

An Introduction to HTML and JavaScript
for Scientists and Engineers

David R. Brooks

An Introduction
to HTML and JavaScript
for Scientists and Engineers

David R. Brooks, PhD
Institute for Earth Science Research and Education
2686 Overhill Drive
Norristown 19403
brooksdr@drexel.edu

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007926247

ISBN-13: 978-1-84628-656-8 e-ISBN-13: 978-1-84628-657-5

Printed on acid-free paper.

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

i. What is the purpose of this book?

There are many students, other than those specifically interested
in computer-related areas such as computer science or computer engineer-
ing, who nevertheless need to know how to solve computational problems
on computers. There are basically two approaches to meeting the needs of
such students. One is to rely on software applications such as spread-
sheets, using built-in functions as needed, without relying explicitly on
any of the constructs, such as branching and looping, that are common to
programming languages.

A second approach is to teach such students a traditional pro-
gramming language, previously Fortran or Pascal, and more recently C,
C++, or Java. These languages play important roles in certain kinds of
work, such as computer science (C++, Java) or scientific computing (C
and Fortran), but having to learn one of them may be viewed, possibly
with good reason, as irrelevant by many students.

From a student’s point of view, there is no painless solution to
this dilemma, but in this book I assume that learning to solve computa-
tional problems in an HTML/JavaScript environment will at least appear
to be a more relevant solution. Both HTML1 and JavaScript are essential
for Web development and some working knowledge of them is a useful
and marketable skill. So, in addition to learning basic programming con-
cepts, students can also learn something that may be more immediately
valuable than older text-based languages.

In many ways, the HTML/JavaScript environment is more diffi-
cult to learn than a traditional text-based programming language such as
C. C is a mature (some might prefer “obsolete”), fairly small language
with an unambiguous set of syntax rules and a primitive text-based in-
put/output interface. You can view the limitations of C as either a blessing
or a curse, depending on your needs. A major advantage of C is that pro-
grams written in ANSI Standard C should work equally well on any com-
puter that has a C compiler, making the language inherently platform-
independent.

1 See Glossary for definitions of terms appearing in bold font.

Preface

vi Preface

JavaScript and HTML, on the other hand, are immature and very
unstable languages (if we can agree informally to call HTML a “lan-
guage”) that function within a constantly changing Web environment.
There are dialects of HTML and JavaScript that will work only on par-
ticular computing platforms and with specific software. While it is true
that there are extensions to languages such as C and other older languages
that are platform-dependent, the platform dependence of HTML and
JavaScript is a major implementation issue rather than an occasional mi-
nor inconvenience.

As one indication of the teaching and learning challenges these
environments provide, just three popular paperback HTML and JavaScript
reference books occupy nearly 6 inches of space (15 cm in deference to
non-U.S. readers) on my office bookshelf! A great deal of the material in
those books is devoted to explaining the often subtle differences among
various versions of HTML and JavaScript.

Fortunately, it is possible to present some core subsets of both
HTML and JavaScript that can be used to solve some of the same kinds of
computational problems that would be appropriate for a more traditional
language such as C or C++. My motivation for writing this book was to
learn how to use HTML and JavaScript to write my own online applica-
tions, and I now use this environment for many tasks that I previously
would have undertaken in C. Based on this experience, I have concluded
that, despite the fact that JavaScript is definitely not intended as a “scien-
tific computing” language, it is nonetheless reasonable to present some
basic programming skills of interest to science and engineering students
and practitioners in the context of an HTML/JavaScript environment. The
examples and exercises presented in the book do not require extensive
science, engineering, or mathematics background (only rarely, in a few of
the exercises) is knowledge beyond basic algebra needed), so I believe
this book could serve as a beginning programming text even for high
school students.

ii. Learning by Example

It is well known that people learn new skills in different ways.
Personally, I learn best by having a specific goal and then studying exam-
ples that seem related to that goal. Once I understand those examples, I
can incorporate them into my own work. I have used that learning model
in this book, which contains many complete examples that can serve as
starting points for your work.

This model works well in an online environment, too. The amount
of online information about both HTML and JavaScript is so vast that it is

Preface vii

only a slight exaggeration to state that nobody writes original JavaScript
code any more. If you have trouble “learning by example,” you will have
trouble learning these languages, not just from this book, but in general
because that is how most of the available information is presented.

It is an inescapable fact that a great deal of the source code behind
Web pages involves nothing more (or less) than creative cutting, pasting,
and tweaking of existing code. Aside from the issues of plagiarism and
intellectual dishonesty that must be dealt with in an academic environ-
ment, there is also the practical matter of an effective learning strategy.
You cannot learn to solve your own computational problems just by try-
ing to paste together someone else’s work. (Believe me, I’ve tried!) Until
you develop your own independent skills, you will be constantly frus-
trated because you will never find exactly what you need to copy and you
will be unable to synthesize what you need from what is available.

So, while you should expect to find yourself constantly recycling
your own code throughout a course based on this book, you need to be
responsible for your own work. Make sure you really learn and don’t just
learn to copy!

iii. Acknowledgments

I am once again indebted to my wife, Susan, for her patient edit-
ing of this manuscript. Considering that she also edited two of my previ-
ous computer programming manuscripts, I can conclude only that suffi-
cient time has passed to dim her recollections of those experiences!

During the Fall of 2006, student comments in a class I taught for
Drexel University’s School of Biomedical Engineering, Science and
Health Systems, have provided valuable suggestions for improving the
presentation and content of this manuscript.

Contents

1. Introductory Concepts ...1

1.1 Introducing the Tools .. 1
1.1.1 What Is an HTML Document?.. 1
1.1.2 What Is JavaScript?... 3
1.1.3 How Do You Create HTML/JavaScript Documents? 4
1.1.4 Some Typographic Conventions Used in This Book 7
1.1.5 Where Should I Look for More Information

 about HTML and JavaScript? .. 7
1.2 Your First HTML/JavaScript Documents 8
1.3 Accessing HTML Documents on the Web.................................... 16
1.4 Another Example .. 18

2. HTML Document Basics... 21

2.1 Documents, Elements, Attributes, and Values 21
2.1.1 Essential Elements .. 21
2.1.2 Some Other Important Elements... 22

2.2 HTML Syntax and Style ... 29
2.3 Using the script Element ... 30
2.4 Creating and Organizing a Web Site... 31
2.5 Selecting and Using Colors ... 35
2.6 Using Cascading Style Sheets ... 36
2.7 Another Example .. 42

3. HTML Tables, Forms, and Lists .. 43

3.1 The table Element .. 43
3.1.1 Basic Table Formatting... 43
3.1.2 Merging Cells across Rows and Columns............................ 45

3.2 The form Element... 49
3.3 Creating Pull-Down Lists.. 53
3.4 Combining Tables and Forms ... 54
3.5 E-Mailing the Contents of Forms.. 57
3.6 The List Elements ... 59
3.7 Another Example .. 64

x Contents

4. Fundamentals of the JavaScript Language.. 67
4.1 Capabilities of JavaScript.. 67
4.2 Some Essential Terminology .. 69
4.3 Structure of JavaScript Code... 70

4.3.1 JavaScript Statements ... 70
4.3.2 Statement Blocks .. 71
4.3.3 Comments ... 71

4.4 Data and Objects ... 73
4.4.1 Data Declarations and Variables... 73
4.4.2 Data Types .. 74
4.4.3 Literals .. 75
4.4.4 Case Sensitivity... 75
4.4.5 Objects and Methods for Input and Output......................... 76
4.4.6 String Methods.. 78

4.5 Tokens, Operators, Expressions, and Statements.......................... 80
4.5.1 Tokens... 80
4.5.2 Arithmetic Operators .. 81
4.5.3 The Assignment Operator ... 82
4.5.4 Shorthand Arithmetic/Assignment Operators 83

4.6 The JavaScript Math Object.. 85
4.7 Comparison Operators and Decision-Making Structures.............. 90

4.7.1 Relational and Logical Operators 90
4.7.2 The if Construct (Branching Structures) 90
4.7.3 The switch Construct.. 95

4.8 Loop Structures ... 97
4.8.1 Count-Controlled Loops ... 97
4.8.2 Conditional Loops... 99

4.9 Using JavaScript to Change Values in Form Fields.................... 102
4.10 Another Example... 105

5. Using Arrays in HTML/JavaScript ..107

5.1 Basic Array Properties .. 107
5.2 Some Operations on Arrays .. 111

5.2.1 Manipulating Stacks and Queues...................................... 111
5.2.2 Sorting... 114

5.3 Creating Two-Dimensional Arrays ... 115
5.4 Using Arrays to Access the Contents of Forms 118

5.4.1 Accessing Values of type= text Fields 118
5.4.2 Accessing type= radio and type= checkbox

Fields... 120
5.5 Hiding the Contents of a JavaScript Script 122
5.6 Another Example .. 124

”
”“ “ ”

Contents xi

6. JavaScript Functions...127
6.1 The Purpose of Functions in Programming................................. 127
6.2 Defining JavaScript Functions .. 128
6.3 Using JavaScript Functions with HTML Forms 131

6.3.1 Using Numerical Values as Input 132
6.3.2 Using Field Name value Attributes as Input................... 135
6.3.3 Using Field Names as Input.. 135
6.3.4 Using Entire Forms as Input ... 136

6.4 Some Global Methods and Event Handlers 140
6.4.1 Global Methods .. 140
6.4.2 Using Event Handlers with Forms and Functions 143

6.5 Recursive Functions .. 144
6.6 Passing Values from One Document to Another 149
6.7 Revisiting the JavaScript sort() Method 151
6.8 More Examples ... 152

Glossary ...

Appendices ...169

A.1 HTML Document Examples .. 169
A.2 Displaying Special Characters in an HTML Document 171

Exercises...173

Index ..193

161

1. Introductory Concepts

Chapter 1 provides a very brief introduction to using HTML and JavaScript
for creating simple Web pages. It presents examples that illustrate the way
in which JavaScript interfaces with an HTML document to display some
printed output in a Web browser window, and introduces the concept of
an HTML document as an object, with certain methods and properties
accessible through JavaScript to act on that object. There are also some
examples that show how to modify the appearance of a document by using
HTML tags and their attributes, including as part of a text string passed as
a calling argument to JavaScript’s write() method.

1.1 Introducing the Tools

1.1.1 What Is an HTML Document?

HTML is an acronym for HyperText Markup Language. HTML docu-
ments, the foundation of all content appearing on the World Wide Web
(WWW), consist of two essential parts: information content and a set of
instructions that tells a computer how to display that content. The instruc-
tions—the “markup,” in editorial jargon—comprise the HTML language.
It is not a programming language in the traditional sense, but rather a set
of instructions about how to display content. The computer application
that translates this description is called a Web browser. Ideally, online
content should always look the same regardless of the browser used or the
operating system on which it resides, but the goal of platform independ-
ence is achieved only approximately in practice.

A basic HTML document requires a minimum of four sets of
elements:

<html> … </html>
<head> … </head>
<title> … </title>
<body> … </body>

These elements define the essential parts of an HTML document: the
document itself, a heading section, a title section, and a body. Each of the

2 1. Introductory Concepts

elements is defined by two tags—a start tag and an end tag. Tags are
always enclosed in angle brackets: <…>. End tags start with a slash (/). As
is shown later, some HTML elements have only one tag. Most tags are
supposed to occur in pairs, although this rule is only loosely enforced in
HTML. In order to support a scripting language such as JavaScript
(much more about that later!), another element must be added:

<script> … </script>

For our purposes, a script element always contains JavaScript code.
 These elements are organized as follows within an HTML docu-
ment:

<html>
 <head>
 <title> … </title>
 …
 <!-- Optional script elements as needed. -->
 <script> … </script>
 </head>
 <body>
 …
 </body>
</html>

The html tag encloses all other tags and defines the boundaries of
the HTML document. We will return to all the other tags later. script
tags are often found inside the <head> tag, but they can appear elsewhere
in a document as well. The indenting used to set off pairs of tags is optional,
but it makes documents easier to create, read, and edit. This style is part of
good programming practice in all languages.

Owing to the fact that JavaScript is so tightly bound to HTML
documents, you must learn JavaScript along with at least a subset of
HTML. Unfortunately for anyone trying to learn and use HTML and
JavaScript, each of the several available browsers is free to implement and
support JavaScript in its own way. A browser does not even have to sup-
port JavaScript at all, although it is hard to imagine why it would not do
so. Browsers can and do incorporate some proprietary HTML and
JavaScript features that may not be supported by other browsers. Newer
versions of any browser may support features that will not be recognized
by earlier versions.

1.1 Introducing the Tools 3

 Fortunately, it is possible to work with what is essentially a de
facto standardized subset of HTML and JavaScript. As a result, some of
the descriptions of the details of HTML and JavaScript in this book are
incomplete. This is not necessarily bad!

Although we tend to think of HTML documents as a way to dis-
tribute information for remote access on the Web, they are equally useful
when used locally on any computer that has a browser. Thus, in conjunc-
tion with JavaScript, you can create a self-contained problem-solving
environment that can be used locally as well as (literally) globally.

Good programming technique often involves separating the
input/output (I/O) interface from the underlying calculations that do the
work of a program, using appropriate modularization. The programming
environment provided by HTML/JavaScript provides a conceptually ele-
gant means of implementing this strategy. An HTML document provides
the I/O interface and JavaScript handles the calculations. An advantage of
HTML is that it provides a wealth of interface possibilities that far surpass
those of text-based languages such as C.

1.1.2 What Is JavaScript?

JavaScript is an interpreted (rather than a compiled) object-oriented
programming language, with roots in C/C++, that has been developed
for use with other Web tools. It does not operate as a standalone language,
but rather is designed to work together with HTML for creating interac-
tive Web pages. JavaScript is not the same as Java, which is a compiled
object-oriented language.

JavaScript is used to write client side applications, which means
that its code is sent to a user’s computer when a Web page is loaded. The
code is then executed, basically line by line, by a JavaScript interpreter
included as part of the user’s (client’s) Web browser. This arrangement
minimizes security issues that can arise when a client computer interacts
with the computer that sent the page. It also makes it easy to package an
entire problem—with its own user interface and solution—self-contained
within a single document. However, the inability to interact dynamically
with information on the server does impose limitations on the kinds of
tasks that JavaScript can accomplish.
 It is commonplace to refer to any set of written computer instruc-
tions as a “program,” but this term should perhaps be more rigorously
applied to a separate entity that can be executed on its own. As
JavaScript is interpreted rather than compiled, a separately executable
entity is never created. Rather, JavaScript code statements are inter-
preted and executed one at a time, essentially “on the fly.” Although this

4 1. Introductory Concepts

may seem inefficient, there is rarely any discernible time lag associated
with executing JavaScript commands on modern computers.

JavaScript is one of a class of scripting languages whose purpose
is to access and modify components of an existing information interface.
(Microsoft’s VBScript is another scripting language.) In this case, the
interface is an HTML document. Something like JavaScript became nec-
essary as soon as HTML documents on the Web evolved from one-way
delivery systems for displaying fixed content. One of JavaScript’s first
applications arose from the need to check values entered by users into the
fields of HTML forms that can be sent back to the originator. (Forms are
discussed in a later chapter.) JavaScript can be used to compare input val-
ues against an expected range or set of values and to generate appropriate
messages and other actions based on those comparisons.

JavaScript has evolved into a complete programming language
with extensive capabilities for manipulating text and handling mathemati-
cal operations, useful for a wide range of computing problems. The possi-
ble applications include many self-contained scientific and engineering
calculations, which provide the primary motivation for this book. As
noted above, the utility of JavaScript is restricted to problems that do not
have to access external data sources, such as would reside on a host com-
puter and would not be available to a client computer.

The major challenge in learning HTML/JavaScript is that it is not
a completely standardized environment. The various dialects of HTML
and JavaScript pose problems even for experienced programmers. These
kinds of problems can be minimized by focusing on an appropriate subset
of HTML/JavaScript, which is feasible because there is little reason to use
browser-specific subsets of HTML/JavaScript in the context of the topics
dealt with in this book.

1.1.3 How Do You Create HTML/JavaScript Documents?

Since HTML/JavaScript documents are just text documents, they can be
created with any text editor. Even Windows’ very basic Notepad applica-
tion is a workable choice for simple tasks.1 Once they are created, you can
open HTML files in your computer’s browser—hopefully without regard
to which browser you are using. As long as you give such documents an
.htm or .html file name extension, they should automatically open in

1 When you save a file in Notepad, the default extension is .txt. You may have

to enclose the file name with an .htm extension in quote marks to prevent
Notepad from adding the .txt extension.

1.1 Introducing the Tools 5

your browser when you double-click on the file name. The three-letter
extension is standard for Windows-based documents. The four-letter
extension is commonly used on UNIX systems.2

There is one other consequence of using Windows computers for
creating all the examples in this text (and the text itself, for that matter):
Windows file names are case-insensitive, whereas in UNIX, all spellings,
including file names and commands, are case-sensitive. This should not
cause problems, but it is something to keep in mind. In Windows, you can
name a document newDocument.htm. Later, you can spell it newdocu-
ment.htm, NEWDOCUMENT.HTM, or any other combination of uppercase
and lowercase letters and it will not matter. However, on a UNIX system,
that file can be accessed only with the original spelling.

Although you can create text (and, therefore, HTML) documents
with a full-featured word processor such as Microsoft Word, this is not
recommended. When you save a word processor document it no longer
contains just the text you have typed, but also all the layout and formatting
information that goes with along with it. You can choose to save a docu-
ment as just text with an .htm extension, but it is easy to forget to do it.

Microsoft Word and other modern word-processing applications
can also format any document as an HTML document, but this is also not
recommended. These converted documents may include a huge quantity
of extraneous information and HTML instructions that make the resulting
file much larger and more complex than it needs to be. (Try saving a
Word document as an HTML document and then look at the result in a
text editor such as Notepad!)
 RTF (“rich text format”) documents are also unacceptable, as they
still retain some formatting information that is inappropriate for an HTML
document. Any document that contains “smart quotes” rather than
“straight quotes” can also cause problems, because smart quotes may not
be displayed properly by browsers. (This is much less of a problem on
current browsers than it was in the past.)

There are commercial Web development applications that allow
you to create Web pages without actually knowing anything about HTML
or JavaScript, but these applications are not suitable for use with this
book. The obvious reason is that the primary purpose of the book is to

2 On Windows computers, you can associate extensions with whatever applica-

tion you wish. So, for example, if you have more than one browser installed on
your computer, you can designate one of them as the default browser and as-
sign it as the application for opening HTML documents.

6 1. Introductory Concepts

show you how to write your own HTML instructions and JavaScript code.
Moreover, these applications will probably create HTML files that are
much larger and more complex than they need to be for our purposes.
Finally, they do not include the kind of JavaScript code you will need for
the topics discussed here. Thus, they are better suited for Web develop-
ment projects that involve a lot of graphics and the other “bells and whis-
tles” that make commercial Web pages attractive.

Creating an HTML/JavaScript document that works properly
inevitably involves switching back and forth between a text editor and a
browser—making changes and observing the effects of those changes.
Once you create a basic HTML document, you can open it in your
browser and move back and forth between this document and your text
editor, and whenever you change the document, you can reload or refresh
it in your browser. It is certainly possible, but not particularly convenient,
to do this with a simple text editor such as Notepad.

There are many commercial software tools whose purpose is to
facilitate writing and editing HTML documents by integrating document
creation, editing, and viewing. Some of them are intended for large and
complicated projects and may be “overkill” for use with this book. For
several years, for creating this book and in my own day-to-day work, I
have used AceHTML Freeware V.5 (see www.visicommedia.com). This
software provides an HTML/JavaScript editor with some automatic color-
based text formatting that makes HTML instructions and JavaScript code
easy to read. There is an integrated Web page viewer, so it is easy to
switch back and forth between creating and editing a document and seeing
the results of your work. It also has a JavaScript syntax checker. As is
typically the case, the checker is not very good at telling you how to fix a
syntax error, but it at least tells you where the error was detected. The
freeware version of this editor may or may not be currently available, and
it may require installation of other software that you may or may not want
on your computer. In any event, during the time I was writing this book,
there were versions of AceHTML available for purchase.3

Although, in principle, it should not make any difference which
browser you use, the outputs I have displayed in this text come from either
AceHTML’s internal browser or Mozilla’s Firefox, which I use as the
default browser on my Windows computers. When you display content in

3 Recent versions of AceHTML assume XHTML as the default language, rather

than HTML. If you use such a version with this book, you must override this
assumption by saving files with .htm or .html extensions.

1.1 Introducing the Tools 7

an “alert” box, as will be described later in this book, the appearance of
this box is different for different browsers, and hence may be different
from what is shown here.

1.1.4 Some Typographic Conventions Used in This Book

HTML tags and JavaScript code are printed in a monospaced (Cou-
rier) font in document examples and whenever they are referred to in
the text. Thus, document is interpreted as a reference to an HTML object,
as opposed to its general use as a term identifying a body of text. Some
technical terms used for the first time are printed in bold font. Their defi-
nitions can be found in the Glossary. Within descriptions of HTML
document features and JavaScript code, user-supplied text is denoted by
{italicized text in braces (curly brackets)}. In the code examples, HTML
tags are printed in bold font.
 The renderings of HTML documents and other output as dis-
played in a browser window have been captured and edited on a Windows
computer by pressing the PrtScn (or Print Screen) key and copying the
resulting screen image into the freeware IrfanView image editing program
(www.irfanview.com).
 Owing to the small format of this book, line breaks in document
examples may sometimes be misleading. I have tried to make necessary
line breaks as logical as possible, but you may want to remove some
breaks when you reproduce these documents for your own use.

1.1.5 Where Should I Look for More Information about HTML
and JavaScript?

By now, it should be clear that this book is in no way intended as a refer-
ence source for either HTML or JavaScript. Any attempt to provide com-
plete coverage for either language would thoroughly confound its purpose
and is far beyond my capabilities! Therefore, you must look elsewhere for
exhaustive treatments of HTML and JavaScript. I used three sources:

Thomas Powell, HTML: The Complete Reference, Third Edition, 2001,
Osborne/McGraw-Hill, Berkeley, CA. ISBN 0-07-212951-4.

Thomas Powell and Dan Whitworth, HTML Programmer’s Reference,
Second Edition, 2001, Osborne/McGraw-Hill, Berkeley, CA. ISBN 0-07-
213232-9.

8 1. Introductory Concepts

Thomas Powell and Fritz Schneider, JavaScript: The Complete Reference,
2001, Osborne/McGraw-Hill, Berkeley, CA. ISBN 0-07-219127-9.

If you are at all serious about creating your own online applica-
tions (“serious” perhaps being defined as anything past the bare minimum
needed to survive a course based on this text), there is no substitute for
these or similar references.
 The first HTML book I ever read (and still consult from time to
time) is out of print, but it is worth looking for in libraries or remaindered
book stores (which is where I found my copy). Even though it addresses
an older (and simpler!) version of HTML, it is still an excellent resource
for the kinds of problems discussed here.

Todd Stauffer, Using HTML 3.2, Second Edition, 1996, Que Corporation,
Indianapolis, IN. ISBN 0-7897-0985-6.

1.2 Your First HTML/JavaScript Documents

A typical first goal in learning any programming language is to display a
simple message. With HTML, this is trivially simple: Just type the mes-
sage in the body of the document, as shown in Document 1.1. (Appendix 1
contains an index to all the documents in the text.)

Document 1.1 (HelloWorldHTML.htm)

<html>
<head>
<title>First HTML Document</title>
</head>
<body>
Hello, world!
</body>
</html>

Most document examples presented in this book will include a

browser’s rendering of the screen output produced by the document.
When a border appears around the output, as it does for the output from
Document 1.1, the purpose is to distinguish the output from the rest of the
text—the document does not generate that border. In the text, renderings
are always in black and white or grayscale. In some cases, as noted, color
renderings are printed on separate color plates. In other cases (such as for
Document 1.3) you will have to try the code yourself.

1.2 Your First HTML/JavaScript Documents 9

Document 1.1 is certainly not very exciting. But the point is that
an HTML document simply displays the static content you provide. As
you will learn in Chapter 2, HTML provides many facilities for changing
the appearance of this content, but not the content itself.

You can also display content with JavaScript. With JavaScript,
input and output always pass through an HTML document. Instructions
(code) you write in JavaScript are called a script. The capability to inter-
pret JavaScript instructions must be built into your browser. Document 1.2
uses JavaScript to generate a simple text message, which is displayed in
the document. There is no good reason to use JavaScript simply to display
fixed content, but this exercise will provide an introduction to JavaScript
syntax. Do not worry if the details of this and following examples seem
obscure—hopefully, future chapters will clarify all these details!

Document 1.2 (HelloWorld.htm)

<html>
<head>
 <title>Hello, world!</title>
 <script language="javascript" type="text/javascript">
 // These statements display text in a document.
 document.write("Hello, world!");
 document.write("
It's a beautiful day!");
 </script>
</head>
<body>
<!-- No content in the body of this document. -->
</body>
</html>

A browser must be instructed to interpret
certain parts of an HTML document as JavaScript code. To accomplish
this, all text appearing inside the script element will be interpreted by a
browser as one or more JavaScript statements. This means that HTML
elements cannot appear inside the script element, as then the JavaScript
interpreter would attempt (inappropriately) to interpret them as JavaScript
code. This will generate a JavaScript error. In Document 1.2, the

tag, which generates a line break, is an HTML element, but it is included
inside a quoted string of text. This is allowed, but

document.write("Hello, world!");

 document.write("It's a beautiful day!");

is not allowed.

10 1. Introductory Concepts

As noted previously, JavaScript is an object-based language. In
programming terminology, an HTML document is an object. Using
JavaScript, pre-defined methods can be used to act on a specified object.
(Objects are discussed in more detail starting in Chapter 4.) Document 1.2
accesses (“calls” or “invokes”) the write() method of the document
object to display text. A method is associated with its object by using “dot
notation,” as in document.write().

Methods such as write() often, but not always, require one or
more inputs, referred to as calling arguments. In Document 1.2, the text
strings "Hello, world!" and "
It's a beautiful day! ";
are calling arguments for the write() method. Calling arguments pro-
vide the values on which a method acts.

As we will see, most HTML elements include attributes that are
used to assign properties to the element. The script element should include
values for the language and type attributes, as shown:

<script language="javascript" type="text/javascript">

Comments within an HTML document are indicated by a very

specific sequence of symbols:

 <!-- {comments} -->

In keeping with the style adopted in this book, italicized text enclosed in
curly brackets indicates text that is entered by the user. The curly brackets
could be part of the comment, but are not needed and would normally not
be included.

Inside a script element, single-line comments begin with two
slashes, as in the fifth line of Document 1.2. Comments are a basic part of
good programming style, no matter what the language. Some authors pre-
fer not to use many comments in HTML/JavaScript because it increases
the size of the file that is sent to the client computer. However, when you
are learning the material presented in this book, there is no excuse for not
making liberal use of comments to remind yourself of what you are doing.

One use of HTML comments is to hide JavaScript code from
browsers that do not have a JavaScript interpreter, but this is much less of a
problem today than it might have been several years ago. It is also irrelevant
for now because, of course, your browser must support JavaScript in order
to be useful for this book. In any event, hiding JavaScript is accomplished
as follows:

1.2 Your First HTML/JavaScript Documents 11

<script language="javascript" type="text/javascript">
 <!-- Start hiding JavaScript code here.

{Put JavaScript statements here.}
 // Stop hiding code here. -->
</script>

Although these HTML comment tags appear to be out of place because
we have already stated that HTML elements cannot appear inside a
script element, any browser that includes a JavaScript interpreter will
be able to sort things out, basically by ignoring the comment tags.

HTML syntax is case-insensitive, which means that <html> is
equivalent to <HTML> or even <hTmL>. Some HTML document authors
favor uppercase spellings for tags because they stand out from the text
content. However, XHTML (extended HTML), the apparent successor to
HTML, requires that tags be in lowercase letters.4 Hence, I always use
lowercase letters for tag names here. Note that, despite previous warnings
that file names and commands are case-sensitive in some systems, browsers
should not be case-sensitive in their interpretation of HTML tags, regardless
of the underlying operating system.

JavaScript syntax is always case-sensitive, regardless of the com-
puter system on which it runs, like the C/C++ languages from which it is
derived. So, when you write JavaScript code, you have to be very careful
about case. For example, document is an object name recognized by
JavaScript, but Document is not. (Try this in Document 1.2 if you need
convincing.)

Note that each of the two JavaScript statements (the calls to
document.write()) is terminated with a semicolon. JavaScript inter-
prets a semicolon as “end of statement.” As a matter of syntax, a line feed
at the end of a statement will also be interpreted as marking the end of that
statement. However, it is poor programming practice to use this “implied
semicolon,” and all JavaScript statements used in this book should termi-
nate with semicolons. (Authors are not perfect!)
 You can make Document 1.2 a little fancier by using other HTML
elements and their attributes to control the appearance of the text. (Chap-
ter 2 presents much more information about elements and attributes.) In
Document 1.3, font (font description), h1 (heading), and hr (horizontal
rule) are elements, and color, size, and align are attributes. Of these,

4 Although this book adopts some XHTML style rules, the documents are written

in HTML and are not intended to be fully XHTML-compliant.

12 1. Introductory Concepts

the hr element requires only a single tag because it does not enclose any
HTML content. Single-tag elements should include a forward slash at the
end: <hr /> rather than <hr>.

Document 1.3 (HelloWorld2.htm)

<html>
<head>
<title>Hello, world!</title>
</head>
<body>
<h1 align="center">First JavaScript</h1>
<hr />
<script language="javascript" type="text/javascript">
 document.write("<font size='5'
 color='red'><center>Hello, world!");
 document.write("

 It's a beautiful day!</center>");
</script>
</body>
</html>

(Try this yourself to see the colors displayed.)

 As previously noted, there is no good reason to use JavaScript to
display this fixed content, but Document 1.3 again makes the point that
any HTML tags appearing as part of the calling argument passed to
document.write()are treated as part of the text string—the characters
enclosed in quote marks—and therefore do not violate the rule that HTML
elements cannot be used inside a script element. The HTML tags are
essentially “pasted” into the HTML document right along with the text.
Within the string

"

 It's a beautiful day!</center>"

the attribute values are enclosed in single rather than double quotes. Oth-
erwise, it would not be clear where the quoted string begins and ends.

Another difference between Document 1.2 and Document 1.3 is
that in 1.3, the script element is inside the body element. This is all

1.2 Your First HTML/JavaScript Documents 13

right, although we would normally try to keep the script element inside
the head element, thus ensuring that the JavaScript code is interpreted
before the rest of the page is loaded. This detail is of no concern in this
example, the sole purpose of which is to display some text.

As expected, this attempted modification of the script, which con-
tains HTML tags in a context where a browser expects to see only
JavaScript code, will produce an error:

<script language="javascript" type="text/javascript">
 <center> // ERROR!!
 document.write("Hello, world");

</script>

 You can include more than one script element within an HTML
document, as shown in Document 1.4a, in which there are two separate
script sections, arbitrarily divided into a section above the horizontal
rule (see the <hr /> tag) and another below the rule.

Document 1.4a (HelloWorld3.htm)

<html>
<head>
<title>Hello, world! (v.3)</title>
</head>
<body bgcolor="lightgreen" text="magenta">
<h1 align="center">First JavaScript</h1>
<script language="javascript" type="text/javascript">
 document.write("
 This document was last modified on
 "+document.lastModified+"");
</script>
<hr />
<script language="javascript" type="text/javascript">
 document.write("background = "+document.bgColor);
 document.write("
font = " + document.fgColor);
 document.write("<font size='5'
 color='red'><center>Hello,world!
");
 document.write("
 He said, "It's a beautiful day!"
 </center>");
</script>
</body>
</html>

14 1. Introductory Concepts

(See Color Example 1 for full-color output.)

Document 1.4a contains an answer to this question: How do you
display double quote marks with the document.write() method if you
cannot use double quotes inside a quoted string? One way is to use the
escape sequence ". Escape sequences always start with an amper-
sand (&) and end with a semicolon (;). There are many escape sequences
for displaying characters that are not available directly from the keyboard
or would be misinterpreted by HTML if entered directly, and they will
be discussed later as needed. A list of commonly used escape sequences
appears in Appendix 2.

JavaScript objects have properties as well as methods. Like
methods, properties are associated with objects through the use of dot
notation. One useful property of the document object is lastModified,
used in Document 1.4a. As its name suggests, this property accesses the
time and date stamp automatically stored along with a document when-
ever it is modified and saved, based on the calendar and clock on the com-
puter used to create the document. This stamp is automatically attached to
the document, without any special action required by the creator of the
document. The lastModified property is useful for documents that
contain time-sensitive information, or just to give users some idea of
whether a page displayed in a browser is current.
 Document 1.4a contains the following two statements, which ac-
cess two more document properties:

document.write("background = "+document.bgColor);
document.write("
font = " + document.fgColor);

These display a code for the background and font colors.
 Attributes such as size and color have values. These values are
supposed to be enclosed in quotes, although this is not actually required in
HTML. Quotes are required in XHTML, and we will always use them.
You can use either double or single quotes. In HTML documents, double

1.2 Your First HTML/JavaScript Documents 15

quotes are generally accepted as the standard. However, when HTML
elements with attributes are included inside quoted strings, as in

document.write("<font size='5'
 color='red'><center>Hello,world!
");
document.write("
 He said, "It's a beautiful day!"
 </center>");

then single quotes are required for the values in order to avoid conflict
with the double quotes around the string.
 A more reasonable approach to generating the output shown for
Document 1.4a is to use JavaScript only as required to access desired
document properties (and perhaps display some related text) and to use
HTML for everything else. Document 1.4b is a modified version of
Document 1.4a that does the content formatting with HTML tags inside
the document. There is no need to show the output, as it is identical to that
for Document 1.4a.

Document 1.4b (HelloWorld3HTML.htm)

<html>
<head>
<title>Hello, world! (with HTML)</title>
<script language="javascript" type="text/javascript">
 document.write(
 " This document was last modified on
"+document.lastModified+"");
</script>
</head>
<body bgcolor="lightgreen" text="magenta">
<h1 align="center">First JavaScript</h1>
<hr />
<script language="javascript" type="text/javascript">
 document.write("background = "+document.bgColor);
 document.write("
font = " + document.fgColor);
</script>
<center>Hello,world!

He said, "It's a beautiful day! "</center>"
</body>
</html>

In this case, there is actually a justification for putting one of the

script sections inside the body of the document: This script is used to

16 1. Introductory Concepts

display codes for the background and text colors, which are known only
after they are set inside the body element.

A summary of some properties and methods of the document
object is given in Table 1.1. The bgColor and fgColor properties are
not used to set the colors, but merely to tell you what they are. (You are
right to conclude that this is normally not terribly important information.)
Note that bgcolor is an HTML attribute used to set the background color
of the body element and is supposed to be (but does not have to be in
case-insensitive HTML) spelled in lowercase letters. bgColor is a prop-
erty of the JavaScript document object and must be spelled with a capital
C, as shown.

Table 1.1. Some properties and methods of the document object

Property or Method Action
Property
document.bgColor

Returns current value of back-
ground (page) color. Returns
"#ffffff" for
 <body bgcolor="white">

Property
document.fgColor

Returns current value of font color.
Returns "#0000ff" for
<body text="blue">

Property
document.lastModified

Returns text string containing date
the document was last modified.

Method
document.write("Hello! ")

Prints quoted string on document
page.

Method
document.writeln("Hello!")

Prints quoted string on document
page, followed by line feed.*

*As HTML ignores line feeds, the writeln() method will not normally produce
any noticeable difference in output. If the text to be displayed is within a pre
element, then the line feed will be displayed.

1.3 Accessing HTML Documents on the Web

Documents intended for access by others on the World Wide Web are
posted on a Web server, a computer system connected to the Internet.
Colleges and universities typically provide Web servers for use by their
faculty and students. Individuals not affiliated with an institution may
have to purchase space on a commercial Web server. In any case, access

1.3 Accessing HTML Documents on the Web 17

to Web pages is universal in the sense that any computer with an Internet
connection and a browser can be connected to a Web site through its
Internet address—its Uniform Resource Locator (URL).

Not all HTML documents have to be publicly accessible on the
Web. They can be protected with logon identifications and passwords, or
they can be available only locally through an intranet (as opposed to the
Internet). The Internet is a global network of interconnected computers,
whereas an intranet is a local network that may or may not also provide
connections to the Internet. For example, a company can provide an
intranet with no external access, exclusively for internal use by its own
employees.

Internet addresses look something like this:

http://www.myUniversity.edu/~myName/index.htm

They start with the http:// prefix, to indicate that the Hypertext Trans-
fer Protocol (HTTP) is being used. There are some variations, such as
https, which indicates that the address that follows resides on a secure
server, as required for financial transactions, for example. The rest of the
address identifies a Web server and then a folder or directory on a com-
puter system at myUniversity for someone named myName. The .edu
extension identifies this site as belonging to an educational institution, in
the same way as .gov and .com identify government and commercial
sites. The ~ symbol is often used to specify a folder (or directory) set
aside for Web pages, but there are many ways to specify the location of
Web pages. Sometimes names in URLs are case-sensitive, depending on
the operating system installed on the computer system containing the Web
page. Thus, if you type myname instead of myName in the above URL, it
may not work. Users of Windows computers should note the use of for-
ward slashes rather than backslashes to separate folders (or directories).

The index.htm (or index.html) file contains the home page
for this individual. By default, the index.htm file is automatically
opened, if it exists, whenever this URL is accessed. That is, the address

http://www.myUniversity.edu/~myName/

is equivalent to the address that includes the index.htm file name.
 As they were being developed, the documents discussed in this
book resided neither on the Internet nor on an intranet. Rather, they were
simply stored in a folder on a computer and accessed through the file
menu in a browser, just as you would access a file with any other software

18 1. Introductory Concepts

application. For example, the “address” on my computer for the first
document in this text is

file:///C:/Documents%20and%20Settings/David/Desktop/
JavaScript/JavaScriptCode/HelloWorld.htm

(Spaces are represented by the hexadecimal code %20 and, yes, there are
three forward slashes following file:)

You should create a separate folder on your computer as you
work through the examples in this book and write your own documents.
You could make documents you create yourself accessible on the Internet
or an intranet by placing them on a Web server. For example, if you are
taking a course based on this book, your instructor may require you to
post homework assignments on a Web site.

1.4 Another Example

The following example shows how to include an image in an HTML
document.

Document 1.5 (house.htm)

<html>
<head>
<title>Our New House</title>
<script language="javascript" type="text/javascript">
document.write("This document was
 last modified on "+document.lastModified+"");
</script>
</head>
<body>
<h1>Our New House</h1>
<p>
Here's the status of our new house. (We know you're
fascinated!)</p>
<!—Link to your image goes here. -->

</body>
</html>

1.4 Another Example 19

There are several image formats that are widely used in HTML
documents, including image bitmaps (.bmp), Graphics Interchange For-
mat (.gif), and Joint Photographic Experts Group (.jpg).

The original
.jpg file has been com-
pressed to reduce its size,
and this compression can
result in jagged edges
where edges should be
straight. This effect is
visible in the house
framing and roof lines.

Within the img
element, height and
width attributes allow
you to control the size
of the image display (in
pixels). This is not equi-
valent to actually “resiz-
ing” the image, as is
possible with image-
editing software.5 Hence,
it is important to use images that initially are sized appropriately. If a very
large high-resolution image file is displayed as a very small image, using
the height and width attributes, the original large file must still be
transmitted to the client computer. In view of the fact that high-resolution
images can produce very large files (>10 Mb), it is important to consider
appropriate resolution for images included in HTML documents, even in
an age of high-speed broadband Internet connections. (The size of the
compressed grayscale house.jpg image printed here is about 93 Kb.)

Document 1.5 could be made into a default home page simply by
changing its name to index.htm.

Here is a final admonition that I hope does not sound too preachy:
Intellectual honesty and fairness in the use of other people’s material is
important, no matter what the setting. The image displayed in Document
1.5 was taken by me, of my own house under construction. In other

5 I have used IrfanView (www.irfanview.com) for all the image processing in

this book. This very popular freeware program does an excellent job of resizing
images while maintaining detail from the original image. Of course, I cannot
guarantee its availability to my readers.

(See Color Example 2 for full-color output.)

20 1. Introductory Concepts

words, I “own” this image. Whenever you post images (or other mate-
rial, for that matter) online, please be careful to respect intellectual
property rights. Your default approach should be that online materials
are copyrighted and cannot be used freely without permission. If you are
in doubt about whether you have permission to use an image or other
material, don’t!

2. HTML Document Basics

Chapter 2 describes the characteristics of an HTML document, including
some of the basic HTML elements and their attributes. The list of
attributes is not necessarily complete, but rather includes a subset that is
used in this book. The chapter includes a description of how to set colors
in documents and a brief introduction to cascading style sheets.

2.1 Documents, Elements, Attributes, and Values

2.1.1 Essential Elements

As noted in Chapter 1, JavaScript needs an HTML document to serve as a
user interface. Or, stated the other way around, HTML documents need a
scripting language such as JavaScript to manage interactions with users. A
basic HTML document consists of four sections defined by four sets of
elements, arranged as follows:

<html>

<head>
<title> … </title>

 …
</head>
<body>

 …
</body>

</html>

Each of these elements has a start tag and an end tag. Tags are
always enclosed in angle brackets <…> and the end tag always includes a
forward slash before the element name. The body element supports
attributes that can be used to control the overall appearance of an HTML
document. Documents, elements, attributes, and values are organized in a
specific hierarchy:

HTML document → elements → attributes → values

Elements exist within a document. Elements can have attributes and
attributes (usually) have values. Note that some elements are nested

22 2. HTML Document Basics

inside others. For example, all the other elements are nested inside the
html element, and the title element is nested inside the head element.

Following is a brief description of the four elements that will be
part of every HTML document. Attributes, if any, are listed for each
element. Note, however, that not all the possible attributes are listed.
Thus, a listing of “none” may mean that there are attributes for this
element, but that they are not used in this book. Consult an HTML
reference manual for a complete list of attributes. As several elements can
share common attributes, attributes and their values are listed separately,
following the list of elements.

2.1.2 Some Other Important Elements

The four basic elements discussed above constitute no more than a blank
template for an HTML document. Other elements are needed to display
and control the appearance of content within the document. Following
are some important elements that you will use over and over again in
your HTML documents, listed in alphabetical order. The list of attributes

<html> … </html>

 The html element surrounds the entire document. All other
HTML elements are nested within this element.
Attributes: none

<head> … </head>

 The head element contains information about the document. The
head element must contain a title element and under XHTML rules,
the title must be the first element after head. From our perspective, the
other important element to be included in head is script, which will
contain JavaScript code.
Attributes: none

<title> … </title>

 The title element contains the text that will be displayed in the
browser’s title bar. Every HTML document should have a title, included
as the first element inside the head element.
Attributes: none

<body> … </body>

 The body element contains the HTML document content, along
with whatever elements are required to format, access, and manipulate the
content.
Attributes: background, bgcolor, text

2.1 Documents, Elements, Attributes, and Values 23

is not necessarily complete, but includes only those that are used in
this book.

<a> …

 The a (for “anchor”) element provides links to an external
resource or to an internal link within a document.
Attributes: href, name

 …

 The b element forces the included text to be displayed in a bold
font. This is a “physical element” in the sense that it is associated
specifically with displaying text in a bold font, even though the actual
appearance may depend on the browser and computer used. In contrast,
see the strong element below.
Attributes: none

 or

 The br element inserts a break (line feed) in the text. Multiple
breaks can be used to insert multiple blank lines between sections of text.
The break element has no end tag because it encloses no content. Under
XHTML rules, a closing slash (after a space) must be included:
.
The slash is rarely seen in older HTML documents, so its use will be
encouraged but not required.
Attributes: none

<center> … </center>

 The center element causes displayed text to be centered on the
computer screen.
Attributes: none

 …
 This is a “logical element” that will typically cause text to be
displayed in italics, but it can be redefined to produce different results in
different environments. For most purposes, em and i are interchangeable.
See the i element below.
Attributes: none

 …

 The font element controls the appearance of text. The two most
commonly used attributes control the size and color of the text.
Attributes: size, color, face

24 2. HTML Document Basics

<hr /> or <hr>
 The horizontal rule element draws a shaded horizontal line across
the screen. It does not have an end tag. A closing slash (after a space) is
required in XHTML. A noshade attribute displays the rule as a solid
color, rather than shaded.
Attributes: align, color, noshade, size, width

<hn> … </hn>
 Up to six levels of headings (for n ranging from 1 to 6) can be
defined, with decreasing font sizes as n increases from 1 to 6.
Attributes: align

<i> … </i>

 i is a “physical element” that forces the included text to be
displayed in italics. The actual appearance may depend on the browser
and computer used. Compare with the em element above.
Attributes: none

 The img element provides a link to an image to be displayed
within a document. The image is stored in a separate file, perhaps even at
another Web address, the location of which is provided by the src
attribute.
Attributes: align, border, height, src, vspace, width

<p> … </p>

 The p element marks the beginning and end of a paragraph of text
content. Note that HTML does not automatically indent paragraphs.
Rather, it separates paragraphs with an empty line, with all the text
aligned left. It is common to see only the start tag used in HTML
documents, without the corresponding end tag. However, the use of the
end tag is enforced by XHTML, and this is the style that should be
followed.
Attributes: none

<pre> … </pre>
 The default behavior of HTML is to collapse multiple spaces, line
feeds, and tabs to a single space. This destroys some of the text formatting
that you may wish to preserve in a document, such as tabs at the
beginning of paragraphs.

The pre element forces HTML to recognize multiple spaces,
line feeds, and tabs embedded in text. The default action for pre is to
use a monospaced font such as Courier. This may not always be
appropriate, but as line feeds and other text placement conventions are

2.1 Documents, Elements, Attributes, and Values 25

Note that most of the elements described here require both start

and end tags. The general rule is that any element that encloses content
requires both a start and an end tag. The br and hr elements do not
enclose content, so no end tag is needed. However, br and hr should
include a closing slash in their tags in order to be XHTML-compatible—
for example,
 rather than
, with a space before the slash.

Description of attributes:
These descriptions may not include all possible values. For a complete
listing, consult an HTML reference manual.

recognized, pre is very useful for embedding programming code examples
within an HTML document.
Attributes: none

 …

 strong is a “logical element” that typically causes text to be
displayed in a bold font, but it can be redefined to produce different
results in different environments. For most purposes, b and strong are
interchangeable. Compare this with the b tag above.
Attributes: none

align = "…"

Values: "left", "right", or "center"
Aligns text horizontally.

background = "…"
Value: the URL of a gif- or jpeg-format graphics file
 Setting the background attribute displays the specified image as the
background behind a displayed HTML document page. Depending on the
image size (in pixels), background images may automatically be “tiled,”
resulting in a repeating image that can be visually distracting. It is not
necessary to use background images, and they should be used with care.

bgcolor = "…"
Values: Background colors can be set either by name or by specifying the
intensity of the red, green, and blue colors. This topic is addressed in
Section 2.5.

border="…"
Value: The width, in pixels, of a border surrounding an image

color = "…"
Values: Text colors can be set either by name or by directly specifying the
intensity of the red, green, and blue colors. See Section 2.5.

26 2. HTML Document Basics

face = "…"

Values: Font typefaces can be set either generically, with cursive,
monospace, sans-serif, or serif, or with specific font names sup-
ported by the user’s computer.

The generic names should always produce something that looks
reasonable on any computer, but specific font names that are not available
on the user’s computer may produce unexpected results.

height = "…"
Value: The height, in pixels, of an image.

href = "…"
Value: The URL of an external or internal Web resource or the name of
an internal document reference.

hspace = "…"
Value: The horizontal space, in pixels, between an image and the
surrounding text.

name = "…"
Value: The name assigned to an internal document reference through an
“a” element.

size = "…"
Values: An unsigned integer from 1 to 7 or a signed number from +1 to
+6 or –1 to –6.

An unsigned integer is an absolute font size, which may be
system-dependent. The default value is 3. A signed integer is a font size
relative to the current font size, larger for positive values and smaller for
negative values.

For the hr element, size is the vertical height of the horizontal
rule, in pixels.

src = "…"
Value: The URL of a graphics file. For local use, images and their HTML
document are usually stored in the same folder.

text = "…"

Values: The text attribute, used with the body element, selects the color
of text in a document, which prevails unless overridden by a font
attribute.

2.1 Documents, Elements, Attributes, and Values 27

Document 2.1 illustrates how some of these elements are used.

Document 2.1 (tagExamples.htm)

<html>
<head>
<title>Tag Examples</title>
</head>
<body bgcolor="white">
<h1>Here is a Level 1 Heading</h1>
<h2>Here is a Level 2 Heading</h2>
<hr />
<pre>
 Here is some preformatted
text that has
 been created with the pre element. Note that it
retains the
paragraph tab
included
in the <i>original document</i>. Also, it does
not "collapse" line feeds
and
 white spaces. Often, it is easier to
use preformatted text than it
is to use markup to get the same effect. Note, however, that
the default
rendering of
preformatted text is to use a monospaced Courier font. This
is often a good choice for
displaying code in an HTML document, but perhaps not a good
choice for other kinds of text content.
</pre><p><center>
Here, a small
graphic (the check box) has been inserted into
the document using the "img" element. This text is outside
the preformatted
region, so the default font is different. If you look at the
original document, you can also see that
white spaces and line feeds are now collapsed.
</p><p>
Note too, that the text is now centered. The way the text is
displayed will

vspace = "…"
Value: The vertical space, in pixels, between an image and the
surrounding text.

width = "…"
Values: The width of an image or horizontal rule, in pixels or as a percent
of total screen width. For example, width="80" is interpreted as a width
of 80 pixels, but width="80%" is a width equal to 80 percent of the total
screen width.

28 2. HTML Document Basics

depend on how you
have the display window set in your browser. It may change
when you go from full screen to a window, for example.
</center></p><p>
Centering is now turned off. The default text alignment is
to the left of your screen.
You can change the size and color of text <font size="7"
color="blue"> by using the
element.
</body>
</html>

Below is one rendering of Document 2.1. The small checkbox
graphic has been created with the Windows Paint program. The actual text
displayed in your browser is larger than this, but the output image has
been reduced in size (perhaps to the extent of not being readable) to fit on
the page. Moreover, because of the line feeds imposed on the text of this
code example by the page width, the output looks a little different from
what you might expect. So, you have to try this document on your own
browser.

Document 2.1 answers an interesting question: How can HTML

display characters that already have a special meaning in the HTML
language or that do not appear on the keyboard? The angle brackets
(< and >) are two such characters because they are part of HTML tags.
They can be displayed with the < and > escape sequences (for the
“less than” and “greater than” symbols from mathematics). There are
many standardized escape sequences for special symbols. A list of some
of them is given in Appendix 2.

2.2 HTML Syntax and Style 29

2.2 HTML Syntax and Style

A general characteristic of programming languages is that they have very
strict syntax rules. HTML is different in that regard, as it is not highly
standardized. The positive spin on this situation is to call HTML an “open
standard,” which means that self-described bearers of the standard can
treat the language as they see fit, subject only to usefulness and market
acceptance. HTML has an established syntax, but it is very forgiving
about how that syntax is used. For example, when a browser encounters
HTML code that it does not understand, typically it just ignores it rather
than crashing, as a “real” program would do.

Fortunately, market forces—the desire to have as many people as
possible accept your browser’s interpretation of HTML documents—have
forced uniformity on a large subset of HTML. This book adopts some
HTML style conventions and syntax that are as platform-independent as
possible. Although these “rules” might seem troublesome if you are not
used to writing stylistically consistent HTML documents, they should
actually help beginners by providing a more stable and predictable
working environment. The only things worse than having syntax and style
rules are having no rules or rules that nobody follows.

Some of the style rules used in this book are listed below. Under
the circumstances of HTML, they are more accurately referred to as
“guidelines.” Some of them will make more sense later on, as you create
more complicated documents.

1. Spell the names of HTML elements in lowercase letters.

2. Use the pre element to enforce text layout whenever it is reasonable to
use a monospaced font (such as Courier).

Unlike JavaScript and some other languages, the HTML language
is not sensitive to case. Thus, <html>, <HTML>, and <hTmL> are
equivalent. However, the XHTML standard requires element names to be
spelled with lowercase letters. In the earlier days of HTML, many
programmers adopted the style of using uppercase letters for element
names because they stood out in a document. You will often still see this
style in Web documents. Nonetheless, we will consistently use lowercase
letters for element names.

HTML always collapses multiple “white space” characters—
spaces, tabs, and line breaks—into a single space when text is displayed.
The easiest way to retain white space characters is to use the pre element.
Other approaches may be needed if proportional fonts are required.
Furthermore, tabbed text may still not line up, as different browsers have
different default settings for tabs.

30 2. HTML Document Basics

3. Nest elements properly.

Recall the following markup in Document 2.1:

Here is some preformatted
text

If you write this as

Here is some

…{text}

it is easy to see that the em element is properly nested inside the strong
element. If this is changed to

 …{text}

your browser probably will not complain, but it is not good programming
style.

4. Enclose the values of attributes in single or double quotes.

2.3 Using the script Element

The script element usually (but not always) appears inside the head
element, after the title element. Following is a description of script
along with its essential attributes:

<script language="javascript" type="text/javascript">
 …

Improperly nested elements can cause interpretation problems for
your browser. Even when browsers do not complain about improperly
nested elements, HTML is easier to learn, read, and edit when these
restrictions are enforced.

In Document 2.1, bgcolor="white" is an attribute of <body>.
Browsers generally will accept bgcolor=white, but the XHTML
standard enforces the use of quoted attribute values. This book is
consistent about using double quotes unless attribute values appear inside
a string that is surrounded with double quotes (for example, an attribute
value embedded in a parameter in the document.write() method).
Then attribute values will be single-quoted.

2.4 Creating and Organizing a Web Site 31

</script>
Attributes: language, type, src

The values usually assigned to the language and type attributes are
language="javascript" and type="text/javascript". The
values shown in the description are default values, so for documents using
JavaScript, inclusion of these attributes is usually not actually required.

The src attribute has a value corresponding to the name of a
file containing JavaScript script, usually (but not necessarily) with
a .js extension. This attribute is used in a later chapter.

2.4 Creating and Organizing a Web Site

Obviously this is a major topic, a thorough investigation of which would
go far beyond the reach of this text. There is an entire industry devoted to
hosting and creating Web sites, including helping a user obtain a domain
name, providing storage space, developing content, and tracking access.
For the purposes of a course based on this text, the goal is extremely
simple: create a Web site sufficient to display the results of work done
during the course.

The first step toward creating a Web site is establishing its
location. In an academic environment, a college, university, or department
computer may provide space for web pages. A URL might look
something like this:

http://www.myuniversity.edu/~username

where the “~” symbol indicates a directory where Web pages are stored.
Together with a user name, this URL directs a browser to the home Web
directory for that user. As noted in Chapter 1, as HTML documents are
not automatically Internet-accessible, your Web pages for this book may
be accessible only locally on your own computer.

In this home directory there should be at least one file called
index.htm (or index.html). UNIX systems favor the .html
extension, but Windows users should use the three-character .htm
extension to remain compatible with Windows file extension conventions.
This is the file that will open automatically in response to entering the
above URL. That is, the index.htm file is the “home page” for the Web
site. This home page file could be named something else, but then its
name would have to be added to the URL:

http://www.myuniversity.edu/~username/HomePage.htm

32 2. HTML Document Basics

An index.htm file can contain both its own content as well as
links to other content (hyperlinks), including other pages on the user’s
Web site and to external URLs. Following are four important kinds of
links:

1. Links to other sites on the World Wide Web.

The following is the basic format for globally linking Web pages:

syntax:

{description of linked Web page}

The URL may refer to a completely different Web site, or it may be a
link to documents in the current folder or a subfolder within that
folder.

2. Links to images.

syntax: <img src="{URL plus image name}" align="…"
 height="…" width="…" />

The image may exist locally or it may be at a different Web site. The
align, height, and width attributes, which can be used to position and
size an image, are optional. However, for high-resolution images, it is
almost always necessary to specify the height and width as a percentage
of the full page or as a number of pixels in order to reduce the image to a
manageable size in the context of the rest of the page. Resizing the image,
if possible, will solve this problem.

You can also make a “clickable image” to direct the user to
another link:

Syntax:

<img src="{URL plus image name}" align="…"
height="…" width="…" />

3. Links to e-mail addresses.

syntax:

{description of recipient}

The img element is used to load images for display or to use as a
page background:

An e-mail link is an essential feature that allows users to
communicate with the author of a Web page.

2.4 Creating and Organizing a Web Site 33

Often, but not necessarily, the {description of recipient} is also the e-mail
address. The actual sending of an e-mail is handled by the default mailer
on the sender’s computer.

4. Internal links within a document.

Syntax:
 {description of target position}
 …
 {target text}

The “#” symbol is required when specifying the value of the href
attribute, in order to differentiate this internal link from a link to another
(external) document.

The careless use and specification of hyperlinks can make Web
sites very difficult to maintain and modify. As noted above, every Web site
should have a “home” directory containing an index.htm file. In order to
make a site easy to transport from one computer to another, all other
content should be contained either in the home directory or in folders
created within that directory. References to folders that are not related in
this way should be avoided, as they will typically have to be renamed if the
site is moved to a different computer. Although it is allowed as a matter of
syntax to give a complete (absolute) URL for a local Web page, this should
be avoided in favor of a reference relative to the current folder.

This matter is important enough to warrant a complete example.
Document 2.2a–c shows a simple Web site with a home folder on a
Windows desktop called home and two subfolders within the home folder
named homework and personal. Each subfolder contains a single
HTML document, homework.htm in homework and resume.htm in
personal.

Document 2.2a (index.htm)
 <html>
<head>
<title>My Page</title>
</head>
<body>
<!-- These absolute links are a bad idea! -->
Here are links to
<a href="C:/Documents and Settings/David/desktop/
JavaScript/Book/homework.htm">homework and
<a href="C:/Documents and Settings/

Within a large document, it is often convenient to be able to move
from place to place within the document using internal links.

34 2. HTML Document Basics

 David/desktop/JavaScript/Book/resume.htm">
personal documents.
</body>
</html>

Document 2.2b (resume.htm)

<html>
<head>
<title>Resumé</title>
</head>
<body>
Here is my resumé.
</body>
</html>

Document 2.2c (homework.htm)

<html><head>
<title>Homework</title>
</head>
<body>
Here are my homework problems.
</body>
</html>

Note that Document 2.2a uses forward slashes to separate the
directories and file names. This is consistent with UNIX syntax, but
Windows/DOS systems use backward slashes. Forward slashes are the
HTML standard, and they should always be used even though backward
slashes may also work. Another point of interest is that UNIX directory
paths and filenames are case-sensitive, but Windows/DOS paths and
filenames are not. This could cause problems if you develop a Web page
on a Windows/DOS computer and then move it to a UNIX-based system.
As a matter of style, you should be consistent about case in directory and
file names even when it appears not to matter.

Absolute references to a folder on a particular Windows
computer desktop are a bad idea because such references will have to be
changed if the index.htm file is moved to a different place on the same
computer, or to a different computer—for example, to a UNIX
university department computer with a different directory/folder
structure. Document 2.2d shows the preferred solution. Now the paths to
homework.htm and resume.htm are given relative to the home folder,
wherever the index2.htm file resides. (Remember that this file,
no longer named index.htm, will not be recognized as a default
home page.) This document assumes that folders homework and
personal exist in the home folder. The relative URL should work without
modification when the Web site is moved to a different computer. If the Web

2.5 Selecting and Using Colors 35

site is moved, only a single reference, the one to the index2.htm file,
has to be changed.

Document 2.2d (index2.htm, a new version of index.htm)

<html>
<head>
<title>My Page</title>
</head>
<body>
<!-- Use these relative links instead! -->
Here are links to
homework
and personal documents.
</body>
</html>

When designing a Web site proper attention to the use of relative
URLs from the very beginning will save a lot of time in the future!

2.5 Selecting and Using Colors

As previously noted, several attri-
butes, such as bgcolor, are used
to set colors of text or back-
grounds. Colors may be identified
by name or by a six-character hexa-
decimal numeric code that speci-
fies the strength of the signal
emitted from the red, green, and
blue electron “guns” that excite the
corresponding phosphors on a
cathode ray tube color monitor
screen. This convention is retained
even when other display techno-
logies are used. The hex code is
in the format #RRGGBB, where
each color value can range from
00 (turned off) to FF (maximum
intensity).

There are many color
names in use on the Web, but only
16 are standardized, representing
the 16 colors recognized by the
Windows VGA color palette.

 Table 2.1. A list of 16 standard
HTML color names and hex hodes

Color
Name

Hexadecimal
Code

aqua #00FFFF
black #000000
blue #0000FF
fuchsia #FF00FF
gray #808080
green #008000
lime #00FF00
maroon #800000
navy #000080
olive #808000
purple #800080
red #FF0000
silver #C0C0C0
teal #008080
white #FFFFFF
yellow #FFFF00

36 2. HTML Document Basics

These colors are listed in Table 2.1. The problem with additional color
names is that there is no enforced standard for how browsers should
interpret them. Two examples: magenta probably should be, but does not
have to be, the same as fuchsia; ivory is a nonstandard color that should
be rendered as a yellowish off-white. The colors in Table 2.1 are
standardized in the sense that all browsers should associate these 16
names with the same hexadecimal code. Of course, variations can still
occur because monitors themselves respond somewhat differently to the
same name or hex code; blue on my computer monitor may look
somewhat different than blue on your monitor.

Note that the standardized colors use a limited range of hex codes.
With the exception of silver (nothing more than a lighter gray), the RGB
gun colors are off (00), on (FF), or halfway on (80).

What should you do about choosing colors? Favor standardized
colors, and if you wish to make an exception, try it in as many browser
environments as possible. Be careful to choose background and text
colors so that the text will always be visible against its background. The
safest approach for setting colors in the body element is to specify both
background and text colors. This will ensure that default colors set in a
user’s browser will not result in unreadable text.

If you are not sure whether a color name is supported and what it
looks like on your monitor, you have nothing to lose by trying it. If you
set bgcolor="lightblue", you will either like the result or not. If a
color name is not recognized by your browser, the result will be
unpredictable, but not catastrophic. There are (of course) numerous Web
sites that can help you work with colors, including getting the desired
result with hex codes.

2.6 Using Cascading Style Sheets

As you create more Web pages, you may wish to impose a consistent look
for all of your pages or for groups of related pages. It is tedious to insert
elements for all the characteristics you may wish to replicate—font size,
font color, background color, and so forth. Style sheets make it much
easier to replicate layout information in multiple documents..A complete
discussion of style sheets is far beyond the scope of this book, as there are
many different kinds of style sheets, many ways to make use of them, and
many browser-specific nuances. This book uses cascading style sheets
(CSSs), which are widely accepted as a default kind of style sheet, but
presents only a small subset of all the possibilities! By way of introduc-
tion, Document 2.3 illustrates the use of a style element to establish the
default appearance of the body of an HTML document.

2.6 Using Cascading Style Sheets 37

Document 2.3 (style1.htm)

<html>
<head>
<title>Style Sheets</title>
<style title="David's default" type="text/css">
 body.bright {background: red; font: 16pt serif;
 color: blue; font-style: italic; font-weight: bold}
</style>
</head>
<body class="bright">
Here is the body.
</body>
</html>

The style element has an optional title attribute and a type
attribute set equal to "text/css", where the css stands for cascading
style sheet. This style element gives the body style a name (bright)
and sets the document background color to red and the default font to
bold, 16-point serif, blue, and italicized. Note the use of the dot notation
to assign a class name to the style rule(s) established for the element, and
the use of the name later (class="bright") with the class attribute in
the <body> tag. Each style rule is terminated with a semicolon. So, for
example, the line

{font: 16pt serif; color: blue;}

gives one rule for setting font properties and a second for setting text
color. When multiple properties are set for the same element, they are
enclosed in curly brackets.

For this simple example, with styles applying only to a single
body element, the class name is optional. In general, several different
style rules can apply to the same HTML element. For example, several
different style rules could be established for paragraphs (<p> … </p>),
each of which would have its own class name.

In summary, style specifications follow a hierarchy:

style element → other HTML elements[.class name] →

 properties → value(s)

where the class name (without the brackets) is optional.

How did CSSs get that name? The answer is that the properties
set for an element cascade down, or are “inherited,” by other elements
contained within it unless those elements are assigned their own style
properties. So, for example, properties set for the body element are
inherited by the p and h1 elements because these are contained within the

38 2. HTML Document Basics

body element. Properties set for the head element are inherited by
content appearing in the title element.

CSSs can be used to modify the appearance of any HTML
element that encloses content. Following are some properties that can be
specified in style sheets.

Background properties

background-color

When used in a body element, background-color sets the
background color for an entire document. It can also be used to highlight a
paragraph, for example, when used with a p element.

background-image

This property is used with a URL to select an image file (gif or
jpeg) that will appear as a background. Typically, this is used with a body
element, but it can also be used with other elements, such as p. For other
background properties that can be used to control the appearance of a
background image, consult an HTML reference text.

background
 This allows you to set all background properties in a single rule.

Color property

The color property sets the default color for text, using the
descriptions discussed in Section 2.5.

Font properties

font-family

Font support is not
completely standardized.
However, browsers that
support style sheets should
support at least the generic
font families listed in
Table 2.2.

Example: font-family: Arial, sans-serif;

font-size

This property allows you to set the actual or relative size of text.
You can use relative values, such as large, small, larger, smaller
(relative to a default size); a percentage, such as 200% of the default size;

Table 2.2. Generic font families

Generic Name Example
cursive Zapf-Chancery
monospace Courier
sans-serif Arial
serif Times

2.6 Using Cascading Style Sheets 39

or an actual point size such as 16pt. Some sources advise against using
absolute point sizes because a point size that is perfectly readable on one
system might be uncomfortably small on another. For our purposes,
specifying the point size is probably the easiest choice.

Example: font-size: 24pt;

font-style

This property allows you to specify normal, italic, or
oblique fonts.

Example: font-style: italic;

font-weight

This property allows you to select the font weight. You can use
values in the range from 100 (extra light) to 900 (extra bold), or words:
extra-light, light, demi-light, medium, demi-bold, bold, and
extra-bold. Some choices may not have a noticeable effect on some
fonts in some browsers.

Example: font-weight: 900;

font

This property allows you to set all font properties within one style
rule.

Example: font: italic 18pt Helvetica, sans-serif;

How will your browser interpret a generic font name? For the
generic name serif, it will pick the primary serif font that it supports—
probably Times or Times Roman. Browsers will probably also recognize
specific font names such as Times or Helvetica (a sans-serif font). If you
specify a font name not supported by your browser, it will simply ignore
your choice and use its default font for text. It is possible to list several
fonts, in which case your browser will select the first one it supports. For
example, consider this rule:

font-family: Arial, Helvetica, sans-serif;

Your browser will use an Arial font if it supports that, Helvetica if it does
not support Arial but does support Helvetica, or, finally, whatever sans-
serif font it does support. By giving your browser choices, with the
generic name as the last choice, you can be reasonably sure that text will
be displayed with a sans-serif font.

40 2. HTML Document Basics

Text properties
Of the many text properties, just three that may be useful are shown
below.

text-align

This is used in block elements such as p. It is similar in effect to
the HTML align attribute. The choices are left, right, center, and
justify. With large font sizes, justify may produce odd-looking
results.

Example: text-align: center;

text-indent

Recall that paragraphs created with the p element do not indent
the first word in the paragraph. (HTML inserts a blank line, but left-
justifies the text.) This property allows you to set indentation using
typesetting notation or actual measurements. I suggest the use of actual
English or metric measurements—inches (in), millimeters (mm), or
centimeters (cm).

Example: text-indent: 0.5in;

white-space

The value of this property is that you can prevent spaces from
being ignored. (Remember that the default HTML behavior is to collapse
multiple spaces and other nonprintable characters into a single blank space.)
You can use the HTML pre element by itself, instead, but this causes the
text to be displayed in a monospaced font such as Courier. (At the time this
book was written, not all browsers supported this property.) The example
given here retains white space regardless of the typeface being used.

Example: white-space: pre;

Styles are not restricted just to the body element. For example,
paragraphs (<p> … </p>) and headings (<hn > … </hn>) can also have
styles associated with them. You can also set styles in selected portions of
text using the span element, and in blocks of text using the div element.

<div> … </div>
Attributes: align, style

 …
Attributes: align, style
Values for align: "left" (default), "right", "center"

2.6 Using Cascading Style Sheets 41

You can create style sheets as separate files and then utilize them
whenever you wish to use a particular style on a Web page. This makes it
easy to impose a uniform appearance on multiple Web pages. Documents
2.4a and 2.4b show a simple example.

Document 2.4a (body.css)

body {background:silver; color:white; font:24pt Times}
h1 {color:red; font:18pt Impact;}
h2 {color:blue; font:16pt Courier;}

Document 2.4b (style2.htm)

<html>
<head>
<title>Style Sheet Example</title>
<link href="body.css" rel="stylesheet"
 type="text/css" />
</head>
<body>

 <h1>Heading 1</h1>
 <h2>Heading 2</h2>
 Here is some text.
</body>
</html>

This example shows
how to create a file, body.css, containing style elements that can be
applied to any document by using the link element, as in Document
2.4b. The .css extension is standard, but not required. (You could use
.txt, for example.) Although this example is very simple, the concept is
powerful because it makes it easy to create a standard style for all your
documents that can be invoked with the link element. The Impact font
chosen for h1 headings will not be supported by all browsers, in which
case the default font will be used in its place.

The attributes of link include href, which contains the URL of
the style sheet file, the rel="stylesheet" (relationship) attribute,
which describes how to use the file (as a style sheet), and the type, which
should be "text/css", just as it would be defined if you created a
style element directly in the head element. In this example, body.css
is in the same folder as style2.htm. If you keep all your style sheets in a
separate folder, you will need a more explicit URL.

It is worth re-emphasizing that this discussion of style sheets has
barely scratched the surface of the subject. Style sheets can make your
Web pages more visually appealing and can greatly simplify your work

(See Color Example 3 for full-color output.)

42 2. HTML Document Basics

on large Web projects. Some Web developers advocate replacing all
individual formatting elements, such as font and its attributes, with style
sheet specifications. In newer versions of HTML, and in XHTML, the use
of individual formatting elements is “deprecated,” but there is little
likelihood that support for them will disappear from browsers in the
foreseeable future. A course based on this book does not require the use of
cascading style sheets unless it is asked for specifically.

2.7 Another Example

Documents 2.5a and 2.5b show how to use a style sheet file to specify
different background and text colors for different sections of text.

Document 2.5a (rwb.css)

p.red {background:red;color:blue;font:20pt Times}
div.white {background:white;color:red;font:20pt Times}
span.blue {background:blue;color:white;font:20pt Times}

DOCUMENT 2.5b (rwb.htm)

<html>
<head>
<title>A Red, White, and Blue Document</title>
<link href="rwb.css" rel="stylesheet" type="text/css" />
</head>
<body>

<p class="red">
This text should be blue on a red background.
</p><p><div class="white" style="font-style: italic;">
This text should be red on a white background.
</div></p>
<p>This text should be white on a blue
background.
</p>
</body>
</html>

(See Color Example 4 for full-color output.)

The stars (which are supposed to be red, silver, and blue) have been
drawn using the Windows Paint program.

3. HTML Tables, Forms, and Lists

Chapter 3 explains how to create HTML tables, forms, and lists; how to
organize documents for user input by combining forms and tables; and
how to send the contents of a form back to its creator.

3.1 The table Element

3.1.1 Basic Table Formatting

HTML tables and forms are the two most important ways to organize the
content of a Web page. Forms are critical because they provide a user in-
terface for JavaScript. It is sometimes helpful to organize information in a
form through the use of one or more tables. With that approach in mind,
we first consider tables.

Since HTML ignores text formatting, such as white space and
line feeds (Enter), it can be difficult to control the placement of content
on a web page, and the addition of graphics only compounds the prob-
lem. An easy way to gain some control is to create a table, using the
table element. Then the relative locations of text and graphics can be
established by entering them into cells of the table. Within the start
and end tags, <table> … </table>, rows and cells are defined with
the tr (“table row”) and td (“table data”) elements, which are nested
as follows:

<table>
 <tr>
 <td> … </td> {as many columns as you need…}
 …
 </tr>

{as many rows as you need…}
 …
</table>

44 3. HTML Tables, Forms, and Lists

The <tr> … </tr> tags define the rows and the <td> …
</td> tags define cells in columns within those rows. You can define as
many rows and columns as you need. With these elements, you can organ-
ize information in a familiar spreadsheet-like row-and-column format.
Document 3.1 shows how to use a table to organize and display some
results from residential radon testing.

Document 3.1 (radonTable.htm)

<html>
<head>
<title>Radon Table</title>
</head>
<body>
<h1>Results of radon testing</h1>
<p>
The table below shows some radon levels measured in resi-
dences.
 For values greater than or equal to 4 pCi/L,
action should be taken
 to reduce the concentration of
radon gas. For values greater than or

equal to 3 pCi/L, retesting is recommended.
</p>
<table>
 <tr bgcolor="silver">
 <td>Location</td><td>Value, pCi/L</td>
 <td>Comments</td></tr>
 <tr>
 <td>DB's house, basement</td><td>15.6</td>
 <td bgcolor="pink">Action should be taken!</td></tr>
 <tr>
 <td>ID's house, 2nd floor bedroom</td><td>3.7</td>
 <td bgcolor="yellow">Should be retested.</td></tr>
 <tr>
 <td> FJ's house, 1st floor living room</td><td> 0.9</td>
 <td bgcolor="lightgreen">No action required.</td></tr>
 <tr>
 <td> MB's house, 2nd floor bedroom</td><td>2.9</td>
 <td bgcolor="lightgreen">No action required.</td></tr>
</table>
</body>
</html>

(See Color Example 5 for full-color output.)

3.1 The table Element 45

The syntax for tables includes several possibilities in addition to tr
and td for customizing the appearance of a table, including the caption
element, which associates a caption with the table, and the th element,
which is used to create a “header” row in a table by automatically display-
ing text in bold font. (The th element can be used anywhere in a table in
place of td.) The caption, td, th, and tr elements are used only inside
the start and end tags of a table element: <table> … </table>. With
these elements, a more comprehensive table layout looks like this:

<table>
 <caption> … </caption>
 <tr>
 <!-- Use of th in place of td is optional. -->
 <th> … </th>
 …
 </tr>
 <tr>
 <td> … </td>
 …
 </tr>
 …
</table>

The attributes associated with these tags all have default values, so you do
not have to give them values. You can create a table without using any
attributes at all and then add attributes as needed. In Document 3.1, the
only specified attribute is the background color in some cells. An easy
way to familiarize yourself with the effects of specifying table attributes
and their values is to experiment with Document 3.1.

3.1.2 Merging Cells across Rows and Columns

If you are familiar with creating tables in a word processing application,
you know that it is easy to create more complicated table layouts by merg-
ing cells across rows and columns. You can also do this with HTML
forms, using the colspan and rowspan attributes. Document 3.2 shows
a table that displays cloud names, altitudes, and indicates whether or not
they produce precipitation.

Document 3.2 (cloudType.htm)

<html>
<head>

46 3. HTML Tables, Forms, and Lists

<title>Cloud Type Chart</title>
</head>
<body>
<table border="2">
<caption>Cloud Type Chart</caption>
<tr>
 <th align="center">Altitude</th>
 <th colspan="2">Cloud Name</th></tr>
<tr><td align="center" rowspan="3">High</td>
 <td colspan="2">Cirrus</td></tr>
 <tr><td colspan="2">Cirrocumulus</td></tr>
 <tr><td colspan="2">Cirrostratus</td></tr></tr>
<tr><td align="center" rowspan="2">Middle</td>
 <td colspan="2">Altocumulus</td></tr>
 <tr><td colspan="2">Altostratus</td></tr></tr>
<tr><td align="center" rowspan="5">Low</td>
 <td>Cumulus</td>
 <td>nonprecipitating</td></tr>
<tr><td>Altocumulus</td>
 <td>nonprecipitating</td></tr>
<tr><td>Stratocumulus</td>
 <td>nonprecipitating</td></tr>
 <tr><td>Cumulonimbus</td>
 <td align="center"
 bgcolor="silver">precipitating</td></tr>
 <tr><td>Nimbostratus</td> <td align="center"
 bgcolor="silver">precipitating</td></tr></tr>
</table>
</body></html>

It is much more tedious to
merge cells across rows in columns
in an HTML table than it is in a
word processing program, so you
have to plan your table in advance.
Even then, you should be prepared
for some trial-and-error editing!

A summary of some table-
related elements and their attributes
is given below. All the elements
except table itself should appear
only inside a table element.

3.1 The table Element 47

Description of attributes:

align = "…"
Values: "left", "right", or "center"

bgcolor = "…"
Values: color names or hexadecimal values "#RRGGBB"

<caption> … </caption>
Attributes: align
 Displays the specified text as a caption for a table. Earlier ver-
sions of HTML support only "top" (the default value) or "bottom" for
the value of the align attribute. Some browsers may allow "center" as
a value for align, which is worth noting because this might often be the
alignment of choice for a table caption.

<table> … </table>
Attributes: border, bordercolor, cellpadding, cellspacing,
width
 Contains table-related and other elements.

<td> … </td>
Attributes: align, bgcolor, colspan, nowrap, rowspan, width
 Does not contain other table-related elements.

<th> … </th>
Attributes: align, bgcolor, colspan, nowrap, rowspan, valign,
width
 The th element works just like the td element except it automati-
cally displays text in bold font, serving as headings for table columns. It
does not contain other elements.

<tr> … </tr>
Attributes: align, bgcolor, valign
 Contains td or th elements.

 Aligns text horizontally. When align is specified in a tr ele-
ment, its value will be overridden if it is specified again within a td ele-
ment in that row.

 Sets the background color for a cell or row. When bgcolor is
specified in a tr element, its value will be overridden if it is specified
again within a td element in that row.

48 3. HTML Tables, Forms, and Lists

border = "…"
Values: an integer number of pixels
 Adds a border to the table and its cells. A value is optional. If it is
included, an additional colored border is added around the outer boundary
of the table.

bordercolor = "…"
Values: color names or hexadecimal values "#RRGGBB"
 Sets the color of a table border.

cellpadding = "…"
Values: an integer number of pixels
 Defines vertical spacing between cells in a table.

cellspacing = "…"
Values: an integer number of pixels
 Defines horizontal spacing between cells in a table.

colspan = "…"
Values: an integer
 Defines how many columns a cell will span.

nowrap
 Prevents text from being automatically wrapped within a cell. It
does not have a value.

rowspan = "…"
Values: an integer
 Defines how many rows a cell will span.

valign = "…"
Values: "top", "middle", or "bottom"
 Aligns text vertically. When valign is specified in a tr element,
its value will be overridden if it is specified again within a td element in
that row.

width = "…"
Values: a number or a percentage

Specifies table or cell width in pixels (width="140") or as a
percentage of the window or table header width (width="80%").

3.2 The form Element 49

3.2 The form Element

One of the most important applications of HTML documents is to provide
the Web page equivalent of a paper form. In some cases, a form just helps
to organize user input to a Web page. Often, an online form includes pro-
visions for sending a completed form back to the author of the Web page.
In other cases, the form may act as an I/O interface in which a user pro-
vides input and the Web page provides results from calculations or other
actions. This use of forms is especially important for the material pre-
sented in later chapters of this book.

HTML forms are defined by the form element, using start and
end tags: <form> … </form> tags. The attributes of the form element
are:

action = "…"
Value: a programmer-supplied URL that identifies a processing script or
mailto: followed by an e-mail address. In this book, I always use the
mailto: action. For example,
action="mailto:my_mail@my_univ.edu".

enctype="…"
Value: In this book, I use only enctype="text/plain". In combination
with method="post", this will transmit form data with the name of the
form field followed by an “=” sign and the value of the field, which
makes it easy to interpret the contents of a form that has been submitted.

method = "…"
Values: "get", "post"

method attribute controls how data from a form is sent to the
URL or e-mail address identified in the action attribute. In this book, I
use the "post" value because it is the easiest way to transmit form data
in an easily readable format.

name = "…"
Value: a programmer-selected name that is used to identify the form.

The name attribute is needed only if a document contains more
than one form.

 The

50 3. HTML Tables, Forms, and Lists

 Forms contain one or more input fields identified by <input />
tags. As the input element does not enclose content, it has no end tag, so
it requires a closing slash for XHTML compliance. The most important
attribute of input is its type. There are several field types that have
well-defined default behaviors in HTML. The possible values are listed in
Table 3.1.

Table 3.1. Values for the input element’s type attribute

Field Type Description

type = "button"
Provides a programmer-defined action to be
associated with the field through the use of an
event handler such as onclick.

type = "checkbox" Allows selection of one or more values from
a set of possible values.

type = "hidden"
Allows the definition of text fields that can be
accessed by a JavaScript script but are not
displayed in a document.

type = "password" Allows entry of character data but displays
only asterisks.

type = "radio" Allows selection of one and only one value
from a set of possible values.

type = "reset" Used to reset all form fields to their default
values.

type = "submit" Processes form contents according to a
specified method and action.

type = "text" Allows entry of character data.

 There is no field type specifically for numerical values. This will
be significant when we start to use JavaScript to process the contents of
forms. The use of event handlers, mentioned in the description of the
"button" field type, is discussed in Chapters 4 and 6.

Following is a list of attributes for the input element:

checked
Value: none

Applies to type="radio" and type="checkbox" only.

maxlength="…"
Value: Maximum number of characters that can be entered in the field.
This value can be greater than the value given for the size attribute.

3.2 The form Element 51

name="…"
Value: A programmer-supplied name for the field. The name should fol-
low the variable-naming conventions for JavaScript (see Chapter 4) in
order to facilitate its use in JavaScript scripts.

readonly
Value: none

size="…"
Value: width of the displayed field, in characters.

type="…"
Values: See Table 3.1.

The form element typically contains a combination of document

text and input fields. The text can be used to explain to the user of the
form what kind of input is expected. Document 3.3 illustrates a simple
example that uses several input field types.

Document 3.3 (location.htm)

<html>
<head>
<title>Data Reporting Site Information</title>
</head>
<body>
<form>
 Please enter your last name:
 <input type="text" name="last_name" size="20"
 maxlength="20" />

 Please enter your latitude:
 <input type="text" name="lat" value="40" size="7"
 maxlength="7" />
 N <input type="radio" name="NS" value="N" checked />
 or S <input type="radio" name="NS" value="S" />

 Please enter your longitude:
 <input type="text" name="lon" value="75" size="8"
 maxlength="8" />
 E <input type="radio" name="EW" value="E" /> or W

value="…"
Value: a programmer-supplied default value that will be displayed in the
field. This value can be overridden by user input unless the readonly
attribute is also specified.

 Prevents field values in type="text" or text="password"
from being changed.

52 3. HTML Tables, Forms, and Lists

 <input type="radio" name="EW" value="W" checked />

 Please enter your elevation:
 <input type="text" name="elevation" size="8" maxlength="8"
 /> meters

 Please indicate the seasons during which your site reports
 data:

 Winter: <input type="checkbox" name="seasons"
 value="Winter" />
 Spring: <input type="checkbox" name="seasons"
 value="Spring" />
 Summer: <input type="checkbox" name="seasons"
 value="Spring" />
 Fall: <input type="checkbox" name="seasons"
 value="Fall" />
</form>
</body>
</html>

Note that some of the text fields are blank because no default

value attribute has been specified. These require user input, and there is
no way to establish ahead of time what this input might be. However, it
may still be worthwhile in some cases to provide a default value if that
might help the user to understand what is required. When the allowed in-
put choices can be limited ahead of time by the creator of the document, it
is appropriate to use radio buttons and checkboxes. You can create as
many different combinations of these kinds of field as your application
needs.

Each group of radio and checkbox buttons has its own unique
field name and, within each group, each button should have its own
value. In Document 3.3, there are two radio button groups, named NS
and EW. It is important to specify a value for each button, because the
value of the checked button will be captured when the contents of the
form are submitted to a recipient’s e-mail address. This is demonstrated
in the modified version of this document in Section 3.5. Default values
for the radio field can be specified by using the checked attribute.

3.3 Creating Pull-Down Lists 53

Document 3.4 (select.htm)

<html>
<head>
<title>Pull-Down List</title>
</head>
<body>
Select a month from this menu:
 <select name="testing">
 <option value="1" selected>January</option>
 <option value="2">February</option>
 <option value="3">March</option>
 <option value="4">April</option>
 <option value="5">May</option>
 <option value="6">June</option>
 <option value="7">July</option>
 <option value="8">August</option>
 <option value="9">September</option>
 <option value="10">October</option>
 <option value="11">November</option>
 <option value="12">December</option>
 </select>

When you access the document, the button with the checked attribute
will be “on.” You can change it by clicking on another of the buttons in
the group.

The same basic rules apply to checkbox fields. You can have
more than one group of checkboxes, each with its unique name. The only
difference is that you can select as many boxes as you like within each
group.

3.3 Creating Pull-Down Lists

A common feature on Web pages that use forms is a pull-down list, which
provides another way to limit the input choices a user can make on a
form. The implementation described here is similar to a group of radio
buttons in the sense that only one item can be selected from a list. This
can simplify a document interface and eliminate the need for some input
checking that might otherwise have to be done if a user is free to type
whatever he/she likes in an input field. For example, creating a pull-down
list of the months of the year eliminates the need for a user to type (and
perhaps to mistype) the name of a month, as shown in Document 3.4.

</body>
</html>

54 3. HTML Tables, Forms, and Lists

 In the output shown,
the user has chosen the month
of April, which is now high-
lighted. The values of the
value attribute can be, but
do not have to be, the same as
the text displayed for each
option. In this case, the month
values are numbers between 1
and 12, rather than the names
of the months. Assigning the
selected attribute to the
first option means that “January” will be highlighted when the pull-down
box is first displayed. For longer lists, the default format is for HTML to
include a scroll bar alongside the list.
 Although it is easy to create pull-down lists as well as groups of
radio buttons and checkboxes, as described in Section 3.3, how a docu-
ment will make use of the selections made is not obvious. However, as is
shown in Chapter 4, JavaScript provides the required capabilities.

3.4 Combining Tables and Forms

In terms of organizing an interactive Web page, it is often helpful to cre-
ate one or more tables in which the cell contents are fields in a form.
Document 3.5 gives an example.

Document 3.5 (siteDefinition.htm)

<html>
<head>
<title>Observation Site Descriptions</title>
</head>
<body>
<form>
<table border="2" cellpadding="5" cellspacing="2"
 align="center">
 <caption>Observation Site
 Descriptions</caption>
 <tr bgcolor="lightblue">

3.4 Combining Tables and Forms 55

 <th>Site #</th><th>Site Name</th><th>Latitude</th>
 <th>Longitude</td><th>Elevation</th>
 </tr>
 <tr bgcolor="palegreen">
 <td>Site 1</td>
 <td><input type="text" name="Name1" size="10"
 maxlength="10" value="Name1" /></td>
 <td><input type="text" name="Latitude1" size="10"
 maxlength="10"
 value="Latitude1" /></td>
 <td><input type="text" name="Longitude1" size="10"
 maxlength="10" value="Longitude1" /></td>
 <td><input type="text" name="Elevation1" size="10"
 maxlength="10" value="Elevation1" /></td>
 </tr>
 <tr bgcolor="ivory">
 <td>Site 2</td>
 <td><input type="text" name="Name2" size="10"
 maxlength="10" value="Name2" /></td>
 <td><input type="text" name="Latitude2" size="10"
 maxlength="10" value="Latitude2" /></td>
 <td><input type="text" name="Longitude2" size="10"
 maxlength="10" value="Longitude2" /></td>
 <td><input type="text" name="Elevation2" size="10"
 maxlength="10" value="Elevation2" /></td>
 </tr>
 <tr bgcolor="palegreen">
 <td>Site 3</td>
 <td><input type="text" name="Name3" size="10"
 maxlength="10" value="Name3" /></td>
 <td><input type="text" name="Latitude3" size="10"
 maxlength="10" value="Latitude3" /></td>
 <td><input type="text" name="Longitude3" size="10"
 maxlength="10" value="Longitude3" /></td>
 <td><input type="text" name="Elevation3" size="10"
 maxlength="10" value="Elevation3" /></td>
 </tr>
 <tr bgcolor="ivory">
 <td>Site 4</td>
 <td><input type="text" name="Name4" size="10"
 maxlength="10" value="Name4" /></td>
 <td><input type="text" name="Latitude4" size="10"
 maxlength="10" value="Latitude4" /></td>
 <td><input type="text" name="Longitude4" size="10"
 maxlength="10" value="Longitude4" /></td>
 <td><input type="text" name="Elevation4" size="10"

56 3. HTML Tables, Forms, and Lists

 maxlength="10" value="Elevation4" /></td>
 </tr>
 <tr bgcolor="palegreen">
 <td>Site 5</td>
 <td><input type="text" name="Name5" size="10"
 maxlength="10" value="Name5" /></td>
 <td><input type="text" name="Latitude5" size="10"
 maxlength="10" value="Latitude5" /></td>
 <td><input type="text" name="Longitude5" size="10"
 maxlength="10" value="Longitude5" /></td>
 <td><input type="text" name="Elevation5" size="10"
 maxlength="10" value="Elevation5" /></td>
 </tr>
</table>
</form>
</body>
</html>

The output is shown with the original default field names, before

a user starts to add new values.
Although it may seem like a lot of work to create Document 3.5,

the task is greatly simplified by copying and pasting information for the
rows. When you access this page, the Tab key moves from field to field
but skips the first column, which is just fixed text. The user of the page
can change the default values of all the input text boxes.

3.5 E-Mailing the Contents of Forms 57

3.5 E-Mailing the Contents of Forms

Document 3.3 would be much more useful if the location information
provided by the user could be sent to the creator of the document. In
general, if the basic purpose of forms is to provide an interactive interface
between the user of a Web page and its creator, there has to be a way to
transmit the user-supplied information on a form back to the creator.
Remember that HTML/JavaScript constitutes a purely client-side envi-
ronment. However, it is possible to use the form action="mailto…"
and method attributes to send the contents of a form indirectly to the
originator of the form (or some other specified destination) by using the
client computer’s e-mail utility.

In principle, this is easy to do, but the method described here is
not very reliable. It may be necessary first to resolve conflicts between a
user’s browser and e-mail utility that have nothing to do with the contents
of the Web page itself, or it may simply not be possible to get this method
to work across some networks and platforms.

The following is the way to direct the contents of a form to a
specified e-mail address, at least in principle!

<form method="post"
 action="mailto:my_mail@myuniversity.edu"
 enctype="text/plain">

Document 3.6 is a modification of Document 3.3 that allows a
user to e-mail the contents of the form to a specified address.

Document 3.6 (location2.htm)

<html>
<head>
<title>Location information</title>
</head>
<body bgcolor="ivory">
<form method="post"
 action="mailto:my_mail@university.edu"
 enctype="text/plain">
 Please enter your last name:
 <input type="text" name="last_name" size="20"
 maxlength="20" />

 Please enter your latitude:
 <input type="text" name="lat" size="7"
 maxlength="7" />
 N <input type="radio" name="NS" value="N" />

58 3. HTML Tables, Forms, and Lists

 or S <input type="radio" name="NS" value="S" />

 Please enter your longitude:
 <input type="text" name="lon" size="8"
 maxlength="8" />
 E <input type="radio" name="EW" value="E">
 or W <input type="radio" name="EW" value="W" />

 Please enter your elevation:
 <input type="text" name="elevation" size="8"
 maxlength="8" /> meters

 <input type="submit"
 value="Click here to send your data. " />
</form>
</body>
</html>

When the form has been submitted successfully, the field names

and values arrive in the body of an e-mail message. The example shown
in the screen rendering produces this result:

last_name=Brooks
lat=40
NS=N
lon=75

After entering all values, the user clicks on the labeled submit
button, and the contents of the form should be sent to the specified
e-mail address. In order to try this document, you must install it on a
Web page where it can be accessed online. (It will not work if you try to
submit the form locally from an HTML editor, for example.) Some-
times, the submit button may not actually work. When you click on the
submit button, it may appear that the data have been sent, but the
e-mail never arrives. When this happens, the problem lies not with the
document, but with the relationship between your browser and your
e-mail utility. In some cases, it may not be possible to submit forms in
this way from your computer.

3.6 The List Elements 59

EW=W
elevation=15

The names are the field names given in the document and the values are,
of course, the values entered by the user.

3.6 The List Elements

As shown above, the table and form elements are used as tools for or-
ganizing Web pages. Elements for creating lists provide another way to
impose formatting on related content. Table 3.2 gives a brief summary of
three kinds of lists.

Table 3.2. HTML list elements

Description HTML Tags Use
Definition
(or glossary)

<dl> … </dl> For a list that includes names and
extensive descriptions

Ordered … When a list of things has to be
numbered

Unordered … For a list of “bulleted” items

For ordered and unordered lists, the li element is used to define
items within the list. For definition lists (also called glossary lists), the dt
element is used for the “name” and dd is used for the “definition.” Docu-
ment 3.7 shows how to use these list tags.

Document 3.7 (lists.htm)

<html>
<head>
 <title>Using HTML Lists</title>
</head>
<body>
This page demonstrates the use of unordered, ordered, and
definition lists.

 Use unordered lists for "bulleted" items.
 Use ordered lists for numbered items.
 Use definition lists for lists of items to be defined.

Here are three ways to organize content in an HTML document:

 Use a table.

60 3. HTML Tables, Forms, and Lists

 Use a list.
 Use <pre> ...
</pre> tags.

This is a way to produce a neatly formatted glossary list.
<dl>
 <dt>definition list
 (<dl>)</dt>
 <dd>Use this to display a list of glossary items and their
definitions. </dd>
 <dt>ordered list
 () </dt>
 <dd>Use this to display a numbered list. </dd>
 <dt>unordered list
 ()</dt>
 <dd>Use this to display a list of bulleted items. </dd>
</dl>
</body>
</html>

The use of these tags imposes a preset format for displaying list

items. Blank lines are inserted before and after the list, with no
 or

3.6 The List Elements 61

<p> … <p> tags required to separate the lists from other text in the
document. For ordered and unordered lists, the list items themselves are
indented. For the definition list, the items are not indented, but the “defi-
nitions” are indented. The contents of a list item can include text format-
ting elements. For example, in Document 3.7, the items in the definition
list use the strong element to display the item name in a bold font. A list
item can be an image, , or a URL reference, .

Note the use of < and > to display the < and > characters
in the document. (Recall that if you simply enter these characters, they
will not be displayed on the screen because HTML will try to associate
them with tags.)

There are some attributes associated with list elements that
provide a little more control over the appearance of lists.

start="n"
Value: The integer n specifies the starting value of an ordered list. The
default value is start="1".

type = "…"
Values: For unordered lists: "disc" (the default value), "square",
"circle"
For ordered lists: “A” (uppercase letters), “a” (lowercase letters), “I”
(uppercase Roman letters, “i” (lowercase Roman letters), “1” (numbers,
the default value)

value = "n"
Value: The integer n specifies a numerical value for an item in an
ordered list that overrides the default value. Subsequent list items will
be renumbered starting at this value.

Finally, it is possible to combine list types to create more com-
plicated list structures. Document 3.8 shows how list tags can be used to
create the table of contents for a book.

Document 3.8 (bookContents.htm)

<html>
<title>Table of Contents for My Book</title>
<body>
<h2>Table of Contents for My Book</h2>

Chapter One

62 3. HTML Tables, Forms, and Lists

 <ol type="I">
 Section 1.1
 <ol type="i">
 First Topic
 Second Topic
 <ul type="circle">
 subtopic 1
 subtopic 2

 Section 1.2
 Section 1.3

Chapter Two
 <ol type="I">
 Section 2.1
 <ol type="i">
 First Topic
 Second Topic
 <ul type="circle">
 subtopic 1
 subtopic 2

 Section 2.2
 Section 2.3

Chapter Three
 <ol type="I">
 Section 3.1
 <ol type="i">
 First Topic
 Second Topic
 <ul type="circle">
 subtopic 1
 subtopic 2
 subtopic 3

 Section 3.2
 Section 3.3
 <ol type="i">
 First Topic
 Second Topic

 Section 3.4

</body>
</html>

3.6 The List Elements 63

Note that if this list were used for an online book, for example,
each list item could include a link to a URL or a hypertext link to another
location within the same document.

64 3. HTML Tables, Forms, and Lists

3.7 Another Example

Create a document that allows users to select observed cloud
types from a list of possibilities. More than one cloud type can
exist simultaneously. The categories are:

High altitude: Cirrus, Cirrocumulus, Cirrostratus
Mid altitude: Altostratus, Altocumulus
Low altitude: Stratus, Stratocumulus, Cumulus
Precipitation-producing: Nimbostratus, Cumulonimbus

A good way to organize this information is to use a table within a

form. The form fields should be of type checkbox rather than radio
because multiple selections are possible. Compare this problem with
Document 3.2, in which a table was used to display just the cloud types.

Document 3.9 (cloud1.htm)

<html>
<head>
<title>Cloud Observations</title>
</head>
<body bgcolor="#aaddff">
<h1>Cloud Observations</h1>
 Cloud Observations (Select as many cloud
types as observed.)

<form>
<table>
 <tr>
 <td>High </td>
 <td>
 <input type="checkbox" name="high"
 value="Cirrus" /> Cirrus</td>
 <td>
 <input type="checkbox" name="high"
 value="Cirrocumulus" /> Cirrocumulus </td>
 <td>
 <input type="checkbox" name="high"
 value="Cirrostratus" /> Cirrostratus </td></tr>
 <tr>
 <td colspan="4"><hr noshade color="black" />
 </td></tr>
 <tr>
 <td> Middle </td>
 <td>

3.7 Another Example 65

 <input type="checkbox" name="mid"
 value="Altostratus" /> Altostratus </td>
 <td>
 <input type="checkbox" name="mid"
 value="Altocumulus" /> Altocumulus</td></tr>
 <tr>
 <td colspan="4"><hr noshade color="black" />
 </td></tr>
 <tr>
 <td> Low</td>
 <td>
 <input type="checkbox" name="low" value="Stratus" />
 Stratus</td>
 <td>
 <input type="checkbox" name="low"
 value="Stratocumulus" /> Stratocumulus</td>
 <td>
 <input type="checkbox" name="low" value="Cumulus" />
 Cumulus </td></tr>
 <tr>
 <td colspan="4"><hr noshade color="black" />
 </td></tr>
 <tr>
 <td> Rain-Producing </td>
 <td>
 <input type="checkbox" name="rain"
 value="Nimbostratus" /> Nimbostratus</td>
 <td>
 <input type="checkbox" name="rain"
 value="Cumulonimbus" /> Cumulonimbus </td></tr>
</table>

</form>
</body>
</html>

In Docu-

ment 3.9, check-
boxes for the cloud
types are organ-
ized into four groups, for high-, mid-, and low-altitude clouds, plus rain-
producing clouds. Within each group, each checkbox has a name associated
with it. As demonstrated in Chapter 5, this arrangement makes it possible

(See Color Example 6 for full-color output.)

66 3. HTML Tables, Forms, and Lists

for JavaScript to “poll” the checkboxes to see which clouds are observed
within each group.

Note that the names given to each checkbox in Document 3.9 are
the same as the text entered in the corresponding cell. This is only because
these names and text are reasonable descriptions of the cell contents. In
general, the text in the cell does not have to be the same as, or even re-
lated to, the value of the name attribute of the checkbox.

4. Fundamentals of the JavaScript Language

Chapter 4 presents the core programming capabilities of JavaScript. The
topics include basic programming terminology and concepts, code
structure, data and objects, variables, operators, mathematical and string-
manipulation functions, decision-making structures, and constructs for
repetitive calculations.

4.1 Capabilities of JavaScript

In the previous chapters I discussed the conceptual model through which a
scripting language such as JavaScript interacts with an HTML document.
In order to perform useful tasks within this environment, you must
understand the capabilities and structure of JavaScript, as well as the
programming fundamentals needed to apply these capabilities. Although
an HTML document interface is still required to manage input and output,
the material in this chapter reflects an attempt to minimize the details of
interactions between JavaScript and HTML in favor of presenting the
programming concepts.

JavaScript shares capabilities with other languages such as
C/C++. In general, what are the capabilities of these kinds of languages?
What kinds of tasks can programmers expect them to perform? These
tasks are as follows:

1. Manage input and output

To be useful, any language must provide an input/output (I/O)
interface with a user. When a computer program is executed or a script is
interpreted (in the case of JavaScript, as a result of loading a Web page
into a user’s browser), the user provides input. The language instructs the
user’s computer to perform a task based on the input. The language then
instructs the computer to display the results. A simple interface (for a text-
based language such as C, for example) will accept keyboard input and
display text output on a computer monitor. As noted several times
throughout this book, JavaScript and HTML work together to provide an
I/O interface.

68 4. Fundamentals of the JavaScript Language

2. Permit values to be manipulated in a symbolic way, independent of the
way a particular computer stores that information internally

The entire thrust of high-level programming languages is to pro-
vide a symbolic interface between a computer and a user. This allows
users to interact with a computer in a more natural way. Quantities can
be given symbolic names and can then be accessed and manipulated
through those names.

3. Perform arithmetic operations on numbers

A general-purpose language must enable a range of arithmetic
operations on numbers. Although JavaScript is not intended as a “number-
crunching” language for serious scientific computing, it does support
many arithmetic operations and functions including, for example,
trigonometric, logarithmic, and exponential functions. Thus, it is useful
for a wide range of numerical calculations of interest in science and
engineering.

4. Perform operations on characters and strings of characters

A great deal of the work JavaScript is asked to do involves
characters and strings of characters rather than numbers. For example,
JavaScript may be asked to compare a name provided as input against a
predefined set of names. An HTML document is inherently character-
based, so JavaScript must support the manipulation of characters and
strings of characters, including interpreting the latter as numbers and vice
versa. This is necessary because computers store numerical values in
ways that differ fundamentally from the way characters are stored.

5. Make decisions based on comparing values

Computers cannot make decisions by “thinking” about multiple
possibilities in a humanlike way. However, they can compare values and
act on the results of those comparisons. Typically, programs compare
values and then execute instructions based on the results of those
comparisons. In particular, such decisions are often embedded in
branching structures that execute one set of instructions to the exclusion
of others, based on a comparison of values.

6. Perform repetitive calculations

Loop structures are used to allow computers to perform
repetitive calculations. These calculations might be terminated after they
have been executed a specified number of times, or they may be executed
only until or while some set of conditions is satisfied.

4.2 Some Essential Terminology 69

4.2 Some Essential Terminology

The terminology of programming languages can be confusing for
beginners. Nevertheless, it is essential to agree upon the meaning and use
of terms in order to discuss programming concepts, especially because the
programming-specific meaning of some terms must be distinguished from
their everyday conversational use. Table 4.1 gives some essential terms
and their definitions.

Table 4.1. Definitions of some essential programming language terms

Term Definitions and Examples

A group of tokens and (usually) operators that can be
evaluated as part of a statement to yield a value. Expression
y + z
"This is a string."
The name associated with a variable, object, or function.

Identifier any allowed name, e.g., x,
getArea, my_name, without embedded spaces
A word that is part of a language and has a specific
meaning. Keywords cannot be used as identifiers. Keyword
function, var, for
A value (as opposed to an identifier) embedded in a
script. Literal
3.14159
"Here's a string."
A token that performs a mathematical or other operation. Operator
=, +, -, *, /, %

Program
Loosely, a series of statements or a compiled equivalent.
In JavaScript, a “program” is better referred to as a script.
Scripts are interpreted one line at a time, not compiled.
A word that might become part of a language. Reserved
words should not be used as identifiers. Reserved

word
class, const

Script A series of statements written in JavaScript or some other
scripting language.

70 4. Fundamentals of the JavaScript Language

Table 4.1. (Concluded.)

Term Definitions and Examples
A command that changes the status of a program as it exe-
cutes, by defining variables, changing the value of a vari-
able, or modifying the order in which other statements are
executed.

Statement

x = y + z;
area=Math.PI*radius*radius;
An indivisible lexical unit defined within a programming
language. Token
all variables, keywords, operators, and literals
A place in memory that holds data and is represented by a
unique identifier. Variable
(see “identifier”)

Some of these terms identify the building blocks of a JavaScript

script, starting with tokens:

tokens (identifiers, keywords, literals, operators) → expressions →
statements → script

4.3 Structure of JavaScript Code

4.3.1 JavaScript Statements

Instructions in JavaScript are conveyed through a series of statements
(usually) embedded in an HTML <script> … </script> element. As
indicated in the previous section, statements are built from expressions
consisting of tokens. To begin a statement, simply start typing something
that follows the syntax rules of JavaScript. In general, when it is time to
terminate a programming language statement, there are two choices. One
choice is to press the Enter or Return key on your keyboard. This will
terminate both the physical line and the statement, which means that each
physical line can contain no more than one statement. (It could be a blank
line with no statement at all.) The second choice is to use a unique termi-
nating character to mark the end of a statement.

As a matter of syntax, JavaScript allows both these choices. An
“end of line” mark (created by pushing the Enter or Return key) will
mark the end of a statement. Owing to JavaScript’s roots in C/C++, the
preferred syntax is to terminate each statement with a semicolon. As a

4.3 Structure of JavaScript Code 71

matter of style, JavaScript statements in this book will always terminate-
with a semicolon. As a bonus, this style choice allows multiple statements
to appear on the same line.

A set of JavaScript statements is called a script. Presumably, the
goal of a script is to perform some useful task. Thus, the implication of
calling something a “script” is that it contains all the instructions required
to complete a specified task. As noted in Chapter 1, even the simplest text
editor can be used to create a script. Although there are many software
tools for creating HTML/JavaScript documents, they are all just conven-
iences and are never actually required.

JavaScript is a free-format language, which means that statements
can appear anywhere on a line. As long as you terminate each statement
with a semicolon, you can even put multiple statements on a single line.
This flexibility is supposed to encourage the writing of code that is
logically organized and easy to read. Good programmers always adopt a
consistent approach to the layout of their code. Hopefully, the examples in
this text will point the way to producing easily readable code.

4.3.2 Statement Blocks

Often, several code statements are grouped together in a statement block.
These blocks begin and end with curly brackets:

{
 {statements go here}
}

Later in this chapter, we will see several examples of how to use
statement blocks.

4.3.3 Comments

Comments are an essential part of good programming style, no matter
what the language. Comments are inserted into code by surrounding them
by certain characters that will always be interpreted unambiguously as
marking the beginning or end of a comment. JavaScript supports two
kinds of comments: single- and multiple-line. You can use either or both
of these comment formats within the same script, but they cannot be
mixed in the same comment. Moreover, you cannot have “nested”
multiple-line comments:

// This is a single-line comment.
/* This

72 4. Fundamentals of the JavaScript Language

 is a
 multiple-line
 comment.
*/
/* This code
/* will generate a syntax error! */
*/

A JavaScript interpreter ignores comments when it executes
statements, so comments can occur on separate lines or on the same line
as a statement. Comments started with a double slash cannot be placed at
the beginning of a statement because JavaScript has no way of knowing
where the comment ends and the code begins. However, the following
code will work because there is an (invisible) “return” character at the end
of the line that is interpreted as the end of the comment:

// The gravitational constant is
var g=9.8; // m/s^2

This will not work

// The gravitational constant is var g=9.8; // m/s^2

but this will:

/* The gravitational constant is */ var g=9.8; //m/s^2

It is easy to overlook the importance of including comments in

your code. Intelligently commented code is easier to understand, both for
you when you return to it at a later date and for others who have to exam-
ine your code. If you do not develop the habit of including comments in
all your code, you will eventually be sorry!

There is a potential issue with comments that is unique to the
Web environment: JavaScript code is downloaded to a user’s computer as
part of a Web page. The longer the code, the longer the download time.
Thus, an HTML document with heavily commented JavaScript code takes
longer to download than the same page without comments. However, any
(extremely small!) potential performance penalty that might be associated
with using comments is completely overshadowed by the importance of
learning how to write readable and understandable code. In any case,
there is no excuse for not including comments for the kinds of scripts you
will be creating during a course based on this book.

4.4 Data and Objects 73

4.4 Data and Objects

In general, programming languages can work with different kinds of
information. Each kind of information is associated with a data type;
each data type is stored differently within the programming environment;
and each is associated with a specific set of operations. For example, it is
obvious that you can add two numbers, but it is less obvious what (if
anything) it means to associate an addition operation (3.3 + 12.9) with
character literals (A + c). In the latter case, A and c are not being used as
symbolic names, but as the “literal values” of A and c.

A principle central to all high-level programming languages is that
discrete units of information called variables can be associated with
specific locations in computer memory. Variables serve as “containers” for
data. A data container is established by giving it a symbolic name, called an
identifier—a process called data declaration. Once identifiers have been
established with meaningful names, you can write code to manipulate
information symbolically by using the identifier names, thereby freeing you
from having to think directly about where information is actually stored in
your computer’s memory. (As a practical matter, you cannot figure out
exactly where this information is stored even if you think you need to
know.) In addition, this symbolic approach makes it possible to write scripts
that will work on any computer that supports JavaScript.

4.4.1 Data Declarations and Variables

A basic programming rule, no matter what the language, is that variables
must be declared before they are used elsewhere in a program. Data
declaration assigns an identifier (a variable name) to a data container and
associates the identifier with a particular location in your computer’s
memory. The allocation of memory is handled by the programming
environment (in this case, your browser and its JavaScript application)
and is rarely of any interest to you as a programmer.

The data declaration process, whether explicit or implicit, is required
to enable a programming environment to manage its memory resources and
perform appropriate operations. In JavaScript, the keyword var is used to
declare variables and their identifiers. Consider the following code:

var g;
g=9.8;
g="gravitational acceleration";

Unlike some other languages such as C and C++, a single keyword
serves to declare all variables, regardless of their data type. In the above

74 4. Fundamentals of the JavaScript Language

example, the var statement asks the JavaScript interpreter to set aside
space for a variable named g. At the time of the declaration, it is not yet
clear what kind of information the identifier g is going to represent.

JavaScript is a weakly typed language, which means that the
programmer has a great deal of latitude in associating an identifier with data
of a particular type. Consider the second and third lines in the above code
fragment. The second line associates g with the numerical value 9.8. The
third associates g with the string "gravitational acceleration" and
replaces the previous value with the new one. These statements imply that

it to hold and that you can change your mind about the nature as well as the
value of the information held in the container. The data declaration
statement in JavaScript reserves the name of an identifier associated with a
data container, but not the nature of its contents. To put it another way,
JavaScript infers data type from the current contents of a variable container.
If the nature of the contents of the container (not just the value) is changed,
then the data type associated with that container will change as well. If you
use spreadsheets such as Excel, you are already familiar with this kind of
data typing. When you enter content in a spreadsheet cell, the spreadsheet
imposes its own default typing for the content—as a number or text, for
example. If you enter something different in the same cell, the spreadsheet
reinterprets the contents accordingly.

Owing to weak typing, it is not even necessary to use a variable
declaration statement in JavaScript. The statement

pi=3.14159;

without a previous var pi; statement is an implicit data declaration for
the variable identifier pi. Although this is allowed in JavaScript, implied
declarations are poor programming practice in any language and you
should avoid them in your code.

4.4.2 Data Types

JavaScript supports three basic data types (primitives): numbers, strings,
and Boolean values. JavaScript does not distinguish between integers and
real numbers; that is, it does not provide separate data types for integers
and real numbers. Rather, JavaScript stores all numbers in a floating
point format, which provides what is, in general, an approximation of the
actual value. In contrast, integers, in languages that support a separate

the “container” associated with the identifier g can hold anything you want

4.4 Data and Objects 75

data type, are stored as exact values in a binary format. This distinction
can have significant consequences in some kinds of numerical calculations.

Some languages, such as C/C++, have a separate data type for
representing individual characters, from which string representations are
built. JavaScript works essentially the other way around, with a single
character being represented as a string variable of length one.

Boolean data have one of two values, true or false. Boolean
variables can be assigned one of these two values, as in:

var x=true,y=false;

Note that the words true and false are values, not “names” (or string
literals, as defined in the next section), so they are not surrounded by
quote marks.

4.4.3 Literals

Literals are actual numbers, character strings, or Boolean values embedded
in code. In the statement var pi=3.14159;, 3.14159 is a number literal.
In the statement var name="David Brooks";, "David Brooks" is a
string literal. The advantage of using literals is that their value is self-evident.

In general, it is good programming style not to use the same
literal value in many places in your code. For example, rather than using
the literal 3.1416 whenever you need the value of π, you should assign a
value to the quantity π by using a data declaration statement var
pi=3.1416;. Now you can insert the value of π anywhere in your program
just by referring to its identifier. Suppose you declare var B = 3.195;
and use this variable name in several places in your code. If, later on, you
decide you have to change the value of B to 3.196, you can make this
change just once, in the data declaration statement, and the change will be
made automatically everywhere B is used.

4.4.4 Case Sensitivity

JavaScript is case-sensitive, which means that all reserved words and
identifiers must be spelled exactly as they have been defined. For exam-
ple, return is not the same as Return. JavaScript understands the for-
mer spelling as a keyword, but the latter spelling has no special meaning.
If you define a variable named radius, you cannot later change that
spelling to Radius or RADIUS. Owing to case-sensitivity, you could
define three separate identifiers as radius, Radius, and RADIUS, but
this is potentially confusing and should be avoided.

76 4. Fundamentals of the JavaScript Language

There are two reasons why it is especially important to be very
careful when you spell names in JavaScript. First, JavaScript does not
require an explicit data declaration statement for variable identifiers. Thus,
you could write the declaration statement var taxes,income,rate;
and then, later in your script, type texas=income*rate;. This
misspelling of taxes as texas would be an obvious mistake on your part,
but JavaScript will not see anything wrong with what you have done.

Second, remember that HTML is not case-sensitive. Since you
will be using HTML and JavaScript together in the same document, it is
easy to forget this distinction between the two. Be careful!

4.4.5 Objects and Methods for Input and Output

In plain language usage, an object is a thing—any kind of thing. An object
has properties. Perhaps it is a ball—round, 6 cm in diameter, shiny, and
red. Objects can do things. A ball can roll and bounce. In the world of
programming, objects are also things that have properties and can do
things. For example, there is a Math object in JavaScript that knows about
mathematical constants (properties) and how to do certain kinds of
mathematical calculations (see Section 4.6). In programming terminology,
implementations of actions associated with an object are called methods.
For example, you might define a method to describe how high a ball will
bounce when you drop it onto a hard surface.

The reason I am introducing objects now is that in order to see how
JavaScript works, we have to display the results of calculations done in
response to user input. For now, the document.write() method of the
document object, first introduced in Chapter 1, or window.alert(), a
method of the window object will be used to display output. It is not
necessary to include the window object name, so it is all right simply to
write alert(). The purpose of using these methods is to avoid, for now,
worrying about the interface between JavaScript and input fields in HTML
forms. In later chapters, these methods will be used much less frequently.

For the same reason, to avoid interactions with an HTML
document, the window.prompt(), or prompt() method will be used for
input. Both prompt() and alert() will be used much less frequently
after JavaScript and HTML forms are integrated, although they will
remain useful for monitoring the performance of scripts.

Suppose you wish to ask the user of a script to provide the radius
of a circle. The statement

var radius=prompt("Give the radius of a circle: ");

4.4 Data and Objects 77

results in a message box being
opened on the user’s monitor.
The “undefined” message that
may appear in the input box
means that the variable radius
does not currently have a value
assigned to it. When a value is
typed in the input box, that
value will be assigned to the variable radius. Then, additional lines of
code can be written to use that value. In subsequent sections of this
chapter, I make frequent use of the prompt() method to get user input
for a script. Document 4.1 shows how to use the prompt() method.

Document 4.1 (circle.htm)

<html>
<head>
<title>Calculate area of a circle.</title>
<script>
var radius=prompt(“Give the radius of a circle: “);
radius=parseFloat(radius);
var area=Math.PI*radius*radius;
alert(“The area of the circle with radius=“+radius+” is
“+area+”.”);
</script>
</head>
<body>
</body>
</html>

Suppose you

type 3.3 in the input box. The alert message box shown above will then
appear on your screen.

The format of the prompt() and alert() windows is browser-
dependent and cannot be changed from within your script.1

Note the shaded line in Document 4.1:

radius=parseFloat(radius);

1 Some of my students complain that the alert box looks too much like a

“warning,” rather than an information window. For the examples in this chapter,
you can use document.write() instead of alert() if that is your preference.

78 4. Fundamentals of the JavaScript Language

The purpose of parseFloat(), which is a “global” method not
associated with a particular object, is to convert appropriate strings of
characters into a numerical representation. (Global methods are discussed
again in Chapter 6.) In Document 4.1, the variable radius is replaced by
the output from the parseFloat() function. Why? Because anything
entered in the prompt() input window is considered to be a string of
characters, regardless of whether those characters “look” like a number.
Often, scripts will work properly without the parseFloat() method, but
there are many pitfalls, as will be discussed as appropriate in later
examples. For now, suffice it to say that you should always apply
parseFloat() to numerical data entered through a prompt(),
regardless of whether it appears to be necessary.

4.4.6 String Methods

Owing to the importance of manipulating strings in interactions with
HTML documents, JavaScript treats strings as objects and supports a long
list of string-related methods. Table 4.2 lists some useful methods.

Table 4.2. Some useful methods for the String object

Method Name Description and Examples
Returns a string containing nth character.
n=0 returns leftmost character. charAt(n)
"HTML".charAt(3); returns value of L.
Returns the base-10 ASCII code for the nth
character. n=0 returns code for leftmost
character. charCodeAt(n)
var s="acid",t;
t=s.charCodeAt(0); T has value 97.
Concatenates (adds) the string arguments.
(Equivalent to + operator with strings.) concat({two or

more string arguments}) var
s="I".concat(" love"," HTML.");
S has value I love HTML.
Builds string from base-10 ASCII values.

fromCharCode(
n1[,n2,,nn])

var s=
String.fromCharCode(65,66,67);
S has value ABC.

4.4 Data and Objects 79

Table 4.2. (Concluded.)

Method Name Description and Examples

Returns index of first appearance of string
s, at or after the optional starting index n.
If n is not specified, search starts at index
0. Returns –1 if s is not found. indexOf(s[,n])

Excel.indexOf("x"); returns 1.
excel.indexOf("xce",2); returns –1.
Returns index of last appearance of s, con-
cluding the search at the optional second
argument n. Returns –1 if s is not found.

lastIndexOf(s[,n]) excel.lastIndexOf("l");
returns a value of 4.
excel.lastIndexOf("e",2);
Returns a value of 0.
Returns a new string containing a substring
of the target string of length len, starting
at index m. If len is not specified, the sub-
string contains all characters from m to end
of target string.

substr(m[,len])

excel.substr(0,5); returns excel.
excel.substr(2); returns cel.
Returns a new string containing a substring
of the target string from index m up to but
not including index end. If end is not
specified, substring contains all characters
from m to end of target string.

substring(m[,end])

excel.substring(1,3); returns ex.
Returns new string that converts all charac-
ters in target string to lower case.

toLowerCase() var h="HTML";
h=h.toLowerCase();
replaces h with the new value html.
Returns a new string that converts all char-
acters in the target string to upper case.

toUpperCase() var a="ascii",A;
A=a.toUpperCase();
assigns a value of ASCII to A.

80 4. Fundamentals of the JavaScript Language

The methods of the String object in JavaScript can be applied
directly to string primitives—variables or literals. Therefore, the reference
to the String object name is rarely needed. This is in contrast to other
objects, such as Math, which are discussed later in this chapter.

Character counting in strings, as for the charAt(n)method, starts
from the left, at 0. Thus, "HTML".charAt(3); returns "L" and not "M".
There is only one string property: length. The value is set automatically
whenever the contents of a string are changed; the value of length
cannot otherwise be set. For example, "ThisIsJavaScript".length;
returns a value of 16. It is important to understand that string methods do
not change the contents of a string simply as a result of invoking that
method. Rather, the method returns a value that must be assigned
appropriately. Hence, in the example

var h="HTML";
h=h.toLowerCase();

the string variable h is replaced by a new value, html, through the
assignment statement. In the example

var a="ascii",A;
A=a.toUpperCase();

the value of string variable a is unchanged, while the result of invoking
the toUpperCase() method is assigned to the string variable A, which
now has a value of ASCII.

4.5 Tokens, Operators, Expressions, and Statements

4.5.1 Tokens

As noted previously, tokens are the smallest lexical units of a language.
One way to think about tokens is to consider how a script might be stored
in compressed form. Each unique piece of information will be represented
by a token; for example, variable name identifiers will be stored as tokens.
The concept of tokens explains why myname or my_name are allowed
variable names, but my name is not—my name will be interpreted as two
separate names (two tokens).

4.5 Tokens, Operators, Expressions, and Statements 81

4.5.2 Arithmetic Operators

Operators are also tokens. JavaScript operators, shown in Table 4.3,
include arithmetic operators for addition, subtraction, multiplication,
division, and the modulus operator for returning the remainder from
division. These are all binary operators, which means that they require
two operands, one to the left of the operator and one to the right. The
addition and subtraction operators can also function as unary operators,
with a single operand to the right of the operator; for example, -x.

With the exception of the modulus, or remainder, operator, these
should all be familiar. The modulus operator works with either integer or
real-number operands. (Remember that JavaScript does not support a
separate integer data type.) The result of dividing 17 by 3 is 5 with a
remainder of 2. The result of dividing 16.6 by 2.7 is 6 (6 times 2.7 = 16.2)
with a remainder of 16.6 – 16.2 = 0.4.

Table 4.3. JavaScript’s arithmetic operators

Operator Symbol Examples Precedence
Addition + 3 + 4 2
Subtraction - Z – 10 2
Multiplication * A*b 1
Division / z/3.333 1

Modulus (remainder) %
17%3 (= 2),
16.6%2.7 (=0.4) 1

The addition operator also works as a concatenation operator for

strings. The expression var author = "David" + " " + "Brooks";
makes perfect sense to JavaScript and will give variable author the
expected value of "David Brooks". Note that the expression "David" +
"Brooks" will produce the result "DavidBrooks".

When JavaScript interprets an expression, it scans the expression
from left to right one or more times. Operations implied by the presence
of operators are evaluated according to precedence rules. Fortunately,
these rules are the same ones that apply in algebraic expressions. Suppose
a = 3, b = 4, and c = 5. What is the value of x in the algebraic expression x =
a + bc? Based on precedence rules, multiplication and division operations
are carried out before addition and subtraction. So, x = 3 + 4·5 = 3 + 20 = 23.
That is, a multiplication operation has precedence over an addition
operation, so the addition operation is delayed until after the multiplica-
tion is performed, even though the addition operator is to the left of the

82 4. Fundamentals of the JavaScript Language

multiplication operator. Parentheses are required to alter the precedence
rules: x = (3 + 4)·5 = 35.

The same rules apply in JavaScript. As indicated in Table 4.3,
multiplication and division (including the modulus operation) take
precedence over addition and subtraction. Thus, in the following code,

var a=3,b=4,c=5;
var x,y;
x=a+b*c;
y=(a+b)*c;

the variable x has a value of 23. In the fourth statement, parentheses
are used to override the natural order in which operations are evaluated,
so y has a value of 35. The expression is evaluated from the innermost set
of parentheses outward, so the a+b operation is performed before the
multiplication by c.

4.5.3 The Assignment Operator

The JavaScript assignment operator is the symbol =. Thus, the JavaScript
statement x=a+b; looks very much like the algebraic equation x = a + b.
However, they are not at all the same thing! In programming, the
assignment operator has a completely different meaning from the
symbolic equality implied by the algebraic use of the = sign. In algebra,
the equation x = a + b defines a symbolic relationship among a, b, and x;
whatever their values, x must be equal to the sum of a and b. Given values
for a and b, you can determine the value of x. Given the values of x and a,
you can solve for the value of b: b = x – a. Note also that a + b = x is
algebraically equivalent to x = a + b. In programming,

The meaning of the assignment operator is: “Evaluate the expression
on the right side of the assignment operator and assign the result to
the identifier on the left side of the assignment operator.”

For the statement x=a+b;, the specific meaning is “Assume that a and b
have been given actual (often, but not always, numerical) values.

With this definition of the assignment operator, it is clear that the
JavaScript statement a+b=x; makes no sense, and will generate a syntax
error. Why? Because:

Calculate their sum and assign the result to the identifier x.”

4.5 Tokens, Operators, Expressions, and Statements 83

Only an identifier can appear on the left side of the assignment
operator.

Finally, note that the algebraic expression x = x + 1 makes no

sense at all because it is not possible for x to be equal itself plus 1.
However, the JavaScript statement x=x+1; makes perfect sense. It means
“Add 1 to the current value of x and then replace the value of x with this
new value.” Thus, as a result of executing these statements:

var x=5.5;
x=x+1;

x will have a value of 6.5.

It is sometimes difficult for beginning programmers to remember
that an assignment statement is not the same thing as an algebraic
equation. Although JavaScript allows you to represent data containers
symbolically through the use of identifiers, the language does not
understand the concepts of algebra. When JavaScript sees an assignment
operator, all it knows how to do is evaluate the expression on the right
side of the operator and assign that result to the identifier on the left side
of the expression. In doing the expression evaluation, it assumes that
every identifier has already been assigned an actual, and not just a
symbolic, value.

As a result of how the assignment operator works, a general rule
about assignment statements is:

An identifier should never appear on the right side of an assignment
operator unless it has previously been assigned an appropriate value.

Identifiers that do not follow this rule are called uninitialized variables.
They are often given a value of 0 by default, but you should never violate
the rule based on this assumption.

4.5.4 Shorthand Arithmetic/Assignment Operators

Table 4.4 shows some shorthand operators for combining arithmetic
operations and assignments. They are popular among programmers
because they are easy to write quickly, but their use is never actually
required.

The increment operator (++) adds 1 to the value of the variable to
which it is applied, and the decrement operator (--) subtracts 1. These

84 4. Fundamentals of the JavaScript Language

operators are commonly used in looping structures, as discussed later in
this chapter.

Table 4.4. Shorthand arithmetic/assignment operators

Operator Implementation Interpretation
+= x+=y; X=x+y;
-= x-=y; X=x-y;
= x=y; X=x*y;
/= x/=y; X=x/y;
%= x%=y; X=x%y;
++ x++; or ++x; X=x+1;
-- y--; or --y; X=x-1;

As shown in Table 4.4, you can apply these operators either

before the variable name (pre-increment or pre-decrement) or after (post-
increment or post-decrement). This choice can lead to some unexpected
results. Consider Document 4.2.

Document 4.2 (incrementDecrement.htm)

<html>
<head>
<title>Increment/decrement operators</title>
<script>
 var x=3,y;
 y=(x++)+3;
 document.write(“post-increment: y=“+y+”
“);
 document.write(“x=“+x+”
“);
 x=3;
 y=(++x)+3;
 document.write(“pre-increment: y=“+y+”
“);
 document.write(“x=“+x+”
“);
</script>
</head>
<body>
</body>
</html>

In the post-increment case, the value of x is incremented after the
expression is evaluated to provide a value for y. In the pre-increment case,
the value of x is incremented before the value of y is calculated. There
would be a similar result for the decrement operator. For the most part, you
should avoid combining the increment/decrement operators with other

4.6 The JavaScript Math Object 85

operations in a single expression. Furthermore, do not apply both pre- and
post-operators at the same time (that is, do not write ++x++; or --x--;)
and do not apply these operators to the same variable more than once in
an expression.

4.6 The JavaScript Math Object

In order for a programming language to be useful for scientific and
engineering calculations, it has to have not only basic arithmetic
operators, but also the ability to carry out other basic mathematics
operations, such as you might find on a scientific calculator. In JavaScript,
these operations are packaged as methods in the Math object, which also
has properties that provide some useful mathematical values, such as π.
The methods implement mathematical functions, such as trigonometric
functions. With the single exception noted below, the methods have one
or two real-number arguments and always return a real-number result,
even when that result is a whole number that looks like an integer. Some
methods and properties of the Math object are summarized in Table 4.5.

These methods must be used appropriately in order to produce
meaningful results. For example, it makes no sense (at least in real-
number mathematics) to ask Math.sqrt() to calculate the square root of
a negative number. Fortunately or unfortunately, depending on your point
of view, JavaScript is very forgiving about such abuses. It will return a
“value” of NaN if you ask it to do an inappropriate calculation, but it will
not describe the problem.

Trigonometric and inverse trigonometric functions always work
in radians, not degrees. So Math.sin(30); will calculate the sine of 30
radians, not 30 degrees. This is an easy error to make, and it will not
produce an error message because the requested calculation does not
represent a problem from JavaScript’s point of view. To convert from
degrees to radians, multiply degrees by π/180.

When functions are called with very large or very small
arguments, or when they should produce answers that are 0 (as in the sine
of 0º or 180º) or approaching infinity (as in the tangent of 90º, problems
can arise because of the imprecision inherent in real-number calculations.
For example, Math.sin(Math.PI); will produce a value 1.2246e-16
rather than 0. (Try it and see.)

86 4. Fundamentals of the JavaScript Language

Table 4.5. Some properties and methods of the JavaScript Math object

Property Description
Math.E Base of the natural logarithm, e, 2.71828
Math.LN2 Natural logarithm of 2, 0.693147
Math.LN10 Natural logarithm of 10, 2.302585
Math.LOG2E Log to the base 2 of e, 1.442695
Math.LOG10E Log to the base 10 of e, 0.434294
Math.PI π, 3.1415927
Math.SQRT1_2 Square root of ½, 0.7071067
Math.SQRT2 Square root of 2, 1.4142136
Method Returns
Math.abs(x) Absolute value of x
Math.acos(x) Arc cosine of x, "π, for –1 ≤ x ≤ 1
Math.asin(x) Arc sine of x, "π/2, for –1 ≤ x ≤ 1

Math.atan(x) Arc tangent of x, "π/2, for –4 < x < 4 (compare
with Math.atan2(y,x))

Math.atan2(y,x)
Arc tangent of angle between x-axis and the
point (x,y), measured counterclockwise (com-
pare with Math.atan(x))

Math.ceil(x) Smallest integer greater than or equal to x
Math.cos(x) Cosine of x, "1
Math.exp(x) e to the x power (ex)
Math.floor(x) Greatest integer less than or equal to x
Math.log(x) Natural (base e) logarithm of x, x > 0
Math.max(x,y) Greater of x or y
Math.min(x,y) Lesser of x or y
Math.pow(x,y) x to the y power (xy)
Math.random() Random real number in the range [0,1]
Math.round(x) x rounded to the nearest integer
Math.sin(x) Sine of x
Math.sqrt(x) Square root of x
Math.tan(x) Tangent of x, "4

Despite the fact that “log” is often used to denote base 10

logarithms, with “ln” used for base e logarithms, the Math.log() object
supports only natural (base e) logarithms and uses log rather than ln.
Logarithms to some other base n can be calculated as

logn(x) = loge(x)/loge(n)

4.6 The JavaScript Math Object 87

Base 10 logarithms are often used in engineering calculations. So,
a JavaScript expression to calculate the base 10 logarithm of a variable x
is

Math.log(x)/Math.log(10);

or, using the Math.LN10 property,

Math.log(x)/Math.LN10;

The Math object methods mostly work just as you would expect.
However, random() (the parentheses are required even though there is
no calling argument) deserves a closer look. As is true for random
number generators in all programming languages, JavaScript’s
random() method is really only a “pseudorandom” number generator.
It relies on an algorithm that follows a pre-determined path whenever
the method is used. The randomness results from “seeding” the
algorithm with a starting value based on a value read from your
computer system’s internal clock. For all practical purposes, this “seed”
value is not predictable, so it should allow generation of a sequence of
numbers that appears to be random.

A call to an algorithm-driven random number generator such as
Math.random() should generate a real number x randomly located
within the interval 0 ≤ x < 1. (That is, it is possible that x might be exactly
0, but not exactly 1.) This range can be expressed mathematically as [0,1).
Repeated calls to Math.random()*n should produce real numbers
uniformly distributed over the interval [0,n). However, practical
applications of random numbers are more likely to require uniformly
distributed integers over a specified range.

Caution is required when converting uniformly distributed real
numbers to uniformly distributed integers. Some sources suggest

Math.round(Math.random*n+1) //Not a good idea!

This will produce integers in the range [1,n], but those integers will not be
uniformly distributed!2 One of the Chapter 4 exercises explores this problem

2 Even JavaScript: The Complete Reference, the volume cited in Chapter 1,

makes this mistake.

88 4. Fundamentals of the JavaScript Language

in more detail. See Document 4.3 for an appropriate approach to generat-
ing uniformly distributed integers.

Whenever a script contains many references to the Math object’s
properties and methods, it is convenient to use the with keyword. Within
a with statement block, references to properties and methods do not have
to be prefixed with the object name and dot operator.

with (Math) {
 {statements that refer to properties and/or methods of the Math
 object}
 var x=sin(.197);
}

Finally, it is interesting to note that you can create your own
extensions to the Math object; for example, a method that correctly returns
the value of an angle expressed in degrees rather than radians. These
extensions exist only for the document in which they are defined, but you
can save your own library of extensions, which can then be pasted into
any script. For more information, see the exercises for Chapter 6.

Document 4.3 illustrates the use of some Math object methods.
The for statement block is discussed later in this chapter. For now, its
purpose should be clear from the output:

Document 4.3 (mathFunctions2.htm)

<html>
<head>
 <title>Demonstration of the Math object.</title>
<script language="javascript" type="text/javascript">
 for (var i=1; i<=10; i++)
 with (Math) {
 var x=floor(100*(random()%1))+1;
 document.write(x+” “+sqrt(x)+” “+pow(x,3)+”
“);
 }
</script>
</head>
<body>
</body>
</html>

This code will generate integer
values of x in the range [1,100]. Why
write Math.random()%1 rather than just
Math.random()? If the random number

 89

generator happens to produce a value of exactly 1, the modulus operation
replaces it with 0, because 1%1 equals 0. Any other number in the range
[0,1) is unchanged by the modulus operation.3

The output from Document 4.3 illustrates an interesting point:
Even though JavaScript does not have a data type for integers, it
nonetheless knows how to display whole numbers not as real numbers
with 0’s to the right of a decimal point, but as integers. On the other hand,
real numbers that are not whole numbers are typically displayed with 15
digits to the right of the decimal point! This is a consequence of how
JavaScript stores numbers internally, but it is hardly ever desirable or
meaningful to display this many digits.

Languages such as C/C++ have formatting options to gain more
control over the appearance of output, but JavaScript provides only
limited options. One solution makes use of the Math.round() method. If
the statement (from Document 4.3)

document.write(x+” “+sqrt(x)+” “+pow(x,3)+”
“);

is replaced with

document.write(x+” “+round(sqrt(x)*100)/100+” “+
 pow(x,3)+”
“);

the output will be changed as shown, with only two digits
to the right of the decimal point. Other values can be sub-
stituted for 100, as appropriate. The output is not simply
truncated to the selected number of digits, but rounded
appropriately, just as you would round numbers by hand.
That is, if you wish to display the value of π with four
digits to the right of the decimal point, both you and
JavaScript would display 3.1415927 as 3.1416.

A better solution makes use of the fact that JavaScript numbers
are objects, with properties and methods. Some code that makes use of the
toFixed() method for number objects would be as follows:

var x=2,n=3.3,z=3.777777;
document.write(x.toFixed(3)+”
“);
document.write(n.toFixed(3)+”
“);
document.write(z.toFixed(5)+”
“);

3 I have seen some online references claiming that some implementations of
Math.random() might, in fact, occasionally produce a value exactly equal to 1.

4.6 The JavaScript Math Object

90 4. Fundamentals of the JavaScript Language

/*
 This statement generates a syntax error.
 document.write(2.toFixed(3)+”
“);
 but these work.
*/
document.write((7).toFixed(2)+”
“);
document.write(13..toFixed(2)+”
“);

The displayed results are:

2.000
3.300
3.77778
7.00
13.00

Note that you can use toFixed() to retain 0’s to the right of the decimal
point even for whole numbers, which you cannot do when you use
Math.round(). Thus, toFixed() is probably the best way to exert
some control over the appearance of JavaScript output.

4.7 Comparison Operators and Decision-Making
Structures

4.7.1 Relational and Logical Operators

As noted at the beginning of this chapter, a programming language should
be able to make decisions based on comparing values. JavaScript provides
a set of operators for comparing values and a syntax for taking actions
based on the results of comparisons. Table 4.6 summarizes JavaScript’s
relational and logical operators.

Some of these operators are familiar from mathematics. When
two characters are required, it is because some mathematical symbols are
not standard keyboard characters.

4.7.2 The if Construct (Branching Structures)

Branching structures are based on a translation into programming syntax of
spoken-language statements such as: “If x is greater than y, then let z = 10,
otherwise let z = 0” or “If today is Tuesday, I should be in class.” Translating
such statements into relational and logical tests makes it possible to build
decision-making capabilities into a programming language.

4.7 Comparison Operators and Decision-Making Structures 91

Table 4.6. Relational and logical operators

Opera-
tor

Interpreta-
tion

Math
Sym-
bol

Prece-
dence

Example Value

Relational
< Less than < 2 -3.3<0 true
> Greater than > 2 17.7>17.5 true

>=
Greater
than or
equal to

≥ 2 17.7>=17.7 true

<= Less than or
equal to ≤ 2 17.6<=17.7 true

==

Equal to,
allowing for
type con-
version

= 3 9=="9" true

===
Equal to, no
type con-
version

= 3 9==="9"

"a"==="a"
false
true

!=

Not equal
to, allowing
for type
conversion

≠ 3 9!="8"
9!="9"

true
false

!==
Not equal
to, no type
conversion

≠ 3 9!=="9" true

Logical
&& AND 4 (x==3)&&(y

<0)

|| OR 5 (x==3)||(z
==4)

! NOT 1* !(x==3)

* Higher precedence than arithmetic operators.

JavaScript syntax is close to the spoken language, but of course it
follows strict syntax rules. A generic outline would be as follows:

if ({an expression. If true, statements are executed})
{
 {statements here}

92 4. Fundamentals of the JavaScript Language

}
// optionally
else if ({an expression. If true, statements are executed})
{
 {statements here}
}
// optionally, more else if statements

// optionally
else
{
 {statements here}
}

The syntax requires only the if statement. The “then” word that
you might use in conversation is implied—there is no then keyword in
JavaScript. The expressions to be evaluated must be enclosed in
parentheses. The else if’s and else’s are optional. The curly brackets
are required to form a statement block whenever there is more than one
statement for each branch.

If you consider an if structure as defining branches in a road that
eventually rejoin at a main road, the minimum choice is a road with no
branches, with the option to continue along the road toward your
destination or to bypass the road completely.

With multiple possible branches, it is important to understand that

Only the first branch of an if statement for which the expression
evaluates as true will be taken.

To use the road analogy, once you select a road, you take only
that road and no other.

A B

A B

 93

This principle is illustrated in Document 4.4, which assigns a
letter grade based on a 90/80/70/60 grading system. Suppose the
numerical grade is 83. This is less than 90, so the first branch is not
executed. However, 83 is greater than or equal to 80, so a letter grade of B
is assigned. But 83 is also greater than or equal to 70. Does this mean that
the letter grade is now reassigned to a C, etc.? No, because only the first
true branch (assign a B) is executed; the subsequent branches are ignored.

Document 4.4 (grades.htm)

<html>
<head>
<title>Get letter grade</title>
<script language="javascript" type="text/javascript">
 var grade=
 parseFloat(prompt(“What is your numerical grade?”));
 document.write(“For a numerical grade of “+grade+
 “, your letter grade is “);
 if (grade >= 90) document.write(“A”);
 else if (grade >= 80) document.write(“B”);
 else if (grade >= 70) document.write(“C”);
 else if (grade >= 60) document.write(“D”);
 else document.write(“F”);
 document.write(“.”);
</script>
</head>
<body>
</body>
</html>

Note how identifier grade is given its value, with prompt() and
parseFloat() combined in a single statement; for comparison, look
again at Document 4.1. This script will actually work without applying
parseFloat() because comparisons such as (grade >= 90) will
apply an appropriate type conversion. However, neglecting to apply the
parseFloat() requires JavaScript to compare “apples and oranges,” and
should be avoided both as a matter of good programming style and to
prevent possible unforeseen problems in other circumstances.

Document 4.5 is another example of a calculation that uses an if
structure. It calculates income tax when there are two tax rates, one of
which applies to all income up to $50,000 and the other that applies to just
that portion of income that is in excess of $50,000.

4.7 Comparison Operators and Decision-Making Structures

94 4. Fundamentals of the JavaScript Language

Document 4.5 (taxes.htm)

<html>
<head>
<title>Calculate income tax</title>
<script language="javascript" type="text/javascript">
var income=
prompt(“Enter your income (no commas!): $”);
income=parseFloat(income);
var tax,loRate=.17,hiRate=.37;
if (income<=50000.)
 tax=income*loRate;
else
 tax=50000.*loRate+(inco
me-50000.)*hiRate;
document.write(“For an income
of $”+income+”, your tax is
$”+tax.toFixed(2)+”.”);
</script>
</head>
</body>
</html>

For the example output, the tax is ($50,000)(0.17) + ($23,000)(0.37)
= $17,010.00. The toFixed(2) method displays the result with two 0’s to
the right of the decimal point.

When comparisons get more complicated, you must be careful
about how you form logical/relational expressions. Suppose you want
your code to respond to the statement: “If today is Tuesday or Thursday, I
should be in class.” The proper implementation is:

if ((today == "Tuesday") || (today == "Thursday"))

If this expression is rewritten as

(today == "Tuesday" || "Thursday") // don't do it!

it has a value of true if today is "Tuesday" but a value of
"Thursday" (rather than false) if today is "Monday". This is not at
all what you intended!

An alternate version of the original expression, without the two
inner sets of parentheses, is

 95

// poor style!
(today == "Tuesday" || today == "Thursday”)

This will be interpreted correctly, but it depends on the fact that the equal-
ity operator has precedence over the OR operator. In cases like this, the
use of “extra” parentheses, as in

((today == "Tuesday") || (today == "Thursday"))

is better programming style. It makes the order in which you wish the op-
erations to be performed clear and also makes it unnecessary to memorize
the precedence rules for relational and logical operators.
 Finally, the expression

// don't do it!
(today = "Tuesday") || (today = "Thursday")

may look all right but, again, it is not at all what you intended because the
equality operator has been replaced with an assignment operator. The ex-
pression has a value of "Thursday" rather than true.

Using an assignment operator (=) when you intend to use an equality
operator (==) is a common programming mistake that is very hard to
pinpoint because it does not generate a JavaScript error. Be careful!

4.7.3 The switch Construct

There is one more type of branching construct that is useful for certain
kinds of comparisons. Suppose we would like to write code that would
tell a user how many days there are in a particular month.

Document 4.6 (daysInMonth.htm)

<html>
<head>
<title>Days in Month</title>
<script language="javascript" type="text/javascript">
var month=prompt(“Give month (1-12): “);
switch (month) {
 case “1”:
 case “3”:
 case “5”:
 case “7”:

4.7 Comparison Operators and Decision-Making Structures

96 4. Fundamentals of the JavaScript Language

 case “8”:
 case “10”:
 case “12”:
 alert(“There are 31 days in this month.”); break;
 case “4”:
 case “6”:
 case “9”:
 case “11”:
 alert(“There are 30 days in this month.”); break;
 case “2”:
 alert(“There are either 28 or 29 days in this
 month.”); break;
 default:
 alert(“I do not understand your month entry.”);
}
</script>
</head>
<body>
</body>
</html>

Although this code could be implemented with if syntax, the
switch construct is perhaps a little more clear. The syntax should be
clear from Document 4.6. The switch keyword is followed by an expres-
sion enclosed in parentheses. The possible values of the expression are
enumerated in the case labels that follow. The “numbers” of the months
are given as text because the value from prompt() is text. It will not
work to replace the case statements with, for example, case 5: instead
of case "5": because, unlike comparisons made with the == and other
relational operators, no automatic type conversion will be performed. (See
also the === and !== operators previously defined in Table 4.6.) If the
line month=parseFloat(month); is inserted after the prompt, then the
case values must all be numbers, and not text.

Each case and its value is followed by a colon. The values do not
have to be in any particular order. The default keyword provides an
opportunity to respond to unexpected or other values. The statements fol-
lowing the first case label whose value matches the expression are exe-
cuted. Note that these statements are not enclosed in curly brackets. They
are executed in order and will continue to execute subsequent statements
that apply to other case values unless the break keyword appears as the
last statement in a group of statements to be executed.

4.8 Loop Structures 97

4.8 Loop Structures

The ability to perform repetitive calculations is important in computer
algorithms and is enabled through the use of loop structures. Loops can be
written to execute the same code statements a prescribed number of times,
or they can be written so that loop execution (or termination) is based on
conditions that change while statements in the loop are being executed.
The former situation uses count-controlled loops and the latter uses
conditional loops.

4.8.1 Count-Controlled Loops

Count-controlled loops are managed with the for keyword. The general
syntax for such a loop is

for (counter= {expression giving on initial value of counter};
 {expression giving high (or low) value of counter};
 {expression controlling incrementing (or decrementing) of counter})

The for keyword is followed by three statements in parentheses.
The first statement sets the initial value of a counter. You can give the
identifier name—counter in the above example—using any name you
like. The second expression sets conditions under which the loop should
continue to execute, and the loop continues to execute as long as the value
of the second expression is true. The third expression controls how the
counter is incremented or decremented. It is up to you to make sure that
these three related expressions are consistent and will actually cause the
loop to terminate. For example, the loop

for (i=1; i=12; i+=2)

will never terminate because i will never equal 12. Perhaps you meant to
write the second expression as i<=12;. If so, then the loop will execute
for i=1, 3, 5, 7, 9, and 11.

Now, consider Document 4.7, which displays the integers 0–10,
in order. The counter k is initialized to 1 and is incremented in steps of 1;
the loop executes as long as k is less than 10. Use of the shortcut
incrementing or decrementing operators, as in k++, is very common in
for loops.

98 4. Fundamentals of the JavaScript Language

Document 4.7 (counter2.htm)

<html>
<head>
<title>Counter</title>
<script>
var k;
document.write(“Here’s a simple counter: “+”
“);
for (k=0; k<=10; k++)
 document.write(k+”
“);
</script>
</head>
<body>
</body>
</html>

For this example, a statement block enclosed in
curly brackets following the for loop is not required
because only one statement is executed in the loop.
Document 4.8 shows a version of Document 4.6 that
counts backward from 10.

Document 4.8 (countdown2.htm)

<html>
<head>
 <title>Countdown</title>
<script>
var k;
document.write(“Start launch sequence!”
 +”
“);
for (k=10; k>=0; k--)
 document.write(k+”
“);
document.write(“FIRE!!”);
</script>
</head>
<body>
</body>
</html>

Recall that a for loop was used previously in

Document 4.3. Now would be a good time to look back at
that code and make sure you understand how that loop worked.

4.8 Loop Structures 99

4.8.2 Conditional Loops

It is often the case that conditions under which repetitive calculations will
or will not be executed cannot be determined in advance. Rather,
conditions that control the execution or termination of a loop structure
must be determined by values calculated inside the loop while the script is
running. Such circumstances require conditional loops.

There are two kinds of conditional loops: pre-test loops and post-
test loops. The statements in pre-test loops may or may not be executed at
all, depending on the original values of loop-related variables. Post-test
loops are always executed at least once, and the values of loop-related
variables are tested at the end of the loop. The syntax is slightly different:

pre-test loop:

while ({logical expression}) {
 {statements that result in changing the value of the pre-test logical
 expression}
}

post-test loop:

do {
 {statements that result in changing the value of the post-test logical
 expression}
} while ({logical expression});

Conditional loops can be written either as post- or pre-test loops. The
choice is based on how a problem is stated. Consider the following problem:

A small elevator has a maximum capacity of 500 pounds.
People waiting in line to enter the elevator are weighed. If they
can get on the elevator without exceeding the load limit, they
are allowed to enter. If not, the elevator leaves without trying to
find someone who weighs less than the person currently first in
line. If the elevator is overloaded, it crashes. It is possible that
there might be a large gorilla in line, weighing more than 500
pounds. This gorilla should not be allowed on the elevator under
any circumstances. Write a document that will supply random
weights for people (or gorillas) waiting in line, control access to
the elevator, and stop allowing people (or gorillas) to enter if the
weight limit would be exceeded.

100 4. Fundamentals of the JavaScript Language

One solution to this problem is shown in Document 4.9.

Document 4.9 (gorilla1.htm)

<html>
<head>
<title>The elevator problem (with gorillas).</title>
<script language="javascript" type="text/javascript">
 var totalWeight=0.,limitWeight=500.,maxWeight=550.;
 var newWeight;
 do {
 newWeight=Math.floor(Math.random()*(maxWeight+1));
 if ((totalWeight + newWeight) <= limitWeight) {
 totalWeight += newWeight;
 document.write(
 “New weight = “ + newWeight + “ total weight = “
 +totalWeight + “
“);
 newWeight=0.;
 }
 else
 document.write(“You weigh “ + newWeight +
 “ lb. I’m sorry, but you can’t get on.”);
 } while ((totalWeight + newWeight)
 <= limitWeight);
</script>
</head>
<body>
</body>
</html>

This solution to the problem uses the Math.random() method to

generate random weights between 0 and 500 pounds. The calculations are
done inside a post-test loop. The code is arranged so that the effect of
adding a new person to the elevator is tested before that person is allowed
on the elevator. It is left as an end-of-chapter exercise to rewrite this as a
pre-test loop.

In principle, count-controlled loops can also be written as
conditional loops. (See the end-of-chapter exercises.) However, it is better
programming style to reserve conditional loop structures for problems that
actually need them. Clearly, Document 4.9 is such a problem because
there is no way for the script to determine ahead of time what weights the
Math.random() method will generate. Another example of a problem
that demands a conditional loop calculation is Newton’s algorithm for
finding the square root of a number.

4.8 Loop Structures 101

Given a number n:

1. Make a guess (g) for the square root of n. n/2 is a reasonable
guess.

2. Replace g with (g + n/g)/2.
3. Repeat step 2 until the absolute difference between g2 and n is

smaller than some specified value.

This algorithm is easy to write as a conditional loop. Consider
Document 4.10:

Document 4.10 (newtonSqrt2.htm)

<html>
<head>
<title>Newton's square root algorithm</title>
<script language="javascript" type="text/javascript">
var n=prompt(“Enter a positive number:”);
n=parseFloat(n);
var g=n/2;
do {
 g = (g + n/g)/2.;
} while (Math.abs(g*g-n) > 1e-5);
alert(g+” is the square root of “+n+”.”);
</script>
</head>
<body>
</body>
</html>

This algorithm
is implemented as a
post-test loop because
a reasonable assump-
tion is that the calcula-
tion inside the loop
will always have to be
done at least once. In fact, considering that the initial guess for the
square root of n is n/2, this assumption is true for all values of n except 4.
The statement g=(g+n/g)/2; is an excellent example of how an
assignment operator differs from the same symbol (=) when it is used in
an algebraic context. This kind of “replacement assignment” is often seen
in conditional loops.

102 4. Fundamentals of the JavaScript Language

The terminating condition while (Math.abs(g*g-n)>1e-5);
is important. It is not obvious whether g2 will be larger or smaller than n.
So, you must test the absolute value of g2 – n to ensure that the value
being compared to 10–5 is always positive (because any negative number
is less than +10–5). This algorithm will work for any positive number.
Note that the algorithm does not give exactly 3 as the square root of 9. On
the other hand, if you calculate the square root of 4, it will give exactly 2.
These kinds of discrepancies are a result of how numbers are stored and
how numerical calculations are done. Newton’s square root algorithm is a
numerical approximation, so in general, it will approach the actual answer
(within the specified accuracy), but will not necessarily give the exact
answer for a perfect square. Except for annoying strings of zeros and
digits—to the right of the 3 in the output shown here—these discrepancies
are usually of no practical concern.

4.9 Using JavaScript to Change Values in Form Fields

In an interactive environment, you would like to be able to calculate new
values based on user input. HTML form fields can serve both purposes:
users can enter values and the document can use JavaScript to calculate
new values for other fields. Consider the following problem:

Atmospheric pressure decreases with elevation. When baro-
metric pressure is given in weather reports, it is always refer-
enced to sea level. (Otherwise it would not be possible to draw
weather maps that show the movement of air masses.) Scientists
often need to know the actual barometric pressure at a site,
which is called station pressure. An approximate conversion
from sea level pressure to station pressure is:

Pstation = Psea level – h/9.2

where pressure P is expressed in millibars and elevation h is
expressed in meters.

Document 4.11 shows an HTML document that asks a user to

provide elevation and sea level pressure and then calculates the station
pressure. (Note that U.S. users will have to convert from inches of
mercury to millibars.) This demonstrates several new HTML and JavaScript

4.9 Using JavaScript to Change Values in Form Fields 103

features, some of which are treated in more detail in subsequent
chapters.

Document 4.11 (stationPressure.htm)

<html>
<head>
<title>Convert sea level pressure to station
pressure.</title>

Convert sea level pressure to station pressure
(true pressure)

</head>
<body bgcolor="lightblue">
This application converts sea level pressure to
station pressure.

Station pressure is the actual pressure at an
observer's observing site.

It is always less than or equal to sea level pressure
(unless you are below

sea level).

<form>
Fill in elevation and sea-level pressure:
<input type="text" name="elevation" value="0" size="8"
maxlength="7" /> (m)
<input type="text" name="sea_level_pressure"
value="1013.25" size="8" maxlength="7" /> (mbar)

<input type="button" name="Calculate"
 value="Click here to get station pressure: "
onclick=
"result.value=
 parseFloat(sea_level_pressure.value)-
parseFloat(elevation.value)/9.2; " />
<input type="text" name="result" value="1013.25"
size="8" maxlength="7" /> (mbar)

<input
type="reset"
value="Reset
all fields."
/>
</form>
</body>
</html>

104 4. Fundamentals of the JavaScript Language

The HTML code in Document 4.11 provides default values for all
the fields. The output reproduced here shows the default values, before a
user has entered new values.

Earlier discussions noted that JavaScript script was often, but not
always, contained within a script element in the head of a document.
Based on Document 4.11, it is clear that JavaScript statements can appear
elsewhere in a document, but it is not obvious that this should be so. For
example, you could easily imagine a scenario in which JavaScript
statements were allowed to exist only inside a script element.

The "button" field allows a user to initiate an action by clicking
anywhere on the button. In this case, a click initiates the calculation of
station pressure based on the values currently in the elevation and
sea_level_pressure fields—either the default values or new values
entered by the user. In order to respond to a user moving a mouse over the
button field and clicking, HTML uses an event handler, an important
means of providing interaction between a document and its user. Event
handlers are attributes (of input) whose “values” consist of a set of
JavaScript instructions enclosed in quotes. There are many event handlers,
but in this chapter I use only onclick. (We will return to the topic of
event handlers in Chapter 6.) In Document 4.11, the event to be “handled”
is a click of a mouse when its cursor is somewhere in the screen space
defined by the “Click here to get station pressure” button.

How is informa-
tion transmitted from a
form field to JavaScript?
It will not work to use,
for example, just the
elevation name from
the form field. Why not? Because elevation is just the name of the
field, not its value. Form fields have attributes, such as name, and those
attributes have values, such as elevation. The attributes also have val-
ues, accessed through the “dot notation” shown. One of the values of a
field name is its defaultValue, which is the value originally assigned to
the form field in the HTML document (it could be blank).

Of interest here is value, the text entered in the form field. The
value assigned to the value attribute contains the input for a calculation
and will also receive calculated results in other form fields. Applying the
parseFloat(elevation.value) method translates the text in value
into a numerical value. Using just elevation as the argument for
parseFloat() makes no sense at all from JavaScript’s point of view. It

Form field

{field name}.value

{field name}.defaultvalue

{field name}

4.9 Using JavaScript to Change Values in Form Fields 105

may seem cumbersome to use this notation, but remember that the name
assigned to an HTML form field is simply not the same thing as an
identifier in JavaScript.

Once a mouse is clicked over the button field in Document 4.11,
the JavaScript statement is executed. The application of parseFloat()
to the values in the elevation and sea_level_pressure fields is
required for the same reasons previously discussed for numerical values
entered through prompt(). The distinction between text and numerical
values is easy to forget because JavaScript often applies type conversions
to text values on its own. In Document 4.11, the calculation for the
result field could also be written as

result.value = sea_level_pressure.value –
 elevation.value/9.2; // Bad idea!

However, if you replace the “–” sign with a “+” sign, the numerical
calculation will not be done! (Try it and see.) What is the difference? The
“+” operator has a specific meaning when applied to strings (being
interpreted as a concatenation operator), but the “–” operator does not.
When it encounters a subtraction operator, JavaScript is “smart enough”
to understand that the text values must be converted to numbers in order
to carry out the specified action but, from the point of view of JavaScript,
this is not necessary for the “addition” operator.

Type conversion issues also apply when results of a numerical
operation are assigned to a form field name. Although result.value=…
looks like an assignment of one numerical value to another, the numerical
result must actually be converted back to text before it can be assigned to
result.value. You might think that some kind of “convert this number
to text” method is required, and in some sense it is, but you do not have to
specify this conversion in your script.

Finally, clicking anywhere on the “Reset all fields” button sets all
inputs back to their original values. JavaScript does this by accessing the
defaultValue assigned to each field.

4.10 Another Example

The following is a simple algebraic calculation that is easy to implement:

 For the quadratic equation ax2 + bx + c = 0,

106 4. Fundamentals of the JavaScript Language

find the real roots:

r1 = [–b + (b2 – 4ac)1/2]/2a r2 = [–b – (b2 – 4ac)1/2]/2a

The “a” coefficient must not be 0. If the discriminant
b2 – 4ac = 0, there is only one root. If b2 – 4ac is less than 0,
there are no real roots.

Document 4.12 (quadratic.htm)

<html>
<head>
<title>Solving the Quadratic Equation</title>
</head><body><form>
Enter coefficients for ax² + bx + c = 0:

a = <input type="text" value="1" name="a" />
 (must not be 0)

b = <input type="text" value="2" name="b" />

c = <input type="text" value="-8" name="c" />

click for r1 = <input type="text" value="0" name="r1"
onclick="var A=parseFloat(a.value),B=parseFloat(b.value),
C=parseFloat(c.value);
r1.value=(-B+Math.sqrt(B*B-4.*A*C))/2./A; " />

click for r2 = <input type="text"
value="0" name="r2" onclick="var
A=parseFloat(a.value),B=parseFloat(b.value),
C=parseFloat(c.value);
r2.value=(-B-Math.sqrt(B*B-4.*A*C))/2./A; " />

</form></body></html>

This is a workable solu-
tion to the problem, but it is cer-
tainly not elegant or thorough.
(It is the kind of application you
might write for your own use,
but you might not want to
distribute it globally on the
Web!) For example, no check is performed on the discriminant to see if it
is nonnegative before the Math.sqrt() method is applied. However, if
the discriminant is negative, then JavaScript will simply assign a value of
NaN to the result, which can be interpreted as a message that there are no
real roots.

5. Using Arrays in HTML/JavaScript

Chapter 5 presents an introduction to arrays. It explains how to define
arrays in JavaScript, how to use them, and how to use arrays to interact
with an HTML form.

5.1 Basic Array Properties

The concept of arrays is extremely important in programming, as it
provides a way to organize, access, and manipulate related quantities. It is
important to form a mental model of how arrays are implemented, as
shown in the sketch. It may be helpful to think of a post office analogy.
The post office has a name, equivalent to the name of an array. Within the
post office are numbered mail boxes. The numbers on the boxes
correspond to array “addresses,” called indices. The contents of the boxes
correspond to array elements. In many programming languages, including
JavaScript, the numbering of array boxes always begins at 0 rather than 1.

JavaScript supports an Array object for creating, using, and
manipulating related values. The most important Array method is the

0 1 2 3
Addresses (indices)

(n elements)

Contents (elements)

Array Name

4 5 6 n–1

108 5. Using Arrays in JavaScript

constructor new Array(), which allows us to create arrays. Syntax
possibilities for doing this include:

var Array1 = new Array();
var Array2 = new Array(value_1,value_2,…,value_n);
var Array3 = new Array(10);

The first statement creates an empty array named Array1. The second
statement creates an array of n elements with initial values as provided by
the arguments. The third statement creates an array with 10 elements
whose values are unspecified. In view of the fact that, as we will see, the
declared size of an array is easily overridden, it makes little sense to
declare an array using the syntax of the third statement.

It is not actually necessary to invoke the Array() constructor in
order to create a JavaScript array. Each of these statements will create an
array:

var Array1 = [];
var Array2 = [value_1,value_2,…,value_n];
var Array3 = [,,,,,,,,,];

Note the use of square brackets rather than parentheses in this syntax. The
third statement, with nine commas, implies an empty array of 10
elements. The following syntax might be useful for declaring sparse
(mostly empty) arrays:

var SparseArray = [1.1,,3.3,,,,];

Array elements can also be assigned by using variable names that
already have appropriate values. The statements

var a=3.3, b=5.5, c=7.7;
var A = [a,b,c];

create array A with three elements equal to 3.3, 5.5, and 7.7.

“Square bracket” notation is also used to access the elements of
an array. Individual array elements can appear to either the right or the
left of an assignment operator, with the usual provision that those
elements appearing on the right side of an assignment operator should
already have been given appropriate values. That is, you can use
assignment statements to assign values to undefined array elements or to
change previously assigned values:

5.1 Basic Array Properties 109

var a=3.3,b=5.5, c=7.7;
var A = [a,b,c];
var x,y=17.9,z=13.3;
x=A[0]+A[1]+A[2];
A[2]=y+z;

Array indices can be numbers, as in the above example, or identi-
fiers, such as x[i], or even expressions, such as x[2*j+3], assuming the
identifier or expression represents an integer value. If, for example, j = 2.5,
the index is (2)(2.5) + 3 = 8, and this is an allowed index, assuming there
are at least 9 elements in x. However, if j = 2.3, x[2*j+3] is undefined
because (2)(2.3) + 3 is not a whole number. For the same reason, x[1] is
defined, but x[4/3] is not.

Unlike some other languages, JavaScript allows an array declara-
tion to be overridden later in the script. For the above example, it is easy
to add another element:

A[3]=A[0]+A[1];

The current length of an array is contained in the length property. For
the above example, A.length has a value of 4. The value of length is
equal to the number of declared locations in the array, or to look at it
another way, length gives the value of the next available array index.
This is true regardless of whether any or all of the array elements have
been assigned values. For example, the statements

var A = new Array(5);
alert(A.length);

display a value of 5 despite the fact that the array A is empty.
 An interesting feature of JavaScript arrays is that not all elements
must contain the same kind of data. Document 5.1 gives a simple example
in which array elements are a mixture of numbers and text strings.

Document 5.1 (siteData.htm)

<html>
<head>
<title>Site Names</title>

110 5. Using Arrays in JavaScript

 for (i=0; i<siteID.length; i++)
 document.write(i+”, “+siteID[i]+”
“);
</script>
</head>
<body>
</body>
</html>

Document 5.1 shows how the length property of an array is
used to determine when the for loop should terminate. Remember that
the index value of the last element in an array is always one less than the
total number of elements in the array, which is why the terminating
condition is i<siteID.length and not i<=siteID.length. The latter
choice will not produce an error message, but it is an inappropriate choice
for termination because the element A[A.length] does not exist.

As the number of elements in a JavaScript array can be expanded
while a script is running, the code in Document 5.1 demonstrates the most
reliable way to control a for loop when accessing arrays. Using the
length property is always preferable to using a numeric literal as the
terminating condition.

Note that it is also possible to use a for loop to access just parts
of an array. For example,

for (i=1; i<A.length; i+=2) {
 ...
}

accesses just the even elements of A – the 2nd, 4th, etc. (Starting the loop at
an index of 1 first accesses the 2nd element of A.)

The code

for (i=A.length–1; i>=0; i--) {
 ...
}

accesses the elements of A backward.

Another interesting feature of JavaScript is that you can use the
assignment operator to assign one array name to another, but you have to
be careful about how you interpret this action. Consider the following
modification to Document 5.1:

var siteID = [“Drexel”,3,”home”,101];
var newSite = [];

<script>
 var siteID = [“Drexel”,3,”home”,101];
 var i;

var i;
newSite=siteID;
for (i=0; i<newSite.length; i++)
 alert(newSite[i]);

You could also have written var newSite = siteID;, which
eliminates the need for the separate newSite=siteID; statement. A
reasonable interpretation of such statements might be that newSite is an
independent copy of siteID, stored in different memory locations from
siteID. However, this is not true! The code does not actually create an
independent copy of siteID. Instead, both siteID and newSite are
now identified with the same data in memory because an array name does
not literally represent the contents of the array. Rather, the name simply
identifies a location in memory where the first element of the array is
stored. If you assign one array name to another array name, all that
happens is that the “box” in memory holding the array elements now has
two “name tags” instead of just one. As a result, changes made to
elements in either array will affect elements in the other array as well.

This interpretation of an array name also explains why the first
element of an array is identified by an index of 0 rather than 1. The index
is an offset— the “distance” from the memory location “pointed to” by
the array name. For the very first element in an array, this offset is 0.

5.2 Some Operations on Arrays

There are some Array methods that are useful for the kinds of problems
addressed in this book.

5.2.1 Manipulating Stacks and Queues

Stacks and que-
ues are abstract
data types—
familiar to com-
puter science
students— that
are used to store
and retrieve data
in a particular
way. A stack uses a last-in first-out (LIFO) data storage model. You can
think of it as a stack of dinner plates. You add dinner plates

5.2 Some Operations on Arrays 111

Add to stack.

“new” end “old” end

Remove from stack.

Remove from queue.Add to queue.

112 5. Using Arrays in JavaScript

on the top of the stack, and when you retrieve one, you always take it
from the top. As a result, the last value added on a stack is the first value
retrieved.

A queue uses a first-in first-out (FIFO) data storage model, which
operates like a queue (a line, in American English) of people waiting. A
new person joins the line at the end, and people leave according to who
has been in line the longest. Thus, a value removed from a queue is
always the “oldest” value.

JavaScript arrays provide a very friendly environment for
implementing stacks and queues because arrays can be resized
dynamically while a script is running. However, the methods shown here
for operating on stacks and queues may not work in all browsers. For
example, they do not work in the internal browser supplied with the
AceHTML freeware that I have used extensively for developing the code
in this book.1 You will just have to try the code to see if it works with
your browser.

The push() and pop() methods are used for managing stacks
and queues. push() adds (“pushes”) the specified arguments to the end
of the target array (the “top” of the stack), in order, as you would for
either a stack or a queue. The length property is automatically updated.
The pop() method (no calling arguments) removes (“pops”) the last
(most recent) element from the array, returns the value of that element,
and decreases length by 1, as you would for a stack.

The shift() and unshift() methods are similar to push()
and pop(), except that they operate from the front (index 0) of an array.
shift() (no arguments) removes the first element from the array (as you
would for a queue), returns the value of that element, shifts the remaining
elements down one position, and decreases length by 1. The unshift()
method shifts current array elements up one position for each argument,
inserts its arguments in order at the beginning of the array, and increases
length by 1 for each argument. This action would not be used with
either a stack or queue. The use of these methods might seem backward
because unshift() adds elements and shift() removes them.

To summarize:

• For a queue: use push() to add a new value at the end of the queue and
shift() to remove the “oldest” value (the value at index 0).

1 You can specify an external browser to use from within AceHTML, to replace

its internal browser.

• For a stack: use push() to add a new value to the top of the stack and
pop() to remove a value from the top of the stack.

Documents 5.2 illustrates how to use these methods to treat an

array first as a stack and then as a queue.

Document 5.2 (stacksAndQueues.htm)

<html>
<head>
<title>Stacks and Queues</title>
<script language="javascript" type="text/javascript">
 var a=[1,3,5,7], i;
// Treat the array like a stack.
 document.write(“STACK:” + a + “ length of a = “ +
a.length+”
“);
 a.push(11,12,13);
 document.write(a + “ length of a = “ + a.length
 +”
“);
 for (i=1; i<=3; i++) {
 a.pop();
 document.write(a + “ length of a = “ +
 a.length+”
“);
 }
// Treat the array like a queue.
document.write(“QUEUE:” + a + “ length of a = “ +
a.length+”
“);
 a.push(11,12,13);
 document.write(a + “ length of a = “ + a.length
 +”
“);
 for (i=1; i<=3; i++) {
 a.shift();
 document.write(a + “ length of a = “ + a.length
 +”
“);
 }
</script>
</head>
<body></body>
</html>

Note the use of an entire array
name in the document.write() para-
meter list. This automatically displays all
the elements of the array, separated by
commas.

5.2 Some Operations on Arrays 113

114 5. Using Arrays in JavaScript

5.2.2 Sorting

Sorting array elements in ascending or descending order is a fundamental
computing task. However, it can be challenging to write efficient sorting
algorithms. (Understanding and developing sorting algorithms is a
standard topic in traditional programming courses.) Fortunately, JavaScript
has an Array method, sort(), that will operate on arrays without much
work on your part. Document 5.3 shows how to use this method to sort an
array in ascending order. Unfortunately, as you will see, this code does not
produce the expected result!

Document 5.3 (sort.htm)

Output from an alert() is displayed for and after application of the
sort() method. However, the array is clearly not sorted, as 13 is not less
than 3! It is apparent that the sort() method has performed a “lexical”
sort based on the order of characters in the ASCII character sequence even
when the characters represent numbers; the character “1” comes before
the character “3” in this sequence in the same sense that “a” comes before
“c” in the dictionary, and therefore, “ac” comes before “c.” This result
would be easier to understand if the values from the array came from a
prompt() or from the input fields of a form, in which case it has already

<html>
<head>
<title>Sorting Arrays</title>
<script language="javascript" type="text/javascript">
var a=[7,5,13,3];
document.write(a + " length of a = " + a.length+"
");
a.sort();
document.write(a + " length of a = " + a.length+"
");
</script>
</head>
 <body>
</body>
</html>

5.3 Creating Two-Dimensional Arrays 115

been demonstrated that “numbers” are treated like strings of characters.
However, for sorting arrays of numbers, this result is clearly a disaster!

The sort() method can cause problems even with text. If, for
example, you replace the array declaration with

var a=["zena","David","apple","pie"];

the result is still probably not
what you intended. Uppercase
letters come before lowercase
letters in the ASCII sequence, so “David” is still “less than” “apple.”

The behavior of the sort() method constitutes a serious
implementation problem. If you are sorting just text, you could consider
using the toUpperCase() or toLowerCase() methods to convert all of
the letters to either uppercase or lowercase letters prior to applying the
sort() method, but this is not a very satisfying solution in general. A
more comprehensive solution is to supply the sort() method with code
for deciding whether one item is larger than, smaller than, or equal to
another item in an array. This solution is addressed in Chapter 6.

5.3 Creating Two-Dimensional Arrays

Document 5.1 showed how to store the name (or ID) of a site (perhaps an
observing site for collecting data) in an array. In this example, only a
single value—the site identification—was stored in the array. It would be
useful to have an array that would store multiple pieces of information
about each site—perhaps its ID, longitude, latitude, and elevation. Table 5.1
gives some sample data.

Table 5.1. Site information to be stored in an array

Site ID Latitude Longitude Elevation (m)
Drexel 39.955 –75.188 10
Home 40.178 –75.333 140
North Carolina 35.452 –81.022 246
Argentina –34.617 –58.367 30
Netherlands 52.382 4.933 –1

A logical way to store these data is in some array equivalent of a

table. One index could refer to the row and another to the column.

116 5. Using Arrays in JavaScript

One way to do this, which is well-suited to JavaScript’s capabilities, is to
number the rows and to refer to the columns by name. The row numbering
would then start at 0, followed by row 1 and the column Longitude would
refer to the value –75.33 in Table 5.1.

Document 5.4 shows how to represent the data from Table 5.1 in
an array with numbered rows and named columns.

Document 5.4 (siteData3.htm)

This code will make more

sense after you read Chapter 6, which deals with JavaScript
functions. Basically, each element of the array siteID is created as an
object with properties, using the new keyword to reference an array
constructor, function IDArray(). This function creates properties for
the elements of siteID, with names that are appropriate for the values
passed as arguments. It is convenient to use the same names both as

<html>
<head>
<title>"Multidimensional" arrays</title>
<script language="javascript" type="text/javascript">
var siteID = new Array();
function IDArray(ID,lat,lon,elev) {
 this.ID=ID;
 this.lat=lat;
 this.lon=lon;
 this.elev=elev;
}
siteID[0]=new IDArray("Drexel",39.955,-75.188,10.);
siteID[1]=new IDArray("home",40.178,-75.333,140.);
siteID[2]=new IDArray("NC",35.452,-81.022,246);
siteID[3]=new IDArray("Argentina",-34.617,-58.37,30.);
siteID[4]=new IDArray("Netherlands",52.382,4.933,-1);
var i;
for (i=0; i<siteID.length; i++) {
 document.write(siteID[i].ID+
 ", "+siteID[i].lat+", "+siteID[i].lon+",
"+siteID[i].elev+"
");
}
</script>
</head>
<body>
</body>
</html>

5.3 Creating Two-Dimensional Arrays 117

“placeholders” for the arguments and for the property names themselves.
However, this is just a convenience. Rewriting function IDArray() as

function IDArray(a,b,c,d) {
 this.ID=a; this.lat=b; this.lon=c; this.elev=d;
 …
}

does not change the results. However, because the property names should
be meaningful names that can easily be understood when they are used
elsewhere in your script it makes sense to name the latitude property lat,
and not something meaningless.

There is another, simpler, way to construct multidimensional
arrays that makes more sense for certain kinds of problems:

Define a 3 × 3 two-dimensional array of integers, with values
1–9, and display the contents row-by-row. The integer values
should be arranged so they form a “magic square,” defined as an n
× n square matrix of integers, with values 1 through n2, each of
which appears once and only once, arranged so that each row and
column and each main diagonal add to the same value. It can be
shown that for a matrix of size n × n, this value is n(n2 + 1)/2. For
a 3 × 3 matrix, the value is 15.

Some JavaScript code for constructing such a matrix, which can be

addressed by row and column indices, would be as shown in Document 5.5:

Document 5.5 (magicSquare.htm)

</body>
</html>

<html>
<head>
<title>magic Square</title>
<script language="javascript" type="text/javascript">
 var a=[[8,1,6],[3,5,7],[4,9,2]];
 var r,c; //alert(a[0].length);
 for (r=0; r<a.length; r++) {
 for (c=0; c<a[0].length; c++)
 document.write(a[r][c]+" ");
 document.write("
");
 }
</script>
</head>
<body>

118 5. Using Arrays in JavaScript

Note how the two-dimensional array is defined in the highlighted

var statement. An array constructor could be used, but it is not necessary.
Each element is itself defined as an array, using square bracket notation as
shown. The number of rows is available from a.length and the number
of columns from a[0].length (or with any other defined index in place
of the 0). The number of rows can be different from the number of
columns. There is no restriction on the content of arrays defined in this
way; as is true for all JavaScript arrays, the elements can contain any
combination of numbers and text. Access to the rows and columns uses
indices within a pair of square brackets, within nested for… loops. The
index identifiers r and c (for “row” and “column”) make sense for this
exercise, but they can be given any name you choose. In principle, it is
possible to extend this code to higher-dimensional arrays, but the code
will quickly become unwieldy!

It is left as a Chapter 6 exercise to write appropriate code for
adding up the rows, columns, and diagonals of this square matrix to
determine whether the integers form a magic square.

5.4. Using Arrays to Access the Contents of Forms

5.4.1 Accessing Values of type="text" Fields

Consider this generic problem: A form stores several columns of data in a
table. You want the last row of the table to hold the sum of each of the
columns. Based on previous material, you can give each form field a
name: r1c1, r2c1, r3c1, etc. Then, you need to add each value:

parseFloat(r1c1.value)+parseFloat(r2c1.value)+ …

This is not a very satisfying solution, if for no other reason than the fact
that large tables require a lot of typing.

Fortunately, there is a more elegant alternative. When you create
an HTML form, all the elements are automatically stored in an array
called elements. You can access the contents of this array just as you
would the contents of any other array. Consider the following very simple
document:

5.4 Using Arrays to Access the Contents of Forms 119

Document 5.6 (formArray.htm)

<html>
<head>
<title>Using the elements[] array to access values in
forms.</title>
</head>
<body>
<form name="myform">
 A[0]<input type="text" value="3" />

 A[1]<input type="text" value="2" />

</form>
<script language="javascript" type="text/javascript">
for(var i=0; i<document.myform.elements.length; i++) {
 document.write(“A[“+i+”] =
“+document.myform.elements[i].value+”
“);
}
</script>
</body>
</html>

First of all, note that these form
fields have not been given names in the
<input /> tags. They could have
names, but the point here is to avoid
having to assign many different field names to items that can be treated as
a unit, under a single name. Not surprisingly, the elements of the
elements array are assigned, starting with index 0, in the order in which
they appear in the form.

Previously, forms themselves were not given names. However, it
is entirely possible that you might wish to have more than one group of
form fields in a document, each of which would have its own elements
array and could be accessed through its own name. Hence, the use of the
name attribute in the form tag in Document 5.6. In this example, the use
of “document” in, for example,

document.myform.elements[i].value;

is optional.

Document 5.7 shows another example of using the elements[]
array to access form fields. With multiple columns, you will have to
implement the for loop appropriately. For example, in a form that should
be treated as two columns (assuming that those values are the first fields

120 5. Using Arrays in JavaScript

in the form), the index values 0, 2, 4, ... will access the left column and 1,
3, 5, ... will access the right column.

Document 5.7 (sumForm.htm)

<html>
<head>
<title>Sum a column of values</title>
</head>
<body>
<form name="sumform">
 <input type="text" value="3.3" />

 <input type="text" value="3.9" />

 <input type="text" value="7.1" />

Here is the sum of all the values.

 <input type="text" name="sum" value="0"
 />

</form>
<script language="javascript" type="text/javascript">
 var sum=0;
 for (var i=0;
i<(sumform.elements.length-1);
i++)
sum+=parseFloat(sumform.
elements[i].value);
sumform.elements[sumform.
elements.length-1].value=sum;
</script>
</body>
</html>

5.4.2 Accessing type="radio" and type="checkbox" Fields

Consider the following fragment from an HTML document:

Employee is punctual:
 Y <input type="radio" name="punctual" value="Y"
 checked />
 N <input type="radio" name="punctual" value="N"
 />

This code defines a type="radio" field with two possible values. If
you look at the elements array associated with the form containing this
fragment, each field will be stored as a separate element in the elements
array. However, what you really want to know is which button in the

5.4 Using Arrays to Access the Contents of Forms 121

"punctual" group has been pressed. Similarly, with a group of
type="checkbox" fields, you want to know which choices are selected.
Conveniently, each group of radio buttons or checkboxes is associated
with its own array. Document 5.8 provides some examples of how to use
arrays to access the contents of radio buttons and checkboxes.

Document 5.8 (buttonAccess.htm)

<html>
<head>
<title>Accessing Radio Buttons and Checkboxes</title>
</head>
<body>
Access contents of form fields...

<form>
Give name: <input type="text" name="Ename" size="15"
value="Mr. Bland" />

Employee is punctual:
Y <input type="radio" name="punctual" value="Y"
 checked />
N <input type="radio" name="punctual" value="N" />

Employee likes these animals:
Dogs <input type="checkbox" name="animals" value="dogs" />
Cats <input type="checkbox" name="animals" value="cats"
 checked />
Boa constrictors <input type="checkbox" name="animals"
 value="boas" checked />

<input type="button"
 value="Check here to examine form contents. "
 onclick="howMany.value=elements.length;
 contents.value=elements[parseFloat(n.value)].value;
 var i;
 if (punctual[0].checked)
 alert(Ename.value+’ is always on time.’);
 else
 alert(Ename.value+’ is always late.’);
 for (i=0; i<animals.length; i++) {
 if (animals[i].checked) alert(Ename.value+
 ‘ likes ‘+animals[i].value);
 };" />

elements: <input type="text" name="howMany"
 value="0" />

Which one (0 to # elements - 1)? <input type="text" name="n"
 value="1" />
Contents: <input type="text" name="contents"
 value="--" />

</form>
</body>
</html>

122 5. Using Arrays in JavaScript

The output shows the screen after the button box has been clicked
and the first alert() box is displayed.

5.5 Hiding the Contents of a JavaScript Script

Basic security might seem to be the most obvious reason to hide part or all
of a script. However, a better reason in the JavaScript context is to make it
easy to modify or update part of a script without disturbing the HTML
document of which it is a part; this is especially useful if the same script is
used in several different HTML documents.

To do this, it is possible to save JavaScript code in a separate file
that is referenced in an HTML document. Note that this does not
overcome the limitation that a script is always loaded into a client
computer when the HTML document containing the script is accessed. All
that actually happens is that the “hidden” file is sent to the client computer
and inserted into the script when the script is executed. Although this file
is not visible when the HTML document source is viewed from a browser,
it is certainly a mistake to assume that this provides any serious security
protection for the hidden file.

Based on the discussion of arrays in the previous section, one
obvious use for a hidden file is to hold data that will be used to build an
array within a script. If these data are stored in a separate file, you can
then keep them up to date by editing just the data file rather than an entire
HTML document. Document 5.7 is a version of Document 5.4 in which
the ID data are stored in a separate file.

Arrays are used to store values in memory and manipulate them
while a program is running. With traditional programming languages, data
are stored in a file that is “loaded” into memory to be read from and
written to when needed. In the same way, a program can create new data
to be stored permanently in a file that exists external to the program itself.

However, this model does not work with HTML/JavaScript. Why
not? Remember that a JavaScript script is loaded into a client computer
when a Web page is accessed. The client computer has access only to the
contents of this script. Hence, it is not possible to access data from a file
that remains behind on the server computer. This limits the usefulness of
JavaScript arrays for accessing large amounts of data stored in a central
location. This restriction applies even when JavaScript is used locally on
your own computer, because JavaScript simply does not provide the tools
for accessing or creating external data files even when they reside
physically on the same computer as the script that is running.

The alternative is to send all the required data along as part of the
script, which is a workable solution for small amounts of data that do not
have to be protected in a secure environment. This solution works for both
online and local applications of JavaScript. In a local environment, it is
even reasonable to store large amounts of data, although there are some
formatting issues for storing data. Unlike other languages, JavaScript
cannot simply “read” data stored in a specified text format. Instead, as
shown in Document 5.9, the data should be stored as part of an array
definition.

Document 5.9 (siteData4.htm)

5.5 Hiding the Contents of a JavaScript Script 123

<html>
<head>
<title>"Multidimensional" arrays</title>
// This file defines the site characteristics.
<script language="javascript" src="site_data.dat">
</script>
<script language="javascript" type="text/javascript">
var i;
for (i=0; i<siteID.length; i++) {
 document.write(siteID[i].ID+
 ", "+siteID[i].lat+", "+siteID[i].lon+",
 "+siteID[i].elev+

"
");
}
</script>
</head>
<body>
</body>
</html>

124 5. Using Arrays in JavaScript

var siteID = new Array();
function IDArray(ID,lat,lon,elev) {
 this.ID=ID;
 this.lat=lat;
 this.lon=lon;
 this.elev=elev;
}
siteID[0]=new IDArray("Drexel",39.955,-75.188,10.);
siteID[1]=new IDArray("home",40.178,-75.333,140.);
siteID[2]=new IDArray("NC",35.452,-81.022,246);
siteID[3]=new
 IDArray("Argentina",-34.617,-58.367,30.);
siteID[4]=new IDArray("Netherlands",52.382,4.933,-1);

The file site_data.dat is referenced within its own script element:

<script language="javascript" src="site_data.dat">
</script>

It is more typical to give such a “hidden” file a .js (for JavaScript)
extension, but it is not required. In this case, the .dat extension seemed
to more accurately reflect the purpose of the file.

The siteData.dat file does not hold just the raw site ID
information. Rather, it holds the information plus all the code required to
define an array holding this information. Although not necessary, it
seemed a convenient approach to minimize the number of separate
<script> … </script> elements required. As JavaScript arrays are
expandable while a script is running, there is no restriction on how many
new sites can be added to the file or, for that matter, on how many sites
can be removed.

5.6 Another Example

The following is a typical problem that involves comparing the contents
of a form field against a set of predetermined values:

Provide a form that asks a user for a password. Check
his/her entry against a list of passwords and provide an
appropriate message depending on whether the password is
valid or not. (It is not necessary to take any action other than
printing an appropriate message.)

Data file siteData.dat for siteData4.htm:

5.6 Another Example 125

Document 5.10 provides a “solution” to this problem, but without
at all addressing the issue of password security. In fact, I chose this
example to serve as a reminder that there is no security associated with
anything sent as part of a JavaScript script! So, this is just a
demonstration of how to search through a list of items to see if a user-
specified item is present, rather than an application you would want to use
to safeguard information.

Document 5.10 (password1.htm)

<html>
<head>
<title>Check a password</title>
<script language="javascript" type="text/javascript">
var PWArray=new Array();
PWArray[0]=“mypass”;
PWArray[1]=“yourpass”;
</script>
</head>
<body>
<form>
Enter your password: <input type="password" name="PW"
value=" "
onchange="var found=false; result.value=‘not OK’;
 for (var i=0; i<PWArray.length; i++)
 if (PW.value == PWArray[i]) {
 found=true;
 result.value=‘OK’;
 } " />

(Tab to or click on this box to check your password.)

<input type="text" name="result"
value="Click to
check password. " />

 </form>
</body>
</html>

6. JavaScript Functions

Chapter 6 introduces the important concepts of functions in programming
and shows how to integrate documents, forms, JavaScript, and functions
to create a complete HTML/JavaScript problem-solving environment.

6.1 The Purpose of Functions in Programming

Functions are defined as units of code that accept input, perform
operations on that input, and return one or more results. The built-in
JavaScript methods discussed in Chapter 4 are examples of functions. For
example, the Math.sin() method accepts a single value as input—an
angle expressed in radians—and returns the sine of that value. User-
defined functions also accept input, often more than one value, and return
a value. They are an important concept in any programming language.
Three reasons to use functions are as follows:

1. Organizing solutions to computational problems

2. Creating reusable code

A problem to be solved on a computer often consists of several
related parts, in which output from one part is used as input to the next
part. Functions provide a mechanism for creating a code structure that
reflects the nature of this kind of problem. By organizing code into a
series of self-contained modules, and by controlling the flow of
information among these modules, the problem can be solved in a logical
fashion, one part at a time. Basically, this is a matter of separating large
problems into smaller and more manageable parts.

Often, identical calculations must be done several times within a
program, but with different values. Functions allow you to write code to
perform the calculations just once, using variable names as “placeholders”
that will represent actual values when the function is used. Once a
function has been written and tested, it can be used in other programs as
well, allowing you to create a library of useful calculations.

128 6. JavaScript Functions

3. Sharing authorship of large programming projects

In general, functions are “called” (or “invoked,” in the same sense
as previously described for object methods) by passing values from a
calling program (or another function) to the function. The function
executes some operations and then returns a result:

In addition to providing a mechanism for modularizing the

solution to a problem, functions play an important role in program design.
The syntax of function implementation forces a programmer to think
carefully about a problem and its solution: “What information is required
to complete this task? What information is provided when the task is
completed? What steps are required to solve the problem? What
information must be provided by the user of a program? Can the problem
be divided into smaller related parts? How does each of the parts relate to
the others? Are the specified inputs and outputs for each part consistent
with the relationships among the parts?” Once these questions are
answered, the structure of a program should be clear. Often, working out
an appropriate function structure is the hardest part of solving a
computational problem.

6.2 Defining JavaScript Functions

Functions are essential for JavaScript programming. In fact, a large
portion of all JavaScript code is written as functions called from HTML
documents. One of JavaScript’s first applications was to use functions to
check values entered in forms. Inappropriate values are flagged and a
warning message is displayed. Forms can be used in conjunction with
functions for many kinds of calculations, as is done throughout this
chapter.

It is important to understand how information is provided to, and
extracted from, a function. The basic model, applicable to JavaScript and
many other languages, is that a function resides in an isolated subset of

Large programming projects often involve more than one person.
When a project is broken down into several smaller tasks, individual
programmers can work independently and then collaborate to assemble
the finished product. Without the separation of tasks made possible by
functions, this kind of collaborative approach would not be practical.

The problem
User
input Task Task Task The solution

6.2 Defining JavaScript Functions 129

computer memory. Communications with the contents of this space are
strictly controlled and limited to specific pathways.

Input to a JavaScript function is controlled through the function’s
parameter list. Output is controlled through a statement starting with the
return keyword. The syntax for a generic function is as follows:

function doSomething(input1,input2,input3,...) {
 var local1,local2,local3,...;
 local1 = {an expression using one or more inputs...};
 local2 =
 {an expression using one or more inputs and (optionally) local1...};
 local3 =
 {an expression using one or more inputs and (optionally) local1
 and local2...};
 {Do some calculations here with some combination of parameters
 and local variables...};
 return {a value};
}

The function keyword is required at the beginning of every
function, and every function must have a name. The naming convention
used in this generic two-word function name, doSomething, is typical
(but not required) in JavaScript: the first word starts in lowercase and the
second and subsequent words in uppercase. Spaces between parts of a
function name are not allowed, but underlines are permitted. So, for
example, you could name the function do_something, but not do
something (because do something is interpreted as two tokens rather
than one). As in all aspects of programming, it will be helpful in your own
work to settle on a function-naming convention and use it consistently.

The parameter list contains the names of one or more input
parameters, separated by commas and enclosed in parentheses. These
names are placeholders for input values passed to the function when it is
called. Rarely, a function will have no values in its parameter list, but
parentheses would still be required.

All the code in a function constitutes a statement block, enclosed
in left and right curly brackets. The opening bracket can appear either at
the end of the function… line or on the next line. Your code will be
more easily readable if you adopt a consistent style of indenting the body
of the code, as shown in the example.

Within the function, one or more local variables can be defined
in statements that begin with the var keyword. Local variables are not

130

actually required for many calculations, but code may be clearer if the
results of intermediate calculations are stored in separate variables. In any
event, the required calculations are done using appropriate combinations
of the input parameters and local variables. The general programming rule
that a variable should never be used until it has first been assigned a value
applies equally to local variables in functions. To put it another way, a
local variable should never appear on the right-hand side of an assignment
operator until it has first appeared on the left.

The result of calculations performed in a function is returned to the
place from which the function was called by using the return keyword in
a statement. Only one return statement can be executed in a function. (A
function can have more than one return statement, perhaps in various
possible branches of an if… construct, but only one of these can actually be
executed.) The value to be returned can also be declared as a local variable:

function doSomething(input1,input2,input3,...) {
 var local1,local2,local3,...,outputName;
 local1 = {an expression using one or more inputs...};
 local2 = {an expression using one or more inputs and
 (optionally) local1...};
 local3 = {an expression using one or more inputs and (optionally)
 local 1 and local2...};
 outputName = {do something with some combination of parameters
 and local variables...};
 return outputName;
}

Here is a diagram of the
JavaScript function model. The box
represents the computer memory set
aside for the function. This space and
the operations carried out within it are
not visible to the rest of a script,
including to other functions within that
script. Access to the function’s memory
space is available along only two paths.
The large arrow represents the input pathway to the function, through its
parameter list. The small arrow represents a single output from the
function, generated as a result of a return statement. The two critical
points are as follows:

 6. JavaScript Functions

6.3 Using JavaScript Functions with HTML Forms 131

The parameter list is a one-way path for input only. Information can
be passed in to the function along this path, but no information passes
out along this path.

The return statement is a one-way path for a single value flowing out
of the function.

It is important to understand that the local variables defined
within a function are invisible to the rest of your script, including to other
functions. This means that you can select local variable names, assign
values, and change those values without regard to what happens in other
functions and elsewhere in a script, even when the same variable name is
used elsewhere.

As is often the case, successful programming requires good
mental pictures of how programming paradigms work. The function
model shown here, including the restricted input/output paths and the
protected nature of locally declared variables, is one of the most important
paradigms in all of programming. It is what makes it possible to separate a
large and complex computational problem into a series of smaller (and
hopefully simpler) problems, linked through a series of function
interfaces. This modularization makes even small scripts easier to write,
and also makes it practical for large programming projects to be written,
tested, and maintained by more than one person.

6.3 Using JavaScript Functions with HTML Forms

In a sense, all the previous material in this book has been directed toward
this section. Why? Because the basic problem-solving model for the
HTML/JavaScript environment is to use JavaScript functions together
with forms in HTML documents.

The function model described in the preceding section would be
very simple except for the fact that, in JavaScript, a value passed to a
function through a parameter list can be one of three distinctly different
things: a value (a character string or number), a form field, or an entire
form. These are not interchangeable, and they all must be treated
differently. In order to explain these differences, consider the simple
problem of calculating the area of a circle. Given a radius r:

area = πr2

132

Recall that prompt() and alert() and document.write()
methods provided an I/O interface for these kinds of calculations in
Chapter 4. Further on in that chapter, some JavaScript calculations were
initiated as a result of using the onclick event handler in a button field.
These approaches were acceptable at the time, but they are too limited to
be good solutions for more complex problems. The following detailed
analysis of several approaches to implementing this simple calculation in
a function may seem tedious and unnecessary because the problem itself
is so simple, but a thorough understanding of the analysis is absolutely
essential to successful JavaScript programming.

6.3.1 Using Numerical Values as Input

A JavaScript function to solve the problem of calculating the area of a
circle is

function getArea(r) {
 return Math.PI*r*r;
}

The parameter r is assumed to be a number representing the radius of a
circle. The calculation is straightforward, using the PI property of the
Math object (Math.PI). There is no exponential operator in JavaScript
(r2 cannot be represented as r^2 as it could in a spreadsheet, for
example), so r is just multiplied by itself.

It seems clear that you should be able to pass a value of the radius
from a form field to getArea(). However, the examples in Chapter 4
provide ample evidence that caution is required! Consider this input
element appearing within a form:

<form>
<input type="text" name="radius" maxlength ="6"
size="6" value="-99" />
...

Recall from Chapter 4 that information entered in form fields is
always stored as text, even when the information is intended to be
considered as numerical, and that the name of the field, radius in this
case, is not the same as the value associated with this field. Thus, passing
radius to getArea will not produce the desired result, nor will
radius.value. Why not? Because radius is only the “value” of the
name attribute, and radius.value is still only a character representation
of the required numerical input.

 6. JavaScript Functions

6.3 Using JavaScript Functions with HTML Forms 133

You should not be surprised to learn that the calling argument to
function getArea() must be parseFloat(radius.value), as
shown in Document 6.1.

Document 6.1 (circle1.htm)

<html>
<head>
 <title>Circle Area (1)</title>
 <body bgcolor="#99ccff">
 <script language="javascript" type="text/javascript">
 function getArea(r) {
 return Math.PI*r*r;
 }
 </script>
</head>
<h3>Circle Area (1)</h3>
<p>
<form>
 Enter radius, then press tab key or click on "area"
 box.

 radius (cm):
 <input type="text" name="radius" size="6" maxlength="7"
 value="-99",
 onblur="area.value=getArea(parseFloat(radius.value));"
 />
 area (cm²):
 <input type="text" name="area" size="6" maxlength="7"
 value="-99" />
</form>
</body>
</html>

The critical line of
code in Document 6.1 is shaded because it initiates the call to getArea()
through the onblur event handler, activated whenever the user of the
form enters a value and then leaves the radius form field either by
pressing the Tab key or by clicking elsewhere on the document. I
summarize this and other event handlers later in this section.

The parameter in the call to getArea() is not just the field name
radius but the radius.value property converted from a text string to a
numerical value by the parseFloat() method. As in some examples
shown in Chapter 4, the numerical result from the call to getArea()
must be assigned to area.value and not just to area. If you try to do
the latter, you will get a JavaScript error message. Again, area.value is

134

actually a text string, not a number, but in order to display the result,
JavaScript will automatically do this type conversion for you.

If you enter something in the radius field that cannot be
interpreted as a number, then radius.value cannot be interpreted as a
number. That means that the area of the circle cannot be calculated, and
the area form field will display as NaN, for “not a number.”

There is another subtlety worth noting about using functions with
forms. Consider the following modification of Document 6.1:

<script language="javascript" type="text/javascript">
// UNACCEPTABLE CHOICE FOR FUNCTION NAME!
 function area(r) {
 return Math.PI*r*r;
 }
</script>
...
<form>
 Enter radius, then press tab key or click on "area"
 box.

 radius (cm):
 <input type="text" name="radius" size="6"
 maxlength="7" value="-99",
 onblur =
"area.value=area(parseFloat(radius.value));" />
 area (cm²):
 <input type="text" name="area" size="6"
 maxlength="7" value="-99" />
...

In this code, the function name, area, is the same as a field name
in the form. Although one could envision a programming environment in
which this conflict could be resolved based on the context, this choice of
names will produce a JavaScript error message and your code will not
work. Therefore,

The names of functions should never be the same as the names of
form input fields.

The original Document 6.1 uses a typical style for naming
functions: choose a prefix for the function name, as in getArea(), that
would be an unlikely choice for an input field name.

 6. JavaScript Functions

6.3 Using JavaScript Functions with HTML Forms 135

6.3.2 Using Field Name value Attributes as Input

It is possible to apply the parseFloat() method inside a function, rather
than in the call to the function. Consider the following modification of
Document 6.1:

Document 6.2 (circle2.htm)

html>
<head>
<title>Circle Area (2)</title>
<body bgcolor="#99ccff">
<script language="javascript" type ="text/javascript">
 function getArea(r) {
 var radius=parseFloat(r);
 return Math.PI*radius*radius;
 }
</script>
</head>
<h3>Circle Area (1)</h3>
<form>
 radius (cm):
 <input type="text" name="radius" size="6"
 maxlength="7" value="-99",
 onblur = "area.value=getArea(radius.value);" />
 area (cm²):
 <input type="text" name="area" size="6"
 maxlength="7" value="-99" />
</form>
</body>

6.3.3 Using Field Names as Input

It is also possible to pass an input attribute (a field name) to a function
like getArea().Consider the modification of Document 6.2 shown below:

Document 6.3 (circle3.htm)

<html>
<head>
<title>Circle Area (3)</title>
<body bgcolor="#99ccff">
<script language="javascript" type ="text/javascript">
 function getArea(r) {
 var radius=parseFloat(r.value);

136

 return Math.PI*radius*radius;
 }
</script>
</head>
<h3>Circle Area (1)</h3>
<form>
 radius (cm):
 <input type="text" name="radius" size="6"
 maxlength="7" value="-99",
 onblur = "area.value=getArea(radius);" />
 area (cm²):
 <input type="text" name="area" size="6"
 maxlength="7" value="-99" />
</form>
</body>
</html>

Note that the calling parameter to getArea() is the form field
name radius. In the function’s parameter list, this field name is r, and r
now “points” in memory to the form field radius. The local variable
name radius, defined in

var radius=parseFloat(r.value);

has a completely different meaning than it does in the HTML form.
Remember that it is a local variable, which is “invisible” to the rest of the
code; it is the translation into a numerical value of the text saved in the
memory location pointed to by r. You may wish to avoid using identical
names in this way, to minimize confusion, but it is done in Document 6.3
to make a specific point about how functions work.

Here, too, if r.value contains characters that cannot be interpreted
as part of a number, the conversion cannot be done and a result of NaN
will be returned.

6.3.4 Using Entire Forms as Input

There is a fourth way to write a function that calculates the area of a
circle. Consider Document 6.4.

Document 6.4 (circle4.htm)

<html>
<head>
<title>Circle Area (4)</title>
<body bgcolor="#99ccff">

 6. JavaScript Functions

6.3 Using JavaScript Functions with HTML Forms 137

<script language="javascript" type ="text/javascript">
 function getArea(f) {
 var r=parseFloat(f.radius.value);
 f.area.value = Math.PI*r*r;
 }
</script>
</head>
<h1>Circle Area (3)</h1><p>
<form>
 Enter radius, then press tab key or click on "area"
box.

 radius (cm):
 <input type="text" name="radius" size="6"
 maxlength="7" value="-99",
 onblur = "getArea(form);" />
 area (cm²):
 <input type="text" name="area" size="6"
 maxlength="7" value="-99" />
</form>
</body>
</html>

In this version of getArea(), the entire form (actually, just
information about where the form is located in computer memory) is
passed to the function through the parameter name f. This name can be
anything reasonable. There is no return statement. How, then, is the
result of the calculation made available to the area form field? The
answer lies in the following two statements:

var r=parseFloat(f.radius.value);
f.area.value = Math.PI*r*r;

The first statement extracts the numerical value of the radius, and the
second modifies not the form parameter itself, but the value property of
one of its fields (also converting the number back to text) Note that this
approach requires that the function be aware of the names of the fields in
the form passed to it as input, which is a major conceptual difference
compared to the three previous approaches. The fact that the form and the
JavaScript function are linked in this way is not a problem for self-
contained documents such as the one being considered. The only
disadvantage is that it may limit the use of the function in other scripts
that may utilize different field names for the same physical quantities.

In the previous discussion of JavaScript’s function model, it was
clear that the parameter list acted as a one-way path for input to be passed

138

to a function, but it could not be used to deliver output. Document 6.4
appears to violate this rule because the output has, in fact, been delivered
back to the form “through” the parameter f. However, this result does not,
in fact, compromise the model. When you pass a “value” to a function,
you are actually passing memory addresses telling the function where
particular parameters are stored. The function is allowed to make use of
information stored in these addresses, but cannot use the addresses
themselves. When the location of a form is passed as a parameter, what
the function can do is modify the contents of fields stored in the form,
which is what is done by the statement

f.area.value = Math.PI*r*r;

It is important to understand that the name f appearing in the
function getArea(form) has nothing to do with names used in the HTML
document. This is a consequence of the “protected” environment created by
a function definition, in which names defined within the function are
invisible to the rest of a document and script. In fact, it would be acceptable
from the point of view of JavaScript to use form as a parameter name,
although this might not be a good choice as a matter of style.

The ability of a function to modify fields within a form is
important because it allows you to circumvent the restriction that a
return statement can return only a single value as output. Suppose you
want to calculate both the area and circumference of a circle. Does this
require two separate functions? No. Consider Document 6.5.

Document 6.5 (circleStuff.htm)

<html>
<head>
<title>Circle Stuff</title>
<script language="javascript" type ="text/javascript">
 function circleStuff(f) {
 var r=parseFloat(f.radius.value);
 f.area.value=Math.PI*r*r;
 f.circumference.value=2.*Math.PI*r;
 }
</script>
</head>
<body bgcolor="#99ccff">
<h1>Circle Stuff</h1>
<form>
 Enter radius, then press tab key or click on "area"

 6. JavaScript Functions

6.3 Using JavaScript Functions with HTML Forms 139

box.

 radius (cm):
 <input type="text" name="radius" size="6"
 maxlength="7" value="-99",
 onblur = "circleStuff(form);" />
 area (cm²):
 <input type="text" name="area" size="6"
 maxlength="7" value="-99" />
 circumference(cm):
 <input type="text" name="circumference" size="6"
 maxlength="7" value="-99" />
</form>
</body>
</html>

Document 6.5 includes an additional form field for the
circumference, calculated in the

 f.circumference.value=2.*Math.PI*radius;

statement in circleStuff(). Both the area and the circumference are
calculated within the function, but no return statement is used.

It is not quite true that a function accepting a form name as a
parameter must know the values of all the <input… /> tag name
attributes. Recall from Chapter 5 that all form fields are available in an
array called elements[] that is automatically created along with a form.
The following modification of the function in Document 6.5, which uses
the elements[] array to access the form fields, will also work:

function circleStuff(f) {
 var r=parseFloat(f.elements[0].value);
 f.elements[1].value=Math.PI*r*r;
 f.elements[2].value=2.*Math.PI*r;
}

In this case, the function must still be aware of the physical
meaning of each form field as well as its position among the other fields.

140

It is important to understand that the significance of Document
6.5 rests on its demonstration of how to use a single function to generate
more than one “output” value, in order to circumvent the requirement that
a function can “return” only a single value.

6.4 Some Global Methods and Event Handlers

6.4.1 Global Methods

This book has already made extensive use of the parseFloat() method.
Table 6.1 lists several methods of the Global object, including
parseFloat().

Table 6.1. Some Global methods for evaluating and converting strings

Global Method Descriptions and Examples

Evaluates string "s" as though it were JavaScript
code. eval("s")
Eval("3+4/5") returns a value of 3.8.
Returns “true” if the argument cannot be inter-
preted as a number, “false” otherwise. isNaN("s")
isNaN("a17") returns a value of true.
Converts a string to a real (floating point) number. parseFloat("s")
parseFloat("17.7") returns a value of 17.7.
Converts a string to an integer number using base
“b” arithmetic. parseInt("s",b)
parseInt("17.7",10)
returns a value of 17.

The last two methods are particularly important because they

provide a mechanism for converting the text values of form fields into
numerical values. The parseInt() method requires additional discussion.
Consider Document 6.6.

Document 6.6 (parseIntBug.htm)

<html>
<head>
<title>parseInt()"bug"</title>
</head>
<body>
<form>

 6. JavaScript Functions

6.4 Some Global Methods and Event Handlers 141

integer value: <input name="x" value="09" />

Click for parseInt("string") result: <input name="x_int"
 onclick="x_int.value=parseInt(x.value); " />

Click for parseInt("string",10) result: <input
name="x_int10"
 onclick="x_int10.value=parseInt(x.value,10);" />

Click for parseFloat("string") result:
 <input name= “x_float”
 onclick=“x_float.value=parseFloat(x.value); “ />
</form>
</body>
</html>

The parseFloat() method produces the expected value, but
parseInt() with a single string argument does not. Why not? The
problem lies in how ParseFloat() interprets numbers. This method can
accept two arguments. The first is the text that is to be converted to an
integer, and the second, described as “optional” in JavaScript
documentation, is the “radix,” or the number base used for the conversion
of the string given as the first argument. When the second argument is
absent, parseInt() tries to determine the appropriate base from the
string itself. Strings of digits beginning with a zero are assumed to be
base-8 (octal) numbers, not base 10! In Document 6.6, an entry of “07”
will not cause a problem because 7 is an allowed digit in a base-8 system.
However, 8 and 9 are not allowed digits in the base-8 system, so
parseInt("09") returns 0 rather than 9! This is a perfect example of
behavior that some might consider a “feature,” but which others might
consider a very annoying bug.1

The behavior of parseInt() is cause for concern because it is
always tempting to ignore “optional” arguments. Consider that a two-digit
format is standard for entering months, days, hours, minutes, degrees, etc.,
and there may be good reasons for treating whole numbers as integers
rather than floating point numbers.2 For example, it is reasonable to
expect users to enter November 8, 2006, as 11/08/2006 rather than

1 I admit to learning about this “feature” only when someone showed me that one

of my own applications gave obviously erroneous results.
2 At least in some programming environments, integers are stored internally in a

different format than floating point numbers, which has implications for mathe-
matical operations carried out on integers.

142

11/8/2006. In this case, a day entered as 08 and converted to an integer
using parseInt() would have a value of 0 (or possibly “not a number”)
rather than 8—a serious error! Hence, parseInt() should always be
called with both arguments. Without exception for the topics addressed in
this book, the second argument should be 10, to force conversion to a
base-10 integer even with one or more leading zeros. (The first exercise
for this chapter suggests another solution, but this is intended just as an
exercise in using String methods, rather than as the preferred solution to
this parseInt() “bug.”)

For the purposes of this book, where the examples are really intended
more for “local” than “global” use, it is probably not worth the effort to check
the validity of all entries in fields that are supposed to be numbers. The
isNaN() method provides a way to do this, but it has some limitations.
Referring to Document 6.6, we can see that isNaN(parseInt(x.value))
would return a value of “false” for the default entry of 09 in the "x" field
(meaning that it is a valid number) even though Document 6.6 makes it clear
that the value returned from parseInt() without the second base argument
is in error. The fact that isNaN(parseInt(x.value)) would return a
value of “true” for an entry of .09 is perhaps not so surprising, because .09 is
not an integer, but it might be a misleading result.

The eval() method listed in Table 6.1 is very powerful, and it is
worth looking online for more information about its use. Document 6.7
shows how to use the eval() method to implement a very simple
calculator that recognizes the four basic arithmetic operators (+, –, *, and /)
and knows how to interpret parentheses. The same approach can also be
used to evaluate much more complicated expressions—basically anything
that can be interpreted as one or more JavaScript statements.

Document 6.7 (calculator.htm)

<html>
<head>
<title>Simple Calculator</title>
</head>
<body>
<form>
 Type expression to be evaluated, using numbers
 and +, -, *, /:
 <input type="text" name="expression" size="30"
 maxlength="30"
 onchange="result.value=eval(expression.value);"
 />
 <input type="text" name="result" size="8"

 6. JavaScript Functions

6.4 Some Global Methods and Event Handlers 143

 maxlength="8" />
</form>
</body>
</html>

6.4.2 Using Event Handlers with Forms and Functions

JavaScript is an event-driven language, meaning that scripts are activated
as a result of events that happen in an HTML form. The onblur event
handler was first used in Document 6.1 and onclick in Chapter 4.
Whenever a user tabs to a form field or clicks on that field with a mouse,
that field is said to be in focus. The onblur event handler initiates
JavaScript activity whenever a document user presses the Tab key to
leave a particular form field or clicks elsewhere on a document. Several
event handlers that can be used in this way are summarized in Table 6.2.
Note the spelling of the names using only lowercase letters. These are the
“official” names, and the convention should be followed even though
spellings using some uppercase letters (e.g., onBlur is common) will be
accepted by case-insensitive HTML.

Table 6.2. Summary of some event handlers used in forms

Event
Handler

Action

onblur Initiates action when a user tabs from a form field or
clicks elsewhere in a document.

onchange Initiates action when a user changes the contents of a
form field.

onclick Initiates action when a user clicks on form input field.

onfocus Initiates action when a user tabs to or clicks on a form
field.

The primary use for these event handlers is to execute code that

will perform operations on field values, including changing those values.

144

6.5 Recursive Functions

There is an important class of calculations that can be implemented with
recursive algorithms. A standard example is the factorial function n!,
which is defined for nonnegative integer values of n and which is equal to
n·(n–1)·(n–2) ... (1). For example, 5! = 5·4·3·2·1 = 120. This function can
be defined as

n! = 1 for n = 1 or n = 0
n! = n·(n – 1)! for n > 1

This is a recursive definition, in which n! is defined in terms of (n – 1)!.

Like many other modern programming languages, JavaScript
supports recursive functions—functions that call themselves. Document
6.8 demonstrates a recursive function that calculates n!.

Document 6.8 (factorial2.htm)

<html>
<title>Calculate n!</title>
<body bgcolor="#99ccff">
<script language="JavaScript" type="text/javascript">

function nFactorial(n) {
 if (n<=1) return 1;
 else return n*nFactorial(n-1);
 }
</script>
</head>
<h1>Calculate n factorial (n!)</h1>
<p>
<form>
 Enter n (a nonnegative integer):
 <input type="text" name="n" size="2" maxlength="3"
value="0"
 onblur="form.factorial.value=
 nFactorial(parseInt(form.n.value));" />
 (Press Tab to get n!.)

 <input type="text" name="factorial" size="10"
 maxlength="11" value="1" />

</form>
</body>
</html>

 6. JavaScript Functions

6.5 Recursive Functions 145

The shaded line in the code contains the critical statement, in
which the function calls itself. For certain mathematical functions, such as
n!, the structure of the recursive function is easy to see from the function’s
mathematical definition. Recursive algorithms always require at least two
branches: one to generate a recursive call and the other to terminate the
function. In Document 6.8, the relationship between the recursive
definition for n! and the code required to evaluate n! should be obvious.
Note that the code does not check to make sure that only nonnegative
integer values of n have been entered as input.

The success of recursive functions depends on the function model
discussed at the beginning of this chapter, in which information flows into
a function through the parameter list. When the function is called with the
current value of n – 1, this value is associated with the parameter n in the
new call. Owing to the way in which the algorithm is written, the local
value of n – 1 will eventually equal 1 (for any value of n originally greater
than 1) and the recursive calls will be terminated. The intermediate values
of the factorial function are stored within the programming environment.
Table 6.3 shows the sequence of events for calculating 4!.

Referring again to our earlier analogy, you can think of each
function call as adding a plate to a stack of plates. The initial call plus the
three recursive calls add a total of four plates to the stack. As a result of
the third recursive call, n = 1 and a value of 1 is returned. Executing a
return statement is equivalent to removing one of the plates.
Subsequently, the three remaining plates are removed as the deferred
multiplications are carried out and a value is returned. When the function
returns control of the script back to the point from which it was initially
called, it is as though all the plates have been removed from the stack.

Table 6.3. Calculating 4! using a recursive algorithm

Local Value
of n Action Value

Returned
n = 4 Initial call Deferred
n = 3 1st recursive call Deferred
n = 2 2nd recursive call Deferred
n = 1 3rd recursive call 1
n = 2 Complete multiplication 2·1 2
n = 3 Complete multiplication 3·2 6
n = 4 Complete multiplication 4·6 24

For more complicated recursive algorithms, it can be difficult to

actually follow the course of the calculations, but fortunately, it is not

146

necessary. As long as the algorithm is properly designed, with a condition
that will eventually terminate the recursive calls, the programming
environment takes care of keeping track of all the intermediate values
generated during the execution of the algorithm.

Another example of a well-known function that is defined
recursively is shown below. The Fibonacci numbers Fn that form the
sequence 1, 1, 2, 3, 5, 8, 13, 21,… are defined for positive integer values
of n as

Fn = 1 if n = 1 or n = 2
Fn = Fn–1 + Fn–2 if n > 2

Document 6.9 shows how simple it is to evaluate this function
using a recursive algorithm.

Document 6.9 (fibonacci.htm)

<html>
<title>Calculate Fibonacci numbers</title>
<body bgcolor="#99ccff">
<script language="JavaScript" type="text/javascript">
 function Fib(n) {
 if (n<=2) return 1;
 else return Fib(n-1)+Fib(n-2);
 }
</script>
</head>
<h1>Calculate the nth Fibonacci number</h1>
<p>
<form>
 Enter n (a positive integer):
 <input type="text" name="n" size="2" maxlength="3"
value="1"
 onblur="FibN.value=Fib(parseInt(n.value));" />
(Press Tab to get nth
 Fibonacci number.)

 <input type="text" name="FibN" size="8"
 maxlength="8" value="1" />
</form>
</body>
</html>

 6. JavaScript Functions

6.5 Recursive Functions 147

This function requires multiple recursive calls, and it is not easy to follow
the sequence of events. However, you do not have to worry about these
details as long as the algorithm is written properly!

Recursive algorithms can also be formulated using count-controlled
or conditional loop structures. However, a recursive formulation is often
much shorter and more direct to implement in code. The famous “Towers
of Hanoi” problem is an excellent example of a problem that is difficult to
solve “directly” but is trivial to solve recursively.

Consider three poles, on one of which are stacked 64 golden
rings. The bottom ring is the largest and the others decrease in
size. The object is to move the 64 rings from one pole to
another, using the remaining pole as a temporary storage place
for rings. There are two rules for moving rings:

1. Only one ring can be moved at a time.
2. A ring can never be placed on top of a smaller ring.

Describe how to move the entire stack of rings from one pole to
another.

It can be shown that it will take 2n – 1 moves to move n rings. For

n = 64, if you could move one ring per second without ever making a
mistake, it would take roughly 100 times the estimated age of the
universe! However, we can develop an algorithm that will work, in
principle, for any number of rings and apply it to a value of n that is small
enough to be practical. For n = 4, it will take 15 moves.

In a conceptual sense, the solution is easy (but perhaps not
obvious). Suppose the poles are labeled A, B, and C. Initially, all the rings
are on A and the goal is to move them all to C. The steps are:

1. Move n – 1 rings from A to B.
2. Move the nth ring from A to C.
3. Move n – 1 rings from B to C.

148

This solution is “conceptual” in the sense that we have not yet
specified how to carry out steps 1 and 3; only step 2 defines a specific
action that can be taken. However, the power of recursive functions
allows us to solve this problem without giving additional specific steps!
Consider Document 6.10.

Document 6.10 (towers.htm)

<html>
<head>
<title></title>
<script language="javascript" type="text/javascript">
 function move(n,start,end,intermediate) {
 if (n > “0”) {
 move(n-1,start,intermediate,end);
 document.write(“move ring “+n+
 “ from “+start+” to “+end+”.
“);
 move(n-1,intermediate,end,start);
 }
 }
 var n=prompt(“Give n:”);
 move(n,”A”,”C”,”B”);
</script>
</head>
<body>
</body>
</html>

Amazingly, this simple “conceptual”
code is all that is required to solve this problem
in the sense that all the steps are explicitly
written out. Do not try this code with large
values of n!

The success of this algorithm depends, once again, on how
parameter lists work—passing information along a “one-way street” into
a function. In principle, you can manually follow the individual values
of the parameters during the recursive calls, but it is hardly worth the
effort. All that is actually required is that the algorithm be stated
appropriately.

 6. JavaScript Functions

6.6 Passing Values from One Document to Another 149

6.6 Passing Values from One Document to Another

Just as it is useful to be able to pass values to functions within an HTML
document, it might be useful to be able to pass values from one document
to another. A typical problem is as follows:

Create a “sign on” page that asks a user for an ID and pass-
word. Check the values provided and, if they are OK, provide
access to a second page. Otherwise, access to the second page
will be denied. The second page will be able to make use of
information about the user that can be accessed through the
user’s ID.

JavaScript is not actually a suitable language for solving this

problem because of the lack of two-way interaction between the client and
the server. This means, essentially, that a list of approved IDs and
passwords must be sent to the client computer—not a great idea! (You can
“hide” this information in a separate file, as described in Chapter 5, but
this is still not a real solution.) Nonetheless, it is still interesting to see
how to pass information from one document to another. Document 6.11
provides a simple example.

Document 6.11a (passID.htm)

<html>
<head>
<title>Get ID and password.</title>
<script language="javascript" type="text/javascript">
 function checkIDPW() {
 var PWinput=login_form.PW.value;
 var IDinput=login_form.ID.value;
 var flag=prompt(“ID = “+IDinput+
 “, PW = “+PWinput+”. OK (y or n)?”);
 if (flag == “y”) return true; else return false;
 }
</script>
</head>
<body>
 <form method="link" action="catchID.htm"
 name="login_form" onsubmit="checkIDPW();">
 ID: <input type="text" name="ID">
 PW: <input type="text" name="PW">

150

 <input type="submit" value="Access protected page.">
</form>
</body>
</html>

Document 6.11b (catchID.htm)

<html>
<head>
<title>Receive ID and password from another
 document.</title>
</head>
<body>1<form name="catchForm">
<input type="hidden" name="info">
</form>
<script language="javascript" type="text/javascript">
catchForm.info.value=window.location;
// alert(window.location);
function getID(str)
{
 theleft=str.indexOf(“=“)+1;
 theright=str.lastIndexOf(“&”);
 return str.substring(theleft,theright);
}
function getPW(str) {
 theleft=str.lastIndexOf(“=“)+1;
 return str.substring(theleft);
}
document.write(“ID is “+getID(catchForm.info.value)+
 “, PW is “+getPW(catchForm.info.value));
</script>
</body>
</html>

Document 6.11a is the “sign on” page. It asks the user for an ID and
password. The form uses method="link" to submit data to another
document—catchID.htm. Since no additional location information is
given, the second document must reside in the same directory (or folder)
as the first one. When the link is made to the second form, the first form
provides a text string that can be accessed as window.location. This
consists of the URL of the first form plus values of all the form fields
defined in the first document. If you know the format of this string, it is
possible to extract the form field values—in this case, an ID and
password.

 6. JavaScript Functions

6.7 Revisiting the JavaScript sort() Method 151

In Document 6.11b, methods of the String object are used to
extract substrings of window.location. By removing the comment
characters from the alert(window.location); statement, you can see
the entire string and how it is formatted.

This code requires that there be no “surprises” in the ID and
password values. Their contents should be restricted to letters and digits.
Other characters may be translated into their hex code representations,
which will complicate their extraction from window.location.
Although it might be possible, in principle, to extract several passed
values, using more values will complicate the code.

Although it was not done in Document 6.11b, the implication of
the code is that you can save the ID and password by assigning them to
the value of a form field in the new document. Then you can use these
values just as you would any value created directly within this
document.

6.7 Revisiting the JavaScript sort() Method

Recall Document 5.3, which introduced JavaScript’s sort() method.
That example demonstrated that the results are browser-dependent and
therefore unreliable. In at least some browsers, sort() treats array
elements that “look” like numbers as though they were characters. Thus,
13 is less than 3 in the same sense that “ac” is less than “c.” To fix that
problem, you have to create a separate function that is passed as a
parameter to the sort() method. This function should accept as input
two values x and y (elements in the array being sorted) and should return a
value of –1, 0, or 1 depending on whether x is less than, equal to, or
greater than y.

In this way, you can provide your own code for comparing values.
For example, you can transform text to actual numbers so that 13 will be
greater than 3. Consider the following modification of Document 5.3:

Document 6.12 (sort2.htm)

<html>
<head>
<title>Sorting Arrays</title>
<script language="javascript" type="text/javascript">
 function compare(x,y) {
 var X=parseFloat(x); Y=parseFloat(y);
 if (X<Y) return -1;
 else if (X==Y) return 0;

152

 else return 1;
 }
 var a=[7,5,13,3];
 var i;
 document.write(a + “ length of a = “ + a.length+”
“);
 a.sort(compare);
 document.write(a + “ length of a = “ + a.length+”
“);
</script>
</head>
<body>
</body>
</html>

The two calls to document.write()
in Document 6.12 show the array before and
after sorting; it is clear that this code works as
expected. Your “compare” function can have
any name you choose, as long as you use it consistently. The general idea is
that, in order to force JavaScript to sort an array correctly, you have to do
appropriate data type conversions in the “compare” function along with type-
appropriate comparisons.

6.8 More Examples

A thorough understanding of how functions and methods work is essential
to using HTML/JavaScript as a reliable problem-solving environment.
As described earlier in Section 6.3, there are several different approaches
to getting information to and from a function. By design, the problem
to be solved in these earlier examples—calculating the area and/or
circumference of a circle—was conceptually trivial. The purpose of the
solutions presented was to provide templates that you can adapt for use in
your own code. When JavaScript code does not work, the reason is often
that a function interface has been implemented incorrectly. Hopefully, the
examples presented in this section will provide some points of reference
for your own code.

Example 6.1

The dewpoint temperature is the temperature at which water
vapor condenses from the atmosphere. It is related to air tem-
perature and relative humidity through the following equations:

 6. JavaScript Functions

6.8 More Examples 153

 a = 17.27
 b = 237.7
 α = aTa/(b + Ta) + ln(RH)
 Tdp = (b + α)/(a – α)

where relative humidity RH is expressed as a decimal fraction
(between 0 and 1) and air and dewpoint temperatures Ta and Tdp
are in degrees Celsius.

Document 6.13 (dewpoint.htm)

<html>
<head>
<title>Dewpoint Calculator</title>
<body bgcolor="#99ccff">
<script language="JavaScript" type="text/javascript">
 function getDewpoint(T,RH) {
 var a=17.27,b=237.7,alpha;
 var temp=parseFloat(T.value);
 var rh=parseFloat(RH.value)/100.;
 alpha=a*temp/(b+temp)+Math.log(rh);
 return Math.round(b*alpha/(a-alpha)*10.)/10.;
 }
</script>
</head>
<h1>Dewpoint Temperature Calculator</h1>
<p>
<form>
<input type="reset" value="Reset" />

Temperature:
<input type="text" name="T" size="5" maxlength="6"
 value="-99" /> °C

Relative Humidity:
<input type="text" name="RH" size="6" maxlength="6"
 value="-99" /> %

<input type="button"
 value= "Click here to get dewpoint temperature
(deg C)."
 onclick="DP.value=getDewpoint(T,RH)" />

Dewpoint Temperature: <input type="text" name="DP"
size="5" maxlength="6" value="-99" /> °C

</p>
</form>
</body>
</html>

154

It is not absolutely necessary to define the local variables a, b,

and alpha in function getDewpoint(), but it makes the conversion
of the equations into JavaScript easier to understand. Note the use of the
toFixed() method to control the display of the result.

Example 6.2

 Given the principal P of a loan, an annual interest rate R in
percent, and a repayment period of n months, the monthly pay-
ment M is given by:

r = R/(100·R) M = (P·r)/[1 – 1/(1 + r)n]

create an HTML document that asks the user to enter P, R, and n
and then calculates and displays the monthly payment.

Document 6.14 (loan.htm)

<html>
<head>
<title>Loan Calculator</title>
<body bgcolor="#99ccff">
<script language="JavaScript" type="text/javascript">
 function getPayment(P,r,n) {
 r=r/100./12.;

 6. JavaScript Functions

6.8 More Examples 155

 var M=P*r/(1.-1./Math.pow(1.+r,n));
 return M.toFixed(2)
 }
</script>
</head>
<h1>Loan Calculator</h1>
<p>
<form>
Principal Amount: $:
<input type="text" name="amount" size="9"
 maxlength="9" value="0" />

Annual rate: %
<input type="text" name="rate" size="6"
 maxlength="6" value="0" />

Number of Months:
<input type="text" name="n" size="3"
 maxlength="3" value="0" />

<input type="button"
 value="Click here to get monthly payment."
 onclick=
 "monthly.value=getPayment(parseFloat(amount.value),
 parseFloat(rate.value),parseInt(n.value,10));" />

Monthly Payment: $
<input type="text" name="monthly" size="9"
 maxlength="9" />
</form>
</body>
</html>

Example 6.3

As noted previously, the first application of JavaScript was to check a
user’s entries in form fields. Consider this problem.

156

Create an application that asks a user to enter a date, using
numerical values, and then calculates the day of the year. The
possibilities for inappropriate entries include entering a month
greater than 12 or a day number that is too large for a particular
month (February 29 in a nonleap year). Prior to doing the day of
the year calculation, JavaScript should check for input errors
and alert the user when it detects a problem.

An algorithm for finding the day of the year n based on the
four-digit year, month, and day is

n = <275m/9> – <(m + 9)/12 > (1 + <(mod(y,4) + 2)/3>) + d – 30

where “<…>” means “the truncated integer value of….” For
example, <11/3> = 3. “mod” is the remainder from integer divi-
sion. For example, mod(11/3) = 2.
 This formula is valid for any year, including leap years,
except for those centurial years that are not evenly divisible by
400. Thus the formula applies to 2000, which is a leap year, but
not to 1900 or 2100, which are not leap years even though they
are evenly divisible by 4.

Start with an outline of the code and the form interface.

 <html>
<head>
<title>Day of Year</title>
<script language="javascript" type="text/javascript">
 function checkLeapYear(y) {
 }
 function checkMonth(m) {
 }
 function checkDay(d) {
 }
 function getDayNumber(m,d,y) {
 }
</script>
</head>
<body>
<form>
 Please enter a date here in mm/dd/yyyy format:

 month (1-12) <input />
 day (1-31, as appropriate) <input />
 year (20xx) <input />

 The day number is <input />

</form>

 6. JavaScript Functions

</body>
</html>

6.8 More Examples 157

It is left as an exercise to complete this code. Here is a hint: you

can make good use of the switch construct to check the input month and
day values.

Example 6.4

In an earlier introduction to creating pull-down menus with the select
tag (see Document 3.4), the options in the list were “hard coded” into the
HTML document using the option tag. It is also possible to let
JavaScript create the menu entries using an array of items. Document 6.15
illustrates how to do this.

Document 6.15 (buildMenu.htm)

<html>
<head>
<title>Build a variable-length pull-down menu</title>
<script language="javascript" type="text/javascript">
 var listItems = new Array();
 listItems[0]="thing1";
 listItems[1]="thing2";
 listItems[2]="thing3";
 listItems[3]="things4";
 listItems[4]="newthing";
 function buildSelect(list,things) {
 var i;//alert(things);
 for (i=0; i<things.length; i++)
 list.options[i]=new Option(things[i],things[i]);
 }
 function getSelected(list) {
 var i;
 for (i=0; i<list.length; i++)
 if (list.options[i].selected)
 return list.options[i].value;
 }
</script>
</head>
<body onload="buildSelect(menuForm.stuff,listItems);" >
<form name="menuForm" >
Here’s the menu:

Click on an item to select it.

<select name="stuff" size="10"
 onchange="listChoice.value=getSelected(stuff);">
</select>

This is the item selected:
<input type="text" name="listChoice" value=" "/>
</form>
</body>
</html>

158

The list of menu items is

created as an array and copied into
the options array associated with
the pull-down list. The options
array is a property of the select
tag (don’t try to change its name)
whose elements contain all the
option tags to be defined within
the select tag. This operation uses
the new Option() constructor for
the options array:

new option identifier = new Option(text to appear in options list,

 text assigned to value attribute);

In Document 6.15, the process of building the pull-down menu
is initiated automatically when the document is loaded on the user’s
computer through the onload event handler appearing in the <body>
tag. The selected item is displayed whenever a choice is made in the
pull-down menu by using the onchange event handler inside the
<select> tag.

The text to be displayed in the pull-down menu can be the same
as the text assigned to the value attribute for the option tag (as it is in
Document 6.15), but it does not have to be the same. If the two input
parameters for the new Option() constructor are different, then you
need two arrays to generate these values, or perhaps a simulated two-
dimensional array, as discussed in Chapter 5.

As Document 6.15 demonstrates, you do not have to “hard code”
any of the option tags within the select tag. You could also just define
the options array elements directly instead of assigning them indirectly
through an additional array of items. The point of using this additional
array is that you can maintain an array of menu options in another file,
which can be pasted into your script as needed. In fact, this array can be a
simulated two-dimensional “data array” that contains many additional
values for each entry into the pull-down menu. After the user selects an
item in the menu, additional form fields can be populated with
information contained in the selected element of the data array.

 6. JavaScript Functions

6.8 More Examples 159

This approach might be worth using for a long list of menu items
in order to make the body of the HTML shorter and easier to read even if
it is a “static” list that does not have to be changed,. Document 6.15
includes a function showing how to determine which item in the list has
been selected. It uses a for… loop rather than a conditional loop because it
is also possible in principle to specify multiple selections in a pull-down
list. (Consult an HTML or JavaScript reference manual for details.)

Glossary entries are highlighted in bold font at their first appearance in
the text. The reference in parentheses gives the chapter and section where
the word or phrase first appears.

ANSI (Preface)
American National Standards Institute, an organization that sets voluntary
standards and definitions in a number of scientific and engineering areas,
including computer programming languages.

array (5.1)
A collection of related elements referenced by a common name and
accessed by indices.

attribute (1.2)
A value used inside an HTML element for the purpose of assigning
properties and values to that element.

branching structure (4.1)
A structure that determines which section of code will be executed, based
on evaluating and comparing values of one or more control variables.

calling argument (1.2)
A value passed to a method or function.

cascading style sheet (2.6)
A format for specifying attributes and values for certain HTML elements
in a way that makes it easy to apply the same attributes and values
throughout a document, or across many documents.

class name (2.6)
As applied to style sheets, a name by which a style definition can invoked
within an element.

client-side application (1.1)
An application that resides on a user’s (client’s) computer without giving
that user access to the host (server-side) computer.

Glossary

162 Glossary

compiled programming language (1.1)
A programming language in which one or more separate applications
translate coded statements into a separate file that can then be used to
execute the program.

conditional loop (4.8)
A loop structure whose operation and termination is governed by values
generated inside the loop while it is executing.

constructor (5.1)
A method used to create new instances of an object.

count-controlled loop (4.8)
A loop structure whose operation and termination is governed by an index
whose beginning and terminating values are specified ahead of time.

data declaration (4.4)
The process by which a variable is given a name and, optionally, assigned
a value.

data type (4.4)
A definition for information stored, accessed, and manipulated in a
specific way.

element (1.1, 5.1)
A construct for creating and controlling content in an HTML document.
In JavaScript, the contents of one entry in an array.

escape sequence (1.2)
A way of displaying characters that are not available on the keyboard or
that would be misinterpreted by HTML if entered directly. For example,
< is the escape sequence for the < symbol, which HTML interprets as
the beginning of a tag if it is entered directly from the keyboard.

event handler (4.9)
An HTML attribute that initiates a response to certain user actions on a
Web page, such as moving a cursor over a particular form field.

field (3.2)
A component of a form that, through an input element, allows user
input, displays the results of calculations, or provides controls over form
processing.

Glossary 163

floating point (3.1)
A method of storing real numbers, associated with “floating point” (as
opposed to integer) variables.

form (3.1)
An HTML element that provides an interface between a user and a
document. The contents of form fields can (usually) be changed by the
user or by a scripting language within the document.

free-format language (4.3)
A language such as JavaScript that, within syntax limits, does not restrict
where and/or how statements are placed on a document line.

function (6.1)
A self-contained code unit that accepts input, performs one or more
specific tasks, and returns output.

hex code (2.5)
A number expressed in hexadecimal notation, using values 0 through F
(rather than 0 through 9, as in a base-10 number system).

home page (1.3)
The top level Web page associated with a Web address. By default, the
HTML document containing the home page is called index.htm or
index.html.

HTML (document) (Preface)
HyperText Markup Language, a language for displaying and accessing
online content, especially on the World Wide Web. HTML is
approximately, but not entirely, platform-independent, as different
browsers support different subsets and extensions of HTML. An HTML
document is any .htm or .html text file that uses HTML for organizing
and displaying text, images, and other content.

HTTP (1.3)
HyperText Transfer Protocol, a communications protocol for exchanging
information on the World Wide Web.

in focus (6.4)
The state of a form field or other defined area on a Web page when the
cursor is within that field or area.

164 Glossary

identifier (4.4)
A symbolic name associated with a variable.

indices, (index) (5.1)
One or more values that identify a single array element.

input/outut (I/O) interface (1.1)
A system that manages interactions between a user and a document,
program, or script.

Internet (1.3)
A globally connected network of computers for exchanging information
using an agreed-upon communications format.

intranet (1.3)
A system of linked computers that looks like the Internet, but is accessible
only to other computers on an internal network.

interpreted programming language (1.1)
A language, such as JavaScript, in which statements are interpreted one
line at a time, and the indicated actions taken “on the fly,” without
generating a separate executable file. (See compiled programming
language.)

JavaScript (Preface)
An object-oriented programming language designed for manipulating
content in an HTML document.

list (3.6)
In HTML, one of several ways to impose formatting on lists (in the plain
English use of that word) of related items.

literal (4.4)
A value entered directly in code, rather than being associated with a
variable.

local variable (6.2)
A variable defined inside a function that is visible only within that
function.

Glossary 165

logical operator (4.7)
An operator that determines whether two expressions are both true
(“AND”), one of two expressions is true (“OR”), or neither of two
expressions is true (“NOT”).

loop structure (4.1)
A code structure that enables a section of code to be executed more than
once, under the control of one or more index or control variables.

method (1.2)
An action that can be applied to an object or components of an object.

object (1.3)
A defined construct that has components, properties, and values, and that
allows certain actions to be carried out upon itself or its components.

object-oriented programming language (1.1)
Any language that makes used of objects.

operator (4.5)
A token representing a mathematical, logical, or text action, such as
addition.

parameter list (6.2)
A list of references to one or more values passed as input to a function.

platform-independent (Preface)
A computer language or application that presents a uniform user interface
and behavior regardless of the computer or operating system.

post-test loop (4.8)
A conditional loop structure in which tests for termination or continuation
are conducted at the end of the loop’s statement block.

precedence rules (4.5)
The rules governing the order in which operations, including
mathematical and logical operations, are performed in a statement.

pre-test loop (4.8)
A conditional loop structure in which tests for termination or continuation
are conducted at the beginning of the loop’s statement block.

166 Glossary

primitive (4.4)
A basic data type.

property (1.2)
An attribute (in the plain English use of that word) of an object or one of
its components.

queue (5.2)
An abstract data type, often represented by an array, in which the first
entry (the “oldest” entry at the “front” of the queue) is always the first to
be removed and new entries are always added at the opposite end (“back”)
of the queue.

recursive algorithm (6.5)
An algorithm that depends on being able to refer to itself.

recursive function (6.5)
A function that refers to itself by calling itself.

relational operator (4.7)
An operator that compares the value of two expressions and returns a
value of true or false.

script (1.2)
The statements (“code”) used to implement a scripting language such as
JavaScript.

scripting language (1.1)
A language such as JavaScript whose purpose is to access and modify
components of an existing information interface.

stack (5.2)
An abstract data type, often represented by an array, in which the entries
are always added to the “top” of the stack and the most recent entry is
always the first to be removed.

statement 4.3)
A single set of instructions, often followed by a terminating character
(a semicolon in JavaScript).

Glossary 167

statement block (4.3)
Several statements meant to be treated as a group, marked with a special
symbol at the beginning and end of the block, for example, { ... } in
JavaScript.

style rule(s) (2.6)
One or more attributes and values defined within a style sheet.

style sheet (2.6)
(See cascading style sheet.)

table (3.1)
An HTML element that provides a way to organize and display content in
a document.

tag (1.1)
A syntax for entering elements in HTML documents (<…>), usually
involving both a start tag and an end tag.

terminating character (4.3)
A character appearing at the end of a programming statement, to mark the
end of the statement. The JavaScript terminating character is a semicolon.

token (4.2)
The smallest, indivisible, lexical unit of a programming language. Tokens
can be constants, identifiers, operators, reserved words, or separators (or
terminators).

URL (1.3)
Uniform Resource Locator, the address system used by the World Wide
Web.

variable (4.4)
A discrete unit of information, associated with a particular data type and
stored in a specific part of computer memory.

weakly typed language (4.4)
A language that permits variables to be retyped (redefined) “on the fly”
based on their contents and/or allows variables to be used without an
initially specified data type.

168 Glossary

Web browser (1.1)
A computer application designed to access, display, and interpret online
content.

Web server (1.3)
A computer connected to the Internet that stores documents and other
content for global (but not necessarily public) access by way of a unique
address (Uniform Resource Locator, or URL).

World Wide Web, WWW (1.1)
A global network of computing resources that uses the hypertext transfer
protocol (HTTP) to exchange information on the Internet.

XHTML (1.2)
EXtended HyperText Markup Language, a more rigorous version of
HTML that vigorously enforces syntax and style rules.

A.1 HTML Document Examples

Document and Name Page

Appendices

1.1 HelloWorldHTML.htm 8
1.2 HelloWorld.htm 9
1.3 HelloWorld2.htm 12
1.4a HelloWorld3.htm 13
1.4b HelloWorld3HTML.htm 15
1.5 house.htm 18

2.1 tagExamples.htm 27
2.2a index.htm 33
2.2b resume.htm 34
2.2c homework.htm 34
2.2d index2.htm 35
2.3 style1.htm 37
2.4a body.css 41
2.4b style2.htm 41
2.5a rwb.css 42
2.5b rwb.htm 42

3.1 radonTable.htm 44
3.2 cloudType.htm 45
3.3 location.htm 51
3.4 select.htm 53
3.5 siteDefinition.htm 54
3.6 location2.htm 57
3.7 lists.htm 59
3.8 bookContents.htm 61
3.9 cloud1.htm 64

4.1 circle.htm 77
4.2 incrementDecrement.htm 84
4.3 mathFunctions2.htm 88

170 Appendices

4.4 grades.htm 93
4.5 taxes.htm 94
4.6 daysInMonth.htm 95
4.7 counter2.htm 98
4.8 countdown2.htm 98
4.9 gorilla1.htm 100
4.10 newtonSqrt2.htm 101
4.11 stationPressure.htm 103
4.12 quadratic.htm 106

5.1 siteData.htm 109
5.2 stacksAndQueues.htm 113
5.3 sort.htm 114
5.4 siteData3.htm 116
5.5 magicSquare.htm 117
5.6 formArray.htm 119
5.7 sumForm.htm 120
5.8 buttonAccess.htm 121
5.9 siteData4.htm 123
 siteData4.dat 123
5.10 password1.htm 125

6.1 circle1.htm 133
6.2 circle2.htm 135
6.3 circle3.htm 135
6.4 circle4.htm 136
6.5 circleStuff.htm 138
6.6 parseIntBug.htm 140
6.7 calculator.htm 142
6.8 factorial2.htm 144
6.9 fibonacci.htm 146
6.10 towers.htm 148
6.11a passID.htm 149
6.11b catchID.htm 150
6.12 sort2.htm 151
6.13 dewpoint.htm 153
6.14 loan.htm 154
6.15 buildMenu.htm 157

A.2 Displaying Special Characters in an HTML Document 171

A.2 Displaying Special Characters in an HTML Document

There are many symbols that cannot be entered directly into an HTML
document. HTML defines so-called “escape sequences” as a way to
embed special characters in a document. Each character can be entered
either as a numerical code or by using a mnemonic name, butonly the
names are used here. The following list provides some commonly used
characters that may be useful for science and engineering applications.
The list is a very small subset of characters supported by various
browsers. In cases where special character names follow a predictable
pattern (for the Greek alphabet, for example), just one example is given.
(See notes at the end of the list.) There is no guarantee that the escape
sequence names will be recognized or that characters will be displayed
properly in all browsers or, when printed, by all printers.

α α lowercase Greek alpha*
≈ . mathematical “almost equal to” symbol
á á lowercase “a” with acute accent**
â â lowercase “a” with circumflex**
æ æ lowercase “ae” ligature (Æ for uppercase)
à à lowercase “a” with grave accent**
å å lowercase “a” with ring**
ä ä lowercase “a” with umlaut**
• · small “bullet” symbol (to indicate multiplication,
 for example)
ç ç lowercase “c” with cedilla**
¢ ¢ cent symbol
≅ – mathematical “approximately equal to” symbol
© © copyright symbol
° º degree (as with temperature)
† † dagger symbol
‡ ‡ double dagger symbol
÷ ÷ mathematical “divide by” symbol
€ € Euro currency
½ ½ fraction notation for 1/2
¼ ¼ fraction notation for 1/4
¾ ¾ fraction notation for 3/4
≥ ≥ mathematical “greater than or equal to” symbol
> > mathematical “greater than” symbol (to avoid
 conflict with angle bracket used in HTML tags)

172 Appendices

… … horizontal ellipsis
∞ ∞ mathematical “infinity” symbol
∫ I mathematical “integral” symbol
&iques; ¿ inverted question mark
“ “ left double quote (“smart quote”)
‘ ‘ left single quote (“smart quote”)
≤ ≤ mathematical “less than or equal to” symbol
< < mathematical “less than” symbol (to avoid
 conflict with angle bracket used in HTML tags)
µ μ micron
≠ ≠ mathematical “not equal to” symbol
ñ ñ lowercase n with tilde**
œ œ lowercase “oe” ligature (Œ for

uppercase)
¶ ¶ paragraph symbol
± ± mathematical “plus-minus” symbol
£ £ British pound sterling
∝ % mathematical “proportional to” symbol
" " quote symbol (e.g., for inserting quote marks in
 quote-delimited text string)
√ √ mathematical “square root” symbol
” ” right double quote (“smart quote”)
’ ’ right single quote (“smart quote”)
® ® product registration symbol
§ § section symbol
ß ß “sz” ligature (lowercase only)
× H mathematical “times ” (“multiply by”) symbol
™ ™ trademark symbol

* Other Greek letters can be displayed by spelling the name of the letter. If the

name starts with an uppercase character (for example, Γ) then the
uppercase letter is displayed. Otherwise the lowercase character (for example,
γ) is displayed.

** Other modified letters follow the same pattern. Start the name with an

uppercase or lowercase letter to display a modified uppercase or
lowercase character.

Exercises

1. Introductory Topics

1.1. Create a folder on whichever computer you will use with this book.
Then create a simple Web page for yourself and store it in that folder.
Save your home page file as index.htm (or index.html). Include the
lastModified property to show the most recent date on which the page
was modified, as in Document 1.3.

1.2. If appropriate, copy your Web page to a location where it will be
available through the Internet or an intranet. If you are using this book as
a course text, your instructor should provide the information you need to
make your work Web-accessible.

2. HTML Document Basics

2.1. Add some content to your Web page. This can be a short biographical
sketch or something less personal. Use some of the HTML elements
described in this chapter. Experiment with setting different colors and font
sizes. Include at least one image—preferably one you create yourself. Be
sure to display the source of the image. Do not use commercial images
unless you can demonstrate that you have permission to use them.

2.2. Create a style sheet file for your Web page, save it as a separate file,
and modify your Web page so that it uses this style sheet. Create at least
one other Web page that shares this style. The content of this second
page does not matter, but there must be enough content to demonstrate
that the style is being implemented. (You may want to combine this with
Exercise 1.)

2.3. An internal link, essentially a “bookmark” to a specified point in a
document, is created as follows:

Link to Section 1.
…

174 Exercises

Start of Section 1.
… {text of Section 1.}

The # sign appearing in the value of the href and name attributes indicates
that this is an internal document link. The … tags
typically surround a section heading, or perhaps the first few words in a
section (see Section 2.4).

Create a document with a “table of contents” that is linked to
several sections. At the start of each section, include a link back to the
table of contents. The sections do not have to be long, as the purpose of
this exercise is just to learn how to create internal document links.

2.4. Create an HTML document that contains at
least two clickable images that are linked to
other HTML documents. In Microsoft Word, for
example, you can use the “WordArt” feature to
create graphics images that explain the link, as with these examples (see
Section 2.4).

2.5. Create an HTML document that displays this heading and HTML
code:

Here is some HTML code...

<html>
<head>
<title>Displaying HTML code in a document</title>
</head>
<body>
Here is an HTML document.
</body>
</html>

All the HTML tags, including their left and right angle brackets, should be
displayed in red font. Note that this is not an HTML code listing. It is the
displayed content of an HTML document. Hint: Review Document 2.1
and its explanation.

Exercises 175

3. HTML Tables, Forms, and Lists

3.1. Create a table containing a personnel evaluation form. The first
column should contain a statement, such as “Gets along well with others.”
The second column should have four radio buttons, showing the choices
“Never,” “Sometimes,” “Often,” and “Always.” The table should have at
least four statements. Provide appropriate instructions for filling in the
form and submitting it to the creator of the form.

What happens if you submit the contents of a form that does not
include the enctype attribute in its <form> tag? What happens if you
use method=“get” instead of method=“post”? Show examples.

3.2. Using Table 2.1 as a guide, create an HTML document and table that
displays the 16 standard HTML colors and their hex codes. The color
names should be displayed in their color against an appropriate back-
ground color.

3.3. Using Table 2.2 as a guide, create a table that displays results of
assigning specific and generic font families to text. For example, display
an example in serif and Times fonts.

3.4. Modify Document 3.9 so that it e-mails the contents of the form to
your address. What happens with the choices you have checked? What
about the choices you have not checked?

3.5. Create a table containing a list of professors. The first column should
contain their names and the second should allow you to send an email. If
you click in the first column, a new window should open that displays
information about the professor in that column.

Opening a new window has not been covered in the text. Some
code to get you started is as follows:

Creating the table:

<html>
<head>
<title>List of Professors</title>
</head>
<body>
<table border>
<tr><th>Biographical sketch

(click in name box)</th><th>Contact</th></tr>
<tr>

176 Exercises

 <td onclick =“window.open(‘ProfWonderful.htm’,
 ‘ProfWonderful’,’alwaysRaised=yes,toolbar=no,
 width=600,scrollbars=yes’);”>
 Professor Wonderful, Super University</td>
 <td>
 I.M.Wonderful@superu.edu</td>
</tr>
</table>
</body>
</html>

The HTML document for Professor Wonderful:

<head>
<title>Professor Wonderful</title>
<link href=“WindowStyle.css” rel=“stylesheet”
type=“text/css” />
</head>
<body>
<i>Professor I. M. Wonderful, PhD</i>

 Enter biographical stuff about Professor Wonderful.
</body>
</html>

Create a BiographyStyle.css file that should be applied to

every biography file.
This example will get you started with the window.open()

method. You can find much more information online.

4. Fundamentals of the JavaScript Language

4.1. Prompt the user to enter a temperature in degrees Fahrenheit.
Calculate and display this temperature converted to degrees Celsius and
Kelvins. The conversion from Fahrenheit to Celsius is TC = 5(TF – 32)/9.
The conversion from TC to Kelvins is K = TC + 273.

4.2. Prompt the user to enter two numbers. Print a message that tells which
number is smaller or if they are equal. (Do not use the Math.max() or
Math.min() functions.

4.3. Prompt the user to enter the temperature in degrees Fahrenheit and
the wind speed V in miles per hour. Calculate and display the windchill
temperature according to:

Exercises 177

TWC = (0.279V1/2 + 0.550 – 0.0203V)(T – 91.4) + 91.4

where T must be less than 91.4°F and V ≥ 4 mph. Include code to test the
input values for T and V and print an appropriate message if they are out
of range.

4.4. Prompt the user to enter the month m, date d, and year. Calculate and
display the day of the year n, from 1 to 365 or 366, depending on whether
the year is a leap year. The formula is

n = INT(275m/9) – k•INT((m + 9)/12) + d – 30

where INT() means “the truncated integer value of.”

A year is a leap year if it is evenly divisible by 4 and, if it is a
centurial year, it is evenly divisible by 400. That is, 2000 was a leap year,
but 1900 was not. Provide results for several inputs, including the first and
last days of leap and nonleap years, and February 28 or 29 and March 1.

4.5. Rewrite Document 4.7 so that it uses either a pre- or post-test loop.
Why did you choose one conditional loop strategy over the other?

4.6. Rewrite Document 4.8 so that it uses a post-test loop.

4.7. Modify Document 4.11 so that if a user enters atmospheric pressure
entered in inches of mercury instead of millibars, the code will
convert that value into millibars. It is easy to distinguish such an
entry because of the large difference in magnitude between the two
units. Standard sea level atmospheric pressure is 1013.25 mbars or
29.921 in. of mercury. Therefore, if the user enters a numerical value
less than 40, for example, it is safe to assume that it represents inches of
mercury. Then, pmbar/1013.25 = pin. of mercury/29.921.

4.8. Using Document 3.1 as a starting point, let a user enter radon values
into a table and form. The code should then display an appropriate
message in the third column of the table, depending on the radon level.

4.9. Create a table with a form into which a user enters total credit hours
and grade points for eight semesters. The code should calculate the GPA
for each semester:

178 Exercises

GPA = (grade points)/(credit hours)

where an A gives 4 credit points, a B gives 3 credit points, etc. The last
line in the form should be the cumulative GPA:

cumulative GPA = (cumulative grade points)/(cumulative credit hours)

4.10. Create a table containing a price list and order form. The first
column contains a brief description. The second contains the price for one
item. The third column contains a form field in which the user enters the
number of items to order. The fourth column contains a form field in
which the extended price (price per item times number of items) is
calculated. There should be data entry rows for at least three items. The
table should then calculate the total amount for all items ordered, sales
tax, shipping, and order total. Provide appropriate instructions for filling
in the form and submitting it to the creator of the form.

4.11. The body mass index (BMI), which provides a way to characterize
normal weights for human adult bodies as a function of height, is defined
as:

BMI = w/h2

where w is mass in kilograms (2.2 kg mass per pound weight) and h is
height in meters (1 in. = 0.0254 m).

Create a document and form that asks for the user’s weight in
pounds and height in feet and inches, and then calculates and displays the
BMI.

4.12. A cylindrical liquid storage tank of radius R and length L is buried
underground on its side, that is, with its straight sides parallel to the
ground. In order to determine how much liquid remains in the tank, a dip
stick over the centerline of the tank is used to measure the height of the
liquid in the tank. The volume is L·A, where A is the area of a partial
circle of radius R with a cap cut off horizontally at height H from the
bottom of the circle:

A = R2cos–1[(R – H)/R] – (R – H)(2RH – H2]1/2

where cos–1(x) is the inverse cosine (arccosine) of x.

Exercises 179

Create a document that accepts input values for R, L, and H and
then calculates and displays the volume of liquid in the tank.

4.13. Paleontologists have discovered several sets of dinosaur footprints
preserved in ancient river beds from which it is possible to deduce the
speed at which these dinosaurs walked or ran. The two pieces of
information that can be determined directly from the footprints are the
length of the dinosaur’s foot and the length of its stride, which is defined
as the distance between the beginning of a footprint made by one foot and
the beginning of the next footprint made by that same foot.

One way to approach this problem is to examine the relationship
between size, stride, and speed in modern animals. Owing to the dynamic
similarities in animal motion, an approximate linear relationship between
relative stride and dimensionless speed applies to modern bipedal and
quadrupedal animals as diverse and differently shaped as humans,
ostriches, camels, and dogs:1

s = 0.8 + 1.33v

Relative stride s is defined as the ratio of stride length to leg length, s = S/L.
Dimensionless speed is defined as the speed divided by the square root of
leg length times the gravitational acceleration g, v = V/(Lg)1/2. Although it
might seem that gravitational acceleration should not influence an
animal’s speed on level ground, this is not true, as gravity influences the
up and down motions of the body required even for walking.

Leg length from ground to hip joint for dinosaurs of a known
species can be determined from fossils. However, even when the dinosaur
species responsible for a set of tracks is unknown, its leg length can be
estimated by multiplying the footprint length by 4. (Try this for humans.)

Create a document that uses the equation described here to calcu-
late the speed of a dinosaur based on measurements of its footprint and
stride length. Use metric units. Test your calculations for a footprint 0.6 m
long and a stride length of 3.3 m.

Extra Credit Note: Is it possible to determine whether the dinosaur was
walking or running? Using data for human strides—walking or running—
you should be able to speculate about the answer to this question.

1 See R. McNeill Alexander, Dynamics of Dinosaurs & Other Extinct Giants.

Columbia University Press, New York, 1989.

180 Exercises

4.14. The wavelengths of the Balmer series of lines in the hydrogen spec-
trum are given by

λ = 364.6n2/(n2 – 4) nm

Write a script that generates and displays the first 10 wavelengths in the
Balmer series. Use document.write() to display the results.

4.15. The original population of a certain animal is 1,000,000. Assume
that at the beginning of each year (including the first year), the population
is increased by 3%. By the end of that year, 6% of the total population
(including the births at the beginning of the year) dies. Write a script that
calculates and displays the population at the end of each year until the
population at the end of the year falls to 75% or less of its original value.
Although, in principle, you can figure out how many years this will take,
don’t do that. Use a conditional loop.

4.16. Section 4.6 briefly discussed some problems with using the
Math.random() function to create a series of randomly distributed inte-
gers. Write a script that will examine the distribution of 10,000 integers in
the range [0,2], using these two expressions:

Math.round(Math.random*2)

and

Math.floor(3*(Math.random()%1))

Show results from several trials. Explain your results.

5. Using Arrays in HTML/JavaScript

Each exercise in this chapter should use arrays as appropriate.

5.1. Rewrite the code from Exercise 16 in Chapter 4 so that it looks at the
distribution of integers in the range [1,6]. Which of the expressions given
in that exercise should be used to simulate the performance of a fair six-
sided die? What would be the result of using the wrong expression?

Exercises 181

5.2. Rewrite Document 5.9 so that it uses a conditional loop that stops
searching when it finds a password match.

5.3. Rewrite Exercise 4.9 to use the elements array that is automatically
created for the fields in a form.

5.4. The text makes the point that assigning one array name to another:

var A = [“thing1”,”thing2”,”thing3”];
var B = A;

does not actually create a separate copy of the array A. Instead, both A
and B “point” to the same data in memory.

Write code that accepts the names of source and destination
arrays and copies the contents of the source array into the destination
array, thereby creating an actual copy of the original array. The result
should allow you to manipulate the two arrays independently, without
changes to one array affecting the contents of the other. Your code should
display the contents of both arrays both before and after the destination
array has been created and changes have been made to the contents of the
source array.

5.5. Write a script that finds the maximum, minimum, mean, standard
deviation, and median of an array.

mean = Σxi/n
(standard deviation)2 = [Σxi

2 – (Σxi)2/n]/(n – 1)

where the xi’s are the elements of the array, n is the number of elements,
and “Σ” means “sum from 1 through n.” (Remember that in a JavaScript
array, the elements are indexed by value from 0 through n – 1, not 1
through n.)

The array must be sorted to find the median. For an array with an
odd number of elements, the median is the middle value. For an array
with an even number of elements, the median is the average of the two
middle elements.

5.6. Write a function that will reverse the elements in an array, having the
effect of turning a “stack” upside down, for example. Do not do this by
creating a “backward” copy of the original array; rather make the changes
to the original array. Hint: Start from one end of the array and work

182 Exercises

toward the middle. Create a temporary variable to hold an element at one
end of the array, replace it with its corresponding value from the other end
of the array, and then replace the value at the other end of the array with
the temporary value.

5.7. Write a function that will create a “count histogram” for an array. To
do this, specify the minimum and maximum values and the number of
“boxes” into which the array should be divided. For example, you could
divide an array of values into quartiles and count the number in the lowest
25%, next 25%, etc. The count histogram should be stored in its own
array and the results displayed. Use this array as an example, but be sure
to write your code so it will apply to any array.

var A=[53,97,66,79,80,81,83,75,91,65,61];

Your script should determine the minimum and maximum values in the
array and then prompt you to provide the lower limits on the histogram
and the number of subdivisions. Suppose this array contains test grades. A
reasonable choice would be to divide these values into five ranges: 50–59,
60–69, 70–79, 80–90, and 90–100. The contents of the count histogram
array should be 1, 3, 2, 3, 2, and the count histogram could be interpreted
as showing the distribution of F’s, D’s, C’s, B’s, and A’s.

Demonstrate the operation of your script for several choices of
ranges and numbers of histogram “boxes.”

5.8 Automata can be thought of as artificial life forms that, with the aid of
a set of rules for reproducing themselves, appear to be self-organizing.
These rules can lead to surprising patterns, related to fractal theory. One
well-known pattern is the Sierpinski triangle, shown here.

Exercises 183

This output is generated by repeatedly printing an array with
document.write(). In order for the elements to line up, you can specify
a monospaced font style inside a document.write() before starting to
print the output:

document.write(““);

The pattern starts out with a single “life form” (an asterisk) in the
middle of the array. This array has 40 elements. The propagation rules are:

For cell i, if cell i – 1 is occupied and cells i and i + 1 are not, or if cell i – 1
is empty and cell i + 1 is occupied, then an organism will appear in cell i
in the next generation. Otherwise the cell will be empty.

Write JavaScript code that reproduces the output shown. Hint:
you cannot apply the rules to the array itself to determine the distribution
of organisms in the next generation. You have to copy the organism
distribution array at the start of each generation and test the propagation
rules as applied to that copy in order to update the organism distribution
array.

6. JavaScript Functions

These exercises should always include appropriately designed functions.
Note that some of the exercises for Chapter 4 can be rewritten using
functions.

6.1. Recall Document 6.5, which demonstrated how a “bug” in the par-
seInt() method can cause problems when interpreting an integer repre-
sented as a string that begins with a 0. Write a function that accepts as
input an “integer” value that begins with a 0. The function should create a
substring of the original value that does not have this leading 0 and should
then apply parseInt() to this substring. (See the list of string-related
methods given in Table 4.2.)

6.2. Create a document that asks a user to enter a month, day, and year.
Then, check the day to make sure it is an appropriate day for that month.
Don’t forget about leap years, as previously defined in Exercise 4.4. Use
an “alert” box to display a message if the user enters an inappropriate day.

184 Exercises

6.3 A basic problem in numerical analysis is the solution of systems of
linear equations. Consider a system of equations with three unknowns:

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

Cramer’s rule can be used to solve equations in two or three unknowns,
but becomes unwieldy for larger systems. For the above system:

x = D1/D y = D2/D z = D3/D

where D is the determinant for the system:

D = a1b2c3 + b1c2a3 + c1b3a2 – a3b2c1 – b3c2a1 – c3b1a2

D1, D2, and D3 are found by substituting the constants d1, d2, and d3 for the
coefficients in column 1, 2, and 3, respectively:

D1 = d1b2c3 + b1c2d3 + c1b3d2 – d3b2c1 – b3c2d1 – c3b1d2
D2 = a1d2c3 + d1c2a3 + c1d3a2 – a3d2c1 – d3c2a1 – c3d1a2
D3 = a1b2d3 + b1d2a3 + d1b3a2 – a3b2d1 – b3d2a1 – d3b1a2

It is possible for the value of D to be 0. Then the system of
equations has no solution. Your code should test for this possibility and
provide an appropriate message. Include your solution for the following
system of equations:

3x + 4y + 2z = –1
5x + 7y + z = 2
5x + 9y + 3z = 3

6.4. Complete the code outlined in Example 6.3 at the end of Chapter 6.
The algorithm for finding the day of the year n based on the four-digit
year, month, and day is

n = <275m/9> – <(m + 9)/12>(1 + <(mod(y,4) + 2)/3>) + d – 30

where “<…>“ means “the truncated integer value of…” For example,
<11/3> = 3. “mod” is the remainder from integer division. For example,
mod(11/3) = 2.

Exercises 185

This formula is valid for any year, including leap years, except for
those centurial years that are not evenly divisible by 400. Thus the
formula applies to 2000, which is a leap year, but not to 1900 or 2100,
which are not leap years even though they are evenly divisible by 4.

6.5. Write a modified version of Document 6.9 that demonstrates the
relationship between Fibonacci numbers and the golden ratio. (It is easy to
find a lot of information about this unexpected (?) relationship online.)

6.6. Document 6.12 shows how to use parseFloat() to force JavaScript
to treat array elements as numerical values. The function returns a value
of –1, 0, or +1. depending on whether x is less than, equal to, or greater
than y. Actually, this will work if the function returns any negative value
for x < y, 0 for x = y, and any positive value for x > y. Write a one-line
“compare” function that returns such a result. Hint: the subtraction
operation x – y (as opposed to the addition operation x + y) has no
interpretation if x and y are strings, and forces an implicit type conversion
to numerical values.

6.7. The Math.floor() method, which returns the next-lowest integer
below the real number given as its calling argument, truncates nonnegative
numbers in the way you would expect. For example, Math.floor(17.9)
equals 17. However, it does not truncate negative numbers. For example.
Math.floor(–17.9) equals –18, not –17. It might be useful to have a
function that simply strips away digits to the right of the decimal point—
that is, a function that actually truncates a number—regardless of its sign.

Fortunately, it is easy to create your own library of methods and
properties that act as extensions to the Math object. It is set up in the
following way:

function Math.myMethod(x) {
 {Put code here.}

}

Simply give your new method a name and write the appropriate
code, with a return statement for the desired value. You can also create
new properties just by defining them. For example, if you write the
statement

186 Exercises

Math.myPI=5.;

you now can use this new property (not that it would be a good idea!) just
as you would Math.PI.

Write a script that creates and tests a truncation method—call it
Math.trunc()—that works regardless of whether the calling argument
is positive or negative. Also, create at least one other new Math method,
including a method, Math.sind(), that returns the sine of its argument
expressed in degrees rather than radians. That is, Math.sind(30.)
should give a value of 0.5.

Of course, these methods and properties exist only within the
script in which they are defined, rather than in a pre-defined library of
Math methods and properties available to any browser that supports
JavaScript. However, they are treated as “real” extensions of the Math
object in the sense that you can use them just like other Math methods or
properties, including referring to just the method or property names inside
a with (Math) { … } statement block. Once you create a library of
Math extensions, you can simply paste them into any script—either liter-
ally or by saving them in a .js file and referencing that file in a script.

6.8. As noted briefly in Section 6.4, the eval() Global method is very
powerful. Shown below is an HTML document template for an application
that will numerically integrate a specified function. The default function is
the normal probability density function, which does not have an analytic
integral. You can replace this function with any function expressed in
proper JavaScript syntax. The function uses standard trapezoidal rule
numerical integration. An outline of the algorithm is as follows:

Specify a function f(x), lower and upper integration boundaries (a and b),
and the number of equal intervals (n) into which the range (b – a) will be
divided. The code outline for the numerical integration is:

Set sum = 0, dx = (b – a)/n.

for i = 1 to n,
 x1 = a + (i–1)·dx
 x2 = a + i·dx
 sum = sum + f(x1) + f(x2)

return sum·(dx/2)

Exercises 187

Create an HTML document that uses a JavaScript function and
the eval() method to implement this algorithm. Consult a probability
and statistics text or online source to verify the values produced for the
normal probability distribution function. In addition, test the application
by entering a function that has an analytic integral.

6.9. Assume that the probability of a randomly selected individual in a
target population having a disease is PD. Suppose there is a test for this
disease, but the test is not perfect. There are two possible outcomes from
the test:

1. Test is positive (disease is present).
2. Test is negative (no disease is present).

As the test is imperfect, if the individual has the disease, result 1 is
returned for only PWD (test positive, with disease) percent of the tests.
That is, only PWD percent of all individuals who actually have the
disease will test positive for the disease. If the individual does not have
the disease, result 2 is returned only NND (test negative, no disease)
percent of the time. That is, only NND percent of all individuals who do
not have the disease will test negative for the disease.

Bayesian inference can be used to answer two important
questions:

188 Exercises

1. Given a positive test result, what is the chance that I have the disease?
2. Given a negative test result, what is the chance that I have the disease

anyhow?

Define the following variables (assuming that PWD and NND are
expressed as values between 0 and 1 rather than as percentages):

PND = positive test result, but with no disease = (1 – NND)
NWD = negative test result, but with disease = (1 – PWD)

P_has_disease = person has disease, given a positive test result
= (# of true positives)/(# true positives + # false positives)
= (PWD·PD)/[PWD·PD + PND· (1 – PD)]

Probability that a person does not have the disease, given a positive test
result = 1 – P_has_disease

N_has_disease = person has disease, given a negative test result
= (# false negatives)/(# false negatives + # true negatives)
= (PND·PD)/[PND·PD + NND· (1– PD)]

The probability that a person has the disease even though the test
result is negative is called a Type II error. The probability that a person
does not have the disease even though the test result is positive is called a
Type I error. From a treatment point of view, Type II errors are perhaps
more serious because treatment will not be offered. However, it is also
possible that treating for a disease that does not actually exist, as a result
of a Type I error, may also have serious consequences.

As an example, consider a rare disease for which PD = 0.001,
PWD = 0.99 and NND = 0.95. Then the probability that a person has the
disease, given a positive test result, is:

P_has_disease = (0.99·0.001)/(0.99·0.001 + 0.05·0.999) = 0.019

and for a negative test result:

N_has_disease = 0.01·0.001)/(0.01·0.001 + 0.95·0.999) = 0.0000105

The somewhat surprising result that the probability of having this
disease is very small despite a positive result from a test that appears to

Exercises 189

be highly accurate is explained qualitatively by the fact that there are
many more people without the disease (999 out of 1000) than there are
with the disease. In such a population, approximately 50 people will test
positive for the disease even though they do not have it. Approximately 1
person will test positive for the disease when they have it, so (actual posi-
tives)/(all positive test results) ~ 1/51 ~ 0.02.

The very small probability of having the disease even with a
negative test result is explained by the fact that 999 out of 1000 people do
not have the disease and almost all of these people get negative test
results.

Write a document that displays results from the indicated
calculations. What happens when the tested disease is found in 50% of the
population? What happens for both disease situations when the positive
and/or negative tests are much less reliable, say 50%?

6.10. Using Document 6.15 as a starting point, write an application that
contains contact information for your friends and colleagues. When you
select a person’s name from the pull-down menu, the remaining fields in a
form should be populated automatically with the contact information for
that person. Store the contact information in a separate “hidden” file, to be
pasted into your document when it is loaded, as shown in Chapter 5,
Section 5.5. The following is a sample of what this contact information
file might look like:

 var contactList = new Array();
 function contactArray(name,phone,email) {
 this.name=name;
 this.phone=phone;
 this.email=email;
 }
 contactList[0]=new contactArray(“Mom”,
 “222-555-5478”,”mom@supermail.net”);
 contactList[1]=new contactArray(“My Boss”,
 “888-555-0985”,”MrBig@xyyz.com”);
 contactList[2]=new contactArray(“Sally”,
 “111-555-2311”,”SallyJo@ail.com”);

Considering previous discussions about sorting arrays in
JavaScript, how should you handle the matter of keeping this list sorted in
alphabetical order by name? Do you have to sort the contact list array
“offline” or is it reasonable to do it in “real time” every time the pull-
down menu is created?

190 Exercises

6.11. Newton’s algorithm for finding the square root of a number, as
discussed in Section 4.8.2, can also be implemented (actually, more
easily) as a recursive function. Rewrite Document 4.10 so that the
iterative calculation is done in a function, add another function that does
the same calculation recursively, and then add two functions that use a
similar approach to finding the cube root of a positive real number:

1. Select an initial guess g = n/2.
2. Replace g with (2g + x/g2)/3
3. Repeat step 2 until the absolute difference between x and g·g·g is

sufficiently small.

Of course, you are not allowed to use the Math.pow() method for any
part of this calculation, but you could use it to check the results of your
work. Implement this algorithm first as an iterative calculation and then,
in a separate function, as a recursive calculation.

6.12. Document 5.5 showed how to create two-dimensional arrays that
can be accessed with row and column indices, rather than assigning “field
names” to one of the dimensions. The code in that example showed how
to populate such an array and then display it row-by-row. Add functions
to this code that test the sums of each row, column, and main diagonals to
verify that the specified assignment of integers 1–9 forms a “magic
square.” Then expand the code to create a 4 × 4 matrix. Arrange the
integers 1–16 in this matrix so they form a magic square. Use the same
functions to check your results. (This means that the size of the matrix
must not be “hard coded” into the functions.)

6.13 A recursive algorithm for generating Fibonacci numbers is given in
Section 6.5. Here is a variation that defines the totally obscure and com-
pletely useless “Brooks function” for positive values of n:

Bn = 1, n = 1 or 2
Bn = 3, n = 3
Bn = (0.5Bn–1 + 0.75Bn–2)/Bn–3

Give results for at least n = 1, 2, 3, 4, 5, and 20. You must use a recursive
function to calculate values of the Brooks function.

Exercises 191

Note: Running this script for large values of n (~100?) may cause your
browser to lock up.

Extra Credit: Invent a new recursively defined function that is actually
good for something.

Index

-- 84
- (subtraction operator) 81
!= 91
!== 91
" (as string delimiter) 14
(to designate internal link) 33
% (modulus operator) 81
%= 84
&& 91
> 28
< 28
* (multiplication operator) 81
*= 84
.com 17
.css 41
.edu 17
.gif 19
.gov 17
.htm 4
.html 4
.jpg 19
.js 31
/ (as directory and file
 name separator) 34

/ (division operator) 81
/ (in URLs) 17
; 11
| 91
|| 91
+- 84
+ (addition operator) 81
++ 84
< 28
< 91
<!-- {comments} --> 10

<= 91
<a> 23, 32
 23
<body> 1, 21

 9, 23
<caption> 45, 47
<center> 23
<dd> 59
<div> 40
<dl> 59
<dt> 59
 23
 11, 23
<form> 49
<head> 1, 21
<hn> 11, 24
<hr /> 11, 24
<html> 1, 21
<i> 24
 18, 24, 32
<input /> 50
 59
<link /> 41
 59
<option> 53
<p> 24
<pre> 24, 29
<script> 2, 9, 30
<select> 53
 40
 25
<style> 37
<table> 43, 47
<td> 43
<th> 45, 47

<title> 1, 21
<tr> 43, 47
 59
-= 84
= (assignment operator) 82
== 91
=== 91
> 28, 91
>= 91

A
accessing arrays 110
accessing
 "checkbox" fields 120
accessing
 "radio" fields 120
AceHTML (HTML editor) 6
action (attribute) 49
align (attribute) 11, 18, 25, 47
ANSI v
argument, calling 10
Arial (property value) 39
arithmetic operations 68
arithmetic operators 81
array creation 108
Array object 107
array properties 107
array, access 110
array, copying 111
arrays 107
arrays, accessing forms with 118
arrays, operations 111
arrays, two-dimensional 115
assignment operator 82, 95
attribute 10, 21

B
background (attribute) 25
background (property) 38
background properties 38
background-color

38

bgcolor (attribute) 13, 27, 47
bold (property value) 39
boolean values 76
border (attribute) 25, 48
bordercolor (attribute) 48
branch, of if... statement 92
branching structures 68, 90
button 104
button (<input> type
 attribute value) 50

C
C (programming language) v
calling argument 10
cascading style sheet 36
case 95
case sensitivity 75
case-insensitive 5, 11
case-sensitive 5
case-sensitive 11
cellpadding (attribute) 48
cellspacing (attribute) 48
center (property value) 40
changing values in forms 100
character and string
operations 68
charAt() 78
charCodeAt() 78
checkbox (<input> type
 attribute value) 50
checked (for radio
 and checkbox) 50, 121
class (attribute) 37
class name 37
clickable image 32
client-side application 3
color (attribute) 11, 25
color (property) 38
color property 38
colors (in HTML) 35
colors, standardized HTML 35

194 Index

 (property)

colspan (attribute) 48
com 17
comments (in code) 10
comments, in HTML 10
comments, in JavaScript
code 70
comments, multiple line 70
comments, single line 70
comparison operators 90
compiled (programming
 language) 3
conditional loop 97, 99
constructor 108
content, static 9
count-controlled loop 97
counter (for... loop) 97
creating reusable code 127
CSS 36
css 41
cursive (attribute value) 26

D
data declaration 73
data type 73
data, as part of an array
definition 123

data, holding in separate file 122
decision-making structures 90
decisions based on
 comparing values 68
default 96
defaultValue (attribute
 value) 104
demi-bold (property
 value) 39
demi-light (property
 value) 39
do... 99
document 21
document (create HTML) 4
document (object) 10
document.bgColor 14, 16
document.fgColor 14, 16

document.
lastModified 14, 16

document.write() 9, 16
document.writeln() 16
documents, listing of all 169
dot notation 10, 104

E
edu 17
element 21
elements (array created in
 form) 118
elements (HTML) 1
elements, nested 30, 107
e-mail 32
e-mailing contents of forms 57
enctype (attribute) 49
end of line mark 70
end of statement 11
Enter key 70
escape sequences 14, 28. 171
eval() 140
event handlers 104, 140
event handlers with forms
 and functions

143

expression 69
extra-bold (property
 value) 39
extra-light (property
 value) 39

F
face (attribute) 26
false (boolean value) 75
field name 104
field names as function input 135
FIFO (first in, first out) 112
floating point format 76
font (property) 39
font families 38
font weight 39

195 Index

font, monospaced 24
font-family (property) 38
font-size (property) 38
font-style (property) 39
font-weight
(property) 39
for... 88, 97
form names 119
forms 43, 49
forms as function input 136
free-format language 71
fromCharCode() 78
function input, field names 135
function input, forms 136
function input, input
 attribute 135
function input, numerical
 values 132
function input, value
 attribute 135
function model 137
function, invoking 128
function, memory model 130
functions, calling 128
functions, defining 128
functions, input to 129
functions, purpose 127
functions, recursive 144
functions, with HTML forms 131

G
gif 19
Global methods for strings 140
glossary 161
gov 17

H
header (in table) 45
height (attribute) 19, 26
Helvetica (property
 value) 39

hex code 35
hidden (<input> type
 attribute value) 50
hiding JavaScript contents 122
home page 17
honesty, intellectual 19
href (attribute) 26, 32
hspace (attribute) 26
htm 4
HTML v, 1
html 4
HTML document 10
HTTP 17
HyperText Markup Language 1
Hypertext Transfer Protocol
 (HTTP) 17

I
I/O 3
I/O interface 67, 132
identifier 69, 73
if... 90
image, clickable 32
index.htm 17, 32
index.html 17
indexOf() 79
indices 107
input attribute as function
 input 135
input/output interface 3
intellectual honesty 19
internal link 33
Internet 16
Internet address 17
interpreted (programming
 language) 3
intranet 17
isNaN() 140

J
JavaScript v, 3
javascript (as attribute

31

196 Index

 value)

JavaScript, capabilities 67
jpg 19
js 31
justify (property value) 40

K
keyword 69

L
language (attribute) 10
language (attribute) 31
language, free-format 71
language, weakly-typed 74
large (property value) 38
larger (property value) 38
lastIndexOf() 79
learning by example vi
left (property value) 40
length
 (array property) 109, 112
LIFO (last in, first out) 111
light (property value) 39
line breaks 7
lists 59
literal 69
literals 75
local variables 129
logical operators 90
loop structures 68, 97

M
mailto: 32, 57
manipulating values 68
Math object 85
Math.abs() 86
Math.acos() 86
Math.asin() 86
Math.atan() 86
Math.atan2() 86

Math.ceil() 86
Math.cos() 86
Math.E 86
Math.exp() 86
Math.floor() 86
Math.LN10 86
Math.LN2 86
Math.log() 86
Math.LOG10E 86
Math.LOG2E 86
Math.max() 86
Math.min() 86
Math.PI 86
Math.random() 86
Math.round() 86
Math.sin() 86
Math.sqrt() 86
Math.SQRT1_2 86
Math.SQRT2 86
Math.tan() 86
matrix, creating 117
maxlength (attribute) 50
medium (property value) 39
merging rows and
 columns (in table) 45
message, display 8
method 10
method (attribute) 49
methods (for input
 and output) 76
methods, global 140
methods, string 78
monospace (attribute value) 26
monospaced font 24
multi-dimensional arrays,
 creating 116

N
name (attribute) 26, 49, 51, 119
NaN 134
nested elements 30

 197 Index

network 17
new (array constructor) 108
notation, square bracket 108
Notepad (Windows utility) 4
nowrap (attribute) 48
numbers 74
numerical values as function
 input 132

O
object (HTML) 7
object-oriented
 (programming language) 3
objects (for input and output) 76
onblur event handler 133, 143
onchange event handler 143
onclick event
 handler 104, 143
onfocus event handler 143
operator 69
operator, assignment 82
operators, arithmetic 81

P
parameter list 129
parseFloat() 77, 133, 140
parseInt() 140
passing values to another
 document 149
password (<input>
 type attribute value) 50
percentage (as property
 value) 39
plagiarism vii
platform independence v
point size 39
pop() 112
post (<form>
 attribute value) 57
post-decrement 84
post-increment 84
post-test loop 99

precedence rules 81
pre-decrement 84
pre-increment 84
pre-test loop 99
primitives 74
program 3, 69
programming language,
 compiled 3
programming language,
 interpreted 3

programming language
 object-oriented 3

property (of object) 14
pull-down lists 53
purpose of this book v
push() 112

Q
queues 111
quote marks (double, as
 string delimiters) 14
quote, single (as string
 delimiter) 30

R
radio (<input> type
 attribute value) 50

random number generator 87
readonly (attribute) 51
recursive functions 144
reference sources 7
rel (attribute) 41
relational operators 90
repetitive calculations 68
reserved word 69
reset (<input> type
 attribute value) 50

resizing (image) 19
return (keyword) 129
Return key 70
return statement 129
RGB (color guns) 36

198 Index

rowspan (attribute) 48
RTF (rich text format) 5
rules, precedence 81

S
sans-serif 39
sans-serif (attribute

value) 26
script 9, 69
scripting language 2
semicolon (end of statement) 11
serif (attfibute value) 26
sharing authorship of code 128
shift() 112
shorthand operators 83
size (attribute) 11, 26
size (attribute) 51
small (property value) 38
smaller (property value) 38
solutions to computational
 problems 127
sort() 114, 151
sorting algorithms 114
square bracket notation 108
src (attribute) 18, 26, 31
stacks 111
start (attribute) 61
statement 70
statement blocks 70
statement, JavaScript 70
string methods 78
String object 78
strings 76
style (HTML) 29
style rules 37
submit (<input> type
attribute value) 50
substr() 79
substring() 79
switch 95

syntax (HTML) 29

T
tables 43
tag (HTML) 2
terminating character 70
text (<input> attribute
value) 50

text (attribute) 13, 26
text properties 40
text/css (as attribute value) 41
text/javascript (as
 attribute value) 31
text-align (property) 40
text-indent (property) 40
title (attribute) 37
toFixed() 89
token 70, 80
toLowerCase() 79, 115
toUpperCase() 79, 115
true (boolean value) 75
two-dimensional arrays 115
type
 (attribute) 10, 31, 37, 511, 61
typographic conventions 7

U
uninitialized variable 83
UNIX 5
unshift() 112
URL 17, 31

V
valign (attribute) 48
value (attribute value) 104
value (attribute) 51, 61
value attribute as
 function input 135
values, changing in forms 100
values, passing to another
 document 149

199

right (property value) 40 switch construct 95

Index

var 72
variable 70, 73
variable, uninitialized 83
variables, local 129
VGA colors 35
vspace (attribute) 27

W
weakly-typed language 74
Web browser 1
Web server 16
while... 99
white-space (property) 40

width (attribute) 19, 27, 48
Windows (operating system) 4
with () 88, 99
Word Wide Web 1
word, reserved 69
WWW 1

X, Y, Z
XHTML 11

Index 200

	1846286565
	An Introduction
to HTML and JavaScript
	Preface
	Contents
	1. Introductory Concepts
	2. HTML Document Basics
	3. HTML Tables, Forms, and Lists
	4. Fundamentals of the JavaScript Language
	5. Using Arrays in HTML /JavaScript
	6. JavaScript Functions
	Glossary

