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Foreword

Dear reader,

On behalf of the four Scientific Statistical Societies—the SEIO, Sociedad de
Estadística e Investigación Operativa (Spanish Society of Statistics and Operations
Research); SFdS, Société Française de Statistique (French Statistical Society); SIS,
Società Italiana di Statistica (Italian Statistical Society); and the SPE, Sociedade
Portuguesa de Estatística (Portuguese Statistical Society)—we would like to inform
you that this is a new book series of Springer entitled Studies in Theoretical and
Applied Statistics, with two lines of books published in the series: Advanced Studies
and Selected Papers of the Statistical Societies.

The first line of books offers constant up-to-date information on the most recent
developments and methods in the fields of theoretical statistics, applied statistics,
and demography. Books in this series are solicited in constant cooperation between
the statistical societies and need to show a high-level authorship formed by a team
preferably from different groups so as to integrate different research perspectives.

The second line of books presents a fully peer-reviewed selection of papers on
specific relevant topics organized by the editors, also on the occasion of confer-
ences, to show their research directions and developments in important topics,
quickly and informally, but with a high level of quality. The explicit aim is to
summarize and communicate current knowledge in an accessible way. This line of
books will not include conference proceedings and will strive to become a premier
communication medium in the scientific statistical community by receiving an
Impact Factor, as have other book series such as Lecture Notes in Mathematics.

The volumes of selected papers from the statistical societies will cover a broad
range of theoretical, methodological as well as application-oriented articles, surveys
and discussions. A major goal is to show the intensive interplay between various,
seemingly unrelated domains and to foster the cooperation between scientists in
different fields by offering well-founded and innovative solutions to urgent
practice-related problems.

On behalf of the founding statistical societies I wish to thank Springer, Hei-
delberg and in particular Dr. Martina Bihn for the help and constant cooperation in
the organization of this new and innovative book series.

Rome, Italy Maurizio Vichi
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Preface

This volume contains a selection of the contributions presented in the 47th
Scientific Meeting of the Italian Statistical Society, held at the University of
Cagliari, Italy, June 2014.

The book represents a small but interesting sample of 19 out of 221 papers
discussed in the meeting on a variety of methodological and applied statistical
topics. Clustering, collaboration networks analysis, environmental analysis, logistic
regression, mediation analysis, meta-analysis, outliers in time-series and regression,
pseudolikelihood, sample design, weighted regression, are themes included in the
book.

We hope that the overview papers, mainly presented by Italian authors, will help
the reader to understand the state of art of the current international research.

Pescara, Italy Tonio Di Battista
Granada, Spain Elías Moreno
Cagliari, Italy Walter Racugno
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IntroducingPrior Information
into the Forward Search for Regression

Anthony C.Atkinson,Aldo Corbellini and Marco Riani

Abstract

The forward search provides a flexible and informative form of robust regression.
We describe the introduction of prior information into the regression model used
in the search through the device of fictitious observations. The extension to the
forward search is not entirely straightforward, requiring weighted regression. For-
ward plots are used to exhibit the effect of correct and incorrect prior information
on inferences.

1 Introduction

Methods of robust regression have been described in several books, for example
[2,6,14]. The recent comparisons of [12] indicate the superior performance of the
forward search (FS) in a wide range of conditions. However, none of these meth-
ods includes prior information; they can all be thought of as developments of least
squares. The purpose of the present paper is to show how prior information can be
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2 A.C.Atkinson et al.

incorporated into FS for regression and to give some results indicating the compar-
ative performance of this Bayesian method.

In order to detect outliers and departures from the fitted regression model in the
absence of prior information, the FS uses least squares to fit the model to subsets
of m observations, starting from an initial subset of m0 observations. The subset is
increased from size m to m + 1 by forming the new subset from the observations
with the m + 1 smallest squared residuals. For each m (m0 ≤ m ≤ n − 1), we test
for the presence of outliers, using the observation outside the subset with the smallest
absolute deletion residual.

The specification of prior information and its incorporation into the FS is derived
in Sect. 2. Section3 presents the algebraic details of outlier detection with prior infor-
mation. Forward plots in Sect. 4 show the dependence of the evolution of parameter
estimates on prior values of the parameters. In the rest of the paper the emphasis
is on forward plots of minimum deletion residuals which form the basis for outlier
detection. These plots are presented in Sect. 4 for correctly specified priors and, in
Sect. 4, for incorrect specifications. It is argued that use of analytically derivable
frequentist envelopes is also suitable for Bayesian outlier detection when the priors
are correctly specified. However, serious errors can occur with misspecified priors.

2 Prior Information in the Linear Model from Fictitious
Observations

In the regression model without prior information y = Xβ + ε, y is the n × 1 vector
of responses, X is an n × p full-rank matrix of known constants, with i th row xTi ,
and β is a vector of p unknown parameters. The normal theory assumptions are that
the errors εi are i.i.d. N (0, σ 2).

In some of the applications inwhichwe are interested, for example fraud detection
[7], we have appreciable prior information about the values of the parameters. This
can often conveniently be thought of as coming from n0 fictitious observations y0
with matrix of explanatory variables X0. Then the data consist of the n0 fictitious
observations plus n actual observations. The search in this case now proceeds from
m = 0, when the fictitious observations provide the parameter values for all n resid-
uals from the data; the fictitious observations are always included in those used for
fitting, their residuals being ignored in the selection of successive subsets.

There is one complication in combining this procedure with the forward search,
which arises from the estimation of variance from subsets of observations. If we
estimate σ 2 from all n observations, we obtain an unbiased estimate of σ 2 from the
residual sumof squares. However, in the frequentist searchwe select the centralm out
of n observations to provide the mean square estimate s2(m), so that the variability
is underestimated. To allow for estimation from this truncated distribution, let the
variance of the symmetrically truncated normal distribution containing the central
m/n portion of the full distribution be σ 2

T (m). See [10] for a derivation from the
general method of [15]. We take as our approximately unbiased estimate of variance
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s2T = s2(m)/σ 2
T = s2(m)/c(m, n). In the robustness literature c(m, n) is called a

consistency factor [5,13].
In the Bayesian procedure, the n0 fictitious observations are treated as a sample

with variance σ 2. However, the m observations from the actual data come from
a truncated distribution with variance c(m, n)σ 2, which must be adjusted before
the two samples are combined. This becomes a standard problem in weighted least
squares (for example, [9, p. 230]). Let y+ be the (n0 + m) × 1 vector of responses
from the fictitious observations and the subset and let the covariance matrix of these
observations be σ 2G, with G a diagonal matrix. Then the first n0 elements of the
diagonal of G equal one and the last m elements have the value c(m, n). In the least
squares calculations we need only to multiply the elements of the sample values of y
and X by c(m, n)−1/2. The residual mean square error from this weighted regression
provides the estimate σ̂ 2(m).

The prior information can also be specified in terms of prior distributions of the
parameters β and σ 2. The details and relationship with fictitious observations are
given by [4] as part of a study of Bayesian methods for outlier detection and by [3]
in the context of the forward search.

3 Algebra for the Bayesian Forward Search

Let S∗(m) be the subset of size m found by FS, for which the matrix of regressors is
X (m).Weighted least squares on this subset of observations plus X0 yields parameter
estimates β̂(m) and σ̂ 2(m), the latter on n0 + m − p degrees of freedom. Residuals
can be calculated for all n observations including those not in S∗(m). The n resulting
least squares residuals are ei (m) = yi − xTi β̂(m), (i = 1, . . . , n).

The search moves forward with the augmented subset S∗(m + 1) consisting of
the observations with the m + 1 smallest absolute values of ei (m). To start we take
m0 = 0, since the prior information specifies the values of β and σ 2.

To test for outliers the deletion residuals are calculated for the n − m observations
not in S∗(m). These residuals are

ri (m) = ei (m)/[σ̂ 2(m){1 + hi (m)}]0.5, (1)

where the leverage hi (m) = xTi {XT
0 X0 + X (m)TX (m)/c(m, n)}−1xi . Let the obser-

vation nearest to those forming S∗(m) be imin = argmini /∈S∗(m) |ri (m)|. To test
whether observation imin is an outlier we use the absolute value of the minimum
deletion residual

rimin(m) = eimin(m)/[σ̂ 2(m){1 + himin(m)}]0.5, (2)

as a test statistic. If the absolute value of (2) is too large, the observation imin is
considered to be an outlier, as well as all other observations not in S∗(m).
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4 Example 1: Correct Prior Information

To explore the properties of FS including prior information, we use simulation to pro-
vide forward plots of the distribution of quantities of interest during the search. These
simulations are intended to complement the analysis of [3] based on the Windsor
housing data introduced by [1]. In these data there are 546 observations on regression
data with four explanatory variables and an intercept, so that p = 5. Because of the
invariance of least squares results to the values of the parameters in the regression
model, we simulated the responses as independent standard normal variables with
all regression coefficients equal to zero. The explanatory variables were likewise
independent standard normal, simulated once for each set of simulations, as were
the fictitious observations providing the prior. We took n = 500 in all simulations
reported here and repeated the simulations 10,000 times.

Figure1 shows forward plots of the parameter estimates when there is relatively
weak prior information (n0 = 30). Because of the symmetry of our simulations in
the coefficients β j , the left-hand panel arbitrarily shows the evolution of β̂3. From
the simulations all other linear parameters give indistinguishable plots. The plot is
centred around the simulation value of zero with quantiles that decrease steadily
and smoothly with m. The right-hand panel is more surprising: the estimate of σ 2

decreases rapidly from the prior value of one, reaching a minimum value of 0.73
before gradually returning to one. The effect is due to the value of the asymptotic
correction factor c(m, n) which is too large. Further correction is needed in finite
samples. Reference [8] use simulation to make such corrections in robust regression,
but not for the FS.

The differing widths of bands in the two panels serve as a reminder of the compar-
ative variability of estimates of variance. Reference [3] give the plot for stronger prior
information when n0 = 500. With equal amounts of prior and sample information
at the end of the search, the bands for β̂3 are appreciably more horizontal than those
of Fig. 1. However, the larger effect of increased prior information is in estimation

0 100 200 300 400 500
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0.6

Subset size m
0 100 200 300 400 500
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0.9

1

1.1

Subset size m

Fig.1 Distribution of parameter estimateswhenβ3 = 0 andσ 2 = 1.Left-hand panel β̂3, right-hand
panel σ̂ 2; weak prior information (n0 = 30; n = 500). 1, 5, 50, 95 and 99% empirical quantiles
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Fig.2 The effect of correct prior information on forward plots of minimum deletion residuals. Left-
hand panel, weak prior information (n0 = 30; n = 500).Right-hand panel, strong prior information
(n0 = 500; n = 500), 10,000 simulations; 1, 50 and 99%empirical quantiles.Dashed lines, without
prior information; heavy lines, with prior information

of σ 2, which now has a minimum value of 0.97 and appreciably narrower bands for
the quantiles.

The parameter estimates form an important component of the forward plots of
minimum deletion residuals. The plots of these residuals, which are the focus of the
rest of this paper, are the central tool for the detection of outliers in the FS. Outliers
are detected when the curve for the sample values falls outside a specified envelope.
The actual rule for detection of an outlier has to take account of the multiple testing
inherent in the FS (once for each value of m). One rule, yielding powerful tests of
the desired 1% size, is given by [10] for multivariate data and by [11] for regres-
sion. The procedure has two stages, in the second of which envelopes are required
for a series if values of n. The left-hand panel of Fig. 2 shows the envelopes for
weak prior information (n0 = 30), together with those from the FS in the absence
of prior information. Unlike the Bayesian envelopes, those for the frequentist search
are found by arguments based on the properties of order statistics. In this panel the
frequentist and Bayesian envelopes agree for all except sample sizes around 100 or
less. In the right-hand panel the prior information is stronger, with n0 = 500. The
upper envelopes for procedures with and without prior information agree for the
second half of the search. For the 1 and 50% quantiles the values of the statistics
in the absence of prior information are higher than those in its presence, reflect-
ing the increased prevalence of smaller estimates of σ 2 in the frequentist search. In
general, the agreement in distribution of the statistics is not of central importance,
since the envelopes apply to different situations. One important, although expected,
outcome is the increase in power of the outlier tests that comes from including prior
information, which is quantified by [3]. Also important is the agreement of frequen-
tist and Bayesian envelopes towards the end of the search, which is where outlier
detection usually occurs. This agreement allows us to use the frequentist envelopes
when testing for outliers in the presence of prior information. Such envelopes can
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be calculated analytically, avoiding the time consuming simulations that are needed
when envelopes for different values of n are required.

5 Example 2: Incorrect Prior Information

In the housing data analysed by [3], there is evidence of incorrect specification of
the prior values of some parameters. The effect of misspecification of σ 2 is easily
described; estimates of β remain unbiased, although with a changed variance com-
pared with those when the specification is correct. The estimate of σ 2 also behaves
in a smooth fashion; initially close to the prior value it moves steadily towards the
sample value.

The effect of misspecification of β is more complicated since both β̂ and σ̂ 2 are
affected. There are two effects. The effect on β̂ is to yield an estimate thatmoves from
the prior value to the sample value in a sigmoid manner. Because of the biased nature
of β̂, the residual sum of squares is too large and σ̂ 2 rapidly moves away from its
correct prior value. As sample evidence increases the estimate gradually stabilises
and then moves towards the sample value. There are then two conflicting effects
on the deletion residuals; an increase due to incorrect values of β and a reduction
in the residuals due to overestimation of σ 2. Plots illustrating these effects on the
parameter estimates are given by [3]. Here we show the effect of misspecification of
β on envelopes like those of Fig. 2.

Our interpretation of Fig. 2 was that the frequentist envelopes could be used for
outlier identification with little change of size or loss of power in the outlier test
compared with use of the envelopes for the correctly specified prior. We focus on
this aspect in interpreting the envelopes from an incorrectly specified prior.
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Fig. 3 The effect of incorrect prior information on forward plots of minimum deletion residuals;
β0 = 1.5. Left-hand panel, n0 = 6, right-hand panel, n0 = 100, 10,000 simulations; 1, 50 and 99%
empirical quantiles. Dashed lines, without prior information; heavy lines, with prior information
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Fig. 4 The effect of increased incorrect prior information on forward plots of minimum deletion
residuals; β0 = 1.5. Left-hand panel, n0 = 250, right-hand panel, n0 = 350, 10,000 simulations;
1, 50 and 99% empirical quantiles.Dashed lines, without prior information; heavy lines, with prior
information

In the simulations all values of β were incremented by 1.5. In the left-hand panel
of Fig. 3 we take n0 = 6. Initially the envelopes lie above the frequentist bands, with
a longer lower tail. Interest in outlier detection is in the latter half of the envelopes,
for which the true envelopes lie below the frequentist ones; the residuals tend to be
smaller and outliers would be less likely to be detected even at the very end of the
search. In the right-hand panel, n0 has been increased to 100. The result is to increase
the size of the residuals at the beginning of the search. However, in the second half,
the correct envelopes for this prior lie well below the frequentist envelopes; although
outliers would be even less likely to be detected than before, the series of residuals
lying well below the envelope would suggest a mismatch between prior and data.

Figure4 shows two further forward plots of envelopes of minimum deletion resid-
uals but now with greater prior information. In the left-hand panel n0 = 250 and in
the right-hand panel the value is 350. The trend follows that first seen in the right-
hand panel of Fig. 3. In the first half of the search the envelopes continue to rise above
the frequentist bands—very large residuals are likely at this early stage, which will
provide a signal of prior misspecification. However, now, the envelopes for the right-
hand halves of the searches are coming closer together. Particularly for n0 = 350,
there are unlikely to be a large number of residuals lying below the frequentist bands,
although outliers will still have residuals that are less evident than they would be
using the correct envelope.

This discussion suggests that forward plots of deletion residuals can provide one
way of detecting a misspecification of the prior distribution. Similar runs of too
small residuals can also be a sign of other model misspecification; they can occur,
for example, in the frequentist analysis of data with beta distributed errors under
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the assumption of normal errors. The analysis of the housing data presented by
[3] provides examples of the effect of prior misspecification on forward plots of
minimum deletion residuals.
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Abstract

We propose a finite mixture latent trajectory model to study the behavior of firms
in terms of open-ended employment contracts that are activated and terminated
during a certain period. The model is based on the assumption that the population
of firms is composed by unobservable clusters (or latent classes) with a homo-
geneous time trend in the number of hirings and separations. Our proposal also
accounts for the presence of informative drop-out due to the exit of a firm from
the market. Parameter estimation is based on the maximum likelihood method,
which is efficiently performed through an EM algorithm. The model is applied
to data coming from the Compulsory Communication dataset of the local labor
office of the province of Perugia (Italy) for the period 2009–2012. The application
reveals the presence of six latent classes of firms.
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1 Introduction

Recent reforms of the Italian labor market [4] have shaped a prevailing dual system
where, on the one side, workers with an open-ended contract benefit from a high
degree of job security (especially in firms with more than 15 employees) and, on
the other, temporary workers are exposed to a low degree of employment protection.
Several policy interventions have been carried out with the purpose of improving the
labor market performance and productivity outcomes. The effects of employment
protection legislation in Italy have been investigated mainly with respect to firms’
growth and to the incidence of small firms. The empirical evidence points toward
a mild effect of these policies on firms’ growth: Schivardi and Torrini [10] state
that firms avoid the costs of highly protected employment by substituting permanent
employees with temporary workers; Hijzen, Mondauto, and Scarpetta [4] find that
employment protection has a sizable impact on the incidence of temporary employ-
ment. In this context, the analysis of open-ended employment turnover may shed
some light on whether the use of highly protected contracts has declined especially
in relation to the recent economic crisis.

In order to analyze the problem at issue, we use data from the Compulsory Com-
munication (CC) database of the labor office of the province of Perugia (Italy) in the
period 2009–2012, and we introduce a latent trajectory model based on a finite mix-
ture of logit and log-linear regression models. A logit regression model is specified
to account for the informative drop-out due to the exit of a firm from the market in
a certain time window, mainly due to bankruptcy, closure of the activity, or termina-
tion. Besides, conditionally on the presence of a firm in the market, two log-linear
regression models are defined for the number of open-ended hirings and separations
observed at every time window. Finally, we assume that firms are clustered in a given
number of latent classes that are homogeneous with respect to the behavior of firms
in terms of open-ended hirings and separations, other than in terms of probability
of exit from the market. Alternatively to the proposed approach, a more traditional
one to deal with longitudinal data consists in adopting a generalized linear mixed
model with continuous (usually normal) random effects. However, such a solution
does not allow to classify firms in homogenous classes, other than having several
problems related to the maximum likelihood estimation process and to the possible
misspecification of the distribution of the random effects.

The paper is organized as follows. In Sect. 2 we describe the CC data coming from
the local labor office of Perugia. In Sect. 3 we first illustrate the model assumptions
and, then, we describe the main aspects related to the model estimation and to the
selection of the number of latent classes. In Sect. 4 we apply the proposed model to
the data at issue. Finally, we conclude the work with some remarks.
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2 Data

The CC database is an Italian administrative longitudinal archive consisting of data
collected by the Ministry of labor, health, and social policies through local labor
offices. With the ministerial decrees n. 181 and n. 296, since 2008 Italian firms and
Public Administrations (PAs) are required to transmit a telematic communication
for each hiring, prolongation, transformation, or separation (i.e., firing, dismissal,
retirement) to the qualified local labor office. In particular, we dispose of all com-
munications from January 2009 to December 2012 sent by firms and PAs operating
in the province of Perugia. The dataset, provided by the local labor office of Perugia,
contains information on the single contracts as well as the workers concerned by
each communication and the firms/PAs transmitting the record.

The single CC represents the unit of observation for a total of 937,123 records.
In order to avoid a possible distortion due to new-born firms in the period 2009–
2012, we consider only firms/PAs that sent at least one communication in the first
quarter of 2009 and those communicating separations of contracts that started before
2009. Once these firms have been selected, we end up with 34,357 firms/PAs in our
dataset. Note that if firms/PAs do not send any record between 2009 and 2012 they
do not appear in the dataset. The number of firms and PAs entering the dataset in
each quarter is reported in the first column of Table1. In addition, firms exiting the
market must be accounted for: relying on the information about the reasons of the
communicated separations, if the firm communicates a separation for closing in a
given quarter and no communications are recorded for the following quarters, we
consider the firm closed from the quarter of its latest communication onward. The
number of firms closing is 1,132.

In our analysis, we only consider open-ended contracts: for every firm we retrieve
the number of open-ended contracts activated and terminated in each quarter. The
total number of hirings and separations is reported in Table1 for each quarter. The
other available information at the firm level in the CC dataset concern the sector
of the economic activity and the municipality in the province of Perugia where the

Table 1 CC data description, by quarter (q1–q4)

Quarter Number
of firms

Hirings Separations Quarter Number
of firms

Hirings Separations

2009:q1 5,487 2,403 3,740 2011:q1 962 1,280 1,910

2009:q2 2,947 1,450 2,616 2011:q2 673 1,055 1,551

2009:q3 2,086 1,018 2,397 2011:q3 522 773 1,369

2009:q4 2,659 1,215 3,220 2011:q4 658 1,059 1,641

2010:q1 1,664 1,345 2,342 2012:q1 6,936 11,749 17,405

2010:q2 1,116 1,149 1,971 2012:q2 2,753 9,001 15,257

2010:q3 875 953 1,823 2012:q3 2,049 9,956 17,526

2010:q4 1,065 986 2,147 2012:q4 1,905 7,150 13,131
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Table 2 Sectors of economic activity and municipalities

Sector Number of firms Municipality Number of firms

Accommodation and
food

2,770 Assisi 1,152

Activities of
extraterritorial
organizations

10 Bastia Umbra 944

Activities of
households as
employers

6,793 Castiglione del Lago 546

Administrative and
support activities

1,057 Città di Castello 1,780

Agriculture, forestry
and fishing

1,690 Corciano 819

Arts, sports,
entertainment and
recreation

705 Foligno 2,221

Constructions 4,144 Gualdo Tadino 552

Education 568 Gubbio 1,295

Electricity, gas, air
conditioning supply

47 Magione 515

Financial and
insurance activities

425 Marsciano 655

Health and social work
activities

607 Perugia 7,795

Information and
communication

958 Spoleto 1,763

Manufacturing
products

4,723 Todi 781

Mining and quarrying
products

46 Umbertide 708

Other personal service
activities

1,829 Other 12,831

Professional,
scientific, technical
activities

1,388

Public administration
and defense

247

Real estate activities 202

Transport and storage 1,377

Waste management 124

Wholesale and retail
trade

4,647
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firm/PA is operating. Sectors are identified by the ATECO (ATtività ECOnomiche)
classificationusedby the Italian Institute ofStatistic since2008 (Table2).Thenumber
of firms/PAs in each municipality is displayed in the second column of Table2.

3 The Latent Trajectory Model

The application concerning the behavior of firms—we use hereafter the term “firm”
to indicate both firms and PAs—in terms of open-ended hirings and separations
during the period 2009–2012 relies on a finite mixture latent trajectory model, the
assumptions of which are described in the following. Then, we give some details on
parameter estimation based on the maximization of the model log-likelihood, and,
finally, we deal with model selection.

3.1 Model Assumptions

We denote by i a generic firm, i = 1, . . . , n, and by t a generic time window, t =
1, . . . , T ; in our application, we have n = 34,357 and T = 16. Moreover, let Sit be
a binary random variable for the status of firm i at time t , with Sit = 0 when the
firm is operating and Sit = 1 in case of firm’s activity cessation in that quarter. For
a firm i performing well we expect to observe all values of Sit equal to 0. Finally,
we introduce the pair of random variables (Y1i t , Y2i t ) for the number of open-ended
employment contracts that firm i activated and terminated at time t . The observed
number of hirings and separations is denoted by y1i t and y2i t , respectively, and it
is available for i = 1, . . . , n and t = 1, . . . , T when Sit = 0, whereas when Sit = 1
no value is observed because the firm left the labor market.

To account for different behaviors in terms of open-ended hirings and separations
during the time period from the first trimester 2009 to the last trimester 2012, we
adopt a latent trajectory model [2,7,8] where firms are assumed to be clustered in
a finite number of unobservable groups (or latent classes). Firms in each group are
homogeneous in terms of their behavior and their status [6].

Let Ui be a latent variable that indicates the cluster of firm i . This variable has
k support points, from 1 to k, and corresponding weights πu = p(Ui = u), u =
1, . . . , k. Then, the proposed model is based on two main assumptions that are
illustrated in the following.

First, we assume the following log-linear models for the number of hirings and
separations:

Yhit |Ui = u ∼ Poisson(λhtu), λhtu = exp(x′
tβhu), h = 1, 2, (1)

with β1u and β2u being vectors of regression coefficients driving the time trend
of hirings and separations for each latent class u and xt denoting a column vector
containing the terms of an orthogonal polynomial of order r , which in our application
is equal to 3.
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Second, we account for the informative drop-out through a logit regressionmodel,
which is specified for the status of firm i at time t as follows:

logit p(Sit = 1|Si,t−1 = 0,Ui = u) = x′
tγu, (2)

where the vector of regression parameters γu is specific for each latent class u.
Note that the model described above may be extended to account for the presence

of covariates, which may be included following different approaches. First, we can
assume that time-constant covariates affect the probability of belonging to each latent
class u, so that weightsπu are not constant across sample, but they depend on specific
individual characteristics. Usually, the relation between weights and covariates is
explained through a multinomial logit model. Second, linear predictors in (1) and
(2) may be formulated through a combination of time-constant and time-varying
covariates, in addition to the polynomial of order r .

3.2 Estimation

Parameters of the latent trajectory model described in the previous section are esti-
mated by maximizing the log-likelihood function, which is expressed as

�(θ) =
n∑

i=1

log f (si , y1i,obs, y2i,obs),

where θ denotes the vector of model parameters, that is, β1u,β2u, γu, πu for u =
1, . . . , k, si = (si1, . . . , siT )′ is a column vector describing the sequence of status
observed for firm i along the time, andyhi,obs (h = 1, 2) is obtained fromvectoryhi =
(yhi1, . . . , yhiT )′ omitting the missing values. Therefore, if si = 0, then yhi,obs ≡
yhi , otherwise elements of yhi,obs correspond to a subset of those of yhi .

The manifest distribution of the proposed model is obtained as

f (si , y1i,obs, y2i,obs) =
k∑

u=1

πu f (si , y1i,obs, y2i,obs |Ui = u),

with the conditional distribution given the latent variable Ui defined as follows:

f (si , y1i,obs , y2i,obs |Ui = u) =
T∏

t=1

p(sit |Ui = u)

T∏

t=1: sit=0

p(y1i t |Ui = u)p(y2i t |Ui = u),

for u = 1, . . . , k, where p(sit |Ui = u) is defined in (2) and p(y1i t |Ui = u) and
p(y2i t |Ui = u) are defined according to (1).

The maximization of function �(θ)with respect to θ may be efficiently performed
through the Expectation–Maximization (EM) algorithm [3], along the usual lines
based on alternating two steps until convergence
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E-step: it consists in computing the expected value, given the observed data and
the current values of parameters, of the complete data log-likelihood

�∗(θ) =
n∑

i=1

k∑

u=1

ziu log
[
πu f (si , y1i,obs, y2i,obs |Ui = u)

]
,

where ziu is an indicator variable equal to 1 if firm i belongs to latent class u.
M-step: it consists in maximizing the above expected value with respect to θ so

as to update this parameter vector.

Finally, we remind that the EM algorithm needs to be initialized in a suitable way.
Several strategiesmay be adopted for this aim on the basis of deterministic or random
values for the parameters. We suggest to use both, so to effectively face the well-
known problem of multimodality of the log-likelihood function that characterizes
finite mixture models [6]. For instance, in our application we choose the starting
values for πu as 1/k for u = 1, . . . , k, under the deterministic rule, and as random
drawings from a uniform distribution between 0 and 1, under the random rule.

3.3 Model Selection

A crucial issue is the choice of the number k of latent classes. The prevailing
approaches in the literature rely on information criteria, based on a penalization of
the maximum log-likelihood, so to balance model fit and parsimony. Among these
criteria, the most common are the Akaike Information Criterion (AIC; [1]) and the
Bayesian Information Criterion (BIC; [11]), although several alternatives have been
developed in the literature (for a review, see [6], Chap. 8). In particular, we suggest
to use BIC, which is more parsimonious than AIC and, under certain regularity con-
ditions, it is asymptotically consistent [5]. Moreover, several studies (see [9] that
is focused on growth mixture models) found that BIC outperforms AIC and other
criteria for model selection.

On the basis of BIC, the proper number of latent classes is the one corresponding
to the minimum value of BIC = −2�̂ + log(n) #par, where �̂ is the maximum log-
likelihood of the model at issue. In practice, as the point of global minimum of above
index may be complex to find, we suggest to fit the model for increasing values of
k until the index begins to increase or, in presence of decreasing values, until the
change in two consecutive values is sufficiently small (e.g., less than 1%), and we
take the previous value of k as the optimal one.
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4 Results

In order to choose the number of latent classes we proceed as described above and fit
the latent trajectory model for values of k from 1 to 9. The results of this preliminary
fit are reported in Table3. On the basis of these results, we choose k = 6 latent
classes, as for values of k greater than 6 the reduction of BIC is less than 1%.

As shown in Table4, that describes the average number of hirings and separations
for each latent class and the corresponding weight, most firms come from class 1
(π̂1 = 0.524), followed by class 3 (π̂1 = 0.220) and class 2 (π̂1 = 0.198), and do not
exhibit relevant movements either in incoming or in outgoing. Indeed, the estimates
of the average number of hirings and separations, obtained as λ̄hu = 1

T

∑T
t=1 λ1tu ,

h = 1, 2, are strongly less than 1. On the contrary, classes 5 and 6, that gather just the
1.4% of total firms, show a different situation. Firms in class 5 hire 1.5 open-ended
employees per quarter, whereas 2.4 employees per quarter stop their open-ended
relation with the firm. As concerns firms in class 6, the average number of hirings
and separations equal 6.95 and 9.89 per quarter, respectively. Besides, we observe
that the separations tend to be higher than the hirings for all the classes.

With reference to the time trend of dropping out from the market, plot in Fig. 1
(top) shows that the probability of drop-out is increasing during year 2009, then it

Table 3 Model selection: number of mixture components (k), log-likelihood, number of free para-
meters (#par), BIC index, and difference between consecutive BIC indices (delta)

k log-likelihood #par BIC Δ

1 −476783.18 8 953649.90 –

2 −383685.95 17 767549.44 −0.1951

3 −361696.26 26 723664.05 −0.0572

4 −356020.51 35 712406.53 −0.0156

5 −348313.32 44 697086.15 −0.0215

6 −344502.01 53 689557.51 −0.0108

7 −341997.83 62 684643.13 −0.0071

8 −341091.09 71 682923.64 −0.0025

9 −339680.21 80 680195.87 −0.0040

Table 4 Estimated average number of hirings ( ˆ̄λ1u) and separations ( ˆ̄λ2u) and weights (π̂u) by
latent class

u = 1 u = 2 u = 3 u = 4 u = 5 u = 6

ˆ̄λ1u 0.019 0.032 0.147 0.504 1.501 6.950

ˆ̄λ2u 0.057 0.055 0.228 0.792 2.429 9.894

π̂u 0.524 0.198 0.220 0.044 0.013 0.001
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Fig.1 Trend of the probability of leaving the market (top) and trends of the number of open-ended
hirings (middle) and separations (bottom), by latent class

reduces and it again increases since the beginning of 2012. However, the estimated
probabilities are always very small, being never higher than 2.5%. Classes 5 and 6
are characterized by the highest probabilities of drop-out during the first two years,
although firms in class 6 show the smallest probabilities of drop-out in the last year.
On the contrary, class 3 shows an increase of these probabilities during year 2012,
so that it has the highest probability of drop-out during the last observed quarter.
Finally, firms in class 1 constantly preserve very low values.

As concerns the time trend of hirings and separations (Fig. 1 middle and bottom,
respectively), both of them tend to increase along the time, although this phenomenon
is evident only for classes 5 and 6. More in detail, the maxima values of hirings and
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Table 5 Distribution of firms by economic sector and latent class (row frequencies)

u = 1 u = 2 u = 3 u = 4 u = 5 u = 6

Accommodation and food 0.422 0.148 0.306 0.099 0.024 0.001

Extraterritorial organizations 0.700 0.200 0.100 0.000 0.000 0.000

Activities of households as
employers

0.495 0.306 0.194 0.004 0.001 0.000

Administrative and support
activities

0.553 0.141 0.192 0.085 0.025 0.006

Agriculture, forestry and
fishing

0.785 0.106 0.094 0.012 0.004 0.000

Arts, sports, entertainment and
recreation

0.697 0.123 0.119 0.038 0.013 0.010

Constructions 0.486 0.158 0.279 0.064 0.013 0.001

Education 0.585 0.040 0.134 0.090 0.148 0.004

Electricity, gas, air
conditioning supply

0.617 0.149 0.128 0.064 0.043 0.000

Financial and insurance
activities

0.642 0.172 0.142 0.028 0.017 0.000

Health and social work
activities

0.604 0.191 0.147 0.033 0.017 0.008

Information and
communication

0.652 0.172 0.152 0.020 0.003 0.001

Manufacturing products 0.483 0.155 0.278 0.070 0.014 0.001

Mining and quarrying products 0.435 0.152 0.304 0.087 0.022 0.000

Other personal service
activities

0.627 0.215 0.140 0.011 0.005 0.002

Professional, scientific,
technical activities

0.667 0.201 0.111 0.019 0.002 0.000

Public administration and
defense

0.494 0.101 0.202 0.097 0.089 0.016

Real estate activities 0.704 0.166 0.121 0.000 0.010 0.000

Transport and storage 0.491 0.194 0.231 0.062 0.017 0.005

Waste management 0.517 0.125 0.275 0.050 0.033 0.000

Wholesale and retail trade 0.560 0.185 0.215 0.033 0.006 0.000

separations for firms from class 6 are achieved in the last quarter of 2012 and are
equal to 23.9 and 36.5, respectively.

In order to further characterize the latent classes, we analyze the distribution of
firms by economic sector (Table5). Class 1 is characterized by a greater presence of
extraterritorial organizations and of firms operating in the following sectors: agricul-
ture, forestry, and fishing; arts, entertainment and recreation; electricity, gas, steam,
and air conditioning supply; financial and insurance activities; health and social work
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activities; information and communications; professional, scientific, and technical
activities; and real estate activities. In class 2 there is a prevalence of activities char-
acterized by households as employers, whereas in class 3 there is a greater presence
of activities related to accommodation and food, construction, manufacturing prod-
ucts, mining and quarrying products, and waste management. Finally, both classes
5 and 6 show a prevalence of public administration and defense activities, other
than education in case of class 5 and arts, entertainment, and recreation in case of
class 6. Finally, no special difference comes out between municipalities (output here
omitted).

5 Conclusions

The different trends of open-ended hirings and separations of a set of Italian firms
in every quarter of the time period 2009–2012 has been analyzed through a finite
mixture latent trajectory model. Six latent classes of firms were detected, which
have specific trends for the probability of drop-out from the market and of hirings
and separations. The results have a meaningful interpretation in the light of the
recent economic downturn. In the period considered (2009–2012) the number of
separations always exceeds the number of hirings of permanent employees in all
clusters: such excess turnover describes the firms’ tendency to diminish the labor
cost by substituting permanent employees with temporary workers as well as by a
reduction in the number of employees. However, the data contain only information
of flows of employees so that the different levels of excess turnover may be tied only
to the firms’ size in each cluster. In addition, the profile of drop-out probability seems
to capture the economic trend of the recent years, with a higher firm mortality rate
in the moments of deepest recession (2009 and 2012).
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Outliers inTimeSeries:An Empirical
LikelihoodApproach

Roberto Baragona and Domenico Cucina

Abstract

The empirical likelihood method is known to be a flexible and effective approach
for testing hypotheses and building confidence regions in a nonparametric setting.
This framework is adopted here for dealing with the outlier problem in time
series where conventional distributional assumptions may be inappropriate in
most cases. The procedure is illustrated by a simulation experiment. The results
are also supported by the study of two well-known real-time series data: the fossil
marine families extinction rates and the Nile river volume at Aswan 1871–1970.

1 Introduction

Outliers in time series may be defined as those observations that do not conform to
the overall behavior of the data sequence. The time dependence that may be traced
in a given time series is usually accounted for by a function that reproduces the
correlation structure or more generally by a formal time series model. In the inde-
pendent data framework usually outliers are searched for among either the largest or
the smallest observations. In time series framework outliers are to be found instead
among observations that show some unexpected departure from predicted value or
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fail to fit the correlation structure deduced from the majority of the data. Such irreg-
ular behavior may be produced by outlying observations characterized by different
shapes which reflect on time series statistics in some peculiar ways. Reference [14]
distinguished outlying observations of four types that may distort linear model para-
meter estimates, i.e. additive (AO), innovation (IO), transient (TC) and permanent
(LC) level change. In addition, outliers that may induce a variance change have been
investigated therein as well. Other outlier types which have been considered in the
literature are the so called patches, i.e. a sequence of consecutive outlying observa-
tions that do not show a steady pattern [2], and outliers in generalized autoregressive
conditional heteroscedastic (GARCH) models which may impact either levels or
volatility or both [1]. Further extensions refer to outliers in non linear and in vector
time series (see, e.g., [7] for a review).

Statistical inference of outliers in time series usually relies on distributional
assumptions for someappropriate data generatingprocess. In this paper a distribution-
free schema for building confidence regions for parameter estimates and conducting
hypothesis testing in the context of time series data possibly affected by outlying
observations is considered. The empirical likelihood (EL) methods [11] are adopted
so that the familiar likelihood ratio statistic may be used which allows the statistical
inference to be based essentially on the chi squared distribution. New developments
that prove to be necessary in order to handle difficult situations are employed which
came to be known as adjusted EL and balanced EL [6]. Attention is specially directed
to outliers of theAO type and outliers which induce a permanent LC. A rather general
framework is provided however, that allows several different other types to be han-
dled along very similar guidelines. A simulation experiment is presented to illustrate
the effectiveness of the method in case of small to moderate sample size. The results
from the study of two real-time series data are also reported.

The plan of the paper is as follows. In Sect. 2 the framework in which outliers in
time series are considered is explained. Specialization to particular cases is also dealt
with in such a way that the developed methods may gain in generalization and are
suitable for further development. In Sect. 3 inference methods are developed based
on ELmethods. In Sect. 4 the behavior of the statistics for inference in finite samples
is outlined by means of a simulation experiment and the study of two real-time
series data. Conclusions and possible suggestions for further research are provided
in Sect. 5.

2 The Empirical Likelihood

EL methods have been introduced by [9–11] and have been used afterward for many
applications, including time series analysis. Basically an unknown probability pi is
assigned to each observation in a sample y = (y1, y2, . . . , yn)′ to define an empirical
probability distribution F specified by (yi, pi), i = 1, . . . , n. This way the necessity
to assume a family of probability distributions on which statistical inference may
be based is avoided. The EL is defined instead as L(F) = ∏n

i=1 pi under the con-
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straints pi ≥ 0,
∑n

i=1 pi = 1. The probability distribution F may possibly depend
on a parameters set θ so that one has to consider the maximum of F(θ) to obtain a
well-defined probability distribution. If it is considered as a function of θ, F(θ) is
called the profile EL.

The addition of the so-called estimating equations [11,12] to the constraint set is a
further step that allows complicated models to be estimated and statistical inference
to be based on EL ratio for building confidence regions and conducting tests of
hypotheses. Let the data y be generated by a model which depends on a parameter
vector θ of length q and assume that r ≥ q equations of the type

E{g(y, θ)} = 0, g = (g1, . . . , gr)
′, (1)

exist that uniquely describe the relationships between the data and the model para-
meters. The functions g1, . . . , gr are called the estimating functions and Eq. (1) are
called the estimating equations. The EL ratio may be written

ELR(θ) = max
p1,...,pn

{
n∏

i=1

(npi) | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(yi, θ) = 0

}
. (2)

In Eq. (2) the ELhas been divided by n−nwhichmay be shown to be themaximumEL
that is obtained in correspondence of the exact solution of the system

∑n
i=1 g(yi, θ) =

0. If it is the case the probabilities pi are all equal to 1/n. If r = q Eq. (1) are as many
as the number of the unknown parameters. A model for which this circumstance
occurs is often called a just identified model. In what follows such assumption will
be held satisfied.

Let θ0 denote in Eq. (2) the true parameter vector uniquely determined by the equa-
tion system

∑n
i=1 g(yi, θ) = 0. Assuming the {yi} to be independent identically dis-

tributed andunder someconditions on g (in particular, thematrixE
(
g(y, θ0)g(y, θ0)′

)

is positive definite,) [11] showed that −2 logELR(θ0) converges in distribution to a
χ2 with q degrees of freedom in close agreement with the similar property which
holds for ordinary parametric likelihood. So even in the absence of any assumption
on the probability distribution of the data, confidence regions and tests of hypotheses
may be computed all the same. LetH0 : θ ∈ Θ0 be the q-dimensional null hypothesis,
then the following limit in distribution holds:

−2log sup{ELR(θ), θ ∈ Θ0} → χ2(q).

The case of dependent data generated by the autoregressive (AR) model has been
investigated by [4] who showed that the limit in distribution still holds provided that
all roots of the AR polynomial lie outside the unite circle.

3 Empirical Likelihood for Inference of Outliers in Time Series

It seems convenient in the present EL context to consider the following general time
series model with outliers:

yt = f (xt, θ) + εt, (3)
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where xt summarizes all explanatory variables possibly including one or more dum-
mies which account for outliers which occur at known time instants, and εt is a zero
mean random error for which no distributional assumptions are made. The vector
parameter θ includes both pmodel parameters and s outlier sizes. So the length of θ is
q = p + s. The following procedure may be used to inscribe the inference problems
related to model in Eq. (3) in the EL framework. Let et = yt − f (xt, θ). The least
squares estimate θ̂ is obtained by solving the normal equations

∂

∂θk

n∑

t=1

e2t = 2
n∑

t=1

(yt − f (xt, θ))

{
− ∂

∂θk
f (xt, θ)

}
= 0, k = 1, . . . , q. (4)

Equation (4) are our estimating equations.
The linear autoregressive (AR) models may provide an example which show very

well how this approach may be used for modeling outliers in time series data. Let
the basic outlier model be

yt = h(t) + zt, (5)

where {yt} is the observed time series, h(t) a deterministic or stochastic function that
represent outliers, and zt the unobserved outlier free time series. Let zt follow the
stationary AR(p) process

Φ(B)zt = εt, (6)

where Φ(B) = 1 − φ1B − φ2B2 . . . − φpBp is the AR polynomial and {εt} are inde-
pendent identically distributed random variables with mean zero and variance σ2

ε .
An AO is defined by letting in (5) h(t) = ωt at some point t. An IO is obtained by
letting h(t) = Φ(B)−1ωt . As far as level changes are concerned, the LC is defined by
assuming in (5) h(t) = 1

1−Bωt , the TC by letting h(t) = 1
1−δBωt for some δ ∈ (0, 1).

Let Eq. (5) be rewritten as

yt =
p∑

j=1

(yt−j − ct−jω)φj + ctω + εt, (7)

where ct is a deterministic binary sequence, and {εt} has been defined in Eq. (6). Let
the outlier be located at time v and be ω its size. According to the outlier type, the
sequence {ct} is defined as follows:

AO ct = 1 if t = v and ct = 0 elsewhere.
IO ct = ψt−v, where ψj = 0 if j < 0, ψj = 1 if j = 0, and ψj are the weights of the

polynomial Ψ (B) = Φ(B)−1 if j > 0.
TC ct = δt−v if t ≥ v and ct = 0 otherwise.
LC ct = 1 if t ≥ v while ct = 0 if t < v.

The impact of either outlier type on the observed time series yt has been discussed
extensively by [14]. Considering ω an additional parameter makes model (7) a non-
linear time series model of the form yt = f (xt, θ) + εt , where xt = (yt−1, yt−2, . . . ,

yt−p, ct)′ and the parameter vector is θ = (φ1, . . . , φp, ω)′.
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Two cases will be considered here in some details, i.e., the AO and the LC outlier
type. In both cases anARmodel of order pwill be assumed in the presence of a single
outlier of sizeωwhich occurs at time t = v. The dummyvariable ct maybe built along
the guidelines detailed above. Using the definitions of the explanatory variables and
model parameters given before, the model in Eq. (3) reads in more compact form
yt = x′

tθ + εt . The estimating functions gk(xt, θ), k = 1, . . . , q, where q = p + s
and s = 1, are each of the terms in the sums in Eq. (4), i.e.,

gk(xt, θ) = (yt−k − ct−kω) et, k = 1, . . . , p

gp+1(xt, θ) =
⎛

⎝
p∑

j=1

ct−jφj − ct

⎞

⎠ et .

For each θ, the EL ratio function ELR(θ) is well defined only if the convex hull of
{g(xt, θ), t = 1, . . . , n} contains the (p + 1)-dimensional vector 0. Now a difficulty
may arise which may well be exemplified by an AR(1) model with an AO. In this
peculiar case the second line in the last constraint of Eq. (2) becomes

pvg2(xv, θ) + pv+1g2(xv+1, θ) = 0.

If the estimating functions have the same sign, the unique solution is pv = 0, pv+1 =
0 and ELR(θ) goes to infinity. Two kinds of EL adjustments have been suggested
to address the convex hull constraint, i.e., the adjusted EL (AEL) and the balanced
EL (BEL). An AEL has been proposed by [3] which consists of adding an arti-
ficial observation and then calculating the EL statistic based on the augmented
data set. In the present example, this amounts to set g2(xn+1, θ) = −anḡ, where
ḡ = 1

n

∑n
i=1 g(xi, θ). Reference [6] proposed a BEL where two balancing points are

added to the data set, i.e., g2(xn+1, θ) = δ and g2(xn+2, θ) = 2ḡ − δ. Such features
will be used in the simulation experiment in next Sect. 4. The investigation on the
BEL method for inference about a parameter vector θ seems very important for
improving the method performance. An appropriate choice of location for the new
extra points is made in order to guarantee that correct coverage levels be obtained.

4 A Simulation Experiment and Real Time Series Study

The first example run in the simulation experiment is concerned with an AO in an
AR(1) model. 250 standard normal random numbers have been generated and used
for building an AR(1) time series with parameter φ = 0.7. The first 50 values have
been discarded and an AO of size ω = 5 has been added at time v = 100. The 90%
confidence region for the ELR test compared to the likelihood test in normality
hypothesis, for one artificial time series, is displayed in left panel of Fig. 1. The
confidence region computed under hypothesis of normality is narrower than that
computed by the ELR statistic due to the strong distributional assumption. However
as far as the AR parameter is concerned difference is negligible. Note that the BEL
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had to be employed necessarily for the EL method to work properly, in accordance
with the argument developed in the preceding Sect. 3. For nominal 1 − α confidence
level the observed coverage, averaged for 1000 replications, based on EL (1 − αEL)
and normal-based confidence regions (1 − αN ) are displayed in columns 2 and 3
of Table1. The coverage for the EL and that under normality assumptions may be
considered quite satisfactory.

The second example is concerned with an LC in the same AR(1) model with
standard normal innovations. In this case an outlier of size ω = 5 has been added
starting from time v = 100 on. No adjustment proved to be necessary in order to
satisfy the convex hull condition. The 90% confidence region for the ELR test
compared to the likelihood test in normality hypothesis is displayed in right panel
of Fig. 1 for one artificial time series. The confidence regions are quite similar in
spite of the fact that much less information has been employed for building the ELR
test. For nominal 1 − α confidence level the observed coverage, averaged for 1000
replications, based on EL (1 − αEL) and normal-based confidence regions (1 − αN )
are displayed in columns 4 and 5 of Table1. Results are quite satisfying overall, and
with the only exception of 90% confidence probability the EL coverage probabilities
are slightly more accurate than their normal-based counterpart.

We used for computations a desktop equippedwith a Intel i5 CORE processor (3.0
GHz) and 8 GB RAM running under the Windows 8.1 operating system. The algo-
rithms were programmed in the MATLAB programming language. 1000 replicates
took at most 120 seconds overall.

We also illustrate the construction of EL confidence regions through two empirical
data set.

The first data set consists of the fossil marine families extinction rates collected
by [13] restricted to the window of geologic time from 253 to 11.3 million years
ago. This time series (39 observations) has been studied by [8] who fitted several
autoregressive (AR) models. Their analysis suggests the occurrence of an outlier at
t = 30. In view of the small sample size we adapted a first order AR model to the
logarithmof the data and assumed anAOof unknown size at t = 30. The least squares

Fig. 1 AO (left hand panel) and LC (right hand panel) simulated in an AR(1) φ = 0.7 n = 200
ω = 5 v = 100. Confidence regions at 90%, green=ELR and blue=normal ellipsoid
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Table 1 Mean coverage across 1000 replications for an Additive Outlier and a Level Change in an
AR(1) model

1 − α Additive outlier Level change

1 − αEL 1 − αN 1 − αEL 1 − αN

0.95 0.944 0.961 0.946 0.933

0.90 0.899 0.905 0.889 0.891

0.80 0.810 0.803 0.794 0.786

0.70 0.708 0.701 0.699 0.698

0.60 0.612 0.609 0.607 0.610

0.50 0.504 0.500 0.502 0.510

estimates of the autoregressive parameter and AO size are φ̂ = 0.459 and ω̂ = 48.0,
respectively. Figure2 (left panel) shows the 90% EL and normal-based confidence
regions for the 2-dimensional parameter θ = (φ, ω)′. The normal ellipsoidal region
is not too much larger than the EL one. Moreover, this example shows that the shape
of the EL confidence regions are not constrained to be elliptical but may be markedly
asymmetric.

The second data set is the time series (n = 100 observations) of the annual volume
of discharge from the Nile River at Aswan (108 m3) for the years from 1871 to
1970. The data have been taken from [5]. His study supports the occurrence of a
level change at t = 1898. An AR(1) model has been fitted by least squares to the
logarithm transform of the data, this time assuming a change in the level at t = 1898
while constraining the AR coefficient to remain unchanged. The estimates have been
obtained φ̂ = 0.405 for the AR coefficient and ω̂ = −0.068 for the level change size.
The 90% EL and normal-based confidence regions for θ = (φ, ω)′ are reported in
right panel of Fig. 2. The two confidence regions nearly overlap for large values of ω
while the EL confidence region is asymmetric for small values of ω. Such behavior,
that has been already observed in the preceding example, originates from the fact that
the elliptical shape depends on the normality assumption while the EL confidence
regions shape depends on the data only.

5 Conclusions

Empirical likelihood methods have been considered for estimating parameters and
outlier size in time series models and building confidence regions for the estimates.
The balanced empirical likelihood has been used to obtain more accurate coverage
and larger power in hypotheses testing, and to compute outlier size estimates in cases
where plain empirical likelihood fails to provide feasible solutions. The procedure
is illustrated by two simulated examples concerned with an additive outlier and a
level change in a first -order autoregressive model. In addition, two real-world time
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Fig.2 Confidence regions at 90% for the empirical likelihood (green line) and normal-based (blue
line) estimates of the AR(1) parameter φ and outlier sizeω in the presence of an AO in the extinction
rate series (left panel) or LC in Nile river volume series (right panel)

series data have been studied and similar results obtained. Further interesting topics,
e.g., other outlier types, including multiple outliers, and outlier identification, and
estimation in a wider class of time series models, such as the general autoregressive
moving average and the nonlinear models, are left for future research.
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AdvancedMethods toDesign Samples
for LandUse/LandCover Surveys

Roberto Benedetti, Federica Piersimoni and Paolo Postiglione

Abstract

The particular characteristics of geographically distributed data should be taken
into account in designing land use/land cover survey. The traditional sampling
designs might not address the specificity of this survey. In fact, in the presence of
spatial homogeneity of the phenomenon to be sampled, it is desirable to make use
of this information in the sampling design. This paper discusses several methods
for sampling spatial units that have been recently introduced in literature. The
main assumption is to consider the geographical space as a finite population. The
methodological framework is of design-based typology. The techniques outlined
are: the GRTS, the cube, the SPCS, the LPMs, and the PPDs. These methods will
be verified on data deriving from LUCAS 2012.
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1 Introduction

Geographically distributed observations present particularities that should be appro-
priately consideredwhen designing a survey [7,10,18]. Traditional sampling designs
may be inappropriate when investigating geocoded data, because they might not
capture the spatial information present in the units to be sampled. This spatial effect
represents valuable information that can lead to considerable improvement in the
efficiency of estimates. For these reasons, during the last decades, the definition of
methods for sampling spatial units has become so popular, and many contributions
have been introduced in the literature [12,13,16].

In this paper, our aim is the description and the evaluation of probability methods
for spatially balanced samples. These samples have the property to be well spread
over the spatial population of interest. Here, the methodological framework adopted
is of design-based typology.

The spatially balanced concept is mainly based on intuitive considerations, and
its impact on the efficiency of the estimates is not yet extensively analyzed. Besides,
the well-spread property is not uniquely defined, and so the methods that have been
proposed in the literature are based on several and personal interpretations of this
concept.

In design-based sampling theory, if we assume that there is not a measurement
error, the surveyed observations cannot be considered dependent. Conversely, a typi-
cal characteristic of spatial data is the dependence.Within a model-based or a model-
assisted framework, amodel for spatial dependence can be obviously used in defining
a method for spatial sampling.

In the past, some survey scientists tried to develop methods following the intu-
ition to spread the selected units over the space, because closer observations will
provide overlapping information as an immediate consequence of the dependence
[4,15]. This approach leads to the definition of an optimal sample that is the best
representative of the whole population.

This sample selection cannot be evidently accepted if we follow the design-based
sampling framework, since they do not respect the randomization principle. Follow-
ing this approach, to consider this inherent characteristic of geographically observa-
tions, we should use the more appropriate concept of spatial homogeneity that can
be measured in terms of the local variance of the variable of interest.

However, in order to select a well-spread sample, it is possible to stratify the units
on the basis of their location, defining appropriate first-order inclusion probabilities.
This selection strategy represents only an intuitive solution, and it has the major
shortcoming that there is any impact on the second-order inclusion probabilities.
Furthermore, it is not very clear how to obtain a good partition of the area under
investigation.

To overcome these drawbacks, the survey practitioners usually divide the area in
as many strata as possible, and select one or two units per stratum. Unfortunately,
this simple plan is subjective and questionable, and so it is needed to move some
steps further to define some other appropriate sampling designs.

Another objective of this paper is the application of spatially balanced samples
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to land use/land cover (LULC) surveys. Land is very important for most biological
and human activities on the earth. Land is the one of the main economic resource for
agriculture, forestry, industries, and transport. Land can be divided into two inter-
connected concepts. The first is land cover that concerns the biophysical coverage of
land (e.g., crops, grass, broad-leaved forest, or build-up area). The second is land use
that identifies the socioeconomic use of land (e.g., agriculture, forestry, recreation
or residential use).

The layout of this paper is the following. Section2 is devoted to the description
of some spatial sampling designs that have been recently proposed in literature.
Section3 contains our empirical application and discusses the main results. The case
study is based on data derived from LUCAS 2012 survey. Finally, Sect. 4 concludes
the paper.

2 Methodologies

The spatial distribution represents important information in designing an efficient
survey or monitoring programs. Statistical units selected from a territory usually
present spatial positive homogeneity. In fact, nearby locations tend to have more
similar values for measured attributes than distant pairs.

Sample locations adjacent to other sample locations generally add less extra infor-
mation about the target area; thus, the aim of a sampling design should be the selec-
tion of units that are well-spread across the territory under investigation. Trying
to address this research question, many contributions concerning spatial sampling
methods, which take into account spatial effects, have been introduced in literature.

The starting point of this debate about spatial sampling can be found in [1] that
suggested a draw-by-draw scheme, called the dependent areal units sequential tech-
nique (DUST). Though DUST was inspired by purely model-based assumptions on
the dependence of the stochastic process that generates the data, the properties of
DUST can be also analyzed within a design-based framework, because it respects
the randomization principle. The DUST begins with a unit randomly selected, say
k, at every step t < n. Then, the algorithm updates the selection probabilities of any
other unit l of the population according to the rule π

(t)
l = π

(t−1)
l (1 − λdkl ), where λ

is a tuning parameter useful to control the distribution of the sample over the study
region, and dkl is the distance between unit k and l.

A step ahead in the research is represented by the introduction of the General-
ized Random Tessellation Stratified (GRTS, [16]) that is now the most used plan for
sampling spatial units for the monitoring of natural and environmental resources.
For example, the GRTS design is a commonly used by the Environmental Protection
Agency of the United States for aquatic resource monitoring.

The GRTS can be considered a very useful approach for selecting spatial samples.
The GRTS is a form of spatially balanced sampling, where each point has a nonzero
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probability of being included in the sample, and pairwise probabilities of including
both points i and j are nonzero; thus supporting design-based inferences to the entire
area. It integrates the benefits of being a probability sample with the characteristics
of being spatially balanced.

The underlying idea is the extension of the use of systematic sampling to two
or more dimensions [16]. This plan systematically draws the units, transforming
the two-dimensional population into one dimension population. Besides, this design
seeks to preserve some multidimensional order. The aim is that no points in the tar-
get population are too far from a sampled point, and few sampled points are close
together.

The main idea is to apply recursive partitioning to create a spatial address. At each
step of the procedure, the first-order inclusion probability for each cell is computed
as the sum or integral of the first-order inclusion probability of all population ele-
ments within the cell. The first-order inclusion probability need not be constant, and
very general variable probability designs can be adapted. The recursive procedure is
executed until every cell has total first-order inclusion probability less than one, and
then hierarchical randomization is applied. To each cell is assigned a length equal to
its first-order inclusion probability, and then the lengths are linked together, forming
a line with length equal to the total sample size. A systematic sample is selected
along the line. This one-to-one recursive map guarantees that every point on the line
agrees to some population elements.

The GRTS is essentially based on the Voronoi polygons that can be used to define
an index of spatial balance. This index might be very helpful for comparing how
well two or more algorithms spread a set of points over the study region.

For a generic sample s = {s1, s2, . . . , sn} ∈ Ω , where Ω is the set of all possible
samples, the Voronoi polygon for the sample unit si = 1 includes all population units
closer to si than to any other sample unit s j = 1. Now, define with vi the sum of the
first-order inclusion probabilities of all units in the i-th Voronoi polygon. Then, for
any sample unit, we will have an expected value E(vi ) = 1; while all the vks should
be close to 1 for a spatially balanced sample [16].

Thus, the variance of the vi (i.e., V (vi )) can be used as a measure of the spatial
balance of a sample. Obviously, a lower value of V (vi ) indicates a good spatially
balanced sample. For details and some empirical illustrations about the GRTS and
the spatial balance index, see [3].

A possible alternative scheme is represented by the balanced sampling and the
cube technique [9]. The cube is a method for selecting balanced samples with equal
or unequal first-order inclusion probabilities.

The idea underlying the plan is very simple. A researcher may request to check the
quality of the selected sample by verifying how the plan works on some covariates
X known for every unit of the populationU. This method is based on the expectation
that an error committed in estimating an auxiliary variable could be replicated in a
similar manner on the survey variables.

This argument can be explained through the use of HT estimator of each auxiliary
variable. In this case, the aim is to check if the HT estimator t̂HT,x j is close to the
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known population total tx j for each of the available q covariates. Thus, a samples is
said to be balanced on variables X, if the following property is satisfied

∑

k∈s
wkxk j = t̂HT,x j = tx j =

∑

k∈U
xkj , ∀ j = 1, . . . , q, (1)

for all the s ∈ Ω such that p(s) > 0, and where xk j is the value of j-th variable
for the k-th unit. It is worth noticing that a sampling design satisfying balancing
equations (1) does not necessarily exist. Therefore, the appropriate goal can be con-
sidered to find an approximate solution.

The cube method, proposed by [9], is composed of two phases: the flight and the
landing phases. During the flight phase, the constraints, represented by the balancing
equations (1), should be always exactly satisfied. The landing phase starts at the end
of the flight phase, only if a sample is not obtained. In the landing phase, a sample
is selected as close as possible to the constraint subspace. One possible method for
the landing phase is to use an enumerative algorithm.

It is evident that the cube method has been introduced in a nonspatial context.
However, the cube can be straightforwardly applied in a spatial setting by using
the coordinates of the units as covariates and by imposing that any selected sample
should respect for each coordinate the first p moments; assuming implicitly that the
survey variable y follows a polynomial spatial trend of order p [6].

Note that these last sampling designs (i.e., GRTS and cube) do not explicitly use
the concept of distance that is a key statistic to describe the spatial distribution of
the sample units. As already noted before, since the homogeneity showed by geo-
graphically distributed data, the units that are close in space should rarely be selected
in a sample, as they would provide similar information. The use of the distance in
designing a sample might face better this need.

In fact, under the spatial homogeneity assumption, increasing the distance between
two units i and j, the difference |yi − y j | between the values of the survey variable
is always increased. In this situation, it is evident that the estimates of the variance
of the HT estimator will necessarily decrease, if we set high second-order inclusion
probabilities to couples with very different y values that are far in the territory.

It is worth noting that the assumptions of stationarity and/or isotropy are cru-
cial for defining spatially balanced samples based on distance measures, since the
distances are sufficient for modeling spatial homogeneity only if the two previous
assumptions are satisfied.

Many scientists try to address the problem of selecting spatially balanced samples
using the distance between geographical units.

Reference [12] suggested a method called spatially correlated Poisson sampling
(SCPS) by modifying the correlated Poisson sampling (CPS), introduced by [5].

The CPS is based on a list sequential of the visit of the units of the population.
The units of the population are visited one by one in some order. The researcher must
decide at the visit whether the unit should be sampled, since there is no possibility
to subsequently revisit units. The method selects each unit k according to first-order
inclusion probability. After each sampling decision, the first-order inclusion proba-
bilities for the remaining units are updated according to a specific updating rule, to
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generate correlations between the indicator variable of the unit visited, say Ik , and the
indicator variables relative to all the other units of the population, say Il , with l �= k.
Obviously, it is suitable to have negative correlations between the indicator variables
of units that are closer to those already selected. In this case, it is very difficult that
these closer units are included in the sample, thus defining good spatially balanced
samples.

The algorithm can be described in the following way. If unit 1 is selected with
probability π

(0)
1 = π1, we will set I1 = 1 and I1 = 0 otherwise. Starting with

π
(0)
k = πk , k ≥ 1. At step t , the values of I1, I2, . . . , It−1 are known, we will

include the unit t with probability π t−1
t . After each step, the inclusion probabili-

ties for the remaining units, k ≥ t + 1, in the list are updated according to π
(t)
k =

π
(t−1)
k − (It − π

(t−1)
t )w(t)

k−t , wherew
(t)
k−t are weights that depend on I1, I2, . . . , It−1

but not on It [5].
The method is very flexible. In fact, as stated by [5], every without replacement

design with predefined inclusion probabilities can be implemented through CPS.
Reference [12] followed the same logic of CPS to define SCPS method. The con-

tribution of [12] can be essentially found in the definition of two different strategies
for choosing the weights w(t)

k−t : maximal weights and Gaussian preliminary weights.
The maximal weights strategy selects samples of fixed size, if the inclusion prob-

abilities sum to an integer. After a decision on the unit t, the maximal weight strategy
choose weights giving as much weight as possible to the closest unit (in distance)
among the units k = t + 1, t + 2, . . . , N ; then as much weight as possible to the
second closest unit, and so on with the restriction that the weights sum to 1. The
maximal weight strategy always provides samples of fixed size if the inclusion prob-
abilities sum to an integer.

The Gaussian preliminary weight strategy chooses weights with sum one that are
controlled by a Gaussian distribution centered on the position of unit k. Note that it
performs worse than the maximal weights method [12]. Essentially, the main idea of
the SCPS method is a careful tuning of a procedure for selecting πps samples with
fixed πk , obtained by introducing the correlation between selection probabilities or
by modifying the πkls (which remain unknown and cannot be fixed in advance).

A similar approach led [14] to introduce two alternative procedures to select sam-
ples with fixed πk and correlated inclusion probabilities. These two methods are
referred to as the local pivotal method 1 (LPM1), and the local pivotal method 2
(LPM2). These methods constitute an extension of the pivotal method introduced to
select πps samples [8].

The LPM methods draw samples considering distances between units and in
accordance with the updating rule of the Pivotal method, for two nearby units at each
step. The LPM methods update the first-order probabilities πk and πl at each step.
In order to select sample units, it is possible to choose between the LPM1, which is
more spatially balanced, and the LPM2, which is less balanced, but computationally
more feasible. The LPM1 randomly chooses the first unit k and then the closer unit
l (if two or more units have the same distance to k, the method randomly chooses
between them), under the hypothesis that k is the nearest neighbor of l. The LPM 2
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is very similar to the LPM 1; the only difference is that the assumption of nearest
neighboring between the two units is removed. In the case of availability of adequate
auxiliary information, Local Pivotal methods allow to select samples that are well
spread in the space.

However, the geographically distributed units are usually influenced by some spa-
tial effects. In order to effectively use the distance in designing spatially balanced
sampling, we need to suppose that the distance matrix summarizes all the features
of the spatial distribution of the population and, as a consequence, of the sample.
This general hypothesis within a design-based perspective implies that the problem
of selecting spatially balanced samples can be led back to the definition of a design
p(s) with probability proportional to some synthetic index M(Ds) of the matrix
Ds of the distances observed within each possible sample s by using some MCMC
algorithm to select such a sample [17].

This intuitive consideration constitutes the rationale on which is based the method
developed by [2]. The algorithm starts at iteration t = 0, with an initial point s(0),
randomly selected from {0, 1}N according to a simple random sampling (SRS) with
constant inclusion probabilities. In a generic iteration t the elements of s(t) are
updated in the subsequent steps

1. select at random two units included and not included in the sample in the previous
iteration, say i and j. Formally, one among the units within the sample, for which
s(t)
i = 1, and another among the units outside the sample for which s(t)

i = 0,
respectively;

2. denote with ∗s(t)
i the sample where the units in the position i and j exchange their

status. Randomly decide whether to adopt ∗s(t)
i , that is

s(t+1) =
{∗s(t), with probabilityp = min{1, (M(D∗s(t+1) )/M(Ds(t+1) )}
s(t), otherwise

(2)

3. repeat Steps 1. and 2. mq times.

The index M(Ds) can be obviously defined in different ways. As evidenced by [2],
better empirical results can be found with the use of

M(Ds) =
∏

i;si=1

∏

j �=i;s j=1

dβ
i j , (3)

where the exponent β gives the possibility of modeling the spread of the sample.
Higher values of β produce samples with more spread units. The design obtained
using the index (3) is defined as probability proportional to the product of the dis-
tances design (PPD).

The function (3) has an appealing interpretation, since it is congruent with the
underlying assumption of proportionality of the distance between two units di j and
their second-order inclusion probabilities πi j . If such situation hold, the function (3)
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could be viewed as an attempt to approximate the probability p(s) through the prod-
uct of the second-order inclusion probabilities of each couple {i, j}. In this case, we
implicitly consider as realistic the additional hypothesis of conditional independence
of the probabilities of order higher than two. Such definition of p(s) is compatible
with the conventional practice to try to control the πi and the πi j , since they directly
influence the estimates and their variance without taking care of higher order prob-
abilities.

Note that the underlying hypothesis in defining spatially balanced designs is that
the spatial phenomenon under investigation shows a positive homogeneity. In the
case of negative homogeneity (i.e., nearby locations tend to have more dissimilar
values for measured attributes than distant pairs), the previous methods should be
modified in order to provide spatial clustered samples, and not well-spread samples
as in the case of positive homogeneity. Finally, if the phenomenon does not present
any spatial homogeneity, the spatially balanced methods have similar efficiency of
SRS.

For a detailed review of spatially balanced samples, the interested reader can
refer to [3].

3 Empirical Evidence

In this Section, wewill present an empirical application: themethods described in the
previous Sections will be verified on LULC data derived from LUCAS 2012 survey.
The aim is to compare the spatial sampling methods, highlighting advantages and
drawbacks of each technique. In order to reach this objective, we built an artificial
data set based on the LUCAS survey.

The Land Use/Cover Area frame Survey (LUCAS, [11]) is a project funded by
EUROSTAT that has as main objective the production of European crop estimates.
Furthermore, the LUCAS survey also delivers land use data, and is a valuable tool
for environmental monitoring.

The sample frame is performed at the country level, because it is impossible to
produce a regular grid over the complete European territory for statistical purposes.
LUCAS is a spatial reference frame survey of point typology, and is based on the
official digital geographic data of the administrative boundaries and coastlines of
Europe.Very recently, EUROSTAT realized theLUCAS2012 survey in theEuropean
Union. LUCAS 2012 covers all 27 EU countries.

Our artificial data set has been built considering 2012 as reference year and Italy as
country under investigation. A sample of 21,013 points was drawn from a population
obtained overlaying a regular grid of points selected every 2km to the Italian national
boundaries map. This sample constitutes our reference population (or first-phase
sample) that was used in order to verify the different spatially balanced samples
methods that have been described in the previous Section.

We compared the different designs using the mean square errors (MSEs) of the
10,000 HT estimates of the population mean to the same error obtained when using
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an SRS design that is used as benchmark design. Note that, in every simulation,
the MSEs were always very close to the variance of each design because the HT
estimator was unbiased.

We investigated the performances of theGRTS, the balanced sampling constrained
to first and second-order moments of the coordinates (i.e., CUBE 1 and CUBE 2),
SCPS, LPM 1 and LPM 2, and PPD 1, PPD 5, PPD 10 (i.e., with β = 1, 5, 10). In
this application, we only present the results obtained for land use survey.

Note that for reasons of space, it has not been possible to give tables about land
cover survey. However, the results obtained are very similar to those described for
land use survey.

The main evidences are reported in Table1. We describe the performance of
different plans using three different sample sizes n = 100, 300, 600, in order to
evaluate the effect of sample size on the different spatial designs. The sample sizes
chosen approximately represents a range between 1 – 10% of the correspondent
population under investigation. This choice is in accordance with other existing
surveys on land cover/land use (for example, LUCAS). Our case study concerns
Emilia Romagna, a NUTS 2 Italian region (see Fig. 1).

The results showed that the spatially balanced designs are generally more efficient
than SRS. In particular, the results are coherent across different land uses and sample
sizes. Besides, it is worth noticing that the worst performance are obtained with the
GRTS plan. In some case, the GRTS is similar to SRS, showing that its spread over
space is too light to substantially reduce the sampling errors. Better performance are
usually obtained with PPD plans, corroborating our idea that the distance between
units is a peculiar information that must be considered when sampling spatial units.
Note that PPD plans with higher values of β (i.e., with units more spread) showed

Fig. 1 Population grid overlaid the NUTS 3 provinces of Emilia Romagna



40 R. Benedetti et al.

Table 1 Relative efficiency (MSE/MSESRS) and mean (μ) of the spatial balance indices of the
area estimates for each land use and for each design estimated in 10,000 replicated samples in
Emilia Romagna for n = 100, 300, 600

n Agriculture Forestry Urban Unused Other μ

CUBE 1 100 0.892 0.860 1.000 0.991 1.005 0.329

CUBE 2 100 0.901 0.855 0.995 0.987 0.994 0.306

GRTS 100 0.859 0.774 0.956 0.938 0.938 0.288

LPM 1 100 0.850 0.753 0.941 0.917 0.921 0.110

LPM 2 100 0.847 0.770 0.943 0.927 0.921 0.068

SCPS 100 0.840 0.749 0.931 0.928 0.918 0.070

PPD 1 100 0.875 0.780 0.955 0.939 0.942 0.054

PPD 5 100 0.848 0.749 0.928 0.926 0.932 0.076

PPD 10 100 0.833 0.736 0.936 0.900 0.943 0.044

CUBE 1 300 0.908 0.869 1.001 0.971 0.992 0.311

CUBE 2 300 0.899 0.866 0.974 0.966 0.996 0.303

GRTS 300 0.829 0.733 0.906 0.877 0.871 0.296

LPM 1 300 0.786 0.705 0.877 0.846 0.837 0.103

LPM 2 300 0.788 0.716 0.866 0.846 0.837 0.068

SCPS 300 0.787 0.708 0.871 0.845 0.823 0.070

PPD 1 300 0.819 0.748 0.903 0.886 0.894 0.055

PPD 5 300 0.774 0.695 0.863 0.836 0.825 0.075

PPD 10 300 0.771 0.687 0.854 0.840 0.800 0.045

CUBE 1 600 0.893 0.858 1.000 0.965 1.005 0.305

CUBE 2 600 0.893 0.854 1.000 0.952 0.997 0.301

GRTS 600 0.780 0.699 0.881 0.834 0.818 0.298

LPM 1 600 0.730 0.651 0.841 0.767 0.756 0.109

LPM 2 600 0.728 0.648 0.825 0.781 0.779 0.074

SCPS 600 0.715 0.652 0.827 0.763 0.755 0.078

PPD 1 600 0.779 0.703 0.887 0.840 0.847 0.066

PPD 5 600 0.718 0.648 0.824 0.758 0.764 0.085

PPD 10 600 0.707 0.635 0.816 0.756 0.745 0.056

a gain of 36.5% in relative efficiency for some land uses (for example, Forestry) if
compared with SRS.

As already noted in Sect. 2, it is possible to use the spatial balance index to compare
different spatial designs. In the last column of Table1, we report the mean of spatial
balance indices of 10,000 replicated samples for the different designs analyzed in
this paper. The lower values of these means are acquired in correspondence of PPD
plans: these results highlights that the more well-spread samples are obtained using
PPD plans.
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In conclusion, better performance in terms of relative efficiency is obtained using
plans that are well-spread and that make effective use of the distance between spatial
units (i.e., PPD designs).

4 Concluding Remarks

The particular characteristics of the geographically distributed populations should be
considered when a sample is designed. In fact, many populations in environmental,
agricultural, and forestry studies are distributed over space, and it is clear that spatial
units cannot be sampled as if they were generated under the classical independent
urn model. The main challenge for the researchers is how to include these spatial
effects in the sampling designs to reduce the variance of the estimators. Unfortu-
nately, the methods of spatial systematic sampling and spatial stratified sampling
take advantage only partially from these peculiarities. For these reasons, in the past
decades, many sampling designs that explicitly consider these spatial characteristics
have been introduced in the literature.

The foremost research issue regards the capacity of a sample to be well-spread
across the territory considering the occurrence of any spatial structure that is present
in the geographically distributed data under investigation.

In this paper, we compared different spatial designs for land use/land cover sur-
veys. The main results are that, if these spatial characteristics of the data exist, and
the method uses this information, there can be a remarkable reduction of the sam-
pling error if compared with SRS. Generally speaking, the results obtained indicate
good performances for spatially balanced samples with particular reference to spatial
designs based on the distance between geographical units. The computational effort
of these methods is generally not prohibitive also in the case of large frame.

Several issues remain open for future research. In particular, it should be nec-
essary to theoretically derive the second-order inclusion probabilities πkls that are
often unknown.
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Heteroscedasticity,Multiple
Populations andOutliers inTradeData

Andrea Cerasa, Francesca Torti and Domenico Perrotta

Abstract

International trade data are often affected by multiple linear populations and het-
eroscedasticity. An immediate consequence is the false declaration of outliers.We
propose the monitoring of the White test statistic through the Forward Search as
a new robust tool to test the presence of heteroscedasticity. We briefly describe
how the regression estimates change when considering a heteroscedastic regres-
sion model. We finally show that, if the data are analyzed on a monthly basis, the
heteroscedastic problem can be often bypassed.

1 Introduction

The international trade between EU Member States and third countries produces
a huge amount of data which are first collected by the Customs and then monthly
aggregated by national statistical offices (e.g., the Italian ISTAT). The analysis of
the resulting dataset through suitable statistical procedures is usually focused on
the detection of anomalies of various kinds: recording errors, specific market price
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dynamics, or more in general transactions which are not in line with the market.
Monitoring such discrepancies is of primary interest for EU authorities as they could
hide unfair or fraudulent commercial behaviors, such as trade-based money laun-
dering, dumping, import duty evasion. All these can have a big negative impact on
the EU economy, the EU budget, and on the internal competition of EU market. The
statistical treatment of such data requires the availability of robust methods, in order
to obtain results that are not affected by the irregularities that we are looking for.

One of the robust statistical techniques most successfully applied in this context is
the Forward Search, “...a powerful general method for detecting unidentified subsets
and masked outliers and for determining their effect on models fitted data” [6].
In [6], the Forward Search is applied on imports of a fishery product that is now
available in the FSDA toolbox [7]. The Forward Search output of the regression of
volume of trades on quantities traded clearly points out the presence of a pointwise
outlier and of a group of transactions occurred at a price sensibly lower than the
normal (“fair”) price of the product. Unfortunately, international trade dataset are
sometimes characterized by two general problems that dramatically affect the good
properties of Forward Search and could lead to misleading conclusions: the presence
of multiple linear structures and the heteroscedasticity. They can be considered as a
direct consequence of the limits of products’ classification,whose categories are often
not enough precise to distinguish the different quality levels of the products in the
same category. This topic has been extensively debated in several official documents
regarding the possibility of using custom data for the calculation of Import/Export
Price Indexes. See [5].

A typical case ofmultiple populations is presented in the left panel of Fig. 1, where
the exchanged quantities of an ornamental fish and the corresponding volumes are
plotted. It is possible to clearly detect at least three linear relations, representing
three different prices. It is obvious that no robust method based on a linear relation
between quantity and volume, like the Forward Search (right panel), would be able
to disentangle the three relations and to provide a plausible result.
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Fig.1 EU imports of an ornamental fish.Data representmonthly aggregates for the period starting in
January 2009 until December 2011. Left panel scatterplot of VALUE (in thousands of Euro) against
QUANTITY (in tons) exchanged. Right panel forward plot of the Minimum Deletion Residual
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This is POD (final R2=0.99398, initial R2=0.94981)
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Fig.2 EU imports of a mineral product. Data represent monthly aggregates for the period starting
in January 2009 until December 2011. Left panel Forward Search fit on the scatterplot of VALUE
(in thousands of Euro) against QUANTITY (in tons) exchanged; the dashed line is the fit on all
data. Right panel forward plot of the Minimum Deletion Residual; the trajectory escapes from the
bands since the very first steps

Left panel of Fig. 2 represents instead a case of heteroscedastic trade data; the
good considered here is a mineral product. As the data show, the assumption of
homoscedasticity for the OLS residuals is clearly violated. Again, the results and the
conclusions based on the Forward Search regression (right panel) could be affected
by the violation of such a fundamental assumption and should be evaluated carefully.
Therefore, the availability of an instrument which is able to point out when we can
trust the single normal model and therefore the Forward Search output and when
instead it has been probably contaminated by one of the mentioned problems, is of
primary importance. It could help us indeed to distinguish the real discrepancies in
trade data from the “spurious” ones.

The paper is organized as follows. In the next section, the consequences of the
application of the Forward Search on dataset characterized by multiple populations
and heteroscedasticity are analyzed. Then, the use of the White test as a diagnostic
tool for monitoring and evaluating the departure from the homoscedasticity assump-
tion is presented. A first attempt to adopt an heteroscedastic model in trade data
is given in Sect. 4. The consequences on the regression estimates of such model
are briefly discussed. Finally, a monthly price approach is introduced as a possible
alternative to address the problem without adopting a heteroscedastic model.

2 The Forward Search in Presence of Multiple Populations
and Heteroscedasticity

The basic idea of the Forward Search [1] is to start from a small, robustly chosen,
subset of the data and to fit subsets of increasing size, in such a way that outliers and
subsets of data not following the general structure are clearly revealed by diagnostic
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monitoring. If there is only one population the increasing fitting from a few obser-
vations to all observations will be stable. Otherwise, if in the data there are outliers
or groups, there will be a point where the stable progression of fits is interrupted. In
the classical regression model we have one univariate response Y and v explanatory
variables

X1, . . . , Xv

satisfying
E(yi ) = β0 + β1xi1 + . . . + βvxiv (1)

under the usual assumptions, in particular E(εi ) = 0 and E(ε2i ) = σ 2 being εi =
|E(yi ) − yi |. Each subsample is obtained by looking at the n squared regression
residuals

e2i (m) = [yi − {β̂0(m) + β̂1(m)xi1 + . . . + β̂v(m)xiv}]2 i = 1, . . . , n

computed from the OLS estimate of beta at stepm. S(m + 1) is defined as the subset
of observations corresponding to the m + 1 smallest squared residuals e2i (m). The
search starts from an outlier-free subset of m0 observations. Usually m0 = v + 1,
with S(m0) chosen through the least median of squares criterion of [8].

In our context, the response variable is the value of the transactions, whereas the
explanatory one is the quantity of product exchanged. The output of the Forward
Search applied to the ornamental fish trades of Fig. 1 and to the mineral product data
of Fig. 2 are represented in the corresponding right panels. In the case of multiple
population, the Forward Search automatically selects the linear structure with the
highest leverage and declares outliers all the points of the other structures. However,
this declaration may be misleading since the points detected could simply represent
prices of different quality levels. Besides, in the case of heteroscedasticity the For-
ward Search tends to overdeclare the outliers. It seems indeed that most of them
are actually coherent with the model, once heteroscedasticity is taken into account.
Moreover, the line estimated by the method does not seem to represent the central
tendency of the data.

Then the main consequence of applying the Forward Search in the presence of
heteroscedasticity or multiple linear structures is an overdeclaration of outliers. This
represents a serious problem in the anti-fraud context because each outlier should
be analyzed in detail in order to determine whether it may hide or not a fraudulent
behavior and to initiate a costly investigation. In other words, declaring false outliers
means wasting economic resources and should be thus avoided.

3 Forward Plot of theWhite Test

In order to verify the presence of heteroscedasticity,we can use thewell-knownWhite
test [4]. TheWhite test is very popular also because it does not assume a specific form
of heteroscedasticity. It is based on an auxiliary regression with squared residuals as
dependent variable and independent variables given by the regressors of the initial
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Fig.3 Forward plot of theWhite test statistic for themineral product (left panel) and the ornamental
fishery (right panel) datasets

model, their squares and their cross products. To avoid the bias introduced by the
possible presence of outliers, we have robustified the test by monitoring the statistic
with the Forward Search. More precisely, the quantity monitored is the coefficient
of determination of the following auxiliary regression, that we report for the simple
case of one independent variable:

e2i (m) = α̂0(m) + α̂1(m)xi1 + α̂2(m)x2i1 + ui i = 1, . . . , n (2)

Figure3 presents the forward plots of the White test statistic for the two datasets
considered. For the mineral product (left panel) the plot shows that after about 500
steps the statistic exceeds the 90, 95 and 99% confidence bands, obtained through
montecarlo simulations, represented with dashed lines. This highlights very clearly
the presence of heteroscedasticity in the dataset. As a consequence, the forward plot
of the minimum deletion residual, traditionally monitored in the regression context,
exceeds the bands from the very first steps (right panel of Fig. 2). In conclusion
many outliers are wrongly declared. The right panel of Fig. 3 demonstrates that the
forward plot for theWhite test can be also used to detect situationswhere data contain
different linear structures, like for the ornamental fish dataset.

As a result, in our operational context we can use the proposed approach to
highlight cases when the standard Forward Search outlier detection model is not
reliable and more complex models have to be adopted. Possible models to account
for multiple populations in this difficult context have been addressed elsewhere (see
for example [3,6]). Here, we briefly outline a possible approach to heteroscedastic
data (Sect. 4) and a practical approach to work around the problem, specifically
applicable in our context (Sect. 5).
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4 Forward SearchMonitoring with Harvey’s Heteroscedastic
Model

A natural step forward for avoiding the problems exemplified by Fig. 2 is to replace
in the Forward Search the traditional homoscedastic model with a hetheroscedastic
one. A good candidate is the well-known multiplicative model of Harvey [4], which
has been recently proposed in the context of international trade analysis by [2]. In
this model, the error variance is modified according to the following equation:

σ 2
i = σ 2 exp(x ′

iα) (3)

where α is a parameter to be estimated.WhenHarvey’s model is used in combination
with the Forward Search to analyze the mineral product data, the fit and the set of
outliers detected change completely, as shown in Fig. 4. With the traditional model
(Fig. 2) the part of the data retained by the Forward Search for the final fit is a strip
located in the upper part of the scatterplot; the resulting prediction interval bands
are essentially parallel and reflect the homoscedasticity assumption. With Harvey’s
model of Fig. 4, the fit is well in the center of the data and the outliers are separated
from the good units by curvilinear bands, as it appears more clearly from the zoom in
the right panel. However, the number of outliers is still evidently too large, meaning
that the bands should open in a even more curvilinear way.

Fig. 4 Scatterplot of VALUE (in thousands of Euro) against QUANTITY (in tons) exchanged for
the mineral product data. Linear model and outliers estimated by the Forward Search with Harvey’s
multiplicative model (left panel). On the right panel a zoomwhich emphasizes the curvilinear shape
of the data along the regression fit
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5 Monthly Fair Prices

In trade data the latent factor which often explains the presence of heteroscedasticity
is the time factor. The price of a product is indeed subject to changes during time due
to several reasons (inflation, technical improvements, seasonal effects). As a result,
considering simultaneously data related to different time periods could produce mul-
tiple groups. On the other hand, heteroscedasticity could also be seen as a particular
case of multiple populations. In fact, if the linear structures are so close to almost
overlap, it would be difficult to distinguish their graphical representation from one
originating from a single population with heteroscedastic error.

But if we analyze each single time period independently, then we should be able
to isolate every linear structure, provided that the product is well and univocally
defined and that there are no other latent factors. As an example, Fig. 5 shows in its
left panel the scatterplot for the January data of the mineral product dataset. The data
lie on an almost perfect line and there are no signs of heteroscedasticity. As a further
confirmation, the right panel shows the corresponding forward White test plot. The
trajectory confirms indeed the absence of heteroscedasticity: the curve exits from
the 90% band only in the last step of the Forward Search, which is indication of the
presence of some outliers but not of heteroscedasticity. Moreover, now the Forward
Search regression is able to capture the central tendency of the data and to give a
reliable and robust estimate of the monthly price of the product. Scatterplots of other
months show similar results.

Another advantage of the monthly approach is that it gives the possibility to study
the trade price dynamics. This is relevant for detecting general patterns of economic
interest such as unexpected peaks, seasonal components, market trends, and so on.
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Fig. 5 EU imports of a mineral product, for January 2009 only. Left panel scatterplot of VALUE
(in thousands of Euro) against QUANTITY (in tons) with outliers detected by the Forward Search.
Right panel forward plot of the White test statistic
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6 Discussion

We have briefly discussed some frequent issues in trade data analysis, which have
to do with deviations from the standard model assumptions of single homoscedastic
population and absence of outliers.

In practice, this issues complicates a lot the problem of estimating the fair import
price using data in a reasonable time window (typically 3 years). For this reason,
these issues can be avoided by considering the time component and fitting the data
on a monthly basis. This approach is applicable on a considerable number of cases
but not in general.

Therefore, the monitoring of the White test was used as an easy and automatic
instrument to detect at least the presence of the above deviations in complete scans
of trade data.

The more sophisticated monitoring of Harvey’s multiplicative model was briefly
demonstrated on a trade dataset. Although the results given by the classic model of
Harvey are clearly closer to the user expectations, the distribution and number of
outliers suggest that the model is not capturing perfectly the actual heteroscedastic
component of these data. Improvements of the model in this context and demonstra-
tions on different real datasets are proposed and recently discussed by [2]. Future
work should include an extensive testing of such models on simulated data.
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How toMarry Robustness andApplied
Statistics

Andrea Cerioli, Anthony C.Atkinson and Marco Riani

Abstract

A striking feature of most applied statistical analyses is the use of methods that are
well known to be sensitive to outliers or to other departures from the postulated
model. Since data contamination is often the rule, rather than the exception, we
investigate the reasons for this contradictory (and perhaps unintended) choice.We
also provide empirical evidence, in a real-world regression problem concerning
international trade, of the advantages of a new approach to data analysis based on
monitoring. Our approach enhances the applicability of robust techniques and the
interpretation of their results, thus yielding a positive step towards a reconciliation
between robustness and applied statistics.

1 Introduction

An early use of the term robustness is due to [5] in a study of the effect of non-
normality on tests of equality of variances. He commented that means are robust
to departures from normality, but that estimates of variances are not. The matter
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is clearly important, since data frequently depart from the assumptions behind the
models of mathematical statistics used to derive tests and other statistical procedures.
Twenty years after Box, the outlines of the modern theory of robust statistics were
becoming clearly established as the development of procedures that behaved well
under small departures from standard assumptions, typically those of normality. This
is a much narrower study than that implied by Box. One purpose of our paper is to
show how the range of application of robust methods can be extended through the use
of ‘monitoring’, exemplified in Sect. 3, wherewe study aspects of fittedmodels under
a series of assumptions about the level of contamination in the data. An important
byproduct is a simplification of the numerous choices required in the application of
robustmethods.We concludewith a discussion of problems that havemostly not been
the subject of robust analysis. One example, treated in Sect. 4.1, is the identification
of data that not only include outliers but in which groups of observations come from
different models. But we start with a brief history of the development of robust
methods.

Reference [38] gives a short history of robustness. The earliest book-length ref-
erence is [1] (the Princeton Robustness Study), at which time it was expected that
all statistical analyses would, by default, be robust. Now, a further forty years on,
there are at least 6 books about robust statistics with over 1,000 citations in Google
Scholar. At the time of writing, the most highly cited is [23] (and its second edition
[25]), the others, in citation order, are [1,18,21,28,36]. Unfortunately, this activity
seems largely to be statisticians talking to other statisticians. Recent references with
more applied emphasis, especially to health sciences, include [15,20] and the forth-
coming book by [14]. However, the impact of robust methodologies in substantive
domains still remains minor.

Although the term “robust” was first popularized by Box, the idea of considering
the distribution of statistics under departures from the assumption of normality goes
back at least to E.S. Pearson’s review [29] of the second edition of Fisher’s Statistical
Methods for Research Workers, an interest that was to stay with Pearson until the
end of his scientific life. The current understanding of robust was much more the
creation of Tukey, starting with [39], and of [22]. Stigler writes:

“... by 1972 a number of the earlyworkers in robust statistics expected that from the
1970s to 2000wewould see the same development with robust methods—extensions
to linearmodels, time series, andmultivariatemodels, andwidespread adoption to the
point where every statistical package would take the robust method as the default....
This was, and I [Stigler] will call it, a Grand Plan. But that plainly is not what has
occurred”.

Stigler then presents a lively and warm discussion of the early history of robust
statistics. One reason for the lack of opening to the scientificworldmay be that robust
statistics, as often understood and practised, has led to a newmathematical statistics,
more complicated than the old, in which ever more refined solutions are presented
to a few well-defined problems. We describe some of these complications in Sect. 2.
From the standpoint of a user of statistical methods, the result of a robust analysis
is to provide an alternative, for example for regression, to least squares. There are
therefore two summaries of the data, rather than one. That this is not an especially
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appealing development is evidenced by the failure of major commercial statistical
packages to implement robust methods of data analysis except as special procedures
within a well-segregated collection of routines. We appreciate that there are several
robust libraries available in R, but would argue that, again, this package tends to be
statisticians talking to statisticians.

Stigler suggests that the first signs of trouble with the Grand Plan were already
evident in 1972 at the time of the publication of the Princeton Robustness Study. To
quote him again:

“From the full set of 10,465 estimates of a location parameter they had considered,
they reported in detail on the accuracy of 68 estimates that had received extensive
study, focusing upon small samples and an inventively wide selection of 32 distrib-
utions, nearly all of which were symmetric scale mixtures of normal distributions”.

This is far from the Grand Plan and, indeed, none of the authors of the conclusions
in Chap. 7 of the Study made any grand claims for their work. Unlike the psalmist,
they all display a compulsive refusal to lift their eyes to the hills, even for a moment;
no Grand Plan is needed. But the year’s work in Princeton by many intellectually
impressive statisticians did not move far in solving the typical problems of data
analysis mentioned in our first sentences. Indeed, your second author remembers the
mounting despair with which a reading party organized by David Cox at Imperial
College worked through the Study. We were quickly mired in the details of trying to
remember what was, for example, an ‘iteratively C-skipped trimean’. In Cox’s recent
book on applied statistics [13] the index contains just one reference to robustness.
The relevant page carefully discusses the identification and treatment of outliers,
stressing the comparative difficulty of the identification of multiple outliers and
the importance of considering physical interpretation for any outliers found; points
partially illustrated in the analysis of our example in Sect. 3. Likewise, the main
reference to robustness in Huber’s recent book on data analysis [24] downplays
formal methods of robustness. In Sect. 5.3, ‘Mathematical statistics and approximate
models’ Huber writes about the work of Fisher that, after Fisher “the robustness
paradigm – explicitly permitting small deviations from the idealized model when
optimizing – carried [the argument] only a few steps further”. We hope to show that
these works underestimate the contribution to intelligent data analysis that can be
made by proper monitoring of the robust methods developed over 50 years since the
study.

The most extreme forms of robustness usually considered are a very robust fit,
asymptotically resistant to 50% of aberrant observations, and maximum likelihood,
including least squares, which have zero breakdown point. It is common [36,37]
to suggest comparison of the residuals or Mahalanobis distances from such fits. In
the approach illustrated in Sect. 3 we extend this idea, monitoring such quantities
as residuals or distances, parameter estimates, test statistics and other quantities of
interest as the robustness of the fit decreases.We thus obtain information on important
changes in conclusions that come from differing assumptions about the degree of
contamination in the data.

One consequence of our monitoring of robust procedures is that, by considering
a variety of procedures for robust fitting, we are able to determine which, amongst
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the many parameters of the algorithms, are those that are critical, distinguishing
them from those that are only of secondary importance. The final goal is to provide
insightful data analyses by following well-specified procedures that can be straight-
forwardly applied by non-specialists in robust statistics.

Our paper is structured as follows: in Sect. 2 we discuss the choice of an appropri-
ate form of robust method, with an emphasis on regression, difficulties in numerical
procedures and the interpretation of the results of a robust analysis. An important sta-
tistical drawback to downweightingmethods, as opposed to trimming, is the breaking
of the connection between each observational unit and quantities derived from the
analysis, such as parameter estimates.

An example of monitoring is in Sect. 3 where we compare two methods of robust
regression. One, S estimation, reveals that robust and non-robust fits to the data are
very different; the other method, MM estimation, fails to do so, a finding in line with
the conclusions of [33], who use monitoring to compare many different forms of
robust regression.

As the quotation above from [24] indicates, standard robustmethods have typically
been developed under the assumption that there is a single model from which there
are small departures, such as a slightly non-normal distribution of errors, perhaps
together with gross outliers. This is only a slight part of the broad range of possible
departures the data analyst may face. We indicate many such problems in Sect. 4,
the theme of which is “robustness against what”? One important form of departure
arises when the data are a mixture of observations from more than one model. For
multivariate normal populations, this leads to problems of clustering. In Sect. 4.1 we
continue the analysis of the regression data fromSect. 3, showing that they come from
two different regression models. There are also a number of outliers. An important
feature of robust clustering is that it is not necessary to cluster all observations. Our
random startmethod based on the Forward Search does not require prior specification
of the amount of trimming required, a feature it shares with themethod of monitoring
of Sect. 3. The subsequent section of the paper discusses some related issues that
may contribute to discouraging the use of robust techniques, such as the difficulty
in obtaining a reliable estimate of the number of outliers and the lack of knowledge
about the empirical behaviour of the methods when the errors are very non-normal.

2 WhichMethod and How toTune It?

A major disincentive to the routine use of standard robust methods is the number
of decisions that have to be made before the analysis of the data begins. We now
describe some of these.

1. The efficient application of robust methods depends on the proportion of outliers
expected in the particular set of data being analysed. These determine the desired
efficiency or, equivalently, breakdown point. Clearly, a very robust analysis can
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always be used, but this results in an unnecessarily low efficiency for data that
are virtually outlier free.

2. The next choice is the nature of robust estimator that is required. For regression
[33] identify three classes of estimators:

a. Hard (0,1) trimming such as Least Trimmed Squares - LTS: [17,35] or Least
Median of Squares -LMS: [35] inwhich the amount of trimming is determined
by the choice of the trimming parameter.

b. Adaptive Hard Trimming. In the Forward Search (FS), the observations are
again hard trimmed, but the amount of trimming is determined by the data,
being found adaptively by the search. See [2,32] for regression and [4] for a
general survey of the FS, with discussion.

c. Soft trimming (downweighting). M estimation and derived methods, includ-
ing weighted likelihood. The intention is that observations near the centre of
the distribution essentially retain their value, but a suitable weight function
ensures that increasingly remote observations have an effect on fitting that
decreases with distance from the centre [25,27,28].

3. Within the soft trimming family, both the weight function, often called ρ(·), and
the one or two parameters determining efficiency have to be chosen. Reference
[33] use monitoring to compare three methods: S, MM and τ for four ρ functions:
Tukey’s bisquare, optimal, Hyperbolic and Hampel.

The calculations for robust estimation are also much more difficult than those of
least squares. The functions to be maximized when using robust estimators are typi-
cally complicated, with many local maxima. In consequence, approximate methods
are used. The standard approach uses randomly sampled subsets of p observations
(elemental sets). We now list some of the choices that have to be made to provide a
viable algorithm.

1. The number of subsamples to extract, to each of which the model is fitted exactly.
These fitted values are used to evaluate the function to be maximized.

2. The maximum number of refining iterations (concentration steps), if any, within
each subsample.

3. The tolerance for the convergence of the estimate of β in the refining steps.
4. The number of best subsets resulting from the refining steps to be brought to

convergence.
5. The number of refining iterations for each best subset being brought to conver-

gence.
6. The tolerance for the estimate of β in the refining steps for each subset being

brought to convergence.
7. The tolerance for the estimate of scale in the best subsets.
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In calculations for the example in Sect. 3 we follow the recommendations of the
FSDA toolbox. Reference [19] show that inappropriate choices of some of these
tuning constants may lead to inconsistency of the resulting algorithms.

Perhaps even more important than these technical matters, are the statistical prob-
lems related to, in particular, the downweighting of observations.

1. There is a loss of simplicity in the tests related to parameter estimates. In their
Sect. 7.6, [25] point out that there may be alternative and equally plausible robust
variants of the asymptotic standard errors of estimated regression coefficients.
Reference [33] describe, and later exemplify, two such robust variants of the
usual t-test, which sometimes differ in the conclusions they lead to. There is no
guidance as to which is to be preferred in such circumstances.

2. Through the use of downweighting, the analyst loses the connection between
each unit and the parameter estimates and other statistically important quantities.
We note that this connection is maintained in the FS and other hard trimming
methods.
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3 An Example of Monitoring

We illustrate the use of monitoring in the context of international trade, which is
an important field of application for the EU economy. For instance, [8] describe the
importance of careful statistical analysis of international trade data and some of the
challenges emerging in such an exercise. The dataset that we consider contains the
value and weight of n = 1,558 import transactions of vegetable products, such as oils
and seeds, to one specific EUMember State from a non-EU country. To illustrate the
usefulness ofmonitoring in understanding the properties of various robust estimators,
we compare S andMM estimation. Typically we require 50 robust regression fits per
analysis; a computational burden only made possible by the efficiency of the FSDA
robust library [31] and by the recent technical advances of [34].

In monitoring S estimators we vary the bdp from 0.5 to 0.01. For MM estimates
it is more convenient to monitor changes as the efficiency goes from 0.5 to 0.99.
In both cases we look at plots of all n residuals as a function of efficiency or bdp.
A useful diagnostic, summarizing the plot of residuals, is to plot correlation of the
ranks between the residuals at adjacentmonitoring values.Weconsider three standard
measures of correlation:

1. Spearman. The correlations between the ranks of the two sets of observations.
2. Kendall. Concordance of the pairs of ranks.
3. Pearson. Product-moment correlation coefficient.

If there is a clear division of the solutions into a robust fit and a non-robust one,
with a sharp break between them, this is clearly shown by the correlation plot. For
more complicated examples the point of transition is not so clearly visible. But the
structure of the residual plot is well summarized by looking at correlations.

Figure1 shows the plot of residuals for S estimation. There is a clear break in the
plot between bdp 0.21 and 0.20, as the robust fit changes to least squares. For the
LS fit there seems to be an almost symmetrical distribution of residuals, with around
half a dozen large positive outliers. The robust fit, for higher values of the bdp,
exhibits a highly skewed structure for the residuals. The constancy of the ranking
of the residuals over the two regimes is clearly shown in the right-hand panel of the
plot; all three correlations are virtually one, except for the break point between the
bdp of 0.21 and 0.20.

This figure is very different from that forMMestimation in Fig. 2. Here the pattern
of residuals is constant for all efficiencies in the range studied and similar to that for
the robust part of the S residuals in Fig. 1. The correlation plots show no change in
the pattern.

These results show an appreciable difference between S estimation and MM,
which is tuned to have a high efficiency for the parameters of the linear model. We
now explore the parameter estimates of the linear model and their relationship with
the data.

In these data there is a single explanatory variable. Figure3 shows how the esti-
mate of the slope changes with the bdp for S estimation and the efficiency for MM
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Fig.2 Vegetable products data. MM estimation, optimal ρ function. Left-hand panel, plot of scaled
residuals. Right-hand panel, three measures of the correlations of adjacent residuals. The skewed
distribution of residuals remains constant over the considered range of efficiency. There is no change
in the values of the correlation coefficients in the right-hand panel (note the vertical scale)

estimation. For S estimation the slope remains virtually constant, decreasing from
3.42 to 3.32, until, with a bdp of 0.20, it jumps up to 5.95. Thereafter it again decreases
slightly, with a minimum value of 5.18. On the contrary, forMM estimation the slope
decreases slowly from 3.40 to 3.32; the jump in values is missing.

The behaviour of the S slope that is revealed by monitoring is what might be
expected if there is a main population following a regression line and a cluster of
outliers at a position of high leverage. The right-hand panel of Fig. 3 shows five fitted
lines for S estimation. Those for high bdp down to 0.21 follow the lower line of data.
The fit calculated with bdp = 0.20 lies close to the upper line, for which there are
more observations than for the lower one. As the bdp further decreases the lines
move slightly towards lying between the two main lines, being attracted upwards by
the presence of a few large disconnected outliers, some with appreciable leverage.
The plot for MM lies throughout close to the lower line.

The conclusion from this analysis is that monitoring using S estimation alerts us
to the presence of a structure in the data that would not be so trenchantly revealed
by looking at the output from a single fit. Monitoring MM estimation, on the other
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hand, does not indicate that there is an important departure from the single model
assumed to hold for the majority of the data. Perusal of Fig. 2 might, on the contrary,
suggest that a transformation of the data is needed to achieve a symmetrical error
distribution.

The results here from the comparison of S and MM estimation are in line with
those of the extended study of this kind of monitoring by [33] who conclude that
highly tuned methods like MM and τ estimation often reveal less about the structure
of the data than does S estimation. Of the four ρ functions they compare, they show
that Tukey’s bisquare and the closely related optimal function provide the most
informative monitoring. The hyperbolic ρ function, for some sets of data, is subject
to numerical problems. Here we have used the optimal function.

We return to these data in the next section. Before we do so, we note that it might
be expected that fitted lines for value against weight should go through zero. We
did repeat our analysis setting the regression intercept to zero, but found that the
conclusions were unaffected. Although, in some trading activities, there is a non-
zero intercept, being the cost of setting up an order, such an effect is more common
in domestic mail orders than in the kind of data we are analysing here.
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4 Robustness AgainstWhat?

Standard robust methods were developed for fitting a single model. In this section
we first describe a robust method for determining whether the data are a mixture
from more than one model, although there is the restriction that the models are all
of the same class. In the subsequent section we briefly discuss the more general, and
far broader, problem of robustness when the class of model, or models, also needs
to be identified.

4.1 Several Models: Clustering

The analysis of the trade data in Sect. 3 with monitoring shows that the robust S
fit and least squares differ. However there is no clear indication of what is causing
the difference. Of course, with a single explanatory variable, a simple scatterplot
indicates the structure. But, in general, there may be several explanatory variables
or so much data that perusal of individual scatterplots for all types of transaction is
impossible. We use the FS to provide a robust analysis of data when there are several
sources for the data. We need a robust method as we need to avoid the deleterious
effect of the outliers, the presence of which is evident in the figure.

The forward search achieves robustness by fitting the model to subsets of the data
of increasing size, where the subsets are sequentially chosen to contain observations
as close as possible to the fitted model. The introduction of outliers into the subset is
diagnostically revealed by plots of residuals against subset size as well as formally by
statistically tuned tests using the minimum deletion residual among observations not
in the subset. The method for a single population starts from a robustly chosen subset
ofm0 observations. However, if the data are amixture of observations generated from
more than one model, the robustly chosen initial subset S∗(m0) may lead to a search
in which observations from several models enter the subset haphazardly in such a
way that the various models are not revealed. Searches from more than one starting
point are necessary to reveal the more complicated structure of a mixture.

For finding clusters in multivariate data, [3] suggest running several hundred
searches from randomly chosen initial subsetsm0. At the beginning of the searchwith
regression models, a random start produces some very large residuals. But, because
the search can drop units from the subset as well as adding them, some searches are
attracted to specific regression lines. As the searches progress, the various random
start trajectories converge, with subsets containing the same units. Once trajectories
have converged, they cannot diverge again. As we see in Fig. 4, which is typical
of those for many data structures, the search is rapidly reduced to relatively few
trajectories, some of which show marked peaks. It is these that provide information
on the number and membership of the clusters.

The two peaks in Fig. 4 indicate the two linear structures that are apparent in Fig. 3.
The final peak in the plot results from the outliers, which are also evident in Fig. 3.
The next step in the analysis of the data is to ‘interrogate’ the peaks, taking many
of the units in the subset just before the peaks as large initial subsets for forward
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searches to confirm cluster membership. The availability of automatic procedures for
deciding cluster membership is an advance over many robust clustering procedures
which require prior information on the number of clusters and on the proportion of
the data to be trimmed, and so suffer from one of the main disadvantages of robust
methods listed in Sect. 2.

A final word is in order about the interpretation of the forward plot of deletion
residuals in Fig. 4. In all there are 1,558 observations. However, the two peaks come
atm = 1,174 and 1,310, which total much more than all the observations. There are,
however, an appreciable number of observations at low values of x ; due to variability
in the data, these could belong to either line. Straightforward clustering would be
unable to decide to which line such observations should be allocated.

4.2 WhichModel for the ‘Good’Data and HowMany Outliers?

The development of high-breakdown techniques, like S and MM estimation, has
been the mainstream of theoretical work on robust statistics for at least 25 years.
These methods are expected to work well in a contamination framework where the
data generating distribution, say G(y), is such that

G(y) = (1 − γ )G0(y) + γG1(y). (1)
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Fig. 4 Vegetable products data: forward plots of minimum deletion residuals from 200 random
starts with pointwise 1 and 99% limits. There appear to be two distinct groups (regression lines)
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In model (1), G0(y) and G1(y) denote the distribution functions of the ‘good’ and
of the contaminated part of the data, respectively, and γ < 0.5 is the unknown con-
tamination rate.

We speculate that another reason for the limited appeal of robust methods in
practical applications is the need to specify G0(y). Furthermore, very little is known
about both the theoretical and empirical behaviour of the techniques when G0(y) is
not normal. To motivate our claim, we observe that all high-breakdown estimators
require computation of a normalizing constant which ensures consistency when γ =
0. In the case of hard trimming, this constant is a scaling factor for the estimate of
dispersion and, in the case of soft trimming, a threshold above which observations
are given zero weight. As far as we know, explicit and computable formulae for
the normalizing constant exist only if G0(y) is the normal distribution and, indeed,
relevant real-world applications have been confined to this model.

Reference [10] propose a method for testing the hypothesis that G0(y) in (1) is
normal. The good power properties of their test seem to suggest that the empiri-
cal behaviour of high-breakdown techniques may be considerably different under
non-normal models, especially when G0(y) is skewed. Furthermore, they show the
potentially deleterious consequences of a naive approach to robustness which is often
implemented in practice, when standard methods are applied to the observations that
remain after outlier removal.

Even when G0(y) is the normal distribution, many high-breakdown procedures
show poor finite sample properties for estimation of the contamination rate γ . The
tendency to produce a plethora of spurious outliers has been shown in many studies,
starting from [12] and including [9]. We argue that this tendency has also been
a serious constraint on the dissemination of robust methods among practitioners.
As a consequence, we strongly advocate the use of robust techniques that are able
to provide effective control on the number of false discoveries, while keeping good
detection properties. References [6,7] proposemodified high-breakdown procedures
that can achieve this goal, while [30,33] and this paper point towards a flexible
monitoring approach.

5 Conclusion

We argue that there is compelling need for a reconciliation between robustness and
applied statistics. In this paper we have investigated some of the reasons that we
see as major disincentives to the routine use of standard robust methods. We have
also provided empirical evidence, in a regression setting and in a real-world problem
concerning international trade, of the advantages of a new approach to data analysis
based on monitoring.

We conclude by noting that our monitoring approach deserves further theoretical
investigation. A pioneering contribution in this direction, although in a somewhat
simplified setting, is the study of the asymptotic properties of the radius process of
[16]. Results for the forward search are provided by [11,26], while the properties
of the trajectories of the residuals computed from other high-breakdown estimators,
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like those given in Figs. 1 and 2, are still unexplored. Nevertheless, we trust that our
work will provide a positive contribution towards the desired reconciliation.
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Abstract

When analyzing outcome variables that take on values within a finite bounded
interval, standard analyses are often inappropriate. The conditional distribution
of bounded outcomes given covariates is often asymmetric and bimodal (e.g.,
J- or U-shaped) and may substantially vary across covariate patterns. Analyz-
ing this type of outcomes calls for specific methods that can constrain inference
within the feasible range. The conditional mean is generally not an effective sum-
mary measure of a bounded outcome, and conditional quantiles are preferable.
In this chapter we present an application of logistic quantile regression to model
the relationship between Mini Mental State Examination (MMSE), a cognitive
impairment score bounded between 0 and 30, with age and the results of a bio-
chemical analysis (Oil Red O) for the determination of cytoplasmic neutral lipids
in peripheral blood mononuclear cells in a sample of 124 cancer patients living
in Sardinia, Italy. In addition we discuss an internal cross-validation method to
optimally select the boundary correction in the logit transform.
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1 Introduction

Bounded outcomes are measurements that take on values on a known finite inter-
val, which can be closed, open or half closed. Examples of bounded outcomes can
be found in many research areas. Frequency distributions of this type of variables
may assume a variety of shapes including unimodal, U-shape, and J-shape. To ana-
lyze bounded outcomes traditional statistical methods, such as least squares regres-
sion, mixed effects models, and even classic nonparametric methods, such as the
Wilcoxon’s test, may prove inadequate.Methods that constrain inference to liewithin
the feasible range of values should instead be considered. Reference [4] explored the
use of a regression quantile model based on a logistic transformation of quantiles for
values of the outcome at the boundaries of the range.

Quantile regression models conditional quantiles of the response variable. The
basic idea dates back to the 18th centurywhenBoscovich [3] introduced the criteria of
minimization of the sum of absolute residuals to fit a median regression. More recent
computational developments have encouraged the use and spread of this method. In
1959 Wagner [11] formulated the problem as a linear programming problem, and
an efficient algorithm was introduced in 1973 by Barrodale and Roberts [2]. This
regression method is becoming increasingly popular [6].

Compared with least squares regression quantile regression has numerous advan-
tages: it makes no distributional assumptions about the regression error term, its
inference is invariant to monotone transformations of the outcome variable, it is
robust to outliers and it allows inference on the entire shape of the conditional dis-
tribution and not just the mean.

Weused logistic quantile regression to analyze the relationship between a bounded
outcome score and a set of covariates with data from the cancer therapy service of
the University of Cagliari, Cagliari, Italy. We also investigated the use of a cross-
validation algorithm to optimally define the boundary correction in the logit trans-
form.

2 Logistic Quantile Regression

In this section we follow the description given by [4].
Consider a sample of n continuous observations {y1, . . . , yn} bounded from below

and from above by two known constants ymin and ymax , and a set of s covariates
x = {x1, . . . , xs}T . The p-th quantile of the conditional distribution of yi given xi is
defined asQy(p) = xTi βp. For example, if p = 0.5,Qy(0.5) indicates the conditional
median.

We assume that for any pth quantile, with p ∈ (0, 1), there exists a fixed set
of parameters, βp = {βp,0, βp,1, . . . , βp,s}, and a known nondecreasing function h :
(ymin, ymax) → R such that

h{Qy(p)} = βp,0 + βp,1x1 + · · · + βp,sxs.

The h function is usually called “link” function.
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Because a continuous outcome bounded within the unit interval resembles a prob-
ability, or a propensity, among a variety of suitable choices for the link function h,
Bottai et al. [4] opted for the logit transformation modified to constrain predictions
in the feasible range (ymin, ymax). The selected function is defined as

h(yi) = logit∗(yi) = log

(
yi − ymin
ymax − yi

)
,

with inverse

Qy(p) = exp(βp,0 + βp,1x1 + · · · + βp,sxs)ymax + ymin
exp(βp,0 + βp,1x1 + · · · + βp,sxs) + 1

.

The logit transform permits interpreting the regression coefficient βp,j, j =
1, . . . , s, as a quantile-specific odds ratio. Logistic regression has beenwidely used in
applications for analyzing themean of categorical outcome variables as an alternative
to the method of discriminant linear analysis. Similarly, logistic quantile regression
can be seen as an alternative to linear quantile regression in the analysis of continuous
bounded outcomes.

The parameter βp can be estimated using quantile regression by regressing the
transformed outcome h(yi) on x

Qh(yi)(p) = Qlogit∗(yi)(p) = xTi βp

The parameters estimates derive from the quantile minimization problem

β̂p = min
β∈Rq

n∑

i=1

ρp(h(yi) − xTi βp) = min
β∈Rq

n∑

i=1

ρp(logit
∗(yi) − xTi βp),

where ρp(u) = u(p − I(u ≤ 0)) is a piecewise loss function and I is the indicator
function.

The small- and large-sample properties of the estimator for βp are the same as
those of the quantile regression estimator of the non-transformed dependent vari-
able y. Under assumption of i.i.d. errors the asymptotic distribution of the quantile
estimator, as shown by Koenker and Bassett in 1978 [8], is normal with covariance
matrix ω2(p)(xTx)−1 where ω2(p) denotes the quantity p(1 − p)/f 2(F−1(p)) and
f 2(F−1(p)) is the density of the error distribution evaluated at the pth quantile. That
is, under the same conditions, the limiting behavior of the quantile estimator is sim-
ilar to the behavior of the ordinary least squares estimator. Here the variance σ 2 of
the underlying error distribution is replaced by the quantity ω.

It has been shown [5] that the boostrap resampling technique has some advantage
over asymptotic approximations. In the application in the next Section, we therefore
opted for the use of the bootstrap. Inference on estimates was based on the assump-
tion that the sampling distribution is approximately normal and simple t-tests were
calculated to evaluate the significance of parameters.

Once estimates for the regression coefficients βp are obtained, inference onQy(p)
can then be made through the inverse transform. This is possible because of the prop-
erty of invariance of quantiles to monotone transformations, Qh(y)(p) = h{Qy(p)},
which is not shared by the mean.
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3 ModelingMini Mental State Examination

Between September 2009 and April 2012, a total of 124 patients (66 females, 53%
and 58males, 47%)with solid tumors were admitted to the day hospital of anticancer
therapy service of University of Cagliari. All patients received at least one previous
chemotherapy regimen and were evaluated during chemotherapy cycles. Data on age
and gender were obtained from questionnaires. Clinical information was obtained
from medical charts. Blood sampling was performed during chemotherapy cycles.
The age range was 29–94 years. The data collection for this study was approved by
the Ethics Committee of the Cagliari University School of Medicine, and all subjects
provided written informed consent before participating in this study.

The Mini Mental State Examination (MMSE) measured the participants’ global
cognitive status. MMSE assess orientation with respect to place and time, short-term
memory, episodic long-term memory, ability to perform subtraction and construct a
sentence, and oral language ability. MMSE is a questionnaire-based score bounded
between 0 and 30. A score of 30 points indicates no cognitive impairment, and a
score of 0 maximum cognitive impairment. Subjects with a MMSE score <24 are
typically considered cognitive impaired.

We applied logistic quantile regression to make inference about quantiles of
MMSE.

The covariates considered in the study were sex, age, presence of metastasis and a
binary variable based on the result of a biochemical test performed to determine the
concentration of citoplasmic neutral lipids in peripheral blood mononuclear cells.
Oil Red O (ORO) [9] is a lipid-soluble dye which stains neutral lipids, including
esterified cholesterol but not free cholesterol. It appears as bright red spots in the
cytoplasm. The two levels of the variable ORO used in our analysis represent the red
intensity scored on a semi-quantitative scale: 1 indicates an intense diffuse staining
and higher concentration of neutral lipids and 0 a lower intensity of coloration in
cells.

Our research interest was to study the behavior of patients with cognitive deficit,
corresponding to lower values of MMSE, and investigate if cognitive impairment for
cancer patients corresponded to higher concentration of neutral lipids in the brain [1].
We therefore decided to make inference on lower percentiles of the distribution of
MMSE via logistic quantile regression.

We defined

logit∗ε (MMSE) = log

(
MMSE + ε

30 − MMSE + ε

)
, (1)

where ε was a small quantity added to ensure that the logit transform was defined
for all values of MMSE.

We built three logistic quantile regressionmodels corresponding to the percentiles
p ∈ {0.1, 0.25, 0.50}. The fitted models were the following

Qlogit∗ε (MMSE)(p) = βp,0 + βp,1age + βp,2ORO + βp,3sex + βp,4metastasis.

Because of the equivariance of quantiles tomonotone transformations the constant
ε in the logit function can be set as any value, and it should be selected to ensure
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that the assumption of linearity in the model is met. We selected the constant ε based
on a measure of goodness of fit. Given a set of possible ε values we chose the one
that minimized the loss function that defines the quantile regression problem at any
fixed p:

GOF = min
ε

n∑

i=1

{[logit∗ε (MMSEi) − xTi βp][ωi − p]}, (2)

where ωi = I(logit∗ε (MMSEi) ≤ xTi βp), i = 1, . . . , n.

4 Results and Discussion

The analyses were performed with the statistical software R. We estimated logis-
tic quantile regression with the rq function of the quantreg library [7] after logit-
transforming the outcome. For a Stata command see Orsini and Bottai [10].

Patients baseline characteristics, reported inTable1,were compared across the two
ORO groups by Fisher’s exact test for the categorical variables. For the continuous
variables differences in the distributions were tested by Wilcoxon’s rank-sum test.

The distribution of sex (P-value = 0.80) and that of metastasis groups (P-value
= 0.61) did not significantly differ between the ORO levels, while that of MMSE
and age did.

Figure1 shows the boxplots of MMSE in the two ORO categories. The observed
distribution of MMSE differed between the two groups, and patients with intense
diffusion stain (ORO = 1) showed lower values of MMSE.

These preliminary descriptive analyses suggested an association between MMSE
and ORO categories.

We applied logistic quantile regression to estimate the percentiles p ∈ {0.1, 0.25,
0.5} of the conditional distribution of MMSE.

As discussed in Sect. 3 we considered a numerical criteria for the choice of the
ε constant to be considered in the argument of the logit transform. The dependent
variable MMSE is a score outcome. We assume that MMSE is the rounded value
of a latent continuous variable MMSE∗. Its relationship with the observed values
satisfiesMMSE − 0.5 ≤ MMSE∗ ≤ MMSE + 0.5. Predicted values of the proposed

Table 1 Descriptive characteristics of the study’s participants

Characteristics ORO 0 (N = 105) ORO 1 (N = 19) P-value

Female sex (no. %) 55 (52) 11 (58) 0.80

Metastasis (no. %) 64 (61) 10 (53) 0.61

Age (mean sd) 62.87 ± 11.4 68.05 ± 8.65 <0.001

MMSE (mean sd) 27.83 ± 2.26 25.37 ± 3.24 <0.001
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Fig. 1 Boxplot of Mini Mental State Examination (MMSE) by ORO’s categories. ORO = 0 cor-
responds to a lower intensity of coloration in peripheral blood mononuclear cells; ORO = 1 corre-
sponds to an intense diffuse staining. Patients in the ORO = 1 group show lower values of MMSE

Fig.2 Distribution of logit∗ε (MMSE) against age with the value of the constant ε set to 0 (panel a),
to 0.001 (b), and to 0.5 (c)

model are in a continuous scale in the range (MMSEmin − 0.5,MMSEmax + 0.5).
We selected the constant ε based on a grid search over the interval from 0 to 0.5.

The goodness of fit criteria showed that for the three percentiles considered the
best ε in the logit transform was 0.5. This conclusion could have also been taken
after observing that, as shown in Fig. 2, for higher values of ε the distribution of
logit∗ε (MMSE) against the continuous covariate age tended to be closer to that in
which no constants, e.g. ε = 0, were added in the logit transform.

The explanatory variables in Table1 were initially all included as covariates.
Sex and metastasis were then removed because not statistically significant. Their
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Table 2 Estimates of coefficients of the logistic quantile regression model for the 10th, the 25th
percentile and the median of the logit transform of MMSE. Standard errors, confidence intervals
and P-values were estimated with 1000 bootstraps samples

Coefficients Std error t value P-value CI

p = 0.10 Intercept 4.33 0.61 7.05 0.00 (3.12, 5.53)

ORO = 1
versus
ORO = 0

−0.47 0.28 −1.71 0.09 (−1.02,
0.07)

Age −0.04 0.01 −4.18 <0.001 (−0.06,
−0.02)

p = 0.25 Intercept 4.30 0.77 5.59 0.00 (2.79, 5.81)

ORO = 1
versus
ORO = 0

−0.66 0.23 −2.86 0.005 (−1.12,
−0.21)

Age −0.03 0.01 −2.88 0.005 (−0.06,
−0.01)

p = 0.50 Intercept 5.69 0.92 6.18 0.00 (3.89, 7.50)

ORO = 1
versus
ORO = 0

−0.75 0.20 −3.81 <0.001 (−1.14,
−0.37)

Age −0.05 0.01 −3.65 <0.001 (−0.07,
−0.02)

inclusion did not improve the goodness of fit for any of the percentiles considered
and the estimates of the coefficients for age and ORO remained nearly unchanged.

The final model was

Qlogit∗0.5(MMSE)(p) = βp,0 + βp,1age + βp,2ORO

which included ORO and age as predictors, and ε = 0.5 in the logit transform. Stan-
dard errors, confidence intervals and P-values were estimated with 1000 bootstraps
samples [5]. The estimated coefficients for the three percentiles considered are shown
in Table2.

In the final models all the estimates of the regression coefficients were statistically
significant for the 25th percentile and the median, while the estimate of ORO was
not significant for the 10th percentile.

We were not interested in the average MMSE value, but rather in modeling the
lower tail of the distribution. Because the dataset was quite small the information on
the 10th percentile was insufficient. MMSE score was associated with ORO and with
age for the 25th percentile and the median of the distribution. The interpretation of
the regression coefficients was analogous to the interpretation of the coefficients of
a logistic regression for binary outcomes. The adjusted logit for the 25th percentile
of the MMSE score was estimated to be 0.66 lower in the group of individuals
with ORO = 1 and decreased also with age with a difference of 0.03 for each year.
The exponential of the coefficient estimate (exp(−0.66) = 0.52) represents the 25th
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Fig.3 MMSE distribution against age and predicted transformed values of logistic quantile regres-
sion for the 10th (panel a), the 25th (b), and the 50th percentile (c). The solid line represents the
predicted quantile in the ORO = 0 group and the dashed line the predicted quantile in the ORO =
1 group

percentile odds ratio (OR) of MMSE score in patients withORO = 1 versusORO =
0. Something analogous can be said for themedianwhere the adjusted logit ofMMSE
was 0.75 lower whenORO = 1 and decreased with age with a difference of 0.05 per
year.

Patients with a MMSE < 24 were considered cognitive impaired.
A summary of the inference from the three models is showed in Fig. 3. MMSE

score decreased along with age. Among patients aged >67 years, 25% of those with
ORO = 1 had MMSE values below the cut-point of 24 while 75% of patients with
ORO = 0 were above a MMSE score of 27 (Fig. 3b). Among patients that were >75
years old 50% of individuals with ORO = 1 had a MMSE score lower than the
threshold value, and 50% of individuals with ORO = 0 had MMSE higher or equal
to 27 (Fig. 3c). The figure relative to the 10th percentile did not add any information
to the interpretation of the results (Fig. 3a).

5 Conclusions and Remarks

Our findings suggest that lower quantiles of MMSEwere associated with high inten-
sity of ORO staining, independently on the pathological cancer status of patients.
Specifically, we observed that a high concentration of neutral lipids in peripheral
mononuclear blood cells was associated with cognitive impairment and that older
patients tended to have altered MMSE.

The use of logistic quantile regression allowed drawing a detailed picture of
medical behavior for patients with altered cognitive functions while respecting the
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bounded nature of the response variable. Thanks to the equivariance property of
quantiles, modeling the dependence on the covariates was relatively easy.

The cross-validation criteria, defined as in (2), proved to be a valid and useful
additional tool to reduce the uncertainty and arbitrarity related to the introduction of
a correction constant when defining the logit transform (1) in the data.

The quantiles of discrete bounded outcomes, such as MMSE, are also discrete
and should be modeled as a continuous function of a set of covariates [4]. Discrete
bounded outcomes, however, can often be seen as the discretize version of a latent
continuous variable. This generally facilitates the interpretation of the predictive
values.
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Bounding theProbability of Causation
inMediationAnalysis

A.Philip Dawid, Rossella Murtas and Monica Musio

Abstract

Given empirical evidence for the dependence of an outcome variable on an expo-
sure variable, we can typically only provide bounds for the “probability of cau-
sation” in the case of an individual who has developed the outcome after being
exposed. We show how these bounds can be adapted or improved if further infor-
mation becomes available. In addition to reviewing existing work on this topic, we
provide a new analysis for the case where a mediating variable can be observed.
In particular, we show how the probability of causation can be bounded when
there is no direct effect and no confounding.

1 Introduction

Many statistical analysis aim at a causal explanation of the data. In particular, in
epidemiology many studies are conducted to try to understand if and when an expo-
sure will cause a particular disease. Also in a Court of Law, when we want to assess
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legal responsibility we usually refer to causality. But when discussing this topic it is
important to specify the exact query we want to talk about. For example it may be
claimed in court that it wasAnn’s taking the drug that was the cause of her death. This
type of question relates to the cause of an observed effect (“CoE”) and is fundamental
to the allocation of responsibility. On the other hand, much of classical statistical
design and analysis, for example randomized agricultural or medical experiments,
has been created to address questions about the effects of applied causes (“EoC”).
When we address an EoC query, we are typically asking a hypothetical question:
“What would happen to Ann if she were to take the drug?”. At the very same time
we can address alternative hypothetical questions: “What would happen to Ann if
she were not to take the drug?”.

Assessing the effects of causes can be achieved in straightforward fashion using
a framework based on probabilistic prediction and statistical decision theory [2]. To
formalize the problem, let X be a binary decision variable denoting whether or not
Ann takes the drug, and Y the response, coded as 1 if she dies and 0 if not. We denote
by P1 [resp. P0] the probability distribution of Y ensuing when X is set to the value 1
[resp. 0]. The two distributions P1 and P0 are all that is needed to address EoC-type
queries: I can compare these two different distributions for Y , decide which one I
prefer, and take the associated decision.

The situation is different for a CoE query, where the drug has already been taken
and the outcome observed. A natural way to address a CoE question would be to
try to imagine what would have happened to Ann had she not taken the drug. In
other words, given the fact that Ann actually took the drug and died, how likely is
it that she would not have died if she had not taken the drug? We can not address
a CoE query using only the two distribution P1 and P0. In fact, we can no longer
base our approach purely on the probability distribution of Y and X conditioned on
known facts, since we know the values of both variables (Y = 1, X = 1), and after
conditioning on that knowledge there is no probabilistic uncertainty left toworkwith.
Nevertheless we want an answer. This query can be approached by introducing (for
any individual) an associated pair of “potential responses”Y := (Y (0), Y (1)), where
Y (x) denotes the value of the response Y that will be realized when the exposure
X is set to x (which we write as X ← x). Both potential responses are regarded as
existing, simultaneously, prior to the choice of X , the actual response Y then being
determined as Y = Y (X). However, for any each individual just one of the potential
responses will be observable. For example, only Y (1) will be observable if in fact
X ← 1; Y (0) will then be counterfactual, because it relates to a situation, X ← 0,
which is contrary to the known fact X ← 1.

To address the court’s query we use the formulation of Probability of Causation,
PC as given by [5] who names it Probability of Necessity. In terms of the triple
(XA, YA(0), YA(1)), we define the Probability of Causation in Ann’s case as

PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1), (1)

where PA(·) denotes the probability distribution over attributes of Ann. Knowing that
Ann did take the drug (XA = 1) and the actual response was recovery (YA(1) = 1),
this is the probability that the potential responseYA(0), thatwouldhavebeenobserved
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Table 1 Deaths in individuals exposed and unexposed to the same drug taken by Ann

Die Live Total

Exposed 30 70 100

Unexposed 12 88 100

had Ann not taken the drug, would have been different (YA(0) = 0). But how are we
to get a purchase on this quantity?

Suppose that a good experimental study, inwhich subjectswere randomly assigned
to be either exposed (X = 1) or unexposed (X = 0), tested the same drug taken by
Ann, and produced the data reported in Table1.

Since our analysis here is not concerned with purely statistical variation due
to small sample sizes, we take proportions computed from this table as accurate
estimates of the corresponding population probabilities (but see [3] for issues related
to the use of small-sample data for making causal inferences). Thus we take

Pr(Y = 1 | X ← 1) = 0.30

Pr(Y = 1 | X ← 0) = 0.12,

where we use Pr to denote population probabilities.
We see that, in the experimental population, individuals exposed to the drug (X ←

1) were more likely to die than those unexposed (X ← 0), by 18 percentage points.
So can the court infer that it was Ann’s taking the drug that caused her death? More
generally: Is it correct to use such experimental results, concerning a population, to
say something about a single individual? This “Group-to-individual” (G2i) issue is
discussed by [3] in relation to the question “When can Science be relied upon to
answer factual disputes in litigation?”. It is pointed out that in general we cannot
obtain a point estimate for PCA, but we can provide useful information, in the form
of bounds between which this quantity must lie.

In this paper, we show how these bounds can be adapted or improved when further
information is available. In Sect. 2we consider the basic situationwherewe only have
information on exposure and outcome. In Sect. 3 we bound the probability of causa-
tion when we have additional information on a pretreatment covariate. Section4 con-
siders the situation in which unobserved variables confound the exposure–outcome
relationship. Finally in Sect. 5 we introduce new bounds for PC when a mediating
variable can be observed. Section6 presents some concluding comments.

2 Starting Point: Simple Analysis

In this section, we discuss the simple situation in which we have information, as in
Table1, from a randomized experimental study. We need to assume that the fact of
Ann’s exposure, XA, is independent of her potential responses Y A:

XA ⊥⊥ Y A. (2)
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Property (2) parallels the “no-confounding” property Xi ⊥⊥ Y i which holds for
individuals i in the experimental study on account of randomization. We further
suppose that Ann is exchangeable with the individuals in the experiment, i.e., she
could be considered as a subject in the experimental population.

On account of (2) and exchangeability, (1) reduces to PCA = Pr(Y (0) =
0 | Y (1) = 1), but we cannot fully identify this from the data. In fact, we can never
observe the joint event (Y (0) = 0; Y (1) = 1), since at least one of Y (0) and Y (1)
must be counterfactual. In particular, we can never learn anything about the depen-
dence betweenY (0) andY (1). However, evenwithoutmaking any assumptions about
this dependence, we can derive the following inequalities [4]:

1 − 1

RR
≤ PCA ≤ Pr(Y = 0 | X ← 0)

Pr(Y = 1 | X ← 1)
(3)

where

RR = Pr(Y = 1 | X ← 1)

Pr(Y = 1 | X ← 0)

is the experimental risk ratio between exposed and unexposed. These bounds can be
estimated from the experimental data using the population death rates computed in
Sect. 1.

In many cases of interest (such as Table1), we have

Pr(Y = 1 | X ← 0) < Pr(Y = 1 | X ← 1) < Pr(Y = 0 | X ← 0).

Then the lower bound in (3) will be nontrivial, while the upper bound will exceed 1,
and hence be vacuous.

We see from (3) that, whenever RR > 2, the Probability of Causation PCA will
exceed 50%. In a civil court this is often taken as the criterion to assess legal respon-
sibility “on the balance of probabilities” (although the converse is false: it would
not be correct to infer PCA < 0.5 from the finding RR < 2). Since, in Table1, the
exposed are 2.5 times as likely to die as the unexposed (RR = 30/12 = 2.5), we
have enough confidence to infer causality in Ann’s case: we have 0.60 ≤ PCA ≤ 1.

3 Additional Covariate Information

In this section, we show how we can refine the bounds of (3) if further information
about a pretreatment covariate S is available. For example, S might be a gene, pos-
session of which enhances the dangerous effect of exposure to the drug.We now take
the assumptions of Sect. 2 to hold after conditioning on S (indeed in cases where the
original assumptions fail, it maywell be possible to reinstate them by conditioning on
a suitable covariate S). In particular, XA ⊥⊥ Y A | SA, and Xi ⊥⊥ Y i | Si : adjusting
for S is enough to control for confounding, both for Ann and in the study.
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3.1 Fully Observable

Consider first the situation where we can observe S both in the experimental data
and in Ann. In this case, (1) should be replaced by the more specific definition

PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1, SA = sA)

where sA is Ann’s value for S.We can apply the analysis of Sect. 2, after conditioning
on S, to obtain the estimable lower bound

1 − 1

RR (sA)
≤ PCA,

where

RR (s) = Pr(Y = 1 | X ← 1, S = s)

Pr(Y = 1 | X ← 0, S = s)
.

3.2 Observable in Data Only

But even when we can only observe S in the population, and not in Ann, we can
sometimes refine the bounds in (3). Thus suppose S is binary, and from the data we
infer the following probabilities (which in particular imply the same values as given
in Table1):

PA(S = 1) = 0.50

PA(Y = 1 | X ← 1, S = 1) = 0.60

PA(Y = 1 | X ← 0, S = 1) = 0 (4)

PA(Y = 1 | X ← 1, S = 0) = 0 (5)

PA(Y = 1 | X ← 0, S = 0) = 0.24.

Since we know XA = 1 and YA = 1, from (5) we realize we cannot have SA = 0,
so we must have SA = 1. Then from (4) we see that, when we set X to 0, we can
not obtain Y = 1, so we must have YA(0) = 0. That is, in this special case we can
infer causation in Ann’s case—even though we have not directly observed her value
for S.

More generally [1] we can refine the bounds in (3) as follows:

Δ

Pr(Y = 1 | X ← 1)
≤ PC ≤ 1 − Γ

Pr(Y = 1 | X ← 1)

where

Δ =
∑

s
Pr(S = s) × max {0, Pr(Y = 1 | X ← 1, S = s) − Pr(Y = 1 | X ← 0, S = s)}

and

Γ =
∑

s
Pr(S = s) × max {0, Pr(Y = 1 | X ← 1, S = s) − Pr(Y = 0 | X ← 0, S = s)}

These bounds are never wider than those obtained from (3), which ignores S.
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Table 2 Observational data

Die Live Total

Exposed 18 82 100

Unexposed 24 76 100

4 Unobserved Confounding

So far we have assumed no confounding, X ⊥⊥ Y (perhaps conditionally on a suit-
able covariate S), both for Ann and for the study data. Now we drop this assumption
for Ann. Then the experimental data cannot be used, by themselves, to learn about
PCA = P(YA(0) = 0 | XA = 1, YA(1) = 1).

We might however be able to gather additional observational data, where there
was no possibility of experimental control over subjects’ exposure, X , which might
thus be related to unobserved personal aspects affecting the response Y . However—
importantly—we now assume that the dependence between X and Y for subjects
in the sampled population is just the same as it is for Ann. Let Q denote the joint
observational distribution of (X, Y ), which is estimable from such data. Reference
[7] obtain the following bounds for PCA, given both experimental and observational
data:

max

{
0,

Q (Y = 1) − Pr(Y = 1 | X ← 0)

Q (X = 1, Y = 1)

}

≤ PCA ≤ min

{
1,

Pr(Y = 0 | X ← 0) − Q (X = 0, Y = 0)

Q (X = 1, Y = 1)

}
. (6)

For example, suppose that, in addition to the data of Table1, we have observational
data as in Table2.

Thus

Q (Y = 1) = 0.21

Q (X = 1, Y = 1) = 0.09

Q (X = 0, Y = 0) = 0.38.

Also, from Table1 we have Pr(Y = 1 | X ← 0) = 0.12 (so Pr(Y = 0 | X ← 0) =
1 − 0.12 = 0.88). From (6) we thus find 1 ≤ PCA ≤ 1. We deduce that Ann would
definitely have survived had she not taken the drug.

5 Mediation Analysis

In this section,webound theProbability ofCausation for a casewhere a third variable,
M , is involved in the causal pathway between the exposure X and the outcome Y .
Such a variable is called a mediator. In general, the total causal effect of X on Y can
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Fig.1 Directed Acyclic Graph representing a mediator M , responding to exposure X and affecting
response Y . There is no “direct effect,” unmediated by M , of X on Y

be split into two different effects, one mediated by M (the indirect effect) and one
not so mediated (the direct effect). Here we shall only consider the case of no direct
effect, as intuitively described by Fig. 1. An application in which such an assumption
is plausible is in the treatment of ovarian cancer [6], where X represents management
either by a medical oncologist or by a gynaecological oncologist, M is the intensity
of chemotherapy prescribed, and Y is death within 5 years.

We shall be interested in the case that M is observed in the experimental data but
is not observed for Ann, and see how this additional experimental evidence can be
used to refine the bounds on PCA.

To formalize our assumption of “no direct effect”, we introduce M(x), the poten-
tial value of M for X ← x , and Y ∗(m), the potential value of Y for M ← m, where
the irrelevance of the value x of X to Y ∗ encapsulates our assumption that X has no
effect on Y over and above that transmitted through its influence on the mediator M .
The potential value of Y for X ← x (in cases where there is no intervention on M ,
which we here assume) is then Y (x) := Y ∗{M(x)}.

In the sequel, we restrict to the case that all variables are binary, and define
M := (M(0), M(1)), Y∗ := (Y ∗(0), Y ∗(1)), and Y := (Y (0), Y (1)). In particular,
we have observable variables (X, M, Y ) = (X, M(X), Y (X)). We denote the bivari-
ate distributions of the potential response pairs by

mab := Pr(M(0) = a, M(1) = b)

y∗
rs := Pr(Y ∗(0) = r, Y ∗(1) = s)

yrs := Pr(Y (0) = r, Y (1) = s).

Then

ma+ = Pr(M = a | X ← 0)

m+b = Pr(M = b | X ← 1)

y∗
r+ = Pr(Y = r | M ← 0)

y∗+s = Pr(Y = s | M ← 1)

yr+ = Pr(Y = r | X ← 0)

y+s = Pr(Y = s | X ← 1),

where ma+ denotes
∑1

b=0 mab, etc.
In addition to the assumptions of Sect. 2 we further suppose that none of the

causal mechanisms depicted in Fig. 1 are confounded—expressed mathematically
by assuming mutual independence between X , M and Y∗ (both for experimental
individuals, and for Ann). Then, ma+, m+b, y∗

r+, y∗+s , yr+, y+s are all estimable
from experimental data in which X is randomized, and M and Y are observed.
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It is also easy to show the Markov property:

Y ⊥⊥ X | M.

This observable property can serve as a test of the validity of our conditions.
The assumed mutual independence implies

yrs = Pr(Y ∗(M(0)) = r, Y ∗(M(1)) = s)

=
1∑

a,b=0

Pr(Y ∗(a) = r, Y ∗(b) = s)Pr(M(0) = a, M(1) = b).

This yields

y00 = m00y
∗
0+ + (m01 + m10)y

∗
00 + m11y

∗+0

y01 = m01y
∗
01 + m10y

∗
10

y10 = m01y
∗
10 + m10y

∗
01

y11 = m00y
∗
1+ + (m01 + m10)y

∗
11 + m11y

∗+1,

and

yr+ = m0+y∗
r+ + m1+y∗+r (7)

y+s = m+0y
∗
s+ + m+1y

∗+s . (8)

Suppose now that we observe XA = 1 and YA = 1, but do not observe MA. We
have

PCA = y01
y+1

= m01y∗
01 + m10y∗

10

y+1
. (9)

The denominator of (9) is Pr(Y = 1 | X ← 1), which is estimable from the data.
As for the numerator, this can be expressed as

2μη + Aμ + Bη + AB = 2(μ + B/2)(η + A/2) + AB/2 (10)

with μ = m01, η = y∗
01, A = y∗+0 − y∗

0+, and B = m+0 − m0+. Note that A and B
are identified from the data, whereas for μ and η we can only obtain inequalities:

max{0,−B} ≤ μ ≤ min{m0+,m+1}
max{0,−A} ≤ η ≤ min{y∗

0+, y∗+1},
so that

|B/2| ≤ μ + B/2 ≤ min{ 12 (m0+ + m+0),
1
2 (m1+ + m+1)}

|A/2| ≤ η + A/2 ≤ min{ 12 (y∗
0+ + y∗+0),

1
2 (y

∗
1+ + y∗+1)}.

(11)

The lower [resp., upper] limit for (10) will be whenμ + B/2 and η + A/2 are both at
their lower [resp., upper] limits. In particular, the lower limit for (10) is max{0, AB}.
Using (7) and (8), we compute AB = y+1 − y1+, which leads to the lower bound

PCA ≥ 1 − Pr(Y = 1 | X ← 0)

Pr(Y = 1 | X ← 1)
= 1 − 1

RR
,

exactly as for the case that M was not observed. Thus the possibility to observe a
mediating variable in the experimental data has not improved our ability to lower
bound PCA.
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Table 3 Upper bound for numerator of (9)

m1+ + m+1 ≥ 1 m1+ + m+1 < 1

y∗
1+ + y∗+1 ≥ 1 m0+y∗

0+ + m+0y∗+0 m1+y∗+0 + m+1y∗
0+

y∗
1+ + y∗+1 < 1 m0+y∗+1 + m+0y∗

1+ m1+y∗
1+ + m+1y∗+1

We do however obtain an improved upper bound. Taking into account the various
possible choices for the upper bounds in (11), the upper bound for the numerator of
(9), in terms of experimentally estimable quantities, is given in Table3.

It can be shown that this upper bound is never greater than that in (3),which ignores
the mediator M , and is strictly smaller unless y∗

1+ + y∗+1 ≥ 1 and m1+ + m+1 = 1.

5.1 Example

Suppose we obtain the following values from the data:

Pr(M = 1 | X ← 1) = 0.25

Pr(M = 1 | X ← 0) = 0.025

Pr(Y = 1 | M ← 1) = 0.9

Pr(Y = 1 | M ← 0) = 0.1.

Again, these imply the values given in Table1. Then we find 0.60 ≤ PCA ≤ 0.76;
whereas without taking account of the mediator we would have no nontrivial upper
bound.

6 Discussion

In this paper, we have considered estimation of the Probability of Causation in a
number of contexts, including a novel analysis for the case of a mediating variable in
the absence of a direct effect. As we saw in Sect. 5, considering such a third variable
in the pathway between exposure and outcomewill lead to an improved upper bound,
although conclusions about the lower bound remain the same.

The next stepwill be to generalize our analysis tomore general cases ofmediation,
allowing for the possibility of a direct effect, and for unobserved confounding.
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Analysis of Collaboration Structures
ThroughTime:TheCase
ofTechnological Districts

Maria Rosaria D’Esposito,Domenico De Stefano
and Giancarlo Ragozini

Abstract

In the present work we propose to analyze, through Multiple Factorial Analysis
(MFA), the relational structure embedded in collaboration networks observed
across time occasions. We show, through a case study, how the solutions pro-
vided by the MFA can be interpreted in a suitable way in the relational setting
which arises in complex and heterogeneous networks. Valuable information about
the strength and typology of the collaboration structure and its evolution can be
obtained. As case study, we analyze a Technological District located in South
Italy.

1 Introduction

Collaboration among private companies, institutions, and public research organiza-
tions is a topic of growing importance in the agendas of both research and devel-
opment (R&D) policymakers and governmental administrators. Most policies are
based, either in the design and decision phase or in the implementation phase, on a
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network of agents who concur in the policies [9] to create a critical mass of firms,
research labs, and universities.

In the last decade, in Italy the efforts have been directed in promoting firms inno-
vation capability through their systemic aggregations to foster R&D activities on key
technologies. To this aim, the Italian government, through the Minister of Univer-
sity and Research, MIUR, has created the so-called Technological Districts (TDs) in
some carefully chosen geographic locations in the national territory.1 TDs may be
defined as geographical concentration of interconnected companies and associated
institutions including end-producers, universities, research laboratories, and service
providers, all focused on a specialized area of economic activity.

Often, when the interest is on monitoring the collaboration among the TDs mem-
bers, it is worth to consider the former as a collaboration network. In such a case, it
has to be considered that the collaboration networks under study are complex struc-
tures in which each collaboration tie can be observed across time occasions that span
from the birth of the analyzed TD until its current state. There are several possibili-
ties to measure collaboration in terms of relational ties; among them we focus on the
joint participation to research projects. This latter gives rise to two-mode networks
(actors-by-events). When considering TDs collaboration structures we observe a
time-varying two-mode networks (actors-by-events under different types of rela-
tionships across time occasions). Relational data observed in such conditions can be
organized into multidimensional arrays, and statistical methods from the theory of
multiway data analysis [3,8] may be exploited to reveal the underlying data structure.
Among these latter, in the current work propose to explore the relational structure of
collaboration emerging in a TD setting through the use of Multiple Factor Analysis
(MFA).We show how Social Network Analysis (SNA) techniques jointly withMFA,
can be fruitfully used to obtain valuable information about the strength and typology
of the collaboration structure among TD members. We focus the attention on the
collaboration network of a TD located in south Italy.

2 MFA for Network Data:Main Concepts

Two-mode networks are particular networks that consist of N actors (the first mode)
and J events to which they participate (the second mode) and are represented by a
bipartite graph or by a so-called affiliation matrix.

A time-varying two-mode network is a two-mode network observed along K
occasions (such as time points) in which the N actors are fixed, whereas the events
depend on the occasion. That is, at the k-th occasion we observe Jk events. In Fig. 1
we depict a two-mode network referring to the same set of actors that participate to
different (or even the same) events in each of the K = 3 occasions.

1http://hubmiur.pubblica.istruzione.it/web/ricerca/ricerca-internazionale/technological-district.

http://hubmiur.pubblica.istruzione.it/web/ricerca/ricerca-internazionale/technological-district
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Fig. 1 Example of a grand table Fk for affiliation networks of five actors (from M1 to M5, red
circles) observed over three occasions (K = 3). Actors are fixed, whereas the event occurrences
(from P1 to P5, blue diamonds) depend on occasion k

For each k we have a binary affiliation matrix Fk = ( fi jk), i = 1, . . . , N , j =
1, . . . , Jk, k = 1, . . . , K , with fi jk = 1 if the i-th actor attends the j-th event at
the occasion k, and 0 otherwise. A grand table F can be built up by stacking each
subtables {Fk}k=1,...,K side by side (Fig. 1).

In the present paper, we look at the relational structure embedded not only in
each Fk , but also in F. To this end, we propose to use MFA, which provides a
unifying and general framework to deal with multiple-way matrix, like F. MFA is an
extension of factorial techniques [1,5,6] tailored to handle multiple data tables. This
allows to jointly analyze quantitative and qualitative variables, providing displays in
which representations of the set of individuals associated to each group of variables
are superimposed. By applying MFA to time-varying affiliation networks, we can
perform four different analyses [11]: (i) analysis of each Fk , k = 1, . . . , K through
a suitable factorial method (partial analysis); (i i) analysis of F (global analysis);
(i i i) analysis of structural changes among occasions; (iv) analysis of actor/event
variation over the occasion by projecting the weighted affiliation matrices Fk on the
global factorial plane. To perform MFA, a factorial method has to be chosen for the
analysis of both Fk and F. We choose the use of Multiple Correspondence Analysis
(MCA) because of its nice properties in the analysis of network data [4,11].

Relational patterns at each occasion can be visually analyzed by: (i) representing
events in the actor space: each event in the actor space is represented by two oppo-
site vectors, corresponding to the two poles, lying on the same direction and passing
through the origin. The cosine of the angle between two event segments is the “corre-
lation” between event attendance patterns; (i i) representing actors in the event space:
each actor corresponds to a point and proximity between two actors means they have
similar participation patterns. Actors corresponding to points close to the axes’ ori-
gin have a common participation habit, while actors with corresponding points far
from the center have unusual participation patterns; (i i i) jointly representing actors
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and events: In order to represent actors and events in a joint two-dimensional map
we can use the asymmetric biplot [7]. The direction vector defined by each event is
the biplot axis. By projecting the actor points onto each biplot axis, we can appre-
ciate approximately their event participation profiles. This allows us to characterize
actors’ closeness or farness in terms of event participation.

In theMFA approach, actors with similar participation patterns in all the occasions
will be located close together on the factorial planes. Events can be represented, for
all the occasions, on the same factorial plane by looking at the correlations both with
respect to the events on the same occasion and with respect to the events referring to
different occasions.

3 The Collaboration Structure of the TD Under Analysis

3.1 The Data

Our case study refers to a TD established in 2006 and located in Campania Region.
It represents a Knowledge Integrator that designs and develops specific network
mechanisms to promote links between scientific research organizations and private
companies mainly in the field of engineering of polymeric materials and compos-
ites. This case is interesting as it refers to an Italian successful story of technological
development in an economic poor context. The focus on the collaboration structure
is related to the explicit TD mission to design and developed specific network mech-
anism to foster collaboration at local, national, and international level. Then, here
we look at scientific collaboration networks given by the joint participation in R&D
projects.

The data we are working on is a proprietary data set collected in the time
period from 2007 to 2013, and refer to research projects lasting from one to three
years which involve only TD members. Following the setting in Sect. 2, a mem-
ber of the TD is an actor; an R&D project at time k is an event, and the partic-
ipation of a member to a project at time k gives rise to a collaboration tie, with
i = 1, . . . , 52, j = 1, . . . , Jk, k = 1, . . . , 7, and J1 = 12, J2 = 13, J3 = 14, J4 =
12, J5 = 11, J6 = 14, J7 = 12 for a total of J = 88 events. The 52 TD members
consist of 11 private companies, 19 Research Centers, 16 University Departments,
and 6 other institutions.

In previous works [2,4] the collaboration structure arising among the TDmember
have been analyzed considering the time span as whole without looking at evolution
over time. Figure2 displays the bipartite graph for the participation of TD members
to research projects over the whole time span. Apart from few projects (e.g., ITAL-
NANONET and TECOP) which are characterized by the exclusive participation of
groups of members, the patterns of participation to all the other project is not so clear.
Furthermore, the graph does not tell the whole story as it does not incorporate the
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Fig.2 Bipartite graph for the participation ofTDMembers (red circles) in the grantedR&Dresearch
projects (blue diamonds)

dynamic perspective and is not able to highlight changes in collaboration patterns.
In this paper, we focus on this latter aspect and we aim at investigating if the collab-
oration networks are active and if the participation to scientific projects is changing
and evolving over time. Using MFA based on MCA we can detect differences over
time, and highlight actor participation and event attendance trajectories over the time
levels and the structural changes with respect to time occasions.

3.2 Analysis of the Affiliation Structure over Time

We can use the properties of MCA applied to affiliation networks [4] to interpret the
results in both actor and event space. For the sake of presentation we consider only
the global analysis. In order to have an idea of the overall quality of 2D approxi-
mation of the MFA solution, we look at the unadjusted and adjusted values of the
proportion of inertia explained by the first two factorial axes [11]. With respect to
unadjusted proportion, the adjusted one increases moving from 40.5 to 76.9%. In
the actor space, the angles between event segments are of interest as they express the
similarities of the attendance patterns (the smaller the angle, the greater the similarity
in attendance pattern between two projects). For instance, from Fig. 3a, looking at
the angle between segments (and using event attributes), it is possible to identify
groups of projects referring to: Aerospace sector, Transport sector, and Chemical
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(a)

(b)

Fig. 3 Global analysis: a Events’ representation in the actor space for all the occasions, events’
attributes are used to interpret clusterized events; b actors’ representation in the event space. Each
point represents one actor and its coordinates are the weighted average of the coordinates over the
three years span. Actor and project labels are hidden

sector. This means that over the years these groups of projects are mainly attended
by the same TD members. Only one project results very different from the others,
namely the SMART project.
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Fig. 4 Global analysis: Actors’ representation in the event space. Each point represents one actor
at a given time points. Example of actor CNR-IMCB trajectory in the time occasions is highlighted

In the event space (Fig. 3b), actors are placed close to each other to the extent
they have similar relational patterns. In this space, TD members are grouped with
respect to their rate of participation (first axis) and the type of projects (second axis).
For example, Alenia and CIRA have high joint participation in aerospace projects
(bottom right), while DIMP-UNINA and CNR-IMCB present high participation rate
in transportation projects (top right).

Wecan also interpret the combination of the partial analyses (for each of the K time
occasions) by means of the so-called trajectories. An example is depicted in Fig. 4.
Here we draw the line connecting points that represent in each partial analysis the
actor CNR-IMCBk , for k = 1, . . . , 7. In such trajectory drawn for exemplification,
the actor moves from participation to nonparticipation over time. Indeed, the projects
in which the actor was involved from the beginning ended, and the actor was not
able to enter in new projects, due also to change in project topics.

In analogy with the actor trajectories, the actor (event) attribute trajectories could
be represented. MFA allows to use attributes in place of the individual actors to
interpret trajectories and relational position of whole groups of actors. We look at
the changes occurred for the types of organizations involved in the project (e.g.,
private companies (C), research centers (RC), Universities (U), other institutions
(O), Fig. 5a). A change in the participation pattern can be appreciated over time from
private-public to private-private. All these changes lead to global structural changes
that can be represented using the whole table representation, in which the F[k] are
taken as unit of analysis (Fig. 5b). In such a case we can observe that the first five
years are very similar in terms of actor − to− project participation, while in the
last two years a structural break appears. This is due to the participation in large
European projects in new research fields that involves a variety of new actors.
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(a) (b)

Fig.5 a Representation of actor typology over time: private companies (C), research centers (RC),
Universities (U), other institutions (O). b Representation of the time occasions relational distance:
each year is represented by an individual point

Summing up, MFA represents a flexible tool to visualize and analyze the complex
relational structure embedded in a three-way two-mode networks. Different type
of information can be obtained using cluster-type techniques proper of network
analysis, such as blockmodeling. For the data at hand, the results from the use of
blockmodeling are in [10].
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Abstract

This work deals with the spatiotemporal analysis of urban air pollution dynamics
in the town of Perugia (Central Italy) using high-frequency and size resolved data
on particular matter (PM). Such data are collected by an Optical Particle Counter
(OPC) located on a cabin of the Minimetro, a public transport system that moves
on a monorail on a line transect of the town. Hierarchical Bayesian models are
used that allow tomodel a quite large dataset and include an autoregressive term in
time, in addition to spatially correlated random effects. Models are fitted for three
response variables (fine and coarse particle counts, nitric oxide concentration)
and using covariate information such as temperature and humidity. Results show
a large temporal autocorrelation, relatively larger for particle counts; moreover,
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all variables show a significant spatial correlation, with larger ranges for fine PM
rather than for coarse PM and nitric oxide concentration.

1 Introduction

Urban pollution has an important impact on human health and environment. Inves-
tigating the behavior of pollutants and understanding air quality of particular geo-
graphical areas has been one of the central issues in environmental public policy
and decision-making. In this paper, we analyze data from the PMetro project (http://
www.pmetro.it), which studies urban pollution dynamics in the town of Perugia
(Italy) since September, 2012. Unlike classical monitoring of pollutants concentra-
tion using fixed stations, fast measure of gases and size resolved particulate matter
(PM) is coupled with information on the evolution of urban microclimate. In partic-
ular, data is collected using an Optical Particle Counter (OPC) located on a cabin of
the Minimetro, a public conveyance that moves on a monorail on a line transect of
the town.

Air pollution often shows a spatiotemporal structure that is interesting to study
and understand: for this purpose, hierarchical Bayesian modeling provides useful
tools to investigate spatial and/or temporal patterns also in large datasets [3,8–11].
In this paper, we aim at applying such models to this fairly novel dataset to describe
the spatiotemporal structure of the data and understand whether there is a different
behavior for fine and coarse particle counts, and for nitric oxide concentration. The
paper is organized as follows. Section2 illustrates in more detail the data set at hand
and Sect. 3 provides the description of the spatiotemporal model employed. Then,
in Sect. 4 results from the application of the model fitting are shown, while some
concluding remarks are given in Sect. 5.

2 Data

An OPC integrated on a cabin of Minimetro is used to get a snapshot of the urban
pollution dynamics along a sector of the town at high spatial and temporal resolution.
Figure1 provides all the details on the metro path. It is about 3km long with seven
stations: a single travel takes about twenty minutes, so that each cabin runs along the
same path about forty times a day. The path is outdoors for the most part and passes
through parks, high-traffic roads, residential areas, and two tunnels. The OPC takes
a sample of air every 6 seconds while the cabin moves on the monorail and counts
the number of particles with a diameter between 0.28 and 10µm (µm, 10−6 m),
dividing the total count into 22 size channels. The location and the speed of the
cabin is continuously recorded by the central control software of the Minimetro
transport system and transmitted to the OPC data logger. Therefore, sampling points

http://www.pmetro.it
http://www.pmetro.it
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Fig. 1 Schematic map of the Minimetro path and of the sources of data. In the upper panel station
names and elevation (meters a.s.l.) are indicated. In the lower panel a 2D sketch of the area suggests
the main intersections with traffic roads and indicates also some points of interest (car parking,
urban park, tunnels). The metro path is shown at the bottom together with distances along the path
(in meters). Position and typology of the instruments employed in the project are also shown

are variable along the path and depend on the speed of the cabin, which is not constant
along the path or during the day. SinceMarch 2014, the instrument also collects nitric
oxide (NO) concentration (µg/m3), temperature and relative humidity at the same
space-time resolution. As far as particulate matter is concerned, we use the following
usual classification on the basis of the diameter: fine PM has diameter between 0.28
and 1.10µm, while coarse PM has diameter larger than 1.10µm.

We analyze data collected on March, April, and May, 2014, for overall 60 days.
Due to the operation time of the Minimetro, we only have observations from 6 am
to 7 pm. In addition, we average measurements for each hour, so that we have
14 hourly observations for each day. Furthermore, we divide the entire path of the
Minimetro into 45 equally spaced bins, for whichwe determine the coordinates of the
centroid in latitude and longitude. Therefore, the final dataset is made up of 37,800
observations (60 days × 14h × 45 space-bins). It is possible to have some missing
data due to maintenance and/or malfunctioning of the OPC, but we can consider
missingness to be completely at random.

We perform the analysis separately for three response variables (NO concentra-
tion, fine and coarse PM) using the following covariates: temperature (◦C), relative
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humidity (RH) (%), altitude of the centroid of the space-bin (meters a.s.l.), day of
the week (factor, reference day Sunday), dummy variable for tunnel (takes value 1
if the centroid of the space-bin is located inside a tunnel), dummy variable for park
(takes value 1 if the centroid of the space-bin is located in a park), dummy variable
for station (takes value 1 if the centroid of the space-bin is one of the metro stations).

3 Spatiotemporal Modeling

The main purpose of this paper is to better understand the mechanisms underlying
urban air pollution dynamics and its spatiotemporal features. Since data are collected
by a mobile station continuously moving during the day from the first suburbs to
old-town center, a first objective is to detect whether response variables are spatially
correlated and, if so, analyze the structure of such correlation. Similarly, since data
are analyzed on an hourly base, it can be interesting to see if and howmuch observed
variables are temporally autocorrelated. Finally, studying whether the three response
variables have different spatial and/or temporal correlation would also allow a bet-
ter understanding of the underlying urban air pollution dynamics. To this end, the
spatiotemporal structure of the data has been explored.

As far as the spatial component is concerned, we compute the empirical variogram
for each response variable, following [12] and accounting for the spatiotemporal
nature of the data.Note that, given their skewdistribution, the three response variables
have been transformed and analyzed on a logarithmic scale. Variogram plots (see
Fig. 2) exhibit a clear spatial variation for all the three response variables. In addition,
the shape of the variograms suggests that an exponential correlation function can be
considered plausible. The structure of the spatial correlation is similar for NO and
coarse PM,while fine PMseems to have a larger range. Points in the variogramclouds
are color coded according to whether semivariances are computed with respect to
locations of which at least one is placed inside a tunnel. It can be noted that for fine
PM, semivariance is considerably larger when one location is inside the tunnel, since
its level is significantly different from that observed outside the tunnel.

Looking at the temporal component, on the other end, the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) have been computed for each
response and for each space-bin. Inspection of the three sets of plots (not shown here
for reasons of space) provide evidence of a strong lag-1 autoregressive structure for
most sites, stronger for PM counts and slightly weaker for NO concentration.

Considering the results obtained in the exploratory analysis, we use the spatiotem-
poral autoregressive model proposed in [11]. Let l and t denote the two units of time,
where l = 1, . . . , r denotes the longer unit, i.e., the day, and t = 1, . . . , Tl denotes the
shorter unit, i.e., the hour. Let Zl(si , t) be the observed point referenced data at space-
bin si , i = 1, . . . , n at time denoted by the two indexes l and t , and let Ol(si , t) be the
true value corresponding to Zl(si , t). Then let Zlt = [

Zl(s1, t), . . . , Zl(sn, t)
]T be

a n × 1 vector of observed values at n space-bins and let Olt , εlt and ηlt be defined
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Fig. 2 Semivariogram cloud (top) and corresponding boxplot (bottom) for each variable of interest.
Points in the cloud are color coded according to whether at least one location is placed inside a
tunnel. Boxplots are produced from 5%–quantiles of the distance

similarly in terms of Ol(si , t), εl(si , t) and ηl(si , t), respectively. The structure of
this model is a simplified version with respect to the model used by [11] and is
specified hierarchically as follows:

Zlt = Olt + εlt , (1)

Olt = Xltβ + ρOlt−1 + ηlt , (2)

f or l = 1, . . . , r t = 1, . . . , Tl ,

where εlt is the so-called nugget effect (or the pure error term) and is assumed to
have distribution N (0, σ 2

ε In), where σ 2
ε is the unknown variance and In is an identity

matrix of order n; β is a p × 1 vector of regression coefficients and Xlt is a n × p
matrix of covariates. Furthermore, we also assume that the spatiotemporal random
effects, ηlt , follow a normal distribution N (0, �η) independently in time, with�η =
σ 2

η Sη, where σ 2
η is the site invariant spatial variance and Sη is the spatial correlation

matrix. This matrix can be determined using the general Matérn correlation function
or, more simply, using the exponential function, that may depend on a parameter φ,
controlling the rate of decay of the correlation as the distance between two locations
increases [2].We use the exponential form for the spatial correlation, so each element
of Sη is given by exp (−φdi j ), where di j is the distance between the centroids of
the space-bins si and s j , i, j = 1, . . . , n. Finally, ρ denotes the unknown temporal
correlation parameter which lies in the interval (−1, 1).

The parameters of the model are, therefore, β, ρ, σ 2
ε , σ 2

η and φ. Their posterior
distribution (except for φ) is determined using Gibbs sampling and each full con-
ditional distribution is provided in the Appendix of [1]. We specify a flat Normal
prior for β and ρ, with mean 0 and variance 1010. The prior distribution for the
two precision parameters (1/σ 2

ε and 1/σ 2
η ) is chosen to be a Gamma distribution

with shape a = 2 and rate b = 1 so as to guarantee a proper prior distribution for
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each variance parameter [5,11]. The estimate for φ is obtained using an Empir-
ical Bayes approach as in [10]: we search the best fitting model (1)–(2) over a
grid of different values for φ. We determine the interval of possible values of φ

using the definition of effective range, i.e., the distance at which there is essen-
tially no lingering spatial correlation [2]: for this purpose we use the relationship
exp (−φdi j ) ≈ 0.05, i, j = 1, . . . , n, using the minimum and the maximum among
all distances between space-bins. The optimization criterion is based on the formal
Predictive Model Choice Criterion (PMCC) [4,6] given by

PMCC =
n∑

i=1

r∑

l=1

Tl∑

t=1

{
E

[
Zl(si , t)rep − Zl(si , t)

]2 + Var
[
Zl(si , t)rep

]}
, (3)

where Zl(si , t)rep is a replicate observation of Zl(si , t) under the assumed model,
sampled from the posterior predictive distribution. In (3), the first term is a goodness-
of-fit termwhile the second canbe seen as a penalty term, so that amodel is considered
less desirable if it has large predictive variance.

4 Results

To estimate model (1)–(2) above, we use the R package spTimer [1] version 1.0–
2. This package requires that covariates do not have missing values; to overcome
this issue, we perform imputation for temperature and relative humidity using again
model (1)–(2), with the same space-time structure and only the intercept term. The
model has been fitted separately for each response, running MCMC with 10,000
iterations and burn-in 1,000. Results are summarized in Table1. All responses show
a significant temporal autocorrelation (with respect to the previous hour), although
NO shows a lower estimated value for ρ, than fine and coarse PM (0.260 versus
0.872 and 0.886, respectively). Analysis of the (partial) autocorrelation function of
the residuals of the models does not provide evidence of a lag-2 dependence.

Fine PM has a lower Empirical Bayes estimates for φ (0.006, corresponding
to about 475m) than coarse PM (0.018, corresponding to about 165m). Both fine
and coarse PM are chemically stable in atmosphere. Therefore the different spatial
correlation is due to the larger mobility of fine particles, in turn related to their lower
mass. Coarse particles tend to settle more fastly and, therefore, are transported for
smaller distances; this implies they aremore localized near the sources, amongwhich
there is, typically, resuspension form vehicular motion. For NO, estimated φ takes
value 0.021 (143m), very similar to the one obtained for coarse PM as already noted
inspecting variograms in Fig. 2. This is related with the higher chemical reactivity
of NO which may be oxidized to NO2 and enter into the, rather complex, ozone
production cycle. For these reasons also NO is localized near the sources, which
include not only traffic but also domestic heating.

Parameter estimates for the covariates are often significant, although their values
are not particularly large. Those related to the day of the week deserve a closer
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look: in the model for NO, they all take positive significant values with a peak on
Fridays and relatively smaller concentrations on Saturdays and Sundays. This is in
line with the fact that NO can be considered as a proxy of vehicular traffic and
combustion in general. Fine and coarse PM display a different pattern: posterior
means are all negative (except for Friday) and some are not significant. These results
can be explained by a peculiar condition due to atmospheric stability problems,
observed in some of the days considered here.

5 Conclusions

In this paper, we analyze a fairly new dataset on PM counts and NO concentration
in the town of Perugia (central Italy) using Bayesian spatiotemporal models. Such
data are collected using a mobile station and are indexed by time (hours and days)
and space (position of the station). In order to take the spatiotemporal structure into
account, we employ an autoregressive spatiotemporalmodel, inwhich anAR(1) term
is included at true process level, while the spatial structure is incorporated using
spatially correlated random effects. Such model has been fit separately for three
variables of interest: fine and coarse particle counts, and NO concentration. Results
reveal that all responses have a consistent temporal autocorrelation component, with
fine and coarse PM more correlated in time than NO, while fine PM shows a larger
spatial correlation than coarse PM and NO.

Further researchwill focus on the use ofmultivariate spatiotemporalmodels, using
a bivariate response (e.g., fine PM and NO) or a multivariate response, consisting
in all the 22 size channels counts collected by the OPC. Finally, Integrated Nested
Laplace approximation (INLA) proposed by [7] is another technique to get inference
in Bayesian models. It is developed as a computationally efficient alternative to
MCMC and is designed for latent Gaussian models, a general and wide class of
flexible models, among which we can include the spatiotemporal models considered
here. INLA produces a numerical approximation to the posterior distribution of
interest. Therefore, a comparison between MCMC and INLA in our context could
be an interesting and tempting challenge, particularly when dealing with a large
amount of data.
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Abstract

The curves in a functional data set often present a variety of distinctive patterns
corresponding to different shapes that can be identified by clustering the functions.
However, clustering functional data is a difficult task because the function space
is, generally, of infinite dimension. Thus, the distance among functions may have
infinity solutions and can be approximated in different ways leading to different
clustering results. The paper deals with this problem and focuses on cases in
which the functional form of the observations is known in advance. In this setting,
the approximation of the function underlying the data is not required and the
functional distancemay be computed directly in the explicit form of the functions.
Moreover, we restrict the space of the functions to a closed and convex subset in
anHilbert space to achieve desirable properties. In the proposed framework, an L2

metric is applied combined clustering algorithms for finite dimensional data. The
method is applied to a real data set concerning lichen biodiversity in the province
of Genoa, North Western Italy.
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1 Introduction

Functional data analysis (FDA) [18,24] addresses problems inwhich the observations
are described by functions rather than finite dimensional vectors.

The curves in a functional data set often present a variety of distinctive patterns
corresponding to different shapes and variation that can be identified by clustering
the functions [1,27].

However, clustering functional data is generally a difficult task because of the
infinite dimensional space that data belong to. For this reason, many approaches are
based on dimension reduction before clustering. The most simple method is called
raw-data clustering. It consists in applying classical clustering methods directly on
the discretization of the functions [4]. This procedure, obviously, presents many lim-
itations because it ignores the functional nature of the observations. Indeed, the most
commonly used approaches reduce the infinite dimension problem to a finite one
by approximating data with elements from some finite dimensional space, such as
coefficients of functional data expansion [1] or a given number of principal compo-
nent scores [22]. Then, classical heuristic clustering algorithms can be performed.
It is common to refer to this procedure with the term two-stage approach. Alter-
natively, nonparametric clustering methods consist in defining specific distances or
dissimilarities among the curves and then in applying clustering algorithms for finite
dimensional data [18]. Finally, model-based clustering methods can be performed
assuming a probabilistic distribution on some finite dimensional coefficients describ-
ing the data [26].

The disadvantage of the abovemethods is that clustering results can differ depend-
ing on how the curves are fitted to the data. For example, nonparametric methods
can be assimilated to raw-data clustering or to a two-stage method, depending on
whether the distance is approximated using directly the discrete observations of
curves or using an approximation of the curves into a finite basis.

This paper focuses on a nonparametric clustering method and deals with a partic-
ular aspect of FDA. Indeed, it refers to cases in which the functional form underlying
the observations is known in advance [6,8,12–16] since it is expressed by a paramet-
ric model and the functions constitute a convex subset of an L p space. In these cases,
the approximation by means of basis functions is not required and the functional
distance can be computed directly on the explicit form of the functions. Thus, the
problem of how the curves are fitted to the data does not arise.

The paper is organized as follows. Section 2 introduces functional data that belong
to a specific parametric family of functions and deals with nonparametric clustering
methods for functional data. In particular, the functional L2 distance is presented
focusing on cases in which the function space is parametric and convex in L2. In the
same section the functional k-means algorithm is presented by specifying its critical
issues in the functional framework. Finally, Sect. 3 shows an empirical application
dealing with epiphytic lichen biodiversity of the province of Genoa, Liguria (Italy).
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2 Functional Distances on Convex Function Spaces

The classical FDA approach assumes the existence of certain unknown smooth func-
tions f(·)which generate and underlie the data.However, since in real cases functional
data are often observed as a sequence of point data, the first FDA task is to fit the true
form of the underlying function through some techniques such as basis functions
expansion and regularization [24]. These techniques are largely used in the literature
as demonstrated by numerous empirical applications based on them (see [23], for
some examples). Nevertheless, there are situations in which their use is not suitable
because it mystifies the intrinsic characteristics of the data; for example when the
functions show points of discontinuity or singularities or lie in a discrete functional
domain or when the underlying data process is known in advance. In these cases,
functional data are not intrinsically smooth, thus, it is preferable to work directly on
the reference functional space, when it is possible.

This paper focuses on a particular aspect of functional data analysis, i.e., when the
functional datum is expressed by a specific function known in advance. Examples
of this kind of data are present in many disciplines. In economics, one can refer to
the Cobb–Douglas production functions, which are used to study the relationship
between input factors and the level of production. Another example can be found in
biology where the logistic growth function is used to describe growth processes. In
ecology, the biodiversity is evaluated by means of diversity profiles, which express
diversity as a function of the relative abundance vector [8,19].

In these cases, the functional space S is constituted by a set of functions belonging
to the same parametric family

S = { f (θ; x)}, (1)

where θ = (θ1, θ2, . . . , θs)
′ represents a set of parameters taking values in a para-

meter space Θ x ; x is the functional domain and S is a subset of some L p space. In
particular, we focus on cases in which S is a convex subset of L p.

Starting from n parametric functional data, f (θ1, x), f (θ2, x), . . . , f (θn, x), we
aim to identify a set of homogeneous clusters in L p by determining a partition of the
space according to the minimal distance. Since the functional observations belong
to an infinite dimensional space, the equivalence between norms and distances, typ-
ical of finite dimensional Euclidean spaces, fails. In this context, the choice of the
preliminary norm becomes crucial [18], because the resulting metric might not be
complete. For example, let us consider the uniform norm, the L1 norm and the L2

norm on the space of continuous functions in (0, 1). The three norms are inequivalent
and the space is complex for the first norm but not for the other two.

Several proximity measures for functional data can be used, depending on the
characteristics of the data and on the target of interest in clustering. For example, in
[18] the use of a family of semi-metric is suggested because it is more flexible with
respect to the metric. However, this choice emphasizes features of the derivatives
rather than of the curves themselves. A suitable measure of distance between two
functions, f and g, is the L p distance for which different p can be chosen (the use
of L1, L2 and L∞ is very common in the literature). In this paper, we focus on the
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L2 distance

d
(
f, g

)
= || f − g||2 =

(∫

X
| f (x) − g(x)|2dμ(x)

) 1
2

. (2)

We recall that L2(μ) is, among all L p(μ) spaces, the only Hilbert space, that is its
norm is induced by the inner product

( f, g) =
∫

X
f (x)g(x)dμ(x) (3)

whenever f, g ∈ L2(μ). Therefore, an orthogonality notion between two functions
f and g is defined as ( f, g) = 0.
The main problem caused by the infinite dimensionality of the spaces is that there

may be infinitely many solutions for the distance in Eq. (2). Indeed, different norms
may lead to different conclusions about convergence of a given sequence. Thus,
different clustering results can be obtained. For this reason, we restrict the space
of the functions to closed and convex subsets, S, in Hilbert spaces. An essential
property of Hilbert space is that the distance of a point to a closed set is always
attained. Indeed, if S is a closed convex set in a Hilbert space, H , and h ∈ H , then,
there exists a unique point s ∈ S that minimize the distance between h and a point
in S [25]

d(h, S) = ||h − s|| = min{||h − s|| : s ∈ S}. (4)

Thus, a closed convex subset of a Hilbert space has a unique minimum norm. Gen-
erally, this issue holds in any uniformly convex Banach space.

Other functional spaces can be considered, such as appropriate Sobolev spaces,
Wk,p, that is, vector spaces of functions equipped with a norm that is a combina-
tion of L p-norms of the function itself as well as its derivatives up to a given order.
Indeed, for p = 2, the Sobolev space is an Hilbert space endowed with the Hilbert
inner product and the Hilbert norm; whereas, for 1 ≤ p ≤ ∞, it is a Banach space
and it is uniformly convex. Generally, Sobolev spaces are powerful in demonstrating
existence of solutions to partial differential equations [5] but their use can be consid-
ered also in clustering problems. For example, in [2] Sobolev spaces are considered
for clustering functional data using wavelet-based similarity measures.

2.1 Functional k-means

In this proposed setting an L2 metric in function space is applied combined
with a k-means algorithm for finite dimensional data. The k-means algorithm
is an iterative procedure that is initialized by fixing the number k of clusters,
{C1,C2, . . . ,Ck} and by selecting in S a set of k arbitrary and distinct initial cen-
troids, {φ(0)

1 (x), . . . , φ(0)
k (x)}, one for each cluster. At the m-th algorithm iteration,

m > 0, each function is assigned to the cluster whose centroid, at the (m − 1)-th
iteration, is the nearest according to the chosen distance

argmin
q=1,2,...,k

(∫

X
| fi (x) − φm−1

q (x)|2dx
) 1

2

. (5)
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Once all of the functions have been assigned to a cluster, the cluster means are
updated as the mean of the functions belonging to it, as follows:

φm+1
q (x) =

∑

fi∈cq

fi (x)

nq
, (6)

where nq is the number of functions in the q-th cluster,Cq . This procedure continues
until no function changes cluster.

In our specific case S is a parametric set of functions. Thus, the functional distance
in Eq. (5) can be computed directly on the explicit form of the functions. For this
reason, clustering results do not depend on how the curves are smoothed to the data,
contrary to the classical FDA approach. Indeed, it is well known that, functional
k-means clustering results vary according to the method used for fitting the curves
[27]. In the classical FDA framework, thus, the primary question of interest is how
best to linearly transform the data prior to clustering.

Our approach allows us to obtain some desirable properties because it considers
cases in which S is a closed and convex subset in a Hilbert space; then it contains a
unique element of smallest norm [25].Moreover, the convexity allows us to define the
functional mean in the usual way obtaining an element of S. Thus, the centroid in Eq.
(6) belongs to the same family as the functions. Indeed, this essential requirement is
not always achieved with the classical functional approach [6,14]. In particular, only
when S is a linear vectorial subspace in L p, it is possible to express the functional
statistics as a straightforward statistics of the functions obtaining a statistics of the
same functional form of the observed data [8].

3 Application

The framework described previously has been applied to a real data set concern-
ing epiphytic lichens biodiversity of the province of Genoa, Liguria (Italy). Lichen
biodiversity provides useful information about the global conditions affecting the
environment over a given area [20]. These organisms, indeed, are particularly sen-
sitive to environmental stresses, especially with regard to pollution, eutrophication,
and climate change [3].

Data on lichen abundance were collected following the standards suggested by
[3]; the survey lasted from 2002 to 2003 and involves a total of 196 epiphytic lichen
species and 47 plots [20].

For every i-th environmental site (i = 1, . . . , 47) and for each j-th species ( j =
1, . . . , 196), we consider an abundance vector, N i = (Ni1, . . . , Nis)

′, calculated as
the sum of the lichen frequencies found on every plot and a relative abundance
vector, pi = (pi1, . . . , pis)′, with p j = N j/

∑s
j=1 N j , such that 0 ≤ p j ≤ 1 and∑s

j=1 p j = 1 [10].
In order to evaluate lichen biodiversity we refer to parametric families of diversity

indices [21], which are usually referred to as diversity profiles. They portray the
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Fig. 1 Intrinsic profiles for
the province of Genoa

simultaneous values of a large collection of diversity indices in a single diversity
spectrum. In particular, the intrinsic diversity profile proposed by [21] has been
applied. It is defined as the plotting of the (l, Tl ) pairs, where

Tl =
s∑

j=l+1

p( j)# l = 0, 1, . . . , s, (7)

is the right-tail sum diversity index, p( j)# is the relative abundance vector ranked
in descending order and l is the species abundance rank. The intrinsic diversity
profile plays a fundamental role in comparing different community using the analysis
of a graph [7,9,11,17]. Indeed, if the profiles do not intersect, the higher curve
corresponds to the community with greater diversity. On the contrary, communities
with intersecting profiles are not comparable. However, in real cases, the profiles
intersect one or more times leading to ranking problems among communities [15].
Figure1 displays the intrinsic profiles for the province of Genoa. However, since
there are many rare species, Fig. 2 shows the intrinsic profiles focusing on the first
forty ordered species.

According to the analysis of the graph, it is no possible to distinguish a site with
greater diversity because the profiles cross each other.

Biodiversity comparison is an important issue for planning environmental policies.
For this reason, our aim is to characterize the sites of the province by determining
different biodiversity patterns. However, due to the large number of curves in Fig. 2,
it is difficult to pick out distinct and representative curve shapes. Thus, we proceed
with the identification of homogeneous groups of data.

Despite the intrinsic diversity profile is a discrete function observed for each
ranked species, in the literature it is showed by means of a curve. For this reason,
Di Battista et al. [8,19] suggested to analyze it in a functional framework. Since the
parametric functional form of the intrinsic profile is known in advance, we propose to
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Fig. 2 Intrinsic profiles for
the first 40 ordered species of
the province of Genoa

work directly on the reference functional space preserving its typical characteristics
[14].

In order to identify specific common patterns among the sites, a nonparametric
clusteringmethod has been applied. In particular, a functional k-means algorithm has
been implemented computing the functional distance directly on the explicit known
form of the functions. The k-means procedure has been initialized by choosing in
S two arbitrary centroids φ

(0)
1 (x), φ(0)

2 (x). Then, the functions are assigned to the
clusters according to the minimal distance between them and the centroids. Since the
set of the sequences of the intrinsic profiles in Eq. (7) lies in a discrete domain, the
functional space S is a subset of l p and the usual Euclidean metric can be used. Once
all functions have been assigned to a cluster, the cluster mean has been computed in
the usual way as the average of the functions, obtaining an element of S due to the
convexity property

Tl = 1

n

n∑

i=1

Tli . (8)

Figure3 shows the clustering results focusing on the first forty ordered species. The
first cluster (red lines) is composed of 27 sites with high biodiversity, that is sites with
great species richness and low dominance. The second cluster (blue lines) presents
the opposite situation and it is composed of 20 sites. Figure4 displays the k = 2
cluster mean curves obtained from the k-means algorithm. The procedure shows
good results, in fact, the profiles belonging to the two clusters do not intersect except
for three sites. Indeed, these latter present some singularities. For example, a site
belonging to the second cluster intersects with the profiles of the first cluster because
it has greater evenness with respect to the group it belongs to, but, at the same time,
shows high species dominance. In the same way, two profiles of the first cluster
intersect with those of the second one because they have a smaller number of species
compared to the first group.
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Fig. 3 Two clusters for Tjl

for the first 40 ordered
species

Fig. 4 Mean Intrinsic profile
for the two clusters for the
first 40 ordered species

In order to evaluate the performance of the clustering results obtained, following
we compare our approach with classical FDA nonparametric clustering methods.
For example, we can fit the intrinsic profiles using a B-spline basis and the k-means
algorithm can be applied on the coefficients of the basis functions approximation. In
this case, clustering results are equal to those obtained with our method except for
two sites. Also in this case, problems of intersection for the same three sites arise.
However, using an approximation of the curves into a finite basis, some problems
may arise. For example, when the raw data points are converted into the continuous
function there is no best choice of the basis function and the functional k-means
algorithm can vary considerably depending on how the functional data is transformed
prior to clustering [27]. Thus, the choice of the functional basis becomes crucial for
clustering results. Obviously, a great deal also depends on how efficient the basis
functions are in reproducing the behavior of the original functions. We point out that
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the classical FDA approach works in a continuous domain while the intrinsic profile
lies in a discrete functional domain which is represented by the relative abundance
vector ranked in descending order. Accordingly, in this case, the functional datum
is not intrinsically smooth and the use of basis function approximation could hide
some characteristics of the phenomenon.

Our method allows to overcome some critical aspects of classical FDA approach,
taking advantage of the known form of the functions and of the convexity of the
reference functional space. In particular, the approximation of the function underlie
the data is not required since it is expressed by a specific parametric model. For
this reason, it is possible to classify the intrinsic profiles computing the functional
distance directly on the explicit form of the observations, leading to clustering results
that does not depend on how the curves are fitted to the data. In addition, the convexity
property allows us to define the functionalmean in the usualwayobtaining an element
belonging to the same family as the functions.

From an ecological point of view, the proposed method allows us to identify
different patterns of biodiversity when the intrinsic profile does not highlight an
explicit ranking of biodiversity among sites.
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The Impact ofDemographic Change
onSustainability of Emergency
Departments

Enrico di Bella, Paolo Cremonesi, Lucia Leporatti
and Marcello Montefiori

Abstract

The progressive ageing of the population and the increasing migration flows are
affecting the population structure in most of the western countries. Because of this
demographic change, the demand for public services is expected to rise, creating
potential problems to the economic sustainability of major public services. Our
paper is focused on Accident and Emergency Departments (AEDs) services and
it aims at estimating how the AED demand and costs will change adapting to
the demographic trend in a specific Italian administrative region (Liguria) in the
next decades (2012–2065). This is done as follows: first, we split the patients
assisted over a whole year by one of the most relevant Italian AEDs into several
categories per severity level (i.e., triage colour) and demographic characteristics
(age span, gender, and nationality); using actual accounting data we estimate the
average assistance cost per typology of patient; after we derive an estimate of the
probability for each category of patient to ask for emergency assistance; finally
we use official ISTAT 2012 – 2065 residential population forecasts to provide
an estimate of the expected number of accesses per patient category and the
overall expected AEDs’ cost of the whole Liguria region. Our results suggest
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that, although immigration seems to be a more relevant aspect for future AEDs’
sustainability than ageing, the inappropriate use of emergency departments by
nonurgent patients is the biggest threat which policymakers will really have to
deal with.

1 Introduction and Background

Accidents and Emergency Departments (AEDs) represent one of the most demand-
ing hospital departments in terms of human and devices absorption and, as a conse-
quence, they have been widely studied by the literature [9,10,26,29]. AEDs aim is to
supply health care assistance to people in emergency, providing a fast and effective
response towards urgent medical problems. AED use is significantly changing over
time. Twomain elements are affecting this change [32,37]: demographic change and
the attitude of patients to consider AEDs as a source of primary services rather than
the structure where emergency services are provided (we refer to the latter behaviour
as inappropriate use).

Demographic factors have been long considered key drivers of future health care
demand: traditionally, age, gender, and nationality are considered the three most
important demographic determinants of health care and emergency care usage.1 Most
western countries are experiencing a dramatic demographic change, mainly caused
by the progressive ageing of population, induced by the increase in life expectancy,
and by the massive migration flows that originate from non-western countries. As a
consequence elderly and foreign people are rising impressively and Italy does not
make exception: according to the estimation provided by the Italian Institute for
Statistics (ISTAT), the proportions of elderly (i.e., people aged more than 65) and
foreign residents are expected to rise in Italy respectively from 20 to 33% and from 9
to 23% in the period 2013–2065. As the use of the AED is not uniformly distributed
over the different demographic groups, demographic changes will affect the AED
demand: older individuals tend to consume more emergency services than younger
due to their worse general health status and, similarly, foreign individuals, especially
Temporary Foreign Residents and non-Registered European, tend to consume more
emergency services because they are socially and economically excluded from spe-
cialized expensive examinations or simply because they have a scarce knowledge of
the health care system of the host country [25]. In addition, medical needs tend to
differ among demographic groups: elderly people have needs generally connected to
chronic health conditions while foreign patients tend to have more specific medical

1Previous researches show that also non demographic factors [24] can have a role in the determi-
nation of future AED sustainability. In particular, medical progress and technology may impact the
type and cost of the emergency services offered [14,33] but these topics exceed the aims of this
paper and will not be taken into account in the following.
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needs, often connected to particular life events (e.g., pregnancy and work-related
injuries).

Literature on AED use, suggests that elderly people represent the largest share
of AED patients for absolute number of visits, length of staying, and costs [4,16,
36]. Generally, elderly tend also to access AED with more severe health conditions
(yellow or red triage code2) due to their frailty and, as often occurs, the presence of
multiple morbidities [31]. According to the literature [27,34,41], gender differences
derive from three categories of factors: biological risk (e.g., life expectancy, medical
condition), risk acquired from different lifestyles (e.g., diet, smoking habits, working
condition), attitude towards health status (e.g., perception of health status). The
majority of previous researches found out that women tend to usemoreAED services
thanmen [7,17,43, e.g.].Mustard et al. [30] found out that the 22%of expenditure for
female patients is connected to conditions specifically dependent to their gender (i.e.,
pregnancy and childbirth) while for men this percentage drops to 3%. In addition,
as women tend to live longer than men and to consume more emergency services,
older women will become “frequent users” during the next decades [15,23,30,34].

Forwhat concerns the use of emergency services among foreign people, apart from
differences in biological risk derived from the country of origin [39,40], the different
use of health care services between immigrants and natives is generally attributed
to gaps in habits, lifestyles, and cultural differences [18] gaps in socio-economical
status [12,13] and in the level of insurance coverage and barriers to access health care
services [5,12]. As AEDs are usually free of charge and their services are available
24h, immigrants tend to make large use of emergency services as they are prevented
to get health care fromgeneral practitioner, private specialized examinations, or other
care facilities [19]. This means that, when immigrants run into barriers to health care
services or when they have a scarce knowledge on the health care system of the host
country [8,35], they tend to use emergency services as substitutes of other health
care services (e.g., general practitioner services, specialized visits), increasing the
number of inappropriate accesses to AED.

Inappropriate accesses represent the second element affecting present and future
AED usage; indeed, several researches [2,37, e.g.] show that more and more patients
access AEDs for primary healthcare services rather than using general practitioner
services. Previous researches found out that the number of accesses in white and
green triage code (less urgency) is significantly higher than the number of accesses
in yellow and red triage (high urgency) [3]: this means that inappropriate use of
AED leads to organizational problems for AEDs (waiting times, overcrowding) and
it may lead to a drop in the quality of services offered [6,28]. This study is intended

2Triage coding is the most common European classification criterion of patients at AED check-in.
It is based on four colours, each of them associated to a different severity/urgency patient condition.
The most critical patients are classified with a red code and they have to be attended immediately
because their life is in peril. Yellow is attributed to urgent patients for which some waiting is
possible. Green codes require medical care but it is not urgent. Finally, white codes are nonurgent
patients. White code patients and a share of green codes are generally amenable to inappropriate
use of AEDs.
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to provide policymakers with new informative tools to forecast future AEDs demand
and expenditure based on demographic pattern.We believe this may help in correctly
programmingAEDactivity, costs and resource allocation.With this purpose, we gen-
eralize data on cost and accesses by severity levels and demographic characteristics
using data from one of the biggest Italian hospitals’ AED (E.O. Ospedali Galliera)
in Genoa (594,904 residents in 2014) in order to obtain the expected expenditure
and number of accesses to AEDs for the entire administrative region around Genoa
(Liguria district, 1,591,939 residents in 2014) for the period 2012–2065 based on
the residents forecasts provided by the Italian Institute of Statistics (ISTAT).3

2 Data andMethods

The E.O. Galliera AED registry has been used to get information on demo-graphic
characteristics (i.e., age, gender, nationality, zip code of residence) of patients access-
ing the AED during 2012 and on the medical condition (triage code, diagnosis) and
treatments (exams and visits) connected to each access.4 To estimate the cost associ-
ated to each access we matched Galliera registry with the official AED fees derived
from the Italian Ministry of Health (Law nr. 23/2013). In Italy, these tariffs represent
the standard cost established by the Ministry of Health for each AED visit or exam
and they are used as a benchmark for the reimbursements given from theGovernment
to the single hospital for each treatment. In order to estimate the cost associated to
each access we consider the three main categories of direct costs imputable to each
event: AED general visits, non laboratory exams (e.g., X-rays) and laboratory exams
(e.g., blood analysis). If we cut abandonments, the total number of accesses to Gal-
liera AED in 2012 was 44,969.5 Older individuals (aged more than 65) represent the
31% of the total number of accesses while the 21% of the total number of accesses is
due to foreign people6 (Table1). The vast majority (73%) of individuals access AED
in white or green triage code, while only a minor percentage (3%) of the patients
access for an acute and severe medical condition (red triage code).

Generally, older individuals tend to be classified with red or yellow codes more
often than younger due to their general worse health status. On the contrary, the inap-
propriate use of AED is more frequent among younger individuals and, above all,
among foreign people who record the largest percentage of white triage code (13%).
Several methods have been proposed to estimate the evolution of demand and cost
of health care services based on demographic change [11,20,22,38,42]. Przywara

3This analysis is not run directly at regional level as data for the whole Liguria Region are not
available to the authors.
4As E.O. Galliera is not a paediatric hospital and the number of children accessing is small our
analysis will be focused only on adults patients (aged more than 14).
5The analysis is run by episode and not by patient, thus it does not take into account issues connected
to re-access of the same individual more than once during the year.
6Our analysis only include legal resident immigrants without considering illegal immigration.
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Table 1 Number of accesses by triage code and demographic group (Year 2012, Galliera AED)

White
triage

Green
triage

Yellow
triage

Red triage Total Total %

Age class 15–24 474 3,840 618 31 4,963 10

25–44 2,034 12,430 1,943 110 16,517 33

45–64 1,005 8,713 2,589 248 12,555 25

65–84 576 5,773 4,192 666 11,207 22

>85 92 1,810 2,344 481 4,727 9

Gender Male 2,434 17,341 5,949 698 26,422 47

Female 1,747 15,225 5,737 838 23,547 53

Nationality Italian 2,650 25,011 10,227 1,404 39,292 79

Foreign 1,531 7,555 1,459 132 10,677 21

Total 4,181 32,566 11,686 1,536 49,969 100

(%) 8 65 23 3 100

et al. [32] identify three possible methods of projecting health care expenditure in
the future depending on available data: time-series methods which extrapolate into
the future the past observed trends; macro-simulation models which work by a dis-
aggregation of the aggregated spending data into a number of groups homogeneous
for demographic features and micro-simulation models which start from datasets on
single unit (e.g., individuals, households) gathered by doctors and hospitals rather
than from aggregated data.

Generally, when suitable datasets are available, micro simulation model predic-
tions are more reliable than macro models; however, in order to have reliable results,
high quality, consistent datasets are needed [21]. In this paper, we start from micro
data, considering the impact on AED demand of three demographic variables (class
of age, gender and nationality) and of one clinical variable (triage code); subsequently
we extend results obtained from one single AED to predict future AED demand for
all the administrative region around Genoa (Liguria). The estimations are computed
using a pure demographic scenario (i.e., we only take into account the impact of
change in size and structure of the population) and therefore demand and consump-
tion of AED services are assumed to be constant over time, within age, gender and
nationality class and to be independent of medical and technological progress [1].
We will partially relax this assumption in the last part of the paper, where a few
scenarios based on possible changes in AED’s use pattern among foreign patients
will be investigated. The analysis consists of four steps:

1. we derive the average cost (cg,a,n,tc) associated to each category of patients split
by gender (g = male, female), 5 age classes (a = 15 − 24, 25 − 44, 45 − 64,
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65 − 84, 85+), 2 nationality groups (n = Italian, Foreign) and 4 triage codes,
(tc = white, green, yellow, red) for a total of 80 average group costs7;

2. we compute the probabilities of accessing the AED during the year (ARg,a,n,tc)
for each of the 80 categories of patients as the ratio between the number of patients
who actually attended the AED (Pg,a,n,tc) and the number of residents living in
the catchment area of the Galliera AED (Rg,a,n)8 (14 urban areas of the city
sufficiently close to the selected AED for a total number of patients resident in
the catchment area of 19,064);

3. a forecast of the estimated number of accesses for each year t of the period 2012–
2065 is obtained by multiplying the access rates computed in step 2 (ARg,a,n,tc)
for each category by the expected number of residents in Liguria for each demo-
graphic group obtained by the main scenario9 forecasts provided by ISTAT
(R∗

g,a,n,t )
A∗
g,a,n,tc,t = ARg,a,n,tc ∗ R∗

g,a,n,t (1)

4. we estimate future AED expenditure (and its composition by group) by multiply-
ing the average per capita cost of accessing AED (step1) by the estimated number
of accesses (step3):

E∗
g,a,n,tc,t = cg,a,n,tc ∗ A∗

g,a,n,tc,t (2)

3 Results

Table2 summarizes the expected number of accesses and the corresponding expen-
diture for the period 2012–2065 according to models (1) and (2). Liguria is a peculiar
region under a demographic point of view: indeed, this Italian region re-cords a par-
ticularly high proportion of older individuals (28% in 2013 compared to an Italian
mean of 21%) and the lowest fertility rate in Italy (with an average child per woman
equal to 0.99). Looking at the demographic trend forecasted by ISTAT for Liguria
we see that this pattern is going to persist over the next decades. The total number
of residents is estimated to decrease by 8% as a result two opposing forces: a con-
traction in the number Italian residents (−26%) and an increase in foreign residents
(+210%); the number of older Italian and foreign residents (aged more than 85) are

7For 14 group categories of foreign people the number of observations in the group was too small
(less than 20 units) to allow for inference: thus we approximated average cost for these categories
equal to the one of corresponding Italian patients. This is a conservative assumption as foreign
individuals tend to have higher average cost for each access.
8For same reasons cited in note 9, 17 access rates relative to foreign residents were conservatively
set equal to the ones of corresponding Italian patients.
9ISTAT provides three different demographic scenarios, the low, the central and the high, based on
different assumptions on the dynamics (projections of) in the number of residents over the period
2012–2065. Our analysis is mainly based on the central scenario, however, estimates using the low
and high scenarios are also provided.
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estimated to boost leading to an ageing society. The impact of demographic change
can be considered under three points of view: on demand, on emergency level, and
of inappropriate use of AEDs.

3.1 Impact on Demand

As a consequence of the expected demographic pattern, overall, the total adult num-
ber of accesses is estimated to increase by 31%. With the exception of accesses
connected to older people (+102%), the AED events connected to Italian residents
are estimated to decrease as a consequence of the contraction of the population. On
the contrary, foreign accesses (in all age categories) are estimated to increase over
the period (+330%). Older foreign residents will become a significant category of
patients in the next 50 years: indeed, nowadays the number of foreign residents (and
therefore patients) aged more than 85 is particularly low in Liguria but, according
to ISTAT forecasts, their number is likely to increase notably as a consequence of
social integration of foreign people.

3.2 Impact on Emergency Level

As triage code level is not uniformlydistributed amongdifferent demographic groups,
the increase in accesses will impact on the average level of emergency and thus on the
services needed by patients (Table3). The expected evolution in other triage codes
show that yellow and red triage codes are estimated to increase more than white
and green ones (+63 and +46%, respectively): this phenomenon will lead to an
increase in the average level of emergency and thus to an increase in services needed
during urgent situations. The percentage of not severe medical condition (white and
green triage code accesses) on the total number of accesses is going to decrease
from roughly 70% in 2012 to 63% in 2065; consequently the percentage of urgent
medical condition (yellow and red triage code accesses) will become more relevant
moving from 30% in 2012 to 37% in 2065; this will increase the needs for specific
services addressed to patients accessing AED in particularly vulnerable conditions
(e.g., increase need for operating tables and for ambulance services).

Table 3 Expected triage code composition of accesses (2012–2065) in Liguria

Year White triage Green triage Yellow triage Red triage

Number Total % Number Total % Number Total % Number Total %

2012 14,664 6 148,361 63 63,103 27 7,916 3

2065 17,362 6 175,035 57 102,899 34 11,567 4

% variation 18% 18% 63% 46%
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3.3 Impact on Inappropriate Use of AED

From Table3, we can see that the total amount of white triage codes is expected to
increase by 18% over the 50-years period moving from 14,664 to 17,362 accesses.
This means that the problem of inappropriate use of emergency services is going to
become much more relevant during the next decades. Moreover, whereas in 2012,
Italian patients represented the largest category of white triage codes (75%), our
model suggests that in 2065 this percentage will drop to 47% and that foreign indi-
viduals will represent the largest share of inappropriate users of AEDs.

3.4 Change in Costs

Change in demand can have dramatic consequences on the departments’ ability to
provide adequate services to all help-seeking patients. On the other side, increase in
expenditure connected to AEDs can lead to balance problems for the government;
according to our estimations, total expenditure is likely to increase significantly dur-
ing the next decades (+43%). Expenditure is estimated to increase more than the
number accesses (+31%); this is caused by the vast increase in the number patients
with higher average cost for each access (i.e., older and foreign). Similarly to accesses
variation, older Italian and foreign residents will cause the largest increase in eco-
nomic resources that should be devoted toAEDs. On the other side, the contraction in
the number of younger Italian residents will bring to a reduction in costs associated to
them. For what concerns triage code composition of expenditure, Table4 shows that
white triage code related expenditure is estimated to increase by 21%, whereas red
triage code expenditure will increase by 42%. Expenditure in white triage codes is
particularly relevant for policymakers as it represents the cost of inappropriate use of
AEDs and thus, in theory, it is could be avoided or reduced through specific policies
addressed to the fight against inappropriate accesses; one the other side, expenditure
connected to urgent accesses is more difficult to be reduced without compromis-
ing the outcome for vulnerable patients. The last column of Table4 shows how the
ratio between expenditure devoted to urgent accesses (yellow and red triage) and not
urgent accesses (white and green triage) is estimated to change in the next decades.
This measure is increasing over time (from 0.95 in 2012 to 1.28 in 2065) meaning
that the resources devoted to urgent patients are estimated to increase in the future
with respect to resources devoted to less urgent patients.

3.5 Sensitivity Analysis

Due to the long run perspective of our estimations, caution is needed in the interpre-
tation of the forecasting: several unexpected economical and political changes may
affect the future demographic pattern (e.g. migration flows) over a 50-year period.
For this reason, we compare the results of Table2 with those obtained using the low
and high demographic forecasting provided by ISTAT which represent, respectively,
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Table 4 Expected expenditure by triage code (2012–2065) in Liguria

Year White
triage

Green
triage

Yellow
triage

Red triage Total
expenditure

Expend(Y+R)
Expend(W+G)

2012 523,837 10,505,834 8,903,266 1,555,176 21,488,113 0.95

2065 631,741 12,851,766 15,027,403 2,209,368 30,720,278 1.28

% variation 21% 22% 69% 42% 43%

W = White triage, G = Green triage, Y = Yellow triage, R = Red triage

Fig.1 Expected expenditure under the main, the low and the high demographic scenarios (millions
of e)

a more and less conservative estimations of the expected number of residents (Fig. 1).
The total expenditure, between 2012 and 2065 is estimated to increase by 24, 43 and
62%, respectively under the low, the main and the high scenarios, with an expected
increase in the number of accesses equal to +15% (low scenario), +31% (main
scenario) and +47% (high scenario). Taking this as a measure of the uncertainty
connected to our estimations, we will now perform alternative scenarios based on
possible changes in the use of AEDs across some demographic groups.

3.6 Scenarios Analysis

It has been showed that the expected demographic change (especially for what con-
cerns the foreign factor) is going to affect impressively the future activity of AEDs,
increasing the needs for emergency services. Even if ageing and migration flows are
not under the direct control of the government, some actions could be taken into
account to mitigate the expected sustainability problems.

We identify two possible actions that may significantly reduce the future demand
and costs of AEDs: the convergence of foreign people to the Italian way of using
AED services and the reduction in inappropriate use of AED.
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The former may be pursued thanks to an increase into foreign awareness of the
Italian health care system and through an increase in alternative services offered to
the foreign individuals now excluded from general practitioner services (e.g., illegal
immigrants). To analyze this issue we compare three scenarios in order to understand
the savings in expenditure that may be obtained in 2065 controlling the foreign
excessive use of emergency services through specific policies. The first scenario (i.e.,
Base Scenario) is our reference and it simply reports the result already discussed in
Table2. The second scenario (Alternative Scenario A) considers instead the situation
inwhich costs and access rates of older foreign (agedmore than 65) converge to those
of Italian residents as a consequence of a greater level of integration and knowledge.
The third scenario (Alternative Scenario B) is an extension of Scenario B in which
costs and access rates of all foreign (for each age class) converge to those of Italian
residents also thanks to specific policies ad-dressed towards foreign (e.g., institution
of specific aid services). All this scenarios have been performed using the low, main
and high ISTAT demographic forecasting.

Table5 shows the results: we consider the estimated expenditure in 2065 under
the base scenario equal to 100%, and we compare this value with those obtainable
across the described scenarios. For instance, if the evolution of the population will
follow a low demographic scenario, expenditure in 2065 is estimated to be equal
to the 87% of that estimated under the main scenario. Let us consider the results
obtained under the main scenario (second column of Table5). We see that, if older
foreign residents way of using AEDs will converge to the Italian way of using in
terms of both accesses and cost for each access, the expenditure in 2065 will become
the 83% of that recorded under the base scenario. The total expenditure will drop to
the 77% of that recorded under a base scenario if we consider Alternative Scenario
B.

Thismeans that, proper policies aimed at reducing the differences in using services
across nationalitywill lead to significant economic savings: the estimated expenditure
for 2065 under this last scenario is equal to 23.7 millions of euros. If we consider that

Table 5 Expected expenditure by triage code (2012–2065) in Liguria

ISTAT demographic scenario

Low Main High

Base scenario Expenditure in
2065 (ml of e)

26.63 30.72 34.80

% base scenario 87% 100% 113%

Alternative
scenario A

Expenditure in
2065 (ml of e)

22.10 25.50 28.96

% base scenario 72% 83% 94%

Alternative
scenario B

Expenditure in
2065 (ml of e)

20.44 23.69 27.01

% base scenario 67% 77% 88%
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the current expenditure in 2012 is estimated to be 21.5 millions of euros (Table2), it
is evident that, under Scenario B the expected increase in expenditure will account to
10% rather than to 43% over the period 2012–2065. The other relevant problem that
policymakers will face in the next decades concerns the increase in inappropriate
use of AED: inappropriate users generally are associated with low economical costs
as they do not require sophisticated treatments: however, they are responsible for
crowding and consuming of time resources of the AED staff which is an economical
cost not included in our cost estimation. The provision of alternative services to be
offered to inappropriate users of AED (e.g., first aid services) may partially mitigate
the problems: according to our estimations, a reduction of 40% in white triage
codes accesses will lead to a apparently small reduction in expenditure (−1% under
the main scenario) but it may be responsible for a significant reduction in future
crowding, organizational problems and expenditure for personnel. Another action
that may be pursued by policymakers concerns the search for a better management
of chronic conditions such as asthma, heart failure, Chronic Obstructive Pulmonary
Disease (COPD). These pathologies are often connected to high rates of re-access
and they could be managed through specifically addressed services outside the AED.
In E.O. Galliera, these chronic pathologies represented in 2012 roughly the 4% of
total accesses (asthma = 0.3%; heart failure = 1.7%; COPD = 1.8%) and they
recorded an average cost for each access generally higher than the mean (asthma =
75 e; heart failure = 152 e; COPD = 140 e). If we assume that the prevalence of
these chronic conditions will stay constant over time, the ability to deal with these
problems outside AEDs will bring to a reduction of accesses by more than 12.000
accesses in 2065, with a total saving in terms of expenditure higher than 1.6 millions
of euros.

4 Discussion and Conclusions

The results of our analysis suggest that the increase in older and foreign patients will
bring to a significant increase in the number of accesses and that expenditure is going
to rise more than demand over the period: the average per access cost will move from
92 to 100 euros. This fact is a consequence of the increase in accesses connected
to expensive patients (i.e., red triage codes, older, foreign). The expenses of AEDs
relating the treatment of all the patients are estimated (at 2012 values) to be 30.7
millions of euros in 2065 against the 21.5 of 2012 (Table2) and the share of costs
dedicated to the assistance of elderly people is expected to increase from the 56%
(12.0 millions of euros) to the 70% (21.6 million of euros). The expenses to assist
foreign patients will increase from 2 up to 12 millions of euros and a share of these
future costswill be required to assist an increasing number of older foreign patients. It
is therefore possible to sustain that ageing and immigration will both have a relevant
and similar effect on AEDs expenses with a slightly dominant role of immigration.
Froma policymaking point of viewwe also point out that the expected in-crease in the
number of white triage code (+18%) may suggest the need for alter-native services
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addressed to inappropriate users of AEDs. Future composition of inappropriate users
of emergency services is an important element that should be taken into account
by policymakers to address specific policies aiming at redirecting these patients
toward more adequate services (e.g., general practitioner, specialized visits) through
informative campaign addressed to foreign or at the institution of special first-aid
services outside AEDs able to meet the needs of inappropriate users of AEDs. The
analysis of different scenarios shows that policies specifically addressed towards
the integration of foreign individuals may partially mitigate the future expected
problems. The most relevant effect that the demographic change will cause is a
further increase in the expenses for the assistance of nonurgent patients that is not
the focal scope of AEDs. Moreover, the blind enlargement of AEDs to assist also
nonurgent patients may have the only drawback of encouraging this undesirable
behaviour of inappropriate use, making it more and more convenient for nonurgent
patients. This policy may enlarge even more the offer for a demand that is potentially
unlimited as it is alternative to the other services provided by the national health care
systems. The first step for a future sustainability of AEDs is to reduce inappropriate
accesses.
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Bell-ShapedFuzzyNumbers
Associatedwith theNormal Curve

Fabrizio Maturo and Francesca Fortuna

Abstract

Statisticians often focus on fuzzy numbers with triangular or trapezoidal
membership functions because they are very easy to apply. Although they offer a
good approximation of a fuzzy variable, several doubts arise about the appropri-
ateness of these kind of shapes. As known, fuzzy sets are useful for interval data
when the “degree of truth” of the values varies within this range. In particular,
they are desirable for translating human language into numbers. In this paper,
we propose an alternative membership function that appears more appropriate
to deal with linguistic variables. We refer to this function as “bell-shaped fuzzy
number associated with the normal curve”. In particular, we highlight the specific
properties of the proposed fuzzy number and illustrate the utility of linking this
function with the normal distribution.
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1 Introduction

Science is based entirely onAristotelian logic, thus it gives an image of an hard-edged
world in which things change insensibly. The assumption of bivalence is the basis
of the scientific mentality, but the reality is quite different. Indeed, statisticians and
mathematicians often use rigid conventions to deal with real phenomena [12]. This
problem has been solved for the first time by Prof. Lotfi A. Zadeh by introducing the
concept of degree of membership [24].

Fuzzy logic challenges and changes the concept of binary logic, according to
which a predicate can have only two alternative states such as true or false, black, or
white. The latter is the basis of computers operations but anyone can evaluate how
inaccurate and inconsistent with the reality it may be. The fuzzy approach solves
these issues by eliminating sharp edges, blurring the boundaries and overcoming the
paradoxes of choosing whether an element belongs to a set rather than another.

From a statistical point of view, the indeterminacy may derive from four main
aspects: imprecision related to measurement of phenomena, vagueness of language,
ignorance about the values of a phenomenon and, finally, the link between the
observed data and the universe of possible data.

Some variables, for their own nature, are better described by a pair of ordered
values, like daily temperatures (in terms of minimum and maximum) or financial
data (in terms of opening and closing daily prices); thus, by summarizing this mea-
surement with a single value, there is a loss of information. In these situations, data
are better described by interval values rather than single values. The margin of error
in the value of measurement, that refers to the lack of knowledge about the value of
a parameter, is knows as “imprecision” [22]; interval arithmetic analyzes this type
of imprecision. If the intervals has no sharp boundaries, there is a different kind of
imprecision called “vagueness”; fuzzy set theory is the right tool for the analysis
of vague concepts [26]. In particular, fuzzy logic is suitable to deal with variables
affected by vagueness of human language. In case of lack of knowledge about the
occurrence of some event whose result is not known in advance, we have random
variables; in this case, we talk about “randomness” [9].

In the past decades, it has been observed a substantial misunderstanding between
probabilistic and fuzzy approaches; in fact, often the membership values have been
confused with probabilities and the membership functions with probability distribu-
tion [10]. Nowadays, in the literature, this conceptual distinction is widely accepted
and statistical data analysis can be conducted using interval arithmetic, fuzzy set the-
ory, or the probabilistic approach according to the nature of the inspected variables.

Fuzzy logical rules found numerous applications in classification [6], regression
[4,5,16], approximation and control problems [7,8,11,17,19,20]. In most of the
real applications, both stochastic and deterministic uncertainties exist simultane-
ously. However, the traditional fuzzy theory and probabilistic models are only good
at processing one aspect of uncertainties. Thus, several researchers integrated the
probability theory with the fuzzy theory [14,18,20].

Amajor advantage of using this approach is that it tends to overcome some typical
limitations of the classical one, such as the introduction of restrictive assumptions
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about the nature and distribution of the data [25]. On the other hand, amain drawback
is the fuzzification process, that consists in translating a nuanced variable into real
numbers; of course, this phase is crucial because it can affect the whole analysis. A
membership function (MF) is a curve that defines how each point in the input space
is mapped to a membership value (or degree of membership) between 0 and 1. The
relations between input uncertainties and fuzzy rules are systematically explored
and several new types of membership functions discovered [3]. Fuzzy numbers are
mathematical tools introduced in the context of fuzzy logic to codify vague data.
Symmetric and not symmetric triangular fuzzy numbers or trapezoidal membership
function are largely used for their simplicity, but it is widely shared that they are not
always suitable and present some drawbacks; for example, sometimes, they represent
a forced approximation of real phenomena that could be better described by different
functions [3]. Another important problem is that triangular fuzzy numbers converge
very quickly to low values of the “degree of truth” because they are not smooth.
Also, Gaussian and bell membership functions are popular methods for specifying
fuzzy sets; thus, in the literature, several kinds of bell-shaped fuzzy numbers have
been proposed. For different reasons, they are often preferred to triangular ones even
if they present some algebraic issues. One of the main reasons is that both of these
curves have the advantage of being smooth and nonzero at all points [3].

There is a direct, although rarely explored, relation between uncertainty of input
data and fuzziness expressed bymembership functions. For this reason, we propose a
specific bell-shaped membership function and suggest a link with the normal distrib-
ution. This provides a connection between the concepts of fuzziness and probability
and helps researchers in the alpha-cut choice. The paper is organized as follows: in
Sect. 2 we provide the definition and the properties of a fuzzy number and we present
a brief review of the most common membership functions. In Sect. 3, we highlight
some remarks about fuzziness and some drawbacks of triangular fuzzy numbers. In
Sect. 4, we introduce the bell-shaped membership function associated to the normal
distribution and we focus on its properties. In the same Section we propose a new
index of uncertainty and its characteristics. In Sect. 5, we present some conclusions
and discuss some possible limitations of our approach.

2 Fuzzy Numbers

A fuzzy number (FN) μ(x) is a special case of a fuzzy set; thus, it is a fuzzy set,
defined on real numbers, with a normal and convex membership function, such that
there exists at least one point where the membership function takes the value “one”
[2,13,27]; it is a very useful tool for the analysis of imprecise numerical quantities,
such as “approximately 3,” “close to 3,” “many,” etc. [24]. A fuzzy number is a
function having as domain the set of real numbers and with values in [0, 1]

μ : R → [0, 1] (1)
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Fig. 1 The structure of a
fuzzy number

with the following characteristics (1):

• Bounded support: there are two real numbers a and b, with a ≤ b, called the
endpoints of μ, such that:

{
μ(x) = 0 for x /∈ [a, b]
μ(x) > 0 for x ∈ (a, b); (2)

• Normality: there are two real numbers c and d, with a ≤ c ≤ d ≤ b such that:

μ(x) = 1 if and only if x ∈ [c, d]. (3)

• Convexity: μ(x) is a function increasing in the interval [a, c] and decreasing in the
interval [d, b];

• Compactness: for everyα ∈ (0, 1), the set {x ∈ R : μ(x) = α} is a closed interval.

As shown in Fig. 1, the set of the real numbers x such that μ(x) > 0 is said the
support of the fuzzy number, and the interval [c, d] is said the core or central part of
it. The intervals [a, c) and (d, b] are, respectively, the left part and the right part. The
real numbers μL = c − a, μC = d − c, and μR = b − d are the left, middle, and
right spreads, respectively. Their sum μT = b − a is the total spread of the fuzzy
number. For every α such that 0 ≤ α ≤ 1 the set of the x ∈ [a, b] such thatμ(x) ≥ α

is said α − cut of the fuzzy number [9].
Themainmembership functions representing fuzzy variables are triangular, trape-

zoidal, bell-shaped fuzzy numbers, fuzzy numbers with a flat. In the following
section, we define the triangular fuzzy number (TFN) and the bell-shaped fuzzy
number (BSFN), because the first is the most used and the second is a topic of this
research.
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Fig. 2 Triangular fuzzy numbers and symmetric triangular fuzzy numbers

2.1 Triangular Fuzzy Numbers

A triangular fuzzy number (TFN)A is defined by the followingmembership function
[21,23,24]:

μA(x) =

⎧
⎪⎨

⎪⎩

x−al
am−al

for al ≤ x ≤ am
x−ar
am−ar

for am ≤ x ≤ ar
0 otherwise

(4)

where [al , ar ] is the support and am is the core. As illustrated in Fig. 2 al and ar are
respectively the left and right endpoints while am is the point where the membership
function is equal to one.

A TFN is often indicated using a simple notation like the following:

A = (al , am, ar )

A particular kind of TFN is the central triangular fuzzy number (or symmetric
triangular fuzzy number - STFN). This type of membership function is often used
in applications such as managerial decision making, social science and fuzzy con-
trollers; the membership functions of two TFNs is shown in Fig. 2.

2.2 Bell-Shaped Fuzzy Numbers

In this paper, we focus on bell-shaped fuzzy numbers (BSFNs). Different type of
BSFNs have been created in the literature but the most used is the Gaussian bell-
shaped [1]. It is known that the normal distribution is defined by

f (x) = 1

σ
√
2π

· e− 1
2 ·( x−μ

σ
)2

where μ is the mean and the σ standard deviation.
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Fig. 3 The normal distribution and the normal fuzzy number

In Fig. 3, there are three examples of the variation of the shape of the normal
function for σ = 0.25, σ = 0.5, σ = 0.1.

It is easy to show that for σ = 1√
2π

the peak becomes (μ, 1); so, since a fuzzy
number must have a membership function which assumes a maximum of 1, the
membership function is defined by

μA(x) = e−π(x−μ)2 (5)

In this case, the parameter that determines the shape of the fuzzy number is only
μ; in fact, it does not matter how it changes but the maximum is always 1.

This type of fuzzy number has the advantage of being very suitable for some real
variables, but it is little used in practice because it is not easy to treat as the triangular
fuzzy numbers. Furthermore, the supporting interval is [−∞, +∞] so this kind of
fuzzy number is unbounded.

3 The Choice of a Membership Function

The majority of scholars over the years have preferred to focus on triangular fuzzy
numbers. Surely, this type ofmembership function ismuch easy to use and often gives
a good approximation of real phenomena; nevertheless, it must be emphasized that a
different shape for membership function would be preferable in some circumstances
even if more difficult to treat.

There is a direct, although rarely explored, relation between uncertainty of input
data and fuzziness expressed by membership functions. The assumptions about the
type of input uncertainty distributions change the discontinuous mappings provided
by crisp logic systems into more smooth mappings that are implemented in a natural
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way by fuzzy rules using specific types of membership functions. Different assump-
tions about input uncertainty lead in a natural way to different types of membership
functions [3].

Triangular fuzzy numbers present some drawbacks. The first drawback of TFNs
is that they have a constant and linear rate of increase and decrease, before and after
the center; this strong assumption is not suited for all kind of data, in particular for
linguistic variables. Thus, in some circumstances, TFNs are forced approximations
of real phenomena. A shared practice in the literature, is to transfer the uncertainty
in the choice of the input variable rather than in the fuzzy rules, because it is much
more intuitive. At this point the choice of an adaptable function is crucial. This issue
highlights a second limit of TFNs that is the choice of the support for themembership
function: once the researcher choices the support of a fuzzy number excludes a-priori
the possibility, even minimal, that a fuzzy number can assume values that go beyond
the support. In practical applications it is more convenient to transfer this choice in
deciding the alpha cut, to control the fuzziness, ie the variability in the number fuzzy.
A third aspect to be emphasized is a direct consequence of the practical applications.
Indeed, in many real cases, analytical formulas for fuzzy membership functions
have been derived using Monte Carlo methods; in fact, generalizing the results, a
good guiding principle is to require that probabilities generated from Monte Carlo
sampling should be the same as those obtained from the equivalent fuzzy system
[3]. Thus, [3] demonstrated that, dealing with real phenomena, a good estimation of
input uncertainty is often given by bell-shaped fuzzy numbers.

For these reasons, in this paper, we focus on bell-shaped membership functions.
BSFNs are popular methods for specifying fuzzy sets and have the advantage of
being smooth and nonzero at all points. Although more difficult to handle, these
characteristics make them more realistic in some practical cases because BSFNs
solve the three problems mentioned above for TFNs.

The practical usefulness of FNs is visible when we cut the number and consider
only a part of the support. The cut is made with the choice of an alpha-cut, that sets
the minimum degree of truth of the possible values. Of course, this choice greatly
reduces the fuzziness. If we consider the whole support of a FN and we multiply it,
or even raise to a power, we will have a greater spread. Large spreads mean useless
information; indeed, taking all the support of a fuzzy number does not make much
sense in practice. Another advantage of BSFNs is a direct consequence of the alpha-
cut. If we cut a TFN, we get a decrease of fuzziness proportionally to the point where
we cut because the decrease of the membership function is constant; on the contrary,
the cut of a rounded shape keeps the values which are actually more “true” and the
choice is more easy, because the trend of the function is not constant and gives an
important indication. Therefore, the cut of a BSFNs leads to an higher saving of the
“truest” part of the support and to a reduction of the fuzziness more meditated. In
other words, if we cut a BSFNs, we delete many unnecessary values and keep a good
level of credibility.

The great problem of BSFNs is that they are unbounded; this circumstance is in
contradiction with the definition of a FN. Indeed, several researchers assert that a FN
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should have a finite support and could not be unbounded. Moreover, a FN without
boundaries is useless in practical application because it has infinite fuzziness.

For this reasons, a newmembership function has been proposed; this tool approx-
imates the normal distribution and is conceived to be cut and bounded in a range. In
the next section, there will be also presented a link to the normal curve that allows
to choose the right level of fuzziness and the point of the alpha-cut.

4 Bell-Shaped Fuzzy Numbers Associated
with the Normal Curve

We introduce a particular kind of membership function such that, for increasing
alpha level, its values close to the center are better than the corresponding values in
a triangular fuzzy number. We consider a family of functions defined for a certain
k > 0.

Fμ,σ,k(x) =
⎧
⎨

⎩
e− (x−μ)2

2σ2 in [μ − kσ,μ + kσ ]
0 otherwise

(6)

Figure4 shows the fuzzy number and its support. For k > 1we have two inflection
points, while for k ≤ 1 the inflection points are out of the considered support.

The function Fμ,σ,k satisfies the conditions for the definition of a fuzzy number.
In fact it is a function having as domain the set of real numbers and with values in
[0, 1],

Fμ,σ,k : R → [0, 1] (7)

and complies with the conditions [15]:

• Bounded support: there are two real numbers a = μ − kσ and b = μ + kσ , with
a ≤ b, called the endpoints of Fμ,σ,k , such that:

{
Fμ,σ,k(x) = 0 for x /∈ [a, b]
Fμ,σ,k(x) > 0 for x ∈ (a, b); (8)

• Normality: there is a real numbers μ, such that:

Fμ,σ,k = 1 (9)

• Convexity: Fμ,σ,k is a function increasing in the interval [a, μ] and decreasing in
the interval [μ, b];

• Compactness: for every α ∈ (0, 1), the set {x ∈ R : Fμ,σ,k ≥ α} is a closed
interval.
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Fig. 4 Fuzzy number associated to G

Let Gμ,σ be the density function of the normal distribution with mean μ and
variance σ 2. For every x ∈ [μ − kσ, μ + kσ ] we have:

Fμ,σ,k(x) = σ
√
2πGμ,σ (x) (10)

Then, what differs between the fuzzy number Fμ,σ,k and this density function
Gμ,σ are the height and so the area defined by the function.

The function Fμ,σ,k(x) could be called “fuzzy number associated to Gμ,σ ”.
We indicates with Φ(z) and ϕ(z) the cumulative distribution function and the

probability density function for the standard normal distribution.
We know that

ϕ(z) = 1√
2π

e− z2
2

We can prove that

Fμ,σ,k(μ + σ z) = √
2πϕ(z) ∀zε[−k, +k] (11)

then in the endpoints of the support

Fμ,σ,k(μ − σk) = √
2πϕ(−k) (12)

Fμ,σ,k(μ + σk) = √
2πϕ(k) (13)

The endpoint are corresponding to α-cut with coordinates (μ − kσ,
√
2πϕ(k))

and (μ + kσ,
√
2πϕ(k)) and so the heights (ordinates of the α-cut points) depend

only from k and are independent from μ and σ from a mathematical point of view.
The grey area is given by the equation

Aμ,σ,κ =
∫ μ+kσ

μ−kσ
e− (x−μ)2

2σ2 dx = σ
√
2π[Φ(k) − Φ(−k)] (14)
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Fig. 5 Alpha-cut at 0.61 for k = 1

If we choose k = 1 then √
2πϕ(k) ∼ 0.61

and
Φ(k) − Φ(−k) ∼ 0.683

We can note that it is an α-cut too much high because the area of the associate
normal standard distribution area is almost 68%.

We know that Φ(k) − Φ(−k) is the area under the normal standard curve. Thus,
the corresponding area of the fuzzy number is equal in percentage. For calculating the
area of the associate fuzzy number’s membership function we need multiply the area
of the associate standard normal distribution with σ

√
2π . For this reason, the case

with k ≤ 1 is lesser interested because it covers less than 70% of the corresponding
area of the normal distribution (Fig. 5).

For k = 2 (Fig. 6), √
2πϕ(k) ∼ 0.36

and α-cut is lower while
Φ(k) − Φ(−k) ∼ 0.954

We can note that the support of the area of the fuzzy number starts to increase.
For k = 3, √

2πϕ(k) ∼ 0.011

and α-cut is lower while
Φ(k) − Φ(−k) ∼ 0.9974

Figure7 shows that this alpha-cut choice corresponds to a very high value of the
normal curve area.

The area of the fuzzy number coincides with the area of the associate normal
distribution if σ

√
2π = 1, it is lower if σ

√
2π < 1 and it is greater if σ

√
2π > 1.
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Fig. 6 Alpha-cut at 0.36 for k = 2

Fig. 7 Alpha-cut at 0.011 for k = 3

In fact, we obtain:

σ
√
2π = 1 Aμ,σ,k ≡ Φ(k) − Φ(−k)

σ
√
2π > 1 Aμ,σ,k > Φ(k) − Φ(−k)

σ
√
2π < 1 Aμ,σ,k < Φ(k) − Φ(−k)

(15)

We could build an index making the relationship between area and spread as
follows:

Iμ,σ,k = Aμ,σ,k

Sμ,σ,k
(16)

where Sμ,σ,k is the total spread of the fuzzy number.
We can write:

Iμ,σ,k = σ
√
2π[Φ(k) − Φ(−k)]

2kσ
(17)
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then

Iμ,σ,k =
√

π√
2

Φ(k) − Φ(−k)

k
(18)

We can conclude that Iμ,σ,k is independent from μ and σ and depends only from
k; thus we can write only Ik .

This result shows that, for every fixed k, the family of fuzzy numbers Fμ,σ,k is an
homogeneous class of fuzzy numbers as the set of triangular fuzzy numbers. This
circumstance justifies the treatment of fuzzy data replacing fuzzy triangular numbers
with fuzzy numbers Fμ,σ,k , with a fixed k.

Calculating this index for k = 3 we get:

I3 = A(k)

S(k)
= σ

√
2π

2kσ
[φ(k) − φ(−k)] =

=
√
2π

2k
0.9974 = 0.4166

(19)

It is a nice discovery that confirms our conjecture. In fact, this relationship is
always constant and it is influenced only by k. This is a very good tool to compare
different fuzzy numbers.

For example, if we calculate the same index on a square we obtain a value of
1; it means that with a square we have maximum uncertainty. If we solve the same
equation for a triangle we obtain a value of 0.5. Thus we can say that this index is an
indicator of uncertainty. It can range from zero to one. It is 1 when we have a square
and it assumes the value 0 for a scalar; in fact we should have maximum certainty.

Therefore, a value of 0.416 shows that we gain almost 20% in relative terms
compared to the triangle.

Calculating Ik for k = 2 we obtain I2 ∼ 0.6. This demonstrates that K = 3 is a
good choice for this function.

5 Conclusions

Gaussian and bell membership functions are popular methods for specifying fuzzy
sets. Both of these curves have the advantage of being smooth and nonzero at all
points. Moreover, several researchers demonstrated that, dealing with real phenom-
ena, a good estimation of input uncertainty is often given by bell-shaped fuzzy
numbers. For these reasons, in some real cases, BSFNs are better than TFN because
they better reflect the input variables. It is true that these functions are more difficult
to treat than those triangular, but in recent decades literature has moved significantly
on this field to search for practical applications. It is widely shared by researchers that
there is a direct, although rarely explored, relation between uncertainty of input data
and fuzziness expressed by membership functions. To fulfill this gap, this paper pro-
poses a direct link betweenBSFNs and the normal distribution and, provides an index
of fuzziness to help in the alpha-cut choice. Of course, various other BSFNs may
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be considered, and their membership functions found, but, although the Gaussian
membership functions and the bell membership functions achieve smoothness, the
main drawback is that they are unable to specify asymmetric membership functions,
which are important in certain applications.
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The present paper aims at describing the scientific collaboration patterns of the
Italian academic statisticians by merging bibliographic data from heterogenous
sources–ISI-WoS, Current Index to Statistics, and the database of nationally
funded research projects, PRIN. To obtain a unified database, containing both
top international as well as nationally oriented production, information were com-
bined by identifying and linking duplicate records, i.e. record linkage. The unique
co-authorship network was then used as basis for network analysis.
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1 Introduction

The recent interest in the analysis of collaboration networks lies in the fact that
long-term trends in scientific work as well as scientist’s productivity might closely
depend on the topological features of disciplinary networks. Mainly thanks to the
availability of international bibliographic archives, several seminal studies in various
fields focused on the co-authorship relation as a proxy of scholars’ collaborative skills
(e.g., [1] for Physics, Mathematics and Neurosciences).

To the best of our knowledge, only few studies have been specifically devoted to
the Statistics field. Reference [2] explored the properties of the network generated by
the editorial policies of the journals classified as “Statistics and Probability” in the
Journal ofCitationReport by ISI-Thomson.Reference [7] analysed the co-authorship
networks of the 792 Italian statisticians—as recorded in theMIURdatabase inMarch
2010 — derived from three bibliographic archives: WoS, CIS, and bibliographic
information retrieved from the database of nationally funded research projects, PRIN.
The authors discovered distinct collaboration patterns among statisticians as well as
distinct effects of scientist network positions on scientific performance, by both
Statistics subfield and data source. These results were in line with the findings of [6]
on the publication style of Italian statisticians in which they recognized that the use
of a single data source can led to biased and partial results.

In this study, we aimed at merging bibliographic data of the three archives
exploited in [7] to obtain a complete unified archive, containing both top-international
as well as nationally oriented scientific production, as a new basis for network analy-
sis.

To obtain a single co-authorship network, we first combined information from
heterogeneous sources by identifying and linking duplicate records (record linkage).
The record linkage of metadata in Digital Libraries (DLs) is a very sensitive issue.
It refers to “the task of identifying records from disparate data sources that refer to
the same entity” [9, p. 245], often used to define integrated information systems in
statistical setting [14]. In recent years, computer-oriented record linkages methods
are reported in the literature [4,8], which ensure a high efficiency and scalability on
large data sets.

The remaining of the paper is organised as follows. Section2 reports co-authorship
network definition and the main network results of Italian academic statisticians as
retrieved from heterogeneous data sources. Section3 describes the merging proce-
dure and Sect. 4 presents the network results for the unified archive. Finally, Sect. 5
concludes with a discussion of future lines of research.

2 Co-authorship Network Definition

LetN = {1, 2, . . . , n} be the set of n authors andP = {1, 2, . . . , p} be the set of the
p publications observed on the n authors. A co-authorship network is derived from
the matrix product Y = AA′, where A is a n × p affiliation matrix, with elements
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Table 1 Number of publications and author coverage rate in the three bibliographic archives

Years # of publications Author coverage rate
(%)

WoS 1989–2010 2289 60.7

CIS 1975–2010 3459 73.4

PRIN projects* 2000–2008* 5054 70.2
∗Years of the project

aik = 1 if i ∈ N authored the publication k ∈ P , 0 otherwise. The matrix Y is
the undirected and valued n × n adjacency matrix with element yi j greater than 0
if i, j ∈ N co-authored one or more publications in P , 0 otherwise. The binary
version of Y, setting all entries in the valued adjacency matrix greater than zero to 1,
was used in the analysis.

As discussed in [7], the specific features of each data source (WoS, CIS, PRIN)
used to obtain bibliographic data of Italian statisticians affected the retrieved number
of publications and the percentage of statisticians found in a data source out of 792
(author coverage rate, Table1), as well as the resulting co-authorship patterns.

Summarizing, WoS appeared as the data source in which the average number
of co-authors for each statistician was extremely high, being affected by the pres-
ence of few statisticians with a large number of co-authors. Patterns consistent with
well-established network structures were found out in CIS database. CIS captured
internationalization openness by research topics and publication style, while WoS
mainly captured the tendency towards an interdisciplinary behavior. Finally, PRIN
combined someofCIS andWoScharacteristics, although referred only to the selected
publications by project’s managers and members [7, p. 380].

3 Record Linkage Procedure

To get a unique data set, information from heterogeneous sources were combined
by identifying and linking duplicate records. Given the relatively small number of
records in the three data sources under analysis, we opted for a semi-automatic
method for record linkage because of the presence of errors and omissions in the
original datasets (e.g., misspellings in the names of authors and titles, discrepancies
in the name of the venue, lack or inaccuracy in the year of publication), especially
in PRIN.

Toperform the linkage,we proceededwith the commonly used approach ofmatch-
ing the sources in pairs and then performing a reconciliation of possible discrepancies
[16]. In particular, we used the following distance functions on each of the key field:

• Co-authors: Jaccard distance [5] between the set of author surnames of the two
records (dA).
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Table 2 Number and % of
publications in the unified
archive after record linkage
by source (np = not present,
p = present)

WoS CIS PRIN # pubs %

np np p 3816 43.7

np p np 2147 24.6

np p p 483 5.5

p np np 1139 13.0

p p p 321 3.7

p p np 395 4.5

p p p 434 5.0

• Title: error rate measure derived from the edit distance between the two compared
strings t1 and t2. In particular, we defined the distance as

dT = Ld(t1, t2)/max(|t1|, |t2|)
where the numerator is the Levenshtein distance [13] between t1 and t2 and the
denominator is the maximum length of the two compared titles.

• Year: absolute value of the difference between the years of publication (dY ).

All strings were lower cased before any comparison. The overall distance was
defined as a 3-tuple (dA, dT , dY ), where each element was the distance calculated
as described above on the three key fields. We automatically linked the pairs whose
distances were below the following thresholds: dT < 10%, dA = 0, and dY = 0.
The couples having dT < 20%, and dA ≤ 1 (except those already automatically
linked) were manually inspected to establish whether to link them. The choice of the
threshold values appeared reasonable enough to avoid an hard manual checking.

The resulting unified archive contains 8735 publications, and its composition by
source is shown in Table 2. The overlapping publications retrieved in all the three data
sources were quite small. They represented only 5.0% in the combined archive. Very
similar percentages were found by couples of databases. More than 40% of publi-
cations were retrieved only in PRIN (in which only 8.1% out of 5890 papers were
published before 1990), followed by 24.6% of publications from CIS and 13.0%
fromWOS.These results confirmed the high heterogeneity of scientific production of
Italian statisticians (top international papers as well as nationally oriented scientific
production) that was reflected by the specific features of the three databases.

4 Network Results

In the unified database, the author coverage rate for all statisticians was 85.5%. Dif-
ferent values were obtained from the five Statistics subfields. Statistics, Statistics
for Experimental and Technological research, and Social Statistics were well repre-
sented (90.1, 86.7, and 90.5%, respectively), whereas the lowest authors coverage
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Fig. 1 a Co-authored and single-authored publications; b average number of authors

Fig. 2 Co-authorship network for statisticians. Statistics subfields: Statistics (Stat), Statistics for
Experimental and Technological research (Stat for E&T ), Economic Statistics (Economic Stat),
Demography (Demo), and Social Statistics (Social Stat). Node size: # publications per author. Edge
size: # pubs shared by pairs of authors

rates were observed for Economic Statistics (78.1%), and Demography (70.6%).
The percentage of co-authored publications was 66.7%.

In Fig. 1a, we considered the number of co-authored and single-authored publica-
tions in the period 1990–2008. The increasing of co-authorship behaviour for Italian
statisticians was observed since the end of 1990 (with an exception for the year
2008 mainly due to update issues in the original archives). The average number of
authors per publication was around 4 and considering only statisticians was around
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Table 3 Network statistics, small-world and scale-free topology assessment for All authors and
Statisticians

All authors Statisticians

#. of authors 7332 677

#. of authors per pub 4.31 2.53

St.Dev. 29.38 2.47

#. of pub per author 5.14 16.48

St.Dev. 8.98 15.49

#. of edges 474478 1197

Density 0.018 0.005

Average degree 129.43 3.54

Giant component (%) 97.64 81.24

Average Path Length (�) 5.29 5.46

Clustering Coefficient (Γ ) 0.85 0.39

E-I index 0.58 −0.43

All authors Statisticians

Small world

�(G)/�(E R) 2.54 1.05

Γ (G)/Γ (E R) 49.82 49.33

Scale freea

C 0.27 0.45

α̂ 1.32 1.62
aSignificant parameter at: *p < .1, **p < .05, ***p < .01

3 (Fig. 1b and Table3). It is worthy to note the high value of the average number
of authors per publication for the past two years due to the presence of six and ten
publications, respectively in 2007 and in 2008, with a number of authors greater than
100. More specifically, we found a total of 33 publications with this characteristic
in WoS referred to nine statisticians. We decided to keep them in the analysis given
their relevance in network studies for highlighting peculiar collaboration styles (e.g.,
interdisciplinary behavior and/or preferential attachment mechanisms [1]).

Finally, the average number of publications per author was around 5, but disre-
garding the external authors was 16 publications per each statistician (Table3).

Taking into account both all authors and only statisticians, two adjacency data
matrices were considered from the affiliation matrix retrieved from the unified data-
base. The visualization of the co-authorship network for statisticians is shown in
Fig. 2. Some network descriptive statistics [19] are reported in Table3. The overall
network cohesionmeasured by the number of observed ties among authors compared
to the maximum possible number of ties in the network, given by n(n−1)/2, (density)
was very low for both networks. The mean value of ties per author (average degree)
was particularly high when we considered all authors (129.4) with respect to the
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internal network defined considering only the co-authorship relations among statis-
ticians (3.5). As noted before, the high value for all authors is due to the presence
of those publications in WoS with more than 100 authors. Most of the authors are
included in one large connected component (giant component) absorbing a consid-
erable percentage of them (97.64, and 81.24% for only statisticians). The extent of
collaboration closure of all authors and statisticians was evaluated through the E-I
index –ameasure of the group embeddedness that compares the number of ties within
groups (Internal) and between groups (External) [12]. The indexes highlighted both
a high interdisciplinary behavior with outsider authors (E-I index = .58) and high
internal collaboration among statisticians (E-I index= −.43), especially in Statistics
and Demography subfields.

4.1 Network Topology

We assessed the consistency of the observed networks with the main topological
structures emerging in co-authorship setting (i.e., small-world and scale-free topol-
ogy). Small-world configuration [20] is characterized by: (i) small dense network
regions revealed by high clustering coefficient Γ (average number of closed trian-
gles out of the total number of triplets of actors), and (ii) short paths connecting any
two authors revealed by low average path length � (average number of ties along the
shortest paths for all possible pairs of actors). A “scale free” network [1] implies the
existence of a peculiar tie formation mechanism named preferential attachment, i.e.,
the tendency to collaborate with the best connected authors. If the degree distribution
follows a power law, a scale-free network structure emerges.

Results in Table3 suggested that statisticians appeared clustered into distinct
groups—probably driven by subfields and by geographical/institutional affiliation—
connected by few short-cuts, resembling a small-world configuration. This network
structure allows statistical knowledge to flow easily among actors [15]. The scale-
free results revealed no statistical evidence of preferential attachment mechanism in
co-authorship style, although the presence of prominent statisticians could not be
excluded, as discussed in [7, p. 378]. Figure3 reports the Complementary Cumula-
tive Function (CCF) of the observed degree distribution and the corresponding fitted
power law distribution for all authors (Fig. 3a) and only statisticians (Fig. 3b). The
plots show the strong departure of observed degree distribution from the power law
distribution confirming the absence of a scale-free configuration.
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Fig. 3 Obs. Complementary Cumulative Function (CCF) –dot line– and fitted Power Law (PL)
distributions –dashed line. Log–log scale plot: x axis = degree k. y axis = proportion of authors
with degree > k. a all authors; b statisticians

5 Conclusion and Further Remarks

The co-authorship patterns of Italian statisticians have been explored by combining
their heterogeneous scientific production retrieved in three distinct databases. To
construct a unified archive, a record linkage procedure was adopted to correctly
identify synonymous author names along with their publications.

A further issue is related to author name disambiguation in order to achieve better
quality of network data. Specifically, it “occurs when one author can be correctly
referred to by multiple name variations (synonyms) or when multiple authors have
exactly the same name or share the same name variation (polysems)” [18, p. 680].
Reference [11, p. 85] pointed out that “One may argue that person name disam-
biguation inherently includes the problem of personal name matching, since there
may exist many namesakes who have a variety of name variants.” These two issues
are usually treated in the specific literature as independent tasks with personal name
matching preceding personal name disambiguation.

A myriad of recent studies were devoted to name disambiguation methods in
bibliographic DLs (for a recent survey, see [10]) in computer science, sociological
and linguistic setting by covering supervised, unsupervised or semi-supervised tech-
niques. Due to the lack of training data, unsupervised methods [3], and especially
the techniques described in [17], seem to be very promising to our case.

Once author disambiguation will be assessed, further analyses will be devoted to
identify the characteristics of the emerging groups of statisticians, and to explore the
presence of other configurations in co-authorship.
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Statistical Issues inBayesian
Meta-Analysis

Elías Moreno

Abstract

In this paper, we present two problems in meta-analysis. One is the model uncer-
tainty generated by the available heterogenous sampling information. We claim
that this model uncertainty has to be incorporated into the meta-inference, and
propose a Bayesian clustering procedure for doing that. A second problem is that
of choosing the linking distribution that relates the experimental sampling model
and the meta-model. We claim that the join distribution for the experimental para-
meters and the meta-parameter has to be a copula in order to ensure that the
Bayesian experimental model and meta-model are coherent. A general copula is
proposed. Illustrative examples with real data set are given.

1 Introduction

When a medical treatment is applied to patients with a given disease and samples are
collected in k different healthcare centers, the meta-analysis tries to see what can be
concluded about the fundamental question that each of the trials sought to address: the
efficacy of the treatments [18].DuMouchel andWaternaux [15] encouraged the use of
meta-analysis in medicine and in controlled clinical trials of psychopharmacological
agents by asserting that even when the study protocols are similar (dosage, length of
treatment, control treatment) there is often considerable variation between studies.
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This implies that the sampling distribution might change across samples, and the
dimension of joint sampling model is then larger than that of the individual model.
The point is to know howmuch the dimension of the joint sampling model increases.
We argue that to answer to this question yields recognizing an additional source of
uncertainty in the statistical inference, the model uncertainty. In the meta-analysis
literature, the heterogeneity analysismainly consists of either estimating the variance
of the linking normal distribution, the so-called heterogeneity parameter, or testing
the null hypothesis that the samples are homogeneous versus the alternative that
they are heterogeneous ([2,6,31] among others). We note that this heterogeneity
analysis compares two extreme situations, either all samples come from the same
distribution or the distribution of the samples are all different. We claim that this is a
unrealistic simplification of the problem. Intermediate situations inwhich the number
of distributions generating the samples is smaller than the original number of samples
k are quite feasible a priori, and hence, a clustering analysis of the k samples seems
to be the natural method for analyzing the between samples heterogeneity. This is
an important point because the likelihood of the meta-parameters strongly depends
on the cluster structure of the samples involved.

Therefore, we propose to carry out a meta-analysis for each cluster of the samples,
and then pooling them. The final result is a mixture of the meta-analyses conditional
on the clusters, where the mixing distribution is the posterior probability of the
clusters (model averaging). The number of cluster models, the Bell numberB(k), is
a huge number, even for moderate values of k, and it precludes the computation of
all posterior model probabilities. However, the hope is that in practice only a small
number of cluster models will have nonnegligible posterior probability values.

We remark that the presence of k heterogeneous samples yields new difficul-
ties related with the consistency of the Bayesian model selection procedure. While
for regular models the parameter uncertainty disappears as the sample size grows
to infinity, the model uncertainty does not necessarily disappear as the number of
samples k grows to infinity. The difficulty comes from the fact that the dimension
of the models grows as the number of samples grows, and the Bayes factors for
model selection are not necessarily consistent in this context [23,24]. In particular,
the well-established BIC procedure [30] is inconsistent when the dimension of the
model grows at the same rate of growing than the sample size.

On the other hand, we emphasize that the linking distribution, the distribution
of the experimental parameters conditional on the meta-parameter, is of the utmost
importance inmeta-analysis as it is a necessary distribution for defining the likelihood
of the meta-parameter. We remark that in order to ensure that the conditional and
marginal distributions of the experimental parameter and the meta-parameter be
coherent, some constraints on the linking distribution have to be imposed.A constrain
is that the bivariate distribution of the experimental parameter and themeta-parameter
be a copula, or equivalently it is belonging to the class of bivariate distributions with
given marginals, the Frèchet class. Following [25], a general linking distribution
satisfying this requirement is presented.

The rest of the paper is organized as follows.TheBayesianmeta-model, the linking
distribution, and the meta-inference are presented in Sect. 2. Section4 presents a
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Bayesian clustering procedure for detecting heterogenous samples based on that
given by [10]. In Sect. 5 some examples with real data sets are given, and Sect. 6
contains some concluding remarks.

2 The BayesianMeta-Model

Suppose that a clinical trial is carried in k ≥ 2 centers that provide heterogenous
samples {xi , i = 1, . . . , k} with distribution { f (xi |θi ), i = 1, . . . , k}, where θi ∈ Θ

represents the effectiveness of the treatment conditional on center i . For simplicity,
we assume that Θ is a one-dimensional space. Assuming that the prior information
on θi is weak the objective Jeffreys’ prior π J (θi ) is recommended, which might be
an improper distribution. Then, we have the objective Bayesian experimental model

Mi :
{
f (xi |θi ), π J (θi )

}
, (1)

for i = 1, . . . , k.
We now introduce a latent variable X , the meta-variable, which is defined as the

result wewould obtain when the treatment with effectiveness θ is applied to a patient,
and there is no between center variability. The conditional distribution f (x |θ) of this
meta–variable X is assumed to belong to the same parametric family than that of the
observable variables Xi , where the meta–parameter θ represents the unconditional
treatment effectiveness.

Thus, the objective Bayesian meta-model M is given by

M :
{
f (x |θ), π J (θ)

}
. (2)

A first quantity of interest in meta-analysis is the posterior distribution of meta-
parameter θ , conditional on the observed samples {xi , i = 1, . . . , k}, that is,

π(θ |x1, . . . , xk) = f (x1, . . . , xk |θ)π J (θ)∫
f (x1, . . . , xk |θ)π J (θ)dθ

.

In this expression f (x1, . . . , xk |θ) is the likelihood of θ for the experimental data
(x1, . . . , xk), and we remark that for computing this likelihood f (x1, . . . , xk |θ)

a linking distribution π(θi |θ) relating the experimental parameters and the meta-
parameter has to considered, a topic that we deal with in the next section.

A second quantity of interest is the meta-predictive distribution of a new patient
y, conditional on the available data, which is given by

f (y|x1, . . . , xk) =
∫

f (y|θ)π(θ |x1, ..., xk)dθ.
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2.1 The Linking Distribution and the Likelihood
of theMeta-Parameter

Assuming that the heterogenous samples {xi , i = 1, . . . , k} are independent, condi-
tional on θi , we have the joint distribution

f (x1, . . . , xk |θ1, . . . , θk) =
k∏

i=1

f (xi |θi ).

Assuming that for the linkingdistributionπ(θi |θ) the parameters {θi , i = 1, . . . , k}
are independent, conditional on θ , the likelihood of themeta-parameter θ can bewrit-
ten as

f (x1, . . . , xk |θ) =
k∏

i=1

∫
f (xi |θi )π(θi |θ)dθi . (3)

As noted in [25], the linking distribution π(θi |θ) has to be compatible with the
marginal priorsπ J (θi ) andπ J (θ). Thismeans thatπ(θi |θ) has to be chosen such that
the bivariate distribution π(θi , θ) = π(θi |θ)π J (θ) satisfies the integral equations

∫ 1

0
π(θi , θ)dθi = π J (θ),

∫ 1

0
π(θi , θ)dθ = π J (θi ). (4)

While the first equation is satisfied for any probability distribution π(θi |θ), the
second equation is only satisfied for prior distributions in the so-called Frèchet bidi-
mensional class with Jeffreys marginal. There are very many bidimensional distribu-
tions with given marginal, for instance that given by [13,14,17,26,28], among many
others, and we can certainly make use of them (for a discussion see [25]).

An interesting general linking distribution is the intrinsic prior class {π I (θi |θ, t),
t = 1, 2, ....}, which arises from the model comparison of the meta-model M versus
Mi [4,21,22]. The intrinsic prior π I (θi |θ, t), where t is the training sample size, is
given by

π I (θi |θ, t) = π J (θi )Ez1,...,zt |θi
f (z1, . . . , zt |θ)∫

f (z1, . . . , zt |θi )π J (θi )dθi
(5)

= π J (θi )

∫
f (z1, . . . , zt |θ)∫

f (z1, . . . , zt |θi )π J (θi )dθi
f (z1, . . . , zt |θi )dz1...dzt .

The intrinsic prior π I (θi |θ, t) is , conditional on θ , a proper prior for any t , and
the joint distribution π I (θi , θ |t) = π I (θi |θ, t)π J (θ) satisfies Eq. (4) as shown in the
next lemma.

Lemma 1 The bidimensional distribution π I (θi , θ |t) = π I (θi |θ, t)π J (θ) satisfies
Eq. (4).

Proof For, we first note that for any t we have
∫

π I (θi |θ, t)dθi = 1,
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and hence, the first equation is satisfied. Further, for any t we have
∫

π I (θi |θ, t)π J (θ)dθ = π J (θi )Ez1,...,zt |θi

∫
f (z1, . . . , zt |θ)π J (θ)dθ∫
f (z1, . . . , zt |θi )π J (θi )dθi

= π J (θi ),

and this proves the assertion. �

The training sample size t controls the concentration degree of the probability
distribution of θi around θ . Next Lemma 2 shows that, under mild conditions, as t
tends to infinity the distribution π I (θi |θ, t) degenerates to a point mass on θ .

Lemma 2 For any regular sampling models f (x |θ) we have that π I (θi |θ, t) degen-
erates to a point mass on θ as t tends to infinity. Further, if limt→∞ π I (θi |θ, t) is a
probability density, we then have that

lim
t→∞ π I (θi |θ, t) = δ{θ}(θi ),

where δ{θ}(θi ) represents the Dirac’s delta.

Proof We note that π I (θi |θ, t) can be written as

π I (θi |θ, t) = π J (θi )Ez1,...,zt |θi B01(z1, . . . , zt ),

where B01(z1, . . . , zk) is the Bayes factor to compare model

M0 : f (x |θ), for fixed θ,

versus model
M1 : { f (x |θi ), π J (θi )},

for the sample z1, . . . , zt . Using the consistency properties of the Bayes factor for
nestedmodels [11], it follows that the limit in probability when sampling frommodel
M1 is zero, that is,

lim
t→∞ B01(z1, . . . , zt ) = 0, [M1],

and hence, Ez1,...,zt |θi B01(z1, . . . , zt ), the expectation of the Bayes factor
B01(z1, . . . , zt ) with respect to the alternative model f (z1, . . . , zt |θi ), goes to zero
as t → ∞. Thus, the distribution π I (θi |θ, t) degenerates to zero when t → ∞ and
θi �= θ .

Further, when limt→∞ π I (θi |θ, t) is a probability density, it follows that

lim
t→∞ π I (θi |θ, t) =

{
0 for θi �= θ,

1 for θi = θ,

and this completes the proof of Lemma 2. �
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2.2 Estimating theMeta-Parameter θ

For the intrinsic linking distribution (5), the likelihood of the meta-parameter θ for
the samples {x1, . . . , xk} becomes

f (x1, . . . , xk |θ, t) =
k∏

i=1

∫
f (xi |θi )π I (θi |θ, t)dθi . (6)

Using this likelihood of the meta-parameter θ and the Jeffreys prior π J (θ), the
posterior distribution of θ , conditional on t , is given by

π(θ |x1, . . . , xk, t) = f (x1, . . . , xk |θ, t)π J (θ)∫
f (x1, . . . , xk |θ, t)π J (θ)dθ

. (7)

This posterior distribution depends on the training sample size t . The value of
t is usually taken as smaller as possible [4], although there is no reason for doing
that, and hence, there are several alternative ways for dealing with t . For instance,
an estimator of θ could be the posterior expectation

E(θ |x1, . . . , xk, t) =
∫

θπ(θ |x1, . . . , xk, t)dθ

and if we let the training sample size t vary in the set of integers, posterior robustness
of the posterior expectation with respect to the intrinsic prior class can be assessed
[12]. We could also set t equal to the minimum of the actual sizes of the samples
{x1, . . . , xk} so that the concentration of the linking distribution does not exceed to
that of the likelihood [8,9]. We can also integrate out the training sample size t in
the linking distribution π I (θi |θ, t) in (5) with respect to a prior π(t) to obtain the
likelihood of the meta-parameter as

f (x1, . . . , xk |θ) =
k∏

i=1

∞∑

t=1

π(t)
∫

f (xi |θi )π I (θi |θ, t)dθi .

For a derivation of π(t) see [25].

2.3 Testing the Equality of Treatments Effectiveness

Treatment effectiveness comparison based on multiple studies is among the most
important chapter inmeta–analysis.Most of theBayesianmeta–analyses for compar-
ing two treatments estimate either the difference of the meta–effectiveness parame-
ters or their odds ratio (see, for instance, [7,19,29]; among many others). Typically,
the 95% HPD region of the posterior distribution of the difference of the meta–
parameters is computed, and the equality of meta–effectiveness of the treatments is
accepted if the “singular” point 0 is contained in the region, and rejected otherwise.
When the odds ratio is used instead, the equality is accepted if the “singular” point
1 is contained in the 95% HPD of the posterior odds distribution.
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We note that by doing so the same statistical evidence in favor of the null is
obtained whatever is the position of the “singular” point in the HPD region. We also
note that this Bayesian procedure mimics the frequentist testing methodology that
uses confidence intervals, and it dates back to [20].

The difficulty with this methodology is that the null hypothesis does not play any
role in the construction of the HPD region, and hence, the prior uncertainty on the
null and the alternative models are not taken into account.

It was [16] who strongly recommended to separate testing problems from esti-
mation problems. He advocated using the Bayesian testing methodology based on
Bayes factors. Sensible motivations for using model selection for testing problems
were also given by [5] and references there in. We here provide a Bayesian meta-test
that follows the standard model selection methodology.

Let us consider, two treatments Tj , j = 1, 2, and assume that for each treat-
ment there are available k j independent samples x j = {x ji , i = 1, . . . , k j } on their
effectiveness. The likelihood f (x j |ξ j ) of the meta-parameter ξ j of treatment Tj is
given by

f (x j |ξ j , t) =
k j∏

i=1

∫
f (x ji |θ j i )π(θ j i |ξ j , t)dθi , j = 1, 2, (8)

where π(θ j i |ξ j ) is the linking distribution.
The interest now is on testing the null hypothesis H0 : ξ1 = ξ2 versus the alter-

native unrestricted hypothesis H1 : (ξ1, ξ2) ∈ (0, 1)2. A simpler objective Bayesian
solution of this problem is the model comparison between model

M0 : { f (x1|ξ, t) Pr(x2|ξ, t), π J (ξ)},
and model

M1 : { f (x1|ξ1, t) f (x2|ξ2, t), π J (ξ1)π
J (ξ2)},

where π J (ξ j ) is the Jeffreys prior for the model f (x j |ξ j ).
Assuming a uniform model prior Pr(M0) = Pr(M1) = 1/2, the posterior proba-

bility of the null M0 is given by

Pr(M0|x1, x2) = 1

1 + B10(x1, x2)
, (9)

where the Bayes factor B10(x1, x2, t) is

B10(x1, x2, t) =
∏2

j=1

∫
f (x j |ξ j , t)π I (ξ j )dξ j

∫ (∏2
j=1 f (x j |ξ, t)π J (ξ)

)
dξ

. (10)

The decision rule is that of choosing model M0 if Pr(M0|x1, x2) ≥ 1/2, and M1
otherwise.
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3 Accounting for the Between Sample
Heterogeneity: Clustering

The likelihood f (x1, . . . , xk |θ) = ∏k
i=1

∫
f (xi |θi )π(θi |θ)dθi considered so far is

based on the assumption that there are k different clusters in the samples {xi , i =
1, . . . , k}. However, alternative clusters are a priori possible, and hence, we consider
the problem of clustering the k samples. The quantity of interest is now the posterior
distribution of the cluster models. This distribution will be the mixing distribution
for averaging the meta-inference conditional on the cluster models.

In the next section, we briefly describe the method we use for clustering the k
samples.

3.1 The Cluster Models

For clustering the binomial experimental samples {xi , i = 1, . . . , k} we follow the
product partition model approach introduced by [3] and further studied in [10].

Let us first introduce some notation. For an integer p, 1 ≤ p ≤ k, we denote a par-
tition of the samples {xi , i = 1, . . . , k} into p clusters by a vector rp = (r1, . . . , rk) ,
where ri is an integer between 1 and p denoting the cluster to which xi is assigned.
By Rp we denote the set of partitions of the samples into p clusters, the number of
which is the Stirling number of the second kind S(k, p). Hence, the set of all possible
partitions of the samples isR = ∪k

p=1Rp, the number of which is given by the Bell

numberBk = ∑k
p=1 S(k, p).

Given a partition rp = (r1, . . . , rk), the sampling distribution of x is the product
partition model

f (x|p, rp, θp, k) =
p∏

j=1

∏

i :ri= j

f (xi |θi ) =
k∏

i=1

f (xi |θri ), (11)

where θp = (θr1 , . . . , θrk ) is an unknown parameter in the space Θ p, and the com-
ponent θri indicates the distribution of the sample xi . We remark that the partition
rp defines the sampling model, so that partition and model are equivalent words in
this context.

The partition rp = (1, .., 1) corresponds to the singular case where the samples
are grouped in only one cluster. Its corresponding likelihood function is given by

f (x|1, r1, θ, k) =
k∏

i=1

f (xi |θi ).

We note that under this model, there is no variation between samples, and hence,
the meta-parameter and the experimental parameters coincide, that is, θ1 = · · · =
θk = θ . Under this model there is no sampling information for formulating the meta-
analysis.
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3.2 Prior Distributions

To complete the specification of the Bayesian cluster model, we need a prior distrib-
ution for the models (p, rp) and for the model parameter parameters θp, conditional
on k. A natural decomposition of the joint prior distribution π(p, rp, θp|k) is

π(p, rp, θp|k) = π(θp|p, rp, k)π(rp|p, k)π(p|k).
Let us specify the three priors π(θp|p, rp, k), π(rp|p, k), and π(p|k).

1. The prior for θp, conditional on the partition rp, is assumed to be the intrinsic
prior arising from the model comparison between the one cluster model againts the
cluster model (p, rp) [4,22]. This prior turns out to be

π I (θp|θ, p, rp, k) =
p∏

j=1

π I (θ j |θ).

2. To assign π(rp|p, k) we decompose the class of partitions Rp as follows. Let
ki be the number of samples assigned to the ith cluster, i = 1, . . . , p. Then the class
Rp as be expressed as

Rp = ∪1≤k1≤···≤kp
k1+···+kp=k

Rp;k1,...,kp .

The subclass Rp;k1,...,kp is called a configuration class, that is, a class of partitions
inRp having the same configuration (k1, . . . , kp). Using this decomposition ofRp

we decompose the prior π(rp|p, k) as
π(rp|p, k) = π(rp|Rp;k1,...,kp , k)π(Rp;k1,...,kp |p, k).

Since the labels of the clusters are irrelevant, the number of partitions inRp;k1,...,kp
can be written as (

k

k1 · · · kp
)

1

R(k1, . . . , kp)
,

where
( k
k1···kp

)
is the multinomial coefficient, and R(k1, . . . , kp) = ∏k

i=1(∑p
j=1 1(k j=i)

)
! corrects the count by considering the redundant strings corre-

sponding to the vector (k1, . . . , kp) . For instance, for the vector (k1, . . . , kp) such
that k1 = · · · = kp−4 < kp−3 = kp−2 < kp−1 = kp, we have that R(k1, . . . , kp) =
(p − 4)!2!2!. Thus, the number of partition inRp is given by the Stirling number of
second kind, which we write as

S(k, p) =
∑

1≤k1≤···≤kp
k1+···+kp=k

(
k

k1 · · · kp
)

1

R(k1, . . . , kp)
.

Since that the partitions rp in Rp;k1,...,kp are exchangeable, it seems reasonable
to assign a uniform prior to them, that is,

π(rp|Rp;k1,...,kp , k) =
(

k

k1 · · · kp
)−1

R(k1, . . . , kp).
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3. Further, since the configuration classes {Rp;k1,...,kp , 1 ≤ k1 ≤ · · · ≤ kp, k1 +
· · · + kp = k} inRp contain models of the same complexity, it seems reasonable to
assign to these classes a uniform prior. For doing that we need to count the number
of configuration classes inRp. We note that this number is also the number of ways
the integer k can be partitioned into p integer parts, which we denote by b(k, p).
This number does not seem to have a closed form expression as a function of p and
k. However, it can be shown that b(k, p) satisfies the recursive equation

b(k, p) = b(k − 1, p − 1) + b(k − p, p), 1 ≤ p ≤ k,

with
b(k, 1) = b(k, k) = 1.

Therefore,

π(Rp;k1,...,kp |p, k) = 1

b(k, p)
, Rp;k1,...,kp ∈ Rp.

4. In themeta-analysis scenario there is no reason to penalize a priori large number
of clusters, so that the prior on the number of clusters π(p|k) is assumed to be the
uniform distribution

π(p|k) = 1

k
, p = 1, . . . , k.

Thus, we finally have the prior

π(p, rp|k) =
(

k

k1 · · · kp
)−1

R(k1, . . . , kp)
1

b(k, p)

1

k
, rp ∈ Rp. (12)

Sampling properties of this Bayesian procedure has been explored in [10].

3.3 Posterior Distribution of the Cluster Models

Using the likelihood (11) and prior (12), the posterior probability of an arbitrary
model Mrp is given by

π(p, rp|x, k) = m(x|p, rp,k)π(p, rp|k)
∑k

p=1
∑

rp∈Rp
m(x|p, rp,k)π(p, rp|k)

, Mrp ∈ R, (13)

wherem(x|p, rp,k), the marginal of the data, conditional on model Mrp , is given by

m(x|p, rp,k) =
∫ 1

0
· · ·

∫ 1

0
f (x|p, rp, θp, k)π(θp|p, rp, k)dθp.

Each model Mrp ∈ R indicates a different heterogeneity structure of the samples
x = {xi , i = 1, . . . , k}, and the probability vector {π(Mrp |x), Mrp ∈ R} gives us a
measure of the uncertainty on these structures. Hence, the starting point for meta-
analysis are the models Mrp ∈ R.
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4 Examples

The following Example 1 considers multicenter binomial samples to test whether
the effectiveness of new drug-eluting stents (DES) is equal to that of the bare-metal
stents (BMS), and shows that the posterior inference on the meta-parameter heavily
depends on how the samples are clustered. Therefore, the usual assumption that the
clinical trials are all heterogenuous might lead to serious misleading meta-inference,
and, consequently, it illustrates the need for a cluster analysis previous to the meta-
analysis.

Assuming conditional independence between patients in trial i , the natural model
is the binomial Bin(xi |ni , θi ), where the probability of major myocardial infarction
θi is assigned a uniform prior π(θi ) = 1(0,1)(θi ). The linking distribution (5) for the
binomial model turns out to be

π I (θi |θ, t) = (1 − θ)t (1 − θi )
t (t + 1)2F1

[
−t,−t, 1,

θθi

(θi − 1)(θ − 1)

]
, (14)

where 2F1 denotes the hypergeometric function. The likelihood function of themeta-
parameter θ for the data x = {(xi , ni ), i = 1, . . . , 11} becomes

f (rp|p, θ, t) =
p∏

i=1

{
(t + 1)(1 − θ)t Beta(1 + nip + t − xip, 1 + xip)

3F2

(
a, b,

θ

θ − 1

)}
,

where 3F2 denotes the generalized hypergeometric function with a = (−t,−t, 1 +
xi ), b = (1,−nip − t + xip), and (nip, xip) denotes the number of patients and num-
ber of major myocardial infarction grouped in p clusters according to the partition
rp.

Following [25] the prior distribution on the hyperparameter t is

π(t) = 3

(t + 2)(t + 3)
, t = 1, 2, . . .

so that the likelihood of the meta-parameter θ for the partition rp is

f (rp|p, θ) =
∞∑

t=1

f (rp|p, θ, t)π(t). (15)

Thus, the posterior expectation of the meta-parameter θ is

E(θ |x) =
k∑

p=1

π(p)
∑

rp∈Rp

E(θ |p, rp)π(rp|p), (16)

where

E(θ |p, rp, k) =
∫ 1
0 θ f (rp|p, θ)dθ
∫ 1
0 f (rp|p, θ)dθ

(17)
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Table 1 Posterior rate of major myocardial infarction for DES and for BMS, conditional on some
cluster models

Cluster rp Post. rate for DES Post. rate for BMS

r11 =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

0.010 0.011

r5 =
(2, 3, 4, 1, 5, 2, 2, 3, 4, 4, 5)

0.021 0.019

r3 =
(2, 2, 2, 1, 3, 2, 2, 2, 3, 3, 3)

0.054 0.048

r2 =
(2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2)

0.103 0.106

r1 =
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

0.027 0.030

Example 1 Let us consider, the data from 11 randomized clinical trials to com-
pare the effectiveness of new DES versus BMS given in Fig. 3 in [1]. The vectors
n1 = (120, 533, 50, 175, 31, 260, 662, 117, 152, 517, 24) and x1 = (4, 15, 1, 8, 0, 8,
23, 3, 2, 7, 0) are the number of patients and number of major myocardial infarction,
respectively, for the clinical trials for DES, and n2 = (118, 525, 50, 177, 30, 263,
652, 58, 38, 512, 26) and x2 = (5, 17, 2, 4, 0, 14, 24, 1, 0, 5, 0) for BMS.

In Table1 we show the posterior rate of major myocardial infarction computed
using formula (17), conditional on some clusters rp of the samples for DES and
BMS.

Table1 shows that the posterior rate of myocardial infarction for DES and for
BMS dramatically vary across clusters. For instance, the posterior rate of major
myocardial infarction for DES conditional on the eleven cluster model r11 (all the
samples are heterogenous) is 0.01,while the rate conditional on the two clustermodel
r2 = (2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2) (that corresponds to grouping in one cluster the
trials {3, 5, 6, 7, 8} and in another cluster the trials {1, 2, 4, 9, 10, 11}), is as large
as 0.103 which is 10 times the former rate. Something similar can be said about the
rate of major myocardial infarction for BMS.

The following example analyzes a multicenter clinical trial carried out in the
seventies to assess the efficacy of a given daily dose of aspirin to reduce the mortality
rate in postmyocardial infarction patients. The clinical trials involve six center in
Europe and United States with a total of 10,816 patients. The distribution of the
mortality data for each of the trials is assumed to be binomial with θi the unknown
probability of mortality, conditional on trial i .

The linking distribution is given in (16) and the expression of the likelihood for
the meta-parameter is given in (17).
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Table 2 Aspirin versus placebo trials. ni is the number of patients in trial i , and xi the number of
deaths

Trial Aspirin Placebo

ni xi ni xi

UK–1 615 49 624 67

CDPA 758 44 771 64

GAMS 317 27 309 32

UK–2 832 102 850 126

PRIS 810 85 406 52

AMIS 2267 246 2257 219

Table 3 Top cluster models, their posterior mortality rate under aspirin (top panel), and under
placebo (bottom panel)

Aspirin

Clusters Post. prob. Post. expectation

{1, 2, 3}, {4, 5, 6} 0.54 0.15

{1, 2}, {3, 4, 5, 6} 0.23 0.15

{2}, {1, 3, 4, 5, 6} 0.18 0.14

{1, 3}, {2}, {4, 5, 6} 0.05 0.09

Placebo

Clusters Post. prob. Post. expectation

{1, 2, 3, 6}, {4, 5} 0.57 0.17

{1, 2, 3, 5, 6}, {4} 0.39 0.18

{1, 3, 4, 5}, {2, 6} 0.04 0.12

Example 2 Table2 reports all causes of mortality for six major randomized multi-
center clinical trials of aspirin and placebo during the period 1970–79 in postmy-
ocardial infarction patients [6]. The centers were first United Kingdom trial (UK–1),
Coronary Drug Project Aspirin trial (CDPA), German–Austrian Multicenter Study
(GAMS), second United Kingdom trial (UK–2), Persantine-Aspirin Reinfarction
study (PRIS), and Aspirin Myocardial Infarction Study (AMIS). The question to be
answered is whether the rate of mortality is significantly reduced by the use of aspirin
in postmyocardial infractions patients.

Morris and Normand [27] discussed the meta–analysis of this data using a hier-
archical normal model for the logit transformation of the data, and suggested inves-
tigating how the assessment of the effectiveness of aspirin is altered by the use of
long-tailed prior distribution for the reparametrized logit effects. In Carlin [7] this
suggestion were developed using t−distributions for the logit; the test consists of
computing the 95% HPD region of posterior distribution of the difference of the
meta–effectiveness of the aspirin and placebo. He concluded that this difference
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does not significantly differ from zero so that the rate of mortality is not reduced
significantly by the use of aspirin (however, he recommended that a more complete
analysis of the data might employ beta distributions on the original survival propor-
tions in each group). No heterogeneity test were considered; the heterogeneity of the
six data sets for aspirin and for placebo were taken for granted.

Reference [6] studied the heterogeneity of the six trials asserting that for the five
clinical trial listed -all but AMIS- “The test for homogeneity of logodds ratio gives
χ2
H = 0.63 (p − value = 0.96), which confirms the high consistency among the five

odds ratios noted visually. Adding the sixth trial, AMIS, changes the picture dramat-
ically and cancels out a substantial proportion of the apparent beneficial effect.” He
reported a p−value of 0.08, and concludes that it is “a borderline suggestion of
heterogeneity results among the six trials”.

However, our clustering analysis exhibit a quite different picture. Our analysis for
the aspirin data shows that the posterior probability of the two clusters model defined
by the partition rp = (1, 1, 1, 1, 1, 2), that is, the first five trials are in a cluster and
the sixth in a second cluster, is negligible. Table3 displays the top cluster models
for aspirin and placebo according to their posterior probabilities. The last column
displays the posterior expectation of the meta-parameter, conditional on the clusters.

Table3 shows that, after clustering, the number of samples under aspirin has
been reduced from six four, and from six to three for placebo. Using this clustering
structure, it follows that the unconditional posterior expected mortality rate under
aspirin turns out to be 0.14, and under placebo 0.17. We remark that the uncertainty
on these estimates is quite large. For instance, the 95% HPD region of the meta-
parameter under aspirin is (0, 0.42), and under placebo (0, 0.46).

Using the cluster models in Table3 we test the null hypothesis that the mortality
rate under aspirin and placebo are equal. The posterior probability of the equality
turns out to be 0.75, which leads accepting the equality of the effects with only
substantial empirical evidence, according to the Jeffreys‘s evidence scale.We remark
that assuming that all the trials are heterogenous the posterior probability that the
mortatiliy rate under aspirin and placebo are equal turns out to be 0.85.

5 Asymptotic

We point out that the asymptotic in meta-analysis is a delicate subject since the
dimension of the models involved might grow as the number of samples grow, and
thismight yield inconsistency [23].We illustrate these difficulties in the next theorem
on a very particular and simple nested model comparison for Bernoulli samples.

Theorem 1 To compare the null model

M0 : f ((x1, . . . , xk)|θ0) =
k∏

i=1

θ
xi
0 (1 − θ0)

1−xi , xi = 0, 1,
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against the alternative model

M1 :
{
f ((x1, . . . , xk)|θ) =

k∏

i=1

θ
xi
i (1 − θi )

1−xi , π(θ) =
k∏

i=1

1(0,1)(θi )

}
,

where θ0 is an arbitrary but fixed point, and θ =(θ1, . . . , θk) ∈ (0, 1)k , the Bayes
factor

B10(x1, . . . , xk) =
∏k

i=1

∫ 1
0 θ

xi
i (1 − θi )

1−xi dθi
∏k

i=1 θ
xi
0 (1 − θ0)1−xi

is consistent as k → ∞ when sampling from the null model f (x|θ0), but it is incon-
sistent when sampling from an alternative model f (x|θ) such that limk→∞

∑k
j=1

θ j/k = θ ∈ A(θ0), where

A(θ0) = {θ : 2θθ
0 (1 − θ0)

1−θ ≥ 1}.

Proof The marginal of the random variables (X1, . . . , Xk) under the alternative
model f (x|θ1, . . . , θk) is given by

m1(x1, . . . , xk) =
k∏

i=1

∫ 1

0
θ
xi
i (1 − θi )

1−xi dθi = 1

2k
,

and hence, the Bayes factor B10(x1, . . . , xk) turns out to be

B10(x1, . . . , xk) =
(

1

2 θ
x̄k
0 (1 − θ0)1−x̄k

)k

,

where x̄k = ∑k
j=1 x j/k. Since limk→∞

∑k
j=1 X j/k = θ0, [Pθ0 ], and

2 θ
θ0
0 (1 − θ0)

1−θ0 ≥ 1,

we have that
lim
k→∞ B10(x1, . . . , xk) = 0, [Pθ0 ].

Likewise,when sampling fromany alternativemodel Pθ ,wehave that limk→∞
∑k

j=1

x j/k = ∑k
j=1 θ j/k = θ, [Pθ ]. Then, for θ ∈ A(θ0) it follows that

lim
k→∞ B10(x1, . . . , xk) = 0 , [Pθ ],

and this proves the assertion. �

Theorem 1 asserts that the Bayes factor B10(x1, . . . , xk) is consistent under the null
model M0 but there is a nonempty region A(θ0) in the alternative parameter space
for which the Bayes factor is inconsistent under any model in the region.

Corollary 1 If we replace the uniform prior inmodel M1 with an arbitrary unimodal
prior π(θi ), still there exists an inconsistency region A′(θ0).
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Proof The proof follows from the fact that any unimodal prior π(θi ) can be written
as a convex combination of uniform priors. �

From the Corollary it follows that the inconsistency of the Bayes factor B10(x1, . . . ,
xk) under some alternative models persists if we use the intrinsic linking prior
π I (θi |θ0). Thus, the asymptotic behavior of the meta-inference is an open problem
that deserves more research.

6 Concluding Remarks

Two main difficulties arise in meta-analysis, the analysis of the heterogeneity of the
samples involved, which generates a clustering problem, and the construction of the
linking distribution, the distribution of the experimental parameters conditional on
the meta-parameter.

We have claimed that clustering the samples using aBayesian approach is a natural
way of investigating the heterogeneity of the samples. Further, this approach allows
us incorporating the model uncertainty in the meta-inference. Example 1 showed
that the inference on the meta-parameter dramatically changes across clusters, and,
consequently, to take for granted that all samples are heterogenousmight give serious
misleading results. Thus, the recommendation is to analyze the cluster structure of the
samples and then proceed with the meta-analysis, conditional on the cluster models.
The final inference is then obtained as a mixture of the inferences conditional on the
clusters, using the posterior distribution of the clusters as the mixing distribution.

We have also claimed that the joint prior of the experimental parameter and the
meta-parameter has be chosen in the class of bidimensional priors with given mar-
ginals, the so-calledFrèchet class. This condition ensures that the experimentalmodel
and the meta-model are coherent. We have shown that the intrinsic prior, which is
obtained from the model comparison between the experimental model and the meta-
model, is a conditional prior that satisfies the requirements for a reasonable linking
distribution. For a discussion on the linking distribution for binomial samples see
[24].

Acknowledgments This paper has been supported by Ministerio de Ciencia y Tecnología, Grant
MTM2011-28945.

References

1. Babapulle,M.N., Joseph, L., Bélisle, P., Brophy, J.M., Eisenberg,M.J.: A hierarchical Bayesian
meta-analysis of randomized clinical trials of drug-eluting stents. Lancet 364, 583–591 (2004)

2. Bhaumik, D.K., Amatya, A., Normand, S.T., Greenhouse, J., Kaizar, E., Neelon, B., Gibbons,
R.: Meta-analysis of rare binary adverse event data. J. Am. Stat. Assoc. 107, 555–567 (2012)



Statistical Issues in Bayesian Meta-Analysis 171

3. Barry, D., Hartigan, J.A.: Product partition models for change point problems. Ann. Stat. 20,
260–279 (1992)

4. Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. J.
Am. Stat. Assoc. 91, 109–122 (1996)

5. Berger, J.O., Pericchi, L.R.:ObjectiveBayesianmodel selection: introduction and comparisons.
In: Lahiri, P. (eds.) Model Selection. Lectures Notes of the Institute of Mathematical Statistics,
pp. 135–207 (2001)

6. Canner, P.L.: An overview of six clinical trials of aspirin in coronary heart disease. Stat. Med.
6, 255–263 (1987)

7. Carlin, J.B.: Meta-analysis for 2 × 2 tables: a Bayesian approach. Stat. Med. 11, 141–159
(1992)

8. Casella, G., Moreno, E.: Intrinsic meta-analysis of contingency tables. Stat. Med. 24, 583–604
(2005)

9. Casella, G., Moreno, E.: Assessing robustness of intrinsic test of independence in two-way
contingency tables. J. Am. Stat. Assoc. 104, 1261–1271 (2009)

10. Casella, G., Moreno, E., Girón, F.J.: Cluster analysis, model selection, and prior distributions
on models. Bayesian Anal. 9(3), 613–658 (2014)

11. Casella, G., Girón, F.J., Martinez, M.J., Moreno, E.: Consistency of Bayesian procedures for
variable selection. Ann. Stat. 37, 1207–1228 (2009)

12. Consonni, G., Moreno, E., Venturini, S.: Testing Hardy–Weinberg equilibrium: an objective
Bayesian analysis. Stat. Med. 30(1), 62–74 (2011)

13. Cuadras, C.M.: Probability distributions with given multivariate marginals and given depen-
dence structure. J. Multivar. Anal. 42, 51–66 (1992)

14. Cuadras, C.M.: Constructing copula functions with weighted geometric means. J. Stat. Plan.
Inference 139, 3766–3772 (2009)

15. DuMouchel, W., Waternaux, C.: Hierarchical models for combining information and for meta-
analyses (with discussion). In: Bernando, J.M., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian
Statistics 4, pp. 338–341. Clarendon Press, Oxford (1992)

16. Jeffreys, H.: Theory of Probability, 3rd edn. Clarendon Press, Oxford (1961)
17. Joe, H.: Multivariate Models and Dependence Concepts. Monographs in Statistics and Proba-

bility, vol. 73. Chapman and Hall, New York (1997)
18. Kadane, J.K.: Principles of Uncertainty. Chapman & Hall/CRC Texts in Statistical Science,

Boca Raton (2011)
19. Larose, D.R., Dey, D.K.: Grouped random effects models for Bayesian meta-analysis. Stat.

Med. 16, 1817–1829 (1997)
20. Lindley, D.V.: Introduction to Probability and Statistics from aBayesianViewpoint. Cambridge

Unvierstiy Press, Cambridge (1965)
21. Moreno, E.: Bayes factors for intrinsic and fractional priors in nested models: Bayesian robust-

ness. In: Dodge, Y. (eds.) IMS Lectures Notes-Monograph Series, vol. 31, pp. 257–270 (1997)
22. Moreno, E., Bertolino, F., Racugno, W.: An intrinsic limiting procedure for model selection

and hypothesis testing. J. Am. Stat. Assoc. 93, 1451–1460 (1998)
23. Moreno, E., Girón, F.J., Casella, G.: Consistency of objective bayes factors as the model

dimension grows. Ann. Stat. 38, 1937–1952 (2010)
24. Moreno, E., Girón, F.J., Casella, G.: Posterior model consistency in variable selection as the

model dimension grows. Stat. Sci. 30(2), 228–241 (2015)
25. Moreno, E., Vázquez-Polo, F.J., Negrín, M.A.: Objective Bayesian meta-analysis for sparse

discrete data. Stat. Med. 33(21), 3676–3692 (2014)
26. Morgenstern, D.: Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt für

Mathematische Statistik 8, 234–235 (1956)
27. Morris, C.N., Normand, S.L.: Hierarchical models for combining information and for meta

analyses. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics
4, pp. 321–344. Clarendon Press, Oxford (1992)



172 E.Moreno

28. Sarmanov, O.V.: Generalized normal correlated and two-dimensional Fréchet classes. Doklady
(Soviet Mathematics) 168, 596–599 (1966)

29. Schömig, A., Mehilli, J., Waha, A.D., Seyfarth, M., Pache, J., Kastrati, A.: A meta-analysis of
17 randomized trials of a percutaneous coronary intervention-based strategy in patients with
stable coronary artery disease. J. Am. College Cardiol. 52, 894–904 (2008)

30. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
31. Sutton, A.J., Higgins, J.P.: Recent developments in meta-analysis. Stat. Med. 27, 625–650

(2008)



Statistical Evaluationof ForensicDNA
Mixtures fromMultipleTraces

Julia Mortera

Abstract

A statistical model for the quantitative peak information obtained from a forensic
DNA mixture sample is illustrated on a real case example. We use the combined
information from twoDNA traces: to find likelihood ratios to quantify the strength
of evidence; to deconvolve the mixtures for the purpose of finding likely profiles
of unknown contributors to the traces; and to analyse the artefacts that might be
present in the mixture after DNA amplification.

1 Introduction

DNA is now routinely used in criminal investigations and court cases, although DNA
samples taken at crime scenes vary in quality and thus present challenging problems
for their interpretation. The identification of the DNA composition of mixed samples
gives rise to a wide range of challenging statistical questions, some associated with
uncertainties and artefacts in the measurement processes and some associated with
population genetic variations. A new statistical model for the peak heights of a
DNA mixture is presented in [4]. The simplifications of the model combined with
an efficient Bayesian network representation enables fast computation and permits
analysis of complex mixtures, allowing for simultaneous analysis of the evidence
from several DNA samples and the identification of the artefacts.
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Fig. 1 Electropherogram (EPG) showing the peak heights at the different alleles in DNA mixture
for the first trace T1 on 10 markers

As a motivating example we consider a DNA mixture case from [10]. The elec-
tropherogram (EPG) showing the DNA mixture for the first trace T1, is given in
Fig. 1.

Table1 shows the alleles a in the mixture, the corresponding peak heights Ha for
traces T1 and T2, and genotypes g of two typed individuals K1 and K2, assumed to
have contributed to the mixture, for an excerpt of the 10 markers.

Note, that if the two traces T1 and T2, consist of DNA from K1 and K2 alone,
the peaks at alleles 14 and 17 of marker VWA in both traces, and for T2 the peak
at allele 12 of marker D16 would need to be due to an artefact termed stutter, as
neither K1 nor K2 have these alleles. Also K2’s allele 32.2 on marker D21 would
have dropped out of the trace T1 (see Sect. 2 for definitions of stutter and dropout).
Note that, taking into account these artefacts, the entire profile would be consistent
with only DNA from K1 and K2 being present in the traces.
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Table 1 Alleles a, peak heights in traces, T1 and T2, and genotypes g of individuals K1 and K2 for
an excerpt of the 10 markers

Marker Allele T1 T2 K1 K2

D3 15 132 549 15

16 719 646 16

17 736 1131 17 17

VWA 14 56 61

15 1033 1365 15 15

17 71 80

18 1113 1216 18 18

D16 10 110 96

11 2496 2312 11 11

12 0 49

13 129 536 13

D21 28 43 44

29 794 969 29 29

30 39 49

31 561 686 31

32.2 0 444 32.2

The objective of an analysis of aDNAprofile can be a quantification of the strength
of evidence for a given hypothesis over another, or it may be a deconvolution of the
profile, i.e., to identify likely genotypes of contributors. The evidence E, in Table1
consists of the peak heights T1 and T2 and the genotypes of the known individuals
K1 and K2, E = {T1, T2, K1,K2}. To quantify the strength of the evidence against
the defendants K1 and K2, two competing hypotheses are typically specified. The
prosecution hypothesis, Hp, e.g., which the contributors are K1 and K2, which is
then compared to a defence hypothesis, say, Hd : U1&U2 that the contributors are
two unknown individuals assumed to be chosen randomly and independently from
a reference population with known allele frequencies.

The strength of the evidence (see [1,9]) is normally represented by the likelihood
ratio:

LR = Pr(E |Hp)}/ Pr(E |Hd).

Following [1] we report the weight of evidence as

WoE = log10 LR

in the unit ban introduced by Alan Turing [6].
Another objective of the analysis is the deconvolution or separation of DNA

mixtures to identify the combined genotypes across all markers of each unknown
contributor to the mixture and give a list of potential genotypes of a perpetrator to
use, for example, in a database search. For example, we could wish to calculate
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the predictive probability Pr{U1,U2 |E,H }, where U1,U2 represent genotypes of
unknown contributors under an investigative hypothesis H .

2 A GammaModel with Artefacts

We now briefly describe the gamma model for peak heights which is based on [2–4].
We consider I potential contributors to a DNAmixture. Let there beM markers used
in the analysis of the mixture with markerm having Am allelic types,m = 1, . . . ,M.
Let φi denote the proportion of DNA from individual i prior to PCR amplification,
with φ = (φ1, φ2, . . . , φI ), φi ≥ 0 and

∑I
i=1 φi = 1.

The peak height Hia is roughly proportional to the amount of DNA of type a
contributed by individual i and, for fixed φ, we assume it has a gamma distribution

Hia ∼ Γ (ρφinia, η),

where ρ is proportional to the total amount of DNA prior to amplification; nia is the
number of alleles of type a carried by individual i; and η determines scale.

The individual peak heights Hia are not observable, but ignoring artefacts we
observe the aggregates Ha = ∑

i∈I Hia, which also have a gamma distribution Ha ∼
Γ {ρBa(φ, n), η}, where Ba(φ, n) = ∑

i φinia and n = (nia, i = 1, . . . , I;
a = 1, . . . ,Am). Then — in a trace with only one heterozygous diploid contributor
and no artefacts — μ = ρη is the mean peak height and σ = 1/

√
ρ the coefficient

of variation for peak heights.

Incorporating artefacts. One important artefact associated with the PCR amplifi-
cation process is known as stutter, i.e., small proportion of DNA molecules tend to
lose one repeat number in the amplification process so some of the alleles at a show
up in position a − 1. The peak height at allele a is thus

Ya = Ha − SaHa + Sa+1Ha+1,

Sa being the proportion of the ideal peak height Ha that has been lost to the allele
a − 1 with

Sa ∼ Beta(ξρBa(φ, n), (1 − ξ)ρBa(φ, n))

where ξ denotes the mean stutter proportion.
In mixtures with small amounts of DNA, some alleles present in the mixture

dropout, i.e., are not amplified and so no corresponding peak can be observed above
a threshold C. This implies that we are not observing Ya, but rather Za, having a
gamma cdf, where

Za =
{
Ya if Ya > C
0 otherwise.

Likelihood function For givenmixture composition, given genotypes of the contrib-
utors n, given proportions φ, and fixed values of parameters (ρ, ξ, η), all observed
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peak heights are independent. Thus the conditional likelihood function based on the
observations z = {zma}m∈M,a∈Am for all markers m and alleles a is

L(ρ, ξ, φ, η | z,n) =
∏

m

∏

a

Lma(zma).

For a given hypothesis H , the full likelihood is obtained by summing over all
possible combinations of genotypeswith probabilities associatedwith the hypothesis
to give

L(H ) = P(E |H ) =
∑

n

L(ρ, ξ, φ, η | z,n)P(n |H ).

This sum is astronomical in size for any hypothesis which potentially involves
unknown contributors to the mixture, but can be calculated efficiently by appropriate
use of Bayesian network techniques.

3 Results

Table2 shows the maximum likelihood estimates of the parameters and the corre-
sponding standard error for the DNA data given in Table1. These are obtained using
software DNAmixtures [7].

Note that the parameter estimates are almost the same under Hp : K1&K2 and
Hd : U1&U2. Furthermore, the proportion of DNA in T1 is unbalanced, K1 having
contributed 88% of the DNA, φK1 = 0.88, whereas, in T2 the proportion is balanced,
having φK1 = 0.54.

The weight of evidence for Hp : K1&K2 versus Hd : U1&U2 is
WoE = −211.3 − (−236.8) = 25.6 whereas, if the defence hypothesis were Hd :
K1&U1 theWoE = 12.4 which is less incriminating forK2. We emphasize that when
using only trace T1 the weight of evidence isWoE = 20.7, and when using only the
data in T2 the weight of evidence is WoE = 21.6 yielding, in both cases, lower
evidential strength than using the simultaneous information in both traces.

Table 2 Maximum likelihood estimates when information in the traces T1 and T2 is combined

Hp : K1&K2 Hd : U1&U2

T1 T2 T1 T2

Par. Est. SE Est. SE Par. Est. SE Est. SE

μ 902 49.4 1133 49.5 μ 901 49.3 1133 49.6

σ 0.245 0.027 0.195 0.022 σ 0.244 0.027 0.196 0.023

ξ 0.061 0.009 0.061 0.009 ξ 0.060 0.009 0.060 0.009

φK1 0.884 0.024 0.544 0.032 φU1 0.884 0.024 0.545 0.032

φK2 0.117 0.024 0.456 0.032 φU2 0.116 0.024 0.455 0.032

log10 L̂(H ) −211.3 log10 L̂(H ) −236.8
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Table 3 Most probable genotypes of U1 and U2

D3 VWA D16 D21

U1 (16, 17) (15, 18) (11, 11) (29, 31)

U2 (15, 17) (15, 18) (11, 13) (29, 32.2)

Probability 0.999 0.998 1 0.994

Mixture deconvolution. For mixture deconvolution we consider the traces jointly
under the hypothesis Hd : U1&U2 and identify the most probable genotypes of the
unknown individualsU1 andU2. For all markers, the predictive genotypes of the two
unknown individuals share the profile of K1 and K2. Table3 gives an extract of the
deconvolved genotype together with the predictive probability.

The overall probability that the profile of the unknown contributors is the one
predicted is 0.95.

Interpreting artefacts. Our model does not impose at the outset that a specific
peak or allele is due to stutter, or has dropped out. One of the features of software
DNAmixtures [7] is to produce Bayesian networks for each marker with peak
height evidence propagated. Thanks to the flexibility of Bayesian networks we can
then elaborate these so as to identify the possibility that artefacts might be present
in some of the markers. For this purpose, we use object-oriented Bayesian net-
works (OOBN) [5]. We introduce networks that represent the presence of stutter and
dropout. Instances of the networks are then combined with the networks produced
by DNAmixtures. In this way, we can answer queries like: what is the probability
that an allele is due to stutter? that an allele has dropped out?

Figure 2 shows the global OOBN for marker D21 used for artefact identification.
In this network the output nodes are: n_1_a and n_2_a representing the total allele
counts for a specific allele a for U1 and U2, and the Boolean nodes O_a indicating
whether allele a is observed or not. The networks for stutter and dropout are shown
in Fig. 3.

Fig. 2 OOBN for artefact identification in marker D21
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Fig. 3 Networks for stutter and dropout

Table 4 Posterior probabilities for alleles to have dropped out and to be due only to stutter for trace
T2

Marker(a) P(dropout) P(stutter)

VWA(14) 1

VWA(17) 0.999

D21(28) 1

D21(30) 0.998

D21(32.2) 0.999 0.001

Using the parameter estimates in Table 2 under the defence hypothesis Hd :
K1&U1 and using the networks described above, we obtain the posterior probabilities
for selected alleles to have dropped out and to be due to stutter only as shown in
Table 4. Alleles 14 and 17 for marker VWA and alleles 28 and 30 for markers D21
have a very high probability of being due to stutter alone. Allele 32.2 of marker D21
has a probability around 0.999 of having dropped out of trace T2.

4 Concluding Remarks

The combined analysis of two traces gives more informative results than what
emerges from separate analyses of the two traces, not only for evidential and decon-
volution purposes, but also for the analysis of artefacts. We refrain from reporting
the separate analyses here.

Here we have treated the allele frequencies as fixed and known, although in prin-
ciple they also are parameters which should be estimated. In future work, we will
incorporate both this uncertainty, identity by descent (IBD) and subpopulation issues
following [8].
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ANoteonSemivariogram

Giovanni Pistone and Grazia Vicario

Abstract

(Semi)Variograms are usually discussed in the framework of stationary or in-
trinsically stationary processes. We retell here this piece of theory in the setting
of generic Gaussian vectors and of Gaussian vectors with constant variance. We
show how to reparametrize the distribution as a function of the variogram and
how to characterise all the Gaussian distribution with a given variogram.

1 Introduction

If (Yt )t∈T is a Gaussian random field, its variogram is the mapping from 2-sets
{s, t}, s, t ∈ T , to Var (Ys − Yt ) /2. In some applied fields, such as Geostatistics or
Metrology, such a multivariate parameter is considered more telling than the process
correlation {s, t} �→ Cor (Ys, Yt ). For example, if a meaningful distance {s, t} �→
d(s, t) is available, one would like the variogram values to increase with distance to
model the larger randomness at far away locations.

In this paper we discuss some general topics on variogram that was originally dis-
cussed byMatheron [8] under assumptions of stationarity and homogeneity. Modern
expositions are to be found in [2, Chap. 2] [4, Chap. 2], [5, Chap. 1], [6]. The present
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piece of research work was prompted by the need of a clear and sound methodology
in the occasion of previous applied research [9,10].

Our goal now is to rework the basic mathematics in order to prepare for a future
better treatment of a number of items of interest e.g.,

• simulation of a Gaussian random field with given variogram;
• geometry of the Gaussian model based on the use of variograms as parameters, in
the sense of [1,12];

• parsimonious models, e.g., graphical models [7], parametrized by variograms;
• Bayes approach to Kriging, especially nonparametric Bayes.

In Sect. 2 we formally discuss the case of a generic Gaussian vector and of the
special case of a constant variance. In Sect. 3 we briefly discuss the connection with
the case of Gaussian stationary random fields. A few conclusions are discussed in
the final section.

2 Variogram of a Normal Vector

Wefirst consider a generic Gaussian vector andwe plan to specialise our assumptions
later on.

Definition 1 AssumeY ∼ Nn(μ,Σ),μ = (μi : i = 1, . . . , n),Σ = [σi j ]ni, j=1. The
(semi)variogram of Y is the n × n matrix Γ = [γi j ]ni, j=1 with

2γi j = Var
(
Yi − Y j

) = (ei − e j )′Σ(ei − e j ) = σi i + σ j j − 2σi j .

The matrix Γ can be written

Γ = 1

2

(
vdi ag (Σ) 1′ + 1vdi ag (Σ)′

) − Σ = 1

2

(
diag (Σ) 11′ + 11′ diag (Σ)

) − Σ

where 1 is the unit column vector and vdiag (Σ) = diag (Σ) 1 is the diagonal of Σ

as a column vector. Recall that 1
n 11

′ is the orthogonal projector on Span (1).
Let us recall the basic properties of the variogram matrix.

Proposition 1 The variogram Γ is symmetric, with zero diagonal, and it is condi-
tionally negative definite.

Proof The quadratic form of

Σ = 1

2

(
vdiag (Σ) 1′ + 1vdiag (Σ)′

) − Γ

at α ∈ R
n is

α′Σα = (α · 1)(α · vdiag (Σ)) − α′Γ α,

hence α · 1 = 0 implies α′Σα = −α′Γ α, in particular Γ is negative definite condi-
tionally to

∑
j α j = 0.
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Definition 2 A nonzero symmetric matrix which has zero diagonal and is condi-
tionally negative definite will be called a variogram matrix.

Proposition 2 Let Γ be a variogram matrix. There exist nonnegative μ1, . . . , μn−1
and orthonormal vectors w1, . . . ,wn−1 in Span (1)⊥ such that

Γ =
∑n−1

j=1 μ j

n
1 ⊗ 1 −

n−1∑

j=1

μ jw j ⊗ w j (1)

Proof For each matrix U = [u1 · · · un−1] ∈ R
n×(n−1) such that UTU = In−1 and

1TU = 0, the matrix Σ0 = −UTΓU ∈ R
n×(n−1) is nonnegative definite. It fol-

lows that V TΣ0V = diag (μi : j − 1, . . . , n − 1) for some V ∈ On−1, μi ≥ 0, i =
1, . . . , n − 1, hence (UV )TΓ (UV ) = diag (μi : j − 1, . . . , n − 1). If W = UV ∈
R
n×(n−1), then WTW = V TUTUV = V T V = In−1 and 1T W = 0. If W =

[w1 · · ·wn−1], then (wj , −μ j ), j = 1, . . . , n − 1 are couples of eigenvectors and
eigenvalues of−Γ . AsΓ has zero trace, then the n-eigenvalue ofΓ is

∑n−1
j=1 μ j > 0.

Its eigen space must be orthogonal to all w j ’, hence it contains Span (1).

Computation of the parameters suggests that the variogram matrix carries n(n −
1)/2 degrees of freedom, while the diagonal of Σ carries n df. Together, Λ and Γ

carry as many degrees of freedom as Σ , i.e., n(n − 1)/2 + n = (n + 1)n/2. More
precisely, we have the following re-parametrization of Σ .

Proposition 3 1. The mapping from a positive definite Σ to a positive diagonal Λ
and a variogram matrix Γ defined by

Σ �→
(
diag (Σ) ,

1

2
(vdiag (Σ) 1′ + 1vdiag (Σ)′) − Σ

)
= (Λ, Γ ) (2)

is the restriction to the cone of positive definite matrices of a linear map on n × n
real matrices. It is injective with inverse

(Λ, Γ ) �→ 1

2
(Λ11′ + 11′Λ) − Γ = 1

2
(vec (Λ) 1′ + 1vec (Λ)′) − Γ. (3)

2. The range of themapping (1) consists of allΛ,Γ positive diagonal and symmetric,
respectively, and satisfying

(β · 1)(β · vec (Λ)) ≥ β ′Γ β, β ∈ R
n . (4)

3. In particular, Γ is conditionally negative definite and

n Tr (Λ) ≥ 1′Γ 1 =
n∑

i, j=1

γi j . (5)

4. If the spectral decomposition (1) holds, then the condition (5) on Λ becomes
Tr (Λ) ≥ ∑

j μ j .
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Proof 1. If Σi �→ (Λi , Γi ), i = 1, 2, and (Λ1, Γ1) = (Λ2, Γ2), then diag (Σ1) =
diag (Σ2) and Σ1 = Σ2 follows from Γ1 = Γ2.

2. Let Λ and Γ be generic positive diagonal and conditionally negative definite,
respectively. Then for a generic α = α0 + α1, with α0 · 1 = 0 and ᾱ = 1

nα · 1,
we have

α′
[
1

2
(Λ11′ + 11′Λ) − Γ

]
α = nα α · vec (Λ) − α′Γ α

=
{

−α0Γ α0 ≥ 0 if ᾱ = 0 ,

α · vec (Λ) − α′Γ α if nᾱ = 1 .

Finally, we take α = (β · 1)−1β to obtain (4).
3. Equation (4) implies a conditionally negative definite Γ if β · 1 = 0. Otherwise,

if β = 1 the inequality becomes (5).
4. If the spectral decomposition holds, then 1TΓ 1 = n

∑n−1
j=1 μJ .

Remark 1 If det (Σ) 
= 0, similar formulæ are obtained by considering the correla-
tion matrix

R = (diagΣ)−1/2Σ(diagΣ)−1/2,

viz

Γ = 1

2
(vdiag (Σ) 1′ + 1vdiag (Σ)′) − (diagΣ)1/2R(diagΣ)1/2

= Λ1/2
(
1

2

(
Λ1/211′Λ−1/2 + Λ−1/211′Λ1/2) − R

)
Λ1/2 . (6)

where diagΣ = Λ.
This formula is sometimes preferred in the applied literature because both Γ

and R carry the same number of degrees of freedom and they are thought as being
equivalent assignments. However, it is important to consider that the imputation of
the a coherent diagonal Λ depends on Γ .

Given a variogram matrix Γ , Eq. (5) is a linear bound on Λ. Here, we do not
discuss it in full generality, but we move to consider the case where the variance
is constant. Such an assumption is of interest in applications where a minimum of
stationarity must be assumed.

Proposition 4 Assume that the variance is constant, diag (Σ) = λIn.

1. Equations (2) and (3) become

Σ �→ (
λ, λ11′ − Σ

) = (λ, Γ ) (7)

and
(λ, Γ ) �→ λ11′ − Γ = Σ, (8)

respectively.
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2. The existence condition (5) on λ becomes

n2λ ≥
n∑

i, j=1

γi j . (9)

3. The correlation Eq. (6) becomes

Γ = λ(11T − R) .

4. If nλ > 1′Γ 1, then det Γ 
= 0 then Σ is invertible and, in such a case,

Γ −1 = −Σ−1 − λ(1 − λ1′Σ−11)−1Σ−111′Σ−1 , (10)

Σ−1 = −Γ −1 − λ(1 − λ1′Γ −11)−1Γ −111′Γ −1 . (11)

Proof Everything but the last item is a special case of Proposition 3. If the matrices
Σ and Γ are both invertible, from the Sherman–Morrison formula we obtain Eqs.
(10) and (11). Assume det Γ 
= 0 and n2λ > 1′Γ 1. From the spectral representation

of Γ in Eq. (1), we derive 1′γ −11 = n
(∑n−1

j=1

)−1
. It follows from the assumption

that 1 − λ1′Γ −11 
= 0, so that the Sherman–Morrison formulæ hold.

Remark 2 The knowledge of the support of the parametrization with λ and Γ is
crucial in the choice of a coherent apriori distribution.

Let us discuss first the case n = 2. We have
[

σ σ1,2
σ1,2 σ

]
=

[
λ λ − γ

λ − γ λ

]
, γ = σ > 0,

and we need the sign of

det

[
λ λ − γ

λ − γ λ

]
= λ2 − (λ − γ )2 = γ (2λ − γ ),

which is positive ifλ ≥ γ /2. This shows existence and shows that there is a restriction
on λ which is worthwhile to investigate further. The condition in (9) involves the
lower bound maxα 2α(1 − α)γ = γ /2. If the lower bound is reached with λ = γ /2,
hence det Γ = 0.

Assume now n = 3, that is,
⎡

⎣
σ σ1,2 σ1,3

σ1,2 σ σ2,3
σ1,3 σ2,3 σ

⎤

⎦ =
⎡

⎣
λ λ − γ12 λ − γ13

λ − γ12 λ λ − γ23
λ − γ13 λ − γ23 λ

⎤

⎦ ,

with Γ conditionally negative definite. We have to assume λ > γ12/2 and moreover
we need the sign of

det

⎡

⎣
λ λ − γ12 λ − γ13

λ − γ12 λ λ − γ23
λ − γ13 λ − γ23 λ,

⎤

⎦ =

− 2γ12γ13γ23 + λ
(−γ 2

12 + 2γ12γ13 − γ 2
13 + 2γ12γ23 + 2γ13γ23 − γ 2

23

) ≥ 0.
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The solution of such algebraic inequalities is difficult in general, but we see that the
admissible values of λ form a semi-infinite interval. In this and other similar cases,
we can use a symbolic software such as Sage [13] to help with the algebra.

We now change our point of view to consider the same problem from a differ-
ent angle. We can associate the variogram with the state-space description of the
Gaussian vector. This is of use, for example, when a simulation is required. The
following proposition is similar to Proposition 2.

Proposition 5 1. The matrix Γ is a variogram matrix if, and only if, the matrix

Σ0 = −
(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
(12)

is symmetric and positive definite. In such a case, the variogram of Σ0 is Γ .
2. If Y0 ∼ Nn(0,Σ0), then its variogram is Γ and it is supported by Span (1)⊥.

Proof 1. If Γ is a variogram matrix, then the matrix Σ0 of Eq. (12) is symmetric
and positive definite. In fact, for a generic vector α the vector (I − 1

n 11
′)α is

orthogonal to 1, hence

α′Σ0α = −
((

I − 1

n
11′

)
α

)′
Γ

((
I − 1

n
11′

)
α

)
≥ 0.

Viceversa, assume Σ0 is a covariance matrix. As ei − e j ∈ Span (1)⊥, the vari-
ogram of Σ0 has elements

(ei − e j )′Σ0(ei − e j ) =

(ei − e j )′
(
I − 1

n
11′

)′
(−Γ )

(
I − 1

n
11′

)
(ei − e j ) =

− (ei − e j )′Γ (ei − e j ) = −γi i − γ j j + 2γi j = 2γi j .

2. As 1′(ei − e j ) = 0, then 1′ (I − 1
n 11

′)′
(−Γ )

(
I − 1

n 11
′) 1 = 0, hence the dis-

tribution of Y0 is supported by the space Span (1)⊥.

Remark 3 Let us derive some other equivalent expression for Σ0. The h-th element
of diag (Σ0) is

e′
hΣ0eh = −e′

h

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
eh = −(eh − 1

n
1)′Γ (eh − 1

n
1)

hence

diag (Σ0) = −
∑

h

ehe′
h

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
ehe′

h
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and

diag (Σ0) 11′ = −
∑

h

ehe′
h

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
eh1′

11′ diag (Σ0) = −
∑

h

1e′
h

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
ehe′

h .

Let us compute the (i, j) element.

e′
i diag (Σ0) 11′e j = −e′

i

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
e j

e′
i11

′ diag (Σ0) e j = −e′
j

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
e j .

The previous computation are of use in the analysis of the variogram of Σ0, because
in this case

γ = 1

2
(diag (Σ0) 11′ + 11′ diag (Σ0)) +

(
I − 1

n
11′

)′
Γ

(
I − 1

n
11′

)
.

In the following Proposition, we derive an additive decomposition of a generic
Gaussian vector into a term whose variance is that obtained in Proposition 5 and a
Gaussian vector proportional to the unit vector 1.

Proposition 6 Let Y ∼ Nn(μ,Σ) with variogram Γ . Let Y0 = (
I − 1

n 11
′) Y be

the projection of Y onto Span (1)⊥ so that we can write Y = Y0 + Y , where each
component of Y is the empirical mean 1

n 1
′Y .

1. The distribution of Y0 is Nn(μ − 1
n 11

′μ,Σ0), with Σ0 = − (
I − 1

n 11
′) Γ(

I − 1
n 11

′), that is, it depends on the mean and the variogram only.
2. The distribution of 1

n 1
′Y , conditionally to Y0, is Gaussian with mean

1

n
1′μ + l ′

(
I − 1

n
11′

)
(Y − μ)

and variance∑
j λ j

n
−

∑
i, j γi j

n2
+ l ′

(
I − 1

n
11′

)
Γ

(
I − 1

n
11′

)
l,

where l is a vector such that

1

n
1′μ + l ′

(
I − 1

n
11′

)
(Y − μ) = E

(
1

n
11′Y

∣∣∣∣Y0
)

.
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Proof 1. The variance of Y0 is
(
I − 1

n
11′

)
Σ

(
I − 1

n
11′

)
=

(
I − 1

n
11′

) (
1

2
(Λ11′ + 11′Λ) − Γ

) (
I − 1

n
11′

)
=

−
(
I − 1

n
11′

)
Γ

(
I − 1

n
11′

)
.

2. We have E
( 1
n 1

′Y
∣∣Y0

) = 1
n 1

′μ + l ′ (Y0 − E (Y0)), if the vector l ∈ R
n is such

that Cov
( 1
n 1

′Y, Yo
) = l ′ Var (Yo), that is,

1

n
1′Σ

(
I − 1

n
11′

)
= l ′

(
I − 1

n
11′

)
Σ

(
I − 1

n
11′

)
,

or, in terms of Λ = diagΣ and the variogram Γ ,

1

2
1′Λ

(
I − 1

n
11′

)
= 1

n
1′Γ

(
I − 1

n
11′

)
− l ′

(
I − 1

n
11′

)
Γ

(
I − 1

n
11′

)
,

The variance of 1
n 1

′Y is

1

n2
1′Σ1 = 1

n2
(
n1′Λ1 − 1′Γ 1

) =
∑

j λ j

n
−

∑
i, j γi j

n2
,

and the variance of l ′Y0 is

l ′Σ0l = −l ′
(
I − 1

n
11′

)
Γ

(
I − 1

n
11′

)
l.

The conclusion follows from the conditioning formula for Gaussian vectors.

Remark 4 The previous proposition suggest an algorithm for the simulation when
the variogram is given, by generating first the deviations from the general mean by
using the covariance Σ0, then from the conditional distribution of the general mean,
given the deviations. It should be noted that in case of a stationary variance λ = λ j ,
j = 1, . . . , n the vector l depends on Γ only.

Remark 5 Geostatistical applications of the Gaussian model parametrized with the
variogram require the computation of the expression of the density of Y ∼ N(μ,Σ),
detΣ 
= 0 and of the conditional expectation. This is not done here, but see some
partial results in [3].
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3 Stationarity

Let G be an additive topological locally compact group, e.g., Z or R with the or-
dinary sum x + y. A centered Gaussian random process (Y (x))x∈G is stationary if
Cov (Y (x), Y (y)) = Cov (Y (x − y), Y (0)) = C(x − y). The autocovariance func-
tion C is positive definite, that is,

∑n
i j=0 αiα jC(xi − x j ) ≥ 0, n ∈ N, x1, . . . , xn ∈

G, α ∈ R
n . The process is intrinsically stationary if Var (Y (x) − Y (y)) =

Var (Y (x − y) − Y (0)) = 2γ (x − y). The variogram function γ is conditionally
negative definite, i.e., the matrix Γ = [γ (xi − x j )]ni, j=1, n ∈ N, x1, . . . , xn ∈ G,
is conditionally negative definite, as in Proposition 1.

We plan to discuss, in a paper currently in progress, the existence of an intrinsi-
cally stationary process Y given a conditionally negative definite function and we
want to characterise specific classes of variogram functions, e.g., those which are
increasing (if an order is available) and bounded as x → ∞. Increasing and bounded
variograms are considered especially adapted to Geostatistics. In fact, D.G. Krige
himself assumed that the variance of the difference between values measured in two
locations is increasing with the distance between the locations, while the covariance
vanishes. In the stationary case, these assumptions are still valid; therefore, we can
use the results of the previous section, together with a further characterisation of
variograms, which is based on the following theorem.

Proposition 7 [11, Theorem 6.1.8] Let γ : G and f (0) ≥ 0. Then γ is conditionally
negative definite if, and only if, for all finite sequence x1, . . . , xn, the matrix A =
[γ (xi − x j ) − γ (xi ) − γ (−x j )]ni, j=1 is negative definite.

Proof If the matrix A is negative definite and
∑

i αi = 0, then

0 ≥
n∑

i, j=1

αiα j (γ (xi − x j ) − γ (xi ) − γ (−x j )) =
n∑

i j=1

αiα jγ (xi − x j )

Viceversa, from generic x1, . . . , xn , α1, . . . , αn , define xn+1 = 0 and αn+1 =
− ∑

i αi , then write the condition for conditional negativity.

Finally, in this setting one must take advantage of the harmonic representation of
positive definite functions.

4 Conclusions and Future Developments

When dealing with Kriging meta-models, it is mandatory to provide a description
of how the responses are correlated, since the goodness of the Kriging predictions
in untried points strongly depends on the Gaussian random field. The correlation
quantifies the smoothness of the response function and there are two approaches in
the literature. The first one is the use of the spatial correlation function, SCF, (typical
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of the Design and Analysis of Computer Experiments); the second one, proposed by
Matheron, is based on the use of the variogram. In this paper, the equivalence between
variogramandSPC is proved for stationary and intrinsically stationary processes. The
use of the variogram is favourite because it does not require a parametric approach
as the correlation estimation does.

Further developments to be published later and to be presented in forthcoming
conferences, concern the use of the variogram for detecting technological signature
in manufactured parts and a benchmark of different approaches (parametric and not
parametric approach of the variogram and the Artificial Neuronal Networks) in the
capability evaluation of the turbine features in order to maximise the performances
(minimisation of the fuel consumption).

Acknowledgments G. Pistone is supported by the de Castro Statistics Initiative, Collegio Carlo
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GeographicallyWeightedRegression
Analysis of CardiovascularDiseases:
Evidence fromCanadaHealthData

Anna Lina Sarra and Eugenia Nissi

Abstract

This paper aims to present an exploratory spatial analysis for ascertaining Cana-
dian regional variations in the relationships between cardiovascular diseases
prevalence and some well-established risk factors. Since the geographic varia-
tion in risk factors for cardiovascular diseases is too complex to be captured by
a single set of regression coefficients, a local regression technique is employed.
In particular, in this study, we make use of Geographically Weighted Regression
(GWR) models with a ridge regression parameter to condense model complica-
tions related to the occurrences of local collinearity in the weighted explanatory
variables. Local regression coefficients and associated statistics for both tradi-
tional GWR and GWR where a ridge regression parameter has been integrated
are compared to evaluate their relative abilities in modelling the heterogeneous
impact of risk factors on cardiovascular diseases across space.

1 Introduction

Cardiovascular diseases (CVDs) are one of the major worldwide health concerns,
with severe implications for health and life expectancy. The latest available data
from WHO indicate that CVDs account for 17.5 million deaths in the world, which
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represents 30% of all deceases. The highest percentage of global deaths from CVDs
and their consequences occur in low andmiddle-income countries. Notwithstanding,
CVDs remains the leading cause of premature death also in Europe and North Amer-
ica. CVDs, such as heart, stroke, hypertension, are the result of multi-interacting risk
factors that can increase the likelihood for developing the disease. It is well estab-
lished that the main contributors to the CVDs disability and deaths in populations are
smoking, high level of alcohol consumption, inappropriate diet, life stress, sedentary
lifestyle, high level of blood cholesterol, diabetes, high blood pressure (hyperten-
sion). CVDs and related conditions are unevenly distributed within regional territo-
ries. Understanding substantial geographic variations in the strength of the relation-
ship betweenCVDs and associated risk factors can provide policymakerswith impor-
tant information to target predictors ofCVDs at the local level, in an effort to reduce or
eliminate heart disease risks and achieve an increase in life expectancy.When spatial
heterogeneity is suspected to exist, a localized model should be more conveniently
calibrated. Several statistical techniques have been developed to model nonstation-
arity of relations across space, mainly via some regression adaptations [1,4,6,15].
An effective way to address the spatial heterogeneity and accurately describe rela-
tionships among variables is represented by the Geographically Weighted Regres-
sion (GWR) [2,8]. Local specific results, achieved by GWR, may provide a more
detailed perspective on underlying relationships, allowing refinements in the global
specification. The present analysis has as its primary intention in assessing the extent
to which the association between hypertension prevalence in the Canadian Health
regions and some well-established risk factors vary spatially. We adopt the GWR to
explore if the effects of some cardiovascular disease predictors are heterogeneous
across space and hence vary from place to place. However, some caution should be
used in interpreting the spatial patterns of local GWR coefficients. In comparison
to a classical Ordinary Least Square (OLS) regression, GWR will produce higher
correlation in the weighted explanatory variables, which increases the variances in
the estimated regression coefficients and potentially invalidates conclusions about
the relationships under study. For this reason, as an alternative to a standard GWR, in
this study we also chose to use a GWRmodel where a ridge regression parameter has
been incorporated [3] to reduce model complications arising from collinearity. The
rest of the paper is organized as follows. In Sect. 2 we describe the methodological
issues (e.g. the basics of GWR and GWRwith a local ridge compensation). Section3
considers the available data. The results of the local regression analysis are presented
in Sect. 4. Finally, in Sect. 5 there are some concluding remarks.

2 GWRModelling

The GWR is a local estimation procedure accounting for spatially changing relation-
ships, deemed a complement tool to global modelling. The main appeal of method
is that GWR relaxes the assumption in traditional OLS models that the relationships
(regression coefficients) between dependent and independent variables being mod-
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elled is constant across a study area, by allowing local rather than glob-al parameters
to be estimated. A typical model of GWR can be written as

yi = β0(ui , vi ) +
∑

k

βk(ui , vi )xik + εi (1)

where βk(ui , vi ) (k = 1, 2, . . . .., M) are the regression coefficients for each location
i and each variable k, (ui , vi ) denotes the coordinates of i-th point in space and εi
are the error terms. The local parameters βk(ui , vi ) are estimated by weighted least-
squares estimator, given by

β̂i = (X
′
W((ui , vi )X))−1X

′
W(i)Y (2)

In (2) the weight matrix W(ui , vi ) is no longer constant but varies according to
the location of point i. In GWR an observation is weighted in accordance with its
proximity to regression point i: data points near to location (ui , vi ) will be assigned
higher weights in the model than data points farther away. Accordingly, an essential
step in GWR modelling is the building of the weight matrix which involves the
selection of the distance function and the definition of a finest bandwidth [9]. In
this study we adopt the bi-square nearest neighbour formulation of the weighting
function. The kernel shape is defined by the following equation which takes into
account only the nth nearest neighbours

wi j =
{

[1 − (
di j
hi

)2]2 i f di j < hi
0 otherwise

(3)

where hi is the nth nearest neighbour distance from i.
This equation yields “spatially adaptive kernels”. As a result, the calibration of

the model involves also the choice of n, the number of data point to be included
in the estimation of local parameters. Different methods are traditionally used to
define the finest bandwidth value or the appropriate value of n. Among them, there
are the AICc [14] and the cross-validation score (CV) procedure [5]. Here, we rely
on the AICc method because it has the advantage of taking into account differences
in model complexity, that is the varying degrees of freedom of models centred on
different observations. One of the main advantages of the GWR-based technique
regards the possibility to graphically display the spatial changes in the magnitude
of the parameter estimates across the study region, indicating the locally chang-
ing influence of a predictor on the dependent variable. Mapping local variation and
looking at the local performance of predictor variables might also shed light on the
question of model specification and/or support the identification of missing impor-
tant predictors. In addition to the local parameter estimates, GWR technique enables
to plot local statistics (pseudo t-values, pseudo R2, local residuals) useful in explor-
ing and interpreting spatial nonstationarity. However, there is a growing body of
literature that has argued some problems with using GWR for statistical inference
on regression relationships. Recent studies show that this technique is not able to
estimate the regression coefficients accurately (see, among others [10,16,19]). One
important issue is related to the occurrence of local collinearity in weighted explana-
tory variables. Collinearity can be an important issue as it increases the variances
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in estimated regression coefficients and potentially invalidates conclusions about
the estimated relationships [17]. As pointed out in many works [17,18], the lack
of collinearity in global regression model is not a guarantee for the absence of that
trouble in GWR models. The adverse effects of collinearity in the predictors of a
linear model are more pronounced in the localized framework of GWR. In that con-
text, the smaller samples used to calibrate each regression along with the potential
spatially heterogeneous correlation structures of the data exacerbate the detrimental
influence of collinearity among the predictor variables. Alternative methods, proven
to outperform standard GWR in estimating true regression effect over space, have
been proposed [7,17]. One way to constrain and stabilize the regression coefficients
is to calibrate a ridge regression [11,12]. The initial adoption of the ridge regression
in the context of GWR is due to [17]. Later [3] introduce a GWR with a locally
compensated ridge term (GWR LCR). A distinguishing feature of that approach is
basically the possibility to fit local ridge regressions where the ridge parameter is
allowed to vary across space. Besides, to achieve an indepth understanding of where
the undesirable influences of local collinearity might occur, the GWR LCR cali-
brates the ridge regressions only at locations where some diagnostics (for instance
the condition number) is above a user’s specified threshold. The GWR LCR relies
on the existence of a link between the definition of the condition number for the
design matrix and the ridge parameter. Given that for a generic square symmetrical
matrix M, the condition number is defined to be the ratio of the largest (e1) to the
smallest (em) eigenvalues of that matrix, it follows that in a ridge-adjusted matrix
this measure will be e1 + λ/em + λ. Accordingly, it will be possible to specify the
ridge parameter such that it will be below a chosen threshold. In a geographically
weighted regression there will be a condition number associated with every point in
the study area at which GWR coefficients are estimated. Formally, the estimator for
this locally compensated ridge regression model is

β̂i = (X
′
W(ui , vi )X + λI(ui , vi )−1X

′
(ui , vi )Y (4)

where λI((ui , vi )) is the locally compensated value of the ridge term λ at location i .
The effect to introduce a ridge term inEq. (4) is that to increase the difference between
the diagonal element of the designmatrix and the off-diagonal elements. Technically,
the addition of a displacement to the leading diagonal of the geographically weighted
cross-product matrix allows to overcome the difficulty to numerically inverted this
matrix since it has a denominator close to zero in presence of collinearity. As in the
standard GWR regression, the cross-validation procedure can be adopted to estimate
the optimal bandwidth. More technical details underlying GWR LCR are described
in [3].

3 Data:The Canadian Community Health Survey

Data employed in this study arise from the Canadian Community Health Survey
(CCHS) which is a series of national cross-sectional surveys that have been carried
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Table 1 Definitions of explanatory variables (Source Statistics Canada)

Variable name Variable description

Dietary practices (DIETS) Population aged 12 and over, by the average number of times per
day that they consume fruit and vegetables

Weight (BMI) Overweight (BMI of 25.0–29.9), by number of persons 18 and
over, excluding pregnant women, both sexes

Physical activity (PHYSIN) Household population 12 and over, physically inactive

Smoking status (SMOK) Household population 12 and over, daily smoker

Diabetes (DIAB) Population aged 12 and over who report that they have been
diagnosed by a health professional as having diabetes

out by Statistics Canada since 2001. This survey was designed to produce regular
and timely cross-sectional estimates of health determinants, health status and health
system utilization at provincial and sub-provincial levels (health region or combi-
nation of health regions). The base population for each health region provides the
option of normalizing the data. In all the empirical models of this study the depen-
dent variable of interest is percent of people aged 12 and over who report that they
have been diagnosed by a health professional as having high blood pressure (HBP).
Albeit the exact causes of high blood pressure are usually unknown, there are several
factors that have been highly associated with this condition. In the current study is
acknowledged that life style behaviours, specifically weight loss, regular increase in
physical activity, avoiding tobacco smoking and a healthy diet, rich in the consume
of fruits and vegetables per day, can effectively lower blood pressure. In addition
research from the WHO [20] highlights the importance of raised diabetes as a risk
factor for HBP. All the employed explanatory variables are summarized in Table1
and are drawn from 2011 CCHS. Due to limited availability of the same data in all
Canadian Health Regions, our analysis consider only 69 of them.

4 Results

We first carried out an OLS regression and the results are reported in Table2.
The hypothesized relationship between the HBP and the explanatory variables

are supported quite well by the data. Indeed, most of the predictor variables, except
those related to dietary practices (Consume of Vegetables and Fruits) and Physical
Activity, are statistically significant according to their t-values at the significance level
of α = 0.05. The adjusted coefficient of determination R2 is 0.49. The residuals for
the OLS results clear exhibit spatial patterning.

Visual inspection of residuals, mapped in Fig. 1, reveals that the model tends to
underestimate HBP in the Northwest and Southwest of the region under study, while
overestimate the outcome of interest in the North and South of the Health Regions
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Table 2 OLS parameter summaries

Coefficient SE t-statistic p value Sig.

Intercept −1.06 6.24 −0.17 0.87

Diabetes
(DIAB)

0.57 0.23 2.42 0.02 *

Current
smokers
(SMOK)

−0.20 0.06 −3.52 0.00 ***

Body mass
index
(OVERBMI)

0.35 0.08 4.59 0.00 ***

Dietary
practices
(DIETS)

0.07 0.05 1.29 0.20

Physical
inactivity
(PHYSIN)

−0.04 0.08 −0.55 0.58

aSignif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fig. 1 Residuals for OLS estimates
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Table 3 Goodness-of-fit test for improvement in model fit of GWR over global model (OLS)

Source SS DF MS F

OLS residuals 480.2 5

GWR
improvement

107.7 9.74 11.0

GWR residuals 372.5 54.2 6.86 1.61

Diagnostic
information

OLS GWR

R2 0.53

Adjusted R2 0.49 0.63
aSS = sum of squares; DF = degree of freedom; MS = residual mean square; F = F-statistic

Fig. 2 Local R-squared values for GWR

included in our analysis. The GWR estimation improves the overall explanatory
power of theHBPmodel by raising the adjusted R2 values from0.49 to 0.63 (Table3),
indicating that are spatially circumstances influencing the percent of peoplewith high
blood pressure. Local R2 values range from 0.48 to 0.69, with the highest R2 values
located in the North and in the South-Eastern of the area under study (Fig. 2).

For each coefficient of interest, it is possible to test the null hypothesis of same
variation over space in the estimated local values of the parameter against the alter-
native hypothesis that local parameter estimates exhibits spatial variability. AMonte
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Fig. 3 Spatial mapping of the coefficients from GWR modelling

Carlo approach is traditionally used to test for nonstationarity in individual parame-
ters [9,13].

In this case study, theMonteCarlo test results for spatially variability of parameters
suggested that the association between HBP and almost the predictors included in
the GWRmodel (OVERBMI, SMOK and DIAB) is nonstationary across space. The
spatial variation of each explanatory variable can be better understood by looking
at Fig. 3, displaying the local parameter estimates. More pronounced and diverse
spatial nonstationarity is evident in the effect of Diabetes on HBP. The relationship
is positive and strongest in the South whereas becomes weaker in the North. Besides,
the GWR findings indicate that the large coefficients for OVERBMI and SMOK
variables are also concentrated in the Southern Health regions. Further enlightening
information is provided by maps of t-statistics, displayed in Fig. 4, obtained dividing
each local estimate of the regression coefficients by its corresponding local standard
error. Actually, there are some theoretical difficulties in interpreting these t-statistics
values. As pointed out by Waller et al. 2007, the pseudo t-values should be used
in an exploratory fashion since they do not represent a formal statistical estimate,
resulting from a relatively ad hoc inference.Reference ‘Waller et al. (2007)’ is cited
in text but not provided in the reference list. Please provide references in the list or
delete these citations.
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Fig. 4 Spatial mapping of t-values the coefficients from GWR modelling

To continue the analysis we also investigated the issue of collinearity using the
approach of locally compensated ridge GWR, described in Sect. 2. To this end, we
compare the coefficient estimates for the unadjusted basic GWR with those from a
GWR LCR. As noted previously, a standard measure of the effects of collinearity is
the condition number of the matrix (X

′
X), defined to be the ratio of the largest to the

smallest eigenvalues of thatmatrix. Condition numbers above around 30 are regarded
as potentially problematic, suggesting that the associated results may be unreliable.
This diagnostic can be easily adapted to the local context by replacing the global
design matrix (X

′
X) with the local weighted cross-products matrices (X

′
WX). The

local design matrix condition numbers are found at the same spatial scale as each
local regression of the GWR model and can thus be mapped.

The local condition numbers for a basic GWR range from 50.51 to 105.79. On
inspection of the map, shown in Fig. 5a, it is evident that they are large everywhere.
Accordingly, we proceed to a more locally focused analysis. By calibrating a GWR
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Fig. 5 Local condition numbers from basic GWR (a) and local ridge terms (b)

LCR, the local compensation, that is the ridge adjustment to each local weighted
cross-products matrices, only takes place at locations displaying condition numbers
higher than a given threshold. In this case we specify a threshold of 30 for the
condition numbers. As a result, for this data set, a local ridge term will be found at
all locations. Mapping the corresponding values it is possible to identify the areas
where the major adjustments are necessary. The spatial pattern displayed in Fig. 5b
suggest that the greatest adjustments were required in Northern health districts.

After performingdifferent adjustments in relation to thevarying levels of collinear-
ity among the predictors, it would result that the larger coefficients for the basicGWR
model are reduced in magnitude and the smaller coefficients are raised. The compar-
ison of basic and locally compensated GWR estimates for Diabetes, Smoking status
and overweight predictors, are given in Fig. 6. The relationship is nonlinear and a
loess fit is shown in the plot.

5 Conclusions

Following the trend of the last three decades of exploring the geographical aspects
of population health, this paper has presented a spatial analysis to investigate the
association between cardiovascular disease (hypertension) and a set of related mod-
ifiable risk factors, over some Canadian Health districts. We have assumed that the
relationship under study is not universal across the study area and addressed the
issue of nonstationarity via GWR. That approach is currently a well-established
technique, especially designed to allow the regression parameters and the strength
of the relationship to vary over space. After accounting for place, we have found that
hypertension-related contributors association fluctuates from negative to positive as
a function of geographical location, confirming the spatial heterogeneity of the pre-
dictors that do not always have the same impact. Our study has also explicitly taken
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Fig. 6 Comparison of coefficient estimates

into account an important issue in the GWR modelling related to the occurrence
of local collinearity in weighted explanatory variables that may produce unreliable
estimates and misleading inference. To measure the degree of collinearity existing in
our dataset and deal with local collinearity problems, we have adopted a GWR with
a locally compensated ridge term. This local compensation approach has revealed
that a worryingly collinearity within predictors variables exists over all the health
areas analyzed and thus the related adjustments were performed everywhere. The
main findings of our analysis suggest that a more robust computational framework
for spatially varying coefficients, as that implied by the GWR LCR model, would
be greatly beneficial for researchers interested in estimating true regression effects
over space. In this specific case study, thank to the identification of reliable spa-
tial variations between CVDs and their main predictors, the health institutions will
be knowledgeable where resources for management and prevention of CVDs risk



202 A.L. Sarra and E.Nissi

factors should be allocated in an effort to increase population’s life expectancy. It
is worth noting that even if the paper focuses on a specific application, the method
discussed herein can be deemed general and it results appropriate when the interest
is in localized analyses and need-based interventions.
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Pseudo-Likelihoods for Bayesian
Inference

Laura Ventura andWalter Racugno

Abstract

The interplay between Bayesian and frequentist inference can play a remarkable
role in order to address some theoretical and computational drawbacks, due to the
complexity or misspecification of the model, or to the presence of many nuisance
parameters. In this respect, in this paper we review the properties and applica-
tions of the so-called pseudo-posterior distributions, i.e., posterior distributions
derived from the combination of a pseudo-likelihood function with suitable prior
information. In particular, we illustrate the various notions of pseudo-likelihood
highlighting their use in the Bayesian framework. Moreover, we show the sim-
ple but effective application of pseudo-posterior distributions in three challenging
examples.

1 Introduction

In the presence of models with complicated dependence structures, of multidimen-
sional nuisance parameters, or of model misspecifications, both frequentist and
Bayesian inference may encounter some theoretical and computational difficulties.
Indeed, in these situations the original likelihood functionmay be intractable or com-
putationally cumbersome. In order to take into proper account of such difficulties,

L. Ventura (B)
Department of Statistics, University of Padova, Padova, Italy
e-mail: ventura@stat.unipd.it

W. Racugno
Department of Mathematics and Informatics, University of Cagliari, Cagliari, Italy
e-mail: racugno@unica.it

© Springer International Publishing Switzerland 2016
T. Di Battista et al. (eds.), Topics on Methodological and Applied
Statistical Inference, Studies in Theoretical and Applied Statistics,
DOI 10.1007/978-3-319-44093-4_19

205



206 L.Ventura andW.Racugno

it is possible to consider surrogates of the original likelihood, which produce the
wide class of the so-called pseudo-likelihoods; see, for instance, [55, Chap.4], [71,
Chaps. 8 and 9], and [76], and references therein.

The aim of this paper is to review the properties and to illustrate some applications
of the so-called pseudo-posterior distributions, i.e., distributions derived from the
combination of a pseudo-likelihood function with suitable prior information. It is
a Bayesian non-orthodox procedure widely used in the recent statistical literature
and theoretically motivated in several papers; see, among others [4,11,12,17,19–
21,30,34,36,40,46,51,58,60,63,67–69,73,77–79,81], and references therein.

The outline of the paper is as follows. Section2 gives a brief review on pseudo-
likelihood functions. Section3 introduces the notion of pseudo-posterior distribution,
discusses the choice of the prior and the validation of a pseudo-posterior distribution,
also through first and higher-order asymptotic results. In Sect. 4 we illustrate the
calculation of pseudo-posterior distributions using a one-way random effects model
with heteroscedastic error variances, the Cox proportional hazards model, and a
multilevel probit model. Finally, some concluding remarks close the paper.

2 Notion of Pseudo-Likelihood

Let y = (y1, . . . , yn) be a random sample of size n from a statistical model with para-
meter space �, not necessarily finite-dimensional. Let τ = τ(θ), with τ ∈ T ⊆ IRk ,
k ≥ 1, be the parameter of interest. The more complex is the component comple-
mentary to τ in θ , then the more useful is the possibility of basing inference on a
likelihood function which depends on τ only.

Let us denote with L ps(τ ) = L ps(τ ; y) a pseudo-likelihood function for τ , that is
a function of the data y which depends only on the parameter of interest τ and which
behaves, in some respects, as itwere a genuine likelihood.Thismeans that, undermild
regularity conditions, L ps(τ ) has unbiased score function, the pseudo-maximum
likelihood estimator τ̂ps is consistent and asymptotically normal, and the pseudo-
likelihood ratio testWps(τ ) = 2(�ps(τ̂ps) − �ps(τ )), with �ps(τ ) = log L ps(τ ), has
null asymptotic χ2

k distribution. Some well-known examples of pseudo-likelihood
functions are the marginal, the conditional, the profile, the approximate conditional,
the modified profile, the integrated, the partial, the quasi, the empirical, the weighted,
the composite and the pairwise likelihood. For reviews on pseudo-likelihood func-
tions see, e.g., [55, Chap.4], [71, Chaps. 8 and 9], and [76], and references therein.

There are several reasons for introducing a pseudo-likelihood function for infer-
ence on τ . Here we propose a possible taxonomy of pseudo-likelihoods based on
three main classes.

1. Elimination of nuisance parameters. Consider a parametric model with density
function p(y; θ), θ ∈ � ⊆ IRp, p > 1, and write θ = (τ, λ), where the nuisance
parameter λ is of dimension p − k. For inference on τ , pseudo-likelihoods based on
a statisticalmodel defined as a reductionof the originalmodel are themarginal and the
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conditional likelihoods [71, seeChap.8]. However, they are available essentially only
in exponential and in group families. Outside of these cases, one simple and general
way of obtaining a pseudo-likelihood for τ is to replace the nuisance parameter
λ with its maximum likelihood estimate (MLE) for fixed τ , i.e., λ̂τ , in the original
likelihood L(τ, λ). The corresponding function L p(τ ) = L(τ, λ̂τ ) is the well-known
profile likelihood. It is not a genuine likelihood and its behavior may not be entirely
satisfactory, especially when the dimension of λ is large. Various modifications of
L p(τ ) have been proposed, starting from the approximate conditional likelihood
of [24], which is based on the choice of an orthogonal parameterization, to the
various proposals ofmodified profile likelihoods, which require notions about higher-
order asymptotic methods (see [71, Chap.9]). All the available modifications of the
profile likelihood are equivalent to the second order and share the common feature
of reducing the score bias to O(n−1) (see, e.g., [56]). A further approach that can
be applied generally for the elimination of nuisance parameters is to average the
likelihood function L(τ, λ)with respect to a “weight” function π(λ) on λ, in order to
define the integrated likelihood function L I (τ ) = ∫

L(τ, λ) π(λ) dλ (see [71, Chap.
8], [10]).

2. Semi or nonparametric models. The quasi-likelihood (see [2,6,8,48]) is a
pseudo-likelihood function associated to a semi parametric model specified in terms
of first (and sometimes second) order moments of a particular unbiased estimating
function. Instead, the empirical likelihood [54] was introduced to deal with inference
problems on k-dimensional smooth functionals in nonparametric models. The study
of these pseudo-likelihoods, when derived from M-estimators, has been investigated
in [1,3,54]. When robustness with respect to influential observations or to model
misspecifications is of interest, also the weighted likelihood can be considered (see,
e.g., [38,47]), which is a pseudo-likelihood defined through a set of weights which
are supposed to opportunely down-weight likelihood single term components.

3. Complex models. The class of composite likelihoods (see [76], and references
therein) is useful when the fully specified likelihood is computationally cumber-
some as well as when a fully specified model is out of reach. This class contains
the ordinary likelihood, as well as many other interesting alternatives, such as the
Besag pseudo-likelihood [13], them-order likelihood for stationary processes [5], the
approximate likelihood of [74], and the composite marginal likelihood and the pair-
wise likelihood [26], constructed frommarginal densities. Also the partial likelihood
[22,23], introduced for inference about the regression coefficients in the proportional
hazards model, may be considered a member of this class.

Finally, we remark that since the 1970s numerous other pseudo-likelihoods have
been considered. Some of these are: the pseudo-likelihood of [35], where nuisance
parameters are eliminated by means of a simple plug-in estimate; the bootstrap
likelihood [28,29], which is in the spirit of empirical likelihood; the dual likelihood
[53], which associates a likelihood to a martingale estimating equation; the projected
likelihood [49,82] for semi parametricmodels; thepenalized likelihood [25,37] for an
infinite-dimensional parameter of interest such as a density or a regression function;
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the various instances of predictive likelihood [14,16]; the h-likelihood [44,45,50],
that is a hierarchical likelihood, for inferences from random effect models.

3 Pseudo-Posterior Distributions

Assuming aprior distributionπ(τ)on τ and treating L ps(τ ) as anordinary likelihood,
from a purely formal expression of Bayes’ theorem we obtain

πps(τ |y) ∝ π(τ) L ps(τ ) . (1)

The posterior distribution πps(τ |y) is obtained “miming” the Bayesian procedure
and thus is called pseudo-posterior. In general, Bayesian inferential procedures based
on pseudo-likelihoods are called hybrid, or quasi or pseudo Bayesian methods.

When basing inference on τ on the pseudo-posterior distribution πps(τ |y), three
issues need to be addressed

(a) the choice of the suitable pseudo-likelihood L ps(τ );
(b) the choice of the prior π(τ);
(c) the validation of inference based on πps(τ |y).

Section3.1 focuses on the choice of the pseudo-likelihood to be used in (1), which
depends on the model and the objectives of the analysis. Section3.2 reviews the
results on the choice of the prior. Finally, Sect. 3.3 discusses the validation of a
pseudo-posterior distribution, both numerically and through asymptotic results.

3.1 Areas of Application of Pseudo-Posterior Distributions

Although (1) cannot always be considered as orthodox in a Bayesian setting, the use
of alternative likelihoods is nowadays widely shared, and several papers focus on the
Bayesian application of some well-known pseudo-likelihoods. Of course, the choice
of the pseudo-likelihood to be used in (1) depends on the objectives of the analysis.
A possible classification of the main areas of applications of the pseudo-posterior
πps(τ |y) may be based on the following five classes.

Elimination of nuisance parameters.When θ = (τ, λ) and only inference on τ is of
interest, the marginal, the conditional, the modified profile, and the approximate con-
ditional likelihoods can be used in (1). Note that the use of these pseudo-likelihoods
in πps(τ |y) has the advantages of avoiding the elicitation on the nuisance parameter
λ and of the computation of a multidimensional integral necessary to compute the
marginal posterior distribution for τ . Moreover, these pseudo-likelihood functions
L ps(τ ) have an orthodox Bayesian interpretation. This means that they are equiv-
alent to a suitable integrated likelihood, of the form L I (τ ) = ∫

L(τ, λ) π(λ|τ) dλ,
for a specific conditional prior π(λ|τ) (see, e.g., [57,70]). As a further remark, note
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that the pseudo-posterior distribution πps(τ |y) is a genuine posterior distribution
when using in (1) the modified profile likelihood with the corresponding match-
ing prior (see [77,81]) or in non-normal regression-scale models, in which there is
no loss of information about τ when using a pseudo-posterior distribution derived
from a marginal likelihood (see [60]). For Bayesian applications of the marginal,
the conditional, the modified profile, and of the approximate conditional likelihoods
see, among others [10–12,17,19,20,32,34,51,60,64,70,77,79–81], and references
therein.

Semi or nonparametric models. When dealing with semi parametric or nonpara-
metric statistical models, for Bayesian inference on τ the quasi and the empirical
likelihoods can be used. Note that the use of these pseudo-likelihoods in πps(τ |y)
has the advantages of requiring the elicitation of the prior only on the parameter of
interest τ . For applications of these pseudo-likelihoods for Bayesian inference see
[42,46,60,68,78], and references therein.

Robustness. When robustness with respect to outliers, influential observations or
model misspecifications is required, the quasi, the empirical and the weighted like-
lihoods can be used to obtain resistant pseudo-posterior distributions. Indeed, the
occurrence of anomalous values can seriously alter the shape of the ordinary like-
lihood function and then lead to ordinary posterior distributions far from those one
would obtain without these data inadequacies, as illustrated in [4,36,78].

Complex models. The composite and pairwise likelihoods deal with complex sta-
tistical models, for which the ordinary likelihood and thus the ordinary posterior dis-
tribution are impractical to compute or even analytically unknown. The use of these
pseudo-likelihood in Bayesian inference has been discussed in [58,63,65,67,73].

Proportional hazards model. In the Bayesian framework, the use of the partial
likelihood to derive a posterior distribution on the regression parameters of the Cox
model has the advantage of avoiding the specification of a prior process on the
unknown baseline cumulative hazard function. For the use of this pseudo-likelihood
in Bayesian inference, see, among others [21,39,40,67,69].

3.2 Choice of the Prior

The choice of the prior distribution on τ in (1) involves the same problems typical of
the standard Bayesian perspective. In particular, this occurs both when the elicitation
of a proper prior distribution is required and when using default prior distributions
that are often improper. For instance, the choice of parametric priors in πps(τ |y) has
been considered in several papers (see, e.g., [4,36,40,42,58,60,67,73]).

Non-informative priors have been considered by [21,58,60]. Ventura et al. [78]
discuss how to modify the Jeffreys’ prior to yield a default prior for τ to be used
with a general pseudo-likelihood L ps(τ ). It is shown that the Jeffreys-type prior for
τ associated to L ps(τ ) is given by

π J
ps(τ ) ∝

√
|i ps(τ )| , (2)
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where i ps(τ ) is the pseudo-expected information matrix, i.e.,

i ps(τ ) = E(−∂2�ps(τ )/∂τ∂τ
T
) .

This means that a parametrization invariant prior distribution for τ , derived from a
pseudo-likelihood function, is proportional to the square root of the determinant of
the pseudo-expected information.

The other prominent studied default priors are the matching priors, designed to
produce Bayesian credible sets which are optimal frequentist confidence sets in a
certain asymptotic sense (see, e.g., [27]). The use of matching priors has been widely
discussed in (1) with L ps(τ ) denoting a marginal, conditional or modified profile
likelihood for a scalar parameter of interest τ ; see, e.g., [17,19,51,61,64,77,79–81].
For instance, when using themodified profile likelihood, the correspondingmatching
prior is (see [77]),

πmp(τ ) ∝ iττ.λ(τ, λ̂τ )
1/2 , (3)

with iττ.λ(τ, λ) = iττ (τ, λ) − iτλ(τ, λ)iλλ(τ, λ)−1iλτ (τ, λ) partial information, and
iττ (τ, λ), iτλ(τ, λ), iλλ(τ, λ) and iλτ (τ, λ) blocks of the expected Fisher information
from the genuine likelihood L(τ, λ).

3.3 Validation of the Pseudo-Posterior Distribution

The pseudo-posterior distribution πps(τ |y) calls for its validation for Bayesian infer-
ence. At the current state, a general finite-sample theory for pseudo-posterior distri-
butions is not available, and every single problem has to be examined.

For the pseudo-posterior distributions listed in Sect. 3.1, the validation may be
based on asymptotic results. In particular, paralleling the results for the full posterior
distribution and under standard regularity conditions, it can be shown that (see [36,
42,58])

πps(τ |y) ∼̇ Nk
(
τ̂ps, jps(τ̂ps)

−1) , (4)

where jps(τ̂ps) is the pseudo-observed information evaluated at the pseudo-MLE.
An asymptotically equivalent normal approximation is πps(τ |y) ∼̇ Nk

(
τ̃ps,

j̃ps(τ̃ps)−1
)
, where τ̃ps is the pseudo-posterior mode and j̃ps(τ̃ps) = −(∂ log L ps

(τ ))/(∂τ∂τ
T
)|τ=τ̃ps . Moreover, paralleling results for the full posterior distribution,

also a higher-order tail area approximation can be derived for a scalar parameter of
interest τ (see [67]). In particular, it holds

∫ ∞

τ0

πps(τ |y) dτ =̈ 
(r∗
ps(τ0)) , (5)

where 
(·) is the standard normal distribution function and

r∗
ps(τ ) = rps(τ ) + rps(τ )−1 log b(rps(τ )) ,

with
rps(τ ) = sign(τ̂ps − τ)[2(�ps(τ̂ps) − �ps(τ ))]1/2
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pseudo-signed likelihood root and

b(rps(τ )) = jps(τ̂ps)
1/2 rps(τ )

�′
ps(τ )

π(τ)

π(τ̂ps)
.

The symbol “=̈” in (5) indicates that the approximation holds with error of order
O(n−3/2). From a practical point of view, the tail area approximation (5) can be
used to compute posterior quantiles of τ , or equi-tailed credible intervals as {τ :
|r∗

ps(τ )| ≤ z1−α/2}, where z1−α/2 is the (1 − α/2)-quantile of the standard normal
distribution. Moreover, it can be used to approximate posterior moments or highest
posterior density (HPD) credible intervals when using the HOTA algorithm (see
[64,67]). The HOTA algorithm is essentially an inverse transform sampling method,
which gives independent samples from the pseudo-posterior distribution.

A numerical possibility for a finite-sample validation of Bayesian inference based
on πps(τ |y) is to use the procedure by Mohanan-Boos (1992). These authors dis-
cuss a criterion for evaluating whether or not an alternative likelihood can be used for
Bayesian inference and, to this end, they introduce a definition of validity, based on
the coverage properties of posterior credible sets. In practice, they compute the sta-
tistic H = ∫ τ

−∞ πps(t |y) dt , which corresponds to posterior coverage set functions
of the form (−∞, tα], where tα is the αth percentile of the pseudo-posterior distrib-
ution. They assume that πps(τ |y) is valid by coverage if H is uniformly distributed
in (0, 1). Validity of Bayesian inference for the empirical likelihood was assessed in
[42], for the quasi-likelihood in [36], and for the weighted likelihood in [4].

4 Three Examples of Pseudo-Posterior Distributions

In this section we illustrate the calculation of pseudo-posterior distributions in three
illustrative examples based on: the modified profile likelihood in a one-way random
effects model with heteroscedastic error variances, the partial likelihood in the Cox
proportional hazards model, and the composite likelihood in a multilevel probit
model. It is argued that pseudo-posterior distributions have an important role to play
in Bayesian statistics.

4.1 Elimination of Nuisance Parameters with Matching Priors

Let θ = (τ, λ), with τ scalar parameter of interest and λ multidimensional nuisance
parameter. Bayesian inference on τ is based on the marginal posterior distribution

πm(τ |y) =
∫

π(θ |y) dλ =
∫

π(τ, λ)L(τ, λ) dλ∫
π(τ, λ)L(τ, λ) dλdτ

. (6)

The computation of (6) may present some difficulties. First of all, it requires the
elicitation on both ψ and λ. Second, it requires a multidimensional numerical inte-
gration.
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These drawbacks can be avoided when using the class of matching priors in
πm(τ |y). In this case, the marginal posterior distribution can be written as (see, e.g.,
[81], and references therein)

πm(τ |y) ∝ πmp(τ )Lmp(τ ) , (7)

where πmp(τ ) is the matching prior (3), and Lmp(τ ) = L p(τ )M(τ ) is the modified
profile likelihood for τ withM(τ ) suitable defined correction term.The advantages of
(7) are that: (1) no elicitation on the nuisance parameterλ is required; (2) no numerical
integration or MCMC simulation is needed; (3) accurate Bayesian inference even
for small sample sizes. Moreover, it can routinely be applied in practice using results
from likelihood asymptotics and the R package bundle hoa (see [81]).

Accurate tail probabilities from (7) can be computed using the third-order approx-
imation (5), which reduces to (see also [80])

∫ ∞

τ0

πm(τ |y) dτ =̈ 
(r∗
p(τ0)) , (8)

where

r∗
ps(τ ) = rps(τ ) + rps(τ )−1 log

q(τ )

rp(τ )

is the modified directed profile likelihood of [7], with

q(τ ) = �′
p(τ )

iττ.λ(τ̂ , λ̂)1/2

iττ.λ(τ, λ̂τ )1/2

1

M(τ )
.

The prior πmp(τ ) is also a strong matching prior [33] since a frequentist p-value
coincideswith aBayesianposterior survivor probability.Moreover, note that the equi-
tailed credible interval {μ : |r∗

p(τ )| ≤ z1−α/2} for τ derived from (8) coincides with
an accurate higher-order likelihood-based confidence interval for τ with approximate
level (1 − α). Therefore, this credible interval is also a likelihood-based confidence
interval for τ , with accurate frequentist coverage.

In order to illustrate the use of (7), consider inference for the consensus mean
in inter-laboratory studies. The analysis of data from inter-laboratory studies has
received attention over the past several years, and it deals with the one-way random
effects model with heteroscedastic error variances; see, among others [72], and ref-
erences therein. Let us assume that there are m laboratories, with n j observations at
the j-th laboratory, for j = 1, . . . ,m. The model is

yi j = τ + τ j + εi j , i = 1, . . . , n j , j = 1, . . . ,m , (9)

where yi j denotes the i-th observation at the j-th laboratory, and τ j and εi j are
independent random variables with distribution τ j ∼ N (0, σ 2) and εi j ∼ N (0, σ 2

j ),
respectively. The parameter of interest is the consensus mean τ , which is also the
mean of the yi j , i = 1, . . . , n j and j = 1, . . . ,m. The remaining (m + 1) parameters
of the model, i.e., within-laboratory variances (σ 2

1 , . . . , σ 2
m) and between laboratory

variability σ 2, are nuisance parameters. Consider the marginal posterior distribution
for τ based on the matching prior πmp(τ ). With respect to a standard Bayesian
approach (see, e.g., [75]), it does not require the elicitation on the nuisance parameter
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λ = (σ 2, σ 2
1 , . . . , σ 2

m) and it enables us to perform simple and accurate Bayesian
inference also when m and/or the n j , j = 1, . . . ,m, are small. The log likelihood
function for τ and λ = (σ 2, σ 2

1 , . . . , σ 2
m) from model (9) is given by

�(τ, λ) = −1

2

m∑

j=1

(
(n j − 1) log σ 2

j − log ρ j + ρ j (ȳ j − τ)2 + (n j − 1)s2j
σ 2
j

)
,

with ρ j = 1/(σ 2 + σ 2
j /n j ), ȳ j = ∑n j

i=1 yi j/n j and s2j = ∑n j
i=1(yi j − ȳ j )2/(n j −

1), for j = 1, . . . ,m. Starting from �(τ, λ), all the quantities involved in (7) are
given in [72], which discuss higher-order frequentist confidence intervals for τ . In
particular, the matching prior of τ is given by

πmp(τ ) ∝
√√√√

m∑

j=1

1

σ̂ 2
τ + σ̂ 2

jτ /n j
,

with σ̂ 2
τ and σ̂ 2

jτ partial MLEs of σ 2 and σ 2
j , j = 1, . . . ,m, for fixed τ . Note that to

compute (7), the HOTA simulation scheme can be used [64].
Let us consider the study involving nine laboratories carried out by the Nutrient

Composition Laboratory of the US Department of Agriculture. The objective was to
validate a proposed simple nonenzymatic gravimetric method for determining total
dietary fiber in some foods. Six samples (apple, apricots, cabbage, carrots, onions,
and soy fiber) were sent in blind duplicates to the participating laboratories. The
data on fiber in apples were analyzed by [75], using non informative priors. For this
example, m = 9 and the number of measurements n j made by the j th laboratory is
2, for j = 1, . . . , 9. The posterior distributions for τ are illustrated in Fig. 1, and the
credible intervals for the consensus mean and some summary statistics are given in
the following table:

mean (sd) median 0.95 equi-tailed 0.95 HPD
πmp(τ |y) 12.91 (0.27) 12.93 (12.35,13.46) (12.33,13.43)
πvr
m (τ |y) 12.87 (0.66) 12.90 (12.19,13.61) (12.19,13.61)

(4) 12.91 (0.22) 12.91 (12.47,13.34) (12.47,13.34)

Fig. 1 HOTA posterior
distribution (histogram),
πvr
m (τ |y) (solid) and

first-order approximation (4)
(dashed) for the mean
dietary fiber in apples
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The overall computation time was 1 s. The dashed curve in Fig. 1 is the first-
order approximation (4), while the solid curve is the marginal posterior πvr

m (τ |y)
for τ discussed in [75]. This posterior is based on the independent priors π(τ) ∝ 1,
π(σ j ) ∝ 1/σ j , j = 1, . . . ,m, and π(σ) ∝ 1. Note that the first-order 95% equi-
tailed credible interval appears unsuitable since it is too short owing to a poor normal
approximation to the posterior distribution (see also [15]).

4.2 Inference on the Cox Proportional Hazards Model

The Cox proportional hazards model [22,23] is widely used for semiparametric
survival data modeling. In its simplest form the failure times T1, . . . , Tn , for n
independent individuals, have hazard functions h(t; xi ) = h0(t) exp{xTi β}, where
β = (β1, . . . , βp) is a vector of unknown regression parameters, xi is a (p × 1) vec-
tor of covariates for the i th individual, i = 1 . . . , n, and h0(t) is the baseline hazard
function. Suppose that the failure time is subject to right-censoring by a mechanism
independent of their values and uninformative about their distribution. The data are
n pairs (ti , δi ), where ti denotes the observed lifetimes for the i th individual and δi
is an indicator of the survival status, with di = 1 if ti is a failure time (uncensored)
and di = 0 if ti represents a right-censored value, that is if Ti > ti , i = 1, . . . , n. The
partial likelihood for β is given by

LP (β) =
m∏

i=1

ex
T
i β

∑
j∈R(t(i))

ex
T
j β

, (10)

where t(i) is the ordered failure time, R(t(i)) is the risk set comprising those indi-
viduals at risk at time t(i), i = 1, . . . , n, and m = ∑

i δi .
In the Bayesian framework prior opinion should be modeled through a prior

process on the baseline cumulative hazard function and a prior density π(β) on the
regression parameters, since both h0(t) and β are unknown. To avoid issues related
to the elicitation on h0(t), in practice the partial likelihood (10) can be used directly
to derive the pseudo-posterior distribution

π̃P (β|y) ∝ π(β) LP (β); (11)

see [39,40,69], and references therein, for various Bayesian applications of (11).
Suppose it is of interest to focus on the scalar parameter β j , i.e., the j th compo-
nent of β. Let then β = (ψ, λ), with ψ = β j the parameter of interest and λ =
(β1, . . . , β j−1, β j+1, . . . , βp) the (p − 1)-dimensional nuisance parameter. Non-
informative priors on β, such as π(β) ∝ 1 (see, e.g., [21]) or vague normal priors
(see, e.g., [40]), can be considered.

Let us consider a real dataset concerning a clinical study on malignant mesothe-
lioma (MM) [31]; this example is discussed in [67]. The dataset reports censored
survival times for n = 109 and the type of malignant mesothelioma, i.e., type epithe-
lioid, biphasic, or sarcomatoid. The partial likelihood (10) is thus a function of
β = (β1, β2).



Pseudo-Likelihoods for Bayesian Inference 215

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCMC
HOTA

E
m

pi
ric

al
 p

os
te

rio
r C

D
F

β1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCMC
HOTA

E
m

pi
ric

al
 p

os
te

rio
r C

D
F

β2

Fig. 2 Marginal posterior distributions for β1 and β2 computed with HOTA and MCMC for the
Cox regression model

The marginal partial posterior distributions for β1 and β2 can be computed both
using the HOTA algorithm based on higher-order approximations or with MCMC,
both based on 104 simulations and a non-informative prior on β. A graphical compar-
ison of the two cumulative distribution functions is given in Fig. 2, whereas numerical
comparisons are reported in the following table:

Method Mean Std. Dev Q0.025 Median Q0.975 0.95 HPD
HOTA β1 0.084 0.291 −0.501 0.089 0.641 (−0.480,

0.656)
HOTA β2 0.974 0.291 0.396 0.976 1.540 (0.415,

1.557)
MCMC β1 0.084 0.291 −0.501 0.089 0.640 (−0.488,

0.644)
MCMC β2 0.975 0.292 0.397 0.976 1.541 (0.395,

1.541)

The results indicate that the MCMC and the HOTA algorithm give virtually indis-
tinguishable results. MCMC is run for a large number of simulations and the usual
convergence checks and post processing tasks are applied (e.g., thinning, burn-in,
etc.), whereas HOTA is very simple to implement in this example since it is available
at little additional computational cost over simple first-order approximations. More-
over, HOTA gives independent samples at a negligible computational cost and it can
be used for quick prior sensitivity analyses [62], since it is possible to easily assess the
effect of different priors on marginal posterior distributions, given the same Monte
Carlo error. This is not generally true for MCMC or importance sampling methods,
which in general have to be tuned for the specific model and prior.



216 L.Ventura andW.Racugno

4.3 Correlated Binary Data

The pairwise likelihood is particularly useful for modeling correlated binary out-
comes, as discussed in [43]. This kind of data arise, e.g., in the context of repeated
measurements on the same subject, where a maximum likelihood analysis involves
multivariate integrals whose dimension equals the cluster sizes.

Let us focus on a multilevel probit model with constant cluster sizes. In particular,
let Si be a latentq-variate normalwithmeanγi = Xiβ/σ , withβ unknown regression
coefficient, σ known scale parameter and Xi design matrix for unit i , and covariance
matrix �, with �hh = σ 2, �hk = σ 2ρ, h �= k, i = 1, . . . , n. Then, the observed yih
is equal to 1 if Sih > 0, and 0 otherwise, for h = 1, . . . , q .

The full likelihood is cumbersome since it entails calculation of multiple integrals
of themultivariate normal distribution. On the other hand, the pairwise log likelihood
is (see, e.g., [41,43])

p�(β, ρ) =
n∑

i=1

q−1∑

h=1

q∑

k=h+1

log P(Yih = yih, Yik = yik;β, ρ) , (12)

where P(Yih = 1, Yik = 1;β, ρ) = 
2(γih, γik; ρ) denotes the standard bivariate
normal distribution function with correlation coefficient ρ, and γih = xihβ/σ is the
component h of γ i (i = 1, . . . , n, h, k = 1, . . . , q). Pairwise likelihood inference is
much simpler than using the full likelihood since it involves only bivariate normal
integrals.

In principle, the pairwise likelihood can be used directly in the Bayes’ theorem
as it is a genuine likelihood, giving [73]

πp�(β, ρ|y) ∝ π(β, ρ) exp(p�(β, ρ)) .

However, [58] suggest to combine a calibrated version of the pairwise likelihood
with the prior, obtaining the calibrated posterior

πc
p�(β, ρ|y) ∝ π(β, ρ) exp(c p�(β, ρ)) , (13)

with c suitable constant (see formula (2.3) in [58]). The calibration is necessary in
order to alleviate the inefficiency of composite likelihood methods. Moreover, the
use ofπc

p�(β, ρ|y) recovers, approximately, the asymptotic properties of the pairwise
posterior. Examples of πp�(β, ρ|y) and of πc

p�(β, ρ|y) are discussed also in [63,65].
Let us consider an example in [65],which discuss the use of the pairwise likelihood

function inApproximate BayesianComputation (ABC)methods. The data have been
generatedwith β0 = ρ = 0.5 and β1 = σ = 1, andwith n = 50 and q = 7, where β0
is the intercept and β1 the coefficient of a covariate, which has been generated from
a U (−1, 1). For the parameter θ = (β0, β1, κ), with κ = logi t ((ρ(q − 1) + 1)/q),
a normal prior N (0, 45)3 is assumed.

The marginal pairwise posteriors for ρ, β0 and β1, derived from the calibrated
and non-calibrated pairwise posteriors, are illustrated in Fig. 3. For the purposes of
comparison we report also an MCMC approximation of the posterior based on the
full likelihood. Clearly, the non-calibrated pairwise posterior is quite different from
the target (MCMC), whereas the calibrated pairwise posterior behaves much better.
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Fig.3 Correlated binary data: Calibrated pairwise posterior (Cal. Pair) compared with the pairwise
(Pair) and the exact (MCMC) posteriors. The horizontal lines represent the true parameter values

5 Final Remarks

Posterior distributions based on suitable pseudo-likelihoods have been proved useful
for Bayesian inferences on a parameter of interest in several contexts (see also [9]). A
first notable situation arises when elimination of a nuisance parameter is of interest.
In this case the use of a pseudo-likelihood allows to avoid the elicitation of the prior
of the nuisance parameter and the computation of a multidimensional integral in the
integrated likelihood. A second striking situation is when the ordinary likelihood,
and thus the corresponding posterior distribution, is difficult or even impractical
to compute. In this respect, the use of a pseudo-posterior distribution based on the
partial and the composite likelihoodsmay be particularly useful to deal with complex
models.

Finally, we note that the interplay between Bayesian and likelihood procedures
is still lively and opens to new research topics. A first instance refers to the use of
composite likelihood score functions as summary statistics in Approximate Bayesian
Computation (ABC) in order to obtain accurate approximations to the posterior dis-
tribution in complex models [65]. Moreover, also scoring rules, that generalize the
proper and the composite likelihoods, can be used for developing posterior distrib-
utions using ABC methods (see the preliminary results in [66]). Finally, in [18] it is
shown how higher-order approximations and matching priors are useful to derive an
accurate approximation of the measure of evidence for the full Bayesian significance
test introduced by [59] for precise hypotheses.
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