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Preface

Java is a serious language suitable for demanding applications in science and
engineering. Really, we promise! Java offers a lot more than just those little
applets in your Web browser.

In JavaTech we focus on how Java can perform useful tasks in technical com-
puting. These tasks might involve an animated simulation to demonstrate a scien-
tific principle, a graphical user interface for an existing C or C++ computational
engine, a distributed computing project, controlling and monitoring an exper-
iment remotely via the Internet, or programming an embedded Java hardware
processor in a device such as a remote sensor. While other Java books intended
for the science and engineering audience concentrate primarily on numerical pro-
gramming, we take a much broader approach and examine ways that Java can
benefit programmers working on many different types of technical applications.

This project grew out of a course given by two of us (C.S.L. and Th.L.) at
the Royal Institute of Technology in Stockholm, Sweden in which students of
diverse backgrounds followed the class via the Internet. For this type of distance
learning situation, we developed hypertext instructional material for delivery
via the Web browser that allows for a high degree of self-study. This approach
works especially well with Java since many of the demonstration programs run
as applets within the browser.

This book provides a handy print companion to this hypertext course, which
is available online at www.javatechbook.com. The book includes additional
material that deals with distributed computing techniques based on work done by
one of us (J.T.) at Oak Ridge National Laboratory in the USA. Throughout the
book we refer to the hypertext materials as the Web Course.

Who should use this book

JavaTech targets primarily those who want to learn the Java programming lan-
guage so as to apply it to practical applications in science and engineering. From
the freshman science major to the experienced programmer in a technical field,
we believe this book and the Web Course will be helpful.

For those unfamiliar with the language and with object-oriented programming,
we begin with a compact introduction to Java. Since Java has grown into a very
big field we only touch on the essential elements needed to begin doing useful

xiii



xiv Preface

programming. We include examples of how Java can apply to technical tasks such
as histogramming of data and image analysis.

While familiarity with C and C++ will hasten a reader’s understanding of
Java programming, we do not assume the reader knows these languages.

After the Java introduction we discuss network programming, which we con-
sider to be one of Java’s strongest features. We focus particularly on how to build
client/server systems for distributed computing applications. If you have a net-
work application, such as the need to monitor remote devices or to give distant
users access to a complex simulation running on a central server, the survey here
should help you get started. Our aim is to show that you can create powerful
network software with Java without needing first to become an authority on all
the arcane intricacies of network systems. Java’s networking tools and platform
portability allow you to focus more on your application than on the underlying
mechanisms.

The final part of the book looks at how Java can interact with the local plat-
form, with code in other languages, and with embedded processors. For example,
perhaps you have a legacy program in C that represents many years of devel-
opment and tuning, but it lacks a graphical interface to make it interactive and
flexible. We discuss the Java Native Interface (JNI) that allows you to connect
your program to Java and to take advantage of the extensive graphical tools avail-
able in Java to build an interface around your computational engine in C (or in
Fortran via intermediate C code as discussed in the Web Course). You can also
add the networking capabilities of Java discussed above. For example, remote
clients could connect with your legacy program that runs on a central server.

Hardware microprocessors designed especially to run Java are now widely
available. Those who work on embedded processor applications will be interested
in our survey of the field of Java processors. In a demonstration program, for
example, we show how to connect via a serial port to a microcontroller that is
programmed with Java and used to read a sensor.

We look at compact, low-cost platforms that contain Java processors, Ethernet
connectors, analog-to-digital inputs, digital-to-analog outputs and other useful
features. With such systems you can run servers that allow remote clients to moni-
tor, control, and diagnose an instrument of some kind. This offers the opportunity
to those who work with large complex installations, such as an elaborate scien-
tific apparatus or a power plant, to access and control a system at a fine-grained
level. We provide a demonstration of a server on such a Java processor platform
in which the server responds to a Web browser with an HTML file containing a
voltage reading.

Organization and topics

We attempted with this book and Web Course combination to create an innovative
and highly flexible approach that allows readers with a diverse range of interests
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and backgrounds to find and use effectively the materials for their particular
needs. The Web Course includes hypertext tutorial materials, many demonstration
programs, and exercises. The book compliments the Web Course with more
extensive discussions on a range of topics and with tables and diagrams for quick
reference.

We follow an example-based teaching approach, using lots of applets and
application programs to demonstrate the concepts and techniques described. In
addition, we supply a large selection of starter programs that provide templates
with which readers can quickly begin to develop their own programs.

The chapters in the book correspond directly to those in the Web Course. Note
that while one of Java’s strongest features is its extensive graphics capability, we
do not discuss graphics programming in the first five chapters. Instead we focus
on the components and structure of the language. We demonstrate techniques
with stand-alone programs (referred to in Java as applications) that print to the
console and applets that send output to the web browser’s Java console window.

The book and Web Course are divided into three parts plus appendices.

Part I Introduction to Java

The 12 chapters in Part I provide an introduction to the Java language. These
chapters focus on the Java language but also discuss various topics relevant
to applying Java to technical areas. The Web Course expands the introductory
material into three tracks:

The Java Track provides an introduction to Java programming. The reader can
follow this track alone for a quick course in the basics of Java programming.
Supplements provide additional information on both basic and advanced topics.

The Tech Track focuses on topics relevant to general math, science, and engi-
neering applications of Java such as floating-point numbers, random number
generators, and image processing.

The Physics Track provides an example of how to apply Java to a particular
technical subject. The track corresponds to a short course for undergraduate
students on the use of numerical computing, simulations, and data analysis in
experimental physics.

Part II Java and the network

This part focuses on the application of Java to network programming and dis-
tributed computing. It begins with an introduction to TCP/IP programming and
then looks at several topics including socket based client/server demonstration
programs and distributed computing with RMI, CORBA, and other techniques.
An introduction is given to Unified Modeling Language (UML), which leads to
better object oriented code design and analysis. A brief overview of web services
and XML is also provided.
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Part III Out of the sandbox

This part deals with how Java programs can access information and resources on
the underlying platforms on which the Java Virtual Machine (JVM) is installed
and how the JVM can interact with its local environment. It also reviews imple-
mentations of Java in hardware rather than in a virtual machine. Topics include
interfacing Java programs to C/C++ and Fortran codes with the Java Native
Interface (JNI), communicating with devices via serial/parallel ports, and work-
ing with embedded Java processors.

Appendices

Appendices 1 and 2 provide tables of Java language elements and operators,
respectively. Appendix 3 gives additional information about floating-point num-
bers in Java.

Topics not discussed

Java has grown into an enormous industry since it first appeared in the mid-1990s.
No single book could possibly do justice to all of the Java classes, packages, tools,
techniques, and applications of the language. In fact, there exist many books
devoted to individual topics such as Java I/O, graphics, and multithreading. The
Java industry expands further every day.

For this book we have chosen what we consider to be an important subset of
Java topics relevant to technical applications. Some important topics not treated
include:

� Java Enterprise techniques, such as database access and Java application servers
� Security topics such as the Java Cryptography Extension (JCE)
� Java 3D graphics

We do provide in the Web Course a large set of links to references and resources
for these and other Java subjects. We also believe that this book provides the
reader with a solid base of understanding on which to pursue further learning.
All Java programmers must deal with the need to continually learn new classes
and APIs (Application Program Interfaces). As we go to press, Sun is about to
release Java 2 Standard Edition version 5.0, which contains significant additions
to the language. We discuss the most important of these but some are beyond the
scope of this book.

We emphasize the use of the web for access to language specifications, online
tutorials, and other resources needed to tackle new Java techniques. We include
references and web links in each chapter and in the Web Course. You can
also find many online resources at http://java.sun.com, java.net, and
www.ibm.com/developerworks/java/.

As mentioned in the introduction, we do not delve into numerical programming
with Java. We only touch on this subject here while the Web Course Tech and
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Physics tracks contain several introductory level sections. See the reference list
at the end of Chapter 1 for a list of several books that deal extensively with
numerical programming in Java.

How to use this book and Web Course

We designed the book and Web Course in a way that lets readers follow individ-
ualized paths through the materials. Part I, in particular, allows for a variety of
different approaches. You could, for example, study only the Java sections of each
chapter and get a fast introduction to the basics of Java programming. You could
also study the sections with particular relevance to technical applications (the
Web Course expands on these in its Tech Track) or, alternatively, you could skip
these tech topics in a first pass and return to them later. Those already familiar
with Java basics could focus just on the tech-related topics.

You can proceed through the book and Web Course at your own pace and
experiment with the many applets and application demonstration programs. There
is an emphasis on coding by the reader since ultimately you can only learn Java
or any other language by writing lots of programs yourself.

Part II and Part III deal with specialized topics. If you are already familiar
with the basics of Java programming, you could proceed directly to the chapter
or sub-section of interest in those parts.

One of the most important features of Java is its extensive network program-
ming capability. So we designed the course around the assumption that the reader
has easy access to the Internet. Most of the Web Course pages include links to
reference and resource materials, especially the tutorials and language specifica-
tions on the http://java.sun.com website. Rather than reinvent the wheel
we try to incorporate resources such as the Sun tutorials in a way that takes best
advantage of what is already available.

The Web Course hypertext materials and demonstration codes, along
with updates and corrections to the book, are available at the website
www.JavaTechBook.com. (A mirror site is available at www.particle.
kth.se/~lindsey/JavaCourse/Book/.)

Note that if we included in the book the source codes for all the demonstration
programs, it would be a very long book indeed. Since the source codes are easily
available from the Web Course, we often print only “code snippets” rather than
entire classes or programs.

Conventions

Fixed width style indicates:

� code samples such as: for (i=0; i < 4; i++) j++;
� Java class names, variable names, and other code-related terms
� console commands such as: c:\> java HelloWorld
� web addresses such as http://java.sun.com
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In code listings, italicized fix width indicates that the text is not actually in
the code but included to emphasize some aspect of the code or to summarize code
that was skipped. We also put the class name in bold in the code listings. (Coding
style conventions are discussed in Section 5.9.) When discussing a method in the
text we may often ignore the argument list for the sake of brevity. So aMethod
(int x, float y, double z) is abbreviated as aMethod().

In the main text, new terms of particular importance are italicized. The book
name and Web Course sections are also italicized.

In Chapter 22 on the Java Native Interface, we use the notation Xxx and
xxx as placeholders to represent the many possible names that can replace the
Xxx or xxx. For example, JNI has a GetIntField() method. It also has
GetFloatField(),GetDoubleField(), etc. methods. We refer to these as a
group with theGetXxxField()notation. Similarly, thexxx injxxxArray can
be replaced with int, float, double, etc. to produce jintArray, jfloat-
Array, jdoubleArray, etc.

Java version

The code in JavaTech primarily follows that of Java version 1.4 released in 2002,
but we discuss the significant enhancements available in the Java 5.0 release where
relevant. (This release was under development for at least two years and became
available in beta form near the end of the writing of this book.) Since many web
browsers currently in use only run Java 1.1 applets and also since some small
platforms (e.g. embedded processors) with limited resources only run Java 1.1,
we also include in the Web Course some discussion of programming techniques
for this version and provide sample codes.

The programs do not usually assume a particular platform and should run on
MS Windows, Mac OS X, Linux, as well as Solaris and most Unix platforms.
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Chapter 1
Introduction

1.1 What is Java?

The term Java refers to more than just a computer language like C or Pascal. Java
encompasses several distinct components:

� A high-level language – Java is an object-oriented language whose source code at a

glance looks very similar to C and C++ but is unique in many ways.
� Java bytecode – A compiler transforms the Java language source code to files of binary

instructions and data called bytecode that run in the Java Virtual Machine.
� Java Virtual Machine (JVM) – A JVM program takes bytecode as input and interprets

the instructions just as if it were a physical processor executing machine code. (We

discuss actual hardware implementations of the Java interpreter in Chapter 24.)

Sun Microsystems owns the Java trademark (see the next section on the history
of Java) and provides a set of programming tools and class libraries in bundles
called Java Software Development Kits (SDKs). The tools include javac, which
compiles Java source code into bytecode, and java, the executable program that
creates a JVM that executes the bytecode. Sun provides SDKs for Windows,
Linux, and Solaris. Other vendors provide SDKs for their own platforms (IBM
AIX and Apple Mac OS X, for example). Sun also provides a runtime bundle
with just the JVM and a few tools for users who want to run Java programs on
their machines but have no intention of creating Java programs. This runtime
bundle is called the Java Runtime Environment (JRE).

In hope of making Java a widely used standard, Sun placed minimal restric-
tions on Java and gave substantial control of the development of the language
over to a broadly based Java community organization (see Section 1.4 “Java:
open or closed?”). So as long as other implementations obey the official Java
specifications, any or all of the Java components can be replaced by non-Sun
components. For example, just as compilers for different languages can create
machine code for the same processor, there are programs for compiling source
code written in other languages, such as Pascal and C, into Java bytecode. There
are even Java bytecode assembler programs. Many JVMs have been written by
independent sources.

3



4 Introduction

Java might be said more accurately to refer to a set of programming and
computing specifications. However, in this book and the Web Course, unless
otherwise indicated, we follow the common use of the term Java to refer to the
high-level language that follows the official specifications and the virtual machine
platform on which the compiled language runs. The usage is normally clear from
the context.

Finally, many people know Java only from the applets that run in their web
browsers. Java programs, however, can also run as standalone programs just like
any other language. Such standalone programs are referred to as “applications”
to distinguish them from applets.

1.2 History of Java

During 1990, James Gosling, Bill Joy and others at Sun Microsystems began
developing a language called Oak. They primarily intended it as a language for
microprocessors embedded in consumer devices such as cable set-top boxes,
VCRs, and handheld computers (now known as personal data assistants or
PDAs).

To serve these goals, Oak needed the following features:

� platform independence, since it must run on devices from multiple manufacturers
� extreme reliability (can’t expect consumers to reboot their VCRs!)
� compactness, since embedded processors typically have limited memory

They also wanted a next-generation language that built on the strengths and
avoided the weaknesses of earlier languages. Such features would help the new
language provide more rapid software development and faster debugging.

By 1993 the interactive TV and PDA markets had failed to take off, but internet
and web activity began its upward zoom. So Sun shifted the target market to
internet applications and changed the name of the project to Java.

The portability of Java made it ideal for the Web, and in 1995 Sun’s HotJava
browser appeared. Written in Java in only a few months, it illustrated the power of
applets – programs that run within a browser – and the ability of Java to accelerate
program development.

Riding atop the tidal wave of interest and publicity in the Internet, Java quickly
gained widespread recognition (some would say hype), and expectations grew for
it to become the dominant software for browsers and perhaps even for desktop
programs. However, the early versions of Java did not possess the breadth and
depth of capabilities needed for desktop applications. For example, the graphics
in Java 1.0 appeared crude and clumsy compared with the graphics features
available in software written in C and other languages and targeted at a single
operating system.
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Applets did in fact become popular and remain a common component of web
page design. However, they do not dominate interactive or multimedia displays
in the browser as expected. Many other “plug-in” programs also run within the
browser environment.

Though Java’s capabilities grew enormously with the release of several
expanded versions (see Section 1.3), Java has not yet found wide success in desk-
top client applications. Instead Java gained widespread acceptance at the two
opposite ends of the platform spectrum: large business systems and very small
systems.

Java is used extensively in business to develop enterprise, or middleware,
applications such as on-line stores, transactions processing, dynamic web page
generation, and database interactions. Java has also returned to its Oak roots and
become very common on small platforms such as smart cards, cell phones, and
PDAs. For example, as of mid-2004 there are over 350 different Java-enabled
mobile phone handsets available across the world, and over 600 million Java
Cards have been distributed

1.3 Versions of Java

Since its introduction, Sun has released new versions of the Java core language
with significant enhancements about every two years or so. Until recently, Sun
denoted the versions with a 1.x number, where x reached up to 4. (Less drastic
releases with bug fixes were indicated with a third number as in 1.4.2.) The
next version, however, will be called Java 5.0. Furthermore, Sun has split its
development kits into so-called editions, each aimed towards a platform with
different capabilities. Here we try to clarify all of this.

1.3.1 Standard Edition

Below is a time line for the different versions of the Standard Edition (SE) of
Java, which offers the core language libraries (called packages in Java) and is
aimed at desktop platforms. We include a sampling of the new features that came
with each release.

� 1995 – Version 1.0. The Java Development Kit (JDK) included:
� 8 packages with 212 classes.
� Netscape 2.0–4.0 included Java 1.0.
� Microsoft and other companies licensed Java.

� 1997 – Version 1.1:
� 23 packages, 504 classes.
� Improvements included better event handling, inner classes, improved VM.
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� Microsoft developed its own 1.1-compatible Java Virtual Machine for the Internet

Explorer.
� Many browsers in use are still compatible only with 1.1.
� Swing packages with greatly improved graphics became available during this time

but were not included with the core language.
� 1999 – Version 1.2. Sun began referring to the 1.2 and above versions as the Java 2

Platform. The Software Development Kit (SDK) included:
� 59 packages, 1520 classes.
� Java Foundation Classes (JFC), based on Swing, for improved graphics and user

interfaces, now included with the core language.
� Collections Framework API included support for various lists, sets, and hash maps.

� 2000 – Version 1.3:
� 76 packages, 1842 classes.
� Performance enhancements including the Hotspot virtual machine.

� 2002 – Version 1.4:
� 135 packages, 2991 classes.
� Improved IO, XML support, etc.

� 2004 – Version 5.0 (previously known as 1.5). This version was available only in beta

release as this book went to press. See Section 1.9 for an overview of what is one of

the most extensive updates of Java since version 1.0. It includes a number of tools and

additions to the language to enhance program development, such as:
� faster startup and smaller memory footprint
� metadata
� formatted output
� generics
� improved multithreading features
� 165 packages, over 3000 classes

During the early years, versions for Windows platforms and Solaris (Sun’s version
of Unix) typically became available before Linux and the Apple Macintosh. Over
the last few years, Sun has fully supported Linux and has released Linux, Solaris,
and Windows versions of Java simultaneously. Apple Computer releases its own
version for the Mac OS X operating system, typically a few months after the
official Sun release of a new version. In addition, in the year 1999, Sun split off
two separate editions of Java 2 software under the general categories of Micro
and Enterprise editions, which we discuss next.

1.3.2 Other editions

Embedded processor systems, such as cell phones and PDAs, typically offer very
limited resources as compared to desktop PCs. This means small amounts of
RAM and very little disk space or non-volatile memory. It also usually means
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small, low-resolution displays, if any at all. So Sun offers slimmed-down versions
of Java for such applications. Until recently this involved three separate bundles
of Java 1.1-based packages, organized according to the size of the platform. Java
Card is intended for extremely limited Java for systems with only 16 KB non-
volatile memory and 512 bytes volatile. The EmbeddedJava and PersonalJava
bundles are intended for systems with memory resources in the 512 KB and
2 MB ranges, respectively.

To provide a more unified structure to programming for small platforms,
Sun has replaced EmbeddedJava and PersonalJava (but not JavaCard) with the
Java 2 Micro Edition (J2ME). The developer chooses from different subsets of
the packages to suit the capacity of a given system. (We briefly review J2ME in
Chapter 24.)

At the other extreme are high-end platforms, often involving multiple proces-
sors, that carry out large-scale computing tasks such as online stores, interactions
with massive databases, etc. With the Java 2 Platform came a separate set of
libraries called the Java 2 Enterprise Edition (J2EE) with enhanced resources
targeted at these types of applications. Built around the same core as Standard
Edition packages, it provides an additional array of tools for building these so-
called middleware products.

1.3.3 Naming conventions

We note that the naming and version numbering scheme in Java can be rather
confusing. As we see from the time line above, the original Java release included
the Java Development Kit (JDK) and was referred to as either Java 1.0 or JDK
1.0. Then came JDK 1.1 with a number of significant changes. The name Java 2
first appeared with what would have been JDK 1.2. At that time the JDK moniker
was dropped in favor of SDK (for Software Development Kit). Thus the official
name of the first Java 2 development kit was something like Java 2 Platform
Standard Edition (J2SE) SDK Version 1.2. Versions 1.3 and 1.4 continued the
same naming/numbering scheme.

Meanwhile many people continue to use the JDK terminology – thus JDK
1.4 when referring to J2SE SDK Version 1.4. Another common usage is the
simpler but less specific Java Version 1.x, or even just Java 1.x to mean J2SE
Version 1.x. Both of these usages are imprecise because there is also a Java 2
Enterprise Edition (J2EE) Version 1.4. To make it clear what you mean, you
should probably either use J2SE or J2EE rather than just Java when mentioning
a version number unless the meaning is clear from context. This book is not
about J2EE, though we do touch on Java Servlet technology in Chapters 14 and
21 and on web services in general in Chapter 21. Since we never need to refer
to the Enterprise Edition, we use the terms Java 1.x, SDK 1.x, and J2SE 1.x
interchangeably.
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By the time this book is in your hands, Sun will have released the Java 2
Standard Edition Version 5.0. The version number 5.0 replaces what would have
been version number 1.5. Undoubtedly many people will continue to use the
1.5 terminology. In fact, the Beta 2 release of J2SE 5.0 (the latest available at
the time of this writing) continues to use the value 1.5 in some places. You may
also come across the code name Tiger for the 5.0 release; however, we expect
that usage to fade away just like previous code names Kestrel and Merlin have all
but disappeared from the scene. This book uses the notation J2SE 5.0 or Release
5.0 or Version 5.0 or Java 5.0 or sometimes just 5.0 when referring to this very
significant new release of Java.

We provide a brief overview of Java 5.0 in Section 1.9 and examine a number
of 5.0 topics in some detail throughout the book.

1.4 Java – open or closed?

Java is not a true open language but not quite a proprietary one either. All the
core language components – compiler, virtual machines, core language class
packages, and many other tools – are free from Sun. Furthermore, Sun makes
detailed specifications and source code openly available for the core language.
Another company can legally create a so-called clean room compiler and/or a Java
Virtual Machine as long as it follows the detailed publicly available specifications
and agrees to the trademark and licensing terms. Microsoft, for example, created
its own version 1.1 JVM for the Internet Explorer browser. See the Web Course
for a listing of other independent Java compilers and virtual machines.

Sun, other companies, and independent programmers participate in the Java
Community Process (JCP) organization whose charter is “to develop and revise
Java technology specifications, reference implementations, and technology com-
patibility kits.” Proposals for new APIs, classes, and other changes to the language
now follow a formal process in the JCP to achieve acceptance.

Sun, however, does assert final say on the specifications and maintains various
restrictions and trademarks (such as the Java name). For example, Microsoft’s
JVM differed in some significant details from the specifications and Sun filed a
lawsuit (later settled out of court) that claimed Microsoft attempted to weaken
Java’s “Write Once, Run Anywhere” capabilities.

1.5 Java features and benefits

Before we examine how Java can benefit technical applications, we look at the
features that make Java a powerful and popular general programming language.
These features include:

� Compiler/interpreter combination
� Code is compiled to bytecode, which is interpreted by a Java Virtual Machine (JVM).



1.5 Java features and benefits 9

� This provides portability to any base operating system platform for which a virtual

machine has been written.
� The two-step procedure of compilation and interpretation allows for extensive code

checking and improved security.
� Object-oriented

� Object-oriented programming (OOP) throughout – no coding outside of class defini-

tions.
� The bytecode retains an object structure.
� An extensive class library available in the core language packages.

� Automatic memory management
� A garbage collector in the JVM takes care of allocating and reclaiming memory.

� Several drawbacks of C and C++ eliminated
� No accessible memory pointers.
� No preprocessor.
� Array limits automatically checked.

� Robust
� Exception handling built-in, strong type checking (that is, all variables must be

assigned an explicit data type), local variables must be initialized.
� Platform independence

� The bytecode runs on any platform with a compatible JVM.
� The “Write Once Run Anywhere” ideal has not been achieved (tuning for different

platforms usually required), but is closer than with other languages.
� Security

� The elimination of direct memory pointers and automatic array limit checking pre-

vents rogue programs from reaching into sections of memory where they shouldn’t.
� Untrusted programs are restricted to run inside the virtual machine sandbox. Access

to the platform can be strictly controlled by a Security Manager.
� Code is checked for pathologies by a class loader and a bytecode verifier.
� Core language includes many security related tools, classes, etc.

� Dynamic binding
� Classes, methods, and variables are linked at runtime.

� Good performance
� Interpretation of bytecodes slowed performance in early versions, but advanced vir-

tual machines with adaptive and just-in-time compilation and other techniques now

typically provide performance up to 50% to 100% the speed of C++ programs.
� Threading

� Lightweight processes, called threads, can easily be spun off to perform multipro-

cessing.
� Built-in networking

� Java was designed with networking in mind. The core language packages come with

many classes to program Internet communications.
� The Enterprise Edition provides an extensive set of tools for building middleware

systems for advanced network applications.
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These features provide a number of benefits compared to program development
in other languages. For example, C/C++ programs are beset by bugs resulting
from direct memory pointers, which are eliminated in Java. Similarly, the array
limit checking prevents another common source of bugs. The garbage collector
relieves the programmer of the big job of memory management. It’s often said
that these features lead to a significant speedup in program development and
debugging compared to working with C/C++.

1.5.1 Java features and benefits for technical programming

The above features benefit all types of programming. For science and engineering
specifically, Java provides a number of advantages:

� Platform independence – Engineers and scientists, particularly experimentalists, prob-

ably use more types of computers and operating systems that any other group. Code

that can run on different machines without rewrites and recompilation saves time and

effort.
� Object-oriented – Besides the usual benefits from OOP, scientific programming can

often benefit from thinking in terms of objects. For example, atomic particles in a

scattering simulation are naturally self-contained objects.
� Threading – Multiprocessing is very useful for many scientific tasks such as simulations

of phenomena where many processes occur simultaneously. This can be quite useful in

the conceptual design of a program even when it will run on a single-processor machine.

However, Java Virtual Machines on multiprocessor platforms also can distribute threads

to the different processors to obtain true parallel performance.
� Simulation tools – The extensive graphics resources and multithreading in the core Java

language provide for depicting and animating engineering and scientific devices and

phenomena.
� Networking – Java comes with many networking capabilities that allow one to build

distributed systems. Such capabilities can be applied, for example, to data collection

from remote sensors.
� Interfacing and enhancing legacy code – Java’s strong graphics and networking capa-

bilities can be applied to existing C and Fortran programs. A Java graphical user interface

(GUI) can bring enhanced ease of use to a Fortran or C program, which then acts as a

computational engine behind the GUI.

1.5.2 Java shortcomings for technical programming

Several features of Java that make it a powerful and highly secure language,
such as array limit checking and the absence of direct memory pointers, can
also slow it down, especially for large-scale intensive mathematical calculations.
Furthermore, the interpretation of bytecode that makes Java programs so easily
portable can cause a big reduction in performance as compared to running a
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program in local machine code. This was a particular problem in the early days
of Java, and its slow performance led many who experimented with Java to
drop it.

Fortunately, more sophisticated JVMs have greatly improved Java perfor-
mance. So called Just-in-Time compilers, for example, convert bytecode to local
machine code on the fly. This is especially effective for repetitive sections of
code. During the first pass through a loop the code is interpreted and con-
verted to native code so that in subsequent passes the code will run at full native
speeds.

Another approach involves adaptive interpretation, such as in Sun’s Hotspot,
in which the JVM dynamically determines where performance in a program is
slow and then optimizes that section in local machine code. Such an approach
can actually lead to faster performance than C/C++ programs in some cases.

Here are some other problems in applying Java to technical programming:

� No rectangular arrays – Java 2D arrays are actually 1D arrays of references to other

1D arrays. For example, a 4 × 4 sized 2D array in Java behaves internally like a single

1D array whose elements point to four other 1D arrays:

A[0] ==> B[0] B[1] B[2] B[3] B[4]

A[1] ==> C[0] C[1] C[2] C[3] C[4]

A[2] ==> D[0] D[1] D[2] D[3] D[4]

A[3] ==> E[0] E[1] E[2] E[3] E[4]

The B, C, D, and E arrays could be in widely separated locations in memory. This differs

from Fortran or C in which 2D array elements are contiguous in memory as in this

4 × 4 array:

A(0,0) A(0,1) A(0,2) A(0,3) A(0,4)

A(1,0) A(1,1) A(1,2) A(1,3) A(1,4)

A(2,0) A(2,1) A(2,2) A(2,3) A(2,4)

A(3,0) A(3,1) A(3,2) A(3,3) A(3,4)

Therefore, with the Java arrays, moving from one element to the next requires extra

memory operations as compared to simply incrementing a pointer as in C/C++. This

slows the processing when the calculations require multiple operations on large arrays.
� No complex primitive type – Numerical and scientific calculations often require imag-

inary numbers but Java does not include a complex primitive data type (we discuss the

primitive data types in Chapter 2). You can easily create a complex number class, but

the processing is slower than if a primitive type had been available.
� No operator overloading – For coding of mathematical equations and algorithms it

would be very convenient to have the option of redefining (or “overloading”) the defini-

tion of operators such as “+” and “-”. In C++, for example, the addition of two complex

number objects could use c1 + c2, where you define the + operator to properly add

such objects. In Java, you must use method invocations instead. This lengthens the code
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significantly for nontrivial equations and also makes it more susceptible to bugs. (The

String class in Java does provide a “+” operator for appending two strings.)
� Floating-point limitations – The early versions of Java provided only 32- and 64-bit

floating-point regardless of whether the host machine provided for greater precision.

This insured that for the same program the JVMs produced exactly the same result

on all machines. However, in Java 1.2 it became possible to use a wider exponent

(but not significand) representation if available on the platform. The keyword modifier

strictfp forces the floating-point calculations to follow the previous lower precision

mode to ensure exactly the same results on all machines. We discuss floating-point

representations and operations in Chapter 2.

So for some types of intensive mathematical processing, such as those using very
large arrays, it may be difficult to achieve the performance levels of C or Fortran,
especially when that code has been optimized over many years of use. In such
cases, it may be advantageous to let Java provide a graphical user interface and
networking tools, but keep the C/Fortran program as a calculation engine inside
the Java body. Chapter 22 discusses how to link Java with native code.

1.6 Real-world Java applications in science
and engineering

Java has been used extensively for several years now to solve real-world program-
ming challenges in numerous areas of endeavor. While applications in science
and engineering may be less well known, there certainly are many and we present
a few examples here.

A Java-based system called Maestro provided for data visualization, collabo-
ration, and command and control services for the NASA JPL team in charge of
the Mars rovers that landed on the Red Planet in January 2004. James Gosling
called it the “the coolest Java app ever” [1]. The system provides an elaborate set
of tools for analyzing images, 3D modeling of the terrain around a rover, and col-
laborative planning for rover maneuvers and experimental operations. Figure 1.1
shows a display of a special version of Maestro made available to the public for
personal use. You can use it “to create your own driving and science activities,
using all of the rover’s instruments to enact your own day of mission operations.”
Large sets of actual data and imagery can be downloaded for different periods of
the mission [2].

One of us is part of team working on a project known as SensorNet that is
using Java-based web services to enable the collection and archiving of data from
sensors that are distributed nationwide [3]. Web services involve the exchange
of data in XML (Extensible Markup Language) format via web client/server
systems. (We give an introduction to Web services in Chapter 21.) SensorNet
uses web services and open standards so that sensor information is available to a
wide variety of users in a standard format. Java was chosen as the implementation
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Figure 1.1 The Maestro program, written in Java, allows NASA operators of the
Mars rovers to analyze images, create stereo views and 3D terrain models, and plan
maneuvers and experiments. The figure shows a screen capture of the public
version of the program.

language because of the portability and other features mentioned above that
make it an excellent software platform in general and for network programming
in particular. Furthermore, Sun provides a free Java Web Services Developer
Pack (JWSDP) that includes extensive tools and documentation for creating such
services.

The Aviation Digital Data Service (ADDS), created by a consortium that
includes the National Oceanic and Atmospheric Administration (NOAA), offers
several Java tools to provide graphical displays of an assortment of meteorological
data of importance to the aviation community [4]. Another aviation-related Java
program is AirportMonitorTM. This commercial product is used by a number of
airports to provide near-live displays of air traffic arriving and departing from
their facilities. The data also includes flight ID, aircraft type, altitude, origin, and
destination [5].
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Figure 1.2 The steps to create and run a Java standalone application program.

The Swedish Institute of Space Physics uses a Java program to collect and
view data from infrasound (acoustic waves in the 0.1–25 Hz range) detectors
distributed in the north of the country. The infrasound system can detect distant
events such as Shuttle launches and meteors [6].

The open source program BioJava, developed at the Sanger Institute in
Great Britain, provides researchers in the field of bioinformatics with an exten-
sive toolkit for manipulating genomic sequences [7]. The large program (over
1200 classes and interfaces) is now used at major laboratories around the
world [8].

The Web Course provides a resource section with links to sites that describe
many other applications of Java in science and engineering. There are also links
to Java programming tools in numerical computing, data analysis, image process-
ing, and other areas. In addition, we link to a small sample of the thousands of
applets available on the Web that use Java graphics and animation techniques to
demonstrate scientific principles and complex systems. Such simulations provide
powerful tools for teaching technical subjects.

1.7 The Java programming procedure

Figure 1.2 illustrates the basic steps to create and run a Java application, as
standalone Java programs are called. You first create the source code with a text
editor and save it to a file with a “.java„ file extension appended to the name.
Here the file HelloWorldApp.java is created. The file name must exactly
match the class name in both spelling and case. (We define class in Chapter 3.)
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With the javac program, you compile this file to create a bytecode file (or
files if the source code file included more than one class). The bytecode file ends
with the “.class„ extension appended. Here the output is HelloWorldApp.
class. The bytecode consists of the instructions for the Java Virtual Machine
(JVM).

With the java program you run your class file. The JVM interprets the byte-
code instructions just as if it were a processor executing native machine code
instructions. (In Chapter 24 we discuss hardware processors that directly execute
Java bytecode.)

The platform independence of Java thus depends on the prior creation of a
JVM for different platforms. The Java bytecode can then run on any platform on
which a JVM is available and should perform the same regardless of platform
differences. This “Write Once, Run Anywhere” ideal is a key goal of the Java
language. For applets the browser runs a JVM in the same manner that it runs
other plug-in programs.

1.7.1 Java tools

Programming in Java typically involves two alternative approaches that we will
call manual and graphical:

� Manual – Use your favorite text editor to create the java source code files (*.java)

and use the command line tools in the Software Development Kit (SDK) to compile

and run the programs. The SDK is provided by Sun and includes several tools, the most

important of which are:
� javac – compiles Java language source files to bytecode files
� java – the JVM that executes java applications
� appletviewer – tests applets independently of a web browser.

� Graphical – Graphical user interface programming environments (or GUI builders) are

elaborate programs that allow you to edit Java programs and interactively build graphical

interfaces in a WYSIWYG (What You See Is What You Get) manner. They also include

a compiler and a JVM so that you can both create and run Java applets and applica-

tions all within one environment. These are also known as Integrated Development

Environments, or IDEs.

During this course we recommend the manual approach so that you will learn
first hand the essential details of Java graphics programming. While it is fine to
use the editor in the GUI builder or IDE, you should write all of the code yourself
rather than use the interactive user interface building tools. Otherwise, the GUI
builder does most of the work and you learn very little.

When you later begin developing programs for your own tasks that require
graphical interfaces with many components, you may want to use a GUI builder.
However, even then you will occasionally want to modify the graphics code by
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hand to debug a problem or tweak the appearance of a layout. You then obviously
need to understand the details of graphics programming.

For editing the source code, we recommend a language sensitive editor that
color codes the Java text so that the language keywords and symbols are high-
lighted. This helps to avoid simple spelling mistakes and assists with debugging.
Chapter 1 in the Web Course provides links to several freeware and commercial
editors.

The appletviewer program that comes with the SDK provides an ideal
tool for applet debugging. As we discuss later, browsers do not provide a good
environment in which to debug applet code except near the end of the development
process.

1.7.2 Documentation

The Java language elements available from Sun currently fall into these two broad
categories:

� Core language – This refers to the set of packages and classes that must be available

in the JVM for a particular edition (see Section 1.3) regardless of the platform.
� Optional APIs – A number of useful Application Programming Interfaces (APIs) are

available from Sun for audio and video applications, 3D graphics, and several other

areas. However, they are not part of the core language so may not be available for all

platforms.

These elements now involve an enormous number of packages, classes and meth-
ods. So access to documentation is essential. Sun provides a large set of docu-
mentation freely available on its site at http://java.sun.com.

If you do not have continual online web access, we recommend that you
download from the http://java.sun.com site a copy of the Java 2 Platform,
Standard Edition API specifications for the latest version of Java. This set of web
pages provides detailed descriptions of all the packages, classes, and methods
in the core language. You will frequently refer to this documentation to find out
what exactly a given method does, what methods are available for a given class,
and to obtain other useful information.

Note that the online documentation indicates what version of Java a class
or method appeared in the core language (where this is not explicit, assume it
came with Version 1.0). This is important if you want to write a program that is
consistent with, for example, version 1.1.

1.7.3 Code compatibility

In this course we primarily use code consistent with version 1.4 or higher. We
note those places where we do not. Currently (circa 2004) many browsers in use
still only run applets with Java 1.1 compatibility. For such browsers, Sun provides
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a Java plug-in that implements Java 2 features. Applet tags in the web page can
initiate the downloading of the plug-in, but the plug-in file is large and users on
slow dial-up lines may refuse the download.

If your goal is to write applets for the broadest audience, then you need to
write code limited to version 1.1 classes and methods. The Supplements sections
in the Web Course provide alternative instruction in the 1.1 graphics techniques.

So far, Java maintains strict backwards compatibility. The bytecode from a
Java 1.0 compiler still runs in a Java 1.4 virtual machine. A program written
according to the Java 1.0 specification still compiles in a Java 1.4 compiler,
though the compiler will flag “deprecated” elements that are no longer considered
recommended practice.

Note, however, that you can in some cases run into problems if you mix code
from different versions within the same program. For example, the handling of
events, such as mouse clicks, changed significantly from version 1.0 to 1.1. A
program can use either event-handling approach but it cannot contain both.

1.8 Getting started

You can quickly begin creating simple Java applets for the browser and applica-
tions for the console by following the code in the examples given here. Initially
you do not need to understand all the elements of the language. We discuss the
meaning of terms such as class and extends in the following chapters. For
now it is important just to get the basic programming tools installed and learn
how to run them. The details will come later.

1.8.1 Setup for Java programming

To begin developing Java programs, follow these steps:

1. Obtain the Java 2 Software Development Kit (SDK) for your platform:
� The SDK is available free from Sun Microsystems for Solaris, Linux, and Windows

platforms. See the Resources page in the Web Course for links to sites that provide

kits for alternate platforms as well as kits from non-Sun sources.
� The SDK contains the essentials needed to create Java programs.
� The SDK includes:

� Java executables such as javac (compiler) and java (the JVM)
� Class packages, which correspond to code libraries.

2. Install the SDK:
� The Sun SDKs now come with an installer application that does most of the work

for you. Just run this program and follow its instructions.

3. Install the documentation:
� It is recommended that you have ready access to the Java 2 API Specification since it

will be very useful during program development. If you use the Sun SDK, you should
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download the current documentation set and install it following the directions avail-

able at http://java.sun.com. If you use a third-party SDK, the documentation

should be available from the same source as the SDK itself.

The following two sections give an example of a simple applet and a simple
application program. These illustrate the basics for creating such programs and
provide some initial experience with the SDK programming tools. The general
workings of the code should be readily apparent so we wait until later chapters
to discuss the exact meaning and function of the various language keywords and
structures.

1.8.2 First application

Standalone programs in Java are referred to as applications. As mentioned pre-
viously, Figure 1.2 shows the steps needed to create and run an application. The
code for the standard “Hello World” application that prints a string to the console
is shown here:

public class HelloWorldApp

{

public static void main (String[] args)

{

System.out.println ("Hello World!");

}

}

Put this code into a file called HelloWorldApp.java. (A Java file name must
match exactly the class name, including the capitalization; this is true for all
platforms.) Compile the application as follows:

> javac HelloWorldApp.java

This creates the class file HelloWorldApp.class. Use the java command
to run the program:

> java HelloWorldApp

This produces the output

Hello World!

in the console window.
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Figure 1.3 The steps to create a Java applet and a web page to hold it. Loading the
web page in a browser or running it with the appletviewer program will display the
applet as shown in Figure 1.4.

1.8.3 First applet

Figure 1.3 shows the steps to create an applet. The following applet code displays
the string “Hello World!” in a window on a browser page:

public class HelloWorld extends java.applet.Applet

{

public void paint (java.awt.Graphics g)

{

g.drawString ("Hello World!", 45, 30);

}

}

Put this code into a file called HelloWorld.java. (Again, the name of the
file, including the cases of the letters, must match exactly with the class name
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Hello World!

Figure 1.4 Display of a very basic applet.

HelloWorld.) Then compile the code with

> javac HelloWorld.java

This creates the class file HelloWorld.class.
Applets are intended for display in browsers so you need to create a Web page

file with the proper tags that indicate where the browser should find the class
code and how big a window it should provide to display the applet’s graphical
output. (A brief tutorial on HTML coding for Web pages is available in the Web
Course Chapter 1: Supplements section.)

Put the following code into a file called HelloWorld.html:

<html>

<head>

<title> A Simple Applet</TITLE>

</head>

<body>

<applet code = "HelloWorld.class" width = ";150" height = "50">

</applet>

</body>

</html>

With this <applet> tag the file must reside in the same directory as the
HelloWorld.class file. Open the file HelloWorld.html in your browser
and you should see something like that in Figure 1.4.

1.8.4 Starter programs

We provide with the Web Course the codes for a number of programs that act as
templates into which you insert code to make them do something useful. Since
the term “template” implies something else in object-oriented programming, we
call these starter programs. You can use them to begin a program without starting
from scratch every time.

A very simple application program, StartApp1.java, is shown here. You
can insert code snippets, such as those to be discussed in Chapter 2, into the area
indicated.
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public class StartApp1

{

public static void main (String[] args)

{

// Put code between this line

Insert the example codes or your exercise code

between these lines.

// and this line.

}

}

Follow the instructions above for compiling and running an application. Rename
the class for each new program. For example, in the above starter replace
StartApp1 with MyClassApp1 or just MyClass. (We indicate at the top of
each demonstration program file on the Web Course the starter program that we
began with for that demo.) Remember that in the Java scheme the file name and
the class name must match exactly in both characters and case. Also, the name
cannot begin with a number or punctuation character (“.” or “?”, etc.).

We also provide a starter for applets as shown below with StartApplet1.
java. Applets are intended to present a graphics display of some sort in a browser
window. However, at this early stage we do not discuss Java graphics so that we
can focus initially on the basics of the language. (We begin discussing graphics in
Chapter 6.) Other than “painting” a short message to the applet display window,
we send output via print statements to the browser’s Java console rather than
paint text to the browser window. (A browser’s Java console can be activated via
the browser’s preferences or options settings.) This applet includes an init()

method, which is called by the browser when the applet first begins. The init()
is a convenient place to put simple example code with print output.

public class StartApplet1 extends

java.applet.Applet

{

public void init ()

{

// Put code between this line

// and this line.

}

We learn later how applets

inherit the Java applet class.

The browser always invokes

this initialization method

when the applet begins running

Insert example codes or your

exercise code between these

lines.
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// Paint a message in the applet window.

public void paint (java.awt.Graphics g)

{

g.drawString ("Test", 20, 20);

}

}

This line is a comment

This paints the string "Test"

in the applet window.

After inserting code into your applet, follow the same procedure as we discussed
above for the HelloWorld applet: compile the program, create a web page with
the appropriate applet tags, and place the web page and class file into the same
directory.

You can test the applet by loading the web page into a browser or you can use
the appletviewer program that comes with the SDK tools. If, for example,
you put your applet into a web page named MyFirstApplet.html, you run
appletviewer on it from the command line as follows:

> appletviewer MyFirstApplet.html

It is usually more convenient to use theappletviewer during debugging and
tuning of your applets. Then once they work satisfactorily with appletviewer,
you can examine how they appear in the browser. With the older JVMs that came
installed in the browsers, it could be difficult to force the browser to load a new
class file rather than use the old one in the cache. With Sun’s Java Plug-in, which
should have been installed into your browsers when you installed the SDK and
is also available for downloading from www.java.com, the console window
allows for various commands to the JVM including the “x” command that clears
the cache.

We note here that we focus on applications in much of the course and even
show later how you can add a main() method to an applet so that it can also
run as an application. An applet has the inconvenient requirement that you need
an HTML file containing the applet tags if you want to test it in a browser or
appletviewer. We like applets, however, since they are pedagogically very
useful for the Web Course. You can immediately see the applet running in a web
page and can compare its output to the source code, which is displayed for every
applet. You can download the code, make modifications, and test it. To avoid the
need to make a web page to test the applet, we use the trick of putting the tags
within a comment block in all of our applet source code files as shown here for
the HelloWorld example:

/*<applet code = "HelloWorld.class" width = "150"

height = "50">

</applet> */

public class HelloWorld {

. . .
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Theappletviewer program doesn’t require that a file be a legitimate HTML
file, only that it contains the applet tags. You can then run the applet with

> appletviewer HelloWorld.java

To reduce space, we don’t show the applet tags section in the applet code
listings in the book but it appears in all the downloadable code at the Web
Course.

1.9 Changes in Java 2 Standard Edition 5.0

We mentioned in Section 1.3 that Sun is introducing a new version of the language
called Java 5.0. Most of the changes fall into the ease of development category.
With a few important exceptions, the changes do not add new functionality but
rather provide an easier way of doing the same things you could do before but
with less code and better compiler-time error detection. We provide here a brief
rundown of the most important changes to the platform.

1.9.1 Major themes in 5.0 Development

Release 5.0 revolves around five major themes:

� Quality, stability, and compatibility – The designers of J2SE 5.0 considered quality,

stability, and compatibility to be the most important aspect of the new release. Release 5.0

is the most tested release ever. Great efforts were made to ensure compatibility with

previous versions of Java. The Sun engineers have made a public plea for users world-

wide to test their code with the 5.0 Beta releases and report any problems that appear,

especially any code that works with earlier versions of Java but fails under 5.0.
� Performance and scalability – Faster JVM startup time and smaller memory footprint

were important goals. These have been achieved through careful tuning of the software

and use of class data sharing. (Refer to http://java.sun.com/j2se/1.5.0/

docs/guide/vm/class-data-sharing.html for more information about class

data sharing and why it helps.)
� Ease of Development – Most of us take the first two themes for granted. We expect

quality, stability, and compatibility, and the performance and scalability enhancements

are very nice to have. We applaud the extensive efforts Sun has made in those areas.

However, the Ease of Development (EoD) theme and the two that follow are likely to

be the most important changes noticed by developers.

It is in the EoD area that the most significant changes appear. In most cases, no

new functionality was added in the sense that almost anything you can do with 5.0 you

could do with 1.4, it just sometimes took a lot more boilerplate code (i.e. code that is

repeated frequently) to do it. The exception to this general statement has to do with

the new multithreading and concurrency features that provide capabilities previously

unavailable.
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In many cases, the new EoD features are all about syntax shortcuts that greatly

reduce the amount of code that must be entered, making coding faster and more error-

free. Some features enable improved compile-time type checking, thus producing fewer

runtime errors.
� Monitoring and manageability – The 5.0 release includes the ability to remotely

monitor and even manage a running Java application. For example, it is now much

easier to watch memory usage and detect and respond to a low-memory condition.

Many of these features are built right in to the system, and you can add additional

monitoring and managing features to your own code.
� Improved desktop client – The last great theme of the 5.0 release was an improved expe-

rience on the desktop client. In addition to better performance because of a faster startup

time and smaller memory footprint, there is a new, improved Swing (see Chapter 6)

look and feel called Ocean, and a new easy-to-customize skinnable look and feel called

Synth in which you can use XML configuration files to specify the appearance of every

visual component in the system. In addition, the GTK and XP look and feels intro-

duced in J2SE 1.4.2 have received further improvements. There is support for OpenGL

and better performance on Unix X11 platforms. The Java Web Start and Java Plug-In

technologies (both used to run Java applications downloaded over the Web) have been

improved.

Other new features in J2SE 5.0 include core XML support, improvements to
Unicode, improvements to Java’s database connectivity package known as JDBC,
and an improved, high-compression format for JAR files that can greatly reduce
download times for applets and other networked applications.

1.9.2 Major Ease of Development changes in J2SE 5.0

We list below the most important of the many EoD improvements in Java 5.0,
roughly in the order in which they are encountered in the rest of this book, not in
the order of importance. Most of these enhancements to the language can only
be appreciated after having had experience with programming in Java. If you are
completely new to Java, you might want to skip this section and come back to it
after you complete Part I.

� Autoboxing and unboxing – Chapter 2 explains that Java has primitive types like

int for integers, and Chapter 3 explains “object” types like Integer. The difference

between the two types is very important as we will see. Previous versions of Java made

it necessary to explicitly convert between the primitive types and the object types. In

Chapter 3 we examine the so-called autoboxing and unboxing feature added with J2SE

5.0 that removes the need for explicit conversions in most cases, and thus improves code

readability and removes boilerplate code and sources of errors.
� Enhanced for loop – Chapter 2 looks at the several types of looping structures in the

Java language, one of which is the for loop (quite similar to the C/C++ for loop).

Version 5.0 includes an enhanced for loop syntax that reduces code complexity and
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improves readability. We introduce the enhanced for loop in Chapter 2 and explain it

in more detail in Chapter 10 after we have described the object types with which the

enhanced for loop works.
� Metadata – In Chapter 4 we encounter the @Override annotation. It falls under the

category of metadata or “data about data.” In this case, it is better thought of as “data

about code”. The new metadata facility, also called the annotation facility, is designed

to use an “annotation” in your code that greatly reduces much of the boilerplate code

that would be required in previous versions of Java.

An annotation is a new 5.0 language element that begins with “@„. Some annotations

are processed by the javac compiler and some require the new annotation processing

tool apt. There are currently only three annotations in the beta release of version 5.0.

However, now that the metadata framework is available, we anticipate the appearance

of many useful annotations and annotation processors in the future.
� Formatted input and output and varargs – In Chapter 5 we discuss how to format

numerical output with Java. Version 5.0 finally adds the oft-requested ability to produce

formatted output easily in the form of a printf() method that behaves very similarly

to the printf() function in the C/C++ stdio library. There is also a new formatted

input feature that is described in Chapter 9.

Both these features rely on another new feature known as “varargs”, which stands for

“variable argument list’” in which the number of parameters passed to a Java method is

not known when the source is constructed. Varargs is a useful new feature that can be

of value in your own code, not just in the new printf() feature. Chapter 10 presents

another EoD enhancement that provides for automatic format and output of the elements

of an array (see the java.util.Arrays class). This feature really has nothing to do

with printf or varargs, but we mention it here because it eases the amount of work

that was necessary in pre-5.0 releases to output all the elements in an array in a nicely

formatted style.
� Static import – Release 5.0 includes a new technique for accessing Java static methods

and constants in another class without the need to include the full package and class

name every time they are used. (We explain what the terms class, package, static, import,

etc., mean in Chapters 3–5.) This new “static import” facility makes your code easier

to write and, since there’s less of it, less error-prone. We discuss static import in more

detail in Chapter 5 after discussing import in general.
� New pack200 hyper-compression JAR format – Chapter 5 discusses JAR (Java

Archive) files used to combine and compress Java class files. We also look at the new

pack200 format that compresses JAR files very tightly, reducing bandwidth and saving

download time. (This is not really an EoD change, but more of an “ease of deployment”

change.)
� Graphics system improvements – Release 5.0 includes numerous bug fixes and minor

tweaks to Java’s graphics subsystems known as AWT and Swing (see Chapters 6 and 7),

including reduced memory usage. In the EoD area, perhaps the biggest improvement is

that it is no longer necessary to call getContentPane() when using Swing compo-

nents (see Chapter 6 for details). Other enhancements include improved popup menu
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support, improved printing support for some graphics components, and the ability to

query for the mouse location on the desktop.
� New concurrency features – Chapter 8 discusses Java’s multithreading support, which

has been present since version 1.0. Release 5.0 adds new capabilities that greatly enhance

the multithreading features of Java. Some of these additions depend upon the generics

concept (see next item), so we wait until Chapter 10 to introduce these important new

capabilities.
� Generics – In Chapter 10 we introduce the new generics feature, a large and important

subject that we do not have space to cover in detail in this book. Java is already a very

type-safe language, which simply means that every variable has a specific type and that

only compatible types can be assigned to each other. However, the use of generics brings

an even greater amount of type safety to the Java language. Java includes a number of

“object containers,” such as the ArrayList class, that can contain “objects” of many

different types. When retrieving an object from one of these containers, it must be

retrieved as a very basic type and then converted back to the original type. If, however,

an incorrect type is added to the container, then an error occurs at runtime during the

conversion attempt. The use of generics makes it possible for the object containers to

require that only certain types can be placed into them, else a compile time error occurs.

Since mistakes are found at compile time, runtime safety and correctness is improved. In

addition, since the specialized containers only contain items of the desired type, retrieval

of items from the containers is easier since no explicit conversion to the desired type is

necessary.

You are not required to use the generics approach but see the note at the end of

Section 10.7 about using the 5.0 compiler with code that uses the older containers.
� Enumerated types – Chapter 10 presents a feature of C/C++ that many programmers

have missed in Java. Version 5.0 adds an enumerated type using the enum keyword.

The new Java enumerated type includes all the features of C/C++ enum and more,

including type safety.
� New StringBuilder class – We discuss this new class in Chapter 10, along with

the older StringBuffer class. Both are used in the building, concatenating, and

appending of string types, but the new class has improved performance.
� Changes to ease RMI development – Chapter 18 explains the Remote Method Invoca-

tion (RMI) techniques, including a simple but important change in J2SE 5.0 that makes

RMI development simpler.

We do not go into great depth in this book on these changes. To do so would
require an entire book just for those changes. In fact, at least one book devoted
entirely to Release 5.0 is available at the time of this writing [9]. There is also much
documentation available online at http://java.sun.com, though reading
that documentation is sometimes difficult. By the time this book is in your hands,
there are sure to be more books devoted to Java Version 5.0 that explain all the
new features in more detail than we can provide here. We expect one of those
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books to be the consistently good Java in a Nutshell series [10], the 5th edition
of which should include coverage of J2SE 5.0.

1.10 Web Course materials

The Web Course Chapter 1: Supplements section covers a number of topics related
to those mentioned here including the issue of interpretation versus compilation,
the design of JVMs like those with Just-In-Time compilation, and options for
deploying your Java programs to users. It provides a list of web links to JVMs and
compilers produced by independent sources. It also provides further information
on J2SE 5.0.

Some practical programming topics are also presented such as how to create
web pages with applets. For applets compatible only with version 1.2 or later,
the Web Course gives instructions on how to set up the web page so that a Java
plug-in will automatically download if needed.

The Web Course Chapter 1: Tech section discusses the benefits and shortcom-
ings of Java for technical applications. The Web Course Chapter 1: Physics section
looks similarly at the benefits and shortcomings of Java for physics computation
and simulation. It gives examples of different kinds of simulations of physics
phenomena. It also emphasizes the benefits of learning by coding in which the
process of converting a physics theory into a simulation will help to deepen your
understanding of the phenomena.
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Chapter 2
Language basics

2.1 Introduction

If you buy one of those do-it-yourself furniture kits, the best way to start is to
just dump all of those screws, nuts, planks, tools and other odd looking widgets
on the floor, group them into piles of similar looking items, and then go read the
instructions. Even if you don’t know what all of those widgets are for, it helps to
pick them up and look them over so that you become familiar with them and can
recognize them in the instructions.

So rather than dribbling them out over several chapters, here we dump out
most of the basic widgets needed to construct Java programs. The goal is to
start to become familiar with Java’s symbols, keywords, operators, expressions,
and other building blocks of the language with which to construct programs. We
provide examples and starter programs (on the Web Course) that allow you to
begin to write programs without needing to understand yet all of these language
elements at a deep level. You should refer back to this chapter as you proceed
and as your understanding of the language increases.

Note that in this chapter we occasionally mention the terms class, method, and
object. If you are new to object-oriented programming, do not worry about these
terms for now. We discuss them in detail in the following chapters.

We begin with a listing of the basic elements and then outline the structure of
a generic program. We proceed through the individual elements of the language
beginning with the Java reserved words, or keywords. We then discuss the basic
data types in Java called primitives. These are used in expressions and with
various operators to create statements.

With regard to technical programming, we look at the floating-point represen-
tations in Java and the various issues regarding them. We also discuss the math
functions available in the core language.

2.2 Language elements and structures

Like any computer language, Java consists of a set of basic elements that the
programmer arranges according to the syntax of the language to build a program.

29
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Characters and symbols make up the keywords and the punctuation with which to
build expressions, statements, and other higher-level structures. We first briefly
list these basic elements and structures here and then examine them in more detail
in the rest of the chapter.

2.2.1 Basic elements

Java codes consist of the following:

� Keywords and symbols – The programmer has wide latitude for the names of vari-

ables and classes but Java reserves some words for itself. These keywords include, for

example,

class, float, return, if, else

Symbols in java include, for example,

{}; () //

See Table A.1.1 and Table A.1.2 in Appendix 1 for listings of the Java keywords and

Java reserved symbols, respectively.
� Data types – Eight keywords name the eight kinds of basic data types in Java:

� byte, short, int, long – four integer types, all signed
� float, double – two floating-point types
� boolean – logical (true/false)
� char – 2-byte Unicode character encoding (can be used for 2-byte unsigned integers)

These data types do not use object representations but simply hold a data value in one

to eight bytes of memory. They are referred to as primitives.
� Operators – Java operators include the arithmetic operators (+, -, /, *, %), Boolean

operators (&&,||, etc.), comparisons (==,<=, etc.) and others. See the tables of operators

in Appendix 2.
� Identifiers – The programmer chooses the names of variables, classes, and methods but

these names cannot begin with a number and cannot contain a punctuation character

(though underscore - and dollar sign $ are allowed). Java is a strongly typed language,

which means that all variables must be explicitly declared as a particular type and that

strict rules apply when assigning variables of one type to another. The types of variables

include:
� Primitive type variables:

int n = 5; // n is a variable containing a primitive

// int type

double x; // x contains a double type
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� Reference variables refer to an object (see Chapter 3):

Vector vec = new Vector (); // vec is a reference to a

// Vector object

� Array variables (see Chapter 3):

x = b * c[5]; // c[5] refers to the element at index 5

// of array c

� Literals – A specific value in a line of code is called a literal:

double x = 4.0; // 4.0 is the double floating-point

// literal

String str = "A string"; // "A string" is a string literal

char c = 'c'; // 'c' is a character literal

2.2.2 Language structures

The basic language elements above combine to create higher-level structures that
perform the operations of a program. These structures include:

� Expressions – An expression contains an operation on one or more operands and returns

a value:

x = 5 – assignment operation

x < 5 – comparison operation

14. * y – multiplication operation
� Statements – A statement, which can hold one or more expressions, presents a complete

action or set of actions to perform:

x = 5;

if (y < 5) x = 3;

return 3.0 * (14. * y);

Statements end with a semicolon.

Finally, these structures in turn make up the structure of a class and its fields
and methods (methods resemble subroutines or functions in other languages). We
fully develop the definition of Java classes in later chapters.

2.3 A simple application

The following example code illustrates the bare essentials of a Java application
program that prints a short text string to the console. You can see that the code
must always occur within the framework of a class. Follow the instructions in
Chapter 1 for compiling and executing this application.
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/*

* A simple application.

*/

public class SimpleApp1

{

public static void main (String[] args)

{

// Print a string to the console.

System.out.println ("An application");

}

}

Begin with comments describing

the class.

The class signature.

Application processing always

begins in this method.

Single line comment

Print to console.

Braces span the code for a class

and the code for each method.

The code includes the keywords public, class, static, void, and main.
The brace symbols {} enclose the contents of a class, which in this case has the
name (i.e. the identifier) SimpleApp1. Similarly, matching braces enclose the
contents of the method named main. Parentheses enclose a method’s parameter
list, which in this case consists of an array of strings named args. (Programmers
in C/C++ will note the resemblance to the main method in those languages,
though its argument is not a string array.)

Methods, like subroutines and functions in other languages, carry out specific
tasks. This program has only the single method main(). This method is required
for all application programs and is the first method invoked when the program
starts. This main()method only holds a single statement, which invokes another
method to print a string literal to the console. The println() method comes
with the core language.

2.4 Comments

Java denotes comments in three ways. Double slashes precede a single line com-
ment as in

// Print a string to the console.

As seen in some of the examples above, double slashes can also be used at the
end of a statement, after the semicolon, to add a comment on the rest of the line.

Alternatively, you can bracket one- or multiple-line comments with matching
slash-asterisk and asterisk-slash, as in

/*

Print a string

to the console.

*/



2.5 Data types and Java primitives 33

The javadoc tool, which comes with the SDK, automatically generates
hypertext documentation when operated on Java source code files with special
tags. Starting a comment with a slash and two asterisks indicates comments for
javadoc, as in

/**

This applet tests graphics.

*/

public class TestApplet extends applet { . . .

The command

> javadoc TestApplet.java

will include this comment in the hypertext description of the class. Several special
comment tags are also available to describe method parameters, return values, and
other items. (Note that asterisks within the comments are ignored by javadoc
so we often use them to mark the left side of a block of javadoc comments.)
See Chapter 6 in the Web Course for more about javadoc.

2.5 Data types and Java primitives

How numbers and other data, such as characters, are represented in memory is
of great practical importance. Ideally a single memory representation, or type,
could represent all numerical data. However, computer memory and transfer rates
are not infinite and designers must strike a compromise among the demands for
numerical values to span the widest possible range of values while conserving
memory and maximizing program performance.

Very large numbers and fractional numbers require a floating-point type.
Floating-point operations involve the extra complexity of dealing with both a
significand and an exponent. Therefore, integer data types normally provide
faster performance for operations where floating-point is not required. (Some
processors don’t do any floating-point arithmetic at all, only integer arithmetic.)
A single universal numerical data type will not be efficient or sufficient for all
situations.

Table 2.1 lists the eight primitive data types and shows the features of each.
Four integer types provide for efficient use of memory for a given task. The byte
type (8-bit) is often useful for IO tasks while the long type (64-bit) is needed
for representing very large integer values. In between are the 16-bit short and
the 32-bit int types. The int type is the default for most integer operations in
Java. The integer types use two’s complement signed representations.
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Table 2.1 Java primitive data types.

Type Values Default Size Range

byte signed integer 0 8-bit -128 to 127

short signed integer 0 16-bit -32768 to 32767

int signed integer 0 32-bit -2147483648 to 2147483647

long signed integer 0 64-bit -9223372036854775808 to
9223372036854775807

float IEEE 754

floating-point

0.0 32-bit +-1.4012985E-45 to
+-3.4028235E+38,

+-infinity, +-0, NaN

double IEEE 754

floating-point

0.0 64-bit +-4.9E-324 to
+-1.7976931348623157E+308,

+-infinity, +-0, NaN

char Unicode character

or Unsigned integer

\u0000 or 0 16-bit \u0000 to \uFFFF or
0 to 65535

boolean true, false false 1 bit in 32

bit integer

Not applicable

The IEEE 754 floating-point standard is used for the 32-bit float and 64-bit
double types. We discuss floating-point in more detail later in Section 2.11 and
in Appendix 3.

Historically, standard characters were typically represented with the 7-bit
ASCII encoding. Various other 8-bit encoding schemes exist to provide an addi-
tional 128 characters for symbols or for the characters needed for particular
languages. To provide internationalization with a single encoding requires more
than the 256 characters available with 1 byte. The Java designers decided to
use the 2-byte character type encoding called the Unicode system for the char
type. (J2SE 5.0 adds support for an even larger 4-byte system known as Uni-
code 4.0.) The char type can also act as a 16-bit unsigned integer in some
cases. (See Section 9.7 for more about character encoding.)

The boolean (true/false) type provides for the many kinds of logical
operations carried out in almost any program. Though internally abooleanvalue
is either a 1 or 0 integer, it cannot be used in arithmetic operations. (Represen-
tations of Boolean arrays are not specified for the JVM. Some implementations
use bit arrays.)

We discuss classes and objects later, but we note here that primitive types in
Java are not instances of classes. The decision to use simple data types broke
the symmetry and elegance of the language to some degree but vastly reduced
overhead and execution times compared to the case where all data types are
objects.
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2.6 Strings

As in C/C++, an array of Java char primitive type values can represent a string
of characters. (We discuss arrays in Chapter 3.) However, you will find it much
more convenient and common to use the String class that comes with the core
language. Strings were deliberately made very easy to use in Java, and they behave
almost like a primitive type. Though we haven’t discussed classes yet, we present
some basics about Java strings here since they are essential to begin programming
anything of interest.

You can create a string variable by enclosing the string literal in quotations:

String str1 = "A string ";

String str2 = "and another string";

(This is the only class where the “new„ operator isn’t required to create an object
of that class.) You can append one string to another with a simple “+„ operation.
(This is also the only case in Java of overloading an operator, i.e. redefining its
operation according to context.) For example,

String str3 = str1 + str2;

results in str3 holding:

"A string and another string";

A very useful capability of the “+„ operator allows for default conversion of
primitive types to strings. Whenever you “add” a primitive type value, such as an
int value, to a string, the primitive value converts to a String type and appends
to the string. For example, this code:

String str1 = "x = ";

int i = 5;

String str2 = str1 + i;

results in str2 holding “x = 5„. This also works with boolean type values,
which result in “true„ and “false„ strings.

We discuss the String class and other string handling classes in more detail
in Chapters 3 and 10. Note that whenever we use the term string we refer to a
String class object unless otherwise indicated.

2.7 Expressions

An expression performs an operation and returns a value. Here are some
examples:

� i = 2 – assignment puts 2 into the i variable and returns the value 2.
� ++k – the k operand is incremented by 1 and the new value returned
� x < y – logical “less than” comparison, returns a Boolean true or false value.
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� i | j – returns the value of a bitwise OR operation on bits in the two variables.
� 4.0 * Math.sin (i * Math.PI) – combines several operations in this ex-

pression, including multiplication and a method call.

Expressions involve at least one operator. A value is returned from the expression
and, in some cases, an operand is also modified (such as ++k).

2.8 Operators

In Java an expression carries out some operation or operations that act according
to the particular operator in use. An operator acts upon one, two, or three operands.
Here we discuss some general properties of operators and their operands. Refer
to Appendix 2 for tables of the allowed operators in Java.

2.8.1 Operands

An operand can be:

� a numeric variable – integer, floating-point, or character
� any primitive type variable – numeric and boolean
� a reference variable to an object
� a literal numeric value, boolean value, or string
� an array element – a[2]
� char primitive, which in a numeric operation is treated as an unsigned 2-byte integer.

The operator is unary if it acts on a single operand; binary if it requires two
operands. The conditional operator, to be discussed later, is the only ternary
operator in Java.

Each operator places specific requirements on the operand types allowed.
For example, the subtraction operator “-„ in x = a - b; requires that a and b
variables be numeric types. The assignment operator“=„ in that same expression
requires that x also be a numeric type. (If a and b were wider types than x, a
casting operation, see Section 2.10, would also be required.)

2.8.2 Returned value

A value is “returned” at the completion of an operation. The following statements
use the assignment operator “=„ and the addition operator “+„:

int x = 3;

int y = x + 5;

These statements result in x holding the value 3 and y holding the value 8. The
entire expression y = x + 5 could be used in another expression:

int x = 3;

int y;

int z = (y = x + 5) * 4;
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This results in y holding 8 and z holding 32. The assignment operator “=„ in
the expression

(y = x + 5)

produces a new value for y and also returns the value of y to be used in the
expression for z.

2.8.3 Effects on operands

In most of the operations, the operands themselves are not changed. However,
for some operators, the operand(s) do undergo a change:

� Assignment operators – “x = y„ replaces the value of the first operand with that of

the second. The other assignment operators, “*=, +=, -=, /=„, also replace the value

of the first operand but only after using its initial value in the operation indicated by the

symbol before the equals sign. For example,

x *= y

results in x being replaced by x * y. Also, this is the value returned from the operation.
� Increment and decrement operators

(++x) – x is incremented before its value is returned.

(--x) – x is decremented before its value is returned.

(x++) – the initial value of x is returned and then x is incremented.

(x--) – the initial value of x is returned and then x is decremented.

For the increment and decrement operations, note that in a standalone expression
such as

x++;

there is no effective difference betweenx++ and++x. Both expressions increment
the value stored in the variable x. However, in expressions such as

y = x++;

and

z = ++i;

the order of the appearance of the increment operator is important. In the former
case, y takes on the value of x before the increment occurs. If x is initially 3, then
y becomes 3 and x becomes 4. In the latter case the increment occurs before the
value is used. So an initial value of 3 for i leads to i incrementing to 4 and then
z taking on the new value, 4.

Remember that if an operand is changed by the operation and the statement
holding that expression is processed again, as in a loop, the operand’s value will
be different for each pass.
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2.8.4 Expression evaluation

The operands of an operator are always evaluated from left to right. For
example, in

x = a + b;

the “+„ operator will determine the value of expression a and then expression b.
Do not get this rule confused with the precedence and associativity rules, dis-
cussed next.

Precedence determines the order in which operators act in an expression with
more than one operator. Table A.2.9 gives the precedence rating for each operator,
the higher number indicating higher precedence.

Associativity rules determine how the compiler groups the operands and oper-
ators in an expression with more than one operator of the same precedence. For
example, in the expression

x = a + b * c;

the evaluation begins with a and then the “+„ operator determines its right
operand. But in this case the right operand consists of the expression “b * c„.
The multiplication operator “*„ has a higher precedence than the additive oper-
ator “+„ so b multiplies c rather than sums with a.

Precedence can be overridden with parentheses, as in

x = (a + b) * c;

The parentheses force the addition of b to a, and then c multiplies this sum.
Although the precedence ratings, which are similar to those in C/C++, were

chosen for the most “natural” ordering of the operator evaluations, it never hurts
to use the parentheses if you are unsure of the precedence and to make the code
more readable.

When the operations in an expression all have the same precedence rating, the
associativity rules determine the order of the operations. For most operators, the
evaluation is done from left to right, as in

x = a - b + c;

Here, addition and subtraction have the same precedence rating, so a and b are
subtracted and then c added to the difference. Again, parentheses can be used to
overrule the default associativity, as in

x = a - (b + c);

The assignment and unary operators, on the other hand, are associated right to
left. For example, the statement

x += y -= -~4;
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is equivalent to

x += (y -= (-(~4)));

or, in long hand,

int a = ~4;

a = -a;

y = y - a;

x = x + y;

2.8.5 More operator tricks

Finally, here are some additional notes about operators. As indicated in the last
example above, assignment operations can be chained:

x = y = z = 4;

with the evaluations proceeding from right to left.
Assignments can be combined into other operations, to compact the code,

as in

if ((x = 5) == b) y = 10;

which first sets x to 5, then returns that value for the test of b. This technique
should generally be avoided as it makes the code difficult to read.

2.9 Statements

A statement in Java, like most computer languages, corresponds to a complete
sentence in a spoken language. It performs some complete action or set of actions.
It can encompass multiple operators and operands, as well as multiple sub-
statements. A single statement ends with a semi-colon and a set of multiple
sub-statements is enclosed in braces.

The statement,

x = 5.3 *(4.1 / Math.cos (0.2*y));

consists of several expression – multiplication, division, and an invocation of a
method – but is still considered a single statement.

A group of statements enclosed in braces – called a code block or compound
statement – acts as a single statement. For example, a simple if test looks like
this

if (test) statement;
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and causes the statement to be executed if the test is true. For the case where
a series of statements are needed after an if test, then they should be enclosed
in braces as in

if (test)

{

statement 1;

statement 2;

. . .

}

where all the statements within the braces will execute if a is less than b. Note that
a semi-colon is not necessary after the final brace. For these compound statements
we follow the common practice of putting the first brace after the control part of
the statement as in

if (test) {

statement 1;

statement 2;

. . .

}

We discuss below several important kinds of statements: declaration, conditional,
and flow control.

2.9.1 Declarations

A declaration gives both an identifier and a data type to a variable and provides
memory space for it. Java is a strongly typed language so every variable must be
explicitly declared a particular type. An initializer in the declaration can assign
a value to the variable:

int x;

int x, y, z; // multiple declaration

double y = 1.0; // Declaration and initializer

double x = 5.0;

Local variables in methods must be assigned a specific value either in the declara-
tion, or afterwards, before they are used, else the compiler complains. Class and
instance variables (see Chapter 3) will be given default values by the compiler:
zero for numerical types, false for boolean, empty (zero bits) for char, and
null for object reference types.

2.9.2 Conditional statements

The conditional if statement evaluates a boolean expression to decide whether
to execute a statement, as in

if (test) statement;
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where test indicates a boolean expression. If test evaluates to true, then
statement is executed.

Similarly, the conditional if-else statement evaluates a boolean expres-
sion to decide which of two statements to evaluate, as in

if (test)

statement1;

else

statement2;

The statement(s) to evaluate can consist of single, one-line statements or of code
blocks of multiple statements enclosed in braces.

A sequence of conditions can be tested with multiple if tests, as in

if (test1)

statement1;

else if (test2)

statement2;

else if (test3)

statement3;

else

statement4;

2.9.3 Flow control statements

Several types of statements affect the flow or sequence of processing such as
repeating a section of code or jumping over a section of code. Such flow control
statements are essential tools for any type of programming. The following loop
statements repeat the processing of a statement or code block for a number of
times as set by a logic test.

2.9.3.1 The for loop
The for loop goes as follows:

for (start; test; action) statement;

Here statement repeatedly executes until the expression test returns false.
The loop begins with an evaluation of the start and test expressions and, after
each loop, the action expression is evaluated before test is evaluated again.
A typical example goes as

for (int i=0; i < 10; i++) j = i * j;

This begins with the declaration of the integer i initialized to 0 followed by the
evaluation of the testi < 10. Since the variablei is less than 10, the evaluation of
the j = i * j statement proceeds. The processing “loops back” and evaluates
the i++ expression and then the test is evaluated again. The looping continues
until the test expression returns false.
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2.9.3.2 The enhanced for loop
J2SE 5.0 adds a new looping feature called the “enhanced for loop,” also some-
times called the “for/in” loop or the “for each” loop. For compatibility reasons, no
new keyword was added for the enhanced for. Instead a syntax change inside the
parentheses indicates the use of the new loop. Unfortunately, since the enhanced
for loop works on classes and objects or arrays that we don’t describe until Chap-
ter 3, we cannot explain the loop’s behavior in detail here. Instead, we give a brief
description and defer details until Chapter 10 where we discuss the Iterator
class. Briefly, the new loop appears as follows:

for (type value: container)

statement

The colon is normally read as “in,” thus the name “for/in” loop. The whole
expression can be read “for each value in container, do the statement”. (Of course,
thestatement can be a block of statements enclosed in braces.) The “container”
here is a Java object that contains other objects. For example, an array (Section
3.8) is a kind of container. Some arrays can hold object types, others hold primitive
types. If we have an array of int types, we can loop through all elements in the
array as follows:

for (int i: array) statement;

This loops through each element in the array and performs the statement using
each element, one at a time. The real power of the enhanced for loop becomes
evident after we learn about classes and objects (Chapter 3) and, in particular, the
Iterator class (Chapter 10).

2.9.3.3 The while and do-while loops
The while loop goes as follows:

while (test) statement;

It repeatedly executes statement until the test expression returns false.
Here is an example:

while (i < 5) {

i = a.func ();

}

The a.func() method is invoked as long as the variable i is less than 5. The
test is done before the first evaluation of statement, so that if the initial test
fails, nothing inside the code block is executed even once. As an alternative, the
do-while statement evaluates the loop code before the test is evaluated. This
ensures that the loop code is executed at least once.
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do {

i = a.func ();

} while (i < 5)

Sometimes it is necessary to instantly break out of a while or do-while loop
without waiting on the test at either the beginning or end of the loop. The break
statement provides that functionality. The processing will jump from a loop via
a break statement and continue to the statements following the loop, as in this
example:

while (i < 5) {

i++;

x = a.func ();

if (x < 0) break; // jump out of the loop

b.func ();

}

c.func ();

The break statement in the loop causes processing to jump immediately to the
following c.func() statement. The b.func() statement is ignored and no
further loop processing is done, regardless of the value of the text expression.

Sometimes it is necessary to begin a loop, perform only the first portion, skip
the rest, but continue in the loop for further processing. The continue statement
does just that, causing the processing in a for or while loop to skip the rest of
the loop and return back to the start of the loop. An example is

while (i < 5) {

if (a.func ())

continue;

b.func ();

}

Here the processing jumps back to the start of the while loop and checks the test
expression if a.func() is true. Otherwise, it executes the b.func() statement.
In a do-while loop a continue will cause the processing to skip down to the
while(test) and execute the test expression.

2.9.3.4 The switch statement
The final flow control structure is the switch statement:

switch (int expression) {

case 1: statement1;

case 2: statement2;

default: statement3;

}
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If the integer expression in the switch parameter returns the value 1, then the
processing jumps to statement1, which has the label case 1. If it returns 2,
then processing starts with statement2. If the value does not match any label
value, then the processing goes to statement3 with the default label.

Note that processing continues on to statements that follow it in subsequent
“case„ labeled sections unless a break statement causes the process to jump out
of the switch area. In this example,

switch (i) {

case 1: m = 5;

case 2: j = 5;

break;

default: j = 2;

}

If i equals 1 the m = 5 statement is evaluated and then the j = 5 statement
is evaluated as well. The break sends the processing out of the switch section.
Most of the time, there are break statements at the end of each case label. Also,
mostcase sections consist of multiple lines of code. It is not necessary to enclose
those lines in braces. For example, the following is perfectly legal and works as
expected:

switch (i) {

case 1:

m = 5;

q = 6;

break;

case 2:

j = 5;

k = 6;

break;

}

Note that the default label is not required, though it is good practice to use one
in every switch statement.

The type of the variable i in the switch statement must be byte, short,
int, or char type. The long type, boolean, any floating-point type, and object
references are not permitted (but see the autoboxing discussion in Chapter 3 for
J2SE 5.0).

2.10 Casts and mixing

Now that we have presented an overview of the basic elements and structures of
the language we can look a bit more closely at how the data types work. Here we
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discuss how one type converts into another and what happens when statements
include a mix of variables of different types.

Converting one type of data into another must follow the rules of casting. If a
conversion would result in the loss of precision, as in an int type value converted
to a short, then the compiler issues an error message unless an explicit cast is
made.

To cast type A data into type B data, put the type B name in parentheses in
front of the type A data:

A a = a-type-data;

B b = (B) a; // cast a, which is originally type A,

// to type B

Of course, it must be “legal” to convert type A data into type B. For the primitive
types, most, but not all, conversions are legal. An example of an illegal cast would
be an attempt to cast a String object into an int. The rules for what is legal
and what is not are described below and generally follow common sense. It is
nonsensical, for example, to convert a string into an integer since the integer
primitive type cannot “hold” a string, which is not a primitive.

An example of a sensible cast is the conversion of double data to an int:

double d = 1.234;

int i = (int) d; // Cast double to int

Expressions can promote to a wider (higher precision) type without an explicit
cast. For example, an int type can convert to longwithout a cast, but the reverse
requires a cast:

int i = 3;

long j = i; // no cast needed

i = (int) j; // cast required

Note that a char type value can be cast to other integer types but as an unsigned
value. The boolean type is singular; it cannot be cast to anything, and nothing
can be cast to a boolean. If a boolean value is needed, it must be the result of
a logical expression. For example, if an integer i > 0 is considered to be true,
then a boolean value can be obtained as follows:

boolean b = (i > 0);

2.10.1 Cast rules

Table 2.2 shows to what other primitive types a given primitive data type can be
cast. The symbol C indicates that an explicit cast is required since the precision
decreases. The symbol A indicates that the precision increases so an automatic
conversion occurs without the need for an explicit cast. N indicates that the
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Table 2.2 Converting between primitive data types.

int long float double char byte short boolean

int – A A∗ A C C C N
long C – A∗ A∗ C C C N
float C C – A C C C N
double C C C – C C C N
char A A A A – C C N
byte A A A A C – A N
short A A A A C C – N
boolean N N N N N N N –

∗ Indicates that the least significant digits may be lost in the conversion even though the target type
allows for larger values. For example, a value in an int type that uses all 32 bits will lose some of
the lower bits when converted to a float since the exponent uses 8 of the 32 bits.

conversion is not allowed. Object types can also be involved in casts, but we
defer that discussion until Chapter 3.

When data of one primitive type is cast to another type, the effect on the
numerical values must be taken into account.

� Narrowing conversions – When an integer type is cast to another integer type of a

smaller number n of bits, all but the n lowest-order bits are discarded. Depending on the

initial value, the result can have a different value and/or a different sign than the input

value.
� Integer to floating-point conversions – These are widening conversions so explicit casts

are not required. However, note that the precision for large numbers can actually decrease

since the exponent occupies part of the four bytes allocated for a float and part of the

eight bytes for a double. So the mantissa decreases accordingly. A large int value

converted to a float can lose low-order bits and similarly for a long to a double.

2.10.2 Mixed types in expressions

If an expression holds a mix of types, the lower precision or narrower value
operand is converted to the higher precision or wider type. This result then must
be cast if it goes to a lower precision type:

double x, y = 3.0;

int j, i = 3;

x = i * y; // OK since i is promoted to double

j = i * y; // Error since result is a double value

j = (int)(i * y) // OK because of the explicit cast

The process of converting a value to a wider or higher precision integer
or floating-point type is called “numeric promotion”. The Java language
specification states the following rules for promotion in an expression of two
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operands, as in x + i:

� If either operand is of type double, the other is converted to double.
� Otherwise, if either operand is of type float, the other is converted to float.
� Otherwise, if either operand is of type long, the other is converted to long.
� Otherwise, both operands are converted to type int.

This last rule can lead to confusion if adding two byte values. For example, the
code

byte a = 3, b = 6, c;

c = a + b;

does not compile because the a and b operands are automatically promoted to
type int before the addition occurs, meaning that the result is also an int. The
code then attempts to place the resulting int back into a byte type, resulting in
a “possible loss of precision” compiler error. The solution is to make an explicit
cast to byte:

c = (byte)(a + b);

2.11 Floating-point

Floating-point representation is obviously an important aspect of numerical com-
putation and how Java handles it while maintaining platform portability should be
understood. We first look at floating-point in general and then in Java. Appendix
3 gives further details about Java floating-point representation and operations.

2.11.1 Floating-point basics

A floating-point number is represented in binary as

+-b0.b1b2b3 . . . bn-1 * 2exponent

where bi represents the i bit in the n bits of the significand (also called the
mantissa). There is also a bit to indicate the sign. A floating-point value is calcu-
lated as

(-1)s · (b0 + b1·2-1 + b2·2-2 + b3·2-3 + . . . + bn-1· 2-(n-1))·2exponent

where s is a bit for the sign. Floating-point numbers involve a number of com-
plications with which the processor designers must deal. These complications
include:

� Approximations – The limited number of places in the significand means that only a

finite number of fractional values can be represented exactly. Similarly, the finite width

of the exponents limits the upper and lower size of the numbers.
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Table 2.3 Bit layout of the floating point primitives.

Type Sign Exponent Significand

float 1 bit 8 bits 23 bits

double 1 bit 11 bits 52 bits

� Round-off – Arithmetic operations often result in the need to round off between the

exact value and the value that can be represented by the floating-point type. A round-off

(or truncation) algorithm must be chosen by the designer of the language. Round-offs can

have significant impact on calculated values, especially during intermediate operations

where errors can build up.
� Overflows/underflows – Similarly, a calculation may result in a number that is smaller

or larger than the floating-point type can represent. Again, the language designer must

select a strategy for how to handle such situations.
� Decimal-binary conversion – The computer represents numbers in base 2. This can

result in loss of precision since many finite decimal fractions (0.1 for example) cannot

be represented exactly by binary fractions. (All finite binary fractions, however, can be

converted to finite decimal fractions.)

These complications can mean even simple calculations with floating-point
give surprising results. For example, the following code:

double d = 0.0;

for (int i = 1; i <= 10; i++) {

d += 0.1;

}

does not result in d = 1.0 since 0.1 is not exact in binary format. For this
reason, it is best to avoid equality tests between floating-point values, as in

if (a == b) statement;

Instead you should normally test floating values with <, <=, >=, and >. However,
it may be sensible to test for equality to 0.0 if a divide by zero could occur.

2.11.2 Java floating-point

The bit allocations for the floating-point representations of the float and dou-
ble types in Java are shown in Table 2.3. For each type there is one bit for the
sign. The exponents contain 8 and 11 bits and the fractions contain 23 and 52
bits, respectively.

The exponent values 0 and 255 for float are reserved for the special cases
discussed below. Otherwise, a bias of 127 is subtracted, giving an effective expo-
nent range of −126 to +127. Similarly, for double the exponent values 0 and
2047 are reserved and subtracting a bias of 1023 gives an effective exponent
range of −1022 to +1023.
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For float numbers with exponent values in the range −126 to +127, a 1
bit to the left of the binary point is assumed (i.e. b0 is fixed at 1 in the above
formula) thereby increasing the number of effective fractional bits by one. This
holds similarly for double numbers in the −1022 to −1023 range. This provides
an effective significand of 24 bits for float, 53 bits for double. Such numbers
are referred to as normalized. This scheme forfloat provides at least six digits of
decimal precision while double provides at least 15 digits of decimal precision.

The special floating-point cases include the following:

� Denormalized – If the bits in the exponent all equal 0 and the significand bits do not

all equal 0, then the exponent is treated as −126 for float and −1022 for double

(i.e. the binary point moves left by 126 places and 1022 places, respectively) and the

implied bit to the left of the binary points is 0. These denormalized numbers allow for

smaller values (i.e. closer to zero) than normalized alone.
� ± Zero – If the bits in the exponent and the significand all equal 0, then the floating-

point value is −0 or +0 depending on the sign bit. (See Appendix 3 for definitions of

+0 and −0.)
� ± Infinity – If all the bits in the exponent equal 1 and all the bits in the significand

equal 0, then the floating-point value is plus or minus infinity according to the sign.
� Not-a-Number (NaN) – If all the bits in the exponent equal 1 and any of the bits in

the significand equal 1, then the floating-point value is Not-a-Number (NaN) and the

sign value is ignored. Not-a-Number occurs when an operation has no mathematical

meaning, such as 0.0/0.0, or when any operation is done with an existing Not-a-Number.

Overflows, underflows, and divide by zero in Java floating-point operations do
not lead to error states (Java Exceptions are discussed in Section 3.9). A division
by zero leads to the plus or minus infinity value unless the numerator is also zero,
in which case the Not-a-Number value results. You can test for Not-a-Number
values using methods from the floating-point wrapper classes (see Chapter 3)
such as Double.isNaN (double x). Also, the Not-a-Number value can be
checked for with the test

if (x!= x) statement;

which always returns true for Not-a-Number values. Numerical comparisons
such as

if (x < y) statement;

always return false if either or both values are Not-a-Number.
Round-off takes the binary value nearest to the exact (or higher precision

intermediate) value. If two binary values are equally close, then the even value
(the one with its last bit equal to 0) is chosen.

In general, it is far safer to do floating-point calculations in double type. This
helps to reduce round-off errors that can reduce precision during intermediate
calculations. (You can always cast the final value to float if that is a more
convenient size for I/O or storage.) There can be some performance tradeoff,
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since double operations involve more data transfer, but the size of the tradeoff
depends on the JVM and the platform. (In Chapter 12 we discuss techniques for
measuring code performance.)

The representations of the primitives are the same on all machines to ensure
the portability of the code. However, during calculations involving floating-point
values, intermediate values can exceed the standard exponent ranges if allowed
by the particular processor (see Table A.3.1). The strictfp modifier of classes
or methods requires that the values remain within the range allowed by the
Java specifications throughout the calculation to ensure the same results on all
platforms.

2.12 Programming

As seen in Chapter 1, you must code within an object-oriented framework. How-
ever, you can apply the Java elements, structures, and techniques discussed so
far in this chapter to straightforward procedural programming and ignore object-
oriented issues until later. You can simply insert code into the main() method
of an application or in the init() method of an applet, as shown in the starter
programs of Chapter 1, and not yet deal with the workings of class and object
concepts.

To program something interesting you need the ability to display output in
some way. Since we postpone graphics interface programming until Chapter 6, we
use methods from the core Java library to print to the console in our demonstration
programs through Chapter 5. Below, we use this technique to look at an example
of code that illustrates various aspects of floating-point operations.

2.12.1 Print to console

Java possesses a very extensive set of Input/Output (I/O) tools and capabilities
but Java Input/Output is somewhat complicated and is best introduced after gain-
ing more experience with the objected oriented aspects of the language. So we
introduce Java I/O techniques over several chapters and devote all of Chapter 9
to I/O.

For now we give just some simple techniques for printing to the console,
which refers to the command line window where you run applications or the Java
console window in the browser holding an applet. (The Java environment on the
Apple Macintosh also provides a console window for application output.)

Until we discuss graphics and graphical user interfaces in Chapter 6, we rely
heavily on the following methods to see the results of a program:

System.out.print (string) // no line return

System.out.println (string) // includes line return

where string denotes any String object that you create as explained in
Section 2.6.
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For example, if you insert the following code snippet into the main method
of StarterApp1.java (see Chapter 1):

int i = 5;

int j = 3;

System.out.println ("i * j =" + (i * j));

the output to the console looks like

i * j = 15

The (i * j) expression inside the println parameter results in an integer
value, which the “+„ append operator converts automatically to a string and
attaches to the preceding string.

Note that the parentheses around the i * j term are not necessary accord-
ing to the higher precedence of the multiplication operator compared to the “+„

append operator (see Appendix 2 for a table listing the precedence rules). How-
ever, with addition, as in

System.out.println ("i + j =" + i + j);

you must be careful. Without parentheses, the compiler will treat the two +

operands as equal precedence and perform a string concatenation of the i value
(5) and the j value (3) resulting in

i + j = 53

if you instead desired the numerical sum, as in

i + j = 8

you must use the following:

System.out.println ("i + j =" + (i + j));

In general, for the sake of clarity, it is good practice to use parentheses whenever
a numerical expression appears inside a print or println parameter.

For floating-point values, Java automatically adjusts the output based on the
number of digits in the fractional part of the value. For this code snippet,

double = 5.0;

int y = 3.0;

System.out.println ("x * y =" + (x * y));

System.out.println ("x / y =" + (x / y));

the output to the console looks like

x * y = 15.0

x / y = 1.6666666666666667

Note the variation in the number of digits in the fraction. The basic println
method does not provide a way to specify the formatting of numerical values.
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Until J2SE 5.0, Java separated formatting from input and output operations.
You first formatted numbers into a string and then printed the string or displayed
it graphically. In Section 5.11 we discuss formatting with the new tools in Java
5.0 that provide combined formatting/output capabilities similar to those of the
printf() function in C.

2.12.2 Floating-point demo

As discussed in Section 2.11, you must deal with several aspects of floating-
point representations and operations when doing numerical computations. The
following code illustrates some of these floating-point issues:

// FP literals are double type by default.

// Append F or f to make float, or cast to float

float x = 5.1f;

float y = 0.0f;

float z = (float) 1.0;

float div-by-zero = x/y;

System.out.println ("Divide By Zero = x/y = " +

div-by-zero);

x = -1.0f;

div-by-zero = x/y;

System.out.println ("Divide negative value by zero = x/y = "

+ div-by-zero);

x = 2.0e-45f;

y = 1.0e-10f;

float positive-underflow = x*y;

System.out.println ("Positive underflow = "

+ positive-underflow);

x = -2.0e-45f;

y = 1.0e-10f;

float negative-underflow = x*y;

System.out.println ("Negative underflow = "

+ negative-underflow);

x = 1.0f;

y = negative-underflow;

float div-by-neg-zero = x/y;

System.out.println("Divide 1 by negative zero = " +

div-by-neg-zero + " \n");
x = 0.0f;

y = 0.0f;

float div-zero-by-zero = x/y;

System.out.println ("Divide zero by zero = " +

div-zero-by-zero);
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If we insert this code into the main method of the StartApplet1.java or
StartApp1.javaprograms described in Chapter 1, the output looks as follows:

Divide By Zero = x/y = Infinity

Divide negative value by zero = x/y = -Infinity

Positive underflow = 0.0

Negative underflow = -0.0

Divide 1 by negative zero = -Infinity

Divide zero by zero = NaN

On some platforms, the symbols on the console for Infinity and Not-a-Number
differ from these.

2.13 Basic math in Java

The core Java language comes with some basic mathematical tools built into
it. In this section we look at simple arithmetic operations and the mathematical
functions provided by the Math class.

2.13.1 Arithmetic operations

The Java core language includes the simple arithmetic operators:

� + addition
� - subtraction
� * multiplication
� / division
� % modulo (remainder)

The addition operator “a + b„ both adds numerical type values and also
performs string concatenation as discussed in Section 2.6. This is the only case
in Java of operator overloading. The subtraction operator “a - b„ subtracts b
from a, but the minus sign can also act as the unary minus operator that performs
negation on a single number (a = -b).

The “a/b„ division operator divides a by b according to these rules:

� If both a and b are integers, the result is an integer with the remainder truncated.
� If either a or b is a floating-point type, the result is floating-point.
� Ifa andb are integers andb is zero, an exception is thrown (error and exception handling

are discussed in Chapter 3).
� If either a or b is a floating-point type and b is zero, the result is

� +infinity if a is a non-zero positive value
� -infinity if a is a non-zero negative value
� NaN if a is also zero.
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The “a % b„ modulo operator returns the remainder of a divided by b. For
example,

5 % 3

returns a value of 2. The modulo operator also works with floating-point values.
If either operand is floating-point, the remainder is a floating-point type.

Note that the Math class (see below) includes the method

Math.IEEEremainder (double a, double b)

which computes the remainder of a/b for two double type values according to
the specific rules of the IEEE 754 standard (see the Math class in the Java 2 API
Specifications).

Java does not include an exponentiation operator, such as x**b for x to the
power of b. Instead, you must use the Math class method

Math.pow (double a, double b)

which computes a to the power of b and returns a double type.

2.13.2 Math functions

Beyond the basic arithmetic operations, a number of mathematical functions and
constants are available in the core Java language via the Math class. We discuss
exactly what a class is in the next chapter so for now just accept that the function
name must be preceded by “Math.„.

Math is a class that comes as part of the core language. It offers many useful
features:

� Constants:

Math.PI

Math.E

� Trigonometric functions (radian units):

double x =.5;

double y = Math.sin (x * Math.PI);

x = Math.asin (y);

� Absolute values:

int i = Math.abs (j);

� Random number generators:

double x = Math.random (); // In the range:

// 0.0 <= x < 1.0

� Other:

double y = Math.sqrt (x);

double x = Math.exp (y);
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See the Web Course Chapter 2: Tech section for a table listing all of the Math
methods with brief descriptions of each. The Java 2 API Specifications (see
Resources) provide a detailed description of the Math class.

Java version 1.3 included a new class called StrictMath that holds the same
methods as the Math class but must, according to the class specifications, always
implement the same algorithms from Sun’s “Freely Distributable Math Library”
(fdlibm in C) and give the exact same results regardless of the platform. This
differs from the Math class for which JVM designers have more latitude in its
implementation. This means that calculations on one platform may give slightly
different results with the use of the functions in Math in some cases than those
on another platform.

2.14 Web Course materials

The Web Course Chapter 2: Supplements section gives more information and
examples dealing with the language structures such as repetition statements and
flow control statements. It also examines:

� differences in the language elements between Java and C/C++
� the javap tool in the JDK that allows one to look at the bytecode in an assembler style

format
� the bytecode instruction set

The Chapter 2: Tech section gives more details about floating-point in Java,
the Math class, and casting and mixing among primitive types. The Chapter 2:
Physics section demonstrates some basic numerical methods with Java such as
example programs using Euler and Predictor-Corrector methods for solving first-
order differential equations.

Resources

Joseph D. Darcy, What Everybody Using the JavaTM Programming Language Should Know

About Floating-Point Arithmetic, Sun Microsystems, JavaOne Conference, 2002,

http://servlet.java.sun.com/javaone/sf2002/conf/

sessions/display-1079.en.jsp.

David Flanagan, Java in a Nutshell, 4th edn, O’Reilly, 2002.

David Goldberg, What Every Computer Scientist Should Know About Floating-point

Arithmetic, Computing Surveys, March 1991,

http://docs.sun.com/source/806-3568/ncg-goldberg.html.

James Gosling, Bill Joy, Guy Steele and Gilad Bracha, The Java Language Specification, 2nd

edn, Addison-Wesley, 2000. Online version at http://java.sun.com/docs/books/

jls/second-edition/html/j.title.doc.html.

Java 2 Platform, Standard Edition, API Specification,

http://java.sun.com/j2se/1.5/api/.
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Ronald Mak, Java Number Cruncher: The Java Programmer’s Guide to Numerical

Computing, Prentice Hall, 2003.

Glen McCluskey, Some Things You Should Know about Floating-Point Arithmetic, Java Tech

Tips, February 4, 2003,

http://java.sun.com/developer/JDCTechTips/2003/tt0204.html#2.

See also Appendices 1 and 2 for tables of language elements and operators. See Appendix 3

for more about floating-point.



Chapter 3
Classes and objects in Java

3.1 Introduction

In Java the “class” is paramount. Essentially all coding resides within class defi-
nitions. Here and in the following chapters we develop the concepts and coding
for classes and objects in Java.

For those new to object-oriented programming (OOP) the learning curve can
be rather steep because several concepts must be understood before the overall
picture comes into focus. The Web Course Supplements section for Chapter 3
offers additional introductory material to help get these concepts across.

Note that throughout the book we use the terms object and instance inter-
changeably.

3.2 Custom data types

In Chapter 2 we discussed Java primitive data types such as int, float, and
boolean. Data of a given type means that memory is reserved for a value of
that type and that only operations specific to that type can act upon the data.
So, for example, a float value has 4 bytes of memory allocated for it with
the sign, exponent, and significand bits arranged according to the representation
discussed in Chapter 2. When an operation such as an addition or multiplication
occurs upon afloat value, the JVM executes floating-point operations that carry
out the proper procedures for addition and multiplication with significands and
exponents. For integer addition and multiplication the JVM executes a different
set of operations unique to integer type data.

In conventional languages, you are stuck with only the data types that come
with the language. Languages like C, C++, and even modern versions of Fortran
permit the definition of data types called structures, but these are just conve-
nient ways to group related pieces of data together. Data structures have no
innate “behavior” associated with them. You cannot “add” two data structures
together.

Object-oriented programming, however, lets the programmer define new data
types that include data along with operations (or behavior) unique to that custom

57
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type. For example, Java does not offer a complex number primitive type. A
programmer, however, can create a complex number type with a class definition.
The definition would include data – two floating-point values for the real and
imaginary parts of the complex number – and operations performed with that
data. That is, the addition, multiplication, conjugation, and other operations for
complex numbers would be defined by the methods of the class definition.

We see that the class definition uses primitives to hold the data and that the
operations are written at the source code level; you do not define new machine
level (or virtual machine level in the case of Java) instructions for the class. The
principle, however, is the same. The class definition creates a new custom data
type with its own operational capabilities.

With the primitives you create instances of a type with a declaration such as

float x = 5.0f;

This allocates 4 bytes of memory to hold the value 5.0 in memory and the data is
labeled as belonging to the floating-point type so that only legalfloat operations
can act upon it.

Similarly, once a class definition is available, instances of the class can be
created. This means that memory is allocated for all the data fields in the definition.
(The code for the operations defined in the class is not duplicated with each
instance since Java knows how to find the code when needed.) A special method
called the constructor initializes the data values when the instance is created.
Just as you can create multiple variables to hold float values, you can create
multiple instances of a class such as the complex number class. Such instances
of the class are called objects.

With object-oriented programming, we go beyond just thinking in terms of
data-type representation and operations and instead look at using classes to rep-
resent any sort of self-contained entity. In a physics code we might, for example,
define a class that represents a particle. The data would include fields for the
name, mass, charge, and other qualities that define a particle. The methods would
implement the particle’s behavior such as its response to electric and gravitational
fields and its interactions with other particles.

3.3 Class definition

In Chapter 1 we presented class definitions of very simple classes in the code
for HelloWorld.java and HelloWorldApp.java. With only init() and
paint() methods in the former and the main() method in the latter, the capa-
bilities of those classes were very limited. A class typically contains:

� Data fields – Declare the data values belonging to the class or object.
� Methods – Functions to carry out tasks for the objects.
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� Constructor – A special kind of method called when an object is created. Its job is to

carry out initialization tasks.

The class GenericClass below illustrates these features:

public class GenericClass

{

int i; This field declares the

property i as an integer

type. (By default its

value will be 0.)

public GenericClass (int j) {

i = j;

}

A constructor is called

when an instance of this

class is first created.

It can be used to

initialize properties.

public void set (int j) (

i = j;

}

This method assigns a

value to the field i.

public int get () {

return i;

}

}

This method returns the

value of i.

We can now create an instance of our new data type and invoke its methods:

void aMethodSomewhere () {

// Create an instance of this data type.

GenericClass g = new GenericClass (5);

int k = g.get ();

. . .

In the following pages we discuss the main features of a class definition, beginning
with data fields.

3.3.1 Data fields

A class definition typically includes one or more fields that declare data of various
types. Data fields are also called “member variables.” For example, this code
shows a class with a single primitive int data value:
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public class GenericClass

{

int i = 12; Field with a declaration of

an integer data variable.

public int get () {

return i;

}

}

A method to obtain the value

of the i variable.

Methods (discussed later) can access the data in the fields. Here, for example, the
get() method returns the value in the i field.

When a data field declaration does not assign an explicit value to the data,
default values are assigned:

� int, byte, short, char – default value 0
� float, double – default value 0.0
� boolean – default value false

In the following example, we let one variable take a default value and set explicit
values for two of the variables. Setting an explicit value, even if it is the same as
the default, can be a good practice just to confirm that every field has the initial
value that you intended for it.

public class GenericClass

{

int i;

double d = 1.3;

boolean b = true;

. . .

}

Fields can use either the

default values or explicit

initialization.

Here i will hold a 0 value.

The fields can reside anywhere in the class definition (outside of methods) but
putting them all at the top (before the methods) is a popular coding style that we
follow.

3.3.2 Methods

A class definition typically includes one or more methods that carry out some
action with the data and may or may not return a value. The following code shows
a class with two methods – get() and triple() – that return the value of an
integer datum and one method – set() – that does not return a value (void):
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public class GenericClass

{

int i; Field with a declaration of an integer

data variable.

public int get () {

return i;

}

A method to obtain the value of the i

variable.

public void set (int j)

i = j;

}

A method to set the value of the i

variable. Parameter defines type for

value passed.

public int triple (int j) {

double f = 3.0;

i = f * j;

return i;

}

}

A method with a local double variable f. This

local variable is valid only within the

method. It must be assigned a value before

it is used.

Methods inside a class can access and modify the data in the class fields. Omitting
a few aspects that we discuss later, the structure of a method is:

access modifier return type method name (list of parameters)

{

statements, including local variable declarations

}

where:

� access modifier – determines what other classes and subclasses can invoke this

method. The access modifier may be omitted, in which case the default access rules

apply. We discuss access modifiers in Chapter 5.
� return type – what primitive or class type value will return from the invocation of

the method. In the above get()method, for example, the return type is int. The return

type may not be omitted. If there is no value returned, use void for the return type as

in the set() method above.
� method name – follows the same identifier rules as for data names. Customarily, a

method name begins with a lowercase letter.
� list of method parameters – the parameters passed to the method. Listed with

type and name as in the set (int j) method in the code above.
� local variables – data variables can be declared and used within the method. Local

variables must be assigned a value before they are used. The variables are discarded

when the process returns from the method.
� statements – the code to carry out the task for the particular method.
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So far we have discussed three locations where a method can store and access
data:

� member variables – the data defined in the data fields of the class definition
� local variables – data declared within a method and only valid there
� method parameters – data passed in the method parameter list

For example, the above triple() method includes all three types of data: a
member variable, local variables, and the parameter variables. Note that you can
also access data in another object if the access rule for that data allows it.

3.3.3 Method overloading

Perhaps you create a class that holds a method with an integer parameter:

void aMethod (int k) {. . .}

You decide later that you need a method that accomplishes essentially the same
task but requires a float parameter. In some procedural languages you would
create a new method with a slightly different name:

void aMethod-f (float x) {. . .}

A more elegant solution would allow you to use the exact same name for the new
method and have the compiler determine from the parameter type which method
to use:

void aMethod (int k) {. . .}

void aMethod (float x) {. . .}

This very valuable feature is called overloading, which Java permits for methods
as well as constructors. Another example of overloading is when the number
of parameters changes. For example, there can be yet another method named
aMethod() that takes two int parameters instead of just one:

void aMethod (int k, int q) {. . .}

Constructors with different numbers of parameters are common in the stan-
dard Java class libraries in which none, one, two, or more class properties can
be initialized using the same constructor name but with different parameter
lists.

Another common example is the println()method that we’ve already used
to print messages to the Java console:

System.out.println (String)
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This is actually just one of several println()methods in the PrintStream
class (we discuss Java I/O and stream classes in chapter 9). The variable
named System.out references an instance of the PrintStream class. You
can take advantage of the other overloaded versions of println(), which
include:

println () <- prints out just a line separator

println (boolean)

println (char)

println (char[])

println (double)

println (float)

println (int)

println (long)

println (java.lang.Object) -- invokes the toString() method

of the object

In general, any change to the type or number of parameters is legal overload-
ing. Note, however, that a change in the return type alone does not produce an
overloaded method. The compiler does not permit the following:

void aMethod (int k) {. . .}

int aMethod (int k) {. . .}

because only the return type was changed. Neither does changing the parameter
names produce an overloaded method. For example,

void aMethod (int x, int y, int z) {. . .}

void aMethod (int i, int j, int k) {. . .}

is not legal. Only the parameter types are examined, not the names.

3.3.4 Constructors

The new operator creates an instance of a class as in

. . .

int i = 4;

Test test = new Test (i);

. . .

The statement declares a variable named test of the Test type and creates an
instance of the Test class with the new operator. The argument of new must
correspond to a special method in the class called a constructor.

The constructor looks much like a regular method in that it has an access
modifier and name and holds a list of parameters in parentheses. However, a
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constructor has no return type. Instead, an instance of the class type itself is
returned. Except for some special situations discussed later, the only way to
invoke a constructor is with the new operator. The constructor’s name must
exactly match the class name, including case.

Constructors are useful for initializing variables and invoking any methods
needed for initialization. The code here shows a simple class with a constructor
and one method.

class Test

{

int i;

Test (int j) {

i = j;

}

int get () {

return i;

}

}

A constructor is called when an

instance of this class is first

created. Here it is used to

initialize a property variable.

The above code for the constructor,

Test (int j) {

i = j;

}

shows that in the process of creating an instance of the class, an initial value for
the member variable i is passed as a parameter to the constructor.

Java does not actually require an explicit constructor in the class descrip-
tion. If you do not include a constructor, the Java compiler creates a default
constructor in the bytecode with an empty parameter list. The default con-
structor for a class Test with no constructor is equivalent to explicitly
writing

Test () {/* do nothing */}

In the discussion of data fields, we noted that the data can receive explicit ini-
tial values or default values. You might wonder when this initialization actually
occurs. The javac compiler, in fact, inserts the initialization of the data into the
bytecode for the constructor. So, for instance, if the Test class had no explicit
constructor, the bytecode would be equivalent to that shown below where a con-
structor explicitly sets the int variable to 0:
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class Test

{

int i;

Test () {

i = 0;

}

int get () {

return i;

}

}

This constructor illustrates

explicitly the initialization of

property values to their default

values as would occur if we had used

no constructor or included Test() {}

As with methods, you can define multiple overloaded constructors to provide
optional ways to create and initialize instances of the class. (We discuss over-
loading of constructors and methods in more detail in Chapter 4.)

3.4 Class instantiation

Let’s use the following class for our explanation of instantiation:

class Test

{

int i;

double x;

Test (int j, double y) {

i = j;

double x = y;

}

int getInt () {

return i;

}

double getDouble () {

return x;

}

double calculate () {

return i*x;

}

}
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The class itself is a somewhat abstract concept. As explained so far, it has little
value until an instance of the class is created. When this class is instantiated with
the new operator, such as in

Test g1 = new Test (4, 5.1);

then the variable g1 holds a pointer to an “instance” of the class Test. In Java a
pointer to an object is called a reference. As laid out in memory, g1 is just a 32-bit
value that tells the JVM where to find the data for that class instance, whereas
that data itself is considerably larger than 32 bits. Thus, g1 is (a reference to) an
object or an instance of the class Test. You can’t do much with the class itself but
you can use the reference g1. (More about references in the following sections.)

During the new operation, the JVM allocates memory for, among other things,
the data fields i and x of the class. This data is stored, along with other aspects
of the object, somewhere in memory. You can imagine that the JVM creates and
keeps track of a unique ID just for that instance of the class.

If we create another instance of the class

Test g2 = new Test (53, 34.3);

then another set of data is stored under a different unique ID. So there will be
two blocks of memory, one for each instance. One block of memory contains the
values 4 and 5.1 for the i and x variables, and the other block contains the values
53 and 34.3, respectively. Since the JVM keeps track of the unique IDs, the JVM
always knows which block of memory to look in to find the correct values for a
particular instance of Test.

When a program invokes the methods of an object, the JVM loads the unique
data for that object into the fields, and these values are used in the code for the
methods of that class. When it invokes the same methods for a different instance
of the same class, then that object’s data is used in the code. We often refer to
objects in rather abstract or pictorial metaphors as if both the data and methods
were contained within each object. However, at the processor level it just comes
down to sets of data, unique to each object, shifting in and out of the method codes.

3.4.1 Object references

Java references differ considerably from C and C++ memory pointers where the
programmer can access and manipulate pointers directly.

Pointers in C and C++:
� hold the actual addresses of data in memory
� can be cast to different data types
� can be altered to point to other memory locations

A Java reference holds an indirect address of an object in the JVM and:
� the actual memory value of the reference is hidden
� reference values cannot be altered
� references can only be recast to a superclass or subclass of that object, never to other

data types (see Chapter 4 for a discussion of superclasses and subclasses)
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So references in Java act in some ways like memory pointers but are much safer
with regard to creating program errors and security problems.

3.4.2 Accessing methods and fields

To create a useful program in Java, an object obviously needs to invoke methods
and to access data in other objects. This is done with a reference and the “.„ or
dot operator. For example, we invoke the calculate() method for an instance
of the Test class above as follows:

Test g1 = new Test (4, 5.1);

double z = g1.calculate ();

The invocation of calculate() with the g1 reference will cause the data for
the g1 object to be used with the bytecodes for that method.

You can also directly access the data fields as in

double y = g1.x;

int j = g1.i;

In some situations you may not want one class to have access to certain data
(e.g. a password value) and methods. We will discuss access settings in Chapter 5
that allow you to determine what classes can access the fields and methods of a
class.

3.5 Static (or class) members

The Test class above has essentially no value outside of instantiations of the
class. In the course of program development a need often arises for utility methods
that might be needed for all instances of the class or for constants that are useful
to all instances of the class. Since object creation uses up memory resources it
is desirable to have access to such common resources without requiring them to
appear in each instance of the class.

However, we have seen that Java does everything within a class framework.
There are no global variables, for example, as in C/C++. Instead, Java has the
concept of class data and class methods that are defined in a class definition and
apply to all instances of the class. In fact, class data and class methods can be
accessed even without creating any instance of the class. Class data and methods
are also referred to as “static” members since the keyword static is used to
identify such members.

Static data are created when the class is loaded, even before any instantiation
of the class, and exists in just one place so that no matter how many instances of
that class are created, there remains only one copy of the static data. Instance data,
on the other hand, belongs solely to an instance of the class and new memory is
allocated for the data for each object.
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Static values are declared with the static keyword. For example, in this
class the variable pi is declared static:

public class ConstHolder

{

public static double pi = 3.14;

}

When the JVM loads the byte code for the class description of ConstHolder,
it creates a single memory location for the pi variable and loads it with the
value 3.14. All instances of the ConstHolder class can access the exact same
value of pi. The pi data exists and we can access it even when no instance of
ConstHolder is created. Since pi is a member variable of the class, though
a special one because it is static, it can be accessed just like any other member
variable. For example, if g1 is an instance of Test, then we can access the
variable pi as follows:

ConstHolder c = new ConstHolder();

double twopi = 2.0 * c.pi;

If there is no instance of ConstHolder, we can access the data directly using
the name of the class:

double twopi = 2.0 * ConstHolder.pi;

In practice, it is a good habit to always use the latter syntax, even when a class
instance exists, since it makes clear to the reader that the referenced variable is a
static member variable of the Test class.

In addition to static member variables, we can also define static methods,
producing methods that can be called without instantiating the class. For example,

public class ConstHolder {

public static double pi = 3.14;

public static double getPI () {

return pi;

}

}

We could, in this case, use the getPI() method to obtain the value of pi:

double x = 2.0 * ConstHolder.getPI ();

A static variable or method is also called a class variable or method, since it
belongs to the class itself rather than to an instance of that class. We’ve already
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seen examples of static methods in the Math class. In fact, Math is a class of
nothing but static member variables and static methods. The Math class itself
cannot even be instantiated. The only way to access the various constants and static
methods in the Math class is with the Math.constant and Math.method()
syntax.

If a class property is also declared final, then it becomes a constant value
that cannot be altered. In the following example, the static data field PI is now a
fixed constant. By convention, constants are normally written with all uppercase
letters.

class ConstHolder {

public final static double PI = 3.14;

}

3.6 More about primitive and reference variables

Primitive data type operations deal only with value. For example, the following
code shows that assigning primitive data variable i to another primitive named j
simply passes a copy of the value in i into j. That is, a datum’s value is passed,
not a reference or pointer to a data location.

int i = 1; // Variable i holds the value 1.

int j = i; // Now j holds 1 also, that is, i's value is

// copied to j

i = 2; // Now i is 2, but j still holds the value 1

Similarly, in method parameters, primitive variables are passed by value. That is,
a copy is made and passed to the method. Changes to the passed value inside the
method cannot affect the value in the calling code.

The following snippet creates an instance of AClass and then invokes the
change()method with an int parameter.

. . . a method in some class . . .

int i = 2;

AClass a1 = new AClass ();

a1.change (i);

int m = i; // m = 2, no matter what happens inside

// a1.change()

System.out.println ("i = " + i);

. . .
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The AClass definition is shown below. The change()method might seem to
change the value of the variable passed into it.

class AClass {

void change (int k)

{

System.out.println ("k = " + k);

k = 5;

System.out.println ("k = " + k);

}

}

However, only the value of variable i in the calling code is passed to variable
k in the change()parameter list. When that method assigns a value of 5 to k,
it has no effect whatsoever on the original variable i in the calling code, as the
output of this program demonstrates:

k = 2

k = 5

i = 2

Dealing with references and the data they point to is a bit more complicated than
primitive variables and so we discuss them in the following two sections.

3.6.1 Modifying reference variables

You can always assign a new object to a reference variable. For example, AClass
is defined as follows:

class AClass

{

int j = 1;

void aMethod (int k) {

int i = 10 * k;

k = 5;

j = k * 10;

}

}

In the following snippet, we first create two instances of AClass and reference
them with ac and bc:
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. . . a method in some class . . .

AClass ac, bc;

ac = new AClass ();

bc = new AClass ();

ac.j = 4; // Set j = 4 in the ac instance

bc.j = 40; // Set j = 40 in the bc instance

ac = bc; // Make ac a reference to the

// same object that bc references.

bc.j = 400; // Reset j in bc to 400.

int m = ac.j; // m now holds 400 since ac references the

// same object as bc and bc's j value has

// been changed to 400.

. . .

The code first assigns values to the j variable in each object. Next we assign
ac to the same object that bc references with the ac = bc statement. So both
the ac and bc variables now reference the same object. Therefore, when we set
bc.j to the value 400 and then obtain the value of ac.j we get back 400 since
ac and bc both reference the same object in memory.

The object that was referenced by the original value of ac is no longer
available. The memory allocated for that object most likely still exists some-
where within the JVM’s data buffers, but our code no longer has any way to
access that object. By assigning a new object to the ac variable we effectively
“orphaned” the original object that ac pointed to previously. When an object
is no longer referenced by any variables, the Java garbage collector eventually
reclaims the memory allocated for that object. See the Web Course Chapter 3:
Supplements section and also Chapter 24 for discussions of garbage collection in
Java.

3.6.2 Object references in method parameters

The argument, or parameter, list of a method can include object references. The
methods and data of that object can be accessed and modified by the method.
However, the reference itself passes by value. That is, the JVM makes a copy of
the internal memory reference and that copy goes into the parameter value. If
inside the method you set the reference variable to a new object, this will not affect
the reference variable in the calling method just like you cannot change primitive
values passed from calling methods. On the other hand, if you change the values
of the variables “inside” an object, then those changes apply to the object in the
calling method since both the calling method’s reference variable and the called
method’s reference variable refer to the exact same object.
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For example, we define two classes, AClass and BClass:

class AClass {

void aMethod (BClass bb) {

bb.j = 20;

}

void anotherMethod (BClass bb) {

bb = new BClass ();

bb.j = 100;

}

}

class BClass {

int j = 0;

}

In the following snippet, a reference to a BClass object is passed to aMethod()
of an AClass object. In that method, the value of bb.j is changed to 20. Since
bb inside aMethod() refers to the same object as does b in the calling code, then
b.j in the calling code takes on the value 20, losing the value 5 it originally had.

. . .

int i = 2;

AClass a;

BClass b;

a = new AClass ();

b = new BClass ();

b.j = 5;

a.aMethod (b);

i = b.j; // i now holds 20 not 5

. . .

Alternatively, look what happens when we call anotherMethod()in which
the local variable that originally held the passed reference toBClass is reassigned
to a brand new instance of BClass:

. . .

AClass a;

BClass b;

a = new AClass ();

b = new BClass ();



3.7 Wrappers 73

b.j = 5;

a.anotherMethod (b);

int i = b.j; // i still holds 5, not 100

. . .

The j member of that new BClass is assigned the value 100. Back in the call-
ing code, the original b.j still holds the original value 5. The reason is that the
assignment of 100 to bb.j applied to a completely new instance of BClass,
and, since the original reference was passed by value, that reference was not
changed. The calling code’s b variable still references the original BClass
instance.

Comparison of reference variables only tests if the two variables refer to the
same object. That is, the test

if (a == b) statement;

simply checks whethera andb refer to the same object, not whether the referenced
objects have equal data values.

If you need to test whether two objects hold the same data values, many classes
provide an equals() method like this:

a.equals (b)

It returns true if the data in object b matches that in object a. Comparing
all the data inside an object for equality with an equals() method is called
a “deep” comparison, whereas the “==„ comparison is “shallow.” In fact, all
classes implicitly include a shallow equals() method inherited from the top-
level class known asjava.lang.Object (we discuss inheritance in Chapter 4).
However, unless the author of a class has explicitly written theequals()method
to do a deep comparison, the results may not be as expected. All classes in the
core Java libraries can be expected to have a properly written equals()method.
However, no such guarantees exist for third-party classes or classes you write
yourself unless you are careful to write your equals() method correctly.

3.7 Wrappers

We noted earlier that Java primitive types are not class objects. The language
designers decided that the higher processing speed and memory efficiency of
simple, non-class structures for such heavily used data types overruled the ele-
gance of a purely object only language. They decided instead that for each prim-
itive type there would be a corresponding wrapper class that provides various
useful tools such as methods for converting a given numerical type to a string or
a string to a number.
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Table 3.1 Primitives and their wrapper classes.

Primitive Wrapper

boolean java.lang.Boolean

byte java.lang.Byte

char java.lang.Character

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

Table 3.1 lists the primitive types and the corresponding wrapper classes. See
the Java 2 Platform API Specification for detailed listings and descriptions of the
methods and constants provided with each of the wrapper classes.

With the exception of java.lang.Character and java.lang.

Integer, the wrappers have the exact same name as the corresponding primi-
tive type but with the first letter capitalized. The wrappers are normal classes that
inherit from the Object superclass like all Java classes (see Chapter 4).

The wrapper constructors create class objects from the primitive types. For
example, for a double floating-point number d:

double d = 5.0;

Double wrapper-double = new Double (d);

Here a Double wrapper object is created by passing the double value to the
Double constructor.

In turn, the wrapper provides a method to return the primitive value

double r = wrapper-double.doubleValue ();

Each wrapper class has a similar method to access the corresponding primitive
value:intValue() forInteger,booleanValue() forBoolean, etc. There
are additional convenience methods to return other types to which the wrapped
primitive could be converted. For example, Integer.longValue()returns
the value of the Integer as a long type, Integer.byteValue() returns
the value as a byte type, etc. Since nothing casts to or from a boolean primitive
type, the Boolean wrapper has only the booleanValue() method.

3.7.1 Strings, wrappers and primitives

The wrappers for primitive types also provide a number of useful static methods
including some to convert numbers to strings and vice versa. These are very
useful when reading textual input that needs to be converted to a primitive type.
A common situation where these come in handy involves passing numbers to
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applets via the applet tag parameters. An applet hypertext tag includes the param
sub-tag:

<applet . . .>

<param name = "string1" value = "string2" >

</applet>

The name parameter provides an identifier for the string passed in the value
parameter to the applet program. For example, we could pass two numbers as
follows:

<applet code = "MyApplet" width = "100" height = "50">

<param name = "fpNumber" value ="12.45">

<param name = "intNumber" value = "10">

</applet>

To obtain the parameter values the Applet class provides this method:

String getParameter (String paramName);

The parameter returns as a string from this method so we need to convert it to a
numerical primitive type value. The wrapper classes provide tools for this in the
form of static methods. (Since they are static, they can be called without having an
instance of the wrapper class.) This is illustrated in the following example code:

public void init () {

string fpStr = getParameter ("fpNumber");

double fpNum = Double.parseDouble (fpStr);

String intStr = getParameter ("intNumber");

int intNum = Integer.parseInt (intStr);

. . . .

Here the getParameter (String) method returns the string value for
the fpNumber parameter, and the static method Double.parseDouble

(String) from the Double wrapper class converts it to a double value.
Similarly, we get the integer parameter using the parseInt (String) static
method from the Integer class.

The parseInt() method has been available since Java 1.0, but
parseDouble() only appeared with Java 1.2. Previously, the valueOf()

method was used to return a Double value, which in turn could provide the
double primitive value using the doubleValue()method:

double fpNum = Double.valueOf(fpStr).doubleValue();
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Note that this code demonstrates the common Java technique of executing
several commands in a single line. The line executes from left to right.
First, the valueOf() method returns a Double object, which then has its
doubleValue() method called.

We saw here how to convert a string representation of a number to a primitive
type value. Going in the other direction, you can convert a primitive type to
a string in several ways. The String class provides several overloaded static
valueOf() methods as well as the overloaded “+„ operator. For example, in
the following code we first convert numerical values to strings using the String
class’s valueOf()methods (there is one for each primitive type) and then using
the “+„ operator:

double d = 5.0;

int i = 1;

String dStr = String.valueOf (d);

String iStr = String.valueOf (i);

String aStr = "d = " + dStr;

String bStr = "i = " + iStr;

Now the dStr and iStr variables reference the strings “5.0„ and “1„, respec-
tively, while aStr references “d = 5.0„ and bStr references “i = 1„. We
discuss more about strings and string helper classes in Chapter 10.

3.7.2 Autoboxing and unboxing

In all versions of Java prior to J2SE 5.0, conversions between wrapper classes and
the corresponding primitive types (and vice versa) are somewhat messy, as seen
above. As another example, creating a Float object from a float primitive is
straightforward:

float primitive-float = 3.0f;

Float wrapper-float = new Float (primitive-float);

Going in the other direction, however, is not quite as simple. It requires explicitly
calling the floatValue() method on the Float object:

float primitive-float = wrapper-float.floatValue ();

In J2SE 5.0, the code to create the wrapper object can be simplified to

Float wrapper-float = primitive-float;

Here, the “wrapping” is done automatically! There is no need to explicitly call the
Float constructor. This “wrapping” is called “autoboxing” in the sense that the
primitive value is automatically “boxed up” into the wrapper object. Autoboxing
is available for all the primitive/wrapper types.
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Going the other way, from object type to primitive, is just as simple:

Integer wrapper-integer = 5; // primitive 5 autoboxed into

// an Integer

int primitive-int = wrapper-integer; // automatic unboxing

// Integer into int

These shortcuts simplify coding and reduce errors in J2SE 5.0, but you might
not be too impressed since the simplification is only minor. Note, though, that
autoboxing and unboxing can be used just about anywhere. They can even be used
in loop control and incrementing and decrementing operations. For a contrived
example, consider adding all the integers from 1 to 100:

public class Box {

public static void main (String[] args) {

int MAX = 100; // a primitive int type

Integer counter = 1; // an Integer type

Integer sum = 0; // ditto

while (true) {

sum += counter;

if (counter == MAX) break;

counter++;

}

System.out.println ("counter is now " + counter);

System.out.println ("sum is now " + sum);

System.out.println ("MAX*(MAX+1)/2 is " +

MAX*(MAX+1)/2);

}

} // class Box

There is a lot of hidden autoboxing and unboxing going on in this simple-looking
code. First, the Integer types counter and sum are autoboxed from the
primitive values 1 and 0. Then, in the loop, they are unboxed to primitive values
so the += operation can be applied and then reboxed to their “native” Integer
types. To do the == comparison counter is unboxed so it can be compared
with the int type MAX. If the break does not apply, then counter is unboxed,
operated on with ++, and then reboxed.

Autoboxing and unboxing work in a for loop as well:

Integer sum = 0;

for (Integer counter=1; counter < MAX; counter++) {

sum += counter;

}

Note that both of these loops are likely to perform abysmally because of all the
autoboxing and unboxing operations that must occur. Even though the conversions
do not appear explicitly in the source code, they still must be done. An optimizing
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compiler might be able to avoid some of the autoboxing and unboxing operations,
but in general looping operations should be done with primitive types unless there
is a very good reason to use a wrapper type.

Where autoboxing and unboxing should be used is whenever an explicit con-
version to or from a wrapper type would be required if you were using J2SE 1.4.
In 5.0 and above, just write the code “naturally” and let the compiler handle
the conversions automatically. But don’t go out of your way to demonstrate the
automatic conversion feature as we did in the examples above.

Autoboxing and unboxing also work with Boolean and boolean types. For
example,

boolean one = true; // nothing new here

Boolean two = true; // autoboxing of boolean literal "true"

// to Boolean type

if (one && two) // auto unboxing

do-something ();

Before 5.0, the if, while, and do-while statements (see Chapter 2) all
expected boolean expressions. Through the use of unboxing, those flow control
statements now also accept expressions that evaluate to Boolean types. Simi-
larly, the old switch statement expects a byte, short, int, or char type in
Java 1.4 and below. With the addition of autoboxing in 5.0, switch now also
accepts Byte, Short, Integer, and Character types.

Where autoboxing and unboxing become particularly useful is with the inser-
tion and retrieval of primitive values into and out of object containers likeVector
and ArrayList (see Chapter 10). Since the container classes only accept
objects, not primitives, prior to J2SE 5.0 it was necessary to convert primi-
tives to wrapper object types for insertion and to convert wrapper objects back
to primitives after retrieval. Autoboxing and unboxing now make these opera-
tions almost transparent. With the additional new “generics” feature in 5.0, using
primitives with container objects is even simpler. We postpone that discussion
until we discuss the generics feature in Chapter 10.

3.7.3 Autoboxing and overloading

Autoboxing and unboxing can make method overloading interesting. Consider
the two overloaded methods shown here:

long method1 (long l) {return l+1;}

long method1 (Integer i) {return i+2;}

If you call method1() with a primitive long parameter, then the first
method1() is used. If you call method1()with an Integer object parameter,
then the second method1() is used. There is nothing new there. But what hap-
pens if you call method1() with an int parameter? In J2SE 1.4 and below, the
int is promoted to a long and the first method1() is used. With autoboxing, it
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is conceivable that the int could be boxed into an Integer type and the second
method1() used. That might even be what you want to happen – it might make
more sense to convert an int to an Integer than to promote it to a long.
While arguably reasonable, that is not what happens. The general rule is, for
compatibility reasons, the same behavior that applied in pre-5.0 versions must
continue to hold. The reason is that existing code cannot suddenly start behaving
differently when compiled and run under 5.0.

We would suggest that an even better rule is to realize that using overloads
like this is confusing and potentially asking for trouble. There is little reason to
write such obfuscated code.

3.8 Arrays

An array provides an ordered, sequential collection of elements. These elements
consist of either primitive values or object references. Here we concentrate on
primitive array types. We discuss arrays in more detail in the next chapter. How-
ever, arrays are very useful for the demonstration programs and exercises, so we
learn enough with this brief introduction to implement arrays of primitive type
values.

You can declare a one-dimensional array of primitive type values in two ways:

int iArray[];

float[] fArray;

You can put the brackets after the array name as shown in the first line or after
the type declaration as shown in the second line. As a matter of style, the second
method is preferred; you are creating a float array, so the array symbols go
with the float keyword.

You create an array of a given size and with default values for the elements
using the new operator and putting the array size in brackets. For example,

int[] iArray = new int[10];

creates an int array that is ten elements long. Here are some other examples:

long[] lArray = new long[20];

int n = 15;

short[] sArray = new short[n];

For arrays of primitive type values, the declaration creates the array object (Java
arrays are objects) and allocates memory for each primitive element and sets each
element to a default value for that type. For numeric types, the default values equal
zero (0 for integers, 0.0 for floating-point). For boolean arrays the default value
for each element is false. For char the default is the Unicode value “ \ u0000”
(all bits equal 0).

The size of the array in the declaration must be an int integer, so arrays are
limited to the maximum value of an int, which equals 2 147 483 647.
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You can also create and initialize an array to particular values in the declaration
by putting the elements between braces and separated by commas, as in

int[] iArray = {1, 3, 5, 6};
long[] lArray = {10, 5, 3};
double[] dArray = {1.0, 343.33, -13.1};

Here the compiler counts the number of elements provided and automatically
sizes the array to that number. Array elements are accessed with an int value
inside brackets with a value between 0 and n-1, where n equals the size of the
array. For example,

int ii = iArray[3] * 5;

double d = dArray[0] / 3.2;

You can find the size of an array via the length property:

int arraySize = iArray.length;

Note again that the above declarations work only for arrays of primitive type
values. For arrays of objects, an object must be created separately for each element
in the array. In other words, the array is really just a list of references to other
objects that must be created in a separate step. We discuss arrays of objects in the
next chapter.

3.9 Exceptions

If a Java program attempts to carry out an illegal operation, the JVM does not
necessarily halt processing at that point. In most cases, the JVM allows for the
possibility of detecting the problem and recovering from it. To emphasize that
such problems are not fatal, the term exception is used rather than error.

For example, what if by accident we put a non-numeric string into an applet
tag parameter and it is passed to the wrapper method Integer.parseInt()

as shown below:

class MyApplet extends Applet

{

. . .

init () {

// If the parameter returned is not

// numeric, there will be a problem:

int data = Integer.parseInt (getParameter ("intNumber"));

aMethod (data);

}

}
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If getParameter() returns, say, the non-numeric string “abc„, then the
Integer.parseInt()method cannot possibly parse the string into a numeric
value. Obviously this would cause a serious problem. Java exception handling
provides a systematic way for the programmer to respond to such errors and to
decide on an appropriate response rather than simply letting the program fail,
perhaps ungracefully. Without an exception-handling system built into the lan-
guage, you would have to write your own routine to test the string for numeric
numbers. For example, in the code below we create a special method to test if
a String holds a valid integer value before the string goes to the parseInt
method:

. . .

String str = getParameter ("dat");

if (testIfInt (str))

Integer.parseInt (str);

else {

ErrorFlag = MY-ERROR-BAD-FORMAT;

return −1;
}

boolean testIfInt (String str) {

. . . messy code to test characters for numbers. .

}

. . .

Thankfully, we can instead use Java exception handling rather than having to
write custom test code for all possibilities, or worse, letting a program fail
ungracefully. In Java exception handling, an exception is said to be “thrown”
when the JVM detects that something is awry. In the example here, the attempt
to parse a non-numeric string throws a particular type of exception called a
NumberFormatException.

Whenever an exception is possible, our code can “catch” the exception, should
one occur, using the try-catch syntax as follows:

try {

code that can throw an exception

}

catch (Exception e) {

code to handle the exception

}

In the following code segment we surround the parseInt()method invocation
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with a try-catch pair:

try {

int data = Integer.parseInt (getParameter ("dat"));

aFunctionSetup (data);

. . .

}

catch (NumberFormatException e) {

data = -1;

}

Here, the Integer class method parseInt() throws an instance of the
NumberFormatException class if the string passed does not represent a valid
integer number. The program processing jumps from the line that causes the
exception (the parseInt() method call) to the code in the catch block. All
the code from the line that caused the exception to the end of the try block is
permanently skipped.

The parseInt() method in Integer is written something like the
following:

public static int parseInt (String s)

throws NumberFormatException {

. . .

. . . code to check if the string is a number

. . . if it isn’t then:

throw new NumberFormatException ("some error message");

. . .

}

Thethrows NumberFormatException phrase in the method signature indi-
cates that the method includes a throw statement of that type somewhere in the
method code.

We see that the throw statement actually creates an instance of the exception
(like everything else in Java, exceptions are class types) and causes the routine to
return with the exception thrown. The constructors for an exception may include
parameters with which you can pass useful information about the circumstances
of the exception. The catch code can then examine this information using methods
on the Exception class.

Java divides exceptions into two categories:

� general exceptions
� run-time exceptions

General exceptions must be handled in source code. They are also called
“checked” exceptions, meaning they must be checked for. For any method that
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can throw a general exception, you must either place a try-catch around the
invocation of that method or arrange to have the exception propagate up to the
calling method that invoked your method. If you want the exception to propa-
gate, then you must first declare that your method might throw the exception.
This declaration is made with the throws clause as the following code shows:

public void myMethod () throws NumberFormatException {

. . .

Integer.parseInt (str)

. . .

}

Here the myMethod() invokes the parseInt() method and, since it does not
use the try-catch to handle the exception, the method declaration includes
throws NumberFormatException in the method signature. You need do
nothing special when you call Integer.parseInt(). The JVM automatically
causes the exception to be propagated should one occur anywhere in your method.
Then the caller of your method must handle the exception.

In summary, whenever you call any method that might throw a checked excep-
tion, you must either put that method call into a try-catch block and handle the
exception yourself or declare that your method could throw the same exception.
(You can also declare that your method throws a superclass of the exception;
we discuss super- and subclasses in the next chapter.) If you do not use one
of these techniques to handle checked exceptions, the javac compiler returns
errors during compilation.

Run-time exceptions, unlike checked exceptions, do not have to be explicitly
handled in the source code. This avoids requiring that a try-catch be placed
around every integer divide operation, for example, to catch a possible divide
by zero or around every array variable to avoid indices going out of bounds.
However, you can handle possible run-time exceptions with try-catch if you
think there is a reasonable chance of one occurring.

(We discuss class inheritance in the next chapter but we note here that all
exceptions are instances of either the Exception class or its many subclasses.)

Note that you can use multiple catch clauses if the code can throw differ-
ent types of exceptions. For example, in this code we provide for two possible
Exception subclasses:

. . .

try {

. . . code . . .

} catch (NumberFormatException e) {

. . .

} catch (IOException e) {
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. . .

} catch (Exception e) {

. . .

} finally {// optional

. . . this code always executed even if

no exception occurs . . .

}

. . .

The code bracketed by the try-catch may throw the specific exceptions
NumberFormatException or IOException, which are caught in the corre-
sponding catch sections. Any other type of exception thrown will be caught by
the third catch since it catches Exception, which is the root of all exception
types. The finally keyword indicates that, regardless of whether an excep-
tion is thrown or not, the code block following finally is always executed.
Sometimes it is useful to use a try-finally block in which no exceptions
appear but one wants to be certain that the code in the finally block always
executes.

3.10 OOP in engineering and science

The same reasons that object-oriented programming benefits general pro-
gramming also apply to science and engineering applications. These benefits
include:

� enhanced reusability of the code
� modularity makes the code structure easier to understand and maintain
� encapsulation helps to reduce the breaking of other codes when a change is made
� enhancements of the code via inheritance (see next chapter) are made in a systematic

manner

OOP can also provide additional benefits to science and engineering. For exam-
ple, in the Web Course Chapter 3: Physics section we discuss how complicated
physical systems are reduced to essential parts and how these parts naturally fall
into object-type descriptions. Science, in general, usually seeks to segment com-
plex systems into simpler components. These components can easily correspond
to objects. Then these simpler objects can be grouped into composite objects that
correspond to the higher-order complex systems.

For example, one could easily imagine a set of classes providing the properties
and structures of a group of proteins. These could be useful to both chemists
and microbiologists, who would use them in their own programs for different
applications.
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In a similar way, engineers could use objects to represent the different com-
ponents that make up a complex machine or a group of machines like a power
plant. Each object representing a component of a system can act and interact
with the other objects of the system. A modified or enhanced component can
then correspond to an extended class (see Chapter 4).

3.10.1 Complex number class

Fortran, the long time programming language in science, includes a complex
number type, but Java, unfortunately, does not. As mentioned earlier we can,
however, create a complex class of our own. A complex number needs two mem-
ory locations reserved for the real and imaginary parts and it needs methods to
carry out operations such as addition and subtraction.

Below we show code for a complex number class that possesses two floating-
point fields for the real and imaginary values plus two methods to carry out
operations on these values:

/** A very limited complex class. **/

public class BasicComplex

{

double real;

double img;

/** Constructor initializes the values. **/

BasicComplex (double r, double i)

{real = r; img = i;}

/** Define a complex add method. **/

public void add (BasicComplex cvalue) {

real = real + cvalue.real;

img = img + cvalue.img;

}

/** Define a complex subtract method. **/

public void subtract (BasicComplex cvalue) {

real = real − cvalue.real;

img = img − cvalue.img;

}

}

Then in another program we could create two instances of our complex class and
add one to the other, as shown below:
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public class ComplexTest {

static public void main (String[] args) {

// Create two complex objects

BasicComplex ac = new BasicComplex (1,2);

BasicComplex bc = new BasicComplex (3,1);

// Add ac and bc. The ac object will hold the sum.

ac.add (bc);

. . .

}

}

This example illustrates some of the basic concepts of classes, how they relate
to data types, and how they could be used in mathematical applications. This
class is very limited, though. In Chapter 4 we create a complex class with more
features and take advantage of class techniques such as overloading of methods.

3.10.2 Histogram class

A histogram provides a frequency distribution for the range of values that can be
taken by a parameter of interest. These types of distributions are often made in
science and engineering studies. For example, say that an experiment measures the
voltage output of a sensor with a range of −2V to +2V. We create a histogram
with, say, ten “bins” in which the first bin holds the number of hits measured
between −2.0 and −1.6, the second bin for between −1.6 and −1.2, and so forth,
up to the last bin, which counts the number of times the hits were between 1.6
and 2.0.

The following BasicHist.java class provides some essential histogram
features. The class properties include instance variables for the number of bins,
an array of bins, over and underflow counts, and the range over which to bin the
values. The constructor creates an instance of the class for a given set of bins and
for a lower and upper parameter range. The three methods provide for adding an
entry to the histogram, clearing the histogram, and for obtaining the values in the
bins (including the overflow and underflow counts).

/** A simple histogram class to record the frequency

* of values of a parameter of interest.

**/

public class BasicHist

{

int[] bins;

int numBins;
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int underflows;

int overflows;

double lo;

double hi;

double range;

/** The constructor will create an array of a given

* number of bins. The range of the histogram is given

* by the upper and lower limit values.

**/

public BasicHist (int numBins, double lo, double hi)

{

this.numBins = numBins;

bins = new int[numBins];

this.lo = lo;

this.hi = hi;

range = hi − lo;

}

/** Add an entry to a bin. Include if value is in the

* range lo <= x < hi

**/

public void add (double x) {

if (x >= hi) overflows++;

else if (x < lo) underflows++;

else {

double val = x − lo;

// Casting to int will round off to lower integer

// value.

int bin = (int) (numBins * (val/range));

// Increment the corresponding bin.

bins[bin]++;

}

}

/** Clear the histogram bins. **/

public void clear () {

for (int i=0; i < numBins; i++) {

bins[i] = 0;

}

overflows = 0;

underflows= 0;

}
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/** Provide access to the bin values. **/

public int getValue (int bin) {

if (bin < 0)

return underflows;

else if (bin >= numBins)

return overflows;

else

return bins[bin];

}

}

The applet below creates an instance of BasicHist and uses it to provide a
histogram of the distribution of values generated by a Gaussian random num-
ber generator. (We discuss details about random number generation in Java in
Chapter 4.) We give the histogram ten bins and set the limits from −2.0 to 2.0.

/** Class built from StarterApplet1. **/

public class BasicHistApplet1 extends java.applet.Applet

{

public void init () {

// Create an instance of the Random class for

// producing our random values.

java.util.Random r = new java.util.Random ();

// Create an instance of our basic histogram class.

// Make it wide enough enough to include most of the

// gaussian values.

BasicHist bh = new BasicHist (10, −2.0, 2.0);

// The method nextGaussian () in the class Random

// produces values centered at 0.0 and with a standard

// deviation of 1.0. Use it to fill the histogram

for (int i=0; i < 100; i++) {

double val = r.nextGaussian ();

bh.add (val);

}

// Print out the frequency values in each bin.

for (int i=0; i < 10; i++) {

System.out.println ("Bin " + i + " = " +

bh.getValue (i));

}
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// Negative bin values gives the underflows

System.out.println ("Underflows = "+ bh.getValue

(-1));

// Bin values above the range give the overflows.

System.out.println ("Overflows = "+ bh.getValue (10));

}

}

When we run the above applet, an output similar to the following is produced.
We see that the distribution does in fact roughly follow the general shape of a
Gaussian centered in the middle bins.

Bin 0 = 3

Bin 1 = 8

Bin 2 = 12

Bin 3 = 14

Bin 4 = 15

Bin 5 = 17

Bin 6 = 9

Bin 7 = 9

Bin 8 = 7

Bin 9 = 3

Underflows = 1

Overflows = 2

In the coming chapters and in the Web Course we develop a more capable his-
togram class and use it for many examples.

3.10.3 Object-oriented vs. procedural programming

If your program had 20 parameters to examine, you can simply create 20 instances
of BasicHist, each with its own number of bins and range limits relevant to
that parameter. If at some later point, we add new methods and instance variables
to the BasicHist, you don’t need to modify the code in your program as long
as the changes are internal to BasicHist and don’t affect the parameter lists in
the methods that you invoke.

If you think about how to do histogramming in a traditional procedural code
approach, you should start to appreciate the elegance of the object-oriented
approach. In a procedural program, you would need to create arrays to hold the
histogram values. You might create a number of 1D histograms or, for the case of
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histograms with the same number of bins, you could use a 2D array with the first
index indicating the histogram and the second index corresponding to the bins.

Similarly, you could use arrays to hold the parameters of the histograms,
such as the number of bins, the lower and upper ranges, and so forth. Functions
to add entries to the histograms would require a lot of bookkeeping to deter-
mine which histogram was needed. With objects, we just create 20 instances of
the BasicHist type and each instance knows which histogram it is, and you
don’t have to worry about keeping track of the histogramming details in your
code.

Furthermore, if you wanted to use the histogram code in another program,
or let someone else use your histograms, it would be messy to extract just that
code from the program and move it into the new one. The encapsulation aspect
inherent to the object approach makes reusability far easier than with procedural
code.

3.11 Web Course materials

The Chapter 3 Web Course: Supplements section provides additional introduc-
tory material about class definitions and objects. It also lists differences between
object-oriented programming in Java and C++, and reviews memory manage-
ment in Java (Garbage Collection) and the internals of the JVM.

The Chapter 3: Tech section looks further at OOP in science and engineering
applications. It also provides complex number and histogram codes and demon-
stration programs. The Chapter 3: Physics section gives a tutorial on OOP in
physics and continues with more examples of numerical computing techniques
with Java.
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Chapter 4
More about objects in Java

4.1 Introduction

Chapter 3 introduced the basic concepts of classes and objects in Java such as the
class definition, instantiation, and object reference. We emphasized the analogy of
classes with data types, but the class approach allows for more than just defining a
new data type. Java allows you to build upon, or inherit from, a class to create a new
child class, or subclass, with additional capabilities. In this chapter we introduce
class inheritance in Java. Inheritance involves the overriding (not overloading)
of constructors and methods, abstract classes and interfaces, polymorphism, the
Object class, and the casting of object references to sub- or superclass types.
We discuss each of these concepts in detail.

This chapter also includes additional discussion of arrays and how to use
them for vectors and matrices in mathematical operations. The chapter ends with
a couple of examples of classes for technical applications. We create an improved
complex number class and also an enhanced Histogram class.

4.2 Class inheritance

A key feature of object-oriented programming concerns the ability of a class
to inherit from an existing class, retaining all the features of the base class but
adding new features, thus creating a subclass with increased capabilities. Here
class B inherits from class A, also known as “extending” class A (thus the Java
keyword extends):

91
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public class A {

int i = 0;

void doSomething () {

i = 5;

}

}

class B extends A {

int j = 0;

void doSomethingMore () {

j = 10;

i += j;

}

}

The diagram on the left indicates the class hierarchy. By convention the superclass
is on top, subclasses are below, and the arrow points upwards from the subclass
to the superclass The subclass B has all the data and methods from class A plus
the new data and methods added by B. We can think of class B as having the data
and methods equivalent to an imaginary class (let’s call it “BA„) shown here:

class BA {

int i = 0;

int j = 0;

void doSomething () {

i = 5;

}

void doSomethingMore () {

j = 10;

i += j;

}

}

By using inheritance we get the features of the imaginary class BAwithout having
to duplicate the code from the base class A. We can now create instances of class
B and access methods and data in both class B and class A:

. . .

B b = new B (); // Create an instance of class B

b.doSomething (); // Access a method defined in class A

b.doSomethingMore (); // And a method defined in class B

. . .

Another class can, in turn, inherit from class B, as shown here with class C:
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class C extends B {

int k;

void doEvenMore () {

doSomething ();

doSomethingMore ();

k = i + j;

}

}

Here the doEvenMore()method internally calls the doSomething()method
from class A and the doSomethingMore() method from class B. An instance
of class C can use the class C data and methods and also those of both classes A
and B.

Inheritance does more than just reduce the size of the class definitions. We see
shortly that the inheritance mechanism offers several new capabilities including
the ability to redefine, or override, a method in the superclass with a new one.
(The terms superclass, base class, and parent class all mean the same thing and
are used interchangeably, as are the terms subclass and child class.)

Class inheritance in Java is strictly linear. A subclass may extend only one
direct superclass, though all of that parent’s superclasses get inherited as well in
a chaining fashion, as shown in the class C example above. Unlike C++, Java
does not permit multiple class inheritance, which is inheriting from more than
one direct parent class. That is, given two classes X and Y, it is not possible in
Java to create a class Z that extends both X and Y.

There are times that multiple class inheritance could be useful, but it was inten-
tionally omitted by the Java designers because correctly implementing and using
multiple class inheritance is fraught with difficulty. Java interfaces, to be discussed
later, do permit multiple inheritance, providing many of the benefits of multiple
class inheritance without the drawbacks.
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4.2.1 Overriding

A common situation is when a class is needed that provides most of the func-
tionality of a potential superclass except one of the superclass methods doesn’t
do quite the right thing. Adding a new method with a different name in a sub-
class doesn’t really solve the problem because the original superclass method
remains accessible to users of the subclass, thereby resulting in a source of errors
should a user inadvertently use the original name instead of the new name. What
is really needed is a way to change the behavior of that one superclass method
without having to rewrite the superclass. Often we may not even have the super-
class source code, making rewriting it impossible. Even if we do have the source
code, rewriting it would be the wrong approach. That method in the superclass
is assumed to be completely appropriate for the superclass and should not be
changed. We wish to change the behavior of the method only for instances of our
subclass, retaining the existing behavior for instances of the superclass and other
subclasses that expect the original behavior of the method.

Java provides just this capability in a technique known as overriding. Over-
riding permits a subclass to provide a new version of a method already defined in
a superclass. Instances of the original superclass (and other subclasses) see the
original method. Instances of the overriding subclass see the new (overridden)
method. In fact, overriding is often the whole reason to create a subclass.

Overriding occurs when a subclass method exactly matches the signature (the
method name, return type, and parameter types) of a method in a superclass. If
the return type is different, a compile-time error occurs. If the parameter list is
different, then overloading occurs (already discussed in Chapter 3), not overrid-
ing. In the next section we discuss the differences, which are very important, but
first we give an example of overriding. In the code below, we see that subclass
Child overrides the method doSomething() in class Parent:

public class Parent {

int parent-int = 0;

void doSomething (int i) {

parent-int = i;

}

}

class Child extends Parent {

int child-int = 0;

void doSomething (int i) {

child-int = 10;

parent-int = 2 * i;

}

}
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When we have an instance of class Child, an invocation of the method
doSomething() results in a call to the overridden doSomething() code
in class Child rather than Parent:

. . .

Parent p = new Parent (); // Create instance of class Parent

Child c = new Child (); // Create instance of class Child

c.doSomething (5); // The method in class Child is invoked.

p.doSomething (3); // The method in class Parent is invoked.

On the other hand, if we call the doSomething() method on a Parent

instance, then the originaldoSomething() code from classParent is invoked.
Java automatically invokes the correct method based on the type of the object
reference.

The real power of overriding, however, is illustrated by this code:

. . .

Parent p = new Child (); // Create an instance of Child

// but use a Parent type reference.

p.doSomething (); // Though the Parent type reference

// is used, the Child class’s doSomething()

// is executed.

. . .

This code has created an instance of class Child but declared it to be of
type Parent. Doing so is legal when Child is a subclass of Parent, since
Child has all the methods and data of type Parent. Even though the vari-
able p is declared to be the superclass type, it actually references the sub-
class object. So the subclass method is executed rather than the method in the
superclass. This happens because the instance p really is of type Child, not
type Parent. The actual type of the object referred to by an object reference
is the type that it is “born as,” not the type of variable that holds the object
reference.

This feature is very useful when, for example, the elements of an array of
the base class type contain references to instances of various subclasses. Looping
through the array and calling a method that is overridden will result in the method
in the subclass being called rather than the method in the base class.

The following code illustrates this so-called polymorphic feature of object-
oriented languages. We begin with a superclass named A and three subclasses B,
C, and D, all of which override the doSomething() method from A (classes C
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and D could be direct subclasses of A or they could be indirect subclasses of A by
subclassing B).

A[] a = new A[3]; // Class A type array with three elements

a[0] = new B (); // Create an instance of class B but use

// an A reference since the array is

// type A.

a[1] = new C (); // Ditto for C

a[2] = new D (); // And D

for (int i=0; i < 3; i++) {// Call doSomething() for each

// element of the A array.

a[i].doSomething (); // Though the A type reference is used,

// the overriding doSomething() method

// of the actual referenced object is

// invoked.

}

It is important to understand that even though the array type is that of the super-
class A, the code used for the doSomething() methods is that of the actual
object that is referenced in each array element, not the code for the method in the
A base class.

4.2.2 Overriding versus overloading

It is important to note how overriding differs from overloading. The latter refers
to reusing the same method name but with a different parameter list and was
explained in Chapter 3. Briefly, if a class contains two (or more) methods of the
same name but with different parameter lists, all those methods are said to be
overloaded. The compiler automatically decides which method to call based on
the parameters used when the method is invoked. What was not mentioned in
Chapter 3 is that overloading can occur across inherited classes. If a subclass
reuses a method name from a parent class but changes the parameter list, then
the method is still overloaded, just as if both methods appeared in the same class.
(Note that via inheritance both methods really do appear in the subclass; the
fact that the source code appears in two different places makes no difference.) In
overloading, the new method does not replace the superclass method; it just reuses
the name with a different parameter list. Calling the method with the original
parameter list invokes the original method; calling it with the new parameter list
invokes the new method.

Confusing overriding and overloading is a vexing error, both for novices and
experienced Java developers. If a subclass attempts to override a method in a



4.2 Class inheritance 97

superclass but doesn’t use the exact same parameter list, then the method is really
overloaded, not overridden. We illustrate this with the following example:

public class Parent {

int i = 0;

void doSomething (int k) {

i = k;

}

}

class Child extends Parent {

void doSomething (long k) {

i = 2 * k;

}

}

Here we created class Child with the intention of overriding the
doSomething (int k) method in class Parent but we mistakenly
changed the int parameter to a long parameter as shown. Then the Child

version of doSomething() has overloaded the Parent version, not overrid-
den it. Look what happens when we attempt to call doSomething() from an
instance of Child:

. . .

Parent p = new Parent (); // Create a Parnet instance.

Child c = new Child (); // Create a Child instance.

p.doSomething (5); // The method in Parent is invoked,

// as expected.

c.doSomething (3); // The method in Parent, not Child, is

// invoked, probably not as expected.

The call toc.doSomething(3)passes anintparameter, not along (a literal3
is an int; to make it a long, an l or Lmust be appended, as in 3L). Therefore the
overloaded method that takes an int is invoked, not the Child version expected.
Even though we have explicitly asked for c.doSomething(), the int version
of the method named doSomething() gets invoked – again, the fact that the
source code happens to appear in the superclass makes no difference.

This error is often difficult to uncover. It occurs most often when an overridden
superclass method is changed while forgetting to make the same change in the
corresponding overriding subclass methods at the same time.
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4.2.3 The @Override annotation in J2SE 5.0

One of the annotations available with the addition of the metadata facility in Java
Version 5.0 (see Chapter 1) greatly reduces the chance of accidentally overloading
when you really want to override. The @Override annotation tells the compiler
that you intend to override a method from a superclass. If you don’t get the
parameter list quite right so that you’re really overloading the method name, the
compiler emits a compile-time error. This annotation is used as follows:

public class Parent {

int i = 0;

void doSomething (int k) {

i = k;

}

}

class Child extends Parent {

@Override

void doSomething (long k) {

i = 2 * k;

}

}

The metadata facility in Java 5.0 supports simple and complex annotation types,
which are closely related to Java interfaces (discussed in Section 4.5). Some anno-
tation types define member methods and member variables and require parameters
when used. However, the @Override annotation is just a marker interface (see
Section 4.5.3). It has no members, and thus accepts no parameters when used,
as shown above. It must appear on a line by itself and indicates that the method
name on the next line should override a method from a superclass. If the method
signature on the next line isn’t really an overriding signature, then the compiler
complains as follows:

Parent.java:10: method does not override a method from its

superclass

@Override

∧
1 error

By using @Override each time you intend to override a method from a super-
class, you are safe from accidentally overloading instead of overriding.
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4.2.4 The this and super reference operators

Perhaps you need to create a subclass that overrides a method in the base class.
However, you want to take advantage of code already in the overridden method
rather than rewriting it in the overriding method. That is, you want to do every-
thing that the original method did but add some extra functionality to it for the
subclass.

When in a subclass, the special reference variable super always refers to the
superclass object. Therefore, you can obtain access to overridden methods and
data with the super reference. In the following code class Child overrides the
doSomething() method in class Parent but calls the overridden method by
using super.doSomething():

public class Parent {

int i = 0;

void doSomething () {

i =5;

}

}

class Child extends Parent {

int j=0;

void doSomething () {

j = 10;

// Call the overridden method

super.doSomething ();

j += i; // then do something more

}

}

You cannot cascade super references to access methods more than one class
deep as in

j = super.super.doSomething(); // Error!! Not a valid use of

//super

This usage would seem logical but it is not allowed. You can only access the
overridden method in the immediate superclass with the super reference.

Note that you can also “override” data fields by declaring a field in a subclass
with the same name as used for a field in its superclass. This technique is seldom
useful and is very likely to be confusing to anyone using your code. Its use is not
recommended.
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A related concept is known as shadowing in which a local variable has the
same name as a member variable. For example,

public class Shadow {

int x = 1;

void someMethod () {

int x = 2;

. . .

}

}

Here the x inside someMethod() shadows the member variable x in the class
definition. The local value 2 is used inside someMethod() while the member
variable value 1 is used elsewhere. Such usage is often a mistake, and can certainly
lead to hard-to-find bugs. This technique is not recommended. In fact, the variable
naming conventions explained in Chapter 5 are designed to prevent accidental
shadowing of member variables.

We can also explicitly reference instance variables in the current object with
thethis reference. The code below illustrates a common technique to distinguish
parameter variables from instance or class variables:

public class A {

int x;

void doSomething (int x) {

// x holds the value passed in the parameter list.

// To access the instance variable x we must

// specify it with 'this'.

this.x = x;

}

}

Here the local parameter variable shadows the instance variable with the same
name. However, the this reference in this.x explicitly indicates that the left-
hand side of the equation refers to the instance variable x instead of the local
variable x from the parameter list.

4.3 More about constructors

In Chapter 3 we discussed the basics of constructors, including the overloading
of constructors. Here we discuss some additional aspects of constructors.

4.3.1 this()

In addition to the this reference, there is also a special method named this()
which invokes constructors from within other constructors. When a class holds
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overloaded constructors, typically they include one constructor that carries out
basic initialization tasks and then each of the other constructors does optional
tasks. Rather than repeating the initialization code in each constructor, an over-
loaded constructor can invoke this() to call another constructor to carry out
the initialization tasks.

For example, the following code shows a class with two constructors:

class Test {

int x,y;

int i,k;

Test (int a, int b) {

x = a;

y = b;

}

Test (int a, int b, int c, int d) {

this (a,b);// Must be in first line

i = c;

k = d;

}

}

The first constructor explicitly initializes the values of two of the data variables
(the other two variables receive the default 0 value for integers). The second
constructor needs to initialize the same two variables plus two more. Rather than
include redundant code, the second constructor first invokes this (a, b),
which executes the first constructor, and then initializes the other two variables.

The parameter list in the invocation of this()must match that of the desired
constructor (every constructor must have a unique parameter list in number and
types). In this case, this (a, b) matches that of the first constructor with two
int arguments. The invocation of this()must be the first executable statement
in a constructor and cannot be used in a regular method.

4.3.2 super()

There is another special method named super(). When we create an instance of
a subclass, its constructor plus a constructor in each of its superclasses are invoked
(we discuss below the invocation sequence of the constructors). If there are mul-
tiple overloaded constructors somewhere in the chain, we might care which con-
structor gets used. We choose which overloaded superclass constructor we want
with super().

For example, in the following code, class Test2 extends class Test1, class
Test1 has a one-argument constructor and a two-argument constructor while
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the constructor in class Test2 takes three parameters. Which constructor in
the superclass should be invoked? It is unwise to leave it to the compiler to
“guess.” (Actually, the compiler does not guess; it follows specific rules, which
we discuss later.) Let’s suppose that our design requires that the two-argument
constructor in Test1 be called. Therefore, the Test2 constructor invokes the
second constructor in class Test1 by using super(a, b). Had we wanted the
one-argument constructor, we would use super (a)or super (b).

class Test1 {

int i;

int j;

Test1(int i)

{this.i = i;}

Test1 (int i, int j) {

this.i = i;

this.j = j;

}

}

class Test2 extends Test1 {

float x;

Test2 (int a, int b, float c) {

super (a, b); // Must be first statement

x = c;

}

}

As with this(), the parameter list identifies which of the overloaded construc-
tors in the superclass to invoke. And as with this(), the super() invocation
must occur as the first statement of the constructor and cannot appear in regular
methods.

Do not confuse the this and super references with the this() and
super() constructor operators. The this and super references are used to
gain access to data and methods in a class and superclass, respectively, while the
this() and super() constructor operators indicate which constructors in the
class and superclass to invoke.

4.3.3 Construction sequence

When you instantiate a subclass, the object construction begins with an invo-
cation of the constructor in the topmost base class and initializes downward
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through the constructors in each subclass until it reaches the final subclass
constructor. The question then arises: if one or more of the superclasses have
multiple constructors, which constructor does the JVM invoke? The answer
is that, unless told otherwise with super(), the JVM will always choose the
zero-argument constructor.

Let’s begin with the simplest case of a superclass definition without any con-
structors. In this case, as we learned in Chapter 3, the compiler automatically
generates a zero-argument constructor that does nothing. Almost as simple is
the case of a superclass with an explicit zero-argument constructor and no other
constructors. In both of these cases, the subclass constructor does not need to
explicitly invoke super() because the JVM automatically invokes the zero-
argument constructor in the superclass – either the zero-argument constructor
provided in the superclass source code if there is one, or the default do-nothing
“free” constructor if no explicit constructor is provided.

If the superclass contains one or more explicit constructors, then the compiler
does not generate a free zero-argument constructor. A subclass that does not
utilize super() to choose one of the existing constructors fails to compile since
there is no zero-argument superclass constructor to use. Therefore, the subclass
must employ a super() with a parameter list matching one of the superclass
constructors.

If the subclass also holds several constructors, each must invoke a super() to
one of the superclass constructors (or perhaps use this() to refer to a subclass
constructor that does use super()). The compiler and JVM figure out the proper
sequence of constructors to call as the subclass instance is being built according
to which constructor is used with the new operator.

The example code here shows two different sequences of constructors
invoked for the case of a base class and two subclasses, all with overloaded
constructors:

public class ConstructApp3 {

public static void main (String[] args) {

// Create two instances of Test2

// using two different constructors.

System.out.println ("First test2 object");

Test2 test2 = new Test2 (1.2, 1.3);

System.out.println (" \nSecond test2 object");

test2 = new Test2 (true, 1.2, 1.3);

}

}
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class Test {

int i;

double d;

boolean flag;

// No-arg constructor

Test () {

d = 1.1;

flag = true;

System.out.println ("In Test()");

}

// One-arg constructor

Test (int j) {

this ();

i = j;

System.out.println ("In Test(int j)");

}

}

/** Test1 is a subclass of Test **/

class Test1 extends Test {

int k;

// One-arg constructor

Test1 (boolean b) {

super (3);

flag = b;

System.out.println ("In Test1(boolean b)");

}

// Two-arg constructor

Test1 (boolean b, int j) {

this (b);

k = j;

System.out.println ("In Test1(boolean b, int j)");

}

}

/** Test2 is a subclass of Test1. **/

class Test2 extends Test1 {

double x,y;

// Two-arg constructor

Test2 (double x, double y) {

super (false);
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this.x = x;

this.y = y;

System.out.println ("In Test2(double x, double y)");

}

// Three-arg constructor

Test2 (boolean b, double x, double y) {

super (b, 5);

flag = b;

System.out.println (

"In Test2(boolean b, double x, double y)");

}

}

The output of ConstructApp3 goes as:

First test2 object

In Test()

In Test(int j)

In Test1(boolean b)

In Test2(double x, double y)

Second test2 object

In Test()

In Test(int j)

In Test1(boolean b)

In Test1(boolean b, int j)

In Test2(boolean b, double x, double y)

This illustrates the different sequence of constructors invoked according to which
of the Test2 constructors we choose.

4.4 Abstract methods and classes

For some applications we might need a generic base class that we never actually
instantiate. Instead, we want always to use subclasses of that base class. That is,
the base class handles behavior that is common to all the subclasses but does not
contain enough data or behavior to be useful on its own. In a sense, the common
behavior has been “factored out” of the subclasses and moved to the common
base class.
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In the following standard example, we create a base class Shape, which
provides a method that calculates the area of some 2D shape:

public class Shape {

double getArea () {

return 0.0;

}

}

TheShape class itself does almost nothing. To be useful, there must be subclasses
of Shape defined for each desired 2D shape, and each subclass should override
getArea() to perform the proper area calculation for that particular shape. We
illustrate with two shapes – a rectangle and a circle.

public class Rectangle extends Shape {

double ht = 0.0;

double wd = 0.0;

public double getArea () {

return ht*wd;

}

public void setHeight (double ht) {

this.ht = ht;

}

public void setWidth (double wd) {

this.wd = wd;

}

}

public class Circle extends Shape {

double r =0.0;

public double getArea () {

return Math.PI * r * r;

}

public void setRadius (double r) {

this.r = r;

}

}

The subclasses Rectangle and Circle extend Shape and each overrides the
getArea()method. We could define similar subclasses for other shapes as well.
Each shape subclass requires a unique area calculation and returns a double

value. The default area calculation in the base class does essentially nothing but
it must be declared to return a double for the benefit of the subclass methods
that do return values. Since its signature requires that it return something, it was
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defined to return 0.0. In practice, since the superclass Shape should never be
instantiated, only the subclasses, then the superclass getArea() will never be
called anyway.

The capability to reference instances of Rectangle and Circle as Shape
types uses the advantage of polymorphism (see Section 4.2.1) in which a set of
different types of shapes can be treated as one common type. For example, in the
following code, a Shape array passed in the parameter list contains references
to different types of subclass instances:

void double aMethod (Shape[] shapes) {

areaSum = 0.0;

for (int i=0; i < shapes.length; i++) {

areaSum += shapes[i].getArea ();

}

}

This method calculates the sum of all the areas in the array with a simple loop
that calls the getArea() method for each instance. The polymorphic feature
means that the subclass-overriding version of getArea()executes, not that of
the base class.

The careful reader will have observed that the technique used above is messy
and error-prone. There is no way, for instance, to require that subclasses override
getArea(). And there is no way to ensure that the base class is never instantiated.
The above scheme works only if the subclasses and the users of the Shape class
follow the rules. Suppose someone does instantiate a Shape base class and then
uses its getArea() method to calculate pressure, as in the force per unit area.
Since the area is 0.0, the pressure will be infinite (or NaN). The Java language
can do much better than that.

A much better way to create such a generic base class is to declare a method
abstract. This makes it explicit that the method is intended to be overridden.
In fact, all abstract methods must be overridden in some subclass or the compiler
will emit errors. No code body is provided for an abstract method. It is just a
marker for a method signature, including return type, that must be overridden
and given a concrete implementation in some subclass.

In the above case, we add the abstractmodifier to the getArea()method
declaration in our Shape class and remove the spurious code body as shown
here:

public abstract class Shape {

abstract double getArea ();

}
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Note that if any method is declared abstract, the class must be declared abstract as
well or the compiler will give an error message. The compiler will not permit an
abstract class to be instantiated. An abstract class need not include only abstract
methods. It can also include concrete methods as well, in case there is common
behavior that should apply to all subclasses. In fact, a class marked abstract is
not required to include any abstract methods. In that case, theabstractmodifier
simply prevents the class from being instantiated on its own. Abstract classes,
unlike interfaces (see next section), can also declare instance variables. As an
example, our abstract Shape class might declare an instance variable name:

public abstract class Shape {

String name;

abstract double getArea ();

String getName () {

return name;

}

}

Here each subclass inherits thename instance variable. Each subclass also inherits
the concrete method getName() that returns the value of the name instance
variable.

When an abstract class does declare an abstract method, then that method
must be made concrete in some subclass. For example, let’s suppose that class A
is abstract and defines method doSomething(). Then class B extends A but
does not provide a doSomething() method:

abstract class A {

abstract void doSomething ();

}

class B extends A {

// Fails to provide a concrete implementation

// of doSomething ()

void doSomethingElse () {. . .}

}

In this case, the compiler complains as follows:

B is not abstract and does not override abstract method

doSomething() in A class B extends A {

∧

This message indicates that not overriding doSomething() in class B is okay if
B is declared to be abstract too. In fact, that is true. If we don’t want B to provide
doSomething(), then we can declare B abstract as well:
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abstract class A {

abstract void doSomething ();

}

abstract class B extends A {

// Does not provide a concrete implementation

// of doSomething ()

void doSomethingElse () {. . .}

}

This code compiles without errors. Of course, classes A and B may never be
instantiated directly (since they are abstract). Eventually, there must be some
subclass of A or B that provides a concrete implementation of all the abstract
methods:

class C extends B {

// Provides a concrete implementation of doSomething()

void doSomething () {. . .}

}

4.5 Interfaces

As discussed in Section 4.2, Java does not allow a class to inherit directly from
more than one class. That is,

class Test extends AClass, BClass // Error!!

There are situations where multiple inheritance could be useful, but it can also
lead to problems; an example is dealing with the ambiguity when the inherited
classes include methods and fields with the same identifiers (i.e. the names and
parameter lists).

Interfaces provide most of the advantages of multiple inheritance with fewer
problems. An interface is basically an abstract class but with all methods abstract.
The methods in an interface do not need an explicit abstract modifier since
they are abstract by definition. A concrete class implements an interface rather
than extends it, and a class can implement more than one interface. Any class
that implements an interface must provide an implementation of each interface
method (or be declared abstract).

In the example below, Runnable is an interface with a single method:
run(). Any class that implementsRunnablemust provide an implementation of
run().
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class Test extends Applet implements Runnable {

. . .

public void run () {

. . .

}

}

public interface Runnable {

public void run ();

}

To implement multiple interfaces, just separate the interface names with a
comma:

class Test extends Applet implements Runnable, AnotherInterface

{

. . .

}

If two interfaces each define a method with the same name and parameter list,
this presents no ambiguity since both methods are abstract and carry no code
body. In a sense, both are overridden by the single method with that signature in
the implementing class.

Any class that implements an interface can be referenced as a type of that
interface, as illustrated by this code:

class User implements Runnable {

public void run () {

. . .

}

}

class Test {

public static void main (String[] args) {

Runnable r = new User ();

. . .

}

}

Here the class User implements Runnable, so it can be referenced in a variable
of type User or in a variable of type Runnable as shown. The value of using
the type Runnable instead of User is illustrated in the next section.
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4.5.1 Interfacing classes

The term interface is a very suitable name for these kinds of abstract classes
because they can provide a systematic approach to adding access to a class. That
is, they can provide a common interface.

For example, say that we have classes Relay and Valve that are completely
independent, perhaps written by two different programmers. The class Test

could communicate easily with both of these classes if they were modified to
implement the same interface. Let’s define an interface called Switchable,
which holds a single method called getState(), as in

public interface Switchable {

public boolean getState ();

}

We want both the Relay and Valve classes to implement Switchable and
provide agetState()method that returns a valuetrue orfalse that indicates
whether a relay or a valve is in the on or off state.

In the code below we show the class Test that references instances of
Relay and Valve as Switchable types. Test can then invoke their respective
getState()methods to communicate with them.

class Test {

public static void main (String[] args) {

Switchable[] switches = new Switchable[2];

switches[0] = new Relay ();

switches[1] = new Valve ();

for (int i=0; i < 2; i++) {

if (switches[i].getState ()) doSomething (i);

}

}

}

class Relay implements Switchable {

boolean setting = false;

// Implement the interface method getState()

boolean getState () {

return setting;

}

. . other code . .

}

class Valve implements Switchable {

boolean valveOpen = false;
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// Implement the interface method getState()

boolean getState () {

return valveOpen;

}

. . other code . .

}

interface Switchable {

boolean getState ();

}

So we see that an interface can serve literally to interface otherwise incompatible
classes together. The modifications required for the classes Relay and Valve

involve only the implementation of the interface Switchable. Class Test

illustrates how we can treat instances of Relay and Valve both as the type
Switchable and invoke getState() to find the desired information for the
particular class. If additional classes that represent other components with on/off
states are created for our system simulation, we can ask that they also implement
Switchable.

Note that if we don’t have the source code forValve andRelay, we could still
create subclasses of them and have those subclasses implement Switchable.
For example,

class SwitchableValve extends Valve implements Switchable {

boolean getState () {

. . .

}

}

4.5.2 Interfaces for callbacks

With the C language, programmers often use pointers to functions for tasks
such as passing a pointer in an argument list. The receiving function can use the
pointer to invoke the passed function. This technique is referred to as a “callback”
and is very useful in situations where you want to invoke different functions
without needing to know which particular one is being invoked or when library
code needs to invoke a function that is supplied by a programmer using the
library.
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For example, a plotting function could receive a pointer to a function that takes
an x axis value as an argument and returns a value for they axis (sin(x), cos(x), for
example). The plotting function could then plot any such function whose pointer
is passed to it without knowing explicitly the name of the function.

Java, however, does not provide pointers (actual memory addresses), only
object references. A reference cannot refer to a method. Instead, Java provides
interfaces for callbacks. In this case, a library method holds a reference to an inter-
face in its parameter list and then invokes a method declared in that interface. The
programmer provides a class that implements the required interface and provides
an object reference to the library method. When the library method invokes the
required interface method, the concrete implementation in the provided object is
invoked.

In the following code we see that the aFunc(Switchable sw) method
invokes the getState() method of the Switchable interface. An instance
of any class that implements the Switchable interface can thus be passed to
aFunc(). This technique provides the same generality as pointer callbacks in
C. The only drawback is that a class must implement the interface.

public class TestCallBack {

public static void main(String [] args){
Switchable[] switches = new Switchable[3];

switches[0] = new Relay();

switches[1] = new Relay();

switches[2] = new Valve();

// Pass Switchable objects to aFunc ()

for (int i=0; i < 3; i++) {

aFunc (switches[i]);

}

}

// Receive Switchable objects and call their getState ()

void aFunc (Switchable sw) {

if (sw.getState ()) doSomething ();

}

}

. . . See previous example for Relay and Valve definitions.

4.5.3 More about interfaces

Interfaces can extend other interfaces, much like class inheritance. All the meth-
ods declared in the super-interface are effectively present in the sub-interface.
Unlike classes, however, interfaces can participate in multiple inheritance. The
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following code shows an interface extending two interfaces at once using a comma
in the extends clause:

public interface A {. . .}

public interface B {. . .}

public interface C extends A, B {. . .}

An interface can also contain data fields, and those fields can be seen by
implementing classes. Any data fields in an interface are implicitly static and
final though those qualifiers need not appear. Thus data fields in interfaces are
effectively constants and, by convention, are best declared using all uppercase
characters.

Placing constants in an interface is a common, though not recommended,
practice. As an illustration of the convenience of this technique, consider the
MyConstants interface shown here:

public interface MyConstants {

final static double G = 9.8;

final static double C = 2.99792458e10;

}

The following Calculations class implements MyConstants and so can
refer to the constants directly:

class Calculations implements MyConstants {

// Can directly use the constants defined

// in the MyConstants interface

public double calc (double t) {

double y = 0.5*G*t*t;

return y;

}

}

If we instead made MyConstants a class, we would need to reference the
constants with a class name prefix as follows:

double y = 0.5 * MyConstants.G * t * t;

This obviously becomes awkward if you have a long equation with lots of con-
stants taken from other classes.

However, despite its usefulness, using an interface just to hold constants is not
recommended since it really is an abuse of the interface concept. An interface full
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of nothing but constants does not define a type, as a proper interface is expected
to do. And a class that “implements” such an interface isn’t really implementing
anything – it is just using the constants in the interface (perhaps a uses keyword
would be more appropriate). Seeing the implements keyword should imply
that the class actually implements something.

For these reasons, the use of a class instead of an interface to define constants
is the recommended practice, accepting the need for the more verbose syntax to
refer to those constants. We note that J2SE 5.0, in fact, solves this problem with
the “static import” facility, which we explain in Chapter 5 after discussing the
import keyword.

Another interesting feature of interfaces is that an interface need not contain
either method declarations or data. It can be completely empty. Such an interface
can be useful as a “marker” of classes. That is, you can use the instanceof
operator to determine if a class is of the particular marker type, which then can
imply some quality of the class. One can use the empty Cloneable interface
to indicate whether a class overrides the clone() method from Object (see
Section 4.6.3) to make copies of instances of the class.

We discuss access rules and modifiers in the next chapter but here we note
that interface methods and constants are implicitly public. This means that
any class can access the methods and constants in the interface. The concrete
implementations of interface methods in classes that implement the interface
must also be public otherwise the compiler will complain.

4.6 More about classes

In this section we continue our introduction to the basics of class definitions and
objects with an examination of casting, the Object class, and the toString()
method.

4.6.1 Converting and casting object references

In Chapter 2 we discussed the topic of mixing different primitive types in the same
operation and the need in some cases to explicitly cast one type into another. The
same concepts apply when dealing with objects instead of primitives. Sometimes,
as with primitives, the type conversion is automatically handled by the compiler.
Consider a superclass Fruit with a subclass Pineapple:

class Fruit {. . .}

class Pineapple extends Fruit {. . .}

Let f be a variable of type Fruit and p be of type Pineapple. Then we can
assign the Pineapple reference to the Fruit variable:
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class Conversion {

Fruit f;

Pineapple p;

public void convert () {

p = new Pineapple ();

f = p;

}

}

The compiler automatically handles the assignment since the types are compati-
ble. That is, the typeFruit can “hold” the typePineapple since aPineapple
“is a” Fruit. Such automatic cases are called conversions.

A related automatic conversion is with interfaces. Let the class Fruit imple-
ment the Sweet interface:

interface Sweet {. . .}

class Fruit implements Sweet {. . .}

Then we see that a variable of type Fruit can be automatically converted
to a variable of type Sweet. This makes perfect sense since a Fruit “is”
Sweet.

Fruit f;

Sweet s;

public void good-convert () {

s = f; // legal conversion from class type to interface type

}

However, an attempt to convert from the interface type to the class type does not
compile:

public void bad-convert () {

f = s; // illegal conversion from interface type to class type

}

As with primitives, if the compiler cannot perform an automatic conversion, an
explicit cast is required. In most cases you can force the compiler to permit the
desired type conversion by using a cast. Like with primitive types, the class type
that an object is being cast to is enclosed in parentheses in front of the object
reference. Doing so essentially tells the compiler to ignore the apparent type
incompatibility and proceed anyway. If the types really are incompatible then
runtime errors will ensue.

For example, let BClass be a subclass of AClass. Let AClass hold
aMethod(), which, of course, is inherited by BClass. In addition, bMethod()
is a new method in BClass.
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class AClass {

void aMethod () {. . .}

}

class BClass extends AClass {

void bMethod () {. . .}

}

In the following code, miscMethod() is declared to receive an AClass object
as a parameter. When used, the actual object passed in might in fact be an instance
of BClass, which is perfectly legal since BClass is a subclasses of AClass.

public void miscMethod (AClass obj) {

obj.aMethod ();

if (obj instanceof BClass) ((BClass)obj).bMethod ();

}

We see that we can invoke aMethod()on the object received in the parameter list
whether that object is an AClass or a BClass since both types have this method.
However, to invoke the bMethod(), we need first to check the object type. We
use the instanceof operator to find out if the object really is a BClass and
then cast to BClass if appropriate. Without the cast the compiler complains that
it cannot find bMethod() in the AClass definition.

4.6.2 Casting rules

The casting rules can be confusing, but in most cases common sense applies.
There are compile-time rules and runtime rules. The compile-time rules are there
to catch attempted casts in cases that are simply not possible. For instance, suppose
we have classes A and B that are completely unrelated – i.e. neither inherits from
the other and neither implements the same interface as the other, if any. It is
nonsensical to attempt to cast a B object to an A object, and the compiler does not
permit it even with an explicit cast. Instead, the compiler issues an “inconvertible
types” error message.

Casts that are permitted at compile-time include casting any object to its own
class or to one of its sub- or superclass types or interfaces. Almost anything can
be cast to almost any interface, and an interface can be cast to almost any class
type. There are some obscure cases (see the Java Language Specification for the
details), but these common sense rules cover most situations.

The compile-time rules cannot catch every invalid cast attempt. If the compile-
time rules permit a cast, then additional, more stringent rules apply at runtime.
These runtime rules basically require that the object being cast is compatible
with the new type it is being cast to. Else, a ClassCastException is thrown
at runtime.
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4.6.3 The Object class

All classes in Java implicitly extend the class Object. That is,

public class Test

{. . .}

is equivalent to

public class Test extends Object

{. . .}

So, all Java objects are instances of Object. This ability to treat all objects as
one type provides the ultimate in polymorphism. An example of this usage is the
ArrayList class, which is a part of the java.util package (we discuss Java
packages in Chapter 5). The ArrayList class can hold any object type. The
ArrayList.add() method is used to input objects into the ArrayList. The
parameter list for the add()method is declared to receive an Object parameter.
That way, any object type can be added, since all object types always inherit from
the Object base class. When an element is retrieved from the ArrayList, it
is of type Object and should be cast to the type needed.

A simpler example is the following case, where the parameter type of
miscMethod() is Object so any class whatsoever can be provided in a method
call tomiscMethod(). InsidemiscMethod()we decide what type the received
object reference really is and call appropriate methods based on that type. Except
for the case where we want to invoke a method belonging to the Object class,
we need to cast the object to one of the classes that we expect as a parameter
before we can invoke a method or access a field in that class.

public void miscMethod (Object obj) {

if (obj instanceof AClass) ((AClass)obj).aMethod ();

if (obj instanceof BClass) ((BClass)obj).bMethod ();

if (obj instanceof CClass) ((CClass)obj).cMethod ();

}

The Object class provides several methods that are useful to all of its subclasses.
A subclass can also override these methods to provide behavior unique to the
particular subclass. These methods include:

� clone ()– produces copies of an object. (See Web Course Supplements.)
� equals (Object obj)– tests whether an object is equal to the object obj. The

default is to test simply whether obj references the same object (i.e. a shallow equals),

not whether two independent objects contain identical properties. This method is often

overridden to perform a deep equals as in the String class, which tests whether the

strings actually match.
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� toString ()– provides a string representation of this object. The default for a class

consists of a string constructed from the name of the class plus the character “@„plus a

hash code of the object in hex format. This method is often overridden to provide more

illuminating information. (See the next section.)
� finalize ()– called by the garbage collector when there are no more references to

this object. You can override this method to take care of any housecleaning operations

needed before the object disappears.
� getClass ()– gets the runtime class of the object, returned as a Class type (see the

Web Course Chapter 5: Supplements section for a discussion of the Class class).
� hashCode ()– generates a hash code value unique for this object.

The following methods involve thread synchronization that we introduce in
Chapter 8. They can only be called from within a synchronized method or code
block:

� notify ()– called by a thread that owns an object’s lock to tell a waiting thread, as

chosen by the JVM, that the lock is now available.
� notifyAll ()– similar to notify() but wakes all waiting threads and then they

compete for the lock.
� wait () – the thread that owns the lock on this object releases the lock and then

waits for a notify() or notifyAll() to get the lock back.
� wait (long msecs) – same as wait() but if a notify fails to arrive within the

specified time, it wakes up and starts competing for the lock on this object anyway.
� wait (long msecs, int nanosecs) – same as wait (long msecs) but

specified to the nanosecond.

(We note that most operating systems do not provide a clock that is accurate to a
nanosecond and some not even to a few milliseconds.)

4.6.4 Objects to strings

We discussed in Chapter 3 how to convert primitive types to and from strings.
You can also convert any Java object to a string. If you just print any object, as in

System.out.println (someObjectReference);

then that object’s toString() method is called automatically to produce string
output. All objects inherit the toString() method from the Object class.
This default version of toString() from Object produces a string beginning
with the class name with certain data values appended to it.

However, the toString() method typically is overridden by most classes to
provide output in a more readable format customized for that class. Most of the
classes in the Java core class libraries provide sensible toString() methods,
and classes that you write should too for convenience when printing.
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You can call the toString() method directly, or, alternatively, the “+„

operator calls thetoString()method whenever the variable refers to an object.
For example, consider

Double aDouble = 5.0;

String aDoubleString = "aDouble = " + aDouble;

The plus operator in the second line invokes the toString() method of the
Double object aDouble. This results in aDoubleString referencing the
string “aDouble = 5.0„.

4.7 More about arrays

Here we look at other aspects of Java arrays and at tools to use with them. Note
that like much of Java syntax, arrays at first glance seem very similar to those
in C/C++. However, there are several differences from these languages in how
Java arrays are built and how they work.

4.7.1 Object arrays

In the previous chapter we introduced arrays of primitive types, which generally
behave in the manner that is expected of such arrays. For example, to create an
array of ten integers we could use the following:

int[] iArray = new int[10];

This sets aside ten int type memory locations, each containing the value 0.
For arrays of objects, however, the array declaration only creates an array of

references for that particular object type. It does not create the actual objects
of that type. Creating the objects themselves requires an additional step. For
example, let’s say we want to create an array of five String objects. We first
create a String type array:

String[] strArray = new String[5];

When the array is created, five memory locations are set aside to contain object
references of the String type with the expectation that each reference will
eventually “point” to a String object. But initially, each element contains the
special null reference value; that is, it points nowhere. So if we followed the
above declaration with an attempt to use a String method, as in

int numChars = strArray[0].length ();

an error message results:

Exception in thread "main" java.lang.NullPointerException at

ArrayTest.main (ArrayTest.java:8)
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Before using the array elements, we must first create an object for each array
element to reference. For example,

strArray[0] = new String ("Alice");

strArray[1] = new String ("Bob");

strArray[2] = new String ("Cindy");

strArray[3] = new String ("Dan");

strArray[4] = new String ("Ed");

This code sets each element to reference a particular string.
Note that there is an alternative declaration that only works for String

objects:

strArray[0] = "Alice";

That is, the string literal "Alice" is equivalent to new String ("Alice").

4.7.2 Array copying

A copy of an array can be made with the static method System.arrayCopy()
as shown here:

System.arraycopy (Object src, int src-position,

Object dst, int dst-position, int length)

Here src is the array to be copied and dst is the destination array (of the
same type). The copy begins from the array element at the index value of
src-position and starts in destination at dst-position for length num-
ber of elements. If the value of the length parameter is too long, or if any
situation occurs such that either the source or destination arrays are accessed
beyond their actual array length, then an IndexOutOfBoundsException is
thrown at runtime. This optimized method works for primitive arrays as well as
object arrays. It even handles the case where the destination array overlaps the
source array.

4.7.3 Multi-dimensional arrays

In Java, multi-dimensional arrays are arrays of arrays. That is, each element is a
reference to an array object. For example, we could declare a two-dimensional
array as follows:

String[][] str = new String[3][2];

This is equivalent to

String [][] str = new String[3][];

str[0] = new String[2];

str[1] = new String[2];

str[2] = new String[2];
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However, we don’t need to keep the sub-array lengths the same. This also works:

str[0] = new String[2];

str[1] = new String[33];

str[2] = new String[444];

We can combine the string array declaration and initialization, as in

str[0] = new String[]{"alice", "bob"};
str[1] = new String[]{"cathy", "don", "ed"};
str[2] = new String[]{"fay", "grant", "hedwig", "ward"};

System.out.println ("str[1][2],str[2][3] = " +

str[1][2] + str[2][3]);

The print statement would show

str[1][1],str[2][3] = edward

4.7.4 More about arrays as objects

As mentioned earlier, arrays in Java are objects. An array inherits Object and
possesses an accessible property – length – that gives the number of elements
in the array. For example, if a method uses Object as a parameter, as in

void aMethod (Object obj) {. . .}

then an array can be passed as the actual parameter since an array is a subclass
of Object:

. . .

int[] i-array = new int[10];

aMethod (i-array);

. . .

To make arrays appear in a convenient and familiar form (as in C, for example),
the language designers provided brackets as the means of accessing the array
elements as already seen above. Without brackets, an array class would have to
provide a method such as getElementAtIndex() to access array elements.
For example,

String string-one = str-array.getElementAtIndex (1);

Fortunately, the simpler syntax using brackets was chosen instead:

String string-one = strArray[1];

Since arrays are objects, arrays are somewhat more complicated in Java than
in other languages, but the class structure also provides important benefits. For
example, each use of an array element results in a check on the element number,
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and if the element exceeds the declared length of the array, an out of bounds
run-time exception is thrown.

Thus, unlike in C or C++, a program cannot run off the end of an array
and write to places in memory where it should not. This avoids a very common
program bug and source of security attacks that can be difficult to track down
since the problem may not show up until well after the write occurs. On the other
hand, there is some performance penalty in the bounds checking that can show
up when doing intensive processing with arrays.

4.7.5 Mathematical vectors and matrices

Vector and matrix operations are obviously standard tools throughout science and
engineering. Here we look at some ways to use Java arrays to represent and carry
out operations for vectors and matrices.

Note that the Java core language includes a class called Vector in the
java.util package (see Chapter 10). Vector is similar to the ArrayList
discussed above (see Section 4.6.3); both provide a dynamic list that allows for
both adding and removing elements. ArrayList and Vector are often quite
useful, but they are slow and not intended for mathematical operations.

4.7.5.1 Mathematical vectors
The elements of a floating-point array can represent the component values of a
vector, as in

double[] vec1 = {0.5,0.5,0.5};
double[] vec2 = {1.0,0.0,0.2};

We then need methods to carry out various vector operations such as the dot
product:

double dot (double[] a, double[] b) {

double dot-prod = 0.0;

for (int i=0; i < a.length; i++) {

dot-prod += a[i]*b[i];

}

return dot-prod;

}

Note that a more robust method would check that the vector arguments are not
null and that the array lengths are equal.

Several numerical libraries are available that provide classes with methods to
carry out vector operations. The Web Course Chapter 4 provides links to several
of these.
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4.7.5.2 Matrices
The obvious approach for matrices is to use arrays with two indices:

double[][] dMatrix = new double[n][m];

However, as indicated by the discussion in Section 4.7.2, this does not produce
a true two dimensional array in memory but is actually a one-dimensional array
of references to other one-dimensional arrays, each of which can be located in a
different area of memory.

In the C language, moving from one element to the next in a 2D array requires
only incrementing a memory pointer. This does not apply for Java, which uses
an indirect referencing approach that causes a performance penalty, especially if
the matrix is used in intensive calculations.

One approach to ameliorate this problem to some extent is to use a 1D array.
The code below shows how one might develop a matrix class to use a 1D array
for 2D operations. A sophisticated compiler can optimize such a class and in
some cases provide better performance than a standard Java two-dimensional
array.

public class Matrix2D {

private final double[] fMat;

private final int fCols;

private final int fRows;

private final int fCol;

private final int fRow;

public Matrix2D (int rows, int cols) {

fCols = cols;

fRows = rows;

fMat= new double[rows * cols];

}

/** r = row number, c = column number **/

public double get (int r, int c) {

return fMat[r * fCols + c];

}

/** r = row number, c = column number **/

public double set (int r, int c, double val) {

fMat[r * fCols + c] = val;

}

. . . other methods, e.g. to fill the array, access a

subset of elements, etc.

}
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4.8 Improved complex number class

In the Chapter 3 we created a class with the bare essentials needed to represent
complex numbers. Here we expand on that class. For example, we would often
like to add two complex numbers and put the sum into another complex number
rather than modify one of the current complex objects. Because of overloading we
can still use the add() method name. A new, improved version of our complex
number class appears here:

public class Complex {

double real;

double imag;

/** Constructor that initializes the real & imag values

**/

Complex (double r, double i) {

real = r; imag = i;

}

/** Getter methods for real & imaginary parts **/

public double getReal ()

{return real;}

public double getImag ()

{return imag;}

/** Define an add method **/

public void add (Complex cvalue) {

real = real + cvalue.real;

imag = imag + cvalue.imag;

}

/** Define a subtract method. **/

public void subtract (Complex cvalue) {

real = real - cvalue.real;

imag = imag - cvalue.imag;

}

/** Define a static add method that returns a

* a new Complex object with the sum.

**/

public static Complex add (Complex cvalue1,

Complex cvalue2) {

double r = cvalue1.real + cvalue2.real;

double i = cvalue1.imag + cvalue2.imag;

return new Complex (r, i);

}
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/** Define a static subtract method that returns a

* a new Complex object with the difference.

**/

public static Complex subtract (Complex cvalue1,

Complex cvalue2) {

double r = cvalue1.real - cvalue2.real;

double i = cvalue1.imag - cvalue2.imag;

return new Complex (r, i);

}

} // class Complex

Here the new staticadd() andsubtract()methods each create a new complex
object to hold the sum and difference, respectively, of the two input complex
objects. The operand objects are unchanged by the method.

As we discussed in Chapter 3, a static method is invoked by giving the name
of the class and the dot operator. Unfortunately, in Java, unlike C++, we cannot
override the + operator and create a special + operator for complex addition. The
following code shows how to add two complex numbers together using our static
add() method:

public class ComplexTest {

public static void main (String[] args) {

// Create complex objects

Complex a = new Complex (1.0, 2.1);

Complex b = new Complex (3.3, 1.2);

Complex c = Complex.add (a, b); // c now holds a + b

. . . other code . . .

}

}

The Web Course Chapter 4 gives a more complete version of the class (e.g. it
includes modulus, multiplication, etc.).

4.9 Random number generation

Random values can be obtained from the Math class using the method

public static double random ()

This method produces pseudo-random double values in the range

0.0 <= r < 1.0
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The first time it is invoked, it initializes the seed with a value derived from the
current time.

The java.util.Random class provides a more extensive set of random
generators. Two constructors – Random() and Random (long seed) – offer
the options of initialization from the current time or from a specific seed value.

The methods in the Random class include:

� nextInt () – integers in the range 0 <= r < 2**32
� nextInt (int n) – integers in the range 0 <= r < n
� nextBoolean (int n) – randomly chosen true/false
� nextGaussian () – random double values with mean 0.0 and sigma of 1.0

The last three methods first became available with Java 1.2.

4.9.1 Random number algorithm

TheRandom class uses a linear congruential algorithm [1,2] with a 48-bit seed. If
the constructor Random (long) or the setSeed (long) method is invoked,
the algorithm uses only the lower 48 bits of the seed value.

Random number generator formulas actually produce a sequence of numbers
that eventually repeat. For the same seed value a formula always produces the same
sequence. A seed simply selects where in the sequence to start. The generator will
eventually repeat that seed value and start the same sequence again. Compared
to the randomness of physical fluctuations, such as in radio noise, these formulas
are said to produce pseudo-random numbers.

To insure that applications ported to different platforms give the same results,
all implementations of Java must use the same algorithm so that the same seed
returns the same sequence regardless of the platform.

The linear congruential formula in Java goes as

xi+1 = (a * xi + c) mod m

As discussed in the references, you should use such formulas with care. They can
produce random number sequences of a length up to m but not necessarily that
long. The length depends on the set of a, c, and m values chosen.

Also, if you grab consecutive sequences of numbers of K length, and plot them
as points in K-dimensional space, they do not fully populate the volume randomly
but instead lie on K-1dimensional planes. There are no more than m1/K planes
and possibly less. If you need to create points in a space this way, you should
shuffle the values obtained from the generator. [2]

In Java the values in the linear congruential formula in Random are

a = 0x5DEECE66DL

c = 11

m = 248 − 1.

The actual code in next (int bits) goes as
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synchronized protected int next (int bits) {

seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);

return (int)(seed >>> (48 - bits));

}

Here the mod operation comes via the AND operation since m in this case has all
47 bits set to 1.

This method is protected (see Section 5.3.3, Access Rules). The public
random number methods accessible by all classes use the next() method. For
example, nextInt()simply includes the statement

return next (32);

The nextLong()method invokes next(32), shifts the result by 32 bits to the
left, invokes next(32) again and then ORs the two values together to obtain a
64-bit random number:

return ((long)next (32) << 32) + next (32);

The nextFloat()method provides values in the range 0.0f <= x < 1.0f:

return next (24) / ((float)(1 << 24));

ThenextDouble()method provides values in the range0.0d <= x < 1.0d

using the statement

return (((long)next (26) << 27) + next (27))/(double)(1L << 53)

The nextBoolean() method uses the statement

return next (1)!= 0;

See the java.util.Random class specification for more detailed descriptions
of the algorithms used for these and the other nextXxx() methods.

4.10 Improved histogram class

Here we make a subclass of the BasicHist class discussed in Chapter 3.
The class definition below shows that BetterHist inherits from BasicHist,
obtaining the properties of the latter while providing new capabilities.

Note how the constructor invokes super() to select a constructor in the base
class. Also, we see how the new methods in the subclass can access the data
variables in the base class. (In the next chapter we discuss access modifiers such
as private, which prevents subclasses from accessing a field or method.)

We add several methods to our histogram that provide various parameters
specifying the histogram. Also, a calculation of the mean and standard deviation
of the distribution in the histogram is included.
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/** A simple histogram class to count the frequency of

* values of a parameter of interest. **/

class BetterHist extends BasicHist

{

/** This constructor initializes the basic elements of

* the histogram.

**/

public BetterHist (int numBins, double lo, double hi) {

super (numBins, lo, hi);

}

/** Get the low end of the range. **/

public double getLo ()

{return lo;}

/** Get the high end of the range. **/

public double getHi ()

{return hi;}

/** Get the number of entries in the largest bin. **/

public int getMax () {

int max = 0;

for (int i=0; i < numBins; i++)

if (max < bins[i]) max = bins[i];

return max;

}

/** Get the number of entries in the smallest bin. **/

public int getMin () {

int min = getMax ();

for (int i=0; i < numBins; i++)

if (min > bins[i]) min = bins[i];

return min;

}

/** Get the total number of entries **/

public int getTotal () {

int total = 0;

for (int i=0; i < numBins; i++)

total += bins[i];

return total;

}

/** Get the average and std. dev. of the distribution. **/

public double [] getStats () {

int total = 0;
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double wtTotal = 0;

double wtTotal2 = 0;

double [] stat = new double[2];

double binWidth = range/numBins;

for (int i=0; i < numBins; i++) {

total += bins[i];

double binMid = (i - 0.5) * binWidth + lo;

wtTotal += bins[i] * binMid;

wtTotal2 += bins[i] * binMid * binMid;

}

if (total > 0) {

stat[0] = wtTotal/total;

double av2 = wtTotal2/total;

stat[1] = Math.sqrt (av2 - stat[0]*stat[0]);

}

else {

stat[0] = 0.0;

stat[1] = -1.0;

}

return stat;

} // getStats

} // class BetterHist

4.11 Understanding OOP

Chapters 3 and 4 present the fundamentals of class definitions and objects. In
Chapter 5 we look at how classes are organized into files and directories and how
the JVM locates classes. If you find that object-oriented programming (OOP)
remains somewhat vague, your understanding of the concepts involved will
deepen as you see OOP techniques applied to graphics, threading, I/O, and other
areas in subsequent chapters. We return to class structure, design, and analysis
in Chapter 16 where we give a brief overview of the Unified Modeling Language
(UML). UML provides a systematic approach to the design of classes and to
analysis of the interactions among objects. We then use UML to design a set of
classes for a distributed computing example.

4.12 Web Course materials

The Web Course Chapter 4: Supplements section provides more discussion of
inheritance and the overriding and overloading features. There is also discussion
of security aspects of Java including the checking of code by the JVM during
class loading. It also gives a brief overview of the security manager.
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The Chapter 4: Tech section provides additional discussion and demonstration
programs for the vector/matrices in Java, the complex number class, random
number generation, and the improved histogram class. The Chapter 4: Physics
section continues with a tutorial on numerical computing techniques with Java.
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Chapter 5
Organizing Java files and
other practicalities

5.1 Introduction

In this chapter we look first at several topics related to the organization of Java
files. In fact, a scheme for organizing Java files and classes comes built into the
language. When a class is used, the name of the class includes, either explicitly
or implicitly (via the import directive), its location in a particular package. The
Java package resembles the code libraries of other languages and provides a name
space that successfully avoids name collisions. In practice, a large class library
will contain many packages – the J2SE 1.4 class library contains over 100 separate
packages – arranged in some sensible order. A very small, single-purpose library
might reside entirely in just one package.

In some of the examples in previous chapters the code included the public
modifier. We finally explain in this chapter exactly what that modifier does. It and
the other access modifiers determine what classes, methods and fields can be used
by methods in other classes and subclasses, in the same and in other packages.

For faster downloading, you can pack your Java packages, classes, images,
audio files and other program resources into a single file called a JAR (Java
Archive) file. JAR files use the ZIP format and compression system (a variation
of Lempel-Ziv) to hold files and to maintain internally a hierarchical directory
system like that on disk. We show how to create JAR files and how to extract files
from them. We then discuss the pack200 tool in J2SE 5.0 for compressing JAR
files even further.

Other topics presented in this chapter, include the javadoc tool for automatic
documentation of packages and classes, distributing applet files into subdirec-
tories, declaring constants, and coding style conventions. We also look at string
formatting of numerical values with the tools available in J2SE 1.4 and with the
new tools added in J2SE 5.0.

5.2 Class definition files

We first summarize the format of Java files. A file containing a Java class definition
must follow these guidelines:

132
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� A Java class definition must fit into one file; it cannot be split among multiple files.
� Only one public class allowed per file (we discuss access modifiers in Section 5.3.3).
� The file name must match exactly, including usage of upper and lower case characters,

the name of the public class definition in the file plus the extension “.java„.

It is also recommended that each class definition appear in its own file except for
small helper classes used only by the primary class. The compilation of a Java
file results in separate “.class„ files for each class definition in the file.

5.3 Packages

A package is the Java version of a library. It allows for the grouping of “.class„

files that share a common purpose. The package organization follows that of a
hierarchical file directory system. To create a package you place a group of Java
source files into the same directory and in each source file include a package
directive with the name of the directory at the top of the file.

For example, we put the files TestA.java and TestB.java into the direc-
tory mypack, which is a subdirectory of myApps. On a Windows platform the
file paths might look like

C: \myApps \mypack \TestA.java

and

C: \myApps \mypack \TestB.java

At the top of each file we insert the statement

package mypack;

as shown in the following code:

package mypack;

public class TestA {

public int a;

public TestA (int arg1) {

a = arg1;

}

}

package mypack;

public class TestB {

public double x;

public TestB (double y) {

x = y;

}

}

A program that needs to use these classes must include, either explicitly or implic-
itly (we discuss the import directive below), the package name wherever it gives
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Figure 5.1 (a) Directory hierarchy for the package mypack. (b) Directory hierarchy for
the package myPack and its sub-package mypack.extrapack.

the class type name. For example, we illustrate how to use package mypack with
the program TestAB.java, shown below.

public class TestAB {

public static void main (String[] args) {

mypack.TestA testa = new mypack.TestA (4);

mypack.TestB testb = new mypack.TestB (31.3);

System.out.println ("Prod = " + (testa.a * testb.x));

}

}

The package names are relative to the current directory or to a classpath
setting. (We discuss the CLASSPATH setting in Section 5.7.) If the program
TestAB.class resides in the c:\myApps directory, then by default the
compiler and JVM look for the packages relative to this directory. The term
mypack.TestA tells the compiler to look for the TestA.class in the sub-
directory mypack relative to the directory where TestAB.class resides.
Figure 5.1(a) shows the directory hierarchy for the files.

Move to the directory myApps and compile the file:

C: \myApps> javac TestAB.java

The compiler looks for the TestA.class and TestB.class files in the
mypack subdirectory relative to the current directory. They are compiled if
the compiler does not find class files newer than the last modification date of
the source files. The compiler sees the combination of the package and class
names for mypack.TestA and mypack.TestB and treats the “.„ as if it were
the directory name separator.
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You can also compile the package files directly, but if the compilation occurs
from the higher directory, you must specify the proper directory name:

C: \myApps> javac mypack/TestAB.java

(The javac compiler interprets the forward slash “/„ as a directory separator.
The backslash “\„ also works on Windows.) Similarly, the JVM by default looks
for class files in subdirectories as specified by the package names.

Just as a subdirectory can itself contain lower levels of subdirectories,
packages can be nested to lower levels as well. For example, the class def-
inition for TestC shown below includes the directive “package mypack.

extrapack;„. The TestC.java file must then go into the subdirectory
myApps/mypack/extrapack (or myApps \mypack \extrapack on a MS
Windows platform) as shown in Figure 5.1(b).

package mypack.extrapack;

public class TestC {

public boolean flag;

public TestC (boolean b) {

flag = b;

}

}

When the compiler acts on the TestABC class shown below, it uses the
class specification mypack.extrapack.TestC to look in subdirectory
mypack/extrapack/ relative to the directory of TestABC. It compiles
TestC.java if there is no class file or if the class file is older than the
TestC.java file.

public class TestABC

{

public static void main (String[] args) {

mypack.TestA testa = new mypack.TestA (4);

mypack.TestB testb = new mypack.TestB (1.3);

mypack.extrapack.TestC testc =

new mypack.extrapack.TestC (true);

if (testc.flag)

System.out.println ("testa.a = " + testa.a);

else

System.out.println ("testb.x = " + testb.x);

}

}
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All classes belong to some package. If a class definition does not include the
package directive, then it goes into the default unnamed package maintained
internally by the JVM. Note that by convention package names begin with a lower-
case letter while class names begin with an upper-case letter. In fact, package
names are often completely lower case, as is true of all but 28 of the 135 packages
in J2SE 1.4.2. (Those 28 packages with upper-case characters are all part of the
CORBA system in Java, which we discuss in Chapter 19, and which use upper-
case names for consistency with the CORBA naming conventions.)

5.3.1 Namespaces

Packages were also designed to provide namespace protection – that is, in order to
avoid name collisions. In our examples above, we used the not uncommon names
TestA, TestB, etc. If we kept all of our source code in one large directory, we
would have to think of more creative names to avoid confusing the various test
classes we might write. By organizing our classes in packages, which means they
must be organized on disk in the same directory hierarchy as used for the package
names, we have a way to keep like classes together and unlike classes somewhere
else. That way, we could create a package namedbasic for the simple test classes
from the first five chapters of this book and a package named graphics for our
graphics demos, etc.

Now consider the commercial Java packages one might purchase. Several
different competitive companies might offer Java graphics software, for example,
each with similar types of graphing classes, and each with similar or perhaps even
identical names for some of the classes. If you have two or more such software
libraries installed, how do you distinguish between them? The answer is with
packages. Each vendor should create a separate package name for that vendor’s
offerings. Still, there could be naming conflicts if two vendors choose identical
package names.

Suppose vendors ABC and XYZ both create a PieChart graphing class. To
keep the two different PieChart classes separate, we would hope that one might
be in a package named, for example, abc, while the other PieChart class would
be in a package named xyz. Thus you would refer to either abc.PieChart or
xyz.PieChart, depending on which version you wanted.

An ingenious naming convention promulgated by Sun from the earliest days
of Java is to name packages based on a company’s internet domain name with
the order of the names reversed. Since domain names are unique, package names
based on domain names are completely under the control of the company that
owns that domain name. Thus our companies ABC and XYZ would probably
name their packages com.abc and com.xyz, respectively.

In practice, company ABC might have several products – say a scientific
graphics package and a business graphics package, along with other non-
graphics classes. Thus, it might offer several packages – com.abc.graphics.
scientific, com.abc.graphics.business, and com.abc.utils, etc.
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This package-naming convention is so widely used in the Java industry as to be
completely standardized.

Packages can be nested to any depth. In most situations the first two or more
names reflect the domain name of the vendor or creator of the package. Many
open source packages exist as well, with package names like org.apache.ant,
for example. Another example is the CORBA package (see Chapter 19). CORBA
is maintained by the Open Management Group, a standards body with the internet
domain name omg.org (see www.omg.org for much more information about
the OMG). Thus all the CORBA classes live in package structures that begin
withorg.omg.CORBA,org.omg.Messaging, etc. As mentioned above, these
are the only packages in the entire Java class library that use uppercase letters
anywhere in the package names.

5.3.2 Import

Unless special arrangements are made, all classes must be referred to by their
complete name, which includes the full package name (such names are called
“fully qualified” names). Therefore, in TestABC.java above we specified the
full package name of the TestC class in the declaration and new expression:

mypack.extrapack.TestC testc = new mypack.extrapack.TestC ();

An exception to this rule holds for all the classes in the standard java.lang

package. Thus, whenever we use the Float class, for instance, we merely use
something like

Float someFloat = new Float (3.14);

There are nearly 3000 classes in the 135 packages in the J2SE 1.4.2 standard
class library (over 3000 classes in 165 packages in J2SE 5.0). Commercial class
libraries that one might use add many more packages. Using fully qualified class
names obviously becomes unwieldy in any non-trivial program since such a
program will involve many different classes from many different packages.

Thankfully, the Java compiler provides the special arrangements necessary
to abbreviate most fully qualified class names with just the short class name by
using the import directive. That is, the compiler understands a shortcut that
allows us to refer to something like java.awt.event.ActionEvent (see
Chapter 7) as simply ActionEvent. The appearance of an import directive
tells the compiler where to look for class definitions when it comes upon a short
class name that is not fully qualified. Every class in the java.lang package is
imported automatically. That’s why we can refer to thejava.lang.Float class
as just Float. To use this abbreviation technique for classes in other packages
requires that the class name or package name appear in an import statement.

As an example in a class definition for an applet class, this import directive:

import java.applet.Applet;
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allows the source code to refer to Applet rather than java.applet.Applet.
That is, instead of

public class MyApplet extends java.applet.Applet {. . .}

we use

import java.applet.Applet;

public class MyApplet extends Applet {. . .}

Any appearance of the name Applet is automatically interpreted as java.

applet.Applet. There can be multiple import statements to import fully
qualified class names from multiple packages. All import statements appear at
the top of a class definition file, immediately after the package statement and
before the opening line of the class body itself. Of course, valid comments may
appear anywhere.

The java.applet package is small, containing only the Applet class. A
large package like java.io contains (in Java 1.4.2) 50 classes plus 16 exception
classes and 10 interfaces (see Chapter 9 for a description of I/O in Java). To use the
import notation for each of these classes could become unwieldy even though
a typical program would be highly unlikely to use more than just a few of the
50 classes. For example, a typical program might use the following classes from
the java.io package: BufferedWriter, FileInputStream, FileOut-
putStream, FileReader, FileWriter, etc. That program would also likely
check for at least java.io.IOException if not some of the sub-exceptions
like java.io.EOFException and java.io.FileNotFoundException.

In this case the list of imports at the top of the file would look like this:

import java.io.BufferedWriter;

import java.io.FileInputStream;

import java.io.FileOutoutStream;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.EOFException;

import java.io.FileNotFoundException;

. . .

public class MyClass {. . .}

Using classes from several other packages, as most non-trivial programs do,
would lead to a very long list of import statements. To reduce the size of the
list, the compiler also supports the * notation to import an entire package at once
rather than specifying each imported class name separately. Therefore, the above
example can be reduced to

import java.io.*;

. . .

public class MyClass {. . .}
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With this notation, our class can use any of the 50 classes, 16 exceptions, and 10
interfaces in the java.io package by referring simply to the short names.

What the import statement with the * notation really does is instruct the
compiler into which package(s) to look whenever a short unqualified class name
is encountered. Therefore, in the example above, if an unqualified FileWriter
class name appears, the compiler is able to find that class in thejava.iopackage.
It is not an error to use the fully qualified name even when an import statement
appears that would permit the short unqualified name.

Note that the * notation does not look into sub-packages. For example, import-
ing java.awt.* does not also import java.awt.event.*.

As a complete but simple example, consider our TestABCApplet class,
which uses the import directives

import mypack.*;

import mypack.extrapack.*;

These instruct the compiler to look in the mypack package and the
mypack.extrapack package for any class references that cannot be found
in the default package (java.lang).

import java.applet.Applet;

import mypack.*;

import mypack.extrapack.*;

public class TestABCApplet extends Applet

{

public static void main (String[] args) {

TestA testa = new TestA (4);

TestB testb = new TestB (31.3);

TestC testc = new TestC (true);

if (testc.flag)

System.out.println ("testa.i = " + testa.i);

else

System.out.println ("testa.x = " + testb.x);

}

// Paint message in Applet window.

public void paint (java.awt.Graphics g){

g.drawString ("TestABCApplet", 20, 20);

}

}

In rare circumstances, two different packages might use the same class name. In
this case the compiler cannot know which class you really want. For example,
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java.lang contains theObject class, and theorg.omg.CORBA package con-
tains an interface named Object. These two names collide if you use import
org.omg.CORBA.*, in which case the compiler issues a warning. The solu-
tion is to use the fully qualified names whenever a name collision occurs. In
other words, if you import org.omg.CORBA.* and need to refer to a plain
java.lang.Object, then refer to it as java.lang.Object and refer to
CORBA objects as org.omg.CORBA.Object.

C/C++ programmers new to Java usually assume that an import statement
actually brings code into the class bytecode files in a manner similar to that of
include files in C/C++. However, that is not the case. An import statement
simply provides an address where the compiler can look for class definitions.

5.3.3 Access rules

Access or visibility rules determine whether a method or a variable can be
accessed by another method in another class or subclass. We have used the pub-
lic modifier frequently in class definitions. It makes classes, methods, or data
available to any other method in any other class or subclass in any package.

Java provides four access levels:

� public – access by any other class, anywhere.
� protected – accessible by classes in the same package and by any subclasses of those

classes whether in the same package or in other packages.
� Default (also known as “package private”) – accessible to classes in the same package

but not by classes in other packages, even if they are subclasses of classes in the package.
� private – accessible only within the class. Even methods in subclasses in the same

package do not have access.

These access rules allow one to control the degree of encapsulation of classes.
For example, you may distribute your class files to other users who can make
subclasses of them. By making some of your data and methods private, you
can prevent the subclass code from interfering with the internal workings of your
classes. Also, if you distribute new versions of your classes, you can change or
eliminate private fields and methods without affecting the subclasses made from
your superclasses.

If you do not put your class into a package, it is placed into the “default
unnamed package.” For simple demonstration programs this usually suffices.
However, with more serious programs you should use packages since otherwise
any other class in the unnamed package has access to your class’s fields and
methods that are not set to private.

5.4 The final modifier and constants

We already briefly mentioned the final modifier in Chapter 3. It indicates that
a data field cannot be modified. In the declaration

final double PI = 3.14;



5.5 Static import in J2SE 5.0 141

any attempt to assign a new value to the PI variable results in a compiler error.
Therefore final is useful to guarantee that constants are truly constant.

Constants should also be declared static, which means there will be only
one copy for the entire class (there’s no point in wasting space with multiple
copies of constants). The following class defines the constant TWO-PI:

public class MyMath {

public final static double TWO-PI = 6.28;

. . .

}

Then other classes can reference the constant, as in

. . .

double y = theta / MyMath.TWO-PI;

. . .

The final modifier is also used with methods to indicate that they cannot be
overridden by subclasses:

public class MyMath {

. . .

public final double myFormula() {. . .}

}

This ensures that any subclass of MyMath does not override the myFormula()
method. It also helps to improve performance since the JVM does not need to
check for overriding versions each time the method is invoked.

5.5 Static import in J2SE 5.0

Many classes, including many in the Java core libraries, contain static constants
that are used within the class and are also useful outside the class. For exam-
ple, the java.lang.Math class contains the constants PI and E for π and e,
respectively. As another example, we see in Chapter 7 that the BorderLayout
class contains constants such as NORTH, CENTER, etc. that are useful for laying
out graphics components.

Prior to Java version 5.0, the only way to access those constants was by fully
spelling out the names Math.PI, Math.E, BorderLayout.NORTH, etc. in
your code. With static imports, you can use just PI, E, and NORTH without all
the extra typing. To use static imports, add the static keyword to the import
statement as follows:

import static java.lang.Math.PI;

Then in the code body use

double area = PI * radius * radius;
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instead of

double area = Math.PI * radius * radius;

Wildcards also work in the import static statement:

import static java.lang.Math.*;

For infrequent use, typing the complete name Math.PI is probably easier, but if
constants from another class are used extensively, then the static import feature
saves quite a bit of typing. In addition to the constants, all the many static methods
in the Math class are also available when you use the wildcard static import line
above. For example,

double logarithm = log (number);

instead of

double logarithm = Math.log (number);

For extensive use of the mathematical functions, the static import feature is a
great addition to the Java language.

As explained in Chapter 4, constants can also be defined in interfaces, where
they are automatically static, even if the static keyword is not used. An
example from Chapter 4 was

public interface MyConstants {

double G = 9.8;

double C = 2.99792458e10;

}

Prior to Java version 5.0, these constants could be accessed with either the
MyConstants.G notation as used above with the Math constants or by imple-
menting MyConstants in the class definition. However, static import also works
fine with a package, as shown here:

import static somepackage.MyConstants;

public class UsesMyConstants {

/** Calculate E = m * c-squared. **/

double calculateEnergy (double mass) {

return = mass * C * C;

}

}

We note that this technique works only if the constants interface is in a package.
That is, classes or interfaces using the default package, which is discouraged
anyway, cannot be statically imported.

It was pointed out in Chapter 4 that using an interface just to access a set
of constants is ill advised and considered bad programming style since nothing
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is really being implemented. Use a class instead and then statically import the
class.

5.6 JAR files

A useful technique for organizing classes and packages is to combine them into
a file called a JAR or Java Archive file. JAR files (often referred to as “jar” files
but we use the uppercase JAR in this book) are based on the ZIP archiving and
compression system. JARs provide a number of advantages:

� Loading a single large JAR file over the network instead of several small class files

reduces the overhead that occurs for each network transfer.
� Compression, which is the default but may be turned off, also helps for faster loading

since a compressed JAR file is usually significantly smaller than the sum of all the class

files in the JAR.
� Internally the ZIP format maintains the directory structure of the packages.

The applet TestABCApplet discussed above (section 5.3.2) needed classes
from two packages. Here we use the jar tool (provided with the SDK) to cre-
ate a JAR file that holds the TestABCApplet class file and the mypack and
mypack.extrapack packages. The command line and output here shows the
jar tool in action:

c: \. . . \myApps>jar -cvf TestABCApplet.jar TestABCApplet.class

mypack

added manifest

adding: TestABCApplet.class(in = 1109) (out= 648) (deflated 41%)

adding: mypack/(in = 0) (out= 0) (stored 0%)

adding: mypack/extrapack/(in = 0) (out= 0) (stored 0%)

adding: mypack/extrapack/TestC.class(in = 250) (out= 203)

(deflated 18%)

adding: mypack/extrapack/TestC.java(in = 129) (out= 93)

(deflated 27%)

adding: mypack/TestA.class(in = 237) (out= 194) (deflated 18%)

adding: mypack/TestA.java(in = 111) (out= 81) (deflated 27%)

adding: mypack/TestB.class(in = 237) (out= 192) (deflated 18%)

adding: mypack/TestB.java(in = 110) (out= 79) (deflated 28%)

C: \. . . \myApps>

The-c option means to “create” the JAR file; thev option means to use “verbose”
output; and the f option specifies the file name of the created file. JAR files should
use the “.jar„ filename extension. We see that the command above adds the
applet class file TestABCApplet.class and the classes in the packages to
the archive, compresses them, and maintains the package directory structure.
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The jar tool automatically recurses into subdirectories. A “manifest„ file
describes the contents. Its inclusion is the only major difference between a JAR
and a standard ZIP file. (Below we discuss the manifest file with regard to running
applications directly from a JAR file.)

The jar tool can create a JAR file, display the contents of an existing JAR file,
and extract files from within a JAR file. As with some other SDK tools, running
jar without an argument results in a display of the options:

> jar

Usage: jar {ctxu}[vfm0M] [jar-file] [manifest-file] [-C dir]

files. . .

Options:

-c create new archive

-t list table of contents for archive

-x extract named (or all) files from archive

-u update existing archive

-v generate verbose output on standard output

-f specify archive file name

-m include manifest information from specified manifest file

-0 store only; use no ZIP compression

-M do not create a manifest file for the entries

-i generate index information for the specified jar files

-C change to the specified directory and include the

following file

If any file is a directory then it is processed recursively.

The manifest file name and the archive file name needs to

be specified in the same order the 'm' and 'f' flags are

specified.

Example 1: to archive two class files into an archive called

classes.jar: jar cvf classes.jar Foo.class Bar.class

Example 2: use an existing manifest file 'mymanifest'

and archive all the files in the foo/ directory into

'classes.jar': jar cvfm classes.jar mymanifest -C foo/.

Below we show how the jar tool displays the files in the TestABCApplet.
jar:

C: \Java \myApps> jar -tvf TestABCApplet.jar

0 Sat Jun 12 16:59:48 EDT 2004 META-INF/

71 Sat Jun 12 16:59:48 EDT 2004 META-INF/MANIFEST.MF

1109 Sat Jun 12 16:52:08 EDT 2004 TestABCApplet.class

0 Sat Jun 12 16:50:04 EDT 2004 mypack/

0 Tue Nov 18 19:50:56 EST 2003 mypack/extrapack/

250 Sat Jun 12 16:51:48 EDT 2004 mypack/extrapack/TestC.class

129 Sat Jun 12 16:51:04 EDT 2004 mypack/extrapack/TestC.java
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237 Sat Jun 12 16:51:48 EDT 2004 mypack/TestA.class

111 Sat Jun 12 16:51:12 EDT 2004 mypack/TestA.java

237 Sat Jun 12 16:51:48 EDT 2004 mypack/TestB.class

110 Sat Jun 12 16:51:26 EDT 2004 mypack/TestB.java

Note that the files are listed along with their directory paths.

5.6.1 Applet in a JAR

We can use an applet tag like the following that includes the archive attribute
to indicate the location of a JAR file containing the applet code. The JVM in the
browser looks in this JAR file for TestABCApplet.class and the required
packages.

<applet

code = "TestABCApplet.class"

archive = "TestABCApplet.jar"

width = "150" height = "64">

</applet>

5.6.2 Application in a JAR

You can also pack the classes for an application into a JAR and then run the
application directly from the JAR file as long as you include a proper man-
ifest file in the JAR. For example, if you placed the manifest and class files
for the application MyApp into MyApp.jar, then you would run the program
with

c: \> java -jar MyApp.jar

To indicate which of the class files holds the main()method, the JAR files needs
to include a short manifest file with the text line

Main-Class: MyApp

An optional approach to use, especially when you need to access classes in several
JAR files, is to use the CLASSPATH option indicated by “-classpath„ or
“-cp„. (See more about CLASSPATH in Section 5.7.) For example,

c: \> java -cp MyApp.jar MyApp

or in the case of several additional JAR files

c: \> java -cp MyApp.jar;MyHelp.jar;MyUtilities.jar MyApp
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on a Windows platform or

$ java -cp MyApp.jar:MyHelp.jar:MyUtilities.jar MyApp

on a Unix or Linux platform (using the Unix standard directory separator “:”).

5.6.3 The pack200 tool in J2SE 5.0

Release 5.0 of Java includes a new hyper-compression format for JAR files known
as pack200. It works only on JAR files and is able to compress the size as much
as 90% for very dense JAR files. The pack200 format is well-suited for slow
networks and fast computers or for very large JAR files. For example, use of
the pack200 format is estimated to save 12 terabytes per week of downloads
at http://java.sun.com. The pack200 tool creates a .pack file and the
unpack200 tool unpacks a .pack file into a JAR file. Both tools accept several
options, but here is a quick example of usage:

pack200 - g name.pack name.jar

creates the highly compressed name.pack file from the name.jar file. Con-
versely,

unpack200 name.pack name.jar

unpacks the packed file into a JAR file.

5.7 Distributing Java code

The Java design allows for relatively easy sharing and maintenance of code. Java
is a so-called late-binding object language, which means that it does not load class
definitions until they are needed during the execution of the program. So you do
not need to recompile classes that access or subclass any classes that have been
altered and recompiled by their authors, assuming the alterations don’t change
the accessible method signatures and fields.

Java classes should normally be distributed in a package and, especially if the
code is large, in a JAR file. As an example of Java code distribution, we can look at
the JDK installation on Windows. It creates a set of directories and subdirectories
like the following:

        jdk1.5.0 
____________|_______ 
|   |     |   |    | 
bin lib   |  demo  | 
          |       jre 
          |      __|__ 
       include  |     | 
               bin   lib

(The default for the installer is to put this under the c: \Program
Files \Java \ directory.) Thebin directory contains the set of Java tools, such
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as the compiler (javac.exe) and JVM (java.exe), that you use to develop
and run Java programs. The jre (Java Runtime Environment) directories contain
the files needed to run Java programs but not the development tools such as the
compiler. Thejrewould be distributed with a program intended for users who do
not need the development tools. The include directory contains files for linking
Java programs to C or C++ code (see Chapter 22), and a set of demonstration
programs come in the demo directory.

Many of the Java tools such as the JVM (java.exe) build on a core in native
code but also use Java classes for higher level tasks. The lib directories contain
the JAR files with these classes.

On most platforms, a PATH environment variable indicates the location of the
Java executables. For example, the path on a Windows platform might look like:

PATH=C: \WINDOWS;C: \WINDOWS \COMMAND;c: \java \jdk1.5.0 \bin;

Here the c: \java \jdk1.5.0 \bin directory contains the javac, java,
appletviewer, and other executables. Java programs look relative to this direc-
tory for rt.jar, which contains most of the core runtime language classes, and
other JAR files.

The compiler and JVM by default look for user class files in the directory of the
application or applet and its subdirectories (according to the package names). To
find packages in other directories, you can enter the directories in theCLASSPATH
environment variable or use the -cp or -classpath notation shown above. For
example, suppose that the file Bessel.class is located in

c: \programs \mymath \functions \Bessel.class

Then setting the CLASSPATH environment variable with

c: \> set CLASSPATH c: \programs;

provides the location of Bessel.class when it is needed, as in the following
subclass definition:

public class MyNewBessel extends mymath.functions.Bessel

{. . .}

Similarly, when an import statement indicates to the compiler what packages
to search for a class, the CLASSPATH directs it to the proper directories, as in

import myjava.functions.*;

public class MyNewBessel extends Bessel{. .

The CLASSPATH can also be set on the command line:

c: \> javac -classpath c: \programs MyNewBessel

for compilation and

c: \> java -cp c: \programs MyNewBessel
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for running the program. In general, setting theCLASSPATH on the command line
rather than in an environment variable is preferred. That way, different classpaths
can be used for different programs. Interestingly, in J2SE 1.4.2 and below, the
javac tool only recognizes the -classpath option while the java tool recog-
nizes both-classpath and-cp. In J2SE 5.0, both tools recognize both options.

5.8 Applet directories

For organizational purposes it is often convenient to put applet files into differ-
ent directories from the one holding the web page that includes the applet. For
example, suppose that we want the simpleApplet.html web page, located in
the myApplets directory to use an applet class file located in

myApplets/Beginners/HelloWorld/simpleApplet.class

Then the applet tag in the web page should be

<applet

code = "simpleApplet.class"

codebase = "Beginners/HelloWorld/"

width = "100" height = "100">

</applet>

The code attribute can only include a class file name, not its directory path. So
the following tag does not work:

<applet

code = "basic/demo/simpleApplet.class" *** ERROR ***

width = "100" height = "100">

</applet>

The directory location of the applet classes can also go above these directories as
long as they don’t go outside limits imposed by the web server and the browser
security manager (security managers are discussed in Chapter 14).

That is, suppose that the class file is in

Course/Code/Java/Beginners/HelloWorld/

and the web page file is in

Course/Java/Chapter01/

Then you can use:

<applet

code = "simpleApplet.class"

codebase = ". ./. ./Code/Java/Beginners/HelloWorld/"

width = "100" height = "100">

</applet>
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Finally, it is possible for the code to reside at a completely different URL address,
such as in this example:

<applet

code = "HelloWorld.class"

codebase = "http://xyz.edu/Course/Code/Java/Beginners/HelloWorld/"

width = "100" height = "100">

</applet>

The applet tag also accepts JAR files in the codebase. In fact, use of the JAR
format is recommended because all the required class files can be obtained in
one download operation rather than in several downloads, one for each class file.
In addition the JAR format is compressed, further saving download time.

For J2SE 5.0 applets, the highly compressed pack200 format (see Sec-
tion 5.6.3) can also be used. Most browsers only support Java version 1.1, so
the pack200 format is of little use for those browsers. However, the Java Plug-in
is available for the Java 2 Platform for versions 1.2 and up. The Java Plug-in
is a browser plug-in that works with Microsoft Internet Explorer and Mozilla
browsers to enable Java 2 support in those browsers. (See Web Course Chapter 1:
Supplements and reference [1]). The Java Plug-in has been updated in J2SE 5.0
to support the pack200 format.

5.9 Javadoc

The javadoc tool provided with the SDK provides for automatic organization
of package and class documentation. Applying the tool to a package results in a
set of web pages that list the fields and methods of each class. The Javadoc API
is quite powerful. The entire voluminous Java API Specification documentation
is created with javadoc.

You can add comments and other information describing the class in the source
files with the use of special tags, and these then appear in thejavadocweb pages.
We noted in Chapter 2 that Java recognizes a block of comments bracketed with
/**. . .*/ in addition to the usual /*. . .*/. The double asterisks tell
javadoc to include the comments in its documentation output. For example,
here is a HelloWorld.java file commented in the Javadoc style:

import java.applet.Applet;

import java.awt.Graphics;

/** This applet tests graphics.

* (This comment block that describes a class must be

* placed immediately before the class line.)

*/

public class HelloWorld extends Applet {



150 Organizing Java files and other practicalities

/** This method paints the text to the screen.

* (The comment block that describes a method must be

* placed immediately before the method line.)

*/

public void paint (Graphics g) {

g.drawString ("Hello World!", 50, 25);

}

}

Note that the /**. . .*/ comments should be placed immediately before
the class, method, or variable they are describing. Running javadoc on this
file creates several hypertext documentation files such as HelloWorld.html
whose contents are shown in the Web Course Chapter 5. Since the output files are
in hypertext format, you can also use hypertext tags in the javadoc comments,
such as <br> for line breaks and list tags such as <ul><li>abc</li></ul>.

Special Javadoc tags that begin with the “@„ symbol allow you to put spe-
cific information into the documentation output. Examples include @author,
@param, @throws, and @return, which specify the author of the class, a
description of a method parameter, the exceptions that might be thrown, and a
method’s return value, respectively.

Over subsequent versions, javadoc has grown increasingly sophisticated
and now provides for extensive customization. The doclets API (via the
com.sun.javadoc package) allows for Java classes that can modify the out-
put from javadoc. The taglets API allows for Java classes that create cus-
tom tags. See the Javadoc reference [2] for documentation on doclets and
taglets.

5.10 Coding conventions

As with any programming language, you should strive to make your Java programs
as readable and understandable as possible, both for yourself as well as for others
who might use your code. This means clear, concise, and plentiful comments and
descriptive, informative names for classes, method, and variables. Furthermore,
a consistency in the style of the code helps both in reading and debugging your
programs.

There are a number of Java coding standards that have been proposed. For our
demonstration programs in the following chapters, we follow the guidelines set
out by noted Java guru Doug Lea. The full standard is too lengthy to include here
(see Lea [3] for the complete standard) but we give the essentials that suffice for
our short demos.
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Our naming conventions go as follows:

� OurClass – class names use concatenated words with the first letter of each word

upper case.
� ourMethod () – non-private methods use concatenated words with first letter lower

case and the first letter of each subsequent word upper case.
� a-priv-method () – private methods use lower-case words separated by “-

„.
� fOurInstanceVar – member variables start with “f„ (for field) and consist of con-

catenated words with the first letter of each word uppercase.
� our-local-var – local variables are in lower case with the words separated by “-

„.
� fOurStaticVar- – static variables begin with “f„ like member variables but end

with two “-
„ characters.

� javatech.pack – package names use lower case.
� A-CONSTANT-VAL – constants are upper-case words separated by “-

„.

Our interfaces are distinguished from classes by appending “Ifc„ or “able„.
We use javadoc comments before each class and method (unless they are short
and obvious). We terminate them with “**/„ for symmetry with the “/**„ that
must start a javadoc comment.

The sample code shown below illustrates the code styling we use for the
remainder of this book. Each distinct code section, such as a method or an
if-else statement, is indented to the right from the section in which it is
nested. All primitive variables are initialized explicitly. (Default values would be
assigned automatically but by initializing them you make clear that the values
given are what you intended for those variables.) For the class definition and
for long methods we put the name in a comment after the final brace. (We use
“// ctor„ for long constructors.)

// Non javadoc comments, authorship, and

// class development history.

package javatech.xxx.yyy.zzz;

import java.io.*;

/** javadoc comments about the class. **/

public class SomeClassName

{

int fInstanceVal = 1;

double fVal = 0;

Integer fInstanceRef;

public SomeClassName {

. . . constructor code. . .

} // ctor — for longer constructors
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/** Describe the method. **/

public void methodName (. . .) {

int x = 5;

some-method (x);

if (test) {

do-something ();

}

else {

. . .

}

. . .

try {

xxx ();

}

catch (Exception e) {

handle-it ();

}

} // methodName - for longer methods

/** Longer comment.

* —- this asterisk is ignored by javadoc

**/

public void someMethodWithLotsOfParameters (

int param1,

int param2,

etc.

) throws SomeException {

. . .

} // someMethodWithLotsOfParameters

/** Private method names with underscores. **/

private void some-method (int i) {

. . .

} // some-method

/** Getter method. **/

double getVal () {

return fVal;

}

/** Setter method. **/

void setVel (double val) {

fVal = val;

}

} // class SomeClassName



5.11 Formatting numbers 153

The getVal() and setVal()are examples of the common getter and setter
methods used to get and set the value of a particular variable whose name is
included in the method name. In this way we follow the important JavaBeans
standard although the use of JavaBeans is not important to this book. We also
note that the consistent use of the fMemberVariable notation for member
variables and local-variable-name notation for local variables inside a
method makes it impossible to accidentally shadow a member variable with a
local variable (see brief discussion on shadowing in Chapter 4).

5.11 Formatting numbers

Until recently Java separated I/O from the formatting. By formatting we mean
converting a number to a string in a specific form. A typical example is to specify
a fixed number of decimal places to a floating-point value. Since strings were
usually intended for graphical displays such as labels and text fields (we discuss
Java graphics in Chapters 6 and 7), the procedure was to format a string in one
operation and then in a second operation send the formatted string to where it
was to be displayed. However, J2SE 5.0 provides the means both to format and
send data to a file or stream at the same time. Here we give a brief introduction
first to the older formatting approach and then to the new 5.0 techniques.

5.11.1 Format, NumberFormat, and DecimalFormat

Number formatting techniques available as of Java 1.4 and earlier are still use-
ful and commonly found in Java programs. In many of the previous demon-
stration programs, we often found that a simple floating-point operation such
as division could result in a long fraction when we used the default conver-
sion of a double value to a string. Control of the format for a numerical
value to string conversion was added in Java 1.1 with the java.text pack-
age. This package includes the abstract class java.text.Format, which is
subclassed by java.text.NumberFormat. This class is in turn subclassed by
java.text.DecimalFormat.

These classes focus primarily on internationalization of numerical output such
as using either a period or comma for the decimal point according to the current
locale setting. (See the tutorial on internationalization of formatting given in the
reference [4].) However, scientific notation was added to DecimalFormat with
Java 1.2.

The approach of DecimalFormat is to specify the format with a pattern of
symbols. For example, the pattern “0.000„ indicates that the number should
begin with 0 if it is less than 1.0 and that the number of decimal places should
be three and padded with 0 if necessary. The pattern “0.###„ indicates that the
number should begin with 0 if it is less than 1.0 and that the number of decimal
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places should be up to three, padded with blanks if the fraction needs less than
three places.

An exponential pattern appends “E0„ to the right side. So “0.000E0„

results in three decimal places in the significand and then an exponent, such
as “1.234E10„. See the Java 2 API specifications for DecimalFormat to find
the complete set of formatting pattern symbols.

The recipe for formatting a floating-point value goes as follows. First specify
a string pattern such as

String fmt = "0.00#";

Then create an instance of the DecimalFormat class with this pattern:

DecimalFormat df = new DecimalFormat (fmt);

Invoke the format() method to create a formatted string:

double q = 10.0/4.0;

String str = df.format (q);

System.out.println ("q = " + str);

In this case the resulting string is:

q = 2.50

The DecimalFormat object can be reused for new format patterns by invok-
ing the applyPattern (String format) method. The following snippet
from the program DecimalFormatDemo illustrates several format patterns for
floating-point output:

. . . code segment in DecimalFormatDemo . . .

double q = 1.0/3.0;

// Define the format pattern in a string

String fmt = "0.000";

// Create a DecimalFormat instance for this format

DecimalFormat df = new DecimalFormat (fmt);

// Create a string from the double according to the

// format

valStr = df.format (q);

System.out.println ("1.0/3.0 = " + valStr);

// Can change the format pattern:

df.applyPattern ("0.00000");
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valStr = df.format (q);

System.out.println ("1.0/3.0 = " + valStr);

// The# symbol indicates trailing blanks

df.applyPattern ("0.#####");

valStr = df.format (1.0/2.0);

System.out.println ("1.0/2.0 = " + valStr);

// Fix the number of places in the fraction.

df.applyPattern ("0.00E0");

valStr = df.format (1000.0/3.0);

System.out.println ("1000.0/3.0 = " + valStr);

// Scientific notation

df.applyPattern ("0.00E0");

valStr = df.format (3.0/4567.0);

System.out.println ("3.0/4567.0 = " + valStr);

// Negative infinity

df.applyPattern ("0.000E0");

valStr = df.format (-1.0/0.0);

System.out.println ("-1.0/0.0 = " + valStr);

// NaN

df.applyPattern ("0.000E0");

valStr = df.format (0.0/0.0);

System.out.println ("0.0/0.0 = " + valStr);

. . . .

The following shows the output of DecimalFormatDemo:

1.0/3.0 = 0.333

1.0/3.0 = 0.33333

1.0/2.0 = 0.5

1000.0/3.0 = 3.33E2

3.0/4567.0 = 6.57E—4

-1.0/0.0 = - ?

0.0/0.0 =?

Note that the format() method returns the infinity and Not-a-Number (NaN)
values (see Section 2.12) as a “?„ character.
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5.11.2 The printf()method

The Format subclasses discussed above clearly have limited formatting capabil-
ities and are rather clumsy to implement. Also, the two-step process of formatting
a string and then sending it to where it is needed can be rather tedious, especially
for output to the console or to a file. Those with experience in the C language
have missed the printf() function, which offers a wide range of formatting
options and also combines formatting and output.

To satisfy the demands of such programmers and to facilitate the porting of
C programs to Java, J2SE 5.0 comes with the class java.util.Formatter,
which can both format numerical output into a string and send the string to a file
or other destination (we discuss I/O in Chapter 9). Numerical values are formatted
according to format specifiers like those for the printf() function in C.

In fact, J2SE 5.0 went a step further and actually added a printf()

method to the PrintStream class (see Chapter 9), of which System.out and
System.err are instances. So now you can use System.out.printf()to
send formatted numerical output to the console. It uses a java.util.

Formatter object internally and closely emulates the printf() function in C.
In Section 9.4.2 we return to the java.util.Formatter class so that we

can discuss it in the context of Java I/O. Here we introduce theprintf()method
so that you can begin to take advantage of it.

The simplest of the overloaded versions of the method is

printf (String format, Object . . . args)

The “. . .„ indicates the varargs functionality, which we noted in Chapter 1
was introduced with J2SE 5.0. It allows a method to accept a variable number of
arguments. We note that the arguments can be primitives as well as objects, e.g.
the wrappers for the primitives.

The format argument is a string in which you embed specifier substrings
that indicate how the arguments appear in the output. For example,

double pi = Math.PI;

System.out.printf ("pi = %5.3f%n", pi);

results in the console output

pi = 3.142

The format string includes the specifier “%5.3f„ that is applied to the argument.
The % sign signals a specifier. The width value 5 requires at least five characters
for the number, the precision value 3 requires three places in the fraction, and
the conversion symbol f indicates a decimal representation of a floating-point
number.

A specifier needs at least the conversion character, of which there are several
besides f. Some of the other conversions include
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d - decimal integer

o - octal integer

e - floating-point in scientific notation

There are also special conversions for dates and times (calendar and time classes
are discussed in Chapter 10). The general form of the specifier includes several
optional terms:

%[argument-index$][flags][width][.precision]conversion

The argument-index indicates to which argument the specifier applies. For
example, %2$ indicates the second argument in the list. A flag indicates an
option for the format. For example, “+„ requires that a sign be included and
“0„ requires padding with zeros. The width indicates the minimum number of
characters and the precision is the number of places for the fraction.

There is also one specifier that doesn’t correspond to an argument. It is “%n„

and outputs a line break. A “ \n„ can also be used in some cases, but since %n
always outputs the correct platform-specific line separator, it is portable across
platforms whereas “ \n„ is not.

We don’t have space here for more than this brief overview of the new format
tools. The Java API Specifications for J2SE 5.0 provides a lengthy description of
the java.util.Formatter class and all of the specifiers and their options.
The following program provides several examples of printf():

. . . code segment in PrintfDemo . . .

double q = 1.0/3.0;

// Print the number with 3 decimal places.

System.out.printf ("1.0/3.0 = % 5.3f %n", q);

// Increase the number of decimal places

System.out.printf ("1.0/3.0 = %7.5f %n", q);

q = 1.0/2.0;

// Pad with zeros.

System.out.printf ("1.0/2.0 = %09.3f %n", q);

q = 1000.0/3.0;

// Scientific notation

System.out.printf ("1000/3.0 = %7.2e %n", q);

q = 3.0/4567.0;

// More scientific notation

System.out.printf ("3.0/4567.0 = %7.2e %n", q);
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q = -1.0/0.0;

// Negative infinity

System.out.printf ("-1.0/0.0 = %7.2e %n", q);

q = 0.0/0.0;

// NaN

System.out.printf ("0.0/0.0 = %5.2e %n", q);

// Multiple arguments

System.out.printf ("pi = %5.3f, e = %5.4f %n",

Math.PI, Math.E);

double r = 1.1;

// User the argument index to put the argument values

// into different locations within the string.

System.out.printf ("C = 2 * %1$5.5f * %2$4.1f, "+

"A = %2$4.1f * %2$4.1f * %1$5.5f %n",

Math.PI, r);

. . . .

The output is as follows:

1.0/3.0 = 0.333

1.0/3.0 = 0.33333

1.0/2.0 = 00000.500

1000/3.0 = 3.33e+02

3.0/4567.0 = 6.57e—04

-1.0/0.0 = -Infinity

0.0/0.0 = NaN

pi = 3.142, e = 2.7183

C = 2 * 3.14159 * 1.1, A = 1.1 * 1.1 * 3.14159

5.12 Web Course materials

The Web Course Chapter 5: Supplements section features a range of topics includ-
ing basic debugging techniques, setting up the Java Runtime Environment for
program users, the class file structure in the JVM, accessing the class definition
via the Class class, and more discussion of the JVM instruction set.

The Chapter 5: Tech section provides more discussion and demonstration
programs dealing with the formatting of numerical output. The Chapter 5: Physics
section continues with numerical computing techniques, this time dealing with
integration.
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Chapter 6
Java graphics

6.1 Introduction

Java’s graphics capability has always been a leading feature of the language.
The Java designers clearly expected the graphical user interface (GUI) to dom-
inate interactions with Java programs on all but the smallest platforms. Java
appeared at the start of the Internet boom and applets were expected to bring
interactivity to the browser. Many thought that Java would also quickly become
popular for standalone client applications on platforms with graphical operating
systems.

In Java 1.0, however, the graphical elements provided for workable interfaces
but they appeared crude compared to platform-specific graphics developed with
other languages. The goal of portability had led to a lowest common denom-
inator approach that was not very pretty. This became one of the main stum-
bling blocks that prevented Java from becoming a popular language for desktop
applications.

However, with the inclusion of the Swing packages in version 1.2, Java graphics
took a huge leap forward in visual appeal and in the breadth and depth of its
features. With subsequent versions, Java graphics continued to improve and now
compares quite well with that available with any other programming language
and still provides for relatively easy portability.

In this chapter we introduce Java graphics starting with a quick overview of the
Abstract Windowing Toolkit from Java 1.0. We then look at the Java Foundation
Classes system, also known as “Swing,” in some detail. We wait until Chapter 7
to discuss how to bring interactivity to the user interface. This chapter focuses
on using Swing components, drawing on Swing panels, and displaying text and
images. We use the display of histograms as an example of a technical application
of Java graphics.

We do not have space here to provide in-depth descriptions of all the capabil-
ities of the many graphics related classes. We focus on the fundamental features
of the visual components and illustrate their use in demonstration programs. See
the Web Course Chapter 6 and the Java 2 API specifications and the references
for more information about Java graphics resources.

160
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Figure 6.1 The primary classes in the AWT hierarchy.

6.2 AWT

The AWT (Abstract Windowing Toolkit) package (java.awt) and sub-packages
came with Java 1.0 and still provide the essential set of classes for all Java graphics.
Even Swing builds on the graphics base in AWT. The diagram in Figure 6.1 shows
the primary members of the AWT class hierarchy.

The key Component class provides the base class for all the AWT visual
components and also for the Swing components. This class contains a very large
number of public methods (see the Java API description for Component) that
provide access to and control of attributes of a visual component such as its
position, size, colors, and so forth. Subclasses of Component can override some
of these methods and also include new methods to deal with the specific features
of the new type of component.

Another very important class, Container, which is itself a subclass of
Component, provides for holding instances of other components. The Window
subclass ofContainer, for example, provides for the top-level visible containers
Frame and Dialog that usually hold multiple visible components.

Containers can also hold other containers. The Panel class, in particular, is
used within a top-level container to hold and arrange its sub-components, which
often are also panels. An elaborate GUI display typically employs several panels
to arrange the visible atomic (non-container) components such as labels, buttons,
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text fields and text areas. As seen in the diagram above, the AWT includes the
basic atomic components needed to create fairly complete, if not particularly
attractive, GUI displays.

6.3 Swing: lightweight beats heavyweight

As mentioned above, the graphics prior to Java 1.2 included only the AWT in the
core language packages and so did not provide for thrilling user interfaces. The
AWT components came with a number of shortcomings. For example, simply
creating a subclass of the Button class to allow for a custom button that displays
an icon was and remains impractical. Other AWT visual components had similar
limitations. Java programs based on the AWT became known for their bland
appearance and minimal capabilities.

The basic problem is that the AWT components are closely tied to the so-
called peer component classes written in native code for the local operating
system’s graphical interface. This means that Java portability required a lowest
common denominator approach in which no visible component could provide
more capability than what was available on all platforms. This resulted in very
limited options in the appearance and performance of the components. These
basic AWT components are called heavyweight because they must drag along all
the peer component baggage.

A far more flexible approach is to open a heavyweight top-level class, such as
a window frame, and then simply draw all the visible sub-components without
involving any other local peer components. Such lightweight components are
very flexible, especially when combined with the more powerful event handling
structure that came with Java version 1.1 (events, such as mouse clicks, are
discussed in Chapter 7).

The Swing set of classes (available in thejavax.swing and related packages)
consists primarily of lightweight components. Swing first became available as an
independent class library that worked with Java version 1.1. Later, its packages
were included in Java 1.2. It is now generally recommended that programmers
use Swing for all serious graphics development on desktop platforms. When
developing programs for platforms with limited memory and display capability,
such as those targeted by J2ME, the pure AWT framework remains a viable
choice. (The Web Course Chapters 6 and 7 provide an introduction to graphics
programming with the AWT.)

Note that the Swing package names start with javax rather than java. The
packages whose names start with “java„ are often referred to as the core Java
language packages. The javax package hierarchy was invented to include “stan-
dard extensions.” There are now dozens of javax packages. So while Swing is
not core, it is considered a standard part of the language and is included with the
Standard (J2SE) and Enterprise (J2EE) editions for all platforms. (A number of
javax packages, such as the javax.comm package discussed in Chapter 23,
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are considered as optional packages and are not shipped with any of the official
editions.) Smaller platforms, such as cell phones and PDAs, often do not contain
sufficient memory for Swing to run and therefore Swing does not appear in the
J2ME edition of Java. (We briefly describe J2ME in Chapter 24.)

Swing brought a huge improvement in the GUI with new capabilities that
ranged from buttons showing icons to checkboxes to tables with multiple columns
and rows. Swing came as part of the Java Foundation Classes (JFC) set of pack-
ages that also include:

� Pluggable Look and Feel – the style of the components, such as the color scheme and

design, can be customized and can look the same regardless of the platform
� Accessibility API – modifies the interface for easier use by the disabled
� Drag and Drop – provides for moving data between Java programs and other programs

running on the native host
� Java 2D – an expanded set of drawing tools

6.4 Swing class hierarchy

The Swing classes build upon the lower level classes of the original AWT graphics
packages. As the diagram in Figure 6.2 shows, the Swing user interface compo-
nents extend from the Container and Component classes in java.awt. The
diagram shows only a subset of the Swing components and how they extend the
AWT components (the diagram omits some Swing components like JTable).
Most visual component classes begin with the letter “J” while there are various
supporting classes in the javax.swing packages that don’t begin with “J.”

The JComponent subclasses are lightweight, so they run inside a single
heavyweight high-level component, such asJFrame andJDialog, and draw and
re-draw themselves completely with Java; no other native code peer components
are involved. Combined with the event handling process described in Chapter 7,
Swing components provide very flexible and elaborate GUI tools. One can also
develop custom components in a straightforward manner by extending either
JComponent or one of its subclasses.

The number of Swing classes and their depth and complexity is far greater
than with the AWT. We cover a number of aspects of Swing in this and later
chapters. However, we can only touch on a small fraction of Swing’s capabilities.
To describe all of the classes, one popular book for Swing programming requires
more than 1600 pages [1]! Another useful Swing reference is Sun’s Java Swing
tutorial [2].

As we indicated earlier, a drawback of this huge graphics resource is the large
amount of memory that Swing GUI programs can absorb when many components
are involved. Another problem comes from the fact that the browser on many
desktop machines still does not include a Java 1.2 (or later) JVM. So applets with
Swing components will not run in all browsers. In the Web Course Chapter 1 we
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Figure 6.2 This diagram shows a subset of the components in the Swing class
hierarchy. Light gray indicates classes from the java.awt package, dark gray classes
from javax.swing.

provide instructions on how to set up the HTML for applets so that the browser
will download an up-to-date Java Plug-in. The plug-in brings the Java support
up to the current 1.4 or 5.0 level but requires a large download the first time it is
used (then it is cached for later use). The long initial download can be a problem
for users on slow connections. Another promising trend is that many desktop
computer manufacturers (including Dell and HP) now include a recent version
of the JRE and Java Plug-in with their Windows operating systems.

6.5 Containers

Container components can, as the name implies, hold other components. The
sub-components can be atomic components that serve a single purpose, such as
a button, or they can be containers themselves.
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The top-level containers include JApplet, JFrame, and JDialog. These
are never held inside other containers. JApplet is the Swing version of Applet.
It extends the Applet class as shown by this diagram:

java.lang.Object

|
+––java.awt.Component

|
+––java.awt.Container

|
+––java.awt.Panel

|
+––java.applet.Applet

|
+––javax.swing.JApplet

The following example, which just displays a button, illustrates the essentials of
creating an instance of JApplet:

import javax.swing.*;

import java.awt.*;

/** Simple demo of adding a JComponent subclass, here a

* JButton, to the content pane.

**/

public class SwingButtonApplet extends JApplet

{

public void init () {

// Swing adds JComponents to the container’s

// "content pane" rather than directly to the panel

// as with the AWT.

Container content--pane = getContentPane ();

// Create an instance of JButton

JButton button = new JButton ("A Button");

// Add the button to the content pane.

content--pane.add (button);

}

} // SwingButtonApplet

As shown here, the basic steps to creating a Swing interface are not very com-
plicated. Instances of components are created and then added to a container. We
add the components to a container referred to as the content pane. The top-level
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Swing containers – JFrame, JApplet, JDialog, JWindow – are conceptually
constructed of several such overlapping panes. The panes organize the display
of the components, the interception of events, the z-ordering of components, and
various other tasks. If you ever want to build a custom component, it is necessary
to understand the details of the panes system. However, for most GUI building
you only need to deal with the content pane.

We note that for J2SE 5.0, calling getContentPane() is no longer
required for Swing components. This was accomplished by enhancing theadd(),
remove(), and setLayout() methods so that they forward all calls to the
content pane automatically for the JFrame, JDialog, JWindow, JApplet
and JInternalFrame components. In the above example, you would thus only
need to invoke add (button) to place the button on the applet panel. We con-
tinue to use the content pane explicitly in this book for those readers who have
not yet upgraded their Java environment to the 5.0 platform.

6.5.1 JPanel and JButton

We typically build an interface with one or more instances ofJPanel. AJPanel

is a container that holds other components. The following applet creates a subclass
of JPanel called ActionButtonsPanel that holds twoJButton objects. An
instance of this JPanel is then added to the applet’s content pane. Figure 6.3
shows the resulting display.

Figure 6.3 The
program Buttons-

PanelApplet puts
two JButton

components on a
JPanel.

import java.awt.*;

import javax.swing.*;

/** Demonstrate the Creation of a JPanel subclass. **/

public class ButtonsPanelApplet extends JApplet

{

public void init () {

Container content--pane = getContentPane ();

// First create a panel of buttons

ActionButtonsPanel buttons--panel =

new ActionButtonsPanel ();

content--pane.add (buttons--panel);

}

} // class ButtonsPanelApplet

// JPanel subclass with two buttons

class ActionButtonsPanel extends JPanel

{

ActionButtonsPanel () {

// Create two buttons
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JButton add--but = new Jbutton ("Add");

JButton mult--but = new Jbutton ("Mult");

// Put a button in each grid cell

add (add--but);

add (mult--but);

} // ctor

} // class ActionButtonsPanel

Note that the buttons here do nothing when clicked. We explain in Chapter 7 how
to add actions to buttons and other active components.

6.5.2 More about components and laying them out

We introduced the JButton and JPanel user interface components in the pre-
vious section. Two other components commonly needed are:

� JLabel – for text and icon labels
� JTextField – to provide for input and output of text in a single line display

For both components you can pass a string via a constructor parameter to provide
the initial text. The classes contain a number of methods but the two primary
ones for basic operation are:

public String getText ()

public void setText (String str)

While Jlabel objects do not interact with the user, JTextField is an active
component like JButton that can respond to user actions. We discuss adding
behavior to text fields in Chapter 7. You can allow or disallow user modification
of the text in a text field display by invoking setEnabled (boolean flag).
An enabled state of true means that the text can be modified while false

prevents modification.
For our next applet we want to create a subclass of JPanel with two text

fields. We put labels beside each so that the user can identify the text field. To
insure that the labels and text fields are arranged in a logical manner we need to
use a layout manager.

Java interfaces require great flexibility in how they arrange the components.
The interfaces must be portable to different platforms and graphical environments
and to displays with different screen sizes and resolutions. The width and height
of the container may change with the tag settings for an applet or by the user
shrinking or expanding an application window.

For these reasons absolute positioning is not suitable for Java GUIs. Instead, a
Java container uses one of the several layout manager classes, which arrange the
components according to general design guidelines rather than fixed coordinate
settings. We discuss layout managers in more detail in Chapter 7 but for the
example programs here we introduce two of the simplest layout managers:
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(a) (b) 

Figure 6.4 (a) The program InputsPanelApplet arranges two JLabel and two
JTextField components with a GridLayout. (b) This program MultiPanelApplet

combines the two button panel shown in Figure 6.3 (buttons are side by side due to
the extra horizontal space available) with the panel from InputsPanelApplet and a
JTextArea to display the results of the operations.

� FlowLayout – the default layout manager for JPanel. Components are placed in the

order they are added, starting horizontally until all the space is filled and then shifting

down to the next line, starting again at the left. The exact arrangement depends on

the amount of area available and the minimum and maximum sizes allowed for each

component.
� GridLayout – the components are distributed on a uniform grid or table. The size of

the grid is set by the number of rows and columns passed in the constructor. As they are

added, components are placed horizontally left to right until the row cells are filled and

then continue with the next row down.

The following applet shows how to arrange four components using a GridLay-
out with two rows and two columns (see Figure 6.4(a)). It also shows how to
initialize the text in a JTextField object and a JLabel.

import java.awt.*;

import javax.swing.*;

/** Demonstrate the display of a JPanel subclass. **/

public class InputsPanelApplet extends JApplet {

/** Create the interface in the init method **/

public void init () {

Container content--pane = getContentPane ();

// Next create a panel of input fields and labels

InputsPanel inputs--panel =

new InputsPanel ("Input x", "1.5",

"Input y", "3.14");

content--pane.add (inputs--panel);

}

}// InputsPanelApplet



6.5 Containers 169

This applet creates an instance of theInputsPanel class, shown below, and adds
it to the content pane. Using JPanel subclasses like InputsPanel allows for
a flexible modular approach to graphical interface building.

import java.awt.*;

import javax.swing.*;

/** Panel to hold input text fields. **/

public class InputsPanel extends JPanel

{

JTextField fTextfieldTop;

JTextField fTextfieldBot;

/** Constructor builds panel with labels and text

* fields.

**/

InputsPanel (String label--strtop, String init--top,

String label--str--bot, String init--bot) {

// Set the layout with 2 rows by 2 columns

setLayout (new GridLayout (2, 2));

// Create two text fields with the initial values

fTextfieldTop = new JTextField (init--top);

fTextfieldBot = new JTextField (init--bot);

// Create the first label and right justify the text

JLabel label--top =

new JLabel (label--str--top, SwingConstants.RIGHT);

// Insert the label and textfield into the top grid

// row

add (label--top);

add (fTextfieldTop);

// Create the second label and right justify the text

JLabel label--bot =

new JLabel (label--str--bot, SwingConstants.RIGHT);

// Insert the second label and textfield into

// the bottom grid row

add (label--bot);

add (fTextfieldBot);

} // ctor

} // class InputsPanel
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The text in the labels is right justified so that each label clearly refers to the values
in the corresponding text field. The text field references are instance variables
so that in a more ambitious program that uses InputsPanel other methods
could access them and display text on the text fields or grab user input text from
them.

The following program – MultiPanelApplet – shows how to create a
more complex user interface by combining multiple panels and components.
We set the layout manager for the content pane to a GridLayout of one
row by three columns. We create instances of our ActionButtonsPanel and
InputsPanel classes discussed above and also an instance of a JTextArea.
The JTextArea component can display multiple lines of text input or output.
Here we set the text area so that it only shows output and accepts no input, and we
set its background color to light gray. These components are added in the order
that we wish them to appear left to right.

import java.awt.*;

import javax.swing.*;

/** Demonstrate the use of multiple JPanel subclasses. **/

public class MultiPanelApplet extends JApplet

{

InputsPanel fInputsPanel;

JTextArea fTextOutput;

/** Build the interface with InputsPanel

* and ActionButtonsPanel.

**/

public void init () {

Container content--pane = getContentPane ();

// Set the layout as before with 1 row of 3 columns

// but now in one step.

content--pane.setLayout (new GridLayout (1, 3));

// First create a panel of buttons

ActionButtonsPanel buttons--panel =

new ActionButtonsPanel ();

// Next create a panel of input fields and labels

fInputsPanel =

new InputsPanel ("Input x ", "1.5",

"Input y ", "3.14");

// Use a JTextArea for the output of the calculations.

fTextOutput = new JTextArea ();
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fTextOutput.setBackground (Color.LIGHT-GRAY);

fTextOutput.setEditable (false);

// The grid fills the 3 columns sequentially.

content--pane.add (buttons--panel);

content--pane.add (fInputsPanel);

content--pane.add (fTextOutput);

} // init

} // class MultiPanelApplet

/** JPanel subclass with two buttons. **/

class ActionButtonsPanel extends JPanel

{

ActionButtonsPanel () {

// Create two buttons

JButton add--but = new JButton ("Add");

JButton mult--but = new JButton ("Mult");

// Put a button in each grid cell

add (add--but);

add (add--but);

} // ctor

} // class ActionButtonsPanel

Figure 6.4(b) shows the resulting display. These components now comprise a user
interface with text fields for user input, buttons to control the operation, and a
text area to display the results of the operations. The program only lacks the event
handling that we add in the next chapter.

6.5.3 Text display

In the previous section we introduced three text related components. The
JLabel component is a static component for labeling items on the interface.
JTextField and JTextArea provide for both the display and input of text.
JTextField displays a single line of text while JTextArea can display mul-
tiple lines.

In the previous chapters our example programs sent their output to the Java
console with the print methods available with the System.out object. We now
show how to use a JTextArea to display text in a fashion similar to the Java
console but on a graphical interface. We put the JTextArea component on a
JPanel subclass, which we name TextOutputPanel. We also put it into a
JScrollPane,which is a Swing component that provides scroll bars when text
goes beyond the boundaries.
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Our class implements a custom interface called Outputable. It holds two
methods print (String) and println (String):

public interface Outputable {

static final char CR = ' \n';

// A method to print a string

public void print (String str);

// A method to print a string with a carriage return

public void println (String str);

}

These methods are intended to correspond to the print methods in System.out
except that they display their strings on the graphics display rather than on the
console. The code below shows how we implement the Outputable methods
with the JTextArea component:

import java.awt.*;

import javax.swing.*;

/**

* This JPanel subclass holds a JTextArea object in a

* JScrollPane area. It also implements our Outputable

* interface to provide print (String) and println (String)

* methods similar to those in System.out.

**/

public class TextOutputPanel extends JPanel

implements Outputable

{

// A Swing textarea for display of string info

JTextArea fTextArea;

public TextOutputPanel () {

// A BorderLayout would be more appropriate here but

// it isn’t discussed until chapter 7.

setLayout (new GridLayout (1,1));

// Create an instance of JTextArea

fTextArea = new JTextArea ();

fTextArea.setEditable (false);

// Add to a scroll pane so that a long list of
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// computations can be seen.

JScrollPane area--scroll--pane = new JScrollPane (fTextArea);

add (area--scroll--pane);

} // ctor

/** Display a string + carriage return on the JTextArea. **/

public void println (String str) {

fTextArea.append (str + CR);

}

/** Display a string on the JTextArea. **/

public void print (String str) {

fTextArea.append (str);

}

} // class TextOutputPanel

The panel uses a one cell GridLayout, which causes the JTextArea compo-
nent to fill the entire area of the panel. The default FlowLayout would result
in unused space around the text area. (BorderLayout would actually be more
appropriate here but we wait to discuss it in Chapter 7 along with the other layout
managers.)

We can now add the TextOutputPanel component to an applet panel and
send print messages there instead of to the console. The code below illustrates
this technique (see Figure 6.5):

import javax.swing.*;

import java.awt.*;

/** Use a JPanel subclass TextOutputPanel to show text output

* on the applet area.

**/

public class TextOutputApplet extends JApplet

{

public void init () {

Container content--pane = getContentPane ();

TextOutputPanel output--panel = new TextOutputPanel();

// Add panel with JTextArea to show output

content--pane.add (output--panel);

output--panel.println (

"TextOutputPanel implements the Outputable interface");
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Figure 6.5 The program
TextOutputApplet uses
an Outputable text area
component to display
print messages.

output--panel.println (

"Outputable methods are print(String) &

println(String)");

}

} // class TextOutputApplet

6.6 Drawing

A graphics interface often needs more than just buttons and text display. The
display of dynamic figures such as graphs and diagrams is a common requirement.
A simulation typically requires an animation created by a sequence of drawn
pictures. Furthermore, the interface needs the capability to draw images and text
on the displays. The Java graphics system provides a large assortment of drawing
tools to perform all of these tasks. In the following sections we discuss the basics
of drawing in a Swing environment.

In Swing the JPanel class usually serves as the drawing board. You override
the panel’s paintComponent() method to perform the drawing operations.
Since all of the Swing components are lightweight, you can override their painting
methods and create custom features. For example, you could make your own
button component that displays a custom appearance in the pressed and unpressed
states.

6.6.1 Graphics contexts

The paintComponent (Graphics g)method receives an instance of the
Graphics class as a parameter. This class is referred to as the graphics context
since it provides the context under which the graphics commands operate for a
component. The Graphics object essentially represents a drawing surface or
tablet along with all of the settings such as the current foreground and background
colors and the font selection for the strings. In addition to representing the current
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display of a component, a graphics context can represent an off-screen image as
well.

Beginning with Java version 1.2, the object reference passed in the paint

(Graphics g) and paintComponent (Graphics g) methods became a
subclass of Graphics called Graphics2D. Since it is a subclass, you can
still treat it as a Graphics object or, for more functionality, you can cast the
Graphics object type to a Graphics2D type to use the Graphics2D meth-
ods. The Graphcs2D class provides the drawing context for the Java 2D API,
which offers a greatly expanded set of drawing capabilities. The following pack-
ages comprise Java 2D: java.awt, java.awt.color, java.awt.font,
java.awt.geom, java.awt.image, and java.awt.print. Some of these
packages existed from Java 1.0 but they were expanded to provide additional
capabilities for Java 2D.

We first briefly describe the basic drawing capabilities of the plain vanilla
Graphics class and then look at some of the features of Graphics2D.
Note that you can draw with both the old and new methods in the same con-
text. In Chapter 11 we discuss image handling and processing with Java 2D
tools.

6.6.2 Graphics coordinate system

The coordinate system (x = horizontal, y = vertical) for the drawing surface goes
as follows:

� origin (0,0) at top-left corner
� x increases towards the right, beginning at 0
� maximum x = width − 1
� y increases towards the bottom, beginning at 0
� maximum y = height − 1

We see later that with the Java 2D tools, the origin can be moved or translated.
For example, it can be mathematically convenient in some cases to work with the
origin at the center of the component’s drawing area rather than the top-left
corner.

We can obtain the dimensions of a component in two ways. The getSize()
method returns an instance of theDimension class, which provides direct access
to itsheight andwidthvariables. As of Java 1.2 thecomponent class provided
the methods getHeight() and getWidth().

Java 2D makes a clear distinction between the user coordinate space where
the drawing methods operate and the device coordinate space of computer mon-
itors and printers. While the Graphics methods work only with integer pixel
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coordinates and dimensions, Graphics2D works with floating-point values in a
user space that is transformed to the device space of a screen display or printer.
The rendering system does the work of transforming the floating-point values in
the drawing method arguments to integer pixel or dot numbers for drawing on a
device.

For low-resolution devices, such as monitor screens, the conversion from user
space units goes as the screen resolution, e.g. 96.0 units give 1 inch on a 96
pixels/inch screen, 2 inches for 48 pixels/inch, etc. On a high resolution device
such as a printer, 72 user units always gives 1 inch regardless of the dots-per-
inch setting [3]. You can modify the conversions with the scale() method in
Graphics2D.

6.6.3 Color

The classjava.awt.Color defines the properties of a color in Java. The default
color space in Java is the sRGB (standard RGB), which offers “a simple and robust
device independent color definition” [4]. In this space a color is defined by its
RGB (Red-Green-Blue) color component values. It spans a subset of the standard
CIEXYZ color space that includes all visible colors [5].

A color model, based on a particular color space, specifies exactly how a color
is represented. In Java the default ARGB model uses eight bits for each of the
RGB components plus another eight bits for an alpha transparency factor that
specifies what happens when a color is drawn over another. Other color models,
such as a gray scale model, can also be obtained.

For convenience, there are several Color constructors. Some constructors
take int values between 0 and 255 for each color component. Some take
float values between 0.0f and 1.0f. There are four-parameter construc-
tors that let you specify the R, G, B, and alpha values and three-parameter ver-
sions that default to opaque alpha. In integer format, alpha is 0 for completely
transparent and 255 for opaque and in floating-point these are 0.0f/1.0f,

respectively.
An example of a three-parameter int constructor is shown here:

Color red = new Color (0xFF, 0, 0); // R, G, B,

// default alpha = 255

Note that it is common to use hexadecimal values to specify color compo-
nents and here we used 0xFF instead of the decimal 255 for the red compo-
nent. The three color components and alpha, each represented by a byte value,
can be packed into an int. One constructor has a single int argument for
packed RGB (alpha defaults to 0xFF) and another constructor has an int plus a
boolean that istrue if the integer value includes an alpha component, as shown
here:
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int intRed = 0xFF0000; // r=0xFF, g=0x00, b=0x00;

Color red = new Color(intRed); // default alpha = 0xFF

int intGreen = 0x8800FF00; // alpha=0x88, r=0x00, g=0xFF,

// b=0x00

Color green = new Color(intGreen, true);

Using hex numbers makes for a compact representation that allows you to quickly
see the component values. In Section 10.14 we discuss bit handling and how to
access and modify the bytes in a pixel integer value.

Here is an example using the float three-parameter constructor:

Color blue = new Color (0.0f, 0.0f, 1.0f);// R,G,B values

// between 0.0 and 1.0

Partially transparent red and blue colors are created in these two examples:

Color transparentRed = new Color (0xFF, 0, 0, 0x33);

// R,G,B, Alpha

Color transparentBlue = new Color (0.0f, 0.0f, 1.0f, 0.5f);

// R,G,B, Alpha

The transparency factor on the image color determines what percentage of the
component’s background color shows through.

For convenience the Color class definition provides several colors as class
constants, such as

Color.BLUE, Color.WHITE, Color.RED

See the Color class in the Java API Specifications for a list of all the color
constants. The original Color class in Java 1.0 used lower-case color constant
names – Color.blue, Color.white, etc. This violated the convention of
using all upper-case letters in names for constants, and so in Java 1.4 the
upper-case names were added while the lower-case names remain for backward
compatibility.

To set the color for the graphics context to use during drawing (i.e. the current
“pen” color):

g.setColor (Color c); // where g = Graphics object

The background color of a component, such as a panel, can be set using

setBackground (Color c)

Similarly, there are methods to obtain the colors currently in use. For example,

Color c = g.getColor ();
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gives the current color in use by the graphics context object. To obtain the back-
ground and foreground colors for a component, use

Color bg = getBackground ();

Color fg = getForeground ();

6.7 Drawing with the Graphics class

Here we illustrate drawing operations using the methods available in the Graph-
ics class. The Graphics2D class offers more capabilities, which we discuss
briefly in Section 6.8. Drawing typically begins with an invocation of the set-
Color (Color c)method in Graphics that tells the graphics context what
color to use when it draws a line or primitive shape like a rectangle or when
it fills a primitive shape with a solid color. The methods in the Graphics

class for drawing and filling include the following (all parameters are int

types):

� drawLine (x1, y1, x2, y2) – draws a line between points (x1,y1) and

(x2,y2).
� drawRect (x, y, width, height) and fillRect (x, y, width,

height) – draws (fills) a rectangle, (x,y) are the coordinates of the top-left corner,

the bottom-right corner will be at (x+width,y+height).
� drawOval (x, y, width, height) and fillOval (x, y, width,

height) – draws (fills) an oval bounded by the rectangle specified by these

parameters.
� draw3DRect (x, y, width, height) and fill3DRect (x, y, width,

height) – draws (fills) a rectangle with shaded sides that provide a 3-D appearance.
� drawRoundRect (x, y, width, height) and fill3DRect (x, y,

width, height) – draws (fills) a rectangle with rounded corners.
� drawPolyline (int[] x, int[] y, int n) – draws lines connecting the n

points given by the x and y arrays.
� drawPolygon (int[] x, int[] y, int n) – draws lines connecting the

points given by the x and y arrays. Connects the last point to the first if they are not

already the same point.

Note that Graphics does not provide a method to set the width of a line. The line
is always one pixel wide and continuous (i.e. no dot-dash options). Nevertheless,
these methods are simple and often convenient to use and can be used along with
the Graphics2D methods.

Figure 6.6

Example
DrawApplet

uses drawing
methods in the
Graphics class.

6.7.1 Drawing demo

The applet DrawApplet shown in Figure 6.6 illustrates some of the drawing
methods from the Graphics class. The applet first creates a JPanel subclass
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called DrawingPanel and then adds it to the JApplet’s content pane. The
applet’s init() method is shown here:

import javax.swing.*;

import java.awt.*;

/** Illustrate basic drawing in a Swing applet. **/

public class DrawApplet extends JApplet

{

public void init () {

Container content--pane = getContentPane ();

// Create an instance of DrawingPanel

DrawingPanel drawing--panel = new DrawingPanel ();

// And add the DrawingPanel to the content pane.

content--pane.add (drawing--panel);

}

} // class DrawApplet

The DrawingPanel class overrides the paintComponent() method. It first
invokes the superclass method so that the background is painted. (If the over-
riding method paints over the whole area then this is not necessary.) The center
coordinates of the panel area are determined and then rectangles and circles are
drawn relative to the center of the panel.

import javax.swing.*;

import java.awt.*;

/** Draw on this JPanel rather than on the JApplet. **/

public class DrawingPanel extends JPanel {

DrawingPanel () {

// Set background color for the applet’s panel.

setBackground (Color.WHITE);

}

public void paintComponent (Graphics g) {

// Paint background

super.paintComponent (g);

// Get the drawing coordinates

int dy = getSize ().height;

int dx = getSize ().width;
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int mid--y = dy/2;

int mid--x = dx/2;

int rect--x = 3 * dx/4;

int rect--y = 3 * dy/4;

// Set current drawing color

g.setColor (Color.BLACK);

// Draw a rectangle centered at the mid-point

g.drawRect (mid--x-rect--x/2, mid--y-rect--y/2,

rect--x, rect--y);

// Set a new drawing color

g.setColor (Color.LIGHT--GRAY);

// Fill a rectangle centered at the mid-point. Put it

// within the previous rectangle so that border shows.

g.fillRect (mid--x-rect--x/2 + 10, mid--y-rect--y/2+10,

rect--x-20, rect--y-20);

// Set a new drawing color

g.setColor (Color.DARK--GRAY);

// Draw a circle around the mid-point

g.drawOval (mid--x-rect--x/6, mid--y-rect--y/6,

rect--x/3, rect--y/3);

// Fill an oval inside the circle

g.fillOval (mid--x-rect--x/6+10, mid--y-rect--y/6+10,

rect--x/3—20, rect--y/3—20);

} // paintComponent

} // class DrawingPanel

6.7.2 Drawing text

Often in a drawing you want to include text such as placing labels on the axes
of a graph or adding a title. Here we discuss the basic text drawing capabilities
of the Graphics class. Java2D provides much more extensive text drawing
capabilities, such as drawing Arabic text right to left, but that is beyond the scope
of this book [5].

The first step in drawing text involves choosing the font. With Java 2D all
the fonts available on the platform can be used, but for nominal text you can
just specify one of the five standard fonts given by the following logical names:
Serif, SansSerif, Monospaced, Dialog, and DialogInput. These fonts
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can be displayed in one of three styles: plain, bold, or italic. The JVM assigns
an actual font to each of these logical names from the fonts available on the
system.

You pass the font specification in the constructor of the Font class. For exam-
ple, the following code draws the word “Test„ with the font for Monospaced,
plain, and 24-point size:

public void paintComponent (Graphics g) {

g.setFont (new Font ("Monospaced", Font.PLAIN, 24);

g.drawString ("Test", 10, 10);

}

Pay close attention to the parameter list of the Font constructor. The first param-
eter is a string. To use one of the logical font names, it must exactly match one
of the five logical names given above. Unfortunately, the Font class does not
define constants for those names, so you must be sure to type it exactly cor-
rectly or unexpected results occur. The second parameter is an int identifying
the font style. The constants PLAIN, BOLD, and ITALIC are provided in the
Font class to specify the style. The third parameter is an int giving the point
size.

When a string str is drawn with g.drawString (str, x, y), the
x and y parameters (both int type) give the position of the baseline of the
first character in the string (see Figure 6.7(a)). It will be drawn with the graphic
context’s current color and font.

You might assume that the Font class includes methods to provide detailed
information about the font, but instead the FontMetrics class provides
that information. After the font is set, an instance of FontMetrics can be
obtained from the graphics context using the getFontMetrics()method. The

 
(a) 

(b) 

Figure 6.7 (a) Font
metrics definitions.
(b) This applet displays
text with the
DrawTextPanel class.
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FontMetrics class provides various methods to obtain various measurements
of characters and strings:

� getHeight () – total line height
� getMaxAscent () – height above the baseline
� getMaxDescent () – total
� stringWidth () – width of a string

Such information helps to position strings according to their size. The following
class, DrawTextPanel, which we can display with an applet as usual, illus-
trates the basics of drawing a string according to its size specifications (see
Figure 6.7(b)). It creates a Font object for the Monospaced type in the plain
style and a 24-point size. After this Font is set as the current font for the graphics
context, the FontMetrics object is obtained from the context. It provides var-
ious measurements of the characters, and these measurements are used to center
the string.

import javax.swing.*;

import java.awt.*;

/** JPanel subclass to demonstrate a drawing text. **/

public class DrawTextPanel extends JPanel

{

public void paintComponent (Graphics g) {

// First paint background

super.paintComponent (g);

// Add your drawing instructions here

g.setColor (Color.red);

String msg = "Set text in center";

// Create the font and pass it to the Graphics context

g.setFont (new Font ("Monospaced", Font.BOLD, 24));

// Get measures needed to center the message

FontMetrics fm = g.getFontMetrics ();

// How many pixels wide is the string

int msg--width = fm.stringWidth (msg);

// How far above the baseline can the font go?

int ascent = fm.getMaxAscent ();

// How far below the baseline?

int descent= fm.getMaxDescent ();
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// Use the string width to find the starting point

int msg--x = getSize ().width/2 — msg--width/2;

// Use the vertical height of this font to find

// the vertical starting coordinate

int msg--y = getSize ().height/2 — descent/2 + ascent/2;

g.drawString (msg, msg--x, msg--y);

} // paintComponent

} // class DrawTextPanel

Note that if the paintComponent() method does not draw over the entire
surface, it should first invoke super.paintComponent(), which will cause
the super class component to draw itself. For a JPanel, this would result in
filling the area with its current background color.

6.8 Drawing in the Java 2D API

The Java 2D drawing capabilities are extensive so we only have space here for
a brief introduction. We focus on the general techniques while the Web Course
Chapter 6 provides additional discussion and numerous example programs.

6.8.1 Drawing setup

We saw with the Graphics class that, prior to a drawing operation, the color
can be set for the “pen” that draws a line or fills a shape. Similarly the font can be
selected before invoking the drawString() method. With Graphics2D this
type of preparatory setup is taken to a much higher level. Several conditions can
be defined that determine the features of the subsequent drawing operation.

6.8.1.1 Paint
Before a drawing operation you define the paint that it will use with the set-
Paint() method. The paint could be a color but it could also be a gradient
between two colors or a texture made by tiling an image:

public void paintComponent (Graphics g) {

Graphics2D g2 = (Graphics2d) g;

g2.setPaint (Color.RED);

draw operation . . .

Gradient gradient = new Gradient

(x1, y1, Color.YELLOW, x2, y2, Color.GREEN, true);

g2.setPaint (gradient)

draw operation . . .

}
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Here the paint was initially set to the color RED before the first drawing operation.
Then the paint was changed to a color gradient beginning with YELLOW at point
(x1,y1) and gradually changing to GREEN along a straight path that extends
to point (x2,y2). The final boolean parameter to the Gradient constructor
determines whether the gradient repeats (cycles) along the path away from each
point or remains constant.

The drawing operations that are inherited from Graphics (see Section 6.7)
ignore the paint setting and use the current color setting instead. Only the new
methods in Graphics2D use the paint setting.

6.8.1.2 Stroke
Prior to drawing a graphic primitive shape such as a line or rectangle, you can
define the stroke with the setStroke() method. A class that implements the
Stroke interface describes the features of the outline. For most drawing require-
ments you can use the availableBasicStroke class, which defines such features
as the width of a line, whether it is solid or dashed, whether the ends are flat or
rounded, and the appearance of the “joins” between two lines, as in the corner of
a rectangle:

Rectangle2D rect = new Rectangle2D.Double (25., 50., 100.,

200.);

g2.setPaint (Color.RED);

Stroke stroke = new BasicStroke (5.0f, BasicStroke.CAP-ROUND,

BasicStroke.JOIN-ROUND);

g2.setStroke (stroke);

g2.draw (rect);

This code creates an instance of Rectangle2D (see Section 6.8.2) and sets the
paint to a solid color. The BasicStroke constructor sets the width of the line to
5.0. The next two parameters specify that the end of a line is rounded and that the
corners where two lines meet are rounded. The stroke is set into theGraphics2D
and finally the rectangle is drawn.

See theBasicStroke class specifications for a listing of the many options
for these and other stroke features. The class includes several constructors for
creating different types of strokes.

6.8.1.3 Rendering hints
The Java 2D process begins with the set of drawing method invocations that
involve various shapes. A rasterizer then converts these shapes to a 2D array
of pixel values for rendering the complete drawing onto the screen or printer.
You can influence the style of the rendering with the setRenderingHits()
method. The RenderingHints class provides several different types of hints,
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but the most common hints deal with the edges. If only a single color is used for
the pixels of a curved shape, the edge will be jagged or aliased. An anti-aliasing
algorithm adds pixels along the edges with graded transparency that gives the
edges a much smoother, continuous appearance. This process, however, takes
longer to calculate and so can be turned off if not needed:

g2.setRenderingHints (

new RenderingHints (RenderingHints.KEY-ANTIALISASING,

RenderingHints.VALUE-ANTIALIASING-OFF));

6.8.1.4 Transformation
Affine transformations are matrix operations on the 2D coordinates that keep par-
allel lines parallel. These transformations include translations, rotations, scaling,
and shearing. Such transformations can be made to individual shapes or to the
user space in general. A common technique is to move the origin to the center of
the component area:

double cx = getWidth () / 2.0;

double cy = getHeight () / 2.0;

g2.translate (cx, cy);

or

AffineTransform trans =

AffineTransform.getTranslateInstance (cx, cy);

g2.transform (trans);

6.8.1.5 Compositing
When a shape (see Section 6.8.2) such as rectangle is drawn over another shape,
then a compositing rule is used to decide how they are combined. The default
is that the source shape (the one currently being drawn) simply draws over
a destination shape (the one already drawn). However, with the java.awt.

AlphaComposite class you can choose from eight compositing rules such as
“destination-over” where the destination shape will be “on top” of the source
shape. The compositing formula also takes into account the transparency factors
of the source and destination shapes.

6.8.1.6 Clipping
Drawing can be restricted to just the area within a given shape’s perimeter. This
masking can reduce the number of operations and thus speed up the drawing. This
can be particularly useful for animations where often only a part of the scene
changes from frame to frame.
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6.8.2 Creating an object to draw

With most of the plain Graphicsmethods you draw a graphic primitive, such as
a line or rectangle, by specifying the coordinates and dimensions in the parameter
list. To draw a line for example, you pass the x, y pixel values (int types) of the
beginning and ending points:

g.drawLine (x1, y1, x2, y2);

Java 2D takes a different approach. You create an instance of one of the many
implementing classes of the java.awt.Shape interface. There are classes for
lines, rectangles, etc. The positions and dimensions are specified in constructors
or via set methods. You then pass the Shape reference to the draw() method
in Graphics2D. This is a much more modular and structured approach to draw-
ing than with Graphics (though the latter had the beginnings of this design
with the drawPolygon() method, which draws an instance of the Polygon
class).

The Shape interface is implemented by several classes in java.awt.geom
such as Line2D and Rectangle2D. (See the Shape classes listed in
Figure 6.8.) Most of these classes are abstract. Concrete subclasses provide for
specifying the shape’s properties as either float or double values. For exam-
ple, the Line2D.Float and Line2D.Double classes use constructors with
float and double type values, respectively, to specify the beginning and end-
ing points of a line.

The code here draws a straight line in the Java 2D framework:

g2.setPaint (Color.BLUE);

Stroke stroke = new BasicStroke (5);

g2.setStroke (stroke);

Line2D.Double line = new Line2D.Double (50.0, 50.0, 100.0,

50.0);

g2.draw (line);

This code draws a blue line, 5 units wide, from (50.0, 50.0) to (100.0,

50.0). Similarly, the following code draws a circle:

g2.setRenderingHints (

new RenderingHints (RenderingHints.KEY-ANTIALISASING,

RenderingHints.VALUE-ANTIALIASING-ON));

g2.setPaint (Color.GREEN);

Stroke stroke = new BasicStroke (3);

g2.setStroke (stroke);

Ellipse2D.Double ellipse = new Ellipse2D.Double (25.0, 25.0,

100.0, 100.0);

g2.draw (ellipse);
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Figure 6.8 This diagram shows a portion of the java.awt.geom package hierarchy.
The java.awt.Shape interface is implemented by the non-abstract classes
(rectangles) and abstract classes (parallelograms). Each of the abstract “2D” classes
contains nested non-abstract Float and Double subclasses as shown here only for
Line2D.

The ellipse drawn fits inside a rectangle with upper left corner at (x, y) = (25.0,
25.0) and with width 100.0 and height 100.0. Since this rectangle is really a
square (width = height = 100.0), the ellipse is a circle.

This may seem a lot of work but remember that for simple one pixel wide
primitives you can still use the simpler Graphicsmethods. Also, some settings,
such as the RenderingHints, are normally set just once at the start of your
paintComponent() method.

6.8.3 Drawing demo

The following subclass of JPanel illustrates some of the techniques discussed
above. The Graphics2D object is cast from the Graphics object. Anti-aliasing
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Figure 6.9 The TransformsPanel demonstrates the effects of the affine transforms
by performing them on a rectangle shape like that shown on the far left. A
translation operation shifts the drawing coordinates further to the right for each
example. The shape second from the left is created by a rotation transform on the
rectangle, the third a scale transform, the fourth a shear, and the shape on the far
right is created with a compound transform of a shear and then a rotation.

is turned on (for good practice, but not crucial for the straight edged shapes
displayed here). A Rectangle2D.Double object is created and drawn. Then a
set of transforms are carried out, each time creating a newShapeobject (therefore
the original rectangle is not altered). Figure 6.9 shows the display of this panel
when it is added to a JApplet.

import javax.swing.*;

import java.awt.*;

import java.awt.geom.*;

/** Demonstrate different AffineTransforms of a rectangle. **/

class TransformPanel extends JPanel

{

public void paintComponent (Graphics g) {

// First paint background

super.paintComponent (g);

Graphics2D g2 = (Graphics2D) g;

// Turn on anti-aliasing.

g2.setRenderingHint (RenderingHints.KEY-ANTIALIASING,

RenderingHints.VALUE-ANTIALIAS-ON);

// Create a rectangle.

Shape shape1 = new Rectangle2D.Double (20.0, 20.0,

30.0, 50.0);

// Now draw it.

g2.draw (shape1);

// Shift the drawing origin 72 units (1 inch) to the

// right to obtain room for the next drawing
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AffineTransform at =

AffineTransform.getTranslateInstance (72, 0);

g2.transform (at);

// Create a rotation transform of 30 degrees CCW around

// the top left corner of the rectangle.

AffineTransform atx =

AffineTransform.getRotateInstance (—Math.PI/6, 30, 20);

// Take the shape object and create a rotated version

Shape atShape = atx.createTransformedShape (shape1);

g2.draw (atShape);

// Another 72 unit shift.

g2.transform (at);

// Create a scaling transform

atx = AffineTransform.getScaleInstance (1.5, 1.5);

// Take the shape object and create a scaled version

atShape = atx.createTransformedShape (shape1);

g2.draw (atShape);

// Another 72 unit shift.

g2.transform (at);

// Create a shear transform

atx = AffineTransform.getShearInstance (0.0, 0.5);

// Take the shape object and create a sheared version

atShape = atx.createTransformedShape (shape1);

g2.draw (atShape);

// Another 72 unit shift.

g2.transform (at);

// Illustrate compound transforms

// First get a transform object

atx = new AffineTransform ();

// Then set to a shear transform

atx.setToShear (0.0, 0.5);

// and then rotate about the current origin

atx.rotate (-Math.PI/5, 40, 50);

// Now apply to the rectangle

atShape = atx.createTransformedShape (shape1);

g2.draw (atShape);

} // paintComponent

} // class TransformPanel
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In the first four transforms, we used static methods in the AffineTransform
class to obtain instances of the class for the particular type of transform desired.
For example, a translation transform is obtained with

AffineTransform at = AffineTransform.getTranslateInstance (72, 0);

Applying this to the graphics context moves its origin horizontally by 72 units:

g2.transform (at);

All subsequent coordinate values are relative to that new position on the drawing
surface. Here the translation lets us draw the rectangle at a different position
without changing its internal coordinate values. Then the rectangle is operated
on with a rotation transform obtained with the getRotateInstance() static
method:

AffineTransform atx =

AffineTransform.getRotateInstance (—Math.PI/6, 40, 50);

Then a new rectangle in the rotated orientation is obtained with the create-
TransformedShape() method as follows:

Shape atShape = atx.createTransformedShape (shape1);

Finally, the new rotated rectangle is drawn with:

g2.draw (atShape);

This same process is repeated for scaling and shear transforms. Finally, a com-
bined transform is created by creating an instance of AffineTransform and
then its setToShear() and rotate() methods are applied to the original
rectangle to obtain a new transformed one.

6.9 Images

We introduce the basics of image handling here so you can begin to use them
in your programs. We return to images again in Chapter 11 with a much more
detailed discussion.

The base class for images is java.awt.Image. With Java 1.2 came the
more capable subclass java.awt.image.BufferedImage. It works with the
image processing tools of the Java 2D API and so we wait to discuss Buffered-
Image in Chapter 11.

As of Java 1.4 you can load and draw image files encoded as JPEG, GIF,
and PNG. With Java 5.0 you can also load bitmap formats BMP and WBMP. To
load an image into an applet, you can use one of the overloaded getImage()

methods in the Applet class for locating the file with a URL, as in

Image img = getImage ("http://www.someschool.edu/anImage.gif");
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or

Image img = getImage (getCodeBase (), "anImage.gif");

In the latter case the Applet class method getCodeBase() provides the web
address for the location of the applet’s class file. The file name in the second
parameter is then appended to the codebase and this combined address is used to
locate the image file.

To load an image from within an application, as opposed to an applet, you can
use

Image img = Toolkit.getDefaultToolkit ().getImage (URL or

filename);

Here the method parameter is either a java.net.URL or a String contain-
ing the filename of the image file. The Toolkit is a class in the java.awt

package that provides various resources and tools for the graphics system.
One of the Toolkit methods is getImage(), which functions much like the
Applet.getImage()method. It is overloaded to take either aString file-

name parameter specifying the location of the image file or aURL parameter iden-
tifying the image file. (See Chapter 13 for information about the java.net.URL
class.) Before calling getImage(), one must have a reference to the Toolkit
instance in use. The static method Toolkit.getDefaultToolkit() returns
a reference to that Toolkit.

You can obtain an image from a JAR file by using the static getResource()
method from the Class class. This takes advantage of the class loader in the
JVM that reads in a class and loads it for running. The class loader knows how to
load files so it can also be used for loading image files and other resources. For
example, if you were running an application named YourApp, you could obtain
an image as follows:

URL url = YourApp.class.getResource ("myPhoto.gif");

Image img = Toolkit.getDefaultToolkit ().getImage (url);

Or you could just usethis.getClass() to get theClass of the current object:

URL url = this.getClass ().getResource ("myPhoto.gif");

Image img = Toolkit.getDefaultToolkit ().getImage (url);

You can then draw the image with this method in the Graphics class:

void drawImage (Image img, int x, int y, ImageObserver io);

As we discuss further in Chapter 11, the getImage() method returns imme-
diately. The actual loading of the image does not begin until the program
attempts to draw the image or to obtain the dimensions of the image with the
getWidth()andgetHeight()methods. This approach was designed to avoid
slowing a program while waiting for images to arrive over slow network links.
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In Chapter 11 we discuss techniques for monitoring the image loading and to
signal when the loading has finished. Here we just note the ImageObserver
parameter. The image loading machinery uses this reference to call back via
the imageUpdate() method of the ImageObserver interface. The callbacks
occur periodically during the loading and provide information about the status of
the loading. The Component class implements the ImageObserver interface
and overrides the imageUpdate()method. So you commonly see the following
type of invocation of drawImage() where “this„ references the component
on which the image is to be drawn:

drawImage (img, int x, int y, this);

6.10 Java and tech graphics

Programs for engineering and science applications frequently employ graphics
for tasks such as:

� Charting, such as in a histogram, pie chart, or other arrangement that displays data in

some informative manner
� Plotting functions, such as the trajectory of a ballistic projectile in altitude versus

horizontal distance
� Animating a simulation of some device or physical process (see Chapter 8)
� Image processing to bring out features of interest (see Chapter 11)

A graphical display program would also typically include various control and
data entry components to provide a user interface to allow the user to interact
with the presentation. As we have seen in this chapter, Java provides lots of tools
and components for building such graphical displays and user interfaces.

Of course, many other programs also provide for data display and manipula-
tions. Why use Java for this purpose? With Java you can build custom graphical
programs for tasks where you can integrate all of the Java features together. For
example, an application program to control and monitor a remote experiment
via the Web could use both the graphical capabilities of Java and the networking
capabilities of Java (see Part II). We see in Chapter 8 that you can use the easy
thread-processing capabilities of Java to create animations for demonstrations
and simulations.

Note that you can now obtain libraries, both commercial and freeware, that
provide Java classes and visible components for charting, image processing, and
other graphics-related tasks. However, you will still find it useful to know how to
write your own graphics classes for customized purposes.

6.11 Histogram graphics

In the Web Course Chapter 6: Tech section, we demonstrate Java graphics with
the PlotPanel and HistPanel classes. PlotPanel is an abstract class that
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provides a framed area for plotting. It includes a title for the plot, scale values
for the axes, and a horizontal axis label. PlotPanel extends JPanel so it can
be added easily to the layouts of applets and applications. See the Web Course
for a detailed description of the code and a complete listing. Here we give a brief
overview and snippets of the code.

PlotPanel includes four methods that a subclass must override. These meth-
ods set the title and label, they calculate the scaling along the axes, and they draw
a histogram or other type of plot inside the frame. For the axes scale values, we
use a static utility method in the class PlotFormat that converts double values
to strings in decimal or scientific format using the techniques discussed in the
Chapter 5.

The paintComponent() method in PlotPanel draws the frame, title,
label, and scale values and then invokes paintContents(), which the subclass
must provide:

public void paintComponent (Graphics g) {

// First paint background

setBackground (bgColor);

super.paintComponent (g);

// Get the positions for the titles, labels, etc.

getPositions ();

// Draw the top title

g.setColor (titleColor);

drawText (g, getTitle (), titleX, titleY,

titleWidth, titleHeight, 0,CENTER);

// Draw the bottom label

drawText (g, getXLabel (), horzLabelX, horzLabelY,

horzLabelWidth, horzLabelHeight,0,CENTER);

// Draw the plot frame.

paintFrame (g);

// Draw the plot within in the frame.

// This method must be overriden.

paintContents (g);

} // paintComponent

The HistPanel class extends PlotPanel and displays the contents of the
Histogram class (see below). It provides a paintContents() method that
draws the values of the histogram bins as vertical bars. In the Web Course Tech
and Physics tracks we use HistPanel in many of the demonstration programs.
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Figure 6.10 A
demonstration of
histogram plotting with
the HistPanel class.

Figure 6.10 shows an example of a Gaussian random number distribution dis-
played with HistPanel.

PlotPanel and HistPanel help to illustrate both the graphics capabilities
of Java and also the modularity of its objected-oriented design. A HistPanel

object can be added whenever we need to look at the distribution of values of
some quantity. Multiple HistPanel instances can be used when we want to look
at multiple quantities. We also see in later chapters and in the Web Course that
PlotPanel can be extended by other classes that draw different types of plots
and graphs besides histograms.

To simplify our histogram class hierarchy, we created a new base class called
Histogram. This class combines the attributes and methods of the earlier
BasicHist (see Chapter 3) and BetterHist (see Chapter 4) classes, which
were used to illustrate class and inheritance concepts. We added several new
methods to our histogram class to get and set values describing the histogram.
We provide the full code listing of Histogram.java here:

/** This class provides the bare essentials for a

* histogram. **/

public class Histogram

{

protected String fTitle = "Histogram";

protected String fXLabel = "Data";

protected int[] fBins;

protected int fNumBins;

protected int fUnderflows;

protected int fOverflows;

protected double fLo;

protected double fHi;

protected double fRange;
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/**

* The constructor creates an array of a given

* number of bins. The range of the histogram is given

* by the upper and lower limit values.

**/

public Histogram (int numBins, double lo, double hi) {

// Check for bad range values.

// Could throw an exception but will just

// use default values;

if (hi < lo) {

lo = 0.0;

hi = 1.0;

}

if (numBins <= 0) numBins = 1;

fNumBins = numBins;

fBins = new int[fNumBins];

fLo = lo;

fHi = hi;

fRange = fHi — fLo;

} // ctor

/**

* This constructor includes the title and horizontal

* axis label.

**/

public Histogram (String title, String xLabel,

int fNumBins, double lo, double hi) {

this (fNumBins, lo, hi);

// Invoke overloaded constructor

fTitle = title;

fXLabel = xLabel;

}

/** Get the title string. **/

public String getTitle ()

{ return fTitle; }

/** Set the title. **/

public void setTitle (String title)

{ fTitle = title; }

/** Get the horizontal axis label. **/

public String getXLabel ()
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{ return fXLabel; }

/** Set the horizontal axis label. **/

public void setXLabel (String xLabel)

{ fXLabel = xLabel; }

/** Get the low end of the range. **/

public double getLo ()

{ return fLo; }

/** Get the high end of the range.**/

public double getHi ()

{ return fHi; }

/** Get the number of entries in the largest bin. **/

public int getMax () {

int max = 0;

for (int i=0; i < fNumBins; i++)

if (max < fBins[i]) max = fBins[i];

return max;

}

/**

* This method returns a reference to the fBins array.

* Note that this means the values of the histogram

* could be altered by the calling code.

**/

public int[] getBins () {

return fBins;

}

/** Get the number of entries in the smallest bin.**/

public int getMin () {

int min = getMax ();

for (int i=0; i < fNumBins; i++)

if (min > fBins[i]) min = fBins[i];

return min;

}

/** Get the total number of entries not counting

* overflows and underflows.

**/
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public int getTotal () {

int total = 0;

for (int i=0; i < fNumBins; i++)

total += fBins[i];

return total;

}

/**

* Add an entry to a bin.

* @param x value added if it is in the range:<br>

* lo <= x < hi

**/

public void add (double x) {

if (x >= fHi) fOverflows++;

else if (x < fLo) fUnderflows++;

else {

double val = x — fLo;

// Casting to int rounds off to lower

// integer value.

int bin = (int) (fNumBins * (val/fRange));

// Increment the corresponding bin.

fBins[bin]++;

}

}

/** Clear the histogram bins and the over and under flow

* counts. **/

public void clear () {

for (int i=0; i < fNumBins; i++)

fBins[i] = 0;

fOverflows = 0;

fUnderflows = 0;

}

/**

* Provide access to the value in the bin element

* specified by bin-num.<br>

* Return the underflows if bin value negative,

* Return the overflows if bin value more than

* the number of bins.

**/
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public int getValue (int bin-num) {

if (bin-num < 0)

return fUnderflows;

else if (bin-num >= fNumBins)

return fOverflows;

else

return fBins[bin-num];

}

/**

* Get the average and standard deviation of the

* distribution of entries.

* @return double array

*/

public double [] getStats () {

int total = 0;

double wt-total = 0;

double wt-total2 = 0;

double [] stat = new double[2];

double bin-width = fRange/fNumBins;

for (int i=0; i < fNumBins; i++) {

total += fBins[i];

double bin-mid = (i - 0.5) * bin-width + fLo;

wt-total += fBins[i] * bin-mid;

wt-total2 += fBins[i] * bin-mid * bin-mid;

}

if (total > 0) {

stat[0] = wt-total / total;

double av2 = wt-total2 / total;

stat[1] = Math.sqrt (av2 - stat[0] * stat[0]);

}

else {

stat[0] = 0.0;

stat[1] = -1.0;

}

return stat;

} // getStats

/**

* Create the histogram from a user provided array

* along with the under and overflow values.
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* The low and high range values that the histogram

* corresponds to must be passed in as well.<br>

*

* @param user-bins array of values for histogram.

* @param under number of underflows.

* @param over number of overflows.

* @param lo value of the lower range limit.

* @param hi value of the upper range limit.

**/

public void pack (int[] user-bins,

int under, int over,

double lo, double hi) {

fNumBins = user-bins.length;

fBins = new int[fNumBins];

for (int i = 0; i < fNumBins; i++) {

fBins[i] = user-bins[i];

}

fLo = lo;

fHi = hi;

fRange = fHi—fLo;

fUnderflows = under;

fOverflows = over;

} // pack

} // class Histogram

We extend Histogram with several subclasses that are described in subsequent
chapters in the Web Course Tech track but not in the book due to space limitations.
In a demonstration program in Chapter 15 of the book we use one of these
subclasses, HistogramAdapt, which widens its range dynamically so as to
include all data entries with no under or overflows.

6.12 Web Course materials

The Web Course Chapter 6: Supplements section includes an introduction to
basic AWT user interface design (as opposed to the Swing emphasis here). It also
looks at drawing with the Java 2D methods. A more detailed description of the
composting rules, for example, is provided as well.

The graphical interfaces shown here are only intended to demonstrate the
basic programming techniques and look rather crude. Swing, in fact, provides a
number of optional features, such as a selection of borders for components, to
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create beautiful interfaces. The Web Course Supplements sections for Chapters
6 and 7 present ways to refine the appearance of your user interfaces.

The Tech and Physics tracks look at using the graphics techniques to plot data
graphs and histograms using the PlotPanel and HistPanel classes discussed
above.
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Chapter 7
Graphical User Interfaces

7.1 Introduction

In the previous chapter we introduced Java graphics and focused on the display
of components, drawings, and images. Here we discuss how to build a graphical
display that interacts with the user. A Graphical User Interface (GUI) requires
dynamic components like buttons and menus that cause something to happen
when the user activates them with the mouse or keyboard. These components
generate messages called events that signal what action occurred. We will first
look in this chapter at the underlying structure for generating and processing
events.

We then introduce several more Swing components such as checkboxes and
sliders and present demonstration programs that illustrate how to receive and
process the events they generate. We discuss in more detail how components are
arranged on the interface with the use of layout managers. For event handling
and other tasks, we examine the use of inner classes and adapter classes. After a
discussion of frames and menu bars, we demonstrate GUI construction and event
techniques with a couple of programs involving histograms.

7.2 Events

The graphical user interface (GUI) offers a profoundly different programming
environment than the old step-by-step, linear world of a procedural program
communicating via a console. In the latter approach, the user simply starts a
program and waits for it to churn through its algorithm and eventually reach the
end and stop. In the GUI environment, the program instead waits for the user to
select some task and then carries out that selected operation. When it finishes the
operation, the program returns to a wait state. Furthermore, with thread processes
(see Chapter 8) the program can carry on multiple operations and interactions
with the user, all appearing to happen simultaneously even though they typically
run in a single processor.

The JVM communicates with the operating system to monitor the program’s
interface. When the user moves a mouse, clicks one of its buttons, hits a key,
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or initiates some other action, the operating system detects this and passes the
information to the JVM, which in turn will create an event object that holds
information about the action. Then the JVM sends the event (or fires it) to your
program. You create event handling methods to receive the events and carry out
the particular operations of interest.

For the Java AWT, events are sent just to those objects that registered to receive
particular kinds of events. Such event receiver objects are called listeners. A
listener implements the proper interface for a given type of event and registers
itself with the components that generate that type of event. A class does not need
to be a subclass of Component to implement a listener interface. In the following
sections we will discuss the handling of events generated by components such
as buttons and menu items. (See the Sun tutorial [1] for further event listener
examples.)

7.2.1 Event listeners

As you move your mouse and click on its buttons, the operating system (OS)
detects the physical signal generated by each increment in the position of the
mouse and the press and release of the mouse buttons (a “click” is actually two
events – button down and button up). The OS sends a message with data (e.g. the
position of the cursor) about each such event to the component object in the AWT
system of the JVM, which then checks for event listeners registered to receive
those types of events occurring over a particular component.

There are different kinds of listeners for different kinds of events. This is
organized by providing an interface specific to each type of event. Examples
include:

� ActionListener – GUI button clicks
� MouseListener – mouse button clicks
� MouseMotionListener – mouse movements
� WindowListener – closing a frame

These interfaces are sub-interfaces of the EventListener interface. Most
event listener types are in the java.awt.event package, though some newer
event listener types appear in the javax.swing.event package.

The ActionListener interface has just one method: actionPer-

formed(ActionEvent ae). For a GUI button you will need to implement
the ActionListener and provide an actionPerformed() method to carry
out the operations desired when that GUI button is clicked.

Classes that generate events maintain a list of event listeners. Whenever an
event occurs, it will be sent to each event listener in that list. The order in which
events are delivered is completely up to the JVM. All classes that maintain event
listener lists will provide methods to add new event listeners and remove existing
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listeners. The AWT Button class and the Swing JButton class, for example,
include the method

addActionListener (ActionListener al)

(Technically, in the case of JButton, the addActionListener() method is
inherited from the AbstractButton class.)

Any class, not just graphics components, can implement the ActionLis-

tener interface. For example, an applet class can implementActionListener
and then pass thethis reference to theaddActionListener()method. Other
components provide similar “add listener” methods to add listeners for the events
they generate. For example, the JPanel class includes

addMouseListener (MouseListener ml)

and the TextField class includes the method

addTextListener (TextListener tl).

7.2.2 Event information

So you implement a listener interface and provide an implementation of the
method (for example, actionPerformed()) that receives an event object.
What can you do with the event? Typically you will need to obtain essential
information from the event such as the identity of the object that sent it. If, for
example, it was generated by a mouse, you can extract the screen coordinates of
the cursor location when the event occurred.

The root event class is java.util.EventObject but its subclass,
java.awt.AWTEvent, is the primary class for events in the AWT system.
There are various subclasses of AWTEvent in the java.awt.event package
such as ActionEvent, ItemEvent, and TextEvent. These are used to pro-
vide information on specific types of events such as those from buttons, menu
items, and text fields.

It is possible that many different components could have generated the event
sent to actionPerformed(). For example, a user interface might have several
buttons that could have sent an ActionEvent. The method getSource() in
EventObject returns anObject reference to the component that generated the
event. A test with the instanceof operator will indicate the type of component
that generated the event. You can also compare the reference to a list of component
references to determine the specific object that sent the event.

We will give several examples of events and event handling in the following
sections. See also Chapter 7 in the Web Course for additional information and
demonstration applets.
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7.2.3 Button events

Buttons provide the most common event generating components in user inter-
faces. (See the JButton and other button classes in the Swing hierarchy in
Figure 6.2.) Clicking on a button should initiate some action and in fact the term
action is used in the names for the button event handling machinery. A button
maintains a list of objects that implement theActionListener interface. When
the button is pressed, it invokes the actionPerformed() method for all of the
ActionListener instances in its list. To include an ActionListener in its
list, you invoke the button’s addActionListener(ActionListener al)

method.
ActionListener classes must provide an implementation of the method

void actionPerformed (ActionEvent ae)

You use this method to code for the particular operation required when the
user clicks the button. An ActionEvent object is passed as the parameter of
actionPerformed() and from it you can extract information about the event
such as which button initiated the event.

We mentioned above the getSource() method inherited from EventOb-

ject that can identify what object sent the event. With buttons you can also use
the method getActionCommand() in ActionEvent to identify the button
that sent the event. This method returns either the text string displayed on the but-
ton or a string set directly with the setActionCommand() method (inherited
from AbstractButton class).

The PlainButtonApplet program below implements the ActionLis-

tener interface and so provides an actionPerformed() method. We create
two instances of JButton and then add the applet to the buttons’ ActionLis-
tener lists with the statements:

buttonA.addActionListener (this);

buttonB.addActionListener (this);

Here the “this„ reference refers to the applet instance.
Each time the GUI button is clicked with the mouse button, the GUI button’s

actionPerformed() method is invoked. From the ActionEvent we obtain
the identity of the button via the getActionCommand() method and decide

Figure 7.1 The PlainButton applet running illustrates event handling for buttons.
Each click on a button sends a message to the status bar.
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what action to perform. Here we use the Applet showStatus() method to
display a string on the browser status line. Figure 7.1 shows the program running
in the applet viewer program.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** Demonstrate event handling with two buttons. **/

public class PlainButtonApplet extends JApplet

implements ActionListener

{

int fPushACount = 0;

int fPushBCount = 0;

/** Build the interface with two buttons. **/

public void init () {

Container content--pane = getContentPane ();

content--pane.setLayout (new FlowLayout ());

// Create an instance of JButton

JButton button--a = new JButton ("A");

// Create an instance of JButton

JButton button--b = new JButton ("B");

// Add this applet to each button’s ActionListener

// list

button--a.addActionListener (this);

button--b.addActionListener (this);

JPanel panel = new JPanel ();

// Add the buttons to the content pane.

content--pane.add (button--a);

content--pane.add (button--b);

} // init

/** Count each button click and post total on status

* line. **/

public void actionPerformed (ActionEvent event) {

String cmd = event.getActionCommand ();



206 Graphical User Interfaces

if (cmd.equals ("A")) {

fPushACount++;

showStatus (event.getActionCommand () +

"pushed" + fPushACount + "times");

} else {

fPushBCount++;

showStatus (event.getActionCommand () +

"pushed" + fPushBCount + "times");

}

} // actionPerformed

} // class PlainButtonApplet

The ActionEvent class also includes the method

public int getModifiers ()

The integer returns with a bitwise OR of the values indicating what mod-
ifier keys were held down when the event occurred. For example, a value
of 0x09 would indicate the OR of ActionEvent.ALT-MASK (0x08) and
ActionEvent.SHIFT-MASK (0x01) for the Alt and Shift keys, respectively.

7.2.4 Simple GUI

In Chapter 6 we created a very basic display with two buttons, two text fields,
corresponding labels, plus a text area. However, that applet could not perform
any operation. Now that we know about button event handling, we can create a
genuine user interface with these components.

Figure 7.2 shows the display from the MultiPanelWithEvents applet
whose code is given below. It corresponds to the MultiPanelApplet example
from Chapter 6 and uses the same InputsPanel class. However, now the applet
implements the ActionListener interface and the ActionButtonsPanel
is modified to pass an ActionListener reference in the constructor. Each
button adds this reference to its list of listeners to send events.

Figure 7.2 With a layout like that in Figure 6.4(b), the MultiPanelWithEvents applet
can handle events generated by the buttons and execute the selected operation on
the data values in the text fields. It then displays the result in the text area.
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import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/** Demonstrate GUI building with multiple panels

* and event handling.

**/

public class MultiPanelWithEvents extends JApplet

implements ActionListener

{

InputsPanel fInputsPanel;

JTextArea fTextOutput;

/** Build the interface with InputsPanel

* and ActionButtonsPanel.

**/

public void init () {

Container content--pane = getContentPane ();

content--pane.setLayout (new GridLayout (1, 3));

// First create a panel of buttons

ActionButtonsPanel buttons--panel =

new ActionButtonsPanel (this);

. . . Rest same as in init() in MultiPanelApplet in

Chapter 6 . . .

} // init

// Handle the button events. **/

public void actionPerformed (ActionEvent ae) {

/** Get the values in the two text fields. **/

String str1 = fInputsPanel.fTextfieldTop.getText ();

String str2 = fInputsPanel.fTextfieldBot.getText ();

double val1=0.0;

double val2=0.0;

try {

val1 = Double.parseDouble (str1);

val2 = Double.parseDouble (str2);

} catch (NumberFormatException nfe) {

System.out.println ("Improper input");

}
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if (ae.getActionCommand ().equals ("Add")) {

fTextOutput.setText ("x + y = " + (val1+val2));

} else {

fTextOutput.setText ("x * y = " + (val1*val2));

}

} // actionPerformed

} // class MultiPanelWithEvents

import java.awt.event.*;

import javax.swing.*;

/** JPanel subclass with two buttons. **/

public class ActionButtonsPanel extends JPanel

{

/** Constructor adds 2 buttons to the panel and

* adds the listener passed as an argument to the

* action listener list in each button.

**/

ActionButtonsPanel (ActionListener listener) {

// Create two buttons

JButton add--but = new JButton ("Add");

JButton mult--but = new JButton ("Mult");

add--but.addActionListener (listener);

mult--but.addActionListener (listener);

// Put a button in each grid cell

add (add--but);

add (mult--but);

} // ctor

} // class ActionButtonsPanel

The actionPerformed() method in the applet grabs the strings from the
text fields and converts them to floating-point values. It then examines the action
command string (by default this is the text on the button) to determine which
button sent the event. It then carries out the chosen operation and displays the
result in the text area.

7.2.5 Mouse events

As the following diagram shows, the MouseEvent class inherits from several
classes:
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java.lang.Object

|
+-java.util.EventObject

|
+-java.awt.AWTEvent

|
+-java.awt.event.ComponentEvent

|
+-java.awt.event.InputEvent

|
+-java.awt.event.MouseEvent

These include a number of methods that provide information about an event. (See
the Java 2 API Specification for a detailed listing.) A sampling of the methods
include:

� getComponent () – identifies the Component object that generated the event
� getX (), getY (), getPoint () – provide the coordinates of the mouse location
� getClickCount () – gives number of times the mouse button was clicked
� getModifiers () – indicates what modifier keys were held down during the event

Both the motion of the mouse and its buttons create events. There are two
separate types of mouse event listeners:

� MouseMotionListener

Each move of the mouse generates a motion event. To listen for mouse motion events,

a class needs to implement the MouseMotionListener interface. The implementing

class will need to provide two methods:
� mouseMoved (MouseEvent e) – mouse motion
� mouseDragged (MouseEvent e)– mouse motion when mouse button is held

down
� MouseListener

The MouseListener interface provides these methods for mouse button and cursor

events:
� mousePressed (MouseEvent e) – mouse button is pressed
� mouseReleased (MouseEvent e) – mouse button is released
� mouseClicked (MouseEvent e) – button clicked (press and release counts as

one action)
� mouseEntered (MouseEvent e) – the cursor enters the area of the component
� mouseExited (MouseEvent e) – the cursor exits the area of the component

The following example program CaptureEvtApplet illustrates how to use the
MouseListener interface to monitor when a mouse cursor enters or exits the
area of the panel and when clicks are made over the panel. The program displays
messages in a JTextArea to indicate the different ways that mouse events
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Figure 7.3 The
CaptureEvtApplet

program illustrates mouse
event handling. Whenever
the mouse moves the
cursor into the top area or
clicks while the cursor is
over the top panel, a
message will be displayed
in the lower text area.

can be generated (see Figure 7.3). The CaptureEventPanel implements the
MouseListener interface and so must provide all five methods.

Note that in the saySomething()method, the invocation of getClass().
getName() provides the name of any class as a string. Here we have used this
technique to find the identity of the component that generated the event. (See the
Web Course Chapter 5: Supplements section for more about the Class class and
the information it provides about a class definition.)

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** Demonstrate a MouseListener component. **/

public class CaptureEvtApplet extends JApplet

{

/** Create the interface with CaptureEventPanel. **/

public void init () {

Container content--pane = getContentPane ();

// Create an instance of the JPanel subclass

CaptureEventPanel cap--evt--panel =

new CaptureEventPanel ();

// And the panel to the JApplet panel.

content--pane.add (cap--evt--panel);

} // init

} // class CaptureEvtApplet
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import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** This panel uses MouseListener to capture mouse events **/

public class CaptureEventPanel extends JPanel

implements MouseListener

{

JTextArea fTextOutput;

String newline;

/**

* Constructor adds this class to the MouseListener

* list for a panel and sends messages to a text area

* whenever an event occurs over the panel.

**/

CaptureEventPanel () {

setLayout (new GridLayout (2,1));

JPanel p = new JPanel ();

p.setBackground (Color.LIGHT--GRAY);

add (p);

//Register to receive mouse events on the panel.

p.addMouseListener (this);

fTextOutput = new JTextArea ();

fTextOutput.setEditable (false);

add (fTextOutput);

} // ctor

// Implementation of Mouse Listener requires overriding

// all five of its methods.

public void mousePressed (MouseEvent e) {

saySomething ("Mouse pressed; # of clicks: "

+ e.getClickCount (), e);

}

public void mouseReleased (MouseEvent e) {

saySomething ("Mouse released; # of clicks: "

+ e.getClickCount (), e);

}

public void mouseEntered (MouseEvent e) {

saySomething ("Mouse entered", e);

}
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public void mouseExited (MouseEvent e) {

saySomething ("Mouse exited", e);

}

public void mouseClicked (MouseEvent e) {

saySomething ("Mouse clicked (# of clicks: "

+ e.getClickCount () + ")", e);

}

/** On JTextArea print messages describing mouse events. **/

void saySomething (String event--description, MouseEvent e){

fTextOutput.insert (event--description + "detected on"

+ e.getComponent ().getClass ()

.getName () + "." + "\n",0);

}

} // class CaptureEventPanel

7.3 More user interface components

Now that we know how to handle events, we introduce four more event-generating
components. In each of the cases discussed here, two panels are displayed on an
applet. TheOutputPanel simply displays a solid color. The other panel contains
the UI components that set the color of OutputPanel. The components that we
discuss are:

� JCheckBox
� JRadioButton
� JList
� JSlider

In the four sections that follow, we create JPanel subclasses that hold the above
components. First we show the code for the program UiTestApplet, which
selects one of these panels according to a parameter passed from the applet tag
in the web page. It then displays both the selected panel and OutputPanel,
whose code is also shown below.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/**

* Display one of four types of component panels

* to control the background color on a separate panel.

* Applet parameter selects the type of panel. **/
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public class UiTestApplet extends JApplet

{

/** Create the GUI with OutputPanel and ControlPanel. **/

public void init () {

Container content--pane = getContentPane ();

// Create an instance of OutputPanel

OutputPanel output--panel = new OutputPanel ();

// Find out from the applet tag which of the four

// panels to use. Each panel demonstrates a different

// type of control component.

String panel--choice = getParameter ("Choose Panel");

JPanel control--panel;

// Create an instance of the control panel

if (panel--choice.equals ("Checkboxes"))

control--panel = new CheckBoxesPanel (output--panel);

else if (panel--choice.equals ("Radiobuttons"))

control--panel = new RadioButtonsPanel (output--panel);

else if (panel--choice.equals ("List"))

control--panel = new ListPanel (output--panel);

else

control--panel = new SliderPanel (output--panel);

// Add the panels to applet’s pane.

content--pane.add (output--panel, BorderLayout.CENTER);

content--pane.add (control--panel, BorderLayout.SOUTH);

} // init

} // class UiTestApplet

Here is the code listing for OutputPanel, whose job is just to display the color
currently selected by the user:

import javax.swing.*;

import java.awt.*;

/** Create a JPanel subclass called OutputPanel.

* It provides a method to set its color plus

* a paintComponent method. **/

public class OutputPanel extends JPanel
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{

Color fBgColor = Color.RED;

/** Set the color by passing the 3 RGB component

* values (in range 0-255).

**/

void setColor (int cr, int cg, int cb) {

fBgColor = new Color (cr,cg,cb);

repaint ();

}

/** For Swing components you must override

* paintComponent () rather than paint ().

**/

public void paintComponent (Graphics g) {

super.paintComponent (g);

// Now we fill a rectangle the size of the

// panel with the chosen color.

g.setColor (fBgColor);

g.fillRect (0, 0, getWidth (), getHeight ());

}

} // class OutputPanel

7.3.1 JCheckBox

Checkboxes allow the user to select from several non-exclusive options. Check-
boxes were available in Java 1.0 in the original AWT graphics package, but we
use the improved Swing version known as JCheckBox. (Notice the spelling: the
original AWT checkbox component is Checkbox – lower case “b” – while the
new Swing component is JCheckBox, with uppercase “B”.)

Figure 7.4 shows the display of the UITestApplet program for the
case where the applet parameter instructed it to use an instance of

Figure 7.4 The JCheckBox component allows for the selection of more than one
item in a set of checkboxes. With CheckBoxesPaneldisplayed by UITestApplet, the
user selects one or more of three color components to create the background color
for the top panel.
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CheckBoxesPanel to control the color of the top OutputPanel. The
CheckBoxesPanel holds three checkboxes, and implements the ItemLis-

tener interface. A reference to the CheckBoxesPanel instance is added to
the ItemListener list for the checkboxes.

JCheckBox inherits from the Swing AbstractButton class and one
ActionEvent and one ItemEvent are fired each time a checkbox is clicked
with the mouse button. You could listen for both event types but it only makes
sense to listen for one type or the other. In most applications, it makes more sense
to use an item listener because ItemEvents have the advantage of providing an
easy way to tell whether the event was a selection or de-selection event.

TheItemEvent objects are handled by theitemStateChanged()method
in the ItemListener interface. Our implementation of this method first looks
to see if the event is due to a selection or de-selection. Then it examines each
checkbox using the isSelected() method to determine if it is in a selected
state or not.

If a checkbox is selected, then the corresponding color component (red,
green, or blue) is added to the combined color for the background of the
OutputPanel using the setColor (int red, int green, int

blue) method. (See the Web Course demos for the non-gray scale versions!)

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** The CheckBoxesPanel holds the checkboxes that set

* the color of the output panel.

**/

public class CheckBoxesPanel extends JPanel

implements ItemListener

{

JCheckBox fRed, fGreen, fBlue;

OutputPanel fOutputPanel;

/** Constructor adds 3 checkboxes to the panel. **/

CheckBoxesPanel (OutputPanel output--panel) {

fOutputPanel = output--panel;

// Initial color is red so select this button.

fRed = new JCheckBox ("Red", true);

fRed.addItemListener (this);

add (fRed);
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fGreen = new JCheckBox ("Green");

fGreen.addItemListener (this);

add (fGreen);

fBlue = new JCheckBox ("Blue");

fBlue.addItemListener (this);

add (fBlue);

} // ctor

/**

* An item event from a checkbox comes here when

* the user clicks on one.

**/

public void itemStateChanged (ItemEvent evt) {

if (evt.getStateChange () == ItemEvent.SELECTED)

System.out.println ("SELECTED");

else

System.out.println ("DESELECTED");

int cr = (fRed.isSelected () ? 0xFF: 0);

int cg = (fGreen.isSelected ()? 0xFF: 0);

int cb = (fBlue.isSelected () ? 0xFF: 0);

fOutputPanel.setColor (cr,cg,cb);

} // itemStateChanged

} // class CheckBoxesPanel

7.3.2 JRadioButton

Radio buttons allow for situations where only one of several choices can be
accepted. You must add the particular set of radio buttons into a ButtonGroup,
which enforces the exclusionary rule. Figure 7.5 shows UiTestApplet again,
this time for the case where the applet parameter specified the use of the

Figure 7.5 The JRadioButton component allows for the selection of only one
button in a set of buttons. With RadioButtonsPanel displayed by UITestApplet,
the user selects one of three color components to create the background color for
the top panel.
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RadioButtonsPanel class. This class creates three radio buttons in the con-
structor and adds them to a ButtonGroup instance and to the panel. The class
implements theActionListener interface, and the buttons send their events to
actionPerformed(). That method uses getSource() to determine which
of the radio buttons generated the event and then sets the color accordingly. The
code listing for RadioButtonsPanel is given below:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.event.*;

/**

* The RadioButtonsPanel holds radio buttons that set

* the color of the output panel.

**/

public class RadioButtonsPanel extends JPanel

implements ActionListener

{

JRadioButton fRed, fGreen, fBlue;

OutputPanel fOutputPanel;

RadioButtonsPanel (OutputPanel output--panel) {

fOutputPanel = output--panel;

// RadioButtons need to be organized with a

// ButtonGroup object.

ButtonGroup group = new ButtonGroup ();

fRed = new JRadioButton ("Red", true);

fRed.addActionListener (this);

// Add the JRadioButton instance to both the

// ButtonGroup and the panel.

group.add (fRed);

add (fRed);

fGreen = new JRadioButton ("Green", false);

fGreen.addActionListener (this);

group.add (fGreen);

add (fGreen);

fBlue = new JRadioButton ("Blue", false);

fBlue.addActionListener (this);
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group.add (fBlue);

add (fBlue);

} // ctor

/** Action events come here when the user clicks

* on a button.

**/

public void actionPerformed (ActionEvent evt) {

// Default color component values.

int cr=0;

int cg=0;

int cb=0;

// Only one button can be selected at a time

// so find the button and set the corresponding

// output panel color.

Object source = evt.getSource ();

if (source == fRed)

cr = 0xFF;

else if (source == fGreen)

cg = 0xFF;

else if (source == fBlue)

cb = 0xFF;

fOutputPanel.setColor (cr,cg,cb);

} // actionPerformed

} // class RadioButtonsPanel

7.3.3 JList

The JList component provides a list of items from which the user can select.
Depending on how the JList is configured, either a single item or multiple items
can be selected. This time we tell UiTestApplet to use ListApplet, which
creates the interface shown in Figure 7.6. The user can select one of five colors
in a JList. The ListPanel code is given below.

One constructor of JList takes an Object array as a parameter. The ele-
ments of the array become the list items. We’ll use a String array. The
number of items that will be visible depends on the value passed to the
setVisibleRowCount() method. The setSelectionModel() is used to
configure the list to be either single- or multiple-selection mode, and the initial
item selected is set with setSelectedIndex().
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Figure 7.6 The JList

component provides a list
of items for the user to
choose. The component
can allow for single or
multiple item selections.
Here, for our ListPanel
class in UITestApplet,
only one item can be
selected.

Instead of an ActionListener, the JList sends its events to a
ListSelectionListener (which appears in the javax.swing.event

package). This version of our ControlPanel implements the ListSelec-

tionListener interface and provides a valueChanged() method. The
selected item is determined from the list and the OutputPanel’s background is
set to that color.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.event.*;

/**

* The ListPanel holds the JList component with items

* that determine the color of the output panel.

**/

public class ListPanel extends JPanel

implements ListSelectionListener

{

OutputPanel fOutputPanel;

/** Constructor adds a JList to the panel. **/

ListlPanel (OutputPanel output--panel) {

fOutputPanel = output--panel;

String [] colors = {

"Red","Green","Blue","Yellow","White","Black"};

JList color--list = new JList (colors);

// Show only 4 items in the list at a time.

color--list.setVisibleRowCount (4);
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// Allow only one of the items to be selected.

color--list.setSelectionMode (

ListSelectionModel.SINGLE--SELECTION);

// Select initially the top item.

color--list.setSelectedIndex (0);

color--list.addListSelectionListener (this);

// Add to a JScrollPane so that we can have

// a scroller to view other items.

JScrollPane scroll--pane = new JScrollPane (color--list);

add (scroll--pane);

} // ctor

// This class implements the ListSelectionListener

// so events come to this valueChanged method.

public void valueChanged (ListSelectionEvent evt) {

// Default color component values.

int cr=0;

int cg=0;

int cb=0;

// Get the reference to the JList object

JList source = (JList)evt.getSource ();

// and get an array of the selected items.

Object [] values = source.getSelectedValues ();

// In this case only one value can be selected

// so just look at first item in array.

String color--selected = (String)values[0];

if (color--selected.equals ("Red"))

cr = 0xFF;

else if (color--selected.equals ("Green"))

cg = 0xFF;

else if (color--selected.equals ("Blue"))

cb = 0xFF;

else if (color--selected.equals ("Yellow")) {

cr = 0xFF;

cg = 0xFF;

}

else if (color--selected.equals ("White")) {

cr = 0xFF;
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cg = 0xFF;

cb = 0xFF;

}

fOutputPanel.setColor (cr,cg,cb);

} // valueChanged

} // class ListPanel

Note the use of the JScrollPane class, which provides scroll bars (vertical
and horizontal) for those components, such as JList and JTextArea, that
implement the Scrollable interface. The bars appear whenever the content
extends beyond the visible area of the component.

7.3.4 JSlider

Sliders allow the user to choose from a continuous range of values rather than from
discrete values as with a set of buttons or a list. In Figure 7.7, UiTestApplet
has selected SliderPanel as its control panel. The panel holds three instances
of JSlider. The user can move the sliders to select the values for the Red–
Green–Blue component values, each on a 0 to 255 scale. The combination of
these three color values becomes the background color of the OutputPanel.
Because of the continuous color changes possible, this is an applet that really
should be experienced live. To see the sliders in action, we encourage you either
to see the program on the Web Course site or to create the program from this
source code and run it on your own.

The constructor parameters set the orientation of the slider (horizontal or
vertical) and the upper and lower limit values. The last parameter sets the initial
value of the slider.

A slider sends instances of ChangeEvent to each of the entries added to its
ChangeListener list. The panel therefore implements the ChangeListener
interface and provides a stateChanged() method. The current value setting
on the slider is obtained easily with its getValue() method.

Figure 7.7 The JSlider component allows the user to select from a continuous
range of values. With the SliderPanel class displayed in UITestApplet, the three
sliders set the Red-Green-Blue component values from 0 to 255 each. The combined
RGB values determine the color of the background of the top area.
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import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

/**

* The SliderPanel holds three JSlider widgets that set

* the color of the output panel.

**/

public class SliderPanel extends JPanel

implements ChangeListener

{

OutputPanel fOutputPanel;

JLabel fRedLabel,fGreenLabel,fBlueLabel;

JSlider fRed,fGreen,fBlue;

SliderPanel (OutputPanel output--panel) {

fOutputPanel = output--panel;

setLayout (new GridLayout (3, 2));

add (fRedLabel = new JLabel (

"Red 0 ",SwingConstants.RIGHT));

// The JSlider constructor parameters:

//

// orientation, minimum, maximum, inital value

//

// The sliders are set horizontally.

// The values range from 0 to 255.

// Set the red slider to max initially to match the

// initial Red color for the output panel.

//

add (fRed = new JSlider (

JSlider.HORIZONTAL, 0, 255, 255));

fRed.addChangeListener (this);

add (fGreenLabel = new JLabel (

"Green 0 ",SwingConstants.RIGHT));

add (fGreen = new JSlider (

Adjustable.HORIZONTAL, 0, 255, 0));

fGreen.addChangeListener (this);

add (fBlueLabel = new JLabel (

"Blue 0 ",SwingConstants.RIGHT));

add (fBlue = new JSlider (

Adjustable.HORIZONTAL, 0, 255, 0));
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fBlue.addChangeListener (this);

} // ctor

/** This class is the AdjustmentListener for the

* slider. So the events come here when the

* slider is moved.

**/

public void stateChanged (ChangeEvent evt) {

// Use the labels to show the numerical values of the

// scroll bar settings.

fRedLabel.setText ("Red " + fRed.getValue ());

fGreenLabel.setText ("Green " + fGreen.getValue ());

fBlueLabel.setText ("Blue " + fBlue.getValue ());

// Get the values from each scroll bar and pass

// them as the color component values.

fOutputPanel.setColor (fRed.getValue (),

fGreen.getValue (),

fBlue.getValue ());

fOutputPanel.repaint ();

} // stateChanged

} // class SliderPanel

7.4 Layout managers

You are now familiar with several Swing components and the basics of event
handling. You can build quite elaborate interfaces. However, before proceeding
you need to know how to control the arrangement, or layout, of the components.

With Java you do not normally give components fixed numerical dimensions
and coordinate locations. Java is intended to be portable to different platforms with
different graphical operating systems and with different types of display devices.
A flexible approach to component arrangement is thus required. This flexibility
is achieved with layout managers, which we briefly mentioned in Chapter 6. A
layout manager follows a general set of design rules as to how it should arrange
components. You give it instructions and the layout manager tries its best to follow
them within its own framework for how components are arranged.

Note that the layout manager can try to expand or shrink the size of a compo-
nent to fit the layout. However, it cannot arbitrarily modify the size of a component
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since that component may have a fixed size or a limited range of sizes. The user
can override the default size settings with the methods setMinimumSize(),
setMaximumSize(), and setPreferredSize(Dimension) methods.
The layout manager calls the corresponding getter method to find out the mini-
mum, maximum, and preferred dimensions for a component. A label or button,
for example, wants enough room to display its text or icon. If there is too little
room and the manager cannot satisfy the program’s instructions, then it will do
the best it can, according to its own rules. In some cases this will mean that one
or more components will be partially seen or left out of the interface altogether.

There are several layout manager classes to choose from and we will give
here a general description of how they work. (We discussed GridLayout in
Chapter 6.) For more details, see the specifications in the Java 2 API, the Web
Course, and the Sun tutorials [2].

Figure 7.8 Arrangement
of components with
FlowLayout.

Note that you typically build complex interfaces with multiple panels, each
with its own layout manager that best suits the particular subgroup of components.
The FlowLayout is the default for JPanel but you can specify one of the other
layout managers in its constructor or with the setLayout() method.

Some layout managers have been available since Java 1.0 and appear in the
java.awt package. The newer layout managers appear in the javax.swing
package.

7.4.1 FlowLayout

The following applet code demonstrates the coding for the FlowLayout. The
program produces the arrangement shown in Figure 7.8.

import javax.swing.*;

import java.awt.*;

/** Demo of the FlowLayout manager. **/

public class FlowApplet extends JApplet

{

// Add an instance of FlowPanel to the applet.

public void init () {

Container content--pane = getContentPane ();

// Create an instance of our FlowPanel class.

FlowPanel flow--panel = new FlowPanel ();

// And add it to the applet’s panel.

content--pane.add (flow--panel);

} // init

} // class FlowApplet
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/** A simple example of a Panel with five buttons. **/

class FlowPanel extends JPanel

{

FlowPanel () {

// Default for JPanel is FlowLayout

add (new JButton ("One"));

add (new JButton ("Two"));

add (new JButton ("Three"));

add (new JButton ("Four"));

add (new JButton ("Five"));

} // ctor

} // class FlowPanel

The FlowPanel is a subclass of JPanel, which uses FlowLayout as its
default layout. Each component added to the panel will be inserted from left to
right until there is no room and then the components will go to the next row
down and continue left to right. By default, FlowLayout attempts to center
the group of components. Left- or right-alignment can be specified with one
of the overloaded constructors or with the setAlignment() method and the
constants FlowLayout.LEFT or FlowLayout.RIGHT.

7.4.2 BoxLayout and Box

FlowLayout arranges components horizontally until it runs out of space and
then shifts down vertically to the next row. Before Swing, there was no good way
to arrange components in a vertical manner. The javax.swing.BoxLayout
solved that omission. BoxLayout arranges components sequentially like the
FlowLayout manager but it will set them either horizontally or vertically as
instructed. Unlike FlowLayout, however, it will not continue the components
on the next line or column when there is insufficient room. Components out of
range will not be shown. The following code produces the arrangement shown
in Figure 7.9(a):

public class BoxLayoutApplet extends JApplet

{

. . . init() builds the interface . . .

} // class BoxLayoutApplet

/** Arrange components with a BoxLayout manager. **/

class BoxPanel extends JPanel
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 (a)

 (b)

 (c)

Figure 7.9 Arranging
components with (a) the
BoxLayout, (b) the Box

container, and (c) the Box

plus glue and struts.

{

BoxPanel () {

setLayout (new BoxLayout (this,BoxLayout.Y--AXIS));

// Default for JPanel is BoxLayout

add (new JButton ("One"));

add (new JButton ("Two"));

add (new JButton ("Three"));

add (new JButton ("Four"));

add (new JButton ("Five"));

} // ctor

} // class BoxPanel

The Box is a container like JPanel except that it uses BoxLayout as a
default instead of the FlowLayout used by JPanel. In addition, Box provides
for three special invisible elements that insert spacing between components. You
can create a Box object with its constructor or you can use two static methods to
produce Box instances with either horizontal or vertical alignment:

Box horizontalBox = Box.createHorizontalBox();

Box verticalBox = Box.createVerticalBox();

Figure 7.9(b) shows the buttons arranged according to the following code:

public class BoxApplet extends JApplet

{

public void init () {

Container content--pane = getContentPane ();
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// Create a Box with horizontal alignment

Box box = Box.createHorizontalBox ();

// Add the components to the Box

box.add (new JButton ("One"));

box.add (new JButton ("Two"));

box.add (new JButton ("Three"));

box.add (new JButton ("Four"));

box.add (new JButton ("Five"));

// And add the Box to the JApplet panel.

Content--pane.add (box);

} // init

} //class BoxApplet

In Figure 7.9(a) the components bunch toward the top and leave a gap at
the bottom and in Figure 7.9(b) the components bunch to the left. Whenever the
individual components have a maximum size in vertical or horizontal dimensions,
this unattractive bunching will occur. To allow for arranging the components with
spacing between them, the Box provides methods to create three types of invisible
elements:

� Glue – surplus space in between components or between a component and container

side.
� Strut – a fixed width or height spacing for horizontal or vertical alignments.
� RigidArea – both width and height dimensions are fixed values.

Figure 7.9(c) shows the buttons arranged in aBox according to the following code
where we use some horizontal glue and struts to specify the spacing between the
components:

import javax.swing.*;

import java.awt.*;

/** Demo of Box with glue and struts. **/

public class BoxSpacingApplet extends JApplet

{

public void init () {

Container content--pane = getContentPane ();

// Create a Box with horizontal alignment.

Box box = Box.createHorizontalBox ();

// Add the buttons plus spacing components.

box.add (Box.createHorizontalGlue ());
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box.add (new JButton ("One"));

box.add (Box.createHorizontalStrut (5));

box.add (new JButton ("Two"));

box.add (Box.createHorizontalStrut (5));

box.add (new JButton ("Three"));

box.add (Box.createHorizontalGlue ());

box.add (new JButton ("Four"));

box.add (Box.createHorizontalGlue ());

box.add (new JButton ("Five"));

box.add (Box.createHorizontalGlue ());

// And add box to the Applet’s panel.

content--pane.add (box);

} // init

} // class BoxSpacingApplet

We see that this technique produces a more attractive arrangement of the com-
ponents. Similar code can be used for vertical layouts.

Figure 7.10 Arranging
components with
BorderLayout.

7.4.3 BorderLayout

If you have two to five components to group together then a BorderLayout is
often a convenient layout mananger. Figure 7.10 shows the result of the following
code that uses a BorderLayout:

public class BorderApplet extends JApplet

{

. . . init() builds the interface . . .

} // class BorderApplet

/** Arrange five buttons using a BorderLayout. **/

class BorderPanel extends JPanel

{

BorderPanel () {

setLayout (new BorderLayout ());

add (BorderLayout.EAST, new JButton ("East"));

add (BorderLayout.WEST, new JButton ("West"));

add (BorderLayout.NORTH, new JButton ("North"));

add (BorderLayout.SOUTH, new JButton ("South"));

add (BorderLayout.CENTER, new JButton ("Center"));

} //ctor

} //class BorderPanel
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 (a)  (b)  

Figure 7.11 (a) A CardLayout only shows one component at a time. (b) A
JTabbedPane component, like this one with three tabbed pages, makes clear how
many panes are overlapping.

The components go into the five locations labeled according to the four com-
pass directions plus the center. The components that go into the “NORTH„ and
“SOUTH„ locations will fill the horizontal space while maintaining their pre-
ferred vertical dimensions. The components that go into the“WEST„ and“EAST„

locations will fill the available vertical space while maintaining their preferred
horizontal dimensions. The component that goes into the center will fill up the
rest of the space in both horizontal and vertical dimensions.

If you want to maintain both the preferred horizontal and preferred vertical
dimensions of the components, you can put each component into its own JPanel
and then in turn add these panels to a panel that uses the BorderLayout.

7.4.4 CardLayout and JTabbedPane

The CardLayout arranges components into a “vertical” stack where only the
top component is visible at a given time. Figure 7.11(a) shows the display for the
following code where we stack three buttons on top of each other:

public class CardApplet extends JApplet

{

. . . init() builds the interface . . .

} // class CardApplet

/** Stack three buttons using CardLayout. **/

class CardPanel extends JPanel

implements ActionListener

{

CardLayout fCards;

/** Constructor adds three buttons to the panel

* and uses CardLayout.

**/

CardPanel () {

fCards = new CardLayout ();

setLayout (fCards);
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add ("one", makeButton ("one"));

add ("two", makeButton ("two"));

add ("three", makeButton ("three"));

} // ctor

/** Create a JButton here and add this object

* to its action listeners list.

**/

JButton makeButton (String name) {

JButton b = new JButton (name);

b.addActionListener (this);

return b;

}

/** Flip to the next card when a button pushed. **/

public void actionPerformed (ActionEvent e) {

fCards.next (this);

}

} // class CardPanel

Clicking on one of the buttons leads to the invocation of the next() method in
the CardLayout. This will display the next card in the stack, which circles back
to the beginning when the last card is reached. The cards are stacked according
to the order they are added.

The JTabbedPane is a component rather than a layout manager but it pro-
vides an alternative to CardLayout for overlaying a set of components. It pro-
vides a set of tabbed pages in which each page can hold a component. Selecting
the tab for a particular page will bring that page to the top. Using a container such
as JPanel can, of course, hold many sub-components for a page. Figure 7.11(b)
shows the interface created by the following program that uses a JTabbedPane
subclass:

public class TabbedApplet extends JApplet

{

public void init() {

Container contentPane = getContentPane ();

// Create an instance of the JTabbedPane subclass

Tabs tabs = new Tabs (this);

// Add the Tabs object to the applet’s panel.

contentPane.add (tabs);

} // init

} // class TabbedApplet
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/** This JTabbedPane subclass holds three panes,

* each with one button.

**/

class Tabs extends JTabbedPane

implements ActionListener

{

JApplet fApplet;

/** Put a button on each of three pages. **/

Tabs (JApplet applet) {

fApplet = applet;

add (makeButton ("1"), "One");

add (makeButton ("2"), "Two");

add (makeButton ("3"), "Three");

} // ctor

/** Make a button here and add this object

* to its action listeners list.

**/

JButton makeButton (String name) {

JButton b = new JButton (name);

b.addActionListener (this);

return b;

}

/** When button pushed, show message on the

* browser status bar.

**/

public void actionPerformed (ActionEvent e) {

JButton but = (JButton) (e.getSource ());

String str = but.getText ();

fApplet.showStatus ("Pushed button "+ str);

}

} // class Tabs

The JTabbedPane class provides the add() method for adding a component
along with a label that goes on the page tab. You can also add icons and mnemonics
for the tabbed labels as well. (Mnemonics allow you to select a page with key
combination such as “Alt-a”.)

7.4.5 SpringLayout

The layout manager javax.swing.SpringLayout came with Java 1.4 and
works by placing constraints on the distances between edges of components. The
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Figure 7.12 Arranging
components with the
SpringLayout.

constraint can be placed on the distance between any two edges. This includes
the distance between the edge of one component and another, between the side
of a container and a component edge, and also between two edges of the same
component. That is, the width of a component can be constrained by setting the
distance between the left and right edges, while its height can be constrained by
setting the distance between its top and bottom edges.

When a container uses a SpringLayout you must put constraints explicitly
on each component. Otherwise, each component will put its top left corner at
the (0, 0) point of the container and the arrangement will become an overlapping
mess.

The layout specifies the edges of a component with a compass nomenclature
similar to that for BorderLayout. That is, the left edge is SpringLayout.
WEST, the right edge is SpringLayout.EAST, the bottom edge is Spring-
Layout.SOUTH, and the top is SpringLayout.NORTH. The Spring-

Layout relies on two helper classes called Spring and SpringLayout.

Constraints. The spring tries to keep a component at its preferred dimen-
sion while it resists stretching to its maximum and compressing to its minimum.

You can just use the putConstraint() method to set the distance in pixels
between the edges. The following code produces the layout shown in Figure 7.12:

public class SpringApplet extends JApplet

{

. . . init () builds the interface . . .

} // class SpringApplet

/** Arrange five buttons using a SpringLayout. **/

class SpringPanel extends JPanel

{

/**

* Constructor creates 5 button interface with

* SpringLayout and constrains each to a particular

* position relative to the panel frame and to its

* neighbors.

**/

SpringPanel () {
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SpringLayout layout = new SpringLayout ();

setLayout (layout);

JButton one = new JButton ("One");

JButton two = new JButton ("Two");

JButton three = new JButton ("Three");

JButton four = new JButton ("Four");

JButton five = new JButton ("Five");

add (one);

add (two);

add (three);

add (four);

add (five);

// Now set the distances between the edges

// Put the first button at pixel coords (5,5)

// relative to the panel’s frame.

layout.putConstraint (SpringLayout.WEST, one,

5, SpringLayout.WEST, this);

layout.putConstraint (SpringLayout.NORTH, one,

5, SpringLayout.NORTH, this);

// Put the second button 5 pixels to the right of the

// first button and 40 pixels below the top panel edge

layout.putConstraint (SpringLayout.WEST, two,

5, SpringLayout.EAST, one);

layout.putConstraint (SpringLayout.NORTH, two,

40,SpringLayout.NORTH, this);

// Put the third button 100 pixels to the left of the

// panel edge and 5 pixels above the second button

layout.putConstraint (SpringLayout.WEST, three,

100, SpringLayout.WEST, this);

layout.putConstraint (SpringLayout.NORTH, three,

5, SpringLayout.SOUTH, two);

// Put the fourth button 15 pixels to the right of the

// first button and 5 pixels below the top panel edge

layout.putConstraint (SpringLayout.WEST, four,

15, SpringLayout.EAST, one);

layout.putConstraint (SpringLayout.NORTH, four,

5, SpringLayout.NORTH, this);

// Put the fifth button 25 pixels to the right of the
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// third button and 5 pixels below it

layout.putConstraint (SpringLayout.WEST, five,

25, SpringLayout.EAST, three);

layout.putConstraint (SpringLayout.NORTH, five,

5, SpringLayout.SOUTH, three);

} // ctor

} // class SpringPanel

The program uses the putConstraint() method to arrange the locations of
five buttons. The following code, for example, puts five pixels between the left
side of the first button and the left side of the container:

layout.putConstraint (SpringLayout.WEST, one, 5,

SpringLayout.WEST, this);

For a few components this layout can be quite convenient, but the coding becomes
tedious to deal with a large number of components. The SpringLayout is
intended primarily for use with so-called GUI builder programs with which a user
interactively builds an interface and the program takes care of all the code details.
The Sun tutorial Creating a GUI with JFC/Swing [3] provides a SpringUtil-
ities class that assists with building interfaces with the SpringLayout.

7.4.6 GridBagLayout

The most powerful layout manager is the GridBagLayout. You can arrange the
components in virtually any possible manner with it. However, it can be rather
tricky and often requires several iterations of adjusting the settings to get the
display just as you want it. In fact, if your interface has grown to the point you
need a GridBagLayout, you may find it a lot easier to use a GUI builder. We
will have room here only to give a brief introduction to this layout along with an
example to illustrate its capabilities. See the Web Course and the references for
more details.

As its name indicates, the GridBagLayout manager uses a grid like Grid-
Layout does but it works more like the hypertext table in the HTML language.
That is, instead of a fixed number of rows and cells with fixed cell dimensions,
this layout lets components span more than one cell vertically and horizontally.
Also, the relative widths of columns and the heights of rows can vary.

The GridBagLayout class does not provide an extensive set of methods to
specify the layout. Instead, each component is paired with an instance of the helper
class GridBagConstraints that specifies several parameters for the layout to
set the location and size of the component. For example, unlikeGridLayout, you
do not set explicit dimensions for the grid in the constructor. For each component
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Table 7.1 GridBagConstraints Parameters.

Parameter Description Values

int gridx, gridy Cell column, row number Values start at 0,0
int gridheight, gridwidth Number of rows and columns

taken up by the component
≥1

int weightx, weighty Allotment weight for setting
width & height of a cell

Arbitrary scale. Settings go
according to relative values.
See text for more details

int fill Determines whether
component fills cell in x, y,
both, or none

HORIZONTAL, VERTICAL,
BOTH, NONE

int anchor Position of component within
its cell when fill is not set to
BOTH

CENTER, EAST, SOUTHEAST,
SOUTH, SOUTHWEST,
WEST, NORTHWEST,
NORTH, NORTHEAST

int ipadx, ipady Padding added between a
component and cell borders

≥0

Insets insets Defines padding between
components

≥0

you set the gridx and gridy integer variables in the GridBagConstraints
object for the cell position of the component. The layout examines these values
for all the components to find the number of cells needed in the horizontal and
vertical dimensions.

Table 7.1 lists the parameters in GridBagConstraints along with descrip-
tions and allowed values. The purpose of the parameters is straightforward except
for weightx and weighty. These two parameters determine the allocation of
the available space for a column’s width and a row’s height when the container
is resized. If the weights are all the same then the column and row widths will
be the same (except for the variations due to the different minimum widths and
heights of components in the cells).

You can vary the weight values to force the columns and rows to span differ-
ent widths and heights. For example, the column with the cell with the largest
weightx gets the biggest allocation of horizontal space. The column with the
next biggest weightx gets the next biggest amount of horizontal space. And so
on. The weighty values work in a similar manner for vertical space allocations
to the rows.

The following code leads to the layout shown in Figure 7.13. The program
demonstrates the use of several of theGridBagConstraints parameters. Note
that the same GridBagConstraints object is used throughout. Only the cell
coordinates and one or more of its other values are changed when it is used with
the addition of the next component.

Figure 7.13 Arranging
components with the
GridBagLayout.
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Note how the multi-cell spanning works. The component placed in the
cell at (column, row) = (0, 1) is assigned gridheight=2. This means it will
span 2 rows (row 1 to row 2). Similarly, the component placed at (1, 1) has
gridwidth=2 so it spans two columns.

public class GridBagApplet extends JApplet

{

. . . init () sets up interface . . .

} // class GridBagApplet

/** Creates a panel with 5 buttons using GridBagLayout. **/

class GridBagPanel extends JPanel

{

GridBagConstraints constraints = new GridBagConstraints ();

GridBagPanel () {

setLayout (new GridBagLayout ());

// Create a 3 row grid

// Fill the grid squares with the component

// in both x and y directions

constraints.fill = GridBagConstraints.BOTH;

// Keep same weight in vertical dimension

constraints.weighty = 1.0;

// Top row will include three components, each

// weighted differently in x

// 0,0

constraints.weightx = 1.0;

constraints.gridx = 0; constraints.gridy = 0;

add (new JButton ("0,0"), constraints);

// 0,1

constraints.weightx = 0.5;

constraints.gridx = 1; constraints.gridy = 0;

add (new JButton ("1,0"), constraints);

// 0,2

constraints.weightx = 0.1;

constraints.gridx = 2; constraints.gridy = 0;

add (new JButton ("2,0"), constraints);

// Middle row has two components. First takes up two
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// rows, second takes up two columns

// The first component on second row will span

// vertically to third row

// 0,1 to 0,2

constraints.weightx = 1.0;

constraints.gridx = 0; constraints.gridy = 1;

constraints.gridheight = 2;

add (new JButton ("0,1 to 0,2"), constraints);

// The second component on second row will span

// horizontally to third column

// 1,1 to 2,1

constraints.weightx = 1.0;

constraints.gridx = 1; constraints.gridy = 1;

constraints.gridheight = 1;

constraints.gridwidth = 2;

add (new JButton ("1,1 to 2,1"), constraints);

// Bottom row has 2 components with fill set to NONE

// Use anchor.

constraints.fill = GridBagConstraints.NONE;

// 1,2

constraints.anchor = GridBagConstraints.SOUTHEAST;

constraints.weightx = 0.5;

constraints.gridx = 1; constraints.gridy = 2;

constraints.gridheight = 1;

constraints.gridwidth = 1;

add (new JButton ("1,2"), constraints);

// 2,2

constraints.anchor = GridBagConstraints.WEST;

constraints.weightx = 0.1;

constraints.gridx = 2; constraints.gridy = 2;

constraints.gridheight = 1;

constraints.gridwidth = 1;

add (new JButton ("2,2"), constraints);

} // ctor

} // class GridBagPanel

7.5 Convenience classes

With Java 1.1 came several types of classes that facilitate the writing of Java
code. Some programmers feel that these convenience classes violate the spirit of
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the object-oriented approach in which classes are strictly modular and separate.
However, if these classes are kept small and only used where best needed, they
can make Java code easier both to write and to read.

7.5.1 Inner classes

A technique that came with Java 1.1 allowed the nesting of classes. That is,
inner classes can be inserted inside other classes. For example, in the following
code we show how to put the definition of the class AnInnerClass inside the
constructor:

public class AnOuterClass

{

int fVar;

public AnOuterClass () {

. . . other code . . .

class AnInnerClass {

int b;

AnInnerClass () {

b = 4. * fVar;

}

} // class AnInnerClass

AnInnerClass inner = new AnInnerClass ();

. . . other code . . .

}

void someMethod () {

. . . code . . .

}

} // class AnOuterClass

The scope, which refers to the variables and methods accessible to a given
section of code, for the inner classes includes the instance variables and methods
of the parent class.

The most common use of inner classes is with event handling. The event model
allows us to make any class into a listener for our events. However, this can lead
to listener classes spread throughout the code, which makes the programs less
readable. With inner classes we can put the listener class definition immediately
adjacent to the code for the component that uses the listener. For example, in the
following code segment, an ActionListener class is placed next to where an
instance of it is added to a button:
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public class AnOuterClass extends JApplet

{

int fVar = 0;

JButton fBut = new JButton ("OK");

public AnOuterClass () {

class AnInnerClass implements ActionListener

{

public void actionPerformed (ActionEvent e) {

fVar++;

System.out.println ("Pressed " + fVar + "times");

}

} // class AnInnerClass

fBut.addActionListener (new AnInnerClass ());

add (fBut);

} // ctor

} // class AnOuterClass

The compiler will separate out these inner classes and create separate class

files for them. The names will be preceded with the outer class name, as in

AnOuterClass$AnInnerClass.class

for the above example.

7.5.2 Anonymous inner classes

It is common in Java programming to find situations where you need to create an
object but don’t need to bother with giving it an explicit name. For example, to
specify the size of a panel you could use code like this:

Dimension d = getSize ();

int width = d.width;

int height = d.height;

where a Dimension object is returned from a method and then used to specify
the width and height values. But why bother to create a variable name for this
Dimension object since it will never be used again? Instead, you could replace
the code with

int width = getSize ().width;

int height = getSize ().height;
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where the compiler bytecode will keep track of the Dimension object that
provides the width and height.

We can in fact cascade several such calls, using the object returned in the left
method to call the next method on the right:

a = getA ().methodB ().aMethodC ().variableX;

This anonymity eliminates from the code a lot of unnecessary variables and makes
it more readable.

With the inner classes we can take this concept to another level by creating
and instantiating a class without bothering to give the class a name. In the code
below an instance of the ActionListener class is created in the parameter of
the addActionListener method:

public class AnOuterClass extends JApplet

{

int fVar = 0;

JButton fBut = new JButton ("OK");

public AnOuterClass () {

fBut.addActionListener

(// Left parenthesis of method

new ActionListener () {// no name given for this

// ActionListener object

// Override actionPerformed as usual

public void actionPerformed (ActionEvent e) {

fVar++;

System.out.println ("Pressed " + fVar + "times");

}

}

); // Right parenthesis of method

add (fBut);

} // ctor

} // class AnOuterClass

Here in one step we created a class that implemented the ActionListener

interface and created an instance of it for use by the button. The compiler will
create a class file name AnOuterClass$1.classwhere a number, in this case
“1„, is used to identify the class file name for an anonymous inner class.

7.5.3 Adapter classes

The Java class library also includes adapter classes, which make writing lis-
tener classes more convenient. While the listener architecture greatly improves
the efficiency and capabilities of event handling, there are some complications
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and annoyances that come along with it. In particular, we find that the listener
interfaces hold up to six methods that must be implemented. (Remember that all
methods in an interface are abstract and so concrete implementations for each
must be provided.) If you need only one or a few of these methods, you must
nevertheless implement all of the remaining methods with empty code bodies.

In the AnonListenterApplet example given here, we use an anony-
mous MouseListener class but only one of the five methods declared in the
MouseListener interface is actually needed:

. . . In the AnonListenerApplet class . . .

void init () {

Container content--pane = getContentPane ();

// Create an instance of JPanel

JPanel panel = new JPanel ();

// User an anonymous MouseListener object with the

// panel

panel.addMouseListener (

new MouseListener () {

public void mouseEntered (MouseEvent e) {

System.out.println (e.toString ());

}

// Give empty code bodies to these unneeded

// methods.

public void mouseClicked (MouseEvent e) {}

public void mousePressed (MouseEvent e) {}

public void mouseReleased (MouseEvent e) {}

public void mouseExited (MouseEvent e) {}

}

);

// Add the panel to the content pane.

content--pane.add (panel);

} // init

. . . rest of code in AnonListenerApplet . . .

To avoid writing empty versions of all those unneeded methods, the
java.awt.event package provides adapter classes for seven of the listener
interfaces. These adapters have implemented the interface methods with empty
methods. Since the adapters are concrete (non-abstract) classes, we only need to
override the methods of interest.
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The AdapterApplet program here is essentially the same as the Anon-

ListenerApplet above but with a MouseAdapter:

. . . In the AdapterJApplet class . . .

Container content--pane = getContentPane ();

// Create an instance of JPanel.

JPanel panel = new JPanel ();

// Use an anonymous MouseAdapter object for the panel

panel.addMouseListener (

new MouseAdapter () {

public void mouseEntered (MouseEvent e) {

System.out.println (e.toString ());

}

}

);

// Add the panel to the content pane.

content--pane.add (panel);

. . .

This saves writing a lot of code but more importantly makes the code easier to
read and understand. However, be careful that you properly spell the method that
you override in the adapter. Otherwise, you are just adding another method to the
subclass. It can be difficult to track down this bug in your program.

7.6 Frames and menus

The application programs that we have demonstrated so far in this course send
their output to the console. We can instead create a window frame and build a
graphical user interface in the window using the components and GUI techniques
discussed thus far with regard to applets. As with other programs, we can also
include a menu bar with drop-down menus to provide various options for the user
such as the common File menu on the left-most position holding items such as
Open file, Save file, and Exit.

An application and an applet can also open other window frames. For example,
a program may need for the user to select from a bigger set of options and settings
than a menu can provide. So it brings up a new frame with a graphical interface
for the user to make the desired settings.

In the follow sections we first discuss how to add a menu bar to an applet.
Then we look at how to open a frame from within an application or an applet.
We then discuss how to create a GUI program that can run either as an applet or
in a standalone application window.
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 (a) (b)

Figure 7.14 (a) The
JFrame class provides a
framed window. (b)
JFrame with a menu bar
and a single drop down
menu.

7.6.1 Frame for an application

The following program illustrates the basics of creating a window frame as shown
in Figure 7.14(a). The main()method creates an instance of JFrame (the string
parameter passed to the JFrame constructor becomes the title in the frame’s title
bar). When the frame is closed, the program is told to exit:

f.setDefaultCloseOperation (JFrame.EXIT--ON--CLOSE);

(If you create a daughter frame from within an applet or application, use
DISPOSE--ON--CLOSE to close the frame without exiting the program.) A panel
that displays an image in the center is added to the panel’s content pane. The
setSize() method sets the dimensions of the frame. Then the frame is made
visible.

import javax.swing.*;

import java.awt.*;

/** This app displays an image on a JPanel subclass.**/

public class FrameApp

{

/** Create a frame and display image with DrawingPanel. **/

public static void main (String[] args) {

// Use the AWT toolkit to obtain the image

Image img = Toolkit.getDefaultToolkit ().getImage (

"Apollo16Lander.jpg");

// Pass the image to an instance of DrawingPanel

DrawingPanel drawing--panel = new DrawingPanel (img);

// Create an instance of JFrame with a title string.

JFrame f = new JFrame ("Frame & Image Demo");

// Set mode for closing frame with the window exit button.
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f.setDefaultCloseOperation (JFrame.EXIT--ON--CLOSE);

// Add the DrawingPanel object, set dimensions.

f.getContentPane ().add (drawing--panel);

f.setSize (new Dimension (240,160));

f.setVisible (true);

} // main

} // class FrameApp

/** This JPanel subclass display an image.**/

class DrawingPanel extends JPanel

{

Image fImg;

DrawingPanel (Image img) {

fImg = img;

}

public void paintComponent (Graphics g) {

super.paintComponent (g);

// Put the image at the center of the panel

int img--x = getSize ().width/2 - fImg.getWidth (this)/2;

int img--y = getSize ().height/2 - fImg.getHeight (this)/2;

//Draw image at centered in the middle of the panel

g.drawImage (fImg, img--x, img--y, this);

} // paintComponent

} // class DrawingPanel

7.6.2 A menu bar for a frame

For most applications with frames, you will want to add a menu bar. Creating a
useful menu bar involves at least three classes. The JMenuBar class represents
the menu bar itself while JMenu holds instances of JMenuItem. The following
code shows how to create the frame and menu bar shown in Figure 7.14(b):

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** This app displays an image and includes a menu bar.**/

public class FrameMenuApp extends JFrame

implements ActionListener
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{

/** Constructor passes title to super class. **/

public FrameMenuApp (String title) {

super (title);

}

/** Create a frame and display image with DrawingPanel. **/

public static void main (String[] args) {

// Get an image and pass it to an instance of DrawingPanel.

Image img = Toolkit.getDefaultToolkit ().getImage (

"Apollo16Lander.jpg");

DrawingPanel drawingPanel = new DrawingPanel (img);

// Create an instance of this JFrame subclass.

FrameMenuApp f =

new FrameMenuApp ("Frame with Menu Bar Demo");

f.setDefaultCloseOperation (JFrame.EXIT--ON--CLOSE);

// Build a menu bar.

JMenuBar mb = new JMenuBar ();

// Create a standard "File" drop-down menu.

JMenu menu = new JMenu ("File");

// Include for key selection of the menu item.

menu.setMnemonic (KeyEvent.VK--F);

// Add the menu to the menu bar

mb.add (menu);

// Create an Open item for the menu.

JMenuItem menuOpen = new JMenuItem ("Open", KeyEvent.VK--O);

menu.add (menuOpen);

// The FrameMenuApp implements ActionListener

// to respond to the menu item selections.

menuOpen.addActionListener (f);

// Include a separate line on the menu.

menu.addSeparator ();

// Add the exit item

JMenuItem menuExit = new JMenuItem ("Exit", KeyEvent.VK--X);

// Includes the accelerator key combo to select it.

menuExit.setAccelerator (KeyStroke.getKeyStroke (
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KeyEvent.VK--Q, ActionEvent.CTRL--MASK));

menu.add (menuExit);

menuExit.addActionListener (f);

// Add the menu bar to the frame.

f.setJMenuBar (mb);

f.getContentPane ().add (drawingPanel);

f.setSize (new Dimension (240,180));

f.setVisible (true);

} // main

/** Respond to the menu items. **/

public void actionPerformed (ActionEvent e){

String cmd = e.getActionCommand ();

// Exit program

if (cmd.equals ("Exit"))

System.exit (0);

else if (cmd.equals ("Open"))

// Put code here to open a file

System.out.println ("Open");

}// actionPerformed

}// class FrameMenuApp

. . . DrawingPanel class same as for FrameApp example . . .

This program goes as the previous one except that it creates a menu bar with a
single menu labeled “File”. The File menu holds two items – Open and Exit –
and a separator.

The menu bar has a simple no argument constructor and is added to the frame
with the setMenuBar() method. The JMenu constructor passes the title as a
parameter. A mnemonic allows for the selection of a menu or menu item via the
keyboard. The following line assigns the Alt-f key pair to bring the focus on
the File menu:

menu.setMnemonic (KeyEvent.VK--F);

The “F” in the File label will be underlined to indicate that it is the mnemonic
key. A constructor for JMenuItem provides for setting the mnemonic with the
second parameter, as in

JMenuItem menuOpen = new JMenuItem ("Open", KeyEvent.VK--O);

This line defines the “Open” item in the File drop-down menu with the mnemonic
key pair set to Alt-O.



7.7 User interface with histogram display 247

The mnemonic brings the focus on a menu or menu item but it doesn’t select
it. Pressing the Return or Enter key on the keyboard then selects that menu item.
To create a shortcut keystroke to fire a menu item, use an accelerator key, which
causes the item to be selected immediately. The following line will cause the
Ctrl-q pair to select the Exit item:

menuExit.setAccelerator (KeyStroke.getKeyStroke (

KeyEvent.VK--Q, ActionEvent.CTRL--MASK));

The FrameMenuApp class implements the ActionListener class, and the
frame object is added to both menu items. A separator line is inserted into the
menu with the following:

menu.addSeparator ();

Note that a nice feature of the Swing JApplet is that it allows a menu bar on
the panel on the browser page. Previously, the heavyweight menu bar component
could not be put onto the applet within the browser. The lightweight Swing menus
are simply drawn on the panel like any other Swing component.

7.7 User interface with histogram display

In this section we add interactive graphics components to the histogram dis-
play discussed in Chapter 6 so that the user can control with the program.
Figure 7.15 shows the histogram user interface display obtained from the
program UIDrawHistApplet listed below. We use the same Histogram,

Figure 7.15 This graphical user interface combines a histogram with a set of
control components. The user enters into a JTextField the number of Gaussian
random numbers to generate and the buttons initiate the generation, display
statistics about the distribution, clear the histogram, and end the program.
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HistFormat, and HistPanel classes, illustrating the modularity of work-
ing with classes. Here the program adds the histogram panel HistPanel to its
content pane and also a panel with three buttons and a text field. The text field
displays the number of values to be generated for the histogram when the “Go”
button is pushed. The user can change this value. The “Clear” button empties the
histogram.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** A demonstration of the Histogram class. **/

public class UIDrawHistApplet extends JApplet

implements ActionListener

{

// Use the HistPanel JPanel subclass here

HistPanel fOutputPanel;

Histogram fHistogram;

int fNumDataPoints = 100;

// A text field for input strings

JTextField fTextField;

// Flag for whether the applet is in a browser

// or running via the main () below.

boolean fInBrowser = true;

//Buttons

JButton fGoButton;

JButton fClearButton;

JButton fExitButton;

/**

* Create a User Interface with a text area with

* scroll bars and a Go button to initiate processing

* and a Clear button to clear the textarea.

**/

public void init () {

Container content--pane = getContentPane ();

JPanel panel = new JPanel (new BorderLayout ());

// Create a histogram with Gaussian distribution.

makeHist ();
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// JPanel subclass here.

fOutputPanel = new HistPanel (fHistogram);

panel.add (fOutputPanel,"Center");

// Use a textfield for an input parameter.

fTextField =

new JTextField (Integer.toString (fNumDataPoints), 10);

// If return hit after entering text, the

// actionPerformed will be invoked.

fTextField.addActionListener (this);

fGoButton = new JButton ("Go");

fGoButton.addActionListener (this);

fClearButton = new JButton ("Clear");

fClearButton.addActionListener (this);

fExitButton = new JButton ("Exit");

fExitButton.addActionListener (this);

JPanel control--panel = new JPanel ();

control--panel.add (fTextField);

control--panel.add (fGoButton);

control--panel.add (fClearButton);

control--panel.add (fExitButton);

if (fInBrowser) fExitButton.setEnabled (false);

panel.add (control--panel,"South");

// Add text area with scrolling to the content pane.

content--pane.add (panel);

} // init

/** Respond to buttons. **/

public void actionPerformed (ActionEvent e){
Object source = e.getSource ();

if (source == fGoButton || source == fTextField) {

String strNumDataPoints = fTextField.getText ();

try {

fNumDataPoints = Integer.parseInt (strNumDataPoints);

} catch (NumberFormatException ex) {

// Could open an error dialog here but just

// display a message on the browser status line.
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showStatus ("Bad input value");

return;

}

makeHist ();

repaint ();

} else if (source == fClearButton) {

fHistogram.clear ();

repaint ();

} else if (!fInBrowser)

System.exit (0);

} // actionPerformed

/** Create a histogram if it doesn’t yet exit. Fill it

* with Gaussian random distribution.

**/

void makeHist () {

// Create an instance of the Random class for

// producing our random values.

java.util.Random r = new java.util.Random ();

// The method nextGaussian in the class Random

// produces a value centered at 0.0 and a standard

// deviation of 1.0.

// Create an instance of our histogram class. Set the

// range so that it includes most of the distribution.

if (fHistogram == null)

fHistogram = new Histogram ("Gaussian Distribution",

"random values", 20,-3.0,3.0);

// Fill histogram with Gaussian distribution

for (int i = 0; i < fNumDataPoints; i++) {

double val = r.nextGaussian ();

fHistogram.add (val);

}

} // makeHist

/** Create a frame and add the applet to it. **/

public static void main (String[] args) {

// Dimensions for our frame

int frame--width = 450;

int frame--height = 300;
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// Create an instance of the applet to add to the frame.

UIDrawHistApplet applet = new UIDrawHistApplet ();

applet.fInBrowser = false;

applet.init ();

// Create the frame with the title

JFrame f = new JFrame ("Histogram with Gaussian");

f.setDefaultCloseOperation (JFrame.EXIT--ON--CLOSE);

// Add applet to the frame and display the frame.

f.getContentPane ().add (applet);

f.setSize (new Dimension (frame--width,frame--height));

f.setVisible (true);

} // main

} // class UIDrawHistApplet

The conversion of the string obtained from the text field to an integer can throw
an exception. Here we indicate a bad value by showing an error message on the
browser status bar. A more sophisticated approach would open a message dialog
to warn the user of the bad input (see the Web Course Chapter 7: Supplements
section for a discussion and several demonstrations of message dialogs).

When building a GUI you should arrange for the controls to behave in way that
will be natural and intuitive for the user. For example, if the user enters a value
into the text field and does not hit Enter, the value in the text field should still be
used when the “Go” button is selected. This ensures that the value showing in
the text file is always the parameter used in the calculation, as most users would
expect. Furthermore, we added the ActionListener (the applet in this case)
to the list for the JTextfield. Thus, when the user enters text and hits Enter, an
action event will be generated and the actionPerformed() method invoked
just as if the “Go” button had been selected.

The above example also shows how to create a GUI program that runs either
as an applet or as a standalone frame. When run as an applet the main()method
is ignored. When run as an application, the main() method creates an instance
of UIDrawHistApplet and adds it to the frame content pane. The Applet

class getImage() method will not work properly in application mode so we
use a flag to indicate which of the two image loading techniques to use.

7.8 Web Course materials

All of the programs discussed here are available as applets or applications in the
Web Course Chapter 7: Java section along with additional discussions on event
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handling, layout managers, and Swing components. The Chapter 7: Supplements
section provides a tutorial on creating dialogs in the Swing framework. In addition,
it discusses GUI development with just the basic AWT components.

The Chapter 7: Tech section discusses the above Histogram applet with
user interface controls. It also discusses the creation of non-uniform random
number distributions with techniques such as the transformation and the rejection
methods. A Histogram subclass called HistogramStat that provides more
extensive statistical measures of the distribution is developed.

The Chapter 7: Physics section looks further at the generation of non-uniform
distributions and presents the histogram technique for creating custom distribu-
tions. It also gives a simple example of a Monte Carlo integration.
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Chapter 8
Threads

8.1 Introduction

Threads in Java are processes that run in parallel within the Java Virtual Machine.
When the JVM runs on a single real processor the parallelism is, of course,
only apparent because of the high speed switching of threads in and out of the
processor. Yet even in that case, threading can provide significant advantages.
For example, while one thread deals with a relatively slow I/O operation such as
downloading a file over the network, other threads can do useful work. Threads
can assist in modularizing program design. An animation can assign different
threads to rendering the graphics, to sound effects, and to user interactions so
that all of these operations appear to take place simultaneously. Furthermore, a
JVM can assign Java threads to native OS threads (but isn’t required to) and on
a multiprocessor system it could thus provide true parallel performance.

Java makes the creation and running of threads quite easy. We will concentrate
on the basics of threading and only briefly touch on the subtle complications that
arise when multiple threads interact with each other and need to access and modify
common resources. Such situations can result in data race, deadlock, and other
interference problems that result in distorted data or hung programs.

8.2 Introduction to threads

In Java you can create one or more threads within your program just as you can
run one or more programs in an operating system [1–4]. Most JVMs, in fact,
take great advantage of threads for such tasks as input/output operations and
user-interface event handling. Since the Java garbage collector always runs in a
separate thread, even the simplest Java program is actually multithreaded.

In the previous chapters we saw that Java applications begin when the JVM
invokes the main()method. (The application itself runs as a thread in the JVM.)
Instead of a main(), the thread processes begin and end with a method named
run(). You place code in run() to control the operations that you wish to
accomplish with the thread. The thread lives only as long as the process remains
within run(). When the thread process returns from the run(), the thread is
dead and cannot be resurrected.

253
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You create a thread class in one of two ways:

1. Create a subclass of the Thread class and override the run() method.

2. Create a class that implements the Runnable interface, which has only one method:

run(). Pass a reference to this class in the constructor of Thread. The thread then

calls back to this run() method when the thread starts.

In the following sections we examine these two thread creation techniques
further.

8.2.1 Thread creation: subclass

Creating a subclass of Thread offers the most conceptually straightforward
approach to threading. In this approach the subclass overrides the run()method
with the code you wish to process. The following code segments illustrate this
approach.

The class MyThread extends the Thread class and overrides the method
run() with one that contains a loop that prints out a message until a counter
hits 20.

public class MyThread extends Thread

{

public void run () {

int count = 0;

while (true) {

System.out.println ("Thread alive");

// Print every 0.10sec for 2 seconds

try {

Thread.sleep (100);

}

catch (InterruptedException e) {}

count++;

if (count >= 20) break;

}

System.out.println ("Thread stopping");

} // run

} // class MyThread

In MyApplet shown below, the start() method creates an instance of the
MyThread class and invokes the thread’s start() method. This will in turn
invoke the run()method. The thread goes into a loop and prints a message every
100 ms using the Thread class static method sleep(long time), where time
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is in milliseconds. The thread then dies – i.e. it cannot be restarted – once the
process exits from run().

/** Demo threading with Runnable implementation.**/

public class MyApplet extends java.applet.Applet

{

/** Applet’s start method creates and starts a thread.

**/

public void start () {

// Create an instance of MyThread.

MyThread myThread = new MyThread ();

// Start the thread

myThread.start ();

} // start

public void paint(java.awt.Graphics g) {

g.drawString("Thread Demo 1",20,20);

}

} // class MyApplet

The diagram in Figure 8.1 shows schematically how the main thread and
MyThread thread run in parallel.

Figure 8.1 This diagram illustrates threading with a Thread subclass. MyApplet
creates an instance of MyThread, which extends Thread and overrides run(). The
applet invokes the start() method for the MyThread object. The start() method
returns but the thread process continues independently with the invocation of the
run() method in MyThread. When the thread process returns from run() the thread
dies (i.e. cannot be started again).
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8.2.2 Thread creation: Runnable

In the second threading technique a class implements the Runnable interface
and overrides its run() method. This approach is often convenient, especially
for cases where you want to create a single instance of a thread, as in an animation
for an applet. You pass a reference to the Runnable object via the constructor
of Thread and when it starts, the thread calls back to the run() method. As
before, the thread process dies after exiting run().

The following code segment illustrates this approach. Here MyRunnableAp-
plet implements the Runnable interface. The start() method creates an
instance of the Thread class and passes a reference to itself (with the “this„

reference) in the thread’s constructor. When it invokes the start() method for
the thread, the thread will invoke the run()method in MyRunnableApplet.

/** Demo threading with Runnable implementation. **/

public class MyRunnableApplet extends java.applet.Applet

implements Runnable

{

/** Applet's start method creates a thread. **/

public void start () {

// Create an instance of Thread with a

// reference to this Runnable instance.

Thread thread = new Thread (this);

// Start the thread

thread.start ();

} // start

/** Override the Runnable run() method. **/

public void run () {

int count = 0;

while (true) {

System.out.println ("Thread alive");

// Print every 0.10sec for 5 seconds

try{

Thread.sleep(100);

} catch (InterruptedException e) {}

count++;

if (count >= 50) break;

}

System.out.println ("Thread stopping");

} // run

public void paint (java.awt.Graphics g) {
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g.drawString ("Thread demo 2",20,20);

}

} // class MyRunnableApplet

The diagram in Figure 8.2 shows schematically how this approach works.

8.2.3 Thread subclass vs. Runnable

The choice between these two thread creation techniques depends on the particular
application and what seems most appropriate and convenient for it. Since Java
does not allow multiple inheritance, an applet class that is already a subclass of
Applet or JApplet can become multithreaded by implementing Runnable.
The run() method will have access to the variables and methods of the class.
For example, an applet animation may need parameters for initialization and may
also need to invoke methods from the applet.

Extending Thread applies well to the situation where you want to create a
specialized thread class that does not need to extend any other class. A common
case is where many worker threads are needed such as in a server program that

Figure 8.2 This diagram illustrates threading with a Runnable class.
MyRunnableApplet implements the Runnable interface and it creates an instance of
Thread and passes in the constructor a reference to itself as a Runnable object. (We
use the name “runnable” for the reference variable to the Runnable object.) The
applet invokes the start()method for the thread and it returns while the thread
process continues independently with the invocation of the run() method in the
applet object. When the thread process returns from the applet’s run() the thread
dies.
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assigns a worker to service each client that connects to it. When the client signs
off, the threaded worker process assigned to it dies.

8.3 Stopping threads

A thread dies in three ways:

� it returns from run()
� the stop() method is invoked (this method is now deprecated)
� it is interrupted by a runtime exception

The first approach is always the preferred way for a thread to die. In the examples
shown above in Section 8.2, we used a flag variable in a loop to tell the run method
to finish. We recommend this approach to killing a thread.

Do not use the Thread method stop()to kill a thread. The stop() method
has been deprecated. That means that it still exists in the class definition but is
officially marked as obsolete and should be avoided. The stop()method causes
the thread to cease whatever it is doing and to throw a ThreadDeath exception.
This can leave data in an unknown state. For example, the thread might be midway
through setting the values of a group of variables when the thread was stopped.
This will leave some variables with new values and some with old values. Other
processes using those variables might then obtain invalid results. Furthermore, an
instruction involving a long or double type value can require two operations
in the JVM, which moves data in 32-bit chunks. So a thread stop might occur
after the first operation and leave the value in an indeterminate state. These kinds
of errors will be difficult to track down since the effect may not be seen until the
processing reaches another part of the program.

As mentioned earlier, the best way to stop a thread is to signal that the pro-
cessing should return from run(). Setting a flag can usually accomplish this. A
loop can check the flag after each pass and escape from the loop with the flag
switches. This allows for the process to finish what it is doing in a controlled
manner. In previous examples we set a boolean flag. In the applet below we use
the thread reference instead of a separate flag variable. Setting the reference to
null signals for the end of a loop in run() and also allows the garbage collector
to reclaim the memory used by the thread.

public class MyApplet extends Applet implements Runnable

{

Thread fMyThread;

public void init () {

. . .
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}

. . .

public void start () {

if (fMyThread!= null) {

fMyThread.start ();

}

else

fMyThread = new Thread (this);

}

public void stop () {

fMyThread = null;

}

void run () {

while (fMyThread!= null) {

. . .

}

}

} // MyApplet

Remember that the start() and stop() methods in the Applet class are
unrelated to methods with the same names in the Thread class. Like the init()
method in the Applet class, these are just methods that allow the browser to
control the applet. The browser invokes start() each time the applet page is
loaded (note that init() is only invoked the first time the applet web page is
loaded). The applet’s stop() is a good place to do housecleaning such as killing
any live threads. Always explicitly stop your threads in applets when the applet
stop() is called. Otherwise, they may continue running even when the browser
loads a new web page.

Furthermore, do not use the deprecated suspend() and resume()methods
in theThread class for the same reasons given for not using thestop()method.
You can obtain effective suspend/resume operations by killing the thread (that is,
signaling for it to return safely from the processing in the run() method) and
creating a new one with the same values of the variables as when the previous
thread died. The new thread will then simply continue from where the last one
finished.

8.4 Multiprocessing issues

An operating system executes multiple processes in a manner similar to that
for multithreading except that each process stack refers to a different program
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in memory rather than code within a single program. The Java Virtual Machine
(JVM) controls the threads within a Java program much as the machine operating
system controls multiple processes.

In some JVM implementations, threads are directly assigned to native pro-
cesses in the operating system. Furthermore, in operating systems that support
multiple physical processors, the threads can actually run on different processors
and thus achieve true parallel processing.

Multiprocessing in Java with threads is relatively straightforward and provides
for great flexibility in program design. The JVM handles most of the details of
running threads but your program can influence the sharing of resources and
setting priorities for multiple threads.

8.4.1 Sharing resources

Just as in an operating system, when multiple threads need to share a processor
or other resources, the JVM must provide a mechanism for a thread to pause
and allow other threads the opportunity to run. The two basic designs for context
switching of threads are:

� preemptive or time-slicing – give each thread fixed periods of time to run
� non-preemptive or cooperative – a thread decides for itself when to surrender control

Generally, the preemptive approach is the most flexible and robust. A misbehav-
ing thread cannot hog all the resources and possibly freeze the whole program.
Unfortunately, the context switching design is not specified currently for Java
and so different JVMs do it differently. Thus you should design your multi-
threaded code for either possibility if you expect to distribute your program for
general use.

For example, you can explicitly add pauses to your threads to ensure they
share the processing. The static method yield() in the Thread class tells the
currently executing thread to pause momentarily and let other threads run. The
static method sleep(long millis), where millis is in milliseconds, tells
the currently executing thread to pause for a specific length of time. There is
also the overloaded version method sleep(long millis, int nanos),
where the sleep time equals millis in milliseconds plus nanos in nanosec-
onds. (Most platforms, however, cannot specify time that accurately.) With these
two methods, you can ensure that when your program runs in a non-preemptive
environment, the threads will release control at suitable points in the thread code.

The resources needed for each thread is another aspect of multiprocessing
to consider when creating a high number of threads. The maximum number of
threads depends on the stack space needed per thread and the amount of memory
available. The stack size default is 400 KB. For a 1 gigabyte address space this
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should allow up to 2500 tiny threads, but in practice, because the thread code
itself plus any memory allocated for objects a thread uses takes up memory too,
an OutOfMemoryError will usually occur far sooner.

8.4.2 Setting priorities

Every thread has an integer priority value between 1 and 10 that can be con-
trolled using methods in the Thread class. Generally, higher priority threads
can be expected to be given preference by the thread scheduler over lower pri-
ority threads. However, the implementation of thread scheduling is left up to
the JVM implementation. This lack of specificity provides maximum flexibil-
ity to JVM designers since Java can be implemented on platforms with limited
speed and resources and also on platforms with multiple processors and extensive
resources.

The JVM implementation must work within the native platform’s multithread-
ing capabilities, which might or might not include native multithreading features.
Even among host operating systems that natively support multiple threads, the
details of that support are sure to be different among different operating systems
and perhaps among different hardware platforms. About all that can be said for
certain is that higher priority threads should receive preferential treatment by
the thread scheduler compared to threads with lower priority. However, if two or
more threads are waiting for processor resources, the thread scheduler may also
take into account how long the threads have been waiting. The highest priority
thread is perhaps likely to be the first to be scheduled, though not necessarily.
Over a long enough sampling time, higher priority threads will, on average, be
scheduled more often than lower priority threads, but that does not mean that
at any given time a lower priority thread might have control of the CPU while
a higher priority thread is waiting. In general, changing Java thread priorities is
not a reliable way to attempt to force one thread to always have preference over
another. (See Section 24.4 for a discussion of the real-time specification for Java,
which expands the number of priority levels to 28 and requires strict enforcement
of thread execution according to priority settings.)

With those caveats, you can get and set a thread’s priority with the
getPriority() and setPriority() methods in the Thread class. The
Thread class defines three constants:

� MIN-PRIORITY
� NORM-PRIORITY
� MAX-PRIORITY

The default priority is Thread.NORM-PRIORITY, which is 5, although new
threads always inherit the priority value of the creating thread. The following
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code increments a thread’s priority to one unit higher than the normal priority:

. . .

Thread threadX = new Thread (this);

threadX.setPriority (Thread.NORM-PRIORITY + 1);

threadX.start ();

. . .

Attempting to set a thread’s priority below MIN-PRIORITY or above
MAX-PRIORITY results in an IllegalArgumentException.

For multiple threads in a non-preemptive system, once one of them starts
running it will continue until one of the following happens:

� sleeps via an invocation of sleep()
� yields control with yield()
� waits for a lock in a synchronized method (synchronization is discussed in the next

section)
� blocks on I/O such as a read() method waiting for data to appear
� terminates with a return from run()

We will discuss synchronization and thewait()method in the following section.

8.5 Using multiple threads

Programs for some tasks become much easier to design with threads, sometimes
with lots of threads. We’ve already mentioned animations, and in Part II we will
see that client/server systems lend themselves naturally to multithreaded design –
the server can spin off a new thread to service each client. Some mathematical
algorithms, such as sorting and prime searching, also work well with multiple
threads working on different segments of the problem. On multiprocessor sys-
tems, JVMs can take advantage of true parallel processing and provide significant
speedups in performance for multithreaded applications.

There are basically four situations in which multiple threads operate:

1. Non-interacting threads – the actions of the threads are completely independent and

do not affect each other.

2. Task splitting – each thread works on a separate part of the same problem, such as

sorting different sections of a data set, but do not overlap with each other.

3. Exclusive thread operations – the threads work on the same data and must avoid

interfering with each other. This requires synchronization techniques.

4. Communicating threads – the threads must pass data to each other and do it in the

correct order.

The latter two cases can entail complex and often subtle interference problems
among the threads. We look in more detail at these four cases in the following
sections.
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8.5.1 Non-interacting threads

The simplest situation with multiple threads is when each thread runs indepen-
dently without interacting with any other thread. Below is a simple example of
such a case. We have one Thread subclass called IntCounter that prints out
the values of an integer counter. We could do a more interesting calculation but
for demonstration purposes this will suffice.

/** Demo Thread class to show how threads could do

* calculations in parallel. **/

class IntCounter extends Thread

{

int fId=0;

int fCounter = 0;

int fMaxIter = 0;

Outputable fOutput;

/** Constructor to initialize parameters. **/

IntCounter (int id, Outputable out) {

fId = id;

fMaxIter = 100000

fOutput = out;

} // ctor

/** Simulate a calculation with an integer sum.**/

public void run () {

while (fCounter < maxIter) fCounter++;

fOutput.println ("Thread" + fId + ": sum = " + fCounter);

}

} // class IntCounter

The program NonInteractApplet, which implements the Outputable

interface discussed in Chapter 6, provides a text area and “Go” and “Clear” but-
tons (see Figure 8.3). Clicking on “Go” invokes the applet’s start() method,
which creates three instances of this Thread subclass and starts them:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class NonInteractApplet extends JApplet

implements Outputable, ActionListener

{

. . . Build interface . . .
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// Pushing Go button leads to the invocation of this button

public void start () {

// Create 3 instances of each of the Thread subclass

IntCounter ic1 = new IntCounter (1, this);

IntCounter ic2 = new IntCounter (2, this);

IntCounter ic3 = new IntCounter (3, this);

// Start the threads

ic1.start ();

ic2.start ();

ic3.start ();

} // start

} // class NonInteractApplet

In the output shown in Figure 8.3 you see that the threads can finish in a different
order for each press of “Go„. The order depends on the time allocated to each
thread and on what kind of thread scheduling the JVM uses. You can experiment
with different thread priorities by adding code to set the priorities of the three
thread instances differently. For instance, set ic1 to a high priority and ic3 to a
low priority before starting the threads

ic1.setPriority (Thread.MAX-PRIORITY);

ic2.setPriority (Thread.NORM-PRIORITY);

ic3.setPriority (Thread.MIN-PRIORITY);

Figure 8.3 Display of the
NonInteractApplet

program. The Go button
has been pushed several
times to illustrate the
different order in which
the threads finish.
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8.5.2 Task splitting

The next level in complexity involves multiple threads working on the same
problem but on separate, non-interfering parts. For example, given a particular
integer value, a program could find the number of primes up to that value by
using different threads to work on different sections of the range between 1 and
the specified value.

In the example here, we use the task-splitting technique to scan a matrix. The
snippet below shows a class that searches a matrix and counts the number of
positive non-zero elements:

/**

* Thread class to count the number of non-zero elements

* in a section of a matrix.

**/

class MatHunter extends Thread

{

int [][] fMatrix;

int fIlo, fIhi, fJlo, fJhi;

int fOnes=0;

Outputable fOutput;

/** Constructor gets the matrix and the indices specifying

* what section to examine.

**/

MatHunter (

int [][] imat,

int i1, int i2, int j1, int j2,

Outputable out

) {

fIlo=i1; fIhi=i2;

fJlo=j1; fJhi=j2;

fMatrix = imat;

fOutput = out;

} // ctor

/** Examine a section of a 2D matrix and

* count the number of non-zero elements.

**/

public void run () {

for (int i=fIlo; i <= fIhi; i++) {

for (int j=fJlo; j <= fJhi; j++) {

if (fMatrix[i][j] > 0) fOnes++;

}

yield ();
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}

fOutput.println ("# ones =" + fOnes + "for i =" +

fIlo + "to" + fIhi + "& j =" + fJlo + "to" + fJhi);

} // run

} // class MatHunter

The program TaskSplitApplet creates a matrix with a random distribution
of zero and non-zero elements. It then creates four instances of MatHunter, one
for each quadrant of the matrix. Each instance works on the same problem but in
a separate, independent section of the matrix.

public class TaskSplitApplet extends JApplet

implements Outputable, ActionListener

{

. . . Build the interface . . .

public void start () {

int[][] imat = new int[2000][2000];

for (int i=0; i < 2000; i++) {

for (int j=0; j < 2000; j++) {

if (Math.random() > 0.5) imat[i][j] = 1;

}

}

MatHunter mh1 = new MatHunter (imat,0,999,0,999,this);

MatHunter mh2 =

new MatHunter (imat,0,999,1000,1999,this);

MatHunter mh3 =

new MatHunter (imat,1000,1999,0,999,this);

MatHunter mh4 =

new MatHunter (imat,1000,1999,1000,1999,this);

Println ("Start:");

mh1.start ();

mh2.start ();

mh3.start ();

mh4.start ();

} // start

} // class TaskSplitApplet

Figure 8.4 shows the results of different threads finishing in a different order each
time the “Go„ button is pressed.
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Figure 8.4 Display of TaskSplitApplet program. Pressing the “Go„ button can
result in a different sequence in the completion times of the thread each time.

8.5.3 Exclusive thread operations

Threading becomes trickier when threads perform operations that can conflict
with each other. For example, Figure 8.5 depicts a situation where two thread
processes both want to access an object but for different purposes (this is derived
from an example in the Sun Java Tutorial). The Filler thread wants to put
a number into the bin variable in the Box. It can only do so when the cav-
ity is empty. The Getter, on the other hand, wants to retrieve the number
from Cavity and leave the Cavity empty. Ideally, Filler and Getter

would alternate their calls to the methods put() and get(). However, if no
special steps are taken, it is quite easy for Getter to invoke get() when
the Cavity is empty and for Filler to invoke put() when the Cavity is
still full.

This type of situation is called a data race because each thread is racing to
do its task without waiting for the other thread to finish its activity. A synchro-
nization scheme prevents this problem. Synchronization forces threads to wait
in single file at the method or code block of an object where the conflict can
occur.

In this case, this means that the Box object only allows one thread at a time
to invoke either its put() or get(). It is as if only one thread object owns the
lock on the door to a Box object. That thread must give up the lock before any
other thread can access any synchronized method on the object. (Note that the
lock terminology is by convention. Giving up the key might be more illuminating.
The term monitor is also used.)
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Figure 8.5 (a) The Filler and Getter threads need to access the bin in the Box.
The Getter needs, however, to wait till the bin is filled. (b) While the Filler places a
value in the bin via the synchronized put() method, the Getter cannot invoke the
synchronized get() method. (c) Similarly, the Filler must wait till the Getter

finishes invoking the get() method before it can invoke put().

In the following code for the Box class, we see that the get() and put()

methods are prefaced by the modifier synchronized. This indicates that only
one thread can invoke either of these methods at the same time for the same object.
That is, during the time that a thread executes, say, the get() method, no other
thread can execute either the get() or put() method for the same Box object.

public class Box

{

private int fBin;

private boolean fFilled = false;

Outputable fOutput;

/** Constructor obtains reference to Outputable object.

**/

Box (Outputable out) {

fOutput = out;
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} // ctor

/** If bin is not filled, wait for it to be. **/

public synchronized int get () {

while (!fFilled){
try {

wait ();

}

catch (InterruptedException e) {}

}

fFilled = false;

fOutput.println ("Get value:" + fBin);

notifyAll ();

return fBin;

} // get

/** If bin is filled, wait for it to be emptied. **/

public synchronized void put (int value){

while (fFilled) {

try {

wait ();

}

catch (InterruptedException e) {}

}

fBin = value;

fFilled = true;

fOutput.println ("Put value: " + fBin);

notifyAll ();

} // put

} // class Box

We want to emphasize that each instance of Box has its own lock. There is no
interference problem among different Box objects. If a thread owns the lock on
one Box object, this does not prevent another thread from owning the lock on a
different Box object.

This code also illustrates the wait() and notifyAll() methods. When a
thread invokes put() or get(), it will wait until it is granted the lock for that
object because of the presence of the synchronized keyword. Once the thread
is granted the lock, it continues on through the method. Inside the method, a
check is made on the fFilled flag. When attempting a put(), if fFilled is
already true (i.e. if the bin is already full), then an explicit wait() is invoked.
Similarly, during a get(), if fFilled is false (i.e. if the bin is empty), then
wait() is invoked. Invoking wait() means that the thread gives up the lock
and remains at that point in the method until notified to continue.
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Let’s suppose that the Filler thread finds that fFilled = true during
the put() method; that thread will go into a wait state. Since fFilled is true,
the Getter thread passes the fFilled test in the get() method, obtains the
fBin value, sets thefFilledflag tofalse, and invokesnotifyAll() before
it returns. The notifyAll()method causes all threads in a wait state to attempt
to acquire the lock. When the lock is released by the Getter in the synchronized
get()method, the Filler thread can acquire the lock and continue on through
the put() method and fill the bin again.

The following code shows the Filler class. In the run() method, a loop
puts a value into the box and then pauses for a random period of time before doing
it again. For each pass of the loop, the put() invocation results in the printing
of a message via the Outputable reference.

public class Filler extends Thread

{

private Box fBox;

public Filler (Box b) {

fBox = b;

}

public void run () {

for (int i=0; i < 10; i++) {

fBox.put (i);

try {

sleep ((int)(Math.random () * 100));

}

catch (InterruptedException e) {}

}

} // run

} // class Filler

The following code shows the Getter class. The loop in its run() method will
continue until it gets ten values from the box. Note, however, that the process will
experience occasional wait states in the get() method in Box to give time for
the Filler to do its job.

public class Getter extends Thread

{

private Box fBox;

private int fNumber;

public Getter (Box b) {

fBox = b;
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Figure 8.6 The output of the Filler and Getter threads for the ExclusiveApplet

as they fill and retrieve a bin value in a Box object.

}

public void run () {

int value = 0;

for (int i=0; i < 10; i++) {

fNumber = fBox.get ();

}

} // run

} // class Getter

The snippet from ExclusiveApplet shown below creates a Box, a Filler,
and a Getter object and then starts the two threads. Figure 8.6 shows a typical
output. We see that the synchronization prevents a data race situation and the two
threads each complete their respective tasks.

public class ExclusiveApplet extends JApplet

implements Outputable, ActionListener

{

. . . Build the interface . . .
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/** Create Filler and Getter thread instances and start

* them filling and getting from a Box instance. **/

public void start () {

Box b = new Box (this);

Filler f1 = new Filler (b);

Getter b1 = new Getter (b);

f1.start ();

b1.start ();

} // start

. . .

} // class ExclusiveApplet

8.5.4 Communications among threads

In the previous section, we discussed the case where multiple threads try to access
an object and can step on each other if not properly synchronized. Here we look
at the even trickier situation where a thread needs to access data in another thread
and must also avoid a data race situation.

The standard example for communicating threads is the producer/consumer
paradigm. The producer object invokes its own synchronized method to create
the data of interest. The consumer cannot invoke the producer’s get() method,
which is also synchronized, until the producer has finished with its creation
method. The producer, in effect, locks its own door to the consumer until it
finishes making the data. (Imagine a physical store that locks its doors and does
not allow shoppers in while restocking the shelves.) Similarly, while the consumer
gets the data from the producer, it obtains the lock and prevents the producer from
generating more data until the consumer is finished.

Below we illustrate this paradigm with a program in which the Sensor class
represents the producer thread andDataGetter represents the consumer thread.
An instance of Sensor obtains its data (here just clock readings) in a loop in
run() via calls to the synchronized sense() method. The data goes into a
buffer array. A thread can invoke get() in Sensor to obtain the oldest data in
the buffer. The indices are set up to emulate a FIFO (First-In-First-Out) buffer.
When the buffer is full, the Sensor thread waits for data to be read out (that is,
it gives up the lock by calling the wait() method).

To obtain the data, a DataGetter instance invokes the synchronized get()
method in the Sensor instance. If no new data is available, it will give up the
lock and wait for new data to appear (that is, when notifyAll() is invoked in
the sense() method).

This snippet from DataSyncApplet creates the sensor and starts it. Then a
DataGetter is created and started.
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public class DataSyncApplet extends JApplet

implements Outputable, ActionListener

{

. . . Build the interface . . .

/** Create Sensor and DataGetter thread instances and

* start them filling and getting from a Box instance.

**/

public void start() {

// Create the Sensor and start it

Sensor s = new Sensor (this);

s.start ();

// Create DataGetter and tell it to obtain

// 100 sensor readings.

DataGetter dg = new DataGetter (s, 100, this);

dg.start ();

} // start

. . .

} // class DataSyncApplet

The Sensor (see code below) produces one data value (just a string containing
the number of milliseconds since the program began) and stores it in an ele-
ment of a buffer array. The fBufIndex keeps track of where the next value
should go. When it reaches the end of the array, it will circle back to the start.
The fGetIndex marks the value in the buffer that will be sent next to the
DataGetter. The fGetIndex should never fall farther behind fBufIndex

than the MAXGAP value (set here to 8). If the lag reaches the value of fMaxGap
then the sensor goes into a loop with an invocation of wait() for each pass.
When the DataGetter invokes the get() method, the notifyAll() will
wake the Sensor thread from its wait state and it will check the lag again. If it is
no longer at the maximum, the process leaves the wait loop and produces more
data. Otherwise, it loops back around and invokes wait() again.

import java.util.*;

/**

* This class represents a sensor producing data

* that the DataGetter objects want to read.

*/

public class Sensor extends Thread

{

// Size of the data buffer.

private static final int BUFFER-SIZE = 10;
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// Don’t let data production get more than

// 8 values ahead of the DataGetter

private static final int MAXGAP = 8;

private String [] fBuffer;

private int fBufIndex = 0; // sensor data buffer index

private int fGetIndex = 0; // data reading index

private final long fStart = System.currentTimeMillis ();

boolean fFlag = true;

Outputable fOutput;

/** Constructor creates buffer. Gets Outputable ref. **/

Sensor (Outputable out) {

fOutput = out;

fBuffer = new String [BUFFER-SIZE];

}

/** Turn off sensor readings. **/

public void stopData () {

fFlag = false;

}

/** Take sensor readings in a loop until flag set false.

**/

public void run () {

// Measure the parameter of interest

while (fFlag) sense ();

}

/** Use clock readings to simulate data. **/

private final String simulateData () {

return "" + (int) (System.currentTimeMillis () —

start);

}

/** Use indices fBufIndex, fGetIndex, and the lag()

* method to implement a first-in-first-out (FIFO)

* buffer. **/

synchronized void sense () {

// Don’t add more to the data buffer until the getIndex

// has reached within the allow range of bufIndex.

while (lag () > MAXGAP) {

try {wait ();}

catch (Exception e) {}

}

fBuffer[fBufIndex] = simulateData ();

fOutput.println("Sensor["+ (fBufIndex) + "] = "

+ fBuffer[fBufIndex]);
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// Increment index to next slot for new data

fBufIndex++;

// Circle back to bottom of array if reaches top

if (fBufIndex == BUFFER-SIZE) fBufIndex = 0;

notifyAll ();

} // sense

/** Calculate distance the DataGetter is running behind

* the production of data. **/

int lag () {

int dif = fBufIndex — fGetIndex;

if (dif < 0) dif += BUFFER-SIZE;

return dif;

}

/** Get a data reading from the buffer. **/

synchronized String get () {

// When indices are equal, wait for new data.

while (fBufIndex == fGetIndex) {

try{ wait(); }

catch (Exception e) {}

}

notifyAll ();

// Get data at current index

String data = fBuffer[fGetIndex];

// Increment pointer of next datum to get.

fGetIndex++;

// Circle back to bottom of array if reaches top

if (fGetIndex == BUFFER-SIZE) fGetIndex = 0;

return data;

} // get

} // class Sensor

The DateGetter grabs a data value from the sensor after random delay until it
gets its maximum number of data values. Figure 8.7 shows typical output from
DataSync.

import java.util.*;

/** This class obtains sensor data via the get () method.

* To simulate random accesses to the sensor, it will

* sleep for brief periods of different lengths after

* every access. After the data is obtained, this thread
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* will stop the sensor thread. **/

public class DataGetter extends Thread

{

Sensor fSensor;

Outputable fOutput;

int fMaxData = 1000;

int fDataCount = 0;

DataGetter (Sensor sensor, int maxNum, Outputable out) {

fSensor = sensor;

fMaxData = maxNum;

fOutput = out;

}

/** Loop over sensor readings until data buff filled. **/

public void run () {

Random r = new Random ();

while (true) {

String data = fSensor.get();

fOutput.println(fDataCount++ + ". Got: " + data);

// Stop both threads if data taking finished.

if (fDataCount >= fMaxData) {

fSensor.stopData ();

break;

}

// Pause briefly before access the

// data again.

try {

sleep (r.nextInt () % 300);

}

catch (Exception e) {}

}

} // run

} // class DataGetter

8.6 Animations

A popular task for a thread in Java is to control an animation. A thread process
can direct the drawing of each frame while other aspects of the interface, such as
responding to user input, can continue in parallel.

The Drop2DApplet program below illustrates a simple simulation of a
bouncing ball using Java 2D drawing tools. The applet creates a thread to direct
the drawing of the frames of the animation as the ball falls and bounces on the
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Figure 8.7 Output of the
DataSyncApplet program
with Sensor and
DataGetter classes.

floor and gradually comes to a rest (see Figure 8.8). The interface consists of a
subclass of JPanel called Drop2DPanel and a button to initiate a new drop of
the ball. Drop2DPanel displays the ball and calculates its position.

The applet implements Runnable and in the start() method it creates
a thread to which it passes a reference to itself. The applet’s run() method
first does some initialization and then enters a loop that draws each frame of the
animation. The loop begins with a 25 millisecond pause using the static sleep()
method in the Thread class. Then the Drop2DPanel is told to paint the next
frame. If the drop is done, the process jumps from the loop and exits the run()
method, thus killing this thread.

Figure 8.8 The
Drop2DApplet program
demonstrates how to
create a simple
animation by simulating
a dropped ball that
bounces when it hits the
floor and gradually
comes to rest.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** This applet implements Runnable and uses a thread

* to create a simple dropped ball demonstration.**/

public class Drop2DApplet extends JApplet

implements Runnable, ActionListener

{

// Will use thread reference as a flag
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Thread fThread = null;

Drop2DPanel fDropPanel;

JButton fDropButton;

/** Build the interface. **/

public void init () {

Container content--pane = getContentPane ();

Content--pane.setLayout (new BorderLayout ());

// Create an instance of DropPanel

fDropPanel = new Drop2DPanel ();

// Add the Drop2DPanel to the content pane.

Content--pane.add (BorderLayout.CENTER, fDropPanel);

// Create a button and add it

fDropButton = new JButton ("Drop");

fDropButton.addActionListener (this);

Content--pane.add (BorderLayout.SOUTH, fDropButton);

} // init

/** Start when browser is loaded or button pushed. **/

public void start () {

// If the thread reference not null then a

// thread is already running. Otherwise, create

// a thread and start it.

if (fTthread == null) {

fThread = new Thread (this);

fThread.start();

}

} // start

/** Applet’s stop method used to stop thread. **/

public void stop () {

// Setting thread to null will cause loop in

// run() to finish and kill the thread.

fThread = null;

} // stop

/** Button command, **/

public void actionPerformed (ActionEvent ae){
if (fDropPanel.isDone ()) start ();

}

/** The thread loops to draw each frame of drop. **/

public void run () {

// Disable button during drop

fDropButton.setEnabled (false);
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// Initialize the ball for the drop.

fDropPanel.reset ();

// Loop through animation frames

while (fThread!= null) {

// Sleep 25msecs between frames

try{Thread.sleep (25);

}

catch (InterruptedException e) {}

// Repaint drop panel for each new frame

fDropPanel.repaint ();

if (fDropPanel.isDone ()) fThread = null;

}

// Enable button for another drop

fDropButton.setEnabled (true);

} // actionPerformed

} // class DropApplet

The Drop2DPanel class is shown below. The panel calculates the position of
the ball for each increment of time between the frames and redraws the ball. It
reverses the ball when it hits the floor and also subtracts some speed to simulate
friction. Eventually, the ball comes to a rest and sets a flag that the drop simulation
is done.

import javax.swing.*;

import java.awt.*;

import java.text.*;

import java.util.*;

/** This JPanel subclass displays a falling ball. **/

public class Drop2DPanel extends JPanel

{

// Parameters for the drop

double fY = 0.0, fVy = 0.0;

// Conversion factor from cm to drawing units

double fYConvert = 0.0;

double fXPixel= 0.0, fYPixel = 0.0,

double fRadius = 0.0, fDiam = 0.0;

// starting point for ball in cm

double fY0 = 1000.0;

// Frame dimensions.

double fFrameHt, fFrameWd;

// Flag for drop status

boolean fDropDone = false;
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Ellipse2D fBall;

/** Reset parameters for a new drop. **/

void reset () {

fFrameHt = getHeight ();

fFrameWd = getWidth ();

fXPixel = getWidth ()/2;

fY = fY0; fVy = 0.0;

// Conversion factor from cm to pixels

// Start the ball about 20% from the top.

fYConvert = fFrameHt / (1.2 * fY0);

// Choose a size for the ball relative

// to height of drawing area.

fRadius = (int) ((0.1 * fY0) * fYConvert);

fDiam = 2 * fRadius;

// Make the ball

fBall = new Ellipse2D.Double(fXPixel-fRadius,

fYPixel-fRadius,

fDiam, fDiam);

setBackground (Color.WHITE);

fDropDone = false;

} // reset

/** Draw the ball at its current position. **/

public void paintComponent (Graphics g) {

super.paintComponent (g);

Graphics2D g2 = (Graphics2D)g;

// Antialiasing for smooth surfaces.

g2.setRenderingHint(RenderingHints.KEY-ANTIALIASING,

RenderingHints.VALUE-ANTIALIAS-ON);

// Determine position after this time increement

calcPosition ();

// Move the ball.

fBall.setFrame(fXPixel-fRadius, fYPixel-fRadius,

fDiam,fDiam);

// Want a solid red ball.

g.setColor (Color.RED);

g2.fill(fBall);

// Now draw the ball

g2.draw (fBall);
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}// paintComponent

/** Calculate the ball position in the next frame. **/

void calcPosition () {

// Increment by 25 millseconds per frame

double dt = 0.025;

// Calculate position and velocity at each step

fY = fY + fVy * dt — 490.* dt * dt;

fVy = fVy — 980.0 * dt;

// Convert to the pixel coordinates

fYPixel = fFrameHt — (int)(fY * fYConvert);

// Reverse direction when ball hits bottom.

if ((fYPixel + fRadius) >= (fFrameHt-1)) {

fVy = Math.abs (fVy);

// Subtract friction loss

fVy — = 0.1 * fVy;

// Stop when speed at bottom drops

// below an arbitrary limit

if (fVy < 15.0) {

fDropDone = true;

}

}

} // calcPosition

/** Provide a flag on drop status. **/

public boolean isDone () {

return fDropDone;

}

} // class Drop2DPanel

8.7 Timers

A timer provides for periodic updates and scheduling of tasks. For example, a
timer can:

� signal the redrawing of frames for an animation
� issue periodic reminders as with a calendar application
� trigger a single task, e.g. an alarm, to occur at a particular time in the future

As we saw in the previous section, with the Thread class you could create your
own simple timer using theThread.sleep (long millis)method to delay
action for a given amount of time. This approach, however, has some drawbacks.
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For periodic events, if the duration of processing in between the sleep periods
varies significantly, then the overall timing will vary with respect to a clock. Also,
if you need several timer events, the program will require several threads and this
will use up system resources.

Java provides two timer classes [5–7]:

� javax.swing.Timer came with the Swing packages and is useful for such tasks as

prompting the updating of a progress bar
� java.util.Timer and its helper classjava.util.TimerTaskprovide for general

purpose timers with more features than the Swing timer

These timers can provide multiple timed events from a single thread and thus
conserve resources. They also have useful methods such as scheduleAt-

FixedRate(TimerTask task, long delay, long period) injava.
util.Timer. This method will set events to occur periodically at a fixed rate
and ties them to the system clock. This is obviously useful for many applications
such as a countdown timer and an alarm clock where you don’t want the timing
to drift relative to absolute time.

8.7.1 java.util.Timer and TimerTask

The Timer and TimerTask combo in java.util offers the most general
purpose timing capabilities and includes a number of options. A Timer object
holds a single thread and can control manyTimerTaskobjects. TheTimerTask
abstract class implements the Runnable interface but it does not provide a
concrete run() method. Instead you create a TimerTask subclass to provide
the concrete run() method with the code to carry out the task of interest.

In the example below, we create a digital clock using a timer to redraw a
time display every second. The clock display uses DateFormatPanel, which
we describe in Chapter 10 when discussing the date classes. Whenever this
panel is drawn it displays the current time. The applet adds an instance of this
panel to its content pane and in the start() method creates an instance of
java.util.Timer.

Figure 8.9 The
ClockTimer1 and
ClockTimer2 programs,
which both provide a
current time display like
that shown here, illustrate
the use of
java.util.Timer and
javax.swing.Timer,
respectively.

A subclass of TimerTask called UpdateTask overrides the run()method
and simply tells the panel to redraw itself. UpdateTask is defined as an inner
class here and has access to the clock panel reference. The timer schedules
calls to the UpdateTask every 1000 milliseconds. Figure 8.9 shows the clock
display.

import javax.swing.*;

import java.awt.*;

import java.util.*;

/** This applet implements Runnable and uses a thread
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* to create a digital clock. **/

public class ClockTimer1 extends Japplet

{

java.util.Timer fTimer;

// Need panel reference in run().

DateFormatPanel fClockPanel;

public void init () {

Container content--pane = getContentPane ();

// Create an instance of DrawingPanel

fClockPanel = new DateFormatPanel ();

// Add the DrawingPanel to the contentPane.

content--pane.add (fClockPanel);

}

public void start () {

// Create a timer.

fTimer = new java.util.Timer ();

// Start the timer immediately and then repeat calls

// to run in UpdateTask object every second.

fTimer.schedule (new UpdateTask (), 0, 1000);

}

/** Stop clock when web page unloaded. **/

public void stop () {

// Stop the clock updates.

fTimer.cancel ();

}

/** Use the inner class technique to define the

* TimerTask subclass to update the clock.**/

class UpdateTask extends java.util.TimerTask {

public void run () {

fClockPanel.repaint ();

}

}

} // class ClockTimer1

(Note that since we import both javax.swing.* and java.util.* it is
necessary to use the fully qualified type java.util.Timerwhen declaring the
fTimer variable. Without the full qualification, the compiler would not know
whether we wanted javax.swing.Timer or java.util.Timer.)
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8.7.2 javax.swing.Timer

Although it has fewer options, the javax.swing.Timer can do some of the
same basic timing tasks as java.util.Timer. Below we show another version
of the digital clock except that it uses javax.swing.Timer. This timer con-
tacts an ActionListener after every time period rather than a TimerTask
object. Here the applet implements the ActionListener interface. The con-
structor for the timer takes as arguments the update period value and the reference
to the applet. The timer is then started and after every second the actionPer-
formed() method will be invoked and the clock panel repainted. The applet’s
stop() method stops the timer.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

/** This applet implements Runnable and uses a thread

* to create a digital clock. **/

public class ClockTimer2 extends JApplet

implements ActionListener

{

javax.swing.Timer fTimer;

// Need panel reference in run().

DateFormatPanel fClockPanel;

public void init () {

Container content--pane = getContentPane ();

// Create an instance of DrawingPanel

fClockPanel = new DateFormatPanel ();

// Add the DrawingPanel to the contentPane.

content--pane.add (fClockPanel);

}

public void start () {

// Send events very 1000ms.

fTimer = new javax.swing.Timer (1000, this);

// Then start the timer.

fTimer.start ();

}
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// Timer creates an action event.

public void actionPerformed (ActionEvent e) {

Object source = e.getSource ();

if (source == fTimer)

fClockPanel.repaint ();

}

// Stop clock when web page unloaded

public void stop () {

// Stop the clock updates.

fTimer.stop ();

}

} // class ClockTimer2

8.8 Concurrency utilities in J2SE 5.0

Java Release 5.0 adds numerous enhancements to the threading control and
concurrency features of Java. Some of the enhancements are advanced fea-
tures beyond the scope of this book, and others require an understanding of
the new generics feature of 5.0. So we defer discussion of these until after we
have explained generics in Chapter 10.

8.9 Web Course materials

The Web Course Chapter 8: Supplements section provides additional information
and examples dealing with threading. This includes additional discussion of the
new java.util.concurrent tools available with Java 5.0.

In the Chapter 8: Tech section we expand the number of histogram classes
and subclasses as we add new capabilities. For example, we create an adaptive
histogram class that can expand its range limits as new data arrives. We use timers
to simulate the reading of data to plot in a histogram. We also discuss sorting
tools in Java and use them to sort the bins in a histogram according to the number
of entries in the bins. We use a thread to animate the sorting of a histogram.

This increase in histogram classes illustrates a common challenge in object-
oriented programming: when to modify existing classes, when to create sub-
classes, and when to create whole new classes. Subclasses would seem the log-
ical answer for an OOP environment but many small revisions for every new
option that comes along can quickly lead to an unmanageable plethora of sub-
classes. Eventually, your entire class design may need to be re-worked (also called
refactoring, with the implication that common parts are factored out into a com-
mon superclass). We discuss class design and refactoring further in the Tech
section. The Physics section looks at issues involved in animating simulations.
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Chapter 9
Java input/output

9.1 Introduction

Java provides a consistent framework for all input/output. That framework centers
on the concept of a stream. A stream in Java is a sequential flow of bytes in
one direction. There is an output stream that carries text to the console and a
corresponding input stream that brings text from the keyboard. Another type of
output stream carries data to a file, and a corresponding input stream brings data
into a program from a file. There is another output stream that sends data through
a network port to another computer on the network while an input stream brings
in data through a network port from such a source.

The bulk of Java I/O classes belong to the java.io package. (See diagram
in Figure 9.1.) The class hierarchy builds on the base classes InputStream,
OutputStream, Reader, and Writer to provide a wide range of input and
output tasks. In addition, this package holds stream classes that wrap a stream to
add more capabilities to it. Some I/O classes provide a destination or source, such
as a file or an array. Others process the stream in some way such as buffering or
filtering the data.

Packages involving I/O include:

� java.io – the primary Java I/O classes
� java.nio, java.nio.* – a set of five packages new with Java 1.4 based on the

concept of channels that represent an open connection to a hardware device, file, or

other entity. Channels don’t supplant streams but rather work with them to add additional

capabilities and enhanced scaling when working with large numbers of connections
� java.net – I/O over the network
� java.util.zip – methods for reading from and writing to ZIP and GZIP files
� java.util.jar – methods for reading from and writing to JAR (Java Archive) files
� javax.imageio, javax.imageio.* – this set of six packages deals with image

I/O, including the encoding/decoding of images in particular formats (discussed in

Chapter 11)

Java I/O is an enormous topic that involves many packages, classes, and methods
[1,2]. Here we give an overview of some of the basic aspects of Java I/O with

287
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Figure 9.1 The diagram shows most of the members of the java.io package.
Rectangles are classes, parallelograms are abstract classes, and ovals are interfaces.
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a focus on text and numerical data going to and from the console and disk files.
Part II deals with I/O over networks, and Chapter 23 deals with I/O via serial
and parallel ports. The Web Course Chapter 9: Supplements section looks at the
java.nio capabilities.

9.1.1 Java I/O challenges

Unfortunately, when one first encounters Java I/O it seems to violate a primary
goal of Java – provide simpler and more transparent code than the C and C++
languages! The elegant abstraction that is so powerful when dealing with complex
I/O tasks can seem clumsy and overly complicated for basic tasks such as writing
and reading text with the console.

Until now we avoided the complexities by sending text output to the con-
sole with the System.out.println() method. The System.out object is
defined in the java.lang.System class. It is an instance of PrintStream,
which provides higher level methods such as println() than the basic stream
classes. The JVM automatically opens this standard output stream so no user setup
is required. The System.in object, also defined in java.lang.System is an
instance of InputStream, which only provides low-level methods and requires
extra steps to convert input to a string. We discuss console I/O in Section 9.4 for
text and numbers. These and other features of Java I/O can seem rather confusing
at first. We will provide lots of examples here and in the Web Course so that one
can find guides for many different kinds of I/O tasks.

As we discussed in Chapter 5, Java separated formatting of text and its output
until J2SE 5.0, which introduced the printf()method into the PrintStream
class. This method provides C/C++ style formatting with similar format speci-
fiers. In addition, there is a new Scanner class with methods to read formatted
text from the console and from files.

9.2 Streams

The primary conceptual component of the Java I/O framework is the stream:

stream = a one way sequential flow of bytes

Input operations begin by opening a stream from the source and then invoking
a read() method, or an overloaded version of it, to obtain the data. Similarly,
output operations begin by opening a stream to the destination and then using a
write() method to send the data.

The base stream classes are the abstract classes:

� InputStream – byte input stream base class
� OutputStream – byte output stream base class
� Reader – 16-bit character input stream base class
� Writer – 16-bit character output stream base class
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The Reader/Writer classes were added in Java 1.1 to deal with 16-bit character
encoding. Java uses the 16-bit Unicode format to represent all text characters.
(We discuss Unicode and other encoding schemes in Section 9.7.)

Classes that inherit from the above abstract classes provide specialized streams
such as for keyboard input and file I/O. The Java I/O classes either extend or wrap
lower level classes to provide additional capabilities. See the java.io package
specifications in the Java 2 API Specifications for a list of its many stream and
ancillary classes.

A frequent criticism of Java I/O is that it involves too many classes. Often an
entire class, such as PushbackInputStream, which puts data back into the
stream, is required to do a task that might well have been done by a method within
another class.

9.3 Stream wrappers

The Java I/O framework builds specialized I/O streams by combining classes
together. The goal is to provide flexibility and modularity by wrapping an instance
of a lower level stream class with an instance of a class that provides additional
features. Here wrapping refers to passing a stream object as a parameter in a
constructor of another stream class. A wrapper provides its own set of methods
for input or output operations and uses the wrapped stream internally to carry
them out.

For example, the following code segment shows an instance of the Input-
StreamReader class wrapping the System.in stream:

InputStreamReader in = new InputStreamReader (System.in);

This wraps an 8-bit character stream, System.in, with a 16-bit character
Reader class. This provides for more efficient handling of non-ASCII char-
acters. (See Section 9.7.)

Similarly, we can wrap an instance of InputStreamReader with a buffered
class wrapper:

BufferedReader buf--in = new BufferedReader (in);

Buffered classes improve the performance of I/O by providing intermediate data
storage buffers. The data fills the buffer to a certain level before it is sent in
bulk to the next stage, thus performing fewer time-consuming operations. (This
requires flushing at the end of the transmission to ensure that no data remains in
the buffer.)

In addition to buffering the data input, a BufferedReader provides several
useful methods. For example, the read() methods in InputStreamReader

return only one character at a time so we would need a loop to read a whole line
of characters. Instead, we can wrap this class with a BufferedReader and use
the BufferedReader.readLine() method:

String str--line = buf--in.readLine ();
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This method reads the entire input line (up to an end-of-line character) and returns
it as a string.

9.4 Console I/O

The term console typically refers to a command line interface on the host plat-
form such as a cmd or command window when using Windows or Linux shell.
For a browser it refers to a window where standard output (System.out) and
error messages (System.err) from an applet are displayed (no console input
allowed). In this day of graphical interface domination, many consider console
I/O anachronistic. However, Java is intended for many different platforms and
for some systems a console is the most convenient, or perhaps the only way, for a
user to interact with a program. (See, for example, some of the small embedded
processor systems discussed in Chapter 24.) Console I/O also provides a nice
introduction to a number of techniques that apply to all Java I/O.

When the JVM starts, it automatically creates three stream objects accessible
with these static references:

� System.in – InputStream object for keyboard input
� System.out – PrintStream object for console output
� System.err – PrintStream object for console output of error messages

These are all 8-bit streams. The PrintStream constructors have actually been
deprecated but not the class’s methods since they are so convenient and com-
mon. As you have seen with our example codes, you can still use System.

out.println() without a deprecation warning message during compilation.
Java 1.0 provided only for 8-bit encoded character I/O. Java 1.1 upgraded

to 16-bit character I/O, but to remain compatible with previous code, the 8-bit
streams remain and are still available for the console and keyboard. The wrapper
classes InputStreamReader and OutputStreamWriter were provided to
convert the 8-bit streams to 16-bit and vice versa.

For binary input, the data is read as bytes and then combined into appropriate
values according to the data types involved. We first discuss the System streams
and then the Reader/Writer streams.

9.4.1 Text output

The following simple program, PrintWriterApp, demonstrates both text out-
put and the wrapping of streams to gain greater capabilities. We first wrap the
System.out object, which is an 8-bit stream, with an OutputStreamWriter
to obtain 16-bit streaming. However, OutputStreamWriter provides only
a few methods. So we wrap our OutputStreamWriter object in turn with
PrintWriter, which offers a full set of print() and println() methods
for printing strings and primitive types.



292 Java input/output

import java.io.*;

/**

* Demonstrate stream wrapping by writing text to the

* console using the standard output from System.out

* wrapped with OutputStreamWriter and PrintWriter.

**/

public class PrintWriterApp

{

public static void main (String args[]) {

// The System.out standard output stream is already

// opened by default. Wrap in a new writer stream to

// obtain 16 bit capability.

OutputStreamWriter writer =

new OutputStreamWriter (System.out);

// In turn, wrap the PrintWriter stream around this

// output stream and use the second parameter in the

// constructor to turn on the autoflush.

PrintWriter print--writer = new PrintWriter (writer, true);

// PrintWriter does autoflushing and offers a println

// method that includes line return.

print--writer.println ("Text output with PrintWriter.");

print--writer.println ("Primitives converted to strings:");

boolean a--boolean = false;

byte a--byte = 114;

short a--short = 1211;

int an--int = 1234567;

long a--long = 987654321;

float a--float = 983.6f;

double a--double = -4.297e-15;

print--writer.println (a--boolean);

print--writer.println (a--byte);

print--writer.println (a--short);

print--writer.println (an--int);

print--writer.println (a--long);

print--writer.println (a--float);

print--writer.println (a--double);

// PrintWriter doesn't throw IOExceptions but instead

// offers the catchError() method. The following could

// be placed after each invocation of a PrintWriter method.
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if (print--writer.checkError ()) {

System.out.println ("An output error occurred!");

}

} // main

} // class PrintWriterApp

The output from this program looks like the following:

Text output with PrintWriter.

Primitives converted to strings:

false

114

1211

1234567

987654321

983.6

-4.297E-15

Note that some wrapper stream classes include a buffer that collects data until it
is full and then the whole buffer data set is sent to its destination in one operation.
This is more efficient than sending each byte one at a time. However, to ensure
that data is not left in a partially filled buffer, a flush method may need to be
invoked. With both PrintStream and PrintWriter, you have the option of
turning on an auto-flushing switch that ensures that no data is left behind.

9.4.2 Numerical output with Formatter and printf()

In Chapter 5 we introduced the new printf() method that was added to
the PrintStream class by J2SE 5.0. Internally it uses the java.util.

Formatter class to format numerical values with specifiers similar to those used
for the printf() function in the C language. The Formatter class includes
the method

format (String format, Object . . . args)

This is virtually identical to the printf() form that we discussed in Sec-
tion 5.11.2. The args parameters are output according to specifiers in the
format string specified in the first parameter. For details of the format specifiers,
see the printf() discussion in Chapter 5 and the Java 2 API Specifications for
java.util.Formatter [3].

The java.util.Formatter class provides several constructors, each
of which includes a parameter for the destination of the formatted output.
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Destinations include OutputStream, an instance of File (see Section 9.5),
and any class that implements the new Appendable interface.

The program FormatWriteApp shows how we can use Formatter to
send formatted numerical values to the console rather than using the printf()
method:

import java.io.*;

import java.util.Formatter;

/**

* Demonstrate the java.util.Formatter capabilities for

* formatting primitive types.

**/

public class FormatWriteApp

{

public static void main (String arg[]) {

// Send formatted output to the System.out stream.

Formatter formatter =

new Formatter ((OutputStream)System.out);

formatter.format ("Text output with Formatter.%n");

formatter.format ("Primitives converted to strings:%n");

boolean a--boolean = false;

byte a--byte = 114;

short a--short = 1211;

int an--int = 1234567;

long a--long = 987654321;

float a--float = 983.6f;

double a--double = -4.297e-15;

formatter.format ("boolean = %9b %n", a--boolean);

formatter.format ("byte = %9d %n", a--byte);

formatter.format ("short = %9d %n", a--short);

formatter.format ("int = %9d %n", an--int);

formatter.format ("long = %9d %n", a--long);

formatter.format ("float = %9.3f %n", a--float);

formatter.format ("double = %9.2e %n", a--double);

// Need to flush the data out of the buffer.

formatter.flush ();

formatter.close ();

} // main

} // class FormatWriteApp
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The output to the console then looks like:

Text output with Formatter.

Primitives converted to strings:

boolean = false

byte = 114

short = 1211

int = 1234567

long = 987654321

float = 983.600

double = -4.30e-15

When we call the Formatter constructor, System.out, which references an
instance of PrintStream, must be cast to OutputStream because otherwise
there is an ambiguity over which constructor to use (since PrintStream imple-
ments Appendable).

Note that you can directly obtain the formatted string created by the
Formatter by invoking the toString() method. Also, if you simply want a
formatted string, such as for a graphical text component, and don’t want to send it
to an output destination, you can create a Formatterwith the no-argument con-
structor. The Formatter uses a StringBuilder (see Chapter 10) internally
to create the string, and you can access it via the toString() method.

9.4.3 Text input

While the print methods of System.out are simple and convenient to use, a
common complaint of new Java users has been the lack of a comparably simple
set of text input methods. Fortunately, J2SE 5.0 comes with the new Scanner

class, which makes input much simpler. We discuss it in the next section. First
we look at the text input techniques available with Java 1.4 and earlier.

System.in references an object with only the very limited capabilities of an
InputStream. You can, for example, read in a single byte, which returns as an
int value, or a byte array. You must cast each byte obtained from the keyboard
to a char type. For example:

try {

int tmp = System.in.read ();

char c = (char) tmp;

}

catch (IOException e) {}

Here a byte value is read and returned as the first byte in an int value. This
value is then converted to a char value. This operation assumes that the byte
corresponds to an 8-bit encoded character, such as an ASCII character. As for
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most Java I/O operations, you must enclose theread()method in atry-catch
block to catch any possible IOException that might be thrown.

To read a string of characters the above code segment should go inside a loop,
as in

String strInput = "";

while (true) {

try {

int tmp = System.in.read ();

if (tmp == -1) break;

char c = (char) tmp;

strInput = strInput + c;

}

catch (IOException e) {}

}

System.out.println ("Echo = " + strInput);

The return of a -1 value indicates the end of the input. Since the byte that is read
goes into the low 8 bits of a 32-bit int value, a genuine data value can never set
the sign bit.

We see that System.in is obviously an inelegant and inefficient way to carry
out routine text input. We therefore normally wrap this input stream with classes
that provide more powerful methods.

As discussed earlier, the “buffer” wrapper classes provide for efficient trans-
mission of stream bytes. In addition, they typically add various useful methods.
In the BufferedReaderApp example below, we wrap System.in with the
InputStreamReader and then wrap this instance with BufferedReader.
We take advantage of thereadLine()method inBufferedReader and obtain
a whole line of input all at once rather than looping over reads of one character at a
time. This technique also removes the need for type conversion fromint tochar.

import java.io.*;

/** Demonstrate the BufferedReader class for wrapping a

* reader object and providing the readLine () method. **/

public class BufferedReaderApp

{

public static void main (String arg[]) {

// System.in std input stream already opened by default.

// Wrap in a new reader stream to obtain 16 bit

// capability.

InputStreamReader reader =

new InputStreamReader (System.in);
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// Wrap the reader with a buffered reader.

BufferedReader buf--in = new BufferedReader (reader);

// Obtain a 16 bit stream.

OutputStreamWriter writer =

new OutputStreamWriter (System.out);

// Wrap the PrintWriter stream around the output stream

PrintWriter print--writer =

new PrintWriter (writer, true);

String str = "q";

try {

// Read a whole line a time. Check the string for

// the "quit" input to jump from the loop.

do {

// Read text from keyboard

str = buf--in.readLine ();

// PrintWriter output.

print--writer.println ("echo " + str);

} while (!str.toLowerCase ().equals ("q"));

}

catch (IOException e) {

System.out.println ("IO exception = " + e);

}

} // main

} // class BufferedReaderApp

A session with the program produces output like this:

My input from the keyboard

echo My input from the keyboard

More of my input

echo More of my input

q

echo q

To obtain numerical values from the keyboard requires reading them in as strings
and then converting them to primitive types. For example, the following snippet
will read in an integer value as a string and then convert it to an int value:

InputStreamReader reader = new InputStreamReader (System.in);

BufferedReader buf--reader = new BufferedReader (reader);
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try {

String s = buf--reader.readLine (); // read the number as a

// string

// Trim the whitespace before parsing.

tmp = Integer.parseInt (s.trim ()); // Convert string to int

System.out.println (" echo = " + tmp);

}

catch (IOException ioe) {

System.out.println ("IO exception = " + ioe);

}

Similar code is needed for parsing other numerical input according to the type
of values. The following text discusses an easier technique for numerical input
using the Scanner class of J2SE 5.0.

9.4.4 Text input with Scanner

The java.util.Scanner class is a very useful new tool that can parse text
for primitive types and substrings using regular expressions [4,5]. It can get the
text from various sources such as a String object, an InputStream, a File
(Section 9.5), or a class that implements the Readable interface.

The Scanner splits its input into substrings, or tokens, separated by delim-
iters, which by default are any white space. The tokens can then be obtained
as strings or as primitive types if that is what they represent. For example, the
following code snippet shows how to read an integer from the keyboard:

Scanner scanner = new Scanner (System.in);

int i = scanner.nextInt ();

For each of the primitive types there is a corresponding nextXxx()method that
returns a value of that type. If the string cannot be interpreted as that type, then an
InputMismatchException is thrown. There is also a set of hasNextXxx()
methods, such as hasNextInt(), that return true or false according to whether
the next token matches the specified type.

import java.io.*;

import java.util.*;

/** Demonstrate the Scanner class for input of numbers.**/

public class ScanConsoleApp

{

public static void main (String arg[]) {

// Create a scanner to read from keyboard

Scanner scanner = new Scanner (System.in);
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try {

System.out.printf("Input int (e.g. %4d): ",3501);

int int--val = scanner.nextInt ();

System.out.println ("You entered" + int--val +"\n");

System.out.printf ("Input float (e.g. %5.2f): ", 2.43);

float float--val = scanner.nextFloat ();

System.out.println ("You entered" + float--val +"\n");

System.out.printf ("Input double (e.g. %6.3e): ",

4.943e15);

double double--val = scanner.nextDouble ();

System.out.println ("You entered" + double--val +"\n");

}

catch (InputMismatchException e) {

System.out.println ("Mismatch exception:" + e);

}

} // main

} // class ScanConsoleApp

A session with the program ScanConsoleApp is shown here:

Input int (e.g. 3501): 23431

You entered 23431

Input float (e.g. 2.43): 1.2343

You entered 1.2343

Input double (e.g. 4.943e+15): -2.34e4

You entered -23400.0

There are a number of other useful methods in the Scanner class such as
skip() to skip over some input, useDelimiter() to set the delimiter, and
findInLine() to search for substrings. The Scanner class uses tools from
the java.util.regex package for pattern matching with regular expressions.
We don’t have space here to describe these very powerful text-matching tools but
you can find more info in the Java 2 API Specifications.

9.5 The File class

Files and directories are accessed and manipulated via thejava.io.File class.
The File class does not actually provide for input and output to files. It simply
provides an identifier of files and directories. Remember that just because a File
object is created, it does not mean there actually exists on the disk a file with the
identifier held by that File object.
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The File class includes several overloaded constructors. For example, the
following instance of File refers to a file named myfile.txt in the current
directory where the JVM is running:

File file = new File ("myfile.txt");

Again, the file myfile.txt may or may not exist in the file system. An attempt
to use a File object that refers to a file that does not exist will cause a FileNot-
FoundException to be thrown.

The next example creates a File object from a file name that includes the
full directory path:

File file = new File ("/tmp/myfile.txt");

Another overloaded constructor allows the separate specification of path and file
name:

File file = new File ("/tmp", "myfile.txt");

File objects can also represent directories. For example,

File tmp--directory = new File ("/tmp");

There are a number of useful methods in File such as the following:

� Boolean exist () – indicates if the file referred to actually exists
� Boolean canWrite () – can the file be written to
� Boolean canRead () – can the file be read
� Boolean isFile () – does the File object represent a file?
� Boolean isDirectory () – or a directory?

Given an instance of File, the class provides methods to obtain the file name and
path components, to make a directory, to get a listing of the files in a directory,
and so forth:

� String getName () – get the name of the file (no path included)
� String getPath () – get the abstract file path
� String getCanonicalPath () – get the name of the file with path
� String getAbsolutePath () – get the absolute file path

Java must run on different types of platforms, and file and directory systems differ
among platforms. For example, path names use different separator characters on
different hosts. Windows uses the backslash (“\”) and Unix uses the forward slash
(“/”). To obtain platform independence, instead of explicit separator characters,
you can use these static constants defined in the File class:

� File.separator – String with file separator
� File.separatorChar – char with file separator
� File.pathSeparator – String with path separator
� File.pathSeparatorChar – char with path separator
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For example, here we can build a path for a file:

String dir--name = "dataDir";

String file--name= "data.dat";

File file--data = new File (dir--name + File.separator

+ file--name);

Other talents of the File class include the method

boolean mkdir ()

This method will create a directory with the abstract path name represented by
the File object if that File object represents a directory. The method returns
true if the directory creation succeeds and false if not. A case in which the
directory cannot be created is when the File object refers to an actual file that
already exists in the file system.

9.6 File I/O

The java.io package includes these base file stream classes:

� FileInputStream – base class for binary file input
� FileOutputStream – base class for binary file output
� FileReader – read text files
� FileWriter – write to text files

These classes treat a file as the source or destination. They each have several
overloaded constructors, including constructors that take a string file name as
the parameter and constructors that take an instance of File as a parameter. For
example, an input stream from a file can be created as follows:

File file--in = new File ("data.dat");

FileInputStream in = new FileInputStream (file--in);

If the file does not exist, the FileInputStream(File) constructor will throw
an instance of FileNotFoundException.

Usually, the FileInputStream object is wrapped with another stream to
obtain greater functionality. For example, BufferedInputStream is used to
smooth out the data flow as shown previously with the other “buffer” wrapper
classes.

Output streams to files are opened in a similar manner:

File file--out = new File ("tmp.dat");

FileOutputStream out = new FileOutputStream (file--out);

In this case, if the file doesn’t exist, it will be created rather than throwing an
exception. As with input file streams, output streams are also usually wrapped with
one or more other streams to obtain greater functionality such as that provided
by BufferedOutputStream.
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The following snippet shows how to append data to an existing file:

File file--out = new File ("old.dat");

FileOutputStream out = new FileOutputStream (file--out, true);

The second parameter in the constructor indicates that the file should be opened
for appending. RandomAccessFile can also be used for appending. It is dis-
cussed in the Web Course Chapter 9: Supplements section.

9.6.1 Text output to a file

We can use the FileWriter stream class to write character data to a file. The
following PrintWriterFileApp example gets the name for an output file
either from a parameter on the command line or from a default. The program
follows closely to PrintWriterApp in Section 9.4.1 except that instead of
starting with the PrintStream object referenced by System.out, we create
a FileWriter for a File object and then wrap this with a BufferedWriter
and aPrintWriter. These two wrappers give us the efficiency of stream buffer-
ing and a handy set of print methods.

import java.io.*;

/**

* Demonstrate wrapping streams to send text and primitive

* type values to a file.

**/

public class PrintWriterFileApp

{

public static void main (String[] args) {

File file = null;

// Get the file from the argument line.

if (args.length > 0) file = new File (args[0]);

if (file == null) {

System.out.println ("Default: textOutput.txt");

file = new File ("textOutput.txt");

}

// Create a FileWriter stream to a file and then wrap

// a PrintWriter object around the FileWriter to print

// primitive values as text to the file.

try {

// Create a FileWriter stream to the file

FileWriter file--writer = new FileWriter (file);
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// Put a buffered wrappter around it

BufferedWriter buf--writer =

new BufferedWriter (file--writer);

// In turn, wrap the PrintWriter stream around this

// output stream and turn on the autoflush.

PrintWriter print--writer =

new PrintWriter (buf--writer, true);

// Use the PrintWriter println methods to send

// strings and primitives to the file.

print--writer.println ("Text output with PrintWriter.");

print--writer.println (

"Primitives converted to strings:");

boolean a--boolean = false;

byte a--byte = 114;

short a--short = 1211;

int an--int = 1234567;

long a--long = 987654321;

float a--float = 983.6f;

double a--double = -4.297e-15;

print--writer.println (a--boolean);

print--writer.println (a--byte);

print--writer.println (a--short);

print--writer.println (an--int);

print--writer.println (a--long);

print--writer.println (a--float);

print--writer.println (a--double);

// PrintWriter doesn’t throw IOExceptions but instead

// offers the catchError () method

if (print--writer.checkError ()) {

System.out.println ("An output error occurred!");

}

}

catch (IOException ioe){

System.out.println ("IO Exception");

}

} // main

} // class PrintWriterFileApp

Running this code produces a file that holds text exactly like that shown as the
output from PrintWriterApp in Section 9.4.1.
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9.6.2 Formatter output to a file

The following program, FormatWriteFileApp, follows closely to that
of FormatWriteApp discussed in Section 9.4.2 in which we used the
java.util.Formatter class to send formatted output to the console. How-
ever, this program sends the output to a file. The Formatter class does much of
the work. We don’t even have to create a FileWriter stream as we did in the
previous section. We simply pass the File object to the Formatter constructor
and it takes care of all the output mechanics. If the file doesn’t exist yet, then the
Formatter will create it, though we need to catch an exception that is thrown
in such a case.

import java.io.*;

import java.util.Formatter;

/**

* Demonstrate the java.util.Formatter capabilities for

* formatting primitive types and sending them to a file.

**/

public class FormatWriteFileApp

{

public static void main (String[] args) {

Formatter formatter = null;

File file = null;

// Get the file from the argument line.

if (args.length > 0) file = new File (args[0]);

// Else use a default file name.

if (file == null) {

System.out.println ("Default: textOutput.txt");

file = new File ("textOutput.txt");

}

// Send formatted output to the file.

try {

formatter = new Formatter (file);

}

catch (FileNotFoundException e) {

// File not found exception thrown since this is a

// new file name. However, Formatter will create

// the new file.

}

formatter.format ("Text output with Formatter. %n");

formatter.format ("Primitives converted to

strings: %n");
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boolean a--boolean = false;

byte a--byte = 114;

short a--short = 1211;

int an--int = 1234567;

long a--long = 987654321;

float a--float = 983.6f;

double a--double = -4.297e-15;

formatter.format ("boolean = %9b %n", a--boolean);

formatter.format ("byte = %9d %n", a--byte);

formatter.format ("short = %9d %n", a--short);

formatter.format ("int = %9d %n", an--int);

formatter.format ("long = %9d %n", a--long);

formatter.format ("float = %9.3f %n", a--float);

formatter.format ("double = %9.2e %n", a--double);

// Need to flush the data out of the buffer.

formatter.flush ();

formatter.close ();

} // main

} // class FormatWriteFileApp

This program creates a file that contains the same output as FormatWriteApp
in Section 9.4.2.

9.6.3 Text input from a file

The following example, TextFileReadApp, illustrates how to use the
FileReader stream to read strings from a text file. The goal is to read a file
and count the number of lines in which a particular string occurs at least once.
We wrap the FileReader stream with a BufferedReader class and take
advantage of its readLine() method to read a whole line at a time. We use the
indexOf() method in the String class to search for the string of interest.

As usual, we enclose the stream reading within a try-catch statement to
catch the IOException or one of its subclass exceptions that can be thrown by
the stream constructors and the read methods.

import java.io.*;

import java.util.*;

/** Demonstrate reading text from a file. **/
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public class TextFileReadApp

{

public static void main (String[] args) {

// Count the number of lines in which this string occurs

String string--to--find = "new";

File file = null;

// Get the file from the argument line.

if (args.length > 0) file = new File (args[0]);

if (file == null ||!file.exists ()) {

System.out.println ("Default: TextFileReadApp.java");

file = new File ("TextFileReadApp.java");

}

// Count the number of lines with the string of interest.

int num--lines = 0;

try {

// Create a FileReader and wrap it with BufferedReader.

FileReader file--reader = new FileReader (file);

BufferedReader buf--reader =

new BufferedReader (file--reader);

// Read each line and look for the string of interest.

do {

String line = buf--reader.readLine ();

if (line == null) break;

if (line.indexOf (string--to--find)!= -1) num--lines++;

} while (true);

buf--reader.close ();

}

catch (IOException e) {

System.out.println ("IO exception = " + e);

}

System.out.printf (

"Number of lines containing \"%s\"= % 3d %n",

string--to--find, num--lines);

} // main

} // class TextFileReadApp

Output from the program goes as:

Default: TextFileReadApp.java

Number of lines containing "new" = 5
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Note that we close the stream explicitly. For this short program that ends very
soon after finishing the read, closing the input stream is not so important, but in
general, it is good practice to always close input and output streams for files when
I/O transfers are completed.

9.6.4 Input from a file with Scanner

The Scanner class, discussed in Section 9.4.4, can read from a file just as easily
as it can from the console. The example program ScanFileApp expects an input
file of the type produced by FormatWriteApp (see Section 9.6.2) containing
the output as shown for FormatWriteAppFile (see Section 9.4.2). It uses
Scanner to scan past the text at the beginning of the file and then it reads each
of the primitive type values.

There are many options with the pattern-matching capabilities of Scanner
to jump past the initial text. We choose a simple technique of looking for the
first primitive type value, which is a boolean type. So we loop over calls to
hasNextBoolean() until we find a boolean. This method and the similar
ones for other primitive types look ahead at the next token and return true or false
depending on whether the token is of the type indicated. It does not jump past
the token. So, if the next token is not a boolean, we use the next() method to
skip this token and examine the next one. When we find the boolean we break
out of the loop.

import java.io.*;

import java.util.*;

/** Demonstrate using Scanner to read a file. **/

public class ScanFileApp

{

public static void main (String[] args) {

File file = null;

// Get the file from the argument line.

if (args.length > 0) file = new File (args[0]);

// or use the default

if (file == null) {

file = new File ("textOutput.txt");

}

Scanner scanner = null;

try {

// Create a scanner to read the file
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scanner = new Scanner (file);

}

catch (FileNotFoundException e) {

System.out.println ("File not found!");

// Stop program if no file found

System.exit (0);

}

try {

// Skip tokens until the boolean is found.

while (true) {

if (scanner.hasNextBoolean ()) break;

scanner.next ();

}

System.out.printf ("Skip strings at start of%s%n",

file.toString ());

System.out.printf (

"and then read the primitive type values:%n%n");

// Read and print the boolean

System.out.printf("boolean = %9b %n",

scanner.nextBoolean ());

// and then the set of numbers

System.out.printf ("int = %9d %n",

scanner.nextInt ());

System.out.printf ("int = %9d %n",

scanner.nextInt ());

System.out.printf ("int = %9d %n",

scanner.nextInt ());

System.out.printf ("long = %9d %n",

scanner.nextLong ());

System.out.printf ("float = %9.1f %n",

scanner.nextFloat ());

System.out.printf ("double = %9.1e %n",

scanner.nextFloat ());

}

catch (InputMismatchException e) {

System.out.println ("Mismatch exception:" + e);

}

} // main

} // class ScanFileApp
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The output of reading the file then looks like:

Skip strings at start of textOutput.txt

and then read the primitive type values:

boolean = false

int = 114

int = 1211

int = 1234567

long = 987654321

float = 983.6

double = -4.30e-15

9.6.5 Binary output to a file

Numerical data transfers faster and more compactly in a raw binary format than
as text characters. Here we look at examples of writing numerical data to a binary
file and reading numerical data from a binary file.

In the example program below called BinOutputFileApp, we first create
some data arrays with some arbitrary values. We then open a stream to a file
with the binary FileOutputStream class. We wrap this stream object with an
instance of theDataOutputStream class, which contains many useful methods
for writing primitive types of thewriteX() form, where X is the name of a prim-
itive type. We use the writeInt (int i) and the writeDouble (double

d) methods, to write the data to the file as pairs of int/double type values.
In the next section we will show next how to read the binary data from this file.

import java.io.*;

import java.util.*;

/** Write a primitive type data array to a binary file. **/

public class BinOutputFileApp

{

public static void main (String[] args) {

Random ran = new Random ();

// Create an integer array and a double array.

int [] i--data = new int[15];

double [] d--data = new double[15];

// and fill them

for (int i=0; i < i--data.length; i++) {

i--data[i] = i;

d--data[i] = ran.nextDouble() * 10.0;

}
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File file = null;

// Get the output file name from the argument line.

if (args.length > 0) file = new File (args[0]);

// or use a default file name

if (file == null) {

System.out.println ("Default: numerical.dat");

file = new File ("numerical.dat");

}

// Now write the data array to the file.

try {

// Create an output stream to the file.

FileOutputStream fileOutput =

new FileOutputStream (file);

// Wrap the FileOutputStream with a DataOutputStream

DataOutputStream dataOut =

new DataOutputStream (fileOutput);

// Write the data to the file in an integer/

// double pair

for (int i=0; i < i--data.length; i++) {

dataOut.writeInt (i--data[i]);

dataOut.writeDouble (d--data[i]);

}

// Close file when finished with it. .

fileOutput.close ();

}

catch (IOException e) {

System.out.println ("IO exception = " + e);

}

} // main

} // class BinOutputFileApp

9.6.6 Binary input from a file

In the example program below called BinInputFileApp, we read a binary file
created by BinOutputFileApp discussed in the previous section. We begin
by first opening a stream to the file with a FileInputStream object. Then
we wrap this with a DataInputStream class to obtain the many readX()

methods, where X represents the name of a primitive data type as in readInt()
and readDouble(). Here we read pairs of integer and double values.

Rather than test for the return of a -1 value as we did in the text input streams,
we simply continue to loop until the read method throws the EOFException. In
the catch statement for this exception you can carry out the final housekeeping
chores before closing the file stream.
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import java.io.*;

import java.util.*;

/** Demonstrate reading primitive type values from a

* binary file. **/

public class BinInputFileApp

{

public static void main (String[] args) {

File file = null;

int i--data = 0;

double d--data = 0.0;

// Get the file from the argument line.

if (args.length > 0) file = new File (args[0]);

if (file == null) {

System.out.println ("Default: numerical.dat");

file = new File ("numerical.dat");

}

try {

// Wrap the FileInputStream with a DataInputStream

FileInputStream file--input =

new FileInputStream (file);

DataInputStream data--in =

new DataInputStream (file--input);

while (true) {

try {

i--data = data--in.readInt ();

d--data = data--in.readDouble ();

}

catch (EOFException eof) {

System.out.println ("End of File");

break;

}

// Print out the integer, double data pairs.

System.out.printf (" %3d. Data = %8.3e %n",

i--data, d--data);

}

data--in.close ();

}

catch (IOException e) {

System.out.println ("IO exception = " + e);

}

} // main

} // class BinInputApp
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We illustrate the output and input of binary data by first running BinOutput-

FileApp to produce the data file numerical.dat. We then run BinInput-
FileApp, which reads the file numerical.dat and produces the following
output on the console. Your output will vary since BinOutputFileApp uses
Random to generate random values.

Default: numerical.dat

0. Data = 2.633e+00

1. Data = 7.455e+00

2. Data = 2.447e+00

3. Data = 7.046e+00

4. Data = 2.652e+00

5. Data = 5.120e+00

6. Data = 1.754e+00

7. Data = 7.489e+00

8. Data = 7.386e-01

9. Data = 6.036e+00

10. Data = 7.002e-01

11. Data = 9.625e+00

12. Data = 5.966e+00

13. Data = 8.535e+00

14. Data = 2.744e+00

End of File

9.7 Character encoding

For text I/O, each character is specified by an encoded value. The particular type of
encoding, the number of bits and bytes required for the encoding, transformations
between encodings, and other issues thus become important, especially for a
language like Java that is aimed towards worldwide use. So we give a brief
overview of character encodings here.

The 7-bit ASCII code set is the most famous, but there are many extended
8-bit sets in which the first 128 codes are ASCII and the extra 128 codes provide
symbols and characters needed for other languages besides English. For example,
the ISO-Latin-1 set (ISO Standard 8859-1) provides characters for most West
European languages and for a few other languages such as Indonesian.

Java itself is based on the 2-byte Unicode representation of characters. The
16 bits provide for a character set of 65 535 entries and so allows for broad
international use.

The first 256 entries in 2-byte Unicode are identical to the ISO-Latin-1 set. That
makes the 2-byte Unicode inefficient for programs in English since the second
byte is seldom needed. Therefore, a scheme called UTF-8 is used to encode text
characters (e.g. string literals) for the Java class files. The UTF code varies from
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1 byte to 3 bytes. If a byte begins with a 0 bit, then the lower 7 bits represent
one of the 128 ASCII characters. If the byte begins with the bits 110, then it is
the first of a 2-byte pair that represent the Unicode values for 128 to 2047. If any
byte begins with 1110, then it is the first of a 3-byte set that can hold any of the
other Unicode values.

Java typically runs on platforms that use 1-byte extended-ASCII-, encoded
characters. Therefore, text I/O with the local platform, or with other platforms
over the network, must convert between the encodings. As we mentioned in the
previous section, the original 1-byte streams were not convenient for this so the
Reader/Writer classes for 2-byte I/O were introduced.

The default encoding is typically ISO-Latin-1, but your program can find the
local encoding with a static method in System:

String local--encoding = System.getProperty ("file.encoding");

The encoding can be explicitly specified in some cases via the constructor, such
as in the following file output:

FileOutputStream out--file = new FileOutputStream

("Turkish.txt");

OutputStreamWriter file--writer = new OutputStreamWriter

(out--file, "8859--3");

A similar overloaded constructor is available for InputStreamReader. See
the book by Harold [2] for more information about character encoding in Java.

If a character is not available on your keyboard, it can be specified in a Java
program by its Unicode value. This value is represented with four hexadecimal
numbers preceded by the (“u„) escape sequence. For example, the “ö” character
is given by \u00F6 and “è” by \u00E8.

We note finally that even the 65 535 entries of the version of Unicode used by
Java are not enough to encompass all of the language characters and symbol sets
in the world. Therefore, Java will gradually make the transition to Unicode 4.0,
which uses 32 bits. This is a challenge for many reasons, including the fact that
the char primitive is only 16-bit. Java 5.0 has some tools for dealing with 32-bit
supplementary characters but we don’t have space here to discuss them. We refer
the reader to the article by Lindenberg and Okutsu for further information on
32-bit character support in Java [6].

9.8 Object I/O

So far we have seen that we can do I/O with primitive data types and with text,
which involves String objects. By means of the ObjectInputStream and
ObjectOutputStream you can also do I/O with other types of objects. The
writeObject (Object) method in ObjectOutputStream grabs the data
from the class fields of an existing object and sends that data through the stream.
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The readObject() method from ObjectInputStream can read this data
from the stream and fill the data fields in a new instance of the class.

The data is sent sequentially, or serially, a byte at a time on the stream, so this
process is also referred to as serialization. For a class to work with these methods,
it must implement the Serializable interface. This interface has no methods
but is intended to tag the class as suitable for serializing. There are, for example,
security concerns with regard to this process since internal data of an object may
become vulnerable as it travels through the I/O system. So, not all classes are
suitable for serializing. Many core language classes implement Serializable
but you should check the Java 2 API specifications to make sure for a particular
class of interest.

Within a class there may be data that is only temporary. These data fields can
be labeled transient and will not be included in the serialization. When an
object to be serialized holds references to other objects, those objects will also be
serialized if they implement Serializable. Otherwise, they should be labeled
transient.

So a class for serializing could look as follows:

public class MyClass implements Serializable {

int fI,fJ;

double fValue

transient int fTmpValue;

String fTitle;

OtherClass fOtherClass;

. . . constructors & methods . . .

}

Instances of this class could be saved to a file using a method like the following:

static public void saveMyClass (MyClass my--object, File file) {

FileOutputStream file--out = new FileOutputStream (file);

ObjectOutputStream obj--out--stream = new ObjectOutputStream

(file--out);

obj--out--stream.writeObject (my--object);

obj--out--stream.close ();

}

Similarly, to read the object back in from a file we could use a method as follows:

static public MyClass getMyClass (File file) {

FileInputStream file--in = new FileInputStream (file);

ObjectInputStream obj--in--stream = new ObjectInputStream

(file--in);

MyClass my--obj = (MyClass)(obj--in--stream.readObject ());

obj--in--stream.close ();

return my--obj;

}
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Table 9.1 Input stream examples.

Source Stream wrappings

Console BufferedReader (new InputStreamReader (System.in))

Text in a byte stream BufferedReader (new InputStreamReader (InputStream))

Text file BufferedReader (new FileReader (new File ("f.txt"))

Binary Data File DataInputStream (new FileInputStream (new File ("f.bin"))

Table 9.2 Output stream examples.

Destination Stream wrappings

Console PrintWriter (new OutputStreamWriter (System.out))

Text in a byte stream PrintWriter (new BufferedWriter (new OutputStreamWriter

(OutputStream)))

Text file PrintWriter (new BufferedWriter (new FileWriter (new File

("f.txt")))

Binary Data File DataOutputStream (new FileOutputStream (new File ("f.bin"))

There are a number of other issues regarding serialization that are beyond the
scope of this chapter and book. More discussion and example programs are
available in the Web Course: Chapter 9 and serialization also is a technique
important for the distributed computing discussions in Part II.

9.9 Choosing a stream class

All of these stream classes for text and binary data, for console and files, can get
rather confusing. To help decide what stream classes and wrappers to use for a
particular kind of data, we provide two tables. Table 9.1 suggests input stream
combinations and Table 9.2 suggests output streams according to the type of data
and its source or destination. You can check these tables to find the starting class
for your data I/O and possible wrapper classes that add buffering, filtering, and
other useful methods.

9.10 Primitive types to bytes and back

We have seen that Java is very strict with data types. Every data element must be
assigned a specific type. Casting can convert one type into another but a data value
can never simultaneously act as more than one type. This differs from C/C++
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where, say, a 32-bit integer type value can easily be accessed as two short values
or four separate bytes

For binary I/O with files as discussed above, the underlying flow of data
occurs as a sequence of bytes. We saw that by wrapping FileOutputStream
with a DataOutputStream we obtained methods such as writeInt (int)

and writeDouble (double) that put the bytes of wider types like int or
double onto the outgoing stream. Similarly, by wrapping aFileInputStream
with a DataInputStream, the readInt() and readDouble() methods
convert 4 bytes in the stream into an int value and 8 bytes into a double value,
respectively.

Note that on all platforms, Java uses the so-called big-endian representation.
This means that for a primitive longer than 1 byte, the most significant byte is
at the lowest address (i.e. big end first.) So, for example, in an output stream of
int values, the high-order byte goes out first and in an input stream the high-
order byte arrives first. This order is preserved by the JVM even on underlying
platforms that use the reverse representation known as little-endian.

What if you obtain an array of bytes and need to extract data values of dif-
ferent types from it? For example, a byte array of 19 bytes might contain one
char type, two int values, one double value, and one byte type. In C/C++
you can use memory pointers to reference different parts of the array and cast
a group of bytes there to a particular type. In Java that type of direct mem-
ory referencing is not allowed. Instead, you can make the array the source of
a stream with the ByteArrayInputStream class. You then wrap this stream
with DataInputStream and use its selection of methods for reading differ-
ent data types. For example, to extract our data from the 19 elements of a byte
array:

public void getData (byte[] data) {

ByteArrayInputStream byte--in =

new ByteArrayInputStream (data);

DataInputStream data--in = new DataInputStream (byte--in);

char c = data--in.readChar ();

int i = data--in.readInt ();

int j = data--in.readInt ();

double d = data--in.readDouble ();

byte b = data--in.readByte ();

. . .

}

Conversely, you can send a stream of data of different types to a ByteArray-
OutputStream and then extract its internal byte array. It is convenient to wrap
this stream with DataOutputStream, which provides a selection of methods
for different types of such as writeInt (int), writeDouble (double),
and writeChars().



9.11 Sources, destinations, and filters 317

ByteArrayOutputStream byte--out = new ByteArrayOutputStream ();

DataOutputStream data--out = new DataOutputStream (byte--out);

The byte array from the stream can be obtained with

byte--out.toByteArray ();

In Section 9.13.1 we see that these techniques are useful for I/O with our histogram
classes where we want to save a mix of data types into one big byte array. Also,
in Chapter 23 we discuss serial I/O with a Java hardware processor that requires
low-level I/O with bytes. In an example, we use a byte array stream to convert a
set of data bytes to wider types.

9.11 Sources, destinations, and filters

We have seen that I/O stream classes can represent sources of input data and des-
tinations for output data. For example, disk files become sources via FileIn-
putStream and a byte array can become the destination of a stream via the
ByteArrayOutputStream class.

We emphasized that wrapper classes add greater functionality to the streams
they contain. However, you can also look at many of the wrapper classes as filters.
A stream filter monitors, transforms, or is some way processes the data as the
stream flows through it. The BufferedInputStream and BufferedOut-

putStream classes, for example, hold data in buffers until they are full before
letting the data out. They extend the classes named FilterInputStream and
FilterOutputStream, respectively (see Figure 9.1).

The FilterIntputStream class wraps an InputStream object passed
via its constructor:

protected FilterInputStream (InputStream in--stream)

The FilterInputStream class overrides all of the same methods in
InputStream but they simply invoke the corresponding methods in the
in--streamobject. TheFilterInputStreamdoes nothing itself and is meant
to be extended. A subclass overrides some or all of the methods to carry out the
desired action on the data. For example, BufferedInputStream overrides all
but one of the read()methods in FilterInputStream. Similarly, Filter-
OutputStream is intended to be subclassed by a class such as BufferedOut-
putStream that overrides some or all of its methods to carry out operations on
the outgoing data.

Java I/O can be somewhat overwhelming at first but it allows for a great deal of
modularity and high-level abstraction that can actually bring clarity to program
design. For example, we will discuss in Section 9.13 how to make histograms
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Figure 9.2 An instance of FileChooser in action.

into stream sources and stream destinations and how to filter data going to a
histogram.

9.12 The JFileChooser dialog

To find files and directories on local media for I/O with a graphical user interface,
Swing provides the JFileChooser class. This file browser component (see
Figure 9.2) allows the user to search through directories and select one or more
files and directories, which are then available via instances of File.

The code snippet below illustrates how to use a JFileChooser to select files
for reading. The title, selection mode, and current directory are set with methods
from the class. The chooser allows for a filter that selects particular file types
for the list of files. This requires a subclass of the FileFilter class from the
javax.swing.filechooser package. As shown with the class JavaFil-
ter, by overriding the accept() method you can examine the current file or
directory and return true or false to accept or reject the current selection. You
can override getDescription() to return a string that describes the particular
file types that the filter selects.

. . . This method uses a file chooser to locate a file to

read . . .

boolean openFile () {
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JFileChooser fc = new JFileChooser ();

fc.setDialogTitle ("Open File");

// Choose only files, not directories

fc.setFileSelectionMode (JFileChooser.FILES--ONLY);

// Start in current directory

fc.setCurrentDirectory (new File ("."));

// Set filter for Java source files.

fc.setFileFilter (fJavaFilter);

// Now open chooser

int result = fc.showOpenDialog (this);

if (result == JFileChooser.CANCEL--OPTION) {

return true;

}

else if (result == JFileChooser.APPROVE--OPTION) {

fFile = fc.getSelectedFile ();

// Invoke the readFile method in this class

String file--string = readFile (fFile);

if (file--string!= null)

fTextArea.setText (file--string);

else

return false;

}

else {

return false;

}

return true;

} // openFile

import javax.swing.*;

import java.io.*;

/** Class to filter file types for JFileChooser. **/

public class JavaFilter extends

javax.swing.filechooser.FileFilter {

public boolean accept (File f) {

return f.getName ().toLowerCase ().endsWith (".java")
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|| f.isDirectory ();

}

public String getDescription () {

return "Java files (*.java)";

}

}

Web Course Chapter 9 discusses a similar approach for setting up a
JFileChooser to save a file.

9.13 Histogram I/O

Here we use our histogram classes to illustrate some of the I/O topics discussed
in this chapter. We add the capability to save the histograms to disk files and to
read them back from the files. We also create a histogram stream class in which
a histogram becomes the destination of a stream of data. Similarly, we create a
stream filter than calibrates the data heading for a histogram.

9.13.1 Saving histograms

An obviously useful feature for our histogram classes would be the ability to save
a histogram to a disk file and to read it back later. The data in the classHistogram
includes the number of bins, the bin array, the upper and lower range values, the
underflow and overflow values, plus the title and axis label. (Note that this data
involves double, int, and String types.)

One approach to saving the histogram is to obtain the data from the histogram
and use the file output techniques discussed above to write the various data values
to a file. The data could be made directly accessible or provided with a set of
“get” (or “getter”) methods, such as getTitle() to obtain the title string and
getBins() to return the integer array holding the bin contents. The histogram
could be rebuilt by reading in the data with the file input techniques, creating a
new histogram object, and then filling its values with “set” (or “setter”) methods,
such as setTitle (String title).

The class HistIOTools (see the listing in the Web Course Chapter 9: Tech
section) provides a group of static methods to do this except that it first writes
the data into a byte array using the techniques discussed in Section 9.10 and
then writes this array to a file. Conversely, it provides methods to read this array
back from a file, extract the data, and load the data into a new histogram object.
Packaging the data into a single-byte array reduces the I/O operations with the file.

The most elegant approach, however, for adding I/O to our histograms is to
use the object serialization techniques and simply stream a Histogram object to
a file. For example, if Histogram were made Serializable, we could create



9.13 Histogram I/O 321

a method like the following to save a histogram object to a file:

static public void saveHistogram (Histogram histogram, File

file) {

FileOutputStream fos = new FileOutputStream (file);

ObjectOutputStream oos = new ObjectOutputStream (fos);

oos.writeObject (histogram);

oos.close ();

}

Similarly, to read a histogram back in from a file we could use a method as
follows:

static public Histogram getHistogram (File file) {

FileInputStream fis = new FileInputStream (file);

ObjectInputStream ois = new ObjectInputStream (fis);

Histogram histogram = (Histogram)(ois.readObject ());

ois.close ();

return histogram;

}

An complete example program using this technique is given in the Web Course
Chapter 9: Tech section.

9.13.2 Histograms as stream destinations

We saw above how a byte array can become the destination of a stream with
the ByteArrayOutputStream class. We can apply a similar technique to
histograms: we make a histogram into the destination of a stream. Perhaps in
a data monitoring program there is extensive handling of dozens or more data
channels, each assigned its own histogram. In such a case, Histogram streams
might offer a neat approach to organizing the filling of the histograms.

In Chapter 7 we discussed the HistPanel component that displays an
instance of our Histogram class. In the code snippet shown below, the
StreamedHistPanel extends HistPanel and includes an inner class called
HistogramOutputStream that extends OutputStream. HistogramOut-
putStream overrides the write (int b)method of OutputStream with a
method that adds data to the histogram in the StreamedHistPanel object (it
can access the histogram since it is an inner class of StreamedHistPanel).

import java.io.*;

/** This class provides provides a HistPanel destination

* for a output stream. **/

public class StreamedHistPanel extends HistPanel

{

OutputStream fHistStream;

boolean fNewDataFlag = false;
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/** Create the panel with the histogram. **/

public StreamedHistPanel (Histogram histogram) {

super (histogram);

fHistStream = new HistogramOutputStream ();

}

public OutputStream getOutputStream () {

return fHistStream;

}

/** This inner class provides the stream to write

* data.**/

class HistogramOutputStream extends OutputStream {

/** In OutputStream write (int b), only the lower byte

* of the int value is used but here we use the full

* value. **/

public synchronized void write (int data) {

// Convert back to double and shift down two

// decimal places.

histogram.add (((double)data)/100.0);

fNewDataFlag = true;

}

} // class HistogramOutputStream

} // class StreamedHistPanel

Such panels for each histogram can be added to the program display. The Web
Course Chapter 9: Tech section includes the demonstration program Hist-

Stream.java, which creates three instances of the StreamedHistPanel

and obtains the output stream for each, as shown in this snippet:

. . . GUI building in HistStreamApplet . . .

for (int i=0; i < NUM--HISTS; i++) {

histogram[i] = new Histogram ("Sensor " + i,

"Data", 25,0.0,10.0);

histPanel[i] = new StreamedHistPanel (histogram[i]);

// Add the histogram panels to the container panel

histsPanel.add (histPanel[i]);

// Get the output streams for each panel.

dataOut[i] = histPanel[i].getOutputStream ();

}

. . .



9.13 Histogram I/O 323

The applet creates simulated sensor data and streams the data to the histograms
simply with

. . . loop to generate data for each sensor histogram . . .

try {

// Send data to stream destination

dataOut[j].write (ival);

}

catch (IOException ioe) {}

. . .

(StreamedHistPanel follows an example in Harold [2] in which aTextArea
class becomes the destination for a stream.)

9.13.3 Filtering histogram data streams

We discussed in Section 9.11 how a wrapper class can act as a filter on the data
streaming through it. We can take advantage of this technique to process data as it
streams to a histogram. The class HistFilterOutputStream, shown below,
extends FilterOutputStream. The job of this filter is to “calibrate” the data
as it streams through.

The filter stream wraps an instance of OutputStream and overrides the
write (int b) method in FilterOutputStream. Before it writes the
datum to the OutputStream it does a pedestal (i.e. a constant offset) correction
and a slope correction to the value.

import java.io.*;

public class HistFilterOutputStream extends

FilterOutputStream

{

double fSlope = 0.0, fPedestal = 0.0;

HistFilterOutputStream (OutputStream out,

double slope,

double pedestal) {

super (out);

fSlope = slope;

fPedestal = pedestal;

} // ctor

/** Override the write (int b) method but use the full

* integer value rather than only the lowest byte as

* usual with this method. Carry out the calibration and

* then write the resulting value as an integer to the

* output stream. **/
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public void write (int b) {

double val = ((double)b)/100.0;

int ival = (int) (100.0 * ((val - fPedestal)/fSlope));

try {

out.write (ival);

}

catch (IOException ioe) {}

} // write

// Not overrriding other methods in FilterOutputStream.

} // class HistFilterOutputStream

The applet HistFilterStream in the Web Course Chapter 9: Tech section
displays data from three sensors (artificially generated data) in instances of the
StreamHistPanel class discussed in the previous section. The data for each
sensor is generated with a different slope and pedestal to simulate real world
variations in measurement data. By wrapping the streams going into the histogram
with HistFilterOutputStream, we can calibrate the data before it reaches
the histogram.

The applet displays a row of StreamHistPanel histograms with raw data
and a row below this one showing histograms with the calibrated data. In the
interface building section of the program, the code snippet here shows the
section that creates the top row of histogram panels and then the bottom row
(NUM--HISTS = 3):

. . . GUI building in HistFilterStreamApplet . . .

for (int i=0; i < NUM--HISTS; i++) {

fHistogram[i] = new Histogram ("Sensor " + i,

"Data", 25,0.0,10.0);

fHistPanel[i] = new StreamedHistPanel (fHistogram[i]);

// Add the histogram panels to the container panel

fHistsPanel.add (fHistPanel[i]);

// Get the output streams for each panel.

fDataOut[i] = fHistPanel[i].getOutputStream ();

}

// Create HistPanels for the calibrated sensor

// histograms.

for (int i=0; i < NUM--HISTS; i++) {
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fHistogram[i+NUM--HISTS] =

new Histogram ("Calibrated Sensor" + i,

"Data", 25,0.0,10.0);

fHistPanel[i+NUM--HISTS] =

new StreamedHistPanel (fHistogram[i+NUM--HISTS]);

// Add the histogram panels to the container panel

fHistsPanel.add (fHistPanel[i+NUM--HISTS]);

// Get the output streams for each panel and wrap them

// in a filter that will calibrate the stream data.

fDataOut[i+NUM--HISTS] =

new HistFilterOutputStream (

fHistPanel[i+NUM--HISTS].getOutputStream (),

fSlope[i],fPedestal[i]);

}

. . .

We see that the panel setup is similar for both rows except the output stream for
the bottom row is wrapped with HistFilterOutputStream. In the sensor-
generating section, the loop is the same as before (except over six rather than
three histograms):

. . . loop to generate data for each sensor histogram . . .

try {

// Send data to stream destination

dataOut[j].write (ival);

}

catch (IOException ioe) {}

. . .

The polymorphic feature of our objects means that the write() method for the
particular subclass of OutputStream is invoked.

9.14 More Java I/O

In the following chapters we will frequently discuss Java I/O and give a number
of examples. In Chapter 11 we discuss transmission of images over the network
and reading and writing images in disk files. The chapters of Part II involve
many aspects of I/O with other computers over network connections. Part III also
involves I/O with Chapter 23 discussing communications with external devices
via serial ports and Chapter 24 examining communications with embedded Java
devices.
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9.15 Web Course materials

There are several other I/O classes that we don’t have space here to discuss. In
the Web Course Chapter 9: Supplements section we examine some of the other
I/O techniques and classes including:

� more about serialization
� RandomAccessFile
� PipedInputStream, PipedOutputStream
� Zip and Gzip files

Also, with Java 1.4 came a new set of I/O classes in the java.nio.* packages.
These involve the concept of I/O channels. We introduce channels and other
features of java.nio in the Supplements section.

As discussed in Section 9.13, the Web Course Chapter 9: Tech section demon-
strates a number of I/O techniques using histograms. The Physics section provides
an extensive demonstration of an experimental simulation with Java.
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Chapter 10
Java utilities

10.1 Introduction

Any language should come with a well-stocked toolbox of utilities to ensure pro-
gramming efficiency and convenience. The Java core language, in fact, includes
a large package named, quite sensibly, java.util that holds classes to handle
arrays, hash tables, time keeping, and other common tasks. In this chapter, we
focus mostly on this package but also discuss some handy tools in other packages
such asString andStringBuffer injava.lang andStringBuilder and
enum, that were added to java.lang for J2SE 5.0 [1,2]. We also discuss the
Collections Framework and the new Generics feature of J2SE 5.0.

We also look at classes and techniques for handling numbers at two extremes.
For bits we have the java.util.BitSet class. For arbitrarily large numbers
and for those that with very long decimal fractions we have the java.math.
BigInteger and java.math.BigDecimal classes.

We can only briefly describe here the general workings of these classes, many
of which contain a great number of methods. See the class descriptions in the
Java 2 API Specifications for the full details.

10.2 The java.util Package

The package java.util has been part of the core language since Java 1.0.
However, several classes have been added in subsequent versions. As the name
suggests, the classes in this package serve a number of useful utility purposes,
and we discuss several of them in this chapter. These include:

� Vector – unlike an array, Vector objects contain a list of objects that can grow or

shrink
� Enumeration,Iterator – convenience classes for cycling one item at a time through

a list
� Hashtable,Properties andHashMap – associative arrays that hold key/value pairs
� Preferences – a set of classes to maintain user preference settings in a program
� StringTokenizer – search and parse strings
� Date, Calendar – tools for handling dates and time values

327
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� Arrays – includes tools for handling arrays such as fast filling, searching and sorting
� BitSet – manipulation of bits

Note that in Chapter 8 we already examined the Timer and TimerTask classes,
also from java.util. In Chapter 4 we discussed the java.util.Random

class for generating random numbers.

10.3 Vector and Enumeration

An instance of the Vector class provides a list of objects. The elements of a
Vector are references to Object types, which, of course, include all objects in
Java. A Vector differs considerably from an Object array in that it can grow
and shrink whereas the number of elements in an array cannot be changed from
the array size initially created.

For example, we can create a Vector and add different objects to it and then
remove an element from the middle:

Vector list = new Vector ();

list.addElement ("A string");

list.addElement ("Another string");

list.addElement ("Yet another string ");

list.addElement (new Date ());

list.addElement (new Date ());

list.removeElementAt (3);

. . .

There are several methods that provide access to the entries in a Vector. These
include:

Object get (int index)

Object firstElement ()

Object lastElement ()

Object [] toArray ()

The get() method returns the element at the specified index. The next two
methods listed return the first and last elements in the Vector. The last method
shown dynamically builds and returns an array of references to the objects in the
Vector.

Note that these methods return as Object type references. To treat the ref-
erence as any type other than Object, you must cast it to its proper class or
superclass. For example, if you know that you’ve put a String object into the
Vector, then you first retrieve the Object and then cast it to a String:

String str = (String) list.firstElement ();

If you cast the returned object to a class that it does not belong to, then a runtime
ClassCastException occurs:
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// Error: the object returned is of the Date type, not a

// String object.

String date = (String) list.lastElement ();

You can use the operator instanceof to query the object for what type of object
it is:

Object o = list.lastElement ();

if (o instanceof String)

String date = (String) o;

else if (o instanceof Date)

Date aDate = (Date) o;

The Vector class has a number of other methods, such as a search for the index
number of a particular object in the vector, as in

int i = list.indexOf ("Yet another string");

A Vector can also return an Enumeration. An Enumeration provides for
a one-time scan through a list of Objects. (We note that an Enumeration has
no relationship at all with the enumerated type of J2SE 5.0, which is explained
in Section 10.9.)

Enumeration e = list.elements ();

while (e.hasMoreElements ()) {

System.out.println (e.nextElement ().toString ());

}

AfterhasMoreElements() returnsfalse, theEnumeration cannot be used
again.

With the Java 1.2 Collections Framework (see Section 10.6) came a pre-
ferred alternative to Enumeration called Iterator. The Iterator class
differs from Enumeration in that the iterator permits removing one or more
elements from the Vector without damaging the Iterator. In addition,
the iterator methods hasNext() and next() have more concise names than
the corresponding methods hasMoreElements()and nextElement()in
Enumeration. We explain more about the Iterator interface in Section 10.6.

10.4 Hashtable, Properties, and HashMap

The Hashtable class provides associative arrays with key-value pairings. Pre-
sentation of the key retrieves the value. The keys and values must be objects,
not primitive type values. If you want to include numerical values, then use the
corresponding wrapper classes such as Integer for an int value (or rely on
the autoboxing support in J2SE 5.0 as explained in Chapter 3).
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The methods put (Object key, Object value), get (Object

key), and remove (Object key), respectively, enter a new key/value pair
into the table, retrieve a value for a given key, and remove a key/value pair.

For example,

Hashtable mass--table = new Hashtable ();

mass--table.put ("photon", new Double (0.0);

mass--table.put ("electron", new Double ("9.10938188E-28");

mass--table.put ("proton", new Double (1.67262158E—24)");

Float mp = mass--table.get ("proton");

mass--table.remove ("photon");

The Hashtable can return enumerations for both the keys and the values. For
example,

for (Enumeration e = dates.keys (); e.hasMoreElements ();) {

System.out.println (e.nextElement ().toString ());

}

You can test for the presence of a particular key as follows:

if (dates.containsKey ("Thanksgiving")) {. . .}

TheHashtable class relies on thehashcode()method derived fromObject.
This hash code is a unique numerical value that is the same for “equal” objects
and different for “unequal” objects. Just what “equal” and “unequal” mean is
determined by the Object.equals() method. Unless the equals() method
is overridden by subclasses, Java requires that equality of object references means
that the references refer, in fact, to the very same object – i.e. that the references
are equal to one another.

Whenever you create a custom class, the hashcode() and equals()meth-
ods can and usually should be overridden. Otherwise, your custom object uses
the superclass hashcode() and equals() methods from Object. If you
want to allow objects with equivalent “contents” to be considered as equiva-
lent, then you must override equals() to do a “deep” comparison since the
Object.equals() superclass method only compares the references. When
you override equals() you should almost always override hashCode() too in
order to ensure that equal objects (as defined by the equals()method returning
true) have equal hash codes, as is expected by hash tables.

The Properties class extends Hashtable. Instances of Properties
typically represent persistent values such as system settings, and the keys, which
can be any object type in Hashtable, are generally expected to be String

objects. We discuss in Chapter 23 the method System.getProperties()

that returns the properties settings for the host platform on which a program is
running.
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You can create your own properties tables to maintain, for example, the config-
uration settings for a large complex program with many parameters and options.
The tables can be saved to or loaded from a file. However, with J2SE 1.4 came the
more elaborate Preferences API for this task, which we discuss in the following
section.

The HashMap class came with the Collections Framework in Java 1.2. It
provides essentially the same capabilities as Hashtable except that it can store
null references and its methods are not synchronized. When synchronization
is not needed, then the HashMap is to be preferred over Hashtable since the
former performs faster. See Section 10.6 for more information about Collections.

10.5 Preferences

The Preferences API is one of those small features in the Java 2 class library that
is easy to ignore as unimportant but yet proves to be enormously helpful when its
services are needed. Preferences are unlikely to be useful for custom scientific
programs that you write purely for your own purposes, since you will probably
just hard-code all your preferences into the code itself. However, if an application
has more than one user, you can be sure that some of the users will wish to modify
the default choices for such things as font style, size, and color or window sizes.
An application might provide a “Font” menu in which the font style and size is
controlled and so go a long way toward providing some of the control that users
desire. But your users will be disappointed to find that the application reverts to
your hard-coded choices each time the application is restarted.

One solution to this problem is to use a configuration file that a user edits to
configure an application. To use such a configuration file, however, introduces
several difficulties. First, the user must manually edit the file and this means that
he must learn the format of the file, get all the spelling exactly correct, know the
proper place to store the file, etc. Second, the application must find and read the
configuration file. Devising a platform-independent scheme to specify where a
configuration file is located in a file system is not a problem with an obvious or easy
solution, though Java’s built-in system properties user.home and user.name
offer some help. It is also not trivial to invent a format for a configuration file, or
to write the code to read and parse that format, or to document the chosen format
so that users will know how to create and edit the file. And you must also deal with
configuration preferences of multiple users of the same application on the same
machine. So storing a single configuration file is not sufficient since multiple
users will overwrite each other’s preferences. A valuable technique used in the
past to handle the formatting, reading, and writing of configuration information is
the java.util.Properties class, mentioned in the previous section, and its
load() and store()methods. The Properties class has been a part of Java
since version 1.0. Still, the problem of knowing where to store the configuration
file remains.
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The Preferences API is in the java.util.prefs package and has been a
part of Java since version 1.4. Amazingly, it provides the tools to easily store
and retrieve user preferences that persist across application invocations (i.e. the
preferences are “remembered” from one run of an application to the next). It
automatically maintains separate preference lists for multiple users, and trans-
parently handles storing the preferences information (the “configuration file,”
if you wish) in a way that the programmer need never worry about. The actual
place that the preferences data is stored is platform dependent, but the Preferences
API transparently handles access to the preferences information in a platform-
independent manner. Put another way, source code that uses the Preferences API
behaves the same way on any platform and hides the fact that the preferences
data might be stored differently on different platforms. The API even includes
a platform-independent import/export facility so that preferences can be backed
up or moved from one machine to another.

10.5.1 Easy to use

The Preferences API is very easy to use, despite what you might think after a
first brush with the online API documentation [3]. The most important class in
java.util.prefs is the Preferences class. Alas, the online documen-
tation is not written in a tutorial manner. That documentation says that the
Preferences class is “a node in a hierarchical collection of preference data”
and continues later with “there are two separate trees of preference nodes, one
for user preferences and one for system preferences.” While nodes and trees may
not sound simple or easy to use, they really are, and we explain how to use the
Preferences API through a simple example.

One first obtains a Preferences object by using the static method
userNodeForPackage(). This method requires a Class object as its only
parameter. The system then determines the package in which the specified class
resides and returns the Preferences object to be used to access user prefer-
ences information for that package. Since all applications generally have their
own unique package names, preferences based on package names do not conflict
with other packages. The userNodeForPackage() method returns a differ-
ent Preferences object for each user. In that way, multiple users of the same
application on the same machine do not conflict with each other. That is, dif-
ferent users, as distinguished by different user.name system property values,
have separate storage locations for their preferences data.

The description so far may not sound simple and easy to use yet, but the
API really is simple, as the following code snippets illustrate. So far, we have
described one line of code to obtain the Preferences object:

Preferences prefs = Preferences.userNodeForPackage

(getClass ());
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To store a preferences item takes one more line of code – the prefs.put()

method. To retrieve a stored item at a later time, say the next time the application
is run, takes just one line of code – the prefs.get() method.

Preferences information is stored as key/value pairs by the Preferences

object, similar to the way system properties are stored, so the call to the put()
method must provide both the name of the key under which the item is to be
stored and its value, both as String objects. An example is

prefs.put ("color", "red");

Here the key “color„ is stored with the value “red„. You choose the key names
to be whatever makes sense. Then, the next time the same Java application is run
by the same user, the previously stored value can be retrieved with

String preferred--color = prefs.get ("color",

"some-default-value");

All of the preferences methods that retrieve values require a second parameter
that provides a default value in case nothing is found under the named key. In that
way, the application can continue running with default values, although perhaps
with slightly reduced functionality.

In addition to the general put() and get() methods described above, there
are convenience methods to store and retrieve int values:

prefs.putInt ("width", 500);

int preferred--width = prefs.get ("width", 700);

Here, the integer value 500 is stored under the key name width. Later the value
stored is retrieved and loaded into the int variable preferred--width, using
a default value of 700. There are similar convenience methods for boolean
(putBoolean()and getBoolean()), long (putLong()and getLong()),
float (putFloat()and getFloat()), and double (putDouble()and
getDouble()) values. There are even convenience methods to put and get
a byte array. Another useful method is clear(), which removes all key/value
pairs in the preferences node.

10.5.2 Working examples

The Web Course Chapter 10 includes an example of the Preferences API usage
in a simple command-line Java application. The PrefsDemo application stores
values under the key name “PrefsValue„. The simple application is set up
to accept either “put”, “get”, or “clear” on the command line. These command
line parameters may put the next value supplied on the command line into the
preferences node, or they may get and echo a previously stored value or clear
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all key/value pairs. Because we always provide a default value when attempt-
ing to retrieve stored preferences, as is required, any attempt to retrieve a value
before one is stored results in a suitable default value being returned. You may
download and compile the PrefsDemo application and play with the “put”,
“get”, and “clear” parameters to get a feel for how the Preferences API works. In
addition to the “PrefsValue„ key name, the demo also uses the putInt()
and getInt() convenience methods to keep track of the total number of “put”
operations that have been performed. This counter is incremented by one each
time a “put” is performed and, more importantly, the value is maintained across
application invocations, even across recompilations and reboots! If the first com-
mand line parameter is “clear”, then all key/value pairs are removed from the
preferences node, effectively resetting the counter back to 0.

10.5.3 Exporting and importing preferences

Okay, we’ve shown that it’s easy to store and retrieve preferences. Doing so, and
having it work with so little effort, is almost magical – as long as your application
always runs on the same machine. But what about moving to another machine?
How can we not lose the preferences already stored on the first machine? The
answer is to use the export and import facilities of the Preferences API. The
exportNode() method creates an XML document (see a discussion of XML
in Chapter 21) on the specified OutputStream that can then be transferred and
imported to the same application running on another machine. Because of the
cross-platform nature of XML, the preferences XML file can even be moved to
the same Java application running on a completely different platform.

If the last parameter to the javatech.prefs.PrefsDemo application is
“export”, then the app uses exportNode() to output the preferences XML file
onto System.out. In this way, you can examine the tree and node structure of
the preferences tree.

Use of the importPreferences() method to read in an XML preferences
file is not shown in the demo application, but its use is straightforward after
referring to the online documentation.

10.5.4 System preferences

So far we’ve talked about user-level preferences – i.e. preferences stored for a
particular user. The Preferences API also supports system-level preferences that
apply to all users. To reach the system-wide portion of the preferences storage
system, use

Preferences prefs = Preferences.systemNodeForPackage

(getClass ());
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The typical situation that system-level preferences would be used is to store
system-wide defaults when an application is first installed.

10.5.5 Other services

Our brief discussion above describes most of the features of the Preferences API,
including the most typical usage. There are a few other services provided by the
API, such as listeners that listen for preference value changes. These additional
features are less likely to be used, especially in a scientific application. You can
find good documentation of these features in the online Java 2 API specifications
for the java.util.prefs package.

10.5.6 Where is the preferences data really stored?

The actual storage of preferences information is implementation dependent. We
programmers don’t need to know where the data is stored, as long as the Prefer-
ences API always works the same on all platforms, which it does. The important
thing to know is that the data really is stored persistently somewhere.

Nevertheless, the curious might want to know where the data is really stored.
In practice, the Sun J2SE implementation on Windows platforms utilizes the
Windows Registry as can be verified by examining the registry. On Solaris and
Linux, the user node is normally stored in a hidden file in the user’s home directory.
Other implementations might use directory servers or SQL databases. It really is
implementation dependent. And it really is unimportant.

10.6 The Collections Framework

The Collections Framework was first added in Java 1.2. It includes the original
Vector, Hashtable, and Properties classes from Java 1.0 and also adds
several important classes designed to make handling of “collections” of objects
much easier. We referred to these collections as “object containers” in Chapter 1
(not to be confused with graphics containers in Chapters 6 and 7). We do not
have space to devote to a full discussion of all the interfaces and classes in the
Collections Framework, but we do describe some of the basic functionality. To
quote from the online documentation [4],

The collections framework is a unified architecture for representing and

manipulating collections, allowing them to be manipulated independently of the

details of their representation. It reduces programming effort while increasing

performance. It allows for interoperability among unrelated APIs, reduces effort

in designing and learning new APIs, and fosters software reuse.
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How does it do all that? Some of the increased performance of the Collections
Framework comes about because of the use of non-synchronized versions of some
of the original object container classes. For example, we’ve already seen the non-
synchronized HashMap class that generally replaces the original Hashtable
class when thread safety is not an issue. There is also a non-synchronized replace-
ment for Vector called ArrayList.

In addition, the Collections Framework includes optimized high-performance
implementations of several useful and important algorithms and data structures –
sorting algorithms for instance. Since these are provided by the framework, you
don’t have to write them yourself.

10.6.1 Collections Framework organization

The Collections Framework adds interfaces for several new container types. The
root interface is Collection, which represents a group of objects. There are
three main sub-interfaces – Set, List, and SortedSet. A Set is a collection
that has no duplicate elements. The order of appearance of elements in the Set
is unspecified and may change. A List is an ordered collection such that each
element in the list has a distinct place in the list. An element in a list can be
retrieved by its integer index, somewhat like an array. Most Lists permit dupli-
cate elements. A SortedSet is a Set stored in such a way that when you iterate
through the SortedSet with an Iterator (see next section), the elements are
returned in ascending “order.”

These are interfaces, not concrete classes. The Collections Framework has
several concrete implementations. For example, Stack, LinkedList, and
ArrayList all implement List. A concrete SortedSet is TreeSet, and
a concrete Set is HashSet. There are several other concrete implementations
as well for specialized purposes. We illustrate only a few of these in this book.

There are two other base interfaces in the Collections Framework – Map and
SortedMap. All maps use key/value pairs, as in the Hashtable seen above.
Other concrete implementations of Map are the Properties and HashMap

classes seen earlier. A concrete version of SortedMap is the TreeMap.
J2SE 5.0 adds the Queue interface to the Collections Framework, and the

LinkedList class has been retrofitted to implement Queue. That means you
can use a LinkedList as a plain List or as a Queue. Queues are useful for
when you need first-in, first-out behavior, though some queues provide different
orderings. All Collections support add() and remove() methods to insert
and remove elements. The Queue interface adds the preferred offer() and
poll() methods. They are functionally equivalent to add() and remove()

except for their behavior in exceptional situations. Whileadd() fails by throwing
an unchecked exception if the queue is full, offer() returns false. Similarly,
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remove() fails with an exception if the queue is empty while poll() returns
null.

10.6.2 Using java.util.Iterator

We mentioned above that the Iterator interface is preferred over the old
Enumeration interface. The original object containers from Java 1.0 days used
the Enumeration interface to provide a way to loop over the elements in the
container. All the old container classes were retro-fitted with the Java 1.2 release
to support the Iterator interface as well. The new container classes added
in JDK 1.2 along with the Collections Framework support only the Iterator
interface. As mentioned, Iterator is preferable to Enumeration because
Iterator allows the caller to remove elements from the underlying collection
during an iteration without corrupting the Iterator.

The syntax for iterating over the elements in a Vector is as follows:

Vector vec = new Vector;

// Populate it . . . Then later, iterate over its elements

Iterator it = vec.iterator ();

while (it.hasNext ()) {

Object o = it.next ();

}

Here, since we haven’t been specific about what kinds of objects were put into the
Vector, we show retrieving the elements as plain java.lang.Object types.

Next we illustrate another popular iteration style, this time using an
ArrayList, which is preferred over Vector in a thread-safe situation:

ArrayList a--list = new ArrayList ();

. . .

for (Iterator it = a--list.iterator (); it.hasNext ();) {

Object o = it.next ();

}

Again, we retrieve plain java.lang.Object types from the Iterator. All
these container objects, Vector, ArrayList, and all the others, accept input
of any kind of object. They can do this because the add() method receives
java.lang.Object as the parameter type, and since java.lang.Object
is the superclass of all other object types, any kind of object can be added.
But the containers don’t know what kinds of objects are being stored in them
(see, however, the generics feature of J2SE in the next section). Therefore, when
retrieving an object from one of the containers, it can only be returned as a
java.lang.Object type. In most cases, you need to cast the Object received
into the specific object type you desire. You, as the programmer, should know
what kind of objects you store into a container, so you can do the cast correctly.
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If, however, you cast a returned Object to a type that it does not represent (say,
you cast an Integer to a String), then you will be greeted with a runtime
ClassCastException.

We next illustrate the ability of the Iterator to remove elements. First we
make a list of integers from 0 to 19 and then remove all the odd integers:

// Build an ArrayList and populate it with integers from

// 0 to 19.

ArrayList al = new ArrayList ();

for (int i=0; i < 20; i++) al.add (i);

// Iterate through the ArrayList, removing all the odd

// integers.

int count = 0;

for (Iterator it = al.iterator (); it.hasNext ();) {

count++;

it.next ();

if (count%2 == 0) it.remove ();

}

// Print out the remaining elements with another Iterator.

for (Iterator it = al.iterator (); it.hasNext ();) {

System.out.println ("element is " + it.next ());

}

The first loop simply loads the integers from 0 to 19 into the ArrayList. The
next loop uses an iterator to retrieve each element and remove the ones when
count%2 is zero. The final loop uses another iterator to print out the contents
of the modified list. Note that we used the Iterator.remove() method, not
ArrayList.remove(). Attempting to remove an element directly from the
ArrayList generates a runtime ConcurrentModificationException.

Note also that we used the autoboxing feature (see Chapter 3) to add primitive
int types in the first loop (autoboxed to Integer type) without having to
explicitly convert them to Integer wrapper types.

10.7 Generics in J2SE 5.0

We said above that the object containers expect to hold java.lang.Object

types and that the returned Object types must be cast into the desired type.
J2SE 5.0 includes the very significant addition of “generics” in which the object
containers can actually “know” what object type they should contain [1,2]. Then,
an attempt to insert an object of the wrong type into them results in a compile-
time error rather than a runtime ClassCastException. Generics are a large
and important addition to Java, and we only scratch the surface of how to use
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generics. Generic features pervade all the Collection Framework classes as well
as several other APIs in J2SE 5.0.

Suppose we have a list of strings:

List list--of--strings = new ArrayList ();

Without generics, we can insert any Object type into the list – Strings,
Integers, anything. With generics, we declare the type of object the list is
allowed to contain at compile time. The syntax is as follows:

List<String> list--of--strings = new ArrayList<String> ();

The<String> notation indicates that this particularList object is only allowed
to contain String types. Any attempt to add an Integer (autoboxed or not) or
anything else is disallowed at compile time:

list--of--strings.add ("this is legal");

list--of--strings.add (new Integer (5)); // this is not allowed

list--of--strings.add (5); // neither is this

In the first illegal add(), we explicitly wrap the 5 into an Integer. Even though
Integer is an Object type, meaning it could be added to a plain List, it is
not permitted into the List<String> object container. In the second attempt,
neither is the int 5 permitted. The compiler errors you will see look like this:

Generics.java:7: cannot find symbol

symbol: method add (java.lang.Integer)

location: interface java.util.List<java.lang.String>

list.add (new Integer (5));

^

Generics.java:8: cannot find symbol

symbol: method add (int)

location: interface java.util.List<java.lang.String>

list.add (5);

^

The compiler is saying that it cannot find anadd()method that takes anInteger
type in the interface java.util.List<java.lang.String>. Neither is
there anadd() that takes anint. By adding the generic type notation<String>
(also known as a parameterized type) we have effectively created a new List

interface that permits only String inserts. (Note that the second illegal add()
did not autobox the int 5 into an Integer. Doing so would not have worked
either since the first illegal attempt already demonstrated that adding anInteger
is not permitted.)

Where generics becomes important and saves a lot of code is when iterating
over generic types and, in particular, in conjunction with autoboxing and unboxing
of primitive types. Recall that without generics we must cast returned Object

types into the desired type during an iteration. That was with J2SE 1.4 and below.
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With 5.0, the collection object “knows” what type it holds, so it returns that type
instead of the Object type.

In the pre-5.0 days, iterating through a list of strings and printing each out
required code like this:

List list--of--strings = new ArrayList ();

. . .

for (Iterator it = list--of--strings.iterator (); it.hasNext

();) {

String s = (String) it.next ();

Sytem.out.println (s);

}

But when list--of--strings is a List<String> type, this simplifies to:

for (Iterator it = list--of--strings.iterator (); it.hasNext

();) {

String s = it.next ();

Sytem.out.println (s);

}

No more explicit cast! With autoboxing and unboxing, we can insert and retrieve
primitive types without explicitly using the wrapper objects:

List<Integer> list--of--ints = new ArrayList<Integer> ();

. . .

for (Iterator it = list--of--ints.iterator (); it.hasNext

();) {

int i = it.next ();

. . .

}

We should warn you of a nuisance with the J2SE 5.0 compiler. The use of these
special type-safe containers removes a significant source of errors. For backward
compatibility, all the old containers are still available. So any pre-5.0 code con-
tinues to work exactly the same in 5.0 and beyond. However, because the old
container types are potentially unsafe, the 5.0 javac compiler now issues warn-
ings about possible unsafe usage whenever it encounters one of the old container
types. These are just warnings and can be ignored if you are sure that the code is
safe. The best way to get rid of the warnings is to switch to the use of the generic
types where appropriate.

Of course, sometimes the old non-type-safe containers are needed, such as
when you really want to insert a mix of object types. In this case, you can just
ignore the warnings. Alternatively, the metadata system discussed in Chapters 1
and 4 provides an @SuppressWarnings annotation to explicitly suppress such
warnings.
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10.8 Concurrency utilities in J2SE 5.0

As mentioned in Chapter 8 on threads in Java, release 5.0 adds numerous enhance-
ments to the threading control and concurrency features of Java. Some of the
enhancements are advanced features beyond the scope of this book, but we explain
some of the simpler new features here.

10.8.1 The Executor class

The most important new feature for the casual developer of multithreaded
applications is the new Executor framework. A java.util.concurrent.

Executor is an object that executes submitted Runnable tasks. In that regard,
it is similar to calling

new Thread (aRunnable).start ();

For a single new thread, there is perhaps not much reason to use an Executor.
However, most multithreaded applications involve several threads. Threads need
stack and heap space, and, depending on the platform, thread creation can be
expensive. In addition, cancellation and shutdown of threads can be difficult, as
seen in Chapter 8, and a well-designed and implemented thread pooling scheme
is not simple. The new Executor framework solves all those problems in a way
that decouples task submission from the mechanics of how each task will be run,
including details of thread use, scheduling, etc.

An Executor can and should be used instead of explicitly creating threads.
For example, rather than creating a new thread and starting it as above, you can
use:

Executor executor = some Executor factory method;

exector.execute (aRunnable);

Notice that our Executor object was returned by an Executor factory. (As
we discuss in Chapter 16, a “factory” is a standard name for a method that is
used to obtain an instance of a class or subclass rather than making it with a
constructor.) There are several static Executor factory methods available in the
java.util.concurrent.Executors class. If you have several Runnable
tasks to carry out, but do not have specific requirements about the order in which
they occur, as is commonly the case, then a simple thread pool arrangement is
needed:

Executor executor = Executors.newFixedThreadPool (5);

executor.execute (new RunnableTask1 ());

executor.execute (new RunnableTask2 ());

executor.execute (new RunnableTask3 ());

. . .
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Here the tasks run and complete under the control of the Executor, which
reuses threads from the thead pool as needed without incurring the overhead of
always creating new threads. There are several more Executor factories in the
Executors class for other needs beyond the scope of this book. Refer to the
J2SE 5.0 API docs for complete information [1–3].

10.8.2 The Callable interface

The new java.util.concurrent.Callable interface is much like
Runnable but overcomes two drawbacks with Runnable. The run() method
in Runnable cannot return a result (it must be declared to return void) and
cannot throw a checked exception. If you try to throw an exception in a run()
method, the javac compiler insists that you use a throws clause in the method
signature. But if you then declare the run() method to throw an exception,
javac tells you that the overridden run() method does not throw any excep-
tions. That is, the superclass run() method, or in this case the method defined
in the Runnable interface, does not throw any exceptions, so any overriding
methods cannot throw exceptions either.

If you need a result from a Runnable task, you have to provide some external
means of getting that result. A common technique is to set an instance variable in
the Runnable object and provide a method to retrieve that value. For example,

public MyRunnable implements Runnable

{

private int fResult = 0;

public void run () {

. . .

fResult = 1;

}

public int getResult () {return fResult;}

} // class MyRunnable

The Callable interface solves these problems. Instead of a run() method the
Callable interface defines a single call() method that takes no parameters
but is allowed to throw an exception. A simple example is

import java.util.concurrent.*;

public class MyCallable implements Callable

{

public Integer call () throws java.io.IOException {

return 1;

}

} // MyCallable
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This call()method returns an Integer. (Note that we have conveniently used
the autoboxing support in J2SE 5.0 to have the int literal 1 automatically boxed
into an Integer return value.)

Getting the return value from a Callable depends upon the new generics
feature:

FutureTask<Integer> task = new FutureTask<Integer> (new

MyCallable ());

ExecutorService es = Executors.newSingleThreadExecutor ();

es.submit (task);

try {

int result = task.get ();

System.out.println ("result from task.get () = " + result);

}

catch (Exception e) {

System.err.println (e);

}

es.shutdown ();

Here, we use the FutureTask class that supports an Integer return value.
Then the task is submitted using the ExecutorService submit() method,
and the result is obtained from the FutureTask get() method, again using
auto-unboxing to convert the Integer to an int. See the API documentation
for more information on ExecutorService, and FutureTask.

10.8.3 Other concurrency enhancements

Other enhancements in the java.util.concurrent package not discussed
here include advanced synchronization techniques, atomic types, and new
high-performance thread-safe collections ConcurrentHashMap, CopyOn-
WriteArrayList, andCopyOnWriteArraySet. See the API documentation
for more information on these new collections and other features.

10.9 Enumerated types in J2SE 5.0

Until Release 5.0, Java did not have a facility like the enum of C and C++.
In those languages, enum is used to create a set of named integer values to
use as constants. This helps prevent accidentally using an illegal value where a
group of predefined constant values, and nothing else, is expected. We’ve seen
a related feature in BorderLayout’s constants NORTH, SOUTH, CENTER, etc
(see Chapter 6). Those constants are just final static Strings, and it is
perfectly permissible, though not advisable, to pass in literal Strings when
using a BorderLayout. Doing so is not advisable because a misspelled string
literal (“north” instead of “North”, for instance) is not interpreted as you hoped.
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What if we could insist at compile time that only a certain set of constant
values be accepted? The new enumerated type feature of J2SE 5.0 does just that
and much more. Before explaining enumerated types, let’s see how we might use
constants in J2SE 1.4 and below. Consider a class that accepts one of the four
seasons and returns the average temperature of that season. We might implement
such as class as follows:

public class FourSeasons

{

public static final int SPRING = 1;

public static final int FALL = 2;

public static final int SUMMER = 3;

public static final int WINTER = 4;

public float getAverageTemp (int season) {

switch (season) {

case SPRING:

return calculateSpringAverageTemp ();

case FALL:

return calculateFallAverageTemp ();

} . . .

}

} // class FourSeasons

A user of this class could call it like this:

FourSeasons s4 = new FourSeasons ();

float average--temp = s4.getAverageTemp (FourSeasons.SPRING);

But there is no way to prevent a user from calling

s4.getAverageTemp (5);

resulting in unpredicatable behavior.
Using enums we can catch such errors at compile time. For this example, we

can define

public enum Season {SPRING, SUMMER, FALL, WINTER}

and then implement a method

public float getAverageTemp (Season s) {

. . .

}

Here the method parameter is the enum type Season, and the compiler catches
any attempt to call getAverageTemp() with any parameter other than one of
the constant names defined in the enum declaration. Note that the enum is like a
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class definition. There is no need for a semicolon at the end of the closing brace,
though including one is not an error.

Enumerated types can do a lot more than replace constants. One nice feature
is the ability to obtain an array of all the enumerated type values within an enum:

Season[] seasons = Season.values ();

For more about the enumerated type, we refer you to the online API documentation
[3] and the books referenced in Chapter 1 that cover the new features in J2SE 5.0
[1,2].

10.10 The Arrays class

The class java.util.Arrays provides a number of static methods for filling,
searching, sorting, and comparing arrays. For each method name, there are sev-
eral overloaded versions that differ according to the type of the array or array
arguments. We examine several of these in more detail here.

10.10.1 Arrays.equals()

Let’s consider the equals() method (actually methods, since there are several
overloaded versions). There is one for each primitive type plus one more for
Object arrays:

boolean equals (type[] array1, type[] array2)

These compare two input arrays of the same type for equality. The methods
return true if each array holds the same number of elements and each element in
array1 equals the value in the corresponding element in array2. For the case
of Object arrays, the references in the two corresponding elements must either
point to the same object or both equal null.

10.10.2 Arrays.fill()

There are two forms of the fill() methods:

void fill (type[] array, type value)

void fill (type[] array, int fromIndex, int toIndex, type

value)

The first version of the overloaded fill methods, one for each primitive type
and for Object, fill all elements in array of the same type with the value
argument. The second version fills those elements between the given indices.
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10.10.3 Arrays.sort() and Arrays.binarySearch()

The sort methods for the primitive types look like:

void sort (type[] array)

void sort (type[] array, int fromIndex, int toIndex)

There is asortmethod for each primitive type exceptboolean. The elements in
the array are sorted in ascending order using a variant of the QuickSort algorithm.
(See the Java 2 API Specifications for thejava.util.Arrays class for details.)
The second version sorts those elements between the given indices.

For sorting Object types, there are two approaches. For the first approach
there are two methods available:

void sort (Object[] array)

void sort (Object[] array, int fromIndex, int toIndex)

Here the objects are sorted into ascending order using the “natural ordering” of the
elements. The array elements must implement the java.lang.Comparable
interface and provide the method

int compareTo (Object)

This method defines the “natural ordering” such that comparing object x to y
results in a negative number if x is lower than y (on a scale that makes sense for
the class), equal to 0 if the objects are identical, and a positive number if x is
greater than y. Your compareTo() method must be written to return a negative,
zero, or positive integer according to the ordering rules that make sense for the
nature of the objects that the class describes.

For example,

MyClass my--class1 = someMethodThatBuildsAMyClassInstance ();

MyClass my--class2 =

someMethodThatBuildsADifferentMyClassInstance ();

// Now compare the two instances of MyClass

if (my--class1.compareTo (my--class2) < 0)

System.out.println ("my--class1 is 'less than' my--class2");

else if (my--class1.compareTo (my--class2) == 0)

System.out.println ("my--class1 is 'equal to' my--class2");

else

System.out.println (

"my--class1 is 'greater than' my--class2");

For the alternative approach to comparing Object arrays, you create an auxiliary
class that implements the java.util.Comparator interface and that knows
how to compare and order two objects of interest. This technique is particularly
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useful if you need to sort classes that you cannot re-write to implement the
comparable interface. The Comparator class has two methods:

int compare (Object obj1, Object obj2)

boolean equals (Object obj1, Object obj2)

The compare() method should return a negative, zero, or positive integer,
according to the ordering rules that you implement, if obj1 is less than, equal to,
or greater than obj2. Similarly, the equals() method compares the objects for
equality according to the rules you implement. When using the Comparator
technique, the two object array sorting methods are:

void sort (Object[] array, Comparator comp)

void sort (Object[] array, int fromIndex, int toIndex,

Comparator comp)

Another useful set of overloaded methods in the Arrays class is the set of binary
searching methods:

int binarySearch (type[] array, type key)

int binarySearch (Object[] array, Object key,

Comparator comp)

There is an overloadedbinarySearch()method for each primitive type except
boolean and one more forObject. These methods search an array for the given
key value. The array to be searched must be sorted first in ascending order, perhaps
by using one of thesort()methods just discussed. The methods return the index
to the position where the key is found, or if it is not found, to the insertion point.
The insertion point is the place in the array where all the elements are less than
the key and all the elements above it are greater than or equal to it. The methods
return array.length() if all elements are less than the key.

For the case of Object arrays and the first type of binarySearch()

method above, the elements must implement the Comparable interface. If you
cannot change the classes to implement this interface, then you can provide a
Comparator and use the second type of binarySearch() method shown
above.

10.10.4 Arrays.toString()

One small, but extremely useful, addition to J2SE 5.0 is the static
Arrays.toString() method. It conveniently returns a string representation
of the contents of an array. Consider the now familiar public static void

main (String[] args) method. Almost anyone who has used Java for any
time has written a loop like the following to echo the input parameters:

for (int i=0; i < args.length; i++)

System.out.println (args[i] + ", ");
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Wouldn’t it be nice to avoid writing that loop ever again? Arrays.

toString() provides just what you need. It accepts an array as a parameter and
returns a formatted string representation of the contents of the array. There are
overloaded versions for arrays of all the primitive types and a version for object
types. For the object types, each element’s own toString() is used. Therefore
for String[] types, you get the contents of the string. Here is a simple example:

public class Demo {

public static void main (String[] args) {

System.out.println (Arrays.toString (args));

}

} // class Demo

If you run this code with the following command-line parameters:

java Demo Arrays.toString is really cool

you are greeted with

[Arrays.toString, is, really, cool]

10.10.5 Arrays.deepToString()and deepEquals()

There is also a recursive Arrays.deepToString() that works as might be
expected for multidimensional arrays. The following code snippet:

int[][] a = new int[3][4];

a[0][0] = 1;

a[0][1] = 2;

a[0][2] = 3;

a[0][3] = 4;

a[1][0] = 5;

a[1][1] = 6;

a[1][2] = 7;

a[1][3] = 8;

a[2][0] = 9;

a[2][1] = 10;

a[2][2] = 11;

a[2][3] = 12;

System.out.println (Arrays.deepToString (a));

produces

[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
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Finally, for comparing multidimensional arrays, there is the deepEquals()

method. It returns a boolean and works recursively on nested arrays of any
depth. Two array references are considered deeply equal if they contain the same
number of elements and all corresponding pairs of elements in the two arrays are
deeply equal. (If both array references are null they are also considered deeply
equal.)

10.11 Tools for strings

We briefly discussed the String class in Chapter 2 and in Chapter 3. We
also used strings frequently in the various demonstration programs. Here we
look further at tools for dealing with strings including the many useful meth-
ods in the String class itself and in StringBuffer, StringBuilder, and
StringTokenizer.

10.11.1 String class methods

In Chapter 3 we discussed the valueOf() methods in the String class for
converting primitive type values to strings. The String class contains a large
number of other useful methods. Here we briefly examine a sample of these
methods.

10.11.1.1 int length ()

This method returns the number of characters in the string, as in

String str = "A string";

int x = str.length ();

This results in variable x holding the value 8.

10.11.1.2 String trim ()

Removes white space from the leading and trailing edges of the string:

String string = " 14 units ";

String str = string.trim ();

This results in the variable str referencing the string “14 units„. As always,
String objects are immutable. The trim() method always returns a new
String object containing the trimmed version of the original String.

10.11.1.3 int indexOf (int ch), int lastIndexOf (int ch)

The indexOf()method returns the index, starting from 0, for the location of the
given character in the string. (The char value is widened to int.) For example,

String string = "One fine day";

int x = string.indexOf ('f');
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This results in a value of 4 in the variable x. If the string holds no such character,
the method returns -1. To continue searching for more instances of the character,
you can use the method

indexOf (int ch, int fromIndex)

This starts the search at the fromIndex location in the string and searches to
the end of the string. The additional overloaded methods

indexOf (String str)

indexOf (String str, int fromIndex)

provide similar functions but search for a substring rather than just for a single
character. Similarly, the methods

lastIndexOf (int ch)

lastIndexOf (int ch, int fromIndex)

lastIndexOf (String str)

lastIndexOf (String str, int fromIndex)

search “backwards” for characters and strings starting from the right end and
moving from right to left. (The fromIndex second parameter still counts from
the left, with the search continuing from that index position toward the beginning
of the string.)

10.11.1.4 boolean startsWith (String prefix), boolean
endsWith (String str)

These two methods test whether a string begins or ends with a particular substring.
For example,

String [] str = {"Abe", "Arthur", "Bob"};

for (int i=0; i < str.length (); i++) {

if (str[i].startsWith ("Ar")) doSomething ();

}

10.11.1.5 String toLowerCase (), String toUpperCase ()

The first method returns a new string with all the characters set to lower case
while the second returns a string with the characters set to upper case:

String[] str = {"Abe", "Arthur", "Bob"};

for (int i=0; i < str.length (); i++) {

if (str[i].toLowerCase ().startsWith ("ar")) doSomething ();

}

See the Java 2 Platform API Specifications to examine the other methods available
with the String class [3].
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10.11.2 java.lang.StringBuffer

String objects cannot be altered. Once they are created, they are immutable objects.
Concatenating two strings together creates a whole new string object in memory:

String str = "This is ";

str = str + "a new string object";

The str variable now references a new String object that holds “This is

a new string object„. The String class maintains a pool of strings in
memory. String literals are saved there and new strings are added as they are
created. Extensive string manipulation with lots of new strings created with the
String append operation can therefore result in lots of memory taken up by
unneeded strings. Note, however, that if two string literals are the same, the
second string reference will point to the string already in the pool rather than
create a duplicate.

The class java.lang.StringBuffer provides a much more memory effi-
cient tool for building strings. The class works as follows:

StringBuffer strb = new StringBuffer ("This is ");

strb.append ("a new string object");

System.out.println (strb.toString ());

You first create an instance of the StringBuffer class and then append new
strings to it using the append() method. Internally, the class holds a large
character array. Appending strings just involves filling places in the array with
newchar values. It does not need to create any new objects. If the array is already
filled when you try to do an append(), then StringBuffer creates a larger
array and copies the old characters into the new one. All this happens internally,
completely transparently to you.

10.11.3 java.lang.StringBuilder

Java Version 5.0 added the StringBuilder class, which is a drop-in replace-
ment for StringBuffer in cases where thread safety is not an issue.
Because StringBuilder is not synchronized, it has better performance than
StringBuffer. In general, you should use StringBuilder in preference
over StringBuffer. In fact, the J2SE 5.0 javac compiler normally uses
StringBuilder instead ofStringBufferwhenever you perform string con-
catenation, as in

System.out.println ("The result is " + result);

All the methods available on StringBuffer are also available on
StringBuilder, so it really is a drop-in replacement.
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10.11.4 StringTokenizer

The String class provides methods for scanning a string for a particular
character or substring. The class java.util.StringTokenizer allows you
to break a string into substrings, or tokens, in one operation. (For J2SE 1.4,
much of the value of StringTokenizer has been largely replaced with the
String.split() method, which we discuss in the next section.) The tokens
are separated by delimiters, which are the characters defined as separators of the
tokens. The default delimiters are the white space characters such as spaces
and line returns. Since StringTokenizer implements the Enumeration

interface, the standard Enumeration methods hasMoreElements() and
nextElement()step through the tokens. Since nextElement() returns an
Object type that requires casting to a String type, StringTokenizer also
includes the nextToken() method that returns a String type automatically.
For naming consistency, there is also a hasMoreTokens() method.

For example, if a string contains a sentence, you can use StringTokenizer
to provide a list of the words. For example,

String str = "This is a string object";

StringTokenizer st = new StringTokenizer (str);

while (st.hasMoreTokens ()) {

System.out.println (st.nextToken ());

}

This results in a console output as follows:

This

is

a

string

object

An overloaded constructor allows you to specify the delimiters. For example,

String str = "A*bunch*of*stars";

StringTokenizer st = new StringTokenizer (str,"*");

This breaks the string into the tokens separated by the “*„ character.

10.11.5 String.split()

J2SE 1.4 added the split() method to the String class to simplify the
task of breaking a string into substrings. This method uses the concept of a
“regular expression” to specify the delimiters. A regular expression is a rem-
nant from the Unix grep tool (“grep” meaning “general regular expression
parser”). A full discussion of regular expressions is beyond the scope of this
book; see almost any introductory Unix text or the Java API documentation for
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the java.util.regex.Pattern class for complete documentation [5,6]. In
its simplest form, searching for a regular expression consisting of a single char-
acter finds a match of that character. For example, the character ‘x’ is a match for
the regular expression “x”.

The split() method takes a parameter giving the regular expression to use
as a delimiter and returns a String array containing the tokens so delimited.
Using split(), the first example above becomes

String str = "This is a string object";

String[] words = str.split (" ");

for (int i=0; i < words.length; i++)

System.out.println (words[i]);

To use “*„ as a delimiter, simply specify “*„ as the regular expression:

String str = "A*bunch*of*stars";

String[] starwords = str.split ("*");

For most string-splitting tasks, the String.split() method is much eas-
ier and more natural to use than the StringTokenizer class. However,
StringTokenizer is still useful for some tasks. For example, an overloaded
StringTokenizer constructor allows you to specify that the tokens to be
returned include the delimiter characters themselves.

10.12 Calendar, Date, and Time

Java offers several classes for dealing with dates and times. Some are in the
java.util package:

� GregorianCalendar (a subclass of the abstract Calendar class)
� Date

These two are in java.text:

� DateFormat and its subclass SimpleDateFormat

The GregorianCalendar class can be used to represent a specific date accord-
ing to the Gregorian calendar (and the Julian calendar before that). Methods are
provided to compare calendar objects such as whether one date came before or
after another. The Calendar base class, which is abstract, holds static methods
that give information such as the current date and time:

Calendar this--moment = Calendar.getInstance ();

The hierarchy implies that there could be other calendar subclasses, e.g. Chinese,
but none has appeared in the core language as of version 5.0.
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If you look at the Java 2 API Specifications for the Date class you will
see that most of its methods are deprecated. As of version 1.1, java.text.
DateFormat took over most of duties of the Date class, which is
now essentially relegated to simply holding a date/time value. The class
DateFormat can generate strings with many variations in the formats for
dates and times. There are also a number of methods for dealing with time zone
settings and internationalization of the strings.

The class DateFormatPanel, shown below, displays the current time. Each
time the panel is repainted, it displays the current time. In Section 8.7 we discussed
how to use timers to redraw this panel every second to create a digital clock.

import javax.swing.*;

import java.awt.*;

import java.text.*;

import java.util.*;

/** This JPanel subclass uses the DateFormat class

* to display the current time. **/

class DateFormatPanel extends JPanel {

DateFormat fDateFormat;

boolean fFirstPass = true;

int fMsgX = 0, fMsgY = 0;

Font fFont = new Font ("Serif", Font.BOLD, 24);

/** Get the DateFormat object with the default time

* style. **/

DateFormatPanel () {

fDateFormat =

DateFormat.getTimeInstance (DateFormat.DEFAULT);

} // ctor

/** Draw the time string on the panel center. **/

public void paintComponent (Graphics g) {

super.paintComponent (g);

// Get current date object

Date now = new Date ();

// Format the time string.

String date--out = fDateFormat.format (now);

// Use our choice for the font.

g.setFont (fFont);

// Do the size and placement calculations only for
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// the first pass (assumes the applet window never

// resized).

if (fFirstPass) {

// Get measures needed to center the message

FontMetrics fm = g.getFontMetrics ();

// How many pixels wide is the string

int msg--width = fm.stringWidth (date--out);

// Use the string width to find the starting point

fMsgX = getSize ().width/2 - msg--width/2;

// How far above the baseline can the font go?

int ascent = fm.getMaxAscent ();

// How far below the baseline?

int descent= fm.getMaxDescent ();

// Use the vertical height of this font to find

// the vertical starting coordinate

fMsgY = getSize ().height/2 - descent/2 + ascent/2;

}

g.drawString (date--out, fMsgX, fMsgY);

fFirstPass = false;

} // paintComponent

} // class DateFormatPanel

The DateFormatPanel class uses an instance of DateFormat obtained with
the factory method getTimeInstance (int style). The style of the date
and time output is obtained with the DateFormat constants. The Java 2 API
Specifications for this class list the style constants. Here we chose for the time
format theDateFormat.DEFAULT style. What this actually means varies some-
what with the locale setting (see the Sun tutorial on internationalization of Java
programs [7]). In the USA the default style results in a time string such as
“5:30:33 PM”.

The DateFormat subclass SimpleDateFormat offers a somewhat more
explicit technique for setting the format. Date and time formats are chosen with
a string pattern. The Java 2 API Specification for the SimpleDateFormat

provides a table of symbols to use in the format patterns. For example, in the
example below, the pattern

"EEE, d MMM yyyy HH:mm:ss Z"

results in a time format that goes as

Wed, 26 Mar 2003 15:34:35 —0500
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Here the last number, −0500, indicates a time zone 5 hours earlier than GMT.
The JPanel subclass SimpleDateFormatPanel shown below displays the
date and time whenever the panel is repainted:

import java.swing.*;

import java.awt.*;

import java.text.*;

import java.util.*;

public class SimpleDateFormatPanel extends JPanel

{

SimpleDateFormat fSDateFormat;

boolean fFirstPass = true;

int fMsgX = 0, fMsgY = 0;

Font fFont = new Font ("Serif", Font.BOLD, 24);

/** Use SimpleDateFormat with the given date & time

* style. **/

SimpleDateFormatPanel () {

fSDateFormat = new SimpleDateFormat (

"EEE, d MMM yyyy HH:mm:ss Z");

}

/** Paint the date and time at center of panel. **/

public void paintComponent (Graphics g) {

super.paintComponent (g);

// Get current date

Date now = new Date ();

// And create a date/time string in the desired format

String date--out = fSDateFormat.format (now);

. . . rest of the code is the same as in

DateFormatPanel . . .

Another time related tool is the static method System.currentTime-

Millis(). It provides the current time as a long value containing the number
of milliseconds since midnight, January 1, 1970 UTC. This is not very informa-
tive on its own but usually you look at the difference between two values. It is
particularly useful for program timing and performance studies.

10.13 Arbitrary precision numbers

The 64 bits in the long type correspond to about 19 decimal digits. There are
applications, however, that deal with numbers containing many more digits than
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provided by these types. For example, cryptography requires very large prime
numbers. As many as 2000 bits are used for the public/private key encryption
algorithms.

Floating-point values can represent large values but with limited precision.
The double type contains a 53-bit signed significand, which translates to 15 to
17 digits decimal precision. As we discussed in Chapter 2, it is often the case that
a finite number of digits in the binary base cannot represent a finite fraction in a
decimal value (1/10 is a typical example). So there can be a loss of precision for a
decimal value in floating-point format. Techniques to minimize and quantify the
accumulation of such errors over repeated calculations are available from error
analysis methods. A brute force approach, however, is simply to use extremely
high precision number representations that avoid the error build up altogether.
Financial calculations might need to use this approach, for example. Some math-
ematical exercises, such as calculating π to higher and higher precision, require
indefinitely wide fractional values.

For applications like these that require very large integer values and extremely
precise decimal values, the package java.math provides the BigInteger and
BigDecimal classes. Instances of these classes hold values of arbitrary preci-
sion. The values internally are immutable. Like String objects, once created,
they cannot change.

Since the object values are immutable, any operation on a BigInteger or
BigDecimal value can only return a new instance of the class. This is something
to consider when implementing algorithms with these classes that involve many
operations. Unneeded values should be de-referenced so that the garbage collector
can retrieve the memory space. Of course, operations with such classes are much
slower than those with primitive types.

In the following two sections we briefly describe these two classes. See the
Java 2 API Specifications for details about their methods [1]. See also the book by
Mak for a more extensive discussion of these classes and for code that provides
additional mathematical functions with them [8].

10.13.1 BigInteger

The BigInteger class contains methods that provide all the basic arithmetic
operations such as add, subtract, multiply, and divide for indefinitely long integer
values. For example,

BigInteger bi1 = new BigInteger

("1143209523490543953412323238479");

BigInteger bi2 = new BigInteger

("34548738754398454599999997876786578479");

BigInteger bi3 = bi2.add (bi1); // = bi2 + bi1

BigInteger bi4 = bi2.divide (bi1); // = bi2 / bi1
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Note that bi3 and bi4 are new BigInteger objects created by the add() and
divide() methods, respectively. There are four BigInteger instances in the
four lines of code above. If bi1 and bi2 are no longer needed, they could be
de-referenced as follows:

bi1 = bi2 = null;

With no more references to the BigInteger objects formerly known as bi1
and bi2, the garbage collector is free to reclaim that memory when needed.

Several other arithmetic methods are included in BigInteger as well, such
as abs(), negate(), and pow(). Plus there are methods to return values as
int, long, float, or double primitives. These are, of course, narrowing
conversions that lose information about the value if the BigInteger value is
too large to represent as the primitive type. See the API documentation for full
details.

Since the BigInteger instances are mostly used for encryption tasks, there
are several methods related to prime number generation and modulo arithmetic.
This includes

static BigInteger probablePrime (int numberBits,

Random ran)

This method generates a number that has a high likelihood of being prime. The
parameters include the bit length of the prime number and a reference to an
instance of the Random class that the method uses to select candidates for pri-
mality. The method

boolean isProbablePrime (int certainity)

gives a confidence test for the value. The certainty parameter indicates the desired
level of confidence that the number really is prime. If the probability exceeds
(1 - 1/2certainty), the method returns true.

The BigInteger class also contains methods to carry out various bitwise
operations, as in

BigInteger shiftLeft (int n)

BigInteger shiftRight (int n)

These return new BigInteger values shifted left or right by the number of
bits indicated. Other bitwise methods include: and, or, XOR, not, andNot,
testBit, setBit, clearBit, and flipBit.

We note that BigInteger implements Comparable, which makes arrays
of BigIntegers sortable with the java.util.Arrays methods described
in Section 10.10.3. The compareTo() method, required by Comparable, is
useful for comparing two BigInteger values outside of the sort() methods.
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10.13.2 BigDecimal

BigDecimal contains internally an arbitrary precision integer – unscaled-

Value – and a 32-bit scale value – scale. The value represented by a BigDec-
imal object then corresponds to

unscaledValue / 10scale

So for the following instance of BigDecimal:

BigDecimal one = new BigDecimal (new BigInteger("1"),

Integer.MAX--VALUE);

the decimal point is 231 − 1 (i.e. 2 147 483 648) places to the left of the 1. You
can obtain a new BigDecimal value with the scale increased by n places with
the method

BigDecimal movePointLeft (int n)

Similarly, you can obtain a new value with the scale decreased by n places using

BigDecimal movePointRight (int n)

Note that in both cases the precision of the unscaled value remains unchanged.
Only the decimal point has moved.

Other methods provide the scale value (as an int) and the unscaled value (as
an instance of BigInteger). There are also methods that return a float and a
double type value, with the precision truncated as necessary to fit the narrower
fractional range of these floating-point types.

As with BigInteger, the BigDecimal class contains methods that provide
all the basic arithmetic operations such as add, subtract, multiply, and divide.
However, for the division, one of eight rounding options must be chosen. For
example,

BigDecimal bd1 = new BigDecimal (

new BigInteger ("1143209523490543953412323238479", 12345);

BigDecimal bd2 = new BigDecimal

("3.4548738754398454599999997876786578479");

BigDecimal bd4

= bd2.divide (bd1, BigDecimal.ROUND-- DOWN);

// = bd2/bd1

Here the division rounds towards zero. Other rounding style constants defined in
theBigDecimal class includeROUND--UP,ROUND--FLOOR,ROUND--CEILING,
etc. See the API documentation for rounding details.
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10.14 Bit handling

You may occasionally need to access and manipulate data at the bit level. For
example, each bit in a set of data might represent the on/off state of a sensor or a
pixel in a detector array. Representing the values as bits is much more memory
efficient than assigning a full byte to each detector element if each element can
be only in one of two states.

A more common application of bitwise operations deals with colors. We saw
in Chapter 6 that in Java the RGB & alpha components (red, green, blue, and
the transparency factor) for a color pixel are each assigned a byte value and the
four bytes are packed in an int field. For image processing (see Chapter 11)
and other graphics applications, you can use the bitwise operators to obtain these
bytes from a color value, modify the component values, and then pack them back
into an int value.

10.14.1 Bitwise operations

In Appendix 2 we display a table of the bitwise operators that act on the individual
bits in integer type values. Four of the operators carry out Boolean operations on
the bits. The ~x compliment operation flips each bit in x. The x & y, x | y,
and x ^ y operations perform AND, OR, and XOR, respectively, between the
corresponding bits in the x and y values. For the case where a bitwise operator
involves two operands of different integer types, the wider type results.

The other three bit operators involve shifting of bits. The shift left operation,
x << y, shifts x to the left by y bits. The high-order bits are lost while zeros fill
the right bits. The signed shift right operation, x >> y, shifts x to the right by y
bits. The low-order bits are lost while the sign bit value (0 for positive numbers,
1 for negative) fills in the left bits. The unsigned shift right, operation, x >>>
y, shifts x to the right by y bits. The low-order bits are lost while zeros fill in the
left bits regardless of the sign.

The following code shows how to place the four color component values into
an int variable. We use the hexadecimal format for the literal constants as a
compact way to specify byte values.

int[] aRGB = {0x56, 0x78, 0x9A, 0xBC};

int color--val = aRGB[3];

color val = color--val | (aRGB[2] << 8);

color--val = color--val | (aRGB[1] << 16);

color--val = color--val | (aRBG[0] << 24);

This results in color--val holding the value: 56 78 9A BC (separating the byte
values for clarity). Similarly, to obtain a particular byte from an int value, the
code goes like:
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int alpha val = (color--val >>> 24) & 0xFF;

int red--val = (color--val >>> 16) & 0xFF;

int green--val = (color--val >>> 8) & 0xFF;

int blue--val = color--Val & 0xFF;

10.14.2 java.util.BitSet

A BitSet object represents a vector of bits whose size can grow as needed. The
bits can be used, for example, to represent a set of Boolean values. This is more
memory efficient than using a whole byte for each value as would be the case
with an array of boolean primitive types. (A JVM implementation can in fact
use bits to represent a boolean array but not all do.)

The BitSet methods might also be helpful if one is handling data in which
individual bits represent information of interest. For example, each bit might
represent the state of a relay in a large group of relays. Although internally
the JVM might represent the BitSet with an array of long values, there is
unfortunately no method in the BitSet class that converts an array of long
values into a BitSet or vice versa.

The BitSet class provides methods to access a given bit in the array with an
index value:

� get (int index)
� set (int index)
� clear (int index)
� flip (int index)

Two BitSet arrays can undergo Boolean operations:

� and (BitSet bitset)
� or (BitSet set)
� xor (BitSet set)
� andNot (BitSet set) – clears those bits in the BitSet object for which the cor-

responding bits are set in the parameter bitset object

The class includes a number of other methods such asclone()for making copies
of a BitSet, cardinality() for finding the number of bits set to one, and
nextSetBit (int fromIndex), for finding the index of the next bit set to
one at position fromIndex or higher.

10.14.3 More bit handling

What if data from another computer platform or an external device arrives as int
or long type values but the bits actually represent float or double values?
How would we change an integer type value to the corresponding floating-point
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type? Or conversely, what if we want to map the bits of a floating-point value into
an integer type?

In Chapter 9 we used methods in the DataInputStream wrapper to read
values from a byte array source as a particular primitive type. However, for a data
set that is a mix of many types, it might be convenient to read the data into a single
array of an integer type. You can then convert those elements of the array that
represent float values with the intBitsToFloat() method in the Float
class. There are also methods to map from float to int.

The Float class includes:

� static int floatToIntBits (float x) – Returns an int type whose bits

match those of a float according to the IEEE 754 floating-point “single format” bit

layout as described in Appendix 3.
� static int floatToRawIntBits (float value) – This is the same as

floatToInBits (float x) except the NaN value can be other than the single

IEEE 754 official value (0x7fc00000). As explained in Appendix 3, a value is NaN if

all the bits in the exponent equal 1 and any of the bits in the significand equal 1.
� static float intBitsToFloat (int x) – Treats the bits in the x value as the

bits in a float value and returns it as a float type. That is, this method converts the

output of floatToIntBits (float) back to a float value.

The Double class has a corresponding set of methods for converting back and
forth from long and double types.

The Integer wrapper also offers some bit handling methods:

� static String toBinaryString (int i) – Converts the value i to a string

with 0 and 1 characters but no leading zeros.
� static int parseInt (String s, int radix) – Conversely, if s is a string

representing a binary value, such as “110103,” and radix is set to 2, then the method

returns an int value equal to the binary value. (We previously used parseInt

(String s), which assumes a decimal value is represented by string.)

The Long wrapper has two methods with similar names for converting long
values to binary strings and converting strings that represent binary values to
long values.

As discussed in Section 10.13, the BigInteger class contains bitwise meth-
ods to test bits, shift bits, clear a particular bit, and so forth. However, remember
that any change of a bit results in a new BigInteger object since instances of
this class are immutable.

10.15 Other utilities

There are a number of other utility classes in the java.util package. The
class Stack, for example, provides a last-in-first-out type vector with pop and
push methods. We discussed the Formatter class in Chapter 5 that deals with
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formatting of numerical values into strings. In Chapter 9 we discussed Scanner
for parsing input strings. These latter two classes were added to java.util in
J2SE 5.0.

Internationalization tools include:

� Locale – specifies a particular geographical, political, or cultural region.
� ResourceBundle – holds locale specific information such as alternative language

strings for buttons, menus, and other GUI text.
� Currency – provides symbols for strings representing currency values for the particular

locale.

The sub-packages to java.util include:

� java.util.jar – package or tools for reading and writing the JAR (Java ARchive)

file format, which is based on the Zip compression system. (see Section 5.6).
� java.util.zip – package provides various classes for packing and unpacking files

with either the Zip or Gzip compression systems.
� java.util.regex – package with classes for matching character sequences against

patterns specified by regular expressions.
� java.util.logging – provides the Java platform’s core logging facilities that were

added in version 1.4. The logging system is a large and complete system designed to

systematically produce logging information that can be used by developers to debug

an application under development as well as end users and field service engineers to

support applications delivered to others. For single developers, the logging system is

considerably more powerful than using System.out.println() repeatedly, but we

do not have space to cover it in this book.

10.16 Web Course materials

The Chapter 10 Web Course: Supplements examines techniques for measuring
and optimizing Java performance. It does this in the context of the JVM design
and with regard to different JVM implementations.

The Web Course: Tech section provides demos for the arbitrary precision
number classes. The Physics section continues with development of data analysis
programs.
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Chapter 11
Image handling and processing

11.1 Introduction

In Chapter 6 we presented the basic techniques for loading image files into applets
and applications. We used instances of the Image class to hold images and
invoked the drawImage() method in the Graphics class to display them. In
this chapter we explore further the image handling and processing capabilities of
Java.

In the first few sections we look in greater detail at the Image class and
introduce its BufferedImage subclass, which offers many useful features. We
discuss how to monitor the loading of images, how to scale image displays, how
to create images, and how to save images to files.

We then switch to topics related to image processing. We show how to gain
access to the pixels of an image, how to modify them, how to make an image
from a pixel array, and how to use these techniques to create animations. We then
discuss the standard filters provided with Java 2D and also give an example of a
custom filter.

We give only a brief overview of the wide range of image tools available with
Java. The classes mentioned here, for example, hold many overloaded construc-
tors and methods that provide many options. See the Java 2 API Specifications
for thorough descriptions of the classes. Also, see the book by Knudsen [1] and
the other resources for in-depth discussions of images in Java [2,3].

11.2 The Image and BufferedImage classes

The Image class is abstract so you normally deal with instances of platform-
specific subclasses obtained via methods such as getImage() in the Applet
class. The Image class provides limited information about an image. The
Java 2D API, which came with Java 1.2, introduced java.awt.image.

BufferedImage, which is a non-abstract subclass ofImage that provides much
greater access to and control of image data.

In Chapter 6 we discussed colors in Java and the java.awt.Color class.
You might guess that an image in Java consists internally of a two-dimensional
array of Color objects each representing a pixel. This, however, is not practical

365
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Figure 11.1 A
BufferedImage object
holds a Raster and
ColorModel. The Raster

in turn holds a
SampleModel and a
DataBuffer with the raw
data array(s).

for reasons of space and speed. Instead raw image data is packed in a primitive
type array or set of arrays and the colors are constructed from the array data
as needed. The internal structure of BufferedImage is shown in Figure 11.1.
It includes a ColorModel object and a Raster object. The Raster in turn
contains SampleModel and Databuffer objects.

The Raster specifies the colors of the individual pixels of an image. It does
this with the help of a DataBuffer that holds one or more raw data arrays
(each array is referred to as a bank) and a SampleModel subclass that knows
how the pixel data is packed in the DataBuffer. The abstract SampleModel
has several subclasses such as PixelInterleavedSampleModel and
BandedSampleModel that describe particular packing arrangements. The term
sample refers to one of the values that describe a pixel. In RGB color space, for
example, there are three samples – the red sample, the green sample, and the blue
sample – that make up a pixel. The collection of values of a particular sample for
all the pixels is referred to as a band. That is, if you filtered an image to show
only the red values, this would display the red band.

The bands can be arranged in many different ways in the data buffers. For
example, the band arrays could be assembled sequentially with the red array first,
green array second, and blue array last. Or they could be interleaved within a
single array in triplets of samples for each pixel. That is, the first three array
elements hold the red, green, and blue samples for the first pixel and then repeat
for the next pixel until the full image is complete. A binary black and white image
might use just a zero or one for each pixel and be packed as bits in a byte array.
The job of the sample model is to gather the samples for a given pixel and supply
them to the color model.

The ColorModel, which must be compatible with the sample model, inter-
prets the pixel samples as color components. The ARGB (alpha, red, green, blue)
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model is the default while other models include the gray-scale model with only
one sample per pixel and index models where a data value holds an index into a
palette of a limited number of colors. For example, a sample model for a binary
black and white image packed as bits would send its zeros and ones to an index
color model that would in turn assign zero to black (RGB 0x000000) and one to
white (RGB 0xFFFFFF).

The BufferedImage is intended to handle the many different ways that
images can be encoded and stored. Except for specialized cases, you don’t need
to deal directly with the details of the internal structure of the class. In Sec-
tion 11.8.4 we show how to create an ARGB image and a gray-scale image from
pixel data. Other examples are given in the Web Course Chapter 11.

11.3 Image loading

The Java AWT core language classes originally provided for loading and display
of images in GIF and JPEG encoding format. With Java 1.4 came access to PNG
encoding and with Java 5.0 came the bitmap formats BMP and WBMP.

We mentioned in Chapter 6 that an image does not actually begin loading when
an applet invokes the getImage() method. The loading begins only when the
program attempts to access the image such as by invoking drawImage() in the
graphics context or by invoking the getWidth() or getHeight() methods
of the Image class. Image loading typically requires a substantial amount of
bandwidth on the network so the Java designers sought to postpone the loading
of an image in case it was never needed.

Once the loading starts, it may require a substantial amount of time, especially
over a slow link. Other threads in the program can continue to run in parallel
while an internal thread takes care of the image loading. Java provides two ways
to monitor the loading to know when it has finished:

1. Implement theImageObserver interface and provide theimageUpdate()method.

2. Use an instance of MediaTracker to load one or more images simultaneously.

You can also use ImageIcon to load an image. This class holds an internal
MediaTracker to monitor the loading. Another image loading option is to use
theread()methods in thejavax.imageio.ImageIO class. We discuss these
techniques below.

11.3.1 ImageObserver

When a program invokes the drawImage()method of the Graphics class, the
method returns before the image display has completed the loading and drawing
of the image. A separate thread takes over this job while your program can go on
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to do other things. However, you can arrange for the internal image machinery
to periodically call back to your program to let you know how it is doing. The
last parameter in the method drawImage() is a reference to an object that
implements the ImageObserver interface:

drawImage (Image img, int x, int y, ImageObserver io)

The image-handling process uses the ImageObserver object to allow the pro-
grammer to monitor the loading. The image-drawing process periodically invokes
the imageUpdate() method of the ImageObserver object:

public boolean imageUpdate (Image img, int infoflags,

int x, int y, int w, int h)

Conveniently, the Component class already implements ImageObserver so
we usually just put a this reference for the ImageObserver parameter in
drawImage() in our applets and applications. The image-loading process thus
calls back to the default imageUpdate() method in Component during the
image loading and drawing operations. Since the Swing JComponent base
class extends Container, which extends Component, this technique works
for Swing applications too.

You can override the imageUpdate() method with one that provides you
with status reports on the loading. The bits of the infoflags parameter indicate
the status of the loading. For the situation of loading multiple images, you can
identify which image is being updated from the first parameter. The method
imageUpdate() returns true as long as the loading is not yet finished.

The image loading techniques in the following sections are much simpler to
use so we do not say more about this approach. See the ImageObserver class
description in the Java 2 API Specifications and the constant field values for more
details about the infoflags values provided in the method’s parameters. The
Web Course Chapter 11: Supplements section includes additional information
and an example program.

11.3.2 MediaTracker

The MediaTracker class provides a simple and elegant way to monitor the
image loading. The class includes several methods to track one or more images,
to check whether the loading has finished, and to check for errors during the
loading.

The media tracker’s constructor goes as

MediaTracker (Component comp)

The constructor needs the reference to the component on which the image will
appear. So the loading of an image might go as follows:
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int image--id = 1;

img = getImage (getCodeBase (), "m20.gif");

tracker = new MediaTracker (this);

// Pass the image reference and image ID nummber.

tracker.addImage (img, image--id);

Here we pass the MediaTracker constructor a reference to the component
object and then add the image to the tracker with an ID number. We can use the
image ID to find whether a particular image (or group of images if we use the
same number for more than one image) has finished loading.

For checking on the status of an image, MediaTracker provides the method

int status (int image--id, boolean load)

If the last parameter is true, the tracker will start loading any images that are
not yet being loaded. This method returns an integer that is an OR of four flags:

1. MediaTracker.ABORTED

2. MediaTracker.COMPLETE

3. MediaTracker.ERRORED

4. MediaTracker.LOADING

The MediaTracker is especially convenient when you need to load many
images. The statusAll() method returns a similar value as above except
that it is an OR of the status of all images currently loading.

In the following snippet the run() method uses the waitForID() method
to wait for the tracker to signal that the image has loaded. (We could wait for
several images to finish loading using the waitForAll() method.) If there is
no error in the loading, the method allows the image to be painted.

public void run () {

// Wait for the image to finish loading

try {

tracker.waitForID (fImageNum);

}

catch (InterruptedException e) {}

// Check if there was a loading error

if (tracker.isErrorID (fImageNum))

fMessage= "Error";

else

fShow = true;

// Draw the image if it loaded OK

if (fShow) repaint ();

} // run
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11.3.3 ImageIcon

A convenient shortcut is to use ImageIcon to load an image. This class, which
came in version 1.2 with the javax.swing package, is nominally for obtaining
a small image to use as an icon on a button and other component. However, it can
be used to load any image file of any size. The class contains a MediaTracker
internally, so it provides a compact way to load a single image with just a couple
of lines of code:

. . .

ImageIcon img--icon = new ImageIcon (url);

Image image = img--icon.getImage ();

. . .

Here the constructor blocks until either the image is loaded or the address is
deemed invalid. In the latter case, an image icon with zero dimensions is created.
The method

int getImageLoadStatus ()

returns the MediaTracker status value to indicate whether the loading was
successful. Note that the internal MediaTracker object is a static property
used by all the ImageIcon instances.

11.3.4 Reading a BufferedImage

The javax.imageio package, which appeared in Java 1.4, includes the
ImageIO class that offers several methods for reading and writing images in
encoded formats. For example, the methods

public static BufferedImage read (File input)

public static BufferedImage read (URL input)

read an image from a given file or URL address and return it as a
BufferedImage object. If loading from a particular URL might cause a sub-
stantial delay then it would be wise to use the image-loading techniques discussed
above and then convert the Image to a BufferedImage (see Section 11.5).

As of Java 5.0 the image encodings JPEG, GIF, PNG, BMP, and WBMP
(Wireless bitmap) can be read with these methods. Implementations on some
platforms may offer additional types. The ImageIO class includes several meth-
ods to determine what file types are available. For example,

String[] format--names = ImageIO.getReaderFormatNames ();

provides a string array that would include “gif”, “jpeg”, “png”, “bmp”, and
“wbmp” types. This method

format--names = ImageIO.getReaderMIMETypes ();

returns strings in the MIME format such as “image/jpeg” and “image/png”.
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11.4 Image display

To display an image on a component, we have used the Graphics class method

boolean drawImage (Image img, int x, int y, ImageObserver io)

Here the position of the top-left corner of the image is specified by the x and
y values. The width and height of the drawn image go according to the image’s
dimensions. If this is less than the drawing area, the background color of the
component is visible in the uncovered regions. If the image is larger than the
component area, then the portion of the image outside the component won’t be
seen. The x and y values can actually be negative, in effect moving the top left
corner of the image up and/or to the left of the drawing area. In such a case, only
the region of the image within the component area will be visible.

The class contains several other overloaded versions of drawImage(). For
example, the method

boolean drawImage (Image img, int x, int y, int width, int

height, ImageObserver io)

draws the image with the top left corner at the specified origin but scales the
image such that its width and height fit the given values.

The method

boolean drawImage (Image img,

int dx1, int dy1, int dx2, int dy2,

int sx1, int sy1, int sx2, int sy2,

Color bg--color, ImageObserver io)

specifies that the rectangle between the corners sx1,sy1 and sx2,sy2 of the
source image is drawn into the rectangle between the corners dx1,dy1 and
dx2,dy2 of the destination image. The areas not covered in the destination
component are painted with the color specified by the bg-color parameter.

While not specific to images, a section of a drawing area can be copied into
other parts of the area using

void copyArea (int x, int y,

int width, int height,

int dx, int dy)

This can be used, for example, to tile an image.
You can also obtain a new Image object that represents a scaled version of an

image with the getScaledInstance() method as in

. . .

Image img = getImage (url);

Image scaled--img = getScaledInstance (width, height, hints);

Here the new image referenced by scaled-img will have the width and
height as given in the first two parameters. The type of scaling algorithm
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used depends on the third hints parameter. For example, the constant
Image.SCALE-AREA-AVERAGING indicates that averaging around each point
in the image should be used for the scaling. The Image class offers five options
for scaling (see the class specification for details).

11.5 Creating images

Images can be created in Java in several ways. We can, for example, use the
createImage() method from the Component class as in the following
snippet:

. . .

Image image = createImage (width, height);

Graphics g = image.getGraphics ();

paint (g);

. . .

Here we created an Image object and obtained its graphics context. We then
passed the context to our paint() method, which draws on the image rather
than on a component. Such an off-screen image can be used for double buffer-
ing to speed up the graphics. Rather than sending lots of individual draw oper-
ations to the display device, a frame is first drawn on the off-screen image
and then the image is sent to the display in a single operation. This saves a signif-
icant amount of time and is very useful for eliminating flickering in animations
on AWT components. Swing components, however, provide double buffering by
default.

The BufferedImage class provides a constructor in which you pass the
desired dimensions and a parameter indicating the type of object:

BufferedImage buffered--image =

new BufferedImage (width, height,

BufferedImage.TYPE--INT--RGB);

g = buffered--image.getGraphics ();

paint (g);

The overridden getGraphics() method for BufferedImage returns a
Graphics2D object typed as its superclass Graphics type and so must be
cast to Graphics2D to use its methods. This method is present for backward
compatibility. The preferred alternative is to use createGraphics(), which
explicitly returns a Graphics2D type.

The Java 2D API offers many image tools that work primarily with the
BufferedImage class. You might encounter a situation where you get anImage
object but you want to apply Java 2D operations to the image. You can obtain a
BufferedImage object from an Image object by drawing the image onto the
graphics context of the BufferedImage:

Graphics2D buf--image--graphics = buffered--image.createGraphics ();

buf--image--graphics.drawImage (image, 0, 0, null);
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Another approach to image creation is to build them directly from pixel arrays.
We discuss this approach in the image-processing sections later in this chapter.

11.6 Saving images

Although the core Java packages always provided for reading JPEG files, it wasn’t
until Java 1.4 that the core language allowed for saving images to disk files in JPEG
format. Sun previously provided the package com.sun.image.codec.jpeg
for writing to JPEG files but it belonged to the category of optional packages,
which meant that it was only available for a limited number of platforms instead
of all J2SE-compatible systems.

With Java 1.4 came the javax.imageio package and sub-packages that
allow for both reading and writing of JPEG and PNG images. With Java 5.0 came
BMP/WBMP image reading and writing. GIF files can be read but not saved. The
GIF encoder involves the patented LZW compression algorithm so GIF encoding
was not included in the standard Java packages. GIF encoders can be obtained
from third party sources. See the Web Course Chapter 11 for links to several
independent image handling packages that provide for saving images in these
and other formats.

Java image I/O includes the javax.imageio.* packages. The javax.

imageio.ImageIO class provides a number of static methods for image reading
and writing with several encoding formats. For example,

. . .

BufferedImage bi = myImageAnalysis ();

File file = new File ("c:\images\anImage.jpg");

ImageIO.write (bi, "jpeg", file);

The second parameter of write() is a string that corresponds to a supported
format. Some platforms may allow for other formats besides the standard ones.
A list of supported writer formats can be obtained with

String[] format--names = ImageIO.getWriterFormatNames ();

The javax.imageio classes also provide for more sophisticated image han-
dling such as creating plug-ins for reading and writing custom image formats.
See the Image I/O API Guide and the Java API Specifications for more about
these classes [4,5].

11.7 Image processing

By the term image processing we refer both to manipulating images and to
extracting information from them. With the tools available in Java we can manip-
ulate images with several types of high level filters such as affine transforms and
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convolutions. We can also work at the pixel level of an image and directly examine
and modify the colors that define each point in an image.

We might want to manipulate an image just to present it in some new and
interesting manner. For example, we could sharpen an image so that it is more
pleasing in appearance. In technical applications, a more common goal of image
processing is to extract some information. For example, we might use a color filter
on a photograph to look for a particular color in the field of view that indicates the
presence of a material or object of interest. An edge detection filter can greatly
simplify a complex scene so that searching for a particular shape in the image is
much easier for pattern recognition tools.

The Java 2D API brought a much expanded array of tools and techniques for
imaging processing. We can only touch upon a handful of these capabilities here.
In the remaining sections we focus primarily on the Java 2D techniques available
with BufferedImage but also look at pixel handling with the basic Image

class.

11.8 Pixel handling

An image in Java consists essentially of an array of data in which each element
describes the color of a point, or pixel, in the image. As discussed above, the
interpretation of a value in the array element is determined by a color model.
Both with Image and BufferedImage we can create images from pixel arrays
and also access and modify the pixels of existing images.

11.8.1 ARGB Pixels

Java provides for different color models but the default model is the ARGB color
model where a 32-bit integer value is packed with 8 bits for each of the three
colors (Red, Green, and Blue) and the alpha transparency factor (see Section
6.6.3). The bits are packed as in

Bits 0—7 – blue

Bits 8—15 – green

Bits 16—23 – red

Bits 24—31 – alpha

You can use bit-handling operators (see Chapter 10) to obtain the individual
component values as in the following code where the variable pixel is an int
that contains an ARGB color value:

int alpha = (pixel >> 24) & 0xff;

int red = (pixel >> 16) & 0xff;

int green = (pixel >> 8) & 0xff;

int blue = (pixel) & 0xff;



11.8 Pixel handling 375

Similarly, you can pack separate component values into an integer pixel variable:

int color = (alpha << 24) | (red << 16) | (green << 8) | blue;

The alpha, or transparency, factor is used when an image is overlaid on a back-
ground color or another image. This can be useful for various situations such
as when placing an icon on a button. For example, you may want to allow the
background color of the button to show through the blank areas of the icon.

11.8.2 PixelGrabber

The Image class does not offer direct access to its pixel array. Instead, you use the
class java.awt.image.PixelGrabber, which, as its name implies, grabs
the pixel data for you. The following code shows how to put the pixel values of
an image into an array:

. . .

int[] pixels = new int[width * height];

boolean got--pixels = false;

PixelGrabber grabber =

new PixelGrabber (img, x0, y0, width, height, pixels, 0,

scan--Width);

try {

grabber.grabPixels ();

}

catch (InterruptedException e) {

got--pixels = false;

return;

}

if ((grabber.getStatus () & ImageObserver.ALLBITS)!= 0) {

got--pixels = false;

return;

}

First an array big enough to hold the pixels is created. The first parameter of the
PixelGrabber constructor is the image reference. The pixels to be grabbed
come from a rectangular section of the image as specified by the top left corner
at (x0, y0) and by the width and height parameters. The pixel array reference
is passed in the next parameter, and the last two parameters include an offset
into the array to indicate where to begin putting the pixels (here set to 0) and the
scan--Width value, which specifies the number of pixels per row. To capture a
whole image in thepixels array, set thex0, y0 values to zero, use thewidth,
height for the image and set scan--Width equal to the image width.
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Invoking the grabPixels() method then initiates the filling of the pixel
array. This method can return before the pixel array has finished being filled. In
the snippet above, the status of the pixel filling is obtained and checked against
the ImageObserver flags (see Section 11.3).

11.8.3 The MemoryImageSource class

You can also create images from pixel arrays. The class MemoryImageSource
offers a convenient way to create images from pixel arrays and also for creat-
ing simple animations. Below we show the ImagePanel class, which gives an
example of creating an image from a pixel array whose element values are created
from a spectrum of RGB and alpha values:

import javax.swing.*;

import java.awt.*;

import java.awt.image.*;

/** Create an image from a pixel array. **/

class ImagePanel extends JPanel

{

Image fImage;

int fWidth = 0, fHeight = 0;

int[] fPixels;

/** Create image with a pixel array and

* MemoryImageSource. **/

void init () {

fWidth = getSize ().width;

fHeight = getSize ().height;

fPixels = new int [fWidth * fHeight];

int i=0;

int half--width = fWidth/2;

// Build the array of pixels with the color components.

for (int y = 0; y < fHeight; y++) {

for (int x = 0; x < fWidth; x++) {

// Start red on left and decrease to zero at center

int red = 255 — (512 * x)/fWidth;

if (red < 0) red = 0;

// Green peaks in center

int green;

if (x < half--width)

green = (512 * x)/fWidth;
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else

green = 255 — (255 * (x — half--width))/half--width;

// Blue starts from center and peaks at right side.

int blue = 0;

if (x > half--width)

blue = (255 * (x — half--width))/half--width;

int alpha = 255; // non—transparent

fPixels[i++] = (alpha << 24) | (red << 16)

| (green << 8) | blue;

}

}

// Now create the image from the pixel array.

fImage = createImage (

new MemoryImageSource (fWidth, fHeight, fPixels,

0, fWidth));

} // init

/** Paint the image on the panel. **/

public void paintComponent (Graphics g) {

super.paintComponent (g);

g.drawImage (fImage, 0, 0, this);

}

} // class ImagePanel

The MemoryImageSource can be set so that if the pixel array is modified the
image changes as well. This involves a subtle aspect of the way the Image class
works. TheMemoryImageSource implements theImageProducer interface.
The Image class obtains its pixel data from an ImageProducer rather than
simply reading an array.

To animate the display, use setAnimate() as follows:

source = new MemoryImageSource (width, height, pixels, 0,

width);

source.setAnimate (true);

image = createImage (source);

To create frames for the animation, we could use a loop in a run() method of a
threaded class as in the following code:

. . . in the run() method . . .

while (true) {

// Invoke a method in the class that

// modifies the pixels in some way

modifyPixels ();
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// Now inform the MemoryImageSource that the image has

// changed

source.newPixels ();

// Sleep between frames

try {

Thread.sleep (dt);

}

catch (InterruptedException e) {}

}

Here modifyPixels() would be a method in the program that changes the
pixel values in a desired manner. Then by invoking newPixels()the image is
repainted in each pass of the loop, thus creating an animated effect.

11.8.4 Pixel handling with the BufferedImage class

As discussed in Section 11.3, the BufferedImage class offers much more
access to and control of the image data than the Image class. Internally the
BufferedImage consists of the ColorModel, Raster, DataBuffer, and
SampleModel objects, which allow for a wide variety of image types and pack-
ing arrangements for the pixel data. However, for routine pixel handling tasks,
you don’t need to delve into the details of these classes to work with images at
the pixel level.

For example, you can easily create an image from a pixel array packed with
ARGB data (Section 11.8.1) as follows:

buffered--image =

new BufferedImage (width, height,

bufferedImage.TYPE--INT--ARGB);

buffered--image.setRGB (0, 0, width, height, pixels,

0, width);

The constructor parameters specify the dimensions of the image and the type of
image. In setRGB()the first four parameters specify the top left corner position
and the width and height of the area of the image to be filled by the pixels

array. The last two parameters give the offset into the pixel array where the
data begins and the scan size for a row of pixels (usually just set to the image
width).

Conversely, the ARGB pixel data for an image can be obtained via

int[] pixels = buffered--image.getRGB(0, 0, width, height,

array, 0, width);

This method returns an array with the ARGB data for the area of the image
specified by the first four parameters. If not null, the fifth parameter should be an
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Figure 11.2 The
GrayBufImagePanel class
creates a gray scale
BufferedImage from a
pixel array.

int array large enough to hold the pixel data. The next to last parameter specifies
the offset into the pixel array where the filling should begin and the last parameter
is again the scan size.

To deal with other types of images, a little more work must be done. The
following GrayBufImagePanel class creates a byte array with values from 0
to 255 that represent gray levels. A BufferedImage of the TYPE--BYTE--GRAY
is created. To fill it with our byte array we need to get the raster for the image and
it must be a WritableRaster type that allows us to modify the pixels. This is
obtained with

WritableRaster wr = fBufferedImage.getRaster ();

Then the pixel data is set with

wr.setDataElements (0, 0, fWidth, fHeight, fPixels);

Figure 11.2 shows the resulting image.

import javax.swing.*;

import java.awt.*;

import java.awt.image.*;

/** Create a gray scale BufferedImage from a pixel array. **/

public class GrayBufImagePanel extends JPanel

{

BufferedImage fBufferedImage;

int fWidth = 0, fHeight = 0;

byte[] fPixels;

/** Build a BufferedImage from a pixel array. **/

void makeImage () {

fWidth = getSize ().width;

fHeight = getSize ().height;

fPixels = new byte [fWidth * fHeight];

// Create an array of pixels with varying gray values

int i = 0;

int half--width = fWidth/2;
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for (int y = 0; y < fHeight; y++) {

for (int x = 0; x < fWidth; x++) {

// Peaks white in middle

int gray = (255 * x)/half--width;

if (x > half--width) gray = 510 — gray;

fPixels[i++] = (byte) gray;

}

}

// Create a BufferedIamge with the gray values in

// bytes.

fBufferedImage =

new BufferedImage (fWidth, fHeight,

BufferedImage.TYPE--BYTE--GRAY);

// Get the writable raster so that data can be changed.

WritableRaster wr = fBufferedImage.getRaster ();

// Now write the byte data to the raster

wr.setDataElements (0, 0, fWidth, fHeight, fPixels);

} // makeImage

/** Draw the image on the panel. **/

public void paintComponent (Graphics g) {

super.paintComponent (g);

if (fBufferedImage!= null)

g.drawImage (fBufferedImage, 0, 0, this);

}

} // class GrayBufImagePanel

With the BufferedImage we can also create an animation by altering the pixel
array for each frame, invoking the setRGB() method to reload the pixel data,
and then invoking repaint(). A more sophisticated approach, which more
closely resembles the MemoryImageSource animation technique, is to build
the BufferedImage with a DataBufferInt object that holds the pixels plus
a RGB ColorModel and a WritableRaster that allows direct modification
of the raster data. For each frame of the animation, you modify the pixel array and
then invoke repaint(). See the Web Course Chapter 11 for demonstrations of
these two techniques.

11.9 Filtering

The Java 2D API provides a framework for filtering, or processing, images. That
is, a source image enters a filter, the filter modifies the image data in some way,
and a new image emerges out of the filter (the original is unaffected). Several
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filter classes are included in the java.awt.image package and you can also
create your own in a straightforward manner. The filter classes implement the
java.awt.image.BufferedImageOp interface. This interface holds five
methods but the most important is

public BufferedImage filter (BufferedImage source--image,

BufferedImage dest--image)

This method acts upon but does not change the source-image and creates the
processed image. If the destination image reference (dest-image) is not null,
then the filter uses this image object to hold the processed image. If it is null,
then the filter creates a new image object and returns it as the method return
value. In some filters, but not all, the source and destination images can be the
same. (This is referred to as in-place filtering.)

The five filtering classes provided with the java.awt.image package
include:

� ConvolveOP – convolution filter that applies a given kernel operator to the image data

for edge detection, sharpening, and other effects.
� AffineTransformOp – affine transforms include translation, scaling, flipping, rota-

tion, and shearing. These map 2D structures in one space to another space while main-

taining straight lines and the parallelism of the original image.
� LookupOp – instances of LookupTable are used to map source pixels to destination

pixels according to the pixel component values (cannot be used with indexed color model

images). Provides color transformation effects such as the inversion of gray scales.
� RescaleOp – apply a scaling factor to the color components so as to brighten or dim

an image.
� ColorConvertOp – change to a different color space such as converting a color image

to a grey scale image.

In the following sections we discuss these filters in more detail. See Chapter 11
in the Web Course for demonstration programs for each filter type.

11.9.1 Convolution

The convolution filter applies a kernel operator to the 2D image matrix. The kernel
consists of a small square matrix (typically 3 × 3) that scans across the image
matrix. The kernel is centered on a pixel and each kernel element multiplies the
image pixel that it overlaps. The sum of these products for each color component
then determines the new value of the pixel at the center of the kernel. (Lower
limit on the sum is 0 and upper limit is 255 for RGB type pixels.)

For example, an edge detection kernel could consist of this 3 × 3 matrix:

0.0 −1.0 0.0 
−1.0 4.0 −1.0 

0.0 −1.0 0.0 
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A section of the data in a source image might appear as in this matrix:

1 1 1 1 1 
1 1 1 1 0 
1 1 1 0 0 
1 1 0 0 0 
1 0 0 0 0 

For the sake of simplicity, we just give the pixels values of 0 and 1, thus creating
a binary (or black and white) image. If we apply the kernel to the shaded region
in the image section as shown below, the sum of the products results in a value
of 0 in the corresponding center pixel in the destination matrix:

If we moved the kernel to the shaded area shown next, then the operation results
in a non-zero value at the center pixel:

We want to apply the kernel to the entire image matrix. However, a problem
occurs at the borders of the image because part of the kernel “hangs over” the
edge and does not provide valid product values. The convolution filter allows for
two choices: the image border values are set to 0 (EDGE-ZERO-FILL) or are left
unchanged (EDGE-NO-OP).

If we choose the zero edge fill for our edge-finding convolution, the resulting
image matrix becomes:

0 0 0 0 0 
0 0 0 2 0 
0 0 2 2 0 
0 2 2 0 0 
0 0 0 0 0 

You can see that when this kernel is applied throughout a large complex image,
the uniform areas are set to zero while borders between two areas of different
intensities become enhanced.

Other kernels offer different effects. For example, a kernel such as this:

0.0 −1.0 0.0
−1.0 6.0 −1.0

0.0 −1.0 0.0
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Figure 11.3 Edge
detection convolution
applied on the left image
produces the image on
the right.

enhances the edge regions but does not zero out the uniform regions, thus giving
a sharpening effect.

To create an edge detection instance of the ConvoleOp class, we can use code
like the following:

float edge-mat = {0.0, -1.0, 0.0,

-1.0, 4.0, -1.0,

0.0, -1.0, 0.0};

ConvoleOp edge-finder-op =

new ConvoleOp (new Kernel(3,3,edge-mat),

ConvoleOp.EDGE-NO-OP, null);

(The last parameter is for an optional RenderingHints object that you can
use to adjust the color conversion.) We can then apply this convolution tool to an
image with

BufferedImage edge-img = edge-finder-op.filter (an-image,

null);

The ConvoleOp class requires that the source and destination objects be differ-
ent BufferedImage objects. Figure 11.3 shows an example of applying this
convolution to an image.

11.9.2 Affine transforms

The affine transform filters map 2D structures in one space to another space
while maintaining the straight lines and parallelism in the original image. (We
discussed these transforms in Section 6.8 with regard to Java 2D drawing.)
The operations include translation, scaling, flipping, rotation, and shearing. An
AffineTransformOp object uses an instance of AffineTransform to apply
the transform to a source image to create a new destination image (which must
be different BufferedImage objects).
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For example, the following code shows how to apply a shearing operation to
an image:

AffineTransform shearer = AffineTransform.getShearInstance

(0.4, 0.0);

AffineTransFormOp shear-op = new AffineTransformOp

(shearer, interpolation);

BufferedImage dest-img = shear-op.filter (source-img, null);

Each point in the source image at (x,y) moves to (x + 0.4y, y) in the desti-
nation image.

After an affine transform, a single pixel in a destination image usually does not
correspond directly to a single pixel in the source (i.e. it is split among two or more
destination pixels). So the transforms require an algorithm to determine the colors
of the destination pixels. The interpolation setting allows you to choose between
a nearest neighbor algorithm and a bilinear interpolation algorithm. The nearest
neighbor technique applies the color of the nearest transformed source pixel to the
destination pixel. The bilinear interpolation instead uses a combination of colors
from a set of transformed source pixels around the position of the destination
pixel. (A bicubic option was added with J2SE 5.0.)

Note that these transforms can result in cutting off some parts of the source
image that extend past the borders of the destination image. Also, some opera-
tions, such as a rotation, can leave some areas with zero color values (resulting
in black for RGB images and transparent black for ARGB) where no image data
remains.

11.9.3 Lookup tables

Lookup tables provide a very flexible approach to transforming the colors of an
image. One can use a lookup table filter, for example, to create a negative of
the source image. The LookupOp filter uses an instance of LookupTable (or,
actually, one of its two subclasses) to map source pixels to destination pixels
according to the source pixel component values. Note that this filter cannot be
used with indexed color model images (defined in Section 11.2).

For example, the eight bits of the red component for an RGB pixel would need
a table of up to 256 elements, each holding a value for the corresponding red
component in the destination pixel. You can provide one table used by all three
components or separate tables for each (four tables for ARGB pixels).

There are two subclasses of the abstract LookupTable. The ByteLookup-
Table and the ShortLookupTable essentially offer the same features except
for the type of arrays. Each provides a constructor for creating a single table for
all color components and a constructor for creating multiple tables, one for each
color component.
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The following snippet shows how to create a table that selects only colors
above a given threshold:

short[] threshold = new short[256];

for (int i = threshold-level; i < 256; i++)

threshold[i] = (short) i;

LookupTable threshold-table = new ShortLookupTable (0,

threshold);

LookupOp threshold-op = new LookupOp (threshold-table,

null);

BufferedImage dest-image = threshold-op.filter

(source-image, null);

To invert the colors you could create an array of size 256 and fill the first element
with the value 256 and then decrease each subsequent element by one until the
value reaches 0 in the last element.

If we want to apply the above threshold filter to only the red component and
leave the other components unchanged, we create a two-dimensional array to
hold the threshold array plus an identity array that leaves the other components
unchanged:

short[] identity = new short[256];

for (int i = 0; i < 256; i++) identity[i] = (short) i;

short[][] red-threshold = {threshold, identity, identity};

LookupTable red-threshold-table = new ShortLookupTable (0,

red-threshold);

LookupOp red-threshold-op = new LookupOp

(red-threshold-table, null);

BufferedImage dest-image = red-threshold-op.filter

(source-image, null);

There are obviously many such lookup table transforms you can create. Note that
in-place filtering can be done with the LookupOp filter.

11.9.4 Rescaling

The RescaleOp filter applies a scaling factor and an offset to each color com-
ponent so as to brighten or dim an image:

dest-color = source-color * scale-factor + offset;

You could do this also with a lookup table but you need less code with this filter.
For example,

RescaleOp brighten-op = new RescaleOp (2.0f, 32f, null);

BufferedImage dest-image = brighten-op.filter

(source-image, null);

Here each color component of each pixel is multiplied by 2.0 and then added to
32. If the value exceeds the maximum for that component, the maximum is used.



386 Image handling and processing

11.9.5 Color conversion

The ColorConvertOp filter changes an image from one color space to another.
A common requirement in image processing is to change to gray scale:

ColorSpace gray-space =

ColorSpace.getInstance (ColorSpace.CS-GRAY);

ColorConvertOp convert-to-gray-op = new ColorConvertOp

(gray-space, null);

BufferedImage gray-img = convert-to-gray-op.filter

(source-image, null);

The java.awt.color.ColorSpace class offers a number of options includ-
ing TYPE-CMYK and TYPE-HSV.

11.9.6 Custom filters

You can implement the BufferedImageOp interface to create your own custom
filters. In addition to the filter() method, there are four other methods in the
interface that must be implemented. The followingRotateOp example illustrates
the basics of creating a filter. (See the book by Knudsen [1] and the other references
[2,3] for more details about creating filters.)

The filter() method offers the option of using an existing
BufferedImage object passed via the second parameter to receive the out-
put of the filter. If this reference is null, a BufferedImage must be created and
it must possess the same dimensions as the source image and also have a simi-
lar raster and color model. The createCompatible DestImage() method
does this job of making a suitable destination image. For the BufferedImage
constructor it uses a color model either passed as a parameter or from the source.
It also gets a raster suitable for this color model and it checks to see if the alpha
transparency factor pre-multiplies the color components.

The getBounds2D() method returns the bounds object obtained from the
source image. The getPoint2D() method, which asks for the point in the
destination image that corresponds to the given point in the source image, just
returns the same point as in the source image since in this filter the dimensions
are unchanged. There are no RenderingHints provided for displaying the
filter output image.

import javax.swing.*;

import java.awt.*;

import java.awt.image.*;

import java.awt.geom.*;

/** Shift the color components with the filter. **/

public class RotateOp implements BufferedImageOp {
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public final BufferedImage filter (BufferedImage source-img,

BufferedImage dest-img) {

// If no destination image provided, make one of same

// form as source

if (dest-img == null)

dest-img = createCompatibleDestImage

(source-img, null);

int width = source-img.getWidth ();

int height= source-img.getHeight ();

for (int y=0; y < height; y++) {

for (int x=0; x < width; x++) {

int pixel = source-img.getRGB (x,y);

// Get the component colors

int red = (pixel >> 16) & 0xff;

int green = (pixel >> 8) & 0xff;

int blue = pixel & 0xff;

// Rotate the values

int tmp = blue;

blue = green;

green = red;

red = tmp;

// Put new value into corresponding pixel of

// destination image;

pixel = (255 << 24) | (red << 16) | (green << 8) |
blue;

dest-img.setRGB (x,y,pixel);

}

}

return dest-img;

} // filter

/**

* Create a destination image if needed. Must be same

* width as source and will by default use the same

* color model. Otherwise, it will use the one passed

* to it.

*/

public BufferedImage createCompatibleDestImage (

BufferedImage source-img,

ColorModel dest-color-model

){
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// If no color model passed, use the same as in source

if (dest-color-model == null)

dest-color-model = source-img.getColorModel ();

int width = source-img.getWidth ();

int height= source-img.getHeight ();

// Create a new image with this color model & raster.

// Check if the color components are already

// multiplied by the alpha factor.

return new BufferedImage (

dest-color-model,

dest-color-model.createCompatibleWritableRaster

(width,height),

dest-color-model.isAlphaPremultiplied (),

Null

);

} // createCompatibleDestImage

/** Use the source image for the destination bounds

* size. **/

public final Rectangle2D getBounds2D (BufferedImage

source-img) {

return source-img.getRaster ().getBounds ();

}

/** Point in source corresponds to same point in

* destination. **/

public final Point2D getPoint2D (Point2D source-point,

Point2D dest-point) {

if (dest-point == null) dest-point =

new Point2D.Float ();

dest-point.setLocation (source-point.getX (),

source-point.getY ());

return dest-point;

}

/** This filter doesn’t provide any rendering hints. **/

public final RenderingHints getRenderingHints () {

return null;

}

} // class RotateOp
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11.10 Web Course materials

The Web Course Chapter 11: Java section provides demonstration applets and
applications of the image classes and techniques discussed here. The Supple-
ments section gives an overview of the Java Advanced Imaging (JAI) API [6]. JAI
offers many additional tools for imaging processing and I/O beyond those dis-
cussed in this chapter. JAI is a Sun Microsystems product and is not part of the
core Java language distribution. However, it is available for Windows, Linux, and
Solaris platforms.

The Tech section looks further at image-processing techniques and explores
some image-making examples such as fractal animations. The Physics section
continues with development of experimental simulations and data analysis tools
with Java.
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Chapter 12
More techniques and tips

12.1 Introduction

In Part I of this book and Web Course we tried to provide an introduction to the
essential elements of the Java language that allow you to begin creating useful
programs in short order. In this chapter we discuss several practical techniques
that will expand the capabilities of your programs. We begin with a discussion
of how to print your graphics displays and then discuss several user interface
features such as cursor icons and popup menus, handling keystrokes, and audio.
We also review various ways to improve the speed of Java programs.

12.2 Printing

Java 1.1 provided the capability to print what is displayed on a Java component
[1]. Java 1.2 added Java 2D, which expanded the print capabilities to support
greater control over multiple page printing and other features. (We should point
out that printing only works with applications since the SecurityManager in
browser JVMs blocks printing from applets.)

In Java graphics the usual job of thepaint()method in AWT and thepaint-
Component() method in Swing is to send drawing commands to the monitor
screen. Java printing simply entails sending drawing commands to the printer
instead of the monitor screen. In rendering Java components, we have seen that a
Graphics context object is passed to the paint() and paintComponent()
methods. To render to the printer, you obtain an instance of PrintGraphics,
which is a subclass of Graphics, and pass it to the paint() or paint-
Component() method. The graphics context drawing commands then work as
usual except that the drawing will be on the printer paper rather than on the
screen.

Figure 12.1 shows the user interface for the program PrintTestApp, which
displays an image in the frame and holds a menu bar with a dropdown menu to
select whether to print or quit the program. The following code snippet from the
program shows the steps needed to obtain the print dialog from the host system

390
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Figure 12.1 Display for
the PrintTestApp

program.

and then perform the printing:

. . .

public class PrintTestApp extends JFrame

implements ActionListener {

. . .

/** Execute the menu events here. **/

public void actionPerformed (ActionEvent e) {

String command = e.getActionCommand ();

if (command.equals ("Quit")) {

dispose ();

System.exit (0);

} else if (command.equals ("Print")) {

print ();

}

}

/** Do the print setup up here. **/

public void print () {

PrintJob pjb =

getToolkit ().getPrintJob (this, "Print Test", null);

if (pjb!= null) {

Graphics pg = pjob.getGraphics ();

if (pg!= null) {

paint (pg); // Paint all components on this frame.

// flush page when finished

pg.dispose ();

}

pjob.end ();

}

} // print

. . .
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First the program invokes the method

PrintJob getPrintJob (Frame frame, String title, Properties

props)

from the AWT toolkit. This displays the system print dialog on the screen. The first
parameter in getPrintJob() references the frame to which the print dialog
belongs. The title string, which appears on the top bar of the print dialog, comes
next. The last parameter is a reference to a Properties object, which we set
to null in this example. The properties were never standardized so they are not
portable. With Java 1.3 came the overloaded method

PrintJob getPrintJob (Frame f, String t, JobAttributes

jA, PageAttributes pA)

Here the parameters include instances of the JobAttributes and PageAt-

tributes classes. These classes provide methods to set a wide range of printer
control parameters such as the number of copies, the page ranges, paper size,
orientation, and so forth.

The standard printer dialog for the local platform appears after the invocation
of the getPrintJob() method. The returned PrintJob object provides an
instance of PrintGraphics via the getGraphics() method. This object,
which is a subclass of Graphics, is then passed to the paint() or paint-
Component()method, which proceeds to paint the frame display for the printer
output.

As discussed in Section 6.6.2, a ratio of 72 user units to 1 inch is maintained for
drawing commands regardless of the printer’s resolution setting. If there are sub-
components on the frame, such as buttons and labels, these also paint themselves
to the printer.

12.3 Cursor icons

It can be useful when designing a user interface to alter the appearance of the
cursor according to the current position and/or processing going on. The AWT
has the Cursor class that comes with 14 different cursor icons. The Component
class includes the setCursor() method that can change the cursor icon when
it lies above a particular component.

In the following code snippet we show the classCursorPanel, which extends
JPanel. On the panel we add a 7 × 2 grid of buttons and for each button we
use the setCursor() method to set to an instance of a Cursor class. The
particular type of cursor depends on the value of the constant in that class such
as Cursor.WAIT--CURSOR passed in the Cursor constructor. See the applet
CursorTestApplet in the Web Course Chapter 12 for a demonstration of this
panel.
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/** Demonstrate the different cursor styles. **/

class CursorPanel extends JPanel

{

CursorPanel() {

setLayout (new GridLayout (7,2));

JButton bt = new JButton ("Default");

bt.setCursor (new Cursor (Cursor.DEFAULT--CURSOR));

add (bt);

bt = new JButton ("Busy");

bt.setCursor (new Cursor (Cursor.WAIT--CURSOR));

add (bt);

bt = new JButton ("Hand");

bt.setCursor (new Cursor (Cursor.HAND--CURSOR));

add (bt);

bt = new JButton ("Text");

bt.setCursor (new Cursor (Cursor.TEXT--CURSOR));

add (bt);

bt = new JButton ("CrossHair");

bt.setCursor (new Cursor (Cursor.CROSSHAIR--CURSOR));

add (bt);

bt = new JButton ("Move");

bt.setCursor (new Cursor (Cursor.MOVE--CURSOR));

add (bt);

bt = new JButton ("East Resize");

bt.setCursor (new Cursor (Cursor.E--RESIZE--CURSOR));

add (bt);

bt = new JButton ("North Resize");

bt.setCursor (new Cursor (Cursor.N--RESIZE--CURSOR));

add (bt);

bt = new JButton ("West Resize");

bt.setCursor (new Cursor (Cursor.W--RESIZE--CURSOR));

add (bt);

bt = new JButton ("South Resize");

bt.setCursor (new Cursor (Cursor.S--RESIZE--CURSOR));

add (bt);
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bt = new JButton ("NorthEast Resize");

bt.setCursor (new Cursor (Cursor.NE--RESIZE--CURSOR));

add (bt);

bt = new JButton ("NorthWest Resize");

bt.setCursor (new Cursor (Cursor.NW--RESIZE--CURSOR));

add (bt);

bt = new JButton ("SouthWest Resize");

bt.setCursor (new Cursor (Cursor.SW--RESIZE--CURSOR));

add (bt);

bt = new JButton ("SouthEast Resize");

bt.setCursor (new Cursor (Cursor.SE--RESIZE--CURSOR));

add (bt);

} // ctor

} // class CursorPanel

With Java 1.2 came the capability to create your own custom cursor icons. The
method

Cursor createCustomCursor (Image cursor, Point hotSpot,

String name)

in the java.awt.Toolkit class includes an image for the cursor in the param-
eter list. The second parameter specifies the so-called hotspot that sets the pixel’s
(x, y) coordinates relative to the top-left corner of the image where the click
occurs. (For example, the hotspot would specify the tip of an arrow cursor.) The
last parameter provides the name of the cursor for the Java Accessibility system
to use. (The Accessibility framework, not discussed here, provides enhancements
to the GUI to assist handicapped users.)

12.4 Mouse buttons

In Chapter 7 we discussed mouse events that are produced by actions such as
clicking on the primary mouse button. This is usually the left button for a two- or
three-button mouse. You can detect clicks on the right mouse button, or its equiv-
alent, on either a one-, two- or three-button mouse with the getModifiers()
method of the MouseEvent class (inherited from the Event class). This code
snippet illustrates the technique:

public void mouseClicked (MouseEvent e) {

if (g.getModifiers () & InputEvent.BUTTON3--MASK)!= 0)

doSomething ();

. . .
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The constant BUTTON3--MASK from the InputEvent class provides a bit mask
with which to identify whether the third mouse button generated the event. Sim-
ilarly, other buttons and button key combinations can be identified with these
masks:

BUTTON1--MASK

BUTTON2--MASK

ALT--MASK

META--MASK

The latter two constants are used to determine if the keyboard ALT or META keys
were held down during the mouse click event. (Not all keyboards have META

keys.) The following code snippet shows a JPanel subclass from the applet
named MouseButtonsApplet. An instance of a MouseAdapter subclass
created via the inner class technique is added to the panel’s MouseListener
list. The adapter’smouseClicked()method usesgetModifiers() to obtain
the identity of the buttons that initiated the click and sends a message to a text
area accordingly.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class MouseButtonsApplet extends JApplet

{

. . . Code to add a MouseButtonPanel instance to the applet . . .

}

class MouseButtonPanel extends JPanel

{

JTextArea fTextArea;

/** Build the panel interface and a mouse listener. **/

MouseButtonPanel () {

setLayout (new GridLayout (2,1));

JPanel canvas = new JPanel ();

add (canvas);

canvas.setBackground (Color.red);

fTextArea = new JTextArea ();

fTextArea.setEditable (false);

// Add to a scroll pane so that a long list of keyinputs can be seen.

JScrollPane area--scroll--pane = new JScrollPane (fTextArea);

add (area--scroll--pane);
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canvas.addMouseListener (

new MouseAdapter () {

public void mouseClicked (MouseEvent e) {

if ((e.getModifiers () & InputEvent.BUTTON1--MASK)!= 0)

saySomething ("Left button pressed", e);

if ((e.getModifiers () & InputEvent.BUTTON2--MASK)!= 0)

saySomething ("Middle button pressed",e);

if ((e.getModifiers () & InputEvent.BUTTON3--MASK)!= 0)

saySomething ("Right button3 pressed",e);

if ((e.getModifiers () & InputEvent.ALT--MASK)!= 0)

saySomething ("alt pressed",e);

if ((e.getModifiers () & InputEvent.META--MASK)!= 0)

saySomething ("meta pressed",e);

} // mouseClicked

} // end anonymous class

); // end method call

} // ctor

/** Indicate what mouse event occurred. **/

void saySomething (String eventDescription, MouseEvent e) {

fTextArea.append (eventDescription + " on " +

e.getComponent ().getClass ().getName () + "\n");

}

} // class MouseButtonPanel

12.5 Popup menu

On all common graphical user interfaces a particular mouse button or combination
of a mouse button and key strokes (such as CTRL or ALT keys) brings up a popup
menu. A popup menu is a dialog window that appears close to the cursor and
that typically lists a set of operations related to what you clicked on (such as cut,
copy, insert, paste in an editor).

To provide for platform portability, the AWT provides the isPopup-

Trigger()method in the MouseEvent class. This method returns a boolean
value to indicate if the standard button/key combination for a popup menu on a
particular platform was present during a mouse click event. You therefore don’t
need to test for the buttons or button/keystroke combinations yourself and, more
importantly, you don’t need to know and build in test code for all possible plat-
forms to detect a popup menu request.
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Figure 12.2 The
PopupApplet program
demonstrates the
JPopupMenu component.
The user moves the
cursor over the top or
bottom panel and
executes the popup menu
procedure appropriate for
the platform, such as
clicking on the right
button of a two button
mouse on a MS Windows
system. The color of the
panel will be set
according to the menu
item selected.

The demonstration applet PopupApplet shown below illustrates the creation
of a popup menu (see Figure 12.2). Here the menu provides color options for the
background of the component on which the menu was requested. The program
also illustrates the use of an inner class for this kind of task.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** Demonstration of popup menus. **/

public class PopupApplet extends JApplet

{

/** Create a simple interface with two panels. **/

public void init () {

Container content--pane = getContentPane ();

PopupPanel popup--panel = new PopupPanel ();

// Add the panel that will display the popup menu

content--pane.add (popup--panel);

}

} // class PopupApplet

/** Popup menu offers choices for colors of 2 subpanels. **/

class PopupPanel extends JPanel

implements ActionListener

{

MouseAdapter fAdapter;

JPopupMenu fColorMenu;

Component fSelectedComponent;

Component fParent;

/** Constructor creates an interface with two panels.

* A PopupMenu will offer a choice of colors for the

* panels. **/

PopupPanel () {

setLayout (new GridLayout (2,1));

JPanel canvas1 = new JPanel ();

canvas1.setBackground (Color.RED);

add (canvas1);

JPanel canvas2 = new JPanel ();

canvas2.setBackground (Color.GREEN);

add (canvas2);
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// Create the popup menu

makePopup ();

// Add the MouseAdapter that opens the popup.

canvas1.addMouseListener (fAdapter);

canvas2.addMouseListener (fAdapter);

} // ctor

/** Create the popup menu and a MouseAdapter that opens

* it when right button (or equivalent) is clicked.

**/

void makePopup () {

fColorMenu = new JPopupMenu ("Color");

fColorMenu.add (makeMenuItem ("Red"));

fColorMenu.add (makeMenuItem ("Green"));

fColorMenu.add (makeMenuItem ("Blue"));

// Create a MouseAdapter that creates a Popup menu

// when the right mouse or equivalent button clicked.

fAdapter = new MouseAdapter () {

// On some platforms, mouseReleased sets

// PopupTrigger.

public void mouseReleased (MouseEvent e) {

if (e.isPopupTrigger ()) {

showPopupMenu (e);

}

}

// And on other platforms, mousePressed sets

// PopupTrigger.

public void mousePressed (MouseEvent e) {

if (e.isPopupTrigger ()) {

showPopupMenu (e);

}

}

// Get the component over which the right button

// click occurred and show the menu there.

public void showPopupMenu (MouseEvent e) {

fSelectedComponent = e.getComponent ();

fColorMenu.show (fSelectedComponent,

e.getX (), e.getY ());

}

}; // anonymous MouseAdapter subclass
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} // makePopup

/** Change background color of selected components. **/

public void actionPerformed (ActionEvent e) {

String color = e.getActionCommand ();

if (color.equals ("Red"))

fSelectedComponent.setBackground (Color.red);

else if(color.equals ("Green"))

fSelectedComponent.setBackground (Color.green);

else if (color.equals ("Blue"))

fSelectedComponent.setBackground (Color.blue);

else

setBackground (Color.white);

} // actionPerformed

/** A utility method for making menu items. **/

private JMenuItem makeMenuItem (String label) {

JMenuItem item = new JMenuItem (label);

item.addActionListener (this);

return item;

}

} // class PopupPanel

The applet’s interface consists of an instance of a subclass of JPanel called
PopupPanel to which two subpanels are added. An instance of a Mouse-

Adapter subclass, using the anonymous inner class technique, is created and
added to the MouseListener list of both panels. Mouse clicks therefore go to
the adapter, which looks for the popup menu request. If detected, then an instance
of JPopupMenu with the color menu items is displayed. (Systems differ as to
whether the popup signal is generated on a mouse button press or release so
both are tested here.) When the user selects an item in the popup menu list,
the actionPerformed() method is invoked and the background color is set
according to which menu item was selected and over which panel.

Note that you don’t necessarily need to use a JPopupMenu object in response
to an affirmativeisPopupTrigger() response. You could always open a dialog
window instead. For example, you could create a popup dialog for aJTextField
to allow the user to enter a new value for some parameter that you clicked on.

12.6 Handling keystrokes

Just as you can catch mouse button clicks, you can also identify which key the user
struck. A class that implements the KeyListener interface must provide the
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Figure 12.3 For the
KeyTestApplet

demonstration, when the
top panel has the focus,
keystrokes are captured
and reported on the text
area.

keyTyped (KeyEvent e) method. An instance of this KeyListener can
then be added to the list of such listeners maintained by a Component subclass.
When a key press occurs, the component invokes the keyTyped() method of
all the listeners in its list. From the KeyEvent object you can then obtain the
identity of the key pressed by the user:

public void keyTyped (KeyEvent e) {

saySomething ("got " + e.getKeyChar (), e);

}

The KeyEvent object provides the key character via the getKeyChar()

method.
The exampleKeyTestApplet holds an instance of aJPanel subclass called

KeyTestPanel, which in turn holds a subpanel and a JTextArea. We add an
instance of a KeyAdapter to the subpanel’s list of KeyListener objects. The
subpanel is made focusable so that it can receive the key events. (When the applet
runs, you should click on it and hit “tab” to put the focus on the subpanel.) The
adapter sends each KeyEvent object to the keyTyped() method whenever the
user presses a key (see Figure 12.3).

. . . Code in KeyTestApplet to display a KeyTestPanel

object . . .

/** A JPanel class that detects key strokes on one subpanel

* and displays messages about them in a text area. **/

class KeyTestPanel extends JPanel

{

JTextArea fTextArea;

/** Create an interface with a text area and a blank panel.

* Key strokes while the panel has focus will be detected
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* and a message printed in the text area.

**/

KeyTestPanel () {

setLayout (new GridLayout (2,1));

JPanel canvas = new JPanel ();

add (canvas, BorderLayout.NORTH);

canvas.setBackground (Color.YELLOW);

fTextArea = new JTextArea ();

fTextArea.setEditable (false);

// Add to a scroll pane so that a long list of

// keyinputs can be seen.

JScrollPane area--scroll--pane = new JScrollPane

(fTextArea);

add (area--scroll--pane, BorderLayout.CENTER);

// Add to the panel an anonymous KeyAdapter that will

// respond to key strokes.

canvas.addKeyListener (

new KeyAdapter () {

public void keyTyped (KeyEvent e) {

saySomething ("got " + e.getKeyChar (), e);

}

} // end anonymous class

); // end method call

// Let the canvas panel get the focus.

canvas.setFocusable (true);

} // ctor

/** Display a message in text area about the key

event. **/

void saySomething (String eventDescription, KeyEvent e) {

fTextArea.append (eventDescription + " on "

+ e.getComponent ().getClass ().getName ()

+ "\n");

}

} // class KeyTestPanel

The KeyListener interface also has the keyPressed(), keyReleased(),
and keyTyped()methods that fire a KeyEventwhen a key is pressed, released,
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and “typed,” respectively. Key presses and releases are low level events that
depend on the keyboard and platform in use. Key “typed” events are higher level
events that occur when a typing action is complete and are the preferred way to
find out about character input. Combinations of keys can be detected by testing
the key code. The KeyEvent class provides the codes as constants. For exam-
ple, this code snippet tests if the left arrow and shift keys were simultaneously
pressed:

public void keyPressed (KeyEvent e) {

int keyCode = e.getKeyCode ();

if (keyCode == VK--LEFT && e.isShiftDown ()) {

. . .

The KeyEvent class provides several other useful methods such as the
isShiftDown() method used above and isActionKey() which indicates
whether the event was triggered by one of the action keys such as HOME, END,
etc. See the KeyListener and KeyEvent class descriptions for more informa-
tion on using key data.

12.7 Audio

In the early versions of Java the audio capabilities in the core language were
extremely limited. Only 8 kHz au type files could be played. With version 1.2, it
became possible to play 22 KHz, 16-bit stereo in the following formats:

� AIFF
� AU
� WAV
� MIDI
� RMF

The new sound engine is a part of the core library. A full featured Java
Sound API became available as well in Java 1.3. This includes the packages
javax.sound.midi and javax.sound.sampled. These advanced audio
capabilities are beyond the scope of this book so we only look at the simple
playing of sound clips [2–5].

While audio may have limited applications for scientific programs, they can
be useful for such things as warnings and alarms. The AudioClip interface has
three methods to implement:

� play ()
� loop ()
� stop ()
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The applet method

Applet.getAudioClip (URL url)

returns an instance of an AudioClip object – i.e. an object that implements the
AudioClip interface. See the discussion in Section 6.9 on obtaining image files
for information on using the getResources() method in the Class class for
accessing audio files in a JAR file.

The following applet shows the basics of playing a sound clip. The loop()
method continuously repeats the clip.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/** Demonstrate playing an audio clip. **/

public class AudioTestApplet extends JApplet

{

public void init () {

Container content--pane = getContentPane ();

// Create an instance of a JPanel sub-class

AudioPanel audio--panel =

new AudioPanel (getClip (false));

//And add one or more panels to the JApplet panel.

content--pane.add (audio--panel);

} // init

AudioClip getClip (boolean file--in--jar) {

if (file--in--jar) {

// Use getResource () to search directory or a

// jar file.

return (getAudioClip (

getClass ().getResource (

getParameter ("AudioClip"))));

}

else {

// Read audio file from the code directory

return (getAudioClip (

getCodeBase (), getParameter

("AudioClip")));

}

} // getClip

} // class AudioTestApplet
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/** Panel with a button to play/stop a clip in loop

* mode. **/

class AudioPanel extends JPanel implements ActionListener

{

AudioClip fAudioClip;

JButton fButton;

boolean fPlay = false;

/** Constructor gets the clip and makes a button for the

* panel. **/

AudioPanel (AudioClip audio--clip) {

fAudioClip = audio--clip;

fButton = new JButton ("Play Clip");

fButton.addActionListener (this);

add (fButton);

} // ctor

/** Button will start/stop the clip playing. **/

public void actionPerformed (ActionEvent e) {

if (fAudioClip!= null) {

if (!fPlay) {

fButton.setText ("Stop clip");

fAudioClip.loop ();

fPlay = true;

}

else {

fButton.setText ("Play clip");

fAudioClip.stop ();

fPlay = false;

}

}

} // actionPerformed

} // class AudioPanel

12.8 Performance and timing

Reducing the execution time in a Java program can be a very important part
of making it a useful tool, especially if the program must execute extensive
computations like those needed for a complicated mathematical algorithm or an
animation of a complex scene. There are various profiler tools available that give
detailed information on the time taken by various parts of a program, particularly
for method calls. The Sun J2SE java program, in fact, includes the options
-Xprof and -Xrunhprof to produce time profiles. We discuss here a more
basic but often effective approach. (See the Web Course Chapter 12 for more
information about profilers.)
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There are some optimization steps that you can make to improve the per-
formance of your programs. For example, if you are sure that you will not be
overriding a method then you should you use the modifier final. The compiler
can then inline the method and the interpreter will not have to search for possible
overriding methods. Inline puts the program code directly in the execution flow
and therefore avoids jumping to and from another section of memory.

When you are unsure about the relative speed of different coding techniques,
you can test them with the static method System.currentTimeMillis().
This method returns a long value equal to the number of milliseconds since a
standard date in 1970. That number in itself is of little value, but the difference
between two millisecond time readings can be meaningful. Thus, you can bracket
a code section of interest with this method and find the difference in milliseconds
to get an idea of how long that section of code takes to run.

Note that on today’s high-performance machines, you often need to loop
over an operation a large number of times to produce a time in the millisec-
ond range. Such a timing measurement has come to be known as a microbench-
mark and is fraught with difficulties for a variety of reasons, including just-in-
time and dynamic compilation techniques, compilation warm-up periods, the
use of separate compile threads, background compilation, compiler optimiza-
tions, dead code removal, and others. Nevertheless, many people still rely on
System.currentTimeMillis() to measure execution time differences. We
explain here how that is normally done and attempt to ameliorate many of the
concerns that make microbenchmarks untrustworthy.

With multiprocessing happening in the operating system and multithreading in
the JVM, the measured times will vary from run to run, so a statistical average is
more meaningful than a single run. It is wise to unload any unnecessary programs
that might steal time slices away from the program you are testing.

As an example, consider the java.util.Vector class we discussed in
Chapter 10. It is often very useful compared to a regular fixed-length array because
of Vector’s ability to remove and add elements. However, in situations where
high performance is required, you may find that an array is preferable because
Vector offers noticeably slower performance than an array. One reason that
Vector is slow is because it is synchronized for thread safety. An alternative
that can be used in most situations is the ArrayList class which does not have
the synchronization overhead. In the test code below we compare timings of
object arrays, Vectors, and ArrayList objects. For consistency, we populate
each with Integer objects.

In the main() method shown below in the class TimeTest, we read in
some command line parameters and then call doTests() several times. Inside
doTests() we call four methods that test fetching Integer objects from four
different container types – Vector, ArrayList, regular object arrays, and
an ArrayList<Integer> collection object that takes advantage of the new
generics feature in Java 5.0 (see Chapter 10). If you want to run this code on a
pre-5.0 Java system, you’ll need to comment out the generics version.



406 More techniques and tips

import java.util.*;

public class TimeTest

{

private int fWarmup, fNum, fOuter, fSleep;

public TimeTest (int warmup, int sleep, int num, int outer) {

fWarmup = warmup;

fSleep = sleep;

fNum = num;

fOuter = outer;

} // ctor

public static void main (String[] args) {

int warmup=0, sleep=0, num=0, outer=0, total=0;

if (args.length == 5) {

warmup = Integer.parseInt (args[0]);

sleep = Integer.parseInt (args[1]);

num = Integer.parseInt (args[2]);

outer = Integer.parseInt (args[3]);

total = Integer.parseInt (args[4]);

System.out.println ("Testing with warmup = " +

warmup + ", sleep = " + sleep + ", num = " + num +

", outer = " + outer + ", total = " + total);

}

else {

System.err.println ("Usage: java TimeTest warmup " +

"sleep loop outer total");

System.exit (1);

}

System.out.println ("V\tAL\tAL<I>\tarray");

TimeTest tt = new TimeTest (warmup, sleep, num, outer);

for (int i = 0; i < total; i++) {

tt.doTests ();

}

} // main

public void doTests () {

long vectime = testv ();

long arlisttime = testal ();

long alitime = testali ();

long arraytime = testa ();
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System.out.println (vectime + "\t" + arlisttime +

"\t" + alitime + "\t" + arraytime);

} // doTests

. . .

The testv() method appears below. The others are similar and appear in the
Web Course material. In each case, the fetches from the containers are in a loop
in order to make the total time large enough to measure. We have to do something
with the Integer objects fetched from the containers or else the compiler will
notice that nothing is changing inside the loop and remove the loop altogether. So
for our timing loop we first cast the Object type retrieved from the container to
an Integer and then we accumulate a total sum of all the values after converting
from Integer type to int type using the intValue() method on Integer.

public long testv () {

// Create Vector and fill elements with Integer objects

Vector vec = new Vector (fNum);

for (int i=0; i < fNum; i++) {

vec.add (new Integer (i));

}

// Now test access times by looping through the Vector

// to access each Integer element.

// First warmup the hotspot compiler.

long sum = 0;

for (int i = 0; i < fWarmup; i++) {

sum += ((Integer)(vec.elementAt (i))).intValue ();

}

// And give it time to finish the JIT compile

// in the background.

if (fSleep > 0)

try {Thread.sleep (fSleep);

} catch (InterruptedException e) {}

// Then do the loop for real and time it.

long t1 = System.currentTimeMillis ();

for (int j = 0; j < fOuter; j++) {

for (int i = 0; i < fNum; i++) {

sum += ((Integer)(vec.elementAt (i))).intValue ();

}

}

long t2 = System.currentTimeMillis ();
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long elapsed = t2 - t1;

vec.clear ();

vec = null;

System.gc ();

return elapsed;

} // testv

In this method we first populate a Vectorwith Integer objects. Then we begin
to fetch from the Vector and accumulate the sum. In order to allow the Hotspot
compiler time to warm up, we first perform a short summation loop without
timing. The number of warm-up loops is specified by one of the command line
parameters. After warming up we sleep a short while. The purpose of the sleep is
to relinquish the processor so that the Hotspot compiler can finish a background
compile of the loop if needed.

Finally we begin the timing loop by calling System.currentTime-

Millis(), followed by the loop itself (actually an inner and outer loop) and
then another call to System.currentTimeMillis() so we can calculate
the elapsed time. We then clear the Vector, set the reference to null, and
request garbage collection (System.gc ()). The elapsed time is returned to
doTests() where it is printed to the console.

The command-line parameters adjust the number of warm-up loops, the sleep
time, the number of inner and outer loops to be timed, and the total number of
times to run the tests. If you download this code you can experiment with the
various parameters to see what effect they have on the timing results. The results
can vary widely based on the platform in use.

On one system we find that Vector is consistently the slowest, as expected.
The ArrayList is slightly faster (typically 80% of the Vector time or less)
and the fastest of all, as expected, is the plain object array, which is nearly
twice as fast as Vector. Of special interest is the Java 5.0 parameterized type
ArrayList<Integer>, which is consistently slightly faster than the unparam-
eterizedArrayList, perhaps due to removing the need for casting fromObject

type to Integer type. On a different platform, we observed about the same rel-
ative performance between ArrayList and Vector but a factor of nearly nine
between a plain array and a Vector. On yet another platform, we’ve seen a factor
of about three between an array and a Vector. On one other platform the array
is only about 20% faster than the ArrayList with both about twice as fast as
the Vector. The moral of this story is that the container type chosen can lead
to an important performance difference. Arrays are almost certainly always the
fastest and the synchronized collection objects are the slowest with the newer
unsynchronized collection objects somewhere in between. Just where in between
is platform dependent. Perhaps a second moral is to be sure to test your code on
the platform or platforms on which it will be deployed.
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Whenever coding for performance, it is a good idea to first write the code in
a natural way and then profile it with the built-in profiling tools to see where the
problem areas are. Finally, tune those problem areas. In general, extra care in
coding should be taken in loops with lots of iterations and in methods that are
called frequently.

For the problem areas, here is a list of some basic performance tips:

� Local variables run faster than instance and static variables.
� The long and double type variables typically require extra time to access and modify

since they contain additional bytes compared to int and float. However, significantly

slower performance is not true of all JVMs on all platforms since some take advantage

of particular processor capabilities.
� The JVM bytecode is weighted towards int operations so use int type except where

you specifically need to use one of the other types. Math operations with the shorter

integer types are widened in the JVM to int. For example, a sum of two byte values

results in an int value (that may be cast back to a byte if the result is to be stored into

a byte variable).
� Use the x += A type of commands rather than x = x + A. The first requires one

instruction and the latter four.
� If you are concatenating lots of strings, use StringBuffer and its append()method

instead of the String “+„ operator. In Java 5.0 and above, use StringBuilder

instead.
� As demonstrated in the TimeTest example above, the original Java utility classes like

Vector, Enumeration, and Hashtable are slow because they use synchronization

for thread safety. Although synchronization overhead has been significantly reduced

in modern versions of Java, if you do not require synchronization, then the newer

utilities from the Java Collections Framework are normally superior. The new classes

ArrayList and HashMap generally replace Vector and Hashtable, respectively,

and Iterator is preferred over Enumeration.
� Avoid creating lots of objects if possible, especially in loops. Creating an object takes up

considerable time and uses up memory resources and requires the Java garbage collector

to do more work to reclaim abandoned memory.
� Avoid method calls in a loop as much as possible. That is, do your loops inside of

methods rather than calling methods inside of loops.
� Performance can vary significantly among different JVMs for the same platform. Do

timing measurements for all the JVMs that would potentially be used with your program.

See the book by Shirazi [6] for a complete discourse on performance enhance-
ments.

12.9 Lifelong Java learning

Part I introduced the basics of Java programming and you can now create applets
and applications with graphical user interfaces, threads, I/O, image processing,
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and other capabilities. In Parts II and III you will learn how to use Java for network
programming, distributing computing, running native code, and other tasks.

For most of the topics that we discussed in this book, we only had room to
present those essential elements of a class, or package of classes, that would
allow you to begin using it in your programs. Most of these classes contain lots of
other methods with which you should become familiar besides the ones we talked
about here. Furthermore, with the ever-expanding capabilities of Java there will
always be new tools, classes, APIs, and new versions of the language appearing
on the scene (like J2SE 5.0). It is now common to find several books available that
focus only on some narrow aspect of the language. Rather than trying to master
all of Java from the start, which really is no longer feasible, more likely you will
seek out information on particular concepts and classes as you need them for a
particular programming task.

As we have often suggested, you should always go first to the Java API Spec-
ification to examine the description of a class or a particular method with which
you are unfamiliar. If that doesn’t suffice, then check for tutorials and articles on
the web such as those on the http://java.sun.com site. In addition to the
supplements on our Web Course, we provide an extensive set of web resource
links. For major topics like Swing graphics, you will want to invest in some
specialized books.

12.10 Web Course materials

The Chapter 12 Web Course: Supplements section gives a brief introduction to
Java Beans and some other APIs such as the Media Framework and Java Audio. It
also looks at the Web Start system for distributing Java applications. We include
more information about performance issues and benchmarking and include links
to a number of useful web pages.

The Tech section gives more examples of technical applications with Java
such as pattern recognition tasks. The Physics section looks at developing a set
of experiment analysis tools with Java.
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Chapter 13
Java networking basics

13.1 Introduction

Java arrived on the scene just as computer networking was expanding from iso-
lated local area networks outward to the whole world via the Internet. The devel-
opers of Java quickly realized that exploiting the vast potential of networks would
become a major activity for programmers in this new interconnected world, so
they built a wide array of networking capabilities into the language. This capa-
bility grew with each new version of Java and became one of the primary reasons
for its popularity.

In this chapter we review the basics of TCP/IP (Internet) networking and some
of the tools that Java provides to exploit it [1,2]. In the rest of Part II we examine
many of the more sophisticated networking capabilities of Java with an emphasis
on how they could benefit scientific and engineering applications.

13.2 Internet basics

As shown in Figure 13.1, networking architecture is based on the concept of layers
of protocols. (The more formal OSI – Open System Interconnection – model has
seven layers but this one shows the essential layer definitions.) Each layer has its
own standardized protocol and standardized application programming interface
(API), which allows the next higher layer to communicate with it. Internally,
the layers can be implemented in different ways as long as they provide the
standard API. For example, the Network layer does not know if the physical layer
is Ethernet or a wireless system because the software device drivers respond to
the function calls the same way.

The term “Internet” refers primarily to the Network layer protocol known as the
Internet Protocol (IP) and the Transport layer protocol known as the Transmission
Control Protocol (TCP) forming the familiar TCP/IP acronym. The application
layer includes various web protocols, such as the Hypertext Transfer Protocol
(HTTP), which rely on the Internet sub-layers. Most users never see below the
application layer.

When you send an email or a file over the Internet, the TCP and IP protocols
split the message into groups of bytes called packets. Each packet holds a header
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Figure 13.1 Networks use a layer architecture. Highest level applications talk to the
Transport layer, which in turn talks to the Network layer and this in turn talks to the
Physical layer. To the application user, however, the communications path will
appear to be directly from one application to another. [2]

containing its destination and source addresses and other miscellaneous infor-
mation such as error correction bytes. The body of the packet is called the data
payload. These packets travel through the network via routers that lie at nodes
(intersections) in the network. The routers read the destination addresses on the
packets and, just as with mail in the postal system, send the packet to the next
node closest to the final destination. If such a node doesn’t respond or if the traffic
load needs balancing, the transmitting node looks for alternate routes. When the
packets reach their final destination, the original message is rebuilt. The packets
may arrive out of order so the rebuilding must wait for all packets to arrive.

13.2.1 IP datagrams

The IP layer communicates via packets called datagrams. Datagrams have headers
of 20–60 bytes and data payloads of up to 65K bytes. The headers contain the
source and destination addresses. An IP address consists of four bytes displayed as
four values separated by periods as in 130.237.217.62. The left-most byte is
the highest-order address and so can represent a region or country. The lower-order
bytes narrow the address down until the final byte indicates, typically, a particular
computer on a WAN (Wide Area Network) or LAN (Local Area Network).

Datagrams from the same message can travel completely different paths as
the routers dynamically choose paths for the same destination address so as to
avoid loading down any one link. Thus datagrams may become lost or arrive
out of order from how they were sent. When TCP/IP is used, the TCP layer is
responsible for putting the packets back together in the proper order.

There are a number of special IP addresses. For example, any address beginning
with 127, as in 127.0.0.1, translates as a loop back address. This means that
any packets sent with this destination address automatically return to the source
computer.
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Users typically deal with text addresses called hostnames that are easier to
remember than the numerical addresses. For example, java.sun.com is a
hostname. Special nodes on the Internet called Domain Name Servers (DNS)
translate hostnames into the corresponding numerical IP addresses. A hostname
is composed of a top-level domain such as com, se, or edu. These domains
are then divided into second level subdomains such as sun.com, kth.se, or
ucr.edu. The systems at these locations can divide a domain further such as
java.sun.com, gluon.particle.kth.se, or physics.ucr.edu.

13.2.2 TCP and UDP

Above the IP layer resides the Transport layer. It includes both the Transmission
Control Protocol (TCP) mentioned previously and the User Datagram Protocol
(UDP). The Transport layer attempts to smooth over the problems of the IP layer.
The Transport layer can rearrange packets into their proper order and request
retransmission of missing packets.

TCP guarantees that all bytes are provided in the correct order or else an error
condition is reported. For text messages and files, for example, this is obviously
a requirement. UDP, on the other hand, does not guarantee all the bytes in the
correct order, or even that all bytes are received. As such, it has a lower overhead
than TCP. For some applications, such as audio and video transmission, the loss
of a few bytes is not significant and the use of UDP provides better performance.

13.2.3 Application layer

The Application layer involves all those user programs that we are so familiar
with such as web browsers. These use protocols such as:

� HTTP – Hypertext Transfer Protocol – web page transmission
� FTP – File Transfer Protocol – for sending and obtaining files
� SMTP – Simple Mail Transport Protocol – mail
� Telnet – console sessions

These protocols require TCP since the programs cannot allow for randomly
dropped bytes from source files and web pages. Other application layer programs,
such as theping program that sends test packets to a given IP address, can use the
simpler UDP. Most Java network programs only deal with the application layer.

13.3 Ports

The IP address is used to get a packet to the right computer, but how does the
packet get to the right program on that computer? A computer may have:

� several programs running at the same time
� several programs trying to communicate via the Internet
� all the programs communicating over the same physical Ethernet cable
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Figure 13.2 A packet
arrives from the network
and goes to the port to
which it is addressed.

The port number is the key for organizing all this. The packets are guided by
the operating system to the correct program according to the 16-bit port num-
ber. Casual internet users occasionally encounter port numbers when they are
appended to web addresses, as in:

http://www.myschool.edu:80/

Port 80 is the default port for the HTTP server so nowadays it is seldom included
in the URL. Some popular web servers, notably the open source Tomcat server,
commonly use port 8080 by default. So a URL address might appear as

http://www.myschool.edu:8080/

Various other applications for particular protocols use standard port values as
shown in Figure 13.2. Unix machines reserve ports 1–1023 for privileged services
(i.e. owned by the Unix root account). Windows machines do not restrict these
ports but in order to make your Java programs portable it is wise to choose port
values above 1023.

One type of firewall assigns port numbers to the machines behind its shield.
Incoming packets all go to the same IP address but with different port numbers
according to the machine they are destined for. This both reduces the exposure
and accessibility to the machines and reduces the need for universally unique
IP numbers. Behind the firewall, the local addresses can be the same as in other
LANs since the LANs are isolated from each other. This is one of the reasons
that 4 bytes remain sufficient for the Internet despite the explosion in the number
of devices with IP addresses. (Nevertheless, a 16-byte version of IP addressing
called IPv6 will gradually take over.)

13.4 Java networking

Java was designed from the start with networking in mind. Java first became
famous because of applets, which were invented to provide dynamic content to
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web pages. Many other features of Java, however, extend Java network program-
ming far beyond just applets. Some of these network-related capabilities include
the following:

� java.net contains numerous network-related classes.
� Remote Method Invocation (RMI) packages allow a Java program running on one

machine to invoke Java methods in a program running on another machine.
� The Streaming I/O architecture in Java provides for a uniform structure in that I/O over

a network is treated the same as I/O to a disk or the console.
� Serialization allows objects to be deconstructed, sent over a network, and then recon-

structed on another machine (see Section 9.8).
� Threading helps to build server programs since they can create separate threads to tend

to new clients as they connect.
� java.security and other packages allow for secure interactions over networks.
� Portability of java means that Java networking programs developed on one type of

platform can also run and communicate with each other when used on other platforms.

In the rest of this chapter and the other chapters of Part II, we discuss these and
other features that make Java a powerful tool for network programming.

13.5 The URL class

Browsers obtain resources from the web by specifying web addresses, which are
officially called Uniform Resource Locators (URLs). The formal description of
the URL components goes as follows:

Protocol-ID://Host-IP-address:Port/Filename#Target

The components of the URL include:

� Protocol-ID – HTTP, FTP, etc.
� Host-IP-address – host name in either numerical IP or hostname format
� Port – port number. Default is 80 if omitted
� Filename – name of a hypertext web page or other type of file. Default isindex.html

orindex.htm. The file name can include a directory path such as/data/run5.html
� Target – optional reference address within a web page

In Java a URL can be represented by an instance of the java.net.URL class.
For example, in an applet you can obtain the URL address of the location of the
applet’s code with the method

public URL getCodeBase ()

If you want to download an image from the same directory where the applet code
is located, you can use

getImage (getCodeBase (), filename);

This method combines the URL returned by getCodeBase() with the image
file name to create a URL to locate and download the image file.
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The URL class provides several methods for obtaining URL information. The
following application (based on a program in Sun’s Java Tutorial on networking)
breaks apart and displays the components of a complete URL string:

import java.net.*;

import java.io.*;

/** Parse a URL address into its components. **/

public class ParseAddress

{

public static void main (String[] args) {

if (args.length!=1) {

System.out.println (

"Error: missing url parameter");

System.out.println (

"Usage: java ParseAddress <url>");

System.exit (0);

}

try {

URL url = new URL (args[0]);

System.out.println ("Protocol = " +

url.getProtocol ());

System.out.println ("Host = " + url.getHost ());

System.out.println ("Port = " + url.getPort ());

System.out.println ("File name = " +

url.getFile ());

System.out.println ("Target = " + url.getRef ());

}

catch (MalformedURLException e) {

System.out.println ("Bad URL = " + arg[0]);

}

}

} // class ParseAddress

Running the program with a URL string on the command line produces the
following:

c: \>java ParseAddress

http://www.myschool.edu:80/data/x.html#d

Protocol = http

Host = www.myschool.edu
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Port = 80

File name = /data/x.html

Target = d

You can construct a URL object from a URL string:

URL kth = new URL ("http://www.kth.se/index.html");

or from individual string components as in:

URL kth = new URL ("http", "www.kth.se", "/index.html");

When you attempt to create an instance ofURL, the constructor checks the compo-
nents for proper form and value. If the URL specification is invalid, the constructor
throws a MalformedURLException, which is a checked exception and must
be caught.

Typically one of the first tasks that new Java programmers want to do for their
own work is to read a file from an applet. This might involve a simple data file
in text format such as a list or a table of values and labels. We have learned to
read image files and audio files from applets and applications but have not yet
read a text file. This is in fact fairly easy to do. However, keep in mind that for
applets the SecurityManager in the browser’s JVM restricts access to only
those files on the host system of the applet. (We discuss security managers further
in Chapter 14.)

Below we show the applet ReadFileViaURL, which reads a text file located
with an instance of the URL class. It uses a method from the URL class that
provides file access via an instance of InputStream (see Chapter 9). We wrap
this stream with an InputStreamReader to provide proper character handling.
We in turn wrap this class with BufferedReader, which provides buffering
to smooth out the stream flow and also contains the convenient readLine()
method that grabs an entire line and returns it as a string.

The program can also run as a standalone application. We see in the
readFile() method how to obtain a URL object from a File object for local
files. Figure 13.3 shows the interface in application mode after reading the default
file.

Figure 13.3 The
ReadFileViaURL applet
displays the text file that it
read via a URL address.
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import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.io.*;

import java.net.*;

/** Demonstration of reading a local file with a URL. **/

public class ReadFileViaURL extends JApplet

implements ActionListener

{

// A Swing text area for display of string info

JTextArea fTextArea;

String fFileToRead = "data.txt";

StringBuffer fBuf;

// Flag for whether the applet is in a browser

// or running via the main () below.

boolean fInBrowser = true;

/** Build the GUI. **/

public void init () {

// Create a User Interface with a text area with

// scroll bars and a Go button to initiate processing

// and a Clear button to clear the text area.

Container content-pane = getContentPane ();

JPanel panel = new JPanel (new BorderLayout ());

// Create a text area to display file contents.

fTextArea = new JTextArea ();

fTextArea.setEditable (false);

// Add to a scroll pane so that a long list of

// computations can be seen.

JScrollPane area-scroll-pane = new JScrollPane

(fTextArea);

panel.add (area-scroll-pane, BorderLayout.CENTER);

JButton go-button = new JButton ("Go");

go-button.addActionListener (this);

JButton clear-button = new JButton ("Clear");

clear-button.addActionListener (this);
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JButton exit-button = new JButton ("Exit");

exit-button.addActionListener (this);

JPanel control-panel = new JPanel ();

control-panel.add (go-button);

control-panel.add (clear-button);

control-panel.add (exit-button);

panel.add (control-panel, BorderLayout.SOUTH);

// Add text area with scrolling to the content pane.

content-pane.add (panel);

// If running in a browser, read file name from

// applet tag param value. Else use the default.

if (fInBrowser) {

// Get setup parameters from applet html

String param = getParameter ("FileToRead");

if (param != null) {

fFileToRead = new String (param);

}

}

} // init

/** Use a URL object to read the file. **/

public void readFile () {

String line;

URL url = null;

// Get the URL for the file.

try {

if (fInBrowser)

url = new URL (getCodeBase (), fFileToRead);

else {

File file = new File (fFileToRead);

if (file.exists ())

url = file.toURL ();

else {

fTextArea.append ("No file found");

System.out.println ("No file found");

System.exit (0);

}

}

}
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catch (MalformedURLException e) {

fTextArea.append ("Malformed URL = " + e);

System.out.println ("Malformed URL = " + e);

return;

}

// Now open a stream to the file using the URL.

try {

InputStream in = url.openStream ();

BufferedReader dis = new BufferedReader (

new InputStreamReader (in));

fBuf = new StringBuffer ();

while ((line = dis.readLine ())!= null) {

fBuf.append (line + " \n");
}

in.close ();

}

catch (IOException e) {

fTextArea.append ("IO Exception = " + e);

System.out.println ("IO Exception = " + e);

return;

}

// Load the file into the TextArea.

fTextArea.append (fBuf.toString ());

} // readFile

/**

* Can use the start() method, which is called after

* init() and the display has been created.

**/

public void start () {

// Now read the file.

readFile ();

} // start

/** Respond to the buttons **/

public void actionPerformed (ActionEvent e) {

string source = e. getActionCommand ();

if (source.equals ("Go"))

start ();

else if (source.equals ("Clear"))

fTextArea.setText (null);
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else

System.exit (0);

} // actionPerformed

/** Display the println string on the text area **/

public void println (String str) {

fTextArea.append (str + " \n");
} // println

/** Display the print string on the text area **/

public void print (String str) {

fTextArea.append (str);

} // print

/** Create the frame and add the applet to it **/

public static void main (String[] args) {

int frame-width = 200;

int frame-height = 300;

// Create ReadFileViaURL object and add to the frame.

ReadFileViaURL applet = new ReadFileViaURL ();

applet.fInBrowser = false;

applet.init ();

// Create frame and then set its exit mode.

JFrame f = new JFrame ("Read file from URL Demo");

f.setDefaultCloseOperation (JFrame.EXIT-ON-CLOSE);

// Add applet to the frame

f.getContentPane ().add (applet);

f.setSize (new Dimension (frame-width, frame-height));

f.setVisible (true);

} // main

} // class ReadFileViaURL

13.6 InetAddress

The java.net.InetAddress class represents IP addresses. It works with
either a string host name such as java.sun.com or a numerical IP address such
as 64.124.81.56. The InetAddress class has a number of useful methods
for dealing with host names and IP addresses. The demonstration programs below
illustrate some of the capabilities of the InetAddress class [2].
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The applet LocalAddress displays the local host and IP address. Note
that the SecurityManager in the browser JVM may block access to this
information. You can try it in the appletviewer tool or run it as an
application.

import java.applet.*;

import java.awt.*;

import java.net.*;

/** Show how InetAddress can provide the local

* IP address. **/

public class LocalAddress extends Applet

{

String fMessage = "";

/**

* Create an instance of InetAddress for the

* local host and display the local IP address.

**/

public void init () {

try {

InetAddress local-Address =

InetAddress.getLocalHost ();

fMessage = "Local IP address = "

+ local-Address.toString ();

}

catch (UnknownHostException e) {

fMessage = "Unable to obtain local IP address";

}

System.out.println (fMessage);

} // init

/** Paint IP info in Applet window. **/

public void paint (Graphics g) {

g.drawString (fMessage, 20, 20);

} // paint

/** Print out the local address in app mode. **/

public static void main (String [] args) {

LocalAddress applet = new LocalAddress ();

applet.init ();

} // main

} // class LocalAddress
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The application TranslateAddress, shown next, returns the IP address if
given a host name, or returns the host name if given an IP address:

import java.net.*;

/** Translate IP to a host name or host name to IP

* address. **/

public class TranslateAddress

{

public static void main (String[] args) {

// Look for command line argument

if (args.length != 1) {

System.out.println ("Error! No IP or host name

address");

System.out.println (

"Usage: java TranslateAddress java.sun.com");

System.out.println (

" or java TranslateAddress 209.249.116.143");

System.exit (0);

}

try {

// When the argument passed is a host name (e.g.

// sun.com), the corresponding IP address is

// returned. If passed an IP address, then only the

// IP address is returned.

InetAddress address = InetAddress.getByName

(args[0]);

System.out.println ("Address " + args[0] +

" = " + address);

// To get the hostname when passed an IP address

// use getHostName(), which will return the host

// name string.

System.out.println ("Name of " + args[0] + " = " +

address.getHostName ());

}

catch (UnknownHostException e) {

System.out.println ("Unable to translate the

address.");

}

} // main

} // class TranslateAddress
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Here are two example runs of this program:

c: \> java TranslateAddress gluon.particle.kth.com

Address gluon.particle.kth.se = gluon.particle.kth.se/

130.237.34.133

Name of gluon.particle.kth.se = gluon.particle.kth.se

c: \> java TranslateAddress 130.237.34.133

Address 130.237.34.133 = /130.237.34.133

Name of 130.237.34.133 = gluon.particle.kth.se

Note that the method getByName (String str) returns an instance of
InetAddresswhen given a host name. Then when thetoString()method of
this InetAddress object is invoked by the string concatenation, it displays the
HostName/IP-Address pair. However, when given an IP address, the result-
ing InetAddress object does not show the host name. Instead, you can use the
getHostName() method to obtain the host name.

13.7 Sockets

Sockets provide connections between applications that allow streams of data
to flow. Sockets in Java are straightforward to set up. The package java.net
provides two kinds of socket classes:

1. Socket – provides a connection-oriented service that behaves like telnet or ftp. The

connection remains active, even with no communications occurring, until explicitly

broken.

2. DatagramSocket – involves the following:

(a) connectionless protocol

(b) transfer of datagram (i.e. UDP) packets

(c) no fixed connection

(d) packets can arrive out of order

(e) no guarantee a packet will arrive.

We discuss sockets further in Chapters 14 and 15. The demonstration program
below illustrates how to use a socket connection to run the whois internet operation
[2]. The whois service returns information about a given domain name. The
registry site whois.internic.net provides this service.

The code snippet below shows how to create an instance of the Socket class
that connects to port 43 at host name whois.internic.net. An output stream
is obtained from the socket and a PrintWriter wrapped around it. This is then
used to send the address of interest to the whois service.

Similarly, an input stream is obtained from the socket and wrapped first
with an InputStreamReader and then a BufferedReader so we can use
readLine() to obtain a whole line of text at one time from the whois output.
You can enter other domain names in the text field.



13.7 Sockets 427

. . . GUI code from the WhoisApplet program . . .

/** Connect to the whois service via a socket. Write the

* address with a PrintWriter object and read the

* output via a BufferedReader. Send the output to the

* text area. **/

public void whoisConnect (String query-address) {

int port = 43; // Standard whois port

String reply;

try {

Socket whois-socket =

new Socket ("whois.internic.net", port);

PrintWriter print-writer =

new PrintWriter (whois-socket.getOutputStream (),

true);

print-writer.println (query-address);

InputStreamReader input-reader =

new InputStreamReader

(whois-socket.getInputStream ());

BufferedReader buf-reader =

new BufferedReader (input-reader);

while ((reply = buf-reader.readLine ()) != null) {

// Write the whois info to the textarea.

fTextArea.append (reply + ' \n');
}

fTextArea.append (" \n \n");
// Add space between queries

}

catch (IOException e) {

fTextArea.append ("IO Exception = " + e);

System.out.println ("IO Exception = "+ e);

return;

}

}

. . .

Figure 13.4 shows the program interface with the output of a typical case. Though
written in applet form, the security manager in most browser JVMs blocks



428 Java networking basics

Figure 13.4 The interface for the WhoisApplet shows results in a text area for the
whois operation on the domain name entered into the text field at the lower left.

accesses to IP addresses other than the source of the applet. In the figure the
program is running as an application.

13.8 The client/server model

The client/server paradigm has become a dominant one for the Internet. In this
model the clients are programs running on remote machines that communicate
with a program called the server that runs at a single site and responds to requests
from many clients. The server provides the clients with, say, web pages or database
information. Much of the World Wide Web is built on the client/server paradigm.
The clients are web browsers run by many millions of individual users, and the
servers are the many web-hosting systems running at the many host sites on the
web. A single server at a single host can support many hundreds or thousands
or more of clients from around the world. Large systems that serve hundreds
of thousands of clients balance the server load over multiple machines in an
arrangement called “server farms.”

With Java you can build client/server systems with sockets or with RMI
(Remote Method Invocation). In the following chapters of Part II we come back
to the client/server model repeatedly, though we will keep things simple by con-
sidering a server to be a program running on a single server computer.

In a socket-based client/server system, a server listens to a particular port for
client applications sending requests for connections. A ServerSocket class is
provided in Java that allows for a server to monitor and answer such requests for
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Figure 13.5 Schematic of a socket based client/server system. The ServerSocket in
the server program monitors a particular port for requests for connections from
clients on the network, which could range from a local area network to the global
Internet. The client programs connect via an instance of Socket using the server’s
IP address and port. When the ServerSocket makes a connection with the client, it
returns an instance of Socket that is given to a thread process, which we call a
Worker, to attend to the requests of the client. The ServerSocket returns to
monitoring the port for new requests for connections and spins off a worker process
for each client that connects.

connections. The client sends the request for a connection by creating a socket
with the host name and port for that server as discussed in the previous section.

Figure 13.5 shows a diagram illustrating the basics of a socket-based client/
server system. The ServerSocket instance listens for a client to connect to the
particular port. When a client request arrives, the ServerSocket object sets up
a Socket instance for the connection and then spins off a new thread to interact
with the client via that socket. Many clients can therefore be served since each
client has an independent thread dedicated to it.

A Java web server would be built with this kind of socket-oriented client/server
approach. In Chapters 14–15 we discuss this approach further and show how
to build custom servers for applications such as providing access to data at a
remote device. We also use such a server in Chapter 24 on an embedded Java
processor.

In Chapters 16–20 we look at a more direct approach to communications
between clients and servers. Using tools like RMI and CORBA, a Java program
on one machine can invoke a method in an object on another machine just as if
the code was running on the local platform. A client, for example, could call a
method on a server program to obtain some parameter of interest. The server, in
turn, can invoke methods in the client.
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Remote method invocation provides for powerful distributed computing capa-
bilities. Much of the complicated machinery to make this happen is hidden from
the application programmer who can instead concentrate on the task at hand. The
portability of Java is a further advantage since a distributed computing applica-
tion can be developed that will run with many different platforms with the same
code.

13.9 Web Course materials

The code for the above examples and several other networking demonstrations are
available in the Web Course pages. Web resource links to supporting information
are also provided.
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Chapter 14
A Java web server

14.1 Introduction

A web server program runs continuously while waiting for and answering requests
it receives over the Internet from browsers. Typically the requestor asks for the
transmission of a web page in HTML (Hypertext Markup Language) format or
asks for some other HTTP (Hypertext Transmission Protocol) service such as the
running of a CGI (Common Gateway Interface) program.

Developing web servers and server applications such as online stores became
the first big money-making business area that used Java extensively. Sun offers
additional packages with the Java 2 Platform Enterprise Edition (J2EE) to sup-
port server development for applications such as database access, shopping cart
systems for web stores, and other elaborate middleware services that can scale
to large numbers of client users. Companies like IBM and BEA have been quite
successful in selling their own middleware Java software.

In this chapter and the next we look at a simple socket-based approach to
building web servers for specialized applications [1–4]. This can be done with
the classes available in J2SE. In Chapters 16–20 we focus on RMI (Remote
Method Invocation) clients and servers and other distributed computing tech-
niques. In Chapter 21 we return to web-based networking with a discussion of web
services.

We show here how to create a simple web server that could run on any plat-
form that implements a JVM with the java.net and java.io packages. Such
a micro-server could, for example, run on remote devices in a scientific exper-
iment and provide data and status information to client programs. It could also
accept instructions for operating the devices, installing calibration data, and so
forth.

These devices are not theoretical. In Chapter 24 we discuss commercially
available processor cards that provide both network access and a JVM (or a
hardware implementation) with which to run such a server program. The cards are
intended for embedded applications such as monitoring and controlling sensors

431



432 A Java web server

distributed in a scientific experiment, on a factory assembly line, or in power
plant equipment.

14.2 Designing a web server

When you click on a URL link in a browser page, a request is sent to the computer
at the host address given in the URL. If the port is not specified, the request goes
to the default port 80. The web server program monitors this port and, when a
request arrives, the server opens a socket for the client and sends the web page
or other data requested.

Different types of servers monitor different ports to provide services such as
database access, email, audio/video streaming, and so forth. Web serving is a
stateless interaction in that the connection ends after answering the request and
the server does not usually maintain any further information about the client. If
the same client returns later, then a completely new session is created with no
knowledge about the previous session. (An online store might use a cookie file on
the browser platform and the IP address of the requestor to maintain information
about an interaction for a given period of time.) There is no continuous connection
as in a telnet session, for example.

With Java you can create and run your own web server that follows the HTTP
protocols. On Unix machines, the ports numbered 0–1023 are restricted but other-
wise your server is free to choose whatever port it wants to monitor for clients
requesting a connection.

Note that since you customize the server as you wish, you don’t have to break
off the connection (that is, close the socket) immediately as with standard web
servers. We discuss in Chapter 15 a client server system using sockets that can
maintain a continual connection.

In this chapter we develop MicroServer, a basic HTTP server that illus-
trates all the basic components of a web server. (It is similar to an example in the
book by Niemeyer and Knudsen [3].) To serve its clients, our little web server
needs to:

� create a ServerSocket instance that watches for incoming client requests
� create a Socket instance to connect with a client
� spin off a thread to handle the client’s request
� set up streams to carry out the I/O with the client

The following sections discuss each of these tasks.

14.2.1 ServerSocket

In Chapter 13 we briefly discussed communications with the Socket and
ServerSocket classes. In the code snippet below, the ServerSocket object
waits for a client to request a connection. The accept() method blocks (i.e.
doesn’t return) until the client connects, and then it returns an instance ofSocket.
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. . . In the main() method in MicroServer . . .

// Create a ServerSocket object to watch port for clients

ServerSocket server-socket = new ServerSocket (port);

System.out.println ("Server started");

// Loop indefinitely while waiting for clients to connect

while (true) {

// accept () does not return until a client

// requests a connection

Socket client-socket = server-socket.accept ();

// Now that a client has arrived, create an instance

// of our thread subclass to respond to it.

Worker worker = new Worker (client-socket);

worker.start ();

System.out.println ("New client connected");

}

. . .

The program passes the socket to an instance of a thread class called Worker that
handles all further communication with this particular client. The main thread
loop then returns to wait for another client connection. When one arrives it will
create a new Worker to handle it. The details of the Worker class are discussed
next.

14.2.2 Worker threads for clients

Our Worker class is a subclass of Thread. There will be one Worker object
per client:

/** Here is our thread class to handle clients.**/

public class Worker extends Thread {

Socket fClient;

// Pass the socket as an argument to the constructor

Worker (Socket client) throws SocketException {

fClient = client;

// Set the thread priority down so that the

// ServerSocket will be responsive to new clients.

setPriority (MIN-PRIORITY);

} // ctor

public void run () {

. . . Do the client interaction here

}

. . .

} // class Worker
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We set the priority lower on our thread so that the client processing does not
dominate other tasks such as the ServerSocket monitoring of new incoming
clients and the serving of other clients by other Worker objects.

The run() method is, of course, the heart of the thread class and is where
the interaction with the client occurs. Before we discuss possible tasks for the
Worker we look at setting up I/O streams with the client.

14.2.3 I/O with the client

Our thread communicates with the client via the I/O streams made available
by the Socket object. The code snippet from the run() method here in our
ClientProcess shows how to obtain an InputStream from the socket and
then wrap it with anInputStreamReader using the 8859 1 character encoding
and then wrap that with a BufferedReader. (See Chapter 9 for information
about character encodings such as 8859 1.)

. . . The run() method in Worker . . .

public void run () {

try {

// Use the client socket to obtain an input stream.

InputStream socket-in = fClient.getInputStream ();

// For text input we wrap an InputStreamReader around

// the raw input stream and set ASCII character encoding.

InputStreamReader isr =

new InputStreamReader (socket-in, "8859-1");

// Finally, use a BufferReader wrapper to obtain

// buffering and higher order read methods.

BufferedReader client-in = new BufferedReader (isr);

. . .

We then obtain an OutputStream from the socket as shown in the next
code snippet. We wrap this with an OutputStreamWriter and then with a
PrintWriter.

. . . Continue in the run() method in Worker . . .

. . .

BufferedReader client-in = new BufferedReader (isr);

// Now get an output stream to the client.

OutputStream out = fClient.getOutputStream ();
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// For text output we wrap an OutputStreamWriter around

// the raw output stream and set ASCII character encoding.

OutputStreamWriter osr =

new OutputStreamWriter (out, "8859-1");

// Finally, we use a PrintWriter wrapper to obtain its

// higher level output methods. Use autoflush mode.

// (Autoflush occurs only with println().)

PrintWriter pw-client-out = new PrintWriter (osr, true);

. . .

At this point in the code we have streams for both input and output communica-
tions with the client, but we haven’t said anything about just what they commu-
nicate. The client can place arbitrary bytes on the stream and the server will see
them, but unless some agreement is made about what form those bytes should
take and what they mean, the communication that happens is rather meaningless.
In other words, we need to develop some sort of protocol so that the server and
the client can understand each other.

14.3 Hypertext Transfer Protocol (HTTP)

For network communications to work correctly, a common format or protocol
must be established. Many standard protocols have already been defined – for
example, HTTP (Hypertext Transfer Protocol). In an HTTP request, a line such
as the following must be sent from the client to the server:

GET /index.html HTTP/1.0 \r \n \r \n

Here GET is the request keyword, /index.html is the file requested, and
HTTP/1.0 indicates the protocol and version number of the protocol to be used.
Finally, the characters \r \n \r \n indicate the two carriage return/linefeed
pairs that terminate the line.

The next code snippet from run() obtains the request line sent from the
client by invoking the readLine() method of BufferedReader. Then the
request text is broken into tokens with the split() method in the String

class (see Chapter 10). The tokens are checked to determine if the client sent
the “GET„ command and, if so, to obtain the name of the file that the client is
requesting.

. . . In the run() method in Worker . . .

// First read the message line from the client

String client-str = client-in.readLine ();
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System.out.println ("Client message: " + client-str);

// Split the message into substrings.

String [] tokens = client-str.split(" ");

// Check that the message has a minimun number of words

// and that the first word is the GET command.

if ((tokens.length >= 2) &&

tokens[0].equals ("GET")) {

String file-name = tokens[1];

// Ignore the leading "/" on the file name.

if (file-name.startsWith ("/"))

file-name = file-name.substring (1);

// If no file name is there, use index.html default.

if (file-name.endsWith ("/") || file-name.equals (""))

file-name = file-name + "index.html";

// Check if the file is hypertext or plain text

String content-type;

if (file-name.endsWith (".html") ||
file-name.endsWith (".htm")) {

content-type = "text/html";

}

. . .

If the request from the client is valid, we then read the local file that the client
is requesting and return it to the client. As shown in the following code, to
read the file we first obtain a FileInputStream for the file. We send text
messages back to the client using the PrintWriter methods. We note that the
PrintWritermethods don’t throw IOException and instead the class offers
the checkError() method, which returns true if an IOException occurred.
For the sake of brevity, we did not check for errors after every print invocation.
(In the DataWorker class in Chapter 15, we place the print invocations in utility
methods that check for errors and throw exceptions when they occur.)

The line “HTTP/1.0 200 OK \r \n„ gives the protocol and version num-
ber of the return message followed by the 200 code number that indicates that
the file has been found successfully and will be sent. This is followed by the file’s
modification date, an identification of the server, the length of the file and the file
type (e.g. “text/html„). Finally, the whole file is sent in one big byte array
via the write() method of OutputStream.

If the file is not available, the program sends the “404 Object Not

Found„ error message, which is a common one for web users. If the request
line had problems, a “400 Bad Request„ error message is sent.
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. . . Continue in run() method in Worker . . .

// Now read the file from the disk and write it to

// the output stream to the client.

try {

// Open a stream to the file.

FileInputStream file-in =

new FileInputStream (file-name);

// Send the header.

pw-client-out.print ("HTTP/1.0 200 OK \r \n");
File file = new File (file-name);

Date date = new Date (file.lastModified ());

pw-client-out.print ("Date: " + date + " \r \n");
pw-client-out.print ("Server: MicroServer 1.0 \r \n");
pw-client-out.print ("Content-length: " +

file-in.available () + " \r \n");
pw-client-out.print ("Content-type: " +

content-type + " \r \n \r \n");

// Create a byte array to hold the file.

byte [] data = new byte [file-in.available ()];

file-in.read (data); // Read file into byte array

client-out.write (data);// Write it to client stream

client-out.flush (); // Flush output buffer

file-in.close (); // Close file input stream

} catch (FileNotFoundException e) {

// If no such file, then send the famous 404

message. pw-client-out.println ("404 Object Not

Found");

}

} else {

pw-client-out.println ("400 Bad Request");

}

} catch (IOException e) {

System.out.println ("I/O error " + e);

}

// Close client socket.

try {

fClient.close ();

} catch (IOException e) {

System.out.println ("I/O error " + e);

}

// On return from run () the thread process dies.

} // run
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Figure 14.1 Running MicroServer from the command line. The display here shows
the output to the console after a request for a file arrived.

This short program provides a basic web server that returns web files to browsers
and any other client program that connects to the port and uses the proper HTTP
protocol. The Socket and ServerSocket classes, along with the I/O stream
classes, do most of the work. The complete code listing appears in the Web Course
for Chapter 14.

14.4 Running the server

We run our server application from the command line with

> java MicroServer 1234

The program takes a port number in the command line. (On a Unix platform
you should pick a port number above 1023.) Figure 14.1 shows an example of
running MicroServer from the console with the port 1234. The server prints
to the console when a client connects to it.

In our directory with MicroServer we put a simple web page file named
message.html containing:

<html>

<head>

<TITLE>Message Test</TITLE>

<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1">

</HEAD>

<BODY BGCOLOR="#FFFFFF" >

A file sent by the MicroServer.

</body>

</html>

Figure 14.2 shows the file displayed in a browser that connected to our
MicroServer. For testing with both the server and browser running on the
same machine you can use the special loopback IP address 127.0.0.1. The URL
must explicitly include the port number since the server uses a different number
than the default HTML port 80.
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Figure 14.2 A web page with a single text line in delivered by MicroServer to a
browser.

14.5 A more secure server

The MicroServer has a serious security problem. It allows access to almost any
file on the server’s host computer. For example, suppose the server runs on the
site www.myschool.edu with port 2222 and the client connects with a URL
such as:

http://www.myschool.edu:2222/../restricted.html

The “..„ refers to the directory above the directory where the server code is
located. In that case, the file restricted.html would be delivered to our
inquisitive client.

To control access to resources in Java programs, an elaborate system involv-
ing the SecurityManager class, policy files, permissions, and other tools are
available. Security is a big issue in Java so we can only touch here on a few
aspects of it. In the following sections we show the basics of how to make our
server program more secure.

14.5.1 The security manager

To restrict a Java program’s access to system resources, you can load a
SecurityManager object that controls access to external resources. An
instance of the SecurityManager class must be installed when an applica-
tion first begins. If not, then the default null security manager puts the server
into a completely unrestricted state. (For applets running in a browser JVM, the
security manager severely restricts the actions allowed.)

Before Java 1.2 you needed to create a subclass of SecurityManager
and customize it for your security requirements. The SecurityManager class
holds many methods of the form checkX (params), such as checkDelete
(String file), that throw an instance of SecurityException when they
wish to block an attempt to execute the particular action X. The subclass must
override those methods for the actions that you want to allow or to block only
in particular circumstances. For example, in the case of deleting a file, your
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overriding version of the checkDelete() method could examine the file name
and path to determine if a deletion should be permitted.

This approach to security, however, requires hard-coding and is very clumsy
considering the large number of different types of system access operations now
available to Java programs. With Java 1.2 a much more flexible permissions based
security system was introduced. In this approach, a security policy file, which is
a text file and therefore easily modifiable, is checked by the security manager
to determine if particular actions can be granted. Anything that isn’t explicitly
granted is forbidden.

For example, suppose the policy file myRules.policy contains the entry

grant codeBase "file:C:/Java/apps/" {

permission java.io.FilePermission "*.tmp", "delete";

};

This policy specification allows the application to delete those files in the direct-
ory C: \Java \apps \ that end with the “.tmp„ suffix but no others. We
discuss more about the details of the policy file and permissions in Section 14.5.3.

With this new security design, an application specifies the security manager
parameters from the command line using the -D option rather than in program
code:

c:> java -Djava.security.manager -Djava.security.policy

=myRules.policy MyApp

(The continuous line is broken here to fit within page margins.) This approach
to configuring the security for access to the system provides for much greater
flexibility and clarity than customizing a SecurityManager subclass that must
be recompiled after every modification.

14.5.2 Policy file for the server

We use our MicroServer to illustrate how to set up the security permissions
for file access. Without these changes, there are no protections that prevent the
client from requesting any file on the system. To control access to files, we create
the policy file microServer.policy in which we put the following code:

grant codeBase "file:C:/Java/MicroServer/Secure/"

{

permission java.net.SocketPermission "localhost:1024-",

"accept,connect,listen";

permission java.io.FilePermission "/-", "read";

};

The server must access sockets and, since this is an external resource, a permission
statement is required. So in the above grant statement, we permit the program to
listen for, accept, and connect with any socket on a port numbered “1024„ and
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higher (by using the symbol “1024-„). Similarly, we give permission for file
access to the server’s directory and to its subdirectories with the “/-„ parameter.
We put this policy into the directory c: \Java \MicroServer \Secure \
where we also put the server code. (Thegrant statement must always use forward
slashes regardless of the platform.)

To catch the instances of SecurityException that can now be thrown, we
create a new version of the server called MicroServerSecure that is identical
to MicroServer except that its Worker class adds a new catch statement in
the run() method as shown below in bold:

. . . Method run() in modified Worker class for MicroServerSecure

. . .

}

catch (FileNotFoundException e) {

// If no such file, then send the famous 404 message.

pw-client-out.println ("404 Object Not Found");

}

catch (SecurityException se) {

// An attempt was made to read a file

// in a forbidden location.

pw-client-out.println ("403 Forbidden");

}

}

else {

pw-client-out.println ("400 Bad Request");

}

}

catch (IOException e) {

System.out.println ("I/O error " + e);

}

. . .

Now we run this server with

c:> java -Djava.security.manager -Djava.security.policy

=microServer.policy MicroServerSecure

(This should be one continuous line on a Windows platform or entered with line-
continuation characters on Unix or Linux.) When a client browser attempts to
access the file in the restricted area, the server now sends the“403 Forbidden„

message.
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14.5.3 More Java security

Java security is a huge topic that involves not only the security manager but many
other issues such as cryptography, public/private keys, certificates, etc. Even a
thorough discussion of permissions and the policy file is beyond the scope of
this book. (See references [5, 6] for more information and tutorials about Java
security capabilities.) However, as we see above, the basics of setting permissions
are fairly straightforward.

Besides the java.io.FilePermission class, there are a number of per-
mission classes that represent the various types of access to external resources
that the security manager controls. They include

java.security.AllPermission

java.security.SecurityPermission

java.awt.AWTPermission

java.io.FilePermission

java.io.SerializablePermission

java.lang.reflect.ReflectPermission

java.lang.RuntimePermission

java.net.NetPermission

java.net.SocketPermission

java.util.PropertyPermission

and several others. For a complete listing, see the reference for the Permissions in
the Java SDK document at http://java.sun.com [6]. These classes are
all subclasses of java.security.Permission.

The basic format of the grant statement goes as

grant codeBase "URL" {

permission permission-class-name1 "target-name", "action";

permission permission-class-name2 "target-name", "action";

. . .

};

A more elaborate form of the grant statement includes information on where
to find certificates with the public keys needed to decode programs signed with
private keys.

The codebase item indicates the location of the code to which you are granting
a permission. If you load a class from a different location, then the permission
does not apply to it. If the codebase is empty then the permissions apply to code
from any location. In the example in the previous section, we used the “file:„

type of URL for referencing a local file.
Some of the permissions require a target name and a listing of the particu-

lar actions allowed. See, for example, the java.io.FilePermission case
mentioned in the previous section.

You can make the policy files by hand, but an alternative is to use the
policytool program supplied with the SDK. It provides a graphical interface
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in which you specify the details of the policy file. The program makes it fairly
easy to set the codebase information, to choose what permissions you need, to
set the target names and action settings, and to select where to put the pol-
icy file. See the Web Course Chapter 14 for more information about using this
program.

A program may need to check if a particular action is allowed before attempting
it. Perhaps you create a class that will be used with other people’s programs who
might be using different security settings. It might waste a lot of execution time
in your code if an action in the final step is not allowed.

So you can check if an action is allowed by first creating an instance
of the particular permission and passing it to checkPermission (java.

security.Permission) in the SecurityManager class. If it throws a
SecurityException, you will then know the action is not allowed. For exam-
ple, you could check on access to files with the following:

java.security.Permission permit =

new java.io.FilePermission ("/-", "read");

SecurityManager security = System.getSecurityManager ();

if (security!= null) {

try {

security.checkPermission (permit);

}

catch (SecurityException se) {

System.out.println ("File access blocked");

}

}

14.6 A client application

We might want to communicate with our server using a custom client program
rather than just with a browser. With Java we can create a standalone client
application to request and read files from the server just like a web browser but it
could also interact in other ways. For example, maybe the client sends a command
to the server to instruct it to carry out some action on the local platform such
as running a diagnostic program. (See Chapter 23 for a discussion of running
external programs from within a Java program.) As we see in the next chapter, we
can even maintain a connection with the client indefinitely and avoid the stateless
condition of the usual browser–server interaction.

Here we show the run() method in client application ClientApp. This
method sends a request to the server for a file. It connects to the server by the
creation of a Socket instance with the server’s address and port number. Using
the input and output streams obtained from the socket, the client sends a request
to the server and then reads the data returned by the server one line at a time. The
client then displays this data in a text area.
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. . . In class ClientApp . . .

public void run () {

// Clear the text area

fTextArea.setText ("Downloading . . .");

try {

// Connect to the server via the given IP address

// and port number

fSocket = new Socket (fIpAddr, fPort);

// Assemble the message line.

String message = "GET /" + fFilename;

// Now get an output stream to the server.

OutputStream server-out = fSocket.getOutputStream ();

// Wrap in writer classes

PrintWriter pw-server-out = new PrintWriter (

new OutputStreamWriter (server-out, "8859-1"), true);

// Send the message to the server

pw-server-out.println (message);

// Get the input stream from the server and then

// wrap the stream in two wrappers.

BufferedReader server-reader = new BufferedReader (

new InputStreamReader (socket.getInputStream ()));

fTextArea.setText ("");

String line;

// Add the text one line at a time from the server

// to the text area.

while ((line = server-reader.readLine ())!= null)

fTextArea.append (line + ' \n');

}

catch (UnknownHostException uhe) {

fTextArea.setText ("Unknown host");

}

catch (IOException ioe) {

fTextArea.setText ("I/O Exception");

}

finally {

try {

// End the connection

fSocket.close ();
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fThread = null;

}

catch (IOException ioe) {

fTextArea.append ("IO Exception while closing socket");

}

}

}

. . .

Figure 14.3 shows the client talking to a server running on the same Windows
platform. The client displays the file in a text area and provides text fields to enter
the server host address and port and the file that the user wants to download.

14.7 Server applications

We now know how to make a simple HTTP web server. What can we do with it?
Several possibilities come to mind:

� Custom server – if you don’t want to install a full-function web server for your PC,

you can develop your own small, customized server.
� Client input – a server could record input from clients.

Figure 14.3 The client application – ClientApp – displays a file that it obtained from
the MicroServer. The fields in the lower control panel indicate the host name of the
server, the port on which to contact the server, and the name of the file to request
from the server. Here the server and client ran on the same machine.
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� Data monitoring – your custom server could provide recent data files written by an on-

going experiment or sensor reading. (See Chapter 15 for an example of a data-monitoring

system.)
� Embedded server – in Chapter 24 we discus how a server can run on a Java processor

in an embedded application such as monitoring a sensor or other instruments.
� Applet interaction – you can set up a two-way link between your client-side applet and

your server to carry out special tasks.
� Run external programs – a server could start an external program to do some task

such as making a measurement or running diagnostic tests. In Chapter 23 we discuss

the Runtime class that provides a means to run external programs.
� Secure interaction – you can customize your server to respond only to clients with

allowed usernames and passwords.

While one can certainly do such things with other programming languages, the
Java code is quite compact and straightforward because of the core networking
and threading capabilities. Furthermore, the portability of Java means that you
can run the server and client programs on a wide range of platforms with little or
no modification needed.

Note that the client and server roles are not absolute. A server can switch roles
and become a client when necessary. For example, a server at a remote station
could monitor some system and provide information to clients seeking status
reports on the system. However, the server might periodically contact a central
server to download data and status information, thus acting as client to the central
server.

14.8 Servers, servlets and JSP

We briefly mention here a couple of other popular Java web server tools: servlets
and Java Server Pages (JSP). We have seen how applets are Java programs that
run inside the browser on the client’s machine. Servlets provide an analogous
approach on the server side in that they are Java programs run by a web server
to provide specialized services. They can do many of the same tasks that CGI
(Common Gateway Interface) programs perform such as processing input from
web page forms. However, they offer several advantages over CGI:

� CGI programs run once and go away. Servlets can remain active and respond to another

request without additional startup costs.
� Servlets are run in a Java thread by the server and are generally much faster to start up

than CGI programs, which require an operating system process.
� A CGI program receives one input request, sends a response, and then dies. Servlets

can carry on a two-way conversation for an indefinite period.
� A servlet can communicate with multiple clients simultaneously. An example is serving

the players in a multi-player game.
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We briefly return to the subject of servlets in Chapter 21 and their role in the area
of web services.

Another tool in the Java toolbox is the Java Server Page (JSP). HTML pages
at a server are typically static in that the text is fixed until it is edited by hand. In
a JSP page, however, the hypertext contains specially tagged areas that signal to
the server or servlet where it can insert dynamically created data. For example,
the servlet could enter the latest price for a product in a catalog page.

Though servlets and JSP are powerful tools for large enterprise web servers,
our emphasis is in small, specialized servers for custom applications such as
monitoring remote devices. Such servers can usually suffice with the techniques
discussed in this and the following chapters. See the Web Course and the refer-
ences for more information about servlets and JSP.

14.9 Web Course materials

The Web Course Chapter 14 provides the code for the client/server demonstration
programs discussed here along with additional demos and resources. See also the
code listings for Chapter 24 where we created a version of MicroServer to
run on a Java hardware processor. That platform does not provide the String
split() method so we had to create a version of our own. Chapter 21 provides
more information about servlets and Web Course Chapter 21 provides an example
servlet.
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Chapter 15
Client/server with sockets

15.1 Introduction

In Chapter 14 we showed how to build a basic web server that sends files to
browsers or to browser-like clients. In this chapter we present a more interesting
socket-based client/server demonstration system that goes beyond just transmis-
sion of web pages. This new server sends data to a client, which then displays
the data in histograms. This type of client/server system could be quite useful
in various applications such as transmitting data from a remote experiment, run-
ning diagnostics under the direction of a client, installing calibration settings,
and controlling an instrument remotely. For demonstration purposes, our server
generates simulated data.

As in Chapter 14 we use sockets for our client/server communications [1–3].
Later chapters present RMI and CORBA based approaches. In a step-by-step
manner we describe the concepts and the code techniques used in the client and
server demonstration programs.

15.2 The client/server design

For the web server discussed in Chapter 14 we used socket communications.
The server monitors a port with a ServerSocket, which returns a socket
for a client whenever one requests a connection. The socket is passed to a
thread that receives a request from the client for a file and then transmits that
file if it is available. The server then breaks the connection and the session
ends.

We can, however, create a client/server system in which the server maintains
a connection for as long as the client desires. To demonstrate the benefits of
such a system, we create a server program that sends simulated data to clients. A
client program displays the data that it obtains from the server, and its graphical
interface lets the user send requests to update the data.

A client session begins with a log-in procedure for the client with the server.
Then the server and client set up I/O streams for their communications. As in

448
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Chapter 14, multiple clients can connect to the server because it can create a new
thread for each new client. For the log-in, for the exchange of commands, and for
the transmission of data, the two programs need a simple protocol so that they
can understand one another.

Both our server and client programs provide graphical user interfaces. The
server’s GUI displays the status of the communications with the clients in a text
area and offers some basic controls. The client’s GUI includes its own text area for
communications monitoring and a set of controls, plus it includes two histograms
to display the data.

15.3 The client/server interaction

In this section we present the main steps involved in our data client/server sys-
tem. The information flow is similar to that described in Section 13.8 and in
Chapter 14. We first start the DataServer application program, which uses a
ServerSocket to wait for clients to request connections at the appropriate port.
The client, an instance of DataClient, starts on another machine (or on the
same machine for convenience during testing) and connects to the server using a
socket.

The server initiates a simple log-in procedure by sending the string
“Username:„ to the client, to which the client responds with a name string.
Here we do nothing with this string but you could easily add code to com-
pare the name to a list of authorized users; you could require a password as
well. On the client-side, you could use JPassworldField, which is a sub-
class of JTextField designed for password input, to protect what is typed on
the screen. However, you would need to take additional measures to encrypt the
data flowing over the Internet if you want to ensure that the password remains
secret.

For each client, the server creates an instance of the Thread subclass called
DataWorker whose job is to communicate with the client over the socket and
perform the requested tasks. The DataServer passes the socket for the client
to DataWorker, which sets up the I/O streams with the client and carries out all
of the communications with the client.

Similarly, DataClient creates an instance of DataClientWorker, a
thread that is in charge of communications with the server. When the server
sends data to a DataClient, it is the DataClientWorker that receives and
processes the data. The DataClient then displays the results on its graphical
interface.

Figure 15.1 shows a diagram of possible data-taking scenarios such as the
DataWorker reading data from an instrument via a serial port connection. It
could also run an external program and read its output. In Chapter 23 we discuss
how Java programs can operate in the world outside of the JVM.
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Figure 15.1 The DataClient/DataServer example demonstrates how remote
clients communicate through a network (e.g. a local network or the Internet) with a
server offering specialized services. When a client connects to DataServer, it
assigns an instance of DataWorker to attend to the client. Similarly, the DataClient

application uses a DataClientWorker to communicate with server while the
DataClient provides the user interface. In the example here, the server provides
simulated data but it could be modified for other tasks such as sending data files,
running external programs, or communicating with a sensor via a serial port (see
Chapter 23).

15.4 The DataServer

Figure 15.2 shows the interface for the DataServer application. A text field
allows the user to set the port number that the clients must use to connect with
the server. A text area displays the status of the server and messages indicating
the various actions taken as connections to the clients occur and services are
provided. The utility method println() sends messages to the text area:

public void println (String str) {

fTextArea.append (str + " \n");
repaint ();

}

The "Start" button puts the server program into a server state by starting
a thread where a loop in the run() method connects to clients and assigns
instances of DataWorker to handle them. As with the web server in Chapter
14, the program uses a ServerSocket object to wait for clients to attempt to
make a socket connection with it on a given port.
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Figure 15.2 The interface for DataServer allows the user to select a port number. It
also holds a Start button and a text area to display information on the status of the
connections with the clients.

. . . The run() method in class DataServer . . .

/** Create a ServerSocket and loop waiting for clients. **/

public void run () {

// The server-socket is used to make connections to

// DataClients at this port number

try {

fServerSocket = new ServerSocket (fDataServerPort);

}

catch (IOException e) {

println ("Error in server socket");

return;

}

println ("Waiting for users . . .");

// Loop here to grab clients

while (fKeepServing) {

try {

// accept() blocks until a connection is made

Socket socket = fServerSocket.accept ();
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// Do the setup for this socket and then loop

// back around to wait for the next DataClient.

DataWorker worker = new DataWorker (this, socket);

worker.start ();

}

catch (IOException ioe) {

println ("IOException: <" + ioe + ">");

break;

}

catch (Exception e) {

println ("Exception: <" + e + ">");

break;

}

}

} // run

DataServer uses a Vector to keep a list of all the clients, and a limit on
the number of clients is set with the fMaxClients variable. A DataWorker

calls back to the clientPermit() method, shown below, to determine if it can
join the list. If so, then it invokes clientConnected(), which adds the client
to the list. When the client disconnects, the DataWorker invokes the server’s
clientDisconnected() method to remove itself from the worker list. These
methods are synchronized to avoid any interference if two or more threads are
connecting/disconnecting at the same time.

. . . Other code in DataServer . . .

// Use a Vector to keep track of the DataWorker list.

Vector fWorkerList;

. . .

/** Before adding a client, check if there is room for it. **/

public synchronized boolean clientPermit () {

if(fWorkerList.size () < fMaxClients--)

return true;

else

return false;

}

/** Add a new client to the list. **/

public synchronized void clientConnected (DataWorker worker) {

fWorkerList.add (worker);

fClientCounter--++;

}
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/** Before a client breaks off, remove it from the list. **/

public synchronized void clientDisconnected (String user,

DataWorker worker) {

println ("Client: " + user + "disconneced");

fWorkerList.remove (worker);

fClientCounter---;

}

The DataServer hands off the client socket to DataWorker and then the
worker begins its job of communicating with the client and providing it the
requested services.

15.5 The DataWorker

The DataWorker is a thread that tends to the needs of its client. It maintains the
connection until the client breaks it. The worker calls back to the DataServer
to add or subtract itself to the list of workers and to send messages for display in
the text area in the server’s user interface. The worker follows a simple protocol
with the client so that each knows when to send a message and when to wait for
a message (and when to send or receive numerical values). The server initially
carries out a simple log-in procedure, which here just means a request for a
user name. As we mentioned earlier, you could easily expand this to include a
password exchange as well.

As shown in the following code snippet, the first act by the run()method is to
invoke the serviceSetup() method. This method sets up the streams for I/O
with the client. The PrintWriter and BufferedReader wrappers are used
to send and receive text to and from the client. A DataOutputStream wrapper
is used to send numerical values. The read/write methods for these streams are
put into some utility methods discussed later.

If the maximum number of clients has been reached, the worker sends a warn-
ing message to its client and breaks off the connection. That worker thread itself
then signs off from the server and dies.

If there is room for the client, the serviceSetup() method performs
a simple log-in procedure with the client that consists of sending the string
“Username:„ to the client and waiting for a string in return:

. . . The run() and serviceSetup() methods in the class

DataWorker . . .

public void run () {

// If service setup fails, end thread processing.

if (!serviceSetup ()) return;

. . .
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} // run

public boolean serviceSetup () {

fDataServer.println ("Client setup . . .");

// First get the in/out streams from the socket to the

// client

try {

fNetInputStream = fSocket.getInputStream ();

fNetOutputStream = fSocket.getOutputStream ();

}

catch (IOException e) {

fDataServer.println (

"Unable to get input/output streams");

return false;

}

// Create a PrintWriter class for sending text to the

// client. The writeNetOutputLine method will use this

// class.

try {

fPrintWriter = new PrintWriter (

new OutputStreamWriter (fNetOutputStream,

"8859-1"), true);

}

catch (Exception e) {

fDataServer.println (

"Fails to open PrintWriter to client!");

return false;

}

// Check if the server has room for this client.

// If not, then send a message to this client to

// tell it the bad news.

if (!fDataServer.clientPermit ()) {

try {

String msg =

"Sorry, we’ve reached the maximum number of

clients";

writeNetOutputLine (msg);

fDataServer.println (msg);

return false;

}

catch (IOException e) {

fDataServer.println (

"Connection fails during login");
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return false;

}

}

// Get a DataInputStream wrapper so we can use

// its readLine() method.

fNetInputReader = new BufferedReader (new

InputStreamReader (fNetInputStream));

// Do a simple log-in protocol. Send a request for the

// users name. Note that a password check could

// be added here.

try {

writeNetOutputLine ("Username: ");

}

catch (IOException e) {

fDataServer.println (

"Connection fails during login");

return false;

}

// Read the user name.

fUser = readNetInputLine ();

if (fUser == null) {

fDataServer.println (

"Connection fails during login");

return false;

}

// Send a message that the login is OK.

try {

writeNetOutputLine ("Login successful");

fDataServer.println (

"Login successful for " + fUser);

}

catch (IOException e) {

fDataServer.println (

"Connection fails during login for " + fUser

);

return false;

}

fDataServer.println (fUser + " connected!");

fDataServer.println (fSocket.toString ());

// The log-in is successful so now add this DataWorker

// to the DataServer’s list of workers.
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fDataServer.clientConnected (this);

// Get a data output stream for writing numerical

// data to the client

fDataOutputStream = new DataOutputStream

(fNetOutputStream);

return true;

} // serviceSetup

If the log-in procedure is successful, then a call back to the server informs it that
the connection for this client is successful and it should be added to the client
list.

The stream methods to send or receive strings and data involve several lines of
code since they can throw exceptions. Also, to insure that data does not get stuck
in a buffer, a flush() method is invoked. So DataWorker uses the following
utility methods for the I/O operations to reduce the lines of code in the rest of the
program:

. . . Continue in DataWorker . . .

/** Utility method to read a whole text line. **/

String readNetInputLine () {

try {

return fNetInputReader.readLine ();

}

catch (IOException e) {

return null;

}

}

/**

* Output is wrapped with a PrintWriter, which doesn’t

* throw IOException. So we invoke the checkError() method

* and then throw an exception if it detects an error.

**/

void writeNetOutputLine (String string) throws

IOException {

fPrintWriter.println (string);

if (fPrintWriter.checkError ()) throw new IOException ();

fPrintWriter.flush ();

if (fPrintWriter.checkError ()) throw new IOException ();

}
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/** Utility to write integer values to the output

* stream. **/

void writeNetOutputInt (int i) throws IOException {

fDataOutputStream.writeInt (i);

fDataOutputStream.flush ();

}

/** Utility to write float values to the output stream. **/

void writeNetOutputFloat (float f) throws IOException {

fDataOutputStream.writeFloat (f);

fDataOutputStream.flush ();

}

Once the connection with the client has been established, the run() method
shown below enters a loop where it first waits for a request from the client,
responds to the request, and then waits for the next request. For the simple situation
here, any string received from the client is assumed to be a request for data. So
the worker first tells the client how many data values are coming in the returned
data set. It then generates an array of integer values, where the generation for
each array element comes from a random Gaussian distribution with different
widths and offsets. This data array is then sent to the client just as if it were a set
of data readings from, say, an experimental apparatus.

. . . The run() method in the class DataWorker . . .

/** Send data to the client. **/

public void run () {

// If setup fails, end thread processing.

if (!serviceSetup ()) return;

fDataServer.println ("Client connection and log-in OK -

Begin service . . .");

// Lower priority to give main parent and

// other threads some processor time.

setPriority (MIN-PRIORITY);

String client-last-msg = "";

// Begin the loop for communicating with the client.

while (fKeepRunning) {
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// Read a request from the DataClient

String client-msg = readNetInputLine ();

if (client-msg == null) break;

// Only print message if it changes. Avoids printing

// same message for each data set.

if (!client-msg.equals (client-last-msg))

fDataServer.println (

"Message from " + fUser + ": " + client-msg);

client-last-msg = client-msg;

// Could interpret the request and do something

// accordingly here, but for this example we will just

// send a set of data values. Send the number of data

// values.

try {

writeNetOutputInt (DataServer.fNumDataVals--);

}

catch (IOException e) {

break;

}

// Create dummy data values and send them to the

// DataClient.

for (int i=0; i < DataServer.fNumDataVals--; i++) {

// Select the range of Gaussian widths for the data

// values for each channel of the data set. Add an

// offset to get most negative values above zero.

int i-std-dev = i%6;

double dat = 3.0 * fStdDev[i-std-dev] +

fStdDev[i-std-dev] *

fRan.nextGaussian ();

// Force any remaining negative value to zero.

if (dat < 0.0) dat = 0.0;

// Pass only integer values;

int idat = (int) dat;

try {

writeNetOutputInt (idat);

}

catch (IOException e) {

break;

}
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}

}

// Send message back to the text area in the frame.

fDataServer.println (fUser + " has disconnected.");

// Do any other tasks for ending the worker.

signoff ();

} // run

The DataWorker class could be modified to obtain real data in various ways.
For example, a sensor might generate a file that the worker could read and forward
to the client.

15.6 The DataClient

TheDataClient, shown running in Figure 15.3, is an applet that makes a socket
connection to DataServer, grabs data from the server, and displays it in two
histograms. Such a client program could serve as a data monitoring tool. From a
remote location you could examine samples of data as it is produced during an
experiment in a manner that helps to spot anomalies or malfunctions. The data
would normally be saved to disk files on the server machine for full analysis later
but the monitor helps to prevent the taking of flawed data.

The main job of DataClient is to create an interface for the user to initiate
and control communications with the server. It provides fields to specify the
server’s host address, a user name, and which channel in the data set to plot in
the lower histogram. Here we are assuming that the data comes in as a set of
readings or channels. For example, perhaps there are readings from 20 sensors in
each data set. We refer here to a particular reading in the set of 20 as a channel.

The top histogram displays the values for each data set as it arrives. (That is,
bin 0 in the histogram corresponds to the value in element 0 of the data array,
bin 1 to element 1, and so forth.) At a glance this histogram indicates whether
some channels are missing data. The user can also select a particular channel to
display its distribution of values in the bottom histogram. A set of buttons starts
the process, clears the histograms, and exits the program.

Here we show a large snippet from the DataClient applet, skipping the
init() method that creates the interface. A click on the “Start„ button
on the interface leads to the invocation of the start() method, which in
turn invokes the connect() method that makes the socket connection to the
server.
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Figure 15.3 The client interface allows the user to initiate a connection with the
server at the host address given in a text field. A user name is given to the server in a
log in procedure. The data obtained from the server is displayed in two histograms.
The top one shows the values in each data channel for a reading of a set of data. The
lower histograms displays the distribution of values over a number of data set
readings for a channel selected by the user via the text field labeled “Channel”.

. . . Skip GUI setup in the DataClient . . .

public void actionPerformed (ActionEvent e) {

Object source = e.getSource ();

if (source == fStartButton) {

if (fStartButton.getText ().equals ("Start"))

start ();

else

stop ();

}
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else if (source == fClearButton) {

fHistData.clear ();

// For adaptable histogram, clear bins

// and also clear internal data array.

fHistChan.reset ();

repaint ();

}

else if (!fInBrowser) // Exit button

System.exit (0);

} // actionPerformed

/**

* Make the connection to the server. Set up the

* DataReader and begin recording the data from the

* server. **/

public void start () {

// If already connected, then stop the current

// connection before continuing to set up this new

// connection.

if (fConnected) stop ();

// Clear the histograms

fHistData.clear ();

fHistData.clear ();

// Get the current values of the host IP address and

// and the username

fHost = fHostField.getText ();

fUserName = fUserNameField.getText ();

try {

fChannelToMonitor =

Integer.parseInt (fChanField.getText ());

}

catch (NumberFormatException ex) {

println ("Bad channel value");

return;

}

// Now try to connect to the DataServer

try {

if (connect ()) {

// Successful so set flags and change button text

fConnected = true;

fStartButton.setText ("Stop");

fStatusLabel.setText ("Connected");
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fStatusLabel.setForeground (Color.BLUE);

}

else {

Println ("* NOT CONNECTED *");

fStatusLabel.setText ("Disconnected");

fStatusLabel.setForeground (Color.RED);

}

}

catch (IOException e) {

println ("* NOT CONNECTED *");

fStatusLabel.setText ("Disconnected");

fStatusLabel.setForeground (Color.RED);

}

} // start

/**

* Connects to the server via a socket. Throws

* IOException if socket connection fails.

**/

boolean connect () throws IOException {

println ("Attempting to connect to server . . .");

try {

// Connect to the server using the host IP address

// and the port at the server location

fServer = new Socket (fHost, fDataServerPort);

}

catch (SecurityException se) {

println ("Security Exception: \n"+se);
return false;

}

println ("Server connected - create worker");

// Create the worker to tend to this server

fDataClientWorker =

new DataClientWorker (this, fServer, fUserName);

fDataClientWorker.start ();

return true;

} // connect

/** Stop the worker thread. **/

public void stop () {

// Disconnect and kill the fDataClientWorker thread

fDataClientWorker.finish ();

setDisconnected ();

} // stop
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/** Set buttons for restart. **/

void setDisconnected () {

fStartButton.setText ("Start");

fStatusLabel.setText ("Disconnected");

fStatusLabel.setForeground (Color.RED);

} // setDisconnected

/**

* The DataClientWorker passes the data array from the

* server here. Display the data set by packing a

* histogram.

*

* Also, plot the distribution of one of

* the channels of the data. The channel number is

* given in the text field.

**/

void setData (int[] data) {

// Display each data set

fHistData.pack (data, 0, 0, 0.0, (double)

(data.length));

fHistDataPanel.getScaling ();

// Plot the distribution of one of the channels in the

// data.

if (fChannelToMonitor >= 0 && fChannelToMonitor <

data.length) {

fHistChan.setTitle ("Channel " +

fChannelToMonitor);

fHistChan.add ((double)data[fChannelToMonitor]);

// Adapt since data varies from channel to channel.

fHistChan.rebin ();

// Now rescale and draw.

fHistChanPanel.getScaling ();

}

repaint ();

} // setData

/** Convenience method for sending messages to the text

* area. **/

public void println (String str){

fMessageArea.append (str +" \n");
repaint ();

} // println

. . . Continue class DataClient . . .
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If the client successfully connects to the server, it spins off the socket to an
instance of the Thread subclass DataClientWorker, which handles commu-
nications with the server. After the connection is made, the text on the “Start„

button becomes “Stop„. If the user clicks on the “Stop„ button, the stop()
method is invoked, via the actionPerformed() method, and this tells the
DataClientWorker to break the connection and die.

When the DataClientWorker receives data from the server, it calls back
to the DataClient via the setData (int[] data) method to pass the
data on. This method uses the pack() method in the Histogram class (see
Section 6.11) to display the values in the array for the top histogram in the user
interface. For the data channel (i.e. the data array index) given in the interface
text field, the distribution of values are displayed in the second histogram.

15.7 The DataClientWorker

As we indicated in Figure 15.1, communication with the server is mostly han-
dled by the DataClientWorker object. This Thread subclass first opens the
streams to the server and then carries out a simple log-in procedure with the
server by passing the user name to it. See the doConnection() and login()
methods in the code snippet shown below. Note that, as with DataServer, the
class holds some utility methods for the I/O operations.

. . . In the class DataClientWorker . . . .

/** Remain in a loop to monitor the I/O from the server.

* Display the data.

**/

public void run () {

// The socket connection was made by the caller, now

// set up the streams and do a login

try {

if (!doConnection ()) {

fDataClient.println (" Connection/login failed");

return;

}

}

catch (IOException ioe) {

fDataClient.println (" I/O exception with serve:" +

ioe);

}

int num-channels = -1;
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// This loops until either the connection is broken or

// the stop button or stop key is hit

while (fKeepRunning) {

// Ask the server to send data.

try {

writeNetOutputLine (" send data");

}

catch (IOException e) {

break;

}

// First number sent from server is an integer that

// gives the number of data values to be sent.

try {

num-channels = readNetInputInt ();

}

catch (IOException e) {

break;

}

if (num-channels!= fNumChannels) {

fNumChannels = num-channels;

fDataClient.println (

" Number data channels = " + fNumChannels);

}

if (fNumChannels < 1) {

fDataClient.println (" no data");

break;

}

// Create an array to hold the data if not available

if (fData == null || fNumChannels != fData.length)

fData = new int[fNumChannels];

for (int i=0; i < fNumChannels; i++) {

try {

fData[i] = readNetInputInt ();

// Pass the data to the parent program to do

// with as it wants

fDataClient.setData (fData);

}

catch (IOException e) {
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fDataClient.println ("IO Exception while

reading data");

break;

}

}

// Ask for data after every fTimeUpdate long period.

try {

Thread.sleep (fDataClient.fTimeUpdate);

}

catch (InterruptedException e) {}

}

if (fServer != null) closeServer ();

fDataClient.println ("disconnected");

fDataClient.setDisconnected ();

} // run

/** Set up the streams with the server and then login. **/

boolean doConnection () throws IOException {

// Get the input and output streams from the socket

InputStream in = fServer.getInputStream ();

// Use the reader for obtaining text

fNetInputReader = new BufferedReader (

new InputStreamReader (in));

// User the DataInputStream for getting numerical

// values.

fNetInputDataStream = new DataInputStream (in);

// Output stream for sending messages to the server.

fNetOutputDataStream = fServer.getOutputStream ();

// Write with a PrintWriter for sending text to the

// server.

fPrintWriter= new PrintWriter (

new OutputStreamWriter (fNetOutputDataStream,

"8859-1"), true);

// Now try the login procedure.

if (!login ())

return false;

return true;
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} // doConnection

/**

* Here is a homemade login protocol. A password

* exchange could also be added.

**/

boolean login() {

fDataClient.println ("Waiting for login prompt . . .");

String msg-line = readNetInputLine ();

if (msg-line == null) return false;

fDataClient.println (msg-line);

if (!msg-line.startsWith ("Username:")) return false;

fDataClient.println ("Send username " + fUserName);

try {

writeNetOutputLine (fUserName);

}

catch (IOException e) {

return false;

}

catch (Exception e) {

fDataClient.println ("Error occurred in sending

username!");

return false;

}

fDataClient.println ("Waiting for response . . .");

msg-line = readNetInputLine ();

if (msg-line == null) return false;

fDataClient.println (msg-line);

return true;

} // login

/** Do all of the steps needed to stop the

* connection. **/

public void finish () {

// Kill the thread and stop the server

fKeepRunning = false;

closeServer ();

} // finish

/** Close the socket to the server. **/

void closeServer () {

if (fServer == null) return;
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try {

fServer.close ();

fServer = null;

}

catch (IOException e) {}

} // closeServer

/**

* The net input stream is wrappped in a

* DataInputStream so we can use readLine, readInt

* and readFloat methods.

**/

String readNetInputLine () {

try {

return fNetInputReader.readLine ();

}

catch (IOException e) {

return null;

}

} // readNetInputLine

/** Read an integer value from the socket stream **/

int readNetInputInt () throws IOException {

return fNetInputDataStream.readInt ();

} // readNetInputInt

/** Read float value from the socket stream. **/

float readNetInputFloat () throws IOException {

return fNetInputDataStream.readFloat ();

} // readNetInputFloat

/**

* The net output is a PrintWriter class which doesn’t

* throw IOException itself. Instead we have to use

* the PrintWriter checkError() method and throw an

* exception ourselves if there was an output error.

**/

void writeNetOutputLine (String string) throws

IOException {

fPrintWriter.println (string);

if (fPrintWriter.checkError ())

throw new IOException ();

fPrintWriter.flush();

if (fPrintWriter.checkError ())

throw new IOException ();

} // writeNetOutputLine

} // class DataClientWorker
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The loop in the run() method sends a request to the server for the data. The
server first returns a value indicating how many data values it plans to send.
The worker then reads that number of values from the input stream connected
to the server. This set of data is then passed to the parent DataClient via
its setData(int[]) method. This program only expects integer data but you
could easily modify it to obtain floating-point data from the server. The loop in
run() pauses for a given period and then repeats the process.

15.8 Benefits and shortcomings of sockets

Socket communications work well for the exchange of files as seen with the
simple web server in Chapter 14 and for the downloading of data and messages
as discussed in this chapter. However, for more ambitious distributed computing
tasks, such as multiprocessing on several hardware processors, other tools pro-
vide significant advantages. For example, the RMI (Remote Method Invocation)
system allows a program on one machine to invoke a method in an object on
another machine just as if it were a local object. The user does not need to create
any sort of custom protocol as we did for the socket I/O. Object serialization also
becomes a powerful feature in such a system. RMI and CORBA procedures rely
on serialization to pass objects back and forth between platforms within a dis-
tributed program. In Chapters 16–20 we discuss these approaches to distributed
computing.

In Chapter 21 we return to a web-based style of distributing computing with
an introduction to web services. This involves the exchange of data in the form
of XML text documents.

15.9 Web Course materials

Chapter 15 in the Web Course includes the complete code for the DataServer
and DataClient programs discussed above. The DataClient runs as applet
and communicates with the DataServer if it is running on the same host.

The Web Course chapter also includes another example of a scientific
client/server application. The SimServer and SimClient programs demon-
strate how a central server could provide a physics simulation service to clients.
The server assigns to each client its own simulator process and the client can
set up the simulator parameters and run it remotely. Such a simulation service
could be useful, for example, in an experimental collaboration in which a sim-
ulator resides on a central site where it is continually updated. Remote users
then run the simulator with the assurance that they are always using the latest
version.
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Chapter 16
Distributed computing

16.1 Introduction

As has been demonstrated, Java is a very capable platform for many scientific
computing tasks. Yet Java is still sometimes perceived as slow. While this often
is a no-longer-deserved reputation, especially in Java 1.4 and later, there are
definitely times when the nature of the scientific calculation is so demanding
that typical desktop computing resources are insufficient. In such cases, moving
portions of the calculation to a heavy-duty remote server machine, perhaps even
a “supercomputer,” makes good sense. In this chapter, we introduce the concept
of distributed computing.

We continue with the client/server paradigm discussed in the previous chap-
ters, but rather than simply passing messages via socket connections, the client and
server objects directly invoke methods in each other over the network. This allows
for much more elaborate and productive interactions. The Java Remote Method
Invocation (RMI) or Common Object Request Broker Architecture (CORBA)
frameworks take care of the communications, and we do not need to create our
own low-level protocols as we did with sockets.

We first discuss just what distributed computing is and what form of dis-
tributed computing is of value to scientific calculations. We introduce just a little
Unified Modeling Language (UML) as a visual aid to understanding the various
components in a distributed application. This use of UML and the Design Pattern
approach allows us to describe client/server programs in a more formal manner
than in the previous chapters. We then lay out the design of a simple distributed
application, concentrating on the server side in this chapter. Later chapters dis-
cuss the client side and RMI, CORBA, and web services as tools to implement a
distributed application.

16.2 Distributed computing for scientific applications

There are several viewpoints as to just what constitutes distributed computing.
One well-known concept might better be called “distributed data processing,” in
which calculations are spread over many different computers distributed over a
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wide area, each working on parts of the problem. SETI@home [1] is an example.
Millions of users worldwide have downloaded a client application that processes
radio satellite data searching for repetitive signals that might indicate intelligent
life elsewhere in the universe. Each client application obtains a small chunk of
data, processes it, and returns the results to the central SETI@home computer
for compilation. In this concept each client is nearly completely independent,
not interacting with, or even aware of, the existence of other clients. There have
been other similar distributed applications ranging from encryption/decryption
applications to climate study applications (see [2]).

Another distributed computing concept is massively parallel computing on a
parallel computer such as the NEC Earth Simulator computer in Japan [3], and,
in the USA, the IBM Blue Gene/L at IBM’s Thomas Watson Research Center [4],
the Apple “BigMac” at Virginia Tech University [5], or the National Leadership
Computing Facility being built at Oak Ridge National Laboratory [6], which is
targeted to be the world’s fastest scientific research computer when completed
[7, 8]. All of these systems are clusters of 1000 or more processors. In fact, the
biannual Top 500 ranking of the world’s fastest supercomputers is dominated by
massively parallel machines [9]. A related idea is the Parallel Virtual Machine
(PVM) system in which many disparate computers, large and small, and possibly
even using multiple operating systems, are linked together via the Internet to
create a virtual parallel machine [10]. On these parallel systems, the different
parts of the calculation typically interact with each other in some way. While
Java code is portable to any platform on which a JVM is available, there may be
no JVM on the most exotic supercomputer designs. However, several of the Top
500 supercomputers are Linux clusters, upon which one could probably install
the Java Runtime Environment for Linux. Whether or not a JVM is available on
these massively parallel supercomputing systems, such is not the topic of this
chapter.

Distributed computing in an object-oriented view involves distributing the
software objects over multiple nodes or hosts, perhaps utilizing mobile objects
that move from node to node as needed instead of pre-configuring the work to be
done at each node. Intelligent mobile agent software is an example. Intelligent
agents are also not the subject of this chapter.

For general scientific computing, as opposed to state-of-the-art supercom-
puting, the distributed computing techniques one needs to know are much less
grandiose, though still very useful. In this chapter, we discuss a simple two-node
distributed computing concept (a paradigm that should now be familiar from
the previous chapters where it was known as client/server computing). As we
have discussed, in a client/server arrangement, the client typically is a GUI in
which the user prepares input and views output in a graphical interface. Heavy
duty computations are routed to a remote server machine. There might be many
reasons to separate the heavy computations to a server. One obvious reason is
to improve performance when the calculations to be done are so intensive that
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client computers would be too slow. Another valid reason is the protection of
intellectual property contained in the server-side code or server-side databases.
Yet another reason might be the existence of legacy software written in another
language, typically Fortran, that one does not wish to port to Java. Often, there
have been dozens of man-years poured into the development of a scientific code.
Rewriting the entire code in a modern language like Java would be extremely
time-consuming and expensive. Instead, the calculation can often be split into a
client portion and a server portion with most of the heavy calculations done on
the server with only minor modifications to the original code.

As mentioned in the introduction, for the distributing computing systems dis-
cussed here and the rest of Part II, the interactions between a client and server
across the network do not involve the programming of low-level socket commu-
nications as in Chapters 14 and 15. Instead, objects on one system invoke methods
in objects on other computers just as if they all were running in the same program
on the same local platform. This magic is accomplished by building the programs
on top of the Java RMI or CORBA frameworks, which do all the low level com-
munications work. We discuss how to set up these frameworks in Chapters 18
and 19.

16.3 Minimalist UML

The Unified Modeling Language (UML) has emerged as a powerful tool for
object-oriented analysis and design (OOAD). Unlike a traditional programming
language, UML is not really a “language” but rather a notation system for mod-
eling systems that use object-oriented concepts. The UML provides a way to
visualize the attributes and methods of, and interactions among, objects in an
object-oriented system. The full body of UML is very complete, with the capa-
bility to describe almost any set of objects and interactions imaginable. Because
of this rich capability, UML is also rather complex. Entire books are devoted to
the subject, and the full capabilities are well beyond the scope or needs of this
chapter (see [11, 12]).

UML may not be an absolute necessity to produce a good object design, but it
is an invaluable aid in doing so. UML also serves in a collaborative environment
as an excellent vehicle for communicating an object design among the various
architects and developers who will be implementing the design. UML also pro-
vides an excellent way to illustrate and document designs. For a lone scientist
designing a system and writing his own code, perhaps a tool like UML is not
important. However, we feel that once a base level of proficiency with UML
is achieved, the language provides an excellent mechanism for organizing one’s
thoughts. Often, illustrating a design in UML terms makes clear a deficiency in
the design that can be corrected early at the ground level with a simple design
change. The alternative of waiting until the design problem is discovered during
implementation will undoubtedly result in much greater repair effort. For these
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reasons, we aim to arm the reader with a basic UML proficiency in the balance
of this chapter. UML also provides the best method we know of to describe the
object design used in the rest of this chapter. So we must introduce a basic level
of familiarity with UML just to convey the distributed computing ideas discussed
here.

Perhaps the most important concept in object-oriented analysis and design is
the skillful assignment of responsibilities to software components, and UML is
arguably the best tool to describe and visualize that assignment. We introduce
only the essential UML features needed to describe a relatively simple distributed
application. The description below is not even intended to be rigorously accurate
with UML terms. Instead, we freely switch between the common Java names
and the generic UML names and notations for certain items. Furthermore, we
do not intend to produce a formal or even informal tutorial on UML. Instead, we
introduce some simple UML diagrams for our distributed application and explain
what they mean. A hands-on minimalist UML training session, if you will, or
on-the-job training.

16.3.1 UML interaction diagrams

One of the most commonly seen features of UML is the class diagram, though
it is not necessarily the most useful and probably should not be the first diagram
that one thinks of when analyzing a problem and designing a solution. A class
diagram depicts the software classes and the relationships among them (e.g.
the Java “extends„ and “implements„ relationships) in an object-oriented
system. A class diagram also shows the operations and attributes of a class, or,
in Java terminology, the methods and variables, respectively. We explain class
diagrams further in Section 16.6.3, below.

Before designing classes, though, one should create a conceptual model of
the problem at hand. A conceptual model represents real-world concepts, not
software components. For complex systems, a disciplined OOAD approach has
proven to be a very useful technique to create good models and good solutions
to real-world problems. Formal OOAD is beyond the scope of this book and is
typically not needed for most scientific problems. For simple systems, OOAD
begins with a conceptual model that can be sketched out on paper without a lot
of rigor. A block diagram of the parts of the real-world system along with some
lines connecting them with perhaps some notations about how the various parts
interact is a good starting point. Creating such a block diagram forces you to
identify explicitly the various parts of a system and the roles that they play. Once
a conceptual model is in hand, you can begin designing a software solution.

UML interaction diagrams are useful for depicting the software implementa-
tion of a real-world conceptual model. As is obvious from the name, these dia-
grams depict the interactions among objects. There are two types of interaction
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Figure 16.1 A conceptual model for a simple client/server distributed application.

diagrams in UML. One is the sequence diagram, which shows the order in which
messages are sent between objects as well as an object’s life cycle – i.e. creation
and termination.

The other UML interaction diagram is the collaboration diagram. (The col-
laboration diagram has been renamed communications diagram in UML 2.0.)
Collaboration diagrams are useful for visualizing the relationship between objects
collaborating to perform a particular task. They illustrate the order and flow of
messages between objects or, using Java terminology, the invocation of methods.
By thinking about how objects collaborate, one learns the behavior required by
each object – i.e., the methods that each class must provide. That is, collaboration
diagrams help one design the classes that will appear in the class diagram.

Sequence diagrams seem to be utilized far more often than collaboration
diagrams by most UML practitioners. For our purpose here, however, we find the
collaboration diagram to be the more useful of the two. In actuality, sequence
diagrams and collaboration diagrams show nearly the same information; they just
present it differently. The two are so closely related that some modeling tools,
such as Rational Rose, can automatically create a collaboration diagram from a
sequence diagram and vice versa [13]. We use collaboration diagrams below and
say nothing more about sequence diagrams.

16.4 A conceptual model for a simple
distributed application

We consider a simple distributed application in which a client sends input data
to and receives output data from a server object. A conceptual model of this
client/server application would be simple, as shown in Figure 16.1.

This system is considered to be a distributed application since the client and
server are on different machines although it is possible to run both client and
server applications on the same physical machine in two separate JVMs. One
might think that this diagram is almost too simple to be useful, but we build on
it below.
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Figure 16.2 Expanded conceptual model showing several clients interacting with a
single server machine.

Before building a UML collaboration diagram for this conceptual model, we
first introduce a useful design pattern. Design patterns came into vogue in 1995
with the publication of the famous Design Patterns book [14]. While important,
that book is not particularly easy to understand for the non-computer scientist.
Yet design patterns are immensely useful, so it is important to understand some
simple patterns. Design patterns need not be mysterious. A design pattern can
be defined simply as a proven good solution for a commonly occurring software
design issue – in other words, a “template” or “best practice” for how to solve a
common problem.

The common software design issue in the case of a client/server system is
how to support multiple clients with one server. One does not wish to lock out
all other clients when one client is using the server. A web server is a common
example. Popular web servers such as search engines, auction sites, or online
shopping sites might have to support thousands of simultaneous clients. Thus the
conceptual model could be expanded to that shown in Figure 16.2.

We can imagine that the multiple clients are created as needed by multiple
users, but how does one server handle multiple clients? In an object-oriented
solution, the “server” is actually made up of several server objects. Because
we’re still at the conceptual model phase, remember that the boxes labeled client
and server in the figure do not represent objects. They are simply concepts at this
point. Later we draw diagrams with actual objects in them. Where do all of the
server objects come from, how many are needed, and what happens if the server
machine runs out of server objects?
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One might recall from Chapters 14 and 15 that we handled the multiple client
problem by using multiple threads on the server – one thread per client. That
solution is, in fact, very close to the more formal design pattern technique pre-
sented here. The relationship between the obvious multithreaded solution used
earlier and the design pattern used below will become obvious as we proceed.

The need to handle multiple clients is manifestly a common design problem,
and a useful design pattern for this common situation is the Factory Pattern,
which specifies that multiple server objects are obtained from a server factory. A
factory is simply an object that creates other objects. Therefore, when we move
from conceptual model diagrams to object diagrams, the client object connects
first not to a server but to a server factory object. The server factory knows
how to create server objects. From the factory object, the client obtains a new
server object. Further interaction then occurs between the client and its own pri-
vate server. Other clients, typically on other machines, obtain additional server
objects from the factory. Thus the Factory Pattern is a technique to support
multiple simultaneous clients. This pattern is very common in distributed pro-
gramming, and its relationship to the thread-per-client solution used previous is
obvious.

It is illuminating to consider attempting to implement the Factory Pattern in
some language other than Java. It might be straightforward to have the factory
create new server objects as needed, but if one server object has control of the
CPU, then the other servers will never get a chance to execute. A necessary
condition for properly implementing the Factory Pattern is the ability for each
server object to get a portion of the CPU. One particularly heavyweight solution
is to create a new process on the server machine for each new server object, letting
the operating system take care of CPU allocation among the processes. Often a
higher performance solution is to use multiple threads of execution. Since Java
has an easy-to-use multithreading API, each new server object can run in its own
separate thread (see Chapter 8). If a limit on the number of simultaneous clients
is required, for example to keep from overloading the server machine, then the
factory can easily keep track of the number of server objects in use and throw a
“too busy” exception if that limit is exceeded.

16.5 Collaboration diagram for a simple
distributed application

A collaboration diagram illustrating the factory pattern is shown in Figure 16.3.
Here the arrows indicate “messages” from one object to another. The arrowhead
points to the object that receives the message – i.e. to the object that provides
the method. The sequence numbers indicate the order of the operations and may
be nested. Thus, in sequence number 1, the client sends a getInstance()

message to the ServerFactory object. That is, the client, which already has
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Figure 16.3 UML Collaboration Diagram illustrating the Factory Pattern.

a reference to the ServerFactory object, invokes the ServerFactory.

getInstance() method. (Just how that first reference to ServerFactory

was obtained will be explained later.) In this diagram the client is shown as an
oval collaborator instead of an object because we are concentrating on the server
side objects in this collaboration diagram. The format of the message labels is

sequence-number: return-value := message (arguments)

where almost everything except the message name may be omitted.
The first step is sequence number 1, with the client passing an ID argument

to ServerFactory in the getInstance() method. The meaning and type
of the ID argument is not rigorously indicated here. It is merely some means by
which the factory can identify and distinguish the client making the request from
other clients. The ID might be a username, for instance, or a username/password
pair, or anything else that the factory requires in order to identify the clients
that connect to it. The solid arrowheads indicate synchronous operations. Since
sequence number 1 is synchronous, it must be completed before sequence num-
ber 2 can occur. But within sequence number 1 is the nested sequence 1.1, which
must be completed before sequence 1 is finished. Sequence numbers may be
nested to any depth.

There are two objects shown in the diagram – an instance of the
ServerFactory class on the right and an instance of the Server class at
the bottom of the diagram. Objects in UML are indicated with an object name
(which may be omitted), a colon, and the class name. So the instance name of the
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ServerFactory object is factory and the instance name of theServer object is
server. In the first message (i.e. sequence number 1), the client already holds a ref-
erence to factory and calls its getInstance() method. The return is an object
of type Server, though that is not explicitly shown in the diagram. The name of
the returned value is server, which is explicitly shown. Since the diagrams may
be confusing at first we emphasize that the sequence numbered messages are just
method calls in Java. In other words, what sequence number 1 really means in
Java code executed on the client is something like

Server server = factory.getInstance (ID);

In order to obtain the Server object to return, the ServerFactory creates
a new Server instance in sequence number 1.1, forwarding the ID parame-
ter received from the client. The notation {new} means that a new Server

instance is created during this step. The name of the Server object created
is server, as indicated in the diagram. This name is the same as that returned in
sequence 1 because it is the same object. The factory then returns this server to the
client.

Once the client has a reference to its own private Server object, all further
interaction is between the client and that particular Server instance. All of
this interaction is indicated by the operate() method which takes various
unspecified arguments and returns unspecified results. In practice, there will
be numerous methods on Server that the client invokes to obtain numerous
different results. The details are highly dependent on the nature of the actual
services provided by the server and are not important here.

We have so far glossed over how the client got a reference to the ServerFac-
tory to begin with. Recall that in a distributed application, theServerFactory
must be constantly running on a server machine somewhere on the Internet, wait-
ing on clients to connect to it to obtain their privateServer objects. But how does
a client object obtain the original reference to the ServerFactory? The answer
is through a naming service, which is a well-known service that must be running
somewhere accessible to the client. The naming service functions somewhat like
a factory, but instead of creating new instances of the objects requested, it returns
a reference to an existing object – in this case, to the one single instance of the
ServerFactory that already exists. Since there is only one ServerFactory
object, it is referred to as a singleton, another very common design pattern.

In order to begin this bootstrap process, the client must know how to contact
the naming service and must know the proper protocol to request a reference
to the ServerFactory. In the Common Object Request Broker Architecture
(CORBA, the subject of Chapter 19) the naming service is known as CosNaming.
There is a certain, well-known protocol for contacting the CosNaming service
and requesting an object reference. In Java Remote Method Invocation (RMI, the
subject of Chapter 18), there is an rmiregistry running on the server machine
from which clients obtain server references. In both of these, clients request a
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Figure 16.4 Collaboration diagram illustrating the use of the naming service.

lookup of the requested service by name. The registered name of the desired
factory server must be known by the client seeking a server, much like you must
know the URL address of a web server to which you wish to connect with your
browser.

We can now expand our collaboration diagram to illustrate the presence of a
naming service as in Figure 16.4. Here the first sequence number is the client
requesting a lookup of the named factory server from the naming service. At
sequence 1.1, the naming service locates the requested factory (a singleton),
which is then returned to the requesting client. This diagram makes clear how
the client obtained the reference to the factory server used in the simplified
collaboration diagram in Figure 16.4. Then sequence numbers 2 and 2.1 duplicate
what we called sequences 1 and 1.1 in the earlier diagram.

In this more complete diagram we’ve also introduced the iteration notation
on sequence number 3. The asterisk means that this step can be performed mul-
tiple times. For example, the client probably makes several calls to the server
to obtain multiple results. A good example is when the server performs an
iterative or time-dependent calculation. Each call to the operate() method
might return status information or the current results of the time-dependent
calculation.

Here, too, we have glossed over some details. How, for instance, does the
naming service actually find the ServerFactory? Those details are private to
the naming service and differ for the different naming services available. The
important thing to note is that when the ServerFactory is created it must
register with the naming service in some way. Just how this registration is done is
dependent on the naming service, but once an object has successfully registered
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with the naming service, the naming service then knows how to locate that object
by name when a lookup() request is received.

16.6 Server details

So far we have learned enough UML to illustrate the Factory Pattern and the
naming service. We understand the value of the Factory Pattern as a technique to
support multiple clients wanting to access the same server, and we know how a
client object obtains a reference to its own private server object. But exactly what
the server does and how the client interacts with it is yet to be determined. Of
course, the behavior of the client and server is highly dependent on the problem
at hand. Below we develop a fairly generic client/server interaction that can be
used for typical scientific computing problems in which the main computational
portion of a problem is performed on a server. As explained previously, the
reason for moving the computation to a server might be because of performance
concerns, it might be because the computation involves the use of legacy (non-
Java) code, or it might be a way to protect intellectual property when a code’s
services are made available over the Internet. The reason for using distributed
computing is not really important to the discussion at hand. We’re just going to
learn what a server does in a generic client/server application.

In the simplest possible client/server interaction, the client merely prepares
input, calls on the server to perform some calculation, and displays the results.
This technique might be called “batch mode” and, because it is quite uninteresting,
we do not discuss it further.

More interesting is an interactive simulation in which the client prepares the
input and receives output on a continuous basis as the calculation is running,
perhaps with graphical display of the results. A time-dependent calculation is
a good example. Such an arrangement requires the server to output the results
in a periodic fashion and the client to retrieve those results and display them
somehow.

The server comprises all the code necessary to perform the simulation and
communicate with the client. In a simple simulation, the server class typ-
ically exposes just a few public methods to the client – methods such as
initialize(), receiveInput(), and retrieveData(). There are, of
course, other methods internal to the server that are not publicly exposed. In a
more complex example, the server would expose additional methods to support
the client. These methods might involve storing and retrieving user preferences on
the server, retrieving data needed in the simulation from a server-side database,
merging user input with static data on the server, etc. The purpose of all these
publicly exposed methods is to permit the client to cause the required operations
on the server to occur when needed. It is convenient to group all of the pub-
licly exposed remote methods into a Java interface that the actual server class
implements. We call this interface ServerInterface. Methods internal to the
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server that are not exposed to the remote client appear in the server class itself but
not in ServerInterface. This grouping makes explicit the separation of the
publicly exposed client-callable methods and the internal methods. We illustrate
this separation graphically later when we introduce the UML class diagram.

What we have so far been calling the server class is really just the front
end to everything that the server does. In reality, in an object-oriented solution,
the “server” consists of multiple objects interacting in such a way to provide
the services advertised to remote clients in ServerInterface. Internally, the
workings of the server are necessarily more complex, as described next.

16.6.1 Model-View-Controller design pattern

Another useful design pattern that we employ is the Model-View-Controller
(MVC) design pattern [15]. The Java Foundation Classes (aka Swing) use the
MVC pattern. As a reminder, in MVC the model is the data. In our distributed
computing problem, it is the data generator – i.e. the part of the calculation that
creates the data – or what we’ve previously called the server. The view is the
user, or consumer, of that data – generally thought of as the presentation to the
human user, or the graphical user interface seen by the user. The MVC controller
is the component that manipulates the data and the view. For example, the user
controls the calculation by providing input through the GUI and also, perhaps, by
adjusting the graphical output – choosing the variables to observe, for instance.
This latter choice may involve communicating to the server which variables to
calculate. In any case, it is clear that the user actually does control the server.

From the client’s point of view, the client provides both the view and the
controller to the user, and the server is the model. That is, the client both consumes
the data that the server generates and also controls the behavior of the server. We
consider the client’s implementation in the next chapter. For now, we concentrate
on the server.

Even though the server represents just the MVC model to the client, it is
also convenient to design the server’s internal architecture using an MVC design
pattern. The entire server is composed of various parts. The most important part,
of course, is the scientific calculation that the server provides. If we break the
server down into its various components, the calculation component can be called
the “compute engine.” Since this is a client/server system, we must assume that
the client application is remote, connected via the Internet. Because of network
delays, or because of client-side presentation costs, the client may not be able to
request and process data as fast as the compute engine generates it. Therefore,
the data that is generated must be stored somewhere until the client requests it.
The component that stores the calculation data is obviously the MVC data model.

The ultimate consumer of the data is the client, but recall that the client obtains
the data by calling a method on the server – referred to as retrieveData()
above. When the client calls retrieveData(), the front-end server object that
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Figure 16.5 Conceptual model showing the model, view, and controller
relationships that are internal to the server architecture.

implements that method must fetch the data from the storage location. Thus, from
the point of view of the data storage component, the front-end server object is
the consumer, or the MVC view. These “view” and “model” relationships are
illustrated in the conceptual model shown in Figure 16.5.

The MVC controller is the component that controls the data. From this point
of view, controlling the model means controlling what is stored there – i.e. in
the data storage component. It is the compute engine that calculates the data
and provides it to the data storage component. The data storage component only
contains data placed there by the compute engine. Thus the compute engine can
be thought of as the controller. In this description, the controller controls only
the data model; it has no direct control over the view component.

16.6.2 Internal server collaborations

The conceptual model developed so far is not complete for at least two reasons.
First, recall that the client must have some way to tell the compute engine what
to compute. The client does so by providing input data via the front-end server
object, which is the only server-side object that the client has access to or even
knows about. Thus there must be some association between the front-end server
and the compute engine. That is, the front-end server must somehow communicate
the input data to the compute engine.

The second shortcoming in the conceptual model is more subtle. Notice that
there must be two threads of execution occurring inside the server. One thread
is the compute engine, calculating data and storing it into the data storage com-
ponent. But any response to the client’s request to retrieve data must occur on a
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Figure 16.6 Collaboration diagram illustrating the internal server architecture.

separate thread. The client’s data request comes to the front-end server compo-
nent. If the compute engine has control of the CPU, then there is no way for the
front-end server to handle that request unless the front-end server is running on
a separate thread. (In a single-threaded world, the compute engine would have
to periodically give up the calculation and poll the front-end server to see if any
new data request had been made.) While we’re considering multithreaded issues,
also notice that both the compute engine and the front-end server have access to
the data in the data storage component. Therefore there will be synchronization
issues to deal with to ensure the integrity of the data in the data storage component
since that data is stored and retrieved by separate threads.

With these concerns in mind, we can now create a collaboration diagram
showing the interactions among the various server-side components. We identify
the front-end server object merely as Server. It is the object with which the
client interacts. Though it contains other methods, recall that the only publicly
exposed methods that the client knows about are defined inServerInterface,
which Server must implement.

Let’s call the object that embodies the compute engine Simulation since
the client/server application we are designing is best thought of as an interactive
simulation rather than a batch-mode client/server interaction. We call the data
storage component SimData, since it stores the results of the simulation. To
explicitly show the multithreaded nature of the architecture, we also introduce
a SimulationThread object. These objects are shown in the collaboration
diagram in Figure 16.6, which also introduces a bit more UML notation.

As this is more complicated than the previous diagrams, we’ll walk through
the diagram by sequence number and point out the new features. In sequence
number 1, the Server instantiates a SimData object and retains a reference
to it called simData. (We have dispensed with the “{new}„ notation here
to reduce clutter and because it provides no additional information. Instead,
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we indicate the creation of the new simData object with the create()method.
In practice, in Java, the create() is actually implemented as a Java new opera-
tion.) In sequence 2, a SimulationThread object is created. This is the thread
that runs the calculation. During the SimulationThread constructor (i.e. dur-
ing sequence 2), a new Simulation object is created at sequence 2.1 and then a
new Compute object at sequence 2.1.1. The Compute object is broken out sepa-
rately for convenience, although its operations could be rolled intoSimulation.
We explain Compute in more detail shortly. In practice, the construction of
Simulation and Compute may be done during the SimulationThread

constructor as shown, or it may be postponed until the thread starts running
during sequence 3. There is no particular advantage either way.

Observe that Simulation has an association with the SimData object –
i.e. it must call a SimData method. Thus Simulation needs a reference to
the SimData instance. By using the parameter list features of the UML mes-
sages, we’ve explicitly shown how the simData reference gets communicated to
Simulation. Eventually, though not shown here, the client instructs Server
to start running the simulation. At this time, in sequence 3, the Server sends a
start() message to SimulationThread, which begins the thread’s
run() method in the normal Java fashion. That is, the run() method in
SimulationThread begins execution in another thread of control, and the
start() message returns immediately. Because start() returns immediately
while the other thread is still running, this is an asynchronous method invocation.
Asynchronous messages are indicated in UML with half arrowheads as shown.

Sequence 3 is fairly complicated, with several sub-sequences as shown. At
3.1, the Simulation’s startRunning() method is called, which calls on the
Compute object to do the actual calculation at 3.2. During the computation, the
Compute object periodically calls storeData() at 3.2.1, marked as an itera-
tion since there are several such calls over the course of the calculation. When
Simulation receives the storeData() call, it is forwarded to SimData

at sequence 3.2.1.1, and the data is stored in the SimData object. Finally,
when the calculation is complete, we show an explicit “finished” message from
Compute to Simulation. This is actually a return from successful completion
of sequence 3.2, but it is shown explicitly because of the complexity of sequence 3.
Return messages are shown in UML as dashed arrows. When Simulation

receives the return message, it is finished as well, and another finished message is
shown returning toSimulationThread in sequence 3.4. That finished message
corresponds to the end of the thread’s run() method.

Much simpler is sequence 4 in which the client has requested data from
Server, and Server requests data from SimData with a getData() mes-
sage. At this point, the data stored in SimData is returned to Server and is then
forwarded to the client.

The reason that Compute is broken out as a separate object is because the cal-
culation is often performed in legacy code, and that legacy code usually amounts
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to a separate object. In the case of a Fortran, C or C++ legacy code, it is imple-
mented as a set of one or more “native” methods, the subject of Chapter 22.

Recall that we may want to provide a way for the client to send control messages
to the simulation – i.e. messages that affect the calculation while it is running.
For simplicity, we have omitted these from Figure 16.6. If control messages are
present, they would be analogous to collaborations 3.2.1.1 and 4 but in reverse
order. That is, a control message would be sent from Server to SimData

and stored until retrieved by Simulation at a convenient time. In practice,
a convenient time to retrieve the control message is as a return value from each
storeData() call. Obviously the methods for storing and fetching both control
and output data must be synchronized to prevent thread collisions.

Notice that in this scheme the computation is running in its own thread at its
own pace, providing current simulation results to the SimData object as they
are calculated. The client, on a remote machine, is also running at its own pace,
receiving simulation data with each request. The server has no control over how
fast the client requests data, or how fast the network connection between client
and server is. If the computation is time dependent, generating a data set at each
time step, it is very possible for the computation engine to take multiple time
steps between client data requests. On a fast server machine and a slow client or
a slow network, the server could calculate many time steps and produce many
data sets between client data requests. It is up to the designer to decide how to
deal with these “extra” data sets. The simplest solution is to ignore them. The
client always gets the most recent data set, with any intervening data sets lost. If
the client is unhappy about losing some data, then the client needs to request data
more often.

A slightly better approach is to design one of the control messages to permit
the client to tell the server to slow down, perhaps by sleeping a short while
between time steps. A more complicated solution is for SimData to store all
data sets received until a data request is received and then return the entire saved
set at that time. All these details are unimportant to the generic design being
presented here, but they are extremely important once an implementation is begun.
In the sample code provided in Chapter 20, we use the simplest approach of
ignoring the extra data sets. This approach generally seems to work well when
both the client and server are on a fast LAN, but might be unsuitable on a slow
network.

Let us now consider the code that does the actual computation, i.e. the
Simulation and Compute objects in Figure 16.6. First, recall that, using the
Factory Pattern, we are able to support multiple clients, each with its own pri-
vate server object. We see from the discussion above that the “server object” is
really several interacting objects, but the client only sees the interface exposed by
ServerInterface. When there are several clients, there will be several
Server objects, all in the same JVM but running on multiple threads. If the entire
code is written in Java from the ground up, then maintaining thread safety in the
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Simulation and Compute objects is straightforward. In the case of a legacy
code, however, particularly codes written in Fortran, ensuring thread safety is
more difficult because Fortran codes are almost never reentrant due to their use
of global variables in the form of Fortran common blocks. This situation is one
reason we broke out Compute as a separate object in the collaboration diagram
above. If several Server objects exist, each of which creates Simulation

objects, each of which uses its own instance of the Compute object to perform
the legacy calculations, then the legacy Fortran code will almost surely cause
data corruption when it attempts to access global variables. The reason is that
multiple clients accessing the single Fortran image will overwrite each other’s
global variables, resulting in incorrect answers for at least one of the clients at
the very best. More likely, an outright core dump could result.

The best solution for such legacy codes is often to run the legacy code in
a separate OS process. Separation between OS processes is maintained by the
operating system, with each process getting its own memory map. In that way,
the Fortran images are isolated from one another, preventing data corruption as
they internally access their global variables. Some kind of inter-process commu-
nication (IPC) is required in order for each Simulation object to communicate
with its per-client Compute process. Since the spawning of a new process is
an asynchronous task, special care must be taken to enforce the synchronous
nature of the interaction. Notice that the compute() call (i.e. sequence 3.2 in
Figure 16.6) is synchronous. It does not return until the computation is complete.
But if the computation is to run in a new process, the method call that spawns the
child process returns immediately. This issue can be solved through careful use
of IPC.

Another option to protect legacy code is for ServerFactory to create each
Server in a new per-client OS process (i.e. the entire Server is in a new
process, not just the Compute object). Then the object returned to the requesting
client during the getInstance() method (i.e. sequence 2 in Figure 16.4) will
in fact be running in a separate process instead of as a separate thread within the
same JVM.

16.6.3 UML class diagrams

We described earlier the grouping of the server’s publicly exposed methods into
a Java interface. To illustrate this grouping, we now introduce the UML class
diagram. A class diagram shows classes along with their variables and methods
(called attributes and operations, respectively, in UML) and how those classes
are related to one another. The collaboration diagrams seen previously deal with
objects, not classes, and the sequence-ordered messages among them. By contrast,
class diagrams deal with static relationships among classes. A class in a UML
class diagram is shown as a box divided horizontally into three sections. The
top section is the class name, the middle section contains the attributes, and
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Figure 16.7 UML class
diagram showing the
client’s view of the
Server.

the bottom section contains the operations. The middle and bottom sections are
optional. See the example in Figure 16.7.

One of the most important static relationships between classes is inheritance,
discussed in Chapter 4. Inheritance, or the Java extends relationship (which is
known as generalization in UML terminology), is shown with a solid line and a
hollow arrowhead pointing from the child to the parent – i.e. from the subclass
to the superclass. Chapter 17 shows an example of generalization.

A class diagram is a view of the classes from which the objects used in
the collaboration diagram are instantiated. Doing the collaboration diagram first
helps us understand some of the methods needed on the server-side objects. For
example, from the server collaboration diagram, we see that the SimData class
must have getData() and storeData() methods.

What we show here is the client’s view of the server, specifically the grouping
of the publicly exposed methods into a Java interface. A Java interface is really a
special kind of class (see Chapter 4) so the UML notation for an interface is similar
to a plain class. An interface is denoted in UML with the<<interface>> label.
Strictly speaking, a Java interface is not quite the same thing as a UML interface,
but the differences are subtle enough as to be unimportant for our purposes. So
we freely use the <<interface>> notation in our diagrams. In addition to the
<<interface>> label, a common practice is to use a naming convention that
appends the word “Interface” (or sometime just “Ifc”) to an interface class name.
Thus the name of our interface class is ServerInterface. Since the Server
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class implements the server interface, the Java code for the Server class begins
like this:

public class Server implements ServerInterface {. . .}

To illustrate this relationship in UML, there is one box for the ServerInter-
face class and another box for the Server. The Java implements relationship
(called realization in UML terminology) is shown as a dashed line with a hollow
arrowhead. As with inheritance, the arrowhead points to the parent.

The client obtains a reference to an object that implements ServerInter-
face. The only methods on the Server known to the client are those defined
in ServerInterface, a simplified version of which is shown in the class dia-
gram in Figure 16.7. Here we see an attribute named MAX-SIZE in the central
section of the ServerInterface box. MAX-SIZE is an int, as indicated, and
the + sign is UML notation signifying public access (see Chapter 5). Following
standard Java coding conventions, MAX-SIZE is all uppercase, indicating that
it is a constant. The idea here is that MAX-SIZE will be used to define the size
of the data arrays passed between client and server. An actual working example
would probably use dynamic array allocation instead of fixed array sizes, but the
usage here serves as a good example of the use of UML attributes.

We also see the three publicly exposed methods, initialize(),
receiveInput(), and retrieveData(). The initialize() method
receives a size parameter which specifies the size of the data arrays (up to a
pre-compiled maximum of MAX-SIZE in this example) and returns a boolean
indicating success or failure of the initialization operation. The client provides
a float array of input data to the server in the receiveInput() method,
which returns void. We assume that the calculation begins (i.e. the “start” mes-
sage, sequence 3 in Figure 16.6) when the server receives and processes the
receiveInput() call. As the server is running the simulation, the client must
periodically call the retrieveData() method, obtaining a float array of
results in return. There can be a special sentinel value in one of the array ele-
ments when the simulation is complete. For the control data sent from the client to
the server, we could define a receiveControlData() method on the server
that would receive an array of control data of some kind. However, it is usually
more convenient simply to add a parameter to the retrieveData() method
containing the control data as shown. That is, the current set of control data
could be sent to the server during each retrieveData() operation rather than
creating a new method just to receive the control data. If no new control data is
available when the client calls retrieveData(), then null or the previous
control set could be sent, a convention that must be agreed to by both client and
server.

The technique for obtaining the server’s data illustrated here is called “polling,”
in which the client periodically polls the server for new results. An alternative
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solution is to define methods on the client callable by the server so the server
can “push” the new data to the client when it has new data available. The client
and server roles are reversed temporarily while what we have been calling the
server acts as a client by making a call to the real client, which plays the role
of a server for that call. In this technique, the real server is said to be “calling
back” to the client, and the technique is generally referred to as a “callback”
scheme. Callbacks are a good technique in some situations, and they reduce net-
work overhead by eliminating unnecessary polling calls. Unfortunately, callbacks
seldom work through firewalls. So, if the server is designed to be called from
outside its internal network, then using callbacks is generally not a successful
approach.

We have left out many details in the description above. What we have provided
is a general outline of how to produce a distributed object application, and we’ve
learned enough UML notation to describe the behavior of the server. While fairly
complex, all of the above should become clear when we produce actual working
code in Chapter 20 after we’ve covered a few more theoretical issues. In the gen-
eral description above, the main thing missing is any mention of client behavior,
the subject of the next chapter.

Before proceeding to the client though, let’s finish the discussion of the UML
class diagram. Notice that the Server implements ServerInterface, as
shown by the dashed line and hollow arrowhead. Since an implementation must
provide concrete methods for the methods defined in the interface, we show
Server with the same three public methods that appear in ServerInter-

face. We also indicate two attributes on Server, marked with a “-„ sign to
indicate private access. One is a reference to ServerFactory. This reference
can be used by Server to communicate with its factory. An example of such
use is for diagnostic logging in which the factory keeps a log of server behav-
ior. Another use is for synchronization with respect to the factory object for
short-running pieces of native code that are not inherently thread-safe. By syn-
chronizing with respect to the singleton factory, we can ensure that no two clients
access a non-thread-safe native method at the same time. As long as the non-
thread-safe native methods are not time consuming, this simple solution provides
thread safety with very little effort. Obviously this solution is not adequate for
long-running or frequently accessed native methods because too much thread
blocking would occur. The other private Server attribute is a copy of the ID
that was received when the factory instantiated the server during sequence 2.1 in
Figure 16.4.

16.7 Web Course materials

The Chapter 16 in the Web Course provides further discussion and resources
regarding distributed computing for technical applications, client/server design,
and UML.
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Chapter 17
Distributed computing – the client

17.1 Introduction

Chapter 16 introduced distributed computing and enough UML to describe
server-side interactions. In this chapter we describe the design of the client for
a distributed scientific application in which the computationally intense calcula-
tions are performed on a remote server. Like the server, the client details neces-
sarily depend heavily on the calculation being performed and the data that is to
be presented to the user. Nevertheless we can provide some general guidelines
that should apply to many scientific applications.

17.2 Multithreaded client

Recall that the server in Chapter 16 is running on a remote machine, at least
conceptually, and is generating results continuously as the simulation is running.
To avoid problems with intervening firewalls, we designed the server to be polled
by the client rather than using a callback from the server to the client when new
data is available. That is, the client must poll the server periodically to retrieve
the results being calculated by the server. Assuming that the server calculation
is generating results somewhat uniformly, we clearly would prefer for the client
to poll the server on a regular basis. Meanwhile, once the client receives the
current set of results, the client must display them to the user in some fashion
and allow the user to interact with the displayed data. Whenever human users
are involved, one can be assured that the user’s actions will not be uniform and
regular. The user may pause to closely examine the data being displayed or may
even take a coffee break while the calculation runs. It is clear that the polling
loop cannot rely on user behavior. The time required for the client to display
the data may depend on the user’s actions and choices and may also depend
on the data itself. So it is also clear that the polling loop should not rely on
a uniform processing time for the most recent set of data. What is needed is
a multithreaded client with one thread handling a regular and uniform polling
of the server for new data and one or more other threads handling the display
of the data and the user interactions. As always in a multithreaded design, care
must be taken to prevent thread collisions. In this case, we must ensure that the

492



17.3 Model-View-Controller for the client 493

polling thread does not attempt to modify the data while the data-display thread is
using it.

As mentioned in the previous chapter, some decisions must be made regarding
how to deal with the relative speeds of the client and server machines and the
network between them. That is, should the SimData object in Chapter 16 store
all simulation data until retrieved by the client or discard old data if new data
arrives before the client has requested it? Or perhaps the client should attempt to
retrieve data as fast as possible and store that data on the client side. As before,
the details are not important to a general discussion but become very important
when an implementation is begun. For simplicity, we assume that the client and
the network are fast enough to collect the data from the server as often as needed.
This assumption essentially means that if the server calculates data faster than
the client’s polling thread retrieves it, then SimDatamerely discards the old data
and always returns the most recently calculated simulation data to the client.

17.3 Model-View-Controller for the client

Recall from the general discussion in Chapter 16 that we desire a way for the
user to control the simulation in some fashion. We explain how the control data is
collected and used in more detail below. For now, consider that we have a server
generating data to be displayed, a client displaying that data, and some means for
the user to control the simulation. This arrangement leads quite naturally to the
Model-View-Controller design pattern for the client, this time a more obvious
application of MVC. The client’s graphical display of the data is clearly the view,
and the control data portion of the user interface is the controller. The server is
obviously the data model. From a client-design point of view, it is better to view
the client-side object that fetches data from the server as the data model. How it
generates the data (which happens to be by contacting the server) is immaterial
to the client design.

The Java class library conveniently provides the java.util.Observable
class and the related java.util.Observer interface as perfect aids for imple-
menting the data and view components, respectively, of the MVC design pattern.
By extending Observable, we obtain a class that our client application wants to
have observed. This technique provides a perfect data model since data can reside
in theObservable subclass, and the view component is the observer of that data.
When the data contained in the Observable changes, the view component can
be notified to update the view. In practice, there can be more than one view com-
ponent. For example, we may wish to display the data in multiple ways – tables
of numbers, graphs of different types, etc. Each type of display is a part of the
MVC view but will be implemented as a different view object. The most straight-
forward way to implement these view objects is to create classes that implement
the Observer interface, which requires that the update() method be imple-
mented. When the Observable obtains new data, the Observer objects are
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notified by having their update() methods called, permitting them to update
their displays.

These notifications and responses don’t happen quite automatically, of course.
The observers must first register with the observable object, and the observ-
able’s notifyObservers() method must be called in order to initiate the
notification. The notifyObservers() method sees to it that each observer’s
update() method gets called, during which the updated data must be retrieved
and the view modified accordingly.

We create a class called DataManager that serves as our Observable.
This class contains the polling thread, which fetches data from the server on
a regular basis and then calls notifyObservers(). We also need a top-
level class instantiated by the main() method of the client application that puts
everything together. We call this class SimClient. The application’s main()
method instantiates the SimClient object, which then instantiates DataMan-
ager, which then instantiates other objects, some of which will present a GUI.
With this much design in mind, we can begin to create a client class diagram. In
this case it makes sense to think about the class relationships and create the class
diagram first because we’re using the Observer/Observable classes from
the Java class library.

Before turning to the diagram, we need to introduce a little more UML notation.
We’ve already described the UML realization relationship (dashed line with hol-
low arrowhead) and the UML generalization relationship (solid line with hollow
arrowhead). As a reminder, these relationships in Java are the implements and
extends relationships, respectively. Classes can have relationships other than
realization and generalization. One of the most common is known in UML as an
association, in which objects of one class have some reason to interact with objects
of another class. Without getting deep into the finer UML points of composition
vs. aggregation associations, we use just two simple types of associations. When
an object instantiates another object (which should happen only when the first
object needs some services from the instantiated object), we show the class asso-
ciation as a solid line with a simple arrowhead pointing to the instantiated class.
Similarly, a dependency on another class is shown with a dashed line and a simple
arrowhead pointing to the depended on class. These UML notations are shown
in the diagram in Figure 17.1. To reduce clutter, we have not shown the visibility
indicators (i.e. the+ signs indicating public classes) or any of the attributes or oper-
ations in each class. We’ve also shown the two classes from the Java class library
as lightly shaded to distinguish them from the custom classes created for our
application.

Here we show two observers – PlotPane and TextPane. The idea is that
the client GUI has both textual and graphical output windows. Both are observers
because they implement the Observer interface as shown. DataManager is
an Observable because it extends the Observable class. Several things are
not shown in the diagram, including how the observers’ update() methods get
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Figure 17.1 A simplified class diagram of the client application.

called by notifyObservers(). This action can be assumed to occur behind
the scenes, courtesy of the Java class library’s implementation of notifyOb-
servers().

DataManager also contains PollerThread, which has a dependency on
the Server class, which implements the ServerInterface. Also missing
from the diagram so far is any indication of how this server object is instantiated.
Note that this Server isn’t the actual server-side server object described in
Chapter 16, but rather some client-side construct that knows how to communicate
with the real server. Just how the client-side server object actually communicates
with the real server object is discussed in Chapters 18 and 19. In practice, the
client-side server object is obtained from an analogous client-side representation
of the server factory object using the Factory Pattern, as explained in Chapter 16.

For simplicity, we’ve also omitted from the above discussion any mention of
the controller component. Recall that our design includes the capability for the
user to control certain aspects of the simulation as it is running by passing an array
of control variables to the server in the retrieveData() method call. One can
imagine some sort of user-adjustable values controlled by GUI elements – buttons,
checkboxes, sliders, etc. – in the PlotPane and/or TextPane windows, or per-
haps in a new InputPane class. As is common in Swing applications, the view
and controller components are often merged, at least in the user interface if not
in the design. In any case, these input values must somehow be communicated to
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PollerThread since that is the object that makes the retrieveData() call.
Since the observers are shown as standalone classes without any associations
to any other classes, that route of communication is not shown in the class
diagram.

17.4 More client details

Once the basic design is understood, we can begin to fill in some of the missing
details. SimClient is the first object instantiated by the main() method of the
client application, and it creates all the other objects as needed. One of the first
things that SimClient must do is contact the ServerFactory to obtain a
reference to the Server. We assume that the ServerFactory object already
pre-exists on the remote server machine. For completeness, we show those asso-
ciations in the next version of the client class diagram, though they don’t really
add much to what we must know in order to implement the client classes.

We also explicitly show the InputPane class that collects the user’s input
data. For organizational reasons, it is convenient to collect the input pane class and
the two (or more) observer classes as subcomponents of a DisplayManager
class that manages all user input and display functions. It is this DisplayMan-
ager and its subcomponents that present the GUI to the user.

It is also convenient to collect all interactions with the server into a central
location which we call the ServerGateway class. Any class that needs to call a
server method does so through the server gateway, meaning that only the server
gateway needs a reference to the server class. In that way, any changes to the
server interface will need to be dealt with only in the gateway class instead of
spread over several client classes. The one exception might be the poller thread
class which makes frequent calls to retrieveData() on its own schedule. To
avoid function-call overhead for such frequent server calls, it may be advisable
to permit PollerThread to call the server directly rather than going though
ServerGateway.

While we now have a good handle on the client design, perhaps a collaboration
diagram will be helpful to understand the order and flow of messages in the client.
Having the collaboration diagram handy also serves as a reference when we start
writing actual Java code to implement the client. Therefore we present the diagram
in Figure 17.2.

Here we can see that SimClient first obtains a server from the server factory,
as explained in Chapter 16, and then initializes the server. At first glance, this
initialization might be thought unnecessary since initialization could occur when
the server factory creates the server. However, a separate initialization step is
more general and permits the factory, for instance, to keep a pool of inactive
uninitialized servers instead of constructing a brand new server for each
client. At sequence 3, SimClient instantiates the DataManager, passing a
reference to the server. DataManager then instantiates the PollerThread,
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Figure 17.2 Client collaboration diagram.

the ServerGateway, and the DisplayManager, in that order. Those objects
must be created in the order shown because the gateway needs a reference to
the poller and the display manager needs a reference to the gateway. We also
see that DataManager must pass a server reference to PollerThread and
ServerGateway, since both must access the server. Then DataManagermust
provide a ServerGateway reference when it instantiates DisplayManager,
which must provide the reference to InputPane since InputPane needs to
access the gateway. DisplayManager also creates the plot and text output
panes. The InputPane object contains a GUI element permitting the user to
start the simulation.

When the user causes the simulation to begin, several things must happen
during sequence 4. First, InputPane must call the gateway’s startSim-

ulation() method. At this time InputPane provides a set of input data
used to initialize the calculation. This data is passed to the server’s receive-
Input() method. It is important to note that this data set is different from the
control data that controls the simulation while running. It is also different from
any data used to initialize the remote server object as was done in sequence 2.
The server initialization is done very early, before InputPane even exists. Later,
InputPane presents its GUI to the user and collects the calculation initialization
parameters. These parameters might include, for example, time steps, maximum
run time, or other values that set up the desired simulation. They are passed to
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the gateway in the startSimulation() call. The gateway then sends these
initialization parameters to the server’s receiveInput() method.

After initializing the simulation, the gateway tells the PollerThread to
begin polling and then calls the server’s start() method which starts the sim-
ulation actually running. PollerThread repeatedly polls the server by calling
retrieveData(). Whenever new data is received, PollerThread calls the
notifyObservers()method in theDataManager to cause the two observers
to update their output displays.

To reduce clutter in the diagram, we’ve omitted how the control data from
InputPane is communicated to PollerThread in order to pass it to the
server during the retrieveData() call. One method is for this flow to mimic
that of sequence 4’s start simulation messages, but bypassing the receive-

Input() initialization call. Alternatively, a particularly elegant solution can
be had by making InputPane into an Observable and PollerThread an
Observer of InputPane. Then, when new control data is entered by the user
into InputPane, the PollerThread observer is notified of the changes, ready
to pass the new control set to the server during the next poll.

Through the process of creating this client collaboration diagram, we’ve
learned that the server needs another method that we forgot, or at least glossed
over, in Chapter 16. That missing method is the start() method that the client
uses to tell the server to begin running the simulation. In Chapter 16, we assumed
that the simulation would start at the end of the receiveInput()method, once
the calculation was initialized. However, we need a chance to begin polling after
initializing the simulation but before actually starting the simulation. Alterna-
tively, if we started the simulation and then started polling, we might miss the
first few data points. The astute reader can think of several other solutions to
this timing problem, including some more elegant ideas, but the most obvious
technique is to separate simulation initialization and simulation start into the two
receiveInput() and start() methods. We might also wish to change the
name of the receiveInput() method, first invented back in Chapter 16 while
designing the server with only a little thought about the client, to something more
descriptive like initializeSimulation().

17.5 Improved client class diagram

By examining the collaboration diagram, we can now add some of the missing
pieces to the initial class diagram. This time we show some of the operations
identified while creating the collaboration diagram. We won’t show the instantiate
methods since they’re really object instantiations rather than methods anyway.
This more complete class diagram appears in Figure 17.3.

The only new UML notation used here is the italicizednotifyObservers()
method in DataManager. Italics are used to indicate that a method is inherited
from a superclass. We’ve also switched to the initializeSimulation()
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Figure 17.3 A more developed client class diagram.

name in the Server object. The same change, as well as the addition of the
start() method to Server, must be propagated to ServerInterface and
the server-side UML diagrams as well. We won’t take up space showing the
modified diagrams here, but we must remember to make those changes when
implementation is begun.

There are a few more loose ends to be cleaned up during implementation.
One important example is protecting against thread collisions between the poller
thread and the thread that is displaying the data in PlotPane and TextPane.
A good approach is for the poller to duplicate the received data during a syn-
chronized block. Then the display objects can lock on the same synchroniza-
tion object while updating their displays with that data. Accordingly, we show
a private synchObj attribute in DataManager. Both PollerThread and
the output panes could obtain a reference to that synchronization object and
use it to protect code that accesses the data copy. (Note that the synchObj is
declared to be private to DataManager in order to preserve good encapsula-
tion, but that does not prevent DataManager from making it available in a public
getSynchObj()method.) If the poller obtains another data set from the server
while the output panes still have the lock, the poller must wait until the lock is
released before making a copy of the new data set. Since we want the poller to poll
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uniformly, it is obvious that the output panes must not hold the lock for too long.
One way to accomplish this goal is for DataManager to request the lock and
make yet another copy of the data that the output panes use instead of having
the output panes lock and copy the data. Since the output panes and DataMan-
ager’s methods run in the same thread, there is no chance of collisions between
DataManager and the output panes.

Another issue not shown is that the Observable superclass requires that
setChanged() be called in order to mark the Observable object as hav-
ing been changed before calling notifyObsevers(). Otherwise, notifyOb-
servers() does not notify anything because it thinks that nothing has changed.
For simplicity, this detail is not shown in the class or collaboration diagrams but
must be dealt with during implementation.

17.6 Web Course materials

The online materials include more discussion of client design and of the Model-
View-Controller design pattern. Also, there is additional information about UML.

Resources

Model-View-Controller, Design Patterns Catalog, Sun Microsystems,

http://java.sun.com/blueprints/patterns/catalog.html.

Model-View-Controller Architecture, Fundamentals of JFC/Swing, Sun short course,

http://java.sun.com/developer/onlineTraining/GUI/Swing/

shortcourse.html.



Chapter 18
Java Remote Method Invocation (RMI)

18.1 Introduction

Chapters 16 and 17 described the client/server or distributed object paradigm
at a somewhat abstract level using the UML notation language. Because of the
abstract nature of that discussion there was almost no Java code in either of those
chapters. In fact, the only place that any code snippets appeared at all was to
illustrate UML concepts in a familiar concrete Java environment.

Now we will begin to explain how to really implement the distributed object
paradigm using Java Remote Method Invocation (RMI). By the end of this chapter,
we will have some real code that demonstrates simple communication between
two distributed Java objects, though we still won’t have a running application
using the architecture of Chapters 16 and 17. That complete application will be
developed in Chapter 20.

Before getting to the real code, we must first describe how distributed com-
puting can be implemented. The concepts are not particularly new, nor are
they unique to Java. However, just as in other areas, the Java platform offers
advantages and an easy programming style that are absent in other languages.
These advantages are discussed as we explain how distributed computing works.
While the full capabilities of RMI are beyond the scope of this book, we will
learn the basics of RMI, and with these skills we can implement the distributed
architecture described in Chapters 16 and 17.

18.2 How distributed computing works

Consider a conventional (non-distributed) computer program, be it written in Java
or some other language. Certain program elements, call them “functions” as in
C, or “subroutines” as in Fortran, or “methods” as in C++ and Java, will call
other program elements. All these program elements (we call them functions
for simplicity) are typically loaded somewhere into the machine memory
allocated for the program, and each function has a unique memory address.
A computer’s program counter points to the address of the next machine-level
instruction to be executed. Through the magic of compilation and linking, a
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calling function knows the memory address of the called function. When the
call is made, the calling function somehow instructs the computer to change the
program counter to point to the called function, and the computer then starts
executing the code at the new location. There are other complications having to
do with the machine stack used to pass function parameters and to hold the
return address, but the point is that all the code resides in a single process
or memory space in which all the machine addresses of all the program ele-
ments are known. In a Java program, all the code resides in a single instance of
the JVM.

In a distributed program, some of the code resides in another process, perhaps
on another machine. The calling process has no way of knowing the machine
addresses of methods in a different process or on a remote machine and certainly
has no way to instruct the remote machine to move its program counter to begin
executing code for a called method.

If the two machines have different operating systems or different architectures
(32-bit vs. 64-bit, for example), there can be differences in floating-point format,
integer size, and byte order (big-endian vs. little-endian). For Java programs,
which have automatic garbage collection, there is also the messy issue of remote,
or distributed, garbage collection when an object is no longer needed.

The Java platform easily provides elegant solutions to some of these problems.
For instance, because Java is a cross-platform system, one need not worry about
floating and integer formats or endian order. Java defines consistent sizes and
formats for all the primitives, and the byte order is the same on all Java platforms
regardless of the underlying operating system. Therefore Java application pro-
grammers need not worry about reversing the byte order or dealing with different
int sizes, a common problem with remote procedure calls (RPCs) using C or
C++.

As has already been seen in Chapters 14 and 15, Java provides low-level
socket-based networking. Socket programming is appropriate for some tasks,
but it is far too complicated for the kinds of distributed computing tasks we’re
dealing with here. No one wants to invent his or her own RPC protocol for each
new distributed application.

Fortunately, the Java RMI system handles all the low-level networking tasks.
Using RMI, the semantics for making remote calls is almost the same as for
making normal local method calls. RMI is part of the Java 2 Standard Edition, so
it is available on any J2SE platform. Since the programming style is nearly the
same as normal Java programming, it is almost as easy to work with as normal
Java programming. Everyone in the large pool of Java developers should be able
to program with Java RMI with little additional training, unlike socket-based
programming or proprietary alternatives like Microsoft’s DCOM. Java RMI also
offers ease of deployment. Because of the cross-platform nature of Java, it is even
possible for clients to automatically download the client-side bytecodes as needed,
relieving the developer from having to distribute client-side code. Because of all
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these advantages, it is clear that Java and RMI provide an excellent platform for
distributed computing while retaining the object oriented nature of Java.

An alternative to RMI is the Common Object Request Broker Architecture
(CORBA). CORBA has some advantages over RMI, particularly because it is
language independent, meaning that C or C++ clients, for example, can make
CORBA calls on a Java server or vice versa. While Java RMI requires Java on
both the client and the server, CORBA permits the use of any programming
language that has a CORBA binding. The most popular languages that support
CORBA are C++ and Java. Yes, Java fully supports CORBA as well as RMI,
and the CORBA support is built into Java, just like the RMI support. Because
of the added complexities required to be language independent, CORBA is more
difficult to use than RMI, is not as fully object oriented as Java, and suffers
some performance penalties compared to RMI. However, CORBA remains an
important technology that has a well-deserved place in the distributed computing
world. We discuss CORBA in more detail in Chapter 19.

18.3 RMI overview

RMI is the mechanism that allows an object in one Java virtual machine to invoke
methods on an object running in another Java virtual machine. Both JVMs may
be present on the same physical computer or, as is more likely, the JVMs can be
on different computers connected over a network. While RMI works for applets
too, we consider two Java applications, rather than applets, running in the two
JVMs. One of the Java applications can be thought of as the client and one as the
server. Neither Java application is a standalone entity. It is the sum of the client
and server applications together that offers a useful whole program to the user.

18.3.1 Remote objects and remote exceptions

An RMI server application typically creates several server-side objects, makes
them remotely accessible (i.e. accessible by other JVMs), and then waits for
external clients to invoke methods on them. These remotely accessible server-
side objects are referred to as remote objects. Server-side objects may also include
methods that are not made remotely accessible. Such methods are available only
locally within the server application. We explain below the simple steps necessary
to create remote objects.

Ignoring the degenerate case of running both JVMs on the same host, a network
is assumed to be present between the client and server. Because the possible failure
modes increase when additional machines and networks are in the mix, RMI
client applications must be prepared to deal with additional exceptions. These
extra exceptions are grouped under the java.rmi.RemoteException class.

One of the design goals for RMI was that it should fit naturally into the Java
programming language. As such, the semantics for making a remote call are
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nearly the same as for making a local method call. The only real differences are
the steps needed to obtain the remote reference to begin with and dealing with
the additional exceptions that can occur for remote method calls. An RMI client
application first obtains references (we explain just how below) to the remote
objects and then invokes remote methods. The RMI subsystem handles all the
communications between client and server in a way that is nearly transparent to
the developer.

Much more detail about the design and operation of RMI can be found in the
online API documentation. What we describe here is the basic use of RMI needed
to implement the distributed client/server design of Chapters 16 and 17. We also
demonstrate the downloadable bytecodes feature.

18.3.2 Stubs and skeletons

As already mentioned, calling objects cannot access the program counter in the
remote JVM. So how does RMI work its magic to present the illusion that a
remote method call is just like a local call? The answer is through the use of a
tried and true mechanism (from RPC technology) known as stubs and skeletons.
When a client makes a remote call, it is actually making a local call to a stub.
The stub then handles the communication to the remote object. Part of this com-
munication is to package up and send the method parameters to the remote side,
a process called marshalling. On the server side there is a skeleton that reads the
incoming parameters (unmarshals them) and then dispatches the incoming call
to the actual server-side implementation of the remote object. For the return, the
reverse happens – the skeleton marshals the results and sends them to the stub,
which unmarshals the return value or exception and returns the value to the caller.
Fortunately, we don’t have to write the stub and skeleton. Java provides a tool
(the rmic compiler) to create them from the remote object class file(s).

Without going into detail that, while interesting, is not important to the casual
RMI programmer, Figure 18.1 illustrates how the various players interact in
a remote method call. The Java 2 SDK introduced a new stub protocol that
eliminated the need for skeletons on the server side as long as both client and
server use Java 2, which is now quite likely, at least for applications instead of
applets. Instead, generic code is used to carry out the duties previously performed
by skeletons in JDK1.1. Nevertheless, it is still useful to think of stubs and
skeletons as the components handling the RMI communications between the
calling and called objects.

18.3.3 Creating remote objects

We mentioned above that an RMI server must make its objects that have remotely-
callable methods into remote objects. Just how does an object become a remote
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Figure 18.1 This diagram
shows the stub/skeleton
mechanism that RMI uses
to allow methods in the
client and remote objects
on different platforms to
invoke methods in the
other object across the
network.

object? The simple requirements are summarized here:

� The remote class must be split into both an interface and an implementation class.
� Each remotely callable method must be declared in the interface.
� The interface must extend java.rmi.remote.
� The declaration of each remotely callable method in the interface must include

java.rmi.RemoteException in the throws clause.
� If another remote object is included in the parameter list or the return value, it must be

declared using the corresponding remote interface rather than the implementation class.
� The implementation class must extend java.rmi.server.RemoteObject or,

normally, the subclass java.rmi.server.UnicastRemoteObject.

That list may sound daunting, but using it is really quite simple. Each of these
requirements is explained in more detail in the following sections.

18.3.3.1 The remote interface
Any class that wishes to be remotely accessible must first be split into a Java
interface that declares the remotely callable methods and an implementation
class that provides the implementation of those methods. Said another way, each
remotely callable method must be defined in an interface that the remote class
implements.

The interface declares the methods that are to be remotely accessible and
is referred to as a remote interface. To be a remote interface, the interface
class must extend, either directly or indirectly, the java.rmi.Remote inter-
face. Also, each method declared in the remote interface must include the
java.rmi.RemoteException (or one of its superclasses) in its throws

clause.
All method parameters and return values that are either primitives or regular

objects – either standard Java language objects or custom objects the developer
defines – are treated just as in a normal non-remote method. However, there is
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a minor complication when any item in the parameter list or the return value is
itself a remote object. In that case, the parameter or return value must be referred
to using its corresponding remote interface rather than the implementation
class.

The java.rmi.Remote interface declares no methods; it is simply a marker,
or tagging, interface like java.io.Serializable.

A code snippet that gives an example of a remote interface is:

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface RMIExampleInterface extends Remote {

public void method1 (String s) throws RemoteException;

public int add (int a, int b) throws RemoteException;

}

The exception java.rmi.RemoteException, or one of its several sub-
classes, is thrown back to the calling method whenever a remote method invo-
cation fails for some reason. Some reasons for remote method invocation failure
include:
� server is down (or unreachable, which can mean the network is down)
� failure during marshalling or unmarshalling of parameters or return value
� protocol errors

RemoteException is a checked exception – i.e. the caller must handle it. That
requirement is one difference in remote method calls compared to local calls –
all remote calls must appear within a try-catch block to respond to the possibility
of a RemoteException.

You may also want to declare some application-specific exceptions as
well for handling exception conditions within the server code – such as
input parameters outside the expected range. Such application-specific excep-
tions should not extend java.rmi.RemoteException, which is intended
for communications-related failures outside the control of the developer.
Application-specific exceptions should be created just like normal non-remote
exceptions – by extending java.lang.Exception.

18.3.3.2 The remote implementation class
Now let’s consider the server-side implementation of the remote interface defined
above. The implementation class must, of course, implement the remote inter-
face. An additional requirement is that it must extend java.rmi.server.

RemoteObject. In order to be remotely callable, the implementation class
must make a runtime notification to the RMI system that the implementa-
tion is available to accept incoming requests. This runtime notification pro-
cess is known as exporting. In most cases, including all cases of interest here,
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these requirements are met by extending the RMI convenience class
java.rmi.server.UnicastRemoteObject, a subclass of RemoteOb-

ject. At construction time, UnicastRemoteObject takes care of doing the
export.

An implementation of the interface shown above is given here:

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class RMIExampleImpl

extends UnicastRemoteObject

implements RMIExampleInterface

{

/** Constructor must throw RemoteException **/

public RMIExampleImpl () throws RemoteException {}

/** Echoes the input string. **/

public void method1 (String s) {

System.out.println ("method1: " + s);

} // method1

/** Adds the input parameters and returns the sum. **/

public int add (int a, int b) {

return a + b;

} // add

/** Do something locally. **/

public void doSomethingLocal (float x) {. . .}

} // class RMIExampleImpl

Notice that this implementation class provides the implementation of the two
remote methods declared in the remote interface – method1() and add(). It
also defines the local method doSomethingLocal(). This method is perfectly
legal, but since it is not declared in the remote interface, it cannot be called from
the remote (client-side) JVM. It is only available locally and to other objects on
the server side.

18.3.4 The RMI registry

Client code must be able to find the remote objects. RMI provides a simple name
server known as the RMI registry to facilitate this remote object lookup. The
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sequence to run an RMI application is usually:

1. Start the registry, specifying the desired port number.

2. Start the server, which registers itself in the registry.

3. Run the client, which finds the server by querying the registry.

Clients query the registry using a known sever name to obtain a reference to the
desired remote object. Of course, the remote objects must first be entered into
the registry, using that same known server name, before they can be found. This
binding into the registry is typically handled by the server code itself at server
startup time, and the server is expected to be running essentially all the time,
waiting on client connections. Alternatively, RMI supports an activation model
in which servers can be activated on demand instead of running all the time.
We describe only the standard persistent binding rather than activation. For more
information on RMI activation, consult the online Java documentation.

One way to handle binding is to add a main() method to the remote
method implementation class shown above. This main() would instantiate an
RMIExampleImpl object and then bind the object reference into the registry.
We use a slightly more general method and create another class altogether to
do the instantiation and binding. In this way, the implementation class remains
separate from the class that handles server instantiation and binding. We call this
special class RMIExampleServer. Its sole job is to create an instance of the
RMIExampleImpl implementation class and bind it into the RMI registry under
a known name so that the remote methods are accessible to clients. All the actual
remote methods reside in RMIExampleImpl while the action of starting up the
server occurs in the main() method of RMIExampleServer.

Assuming the registry is already running, the registry is accessed program-
matically through the java.rmi.Naming class, which has methods to bind,
unbind, rebind, list, and look up names. The bind() and rebind() methods
are similar except that bind() requires that no previous binding exist with the
specified name – it throws an AlreadyBoundException if the name is already
in use. The method rebind(), because it permits, but does not require, a preex-
isting name, is most commonly used – it replaces the object reference previously
bound to a name with the new object reference, if necessary. Both bind() and
rebind() take two parameters – the name under which to bind the object and a
reference to the java.rmi.Remote object to be bound. An example of the use
of rebind() is shown below:

import java.rmi.*;

public class RMIExampleServer

{

public static void main (String[] args) {

try {
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// Instantiate the remote object implementation class.

RMIExampleImpl impl = new RMIExampleImpl ();

// Define the "well-known" name to use in the

// registry.

String server-name =

"//localhost:3001/ rmi-example-server";

// Bind the implementation object under that name.

Naming.rebind (server-name, impl);

} // try

catch (Exception e) {System.err.println (e);}

} // main

} // class RMIExampleServer

Note that we first instantiate and obtain a reference to the RMIExampleImpl
object that provides the remote methods. Then we bind it into the registry under
the name “//localhost:3001/rmi-example-server„. The format of
the name is a URL formatted string with the URL protocol omitted but with the
two forward slashes (//) retained. (As discussed in Chapter 13, the URL format
is an industry standard and always uses forward slashes regardless of what the
underlying operating system may use as a file separator.) We use localhost
as the host since we bind into the RMI registry running on the same host as
RMIExampleServer. In fact, for security reasons, an application can bind or
unbind only to a registry running on the same host. This requirement prevents a
malicious program from removing or overwriting any of the entries in a server’s
remote registry. A lookup, however, can be done from any host. The hostname is
followed by an optional colon and port number. If unspecified, the default port
number is the RMI standard port, 1099. The host and optional port are followed
by a slash and a completely arbitrary name for the server. The only requirement
is that the client must know and use the same name. There are two exceptions
that can occur – java.net.MalformedURLException if the name is in an
illegal format and RemoteException if the registry cannot be contacted for
some reason. For simplicity, we just catch the Exception superclass in the code
snippet above.

To start the server running, we simply execute RMIExampleServer. There
are Java security issues that we’ve glossed over so far that must be addressed
before we have an example that actually works. We discuss those issues after
discussing the client code.

18.4 The RMI client

The client’s job is pretty simple. It must first look up the desired server name
in the registry and then make method calls to the remote methods. As explained
above, the only difference in a local call and a remote call on the client side is
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the requirement of placing the remote calls within a try/catch block. The
registry lookup is handled by the following code snippet:

// Get a reference to the RMIExampleServer.

RMIExampleInterface server = null;

try {

// Lookup the server.

String server-name = "//localhost:3001/rmi-example-server";

server = (RMIExampleInterface) Naming.lookup (server-name);

} // try

catch (NotBoundException nbe) {. . .}

catch (MalformedURLException mue) {. . .}

catch (RemoteException re) {. . .}

Notice that we have used the same name in the lookup() call that the server
was bound under. This example is set up to run both client and server on the
same machine, so localhost works for both. If the server were running on a
remote machine, then that machine would be specified instead of localhost.
Of course the proper port number must be specified as well, and the final part of
the name must match the original “rmi-example-server„ name used when
the server was bound into the registry. Naming.lookup() must be enclosed
in a try/catch block as well. There are several exceptions that could occur,
including NotBoundException, which is thrown if the requested server name
is not found in the RMI registry running on the indicated host and port num-
ber. Other possible exceptions are MalformedURLException and the usual
RemoteException. If the lookup fails, then null is returned, so one should
always check for null before continuing.

Naming.lookup() returns a Remote interface, which must be cast into
the RMIExampleInterface that we really want. Notice that it is the inter-
face, not the remote RMIExampleImpl implementation class that we need.
Since every remote method implemented in the implementation class is declared
in the interface, we can access all those remote methods through the interface
in the normal Java fashion. This interface object reference actually refers to
the client-side stub, and the RMI system handles all the actual communica-
tion from client, through stub and skeleton, to the remote implementation class.
This object reference can be, and often is, thought of as a reference to the
remote server implementation. In fact, we refer to it as “server” in the example
above.

If a non-null reference to the desired server is received, then we can proceed
to making a remote method call as follows:

try {

server.method1 ("hello from client");
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} // try

catch (RemoteException re) {

System.err.println (re);

}

The only exception to deal with here is the general RMI RemoteException. If
the remote method1() had declared any custom exceptions that it might throw,
then those would be caught here too.

Obviously the remote add() method would be called similarly. And the
server-side doSomethingLocal() method cannot be called at all from the
client, since that method is not a remote method.

18.5 RMI security issues

Since the advent of Java 2, the security issues surrounding RMI have become
more stringent. Some of these issues were present in JDK 1.1 and before, but
we assume a Java 2 platform in the following discussion. The issues to be dealt
with are the need for a security manager, the specification of the codebase where
downloadable bytecodes may be found, and the policy file that defines permissions
granted to the client and server applications.

18.5.1 The security manager

On both the client and server sides, a security manager typically must be run-
ning (see Chapter 14 for a discussion of security managers). Normally, the
java.rmi.RMISecurityManager is used, though you are free to use one
of your own if special requirements must be met. A security manager is required
in order to guarantee that the classes that get loaded do not perform operations
that they should not be allowed to perform. If no security manager is specified,
then Java will not permit any class loading, by either RMI clients or servers, aside
from what can be found in the local CLASSPATH. For this simple example, the
server finds all of its classes in its own CLASSPATH so a security manager is
not strictly required. However, more complicated servers might need to receive a
remote object from the client as a method parameter, possibly requiring the trans-
fer of bytecodes from the client to server, and thus involve the security manager.
It is safest to always install a security manager with the following code:

if (System.getSecurityManager() == null) {

System.setSecurityManager (new RMISecurityManager ());

}

The same code snippet should be used on the client side as well, since it is normal
for clients to download remote bytecodes for the stub objects if nothing else. The
one exception is when the RMI client is an applet, in which case the web browser
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controlling the applet will have already installed a security manager. Therefore
it’s a good idea to include the if-test shown above to check for the presence of an
existing security manager before installing another one.

18.5.2 The codebase

A concept related to the security manager is the codebase. The java.rmi.

server.codebase property is specified when the server starts up and identifies
where downloadable bytecodes may be found. The RMI codebase is closely
related to an applet codebase, and both are similar to aCLASSPATH. The codebase
specifies a source from which a remote JVM can load needed classes that cannot
be found in the local CLASSPATH. When a local JVM is running and loading
classes from a local disk-based source, it searches for classes within the list of
locations specified in the CLASSPATH. When a remote client’s JVM needs to
obtain RMI stub classes, it looks first in the local CLASSPATH and then in the
list of locations specified by the codebase.

Note that the codebase is used by the client, but it is specified on the server.
When the RMI server registers itself with the registry, the codebase is “remem-
bered” by the registry. In fact, the registry itself uses the server’s codebase to find
the remote object’s stub class during registration. (For this reason, the registry
should not be started with a CLASSPATH that includes the remote object’s stubs.)
If the codebase is not properly specified – i.e. if the registry cannot find the needed
stub classes in the location specified by the codebase – then an exception is thrown
when the server attempts to bind() or rebind() itself into the registry. The
exception is a RemoteException nesting an UnmarshalException nest-
ing a ClassNotFoundException. This chain of exceptions is a common error
and is almost always the result of a bad codebase value.

The codebase is a URL or a space-delimited list of URL locations where the
needed stub classes, as well as any other classes needed by the stubs, can be found.
These URLs must be absolute paths, not relative paths. When running both client
and server on the same machine, they may be “file:„ URLs, though it is more
common to use “http:„ URLs. The URL may point to a directory location
or a JAR file. If a directory, it is important that the URL end in a trailing “/„

character. If the downloadable bytecodes are supplied by an “http:„URL, then
there must be an http server running on the specified host that can serve those
bytecodes.

The codebase property can be set using the -D syntax on the command line
when the server is started. An example is

-Djava.rmi.server.codebase=file:///rmiservers/example1/classes/

Since it is a “file:” URL, this codebase is suitable for when the client will be run-
ning on the same machine as the server. The URL specifies an absolute path to a
directory named /rmiservers/example1/classes.The needed class files
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must appear below the classes subdirectory, organized in package-named sub-
directories. This example assumes a Unix-like directory system. On a Windows
system, an analogous codebase specification would be

-Djava.rmi.server.codebase=file:///c/rmi-servers/example1/classes/

where the absolute path starts at the C: drive but we continue to use forward slash
characters as the separators.

If the needed class files are in a directory served by an HTTP server, then the
codebase might look like

-Djava.rmi.server.codebase=http://myserver/rmi/example1/classes/

If the downloadable classes are in a JAR file, then the specification might be

-Djava.rmi.server.codebase=http://myserver/rmi/example1.jar

If the needed classes are split across two jar files then the following might be
used:

-Djava.rmi.server.codebase=

"http://myserver/rmi/example1.jar http://myserver/rmi/more.jar"

where we have split the single line into two lines. In practice, the entire quoted
and space-delimited string should be all on one line.

18.5.3 The policy file

Even with the codebase properly specified and a security manager in place, both
client and server must still navigate through the Java permission system to run
correctly. As discussed in Chapter 14, once a security manager is used in Java 2
the policy file is consulted each time certain potentially sensitive operations
are performed. The default policy file is quite restrictive, permitting little more
than the minimum permissions needed to run the JVM and load classes from
the local CLASSPATH. Therefore, it is vital that a custom policy file be spec-
ified for both client and server. This custom policy file is specified using the
java.security.policy property.

For the simple example used here the server permission needed is
java.net.SocketPermission, which controls access to network sockets.
The permission needed is a specification of the host to be used and a set of
“actions” that identify ways to access that host. For this example, as long as we’re
running the client and server on the same machine, the server needs network
access to localhost, and the actions are accept, connect, and resolve. The need
for this permission may be determined by examining the source code along with
a knowledge of which Java API methods require various permissions. Unfortu-
nately, that body of knowledge is difficult to learn and remember. In addition,
often the method that requires some permission may not be called directly by
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the source code you write, but indirectly by some method that your code calls.
In practice, the best way to determine the needed permissions is often to run the
code without any policy file and see what runtime exceptions are thrown. Then
adjust the policy file to add the indicated permissions and run again.

To get started and to be sure that all other requirements are met and that the
code is working nominally, one could use a wide open policy – i.e. grant all
permissions to everything. The policy file to grant all permissions reads

grant {

permission java.security.AllPermission;

};

Obviously, using such a policy file in a production environment is, well, bad
policy. But using this policy file during testing is a good way to get both client
and server running quickly. The above lines can be created with a text editor and
saved in a file named, say, grantall.policy. Then, add the following to the
launch line when launching both the server and the client:

-Djava.security.policy=grantall.policy

As discussed in Chapter 14, it is probably easiest to use the SDKpolicytool

to create and edit policy files. That tool has a graphical user interface with intel-
ligent pull-down menus that restrict the choices to ones that make sense for the
task at hand, thereby reducing errors by minimizing the need to fully understand
the policy file syntax. Still, policy files are just text files, and this makes it easy
to display policy file snippets here.

Once we are convinced that everything else is working correctly, this permis-
sive policy file should be replaced with a more restrictive one. For the server, we
create a file called local-server.policy containing these lines:

grant {

permission java.net.SocketPermission "localhost",

"accept,connect,resolve";

};

Later we create another policy file for use with a remote server.
For the client, when running on the same host as the server, the permission

required is also a network socket permission, but only for the connect and resolve
actions. The client also needs a java.io.FilePermission in order to read
the location specified by the server’s “file:„ codebase.

To summarize, when running the client and server on the same machine,
we arrange for the client to use a local CLASSPATH that does not include the
remote stub classes. That means the client must look in the server’s codebase
for the downloadable class files. That codebase specification is received from
the RMI registry. Since we’re using the same machine, that codebase will be a
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“file:„URL. The client must read the remote stub classes from that URL, and
a suitable permission to read that location must be granted in the client’s policy
file. Therefore, the client’s policy file must read as follows:

grant {

permission java.net.SocketPermission "localhost", "connect,

resolve";

permission java.io.FilePermission

"c:\\javatech\\rmi18\\build\\classes\\-", "read";

}

The syntax of the read permission shown is for a Windows machine. The path
specified must be an absolute path and must correspond to the absolute path
specified in the “file:„ URL given as the server’s codebase. The use of the
double “\\„ characters is required on Windows. For an RMI client running on
a Unix box, the file might read as follows

grant {

permission java.net.SocketPermission "localhost", "connect,

resolve";

permission java.io.FilePermission

"/javatech/rmi18/build/classes/-", "read";

}

In both cases, notice the use of the “-„ at the end of the directory specification
which indicates the named directory and all directories below it. For more details
of the policy file syntax, see the Java SDK documentation.

An alternative to using the file permission when client and server are on the
same machine is to arrange the client’s CLASSPATH to point to where all the
class files, including the remote stubs, reside. Since the default policy file always
permits reading the CLASSPATH, no special file permission is needed. However,
doing so would not test or demonstrate the downloadable bytecodes feature of
RMI. Therefore, we use a client-side JAR file that includes only the minimum
classes needed to start the client, specifically avoiding the remote stub class files
when we create the JAR file. Then we set the server’s codebase to include the
location of the remote stubs and use the file permission shown above.

18.6 Finally, a working example

We finally have all the pieces in place to run a real, but simple, example RMI
client/server application with the restriction that both client and server must be
on the same machine. We make minor modifications in the next section to permit
the use of a remote machine. For completeness, the entire code is shown here,
including full package statements and exception handling which were omitted
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for brevity in the code snippets shown above. The complete source code is also
available on the Web Course site with slightly different formatting than shown
here. After listing the code, we also show the step-by-step instructions needed to
run this example.

We use a root package name of javatech.rmi18 for this example. The
remote interface file is in package javatech.rmi18.server, in a subdi-
rectory named javatech/rmi18/server. (We use the Unix standard for-
ward slash as a directory separator. Windows users need to mentally replace
the “/„ with a “\„.) To recap the role of this interface, it declares each
method that is to be remotely callable. It must extend the java.rmi.Remote
interface, and each remote method must be declared to throw java.rmi.

RemoteException.

// RMIExampleInterface.java

package javatech.rmi18.server;

import java.rmi.Remote;

import java.rmi.RemoteException;

/** The remote interface for use with the RMI Example

* in Ch. 18. **/

public interface RMIExampleInterface extends Remote

{

public void method1 (String s) throws RemoteException;

public int add (int a, int b) throws RemoteException;

} // interface RMIExampleInterface

Next comes the class that implements the remote methods declared by
the remote interface. This class obviously must contain an “implements
RMIExampleInterface„ clause. It must also extend UnicastRemoteOb-

ject and must provide an implementation of each of the remote methods
declared in the interface. It may also include other methods, such as
the doSomethingLocal() method.

We find it convenient to keep our remote interfaces separate from the imple-
mentation classes, so we put the implementation classes into an impl subdirec-
tory below the directory containing the interface itself. Therefore, the package
for the implementation classes is named javatech.rmi18.server.impl.
Another choice that keeps the interfaces and implementations separate is to put
the interfaces into something like ajavatech.rmi18.server.interfaces
package. Alternatively, it is perfectly legal for the interfaces and implementations
to be kept together in the same package called, say,javatech.rmi18.server.
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The choice is rather arbitrary and personal. If a different scheme than that shown
here is desired, just be sure to modify the package statements, subdirectories, and
import statements accordingly.

// RMIExampleImpl.java

package javatech.rmi18.server.impl;

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import javatech.rmi18.server.*;

// location of the interface classes

/** The implementation class that implements the remote

* methods declared in the <tt>RMIExampleInterface</tt>

* interface. **/

public class RMIExampleImpl

extends UnicastRemoteObject

implements RMIExampleInterface

{

// The default constructor will not work since

// UnicastRemoteObject, which we extend,

// throws RemoteException, which the default

// constructor provided by the compiler does not.

// Therefore, we must implement a default constructor

// that throws RemoteException even if the

// constructor does nothing at all. It will, of course,

// automatically call its superclass constructor.

/** Constructor.Must throw <tt>RemoteException</tt>. **/

public RMIExampleImpl () throws RemoteException {}

/** Echoes the input string provided by the client. **/

public void method1 (String s) {

System.out.println ("RMIExampleImpl.method1: " + s);

} // method1

/** Adds the input parameters and returns the sum. **/

public int add (int a, int b) {

System.out.println (

"RMIExampleImpl.add: computing sum of" +

a + " and " + b);

return a + b;

} // add
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/** Does something locally. There is no way to call this

* method remotely since it does not appear in the list

* of remote methods in the <tt>RMIExampleInterface</tt>

* interface.

**/

public void doSomethingLocal (float x) {

System.err.println ("RMIExampleImpl.doSomethingLocal");

} // doSomethingLocal

} // class RMIExampleImpl

One new requirement that we haven’t mentioned yet is that the constructor must
be declared to throw RemoteException, even if the constructor is otherwise
empty. The normal default constructor provided by the compiler when no explicit
constructor appears in the code is purely empty with no throws clauses. But
since our implementation class must extend UnicastRemoteObject, whose
constructor does throw RemoteException, the javac compiler complains if
our subclass constructor does not declare that it throws the same exception (or a
superclass thereof) as its parent class.

Now we move on to the class that we use to instantiate an RMIExampleImpl
object and bind it into the registry:

// RMIExampleServer.java

package javatech.rmi18.server.impl;

import java.net.MalformedURLException;

import java.rmi.*;

/** The server class that will get run to start up the

* remote implementation class and bind it into

* the RMI registry.**/

public class RMIExampleServer

{

public static void main (String[] args) {

// Create and install a security manager

if (System.getSecurityManager() == null) {

System.setSecurityManager (new RMISecurityManager());

}

// Instantiate an RMIExampleImpl implementation class

// and bind into the registry.

try {

// Instantiate.



18.6 Finally, a working example 519

System.err.println (

"Constructing an RMIExampleImpl");

RMIExampleImpl impl = new RMIExampleImpl ();

// Bind into the registry using the java.rmi.Naming

// API.

System.err.println ("(re)binding it");

Naming.rebind ("//localhost:3001/rmi-example-server",

impl);

System.err.println (

"RMIExampleServer ready and waiting on clients"

);

}

catch (RemoteException re) {

System.err.println (re);

}

catch (MalformedURLException mue) {

System.err.println (mue);

}

} // main

} // class RMIExampleServer

There is little new here compared to the original code snippet shown above when
discussing this class except for the full package statement and the setting of the
security manager.

Since RMI generally is used with clients and servers on different machines, it
makes good sense to keep the clients in a package separate from the servers. That
way it is easy to package the client and server JAR files separately for deployment.
We put the RMI client code in the javatech.rmi18.client package:

// RMIExampleClient.java

package javatech.rmi18.client;

import java.net.MalformedURLException;

import java.rmi.Naming;

import java.rmi.NotBoundException;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

import javatech.rmi18.server.RMIExampleInterface;

/** A client that makes remote calls to the RMI server

* developed in Chapter 18. **/

public class RMIExampleClient

{
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/** Constructor **/

public RMIExampleClient () {

// Create and install a security manager.

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

// Get a reference to the remote server named

// rmi-example-server.

RMIExampleInterface rmi-example-server = null;

try {

// Find the server.

String server-name ="//localhost:3001/rmi-example-server";

System.err.println (

"RMIExampleClient: looking up server " + server-name

);

rmi-example-server =

(RMIExampleInterface) Naming.lookup (server-name);

System.err.println ("RMIExampleClient: found it!");

} // try

catch (MalformedURLException mue) {

System.err.println (mue);

}

catch (NotBoundException nbe) {

System.err.println (nbe);

}

catch (RemoteException re) {

System.err.println (re);

}

if (rmi-example-server == null) {

System.err.println ("\nEXITING BECAUSE OF FAILURE");

System.exit (1);

}

// Test method1.

System.err.println (

"Calling remote method1 which should echo the string "

+ "'hello from client'"

);

try {

rmi-example-server.method1 ("hello from client");

}

catch (RemoteException re) {

System.err.println (re);

}

// Test the add method.



18.6 Finally, a working example 521

try {

int sum = rmi-example-server.add (18, 34);

System.err.println ("According to the remote add(), the "

+ "sum of 18 and 34 is " + sum);

}

catch (RemoteException re) {

System.err.println (re);

}

} // ctor

public static void main (String[] args) {

new RMIExampleClient ();

} // main

} // class RMIExampleClient

That finishes all the code. The steps to compile and run are summarized as
follows:

1. Compile everything.

2. Run the rmic compiler.

3. Package the client code into a client JAR file.

4. Start the RMI registry.

5. Start the server.

6. Run the client.

We detail each of the steps below.

18.6.1 Compile everything

For all the client/server examples in this book, we find it convenient to use the Ant
build tool, though describing Ant is not within the scope of this book (see [1]). The
Web Course contains Ant build files as well as Windows bat scripts for building
each example. For simplicity we show only the Windows bat scripts here. Unix
shell scripts are very similar.

Ant strongly encourages a directory structure in which the compiled class
files are kept separate from the source files. An advantage of this arrangement is
that directory listings in the source directories are not cluttered up with a lot of
compiled .class files. We use that directory arrangement here, even though we
demonstrate building and running the examples with Windows bat scripts only.
Accordingly, all our source files and directories appear below a directory named
src. The name is completely arbitrary but is a common one for Ant users.
Therefore, at some top level directory containing everything pertinent to this
example, there is a src subdirectory. Below src appears javatech/rmi18/
server, for the interface file, javatech/rmi18/server/impl, for the
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implementation files, and javatech/rmi18/client, for the client. All the
class files are compiled into a separate subdirectory tree. In this way, making a
clean rebuild of everything is easy since all the compilation results can be dis-
carded simply by deleting the entire compiled class file tree. It is common for Ant
users to use a build directory that is parallel to the src directory for the purpose
of containing all such generated results. Sometimes things other than just class
files need to go into build, so class files are generally sent to a classes

subdirectory below build. Of course, to maintain Java’s required package-
named subdirectory arrangement, the entire javatech/rmi18/server,
javatech/rmi18/server/impl, and javatech/rmi18/client direc-
tory structure is replicated below build/classes.

To summarize, the entire directory structure appears as follows, assuming we
begin at a directory named javatech-18. A trailing “/„ indicates a directory,
and file names are italicized.

javatech-18/

(build and run scripts, policy files, etc.)

src/

javatech/

rmi18/

client/

RMIExampleClient.java

server/

RMIExampleInterface.java

impl/

RMIExampleImpl.java

RMIExampleServer.java

build/

classes/

javatech/

rmi18/

client/

server/

impl/

For simplicity we do not show the various build and run scripts, policy files, etc.
in the diagram above. All those files appear at the Web Course. Initially, the build
tree will be empty. In fact, in won’t even exist at all. It is created when running
Ant or when running the build scripts, and compiled .class files will appear in
the appropriate places below the build/classes tree.

The first task is to compile all the Java source files. In order to use the directory
structure above, we need to direct the compiler output to a different directory than
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the source code directory. The -d switch on the javac command line does just
that. The compiler also needs to know where to look for already compiled class
files that might be needed as new files are compiled. The familiar -classpath
switch handles that and should point to the same directory as the -d output
directory. First, we create the build and build/classes directories. For
a Windows bat script, the mkdir command must use the standard Windows
“\„ character as a directory separator. Elsewhere we use the conventional “/„

between directory names since the javac tool knows how to interpret it.

rem Create the build and class directories

mkdir build

mkdir build\classes

Next we set up some environment variables to make the compilation lines a little
shorter:

rem setup some environment variables to use as abbreviations

set classdir=build/classes

set cp=%classdir%

set ifcdir=src/javatech/rmi18/server

set impldir=src/javatech/rmi18/server/impl

set clientdir=src/javatech/rmi18/client

And finally we compile all the sources:

rem Compile everything

javac -classpath% cp% -d %classdir% %ifcdir%/*.java

javac -classpath% cp% -d %classdir% %impldir%/*.java

javac -classpath% cp% -d %classdir% %clientdir%/*.java

18.6.2 Run the rmic compiler

The next step is to generate the stubs and skeletons using the rmic compiler.
It operates on the remote implementation class file, not the source file, so the
javac compilation must be completed first. The input to rmic must be the fully
qualified implementation class – i.e. with the complete package name prefix,
javatech.rmi18.server.impl.RMIExample. Of course rmic needs to
know the local CLASSPATH so it will know where to begin looking for the
named class to compile. We also want to direct the rmic output to the same
build/classes tree used for other class files. Just like javac, rmic uses
the -d switch to indicate the output directory. Continuing with the Windows bat
script begun above, we run rmic as follows (line split to fit page):

rmic -classpath %cp% -d %classdir%

javatech.rmi18.server.impl.RMIExampleImpl
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18.6.3 Create a client JAR file

When we run the server, we’ll set the local CLASSPATH to point to the
build/classes directory tree. We could run the client pointing to the same
CLASSPATH, but, as described earlier, doing so would not demonstrate the ability
of RMI to download bytecodes from a codebase. Instead, we create a JAR file
that contains only the pieces needed for the client to start up. It intentionally does
not include the stubs just generated by rmic. The only pieces absolutely required
for the client are the compiled RMIExampleClient.class file and the com-
piled interface file. The JAR file must be created carefully so that it contains the
directory structure matching the package structure of the compiled class files.
Therefore the JAR must begin at the build/classes directory level. One way
to do that is to use the -C switch to the jar command. It is often easier to just
cd to the required root directory, run the jar command, and then cd back to the
starting location, the approach used here:

cd build\classes

jar cf client.jar

javatech/rmi18/server/RMIExampleInterface.class

javatech/rmi18/client/RMIExampleClient.class

move client.jar ..\..

cd ..\..

(The list of files to include in the JAR file is too long to fit on one line. On Unix
and Linux platforms, a continuation character (“\„) can be used to nicely format
the script file, but on Windows both files must appear in one long line. We’ve
split it here only for appearance reasons.)

Note that we’ve also moved the created client.jar back up two directories,
back to the javatech-18 root directory for this example.

18.6.4 Start the RMI registry

The next step is to start the RMI registry. When doing so, it is important that the
registry be started without a CLASSPATH that includes the stub files. In general,
no CLASSPATH at all should be used. In all the examples shown so far, we’ve
assumed that the command shell window does not have a CLASSPATH envi-
ronment variable set. We explicitly set the CLASSPATH using the -classpath
command line switch whenever necessary. The reason that noCLASSPATH should
be set is that the registry is a Java application, and like any Java application, the
JVM looks first in its local CLASSPATH for the class files it needs. The files
the registry needs are the stub classes. If the registry finds the stub classes in its
CLASSPATH, then it won’t look in the java.rmi.server.codebase. When
a client asks the registry for the codebase, there won’t be one, and the client will
fail with a nested ClassNotFoundException. Therefore, we intentionally
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leave off any -classpath specification when starting the registry. The RMI
registry is started, in Windows, with the rmiregistry command as follows:

start rmiregistry 3001

For Unix, we would use the command

rmiregistry 3001 &

In both cases, we’ve specified the port number 3001. If left off, the default RMI
port of 1099 is used. Since we’ve hard coded port 3001 in our source code, we
need to be sure to use port 3001 for the RMI registry. If there is already a process
using port 3001 on your machine, then you must choose a different unused port
number.

For some applications, it is possible and convenient to start the registry from
within the server program itself. Doing so saves the separate step of starting the
registry and keeps the registry port number and the server that uses the registry
at just one place in the code. We learn in Chapter 20 how to use that technique.

18.6.5 Start the server

We are finally ready to run the server. To do so, there are four things that
must be specified on the Java command line – the CLASSPATH, the code-
base, the policy file, and the name of the class to run. The CLASSPATH must
point to the build/classes directory. Alternatively, we could have created a
server.jar file containing all the classes in build/classes. The codebase
and policy files are specified as system properties using the -D syntax shown
earlier, and the class to run is the fully qualified RMIExampleServer class.
Therefore the command line to start the server is

java -classpath build/classes

-Djava.rmi.server.codebase=file:///c:/javatech-18/

build/classes/

-Djava.security.policy=local-server.policy

javatech.rmi18.server.impl.RMIExampleServer

Again, we’ve broken the command into multiple lines for appearance reasons.
On a Windows machine, this entire command must be entered on a single line.
Unix and Linux shells can use the line-continuation character. The policy file
specified, local-server.policy was shown earlier but is repeated here for
completeness:

grant {

permission java.net.SocketPermission "localhost","accept,

connect, resolve";

};
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The source code listed earlier and appearing on the Web Course includes some
diagnostic output written to System.err, so one should see the following
appearing in the console window in which the command is issued:

Constructing an RMIExampleImpl

(re)binding it

RMIExampleServer ready and waiting on clients

18.6.6 Run the client

The registry and server are now both running, so we can finally test the client
application. The command line for the client needs the following three items –
the CLASSPATH, the policy file, and the client class name. As explained earlier,
the client.policy file is

grant {

permission java.net.SocketPermission "localhost", "connect,

resolve";

permission java.io.FilePermission

"c:\\javatech-18\\build\\classes\\-", "read";

}

Another console window is required in order to launch the client since the previous
console window is occupied running the server. The command line to launch the
client is

java -classpath client.jar

-Djava.security.policy=client.policy

javatech.rmi18.client.RMIExampleClient

The expected output in the client console window is

RMIExampleClient: looking up server //localhost:3001/rmi-

example-server

RMIExampleClient: found it!

Calling remote method1 which should echo the string 'hello

from client'

According to the remote add(), the sum of 18 and 34 is 52

Meanwhile, the following two lines should be added to the output in the server
console window:

RMIExampleImpl.method1: hello from client

RMIExampleImpl.add: computing sum of 18 and 34
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18.7 How to run on two machines

Everything so far in this chapter has used localhost as the host name. Doing
so has been a convenience to avoid specific host names. Additionally, the reader
can download the code from the Web Course and run it on any machine without
any manual editing required. To run the client and server as RMI was intended –
on two different hosts – requires only a few changes which we detail now.

Let’s suppose that we have a host named myserver.somewhere.com on
which to run the server, and host client.somewhere.com for the client. The
RMI registry must be running on the server machine because applications are
permitted to bind only to a registry running on the same host as the applica-
tion. Since the server is running on myserver, the client must look up the
server on that machine instead of localhost. Therefore the string passed to
Naming.lookup() must refer to myserver.somewhere.com rather than
localhost. Of course, the server application must be sure to bind using that
address as well – i.e. the server application should bind to its actual machine name
instead of localhost. The use of localhost works fine when the client is on
the same machine, but for a remote client, the correct server hostname is required.

The only source code change needed on the server side is to replace the
binding to localhost in RMIExampleServer.java with a binding to
myserver.somewhere.com. The rebind line must become

Naming.rebind (

"//myserver.somewhere.com:3001/rmi-example-server", impl);

where we still assume that port 3001 is free. Similarly, the lookup line in
RMIExampleClient.java must be changed to

rmi-example-server = (RMIExampleInterface) Naming.lookup (

"//myserver.somewhere.com:3001/rmi-example-server")

The server’s policy file must permit outgoing network connections from the
server itself as well as incoming network connections from the anticipated client
machine. Thus the server.policy file must be modified to read

grant {

permission java.net.SocketPermission

"myserver.somewhere.com", "accept, connect, resolve";

permission java.net.SocketPermission

"client.somewhere.com", "accept, connect, resolve";

};

If being so explicit in one’s policy file seems too restrictive, there are ways to
write more general policies. Wild card usage is permitted in the host name, for
example. And a policy file can include a codebase to which it applies. Using
a codebase in the policy file means that only codes from that codebase will be
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granted the permissions listed in the policy file. In that way, a rather permissive
policy file still will not open up your machine to attacks from unknown codebases.

Almost everything is ready now, except for the codebase and a way for the client
to download the needed stub classes from the server. Typically, the download is
provided with a web server using an “http:„URL as the codebase. Setting up a
web server such as Apache is not particularly difficult, but is beyond the scope of
this book [see 2]. Instead, we package all the needed class files, including the stubs
this time, into a clientall.jar file that must be copied to the client machine.
That way, the client will find all its needed classes in its local CLASSPATH and
will not need to consult the codebase at all. The server still needs to provide a
valid “file:„ URL codebase so the RMI registry can find the stubs it needs.

To summarize the steps required for running on two machines:

1. Make the source code changes above to specify the actual server hostname instead of

localhost.

2. Modify the server.policy file to permit connections by the server host and the

client host.

3. Build a JAR file containing the classes needed by the client, including stubs

4. Copy that JAR file to the client machine.

5. Start rmiregistry on the server machine using the port number hard coded into the

client and server source codes.

6. Start the server application.

7. Run the client application.

Note that for this JAR file, one can explicitly list the .class files needed by the
client. For convenience, one can also make a JAR file containing everything in the
build/classes directory, including server-side classes at the cost of having
to transfer a slightly larger JAR file than actually needed on the client machine.

The Web Course contains an rmi18-2 directory that has these changes as
well as the needed build and run scripts. The reader will, of course, have to
change myserver.somehwere.com and client.somewhere.com to the
proper host names.

18.8 Conclusion

This completes our simple RMI example. It may not have sounded so simple,
since the description was rather long and detailed. As one creates more realistic
RMI applications, one will realize that this truly was a simple example. However,
other applications are just extensions of the skills learned here. The only critical
aspect of RMI not demonstrated here is the use of remote objects as method
call parameters and the associated transfer of client-side bytecodes to the server.
Doing so is a simple extension of what was learned. There are also examples to be
found in the online Java documentation. Before developing a complete example
that demonstrates the client/server simulation architecture described in Chapters
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16 and 17, we take a brief detour to discuss CORBA as an alternative to RMI.
Future discussions of RMI do not go into such laborious detail as shown here,
since the basic skills needed to create and compile the sources, create the stubs,
start the registry, and run the server and client have already been learned.

18.9 Web Course materials

All of the codes discussed here are available in the Web Course Chapter 18 along
with additional examples, resources, and discussion of RMI.
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Chapter 19
CORBA

19.1 Introduction

CORBA is an acronym for Common Object Request Broker Architecture, a
name that does not really convey to the new user the purpose of the technol-
ogy. Most people just think of CORBA as the name of an important distributed
object technology without really considering what the acronym stands for. For
Java developers, RMI is generally the preferred distributed object architecture –
especially when it is known that both client and server will be written in Java.
However, CORBA has the advantage that it is language independent, meaning
that non-Java clients can make CORBA calls to a CORBA server.

CORBA is a standard, so there is an official specification of that standard. The
standard is maintained by the Object Management Group, a consortium of over
800 members. See the www.omg.org home page for voluminous information on
CORBA and other technologies developed by the OMG. CORBA is also a very
broad technology that covers much more than we introduce here. Our point is to
demonstrate how CORBA technology can be used to implement straightforward
distributed computing solutions analogous to the RMI example developed in
Chapter 18.

A typical scientific application, such as the simulation described in Chapters 16
and 17, generally has only a few users. The developer writes both the client and
server and, if developing in Java, probably uses RMI. However, if one is designing
a public server that will be accessed by multiple clients, including the possibility
of non-Java clients written by someone else, then CORBA is a better choice than
RMI. CORBA is such an important technology that the Java 2 SDK fully supports
CORBA applications. The official name of the CORBA support in the SDK is
“Java IDL,” but in this book we use the name CORBA instead. Programming
in CORBA is similar to RMI in concept, but has some significant differences.
Because of the need to be language independent, CORBA is generally somewhat
more difficult to use than RMI. And while CORBA is object-based, it generally
does not “feel” as object-oriented as RMI.

This chapter develops a simple CORBA client/server application, similar to
the simple RMI example developed in Chapter 18. Because many of the basic

530
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distributed computing concepts should already be understood from Chapter 18,
we do not need to go into as much detail as earlier. For example, CORBA uses the
same stubs and skeletons framework as in RMI, so we don’t have to rehash that
concept. The Java 2 SDK provides tools to automatically generate the CORBA
stubs and skeletons, similar to that provided with RMI. CORBA includes its own
highly developed language-independent exception mechanism similar to Java
exceptions. When using the Java language to implement a CORBA application,
the exception mechanism maps very cleanly to Java’s exception system. In fact,
one will find that almost all CORBA concepts map well to the Java language and
much better than other programming languages.

19.2 CORBA IDL

Perhaps the biggest difference between CORBA and RMI is that the CORBA
interfaces must be defined in a language independent fashion. This is done using
the CORBA Interface Definition Language (IDL) rather than a Java interface file.
IDL is a limited C-like language whose only purpose is to define interfaces. There
are absolutely no implementation features in the IDL language. The IDL file is
processed with an IDL-to-language-of-choice “compiler” for the language cho-
sen to generate the language-specific stubs along with numerous other support
files for that language. Then the developer provides the implementation of the
server code using those support files. There must be an IDL compiler for what-
ever programming language is used for the implementations. The Java 2 SDK
includes an IDL-to-Java compiler. If one were developing in C++ or Smalltalk,
for example, one would need a CORBA environment for that language, including
an IDL-to-C++ or IDL-to-Smalltalk compiler. Running such an IDL compiler
would produce the required stubs and support files for that language, and, depend-
ing on the language, they could look very different from the files created by the
IDL-to-Java compiler.

The first step in developing a CORBA application is to define the server
interfaces in an IDL file, a task that requires learning the IDL syntax. Learning
the syntax is not particularly difficult, as we demonstrate shortly, but doing so
does represent an additional step. In fact, Java now provides a way to generate an
IDL file directly from a Java interface file, relieving the developer from needing to
learn IDL. However, since CORBA cannot support some features that are easily
supported in RMI, one must be careful to restrict the Java interface file to only
those features supported by CORBA. This subset of RMI is referred to as RMI
over IIOP, and is fully documented in the online Java documentation. Further
discussion of RMI over IIOP is beyond the scope of this book.

We introduce IDL here with an example that duplicates the functionality of
the RMI server developed in Chapter 18, but we do not go into all the features
available in IDL. The online Java documentation includes a complete description
of IDL for those interested in the details.
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CORBA predated the invention of Java, but the Java language structure maps
closely to the features provided in CORBA. Java packages, for instance, map
closely to IDL modules, which, like Java packages, provide a way to avoid names-
pace collisions. To correspond to the package structure we’ve already become
familiar with in Chapter 18, we create a javatech module and nest within it a
cor19module and a servermodule. Within the servermodule, we define an
IDL interface that corresponds to the RMIExampleInterface used with RMI.
We also included a few other IDL features. The IDL interface is very similar in
concept to a Java interface. It declares the remotely callable methods that you
wish to provide in the CORBA server, including the method name, parameter
types, return types, and any possible exceptions. We emphasize again that the
IDL file defines the interfaces only; the implementations of those methods must
be provided elsewhere. The IDL file we use for this simple example is shown
here. We describe each feature below.

// server.idl

module javatech {

module cor19 {

const string COR19-CONSTANT = "Chapter 19";

module server {

const string SERVER-CONSTANT = "JavaTech Book";

exception Cor19UserException {

string message;

}; // exception Cor19UserException

struct CustomData {

float someFloatValue;

long someIntegerValue;

}; // struct CustomData

interface Cor19Example {

const long COR19-EXAMPLE-CONSTANT = 19;

attribute long huh;

readonly attribute float hah;

void method1 (in string s);

long add (in long a, in long b);

void demo (inout CustomData cd) raises

(Cor19UserException);

}; // interface Cor19Server

};

};

};
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Notice the use of a semicolon terminating every method definition, similar to a
Java interface file, but also after every closing brace, unlike Java. Leaving out
the terminating semicolon generates an error from the IDL compiler and is a
common mistake. The IDL compiler honors // as well as /∗ . . . ∗/ comments.
The compiler provided with Java 2 SDK even retains javadoc-style comments
and forwards them to the generated Java source code where appropriate.

When this IDL file is processed by the IDL-to-Java compiler, several support
files are generated in packages named to match the module names. These sup-
port files are definitely important, but their contents are rarely of interest. These
files simply provide most of the underlying plumbing needed to implement the
CORBA programming paradigm. Because the files themselves are normally of
little use, and to avoid cluttering up our implementation directories, it is conve-
nient to instruct the IDL compiler to direct the generated files into some directory
tree other than our source tree.

Because CORBA is language and platform independent, it must support lan-
guages and platforms that are not case sensitive. Therefore, the IDL file is not
case-sensitive. One must be careful to avoid names that differ only in case; else
name conflicts will occur. For case-sensitive languages such as Java, the IDL com-
piler is permitted to retain case-sensitive names in the support files that it creates.
Then the implementer can retain case-sensitive names for convenience in the
implementation files. Even so, the requirement to maintain identifier uniqueness
without regard to case must still be met.

In the IDL file above, we created an interface named Cor19Example. That
interface includes two methods that are similar to the methods defined in the
RMI interface from Chapter 18. (In CORBA terminology, the “methods” are
actually referred to as “operations,” which is a relatively language-neutral term.
However, Java programmers will almost always think of them as methods instead
of operations.) We also included one new operation, demo(), that we describe
shortly.

The IDL file also defines a data structure (CORBA keyword struct) called
CustomData. Structures have no direct analog in Java since everything in Java is
either a primitive or an object, and all objects inherit from java.lang.Object

and thus have behavior (methods) associated with them. Structures in CORBA
are pure data containers with no behavior. Like structures in other languages, they
are used to group together related values. If one is to pass structured data between
CORBA clients and servers, those data structures must be defined somewhere,
and where they are defined is in the IDL file using the struct keyword as shown.

A feature of IDL that may be unfamiliar is that each of the method parameters
must be identified as an input only, output only, or input/output parameter. The
keyword in identifies input-only parameters. They are forced to be read-only
parameters in the implementation files. No changes to their values are commu-
nicated back to the calling program, no matter what the server-side code does
with them. Output only parameters are identified with the keyword out, and



534 CORBA

input/output parameters with the keyword inout. Because Java always passes
parameters by value, the IDL-to-Java compiler must generate special “Holder”
classes to provide support for out and inout parameters.

For example, the demo() operation uses an inout parameter of type
CustomData. The IDL compiler generates a special support class named
CustomDataHolder.When the implementation class is built, the parameter
passed in the CustomData position must actually be a CustomDataHolder
object. Holder classes are created to “hold” an object of the root type. Thus
CustomDataHolder holds a CustomData object. In that way, a Java imple-
mentation can set the value of the CustomData object within the Holder class
for return to the caller. Both out and inout parameters are handled with Holder
classes. In fact, in a Java implementation, there is little difference between out
and inout parameter types. The only difference is that inout parameters are
expected to contain data upon entry to the method implementation while out

parameters should not. An attempt to retrieve the inner value of an out para-
meter results in a runtime failure, as does an attempt to pass an inout parameter
whose inner value has not been set.

Our IDL file also defines an exception called Cor19UserException.
Exceptions are not “thrown” in IDL terminology, but rather “raised,” as shown in
the example. However, theraises keyword maps into the Javathrows keyword
in the output from the IDL compiler. There are a variety of built-in exception
types, but if a custom type is desired, it must be defined in the IDL file.

TheCor19Example interface declares thatmethod1() returnsvoid, while
add() returns long. There is no int keyword in IDL, but when IDL types are
mapped to Java primitive types, an IDL long parameter becomes a Java int.
One of the first things a novice CORBA programmer must learn is to mentally
map everywhere that a Java int would be used to a long in the IDL file. When
the Java implementation is built, the parameters and return values identified as
long in the IDL file appear as int types in the Java implementation.

The parameter for method1() is an input (in) parameter of type string.
Note the lowercase “s„. Lowercase string is an IDL type that maps to a Java
String object. If one accidentally uses uppercase String in an IDL file, an
error is seen when the file is processed by the IDL compiler. This mistake is
common, but the solution is simple – just replace the erroneous String with
the correct string.

It should now be clear that the IDL file shown above defines a CORBA server
that provides the same services as the simple RMI example from Chapter 18 plus
a few more. Other features of IDL not yet described include the use of two kinds of
attributes and two kinds of constants (CORBA keyword const). Attributes map
into instance variables in Java with accessor and mutator (also known as getter
and setter) methods (which must be implemented in the implementation class).
Attributes with the keyword readonly have only an accessor method. Read-
only attributes are values that may be changed within the server implementation,
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and can be read but not set by a client. Regular attributes may be set by a client
using the mutator method.

Constants defined within a module but outside an interface in the IDL file
map into a public Java interface (with the same name as the constant) in the
package corresponding to the module in which the constant is defined. Thus our
COR19-CONSTANT, which is in the cor19module, maps to a Java interface (in a
file namedCOR19-CONSTANT.java) in thejavatech.cor19 package, while
the SERVER-CONSTANT, being in the server module, maps to a Java interface
in the javatech.cor19.server package. These Java interfaces define no
methods, just constant values in a field named value. So the constant can be
accessed like this:

String a-fun-chapter = javatech.cor19.COR19-CONSTANT.value;

or, using imports,

import javatech.cor19.*;

. . .

String a-fun-chapter = COR19-CONSTANT.value;

Constants defined inside an IDL interface map to public static final fields in the
Java interface that corresponds to the IDL interface.

There are more features to IDL that we do not go into here since our aim is only
to introduce CORBA rather than give an exhaustive tutorial. Some features that
might be of interest include the oneway keyword, which defines a non-blocking
method, the typedef keyword, enum and union objects, and the Any type.

19.3 Compiling the IDL file

The IDL-to-Java compiler provided with the Java 2 SDK is known as idlj.
There exist CORBA implementations for Java other than the free built-in imple-
mentation. Some of these may provide better performance or adherence to newer
versions of the CORBA standard than the built-in CORBA support. Each imple-
mentation must provide its own IDL compiler, and the name and usage of the
compiler is likely to be different from the name and usage of idlj. However,
most implementations should produce essentially similar output files, with per-
haps slight naming differences. We deal only with the free Java 2 SDK CORBA
implementation.

When the above IDL file, with its nested module statements, is compiled,
it generates the support classes in the javatech.cor19.server package.
The IDL file itself may be kept almost anywhere. We use a directory structure
similar to that used in the RMI example in Chapter 18 with an src directory
containing all the implementation files in a package-named directory structure
and a build/classes directory containing the compiled class files. With this
structure, it is convenient to keep the IDL file in the src directory. The IDL
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compiler supports a -td switch that directs where the output should be gener-
ated. In order to keep the IDL-generated files separate from our implementation
files, we direct the output to a directory called idlfiles, parallel to the src
and build directories. The command line to compile the IDL file is

idlj -fall -td idlfiles src/server.idl

The idlj compiler is even smart enough to create the idlfiles directory if
it doesn’t already exist. The -fall switch instructs the compiler to output both
client and server support files. If omitted, then -fclient is assumed, generating
only the client-side support files, an option that might be desired if one were
creating only a CORBA client to connect to an already existing CORBA server.
After running the idlj compiler, and assuming that we’ve already created the
empty src directory tree structure, the directory structure appears as shown
here:

javatech-chapter-19/

(build and run scripts, etc.)

src/

server.idl

javatech/

cor19/

client/

server/

impl/

idlfiles/

javatech/

cor19/

(1 IDL-generated file)

server/

(13 IDL-generated files)

build/

classes/

The build/classes tree will not exist yet either, but we show it here for com-
pleteness. When completed, there will be javatech/cor19/server/impl
and javatech/cor19/client trees below build/classes.

The several IDL-generated files are of little interest to the developer. They
are mainly used internally by the CORBA system. In order to create the imple-
mentation files, the programmer needs only to have knowledge of the interfaces
defined in server.idl and the standard way in which CORBA works. A brief
listing of the files and their purposes is given in Table 19.1. There is also a
COR19-CONSTANT.java file in the javatech.cor19 directory one level
up, corresponding to the IDL constant COR19-CONSTANT.
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Table 19.1 IDL files list.

File Name Description

Cor19Example.java A Java interface corresponding to
the IDL interface, defines constants
that were defined within the IDL
interface.

Cor19ExampleHelper.java Static support methods. The most
important method here is the
narrow() method used to perform
object casting in CORBA.

Cor19ExampleHolder.java Holder class for Cor19Example.
Cor19ExampleOperations.java A Java interface that defines the

methods corresponding to the IDL
operations.

Cor19ExamplePOA.java Abstract class, must be extended by
the implementation class. Serves
as the server-side skeleton class.

Cor19UserException.java Java Exception class corresponding
to the user exception defined in
the IDL.

Cor19UserExceptionHelper.java Helper for Cor19UserException.
Cor19UserExceptionHolder.java Holder for Cor19UserException.
CustomData.java Final Java class corresponding to the

user-defined struct in the IDL.
CustomDataHelper.java Helper for CustomData.
CustomDataHolder.java Holder for CustomData.
SERVER-CONSTANT.java Java interface defining the value of

SERVER-CONSTANT.

-Cor19ExampleStub.java Stub class needed by clients.

All of these generated classes are important, but the most commonly seen
usage is probably the narrow() method in the Helper classes. All CORBA
objects are derived from the org.omg.CORBA.Object class. To cast a generic
object into a specific type, the narrow() method must be used. Conceptually,
narrowing is nearly identical to the normal Java cast operation, but a Java cast
does not work. Each CORBA Object type has an associated Helper class with a
narrow() method in order to do the casting. The Helper classes also provide
other services that we do not discuss here.

19.4 Creating the server implementation

Similarly to what we did for RMI, we build an implementation file in the
javatech.cor19.server.impl package. We can name the implementation
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class anything we choose, but to be consistent with certain CORBA naming
conventions, we use the filename Cor19Servant.java. Another name one
might see in CORBA examples is Cor19ExampleImpl.java since it is the
implementation of the interface known as Cor19Example. However, we find
the “servant” nomenclature easier to keep straight in our minds for reasons that
should become clear shortly.

In CORBA terminology, a “servant” is an implementation of an interface. In
Java, we can say that a servant is an instance of the Java object that implements
the operations declared in the IDL interface. Then a “server” is a process that
instantiates the servant objects and makes them available via the CORBA sub-
system. In Java, we create another class to be the CORBA server process for
this example, somewhat like the RMIExampleServer class from Chapter 18,
whose role was to create an instance of the implementation class.

19.4.1 Servant implementation

In order to be a CORBA servant, our class must extend org.omg.

PortableServer.Servant. Actually, this extension is handled by extend-
ing Cor19ExamplePOA, which itself extends org.omg.PortableServer.
Servant and also adds other features needed by the CORBA subsystem. Thus
our implementation file begins

public class Cor19Servant extends Cor19ExamplePOA {

Our implementation (servant) class must implement each of the methods defined
in the IDL file. Servant methods look just like regular Java methods. The code
to handle all of the CORBA communications is provided by the skeleton class in
Cor19ExamplePOA and its superclasses.

Returning to the IDL file, we first have the attributes huh and hah to imple-
ment.Hah is read-only, so we need only provide a getter method of the appropriate
signature. That signature is a method named hah with no parameters, returning
the type of the attribute, in this case float. We create a private instance variable
named fHah for the value of the hah attribute. The idea is that the attribute hah,
embodied in the implementation code in a variable named fHah is used for some
purpose within the implementation. Since the IDL file has identified this as an
attribute, we must assume that the client might want to query its value. The client
does so by calling the hah() method. Since hah is read-only, there is no way
for the client to set its value. Our implementation is simply

public float hah () {

return fHah;

}

Next comes the huh attribute, which is not read-only. There must be a getter
method, similar to that for hah, along with a private instance variable to contain
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the value of the attribute. There also must be a setter method. The Java signature
of the setter method for this CORBA attribute is a voidmethod named huh(int
value) where the parameter is the type matching the type of the attribute. The
purpose of the setter method is to allow the client to pass in a value to assign to
fHuh, therefore we use

public void huh (int huh) {

fHuh = huh;

}

We also need to implement method1() and add(), similarly to the way they
were implemented in the RMI example in Chapter 18. One difference is that
here we demonstrate accessing theCOR19-CONSTANT andSERVER-CONSTANT
values as follows:

public void method1 (String s) {

String cor19-con = COR19-CONSTANT.value;

String server-con = SERVER-CONSTANT.value;

System.out.println (s + "/" + cor19-con + "/" +

server-con);

}

Theadd()method is straightforward as well. The complete code for this example
is available on the Web Course.

Thedemo() operation was created to demonstrate the use of aninout param-
eter and the corresponding Holder object. To access the base object contained
in a Holder object, we use the public instance variable named value. Since
demo() was declared in the IDL as receiving an inout CustomData struc-
ture, the Java implementation receives a CustomDataHolder object, and we
obtain the contained CustomData object as follows:

CustomData cd = custom-data-holder.value;

where custom-data-holder is the input parameter. Then we can manipulate
the fields within cd at will. Recall that CustomData was declared to have two
fields – a float and an int (well, an IDL long, which becomes an int in the
Java implementation). For demonstration purposes, we multiply the float field
by two and the int field by three:

public void demo (CustomDataHolder custom-data-holder)

throws Cor19UserException {

CustomData cd = custom-data-holder.value;

cd.someFloatValue *= 2;

cd.someIntegerValue *= 3;

}
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Note that once we have a reference to the contained CustomData object, we do
not need to “put it back” into the Holder object.

19.4.2 Server implementation

We now turn to the server class that instantiates the servant and makes it avail-
able to the CORBA subsystem. Our Cor19Server.java class has only a
main() method that initializes CORBA, locates the CORBA naming service,
creates a Cor19Servant instance, and loads that instance into the naming ser-
vice. These steps are analogous to the steps followed in the RMI example, but the
details are quite different for CORBA than for RMI.

Part of the CORBA subsystem is an Object Request Broker (ORB). The
ORB is a library of support code that accomplishes the low-level communi-
cations between CORBA clients and servers. The ORB class is in package
org.omg.CORBA and provides many functions, only a few of which are of inter-
est to the casual CORBA programmer. The only method we use is ORB.init()
to initialize the ORB.

Another concept important in CORBA is the Portable Object Adapter, or POA.
We briefly mentioned POA when discussing the abstract Cor19ExamplePOA
class, which must be extended to create the servant class. It is useful to think of an
“object adapter” as the way in which clients, servers, and servants interact with
the ORB. Before the OMG adopted the POA standard, each vendor of CORBA
software implemented their object adapters in different ways. As a result, source
code was not portable between CORBA ORB vendors. To resolve this problem,
the OMG created the portable object adapter specification, or POA. A POA is
a CORBA object, but because of the services it provides, it is a very special
kind of object. A POA manages the implementation of a collection of objects
and provides a namespace for those objects, including other POAs. It is not
necessary to understand all the services provided by the POA, which is a large
and complicated subject. We use only the most basic POA features in this example
without going into detail about what is really happening behind the scenes.

The server class’s main() method must perform the following six steps:

1. Create and initialize the ORB.

2. Get the root POA and activate the POAManager.

3. Create an instance of the servant object.

4. Get a reference to the naming service.

5. Bind the servant into the naming service.

6. Tell the ORB to wait for incoming requests from clients.

We discuss each of these six steps in turn. First, though, since any call to a
CORBA method could result in a CORBA exception, we wrap everything in a
try/catch block. Thus,
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public static void main (String[] args) {

. . .

try {

// All six server steps

}

catch (Exception e) {

System.err.println ("ERROR: " + e);

e.printStackTrace (System.err);

}

} // main

This main() method appears in the Cor19Server class, where we have
assumed the following package and import statements:

package javatech.cor19.server.impl;

import javatech.cor19.server.*;

import org.omg.CORBA.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.PortableServer.*;

19.4.2.1 Create and initialize the ORB
The ORB is created and initialized with the static ORB.init() call in the
org.omg.CORBA package. For a Java application (as opposed to an applet),
the init()method takes two parameters – a String array and a Properties
object. Either parameter may be null. The idea for the String array is that
ORB.init() is typically called from an application’s main() method, and
since main() receives a String array of command line arguments, these can be
passed directly to the ORB. The init()method uses any of these command line
arguments that it can interpret and ignores the rest. An example is the argument
-ORBInitialHost, which identifies the host on which to find the naming
service.

The Properties parameter provides an alternate way to deliver cer-
tain values to the ORB. For example, the initial naming service host can
be specified with a org.omg.CORBA.ORBInitialHost property instead of
-ORBInitialHost command line argument. The Properties object passed
to the ORB can be created and populated within the main() program, or you
can use the system properties object and load the desired property names and
values from the command line with the -Dprop=value syntax.

You are free to use either theargsmethod or theProperties object method,
or both. A code snippet showing ORB initialization utilizing both methods is

ORB orb = ORB.init (args, System.getProperties ());
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Here, we passed in the args parameter from the command line as well as the
system properties object, allowing both methods of ORB parameter specification
to be used.

19.4.2.2 Get the root POA and activate the POAManager

When there is an ORB, there are certain important services either already available
or assumed to be available. An example of the latter is the CORBA naming service,
known as COSNaming, which we learn about shortly. An example of the former
is the root POA. The root POA is the root of a hierarchical chain of POAs. In
many cases, including all the examples used in this book, you need use only the
root POA. For more complicated cases in which certain POA policies need to
be changed, you would have to create one or more child POAs in order to have
different behaviors.

The ORB class provides the resolve-initial-references() method
to obtain references to services such as the naming service and the root POA.
As usual, the return from resolve-initial-references() is a generic
CORBA object that must be narrowed to a POA using the POAHelper class. A
reference to the root POA is retrieved with the following code snippet;

POA rootpoa =

POAHelper.narrow (orb.resolve-initial-references

("RootPOA"));

Each POA has an associated POAManager object, which may be the manager
of more than one POA. The POAManager class has several methods, as doc-
umented in the org.omg.PortableServer package, but the only thing we
really need to know about the POAManager is that it must be activated, which
permits its associated POAs to start processing requests. The code to activate the
POAManager is

rootpoa.the-POAManager().activate ();

19.4.2.3 Create an instance of the servant object
Recall that a server is a process that instantiates and makes available one or more
servant objects. So our server must create an instance of our servant. Doing so is
a simple Java instantiation:

Servant servant = Cor19ExampleServant ();

At this point, we have a Java servant instance, which is an instance of
org.omg.PortableServer.Servant, which is a Java object, but not a
CORBA object. To create a CORBA object (actually, an object reference) from
the servant, we use a method on the POA:

org.omg.CORBA.Object obj-ref =

rootpoa.servant-to-reference (servant);
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Notice that the type of obj-ref is the fully qualified org.omg.CORBA.

Object. Whenever we refer to a CORBA Object, we must fully specify the
type to distinguish it from java.lang.Object.

Now we have a generic CORBA object reference, but not a reference to
the required Cor19Example interface that is needed by the naming ser-
vice and, eventually, the client. To obtain the specific type from the generic
CORBA Object type, we must narrow the object reference using the
Cor19ExampleHelper class:

Cor19Example cor19 = Cor19ExampleHelper.narrow (obj-ref);

19.4.2.4 Get a reference to the naming service
The naming service in CORBA is known as COSNaming and is implemented in
the org.omg.CosNaming package. COSNaming provides functions somewhat
like the RMI naming service in that server-side objects (servants) are bound into
the naming service under a specific name and clients perform a lookup on that
name to gain access to the servant’s operations. An object reference to the naming
service is found with the ORB.resolve-initial-references() method
using the well-known name “NameService,„ which is required to be defined
for all CORBA ORB implementations. As usual, this call returns a generic
CORBA object which must be narrowed to the type desired using the appro-
priate Helper class. For the case of the naming service, the desired type is a
NamingContextExt object:

org.omg.CORBA.Object ns-ref =

orb.resolve-initial-references ("NameService");

NamingContextExt ncRef =

NamingContextExtHelper.narrow (ns-ref);

19.4.2.5 Bind the servant into the naming service
Now we can register our servant with the naming service under a specific
name. The name given to NamingContextExt is not quite as simple as
a plain Java String, again a complication owing to the generality and
language-neutrality of CORBA. Instead of a plain String, we must pass
in an org.omg.CosNaming.NameComponent array. Fortunately, the Nam-

ingContextExt class provides a to-name() method to translate a plain Java
String name into a NameComponent array:

NameComponent[] path = ncRef.to-name ("Cor19");

Then, to bind into the naming service, we use

ncRef.rebind (path, cor19);

Recall that cor19 is a reference to the Cor19Example interface that corre-
sponds to theCor19ExampleServant object that was instantiated above. Now,
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when the client calls resolve() using the name “Cor19„, it receives back an
object reference that can be used to make remote method calls to our servant
implementation.

19.4.2.6 Tell the ORB to wait on incoming requests
This last step is simple. We must notify the ORB that everything is ready and
that it should begin listening for requests from clients. The following code should
appear at the end of, but within, the try/catch block:

orb.run ();

Generally, this method never returns. It waits until a client invokes a remote
method on the servant and then dispatches that incoming request to the servant
code. When the invocation is complete, the ORB waits again for more incoming
requests.

19.5 Client implementation

The client class begins similarly to the server implementation, by importing
the required packages and starting a main() method that encloses all CORBA
activity within a try/catch block to catch any CORBA errors. We put the
client application into the javatech.cor19.client package under the name
Client. The client must create and initialize the ORB and obtain a reference
to the NamingContextExt, similar to what was done in the server class.
To perform a lookup, we could use the resolve() method by providing a
NameComponent array, as was done for the server. But NamingContextExt
also includes a resolve-str() convenience method that accepts a Java
String and internally performs the conversion necessary to aNameComponent
array. So the main() method in our Client class goes as follows:

public static void main (String[] args) {

try {

// Create and initialize the ORB

ORB orb = ORB.init (args, null);

// Get the root naming context

org.omg.CORBA.Object ns-ref =

orb.resolve-initial-references ("NameService");

NamingContextExt ncRef =

NamingContextExtHelper.narrow (ns-ref);

// Get a Cor19Example from the name server.

Cor19Example cor19 =

Cor19ExampleHelper.narrow (ncRef.resolve-str

("Cor19"));
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Notice that we have used the same name, “Cor19„, that the servant was
bound with and that we have narrowed to a Cor19Example interface using the
Cor19ExampleHelper class. Now we are ready to call methods on the servant:

cor19.method1 ("Hello");

int result = cor19.add (4, 9);

System.err.println ("add(4,9) returns " + result);

We must, of course, close the try/catch block and handle any errors. For this
simple example, we just dump the stack trace:

} catch (Exception e) {

e.printStackTrace (System.err);

}

} // main

19.6 Running the example

To test this example, we need to start the name service, start the server, and run the
client. For CORBA, the name service is started with orbd, which needs to know
the port number and host. For running client and server on the same machine,
the host can be left off, allowing it to default to localhost. So we start orbd as
follows:

start orbd -ORBInitialHost localhost -ORBInitialPort 3001

To start the server, we run the javatech.cor19.server.impl.Cor19-

Server class. Notice that we pass in the ORBInitialPort property via the
system properties object (i.e. the -Dname=value syntax) rather than as a com-
mand line parameter. Either method may be used, since the server was coded to
accept either command line arguments or system properties:

java -classpath build/classes

-Dorg.omg.CORBA.ORBInitialPort=3001

javatech.cor19.server.impl.Cor19Server

(Here, and in later examples, we split command lines to fit within the page
margins.) We run the client, in another command shell window, similarly. But
notice that the client code above does not pass the system properties object to
ORB.init(). Therefore we must use the command-line arguments feature to
specify the port number on which to lookup the name server:

java -classpath build/classes javatech.cor19.client.Client

-ORBInitialPort 3001

The output should be

add(4,9) returns 32
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But wait, the sum of 4 and 9 should be 13, not 32! What went wrong? Actually,
nothing went wrong, because we coded the add() method to add the two input
parameters plus the value of COR19-EXAMPLE-CONSTANT from the IDL file.
We didn’t show that code above, but it appears here and on the Web Course:

public int add (int a, int b) {

return a + b + Cor19Example.COR19-EXAMPLE-CONSTANT;

}

There are other methods defined in the server.idl file that we have not tested,
such as the getter and setter methods for the huh and hah attributes. Test code
in the client for those methods is:

// Try getting and setting the huh and hah attributes.

System.err.println ("hah() = " + cor19.hah ());

System.err.println ("Before setting, huh() = " +

cor19.huh ());

cor19.huh (19);

System.err.println ("After setting, huh() = " +

cor19.huh ());

To demonstrate the use of the Holder object for the inout CustomData param-
eter, we first create and populate a CustomData object. CustomData.java
is one of the files created by the IDL compiler – its function is to serve as the
CustomData struct defined in the IDL file.

There are two ways to populate the CustomData object. One is to supply the
values as parameters to the CustomData() constructor since the CustomData
class generated by idlj includes an overloaded constructor that receives values
for each field in the struct. For example,

// Create and populate a CustomData object.

CustomData cd = new CustomData (12.0f, -13);

This technique requires only one line of code and is especially useful when the
values of all the fields are known at construction time.

If some values are not known until later, then an alternative method is required.
There is also a no-arg constructor that merely creates an empty CustomData

object. The idlj-generated CustomData class implements all the structure
fields as public variables, which means we can directly access the fields. (Imple-
menting fields as public variables is generally frowned upon as poor OO design,
but that’s the way CORBA does it.) Each field name in CustomData is named
with the same name used in the structure definition in the IDL file. Therefore,
the alternative way to create and populate a CustomData object is:

// Create and populate a CustomData object.

CustomData cd = new CustomData ();

cd.someFloatValue = 12.0f;

cd.someIntegerValue = -13;
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Once we have a CustomData object, we must “wrap” it in a CustomData-
Holder object as follows. The CustomDataHolder constructor accepts a
CustomData parameter to be wrapped:

CustomDataHolder cdh = new CustomDataHolder (cd);

Alternatively, the public value field in the Holder class could be used to set the
value of the wrapped object:

CustomDataHolder cdh = new CustomDataHolder ();

cdh.value = cd;

Then we call the demo() method. We print out the contents of cd before and
after calling demo() to see what happens:

System.err.println ("Before calling demo():" +

" \ncd.someFloatValue = " + cd.someFloatValue +

" \ncd.someIntegerValue = " + cd.someIntegerValue);

// Call demo() to manipulate the CustomData within the

// (inout) CustomDataHolder parameter.

cor19.demo (cdh);

// Retrieve and print the modified CustomData from the

// holder.

cd = cdh.value;

System.err.println ("After demo():" +

" \ncd.someFloatValue = " + cd.someFloatValue +

" \ncd someIntegerValue = " + cd.someIntegerValue);

The complete expected output from the client is:

add(4,9) returns 32

hah() = 3.1416

Before setting, huh() = 0

After setting, huh() = 19

Before calling demo():

cd.someFloatValue = 12.0

cd.someIntegerValue = −13
After demo():

cd.someFloatValue = 24.0

cd.someIntegerValue = −39

Note that if we run the client again without restarting the server, the initial value
of huh() will be 19, not 0. Once the value in the servant is set, it remains set
until changed. For this reason, one must be careful when initializing attributes.

19.7 Running the CORBA example on two machines

The example above ran both client and server on the same machine. To run on two
different machines, the changes are very minimal. The name server, orbd, must
be started on the server machine, and the server machine name must be specified
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in the command line parameter or system property to both orbd and the server
application rather than taking the default localhost. Thus we start orbd and the
server as follows:

start orbd -ORBInitialHost myserver.somewhere.com

-ORBInitialPort 3001

java -classpath build/classes

-Dorg.omg.CORBA.ORBInitialHost=myserver.somewhere.com

-Dorg.omg.CORBA.ORBInitialPort=3001

javatech.cor19.server.impl.Cor19Server

And then start the client on a different machine like this:

java -classpath build/classes javatech.cor19.client.Client

-ORBInitialHost myserver.somewhere.com -ORBInitialPort 3001

19.8 Conclusion

This completes our introduction to CORBA technology. As we have seen,
CORBA can provide much of the same basic functionality as RMI, but with
a somewhat different programming paradigm. The general concepts are simi-
lar to the RMI programming model – clients and servers, stubs and skeletons,
a naming service, and some behind-the-scenes plumbing that makes it easy to
make complex remote method calls to another JVM. However, dealing with the
CORBA complexities amounts to a significantly different, and generally more
difficult, programming effort compared to RMI. As stated at the beginning of
the chapter, the main advantage of CORBA is that it is language and platform
independent. Non-Java clients can have full access to a server if it is written in
CORBA and the interfaces are published in an IDL file.

19.9 Web Course materials

The files for the programs discussed here are available on the Web Course Chapter
19. Also, there are additional discussion, resources, and examples of CORBA.

Resources

Introduction to CORBA, Java Short Course at Sun Microsystems, December 1999,

http://java.sun.com/developer/onlineTraining/corba/.

Object Management Group, www.omg.org.

“Overview of CORBA,” Chapter 11 in: Qusay H. Mahmoud, Distributed Programming with

Java, Manning Pub., 2001, http://java.sun.com/developer/Books/

corba/ch11.pdf.



Chapter 20
Distributed computing – putting
it all together

20.1 Introduction

Chapter 16 introduced distributed computing, the UML notation language, and
the design of the server side of a client/server application. Chapter 17 described
the client side. Before beginning an actual implementation, it was necessary to
describe Java RMI in Chapter 18. Then we took a brief detour in Chapter 19
to describe CORBA as an alternative to RMI. Now that we have all the pieces,
we can put them together to build a simple example of a distributed comput-
ing application in which the calculation engine is implemented completely in
Java. If the calculation engine involves legacy code in a language other than
Java, then we must use JNI (the Java Native Interface, which is described in
Chapter 22).

20.2 The sample application

A real client/server application using the design of Chapters 16 and 17 will
be more complex than the sample described here. In fact, if the application
were not somewhat complex, there would be little reason to implement it in a
client/server design in the first place! However, for the sake of demonstration
purposes and to provide a template for the reader’s own applications, we provide
a simple application that illustrates the important features of the client/server
design presented in Chapters 16 and 17.

Recall that the client/server system designed earlier assumed a time-dependent
simulation – i.e. one with a solution that varies as a function of time. The same
approach could also work with monitoring and controlling a real system such as
a remote sensor. We wish for the simulation code to return a periodic “snapshot”
of the solution as a function of time as the simulation runs. Alternatively, in the
case of monitoring a remote sensor system, we could return periodic data as it is
collected from the sensor. For our demonstration, we need either a time-dependent
simulation problem to use as an example or a remote sensor or experimental

549
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data apparatus that is generating time-dependent data. We choose a software
simulation code for the example, but we could just as well use a software mock-
up of experimental data. For simplicity we refer to the data-generation source as
a simulation code rather than repeatedly mention that it could just as well be a
remote sensor device.

When choosing a simulation code to use for the demonstration, we must keep
in mind that we need the code to run long enough to permit demonstration of
the use of control data that modifies some parameters of the simulation as it
runs. If we choose a typical time-dependent calculation that exhibits transient
behavior, such as a simple heat-diffusion problem, a steady state is likely to
be reached much too quickly to demonstrate the time-dependent behavior of our
client/server design. Thus a problem whose solution is a periodic function of time
is more appropriate for demonstration purposes. A suitable simulation parameter
to be modified can be a time constant that modifies the frequency of the periodic
solution.

With these concepts in mind, we choose a simple harmonic motion example –
a mass m on a perfect, frictionless spring with spring constant k set in motion
with an initial amplitude A. We define the coordinate system with x = 0 at the
center of the motion – so the mass m oscillates between x = +A and −A. This is
a simple first-year physics problem with the following solutions:

position x = A sin (ωt)

velocity v = dx/dt = ωA cos (ωt)

acceleration a = dv/dt = −ω2 A sin (ωt)

kinetic energy K = 1/2 mv2

potential energy p = 1/2 kx2

where ω2 = k/m.
While not very interesting as a numerical example, this choice has the advan-

tage that it is very easy to calculate – so easy, in fact, that we have to build in
a delay on the server side to approximate what would happen in a truly com-
plex simulation. At least the numerics of this example will not get in the way
of explaining the client/server implementation. A control parameter to be varied
could be the mass or spring constant or, equivalently, the frequency ω. If we
were to plot the position as a function of time, the plot would be a simple sine
curve with amplitude A and period T = 2π/ω. If we then changed ω we would
see the shape of the curve change to a sine curve with increased or decreased
period.

We describe the implementation of this example in four phases. First,
Section 20.3 describes the factory and server interfaces. Section 20.4 dis-
cusses the implementation of the factory interfaces while Section 20.5 describes
the server implementation. Finally, the client implementation is built in
Section 20.6.
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20.3 Server interfaces

We begin by implementing the server design from Chapter 16. Since we are
writing both the client and the server, and since we assume that we do not need
to support non-Java clients, we implement the server using RMI. Following the
pattern of the rmi18 and cor19 packages, we use the javatech.all20 pack-
age for this application. The “20„ part indicates Chapter 20 while “all„ is
intended to be a mnemonic abbreviation for “putting it all together,” the title of this
chapter.

20.3.1 The factory interface

We first need to define the interfaces for the factory and server objects. From
Chapter 16, both interfaces are quite simple. The factory has only one method,
getInstance (id), which returns a reference to an object that implements
the server interface when given an ID parameter.

Recall that the purpose of the factory pattern is that multiple clients can call
the factory, each receiving its own private server object. The ID parameter serves
to distinguish clients from one another. If the server needs to store any temporary
data during runs, then the ID parameter is a good way for the server to keep data
from each client separate from other clients, most likely by creating a subdirectory
on the server side named with the client’s ID. The server might also keep log files
in that subdirectory logging the progress of the calculation. If an error occurs on
the server, then the log files can be examined during debugging. In this case, the
ID might be a project name or a run number – anything that the client can supply
as identifying information for the run so that the log files on the server side can
be identified. Note that it is not essential to the design that the client supply the
ID. The factory could simply make up a unique ID for each client using, say,
the millisecond clock time. Debugging, however, is often easier if the client has
supplied a meaningful ID of some sort.

If the server uses any proprietary information, then the ID might be a username
or even a username/password pair used to authenticate the user and authorize
that user’s access to the proprietary data. For security purposes, the password
should be encrypted since the client/server communication will be occurring
over the Internet. Encryption and user authentication and authorization are very
important topics but beyond the scope of this book. But not at all beyond the scope
of Java! See, for example, the Java Authentication and Authorization Service
(JAAS)[1], the Java Cryptography Extension (JCE)[2], and the Java Cryptography
Architecture (JCA)[3].

While a general design might require three parameters – a username, an
encrypted password, and a project name, we implement this example assum-
ing that a single string specifying a project name is given as the ID. In practice,
we won’t store any data files on the server side in this example, so we won’t
actually do anything at all with the ID parameter except log it.
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From Chapter 18 on RMI we know that the interface must extend java.

rmi.Remote and that each method declared in the interface must throw
java.rmi.RemoteException. Therefore, our FactoryInterface looks
like:

package javatech.all20.server;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface FactoryInterface extends Remote {

final static String FACTORY-NAME =

"all20ServerFactory";

public ServerInterface getInstance (String id)

throws RemoteException;

}

where we have used packagejavatech.all20.server, following the pattern
of Chapter 18. Here we have also defined the constant FACTORY-NAME, which
contains the name that the factory will be bound under in the RMI registry.
Both the client and the server need to know the binding name, and defining it
here is convenient since both client and server can see the same name in the
same place, which is much preferred to defining the same name in two different
places.

20.3.2 The server interface

The server interface designed in Chapter 16 and clarified in Chapter 17 (see the
class diagram in Figure 17.3) has four methods:

package javatech.all20.server;

. . .

public interface ServerInterface extends Remote {

public boolean initialize (String initparam)

throws RemoteException;

public void initializeSimulation (float[] indata)

throws RemoteException;

public void start ()

throws RemoteException;

public float[] retrieveData (float[] indata)

throws RemoteException;

}

The initialize() and initializeSimulation()methods are almost
redundant in this simple example. Recall from Chapter 17 that initialize()
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is used to initialize the server object while initializeSimulation()

is used to initialize the simulation code within that server object. In many cases,
both duties could be combined into one. However, examining the collabora-
tion diagram in Figure 17.2 (where initializeSimulation()was called
receiveInput()) shows that initializeSimulation() at sequence
number 4.1 occurs much later in the collaboration than initialize() at
sequence number 2. In a complex simulation the data known by the client at
the two different times in the collaboration sequences could become important,
so we keep the two methods separate.

In a technique that is useful to efficiently support multiple simultaneous clients,
the factory server keeps a pool of instantiated but uninitialized servers. This pool
is created when the factory starts up, long before any client exists. To build the
pool, the factory merely creates several instances of the Server class and keeps
them in a HashMap. Using such a pool improves response time by allowing the
factory to supply an already constructed server from the pool during a client’s
call to getInstance() rather than incurring the potentially nontrivial cost of a
new server construction for each new client. Since the client credentials in the ID
parameter provided to the factory cannot be known at server construction time,
when the pool is initially created, the initialize() method on the server
interface provides a good opportunity to supply those client credentials. When
that client is finished, the server can be returned to the pool, awaiting use by
another client with different credentials.

The server pool technique is useful and straightforward but a bit beyond the
scope of this chapter where we want to provide a simple example that demonstrates
working client/server concepts unencumbered by concerns of user/client creden-
tials and pool creation and maintenance. Therefore, the example for this chapter
passes only a simple String initparam to the initialize() method. As
with the ID passed to the factory, for simplicity we won’t actually do anything
with initparam other than log it.

There are three other factory methods that we have not yet discussed –
initializeSimulation(), start(), and retrieveData(). Referring
to the UML diagrams in Chapters 16 and 17, we see that initialize-
Simulation() is where the initial data for the simulation code is provided
and start() is where the simulation thread is actually begun. Then the client
calls retrieveData() periodically to retrieve the results from the simulation.

20.4 Server factory implementation

The server factory implementation is rather simple. From the FactoryInter-
face class shown above, its only remotely exposed method is getInstance().
The ServerFactory class implements FactoryInterface and extends
UnicastRemoteObject. Since we put the implementation into the impl
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subpackage below javatech.all20.server, the beginning of Server-
Factory is:

package javatech.all20.server.impl;

// various imports . . .

import javatech.all20.server.*;

public class ServerFactory

extends UnicastRemoteObject

implements FactoryInterface

{

private static int fServerIndex-- = 0;

public ServerFactory () throws RemoteException { }

We have omitted the various standard java.rmi imports for brevity. We do
show the import javatech.all20.server.* because it is necessary for
the compiler to see the FactoryInterface and ServerInterface def-
initions. The constructor, as shown, does nothing. However, as explained in
Chapter 18, the constructor must be present and must be declared to throw
RemoteException since UnicastRemoteObject throws RemoteExcep-
tion. We explain the class variable fServerIndex-- when we discuss the
getInstance() method below.

20.4.1 Automatically starting the RMI registry

Recall that in Chapter 18 we manually started the RMI registry using the
rmiregistry tool from the Java 2 SDK. Then the server implementa-
tion’s main() method instantiated the server and bound it into the registry
under a known name. Thus starting the server was a two-step process: start
rmiregistry and start the server.

Here we demonstrate how to skip the first step by automatically starting the
RMI registry from within the server factory’s main() method. Then all we need
to do to start the server running and listening for clients is to run the server factory
class.

The java.rmi.registry.LocateRegistry class has a create-

Registry()method that starts the registry on a specified port. Its use is simple:

try {

java.rmi.registry.LocateRegistry.createRegistry (port);

}

catch (RemoteException re) {

System.err.println ("Could not create rmiregistry:" + re);

System.exit (1);

}
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After the registry has been created, we continue as in Chapter 18 by instantiating
a ServerFactory object and binding it into the registry under the name in the
FACTORY-NAME constant:

try {

ServerFactory factory = new ServerFactory ();

Naming.rebind ("//localhost:" + port + "/" + FACTORY-NAME,

factory);

System.out.println(

" \n READY AND WAITING ON CLIENTS ON PORT " + port);

}

As usual we must catch the following exceptions:

catch (MalformedURLException mue) {

System.err.println (mue);

System.exit (1);

}

catch (RemoteException re) {

System.err.println (re);

System.err.println (" \n EXITING BECAUSE OF FAILURE");

System.exit (1);

}

20.4.2 Implementing getInstance()

Our getInstance()implementation receives the ID parameter and returns an
object that implements ServerInterface:

public ServerInterface getInstance (String id)

throws RemoteException

{ . . .}

For this example, we simply create a Server object for return. We haven’t yet
discussed the Server implementation, and although we know the signatures of
the methods it must contain (since it must implement ServerInterface), we
don’t yet know how to call its constructor. Often, implementations evolve through
an iterative process, so let’s start by calling the constructor as follows:

ServerInterface server = new Server (id);

Our getInstance() needs to return a ServerInterface, not a Server

object, so we declare the object returned by the Server constructor to be of type
ServerInterface. (It is, in fact, a Server object, but since it implements
ServerInterface, it is also of type ServerInterface.)

As shown, we also passed the id value received by getInstance() to
the Server constructor. From the discussion above, the ID parameter serves to
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distinguish clients from one another when there are multiple clients. Obviously
it makes sense for the server to know that ID. However, there is no guarantee
that the id value supplied by the client is unique. If we want to uniquely iden-
tify server instances, which is a very good idea, then we need to make certain
that the server ID is unique. A simple and successful technique is to append a
unique number to the id received from the client. Therefore the factory keeps a
static int field named fServerIndex--. By incrementing its value each
time getInstance() is called and appending it to the id supplied by the client,
the factory can create a guaranteed unique ID with which to identify the server:

System.err.println (

" \nServerFactory: making a new Server instance");

fServerIndex--++;

String unique-server-id = id + "-" + fServerIndex--;

It turns out in a real-world simulation problem that it is often useful for the
factory class to provide some “utility” methods of use to servers. An example
is when the factory maintains a pool of server objects, in which case some pool
management methods are needed on the factory. To support such usage, we also
pass the factory’s this parameter to the Server constructor, along with the
unique server-id:

ServerInterface server = new Server (this, unique-server-id);

In this way, the server has a reference to the factory, permitting the server to
call factory methods. Since none of these utility methods need to be remotely
accessible to clients, they do not appear in the FactoryInterface.

When the Server constructor returns, we simply return that object reference
to the client:

return server;

20.5 Server implementation

The Server implementation is considerably more complicated than the factory.
Recalling that we spent considerable design effort in Chapter 16, it is a great help
to build the server from the collaboration diagram created there and shown in
Figure 16.6. For convenience, we have reproduced that diagram in Figure 20.1
with one small change – the initialize() invocation has been inserted as
sequence number 3, bumping the remaining sequence numbers up by one.

As we develop the code for this example, keep in mind that the example is nec-
essarily a simplified one while the collaboration diagram supports a more general
and more complicated implementation. Some of the features that we implement
will seem to have little or no value to this simple example. However, those fea-
tures have been found to be of value in more realistic client/server simulations. All
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Figure 20.1 The server collaboration diagram. It is the same as in Figure 16.6
except for the insertion of the initialize () invocation as sequence number 3.

the code here is derived from actual working examples of complex simulations.
Sometimes the simplifications necessary to produce an example of pedagogical
value that can be discussed in a textbook setting result in the removal of features
that are quite valuable for real world cases. Rather than reduce the example sim-
ulation to an even more limited one, we have chosen to retain certain features
as placeholders for more complicated client/server solutions that the reader may
wish to put into practice.

20.5.1 The Server Class

The Server class is the class that implements ServerInterface and is the
only server-side object with which the client interacts directly. As normal in RMI
implementations it extends UnicastRemoteObject:

public class Server extends UnicastRemoteObject

implements ServerInterface

{ . . .}

20.5.1.1 The Server constructor
The Server constructor is called by the factory upon demand from a client
during getInstance(). From the factory discussion above, we already know
the signature of the constructor. As required by RMI, the constructor, and all
methods declared in ServerInterface, must be declared as possibly throwing
RemoteException:

public Server (ServerFactory myfac, String id)

throws RemoteException {

fFactory = myfac;

fID = id;



558 Distributed computing – putting it all together

Notice that we keep a reference to the factory that created this Server instance
in the variable fFactory. We also keep a copy of this server object’s unique
ID in the string fID, which is useful to identify this server if we should need
to call any factory methods. In a real-world example, we might use the ID for
user authentication and authorization as described earlier. In this example, we
just keep a copy for possible later use.

We can implement collaboration sequences 1 and 2 during the constructor.
Sequence 1 is to create an instance of SimData:

fSimData = new SimData ();

Sequence 2 is to create an instance of SimulationThread, giving it a copy of
the SimData reference:

fSimulationThread = new SimulationThread (fSimData);

That completes the Server constructor. To complete the implementation of the
ServerInterface, we must also implement initialize(), initial-
izeSimulation(), start(), and retrieveData().

20.5.1.2 The initialize() method
Our initialize() method is quite simple. It receives a single String

initparam and does nothing at all with it. As explained above,initialize()
is provided to initialize the server object with information that is unknown at
Server construction time but available later. In this example, no additional
information is required. The initparam parameter is provided as a placeholder
for more complicated client/server problems that the reader may develop. It is a
good idea to keep track of whether or not the Server object has been initialized.
Therefore we set an instance variable fInitialized to true and then return
true to indicate a successful initialization:

public boolean initialize (String initparam)

throws RemoteException

{

// Log initparam here if desired

fInitialized = true;

return true;

}

20.5.1.3 The initializeSimulation() method
Our initializeSimulation() method is also quite simple. Recall that it
is called by the client to provide initial simulation data. (In the collaboration
diagram in Figure 17.2 initializeSimulation() was called receive-

Input(), the name invented early in our OOAD phase. Its name was changed
late in Chapter 17 to be more descriptive of its function after our analysis of



20.5 Server implementation 559

the problem improved. Such name changes are common during OOAD and
should not be eschewed. The proper and sensible naming of objects and opera-
tions is important for a clear understanding of a design.) When the client calls
initializeSimulation(), the server performs sequence 3, which initializes
the SimulationThread with the input data:

public void initializeSimulation (float[] indata)

throws RemoteException

{

fSimulationThread.initialize (indata);

}

20.5.1.4 The Server.start() method
Finally the client calls the server’s start() method in order to start the sim-
ulation running. This call is forwarded immediately to SimulationThread’s
start() method at sequence 4 in the collaboration diagram.

public void start() throws RemoteException {

fSimulationThread.start();

}

As usual, calling a thread’s start() method invokes the run() method, which
we show later.

20.5.1.5 The retrieveData() method
As the simulation runs, simulation data is repeatedly loaded into the SimData
object as shown in sequence numbers 4.2.1 and 4.2.1.1. We explain those details
shortly. For now, we assume that the client periodically polls the server for current
simulation data. The client does so by calling retrieveData(), which simply
obtains and returns the latest available data from SimData using its (yet to be
discussed) getResults() method (shown as sequence 5 in the collaboration
diagram of Figure 20.1):

public float[] retrieveData (float[] indata)

throws RemoteException

{

return fSimData.getResults (indata);

}

Here we have made the simplifying assumption that the set of data to be returned
is a simple float[] array. More complicated structured data could be returned
in a Java object with minor modifications. We have also taken the opportunity to
allow the client to provide a new set of input data during each retrieveData()
poll. If the input data has not changed, then the original indata array can be
passed each time.
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As mentioned earlier, for this example we are also using the simple technique of
returning only the most recent data stored in SimData, allowing any intervening
data generated by the computation to be lost if the client does not poll often
enough. More elaborate schemes can be devised, such as storing intermediate
data in SimData and returning a collection of results, but doing so now would
distract from the basic client/server design being demonstrated here.

20.5.2 The SimulationThread class

Continuing around the collaboration diagram in a clockwise direction, which
is roughly the order in which the ojects are encountered, the next class to
discuss is the SimulationThread class. It is a thread so it extends java.
lang.Thread:

public class SimulationThread extends Thread { . . .}

When SimulationThread is constructed (at sequence 2 in the collabora-
tion diagram), we see that sequence 2.1 also must be performed to construct a
Simulation object. So the SimulationThread constructor looks like:

public SimulationThread (SimData sim-data) {

fSimulation = new Simulation (sim-data);

}

where we have passed the SimData object on to the Simulation constructor
as shown in the collaboration diagram.

This thread’s run() method starts the simulation running by calling the
startRunning()method on the Simulation object. We can note from the
collaboration diagram that startRunning() is a synchronous call. That is, it
blocks until the calculation is complete, at which time run() exits.

public void run () {

fSimulation.startRunning ();

}

Recall that the best and proper way to end a thread is to set a boolean value
that the running thread checks periodically. In this case, our run() method is
not in a loop itself, but has called Simulation.startRunning()instead. If
the server ever needs to halt the simulation, perhaps on command from the client
(through additional remote methods that we do not show here), it is a good idea
to provide a halt() method that passes the halt command on to Simulation:

void halt () {

fSimulation.halt ();

}
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20.5.3 The Simulation class

The computational work is done in the Simulation class. The constructor does
nothing except store a reference to the SimData object:

public Simulation (SimData sd) {

fSimData = sd;

}

The initialize() method is called in sequence 3.1 after the client has
called Server.initializeSimulation(). Recall that initialize-

Simulation() is used by the client to provide initial conditions to the sim-
ulation. In our case, we receive a float[] array of values. Each element in the
array represents a known physical quantity – initial amplitude, spring constant,
etc. Both the client and server must agree upon the proper order of values in the
array or else the calculation will be incorrect. A less error-prone technique is
to define a data-only class, perhaps named SpringParameters with named
fields for each desired parameter:

class SpringParameters {

float amplitude;

float springConstant;

. . .

}

This class would best appear in the javatech.all20.server package where
the interfaces appear, giving it visibility to both the client and server. The client
would instantiate the class, populate each element, and pass it to the server during
initializeSimulation(). (If you have read Chapter 19, then this class will
be familiar since it essentially mimics the role played by a CORBA struct.)
Since RMI is adept at moving objects across the network, such a technique would
be entirely satisfactory. We have chosen not to do that here because reading data
from a float array is slightly faster than dereferencing an object. For initial-
ization, the speed difference is negligible, but when the client starts polling the
server for data updates and providing new input data with each poll, then perfor-
mance becomes more important. In a complex simulation, the input array could
be substantially larger than the example here. There must be a close coupling
between the client and server anyway – the server is computing a known simula-
tion on behalf of the client, after all – so it’s not much of a burden to require that
the client and server agree on the order of elements in the array, at the slight cost
of increased risk of error.

Therefore, instead of a SpringParameters object, we receive a simple
float[] array. Let’s now decide on the order of elements. We certainly need
the amplitude A, spring constant K, and mass m. From K and m we can calculate
the frequency ω. However, it is more convenient to specify A, K, and ω and
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derive the mass. Since this is a discrete simulation, we also need to know the time
step to use. It is also convenient to specify a maximum run time at which point
the simulation will end. We arbitrarily choose the order of elements to be A, ω,
K, �T, and Tmax. From K and ω we calculate m. So the initialize() method
becomes

public void initialize (float[] indata) {

fAmplitude = indata[0];

fOmega = indata[1];

fSpringCons = indata[2];

fDeltaT = indata[3];

fMaxTime = indata[4];

fMass = fSpringCons/(fOmega*fOmega);

}

Notice that the size of the array received in the parameter list must be at least five.
If it is longer, the server just ignores the rest of the elements. Our agreement is only
that the first five elements represent the values of the physical parameters as cho-
sen. We use this fact shortly. (If the input array is shorter than five, there will be an
ArrayIndexOutOfBoundsException on the server.) Next let’s implement
the simple halt()method to be called by SimulationThread.halt(). It
merely sets a boolean that is checked periodically by the running simulation. In
a real-world example, there may be other clean-up tasks that should be performed
here, such as closing a connection to a database, etc.

public void halt () {

fKillMe = true;

// Additional clean-up tasks . . .

}

At sequence 4, upon command from the client, the Server object calls
SimulationThread.start(), which begins the thread’s run() method,
which was implemented above to call Simulation.startRunning() at
sequence 4.1. Our collaboration diagram shows that startRunning() actu-
ally passes the call on to the Compute object in sequence 4.2. The purpose
of the Compute object is to separate the actual numerical computation from
SimulationThread, thereby permitting the use of legacy code via the Java
Native Interface (JNI). We discuss JNI in Chapter 22 where we show how to call
native methods in an external library. This example uses no legacy code, plus it
is simple enough that the entire code can easily fit inside SimulationThread,
so we won’t actually be using a Compute object. Therefore, all our numerical
work appears inside startRunning().
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20.5.3.1 The Simulation.startRunning() method
Our calculation loops over time, increasing t by �T each step. This loop is a
convenient place to check the fKillMe instance variable set by the halt()

method. That is,

while (!fKillMe) {

// calculate everything . . .

}

Before the loop begins, we need an array to hold our results. There are six
results returned – current simulation time, position, velocity, acceleration, and
kinetic and potential energy. As with the input data array, the client and server
must agree on the order of the array elements in the output data array. Again,
a better solution might be to define a data-only results class that would make
the order unambiguous. However, we stick with the array approach for this
example:

float[] data = new float[6];

The calculations are straightforward. First, we increment an iteration counter and
the time value and store the current time in the output array:

iter++;

time = iter * fDeltaT;

data[0] = time;

The position of the oscillating mass is x = A sin (ωt) so

data[1] = fAmplitude * (float) Math.sin (fOmega * time);

The velocity is v = ωA cos (ωt)

data[2] = fOmega * fAmplitude *

(float) Math.cos (fOmega * time);

Acceleration is a = −ω2 A sin (ωt) = −ω2x

data[3] = -fOmega * fOmega * data[1];

We also calculate and store the kinetic and potential energy as a function of time.
For this example, they could be calculated on the client side from the returned
position and velocity, but we include them here anyway. One is often faced with a
decision about how to divide the work load between client and server. In general,
if there are good reasons for splitting a calculation into client and server pieces,
it usually makes sense to perform as much work on the server as possible, the
thinking being that a server machine is often a high-powered machine with more
resources than a client.
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The kinetic energy is K = 1/2mv2 and the potential energy is P = 1/2kx2.
So

data[4] = 0.5f * fMass * data[2]*data[2];

data[5] = 0.5f * fSpringCons * data[1]*data[1];

Once these values are calculated, we only need to store them in the SimData
object:

fSimData.storeData (data);

Then we return to the top of the while() loop and continue with the next
iteration.

There are a few minor details to deal with before we close out the start-
Simulation() method. First, recall that the simulation loads its data into
fSimData each time step and that the client periodically polls the server for
new data. During each client poll, we have arranged for the client to send a new
array of input data. For example, the client may wish to change the frequency ω

used in the simulation, and we need a mechanism to communicate that change
to the running simulation. We haven’t yet discussed the storeData() method,
but the most convenient way for the simulation to obtain a new input data array
from the client is as the return value when the simulation calls storeData().
Therefore, we modify the previous line of code to make use of that return value.
That is, the code becomes

new-indata = fSimData.storeData (data);

where new-indata is a float[] array. To avoid confusion, we use the same
order of input data array elements as used during initializeSimulation().
Perhaps some of those values should not be varied, in which case a completely
different array could be used. Instead of defining another array and another agree-
ment about the order of the data values, we simply agree by convention that only
some of the array values are subject to be changed. If any of the other values are
changed, the server is free to ignore them.

Some of the parameters that could be changed in this simulation are the ampli-
tude, the spring constant, or the frequency. Obviously a real spring would not
change its spring constant or natural frequency, but a more realistic simula-
tion might. One application for which this technique has been used simulates
blood flow in a human heart. Depending upon external stimuli, the heart rate can
change, corresponding to a change in frequency. In that case, the input array of
data contains a representation of the external stimuli that the server-side calcula-
tion uses. When the input data changes, the simulation responds and the heart rate
changes.

For illustration purposes we allow resetting A, ω, and K but do not per-
mit changing �T or Tmax. Therefore we read only the first three values of the
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new-indata[] array. If the new-indata[] array is actually longer than three
elements, we simply ignore the elements in index positions 3 and 4:

// Obtain new amplitude, omega, and spring constant values

fAmplitude = new-indata[0];

fOmega = new-indata[1];

fSpringCons = new-indata[2];

// new-indata[3] and new-indata[4] are ignored

In this way, we permit the client to use the very same data array in both
initializeSimulation() and when providing new input data during the
running of the simulation.

Suppose the client wishes to cause the simulation to halt before reaching Tmax.
We already have the halt() method, but it is not callable by the client. Neither
have we provided a remote method in ServerInterface that the client can
use to instruct the simulation to halt early. One way to add this functionality is to
assign special meaning to one of the input data elements. For example, we could
interpret a negative spring constant, which makes no physical sense, to mean the
simulation should be halted. Such overloading of meaning might make sense in
a tightly resource-constrained environment, but doing so is sure to be a source of
confusion.

We find it more convenient and less potentially confusing to add one additional
element to the new input data array. This additional element is a control parameter
that, when set, can be used to terminate the simulation. It must appear in array
index 5 since elements 3 and 4 are already defined even though we don’t use
them. So, by convention, whenever new-indata[5] is set to 1, we terminate
the loop by calling halt(). Note that this convention means that the client must
be sure to set the fifth element to 0 when it wants the simulation to continue
normally.

if ((int)indata[5] == 1) halt ();

In this example, we could just as well set fKillMe to true directly. However, it
is best to call the halt() method in order to be sure that any additional clean-up
tasks performed by halt() are run.

Unless the client takes the special action needed to halt the simulation early,
then the simulation should run until fMaxTime is reached. Therefore we need to
check that our simulation time has not exceeded fMaxTime before continuing
with the simulation loop.

Our entire simulation code is extremely simple. A real scientific simulation
will be much more complex and will require substantial CPU time to calculate.
In order to approximate the effects of a more complex simulation, we build in a
fake time delay of 100 ms per loop. Thus
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. . . calculation section of startRunning() . . .

float[] data = new float[6];

float[] new-indata = new float[6];

if (time <= fMaxTime) {

try {

Thread.sleep (100);

}

catch (InterruptedException ie) {/*ignore*/}

// Continue with calculations . . .

data[0] = time;

// position x = A * sin (omega*t)

data[1] = fAmplitude * (float) Math.sin (fOmega * time);

// velocity v = omega * A * cos (omega*t)

data[2] = fOmega * fAmp * (float) Math.cos (fOmega *

time);

// acceleration = -omega**2 * A * sin (omega*t)

// = -omega**2 * x

data[3] = -fOmega * fOmega * data[1];

// kinetic energy = 1/2 * m * v**2

data[4] =.5f * fMass * data[2] * data[2];

// potential energy = 1/2 * k * x**2

data[5] =.5f * fSpringCons * data[1] * data[1];

new-indata = fSimData.storeData (data);

// Obtain new amplitude, omega, and spring constant

// values

fAmplitude = new-indata[0];

fOmega = new-indata[1];

fSpringCons = new-indata[2];

// new-indata[3] and new-indata[4] are ignored

if ((int)new-indata[5] == 1) halt ();

}

else {

// Set time negative indicating that the loop has

// finished

data[0] = -1.0f;

fSimData.storeData (data);

// Break out of the while loop

break;

}

Here we have set the time negative when the loop has finished as a signal to the
client that the simulation has completed normally.
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20.5.4 The SimData class

SimData is a small but important class. Simulation data is stored in it when-
ever storeData() is called by the Simulation object as the calcula-
tion runs. SimData must also be ready to provide the most recent set of
results whenever the server calls getResults() responding to a client call
to Server.retrieveData().

SimData methods can be called by two different threads – the simulation
thread, which callsstoreData() periodically, and the main server thread, which
calls getResults() upon request from the client. Therefore SimData must
be careful to avoid thread collisions. In particular, requests to retrieve data must
not overlap requests to store data. This situation is easily handled by Java’s syn-
chronization features.

SimData internally maintains two private arrays – one for input data and one
for output data. These are created at construction time.

public SimData () {

fInputData = new float [INSIZE];

fOutputData = new float [OUTSIZE];

}

where INSIZE and OUTSIZE are constants that give the required sizes of the
input and output arrays.

During storeData(), the supplied data array from the calculation is copied
to the private fOutputData array and the latest array of input data is returned:

public synchronized float[] storeData (float[] data) {

System.arraycopy (data, 0, fOutputData, 0, OUTSIZE);

return fInputData;

}

When the server calls getResults(), the fOutputData array is returned.
At the same time, a new input array is received and copied to the private
fInputData array:

public synchronized float[] getResults (float[] indata) {

System.arraycopy (indata, 0, fInputData, 0, INSIZE);

return fOutputData;

}

In these methods we see another advantage of using arrays of floats as
data containers rather than custom classes. The use of the optimized System.

arraycopy() method to copy array elements is very fast. Cloning objects con-
taining structured data is not nearly as fast. Since the getting and setting of the
data arrays is a frequently occurring event, the time saved here by using float
arrays instead of custom classes can be significant, especially in a simulation that
involves hundreds or more data elements.
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20.6 Client implementation

One of the purposes of splitting the calculation into client and server pieces is
for the server to do most of the work. For this example, our client can be pretty
simple. We do not need the full client design shown in the client collaboration
diagram of Figure 17.2, but we do need to perform the following steps:

1. Lookup the factory.

2. Get a server instance from the factory.

3. Initialize the server.

4. Initialize the simulation.

5. Start the simulation running.

6. Poll for results.

7. Display the results.

Referring to the client collaboration diagram, we see that these steps comprise
sequences 1, 2, and 4. The additional interactions in sequence 3 are needed to
set up a complex client with output plotting frames and input controls. To avoid
clutter in the client description, we simply print the results to standard output and
dispense with the complicated steps in sequence 3.

The first two steps are straightforward:

String factory-server = "//" + host + ":" + port +

"/" + FactoryInterface.FACTORY-NAME;

fFactory = (FactoryInterface) Naming.lookup

(factory-server);

// Get a server instance from the server factory.

fServer = fFactory.getInstance (id);

where host and port are pre-defined with the factory server hostname and the
port number, respectively, and id is the ID parameter discussed in Section 20.3.1.
Notice that we use the normal RMI-style URL when performing the Naming.
lookup() and that we use the FactoryInterface.FACTORY-NAME

constant to name the factory, as planned earlier in Section 20.3.1. Of
course this code must appear in a try/catch block to catch the pos-
sible exceptions MalformedURLException, NotBoundException, and
RemoteException.

Next we initialize the server by calling fServer.initialize

(initparam) where initparam is a String described in the server imple-
mentation above. Since this example does not actually use initparam, we
can pass anything at all in its place. As usual we must be prepared to catch
RemoteException any time we call any remote method:

try {

fServer.initialize ("doesn’t matter");

}
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catch (RemoteException re) {

. . .

}

In the complete client collaboration developed in Chapter 17, sequence 3 would
involve setting up the client user interface. Since this example has no user inter-
face, we can proceed to sequence 4 where we call initializeSimulation()
and start(). The parameters passed to initializeSimulation() do mat-
ter since they define the spring constant, amplitude, etc. of the simulation we wish
to run. We must follow the convention established on the server for the order of
parameters – i.e. A, ω, K, �T, and Tmax. We also defined one additional parameter
that, when set to 1, ends the simulation. So we need an input array of six floats
where the final value is anything except 1:

fIndata = new float[] {

fAmplitude, fOmega, fSpringCons, fDeltaT, fMaxTime, 0.f

};

fServer.initializeSimulation (fIndata);

The actual values of the parameters can be hard coded or can come from
command-line parameters passed to main().

Finally we start the simulation with

fServer.start ();

and begin a polling loop that repeatedly calls fServer.retrieveData()

until a negative time value is seen.
The reader will recall that the collaboration diagram in Chapter 17 took special

pains to start the polling loop before starting the simulation in order to not miss
any simulation results. For this simple example that lacks a user interface, we
have avoided that complexity. Instead we simply start polling immediately after
calling fServer.start() and print the results to standard output.

20.7 Enhanced client using the histogram class

For an improved client with a simple user interface, we can use the Histogram
class developed in Chapter 6. Let’s make a histogram of the time the oscillating
mass spends in each of a number of bins between ±A. Since this is a discreet
simulation, the histogram will not be perfectly smooth, though the smoothness
can be increased by choosing a small �T so that all time bins are visited nearly
equally.

Setting up the histogram is easy:

fPositionHist = new Histogram ("position (x)", "", fNumBins,

−fAmp, fAmp);

fPositionHPan = new HistPanel (fPositionHist);
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JFrame position-frame = new JFrame ("Position Histogram");

position-frame.getContentPane ().add (fPositionHPan);

Let’s add a Quit button to demonstrate the use of the fifth element of the input
data array to control the server-side simulation:

fReallyQuit = false;

fQuitButton = new JButton ("Quit");

fQuitButton.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent ev) {

if (fReallyQuit)

System.exit (0);

fIndata[5] = 1.f;

fReallyQuit = true;

fQuitButton.setText ("One more time to exit");

}

});

position-frame.getContentPane().add (fQuitButton,

BorderLayout.SOUTH);

When fReallyQuit is false, as it will be the first time the Quit button is
clicked, then we set the value of fIndata[5] to be 1, the special sentinel value
that the server uses to halt the simulation. Upon the next poll for new data,
fIndata is sent to the server, and the server sees the 1 in the fifth position and
halts the simulation. We also set fReallyQuit to true and change the text of the
Quit button. The second time the button is clicked causes the client application
to exit.

During polling, we load the histogram with new data and cause it to be
repainted:

outdata = fServer.retrieveData (fIndata);

time = outdata[0];

xposition = outdata[1];

velocity = outdata[2];

acceleration = outdata[3];

kinetic = outdata[4];

potential = outdata[5];

total-energy = kinetic + potential;

fPositionHist.add (xposition);

fPositionHPan.repaint ();

We can just as easily make histograms of the other quantities as well. They all look
similar. Using A = ω = K = 1, �T = 0.1 and Tmax = 2π we obtain the following
position histogram when using 21 bins (see Figure 20.2). A better approximation
is obtained using �T = 0.001 and 51 bins (see Figure 20.3).
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Figure 20.2 Histogram of the position of the spring mass in the simulation for
�T = 0.1 and 21 bins.

Figure 20.3 Histogram of the position of the spring mass in the simulation for
�T = 0.001 and 51 bins.

20.8 Conclusion

This chapter has drawn together the client/server design of Chapters 16 and 17
and the power of RMI described in Chapter 18 with a simple example. The code
snippets shown here give a good starting point for implementing a server that
calculates a general simulation. For a real-world example, the details will vary.
The arrays of input and output variables will differ and will probably be much
larger. The CPU time on the server to calculate the simulation will certainly be
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larger. However, the overall structure of the server-side code can remain close
to that developed here. The same technique has been used on a variety of time-
dependent simulations.

The biggest change in a reader’s implementation will surely come on the client
side. The clients shown here are very simple, serving only as examples to call
the server side code. For a large real-world example, the collaboration diagrams
developed in Chapter 17 give a good starting point of how to implement a complete
client with a graphical user interface complete with graphical output and input
areas.

20.9 Web Course materials

All of the code files for the client, server and simulation classes discussed here
are available on the Web Course.
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Chapter 21
Introduction to web services and XML

21.1 Introduction

Over the last few years, a new distributed computing technology based on the
now-ubiquitous World Wide Web and known as web services has become very
popular. In this chapter we introduce web services and briefly discuss how the
technology can be used in a scientific application. We also introduce the closely-
related Extensible Markup Language (XML). These are both large subjects. A
full treatment is outside the scope of this book, but this chapter is designed to
give the interested reader enough basic information to get started and pointers on
where to look for more.

21.2 Introducing web services for distributed computing

We have already learned about distributed computing in the abstract sense using
UML in Chapters 16 and 17. And we’ve learned concrete implementations using
Java RMI in Chapters 18 and 20 and CORBA in Chapter 19. Both RMI and
CORBA are technologies invented to implement distributed computing. One can
think of both as transport mechanisms used to move data and, at least in the case
of RMI, objects from clients to servers and back. There are other technologies
for distributed computing as well, such as the low-level socket based networking
technologies discussed in Chapters 14 and 15, and higher-level proprietary single-
platform technologies, particularly Microsoft® products, that are not of interest
to this book. Web services offer another alternative technology for distributed
computing.

The idea is simple. When human users view web pages over the Internet, they
are using a computer program – the web browser – that “talks to” a remote web
server computer. A human controls the browser by entering URLs or clicking
on HTML links, and the browser forwards the human’s directions to the web
server, which responds accordingly by sending a new web page. In the web ser-
vices paradigm, a computer program on a client machine “talks to” a remote
computer program using the same web technology used by browsers and web
servers, but no humans are involved. There is no magic here; both ends of the
interaction – the client program and the web server program – must be carefully
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designed to interact with each other in a way that makes sense. From a high-
level viewpoint, this interaction is exactly the client/server paradigm that has
been the subject of the last few chapters. That is, clients communicating with
servers via some communications infrastructure. In web services, the communi-
cations infrastructure happens to be based on the same technology that powers the
familiar Web. Thus the name web services, in which services are provided over
the Web [1].

Another way to think of web services is to imagine that web technology is
used as the underlying distributed computing transport mechanism instead of the
custom RMI or CORBA transport mechanisms. One difficulty with both RMI and
CORBA is the presence of corporate, campus or personal internet firewalls that
disallow the RMI and CORBA transport mechanisms. RMI or CORBA servers
that are behind such a firewall are not accessible from outside the firewall. That
situation might be exactly what is desired. Personal or business sensitive data
is kept well-secured behind the firewall. No outside client has access. Similar
firewall protections might also prohibit a client inside the firewall from interacting
with an external server. In today’s internet environment, where security is, quite
rightly, an important concern, it is likely that one or more clients or servers in a
distributed application will be behind a firewall that denies access to CORBA or
RMI protocols, thus bringing the entire distributed system to a halt.

One advantage of web services is that the underlying HTTP technology used
for normal web processing is typically permitted through most firewalls. There is
no guarantee of that fact, and some security experts predict that future firewalls
will become more restrictive. For now, though, the use of web services is typically
firewall friendly.

21.3 XML

XML stands for Extensible Markup Language [2, 3]. XML, though simple in
basic concept, is a big subject area that is not within the scope of this book. We
mention it here briefly because web services are almost always implemented today
using XML, though there is certainly no requirement to do so. The basic idea of
XML is a human-readable textual data format that follows certain well-defined
syntax rules while being general enough to encompass any type of information.
Sometimes the phrase “self-describing data” is heard when referring to XML.
That phrase is a little misleading, but XML documents do have a way to define,
in human-readable terms, what each data value might mean.

An example is illustrative. Consider a simple RMI server that receives a per-
son’s name, age, sex, and a Boolean that indicates whether or not he or she
is a smoker. The server then calculates and returns that person’s current life
expectancy and also stores the result in a database for future use, say to cal-
culate the change in life expectancy if the smoker/non-smoker status changes.
Implemented in RMI, there might be a remote LifeExpectancy interface that
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defines acalculate()method. Obviously thecalculate()method requires
the name, age, sex, and smoker or non-smoker status to perform its work. In real-
ity, when the remote method is called, the data flows from an RMI client to an
RMI server “over the wire” in a binary format. Let’s imagine, however, that we
can read that data as plain text. A message from client to server might contain
something like this:

LifeExpectancy.calculate ("Jackson", "Turner", 49, 2, false)

But what do those parameters really mean? To interpret this data requires knowing
how it is used. In practice, there should be some documentation that defines how
to use the LifeExpectancy interface, but let’s imagine for the moment that the
documentation is missing. In this example, the person’s first and last names have
been deliberately chosen to be ambiguous about which name is the first name
and which is the last. If we know a little about the server, we can guess that 49 is
probably the age in years, and the 2must be an indicator of the sex – perhaps 1 for
male, 2 for female. The final Boolean parameter is surely the smoker/non-smoker
status, but is it a Boolean value for “smoker” or “non-smoker”?

To clarify what the data means, let’s now look at an RMI interface for the
server that uses this data:

public interface LifeExpectancy extends Remote {

public int calculate (

String first-name, String last-name,

int age, int sex, boolean smoker

) throws RemoteException;

}

With this additional information, we can see that the person’s name must be
“Jackson Turner” instead of “Turner Jackson” and that the false Boolean value
for the smoker parameter means that he or she is not a smoker. We still don’t
know how to decode the sex parameter. Ideally the documentation associated
with this server would explain that the age is in years, the sex is an integer with
1 meaning female and 2 meaning male (because, alphabetically, female comes
before male), and that the returned value would be the expected number of years
left to live. The meanings of the first-name and last-name parameters and
the Boolean smoker are pretty clear from context but that does not mean that
the documentation should be omitted.

The point is that an examination of the data alone without any prior knowledge
of how the server uses that data is insufficient information to know what the data
really means. An XML formulation of the same data might look like this:

<LifeExpectancyParameters>

<Name>

<FirstName>Jackson</FirstName>
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<LastName>Turner</LastName>

</Name>

<AgeInYears>49</AgeInYears>

<Sex>Male</Sex>

<Smoker>No</Smoker>

</LifeExpectancyParameters>

Even without understanding the XML syntax, the meaning of each value is man-
ifest. The fact that each value is associated with a “tag” that identifies the data
value’s meaning is what is meant by the phrase “self-describing data.”

The XML tags are reminiscent of HTML tags, but, unlike HTML, the tag
names may be anything you want! The <Smoker> tag, for instance, could be
changed to <Nonsmoker>, with a corresponding change of the value to Yes,
and the meaning would still be clear. The fact that programmers are free to make
up their own tag names is the “extensible” part of XML.

Let us now return to the “self-describing” aspect of XML data. As demon-
strated above, the XML syntax permits, and even strongly encourages, data to be
associated with human-readable tags that identify the meaning of the data values.
This tagging is done for the benefit of humans, not computers. Computers are
just as happy to receive a string of ASCII or even binary data as long as they are
programmed to know the order and meaning of each parameter. There is nothing,
for example, in XML that prevents us creating a document like this:

<LifeExpectancyParams>Jackson Turner 49 Male

No</LifeExpectancyParams>

The server can receive and decode this document and perform exactly the same
calculation as with the previous document. The disadvantage of this second XML
example is that it is not as meaningful to humans, not that it is less meaningful to
a computer or more difficult to process. In fact, parsing this second document is
probably much easier for a computer than the previous document. And the second
document is certainly much shorter, requiring considerably less bandwidth than
the first XML document. Shorter still, and even easier for a computer to “parse”
is the binary format that would be used by RMI or CORBA. The self-describing
aspect of XML documents is for humans, not computers.

However, just seeing the XML document shown above – the good one, with
meaningful tags – does little to define what is to be done with the data. In that
sense, the data may be somewhat self-describing, but the XML data alone provides
no description of how it will be used. There still needs to be some documentation
that describes how a server uses the data for there to be true understanding of the
meaning of the data itself. Just as important, both client and server must agree
on the XML tags to be used. It would not be successful for a client to use the
<Nonsmoker> tag while the server is expecting a <Smoker> tag. So there still
must be close cooperation among clients and servers.
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21.3.1 Tag definitions, DTD, Schema,
and XML namespaces

The need for universal agreement between client and servers on the naming and
meaning of XML tags is obvious. A server requires an XML document that uses
the “correct” tags and that has “proper” values for each tag. Everything in XML is
encoded as strings, but a string with a decimal point in it would be inappropriate
in a field that is expected to be an integer. Some elements may be required, some
optional. As in the example above, some tags can appear nested within others.
The nesting can go to any depth, but knowing just what is nested within what
is important. It is clear that there must be some way of communicating among
users of XML which tags are to be used and how they should nested, what kinds
of data values are expected, etc.

There are two standards in use that address the definition of legal and illegal
XML tags – the Document Type Definition (DTD) and the newer and more general
XML Schema notation. While discussing these is well beyond the scope of this
book, both provide techniques to declare which XML tags should appear in a
document, which elements are required and which are optional, how they should
be nested, etc.

Many industries have created their own specifications of valid XML documents
to be used in their particular industry. Some non-profit standards bodies have
provided XML definitions suited to various tasks. These “standard” XML formats
are defined using either DTD or XML Schema.

A closely related concept is that of XML namespaces, which become impor-
tant in complex XML documents [4]. To avoid name collisions, particularly when
common tag names are used, it is possible to prefix a tag name with the name of
the namespace to which it belongs. For a contrived example, suppose there is a
namespace for the life expectancy calculation XML document. Then we would
prefix each tag name with the namespace name. In practice, to avoid lengthening
tag names too much, an abbreviation of the namespace is used. If the abbre-
viation life: is used, then the XML document introduced above would look
like this:

<life:LifeExpectancyParameters>

<life:Name>

<life:FirstName>Jackson</FirstName>

<life:LastName>Turner</LastName>

</life:Name>

<life:Age>49</life:Age>

<life:Sex>Male</life:Sex>

<life:Smoker>No</life:Smoker>

</life:LifeExpectancyParameters>

Each tag name is prefixed with life: which avoids any collision with another
tag named, for example, <FirstName> elsewhere in the document.
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21.3.2 XML parsers

We’ve only touched the surface of XML syntax. XML documents can become
very long and complex. In fact, long XML documents become almost anything
but human readable. Only the most determined (and perhaps demented) human
will want to read through a complex XML document. The good thing about XML
is that the syntax is very well defined and strict, which makes parsing by computer
straightforward. Obviously, the casual programmer does not want to have to write
code to parse long and ugly XML documents. Thankfully, the computing industry
has already provided many XML parsing libraries for a variety of languages,
including Java.

There are two basic ways to do XML parsing. One is to read an XML doc-
ument into the parser and set up the parser so that it makes callbacks to certain
handlers each time a tag is seen. This technique is known as the Simple API
for XML, or SAX. The other method is to read in the entire document and
build a structure in memory that represents the structure of the document. Then
the values associated with the various tags in the document can be accessed in a
structured way, reminiscent of the way Java handles instance variables in a deeply
nested object hierarchy. This scheme is known as the Document Object Model, or
DOM [5–7].

There are a variety of implementations of both the SAX and DOM models.
Java includes both SAX and DOM parsers as part of the standard Java installa-
tion (in the org.xml.sax and org.w3c.dom packages, respectively). These
and other Java XML technologies are grouped together under the term Java API
for XML Processing, or JAXP. Space does not permit discussing these tools, but
there are good online tutorials [3]. There you will also find optional Java technolo-
gies that support web services development. These are discussed in more detail
below.

XML parsers provide many benefits, not the least of which is relieving you
of having to parse a complex XML document yourself. Parsers can also check a
document for conformance to the DTD or Schema that the document should be
using. Documents that adhere to the DTD or Schema are said to be conforming
documents. Invalid or non-conforming documents can be rejected at the outset
of processing by the parser rather than waiting for some hard-to-find error much
later while a server is performing operations on the data.

21.4 Java web services

So far we’ve explained, briefly, what web services are and how XML documents
are used. But we have not described how to actually implement a client/server
application using the web services paradigm. This section provides an intro-
duction to doing just that. Again, the subject is large and encompasses many
technologies that we do not have the space to discuss here. So we just introduce
the important features and tools and provide pointers to more information.
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Web services are so important that Sun now provides many Java libraries to
support web services development with Java. The entire package is available as
one (large) add-on to the standard Java installation. The package is called the Java
Web Services Developer Pack, or JWSDP, and includes a variety of technologies,
only a few of which we discuss here [8, 9].

21.4.1 Java servlet technology

Before web services, there was the World Wide Web, which delivered static
HTML documents to web browsers over the Internet using the hypertext transport
protocol (HTTP) to send data back and forth between client (i.e. browser) and
web server. Soon it was learned that people needed to provide information to
web servers, not just read static web pages. HTTP includes the GET and POST
methods that provide information to web servers. When you do a web search
for instance, you’re probably using, behind the scenes, a GET operation. When
you fill out a form at an online merchant providing your name, shipping address,
billing information, etc. you’re almost certainly using POST. All this happens
completely transparently to the user.

Then it was realized that web servers needed to be able to generate dynamic
content, and thus was born the common gateway interface (CGI), which provided
a way for web servers to send data to an external program – often written in perl
or C – to perform some calculations and generate HTML pages dynamically.

To resolve some performance problems with CGI, Sun introduced the Java
servlet technology with which a web server can quickly execute Java code to
generate dynamic content (see also Section 14.8). The Java code that is exe-
cuted by the web server is called a Java servlet [10]. It must be written in a
special way to be a servlet, much like Java applets must be written to extend
java.applet.Applet. The part of the web server that deals with Java servlets
is called a “servlet container.” The reference implementation of a servlet container
is an open-source product called Apache Tomcat [11]. Tomcat can be used in con-
junction with the standard Apache web server or it can be run standalone as both
a web server and a servlet container. JWSDP includes support for Tomcat, but
Tomcat itself is a separate download from http://jakarta.apache.org.

21.4.2 Java servlets for web services

So what do Java servlets have to do with web services? The answer is that perhaps
the simplest way to implement a web service is with Java servlets! Servlets process
HTTP GET and POST operations. In the most basic web services paradigm, XML
documents are sent from the client as the payload of a GET or POST operation,
and Java servlets running on the server receive that XML payload. Then, within
the servlet, an XML parser processes the payload, feeding the various parameters
to calculations to be performed by the server. In a standard servlet, the servlet
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might generate dynamic HTML content for display as a web page, but there
certainly is no requirement to do so. In a web services distributed computing
application, the servlet might very well reply to the server with another XML
document containing the results of the calculation. No web browser and no human
may ever see the output.

21.4.3 Sin (ωt) as a web service

In practice, of course, the calculations are being done for the benefit of some
humans somewhere. We could, for example, implement the sin (ωt) calculation
of Chapter 20 as a web service. The client would be much the same, except it
would send data to the remote servlet as the XML payload of a HTTP GET or
POST rather than in an RMI remote method call. Part of that payload would
include the name of the function to perform – initialize, receiveInput,
or retrieveData. The servlet would use some XML parser to read the input
data and perform the calculations. The servlet would also use XML tools to
package the results as a reply XML document to be sent back to the client.
The client would still use its graphical interface to plot the results for human
consumption. Note that no web browser entered the discussion above at all. We
simply used XML and the technology behind the Web – i.e. HTTP – to com-
municate between a client and a server, which, in this case, is implemented as a
Java servlet.

21.4.4 Web services for scientific applications

The astute reader might have noticed that XML documents tend to be large, and
that passing large documents around the Internet will require high bandwidth, and
that building and parsing XML documents will take time, time that might better
be spent on the calculation itself. For these reasons, Web services are typically
not appropriate for fine-grained calculations such as the sin (ωt) example where
there is a large amount of data passed between client and server.

In a large-grained scientific application in which the calculation time is large
compared to the data transmission time, web services might be an excellent
solution. Web services are straightforward to implement, and the technology is
so popular that it is understood by many people.

21.5 Other web services technologies

We do not want to leave the impression that web services are no more complicated
than the relatively simple Java servlet technology. In fact, web services are usually
thought of as more than Java servlets. There are many other technologies in
use in the Web services arena, including wrapping XML documents in Simple
Object Access Protocol (SOAP) wrappers, the use of the Universal Description,
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Discovery and Integration (UDDI) directory service to register and look up web
services, and the Web Services Description Language (WSDL) to define and
describe a web service [12–14].

Another very popular technology for implementing web services in Java is
the Java API for XML-based RPC (JAX-RPC) [15]. In JAX-RPC, calling a web
service is handled much like a remote method call in RMI except the transport
mechanism used is HTTP.

We’ve only scratched the surface of web services. In fact, we’ve only scratched
the surface of Java servlets. The technologies involved are not difficult to under-
stand or use, but they are many. We do not have the space in this book to provide
real working examples, partly because setting up and configuring a web server
and servlet container such as Tomcat and loading servlets into it is a task that
requires much explanation.

The JWSDP provides many of these technologies in one convenient download.
There is also a very complete JWSDP Tutorial available. See the references for
further information about all these technologies.

21.6 Conclusion

Java clearly offers a diversity of resources and techniques for distributed com-
puting. In Chapter 14 we showed how to create a basic web server with low-
level socket code to connect with and send HTML data to browsers and cus-
tom clients. Chapter 15 looked at how to use sockets to pass data back and forth
directly between custom built servers and clients. In Chapters 16–20 we switched
to building programs on the RMI and CORBA frameworks in which objects can
invoke methods in other objects across a network just as if the objects were local.
With web services we return to a web server type scheme but at the higher level of
servlets and XML documents. Each of these approaches to distributed computing
has its advantages and disadvantages, and you can choose the one that best serves
a particular application.

21.7 Web Course materials

The Web Course provides further discussion of web services techniques and
includes an example that illustrates development of a servlet and a custom XML
format.
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Chapter 22
The Java Native Interface (JNI)

22.1 Introduction

Chapter 20 developed a complete client/server application in which both the
client code and the server-side code were implemented completely in Java. Pure
Java on the client side is desirable for many reasons – platform portability, rich
user interface, object-oriented programming environment, ability to run as an
application, an applet or a Java Web Start application, etc. For many of the
same reasons, a pure Java server offers obvious advantages too. However, for
some calculation-intensive processing tasks, particularly if legacy code in another
language already exists, it can be advantageous for a Java program to gain access
to code written in another language such as C or Fortran.

Java permits calls to code written in languages other than Java. Such exter-
nal languages are referred to as “native” languages, and the API for access-
ing them is called the Java Native Interface, or JNI [1]. The decision to use
JNI should be made with great care. JNI is designed for use when it is nec-
essary to take advantage of platform-specific functionality that is not available
within the Java Virtual Machine. There are two key concepts in that previous
sentence – necessary and platform-specific functionality. To utilize platform-
specific functionality via JNI obviously removes Java’s platform portability. In
fact, any use of JNI at all renders a Java application no longer platform portable
since the Java application requires a native shared object library for each plat-
form to which it is targeted. In some cases, such as when the native code is
very generic or easily portable, a simple recompile of the native code on a new
platform can produce a working shared object library, and thus a working JNI
application for that platform. In many cases, though, the native code could be
difficult to port, particularly when the purpose of utilizing native code is to gain
access to platform-specific features of a particular platform. Porting among var-
ious versions of Unix or Linux is normally easy, but porting a library that uses
OS-specific functionality to or from a Microsoft Windows platform is often quite
difficult.

Because of the loss of platform portability, one should carefully consider
whether the desired platform-specific functionality is really necessary to the
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task at hand and if that functionality is really unavailable in the Java API. As
the API has grown, access to almost everything that might be needed from the
underlying operating system has become available through standard Java API
classes. Another important consideration militating against the use of JNI is that
accessing native language features voids many of the security and safety features
of Java. Using a native language that permits pointer manipulation, buffer or array
overruns, and memory leaks carries many risks.

One oft-cited reason for using JNI is performance – other languages are
thought to be “faster.” The perceived lack of performance of modern-day Java is
often just that – perception – rather than reality. We urge any developer to demon-
strate to himself that Java’s platform independent performance is insufficient to
the task at hand before making the leap to platform dependence and JNI.

A more-defensible reason for using JNI is to gain access to legacy code.
Some legacy applications, particularly large scientific calculations, represent
many years of effort, development, and debugging. Rewriting and re-debugging
such codes in Java could be prohibitively time consuming and expensive. Since
legacy codes are likely already tied to a specific platform or operating system,
once a design decision is made to use the legacy code in the first place, then the
use of JNI probably does not add to the platform dependency of the legacy code.
In such cases, using JNI to access a legacy calculation engine in a distributed
application makes good sense and can provide the best of both worlds – a rich and
portable Java user interface for the client, and a highly developed and debugged
calculation engine on the server.

22.2 What is JNI?

Just what is “native” about the Java Native Interface? When using JNI, a Java
program makes a method call to a method whose implementation is written in
a native language. Such a method is called a native method. To the calling Java
program, it’s just a regular method call, complete with Java primitive or object
parameters and/or return types. In fact, the calling code has very little evidence
that the method is actually implemented in another language, and the calling
code doesn’t really care. Nor should it care. Someday the native method could be
re-implemented in Java, and the calling program should not have to make exten-
sive changes to use the new implementation.

When a Java program makes a native method call, some special libraries have to
get involved to route the native method call to the native language implementation.
Those libraries are necessarily both system dependent and language dependent –
i.e. they have to be written for the particular operating system and native language
in use. Sun’s J2SE implementations for Solaris, Linux, and Windows include the
JNI libraries for those platforms for the C and C++ languages. Other implemen-
tations of J2SE on other platforms must also provide C and C++ JNI libraries
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for their platform in order for the implementation to be J2SE compliant. So a
developer can be sure that any compliant J2SE implementation on any platform
will include the required JNI libraries for C and C++.

This chapter explains how JNI is used to call C and C++ code. The examples
given are necessarily simple and somewhat contrived since it is not the purpose
of this book to describe C/C++ programming, but we provide enough C/C++
boilerplate code to produce working examples. (See references [2,3] for additional
examples.)

JNI is often thought of as complicated and difficult. Actually, “verbose” is
a more apt description of JNI. While it can be argued that JNI code is “ugly,”
which makes it appear complicated, the concepts are straightforward, not difficult.
Much of the ugliness can be attributed to the fact that JNI is designed to be general
enough to work with almost any native language. It is possible, at least in concept,
that some vendor could implement JNI libraries for languages other than C and
C++, say Smalltalk or Fortran. To our knowledge, no vendor has done so. To
gain access to codes written in Fortran, for example, one must use a C or C++
layer as an intermediary. Such C or C++ code is often called glue code since it is
the “glue” that holds the Java and Fortran code together. While calling any native
code from Java using JNI is always done the same way, there is no such standard
for calling Fortran from C/C++. Therefore, we do not address here how to write
such glue code.

A JNI native method written in C/C++ has full access to Java objects, although
the way in which those objects are accessed and modified is necessarily different
than how they are used in the Java language. Native methods can obviously call
other methods written in that native language and can use any other feature that
is available in that language. What may not be so obvious is that native methods
can also call Java methods, including standard Java API methods or methods that
are part of a custom written Java class. Native methods can create Java objects,
including arrays. Native methods can cause Java classes to be loaded and can
discover and gain access to fields and methods in those classes. Native methods
can throw Java exceptions that can be caught in the Java code. The rest of this
chapter describes how to use JNI to take advantage of all these features and
more.

While JNI is most often used to call from Java into a native language, it is even
possible for a regular non-Java program running on the native operating system
to invoke a JVM to gain access to Java classes and features. This use of JNI is
referred to as the Invocation API, but we do not discuss it further.

22.3 Hello World in JNI

We begin our study of JNI with a simple example that calls a native method that
prints “Hello World„ on the console. We first write the Java program that
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makes the call and then implement the native method in C++. To be callable by
the JVM, that C++ code must be written in a very specific way with a very specific
signature, about which we learn in this example. To complete this example, we
need the following:

� a Java class that calls the native method
� a native method implementation in the proper form
� a runtime-loadable library containing the native method

The native method must reside in a library that can be loaded at runtime by
the JVM. For Linux/Unix operating systems, the library must be a shared object
library (typically with the .so filename extension). For Windows, the library must
be a Windows DLL (.dll extension). We need to know how to write the native
method and how to create the shared library in such a way that the JVM can load
the library and call the method. The Java class that calls the native method looks
much like any other Java class except for two additions: it must declare the native
methods it uses as native, and it must load the library that contains the native
code.

The Java source code that calls a native method looks just like source code
that calls any other method, but when the JVM routes that native call to the native
implementation, the JVM requires a very specific native function signature – i.e.
the function name, the list of parameters and types, and the return type. You
must know that signature in order to properly implement the native method in
the native language. The signature is derived from the native method declaration
in the calling Java class using a very specific set of rules. We describe those
rules here but do so through examples rather than a boring listing of the rules.
After you have used JNI for a while, you will understand those rules and should
be able to derive the native language signature simply by inspecting the native
method declaration in the Java source file. For beginners, rather than memorizing
and applying the rules, it is far easier to use a tool that generates the required
signature. The Java 2 SDK includes the javah tool that generates a C-style
header file from a compiled Java class that contains native method declarations.
Therefore the steps to create and run a JNI application are:

1. Create a Java class that declares the native method and loads the native library that

contains the native implementation.

2. Compile the Java source file.

3. Run the javah tool to generate a header file for the native method.

4. Create an implementation of the native method using the generated header file.

5. Compile the native implementation.

6. Create a shared object library containing the native implementation.

7. Run the Java class.

These steps must be performed in the order shown. The following sections demon-
strate how to perform each step for the simple Hello World example.
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22.3.1 Create the Java class

The Java class must declare the native methods it uses. A native method dec-
laration looks much like an abstract method declaration except that it uses the
native keyword instead of abstract. Like an abstract declaration, a native
declaration ends in a semicolon and has no body. This example:

public native void nativeHelloWorld ();

declares a public native method named nativeHelloWorld() that returns
void and takes no parameters. Such a declaration appears inside a class definition
but outside of any constructors or method definitions. Native declarations gener-
ally appear at the top of a class definition, along with instance variables, though
there is no requirement that they appear there. There is not even a requirement
that the native declaration appear before it is used, but it must appear somewhere
within the class in which it is used.

Much like abstract, the native keyword informs the Java compiler that
the method is implemented elsewhere, which prevents the compiler from emitting
an error when it cannot find the implementation. A Java source file that declares
and uses a native method compiles without errors, even though the native method
is not implemented anywhere. In fact, being able to compile a class containing
a not-yet-implemented native method declaration is a good thing, as it allows us
to generate the required header file. (If one attempts to run such a Java class, a
runtime UnsatisfiedLinkError occurs at the point where the native method
is called.)

For this example, we create a simple Java class that declares two native methods
and then uses them. We arrange to call one of the two native methods from within
main() and the other native method from within the constructor. Recall that
the main() method is static, and that static methods cannot call instance (i.e.
non-static) methods. Attempting to do so results in a compile-time error like
this:

non-static method nativeHelloWorld() cannot be

referenced from a static context

Therefore, the native method that we call from main() must be declared to be
static. Static methods require a slightly different implementation in the native
language than non-static methods.

Once we create an object instance – i.e. once we call the constructor – then
we can call instance methods. So we also declare a non-static native method
to be called from the constructor. Of course, it is also possible to call static
methods from inside the constructor, but we do not demonstrate that in this
example.

Our Java class is shown below. Ignore the System.loadLibrary() call
for now. Its purpose is explained shortly.
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package javatech.jni22;

public class JNIHelloWorld

{

static {System.loadLibrary ("NativeHelloWorld");}

// Declare the two native methods.

public native void nativeHelloWorld ();

public static native void nativeHelloWorldStatic ();

public static void main (String[] args) {

// Call the static native method.

System.out.println (

"main: calling nativeHelloWorldStatic()");

nativeHelloWorldStatic ();

// Call the constructor, which will call the

// non-static method.

System.out.println (

"main: instantiating JNIHelloWorld");

new JNIHelloWorld ();

// Exit.

System.out.println ("main: exiting");

} // main

// Constructor

public JNIHelloWorld () {

// Call the non-static native method.

System.out.println (

"ctor: calling nativeHelloWorld()");

nativeHelloWorld ();

} // ctor

} // JNIHelloWorld

We have named the two native methods with the prefix “native„ to make it
explicit that they are native methods. We’ve also named the static native method
with the suffix “Static„ to distinguish it from the non-static method.

The only other new feature in this source code is the static initializer that
calls System.loadLibrary(). The purpose of System.loadLibrary()
should be obvious – to load the native library that contains the native method
implementations. Recall that a static initializer runs when the class is first initial-
ized. (The details of class initialization are a bit esoteric, as well as almost always
unimportant to most Java programmers. It is sufficient to know that the JVM per-
forms initialization before a class is actually used. Therefore, loading the native
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library in a static initializer ensures that the library is available when needed.)
Alternatively, one could load the library later, as long as it is loaded before the
first call to a native method is encountered. For this example, the library could be
loaded at the beginning of main(), just before calling nativeHelloWorld-

Static(). However, System.loadLibrary() is most commonly seen in a
static initializer.

The parameter passed to System.loadLibrary()is the shared library
name, which must correspond to the name of the actual shared library that contains
the native code. System.loadLibrary() performs the same function on all
platforms, but the way in which it does that function is platform-specific. In partic-
ular, the name provided is converted to a platform-specific standard shared library
name. On a Solaris or Linux system, the input name “NativeHelloWorld„ is
converted to a library named libNativeHelloWorld.so, while a Windows
system converts the same input name to NativeHelloWorld.dll. Capital-
ization is preserved in the name conversion on all platforms, which is important
to keep note of on a case-sensitive operating system but doesn’t really matter on
a Windows system.

22.3.2 Compile the Java source file

The compilation of the source file above is simple:

javac -classpath build/classes -d build/classes

src/javatech/jni22/JNIHelloWorld.java

As in some previous examples, we separate the generated .class files from the
source files by using a build/classes directory.

22.3.3 Generate the header file

In order to implement the method in a native language, a header file for that native
language method is required. As described above, the header gives us the function
signature for the native implementation. Because it does a bit more than just that,
the header file must be included (#include) in C or C++ implementations.
The Java 2 SDK supplies the javah tool to generate the C header file from a
compiled Java class file.

The name of the header file is formed from the fully qualified class name
of the class on which it is based. As with other tools, the -d switch directs the
output to a named directory. Since it is generated output, rather than source code
that we write, we put the output into a headers subdirectory below the build
directory:

javah -classpath build/classes -jni -d build/headers

javatech.jni22.JNIHelloWorld



592 The Java Native Interface (JNI)

This command produces a file named javatech-jni22-JNIHelloWorld.h
in the build/headers directory. Notice the naming scheme in which the pack-
age name (javatech.jni22) and class name (JNIHelloWorld) are used
with underscore characters replacing the dots.

Let’s examine the generated header file (the formatting has been modified
slightly from the actual generated source to better fit the page):

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class javatech-jni22-JNIHelloWorld */

#ifndef -Included-javatech-jni22-JNIHelloWorld

#define -Included-javatech-jni22-JNIHelloWorld

#ifdef -cplusplus

extern "C" {

#endif

/*

* Class: javatech-jni22-JNIHelloWorld

* Method: nativeHelloWorld

* Signature: ()V

*/

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIHelloWorld-nativeHelloWorld (

JNIEnv *, jobject);

/*

* Class: javatech-jni22-JNIHelloWorld

* Method: nativeHelloWorldStatic

* Signature: ()V

*/

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIHelloWorld-nativeHelloWorldStatic (

JNIEnv *, jclass);

#ifdef -cplusplus

}

#endif

#endif

This may look unwieldy at first (like we said, JNI code is “ugly”), but there are two
important lines here – the two that begin with JNIEXPORT void JNICALL.
These give the signatures of the two native C functions that must be used in
the implementation source. We see that each method name declared in the Java
source code (nativeHelloWorld and nativeHelloWorldStatic) gets
converted into a long function name beginning with Java- followed by the fully-
qualified method name, again with dots replaced by underscores. This lengthy
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naming scheme is followed for all native methods. For a deep package structure,
the native function name can grow quite long.

This process of creating a long C-side function name from the Java-side pack-
age, class, and method name is referred to as name mangling and is used to avoid
namespace collisions. The generated long names are called mangled names. If
one uses overloaded native method declarations, then the mangled native names
are longer still, with the overloaded names augmented by a mangled argument
signature to distinguish the multiple overloaded function names. Again, the rules
for determining the mangled function names are straightforward, but it is easiest
to just compile the Java class and run javah to generate the header file contain-
ing the exact mangled function names needed, especially since the header file is
always required anyway.

Even though our native method declarations declared no parameters, the imple-
mentation functions actually receive two arguments. This pattern is true of all
native methods. There are always two “extra” arguments in the native implementa-
tion function followed by the actual parameters declared in the Java class file.

The first argument is always a JNIEnv pointer, and the second argument
is always either a jclass type for static methods or a jobject type for
instance (non-static) methods. The JNIEnv pointer is very important to JNI. (For
those unfamiliar with C/C++, the presence of the “*„ following the JNIEnv
type indicates that it is a pointer.) It is through the JNIEnv data type that native
code implementations gain access to Java objects. We explain how this works in
more detail later.

The data types seen above – JNIEnv, jobject, and jclass – along with
several others, are defined in the jni.h file that is included at the top of the
generated header file. The jni.h file can be found in the Java 2 SDK installation
directory in the include subdirectory. Examining the jni.h file can be daunting,
but if you choose to examine it, you will see that it contains different definitions
for C and C++. Therefore the same jni.h file can be used for both C and C++.

In addition to definitions of the jobject and jclass data types, there are
also definitions of various other “j„ data types that represent C or C++ versions
of Java data types – for example, jint for Java’s int, jfloat for Java’s float,
and jstring for String. There is a mapping from each Java primitive type
and a few important Java objects (like String, Class, and Throwable) to
corresponding “j„ data types in C or C++. These “j„ types are needed on the
C-side to ensure a match between primitive types. For example, a Java float is
always 32 bits, but a C float could be 32 or 64 bits, depending on the underlying
platform. Therefore it is unsafe to map a Java float directly to a C float, but
a C-side jfloat is guaranteed to always be 32 bits in length, just like a Java
float. Similarly, ajint is always 32 bits long, never 64. Because C doesn’t have
a primitive Boolean type, Java boolean types are mapped to jboolean types
in jni.h, along with the constants JNI-TRUE and JNI-FALSE. We discuss
these data type mappings later, but for this example, we won’t need any of the
mappings. In fact we won’t even need the jobject and jclass data types.
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22.3.4 Create the native implementation

Our fourth step is to create the native implementation. From the generated header
file we now know the required signature of the native implementation function.
Our implementation must include the header file, and we must provide native
function definitions that exactly match the signatures in the header file. Let’s
implement the non-static method first. Recall that the function signature, obtained
from the generated header file, is

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIHelloWorld-nativeHelloWorld (

JNIEnv *, jobject);

A C implementation of the method is quite simple. We just use the C stdio

library method printf to print “Hello World” on standard output. Actually, we
prefix the string with a few spaces and the word “<native>„ to distinguish
this output from the Java System.out.println statements. We also include
the phrase “(non-static)„ to distinguish this output from the output to be
generated later by the static method.

#include "javatech-jni22-JNIHelloWorld.h"

#include <stdio.h>

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIHelloWorld-nativeHelloWorld (

JNIEnv *, jobject)

{

printf (" <native> Hello World (non-static)\n");

return;

}

The first line #includes the generated header file, as is required.
The static method implementation is very similar to the non-static method.

Since we don’t do anything with either thejclassorjobject input parameters,
the only difference is the function signature. We can put this function definition
in the same C/C++ file as the previous function.

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIHelloWorld-nativeHelloWorldStatic (

JNIEnv *, jclass)

{

printf (" <native> Hello World (static)\n");

return;

}
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We place the source code for these two methods in a file called NativeHel-

loWorld.cpp in our src/javatech/jni22 directory.

22.3.5 Compile the native implementation

Recall that we instructed javah to direct its output to the build/headers

directory. Therefore we must arrange the C/C++ compiler command line argu-
ments to specify our build/headers directory as a compiler include directory.
Unfortunately, since C is not platform portable, compiling instructions are dif-
ferent for different platforms. We begin with a Windows example, since most
readers probably have access to a Windows system.

We assume that Microsoft Visual C++ is installed on the user’s Windows
machine. There are, however, other alternatives, including the excellent and free
CYGWIN library (see [4]) which includes the GNU C++ compiler as well as
many other Unix-like tools.

First, we must enable command-line usage of the C/C++ compiler by
running the vcvars32.bat script. In a standard Visual C++ installation,
that script appears in C:\program files\microsoft visual studio\
vc98\bin\vcvars32.bat. The command line compiler tool is cl.

When compiling, we must specify the location of the needed include files. The
cl tool uses /I<dir> (or -I<dir>) to specify directories to add to the include
file search path. There are three such include files – the header file generated
by javah, the jni.h file that is included by the generated header file, and a
machine-dependent header file that is included by jni.h.

We already know that the generated header file is in the build/headers
directory (known as build\headers, with a backslash, on Windows).
The jni.h file appears, on Windows, in %JAVA-HOME%\include where
JAVA-HOME is the Java 2 SDK installation directory. The machine-dependent file
appears in %JAVA-HOME%\include\win32. So our command line to compile
the implementation source becomes

cl -c -Ibuild\headers -I%JAVA-HOME%\include I%JAVA-HOME%\

include\win32 -Fobuild\objs\NativeHelloWorld.obj

src\javatech\jni22\NativeHelloWorld.cpp

We have used the -c switch to specify compile-only and -Fo<file> to name
the output directory and file name of the compiled .obj file. Notice that we
have continued the pattern of placing compiled output in the build directory by
placing the .obj file into a build\objs directory. That way, it is easy to clean
up all generated and compiled output simply by deleting the build directory. For
this choice to work, we must create the build\objs directory before running
the above command. (Although the line above is shown as three lines to fit on
the page, it must be entered as all one line in a Windows command shell or batch
script.)
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The result of the command line above is a file named NativeHelloWorld.
obj in the build\objs directory which must be linked to create a Windows
DLL file.

On a Sun Solaris system, the compilation command line is

cc -c -Ibuild/headers -I$JAVA-HOME/include \

-I$JAVA-HOME/include/sparc \

-obuild/objs/NativeHellowWorld.o \

src/javatech/jni22/NativeHelloWorld.cpp

where we have used the “\„ continuation character to break the long line into
four lines.

22.3.6 Create a shared library

To create a Windows DLL file, we use the Windows link command line tool,
which is part of the Visual C++ installation:

link -dll build\objs\NativeHelloWorld.obj

-out:build\NativeHelloWorld.dll

Alternatively, the cl tool can be used to do the linking as follows:

cl -LD build\objs\NativeHelloWorld.obj -link

-out:build\NativeHelloWorld.dll

Both of these commands place the DLL directly into the build directory. The
former also puts the associated but unneeded EXP and LIB files in the build
directory, while the latter puts the EXP and LIB files in the directory from which
it is run.

22.3.7 Run the Java class

The final step is to run the Java class. We start Java in the normal way and specify
the CLASSPATH and the javatech.jni22.JNIHelloWorld class to be run.
We also must tell the operating system where to find the shared library file. In
Windows, the only search path used is PATH, so it is important to add the build
directory (where we created the DLL file) to the PATH environment variable:

set PATH=build;%PATH%

java -classpath build/classes javatech.jni22.JNIHelloWorld

Alternatively, instead of modifying the PATH variable, we can utilize the
java.library.path system property:

java -classpath build/classes -Djava.library.path=build

javatech.jni22.JNIHelloWorld
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Both of these commands should produce the following output:

main: calling nativeHelloWorldStatic()

<native> Hello World (static)

main: instantiating JNIHelloWorld

ctor: calling nativeHelloWorld()

<native> Hello World (non-static)

main: exiting

If you try this example and do not see the output shown above, then you’ve
made some mistake. The most common runtime error when running a simple
example like this is an UnsatisfiedLinkError, which can occur because of
two situations. If an error message like this

Exception in thread "main" java.lang.UnsatisfiedLinkError:

no NativeHelloWorld in java.library.path

appears, then the system could not find the shared library file, almost surely
because of an incorrect PATH or java.library.path setting. The stack trace
should lead to the Java source code line that calls System.loadLibrary().

The other possible reason for an UnsatisfiedLinkError is that the spec-
ified library was found but a required native method could not be found in that
library. This problem can sometimes happen if one has declared many native
methods and simply forgotten to implement one of them. Perhaps more likely,
the native method signature is not quite letter perfect. In both cases, the error
message simply includes the name of the native method that cannot be found.
An example would be mistakenly using jclass instead of jobject when
implementing the nativeHelloWorld method. Recall that jclass is used
for static implementations but that jobject is required for non-static methods
like nativeHelloWorld. Since there is no (correct) implementation of the
required non-static nativeHelloWorld method, the JVM is unable to locate
that method when needed and the error message reads

Exception in thread "main" java.lang.UnsatisfiedLinkError:

nativeHelloWorld

The stack trace should lead to where the Java source first attempted to call
nativeHelloWorld. If you’re sure the native method being called is present,
be sure to check that the signature in your implementation exactly matches the
signature in the generated header file.

22.4 Deeper into JNI

The example above served as a useful introduction to JNI but omitted many
features. It did not pass any parameters from the Java side to the C side, did
not return a value back to Java, did not use the important JNIEnv pointer, and
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made no attempt to access fields or methods of Java objects. It did not do any
error checking and did not throw any exceptions. In this section, we go deeper
in the details of JNI and explain how to use JNI for more realistic examples. JNI
supports all the features just mentioned, and we need to know how to use them.

First, as we explain those features, one may think that JNI is unnecessarily
complicated. A somewhat complicated JNI function call is needed, for example,
to gain access to Java object fields. Why couldn’t the Java designers simply permit
the native implementation to access the fields directly as, say, members of a C
data structure? In fact, an early (Java 1.0) native method interface did just that but
was abandoned in favor of the more general JNI as Java matured. The modern JNI
appears complicated because it is important to avoid exposing the JVM’s internal
layout of Java objects to native code. Doing so would preclude ever changing the
internal implementation and also make efficient garbage collection difficult. (See
the JNI Specification [1] for more details about the design decisions.)

It is because of this generality that JNI appears complicated. Again, we claim
that JNI is not so much complex as it is verbose. Learning the concepts of JNI is
not difficult. Applying them requires lots of typing of verbose (and ugly) code.
That verbosity tends to make any discussion of JNI equally verbose. We apologize
in advance for the apparent complexity of the discussion to follow.

When parameters are passed from Java to a native language, they are not
received as Java objects, nor are they received as objects or structures in the receiv-
ing native language. The former would be impossible, since a native language
has no facilities to deal with Java objects. The latter is somewhat conceivable for
an object-oriented native language such as C++, but is impossible for a general
JNI design that supports non-object-oriented languages such as C or assembly
language. There are two key things to remember throughout the discussion to
follow:

� Java objects passed to a native language are not received as normal objects or structures

in that language but rather as some intermediate data types.
� There are special JNI functions provided to access fields within those intermediate types

and even to convert some intermediate types to native data types.

Because of this need to convert to and from the intermediate data types, the code
grows verbose (and ugly).

22.4.1 The Java interface pointer

The access and conversion functions are provided in the JNI library itself.
There are many JNI functions – FindClass(), GetMethodID(), CallInt-
Method(), CallStaticFloatMethod(), to name just a few. These are C
and C++ functions, not Java methods. The function naming convention does not
use the standard Java method naming convention of initial lower case, but rather
uses an initial upper case letter.
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These C and C++ functions appear in the JNI library. C and C++ native
code gains access to these JNI library functions via the JNIEnv pointer, which
is a pointer into a C/C++ function table. You can, however, think of the JNIEnv
variable as a pointer into the Java “environment.” It is automatically provided
to your C/C++ code by the JNI system when the JVM routes a method call
from Java to your native code. It is always the first of the two “extra” function
arguments that appear in the native function signature.

As an example, let’s see how a C implementation calls the GetMethodID()
function. If we added a call to GetMethodID() to our nativeHelloWorld imple-
mentation, this JNI function would be accessed as follows:

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIHelloWorld-nativeHelloWorld

(JNIEnv *jenv, jobject jo) {

jmethodID mid =

(*jenv)->GetMethodID (jenv, <actual arguments>);

...

}

Here the Java interface pointer is named jenv in the function signature. This
jenv pointer is used to call the GetMethodID() function as shown. Note
the double dereferencing (i.e. the use of the construct (*jenv)->) and note
that jenv is also passed as the first argument to the function. (We discuss the
<actual arguments> later when we describe GetMethodID() in more
detail.) This code is, admittedly, a little ugly, but it demonstrates how the Java
interface pointer is used to call JNI functions from the C language. Any call to
any JNI function in C looks similar.

The C++ syntax is somewhat cleaner. The extra level of indirection is
unneeded and the interface pointer is not passed as the first argument in the
function call:

jmethodID mid = jenv->GetMethodID (<actual arguments>);

This cleaner way of calling JNI functions is possible because of some magic
worked by the jni.h header file when using C++. We use C++ in the rest of
the examples in this book for convenience.

The interface pointer received in a native call is valid only for the current Java
thread. The JVM always passes a valid interface pointer when it makes a native
method call, and if there are multiple calls to a native method, the JVM always
passes the same interface pointer as long as all those calls are from the same
Java thread. However, if a native method is called from different Java threads,
the native implementation may receive different JNI interface pointers. A native
method implementation must not pass the interface pointer from one Java thread
to another. In general, one should just use the interface pointer received from the
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JVM whenever inside any native method rather that attempting to save a copy of
the interface pointer.

22.4.2 Calling conventions

The JVM always uses the standard library calling convention for a given platform,
though that calling convention is likely to be different on different underlying
platforms. On Unix platforms, the C calling convention is used; on Windows,
the --stdcall convention. Fortunately, this situation is completely transpar-
ent to the programmer. The only requirement is that the programmer write the
implementation to match the signatures in the generated header file and compile
the implementation on the target native platform. A native implementation can
be moved to another platform and recompiled without changes to the source code
on either the Java side or the native side. The jni.h file on each platform trans-
parently handles the differences in calling conventions between platforms. (Of
course, if the native implementation uses platform-specific features, then those
features have to be ported to the new native platform.)

Primitive type values – int, float, char, etc. – are copied (passed by value)
between the Java and native sides, automatically accounting for field size and
byte order through the defined jint, jfloat, etc. types. Java objects, including
arrays, are passed by object references, but the object references seen on the
C/C++ side are the intermediate data types described in Section 22.4. Therefore,
the JNI library provides special JNI functions to access array elements and the
fields internal to a Java object. The next two sections deals with Java String
objects and arrays in more detail.

22.5 Java String objects

Java String objects are quite different from C strings. For one thing, Java
Strings are full-fledged objects with both state and behavior (i.e. data and
methods) while C strings are simply char arrays. When the JVM passes a Java
String to a native C or C++ implementation, a jstring is received in its
place. Just what is a jstring? It is certainly not a C string, and attempting to
treat it as one inside the native code likely results in a crash of the JVM. Actually,
a jstring is typedef’ed in jni.h to be a jobject and could be manipulated
like any other jobject (more about that appears below). However, because
strings are so important, JNI provides special functions for converting jstring
types into C strings. A similar situation applies to Java arrays, which we discuss
after taking a look at the JNI string-related functions.

Recall that Java Strings are stored as Unicode characters, and that C strings
are arrays of C char types, which are 8-bit fields. Normally, C strings are com-
posed of just the 7-bit ASCII characters with the eighth bit of the char empty. To
convert Java strings into C strings, it is necessary to convert the Unicode string
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into UTF-8 encoding (see Chapter 9), something that C and C++ can use. UTF-8
maps, and fits, into C’s 8-bit char representation. Generally, the results are as
expected as long as the original string contains only characters in the ASCII range
of UTF-8, which is a good idea for anyone using a C or C++ native implementa-
tion since those languages don’t provide native support for non-ASCII characters
anyway. Special care must be taken in the native implementation to deal with
non-ASCII strings. The examples in this book always assume ASCII strings.

The main JNI function for working with jstring types is GetString-
UTFChars(), which converts the internal Unicode Java string into a UTF-8
representation. Suppose we have a native method declared as follows:

package javatech.jni22;

public class StringExample {

...

public native String nativeProcessString (String s);

...

}

This native method receives a Java String, processes it somehow, and returns a
Java String. The native method signature is obtained from the generated header
file after runningjavah. Thus the beginning of the C/C++ implementation looks
like this:

JNIEXPORT jstring JNICALL

Java-javatech-jni22-StringExample-nativeProcessString

(JNIEnv *jenv, jobject jo, jstring js) {

// code to do the processing

...

}

Note here that the single String parameter on the Java side appears as a
jstring in the third argument on the C side, after the JNIEnv pointer and
the jobject. Also note that the C function is declared to return a jstring.

The first thing we must do is convert the received jstring to a C string. To
do so, the C++ calling sequence is

const char* cs = jenv->GetStringUTFChars (js, NULL);

if (cs == NULL) {

// Handle the error and return immediately

return NULL;

}

// Use cs in some way ...

...

jenv->ReleaseStringUTFChars (js, cs);

...
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Here, js is the jstring received as a function argument that is to be converted.
The return value from GetStringUTFChars() is cs, which is a pointer to an
array of UTF-8 characters that can be treated within C/C++ code as a C string.
We explain the NULL argument passed to GetStringUTFChars() later.

It is very important to callReleaseStringUTFChars()when finished with
the returned array of characters so the JVM can clean up the storage allocated
for cs. Otherwise, a memory leak occurs. One cannot assume that the memory
allocated for cs is freed automatically when the native method goes out of scope
as would happen in a true Java method.

It is also important to check the return value from GetStringUTFChars().
If sufficient memory could not be allocated to contain the C string, then the
function returns NULL. The function also throws an OutOfMemoryError, but
because of the way exceptions are handled in JNI, you must still check for an
error return and then return to the calling Java method before the exception is
seen on the Java side. We learn more about exceptions in JNI later.

If buffer space to contain the converted string is already pre-allocated, or if
it is known that only a substring of the original Java string is needed, then the
GetStringUTFRegion() function may be used. This function is much like
GetStringUTFChars() except that its arguments include a beginning index
into the string and the number of characters that should be converted. It also
requires a pointer to a sufficiently-sized pre-existing buffer in which to place
the converted UTF-8 characters. A short code snippet illustrating GetString-
UTFRegion() is

char buffer[21];

jenv->GetStringUTFRegion (js, 5, 20, buffer);

This code extracts 20 UTF-8 characters beginning at index 5 (counting from the
first character at index 0). The buffer is sized at 21 in order to contain the standard
C terminating null character. If the input string does not contain enough char-
acters, then a StringIndexOutOfBoundsException is thrown because the
function attempts to extract more characters from the jstring than exist. If the
buffer is not sized large enough, on the other hand, then data is written to memory
locations past the end of the buffer, producing unpredictable (and probably bad)
results. It is your responsibility to write error-checking code to prevent and/or
handle any such abnormal situations. If you are certain that no index overflow
can occur, then GetStringUTFRegion() is easier to use than GetString-
UTFChars() because the former does not allocate memory, thereby removing
the necessity to call ReleaseStringUTFChars() and never raising unex-
pected out-of-memory exceptions. In practice, GetStringUTFRegion() is
preferred for small fixed-size strings since the required buffer can be allocated on
the C stack very cheaply. Another useful string handling function isGetString-
UTFLength(), which returns the length in bytes needed to contain the UTF-8
version of a jstring.
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We note that GetStringUTFRegion() was not in the original JNI speci-
fication. It was added for Java 2 SDK version 1.2 (commonly called JDK 1.2)
meaning it has been around for several years now. Unfortunately, it can be easy
to miss the documentation about GetStringUTFRegion() and a few other
new JNI functions because of the way the JNI documentation is organized. Most
of the JNI functions are described in the online docs [1] in the section titled
“JNI 1.1 Specification”. The enhancements added since Java 1.1 appear in the
section labeled JNI Enhancements, below which are links to “JNI Enhancements
in version 1.2”, and “JNI Enhancements in version 1.4”. In order to see all the
JNI functions, you need to follow the links to all three documents. (Fortunately,
this situation has improved with the J2SE 5.0 document set where all the JNI
functions are combined into one document.)

One might also come across some (scant) documentation (see the JNI Pro-
grammer’s Guide [3]) referring to a SetStringUTFRegion() function that
permits directly setting the characters in a region of a jstring. This function
would be analogous to the “Set„ functions for array elements, to be discussed
later. However, to the best of our knowledge, such a function does not really exist
in JNI.

The Web Course contains a simple string handling example in files
called StringExample.java and NativeString.cpp. The string handling
example takes an input string and uses C code to reverse the order of the char-
acters. The reversed string is returned as the return value of the native method.
Of course the same thing could be done purely in Java. The example is simply
meant to illustrate the use of the JNI string handling functions.

When the native method declaration declares the method return to be String,
as our nativeProcessString example does, the value returned to the calling
Java code must be a JavaString. To create one on the native side, the native code
uses the NewStringUTF() function which takes a C array of UTF-8 characters
as an input argument and creates and returns a jstring. When the jstring
is returned to the calling Java code, it is converted to a Java String by the JNI
subsystem. The code to create the new jstring appears as follows, assuming
that the C string reverse has already been populated with the reversed-order
version of the input string:

jstring jreverse = jenv->NewStringUTF (reverse);

return jreverse;

Like GetStringUTFChars(), NewStringUTF() must allocate memory, so
it is written to return NULL and throw an OutOfMemoryError if memory for
the new jstring cannot be allocated. In general, the returned value should
be checked and appropriate action should be taken if it is NULL. Here, however,
since we immediately return the value obtained fromNewStringUTF() anyway,
there is no explicit need to check for a NULL return.
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There are a few other JNI string handling functions, particularly GetStr-

ingChars() and ReleaseStringChars(). These are useful for getting
string characters in Unicode format instead of UTF-8 characters. Doing so is
not relevant to this book and is not discussed further.

22.6 Java primitive arrays

Arrays in Java can be arrays of Java primitives (e.g. float[]) or arrays of Java
objects. Arrays of Java primitive types are treated similarly to Java strings in
JNI. Both are objects on the Java side, both are passed to native methods as
object references, and both have special types defined in jni.h on the C side
for convenience. Object arrays are a bit more complicated than primitive arrays,
and we discuss them in the next section.

A Java primitive array of Java floats is passed to a JNI method as a
jfloatArray. There are also jintArray, jbyteArray, jdoubleArray,
etc. types for the other Java primitives. Just like a jstring is not a C string,
neither is a jfloatArray an array of C/C++ floats. And, just like with
strings, JNI provides special functions for converting the various jxxxArray
types into corresponding C/C++ arrays. One of the special functions for
converting jfloatArray types is getFloatArrayElements(), which
returns a pointer to an array of C floats. Given a jfloatArray called
the-jfloatarray, we obtain a C array as follows:

float* c-array = jenv->GetFloatArrayElements (

the-jfloatarray, NULL);

if (c-array == NULL) {

return 0.;

}

// Use c-array in some way, and then

ReleaseFloatArrayElements (the-jfloatarray, c-array, 0);

...

Here we have convertedthe-jfloatarray into an array of Cfloats. The JNI
function GetFloatArrayElements() allocates the space for the C array, per-
forms the conversion, and returns a pointer to the new C array. Since the function
must allocate enough memory for the C array we must be sure to check the return
value for NULL and respond accordingly, just like we did with GetStringUT-
FChars() above. After c-array has been used, we must be certain to clean
up by calling ReleaseFloatArrayElements(). Similar code applies for all
the other primitive array types.

During garbage collection on the Java side, Java arrays may be moved in mem-
ory without warning. The JVM ensures that a garbage collection event does not
impact behavior on the Java side. For native code, the JVM also guarantees that the
C side array does not move in memory unexpectedly. It does so by either making a
copy of the Java array elements for use on the C side, where the copy is not subject
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to Java garbage collection, or by “pinning” the actual Java array elements in mem-
ory. The choice to copy or pin is completely up to the JVM; the programmer has no
control over which method is used. If pinned, then calling ReleaseFloatAr-
rayElements() is important in order to unpin the array elements in memory
so that future runs of the garbage collector are able to move the array as needed.
If copied, then calling ReleaseFloatArrayElements() is important in
order to copy the changed array back to the Java side and avoid a memory
leak. In other words, always be sure to call the corresponding ReleaseXxxAr-
rayElements() function after using one of the GetXxxArrayElements()
functions.

The careful reader may have noticed that we passedNULL as the second param-
eter to both GetStringUTFChars() and GetFloatArrayElements().
That parameter may optionally be a jboolean type. Upon return from the
array functions, the jboolean, if present, is set to JNI-TRUE if a copy of
the actual Java array elements is returned and JNI-FALSE if a pointer to the
actual elements themselves is returned – i.e. if the array is pinned in memory. If
JNI-FALSE, then changes made to array elements appear instantly on the Java
side. If JNI-TRUE, then any changes to the array do not appear on the Java side
until ReleaseFloatArrayElements() is called. The same concept applies
to the string functions as well, although a copy is almost always made for strings
since the native platform is unlikely to have direct support for Java’s Unicode
character format.

When calling ReleaseFloatArrayElements() from C++, there is a
jint “mode” parameter in the third argument position. The mode may be 0,
as in the example above, or one of the constants JNI-COMMIT or JNI-ABORT.
Mode 0, almost always the proper choice, means to copy back the content, if
necessary, and release or unpin the memory for the c-array. JNI-COMMIT
means to copy the content but not release the memory, and JNI-ABORT means
to free the buffer without copying back the possible changes. Both these special
values should be used with great care, if at all.

22.6.1 Handling subsets of arrays with Get
and Set region functions

In practice, getting an entire array with one of the GetXxxArrayElements()
functions can be expensive, especially if a copy is made (and that choice is out of
the developer’s hands). If only a subset of an array is needed, then JNI provides
GetXxxArrayRegion() methods, with “Xxx„ replaced with Float, Int,
Double, etc. Suppose we have a Java int[] array that is 1000 elements long.
It becomes a jintArray on the C side. If we only need to access elements 5 to
14, we can get access to that subset of the large array as follows:

jint region[10];

jenv->GetIntArrayRegion (the-jarray, 5, 10, region);
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Here it is necessary to have a pre-allocated buffer of the required size. Over-
running the buffer results in unpredictable results. The function performs array
bounds checking on the-jarray, throwing an ArrayIndexOutOfBounds-
Exception if one attempts to extract a region that is beyond the range of the
original Java array. The Web Course provides an example program that usesGet-
IntArrayRegion() to sum elements 5 to 14 of a long integer array. In general
the “region” methods are preferred, especially for short arrays, because they do
no memory allocation.

Recall that Java arrays contain length information in addition to the array
elements. In Java, the length is obtained directly from the length field of the
array (i.e. int len = array.length). A useful function for getting the size
of a jxxxArray type on the C side is the GetArrayLength() function.
This function can be used to ensure that the region buffer for a GetXxxAr-

rayRegion() function call is sized large enough. GetArrayLength() takes
a jarray as an argument. The jarray type can be thought of as a “super-
type” of all the individual jxxxArray types, so any jxxxArray type can be
passed to GetArrayLength(), including a jobjectArray, to be discussed
below.

There are also SetXxxArrayRegion() functions for each primitive xxx
type. These “set” functions permit copying a C-side buffer directly into a
region of a jarray. The Web Course provides an example program that uses
SetIntArrayRegion() to set elements 5 to 14 of a long Java int array.

22.6.2 Creating new primitive arrays

If the native implementation needs to create a new Java primitive array, then it
does so using one of the NewXxxArray() functions. For example to create a
new jintArray ten elements long, we use

jintArray my-jarray = jenv->NewIntArray (10);

if (my-jarray == NULL)

return NULL;

As this function allocates memory, one should be sure to check for a NULL return
value and react accordingly. About the only reason to create a new “j„ array on
the C side is for return to Java.

22.7 Java object arrays and multidimensional
primitive arrays

While it is easy for JNI to provide the jintArray, jfloatArray, etc. types
for convenience, there is no way to provide types for arbitrary Java objects on the
C side. An array of objects, such as MyCustomObject[], on the Java side gets
passed to the C side as a jobjectArray. Unlike with the primitive arrays, there
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is no way to obtain a C version of the entire object array or even a sub-region of
the object array. A language like C or even C++ has no idea what the objects
that make up the elements of a Java object array look like or how they behave.
Any knowledge of the structure and behavior of Java objects must be written into
the native code by the programmer.

Individual array elements from an object array can be accessed and modified
with the GetObjectArrayElement() and SetObjectArrayElement()

functions. The return from a “Get„ is a jobject, and the input to a “Set„

is a jobject of the proper type. For example, for an object array named
the-jo-array, we can obtain element number 7 with

jsize index = 7;

jobject jo = jenv->GetObjectArrayElement (the-jo-array, 7);

This method throws an ArrayIndexOutOfBoundsException if the index
specified is out of bounds. The return is a jobject, a C reference to a single
instance of one of the Java objects in the Java-side object array. To set a jobject
into an object array, use

jenv->SetObjectArrayElement (the-jo-array,

index, the-jo-value);

where the-jo-value is the jobject being inserted into the-jo-array.
Before discussing more about jobjects and jobject arrays, we need to

point out that multidimensional primitive arrays in Java are not really prim-
itive arrays. They are implemented in Java as arrays of arrays. Since arrays
are really objects, then an array of arrays is really an array of objects – i.e.
an object array. If a Java int[][] array is passed to C/C++, then a jobject-
Array is received. To access the array elements on the C side, one must first
use the GetObjectArrayElement() function to extract one of the under-
lying single-dimensional arrays. That single-dimensional array is returned as a
jobject that then can be cast into a jintArray and manipulated like any other
jintArray.

The Web Course includes the ArrayExample.java and NativeAr-

ray.cpp codes that demonstrate handling of 2D int arrays.

22.8 Java objects on the C side

We mentioned earlier that native codes have full access to Java objects. This
section explains how C/C++ can deal with Java objects. Obviously, JNI cannot
have a-priori knowledge of any custom objects that a programmer creates, so those
objects cannot possibly be handled the way JavaString objects are handled with
a special jstring data type. In theory, JNI could perhaps provide special data
types for all the myriad objects in the Java API, though doing so would make
JNI unnecessarily huge. Except for a few special cases like jstring, jclass,
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and jthrowable, all other Java objects appear on the C side as jobject data
types.

A Java object has both state and behavior, or data and methods, and JNI must
provide a way to gain access to the data inside an object for manipulation on
the C side. In addition, JNI also makes it possible to make method calls to the
methods in a Java object. Said another way, not only can Java call C/C++ code
using JNI, but C/C++ code can also call Java code using JNI. We look first at
accessing the data fields within an object.

22.8.1 The field ID

JNI provides a way for the native language programmer to get and set the values
of member variables inside a Java object or class. Both class (static) and instance
variables are available. On the Java side, a member variable, also known as a field,
is identified by its name using the object.field-name syntax. As might be
imagined, things are not so simple on the native side. Like everything else in JNI,
the getting and setting of fields is done through the use of JNI functions. Doing
so is a two-step procedure. First, you must obtain an identifier for the desired
field within the Java class. This identifier then serves as a kind of index used to
locate the member variable within the class or object.

The identifier is called the field ID and is of type jfieldID. Java fields can
be of any type, and it is necessary to know both the field name and type signature
in the Java class to obtain the corresponding field ID. Once the field ID is had, it is
used to get or set the value of the corresponding field. JNI factors out the process
of obtaining the field IDs from the process of getting and setting the actual field
values so that the field IDs do not have to be recalculated each time they are used,
saving time when the same field is accessed multiple times.

Field IDs are obtained with the GetFieldID() and GetStaticField-

ID() functions as illustrated here:

jfieldID fid = jenv->GetFieldID (cls, <field-name>,

<type-signature>);

if (fid == NULL)

return NULL;

where <field-name> is a C string naming the desired field, <type-
signature> is a C string containing the type signature, and cls is an argument
of type jclass that identifies the class the desired field is found in. We explain
the cls argument in more detail shortly.

As usual, we check for a NULL return in case of any errors. The exceptional
conditions that can be thrown by GetFieldID() are NoSuchFieldError,
ExceptionInInitializerError, and OutOfMemoryError. The most
common is NoSuchFieldError, usually due to a misspelled <field-name>
or incorrect <type-signature>, both of which must be exactly correct. A
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NoSuchFieldError can also result from passing the wrong jclass refer-
ence, resulting in a lookup of the correct field name and signature but in a class
that does not contain that field.

Like most everything else in JNI, type signatures can appear messy, but they
are well-defined and straightforward. It is easiest to introduce the type signature
notation by way of an example. Suppose we have a Java class named JNIDemo
like this:

package javatech.jni22;

class JNIDemo

{

static float a-static-float;

int some-int;

int[] array;

int[][] array2d;

String some-string;

MyCustomObject my-custom;

...

}

The type signatures follow a well-defined and deterministic formula. All the
Java primitive types have a single-letter designation – I for int, F for float,
D for double, etc. So the first two fields are simple. The type signature of
a-static-float is “F„ and for some-int, the type signature is “I„.

With this information, we can get the field IDs of the float and int fields
as follows:

jfieldID a-static-float-fid =

jenv->GetStaticFieldID (cls, "a-static-float", "F");

if (a-static-float-fid == NULL) return NULL;

and

jfieldID some-int-fid =

jenv->GetFieldID (cls, "some-int", "I");

if (some-int-fid == NULL) return NULL;

Arrays of primitives use the same single-letter mapping as the primitive prefixed
with a left square bracket. So the signature of the int[] array is “[I„. You can
think of this “[I„ notation meaning “array of type I.” Thus,

jfieldID array-fid = jenv->GetFieldID (cls, "array", "[I");

A float[] array would obviously be “[F„ and the 2D int array (int[][]
on the Java side) has a type signature of “[[I„.

The type signature of an object field is more complicated. It begins with the
letter L followed by the fully qualified name of the object type with slashes (/)
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Table 22.1 JNI Type Signatures.

Java type Signature

boolean Z

byte B

char C

short S

int I

long J

float F

double D

type[] [type
Class Lfully-qualified-class;

replacing dots, and ends with a semicolon. So the String field’s type sig-
nature is “Ljava/lang/String;„. The type signature for a custom object
is similar. It just specifies the custom path to the object instead of a path
inside the java.lang package. So the type signature of MyCustomObject
is “Ljavatech/jni22/MyCustomObject;„. An array of object types is
merely prefixed with a left square bracket, just like arrays of primitives.

The complete mapping of Java types to JNI type signatures is given in
Table 22.1. Notice that the type signature does not differ for static and non-static
fields. That difference is handled by using either the GetStaticFieldID() or
GetFieldID() function, respectively. With this table and the rules given above,
one can generate the type signature of any field in any class. However, rather than
manually using the table and rules, it is often easier to use the javap tool to dis-
play the signatures automatically. This tool operates on a compiled class file, and
the -s option is used to generate type signatures. By default, javap generates
only the signatures for the default, protected, and public access scope classes and
fields. Use the -private option to show all classes and fields. With our java-
tech.jni22.JNIDemo class described above compiled into build/

classes, we launch javap as follows:

javap -s -private -classpath build/classes

javatech.jni22.JNIDemo

where we fully specify the class name (javatech.jni22.JNIDemo) on the
command line and also set the classpath to point to the build/classes direc-
tory. The output from javap is

1 Compiled from "JNIDemo.java"

2 public class javatech.jni22.JNIDemo extends

java.lang.Object{
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3 private static float a-static-float;

4 Signature: F

5 private int some-int;

6 Signature: I

7 private int[] array;

8 Signature: [I

9 private int[][] array2d;

10 Signature: [[I

11 private java.lang.String some-string;

12 Signature: Ljava/lang/String;

13 private javatech.jni22.MyCustomObject my-custom;

14 Signature: Ljavatech/jni22/MyCustomObject;

15 public javatech.jni22.JNIDemo();

16 Signature: ()V

17 }

where we have added line numbers to aid the discussion. Lines 3, 5, 7, etc. echo
the original lines declaring the fields in the source file. Lines 4, 6, 8, etc. give the
type signatures for each type. This pattern continues for each field until we get
to lines 15 and 16, which give the signature of the class constructor. We discuss
more about method signatures shortly.

22.8.2 The jclass

We used a variable called cls above when calling GetFieldID(). To obtain
a field ID for a field in a particular class, the JNI subsystem obviously needs to
have information about that class. That information is embodied in the jclass
type. For static native methods called from Java, recall that the native function
signature includes a jclass parameter. Therefore, to access fields within the
class that declares the native method, the cls variable is already available.

Suppose our JNIDemo class used in the examples above declared and called
a static native method doStatic() and a non-static method doNonStatic()
as shown here:

package javatech.jni22;

public class JNIDemo

{

// native methods

public static native void doStatic ();

public native void doNonStatic ();

// a class variable

private static float a-static-float;

// instance variables

private int some-int;

private int[] array;
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private int[][] array2d;

private String some-string;

}

The native implementation of doStatic() begins

JNIEXPORT void JNICALL

Java-javatech-jni22-JNIDemo-doStatic (JNIEnv *jenv,

jclass cls) {

...

}

Since the jclass is received in the parameter list, it is already available for any
calls to GetStaticFieldID() or GetFieldID().

However, the native implementation of thedoNonStatic()method receives
a jobject parameter instead of a jclass. The reason should be obvious. Static
methods are class methods. They are available even if the class has never been
instantiated. Said another way, static methods are independent of any particu-
lar instantiation (i.e. object) of the class in which they appear. They have no
this variable. When a static method is called, it is called without any object
of that class necessarily having been instantiated. But instance methods (i.e.
non-static methods) require an instantiation of the class (i.e. an object). For
this reason, instance methods are sometimes called object methods. Each object
method is associated with a particular object, and object methods always have an
implied this variable. So, while a native implementation of a static method
receives a reference to the class in which the native method is declared on
the Java side (the jclass parameter), the native implementation of an object
method receives a reference to the object from which it was called (the jobject
parameter).

Since a jclass reference is needed to call GetFieldID(), receiving the
jclassdirectly in the argument list of the native function that implements a static
native method is convenient for finding field IDs. Non-static native methods are
not so lucky. Obviously a jobject is closely related to a jclass (the former
is an instantiation of the latter), so it should be easy to find the jclass that is
associated with the jobject. In fact, it is easy. For a jobject known as jo,
the JNI function to get the corresponding jclass is

jclass cls = jenv->GetObjectClass (jo);

Using this JNI library function, non-static native implementations can find their
jclass to use to find field IDs.

It is even possible to find field IDs for classes for which we have neither a
jclass nor a jobject reference. We later discuss the FindClass() function
that provides this service.



22.8 Java objects on the C side 613

Table 22.2 JNI functions to get Java field values.

Java field type JNI function Return type

boolean GetBooleanField() jboolean

byte GetByteField() jbyte

char GetCharField() jchar

short GetShortField() jshort

int GetIntField() jint

long GetLongField() jlong

float GetFloatField() jfloat

double GetDoubleField() jdouble

22.8.3 Getting and setting non-static field values
with the field ID

Getting the field ID is only half the battle, since what we really want is the field
itself. With a field ID in hand, we can then get and set the values of static fields
in a class or non-static fields in an object. We discuss non-static fields first. Let
us consider the some-int field of our JNIDemo class. Since it is an int, we
get its value with the GetIntField() method:

jint my-int = jenv->GetIntField (jo, some-int-fid);

The jo parameter is a reference to the object that contains the desired field.
Since there may be multiple object instantiations, each with different values for
the fields, we must pass in a reference to the object that we’re interested in.
GetIntField() also requires the field ID of the field we desire. Here we have
used the some-int-fid obtained earlier in Section 22.8.1. There are analogous
GetXxxField() functions for the other primitives as shown in Table 22.2. Each
“Get„method takes a jobject parameter, which must not be NULL, and a valid
field ID. Each returns a corresponding “j„ data type to the C side as shown in
the table.

To set the value of a primitive field, we use the field ID and a “Set„ method.
For example, if we want to change the value of the JNIDemo.some-int field
from a native method implementation, we use code like the following:

jint new-value = 7;

jenv->SetIntField (jo, some-int-fid, new-value);

There are, of course, “Set„ methods for each primitive type.
These built-in JNI methods handle all the Java primitive types. For object

types, there are general GetObjectField() and SetObjectField() func-
tions. They apply for standard objects, like the some-string String field of
JNIDemo, and for any custom objects the programmer might define. The return
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from GetObjectField() is a jobject, which could be cast into a jstring,
if appropriate.

For most objects, including all custom objects, there is no built-in “j„ type to
cast to. The only way to handle such objects is a nesting of the above procedure.
We give a short example here using the MyCustomObject type in the JNIDemo
class. Let’s define a very simple MyCustomObject class that contains only one
int field, initialized to the value 13 (the constructor is implied):

class MyCustomObject {

int val = 13;

}

Recall that the my-custom field of JNIDemo is a MyCustomObject type. If
jo is a jobject reference to an instance of JNIDemo, then we first need to find
a jclass for JNIDemo:

// Find the jclass corresponding to the jobject

jclass cls = jenv->GetObjectClass (jo);

Then we need the field ID of the my-custom field of JNIDemo:

// Find the field ID of the 'my-custom' field

jfieldID my-custom-fid = jenv->GetFieldID (

cls, "my-custom", "Ljavatech/jni22/MyCustomObject;"

);

With the field ID in hand, we can get a jobject reference to the my-custom
object:

// Get the jobject reference to 'my-custom'

jobject my-custom-jo = jenv->GetObjectField (jo,

my-custom-fid);

About the only meaningful thing we can do with this jobject is use it to look
into the MyCustomObject class. First, we get the corresponding jclass and
then get the field ID of the val field:

// Find the field ID of the 'val' field of MyCustomObject.

jclass my-custom-cls = jenv->GetObjectClass (my-custom-jo);

jfieldID val-fid = jenv->GetFieldID (my-custom-cls, "val", "I");

Now we can obtain the value of the val field itself:

// Get the 'val' field

jint val = jenv->GetIntField (my-custom-jo, val-fid);

and manipulate it somehow:

// Manipulate it somehow

val *= 2;
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We then use SetIntField() to set the new value back into my-custom-jo:

// Set it back into custom-jo

jenv->SetIntField (my-custom-jo, val-fid, val);

At this point, the object referenced by my-custom-jo has been modified such
that the val field has a new value. If the original Java class prints out the value
of my-custom.val, its value will have changed to 26 from the original 13.

The Web Course contains a complete working example of the code snippets
shown above in the JMIDemo.java and NativeJNIDemo.cpp files. Obvi-
ously the nesting procedure used above can be used to any depth.

22.8.4 Getting and setting static field values
with the field ID

The procedure for dealing with static fields is very nearly the same as for non-
static fields. The difference is that there is never a jobject variable in use. We
only know about thejclass. Corresponding to eachGetXxxField() function
for non-static fields there is aGetStaticXxxField() function for static fields.
The GetStaticXxxField() functions take a jclass parameter instead of a
jobject. Otherwise, they are used just like the GetXxxField() functions.

For example, to access the static a-static-float field, we would do the
following:

jfieldID fid = jenv->GetStaticFieldID (cls,

"a-static-float", "F");

if (fid == NULL) return NULL;

jfloat a-static-float = jenv->GetStaticFloatField (cls,

fid);

Of course there are SetStaticXxxField() functions as well to set the value
of static fields.

22.9 Calling Java methods from native code

We have demonstrated how C/C++ code can use the function arguments received
in the native function call and how C/C++ code can locate, get, and set the values
of fields within Java objects and classes. It is also possible for native code to call
Java methods.

Since Java methods exist only inside of classes, it is obviously necessary to
have a reference to the class or object that contains the desired method. Also, the
method within that class must be identified somehow. Identification of the desired
method is handled with a method ID, much like a field ID is used to identify
fields. JNI has GetMethodID() and GetStaticMethodID() functions to
locate method IDs of non-static and static methods, respectively. Those functions
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are used much like the analogous GetFieldID() and GetStaticFieldID()
functions. Instead of a field type signature, they are passed a method signature.

22.9.1 The method ID and method signature

Method signatures use an extension of the notation described in Section 22.8.1
for type signatures. A method signature begins with a parenthesized list of its
parameters, each using the type signature notation. After the closing paren-
thesis appears the return type of the method (in type signature form). There
are no commas or other separators between the parameter types. For exam-
ple, the signature “(II)F„ describes a method that takes two int parame-
ters and returns a float – such as float some-method (int a, int

b). The letter V is used for a void return type. If there are no parameters,
then the method descriptor begins with “()„, not “(V)„, which is an error
since there is no void type in Java. The same “L„ notation is used for object
types and “[„ notation for arrays. For example, a method that takes an array
of Java String types as a parameter and returns a String is described as
“([Ljava/lang/String;)Ljava/lang/String;„. As with type signa-
tures, the easiest and most error-free way to determine method signatures is to use
javap -s as described above. If we add the following method to our JNIDemo
class:

int callback (int x) {

return 2*x;

}

that method’s signature is“(I)I„ either by inspection or by examining the output
of javap. To get the method ID, we use

jmethodID callback-mid = jenv->GetMethodID (cls,

"callback", "(I)I");

The function arguments are a jclass reference to the class where the method
resides, the name of the method, and the method’s signature. There is a corre-
sponding GetStaticMethodID() function for static methods.

GetMethodID() can fail in three ways, the most likely being NoSuchMe-

thodError in which no method with the given name and signature can be
found in the class referenced by cls, most likely due to a mispelled name or a
bad signature. The other two possible error conditions are ExceptionInIni-
tializerError and OutOfMemoryError. If any of these occur, the function
returns NULL which we must handle in the usual way:

if (callback-mid == NULL)

return NULL;
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Table 22.3 JNI functions to call Java methods.

Java return C/C++ return JNI function
type type name

boolean jboolean CallBooleanMethod()

byte Jbyte CallByteMethod()

char Jchar CallCharMethod()

short jshort CallShortMethod()

int Jint CallIntMethod()

long Jlong CallLongMethod()

float jfloat CallFloatMethod()

double jdouble CallDoubleMethod()

Object jobject CallObjectMethod()

22.9.2 Calling Java methods using the method ID

With a method ID in hand, we finally can call the Java method from native code.
Since the Java callback() method we wish to call returns a Java int, we use
the JNI function CallIntMethod()as follows:

// Create a jint to pass to the 'callback' method

jint param = 8;

// Call the 'callback' method, placing the return in a jint

// named ret

jint ret = jenv->CallIntMethod (jo, callback-mid, param);

/**** NOTE: exception handling code needed here ****/

// Print the returned value

printf (" return from 'callback' =%d\n", ret);

The arguments to CallIntMethod() are the jobject reference for the object
whose method is to be called, the method ID, and then the actual parameters
required by the Java method being called. This function can throw any exception
that the called Java method can throw. We have omitted the exception handling
code until we discuss exceptions in the next section. The JNIDemo application
on the Web Course demonstrates this technique in a complete working example.

There are corresponding CallXxxMethod() functions for each primitive
return type and a CallObjectMethod() for methods that return Java objects
(seen as jobjects on the C side). The complete list of “Call„ functions is
given in Table 22.3.

To call static Java methods, there are analogous CallStaticXxxMethod()
functions. Like the Get/SetStaticXxxField() methods, they differ from
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the non-static versions only in that they require a jclass reference to the class
in which the static method resides rather than a jobject reference.

For each CallXxxMethod() function there are two additional functions
available that utilize different mechanisms for passing parameters to the Java
methods they call. TheCallXxxMethodV() family of functions pass the param-
eters in an argument of type va-list, and the CallXxxMethodA() family
of functions pass the parameters in an array of jvalues. Type va-list is
a special type used within the C/C++ language to pass a variable number of
arguments. The printf family of functions is a well-known example using a
variable number of arguments. Type jvalue is defined as a union in jni.h. In
general, the plain functions are the easiest to use. Readers familiar with C/C++
unions and va-list arguments might find the “A„ and “V„ styles useful. The
CallXxxStaticMethod() functions exist in “A„ and “V„ styles as well.

22.9.3 Finding classes

In the examples above, we assumed that the jclass identifying the class con-
taining the desired method was already available. In practice, we must often
first obtain the jclass for the desired class. Suppose, for example, that we
would like to call a method on the Java String class. We first need a jclass
for java.lang.String so we can find the required method ID. The JNI
FindClass() function serves that purpose, and using it is quite simple.
FindClass() takes a fully qualified name of a class and searches the
CLASSPATH to find, and load if necessary, the named class. To find the jclass
for java.lang.String class, we use

jclass cls = jenv->FindClass ("java/lang/String");

As usual, we need to check for a NULL return in case of exceptions, the most
likely being NoClassDefFoundError. FindClass() can find the jclass
for any class on the CLASSPATH, not just Java system classes.

22.10 Exceptions in JNI

We already briefly touched upon Java exceptions in the discussions above. In
those cases, the JNI system itself was responsible for raising the exception due
to unexpected events such as memory allocation errors or the inability to find
field or method IDs. We discuss these system-generated exceptions below. (For
simplicity, we refer to all these exceptional conditions as exceptions rather than
distinguishing between exceptions and errors.) It is also possible for custom
code that you write to throw and catch Java exceptions. We describe throwing
and catching your own exceptions after we discuss exceptions raised by the JNI
system in more detail. In all cases, if an exception is not handled within native
code, it eventually propagates back to the JVM once the native code returns.
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However, it is not safe to ignore exceptions, expecting the JVM to handle them.
It is possible that an unhandled exception in native code could lead to corruption
in the native code or in the JNI subsystem itself, leading to a system crash before
the native code has a chance to return. Properly dealing with exceptions inside
the native code is very important.

22.10.1 Exceptions raised by JNI functions

Whenever a JNI function must allocate memory, there is always the chance
that insufficient memory is available from the operating system, resulting in an
OutOfMemoryError condition. We have also seen an ArrayIndexOutOf-

BoundsException raised by the array functions when a region or element is
requested that is beyond the bounds of the array being accessed, and a few other
exceptions from the GetFieldID() and GetMethodID() functions. In all
these cases, the JNI system itself raises the exception.

In the case of the array functions, recall that Java keeps track of array lengths
inside an array object. When a native method calls one of the JNI array handling
functions, the Java array objects are accessed by (opaque) JNI system code that
implements the JNI function. That code takes care of checking the array bounds
and throwing the exception, if necessary. Similarly, if the GetFieldID() or
GetMethodID() method cannot find the requested field or method, then JNI
system code raises the exception. (When referring to exceptions in JNI we have
been using the terms raises and throws almost interchangeably. There is, however,
a subtle difference, which is explained below.)

Most JNI functions are declared to return values of some type. When an excep-
tional situation arises, most functions can return a special value, usually NULL,
known as an error code. (This is quite different from Java-side programming
in which error code returns are almost never used.) In fact, most JNI functions
report an error condition by returning an error code and raising an exception.
Therefore you can check for the error code value to know whether or not an
exception has been raised. The error code for each JNI function is documented
in the JNI Specification [1]. If the documented error code is not received – i.e. if
a valid value is returned rather than the special error code value – then one can
be certain that no exception has occurred.

However, there are a few situations where the JNI system does not return a
special error code, meaning that if an exception occurs, the only way you can
know about it is by explicitly checking for the presence of an exception. One
such situation is when a JNI function is used to call a Java method. In that case,
the JNI function must return the result of the Java method. If that Java method
throws an exception, there is no special error code value for which to check.
Another case is with certain JNI array functions that do not return error codes
but instead raise exceptions such as ArrayIndexOutOfBoundsException
or ArrayStoreException.
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Native code you write can also raise Java exceptions – either standard excep-
tions likejava.lang.IOExceptionor custom exceptions of your own design.
Of course the Java definition of the custom exception must already exist on the
Java side – i.e. if you want to throw MyCustomException from native code,
there must already exist a Java MyCustomException class somewhere in the
CLASSPATH on the Java side.

There are two ways to handle exceptions in native code. In the examples shown
so far, after detecting an error code return, we have chosen to return immediately to
the calling Java method. This return causes the exception to be thrown and handled
on the Java side like any Java exception. Note that the exception isn’t really thrown
to Java until the native code returns. The exception has been raised on the native
side by JNI, but it is said to be pending until the native code returns to the Java side.
Once the native code returns, then the JNI system arranges for the pending excep-
tion to be thrown on the Java side. In that way, returning immediately to Java when
we detect the presence of an error code allows the exception to be handled on the
Java side.

The second way to handle exceptions in native code is to explicitly check for
and handle a pending exception within the native code itself. We describe this
technique next.

We emphasize that it is extremely important to handle all exceptions by one
of these two methods. Continuing to make additional JNI function calls after
an exception has been raised can lead to unpredictable results. In fact, the only
JNI functions that are safe to call after an exception has been raised are the
four special exception handling functions, ExceptionOccurred(), Excep-
tionCheck(), ExceptionClear(), and ExceptionDescribe(). The
main JNI exception handling function is ExceptionOccurred(), which
checks to see if any exception is pending and returns a jthrowable if so.
It is used as follows:

// ...

// some code that might raise an exception

jthrowable jth = jenv->ExceptionOccurred ();

if (jth) {

jenv->ExceptionClear ();

// handle the exception...

}

The ExceptionOccurred() function returns NULL if there is no exception.
If a jthrowable is returned, then there is a pending exception of some kind.
If you plan to handle the exception within native code, the JNI system should be
told about your plans by calling the ExceptionClear() function. Otherwise
the exception is left pending and will be thrown on the Java side when the native
code eventually returns to Java. The ExceptionDescribe() function is used
to print a debugging message about the pending exception.
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If you want only to check on the existence of a pending exception without
creating a local reference to the jthrowable exception object, the Excep-

tionCheck() function may be used. It returns JNI-TRUE if an exception is
pending and JNI-FALSE if not.

Often, after detecting an exception in native code, what you really want to do
is handle the exception in Java code by throwing your own exception, perhaps
with a bit more description about what went wrong. Or sometimes, by careful
coding, you might detect an error condition in your own native code even before
calling a JNI function that would raise an exception. In these cases, you need to
throw your own exceptions back to Java, the subject of the next section.

22.10.2 Throwing exceptions in native code

Suppose we determine, either by detecting an exception thrown by a JNI function
we called, or by our own error checking of the arguments received from the Java
side, that some of the arguments are invalid. In that case we might want to throw
a java.lang.IllegalArgumentException back to the Java code.

On the Java side, throwing an IllegalArgumentException is simple:

throw new IllegalArgumentException ("...");

Throwing an exception on the native side is only slightly more complicated. The
ThrowNew() function is used to throw an exception from native code to Java.
This function takes a jclass specifying the exception class to be thrown and
a string message to include with the exception. Therefore we must first find the
jclass representing the IllegalArgumentException. We can find that
jclass using FindClass(), just like finding any other class:

jclass iae-cls =

jenv->FindClass ("java/lang/IllegalArgumentException");

if (iae-cls == NULL)

// just give up if we can’t even find the

// IllegalArgumentException class

return;

With the desired exception jclass in hand, we throw it as follows:

jenv->ThrowNew (iae-cls,

"illegal argument detected in native code");

The second parameter to ThrowNew() is the message to be used when con-
structing the java.lang.Exception or java.lang.Throwable object.
On the Java side, J2SE 1.4 added the ability to chain exceptions by specifying a
Throwable as a cause parameter to the Exception and Throwable construc-
tors. As of this writing, there is no simple way to provide a Throwable cause
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from native code. (The not-so-simple way is to explicitly construct a Throwable
object and provide it a cause. Then use the JNI Throw() function.)

For special needs, you can define custom Exception classes in Java that
extend java.lang.Exception. If a custom exception can be found in the
CLASSPATH, then FindClass() can find it and native code can throw the
custom exception just as well as the standard Java library exceptions.

22.11 Local and global references

The JVM must keep track of references to all Java objects passed to native code,
primarily so the Java garbage collector does not arbitrarily free an object while
it is in use in the native code. There are two basic types of references to objects
used by native code: local and global references.

Local references are valid only during the duration of the native method call.
They are freed automatically upon return from native code to Java. Global ref-
erences exist even after the native method goes out of scope. Global references
must be freed explicitly by the programmer when no longer needed.

All objects are passed to native code as local references, and all objects created
within the native code by JNI functions such as NewStringUTF() are created
as local references. This arrangement is normal and expected. When the native
method returns, the local references are deleted, permitting the garbage collector
to free the memory associated with those objects if needed (and, of course, if
there are no outstanding references still in use on the Java side).

For special needs, JNI permits you to create global references from local
references with the NewGlobalRef() function. If a global reference is created,
then it is vital that DeleteGlobalRef() be called when the global reference
is no longer needed. Otherwise, a memory leak and/or heap fragmentation can
occur as the Java garbage collector is never able to free or move the memory
associated with the global reference.

A tempting but mistaken tactic is to attempt to cache a jclass across native
method invocations in order to save the cost of the call to GetObjectClass()
or FindClass(). Under normal circumstances, the jclass is a local reference
and so it becomes no longer valid after the first native method returns. An attempt
to use the cached value on a subsequent call to the native method produces
unpredicatable results, possibly including a JVM crash.

A related mistake is to attempt to cache method or field IDs, probably in an
attempt to save the cost of calling GetMethodID() or GetFieldID(). It turns
out that method and field IDs are valid only as long as the class from which the
ID is derived is not unloaded. After a native method returns to Java code, the Java
garbage collector could possibly unload the class to which the IDs refer. If so,
then subsequent use of the cached IDs can result in unpredictable behavior.

To solve the latter problem it is safest to re-compute the field or method
IDs when needed again. Another solution is to create a global reference to the
jclass that remains valid even after the native method goes out of scope. Since



22.12 Threads and synchronization in JNI 623

a global reference prevents the garbage collector from unloading the class, the
field and/or method IDs remains valid for subsequent use. Again, we emphasize
that it is important to call DeleteGlobalRef() when the global reference is
no longer needed.

22.12 Threads and synchronization in JNI

As we discussed in Chapter 8, Java is a multithreaded system. Therefore, native
methods can conceivably be called by multiple threads. As such, it is your respon-
sibility to be certain that native methods are thread safe. In some situations, you
may have special knowledge that there will always be only one thread of con-
trol calling a native method. For example, the Java method that calls a native
method might be synchronized. Or the native method itself can be declared to be
synchronized.

Without such special knowledge, you must ensure that native methods do not
modify sensitive global variables in unprotected ways. A few simple rules apply:

� The JNI environment pointer is valid only in the current thread. It must not be passed

between threads or cached and used in multiple threads. The JVM always passes the

same environment pointer in consecutive invocations of a native method from the same

thread. However, different threads pass different interface pointers to native methods.
� Local references are valid only in the current thread. They should not be passed

between threads. If different threads need references to the same Java object, use global

references.
� Global variables in native code have no intrinsic thread safety. If multiple threads access

global variables, you must be very careful to protect such access.

Critical sections of native code can be protected much like critical sections of
Java code. In Java, an entire method may be declared to be synchronized

or, for finer-grained control, a critical block of code can be protected with the
synchronized() statement:

synchronized (some-obj) {

... // critical code

}

The JVM permits only one thread to enter the synchronized block at a time.
For native code, the analogous JNI functions are MonitorEnter()and

MonitorExit(), used as follows

jenv->MonitorEnter (some-jobject);

... // critical code

jenv->MonitorExit (some-jobject);

Another option is to use the Java wait(), notify() and notifyAll()

mechanisms. JNI does not provide functions to directly support these opera-
tions, but, since they are normal Java methods on java.lang.Object, they
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may be called just like any other Java method using the techniques described in
Section 22.9.

22.13 Conclusion

The Java Native Interface is a vital component of Java. The JVM itself calls native
methods to implement much of the functionality of Java. This has been a long and
dense chapter because JNI is a large subject area. One can do almost anything
in JNI that one can do in Java. Partly because of the generality of the design of
JNI and partly because many native languages are substantially less capable than
Java, the API for accessing JNI functionality is messy. In addition to writing the
native code itself, one must also know how to compile and link the native code
into a shared library object and how to gain access to that object from Java code.

We have described almost all of JNI, though a few advanced features that
you can read about in the JNI Specification have been omitted. The only subject
we have avoided completely is the Invocation API, not because it is any more
difficult to use than the rest of JNI but because it is less likely to be used in typical
scientific programs than the techniques described here for Java code to call native
methods.

The decision to use native methods should be made with great care. As can be
deduced from the length of this chapter, using JNI properly can require signifi-
cant effort. In addition, as emphasized in the introduction, using JNI necessarily
renders a Java application no longer platform portable. Recent versions of Java
often remove performance concerns as a valid justification for using JNI, while
accessing large legacy computer codes remains a valid reason. We urge you to
be sure that the use of native methods is really necessary before embarking on a
journey into JNI that can often be verbose, messy (and ugly).

22.14 Web Course materials

The code files for the various programs discussed above are available on the Web
Course, as well as some additional examples. We also give an example of linking
Java to a Fortran program via JNI and an intermediate C code.
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Chapter 23
Accessing the platform

23.1 Escaping the sandbox

The Java Virtual Machine (JVM) is often said to provide a safe and self-contained
sandbox where programs such as applets can play without accidentally or delib-
erately entering restricted areas of the platform. That is sufficient if all a program
does is interact with the user via a graphical interface but many programs need
to reach out and access the world beyond the JVM to obtain information and
interact with external hardware.

In Chapter 22 we showed how Java classes can link to native codes, which
possess none of Java’s security restrictions. This is the ultimate form of local
platform access but it involves a lot of inelegant coding and violates the portability
of Java. In this chapter we look at less drastic ways that a program can access
the platform. We first show how a program can obtain properties describing the
platform such as the operating system, the Java version, and screen size. We then
explain how to run a non-Java program from within a Java program. Next we
discuss how to use serial ports to communicate with external devices. We include
a demonstration program in which a Java application communicates via a serial
port with a temperature sensor.

We note that the security restrictions put into place by a browser JVM place
severe limits on the access that applets have to the platform and the network.
However, as we saw in Chapter 14, the security restrictions on Java applications
can be easily customized as needed. (We don’t have space here to discuss trusted
applets that use digital signatures to authenticate their identity. Trusted applets
can be given access similar to that for applications.)

23.2 Accessing system properties

The class java.util.Properties is a subclass of Hashtable, which
we discussed in Chapter 10. Java provides Properties tables with various
system settings in key/value string pairs. See the Java API Specification for
the System.getProperties() method for a listing of the keys, some of
which include java.version, java.home, os.name, user.name, user.
home, etc.

625



626 Accessing the platform

Applets are restricted by the SecurityManager from accessing many of
the properties such as the user’s directory information. Here we show a section
of code from the program SysProperties, which can run both as an applet
and as an application. When run as an applet it displays only a fixed subset of the
properties.

. . . In the class SysProperties . . .

public void start () {

try {

Properties sysProps = System.getProperties ();

int i = 0;

Enumeration names = sysProps.propertyNames ();

while (names.hasMoreElements ()) {

String key = (String) names.nextElement ();

i++;

print (i +". "+key+ " = " +

sysProps.getProperty (key) + "\n");

}

}

catch (Exception e) {

// If browser security manager throws an exception,

// then just ask for the following property values:

String[] key = {

"java.version",

"java.vendor",

"java.class.version",

"os.name",

"os.arch",

"os.version",

"file.separator",

"path.separator",

"line.separator",

};

for (int i=1; i<=key.length; i++) {

print (i+". "+key[i] + " = " +

System.getProperty (key[i]) + "\n");

}

}

. . .

If you run this program as an application, you will see a system properties listing
similar to the output below (line breaks were added in some items to fit the output
within the page here):
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1. java.runtime.name = Java(TM) 2 Runtime Environment,

Standard Edition

2. sun.boot.library.path = C:\ProgramFiles\Java\

jdk1.5.0\jre\bin

3. java.vm.version = 1.5.0-beta2-b51

4. java.vm.vendor = Sun Microsystems Inc.

5. java.vendor.url = http://java.sun.com/

6. path.separator =;

7. java.vm.name = Java HotSpot(TM) Client VM

8. file.encoding.pkg = sun.io

9. user.country = US

10. sun.os.patch.level = Service Pack 1

11. java.vm.specification.name = Java Virtual Machine

Specification

12. user.dir = C:\Java\Book\WebCourse\Course\Code\P3\

Properties

13. java.runtime.version = 1.5.0-beta2-b51

14. java.awt.graphicsenv = sun.awt.Win32GraphicsEnvironment

15. java.endorsed.dirs = C:\ProgramFiles\Java\jdk1.5.0\

jre\lib\endorsed

16. os.arch = x86

17. java.io.tmpdir = C:\DOCUME~1\User\LOCALS~1\Temp\

18. line.separator =

19. java.vm.specification.vendor = Sun Microsystems Inc.

20. user.variant =

21. os.name = Windows XP

22. sun.jnu.encoding = Cp1252

23. java.library.path = C:\Program Files\Java\

jdk1.5.0\bin;.;

C:\WINDOWS\System32;C:\WINDOWS;C:\WINDOWS\system32;

C:\WINDOWS;C:\WINDOWS\System32\Wbem;

24. java.specification.name = Java Platform API

Specification

25. java.class.version = 49.0

26. sun.management.compiler = HotSpot Client Compiler

27. java.util.prefs.PreferencesFactory =

java.util.prefs.WindowsPreferencesFactory

28. os.version = 5.1

29. user.home = C:\Documents and Settings\User

30. user.timezone =

31. java.awt.printerjob = sun.awt.windows.WPrinterJob

32. file.encoding = Cp1252

33. java.specification.version = 1.5

34. user.name = User

35. java.class.path =.
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36. java.vm.specification.version = 1.0

37. sun.arch.data.model = 32

38. java.home = C:\Program Files\Java\jdk1.5.0\jre

39. java.specification.vendor = Sun Microsystems Inc.

40. user.language = en

41. awt.toolkit = sun.awt.windows.WToolkit

42. java.vm.info = mixed mode, sharing

43. java.version = 1.5.0-beta2

44. java.ext.dirs = C:\Program Files\Java\jdk1.5.0\jre\

lib\ext

45. sun.boot.class.path = C:\Program Files\Java\jdk1.5.0\

jre\lib\rt.jar;

C:\Program Files\Java\jdk1.5.0\jre\lib\i18n.jar;

C:\Program Files\Java\jdk1.5.0\jre\lib\sunrsasign.jar;

C:\Program Files\Java\jdk1.5.0\jre\lib\jsse.jar;

C:\Program Files\Java\jdk1.5.0\jre\lib\jce.jar;

C:\Program Files\Java\jdk1.5.0\jre\lib\charsets.jar;

C:\Program Files\Java\jdk1.5.0\jre\classes

46. java.vendor = Sun Microsystems Inc.

47. file.separator = \

48. java.vendor.url.bug =

http://java.sun.com/cgi-bin/bugreport.cgi

49. sun.cpu.endian = little

50. sun.io.unicode.encoding = UnicodeLittle

51. sun.desktop = windows

52. sun.cpu.isalist =

From this output, you can see that the list of system properties includes many
useful and interesting items. Everything you might need or want to know is not
included there, however. One thing that is missing is a list of operating system
or command shell environment variables. Alas, unlike C or C++, there is no
getEnv() method in Java. Part of the reason is that Java could conceivably be
run on a platform that does not support the concept of environment variables.
The expected way to pass environment-variable-like values to a Java application
is with the -Dname=value syntax seen a few times in earlier chapters. Using
the -D syntax on the java command line effectively adds the specified name and
value to the list of system properties. Therefore, if you need to send a system
environment variable named SomeEnvVar to your Java code, you can include it
on the command line like this:

java -Dsome.env.variable=$SomeEnvVar YourClass (Unix/Linux)

or

java -Dsome.env.variable=%SomeEnvVar% YourClass (Windows)
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Then you access the new system property as follows:

String some-value =

System.getProperty ("some.env.variable");

Obviously, you can name the system property anything you want.
Information on the platform display is available from the java.awt.

Toolkit, which we used in Section 6.9 to obtain images and in Section 12.2 to
obtain instances of PrintJob. The method

int getScreenResolution ()

returns the resolution in dots-per-inch. (Unfortunately, on Windows systems the
value returned is actually the font size setting rather than the screen resolution
setting.) The method

Dimension getScreenSize ()

returns the width and height of the screen in pixels. For example, you can use
this to set the location of a frame at the center of the screen with a method
like this:

public void center () {

Dimension screenSize =

Toolkit.getDefaultToolkit ().getScreenSize ();

Dimension frameSize = getSize ();

int x = (screenSize.width - frameSize.width) / 2;

int y = (screenSize.height - frameSize.height) / 2;

setLocation (x, y);

}

Finally, the colors of the systems GUI are available from the class java.

awt.SystemColor. For example, you can use it to coordinate the colors in
your interface to those of the underlying platform system colors with commands
like myCanvas.setBackground(SystemColor.window).

23.3 Running external programs

There are situations in which a Java application needs to run non-Java programs
on the platform where it resides. A common example involves opening a browser
when the user selects a web link in the interface as might occur, for example, by
clicking on a help button. Another example is the case of a server running on
a remote device (see Chapters 14 and 15) that starts a non-Java program, e.g. a
diagnostic test, at the request of a client.

The Runtime and Process classes (both part of java.lang) are available
for launching and communicating with external programs. The following example
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for a Java program on a Windows system runs the MS-DOS batch file doDir.bat
that includes the line

dir *.java

to produce a directory listing. (A slightly different command is needed on a
Unix or Linux system. There are platform portable ways to get a directory listing
purely with Java code – see the java.io.File.list() method – but this
example serves to demonstrate how to call external programs.) The program
RuntTimeApp shown below launches doDir.bat and then reads the output
and prints it:

import java.io.*;

/** Demonstrates how to run an external program. **/

public class RunTimeApp

{

public static void main (String[] args) {

try {

Runtime rt = Runtime.getRuntime (); // step 1

// Run the external program doDir.bat

Process process = rt.exec ("doDir.bat"); // step 2

InputStreamReader reader = // step 3

new InputStreamReader (process.getInputStream ());

BufferedReader buf-reader =

new BufferedReader (reader); // step 4

String line;

while ((line = buf-reader.readLine ())!= null)

System.out.println (line);

}

catch (IOException e) {

System.out.println (e);

}

}

}

First an instance of the Runtime class is obtained with the factory method:

Runtime rt = Runtime.getRuntime ();

With the Runtime instance the program is run with the exec() method:

Process process = rt.exec ("doDir.bat");
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This method returns an instance ofProcess that represents the external program.
This class provides access to the standard in, out, and err streams with which
the Java program can communicate with the external program. In steps 3 and
4, the Process object is used to read the output from the external process.
Another useful method on Process is the waitFor() method, which can be
used to force the calling Java thread to wait until the external process terminates.

Note that running external programs clearly involves the details of the par-
ticular host platform and OS. For example, the exec() method does not use a
shell. If a shell is needed, then it can be run directly [1].

Running an external program also obviously limits portability. However, in
cases where the external program is available on multiple platforms, such as for
web browsers, the application could use the system properties (Section 23.2) to
determine the platform and then use this information to select a platform specific
command.

23.4 Port communications

Many platforms provide a standard serial communications port. A Java appli-
cation can use a serial port to monitor, control, and record data from external
devices. For example, a remote weather station might have several sensors con-
nected to a PC via serial ports. A control program on the PC could collect the
data and then use a serial line connection to a modem to dial up a central station
and transmit the latest sensor data (or answer a central station that polls remote
stations by phone). The javax.comm package provides the essential tools to do
these tasks. It also supports the parallel port, though this type of port is becoming
much less common.

Unfortunately, javax.comm does not come as a standard part of the J2SE but
as an optional package. This means that it is available for several platforms but
not for every platform for which a JVM exists. Sun offers versions for Windows
and Solaris, and some independent sources provide it for Linux and other plat-
forms [2,3]. Currently there is no standard extension package for other types of
communications ports, though some independent sources provide classes to work
with the USB port on some platforms [4].

To run the programs discussed here, you will need to download the
javax.comm set of files to your computer and install them with you JDK
files. Instructions are included and we also offer some tips in the Web Course
Chapter 23.

We first give an overview of port communications in general and then look
specifically at serial port I/O. Although the USB and other faster ports are becom-
ing more popular for desktop peripherals than parallel and serial ports, we expect
that the RS-232 serial port will remain common on many devices for many years.

The books Java I/O by Elliotte R. Harold [5] and Java Cookbook by Ian F.
Darwin [6] are popular references for the javax.comm package. We refer the
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reader to these sources for more details about using the parallel port and for
aspects of serial port I/O not covered here.

23.4.1 Port classes

There are two types of port classes in javax.comm. The abstract class
CommPort holds methods to control and perform I/O over a specific port. The
class CommPortIdentifier gives information about the ports on the system
and can create an instance of CommPort for a given port.

23.4.1.1 CommPort
This abstract class for port representation includes various methods such as
getInputStream()and getOutputStream() to obtain streams to trans-
mit and receive data over a port. The subclasses of CommPort, also abstract,
include:

� SerialPort – this class works with RS-232 ports. Methods in this class provide for

control, monitoring, transmission and reception. You can set parameters such as the baud

rate, parity, numbers of stop bits and data bits and can choose flow control protocols.

Individual control pins, such as DTR (Data Terminal Ready) and CTS (Clear to Send),

can be set directly.
� ParallelPort – this class works with the 8-bit IEEE-1284 parallel (or printer) port.

Methods allow for setting the port mode such as the extended and enhanced modes.

Also, the transmission can be suspended and restarted (useful for pausing and restarting

a printout), and several status messages can be read such as paper out and printer busy.

Concrete subclasses of SerialPort and ParallelPort are available in
javax.comm for each particular platform. You do not create instances of
these classes directly from their constructors but from factory methods in the
CommPortIdentifier class.

23.4.1.2 CommPortIdentifier
An instance of this class, discussed further in the next section, provides informa-
tion about a specific port, such as the port’s name and type, but it does not set
ownership of the port or allow for any control or I/O over the port. Instead, you
use the open()method of an instance of CommPortIdentifier for a specific
port to obtain an instance of a CommPort subclass for that port.

As with the SerialPort and ParallelPort classes, you do not normally
obtain instances of CommPortIdentifier directly from a constructor but with
a factory method in CommPortIdentifier.

23.4.2 Finding ports

The CommPortIdentifier class acts as both a source of information about
ports on a system and also as a descriptor of a particular port. The static method
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getPortIdentifers()provides a list ofCommPortIdentifierobjects for
each port, serial and parallel, on the platform:

Enumeration portList =

CommPortIdentifier.getPortIdentifiers ();

This enumeration lists the instances of CommPortIdentifier, one for each
port. The methods of this class provide information about the particular port such
as its name and type via getName()and getPortType(), respectively, as the
PortList example below illustrates:

import javax.comm.*;

import java.util.*;

/** List all the ports available on the local machine. **/

public class PortList

{

public static void main (String[] args) {

Enumeration port-list = CommPortIdentifier.getPortIdentifiers ();

while (port-list.hasMoreElements ()) {

CommPortIdentifier port-id = (CommPortIdentifier) port-list.nextElement ();

if (port-id.getPortType () == CommPortIdentifier.PORT-SERIAL) {

System.out.println ("Serial port: " + port-id.getName ());

}

else if (port-id.getPortType () == CommPortIdentifier.PORT-PARALLEL) {

System.out.println ("Parallel port: " + port-id.getName ());

}

else

System.out.println ("Other port: " + port-id.getName ());

}

} // main

} // class PortList

We used the constants PORT-SERIAL and PORT-PARALLEL from the
CommPortIdentifier class to test for the port type. On a desktop machine
with four serial ports and two parallel ports, the output would go as:

Serial port: COM1

Serial port: COM2

Serial port: COM3

Serial port: COM4

Parallel port: LPT1

Parallel port: LPT2
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Conversely, you can test for the presence of a port with a particular name, as
follows:

import javax.comm.*;

import java.util.*;

/** Look for COM# ports on the local machine. **/

public class PortTest

{

public static void main (String[] args) {

String port-name;

int i = 0;

while (true) {

i++;

port-name = "COM" + i;

try {

CommPortIdentifier port-id =

CommPortIdentifier.getPortIdentifier

(port-name);

System.out.println ("Port " + port-name +

" exists");

}

catch (NoSuchPortException e) {

System.out.println ("No port " + port-name);

break;

}

}

} // main

} // class PortTest

The output of this program might go as:

Port COM1 exists

Port COM2 exists

Port COM3 exists

Port COM4 exists

No port COM5

The following methods in CommPortIdentifier provide information about
the status of a port:

� boolean isCurrentlyOwned() – indicates if another Java application owns the

port
� String getCurrentOwner() – a description of the Java application that owns a

port
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Unfortunately, these methods only work properly if the port is owned by a Java
application and not by some other non-Java program. However, if a port is already
in use by a non-Java program, then an attempt to open it reveals that situation, as
explained next.

23.4.3 Opening ports

If a port is available, you take exclusive possession of it via one of the two
overloaded open() methods and then use the port for reading and writing to the
external device connected to that port. The CommPortIdentifier method

CommPort open (String ownerName, int timeout)

throws PortInUseException

takes possession of the port and passes it the name of the owning application. The
timeout parameter determines how long in milliseconds the method will block
while waiting for the port to become available.

For systems such as Unix where ports can be assigned a FileDescriptor,
the following overloaded open() method is provided:

CommPort open (java.io.FileDescriptor fd)

throws UnsupportedCommOperationException

Below we show an example where ports are opened. If they are already owned
by some other application, a PortInUseException is caught. If the owner is
a Java program, it can be identified by the name given in the open() method;
otherwise there is no name available.

import javax.comm.*;

import java.util.*;

/** Check each port to see if it is open. **/

public class PortListOpen

{

public static void main (String[] args) {

Enumeration port-list = CommPortIdentifier.getPortIdentifiers ();

while (port-list.hasMoreElements ()) {

// Get the list of ports

CommPortIdentifier port-id = (CommPortIdentifier) port-list.nextElement ();

// Find each ports type and name
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if (port-id.getPortType () == CommPortIdentifier.PORT-SERIAL) {

System.out.println ("Serial port: " + port-id.getName ());

}

else if (port-id.getPortType () == CommPortIdentifier.PORT-PARALLEL) {

System.out.println ("Parallel port: " + port-id.getName ());

} else

System.out.println ("Other port: " + port-id.getName ());

// Attempt to open it

try {

CommPort port = port-id.open ("PortListOpen",20);

System.out.println (" Opened successfully");

port.close ();

}

catch (PortInUseException pe) {

System.out.println (" Open failed");

String owner-name = port-id.getCurrentOwner ();

if (owner-name == null)

System.out.println (" Port Owned by unidentified app");

else

// The owner name not returned correctly unless it is a Java program.

System.out.println (" " + owner-name);

}

}

} // main

} // class PortListOpen

Output from this application might go as:

Serial port: COM1

Opened successfully

Serial port: COM2

Opened successfully

Serial port: COM3

Open failed

Port currently not owned

Serial port: COM4

Open failed

Port currently not owned

Parallel port: LPT1

Opened successfully

Parallel port: LPT2

Open failed

Port currently not owned
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To monitor a port for changes in its ownership, you can implement the
CommPortOwnershipListener interface. You must override the method
ownerShipChange (int typeChange), which can detect three types of
ownership changes: ownership attained, port now available, and ownership
requested.

23.4.4 Port communications

The procedure to communicate over a port involves the following operations:

1. open() in the port’s CommPortIdentifier provides a CommPort object for the

port.

2. getInputStream() and getOutputStream() in CommPort provide streams for

reading data from and writing data to the port.

3. Use these streams to carry out the desired I/O.

4. close() in CommPort releases the port for other applications to use.

Other CommPort methods can set parameters for the port communications such
as the I/O buffer sizes and how long the read operation will wait for data before
returning.

23.4.5 Serial port I/O

The javax.comm serial port classes assume the system has one or more ports
following the RS-232 (or EIA232) standard. Table 23.1 lists the pins for the DB9
connector that follows this standard. RS-232 originated in the 1960s and dealt
with a computer talking to a display terminal. This historical basis explains some
of the names for the 9 pins on the connector. (See [7] for a description of the less
common 25-pin DB25 connector.)

Serial ports send and receive one bit at a time using a positive voltage (between
3 and 25V) to indicate a 0 bit and a negative voltage (between −3 to −25V) to
indicate a 1 bit. The duration of a voltage depends inversely on the baud rate.

An asynchronous serial protocol (not part of the RS-232 standard) is required
to determine how to decode the bits into bytes. The standard protocol groups the
bits into a standard data unit (SDU) consisting typically of either 7 data bits (for
ASCII) or 8 data bits. To indicate where a SDU begins, a start bit value of 0 is
sent. To indicate the end of a SDU, the group ends with one or two stop bits,
each of value 1. To combat noise and bit errors, a parity bit is usually included.
For even parity the bit value is 1 if the number of one bits in the SDU is even
and zero if the number is odd. For odd parity the bit value is 1 if the number of
one bits is odd and zero if even. So, depending on the protocol settings, the total
number of bits sent for an SDU can vary from 9 bits (7 data bits, 1 stop bit and
no parity) up to 12 bits (8 data bits, 2 stop bits and a parity bit).



638 Accessing the platform

Table 23.1 Pin assignments for the DB9 serial connector.

Pin Name Abbreviation Direction Function1

1 Carrier Detect CD In Modem &
destination
modem connected

2 Receive Data RD In Data from modem
3 Transmit Data TD Out Data to modem
4 Data Terminal

Ready
DTR Out Computer ready to

send & receive
5 Ground GND Common –
6 Data Set Ready DSR In Modem ready to

send & receive
7 Request to Send RTS Out Computer waiting

to send
8 Clear to Send CTS In Modem ready to

receive
9 Ring Indicator RI In Modem says phone

is ringing

1 The pin function descriptions here are for the case of a computer con-
nected to a modem.

The SerialPort class provides a single method to set the baud rate, number
of data bits, number of stop bits, and the parity:

void SetSerialPortParams (int baud, int dataBits, int

stopBits, int parity)

If a port does not support any of the values passed in the parameters, the method
throws the UnsupportedCommOperationException.

The SerialPort class includes a set of constants to use for these parameters,
such as:

DATABITS-7

DATABITS-8

STOPBITS-1

STOPBITS-2

PARITY-NONE

PARITY-EVEN

PARITY-ODD

The two devices connected via the serial line need flow control settings to deter-
mine who is sending and who is receiving and when to switch between the two
states. The XON/XOFF and RTS/CTS are the two primary protocols for this. The
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former is a software protocol while the latter is implemented in hardware. The
methods

void setFlowControlMode (int protocol)

int getFlowControlMode ()

provide for setting and getting the flow control mode. The protocol value sets
both input and output protocols with a bitwise AND of the constants in the
SerialPort class:

FLOWCONTROL-NONE

FLOWCONTROL-XONXOFF-IN

FLOWCONTROL-XONXOFF-OUT

FLOWCONTROL-RTSCTS-IN

FLOWCONTROL-RTSCTS-OUT

The “set„ method throws the UnsupportedCommOperationException

if the protocol value is invalid.

23.4.6 Serial line connections

In Table 23.1 the Function column indicates the purpose of each pin for the case
of a computer connected to a modem. The serial line sends and receives only one
bit at a time but it uses separate lines for transmission and reception and it uses
six other lines (not counting the ground line) for setting up the protocol for the
communications.

The class CommPort provides methods to access the six control lines. For the
two output control wires, DTR and RTS, there are methods both to set the line
and to find the current setting:

void setDTR (boolean val)

boolean isDTR ()

void setRTS (boolean val)

boolean isRTS ()

For the other four input control lines, there are methods to find their current state:

boolean isCTS ()

boolean isDSR ()

boolean isRI ()

boolean isCD ()

For connecting to devices other than modems, it is often unnecessary to use all
of these control lines. In the serial line demonstration program below only the
CTS and RTS (plus the ground line) lines are active.

Note that when you start to set up serial connections, you will find that the
cables and connectors vary according to whether you connect a computer to a
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device like a modem or to another computer. Table 23.1 shows the pins for the
connector at the computer. There is a one-to-one correspondence in the numbering
of the pins on the computer’s male connector and the modem’s female connector.
That is, pin 2 on the computer connects to receptor number 2 on the modem’s
connector, pin 3 connects to receptor 3 on the modem, and so forth. This obviously
cannot hold for connecting two computers that both have male connectors as in
the table. Instead a so-called null modem cable is required. It connects pin 2 (RD)
on computer A to pin 3 (TD) on computer B, connects pin 3 (TD) on computer
A to pin 2 (TD), and so forth. See the book by Strangio for the specifications and
diagrams of various types of connectors and cables [7].

23.4.7 Serial port demo

The demonstration application uses a serial connection to obtain temperature
readings from a device connected to the local platform via a serial port. The
program uses the classes and methods discussed above for communications over
the serial port. This program can provide a template for obtaining data from any
device connected to a serial line. The program can be adapted to work with the
client/server system discussed in Chapter 15 and so provide a complete system
for accessing a remote device over the Internet.

The device is in fact a Java hardware processor board that we discuss in
Chapter 24. We have programmed it to follow a simple protocol for sending data.
This protocol requires that the application on the desktop first send a “password”
(actually a 2-byte numerical value) to the device. If this is accepted, the device
program then sends a 2-byte integer data value for the temperature in units of
0.5 degrees Celsius.

The desktop (or any platform that can handle J2SE and javax.comm)
program consists of two primary classes:

� GetJavelinData – this class is in charge of sending and receiving data over the

serial port with the device (a Javelin Stamp board discussed in Chapter 24). This class

implements the Runnable interface and its run() method contains a loop that first

sends the password and then reads the value sent to it from the sensor. It converts each

byte pair received into a 4-byte int value using the techniques discussed in Chapter 9

to convert byte array values to primitive types. Before repeating the data read operation,

the loop pauses for a period whose length is passed via the constructor parameter.
� SerialToJavelin – this class provides a graphical user interface with a dropdown

menu on the menu bar that lists the serial ports on the platform. Selecting one of these

causes the program to attempt to open the port. If it succeeds, it passes the port’s

SerialPort object to an instance of GetJavelinData. Hitting the Go button

invokes the start() method in the GetJavelinData object, which begins its data

taking loop. Hitting Stop invokes stop()in that object. A text area displays the tem-

perature values which are printed from the GetJavelinData loop via print methods

of the Outputable interface. A file menu provides for saving this data to file.
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Figure 23.1 The graphical user interface for the SerialToJavelin program after
connecting via port COM2 to the Javelin Stamp card (see Chapter 24) and making
several temperature readings.

The full code for these two classes can be found in the Web Course Chapter 23.
The essential code sections are discussed here. Note that we use the technique dis-
cussed in Chapter 6 in whichSerialToJavelin implements theOutputable
interface and provides a text area to display strings from the print() and
println() methods rather than on the console. Figure 23.1 shows the user
interface after the program has received several temperature readings from the
Javelin.

When the program SerialToJavelin first begins, it builds a menu with the
names of the serial ports on the platform. It invokes the method getPorts(),
shown below, which uses the CommPortIdentifier static method getPor-
tIdentifiers() to obtain the CommPortIdentifier object for each port
on the platform. Those that are serial port types are saved in a Hashtable.

. . . The getPorts() method in the class SerialToJavelin

. . .

/**

* Use the CommPortIdentifier static method to obtain

* a list of ports on the platform. Pick out the

* serial ports from the list and save in a Hash

* table. Use the port names as keys.

*/
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static void getPorts () {

// First get the list of ports on this platform

Enumeration port-list =

CommPortIdentifier.getPortIdentifiers ();

// Scan through the list and get the serial ports

while (port-list.hasMoreElements ()) {

CommPortIdentifier port-id = (CommPortIdentifier)

port-list.nextElement ();

if (port-id.getPortType () ==

CommPortIdentifier.PORT-SERIAL) {

fNumSerialPorts--++;

fSerialTable--.put (port-id.getName (), port-id);

}

}

} // getPorts

When the user selects a serial port from the menu, the actionPerformed()
method is invoked. The following code shows the actions taken to open the port:

. . . The actionPerformed() method in the class

SerialToJavelin . . .

public void actionPerformed (ActionEvent e) {

. . . tests for other commands . . .

// Scan the serial ports names to look for a match

// to the menu items.

Enumeration enum-ports = fSerialTable--.keys ();

while (enum-ports.hasMoreElements ()) {

String port-name = (String)enum-ports.nextElement ();

if (command.equals (port-name)) {

fSelectedPortID-- =

(CommPortIdentifier) fSerialTable--.get

(port-name);

if (fCurrentPort--!= null) fCurrentPort--.close ();

// Open port. Allow for 20 seconds block.

try {

fCurrentPort-- =

(SerialPort) fSelectedPortID--.open (
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"Serial to Javelin", 20000);

}

catch (PortInUseException pie) {

println ("Error: Port in use");

fCurrentPort-- = null;

fSelectedPortID-- = null;

return;

}

// Set up the serial port

try {

fCurrentPort--.setSerialPortParams (

BAUD-RATE,

SerialPort.DATABITS-8,

SerialPort.STOPBITS-1,

SerialPort.PARITY-NONE

);

}

catch (UnsupportedCommOperationException uce) {

// This error shouldn't happen

}

try {

getStreams ();

}

catch (IOException ioe) {

println ("Error: Cannot open streams to port");

fCurrentPortLabel.setText ("No Port Open");

fCurrentPort--.close ();

return;

}

fCurrentPortLabel.setText (port-name);
fGetJavelinData.setStreams (fPortInStream,

fPortOutStream);

fGoButton.setEnabled (true);

}

}

} // actionPerformed

The code first looks for a match to the port name. It then attempts to open the
port. If it succeeds it sets the serial port parameters to a baud rate of 9600, eight
data bits, one stop bit, and no parity. The serial line device must, of course, use
the same settings (we show how to program the Javelin Stamp evaluation card in
Chapter 24).
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The input and output streams for the serial port are then obtained. The input
stream is wrapped as a DataInputStream and the output stream is wrapped
with a PrintStream.

. . . The getStreams() method in the class SerialToJavelin

. . .

/** Open the input and output streams **/

void getStreams () throws IOException {

fPortInStream =

new DataInputStream (fCurrentPort--.getInputStream ());

fPortOutStream =

new PrintStream (fCurrentPort--.getOutputStream (),

true);

}

When the user hits the "Go" button, the actionPerformed() method
is invoked again and the code section for the "Go" command invokes the
start() method in the GetJavelinData class. The complete listing of this
class is given here:

import java.io.*;

import javax.comm.*;

import java.util.*;

/**

* This program communicates over a serial port with the

* Javelin evaluation card. It obtains data values from

* the device following a simple protocol that involves

* first sending a "password" (a two byte number) and

* then reading two bytes at a time that are converted

* to an int primitive type value.

*

* The Javelin has been programmed to respond

* appropriately to the protocol used here. See

* Chapter 24 for information about the Javelin.

*

* The class is runnable so that the data taking loop

* runs in a thread.

*/

public class GetJavelinData implements Runnable

{

// These are the input and output streams over the port

DataInputStream fPortInStream;
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PrintStream fPortOutStream;

// This array and streams are used to convert a stream

// of bytes to primitive type values.

byte[] fByteArray;

ByteArrayInputStream fByteIn;

DataInputStream fDataIn;

// Values are returned as text to the fParent that

// implements the Outputable interface.

Outputable fParent;

// Use for text from device.

StringBuffer fStrBuf = new StringBuffer ();

// Data taking parameters

// flag for the data taking thread

boolean fTakeData = false;

int fPauseTime = 1000;

// Data description and info

String fDataDescription = "Temperature";

double fSlope = 0.5;

double fOffset = 0.0;

String fDataUnit = "C";

/**

* Constructor

* @param fParent implements the Outputable interface

* for print output.

* @param rate is the data taking rate in number of

* values per second.

*/

public GetJavelinData (Outputable parent, int rate) {

fParent = parent;

fPauseTime = 1000/rate; // Pause time in milliseconds

// Set up the byte array and streams for converting

// bytes to an int primitive value.

fByteArray = new byte[4];

fByteIn = new ByteArrayInputStream (fByteArray);

fDataIn = new DataInputStream (fByteIn);

} // ctor

/** Obtain streams for the serial lines. **/
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void setStreams (DataInputStream inStream,

PrintStream outStream) {

fPortInStream = inStream;

fPortOutStream= outStream;

}

/** Start data taking. **/

public void start () {

if (fPortInStream!= null && fPortOutStream!= null) {

fTakeData = true;

Thread thread = new Thread (this);

thread.start ();

}

}

/** Stop data taking. **/

public void stop () {

fTakeData = false;

}

/**

* In this method data is obtained in a loop until the

* fTakeData flag goes false.

* A simple protocol requires that it first sends a

* password value to the device using the sendPW ()

* method. If that value is accepted, then receiveInt ()

* gets two bytes from the data stream and returns a int

* value created from them. The loop pauses for a time

* set by fPauseTime parameter before getting the next

* value;

*/

public void run () {

fParent.println ("Begin reading data from port.");

// Now get data

do {

try {

// The "login"

if (!sendPW ()) return;

// Get the raw data from the serial connection.

int data = receiveInt ();

// Calibrate the data.

double correctedData = fSlope*data - fOffset;

// Print the corrected data on the Outputable

// parent.

fParent.println (
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fDataDescription +" = "+ correctedData +

fDataUnit);

}

catch (IOException e) {

fParent.println ("Input or output error: " + e);

break;

}

try {

// Pause before next data request.

Thread.sleep (fPauseTime);

}

catch (InterruptedException ie) {}

} while (fTakeData);

} // run

/**

* For our simple protocol, a value (0x2201) must first

* be sent to the device before it will send back data.

* A text response is returned from the device.

*/

public boolean sendPW () {

// Send 2 byte password.

byte[] out = new byte[2];

out[0] = 0x22;

out[1] = 0x01;

fPortOutStream.write (out,0,2);

fPortOutStream.flush ();

try {

String reply = receiveText ();

if (!reply.equals ("PW OK!")) {

fParent.println ("Password accepted");

return true;

}

else {

fParent.println ("Bad Password!");

return false;

}

}

catch (IOException e) {

fParent.println ("Input or output error: " + e);

return false;

}

} // sendPW
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/**

* Read text one byte at a time. Cast each byte to char

* and then append to a Stringbuffer.

*/

public String receiveText () throws IOException {

byte ch;

fStrBuf.delete (0, fStrBuf.length ());

while ((ch = (byte)fPortInStream.read ())!= -1) {

fStrBuf.append ((char)ch);

// Use \r as an end of text marker.

if (ch =='\r') break;

}

return fStrBuf.toString ();

} // receiveText

/**

* Receives 2 bytes from Javelin and converts them to

* an int value using a ByteArrayInputStream.

*

* Javelin sends bytes in Big-Endian manner, which means

* the high order byte arrives first. For example, if

* the value 258=0x0102 were sent from the Javelin, the

* byte 0x01 arrives first and then 0x02.

*

* The readInt () method in DataInputStream, which wraps

* the ByteArrayInputStream, treats the four bytes in

* the array as a four byte int value. So to give a

* value 258, the values in the four byte array must

* go as:

*

* fByteArray= [0] [1] [2] [3]

* [00000000] [00000000] [00000001] [00000010]

*

* We therefore place the first byte obtained from the

* Javelin into element 2 of the array and the second

* byte into element 3.

*/

public int receiveInt () throws IOException {

int input =0;

// Read high order byte

if ((input = fPortInStream.read ()) == -1)

throw new IOException ();

// A cast to byte truncates 3 top bytes from int value

fByteArray[2] = (byte)input;
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// Read low order byte

if ((input = fPortInStream.read ()) == -1)

throw new IOException ();

fByteArray[3] = (byte)input;

ByteArrayInputStream fByteIn =

new ByteArrayInputStream (fByteArray);

DataInputStream fDataIn =

new DataInputStream (fByteIn);

return fDataIn.readInt ();

} // receiveInt

} // class GetJavalinData

The parameters in the constructor,

GetJavelinData (Outputable parent, int rate)

include the rate parameter that determines how often the data value from the
device is read. The other parameter is a reference to the Outputable parent

that is used for “callbacks” to display messages sent via the print (String)

and println (String) methods in the text area in the SerialToJavelin

user interface.
The data from the sensor arrive over the serial port as a sequence of bytes.

Each pair of bytes must be converted to an int primitive value. We use
the techniques described in Chapter 9 in which a byte array becomes the
source for a ByteArrayInputStream, which in turn is wrapped with a
DataInputStream class. The latter class offers the readInt() method that
returns an int value with the data bytes in the lower 2 bytes of the 4-byte
value.

Note that the code in receiveInt() in GetJavelinData expects the Java
standard big endian format in which the bytes arrive in order of the highest-order
byte first and the lowest-order byte last. So the Javelin must be programmed to
follow this format.

The loop in the run()method first sends the password, which here consists of
just a 2-byte value that matches a value set in the device program. If the password
is not accepted, the thread processing stops. Otherwise, the raw data value is read.
Then a “calibration” is done, which here simply consists of a slope and offset
correction. The Outputable reference provides a callback to the user interface
to print the temperature value.

Though many improvements and custom features can be added, this program
illustrates the essentials of communicating over the serial line with a device to
obtain data. In Chapter 24 we show how to set up the other end of the line with a
device that illustrates an application of embedded Java processors.



650 Accessing the platform

23.5 Web Course materials

The Web Course Chapter 23 provides additional examples of serial port commu-
nications. In one demonstration program, a socket-based client/server system (see
Chapters 14 and 15) involves a server program that uses the GetJavelinData
class to provide temperature data to remote clients.
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Chapter 24
Embedded Java

24.1 Introduction

Although Java first gained fame with applets in Web browsers and then became
a popular tool for creating large enterprise services, the developers of Java orig-
inally intended it for embedded applications in consumer devices such as TV
remote controls and Personal Data Assistants (see Chapter 1). The term “embed-
ded” generally refers to encapsulating a processor into a device, along with pro-
grams stored in non-volatile memory, to provide services and features specific to
that device. Microcontrollers, for example, are the most common type of embed-
ded processors.

By embedded Java we refer to a device that contains either a conventional
processor running a JVM or a special type of processor that either directly executes
Java bytecodes or assists a conventional processor with executing bytecodes. The
motivations for device designers to embed Java depend on the particular device,
but, in general, Java provides flexibility, interactivity, networking, portability, and
fast development of the software for embedded projects.

Today several types of commercial devices come with Java built into them.
As mentioned in Chapter 1, over 600 million JavaCards have been sold around
the world as of mid-2004, and several hundred cell phone models include Java.

Embedded applications typically must deal with very limited resources. A
full-blown J2SE application on a desktop with a Swing graphical interface might
require several megabytes of RAM. A typical embedded environment consisting
of a basic processor and a minimal amount of memory presents a challenge to
programmers who must fit codes within the limitations of the system while still
providing the solid reliability required for a consumer device. A cell phone should
never need rebooting!

In this chapter, we give a brief introduction to J2ME (Java 2 Micro Edition),
which provides a systematic approach to choosing a subset of packages and
classes that fit into small systems with memory resources ranging from a few
hundred kilobytes on a basic cell phone to a few megabytes in a PDA or a high-
end cell phone. We also look at the topic of real-time Java since embedded systems
frequently involve hard real-time requirements.

651
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We then review a selection of Java hardware processors, most of which execute
bytecode instructions directly rather than interpret them with a JVM. Some Java
processors can run standalone while others act as co-processors to assist primary
processors with Java programs. We look at a selection of Java board systems that
include a Java microprocessor and various supporting hardware such as memory
and power regulation. One type of Java board is designed like a memory module
that plugs into the expansion slot of a carrier board. The carrier boards in turn
provide the physical hardware for serial I/O ports, Ethernet connectors, ADCs
(Analog to Digital Converters) for measuring analog inputs, etc.

We give an example program that illustrates how to program a Java card to
communicate over a serial line to the Java program discussed in Chapter 23. Some
of the Java boards can provide for embedded servers that connect a system to the
network and allow for control and monitoring of that system by remote clients. We
discussed custom servers in Chapters 14 and 15 and in a second example program
we adapt such a server to a Java processor intended for embedded applications.

24.2 Embedded Java for science and engineering

Applications of embedded Java in science and engineering can take advantage
of the same language features as do commercial consumer devices. For example,
adding Java networking to remote devices, such as process equipment in a man-
ufacturing plant or sensors in an experiment, increases the options for control,
monitoring, diagnostics, calibration, and data gathering. In Part II we showed how
you build custom tiny web servers and client/server systems with Java. Adding
such servers to lots of small devices that make up a large system greatly expands
the depth and granularity in the control and monitoring of such a system.

24.3 J2ME – Java 2 Micro Edition

The Java 2 Standard Edition (J2SE) aims for today’s typical desktop platform,
which should easily possess sufficient memory and processing speed to handle the
demands of most programs built with it. Developers can have high confidence that
if their programs run on one system with the J2SE it will run on all of them. Small
computer platforms and embedded systems, however, involve environments with
an enormous diversity in performance capabilities and memory resources. No
single group of Java classes could do justice to systems that range from a Java
Card [1] with a few kilobytes of memory to a high-end PDA with many megabytes.

As discussed in Chapter 1, the initial attempt by Sun to match Java to differ-
ent micro platforms resulted in the JavaCard, EmbeddedJava, and PersonalJava
frameworks based on Java 1.1 classes. With Java 2 came the decision to replace
EmbeddedJava and PersonalJava with a more systematic scheme called Java 2
Micro Edition or J2ME [2]. J2ME does not encompass a single set of classes as do
J2SE and J2EE, but instead it allows for subsets of classes called configurations.
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Furthermore, for a given configuration there can be variations called profiles that
add classes to perform specific tasks such as networking over a wireless connec-
tion. J2ME aims to assure developers that if a program runs on one platform that
adheres to a given configuration and profile, it will run on all of them.

Note that smart cards with microprocessors provide so little memory (typically
16 KB of ROM, 8 KB of EEPROM and 512 bytes RAM) that they lie outside the
J2ME framework. The Java Card API involves a basic JVM that can run Java
applets (Java Card applets extend the javacard.framework.Applet class,
not java.applet.Applet) that use classes from four Java Card packages [1].

24.3.1 J2ME configurations

The two currently developed configurations include:

� Connected Limited Device Configuration (CLDC) – this configuration is intended

for systems with memory resources in the range of 160–512 KB such as cell phones and

low-end PDAs. As of mid-2004, there are two versions – CLDC 1.0 and CLDC 1.1. The

1.0 version involves only four packages: java.lang, java.io, java.util, and

javax.microedition.io, while version 1.1 added the package java.lang.ref.

Version 1.1 also added floating-point operations and a few other enhancements and

needs a minimum of 192 KB versus 160 KB for the 1.0 version.
� Connected Device Configuration (CDC) – this configuration is intended for systems

with around 2 MB or more memory such as smart phones and set-top boxes. It includes

13 packages.

Other configurations may be released and all must follow the guidelines that
require the use of J2SE classes if possible and no new classes for a core language
package such as java.lang. They also cannot modify the method signatures
or fields in the core language classes or add new methods and fields. So a J2ME
program that uses only core language classes should also compile and run under
J2SE.

For each of these configurations there exists a reference virtual machine. (Third
parties are free to develop their own JVMs for these configurations as long as
they perform according to specifications.) The KVM (the K Virtual Machine)
is the reference JVM for the CLDC [3]. It takes up a small amount of memory
and uses a garbage collector especially designed to run efficiently in a memory-
limited environment. Usually it is implemented with the core classes prelinked.
That means that essentially a memory image of a running KVM is burned into
ROM so that at start-up the KVM begins running immediately without the need
to load classes.

KVM version 1.1 supports floating-point and other enhancements for
CLDC 1.1. Sun also offers its own CLDC HotspotTM Implementation JVM that
provides up to a factor of ten faster performance than the KVM. Like the Hotspot
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JVM used in J2SE, it monitors a program’s performance dynamically and it
compiles frequently invoked methods (i.e. “hotspots”) into native instructions.

CDC platforms provide sufficient resources to allow for a JVM that meets all
of the official specifications [4]. Sun provides a reference JVM called the CDC
Hotspot Implementation (formerly called CVM) that provides the full J2SE specs,
but it doesn’t implement all of the acceleration techniques of the J2SE Hotspot
and is optimized for a limited resource environment.

24.3.2 J2ME profiles

A profile expands a configuration so that it works for a specialized application:

� Mobile Information Device Profile (MIDP) – this profile adds classes to the CLDC

to provide for networking, graphical user interfaces, and local storage. It is aimed at

wireless systems, especially cell phones, and allows for the downloading of MIDlets,

which are similar to applets but load and run on wireless platforms that are limited to

the CLDC capabilities. There are two versions of MIDP – version 1.0 and 2.0. The

latter adds numerous enhancements including multimedia and game APIs and support

for HTTPS. Early implementations of MIDP 2.0 were built on top of a CLDC 1.0

base. Newer implementations are built on a CLDC 1.1 base. Thus there are devices

with CLDC 1.0/MIDP 1.0, devices with CLDC 1.0/MIDP 2.0, and devices with CLDC

1.1/MIDP 2.0.
� Information Module Profile (IMP) – this subset of the MIDP also applies to wireless

systems but those with little or no graphical interface. It is intended for wireless access

to remote devices such as alarm systems, meteorological stations, electric meters, and

so forth.
� Foundation profile – this profile for the CDC applies to systems such as printers and

embedded servers with no graphical interfaces. It only adds three packages dealing with

security tasks.
� Personal profile – a CDC profile that provides for an AWT-based GUI. Intended for

high-end PDAs, smart phones, and other resource limited systems as compared to desk-

tops PCs.

Several other profiles are in development such as a PDA profile for CLDC that
is specialized for those devices. There is also an optional package for the CDC
that provides for a subset of the J2SE RMI classes to provide for distributed
computing with micro-devices.

24.4 Real-time Java

Some embedded applications, such as controlling a cell phone or a heart-lung
machine pump, require real-time programming so we provide a brief overview
of real-time Java here [5,6]. Real-time essentially means providing both periodic
services and responses to asynchronous demands within strictly enforced time
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deadlines. A real-time system is said to be deterministic, meaning that it can
be relied upon to execute a given task in a predictable amount of time, every
time that task is executed. A real-time system is not necessarily “real fast.” What
matters is that the time taken to complete a task is guaranteed to be within a
known maximum allowed time, i.e. a worst-case delay.

Systems are often classified as “hard real-time” or “soft real-time.” Hard real-
time systems do not tolerate any missed deadlines at all. Soft real-time allows
for some degree of delay and missed deadlines, i.e. performance degrades rather
than fails. Often only a part of a program requires hard real-time execution, say
the part that controls a device of some sort, and the rest of the program, such as
a user interface, gets by with soft real-time performance.

With reasonable care, a program using J2SE or J2ME code can provide accept-
able soft real-time performance such as responding quickly enough to inputs on
a graphical user interface to satisfy usability requirements. However, for hard
real-time tasks Java requires special techniques and/or extensions to the standard
set of packages. For example, one technique has been to connect Java to C/C++
programs via JNI (see Chapter 22) to carry out the most time critical tasks.

The biggest obstacle to real-time processing with Java comes from the Garbage
Collector (GC) [7,8]. The GC works as a threaded process to manage the alloca-
tion of memory in the “heap,” i.e. the data buffer for a program. The GC provides
memory for new objects and periodically reclaims memory from objects with
no references to them. The GC relieves the programmer of the burden of mem-
ory management and is often cited as one of the primary advantages of Java
programming.

However, for real-time applications, the uncertainty as to when and for how
long the GC will run is unacceptable. A process responding to a critical request
cannot stop what it is doing while the GC runs. The JVM specification does
not require a particular type of GC algorithm, and many such algorithms are
not deterministic. The GC can be turned off completely, as in one of the Java
processors we discuss below, but then the user must carefully monitor the heap
to avoid overflows. Another technique is to invoke System.gc() during free
periods when critical processing isn’t required. Though not required to do so, most
JVMs run the GC immediately when this method is invoked. If the programmer
also ensures that there is sufficient memory available for new objects (otherwise
the GC will run to free up memory), then the GC will not interfere with the
real-time activities.

There are several commercial real-time JVMs available. For example, New-
Monics provides its PERC JVM, which is compatible with JDK 1.3 and works
with several real-time operating systems [9]. The Jamaica VM from Aicas “pro-
vides hard real-time guarantees for all features of the languages together with
high performance runtime efficiency” [10].

Incremental collection is a common technique used to create a real-time-
compatible GC. Unlike many GC algorithms that must either fully complete their
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pass through the memory or start over from the beginning if they are interrupted,
an incremental GC works in short steps and thus allows for interruptions in
between the steps. The JVMs from NewMonics and Aicas, for example, use
incremental GC.

The JVM specifications do not preclude enhancements needed to make a real-
time implementation, and in 1998 work began on the Real-Time Specification for
Java (RTSJ) by a group in the Java Community Process [11,12]. Their job was to
detail a set of standard extensions for a real-time JVM. The RTSJ was released in
2003 and the company TimeSys provides the reference implementation [13]. The
extension classes come via the javax.realtimeAPI. Standard Java programs
can run without modification in a real-time JVM.

The RTSJ does not specify a particular GC algorithm such as incremental
collection. It does define new types of memory areas that allow for avoiding the
GC altogether. There is immortal memory in which objects are never destroyed
except when the program ends. Scoped memory is used only while a process works
within a particular section, or scope, of the program such as a method. Objects
there are automatically destroyed when the process leaves the scope. Neither
immortal nor scoped memories are garbage collected, so using them avoids the
problems of GC interference. Note, however, that the programmer must watch
out for overflow of the immortal memory.

Another important aspect of the RTSJ was the addition of real-time threads,
which provide for more precise scheduling than with standard threads. They have
28 levels of priority and their priority is strictly enforced. They are not subject to
so-called priority inversion situations where a lower priority thread has a block
on a resource needed by the higher priority thread and thus prevents the higher
priority thread from running. In addition, the RTSJ includes “non-heap real-
time threads” that cannot be interrupted by the GC.

The RTSJ also provides for asynchronous event handlers that deal with exter-
nal events (or happenings, as they are called, to distinguish them from the events
in the AWT). Asynchronous transfer of control allows one thread to interrupt
another thread in a safe manner, unlike the deprecated suspend() and stop()
methods for standard threads.

Timing is obviously important for real-time programming so the javax.

realtimeAPI includes the abstract class HighResolutionTime and its sub-
class AbsoluteTime, which represents a point in time, and RelativeTime,
which represents a duration. The base class uses a long value for milliseconds
and an int value for nanoseconds. Unlike standard Java, RTSJ requires that an
implementation provide sub-millisecond precision. (Of course, the accuracy will
vary according to the capability of the clock on a particular system.)

While still maintaining security protections, the RTSJ allows direct access
to physical memory. This means that device drivers can be created with Java.
Previously, Java had to link to native code to communicate directly with
hardware.
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Full implementations of the RTSJ specification can be too large for some
embedded systems and not all of its capabilities are required for every real-time
application. So some Java real-time systems use subsets of the RTSJ or they use
independent extensions to obtain a smaller memory footprint.

Real-time programming in Java, and in general, involves a number of com-
plex topics and techniques. See the book by Dibble [5] and the other real-time
references for more information [6–13].

24.5 Java real machines

Until this chapter we have always assumed that Java program files provide byte-
code instructions to Java Virtual Machine programs running on conventional
processors. However, there is nothing to block the development of a Java Real
Machine that executes bytecodes directly in hardware. Sun Microsystems proved
this in the late 1990s with its picoJava and since then several independent Java
hardware implementations have hit the market.

The JVM specification requires a stack-based processing scheme rather than
the register approach common in conventional hardware (see the JVM discussions
in the Web Course supplements section for more information about the JVM
design). The language designers wanted Java to run on a wide range of processors,
including simple embedded types with few registers, and so decided the stack
approach was the most portable.

Java processors cover a wide range of designs and purposes. A standalone Java
chip provides all the capabilities needed to act as a general-purpose computer.
The processor executes the bytecodes directly. Most of the current processors
actually execute only a subset of the full Java instruction set. For example, a chip
might leave out the floating-point instructions since for many applications, such
as for a micro-controller, floating-point instructions may or may not be needed.

Another approach is to add a Java co-processor to a conventional processor.
The Java co-processor in some designs translates the bytecodes into the instruction
set of the conventional processor and accelerates the running of Java programs.
In a “companion processor” approach, the Java hardware takes over the execution
of Java bytecodes completely whenever a Java program runs while the operating
system and non-Java code run separately in the conventional processor.

A Java processor may refer to a core, which is a circuit that can be added to
a FPGA (Field-Programmable Gate Array) or ASIC/SoC (Application Specific
Integrated Circuit/System-on-a-Chip). In some cases a core acts as the primary
processor while in others it acts as a co-processor to speed up Java programs. Such
cores are not generally available on silicon but are sold as intellectual property,
in the form of RTL (Register Transfer Language) descriptions of the circuits, to
those who make the chips.

The JVM uses an 8-bit instruction word and currently about 200 of the pos-
sible 256 instructions are used in the class bytecodes [4]. Some instructions are
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used far more often than others and some instructions carry out more compli-
cated operations than others. So many of the hardware Java processors directly
implement only a subset of the instructions and emulate the others.

24.6 Benefits of hardware processors

Real Java machines offer a number of advantages for embedded applications
where the processor must typically work with limited memory and power
resources. As we mentioned in the J2ME section, for many of the small platforms
there may be insufficient resources for a JVM with Just-in-Time compilation or
other sophisticated acceleration capabilities. Furthermore, there may not even be
room for both a JVM and a program to run. A JVM can easily take up a megabyte
or more of RAM, while the entire memory available on a micro-platform like a
cell phone may consist of 500 kilobytes or less.

One option is to use AOT (ahead-of-time) compilers that interpret the Java
code in advance and transform it into machine code for a target platform. The
code then runs at full native speeds. This obviously eliminates portability, but
it works well for permanent, non-networked situations such as a controller in a
washing machine. For platforms that can download new Java programs, such as
a cell phone or PDA, an interpreter either as a JVM or in hardware is required.

Even when there is sufficient memory for a JVM, a hardware Java processor
could provide greater speed than a low power embedded conventional processor
running a JVM program. If a processor needs to handle both Java and non-Java
programs, an option is to add a Java accelerator core that assists a conventional
processor with Java programs. Multimedia operations in video, audio, and 2D/3D
graphics can benefit especially from the performance enhancements of Java accel-
eration hardware.

24.7 Java processors

We survey here a sample of commercially available systems to illustrate the
range of capabilities and designs of hardware Java processors. (We warn that
some of these products, and even some of the companies, will leave the scene in
the coming years as the marketplace determines which designs are viable.) We
consider Java processors that come as a complete chip and those provided as
cores to be implemented as part of other systems.

24.7.1 Java chips

The following Java processors are available as hardware chips and are usually
sold commercially as part of an electronics module for embedded applications:

� aJile aJ-100, aJ-80 – the 32-bit aJ-100 derives from the JEMTM Java processor first

developed at Rockwell Collins [14]. It executes the full bytecode instruction set,
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including floating-point, with extended bytecodes for I/O and threading operations. It

can also implement custom bytecodes for special operations. The processor core comes

with 48 KB internal memory (16 KB for microcode and 32 KB for data) and can access

up to 250 MB external RAM via an 8-bit, 16-bit, or 32-bit interface. It includes dual

UARTs, five 8-bit I/O ports, and other I/O features.

It is suitable for real-time operations and supports the RTSJ. It offers a hard real-time

multithreading kernel with synchronization and deterministic scheduling queues. The

thread yield, wait, notify, and monitor enter/exit operations are implemented directly

with extended bytecodes so a RTOS (Real-Time Operating System) is not needed to

manage the threads. A thread will yield to another within 1 microsecond.

The system can implement the J2ME Connected Limited Device Configuration

(CLDC) and, for wireless systems, can run MIDlets. Two independent applications

can run simultaneously with no interference as if they were operating in two separate

JVMs. A timer allocates time slices to each JVM and a separate timer is used by each

JVM for thread time slices.

The aJ-80 provides essentially the same features as the aJ-100 but offers only an

8-bit memory interface with corresponding slower I/O.
� Imsys Cjip processor – the Cjip processor provides a complete Java instruction set,

including floating-point operations [15]. The chip allows for reconfiguring of inter-

nal microcode (even in real-time), and most Java bytecodes are implemented in the

microcode. Instruction sets for C/C++ and assembler are also included. The system

offers Virtual Peripherals (VPs), which perform tasks normally requiring external cir-

cuitry and include timers, I/O, graphics processing and many other services. A VP is

loaded at the microcode level and allows for fast, deterministic performance. J2ME in

the CLDC configuration and MIDP profile is supported. (More about Imsys systems in

Sections 24.8.2 and 24.10.)
� Javelin Stamp Interpreter Chip (Parallax) – this chip is sold separately or as part of

the Javelin Stamp, which comes in a 24-pin DIP (Dual In-Line Package) module. The

Javelin Stamp is discussed further in Sections 24.8.4 and 24.9 and shown in Figure 24.1.

The Stamp module is nearly a complete computer system with only the need for power

and a serial line to begin computing. The Java code runs in a version of the Ubicom

SX48BD microcontroller chip. The chip translates a subset of Java bytecodes into the

SX48 instructions and executes them. The interpreter chip is now available for those

who want to use it separately from the Javelin Stamp [16,17].
� JA108 (Nazomi) – this processor comes in a standard 16-bit SRAM/FLASH memory

package and plugs into the SRAM bus. It then acts as a co-processor to accelerate Java

programs and multimedia applications [18].

Figure 24.1 The
Javelin Stamp
module comes as a
24-pin DIP package.
See also Figure 24.3,
which shows an
evaluation card with
the Javelin Stamp.
(Photo courtesy of
Parallax Corp.)

24.7.2 Java cores

Several companies offer Java processors for implementation on FPGAs and
ASIC/SoC. As indicated above, some processors can act as the main processor
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for a Java-only program environment while others are intended to assist a con-
ventional processor to accelerate the execution of Java programs (some cores
can do both). Note that most of the processors listed below adhere to the
J2ME CLDC and MIDP standards since they are aimed at the mobile device
market.

� Java Processor Cores (Aurora VLSI) – this company offers several processor cores.

The AU-J1000 executes all Java bytecodes (14 use “software assists”) and also acceler-

ates some common actions such as constant pool access and array bounds checking. It

can operate as a single processor or as a co-processor. The company also offers several

other Java cores. The AU-J2000 provides similar features but around 30% higher speed.

The AU-J1100 and AU-J1200 cores are bilingual, meaning they include both a Java

processor and a conventional processor [19].
� Jazelle (ARM) – the standard ARM processor, which is very popular for mobile applica-

tions, can run two different instruction sets – the standard ARM set and the compressed

Thumb set. The Jazelle cores offer an extended version of the ARM that can run a third

instruction set – Java bytecodes. The Jazelle directly executes most bytecodes while the

rest are emulated [20].
� JEMcore (aJile) – the core of the aJ-100 processor (see above) can be licensed as a

core for integration into other systems.
� JVXtreme Accelerator (Synopsys) – this co-processor directly executes 92 bytecodes

and emulates the rest. It interfaces with many kinds of conventional processor via the

system bus so it does not interfere with non-Java activities [21].
� lavaCORE Configurable Java Processor Core (Xilinx) – this 32-bit processor core

from Xilinx directly executes Java bytecodes and fits onto Xilinx FPGAs. The core

can be configured with all bytecode instructions included in hardware and firmware

or with a subset of the instructions. Floating-point operations, a garbage collector, and

encryption come as optional units. A simulator and other software development tools

allow for determining what configuration is needed for a particular application and then

generating the gate-level code needed to program a chip [22].
� Lightfoot and Bigfoot Cores (DCT) – the Lightfoot 32-bit processor core is compat-

ible with J2ME and Java Card editions and executes native Java bytecodes directly in

hardware. It is a stack-based processor with 128 bytecode instructions implemented in

hardware and others implemented in software.

The Bigfoot core is built around the 32-bit ARCtangent-A4 processor from ARC

Inc. Java instructions are mapped one-to-one to ARCtangent extension instructions

[23,24].
� Moon 2 (Vulcan Machines) – the Moon 2 core provides a 32-bit processor that directly

executes bytecodes and uses a stack approach as in the JVM. A core set of the bytecode

instructions execute in hardware. It can work as the primary processor in a Java only

environment or as co-processor to a RISC core in a mixed code environment to accelerate

Java programs [25].
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24.8 Java boards

A number of board-level systems with the above Java processors are available.
These include boards that provide more or less complete computer systems with
features such as additional memory, I/O via serial lines and Ethernet, output
digital-to-analog and input analog-to-digital converters. There are also boards
that are intended to plug into the expansion slots of carrier cards that in turn
provide these additional capabilities.

We discuss some examples of Java boards below. Note that many of the Java
processors discussed above can be obtained in evaluation boards for easy exper-
imentation and testing.

24.8.1 TINITM – Tiny InterNet Interface

The TINITM specification, developed by Dallas Semiconductor, aims to bring a
network connection and high-level control and monitoring capabilities to devices
ranging from industrial processing equipment to consumer appliances [26–28].
The TINI interface comes in a small, low-power package yet it can implement a
complete TCI/IP node and an embedded Java server.

The TINI reference specification consists of a microcontroller on a 72-pin
SIMM (Single Inline Memory Module) format card. Figure 24.2(a) shows a
SIMM card from Imsys that follows the TINI format (but with the Imsys Cjip
processor.) The card also includes an Ethernet controller, RS232, a 1-Wire Bus
(a proprietary standard from Dallas Semiconductor), and SRAM. A Java runtime
system is held in flash ROM. The TINI card plugs into a carrier board that
provides power and the physical connectors for the I/O interfaces. Several carrier
boards with a variety of features are available for the TINI module from different
vendors.

An operating system called TINI OS provides basic services including a file
system, memory and I/O management, and task switching. You can ftp or telnet
into a Unix-like command shell (called slush) to load and run Java programs. The
shell can be loaded via the serial port with an IDE called JavaKit available from
Dallas Semiconductor. After development is finished, a standalone program can
be loaded in place of the shell. The JVM takes up only 40 KB yet allows for all
the basic Java capabilities including threading and the complete set of primitive
types. A garbage collector runs as a native task while all other tasks run as Java
applications. A round-robin task scheduler allocates processing in fixed 8-ms
time slices.

Programs can be compiled elsewhere with the standard SDK compiler but
with the TINI class packages instead of the standard ones. Your programs
can use classes from the core packages – java.lang, java.io, java.net,
java.util – and the set of custom packages (com.dalsemi.*) from Dallas
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(a) 

(b) 

Figure 24.2 (a) Imsys SNAP card has the 72-pin SIMM format and is compatible
with carrier boards that conform to the TINI™ specifications from Dallas
Semiconductor. (b) Block diagram of the SNAP card showing the primary
components [15]. (Photo courtesy of Imsys Technologies.)

Semiconductor. The latter packages include classes that provide access to
system resources such as the 1-Wire bus. They also include useful classes
like HTTPServer with which you can build custom servers. There is also
a considerable amount of open-source software available for TINI, such as a
server that runs servlets [29]. The book by Williams discusses servlet designs
that work with this server and also provides several other programs for TINI
[30].
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Table 24.1 SNAP vs. TINI timing comparison [15].

Operation (10000 times) SNAP TINI

integer multiplications 32 ms 800 ms
integer division 82 ms 890 ms
float additions 52 ms 3390 ms
float multiplications 50 ms 3290 ms
float division 120 ms 69990 ms
double additions 78 ms 3550 ms
double multiplications 76 ms 3180 ms
double divisions 284 ms 49790 ms

By embedding Java and a network connection in a remote system, a TINI card
opens up a wide range of new capabilities. As discussed in Chapters 14–15, a
server can provide monitoring and control to a distant client. Potentially every
device in a complex industrial facility or in a large scientific experiment could
“go online” and provide access and control at a very fine-grained level.

In Section 24.10 we give an example of a customized server running on a TINI
type system (with the SNAP card described next). The book by Loomis gives more
examples of TINI applications including a remote data logger running on a TINI
platform [31]. The code runs TCP/IP with either Ethernet or dial-up networking
using a PPP network interface via serial I/O. This allows a remote sensor, for
example, to contact a home base periodically by telephone to upload data, report
on the status of the sensor, and so forth.

24.8.2 SNAP – Simple Network Application Platform

The SNAP card from Imsys Technologies comes as a TINI compatible SIMM
card but instead of a conventional microcontroller running a JVM, it uses the
company’s Cjip Java hardware processor (see Section 24.7). This provides a
significant improvement in processing speed (see Table 24.1). Figure 24.2(a)
shows a photograph of the SNAP and Figure 24.2(b) shows a block diagram of
the main components on the card.

The card provides expanded capabilities compared to the standard TINI ref-
erence system. It holds 2 MB of flash memory and 8 MB of DRAM. The system
supports the J2ME CLDC 1.0 configuration. Figure 24.3(a) shows a development
board from Systronix that is holding a SNAP in the SIMM connector. The card
includes a serial port and an Ethernet connector [32].

24.8.3 aJile aJ-PC104 single board computer

The aJ-PC104 board from aJile Systems follows the popular PC/104 format and
includes the company’s aJ-100 Java processor (see Section 24.7). It can act as
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 (a) 

 (b) 

Figure 24.3 (a) The TILT (TINI Initial Learning Tool) board from Systronix includes a
SIMM expansion slot. Here it is plugged with the Imsys SNAP card (the vertical
card). The TILT includes an RS232 connector, Ethernet RJ45, and other interfaces.
(b) The Javelin Stamp evaluation board for the Parallax Javelin Stamp includes a
breadboard and serial ports – one for programming the module and the other for I/O
with programs running in the module. (Tilt photo by Th. Lindblad, Javelin photo
courtesy Parallax Corp.)

a standalone Java computer or fit into a PC/104 stack. Systronix offers a Java
module called the JStamp (not to be confused with the Javelin Stamp mentioned
below) that comes in a 40pin DIP module and uses the aJile aJ-80 Java processor
chip [32].

24.8.4 Parallax Javelin Stamp

The Javelin is derived from the popular Basic Stamp series of microcontrollers
but it runs programs written in Java instead of Basic [16,17]. The Javelin (see
Figure 24.1) comes as a 24-pin DIP that holds an interpreter chip that runs a
subset of the Java instruction set. The module includes 32 KB of non-volatile
EEPROM and 32 KB of RAM. Programs are stored in the EEPROM and loaded
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into RAM for execution. The RAM holds the program’s stack and heap. Programs
can access both free RAM and EEPROM space. The processor executes up to
8000 instructions per second.

Four of the pins are used for power, ground, and reset. Another four pins are
used for serial communications with the chip to load programs and debug them.
Sixteen pins provide general-purpose I/O. These can handle digital-to-analog and
analog-to-digital conversions, serial I/O, pulse modulated output, and pulse input.

The serial interface provides for programming the module. The programs
are saved in the EEPROM and program execution begins after a reset. Virtual
Peripheral (VP) objects run UARTs, pulse-width modulators, timers and other
services, and use minimal system resources. The company offers a development
system with an IDE for developing, downloading, and debugging programs on
the module.

The Javelin Stamp runs a downsized version of Java with a small subset of the
usual classes. In the next section we discuss how to program the Javelin and give
a demonstration of a Javelin program that uses the general-purpose I/O pins to
obtain data from a sensor and send it over a serial line.

24.9 Programming the Javelin Stamp

The Javelin Stamp provides an interesting example of a Java hardware platform.
Of all the Java processors discussed above, it offers the most restricted set of
bytecode instructions and the most limited number of classes. It does not conform
to the CLDC framework and instead offers even fewer capabilities (but more than
the JavaCard). However, it is low cost and fairly simple and straightforward to
use. For many microcontroller applications, its capabilities suffice.

Parallax intended the Javelin to be as easy to use as its popular Basic Stamp
modules [16,17]. The company provides a development board with a small bread-
board (see Figure 24.3(b)) for experimentation and tests. To get to know the
system you can place LEDs, buttons, and other circuits on the breadboard and
connect them to the Javelin module’s 16 general-purpose I/O pins, which are
accessible to Java programs running in the module.

The Javelin Stamp’s interpreter differs in several ways from the JVM that
comes with your desktop SDK. For example, there is no multitasking or multi-
threading. Instead you can use a timer object to allocate times for tasks to run.
As mentioned earlier, six commonly needed functions are provided by the VPs
that come built into the Javelin’s firmware. These VPs include a timer, UART for
serial communications, PWM (Pulse Width Modulation) for pulse train genera-
tion, DAC and ADCs. You can install up to Six VPs at a time. They run in the
background and so use a minimal amount of processing time and resources. Each
VP requires one or more of the 16 available I/O pins.

The Javelin processor offers no garbage collection, so once you create objects
they exist until the module is reset. This places tight restrictions on the number
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Figure 24.4 The Javelin Stamp IDE from Parallax provides a programming interface
to the processor. It offers numerous features including a source editor and a java
compiler. It can test the connection to the module and download programs to the
module. Programs running on the Javelin Stamp send the output of print ()

methods to a window on the IDE. You can also run programs with a debugger.
[16, 17]

and size of objects that you can create without filling up the available memory.
However, the absence of a GC means that the system can respond without the
uncertainty as to when and for how long a GC might run.

Other limitations of the Javelin include a 16-bit maximum data width, even for
the int type (there is no long type). The standard packages only allow integer
math. However, an optional 16-bit FP package is now available [17]. You can
create 1D arrays but not 2D. A number of core Java packages are either missing
(no java.net for example) or truncated.

The IDE for the Javelin uses a serial port on the module to load a program
and to start it. This port differs from the one used with the UART VP and the
I/O pins. Figure 24.4 shows the IDE interface. You can edit programs, compile
them, link (gather up all the classes needed by the processor), and then download
them (via the “Program„ command). While the serial line is connected, the
System.out.println()methods send output to a window in the IDE. There
is also a debugger for testing programs while they run on the processor.

Once the program is loaded into EEPROM, the serial port can be disconnected
and the module runs independently. A reset pin restarts a program when brought
to ground and then released. Sixteen of the 24 pins on the module are accessible
from the Java program for input or output. For example, you can set a pin to
5 V, send out a pulse train, or read an analog value. You can use a set of pins to
transmit and receive signals for a serial UART communications port.
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24.9.1 Javelin demonstration program

The program SendTempDataFromJavelin shown below runs in the Javelin
evaluation card and provides temperature readings obtained from a Dallas Semi-
conductor chip DS1620 that is installed on the breadboard. Via the serial line, the
processor receives requests from the SerialToJavelin program discussed in
Chapter 23 and transmits back a temperature value. The program creates a receive
and a transmit UART virtual peripheral object to provide two-way serial commu-
nications. Each constructor assigns two I/O pins to the appropriate function and
sets the serial mode for 9600 baud.

The reset signal starts the main() routine, which begins by creat-
ing an instance of TempDataGenJavelin. Since we might want to use
this program as a template for obtaining other kinds of sensor data, we let
TempDataGenJavelin extend DataGenerator, which is an abstract class
(Javelin does not allow interfaces). Any class that extends DataGenerator
must override getData() with a method that returns an int value.

The process in SendTempDataFromJavelin then goes into a loop and
immediately invokes checkPW(). This method uses a simple protocol that
requires that the request for data first include a short password number. The
checkPW() method invokes receiveInt(), which waits for the requestor to
transmit a 2-byte number that matches the password value. The method receives
2 bytes in big-endian format. That is, the most significant byte arrives first and the
least significant byte last. Then an int value is made from the 2 bytes (remember
that in the Javelin, the integers are a maximum of 2 bytes long.)

If the password value is valid, then a string confirmation is transmitted to
the requestor over the serial line. Back in the main loop, the data int value is
obtained from the DataGenerator via getData() and then transmitted as
2 bytes in big-endian format (since the Java specifications require a big-endian
representation). The process then loops back to the receiveInt() method
again and waits for the next data request.

import stamp.core.*;

/**

* This program transmits temperature readings from the DS1620 chip when it

* receives a request over the serial line. The request must include a password

* number at the start. If the password is OK, then a temperature value is

* obtained and transmitted. The "raw" temperature readings are obtained

* via the TempDataGenJavelin class, which in turn uses the DS1620 class

* provided in the stamp.peripheral.sensor.temperature package. The serial

* communications code uses the stamp.core.Uart virtual peripheral class.

**/

public class SendTempDataFromJavelin

{
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// Since only one program per card, make

// the password static.

private static int fPassword-- = 0x2201;

// Label pins on evaluation card for serial I/O

final static int SERIAL-TX-PIN = CPU.pin0;

final static int SERIAL-RTS-PIN = CPU.pin1;

final static int SERIAL-CTS-PIN = CPU.pin2;

final static int SERIAL-RX-PIN = CPU.pin3;

// Create the UART vp for transmission via COM serial port

static Uart fTxUart-- = new Uart (Uart.dirTransmit, SERIAL-TX-PIN,

Uart.dontInvert, SERIAL-RTS-PIN,

Uart.dontInvert, Uart.speed9600,

Uart.stop1);

// Create the UART vp for reception via the COM serial port

static Uart fRxUart-- = new Uart (Uart.dirReceive, SERIAL-RX-PIN,

Uart.dontInvert, SERIAL-CTS-PIN,

Uart.dontInvert, Uart.speed9600,

Uart.stop1);

/** Resetting Javelin will start the program here. **/

public static void main () {

// Local variable

int data=0;

// Create a temperature data sensor.

DataGenerator temp-sensor = new TempDataGenJavelin ();

// Loop continuously, each time waiting for a request to arrive with

// the password (PW). Then get the temperature reading and send it.

do {

// Go into receive mode and wait for PW

checkPW ();

// Get the data

data = temp-sensor.getData ();

// and then send it to the requestor.

sendInt (data);

} while (true);

} // main

/**

* Utility method to send int value as
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* two bytes. Use "big-endian" mode with most

* significant byte sent first.

**/

static void sendInt (int data) {

fTxUart--.sendByte (data >>> 8);

fTxUart--.sendByte (data & 0x00FF);

}

/**

* Utility method to receive 2 bytes and make an

* int value (16 bits in Javelin) from them.

**/

static int receiveInt () {

int byte1 = fRxUart--.receiveByte ();

int byte2 = fRxUart--.receiveByte ();

return byte2 | (byte1 << 8);

}

/**

* Utility method to receive an int value and compare it to the password.

**/

static void checkPW () {

do {

int data = receiveInt ();

if (data == fPassword--) {

fTxUart--.sendString ("PW OK!\n\r");

break;

}

fTxUart--.sendString ("Wrong PW!\n\r");

} while (true);

} // checkPW

} // class SendTempDataJavelin

The class TempDataGenJavelin creates an instance of the DS1620 class
from the package stamp.peripheral.sensor.temperature and passes
the numbers of the pins that connect to the chip. ThegetData()method provides
the temperature readings in units of 0.5 degrees Celsius. See Figure 23.1 for an
example of temperature readings from the chip.

import stamp.core.*;

import stamp.peripheral.sensor.temperature.DS1620;

/**

* Create a class that obtains the current temperature with the DS1620 chip.

* It extends the DataGenerator class and overrides the getData() method to
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* return the temperature value in an int value.

**/

class TempDataGenJavelin extends DataGenerator

{

DS1620 fThermometer;

/** Constructor creates an instance of DS1620. **/

TempDataGenJavelin () {

fThermometer = new DS1620 (CPU.pin4, CPU.pin5, CPU.pin6);

}

/** Return temperature in units of 0.5 degrees Celsius. **/

int getData () {

return fThermometer.getTempRaw ();

}

} // class TempDataGenJavelin

/**

* Javelin does not allow for interfaces so use an abstract class to represent

* types of data generators.

*/

public abstract class DataGenerator

{

abstract int getData ();

}

24.9.2 A Javelin Stamp for an unmanned aerial vehicle

Another demonstration project [32], discussed in more detail in the Web Course,
involved the development of a system with the Javelin Stamp to provide loca-
tion measurement and sensor data recording in a small unmanned aerial vehicle
(UAV). The goal was for the plane to fly autonomously and measure ambient
radioactivity. The entire payload, including batteries and the UAV, is less than
7 kg.

The position of the UAV in the horizontal plane comes from a GPS-module
read via a serial line. The GPS module provides data in a standard protocol
and code was written for the Javelin to translate the readings to longitude/latitude
values. For the altitude coordinate the Javelin measured the analog voltage output
from a pressure gauge. A virtual peripheral object provides for 8-bit analog-to-
digital conversion (ADC) for voltages between 0 and 5 V on any of the I/O
pins using just a few passive components (two resistors and a capacitor). For
the radiation measurements, a standard Geiger counter with passive components
and an operational amplifier gave an output proportional to the count rate, and
this output was measured with another ADC on the Javelin Stamp. Garari and
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Mansouri carried out bench tests of the GPS and radiation counter systems and
found that it performed satisfactorily.

24.10 An embedded web server

We have frequently referred to the benefits of custom client/server programs
for embedded processors. Here we finally install a basic web server on a SNAP
board (see Section 24.8.2) that can send requested files as before but also present
voltage readings taken from an analog-to-digital converter (ADC) on the board.
Unlike the Javelin system, the SNAP implements the official J2ME standard – the
CLDC 1.0 configuration. It provides an operating system with a command shell
so you can telnet and ftp to it when the board is connected to the network via
Ethernet.

24.10.1 Programming the SNAP

Creating and running programs on the SNAP are not fundamentally different
from that for the PC desktop but do differ in some significant practical ways.
First of all, there are limitations on the classes available for your programs:

� The core language classes include only those in the following packages: java.lang,

java.io, java.util, and javax.microedition.io.
� Some of the core language classes available in the J2SE version are not included. For

example, there is no java.lang.StringTokenizer.
� Some classes are available but with some methods missing. For example, random()

is removed from java.lang.Math.

There are, however, additional packages available with classes that assist in devel-
oping programs for the device:

� com.dalsemi.onewire.* andcom.dalsemi.system packages are available and

are fully compatible with the TINI standard.
� se.imsys.com, se.imsys.net, se.imsys.ppp, se.imsys.system, and

se.imsys.util packages provide lots of useful classes such as HttpServer for

building custom servers.
� org.xm.sax and uk.co.wilson packages provide some tools for XML handling.

After creating class files compatible with the above libraries, you can use the
javac compiler from the J2SE SDK on your desktop computer to compile
them, but you must instruct the compiler to use the set of packages listed above.
For example, if you install the SNAP software into the c:\SNAP directory, then
you compile HelloWorld.java as follows:

c:\> javac -target 1.1 -bootclasspath c:\SNAP\classes

HelloWorld.java
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The target option tells the compiler to produce bytecode compatible with a Java
version 1.1. With the J2SE 5.0 compiler, you must also add the option“-source
1.3„ to indicate that the code does not contain assertions and other post 1.3
additions. The bootclasspath option indicates that the core language classes
should be taken from the SNAP set of packages rather than from the standard
J2SE packages.

With J2SE the class files are loaded by the JVM, which first checks that the
bytecode conforms to all the standard specifications and doesn’t do anything
illegal. The CLDC is intended for platforms with limited resources so it requires
that some of this bytecode checking is carried out prior to loading the processor.
The class files are run through a preverification program that checks the code and
creates new class files with annotations that the processor uses to accelerate its
own code checking.

So before the class files are moved to the SNAP, the following preverification
step is required:

c:\SNAP\bin\preverify -classpath c:\SNAP\classes;.

-nofinalize -d o HelloWorld

The -nofinalize flag is necessary because CLDC platforms don’t allow for
invoking the finalize()method inherited from Object. The -d o flag sends
the verified class file to the o\ subdirectory.

You can use ftp to place HelloWorld.class on the SNAP. To run the
program you can telnet into the Unix style command shell and run the program
with

> java -r HelloWorld &

which responds with the output

Hello World!

Here the -r flag tells the system to restart the Java processor in case it is still
running an old version of a class file. The & flag is not necessary here since the
program returns to the telnet prompt immediately after it prints the “Hello
World!” string. However, for a long-running program like a server, this flag
gives the console back to the shell in the normal Unix fashion so you can log off
while the process continues to run.

24.10.2 The web server program

The program below is a modified version of the MicroServer program
described in Chapter 14. The name is changed to SnapAdcServer since it
reads an ADC value if the page requested is adc.html. Otherwise, it acts as in
MicroServer and looks for files that are requested and returns them if found.
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To obtain the ADC value the program uses the DataPort class in the
com.dalsemi.system package. The system bus is mapped to memory so
that by specifying a memory address a particular device can be accessed. This
code in the Worker class:

DataPort p0 = new DataPort(0x380001);

// read ADC

int adcValue = p0.read();

first creates the DataPort object for the address specified in the constructor and
then reads the ADC value. The reading is combined with a hypertext header and
footer code to create an HTML file with the data. The Web Course provides a
link to a SNAP with its ADC connected to a device such as a solar panel voltage
output.

import java.net.*;

import java.io.*;

import java.util.*;

import com.dalsemi.system.*;

/** Modified Version of MicroServer for the Imsys

* SNAP card. **/

public class SnapAdcServer

{

/** Start program with optional port number argument. **/

public static void main (String args[]) throws

IOException {

int port; // port number

// Get the port number from the command line.

try {

port = Integer.parseInt (args[0]);

}

catch (Exception e) {

port = 2223; // Default

System.out.println ("Use default port = 2223");

}

// Create a ServerSocket object to watch that

// port for clients

ServerSocket server-socket = new ServerSocket (port);

System.out.println ("Server started");

// Loop indefinitely while waiting for clients

// to connect
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while (true) {

// accept() does not return until a client

// requests a connection

Socket client-socket = server-socket.accept ();

// Now that a client has arrived, create an

// instance of our Worker thread subclass to

// tend to it.

Worker worker = new Worker (client-socket);

worker.start ();

System.out.println ("New client connected");

}

} // main

} // class SnapAdcServer

The SNAP I/O package does not include the PrintWriter class so we use
PrintStream instead. We flush the stream after each set of print meth-
ods to ensure all data is moved from the internal buffers. We note that, like
PrintWriter, the PrintStream methods don’t throw IOException and
instead the class offers the checkError() method, which returns true if an
IOException occurred. (As we discussed in Chapter 14, you could modify this
code to check for errors after every print invocation or put the print statements
into utility methods that throw IOException as we did with the DataWorker
class discussed in Chapter 15.)

Another difference with the MicroServer application in Chapter 14 is that
the split()method in String class is not available in the SNAP java.lang
package. So we created a split() in the Worker class to located substrings,
i.e. tokens, separated by blank spaces.

import java.net.*;

import java.io.*;

import java.util.*;

import com.dalsemi.system.*;

/** Threaded process to serve the client connected to

* the socket. **/

public class Worker extends Thread {

Socket fClient;

String fWebPageTop =
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"<html> <head> \n <TITLE>Solar Panel Voltage - ADC

Readout</TITLE>

\n </HEAD>" ;

String fWebPageBot = "</body> \n </html>";

/** Pass the socket as a argument to the constructor **/

Worker (Socket client) throws SocketException {

fClient = client;

// Set the thread priority down so that the

// ServerSocket will be responsive to new clients.

setPriority (NORM-PRIORITY - 1);

} // ctor

/**

* This thread receives a request from the client for a

* a web page file. The file name is found relative to

* the directory of this code.

**/

public void run () {

boolean read-adc = false;

try {

BufferedReader client-in = new BufferedReader (

new InputStreamReader(fClient.getInputStream()));

// Now get an output stream to the client.

OutputStream client-out =

fClient.getOutputStream ();

// Use PrintStream for SNAP output

PrintStream pw-client-out =

new PrintStream (client-out);

// First read the message from the client

String client-str = client-in.readLine ();

System.out.println ("Client message: "+client-str);

// Split the message into substrings.

String [] tokens = split (client-str);

// Check that the message has a minimun number of

// words and that the first word is the GET command.

if ((tokens.length >= 2) &&

tokens[0].equals ("GET")) {

String file-name = tokens[1];
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// Ignore the leading "/" on the file name.

if (file-name.startsWith ("/"))

file-name = file-name.substring (1);

// If no file name is there, use index.html

// default.

if (file-name.endsWith ("/") ||
file-name.equals (""))

file-name = file-name + "index.html";

// Check for a request for the ADC reading.

if (file-name.endsWith ("adc.html")) read-adc =

true;

// Check if the file is hypertext or plain text

String content-type;

if (file-name.endsWith (".html") ||
file-name.endsWith (".htm")) {

content-type = "text/html";

}

else {

content-type = "text/plain";

}

// Now either read a file from the disk and

// write it to the output stream to the client

// or send the ADC reading if that is requested

try {

// Send the header.

pw-client-out.print ("HTTP/1.0 200 OK\r\n");

if (read-adc){

pw-client-out.print ("Server: ReadADC

1.0\r\n");

pw-client-out.print ("Content-length: " +

500 + "\r\n");

pw-client-out.print ("Content-type: " +

content-type +

"\r\n\r\n");

pw-client-out.print (fWebPageTop);

// Connect to ADC.

DataPort p0 = new DataPort (0x380001);

//DataPort.CE3);

// read ADC

int adc-value = p0.read ();
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pw-client-out.println ("ADC = " + adc-value);

pw-client-out.println (fWebPageBot);

pw-client-out.flush ();

}

else {// Or just send a requested file

// Open a stream to the file. Remember that

// by this point all the text except for

// the file name has been stripped from the

// "request" string.

FileInputStream file-in =

new FileInputStream (file-name);

// Send the header.

File file = new File (file-name);

Date date = new Date (file.lastModified ());

pw-client-out.print ("Date: " + date +

"\r\n");

pw-client-out.print ("Server: MicroServer

1.0\r\n");

pw-client-out.print ("Content-length: " +

file-in.available () +

"\r\n");

pw-client-out.print ("Content-type: " +

content-type +

"\r\n\r\n");

pw-client-out.flush ();

// For PrintStream with SNAP

// Creat a byte array to hold the file.

byte [] data =

new byte [file-in.available ()];

file-in.read (data);

// Read file into the byte array

client-out.write (data);

// Write it to client output stream

client-out.flush ();

// Remember to flush output buffer

file-in.close (); // Close file input stream

}

}

catch (IllegalAddressException err) {
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// If no such file, then send the famous 404

// message.

pw-client-out.println(

"ADC readout failure - Illegal Address

Exception");

pw-client-out.println(fWebPageBot);

pw-client-out.flush ();

// For PrintStream with SNAP

} catch (FileNotFoundException e) {

// If no such file, then send the famous 404

// message.

pw-client-out.println ("404 Object Not Found");

pw-client-out.flush ();

// For PrintStream with SNAP

}

}

else {

pw-client-out.println ("400 Bad Request");

pw-client-out.flush ();

// For PrintStream with SNAP

}

}

catch (IOException e) {

System.out.println ("I/O error " + e);

}

// Close client socket.

try {

fClient.close ();

}

catch (IOException e) {

System.out.println ("I/O error " + e);

}

} // run

/**

* Since the platform may not include the J2SE 1.4

* String class with the split() method, we provide

* a substitute. This method returns an array with

* the tokens in the string parameter that are

* separated by blank spaces.

**/
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String [] split(String source-string) {

// First get rid of whitespace at start and end of the

// string

String string = source-string.trim();

// If string contains no tokens, return a zero length

// array.

if(string.length () == 0) return (new String [0]);

// Use a Vector to collect the unknown number of

// tokens.

Vector token-vector = new Vector();

String token;

int index-a = 0;

int index-b = 0;

// Then scan through the string for the tokens.

while(true){

index-b = string.indexOf (' ', index-a);

if (index-b == -1) {

token = string.substring (index-a);

token-vector.addElement (token);

break;

}

token = string.substring (index-a, index-b);

token.trim ();

if (token.length () >= 1)

token-vector.addElement (token);

index-a = index-b + 1;

}

// Copy elements into a string array.

String [] str-array =

new String[token-vector.size ()];

for(int i=0; i < str-array.length; i++)

str-array[i] =

(String) (token-vector.elementAt (i));

return str-array;

} // split

} // class Worker
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24.11 Java processor performance

Java processors, whether virtual or in hardware, vary greatly in their performance
capabilities. Many embedded applications, such as controlling an appliance, do
not need tremendous speed. On the other hand, some applications, such as creating
detailed animations for a PDA screen, do require high performance.

There is no universally accepted set of benchmarks for measuring Java pro-
cessing performance (though at least one organization is trying to develop them
[33]). One popular measure of Java processing speed, however, is the Caffeine-
Mark developed by Pendragon Software [34] in the mid-1990s. It consists of
a suite of tests such as a prime number search, recursive method invocations,
drawing images, and so forth. Another measure is the VolanoMark, developed
by Jeff Neffenger, which emphasizes server performance [35].

Benchmarks are never perfect, and you can usually find some bias that favors
one system over another. In general, it is best to focus on the particular platform
and the features desired and compare only the systems that could fulfill those
requirements. There is no point in comparing, say, the Javelin Stamp with a JVM
running on a modern desktop machine. The more advanced chips can perform at
higher speeds and offer floating-point, but many do not offer the performance of
even a modest desktop-level machine. For example, in a series of tests involving
tasks such as sorting and pattern recognition, a 1.6-GHz Pentium was roughly
100 times faster than an aJile evaluation board with the aJ-100 chip [36].

More of an apples versus apples comparison is given in Table 24.1. It shows
a comparison of speeds for several types of operations for the SNAP board from
Imsys Technologies, which uses a hardware Java processor, and a standard TINITM

board that uses a JVM running in a conventional microcontroller. For these tests,
the hardware approach provides one to two orders of magnitude faster speed [15].

24.12 Web Course materials

In addition to more details about the chips, boards, and programs discussed
here, the Web Course Chapter 24 offers more examples and demonstrations of
embedded Java. Code listings, diagrams, and other resources are included. As
new Java hardware is introduced, these will be added to the resources section.
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Appendix 1
Language elements

Table A.1.1 Keywords.

abstract else interface switch

assert enum long synchronized

boolean extends native this

break false new throw

byte final null throws

case finally package transient

catch float private true

char for protected try

class goto public void

const if return volatile

continue implements short while

default import static

do instanceof strictfp

double int super

Notes on keywords:

� the goto keyword is reserved but not used (in modern language design,
such jumping between lines of code is considered very bad programming
practice)

� const is also reserved but not used
� assert is a new keyword added with Java 1.4
� enum is a new keyword added with Java 5.0

Java is case sensitive so in principle you could use these words as identifiers
if you change any character to upper case. But that’s not recommended!
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Table A.1.2 Reserved symbols in Java.

Symbol Description

; Semi-colon indicates the end of a statement.
() Parentheses are used in several places. They override the default precedence in an

expression that contains multiple operators.
They indicate a method and also a casting operator. They surround the logic test in an
if statement, e.g.

if (test) doSomething();

[] Array declaration and an array element specification.
{} Curly braces enclose the fields and methods of a class, the code for a method, the code

body for an if statement, a for loop statement, a synchronized block, and initial
values for an array declaration.

// Indicates a single line comment.
/*. .*/

or
/**. .*/

Bracket a set of comments that can span more than one line.
The /** */ version is the same as /* */ except the double asterisks tells javadoc to

use the comments in its output.
: Colon is used in switch statements and the conditional operator. Also, it is used in the

enhanced for-loop.
“xx„ Double quotes surround a string literal.
`x’ Single quotes surround a character literal.
+,-, etc Operator symbols. See Appendix 2 for a listing of operators.
@ Used with annotation. (J2SE 5.0)
< > Indicates generics. (J2SE 5.0)
% Used with the Formatter class and printf() to specify output formats. (J2SE 5.0)
? Used with the conditional operator:

x = boolean ? y: z;

As of Java 5.0, ‘?’ acts also as a type wildcard in generics.

Notes:

� identifiers (names of data, methods and classes) cannot begin with a number
� whitespace (space, line return) is ignored in Java code
� non-printing ASCII characters use backslash, e.g. ` \t’ = tab, ` \n’ = return.
� Unicode character specified with ` \ u + 4 hex values’, e.g. ` \u03c0’ = π .
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Operators

Table A.2.1 Assignment operators. x and y must be numeric or char types
except for “=”, which allows x and y also to be object references. In this case, x
must be of the same type of class or interface as y. If mixed floating-point and

integer types, the rules for mixed types in expressions apply.

Operator Description

= Assignment operator:

x = y;

y is evaluated and x set to this value.
The value of x is then returned.

+=, -=, *=, /=, %= Arithmetic operation and then assignment, e.g.

x += y;

is equivalent to

x = x + y;

&=, |=, ^= Bitwise operation and then assignment, e.g.

x &= y;

is equivalent to

x = x & y;

<<=, >>=, >>>= Shift operations and then assignment, e.g.

x <<= n;

is equivalent to

x = x << n;

685
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Table A.2.2 Arithmetic operators. x and y are numeric or char types. If mixed
floating-point and integer types, then floating-point arithmetic is used and a

floating-point value returned. If mixed integer types, the wider type is returned.
If double and float mixed, double is returned.

Operator Description

x + y Addition.

x - y Subtraction.

x * y Multiplication.

x / y Division.
If FP arithmetic and y = 0.0, then infinity returned if x is not

zero, NaN if x is zero.
ArthmeticException thrown if x and y are integer types

and y is zero.

x % y Modulo – remainder of x/y returned.
If floating-point arithmetic and y = 0.0 or infinity, then NaN

returned.
ArthmeticException thrown if x and y are integer types

and y is zero.

-x Unary minus.
Negation of x value.
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Table A.2.3 Increment and decrement operators. x and y are numeric
(floating-point and integer) or char types.

Operator Description

x++ Post-increment: add 1 to the value.
The value is returned before the increment is made, e.g.

x = 1;

y = x++;

Then y will hold 1 and x will hold 2

x-- Post-decrement: subtract 1 from the value.
The value is returned before the decrement is made, e.g.

x = 1;

y = x--;

Then y will hold 1 and x will hold 0.

++x Pre-increment: add 1 to the value.
The value is returned after the increment is made, e.g.

x = 1;

y = ++x;

Then y will hold 2 and x will hold 2.

--x Pre-decrement: subtract 1 from the value.
The value is returned after the decrement is made, e.g.

x = 1;

y = --x;

Then y will hold 0 and x will hold 0.
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Table A.2.4 Boolean operators. x and y are Boolean types. x and y can be
expressions that result in a Boolean value. Result is a Boolean true or

false value.

Operator Name Description

x && y Conditional
AND

If both x and y are true, result is true.
If either x or y are false, the result is false
If x is false, y is not evaluated.

x & y Boolean
AND

If both x and y are true, the result is true.
If either x or y are false, the result is false
Both x and y are evaluated before the test.

x || y Conditional
OR

If either x or y are true, the result is true.
If x is true, y is not evaluated.

x | y Boolean
OR

If either x or y are true, the result is true.
Both x and y are evaluated before the test.

!x Boolean
NOT

If x is true, the result is false.
If x is false, the result is true.

x ^ y Boolean
XOR

If x is true and y is false, the result is true.
If x is false and y is true, the result is true.
Otherwise, the result is false.
Both x and y are evaluated before the test.

Table A.2.5 Comparison operators. x and y are numeric or char types only
except for “==” and “!=” operators, which can also compare references. If

mixed types, then the narrower type converted to wider type. Returned value is
Boolean true or false.

Operator Description

x < y Is x less than y?
x <= y Is x less than or equal to y?
x > y Is x greater than y?
x >= y Is x greater than or equal to y?
x == y Is x equal to y?
x != y Is x not equal to y?
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Table A.2.6 Bitwise operators. x and y are integers. If mixed integer types, the
result will be of the wider type.

Operator Name Description

~x Compliment Flip each bit, ones to zeros, zeros to ones.

x & y AND AND each bit a with corresponding bit in b.

x | y OR OR each bit in a with corresponding bit in b.

x ^ y XOR XOR each bit in x with corresponding bit in y.

x << y Shift left Shift x to the left by y bits. High-order bits
lost.

Zero bits fill in right bits.

x >> y Shift right

-

Signed

Shift x to the right by y bits. Low-order bits
lost.

Same bit value as sign (0 for positive
numbers, 1 for negative) fills in the left
bits.

x >>> y Shift right

-

Unsigned

Shift x to the right by y bits. Low-order bits
lost.

Zeros fill in left bits regardless of sign.
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Table A.2.7 Class and object operators.

Operator Name Description

x instanceof

c

Class test
operator

The first operand must be an object reference.
c is the name of a class or interface.
If x is an instance of type c or a sub-class of c, then true returned.
If x is an instance of interface type c or a sub-interface, then true

is returned. Otherwise, false is returned.

new c (args) Class
instantiation

Create an instance of class c using constructor c (args)

“.„ Class member
access

Access a method or field of a class or object:

o.f – field f access for object o
o.m() – method m() access for object o

() Method
invocation

Parentheses after a method name invokes (i.e. calls) the code
for the method, e.g.

o.m()

o.m(x,y)

(c) Object
cast

Treat an object as the type of class or interface c:

c x =(c)y;

Treat y as an instance of class or interface c

+ String
concatenation

This binary operator will concatenate one string to another, e.g.

String str1 = "abc";

String str2 = "def";

String str3 = str1 + str2

results in str3 holding “abcdef„.
For mixed operands, if either a or b in (a + b) is a string,

concatenation to a string will occur. Primitives will be
converted to strings and the toString() method of objects
will be called.

(This is the only case of operator overloading in Java.)
Note that the operator “+=„ will also perform string

concatenation.

[] Array element
access

In Java, arrays are classes. However, the bracket operators work
essentially the same as in C/C++. To access a given element
of an array, place the number of the element as an int value
(long values cannot be used in Java arrays) into the brackets,
e.g.

float a = b[3];

int n = 5;

char c=c[n];

where b is a float array and c is a char array.
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Table A.2.8 Other operators.

Operator Name Description

x=boolean?y:x Conditional
Operator

The first operand – boolean – is a Boolean variable or
expression.

First this Boolean operand is evaluated. If it is true
then the second operator is evaluated and x is set to
that value.

If the Boolean operator is false, then the third
operand is evaluated and x is set to that value.

(primitive type) Type Cast To assign a value of one primitive numeric type to a
more narrow type, e.g. long to int, an explicit cast
operation is required, e.g.

long a = 5;

int b = (int)a;

Table A.2.9 Operator precedence. The larger the number, the higher the precedence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= ?: | | && | ^ & == < << + * new ++x .
*= != <= >> - / (type) --x []

/= < >>> % +x (args)

%= <= -x x++

+= ~ x--

-= !

<<=

>>=

>>>=

&=

^=

|=

Notes:

• (type) refers to the casting operator.
• “.„ is the object member access operator.
• [] is the array access operator.
• (args) indicates the invocation of a method.
• In column 11, the + and -- refer to binary addition and subtraction. Also, the + refers to the string
concatenation operator. In column 14, the + and -- refer to the unary operations +x and -x and specify
the sign of the value.
• |, ^, and & refer to both the bitwise and Boolean operators.
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Table A.2.10 Operator associativity. The following operators have
right-to-left associativity. All other operators (see precedence table

above) are evaluated left to right.

= <<= ?: -x

*= >>= new ~

/= >>>= (type cast) !

%= &= ++x

+= ^= --x

-= |= +x



Appendix 3
Java floating-point

Floating point values in Java are represented by two types: float and double.
Java follows most of the standard IEEE 754 floating-point specifications but not
all. In Chapter 2 we discussed floating-point and here we provide some additional
information.

A.3.1 Minimum/maximum values

Table 2.3 gave the bit allocations for the two floating-point types and Section
2.11.2 described the values that can be taken for the exponents and significands.
Below we show the minimum and maximum values in binary and decimal rep-
resentations for the two types for both the normalized and denormalized cases.

A.3.1.1 float

� Normalized

-126 ≤ exponent ≤ +127

min = 2-126 * 1.00000000000000000000000 = 1.17549435E−38
max = 2+127 * 1.11111111111111111111111 = 3.4028235E38

� Denormalized

exponent = -126

min = 2-126 * 0.00000000000000000000001 = 1.4012985E−45
max = 2-126 * 0.11111111111111111111111 = 1.1754942E−38

A.3.1.2 double

� Normalized

-1022 ≤ exponent ≤ +1023

min = 2-1022 *

1.0000000000000000000000000000000000000000000000000000

= 2.2250738585072014E−308

693
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max = 2+1023 *
1.1111111111111111111111111111111111111111111111111111

= 1.7976931348623157E308

� Denormalized

exponent = -1022

min = 2-1022 *

0.0000000000000000000000000000000000000000000000000001

= 4.9E−324
max = 2-1022 *

0.1111111111111111111111111111111111111111111111111111

= 2.225073858507201E−308

A.3.2 Special values

As discussed in Chapter 2, operations with floating-point never result in an excep-
tion thrown. (Exceptions are Java error conditions. See Section 3.9.) For example,
even if an operation results in a divide by zero there is no exception thrown. (An
integer divided by zero does throw an exception.)

Instead of error messages for abnormal operations, the floating-point result is
filled with one of several special floating-point values (see code in Section 2.12.2):

� Floating-point special values:
� Float.POSITIVE-INFINITY: overflow of a positive value
� Float.NEGATIVE-INFINITY: overflow of a negative value
� Float.NaN – Not-a-Number: zero divided by zero, square root of −1
� Positive zero: underflow from positive direction, e.g.

x = 2.0e−45 * 1.0e−10
� Negative zero: underflow from negative direction, e.g.

x = -2.0e−45 * 1.0e−10
� Finite floating-point numbers and the special values are ordered from smallest to largest

as follows:

1. NEGATIVE-INFINITY

2. Negative finite values

3. Negative zero and Positive zero

4. Positive finite values

5. POSITIVE-INFINITY
� The positive and negative zero values act as follows:

� Positive zero and negative zero compare as equal
� 1.0 / (positive zero) → POSITIVE-INFINITY
� 1.0 / (negative zero) → NEGATIVE-INFINITY
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Table A.3.1 Floating-Point Type Specifications

Parameter float

float-

extended-

exponent double

double-

extended-

exponent

N 24 24 53 53
K 8 > 10 11 > 14
Emax +127 > +1022 +1023 > +16382
Emin −126 < −1021 −1022 < −16381

� NaN values are unordered. This means that:
� Numerical comparisons and tests for numerical equality result in false if either or

both operands are NaN.
� A test for numerical equality of a value against itself results in false if and only if

the value is NaN.
� A test for numerical inequality results in true if either operand is NaN.

A.3.3 Extended exponents

The JVM Specifications after version 1.1 allow for a JVM implementation to
include extended exponent versions of either or both the float and double types
during intermediate calculations so as to avoid over/under flows.

Table A.3.1 maps the floating point specifications for the four types with the
symbols defined as follows:

� N = number of bits in significand
� K = number of bits in exponent
� Emax = maximum value of exponent
� Emin = minimum size of exponent

The final accessible floating-point results will be in float or double types
but intermediate floating-point values can use the larger extended exponent rep-
resentations if the platform processor allows it. There is no access for the Java
programmer to the extended exponent types.

The JVM does not support either the official IEEE 754 single extended or
double extended format since these extended formats require extended precision,
i.e. longer significand, in addition to the extended exponent ranges shown in the
above table. The documentation for a particular JVM should indicate whether it
uses the extended exponent options.

The modifier strictfp in front of a method will force the precision to
remain at 64-bit for all calculations within that method. This is useful if one
wants to ensure exactly the same results regardless of the platform or JVM
implementation.
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A.3.4 More about floating-point

Additional notes of interest about Java floating-point include:

� Literals default to double unless appended with f or F:

float x = 1.0; // compile time error

float x = 1.0f; // OK

double x = 1.0; // OK

� Floating-point rounding:
� The JVM uses IEEE 754 round-to-nearest mode: inexact results are rounded to the

nearest representable value, with ties going to the value with a zero least-significant

bit.
� Instructions that convert values of floating-point types to integer values will round

towards zero.
� See Section 10.14.3 for a discussion of bit operations on floating-point numbers

Resources

Joseph D. Darcy, What Everybody Using the JavaTM Programming Language Should Know

About Floating-Point Arithmetic, Sun Microsystems, JavaOne Conference, 2002,

http://servlet.java.sun.com/javaone/sf2002/conf/sessions/

display-1079.en.jsp

David Flanagan, Java in a Nutshell, 4th edn, O’Reilly, 2002.

David Goldberg, What Every Computer Scientist Should Know About Floating-Point

Arithmetic, Computing Surveys, March 1991, http://docs.sun.com/source/

806-3568/ncg-goldberg.html

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd

edn, Addison-Wesley, 2000. Available online at: http://java.sun.com/docs/

books/jls/second-edition/html/jTOC.doc.html.

Ronald Mak, Java Number Cruncher: The Java Programmer’s Guide to Numerical

Computing, Prentice Hall, 2003.

Glen McCluskey, Some Things You Should Know about Floating-Point Arithmetic, Java Tech

Tips, February 4, 2003, http://java.sun.com/developer/JDCTechTips/2003/

tt0204.html#2



Index

Classes are listed by name, followed by the package in which they belong in parentheses, e.g. HashMap (java.util). Methods are

indicated by name followed by parentheses with no argument list, e.g. println().

+, see strings, see operators

@, see annotation

\u, escape sequence, 313

. (dot operator), 67

.class file, 15

.java file, 14, 133

NaN, infinity, see floating-point

special values

< >, 339

(), 45

abstract

class, 105–9

methods, 105–9

abstract modifer, 107–9

access rules, 61, 140

default (package private), 140

see packages

private, 140

protected, 140

public, 140

Accessibility Framework, 163, 394

ActionListener, see event listeners

adapter classes, 240–2

see event listeners

AffineTransformOp

(java.awt.image), 381, 383

see image filtering

see Java 2D – transformations

aliased, anti-aliasing, 185

animations, 276–81

of images

with BufferedImage, 380

with MemoryImageSource, 376–8

see threads

see timers

anonymous inner class, 239–40

annotation, 25, 340

@Override, 98–9

Ant tool, 521

AOT (Ahead of Time) compilers, 658

applets, 4, 15

client example, 459–64

directories, 148–9

implementing Runnable, 257, 277

init(), 50, 259

see JAR

reading a file, 419–23

“Hello World” example, 19–20

hypertext tags, 19–20, 75

menu bar, 247

parameters, 75

security, 427

see Swing classes – JApplet

start(), 259, 277

starter programs, 20–3

stop(), 259, 284

appletviewer, 15, 16

vs. browsers, 22–3

application programs, 4, 14, 31–2

see frames,

“Hello World” example, 18

see JAR

starter programs, 20–3

arbitrary precision numbers, 356–9

BigDecimal (java.math), 357, 359

BigInteger (java.math), 357–8

ARGB, see color

array, 42, 79–80, 120–4, 328

see Arrays

as object, 79, 122–3

copy with System.arraycopy(),

121

declaration, 79

default values, 79

formatted string, 25, 347–8

identifier, 31

length, 80

multi-dimensional, 121–2

of objects, 120–1

rectangular, 11

vectors and matrices, 123–4

ArrayList (java.util), 26, 118,

123, 336, 337, 338, 339

performance, 405–8, 409

Arrays (java.util), 328, 345–9

binarySearch(), 346–7

equals(), 345

fill(), 345

sort(), 346–7

deepEquals(), 348–9

deepToString(), 348–9

toString(), 347–8

ASCII, 312

atomic components, 161, 164

audio, 402–4

autoboxing and unboxing, 24, 76–9, 343

with generics, 339

and overloading, 78–9

see wrappers for primitives

AWT (Abstract Windowing Toolkit), 25,

161–2

bands in image data buffer, 366

BasicStroke (java.awt), 184

see Java 2D

base class, 93

big endian, 316, 648, 649, 667

bit handling, 360–2

operations, 360–1, 689

BitSet (java.util), 328, 361
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boolean, 30, 34

see primitives

Boolean (java.lang), see wrappers

for primitives

Box (javax.swing), 226–8

see layout managers

break, 43, 44

browsers, 15

see applets

see plug-in JVM

vs. appletviewer, 22–3

BufferedImage (java.awt.image),

190, 365–7, 386

animations, 380

create, 372–3

see Image

see images

loading, 370

pixel handling, 378–80

save, 373

BufferedImageOp

(java.awt.imge), 381

see image filtering

byte, 34

see integers

see primitives

Byte (java.lang), see wrappers for

primitives

bytecode, 3, 10, 15

verifier, 9

C/C++
arrays, 11, 120, 123

2D arrays, 124

and compute engines, 486

CORBA, 503

CYGWIN, 595

enumerated types, 343

include vs. import, 140

I/O, 289

Java GUI front-end, 10

JNI, 585–624

main(), 32

multiple inheritance, 93

operator precedence, 38

operator overloading, 11

performance, 9, 12

pointers vs. Java references, 66,

112

printf() function, 25, 52, 594

structures, 57

vs. Java, 3, 9, 10

Calendar (java.util), 327, 353–6

GregorianCalendar

(java.util), 353

callbacks, 192, 256, 490, 649

see Interfaces

cast

automatic conversions, 45, 116

container Object elements, 328

legal vs. illegal casts, 45

object references, 115–17

operator (parentheses), 45, 691

primitives, 44–7

cast rules

integer to floating-point, 46

narrowing, 46

object references, 117

widening, 45

CGI (Common Gateway Interface), 446

ChangeListener, 221

see event listeners

char, 30, 33–4, 296

as unsigned short, 34

see primitives

Character (java.lang), see

wrappers for primitives

character encoding, 34, 290, 312–13

ASCII, 312

see Unicode

UTF-8, 312

class, 57

“.„ dot operator, 67

accessing methods and fields, 67

see access rules

see constructors

data type analogy, 57–8

definition, 58–65

definition files, 132–3

fields, 58, 59–60

see inheritance

instantiation, 65–6

loader, 9, 191

see methods

vs. structures, 57

see variables

class variables and methods, see static

Class class, 119

CLASSPATH, 134, 147–8, 511, 512, 513,

515, 524–5, 596

client/server, 428–30, 471

applications in science, 471–3

callback, 490

conceptual model in UML, 475–7

see CORBA

see embedded Java

see microservers

polling, 489

see RMI

with sockets, 428–9, 431–45, 448–69

see Web services

cloning, 115, 118

code block, 39

coding conventions, 150–3

collaboration diagrams, 475, 496

asynchronous operations (half

arrowheads), 487

iteration notation, 480

messages, 477

nested sequences, 477

return messages (dashed arrows), 485

sequence numbers, 477

server example, 477–81, 483–7

synchronous operations (solid

arrowheads), 478

see UML

Collections Framework, 6, 329, 331,

335–8

lists, maps, and sets, 336–7

object containers, 335

color

ARGB (alpha-red-green-blue), 176,

366, 374–5, 378

background, foreground colors, 177

CIEXYZ, 176

color space, 176

ColorModel (java.awt.image),

366

see graphics

see gray scale

see images

indexed color model, 367

pen color, 177, 183

RGB, 176, 366

sRGB, 176

Color (java.awt), 176–8, 365

packed bits, 176, 360, 375–6

packing/unpacking ARGB values,

360–1, 374–5

constants, 177
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ColorConvertOP

(java.awt.image), 381, 386

see image filtering

comments, 32–3

see Javadoc API

Comparable (java.lang), 346, 358

Comparator (java.util), 346

complex numbers, 11

class examples, 58, 85–6, 125–6

Component (java.awt), 161

compute engine, 482

concurrency, 26

concurrency utilities, 285, 341–3

Callable

(java.util.concurrent),

342–3

Executor

(java.util.concurrent),

341–2

see threads

console, 50

see I/O with console

constants, 140–1

see final

and interfaces, 114–15

see static import

constructors, 58, 63–5, 100–5

see class

construction sequence, 102–5

default, 64, 103

super(), 101–2

this(), 100–1

containers for graphics components,

164–6

Container (java.awt), 161

see Swing classes – JPanel

panes, 165–6, 179

getContentPane(), 166

containers of objects, 335

see Collections Framework

ConvolveOP (java.awt.image),

381, 383

see image filtering

CORBA (Common Object Request

Broker Architecture), 136, 137,

471, 479, 530–48

accessor (getter), 534

attributes, 534

C/C++, 503

client implementation, 544–5

constants, 534

CosNaming service, 479, 542, 543–4

exceptions, 534

IDL (Interface Definition Language),

530, 531, 535

idlj and IDL compilation, 535–7,

546

mutator (setter), 534

Object Management Group, 530

Object Request Broker (ORB), 540–2,

544

operations (methods), 533

orbd, 545

Portable Object Adapter (POA), 540,

542

run example on two machines, 547–8

servant, 538–40, 542–4

server implementation, 537–44

structures, 533

vs. RMI, 503, 530–2, 535

Web services, 573–4

cursor icons, 392–4

data fields, see class

data race, see synchronization

data types, 30, 33–4

see cast

see mixing

see primitives

see references

DataBuffer (java.awt.image), 366

see BufferedImage

see Raster

datagrams, 414–15

DatagramSocket (java.net), 426

Date (java.util), 327, 353–6

date and time formatting

clock examples, 282–3, 284–5

DateFormat (java.text), 353–6

SimpleDateFormat (java.text),

353–6

default package, see packages

deprecation, 258

design patterns, 471, 476

factory pattern, 341, 477, 496, 551–2

ServerFactory, 477–81

see RMI Client/Server example

see Model-View-Controller (MVC)

pattern

singleton, 479

desktop client, 24

device drivers, 656

see real-time

dialogs

Dialog (java.awt), 161

JDialog (javax.swing),

163

Dimension (java.awt), 175

direct memory access, 656

see real-time

directory separators, 135, 300–1,

516

distributed computing, 471–3, 501–3

client, 492–500

see design patterns

see RMI Client/Server example

scientific applications, 471–3

simple server example, 481–90

simulation compute engine, 483–7

see Web services

domain name servers (DNS), 415

double, 34

see floating-point

see primitives

Double (java.lang)

see wrappers for primitives

double buffering, 372

drag and drop, 163

dynamic binding, 9, 146

Ease of Development (EoD), 23, 24–6

embedded Java, 651–80

AOT (Ahead of Time) compilers,

658

EmbeddedJava API, 7, 652

embedded server example, 671–9

see Java Card API

see Java 2 Micro Edition (J2ME)

see microservers

PersonalJava API, 7, 652

science and engineering applications,

652

enhanced for loop, 24, 42

enumerated type, 26, 343–5

Enumeration (java.util), 327, 329,

337, 409

environment variables, 628–9

see CLASSPATH

path, 147

equals(), see Object class
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events, 201–10

button, 204–6

change, 221–3

item, 215

key, 399–402

mouse, 208–10

mouse buttons, 394–6

event listeners, 202–3

adapter classes, 240–2

inner classes, 238–40

ActionListener

(java.awt.event), 202–3,

204–6, 216–18, 284

ChangeListener

(java.awt.event), 221

ItemListener

(java.awt.event), 215

KeyListener (java.awt.event),

399

ListSelectionListener

(javax.swing.event),

218–21

MouseListener

(java.awt.event), 202,

209–10, 399

MouseMotionListener

(java.awt.event), 202, 209

WindowListener

(java.awt.event), 202

EventObject (java.util), 203

exceptions, 9, 80–4

finally, 84

general (checked) exceptions, 82–3

run-time, 82, 83–4

throw statement, 82

throws statement, 82

try-catch syntax, 81

expressions, 31, 35–6

associativity, 38–9

evaluation, 37–9

precedence, 38–9

extends, 91

see inheritance

fields, see class

File (java.io), 294, 298, 299–301

for a directory, 300

see I/O with files

obtaining URL, 419

path names, 300–1

FileFilter, see JFileChooser

final modifer, 69, 140–1, 405

finalize(), 119

see Object

float, 34

see floating-point

see primitives

Float (java.lang)

see wrappers for primitives

floating-point, 12, 34, 47–50, 693–6

bit layout, 48

double, 30, 33–4

example, 52–3

extended exponents, 695

float, 30, 33–4, 57

see mixing primitives

normalized and denormalized, 49,

693–4

specifications, 695

strictfp, 12, 50, 695

floating-point special values, 694–5

NaN (Not-a-Number), 49, 53

infinity, 49, 53

flush buffer, see streams

focus, 400

fonts for graphics

Font (java.awt), 181

FontMetrics (java.awt),

181–2

for loop, 41

formatted I/O, 25, 52, 153–7

arrays, 25, 347–8

DecimalFormat (java.text),

153–5

Format (java.text), 153–5

Formatter (java.util), 156,

293–5, 304–5

NumberFormat (java.text),

153–5

printf() in PrintStream, 25,

156–7, 289, 293–5

see Scanner

Fortran, 10, 11, 12, 85, 486, 487

JNI, 587

FPGA (Field Programmable Gate Array),

657

see Java hardware processors

frames,

centering, 629

closing, 243

menu bar, 244

Frame (java.awt), 161

JFrame (javax.swing), 163

garbage collection, 9, 71, 357, 408, 502

and Javelin Stamp, 665

real-time systems, 655–6

System.gc(), 655

generics, 26, 78, 338–40

autoboxing and unboxing, 339

compilation warnings, 340

getContentPane(), 166

getter methods, 153, 224

glue, 227

graphics

color, 176–8

coordinate system, 175–6

drawing, 174–6, 178–90

drawing example, 178–9

see fonts for graphics

graphics context, 174–5

see Java 2D API

rendering, 176

text, 171–4, 180–3

Graphics (java.awt), 174–5,

178–83, 372

drawing an image, 191, 371

for printing, 390

Graphics2D (java.awt), 174–5,

371–2

see Java 2D API

gray scale color model, 367, 379–80,

386

GregorianCalendar (java.util),

see Calendar

GUI – Graphical User Interface, 10, 160,

201, 234, 242, 251

simple example, 206–8

GUI builders, 15, 234

HashMap (java.util), 327, 331, 336,

409

server pool example, 553

HashSet (java.util), 336

Hashtable (java.util), 327,

329–31, 335, 336, 409

heavyweight, see lightweight components

histograms

class examples, 86–9, 128–30, 194–9

graphics, 192–9, 247–51
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I/O, 320–5

destination, 321–3

filtering, 323–5

serialization, 320–1

RMI example, 569–70

Web client example, 459

hostname, 415

HotJava, 4

Hotspot JVM, 6

HTTP (Hypertext Transmission

Protocol), 431, 432, 435–8

indexed color model, 367

IDE (Integrated Development

Environment), 15

identifiers, 30

see literals

see variables

if statements, 40–1

see statements

Image (java.awt.image), 190,

365–7

see BufferedImage

see images

image filtering, 380–8

color conversion, 381, 386

convolution, 381–3

kernel operator, 381

custom, 386–8

in-place, 381

lookup tables, 381, 384–5

rescaling, 381, 385

transforms, 381, 383–4

ImageIcon (javax.swing), 367, 370

ImageObserver (java.awt.image),

192, 367–8

ImageProducer (java.awt.image),

377

images, 190–2

see animations

see BufferedImage

creating, 372–3

display, 191, 371–2

double buffering, 372

encoding formats, 190, 370, 373

graphics context, 372–3

see image filtering

ImageIO (javax.imageio), 287,

367, 373

javax.imageio packages, 373

in JAR, 191

loading, 190–2, 367–70, 417

pixel handling, 374–80

processing, 373–4

saving, 373

scaling, 371–2

tiling, 371

immutable objects, 357

implements, see interfaces

import, 132, 137–40

see static import

InetAddress (java.net), 423–6

see IP address

inheritance, 91–3

base class, 93

extends, 91

see interfaces

multiple inheritance, 93

see overriding

subclass, 91, 93

superclass, 92, 93

inner class, 238–40

anonymous, 239–40

instanceof, 115, 203

instances, see objects

instantiation, see class

int, 34

see integers

see primitives

Integer (java.lang), see wrappers

for primitives

Integers, 33–4

byte, 30

int, 30

long, 30

short, 30

see mixing primitives

see primitives

unsigned short, see char

see wrappers for primitives

interface, 109–15

for callbacks, 112–13

data fields, 114

implements, 109

interfacing classes, 111

marker, 115

multiple inheritance, 109–10, 113

to hold constants, 114–15

internationalization, 363

Internet basics, 413–14

I/O in Java

binary, 309–12

bytes, 315–17

see I/O with console

see I/O with files

see I/O with objects

see I/O with text

java.io, 287, 289–90

java.nio, 287, 326

packages, 287–9

see streams

I/O with console, 18, 50–2, 291–9

see formatted outputI/O

see stream classes – PrintStream

print(), println(), 32, 50–1,

62–3, 289

System.err, 291

System.in, 289, 291, 295–6

System.out, 62, 289, 291, 295

I/O with files, 301–12

binary, 309–12

see File

text input, 305–9

see Scanner

text output, 302–5

I/O with objects, 313–15, 417

histogram example, 320–1

ObjectOutputStream,

ObjectInputStream, see

stream classes

Serializable (java.io), 314,

320

transient, 314

I/O with text

see formatted I/O

see I/O with console

input, 295–9

see Scanner

output, 291–5

to file, 302–5

see stream classes – PrintStream

see stream classes – Reader

see stream classes – Writer

IOException (java.io), 296

IP (Internet Protocol), 413, 414–15,

423–6

IP address, 414

applet access, 427

InetAddress, 423–6

loopback, 414, 438
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ItemListener, see event listener

Iterator (java.util), 42, 329,

337–8, 409

JAR (Java ARchive), 25, 132, 143–6, 524

applet, 145, 149

application, 145–6

java.util.jar, 363

manifest, 144

jar tool, 143–5

see pack200 tool

Java

code compatibility, 16–17, 340

core language, 16

optional packages and APIs, 16, 631

standard extensions (javax

packages), 162–3

definition of, 3–4

documentation, 16

editions, 5

features and benefits, 8–12

history, 4–5

Java Community Process (JCP), 8

see Java programming

Java 2 Standard Edition (J2SE), 5–6

keywords, 29, 30, 683

legacy code and Java, 10

naming conventions, 7–8

networking, 9, 10, 416–17

see operators

see performance

portability, 9, 10, 160, 417

see real-time

real world applications, 12–14

shortcomings, 10–12

symbols, 30, 684

technical programming, 10–12

versions, 5–8

Java Card API, 5, 7, 651, 652, 653

Java Foundation Classes (JFC), 6, 160,

163

see Java 2D

see Swing

Java hardware, 657–80

aJile board, 663–4

aJile processors, 658–9, 660

ARM Jazelle, 660

Aurora, 660

benefits, 658

boards, 661–5

chips, 658–9

co-processor, 657

cores, 657, 659–60

DCT cores, 660

FPGA (Field Programmable Gate

Array), 657

Imsys Cjip processor, 659

see SNAP from Imsys Technologies

instruction sets, 657–8

Nazomi JA108, 659

see Javelin Stamp from Parallax

performance, 663, 680

picoJava, 657

real-time, 659

standalone, 657

Synopsys JVXtreme, 660

see TINI

Virtual Peripheral (VP), 659, 665,

667

Vulcan Machines Moon 2, 660

Xilinx lavaCORE, 660

Java IDL, 530

see CORBA

Java networking, 416–17

java.net, 417, 431

see Client/Server

see CORBA

see embedded Java

see RMI

see sockets

see Web services

Java programming

basics, 14–23

first applet, 19–20

first application, 18

getting started, 17–23, 50–3

JDK (Java Development Kit), 5, 7

SDK (Software Development Kit), 3,

6, 7, 15, 17–18

starter programs, 20–3

tools, 15–16

Java Runtime Environment (JRE), 3,

147

java tool, 15, 147

-D option, 628–9

Java Virtual Machine, see JVM

Java 2 Enterprise Edition (J2EE), 7, 9,

162, 431

Java 2 Micro Edition (J2ME), 7, 163,

652–4, 659

configurations, 652, 653–4

CDC, 653–4

CLDC, 653–4, 659, 663, 671, 672

see Java hardware

KVM, 653–4

prelinked, 653

preverification, 672

profiles, 653, 654

MIDP, 654, 659

MIDlets, 654

see SNAP from Imsys Technologies

Java 2 Standard Edition (J2SE), 5–6, 162

see Java

Java 2D API, 163, 183–90, 390

clipping, 185

compositing, 185

drawing example, 187–90

see Graphics2D

see images

Line2D (java.awt), 186

paint, 183–4

Rectangle2D (java.awt), 186, 188

rendering hints, 184–5, 186

Shape (java.awt), 186

stroke, 184

transformations, 185, 190

Java 5.0 (J2SE5.0), 6, 8, 23–6, 327

javac tool, 3, 15, 147, 523, 671

bootclasspath option, 672

target option, 672

Javadoc API, 33, 149–50

Doclets API, 150

Taglest API, 150

javax packages, 162–3

see Java

javax.comm, see port communications

javax.swing, see Swing

java.io, 289–90

see I/O

see streams

java.lang, 137

Javelin Stamp from Parallax, 659, 664–5

programming, 665–70

example program, 640, 643, 667–70

see Java hardware

JFileChooser (javax.swing),

318–20

FileFilter

(javax.swing.filechooser),

318
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JNI (Java Native Interface), 585–624

arrays

get and set region functions,

605–6

of primitives, 604–7

of object, 606–7

C tools, 595–6

calling conventions, 600

calling Java methods from native code,

615–18

client/server applications, 562

exceptions, 618–22

field ID, 608–11

Fortran, 587

getting Java field values from native

code, 613–15

Hello World example, 587–97

interface pointer, 598–600

introduction, 585–7

“j„ data types, 593

javah and header file, 588, 591–3

jclass, 593, 597, 611–12

jobject, 593, 597, 608, 612

jobjectArray, 606–7

local and global references, 622

method ID, 615–18

method signature, 616

name mangling, 593

native implementation, 594–6

native keyword, 589, 590

native method, 586

objects on C side, 607–15

object methods, 612

passing parameters, 597–8

shared library, 596

string objects, 600–4

System.loadLibrary(), 590–1,

597

threads, 623–4

type signatures, 610

JSP (Java Server Pages), 446–7

JTabbedPane (javax.swing), see

Swing components

JTextField (javax.swing), see

Swing components

JVM (Java Virtual Machine), 3, 8, 11, 15,

625, 658

Hotspot JVM, 6

instruction set, 657–8

J2ME, 653–4

Just-In-Time (JIT) compilers,

11

KVM, see Java 2 Micro Edition

real-time, 654–7

threads, 253, 259–62

see threads

KeyAdapter (java.awt.event),

400

adapter classes, 240–2

KeyEvent (java.awt.event), 244,

400

see events

KeyListener, see event listener

keystroke handling, 399–402

keywords, see Java

KVM, see Java 2 Micro Edition

laying out components, 167–71

set layout manager, 224

see containers

see layout managers

layout managers, 167, 223–37

BorderLayout (java.awt), 173,

228–9

BoxLayout (javax.swing), 225–8

in Box, 226–8

CardLayout (java.awt), 229–30

vs. JTabbedPane, 230–1

FlowLayout (java.awt), 168, 173,

224–5

GridBagLayout (java.awt),

234–7

GridBagConstraints

(java.awt), 234–7

GridLayout (java.awt), 168–71,

224

set layout manager, 224

SpringLayout (javax.swing),

231–4

lightweight components, 162, 174

see AWT

heavyweight, 162

peer component, 162

see Swing

LinkedList (java.util), 336

Linux/Unix and Java, 6

continuation characters, 524

directory listing, 630

directory separators, 516

JNI, 586, 588, 591

ports, 416, 432

storing preferences, 335

SDK, 17

opening comm ports, 635

List (java.util), 336

and generics, 339–40

ListSelectionListener, see event

listeners

literals, 31

floating-point types, 696

integers, 97

string, 35

little-endian, 316

localhost, 510, 527

see IP Address – loopback

logging (java.util), 363

long, 34

see integers

see primitives

Long (java.lang), see wrappers for

primitives

Look and Feel, 163

Swing Synth, 24

LookupOP (java.awt.image), 381,

384

see image filtering

LookupTable (java.awt.image),

384–5

threshold filter, 385

loopback address, see IP Address

Mac computers, 6, 50

main(), 32, 50, 253

JNI, 589

Map (java.util), 336

math

Math (java.lang), 53–5, 69

Math functions, 54–5

StrictMath (java.lang), 55

vectors and matrices, 123–4

MediaTracker (java.awt), 367,

368–9, 370

see images

MemoryImageSource

(java.awt.image), 376–8,

380

see animations

member variables, 59

menus, 244
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metadata, see annotation

methods, 58, 60–2

see class

name, 61

overloading, 62–3, 95, 96–8

see overriding

parameters, 61, 62, 71–3

polymorphism, 96

return type, 61

Microsoft Windows, 6

directory separators, 523

JNI, 586, 588, 591

JVM 1.1, 6, 8

screen resolution, 629

storing preferences, 335

SDK, 17

microservers, 431, 432–5, 448–69

see client/servers

see embedded Java

middleware, 431

see Java 2 Enterprise Edition (J2EE)

MIDlets, 654

see Java 2 Micro Edition

mixing primitives, 46–7

see cast

see cast rules

numeric promotion, 46

Model-View-Controller Pattern (MVC),

482–3, 493–6

compute engine, 482

controller, 482

model, 482

Observable (java.util),

493–5

Observer (java.util), 493–5

view, 482

mouse buttons, 394–6

see events

MouseAdapter (java.awt.event),

399

adapter classes, 240–2

MouseListener, see event listener

MouseMotionListener, see event

listener

multiprocessing, 259–62

namespaces, 136–7

naming service, 479

see CORBA

see RMI

network architectures, 413–14

application layer, 413, 415

network layer, 413

transport layer, 413, 415

networking, see Java networking

new operator, 35, 66

notify(), notifyAll(), see threads

null modem, 640

null reference, 40, 331

NumberFormat (java.text), see

formatting

Oak project, 4

Object (java.lang), 73, 115, 118–19,

328, 337–8

clone(), 115, 118

equals(), 73, 118, 330

finalize(), 119

hashcode(), 330

methods, 118–19

notify(), notifyAll(), and

wait(), see synchronization

toString(), 119–20

Object-Oriented Analysis and Design

(OOAD), 473, 474, 558

Object-Oriented Programming (OOP), 9,

10, 58, 84–5, 89–90, 130

objects (or instances), 58

immutable, 357

instance data, 67

see references

see I/O with objects

operators, 30, 36–9

arithmetic, 53–4, 686

assignment, 36, 37, 685

associativity, 38–9, 692

bitwise, 360–1, 689

Boolean, 688

cast, 691

class and object, 690

comparison, 688

conditional, 691

decrement and increment, 37,

687

precedence, 38–9, 51, 691

returned value, 36–7

Observable and Observer, see

Model-View-Controller Pattern

Outputable interface, 171–2, 270,

649

overloading,

see methods

overloading operators, 11, 35

overriding, 93, 94–100

@Override annotation, 98–9

data fields, 99

shadowing variables, 100

vs. overloading, 96–8

pack200 tool, 25, 146, 149

packages, 132, 133–6

see access rules

unnamed (default) package, 136, 140

packet communications, 413–14

paintComponent() in JComponent,

179, 183, 193, 390

see graphics

see Swing classes – JComponent

Panel (java.awt), 161

panes, see containers for graphics

components

parallel port I/O, see port

communications

path, 147

see CLASSPATH

see directory separators

see File

peer component, 162

see lightweight components

performance, 9, 23, 404–9

inlining, 405

see Java hardware – performance

permissions, see SecurityManager

PersonalJava API, see embedded java

PixelGrabber (java.awt.image),

375–6

see color

plug-in JVM for browsers, 22, 149, 164

policy file, see SecurityManager

policytool, 442, 514

see SecurityManager

polymorphism, 96

popup menu, 396–9

port communications, 631–49

javax.comm, 631–40

CommPort, 632, 639

CommportIndentifier, 632–5

ParallelPort, 632

SerialPort, 632, 637–40

communication procedure, 637
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finding ports, 632–4

opening ports, 635–7

port status and ownership, 634–5, 637

serial port I/O, 637–40

RS232, 637–40

DB9 connector pins, 638

null modem, 640

example program, 640–9

USB, 631

ports, 415–16

see sockets

Preferences API, 327, 331–5

examples, 333–4

exporting and importing, 334

listeners, 335

platform independence, 332

system, 334–5

prefs (java.util), 332

primitives, 29, 30, 33–4

cast, 44–7

converting, 46

see data types

see floating-point

method parameters, 69–70

string conversions, 74–6

to/from byte array, 315–17, 649

see variables

see wrappers

PrintStream, see stream classes

print(), println(), 32, 50–1, 62–3,

289

see stream classes – PrintStream

see I/O with console

printf(), 25, 156–7, 289, 293–5

see formatted I/O

see stream classes – PrintStream

printing graphics, 390–2

JobAttributes (java.awt), 392

PageAttributes (java.awt),

392

PrintGraphics (java.awt), 390

PrintJob (java.awt), 392

priority inversion, see threads

private, see access rules

Process (java.lang), 629–31

Properties (java.util), 327,

330–1, 335, 336, 392

see Hashtable

see Preferences API

system properties, 625–9

protected, see access rules

public, see access rules

Queue (java.util), 336

random numbers, 126–8

Gaussian, 88, 127

Random (java.util), 127

RandomAccessFile (java.io),

302

Raster (java.awt.image),

366

see BufferedImage

Reader and its subclasses, see streams

real-time, 654–7

asynchronous event handlers, 656

garbage collection, 655–6

happenings, 656

hard vs. soft, 655

immortal memory, 656

Java processors, 659

memory direct access, 656

Real-Time Specification for Java

(RTSJ), 656–7

scoped memory, 656

timing, 656

threads, 656

refactoring, 285

reference, 31, 66–7

accessing methods and fields, 67

see cast

conversions, 116

in method parameters, 71–3

modifying, 70–1

super, 99–100, 183

this, 99–100, 256, 612

variables, 69–70

vs. C/C++ pointers, 66, 112

regular expressions, 352

java.util.regex, 363

rendering hints, 184–5, 186

see Java 2D

RescaleOP (java.awt.image), 381,

385

see image filtering

RGB, see color

rigid area, 227

RMI (Remote Method Invocation) API,

26, 417, 429–30, 471, 479,

501–29

binding, 507–9

client, 509–11

client JAR file, 524

client/server example, 515–26

codebase, 512–13, 524

see distributed computing

exceptions, 503–4, 506, 509, 510,

518

exporting, 506

marshalling, 504

name lookup, 508–11, 543

policy file, 513–15, 525, 526

registry, 507–9, 524–5, 552, 554–5

rmiregistry, 479

Remote (java.rmi), 506

remote implementation class,

506–7

remote interface, 505–6

remote objects, 503–5

rmic, 504, 523

run example on two machines, 527

security manager, 511–12

security, 511–15

skeletons, 504

stub, 504

vs. CORBA, 503, 530–2, 535

vs. socket programming, 469, 502

Web services, 573–4

and XML, 574–6

RMI Client/Server example, 549–72

client implementation, 568–9

with histogram, 569–70

factory interface, 551–2, 553–6

JNI and RMI, 562

security, 551

server implementation, 556–67

server interface, 552–3

server pool, 553

spring simulation, 549–50, 560–7

RPC (Remote Procedure Calls),

502

run external programs, 629–31

Process, 629–31

Runtime, 629–31

Runnable (java.lang), 109–10, 254,

256–8

concurrency utilities, 341, 342

see applets

see threads

Runtime (java.lang), 629–31
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SampleModel (java.awt.image),

366

see BufferedImage

see Raster

sample, 366

sandbox, 625

Scanner (java.util), 289, 295,

298–9, 307–9

see I/O with text

scope, 238

screen properties, 629

scrollbars, 171, 221

SDK, see Java programming

security, 9, 417, 439–43, 551

with RMI, 511–15

SecurityManager (java.lang), 9,

424, 439–40, 511–12

and applets, 419, 626

policy file, 440–1, 513–15

permissions, 440, 442–3, 513–15

policytool, 442, 514

with RMI, 511–12

serial port I/O, see port communications

serialization, see I/O with objects

servers, see client/server

server pool, 553

ServerSocket, 428–9, 432–3, 434,

448, 449, 450

see sockets

servlets, 446–7

see Web services

Set (java.util), 336

setter methods, 153

shadowing variables, see overriding

short, 34

see integers

see primitives

Short (java.lang), see wrappers for

primitives

SIMM (Singe Inline Memory Module),

661

simulations with Java, 10

see animations

see RMI Client/Server example

SNAP from Imsys Technologies, 663

see Java hardware

programming SNAP, 671–9

Web server example, 671–9

Socket (java.net), 426, 432–3,

443

sockets, 426–8, 434–5, 448

benefits and shortcomings, 469

Client/Server, 428–9

see DatagramSocket

ports, 415–16

see ServerSocket

Web server, 431

SortedMap (java.util), 336

SortedSet (java.util), 336

sRGB, see colors

Stack (java.util), 336, 362

standard extensions, see Java

starter programs, 20–3

statements, 31, 39–44

compound, 39

conditional, 40–1

declarations, 40

enhanced for loop,

flow control, 41–4

loops, 41–3

switch, 43–4

static keyword, 67

static (or class) members, 67–9

static import, 25, 115, 141–3

see constants

see import

streams, 287, 289–90

buffered, 290–1, 296–8, 317–18

choosing, 315

destination, 317–18

histogram example, 321–3

file, 301–12

filters, 317–18

histogram example, 323–5

flushing buffers, 290, 293, 456

see I/O

input examples, 315

networking, 416–17

output examples, 315

piped, 326

wrappers, 287, 290–1

8-bit, 291–9

16-bit, 291

stream classes from java.io

BufferedReader, 290–1, 419

for socket stream, 426, 434–5, 453

ByteArrayInputStream, 316,

649

ByteArrayOutputStream, 316,

321

DataInputStream, 310, 316, 649

DataOutputStream, 309, 316,

453

FileInputStream, 301–12, 316

web server example, 436

FileOutputStream, 301–12,

316

FileReader,FileWriter, 301–9

FilterInputStream,

FilterOutputStream, 313,

317–18, 323–5

InputStream, 289, 295

from URL, 419

InputStreamReader, 290, 419

for socket stream, 426, 434–5

ObjectOutputStream,

ObjectInputStream, 313

OutputStream, 289, 294, 295, 321,

323

OutputStreamWriter, 291, 313

PrintStream, 289, 293, 295, 674

deprecated constructors, 291

see formatted I/O – printf()

see I/O with console

print(), println(), 32, 50–1,

62–3, 289

printf(), 25, 156–7, 289, 293–5

PrintWriter, 291, 293

for socket stream, 426, 434–5, 436,

453

Reader, 289, 291

Writer, 289, 291–5

strictfp, 12, 50, 695

see floating-point

StrictMath (java.lang), 55

see math

String (java.lang), 12, 35, 50,

76

`+’ append operator, 35, 76

array example, 120

from objects, 119–20

methods, 349–50

split(), 352–3, 435, 674

valueOf(), 76

StringBuffer (java.lang), 351

StringBuilder (java.lang), 26,

295, 351

StringTokenizer (java.util),

327, 352

strut, 227
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subclass, see inheritance

super, see reference

super(), 101–2

see constructors

superclass, see inheritance

Swing, 25, 160, 162–4

class hierarchy, 163–4

double buffering, 372

see graphics

javax.swing, 163

see Swing components

J2SE5.0 improvements, 24

see laying out components

see layout managers

text display, 171–4

Swing components

Box, 226–8

JApplet, 164–6, 188, 247

JButton, 166–7

JCheckBox, 212, 214–16

JComponent, 163

JDialog, 163, 164–6

JFileChooser, 318–20

JFrame, 163, 164–6

JLabel, 167

JList, 212, 218–21

JMenu, 244

JMenuBar, 244

JMenuItem, 244

JPanel, 166–7, 174, 183, 224

JPopupMenu, 396–9

JRadioButton, 212, 216–18

JScrollPane, 171, 221

JSlider, 212, 221–3

JTabbedPane, 230–1

JTextArea, 170, 171–3

JTextField, 167, 168, 171, 251,

449

JPasswordField, 449

JWindow, 166

switch statement, 43–4

break, 44

case, 44

default, 44

type of switch variable, 44

symbols, 684

see Java

synchronization, 119, 267, 272–6

data race, 253, 267, 271

lock, 267, 269–70, 272

notify(), notifyAll(), wait(),

119, 269–70, 272–3

see Object

synchronized, 268, 269

System.arrayCopy(), 121

System.err, see I/O with console

System.getProperties(),

330

System.in, see I/O with console

System.out, see I/O with console

system properties, 625–9

see properties

Taglets API, see Javadoc

TCP (Transmission Control Protocol),

413, 415

text display, see Swing

text drawing, see Graphics

this, see reference

this(), 100–1

see constructors

threads, 9, 10, 253–8

see animations

communicating, 262, 272–6

data race, see synchronization

see concurrency features

exclusive, 262, 267–72

non-interacting, 262, 263–4

priority, 261–2, 264

priority inversion, 656

producer/consumer, 272–6

real-time, 656

resources per thread, 260

run(), 253, 254–5, 256–8

servers, 433–4, 449

stopping, 258–9

see synchronization

task splitting, 262, 265–6

Thread subclass vs. Runnable,

257–8

see thread context switching

using Runnable, 256–8

see Runnable

using Thread subclass, 254–5

Thread (java.lang), 254

sleep(), 254, 260, 262, 277,

281

subclass, 254–5, 257–8

yield(), 260, 262

start(), 254, 256

thread context switching, 260–1

non-preemptive (cooperative), 260

preemptive (time-slicing), 260

time

see date and time formatting

System.currentTimeMillis(),

356, 405

timers, 281–5

clock examples, 282–3, 284–5

Timer (java.swing), 282,

284–5

Timer (java.util), 282–3

TimerTask (java.util), 282–3

timing, 260, 356, 404–9

and profilers, 404

TINI (Tiny InterNet Interface), 661–3

SLUSH command shell, 661

SNAP card from Imsys Technologies,

663

see Java hardware

transient, 314

see I/O with objects

TreeMap (java.util), 336

TreeSet (java.util), 336

Toolkit (java.awt), 191, 392, 394,

629

UDP (User Datagram Protocol), 415

see datagrams

UML (Unified Modeling Language), 130,

471, 494–6

association, 494

class diagrams, 474, 487–90, 494,

498–500

client/server, 475–7, 481–90

see collaboration diagrams

collaborator, 478

conceptual model, 474, 476

see design patterns

generalization (inheritance), 488,

494

interaction diagrams, 474–5

interface, 488

introduction, 473–5

iteration notation, 480

operations and attributes, 474, 487

polling, 489

realization, 489, 494

sequence diagrams, 475

sequence numbers, 477
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Unicode, 34, 79, 290, 312–13

see char

see character encoding

unsigned short,

see char

see integers

see primitives

URL

from File, 419

loading image, 190, 417

MalformedURLException

(java.net), 419

reading file, 419–23

URL (java.net), 417–23,

512–13

URL components, 417

utilities,

see bit handling

see Collections Framework

concurrency utilities, 285, 341–3

see generics

java.util, 327–8

see Preferences API

varargs (variable argument list),

25

variables

default values, 60

local, 61, 62

member, 62

primitives, 69–70

passed by value, 69–70

see references

Vector (java.util) 123, 327, 328–9,

335, 337

in example program, 452

performance, 405–8, 409

Virtual Peripheral (VP), see Java

hardware

web client application, 443–5

web server, 431–45, 448–69

applications of, 445–6

client application example, 443–5

see client/server

design, 432–5

embedded example, 671–9

see microservers

security, 439–43

servlets and JSP, 432–3, 579–80

threads, 433–4

socket based, 431

web services, 12

and distributed computing, 573–4

introduction, 573–81

Java, 578–80

JWSDP (Java Web Services Developer

Pack), 13, 579, 581

servlets, 579–80

SOAP, 580

technical applications, 580

UDDI, 580

XML, 574–6

while, do-while loops, 42–3

whois service, 426–8

Window (java.awt), 161

WindowListener, see event listener

wrappers for primitives, 73–9, 329

see autoboxing and unboxing

Double, 74

parseDouble(), 75

Float, 76

Integer, 74, 77, 78

parseInt(), 75, 80–3

string conversions, 74–6

see primitives

table, 74

wrappers for streams, 287, 290–1

see streams

WritableRaster

(java.awt.image), 379, 380

see BufferedImage

see Raster

Writer and its subclasses, see streams

XML, 12, 574–6

DOM, 578

DTD, 577, 578

Namespaces, 577

parsers, 578

preferences export/import, 334

SAX, 578

Schema, 577, 578

Swing Synth, 24

tag defintions, 577

zip compression

see JAR

java.util.zip, 287, 363




