A.1.10) 

with corresponding λT= h/(2mnkBT)1/2, and vT= (2 kBT/mn)1/2. 
The maximum flux per wavelength interval is given by a maximum of Φ(λ) at 
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λ=λ(maxflux)=h/(5mnkBT)1/2 
(A.1.11) 

So we have for a moderator at temperature T: 
λ(maxflux)=λT (2/5)1/2=0.632 λT  

(A.1.2) 

where λT is the wavelength at which the flux spectrum versus energy peaks. 
The peak values of the variables are summarized in Table A.1.1. They may be 

changed a little by the collimation. The function used depends on the application. For 
example, when considering a crystal monochromator, the distribution Φ(λ) should be 
used, since a slice dλ=2dcosθM.dθM of this flux spectrum is taken, with dθM being the 
effective collimation angle in the collimated beam.  

TABLE A.1.1 Velocities, Energies, and 
Wavelengths at Peak of Flux from Maxwell-
Boltzmann Velocity Distribution, Expressed as a 
Function of Each Variable 

Variable v at Peak E at 
Peak 

A, at Peak 

v (3 
kBT/mn)1/2 

3 kBT/2 h/(3mn 
kBT)1/2=0.816 λT

E vT=(2 
kBT/mn)1/2 

ET=kBT λT=h/(2mn 
kBT)1/2 

λ (5 
kBT/mn)1/2 

5 kBT/2 h/(5mn 
kBT)1/2=0.632 λT

Reference 

1. W.M.Lomer and G.G.Low, in Thermal Neutron Scattering, P.A.Egelstaff, Ed., Academic Press, 
New York, 1965, chapter 1. 
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Appendix 2  
Relation Between the Centroid of Sampled 

Gauge Volume and Translator Reading 

In this Appendix the expressions used to calculate the curves in Figures 3.25 and 6.40 are 
given. The relevant distances are defined in Figure 3.24. Figure 3.25 shows the 
relationship between the position of the centroid of the sampled gauge volume relative to 
the surface and the translator encoder reading, T, giving the depth, |dCS|, of the effective 
measurement position below the surface. The geometry is for a sample scanned into the 
instrument nominal gauge volume in the reflection configuration. The nominal gauge 
volume (NGV) is defined by two slits of width ISW=DSW=w. T is set equal to zero when 
the surface is at the instrument reference point at the center of the NGV, that is TR=0, so 
that T=dSR. The half-diagonal of the NGV normal to the surface, D, is given by 
D=w/2cosθ. dCS is by definition always negative in Figure 3.24. 

The total neutron path length through the material for diffraction from an element of 
the sample at depth y is 2y/sinθ. The linear attenuation coefficient is µa, and we define 
a=2µa/sinθ, and z=D+dSR. The relationship between the variables is shown in Figure 
A2.1.  

 

FIGURE A2.1 Schematic illustration 
showing the definition of the variables 
used in the expressions below. The 
translator reading T=dSR and is 



negative as shown. dCS is always 
negative in the convention used. 

A.2.1 Depth of Centroid of Sampled Gauge Volume from the Surface 

1. If the sample is completely outside the nominal gauge volume, that is, dSR≤−D, then 
clearly no measurement can be made. For dSR≤− D, or equivalently z≤0, then 

dCS=0  (A.2.1a) 

2. If the sample is less than half inside the nominal gauge volume, that is, −D≤dSR≤0, or 
equivalently 0≤z≤D, then 

 
(A.2.1b) 

3. If the sample is more than half inside the nominal gauge, that is, 0 ≤dSR≤D or 
equivalently D≤z≤2D, then 

(A.2.1c) 

4. If the sample is completely inside the nominal gauge, that is, dSR≥ D, or equivalently 
z≥2D, then 

 
(A.2.1d) 

A.2.2 Intensity as Sample is Scanned into the Nominal Gauge Volume 

The relative intensity, I(z) for the four situations is given by the following expressions, 
where B=2cotθ/a2, and z=D+dSR: 

dSR≤−D, or equivalently z≤0,  
I(z)=0  

(A.2.2a) 

−D≤dSR≤0, or equivalently 0≤z≤D, 
I(z)=Be−az [eaz (az−1)+1] 

(A.2.2b) 
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0≤dSR≤D, or equivalently D≤z≤2D, 
I (z)=Be−az [1–2eaD+eaz (2aD−az +1)]  

(A.2.2c) 

dSR ≥ D, or equivalently z≥2D,  
I(z)=Be−az [1–2eaD+e2aD] 

(A.2.2d) 
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Appendix 3  
Points for Consideration When Making a 
Neutron Diffraction Stress Measurement 

A.3.1 Preliminary Considerations 

In this section, a summary is provided of points that need careful consideration before 
and during a set of measurements made using neutron diffraction to determine the stress 
field in a sample of an engineering component. Most of these points have been discussed 
in Chapters 3 and 4, and are listed here to provide a more formal approach to addressing a 
strain/stress measurement problem. 

A.3.2 Residual Stress Measurement Issues 

The following basic questions to be addressed when embarking on a series of stress 
measurements are pertinent regardless of the measurement technique. 

1. For the sample under consideration, what measurement of stress is required and to 
what accuracy? Neutron diffraction tends to measure Type I macrostress, and phase- 
or grain-averaged Type II microstress. It is usually routine to measure strain to 
100×10−6 accuracy, and with millimeter spatial resolution. A spatial resolution of a 
third of a millimeter is about the current technological limit. Sampled volumes are 
normally considerably greater than 1 mm3 (Section 1.4). 

2. Of what material is the sample made? Neutron powder diffraction is confined to 
crystalline materials with grain sizes of less than 100 microns. Diffuse scattering from 
H may make the measurement of strain in crystalline polymers impractical, but most 
other materials are suitable unless they have high-volume fractions of absorbing atoms 
such as B, Cd, and Gd (Section 2.2). 

3. At exactly which positions in the sample is the stress to be determined? A good 
understanding of the sample geometry and key locations of measurement is needed 
before undertaking measurements (Section 3.6). 

4. What components of stress, and therefore strain, should be measured? Keep in mind 
that even if the directions of principal axes are assumed, at least three components of 
strain are required to determine the triaxial stress at each position, and that the errors 
in each strain measurement accumulate when converting to stress. If the object of 
measurement is to compare with model predictions, it is better to convert the modeled 
stresses to strains for comparison, rather than the measured strains to stress (Section 
5.1). 



5. Are the principal axes known? If not, should they be determined? In some cases the 
principal stresses can be deduced from the symmetry, but if they are unknown at least 
six directions of strain measurement are required at each position (Section 5.1). 

6. What sampled gauge volume is required? Small gauge volumes increase the 
measurement time. If possible, estimate the likely stress gradients and enlarge the 
gauge dimensions in directions over which only gradual changes in strain are likely 
(Section 3.6). 

A.3.3 Suitability of Neutron Diffraction 

You must determine whether neutron diffraction is the best technique to facilitate 
obtaining the required information. You may find that it is possible to obtain only some, 
but not all, of the required information. It may be too expensive or take too long to collect 
all the data required.  

1. Is the sample capable of being taken to a neutron source? Can it physically be 
accommodated on a diffractometer? As yet, there are no portable neutron diffraction 
stress measurement facilities. The size, weight, and complexity envelope of samples 
that can be investigated are constantly being extended with new dedicated instruments. 
Many can accommodate samples whose longest dimension is less than a meter, 
although it may be difficult to measure stress in such a sample at all positions. Weight 
limits in many cases range from 250 to 1000 kg. 

2. Can the measurements be justified? Often an underlying consideration is the cost of 
the measurements, and whether this is justified by the anticipated results. The number 
of measurement positions in a day can vary from hundreds to just one or two, 
depending on the depth of the required position of measurement. Most measurements 
take tens of minutes. At the present time, commercial daily beam costs range from 
about $4,000 to $15,000 for confidential work. For openly publishable research, the 
question is rather one of whether the science and engineering case is strong enough to 
win beam time under peer review competition. Careful planning can optimize time 
allocated, so it is necessary to find out as much as possible about the instruments 
before starting the experiments. Carry out as much testing as possible “off-line”. The 
accommodation, interface, and control of any environmental or loading rigs can be 
prepared ahead of time during periods when the source is off and the instrument idle. 

3. Several questions about the sample material under examination must be asked: 

a. What is the material’s density? This will affect the weight to be accommodated and 
ease of orientation. 

b. What is the neutron absorption and overall attenuation length in the material? 
Besides absorption, incoherent scattering and strong coherent scattering can cause 
high attenuation of the beam and thus make deep measurements difficult. 

c. Is the material’s coherent scattering length high, medium or low? It should be kept 
in mind that some elements have negative scattering lengths, such as Ti and Mn. 
When alloyed with most other elements with positive scattering lengths the average 
scattering length can be reduced to give weak coherent Bragg peaks and thus long 
count times. This occurs for Ti-6Al-4V alloys, for example. 
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d. What is the crystal structure? For some structures, those with a basis of several 
atoms at each primitive unit cell point, the Bragg intensities will vary through the 
structure factor. An intense Bragg peak must be used for measurements, consistent 
with a knowledge of the elastic constants. 

e. Are the lattice elastic constants of the material known? There are now a 
considerable number of measurements of lattice elastic constants for common 
material, but if these are not known a calibration experiment may be necessary. 

f. What is the grain size of the material? A conservative estimate would say that grains 
should typically be a few tens of microns at maximum size in order give a fully 
random orientation distribution in a sampled 1 mm cube gauge volume. Plastic 
working of a sample may break up individual grains into smaller mosaics. As a test, 
a fine scan through 1 to 2° of the sample angle Ω about an axis normal to the 
scattering plane should give a smooth variation of a Bragg peak intensity. 
Alternatively, the sample can be scanned in small steps through the IGV. A sign 
that the grain size is too small is given by large fluctuations in integrated diffraction 
peak intensity from measurement to measurement (Section 4.2.1). 

g. Is the material textured? A scan of the sample angle Ω over a wide range of angles 
can reveal the extent of texture. Texture may vary with position in a sample, 
especially near welds. It will affect the directions in which strain can be measured 
using one reflection, and can affect the elastic constants used to convert strain to 
stress (Section 4.2.1). 

h. How is the stress-free reference lattice spacing d0 determined? A good strain-free 
reference is needed for absolute strain measurements. The optimum method of 
determining d0 will depend on the particular application under consideration. Of 
particular importance is its sensitivity to chemical composition and temperature. 
Care should be taken with the preparation of any “stress-free” material to avoid the 
introduction of residual stresses during manufacture (Section 4.6). 

i. Does the material exhibit any hazard? For example, is it radioactive requiring 
additional shielding, or will it become active in the neutron beam? The answers to 
these questions are best provided by the instrument scientists and health physicist at 
the respective facility (Section 3.1.3). 

j. In light of the attenuation in the material, is the neutron path length sufficiently 
short to allow data to be collected in a reasonable time for each of the required 
measurement positions and orientations, and for the required sampled gauge 
volume? A number of attenuation lengths are given in Tables 2.3 and A.4.1. Figure 
4.14 shows a more useful measure of the strength of the diffracted signal with 
depth in a sample of common materials. Correspondingly, a rough guide to 
practical path lengths for observable diffraction peak intensity is given by the 
maximum economic path lengths, as listed in Table 4.2 (Section 4.4). 

Appendix 3     391



A.3.4 Identifying the Most Suitable Neutron Source and 
Diffractometer Instrument 

Once it is established that it is appropriate to use neutron diffraction to determine the 
required stress field, the next elements to determine are the type of stress measurement 
diffractometer required and the most suitable type of neutron source. Availability and 
convenience are typically important variables. Ideally, however, you can ask if a steady 
source is best, and if a two- or three-axis instrument is most suitable, or if a time-pulsed 
source would be most suitable and, if so, in which configuration (standard, modulated 
intensity, or transmission using Bragg edges). 

1. Is information required from a single reflection or a number of reflections? Are 
significant elastic or plastic anisotropy and consequent intergranular stresses 
expected? Is the time structure of a pulsed source an advantage? Generally, single-
peak measurements for mapping strain at many positions is best undertaken at a 
steady-state source. However, new dedicated instruments currently being built at 
spallation sources, may change this balance. If there is concern about the effect of 
intergranular stresses, or more than one reflection is required, such as for study of 
composites, then it may be advisable to use a time-of-flight instrument. Finally, 
stroboscopic experiments can exploit the time structure of pulsed source instruments. 

2. Can the instrument accommodate the sample, and position it to the required accuracy 
in all necessary orientations? In other words, are the available x-y-z movement and Ω 
rotations sufficient? This information is usually available from instrument websites, or 
from the responsible instrument scientist. 

3. How is the sample to be mounted on the sample table in each orientation? The use of 
standard mounting plates assists rapid mounting of small samples. However, large or 
irregular samples inevitably require individual mounting. If possible, test the mounting 
procedure off-line. 

4. Can the measurements be completed without disturbing the instrument hardware, such 
as removing collimators or detectors? If these have to be moved will the gauge volume 
be disturbed? On the whole, aperture based systems on steady state sources offer more 
freedom. Unless high-quality accurate positioning is provided, the realignment of 
radial collimators after removal or replacement can be time consuming. 

5. What type of detector should be used, a single detector or position-sensitive detector 
(PSD)? Single detectors give data more directly, but PSDs can offer faster rates of 
data acquisition albeit sometimes with accompanying higher background levels. 
Definition of the gauge volume, and the avoidance of anomalous surface effects can 
be more difficult with PSDs, and a single detector is preferable. 

A.3.4 Details of Instrument Setup 

Generally, there are more options to consider on a continuous beam instrument than on a 
time-of-flight instrument. The optimum monochromator and sample diffraction angles to 
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be used must be chosen after consideration of several factors, often a compromise having 
to be made between optimizing different aspects of the measurement. 

1. What is the optimum sample reflection to use? 

a. Bearing in mind the available wavelengths, typically you should choose an hkl that 
will give a scattering angle of in order to obtain a cuboidal instrument 
gauge volume, although in certain cases one might choose other scattering angles in 
order for the beam to pass through apertures in the sample in the equipment or to 
minimize path lengths. The chosen wavelength must be well away from any Bragg 
edge in the transmission spectrum of the sample. 

b. Ideally, the reflection hkl should have a high multiplicity and structure factor to give 
optimum intensity. 

c. Preferably, the diffraction elastic constants should be known, and be close to the 
bulk moduli to reduce the effect of elastic anisotropy. Although higher-order 
reflections pose no problems, “accidental” coincidences of peaks such as (333) and 
(511) for cubic structures should be avoided, since these may have different elastic 
constants. 

d. If the sample might have been plastically deformed, the reflection chosen should be 
known to give low plastic pseudostrains and intergranular stresses. In other words, 
the lattice strain versus applied uniaxial load relationship should be essentially 
linear in both elastic and plastic regimes. See Table 4.1. 

e. The texture should be such that the chosen hkl reflection will give good intensity in 
all the required measurement directions. 

2. On a continuous beam source, what are the best choices for monochromator and 
wavelength? For each of the available monochromators, find out what range of 
wavelengths/scattering angles are available. It is important to be able to measure all 
desired reflections hkl without having to change monochromator. Are these consistent 
with the required resolution? 

a. Check the expected flux for the various monochromator options at the desired 
wavelengths, and that the sample diffraction angles will not be too far from 

In addition, determine the monochromator has the size and focusing to 
optimize the required intensity or resolution required. One further consideration—if 
the beam is shared with another instrument closer to the source—is to ensure that 
the monochromator on that instrument does not vary in a manner that might affect 
the wavelength composition of the beam on the strain measurement instrument. 

3. What is the optimum position for apertures necessary to define the gauge volume? Can 
these be moved automatically? The answer is usually as close as possible to the 
sample, but this may risk collisions when translating and rotating the sample. Except 
for automated apertures it is best not to alter settings during a series of measurements. 

4. What are the optimum collimation angles, and are these best achieved by soller 
collimators or by slit-apertures? Over-collimation will result in loss of intensity, and 
under-collimation in poor resolution. Ideally, the resolution should be matched to 
other elements in the instrument setup. 
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5. How can background shielding be optimized? Background increases the time taken to 
measure a peak to a required uncertainty, it also decreases the sensitivity to weak 
reflections. Diffuse scattering from the sample cannot be avoided. Stray background 
peaks from sample mounts, slits, rogue beams, and so on, can be disastrous. Always 
check the background with no sample present to make sure that such peaks are absent, 
and investigate the origin of any unexpected peaks. 

A.3.5 Steps in the Measurement Procedure 

The steps in carrying out an experiment are listed here as a general guide only. One must 
always consider what action to take in the light of data already obtained. A standard two-
axis reactor based instrument is used as an example. 

A.3.5.1 General Points 

A good rule is to ensure that all the data taken are secure, in the sense that the order of 
measurements is such that, if the instrument or source fails, key calibrations and checks 
are not outstanding. Once an adjustment, angle or translation, of a component of the 
instrument has been made to give its optimum setting for a series of measurements, it is 
sensible to switch off all motors that might affect its position if accidentally activated. It 
is important to set up repeat measurement scans of peaks at standard positions in the 
sample, in order to monitor if anything has accidentally changed during measurements. 

Photographs of the neutron beam, using a scintillator camera, at various points along 
the beam can be very useful in ensuring that the form of the beam is the expected one. 

A careful complete record of all the measurement parameters and measurement 
sequences must be made as described in Section 4.7.1.  

A.3.5.2 Procedure 

1. Set up the overall configuration of the instrument, such as optical benches, sample 
table, and so on. Ensure that their alignment is accurate. 

2. Set up the monochromator-sample (M-S) and sample-detector (S-D) collimation 
required. Place aperture mounts in position. 

3. Determine the reference axis and reference point relative to the sample table. 
4. Set the monochromator take-off angle 2θM. Align the monochromator angle θM to give 

maximum counts in a monitor counter after the M-S collimator. Make initial 
adjustment of the monochromator tilt curvature to maximize the flux at the sample. 
This can be done, for example, by placing an aperture of approximately the size of the 
gauge volume in front of a low-efficiency monitor counter placed on the table, and 
maximizing the count. 

5. Center a standard powder sample on the table, such as Al2O3, and scan to measure a 
number of Bragg peak angles to give the wavelength and zero angle of This will 
also enable measured data to be used on other instruments. 
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6. Center the apertures so that instrumental gauge volume center lies at the reference 
point. A neutron photograph can be taken at the gauge volume center to verify that the 
volume is the correct order of magnitude. 

7. Check the background, blocking off the beam at stages along its path. Add shielding as 
required. With no sample, scan through the peak position to ensure that only the 
background level is recorded. 

8. Mount test sample. Using lasers, theodolites, and so on, check alignment. Measure 
distance from reference point on sample to instrument reference point at gauge volume 
center. Check settings by scanning sample edges through the gauge volume. 

9. It is important to test for grain size and texture effects by performing an Ω-scan of the 
sample, or by monitoring the variation in integrated intensity from point to point. 

10. Set the instrumental gauge volume to the required size. This is assuming that 
adjustment of apertures is possible about an accurate center; otherwise this should be 
done at Step 6. 

11. Block beam after last aperture before sample and check that only background is 
observed on scanning through the Bragg reflection. 

12. If a series of automatic settings are to be made, check extreme movements of sample 
do not involve any collisions with instrument hardware. Simulation software may be 
available to assist these checks.  

13. Carry out desired measurements of strain. Include reproducibility checks at a 
convenient high-intensity “standard” position. 

14. Remove sample. 
15. Measure stress-free reference sample under identical conditions. 
16. Repeat standard powder over one peak to ensure that no movement has occurred. 
17. Remount sample in new orientation and repeat Steps 8 through 16. 
18. Once the measurements are concluded, check the sample for any induced 

radioactivity. If any is found, transfer the sample to a safe radioactive storage area to 
allow it to decay before removal from the facility. 
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Appendix 4  
Macroscopic Scattering Cross-Sections of All 

Elements 

Table A.4.1 below lists the macroscopic cross sections, penetration lengths as defined in 
Section 2.3.7, and scattering length densities. The table is based on material provided by 
Hutchings and Windsor [1], but has been updated using the scattering lengths and atomic 
cross-sections for 1.8Å (25.2 meV) neutrons given by Sears [2]. The atomic cross-
sections for Pu are derived from Dianoux and Lander [3], and densities from Lide [4]. 
The densities of gaseous elements at normal temperature and pressure are in the liquid 
state at the boiling point, so the cross-sections apply to this state. The macroscopic 
coherent cross-sections for thermal neutrons fluctuate rapidly at long wavelengths, and 
those given for 25 meV neutrons should be taken as typical mean values. In order to 
calculate the penetration depths for long wavelength neutrons 4.0Å, with 5 meV energies, 
the coherent macroscopic cross-section is taken to be zero, and the macroscopic 
absorption cross-section is increased in proportion to the wavelength. The uncertainty in 
the numbers in the six right-hand columns is governed by the uncertainty in the density 
and atomic cross sections from which they are calculated.  



TABLE A.4.1 Macroscopic Cross Sections and 
Scattering Length Densities for the Elements 

Atom Atomic 
Number 

Z 

Atomic 
Weight

W 

Density
ρ 

(g/cm3)

Σcoh 
(cm−1)

Σincoh 
(cm−1) 

Σabs (25 
meV) 
(cm−1)

lµ (Cold) 
5 meV 
(cm) 

lµ 
(Thermal) 

25 meV 
(cm) 

(cm−2) 

H 1 1.00794 0.0708 0.07431 3.39507 0.01407 0.292 0.287 −0.01582 
D 1 2.01500 0.01 0.01671 0.00613 0.00000 163.126 43.781 0.00199 
He 2 4.002602 0.122 0.02460 0.00000 0.00014 3261.565 40.431 0.00598 
Li 3 6.941 0.534 0.02103 0.04262 3.26632 0.136 0.300 −0.00880 
Be 4 9.012182 1.848 0.94221 0.00022 0.00094 430.879 1.060 0.09620 
B 5 10.811 2.34 0.46143 0.22159 99.97614 0.004 0.010 0.06908 
C 6 12.0107 2.266 0.63057 0.00011 0.00040 997.199 1.585 0.07551 
N 7 14.00674 0.808 0.38248 0.01737 0.06601 6.062 2.147 0.03252 
O 8 15.9994 1.14 0.18159 0.00000 0.00001 54854.120 5.507 0.02490 
F 9 18.9984 1.5 0.19100 0.00004 0.00046 944.556 5.222 0.02688 
Ne 10 20.1797 1.207 0.09437 0.00029 0.00140 291.601 10.410 0.01645 
Na 11 22.9898 0.971 0.04222 0.04121 0.01348 14.016 10.319 0.00923 
Mg 12 24.3050 1.738 0.15636 0.00345 0.00271 105.137 6.153 0.02315 
Al 13 26.9815 2.6989 0.09006 0.00049 0.01392 31.637 9.573 0.02078 
Si 14 28.0855 2.33 0.10808 0.00020 0.00854 51.805 8.560 0.02073 
P 15 30.9738 1.82 0.11702 0.00018 0.00609 72.535 8.111 0.01815 
S 16 32.0660 2.07 0.03960 0.00027 0.02060 21.578 16.536 0.01107 
Cl 17 35.4527 1.56 0.30543 0.14044 0.88771 0.470 0.750 0.02538 
Ar 18 39.948 1.4 0.00967 0.00475 0.01425 27.320 34.891 0.00403 
K 19 39.0983 0.862 0.02244 0.00358 0.02788 15.168 18.551 0.00487 
Ca 20 40.078 1.55 0.06475 0.00116 0.01001 42.448 13.171 0.01095 
Sc 21 44.9559 2.989 0.76075 0.18018 1.10109 0.378 0.490 0.04921 
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Ti 22 47.867 4.54 0.08482 0.16393 0.34785 1.062 1.676−0.01964
V 23 50.9415 6.11 0.00133 0.36693 0.36693 0.842 1.360−0.00276
Cr 24 51.9961 7.19 0.13823 0.15239 0.25399 1.388 1.836 0.03027
Mn 25 54.9380 7.3 0.14004 0.03201 1.06427 0.415 0.809−0.02985
Fe 26 55.8450 7.874 0.95270 0.03396 0.21737 1.923 0.831 0.08024
Co 27 58.9332 8.9 0.07085 0.43654 3.38135 0.125 0.257 0.02265
Ni 28 58.6934 8.902 1.21479 0.47496 0.41011 0.718 0.476 0.09408
Cu 29 63.546 8.96 0.63557 0.04670 0.32097 1.308 0.997 0.06554
Zn 30 65.39 7.133 0.26631 0.00506 0.07292 5.949 2.905 0.03731
Ga 31 69.723 5.904 0.34039 0.00816 0.14023 3.108 2.046 0.03716
Ge 32 72.61 5.323 0.37173 0.00795 0.09713 4.442 2.097 0.03614
As 33 74.9216 5.73 0.25055 0.00276 0.20726 2.145 2.171 0.03031
Se 34 78.96 4.79 0.29153 0.01169 0.42743 1.034 1.369 0.02912
Br 35 79.904 3.12 0.13638 0.00235 0.16225 2.739 3.322 0.01598
Kr 36 83.80 2.16 0.11906 0.00016 0.38806 1.152 1.971 0.01212
Rb 37 85.4678 1.532 0.06822 0.00540 0.00410 68.636 12.866 0.00765
Sr 38 87.62 2.54 0.10806 0.00105 0.02235 19.603 7.607 0.01226
Y 39 88.9059 4.469 0.22855 0.00454 0.03875 10.967 3.679 0.02346
Zr 40 91.224 6.506 0.27659 0.00086 0.00795 53.689 3.504 0.03075
Nb 41 92.9064 8.57 0.34736 0.00013 0.06388 6.994 2.431 0.03919
Mo 42 95.94 10.22 0.36374 0.00257 0.15909 2.791 1.903 0.04308
Tc 43 98 11.5 0.40987 0.03533 1.41336 0.313 0.538 0.04805
Ru 44 101.07 12.41 0.45919 0.02958 0.18930 2.208 1.475 0.05198
Rh 45 102.9055 12.41 0.31519 0.02179 10.51605 0.042 0.092 0.04270
Pd 46 106.42 12.02 0.29860 0.00633 0.46933 0.947 1.292 0.04020
Ag 47 107.8682 10.5 0.25834 0.03400 3.71065 0.120 0.250 0.03471
Cd 48 112.411 8.65 0.14087 0.16034 116.77741 0.004 0.009 0.02257
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Atom Atomic 
Number 

Z 

Atomic 
Weight

W 

Density
ρ 

(g/cm3)

Σcoh 
(cm−1)

Σincoh 
(cm−1) 

Σabs (25 
meV) 
(cm−1) 

lµ 
(Cold) 

5 
meV 
(cm)

lµ 
(Thermal) 

25 meV 
(cm) 

(cm−2) 

In 49 114.818 7.31 0.07975 0.02070 7.43040 0.060 0.133 0.01559 
Sn 50 118.710 7.31 0.18060 0.00082 0.02321 18.966 4.887 0.02308 
Sb 51 121.760 6.691 0.12906 0.00000 0.16249 2.752 3.430 0.01843 
Te 52 127.60 6.24 0.12457 0.00265 0.13841 3.204 3.765 0.01708 
I 53 126.9045 4.93 0.08188 0.00725 0.14388 3.040 4.292 0.01235 
Xe 54 131.29 3.52 0.04908 0.00000 0.38589 1.159 2.299 0.00794 
Cs 55 132.9055 1.873 0.03132 0.00178 0.24612 1.811 3.581 0.00460 
Ba 56 137.327 3.5 0.04958 0.00230 0.01688 24.966 14.543 0.00778 
La 57 138.9055 6.145 0.22725 0.03010 0.23897 1.772 2.015 0.02195 
Ce 58 140.116 6.77 0.08555 0.00000 0.01833 24.396 9.627 0.01408 
Pr 59 140.9077 6.773 0.07642 0.00043 0.33289 1.343 2.441 0.01326 
Nd 60 144.24 7.008 0.21739 0.26918 1.47758 0.280 0.509 0.02250 
Pm 61 145 7.264 0.60338 0.03922 5.08044 0.088 0.175 0.03801 
Sm 62 150.36 7.52 0.01271 1.17463 178.36306 0.002 0.006 0.00241 
Eu 63 151.964 5.244 0.14027 0.05195 94.13934 0.005 0.011 0.01500 
Gd 64 157.25 7.901 0.88656 4.56898 1503.83015 0.000 0.001 0.01967 
Tb 65 158.9253 8.23 0.21331 0.00012 0.72975 0.613 1.060 0.02302 
Dy 66 162.50 8.551 1.13765 1.72391 31.49930 0.014 0.029 0.05356 
Ho 67 164.9303 8.795 0.25883 0.01156 2.07774 0.215 0.426 0.02572 
Er 68 167.26 9.066 0.24906 0.03591 5.19005 0.086 0.183 0.02543 
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Tm 69 168.9342 9.321 0.20867 0.00332 3.32274 0.135 0.283 0.02349
Yb 70 173.04 6.966 0.47080 0.09697 0.84366 0.504 0.708 0.03013
Lu 71 174.967 9.841 0.22118 0.02371 2.50649 0.178 0.363 0.02442
Hf 72 178.49 13.31 0.34129 0.11676 4.67483 0.095 0.195 0.03489
Ta 73 180.9479 16.654 0.33256 0.00055 1.14178 0.392 0.678 0.03830
W 74 183.84 19.3 0.18777 0.10305 1.15696 0.372 0.691 0.03073
Re 75 186.207 21.02 0.72060 0.06118 6.09790 0.073 0.145 0.06254
Os 76 190.23 22.57 1.02888 0.02144 1.14320 0.388 0.456 0.07645
Ir 77 192.217 22.42 0.99041 0.00000 29.85271 0.015 0.032 0.07446
Pt 78 195.078 21.45 0.76679 0.00861 0.68204 0.652 0.686 0.06357
Au 79 196.9666 19.3 0.43194 0.02537 5.82121 0.077 0.159 0.04502
Hg 80 200.59 13.546 0.82312 0.26841 15.14070 0.029 0.062 0.05162
Tl 81 204.3833 11.85 0.33792 0.00733 0.11976 3.635 2.150 0.03064
Pb 82 207.2 11.35 0.36666 0.00010 0.00564 78.662 2.685 0.03103
Bi 83 208.9804 9.747 0.25695 0.00024 0.00095 423.948 3.874 0.02396
Ra 88 226 5.0 0.17320 0.00000 0.17054 2.622 2.909 0.01332
Th 90 232.0381 11.72 0.40637 0.00000 0.22417 1.995 1.586 0.03136
Pa 91 231.0359 15.37 0.41666 0.00401 8.03667 0.056 0.118 0.03646
U 92 238.0289 18.95 0.42684 0.00024 0.36293 1.232 1.266 0.04035
Np 93 237 20.25 0.72037 0.02573 9.05094 0.049 0.102 0.05429
Pu 94 239 19.84 1.24978 0.00000 27.89517 0.016 0.034 0.07049
Am 95 243 13.67 0.29474 0.01016 2.55099 0.175 0.350 0.02812
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origin of, 10 
Types, 11–13 

Resolution of instrument 
continuous beam, 104 
pulsed beam, 107 

Reuss 
assumption, 224, 227 
bound, 213, 223, 228 
bulk polycrystalline stiffness, 224 
hkl specific elastic constants, 228 
table—bulk elastic constants, 225 
tables—hkl specific elastic constants, 229 

Reverse time-of-flight, 141 
RIETAN code, 182 
Rietveld refinement, 99, 157, 182 

inferring plastic strain, 249–53, 323 
showing intergranular strains, 183, 191, 317 
versus macroscopic response, 251 

Ring and plug, 197 
Rivetting stresses, 187 
Roller straightening 

railway rails, 339 
Rolling contact fatigue 

railway rails, 339 
Rosenthal-Norton sectioning, 269 

 
S 
Sachs model, 232 
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Safety, 77, 372 
induced radioactivity, 78, 377 

SALSA 
focusing monochromator, 139 
hexapod positioner, 124 

Sample positioning, 120–26, 123 
by co-ordinate measurement machine, 125, 347  
by surface edge scanning, 123, 326, 366 
errors in, 199 
mounting, 123 
off-line, 125 
strategy, 376 
theodolites, 123 

Sample reference point, 121 
Sample translator. See Positioner 
Sampled gauge volume. See Gauge volume 
Scattering 

angle, 35 
vector, 34 

Scattering cross-section. See also Cross section. 
alloys and mixtures, 52 
Iron, 52, 53 
macroscopic, 28, 53, 379 
magnetic, 27, 41 
neutrons versus x-rays, 32 
Nickel, 52 
table of, 31 

Scattering length, 27 
alloys and mixtures, 30 
negative, 30 

Schmid factor, 238 
Scintillation detector, 101 
Secondary extinction, 58 
Sectioning method, 269 
Selection rules hkl, 44 
Self-consistent model 

bulk polycrystalline stiffness, 225 
elastoplastic, 232 

Self-hardening, 236 
Service life studies, 338 
Shape memory materials, 311, 348 
Shear modulus, 205 

bulk polycrystalline, 222 
Shear strain, 205 
Shielding, 91 
Signal to background ratio, 166, 172, 178 
Silicon 

calibration powder, 82, 99, 186 
curved monochromator, 138 

Sin2ψ method, 184, 208 
inappropriateness for composites, 294 
strain-free lattice spacing, 192, 284 
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Single crystal stiffness, 206 
Slip systems active, 237 
Slit aperture systems, 89 
Smart materials, 312 
SMARTS, 96 
Soller collimator, 88 
Spallation source, 65, 73–76, 93 

flux, 9 
flux distribution, 75 
instruments, 96–100 

Spurious locations, 127 
Spurious strain, 126–35 

compositional effects, 184, 282 
correction for, 131 
effect of analyser crystal, 134 
effect of Z-scan method, 134 
in use of PSD, 131 
minimizing, 134 
near surface, 327–8 

Stainless steel 
cyclic loading, 248 
elastic anisotropy, 220 
elastic constants, 226, 230 
EPSC lattice strain predictions, 241 
EPSC residual strain predictions, 243 
inferred plastic strain, 251 
lattice strain response to load, 151, 246 
strain-free lattice parameter, 188 
time of flight diffraction pattern, 95 
weldment, 280 

Standard for stress measurement. See VAMAS 
Standard deviation, 161 
Standard powder sample. See Calibration 
Stewart platform, 123 
Stiffness 

matrix, 215 
matrix symmetry, 218 
tensor, 203, 215 

Strain 
conversion to stress, 203–210 
tensor, 203 
tensor to matrix conversion, 215 

Strain measurement 
at depth, 170 
grain selectivity, 8, 16, 210 
interpretation of data, 203–56 
near a surface, 126–35, 208 

Strain radiography, 142 
Strain-free lattice spacing, 3, 183, 187, 196, 206 

composites, 298 
compositional effects, 184, 275, 331, 337 
effect of intergranular stress, 244 
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global value, 196 
map, 192, 284 
measurement strategy, 186–97, 372 
weldment, 276 

Strain-free reference. See above. 
Stress 

imaging, 348 
intensity factor, 19 
measurement, see measurement of strain 
relief monitoring, 336  
tensor, 203 
tensor to matrix conversion, 215 
composites, 291, 306 

Stress balance, 11 
intergranular stress, 320 
strain-free lattice spacing, 187, 196 

Stroboscopic techniques, 308 
Structural integrity, 2, 20 

of weldment, 280 
Superelasticity, 311 
Supermirror guide tubes, 71 
Surface effects, 126–35 
Surface positioning. See Sample positioning 

fitting intensity profile, 326 
Symbols and abbreviations, 349–54 
Symmetry effect on elastic properties, 216 
Synchrotron x-rays, 5 

comparison, 264, 270, 272 
composites, 295 
near surface stresses, 325 

Systematic measurement uncertainties, 169 
 

T 
Tanzboden, 83 
Taylor model, 232, 238 
Temperature effect on lattice spacing, 186 
Texture 

choice of suitable reflection, 154, 376 
considerations, 372 
effect on elastic constants, 226 
effect on peak intensity, 59–60, 312 
effect on plastic strain predictions, 237 
effect on SGV, 115, 130, 152 
intergranular stress, 320 
orientation distribution function, 60 

Thermal cycling, 308 
Thermal diffuse scattering, 57 
Thermal expansion microstress 

composites, 300, 303, 304 
Thermal flux, 68 
Thermal neutrons, 68 
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Thermal stress, 12, 
bling, 334 
hexagonal materials, 246 
Uranium, 305 
welding stress, 267 

Thermal stress in composites, 300, 303–309 
continuous fiber, 309 
particulate, 306 
whisker, 307 

Thermal tensioning 
weld residual stress, 287 
Time focusing, 96, 107, 141 

Time of flight, 25, 39, 93 
calibration, 99 
diffraction pattern, 94–5 
instrument, 92, 96–100, 140 
lattice strain, 94 
multiple peak fitting, see Rietveld refinement 
resolution, 107 

Time-broadening, 97 
peak profile, 161–3 

Titanium 
composite bling, 314 
composite load transfer, 310 
composites, 309 
incoherent scattering, 174 
lattice strain response, 246 
matrix composites, 305 
shot peening, 329 

Total external reflection, 70 
Total scattering cross-section, 27 
Toughened glass, 17 
Translator. See Positioner 
Transmission method, 142 

strain-free lattice spacing, 192 
Transmission spectra, 46 
Trepanning 

strain-free lattice spacing, 188 
Triple-axis spectrometer, 136 
Truncated peak fit, 180 
Tungsten 

elastic anisotropy, 220 
Two-axis diffractometers, 79–92 

resolution, 104–7 
Type I (macro) stress, 10, 12, 206–7, 225, 244–54 

composites, 290 
measurement principles, 14–16 
separation, 299 

Type II (micro) stress, 10, 12, 151, 211 
composites, 290 
mean phase-specific, 16, 291, 300 
measurement principles, 14–16 
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phase transformation, 276 
see peak broadening 
separation, 299 

Type III (micro) stress, 13 
composites, 290 
see peak broadening 

 
U 
Uncertainty in peak fitting, 164–82 

background effects, 164, 166 
instrumental resolution, 103–8 
systematic uncertainties, 169  

Unit cell, 35 
Unstressed lattice parameter. See Strain-free lattice spacing 

 
V 
Vacancy Type-III stress, 14 
VAMAS TWA20, 9, 149, 167, 348 

fitting recommendations, 178 
linear friction weld, 285 
records, 199 
round robin, 197 
weld, 193 

Vanadium 
elastic anisotropy, 220 
incoherent scatterer, 99 

Velocity distribution, 361 
Velocity selectors, 73, 92, 140 
Virtual experimentation, 347 
Voigt 

assumption, 223, 227 
bound, 213, 223 
bulk polycrystalline stiffness, 223 
function, 160 
hkl specific elastic constants, 227 
table—bulk elastic constants, 224 

VULCAN, 96 
 

W 
Wavevector, 25 
Weldments 

alumino-thermic, 278 
compositional changes, 267 
distortion, 281 
electron beam, 281 
friction stir, 281 
inertia friction, 281 
linear friction, 285 
manual metal arc, 279 
misfit strain, 266 
origin of residual stress, 10, 266 
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papers published, 264 
residual stress, 265–89 
residual stress measurement techniques, 268 
spurious strain map, 195 
strain-free lattice spacing, 190 
stuctural integrity, 280 
tranformations, 267 

Whisker composites 
thermal stresses, 307 

White neutron beam, 92 
 

X 
X-ray 

comparison, 32, 270, 272 
energy, 26 
laboratory, 3 
penetration, 3–4, 30, 33, 294 
synchrotron, 5 
wavelength, 26 

X-ray elastic constants, 208 
X-ray stress measurement, 207 

composites, 292 
layer removal, 330 
near surface, 325 
strain-free lattice spacing, 192, 337 
triaxial stress, 293 

 
Y 
Young’s modulus, 204 

crystal directionality, 216–222 
hkl specific, 227 
polycrystalline, 222–230  

 
Z 
Zinc sulphide scintillator, 101 
Zircaloy 

lattice strain response, 246 
peak broadening, 256 
pole figure, 60 
textured rolled plate, 321 

Zirconium 
lattice strain response, 246 

Z-Scan method 
grinding stress, 329 
shot peening, 330 
spurious strain, 134 
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