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Preface

Eddy current processes consist in generating currents in electrically conducting
material by means of time dependent magnetic fields. The term ‘eddy’ originates
from the fact that these induced currents create magnetic field vortices inside the
conductors. Eddy current applications are widely used and exploited in industrial
devices for numerous purposes such as:

– Induction heating: Temperature raise by using the Joule heating produced by
eddy currents. The heated material can then be treated for hardening, forging or
brasing.

– Metal melting: such as in induction furnaces, metal forming and casting, and cold
crucibles.

– Non-destructive testing and evaluation to detect flaws and cracks in materials.

All these processes involve various physical phenomena (fluid flow, metal deforma-
tion, heat transfer, . . . ) on different space and time scales. This complexity yields
a great difficulty in experimental investigations since these phenomena cannot be
easily isolated. Mathematical modelling and numerical simulation constitute then a
challenging alternative. This modelling clearly involves, in addition to electromag-
netic phenomena, other physical fields that must be coupled to electromagnetics in
order to produce reliable simulation software.

The aim of this textbook is to present a mathematical framework for the
description of eddy current processes and give efficient numerical methods to solve
these problems. Indeed, mathematical modelling and numerical solution of eddy
current processes involve a wide variety of difficulties, especially for the fully
three-dimensional case. For instance, most interesting models are formulated in
unbounded domains. The numerical solution of such problems can be handled either
by an artificial boundary method, which leads to inaccurate solutions, or by using
integral representations which are numerically accurate but which are difficult to
implement because of the presence of singularities in the involved integrals and
the nonclassical matrix structure obtained after space discretization. We have here
systematically adopted the latter approach. A typical difficulty in such modelling is
that eddy currents are created by electrotechnical setups where a power, voltage or
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vi Preface

current are applied. This means that the derived sets of equations should not require
any source term or boundary distributed data. Only a number that represents power,
voltage or current is to be provided. This point of view, already used in Bossavit
[32], Bossavit–Vérité [36], Hiptmair–Sterz [101], among other references, is chosen
here.

This book is intended for at least two kinds of audience:

– Applied mathematicians who can find in this work a self-contained collection
of mathematical results on modelling of eddy current processes with known
mathematical results. The second part of the book provides also a source of
mathematical and numerical problems, presented as sets of nonlinear partial dif-
ferential equations. Some mathematical results are available for these problems
but some open problems remain to be solved.

– Researchers and developers in the electric and electrotechnical engineering fields
who are mostly interested in deriving clean mathematical models to simulate
industrial applications related to eddy current processes. The numerical examples
given in this book are indeed mostly borrowed from real industrial applications
and have resulted in numerical software currently used in an industrial environ-
ment.

The book is divided into two parts: The first part is devoted to a mathematical
presentation of various eddy current models that differ from each other by the
geometry type and the second part in which various applications of eddy current
processes are presented and investigated.

In the first part, we start by defining in Chap. 1 the basic functional spaces
that are used for the mathematical definition of the problems. We also state the
main mathematical results of vector analysis and then some results on the integral
representation of harmonic fields in two and three dimensions. Most of the given
results in this chapter are known and reported here for self-consistency. The notion
of radial at the infinity is however new, as far as we know, and gives in our opinion
a physical foundation to the chosen functional spaces.

In Chap. 2, the Maxwell equations in electromagnetic theory are given. We
focus on eddy current or low frequency approximation. All these models are
considered for time harmonic (or quasi-static) regimes. The last section deals with
the magnetostatic case where no induction is involved. In this chapter we also
describe the role of vector and scalar potentials in the derivation of the equations.

Chapter 3 presents the main two-dimensional models for eddy currents. Namely,
we describe two types of models. The first one consists in considering magnetic
fields that have only one non-vanishing component. This assumption leads to bound-
ary value problem formulations; the second one considers current densities with
only one non-vanishing component. Here we are led to a coupled interior/exterior
problem, which implies a coupling between a partial differential equation in the
conductors and an integral equation that represents an external harmonic field.
Axisymmetric models are then considered. They are formulated in terms of a scalar
potential.
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Chapter 4 presents the fully three-dimensional case. Various formulations are
given starting by the electric current density model, then the so called H (magnetic
field) model due to Bossavit and Vérité [36]. This model seems to be better adapted
to numerical treatment. Indeed, it gives a coupling between the magnetic field in the
conductors and a scalar potential in the free space. Integral representations enable
us to formulate the exterior problem on the boundary of the conductors. We end
with an electric field model that is generally less used but can be envisaged for some
practical applications.

In Chap. 5 we consider the models of Chap. 4 where rotational symmetry
is assumed. Mathematical setting of these problems is given using cylindrical
coordinates and assuming angle invariance.

In Chap. 6, we consider the derivation of mathematical models where the
inductors are assumed to be thin enough. We report some mathematical results
justifying the use of asymptotic approximations. Most of the given results in this
chapter are proven. The three-dimensional case is however incomplete since some
results are proven while the final eddy current model for a thin inductor is not
mathematically justified but given as a conjecture.

Chapter 7 presents the main numerical methods to solve the given problems
in Chaps. 3–5. We recall for this the finite element method for various types of
problems and its coupling with the boundary element method.

The second part of the book is divided into five chapters, each one presenting
a particular application of eddy current processes with some known mathematical
results and numerical simulations.

Chapter 8 considers induction heating applications. We present stationary and
time dependent versions of the problem and report mathematical results for these
problems. We then present a numerical simulation of an induction heating problem
in the 3-D case. We present next an example of optimization of an induction heating
process. The presentation is based on a thixoforming problem in the aluminium
industry. We formulate this in terms of an optimal control problem, then formally
derive the optimality system and a numerical simulation.

Chapter 9 is devoted to magnetohydrodynamics and magnetic shaping. We
start by giving the set of equations for an incompressible magnetohydrodynamic
problem, and mention some mathematical results in the 2-D case. The extension to
a magnetic shaping problem, formulated as a free boundary problem is then given.
This problem was studied by several authors and some main mathematical results
are given. We end by describing an electromagnetic casting problem considered as
a typical industrial application.

In Chap. 10, we consider an application in magnetohydrodynamics using com-
pressible flows: Inductively coupled plasma torches consist in heating gas to
ionization by means of induction heating. We present the mathematical model
coupling eddy current equations with compressible Navier-Stokes equations, give
a numerical procedure to solve the derived set of equations and then a numerical
simulation.
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Chapter 11 gives a magnetostatic application in ferromagnetics. This implies a
nonlinear problem where the nonlinearity is due to the dependency of the magnetic
permeability on the magnetic field. We give a mathematical formulation of the
derived problem, prove the existence of a solution and derive an iterative procedure
for its numerical solution.

In Chap. 12, we present a complete model for the simulation of the electrolytic
process in the aluminium industry. The model couples electromagnetics, incom-
pressible hydrodynamics and a free boundary problem. We present a model with
some simplifying hypotheses and give an efficient iterative procedure that has
resulted in a numerical code used in industrial environment.

To summarize, Part I states the best known mathematical results and gives proofs
of well–posedness of the given problems, while Part II contains a large variety of
applications of eddy current processes with some mathematical results, and with
numerical procedures and simulations. These two parts can be read independently
in the sense that all applications of Part II assume the results of Part I as known. In
addition all the chapters of Part II are independent and can then be read separately.

At the end, we mention that this book is the fruit of years of work on various
projects, either academic or industrial, that have had eddy currents as a central
subject. Naturally, this effort was not possible without the collaboration of many
colleagues and PhD students. For this we thank:

– O. Besson, J. Bourgeois, P.-A. Chevalier, S. Clain, M. Flück, S. Gauthier, A.
Masserey, C. Parietti, M. Picasso, D. Rochette, R. Rozsnyo, G. Steiner, M.
Swierkosz, C. Trophime, for their contributions either by managing projects
related to the presented applications in Part II, or by developing software for
numerical simulations.

– M. Pierre who has provided a result in Chap. 1.
– J. Descloux who has helped us with multiple and precious advice during the

execution of industrial projects related to eddy currents.
– J.-C. Nédélec, Y. Amirat, S. Clain and D. Rochette who have carefully read some

parts of the manuscript and helped us improving this work.

Clermont-Ferrand, France Rachid Touzani
Lausanne, Switzerland Jacques Rappaz
May 2013
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Part I
Eddy Current Models



Chapter 1
Mathematical Framework

1.1 Introduction

This first chapter is devoted to some basic results in functional analysis that will be
used throughout the book. Most of the results quoted in this chapter are known and
can be found for instance in Dautray–Lions [62]. Some sharper results can also be
found in Amrouche et al. [14], Ciarlet–Sonnendrucker [51], Girault–Raviart [93],
Nédélec [135, 138]. We have chosen to reproduce them here to ensure some self-
consistency. Some results like in Theorems 1.3.3 and 1.4.4 are however new up to
our knowledge. They constitute a contribution to establish that some mathematical
hypotheses are actually originated from relevant physical considerations.

Let us start by defining some notation standards. In order to respect traditional
notations in the electromagnetic literature, all fields in electromagnetics will be
denoted by capital letters whereas vector fields will be distinguished with bold faces.
Due to this constraint, function spaces will be invoked by using calligraphic fonts.
In addition, when these spaces concern vector-valued functions then the spaces will
be written with bold faces. For instance, L2.˝/ stands for the space of measurable
functions which are square Lebesgue–integrable on ˝ , and L2.˝/ WD .L2.˝//d
when˝ � R

d , d D 2 or 3.
A generic point of the space will be denoted by x 2 R

d and the vector ei ,
1 � i � d , will stand for the i -th vector of the canonical basis of Rd . The euclidean
norm of x is denoted by

jxj D
� dX
iD1

x2i

� 1
2
; where x D

dX
iD1

xiei :

Finally, since we shall deal with complex valued functions, the symbol i will stand
for the unit imaginary number (i2 D �1) and for a complex number z, then Nz, Re.z/,
Im.z/ and jzj are respectively the complex conjugate, the real, the imaginary parts
and the modulus of z.

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__1,
© Springer Science+Business Media Dordrecht 2014
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1.2 Preliminaries

We start by giving some classical existence and uniqueness results that will be
widely used in this book. For this, we assume the reader is familiar with basic
notions in functional analysis of Banach and Hilbert spaces. We also assume a basic
knowledge of the theory of elliptic equations.

Let X denote a complex Banach space equipped with the norm k � kX , the space
X 0 will stand for its antidual space, i.e. the space of continuous antilinear forms on
X , equipped with the norm

kgkX 0 WD sup
v2X ;kvkX D1

< g; v >X 0;X ;

where < � ; � >X 0;X denotes the duality pairing between X 0 and X .
The first result is the classical Lax–Milgram theorem (see [92] for instance).

Theorem 1.2.1 (Lax–Milgram). Let V denote a complex Hilbert space and let B
denote a sesquilinear continuous form on V that is, in addition, coercive, i.e. there
exists a real number ˛ > 0 such that

jB.v; v/j � ˛ kvk2V 8 v 2 V :

Then, for each antilinear continuous form L 2 V 0, there exists a unique u 2 V such
that

B.u; v/ D L .v/ 8 v 2 V :

Moreover, there exists a constant C independent of L such that

kukV � C kL kV 0 :

The second existence and uniqueness result is the so-called BabuLska–Brezzi–
Ladyzhenskaya theorem, the proof of which can be found in Girault–Raviart [93]
for instance.

Theorem 1.2.2. Let V and Q denote two complex Hilbert spaces and let A and B
denote two sesquilinear continuous forms on V � V and V � Q respectively. Let us
define the space

V0 D f v 2 V I B.v; q/ D 0 8 q 2 Q g:

We assume that there exist constants ˛; ˇ > 0 such that

jA .v; v/j � ˛ kvk2V 8 v 2 V0; (1.1)
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sup
v2Vnf0g

jB.v; q/j
kvkV � ˇ kqkQ 8 q 2 Q: (1.2)

Then, for each antilinear continuous forms L 2 V 0 and N 2 Q0, there exists a
unique pair .u; p/ 2 V � Q such that

A .u; v/C B.v; p/ D L .v/ 8 v 2 V ;
B.u; q/ D N .q/ 8 q 2 Q:

Moreover, there exists a constant C independent of L and N such that

kukV C kpkQ � C .kL kV 0 C kN kQ0/:

For the sake of clarity, we shall in the following distinguish the two and three-
dimensional cases.

1.3 The Three-Dimensional Case

We shall deal, in all the following, with a conductor device denoted by ˝ . The
domain ˝ is firstly assumed to be open, bounded and connected for the sake of
simplicity. Naturally, in view of applications, cases with multiple conductors will be
mentioned. The boundary of˝ is denoted by � and is assumed to be smooth enough
(piecewise C1, say) with outward unit normal n. We shall furthermore denote by
˝ext the complement of the closure˝ of˝ , that is ˝ext WD R

3 n˝ . The domain˝
is connected but can be simply connected or not. This topic will be addressed when
needed.

Let u denote a function defined in R
3 such that the restriction of u to ˝ (resp.

˝ext) is continuous and admits a continuous extension on � . Then uj�� , or simply
u� (resp. uj�C or uC) will stand for the inner (resp. outer) restriction to � , with
respect to ˝ defined for almost every x 2 � by

uj��.x/ D lim
s!0; s>0

u.x � sn.x//;

uj�C.x/ D lim
s!0; s>0

u.x C sn.x//:

The function Œu�� WD uj�C � uj�� will stand for the jump. Note that we shall
sometimes use for convenience the notation Œu.x/� rather than Œu�.x/. Moreover, the
subscript will be omitted when no confusion is possible.
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1.3.1 Function Spaces

We now recall some function spaces and some of their elementary properties we
will need in the sequel. More detailed description of these spaces can be found in
[3] or [92] for instance.

We start by recalling some used differential operators. For a continuously
differentiable scalar field � W R

3 ! C and vector field u W R
3 ! C

3, with
u D u1e1 C u2e2 C u3e3, we define the fields and tensors:

r� WD @�

@x1
e1 C @�

@x2
e2 C @�

@x3
e3;

.ru/ij WD
�
@ui
@xj

�
; 1 � i; j � 3;

div u WD @u1
@x1

C @u2
@x2

C @u3
@x3

;

curl u WD
�
@u3
@x2

� @u2
@x3

�
e1 C

�
@u1
@x3

� @u3
@x1

�
e2 C

�
@u2
@x1

� @u1
@x2

�
e3:

Let D.˝/ stand for the space of indefinitely differentiable functions over ˝
with a compact support in˝ and L2.˝/ the space of functions which are Lebesgue
square integrable over˝ . More generally,Lp.˝/ is the space of functions u defined
over˝ and such that:

Z

˝

jujp dx < 1 for 1 � p < 1;

Ess Sup
x2�

ju.x/j < 1 for p D 1:

These spaces are complex Banach spaces when endowed with the norms:

kukLp.˝/ WD
� Z

˝

jujp dx
� 1
p

for 1 � p < 1;

kukL1.˝/ WD Ess Sup
x2�

ju.x/j for p D 1:

Note that all these spaces can be defined in the same way when˝ is replaced by the
unbounded domain ˝ext or by R

3. Furthermore, for a domain ˝ , the subscript loc
in the space name means that the property of the space holds in all compact subsets
of ˝ .

Let ˛ D .˛1; ˛2; ˛3/ a multi-integer, i.e. ˛1; ˛2; ˛3 are nonnegative integers, with
j˛j D ˛1 C ˛2 C ˛3. For 1 � p � 1, we introduce the Sobolev spaces
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Wm;p.˝/ WD
n
v 2 Lp.˝/I @j˛jv

@x
˛1
1 @x

˛2
2 @x

˛3
3

2 Lp.˝/ with j˛j � m
o
;

where the partial derivatives are defined in the sense of distributions. These spaces
are Banach spaces when endowed with the norms

kvkWm;p.˝/ WD
� X

j˛j�m

��� @j˛jv
@x

˛1
1 @x

˛2
2 @x

˛3
3

���
p

Lp.˝/

� 1
p

for 1 � p < 1;

kvkWm;1.˝/ WD sup
j˛j�m

��� @j˛jv
@x

˛1
1 @x

˛2
2 @x

˛3
3

���
L1.˝/

for p D 1:

The space Wm;p
0 .˝/ is defined as the closure of D.˝/ in Wm;p.˝/.

When p D 2, the spaces Wm;2.˝/ or Wm;2
0 .˝/ are Hilbert spaces and we denote

them by

Hm.˝/ D Wm;2.˝/; Hm
0 .˝/ D Wm;2

0 .˝/; m � 1:

In Wm;p.˝/ we define the quantities:

jvjWm;p.˝/ WD
� X

j˛jDm

��� @j˛jv
@x

˛1
1 @x

˛2
2 @x

˛3
3

���
p

Lp.˝/

� 1
p

for 1 � p < 1;

jvjWm;1.˝/ WD sup
j˛jDm

��� @j˛jv
@x

˛1
1 @x

˛2
2 @x

˛3
3

���
L1.˝/

for p D 1;

which are semi-norms on these spaces. In addition, the semi-norm j�jH1.˝/ is a norm
on H1

0.˝/ equivalent to the norm k � kH1.˝/.
The space of traces of functions of H1.˝/ when ˝ is bounded, is the Sobolev

space H 1
2 .� /, and H� 1

2 .� / is its dual space. We shall hereafter, for the sake of
simplicity, denote by an integral sign this duality product, i.e.

Z

�

� uds WD< �; u >H�
1
2 .� /;H 1

2 .� /
8 � 2 H� 1

2 .� /; u 2 H 1
2 .� /:

We have the trace inequality (see [92]),

kukH 1
2 .� /

� C kukH1.˝/ 8 u 2 H1.˝/: (1.3)

Note that if � 2 H� 1
2 .� / then by using the Lax-Milgram theorem (Theorem 1.2.1)

on H1.˝/, we have the existence of a unique u 2 H1.˝/ such that



8 1 Mathematical Framework

Z

�

�' ds D
Z

˝

.ru � rv C uv/ dx;

for all ' 2 H 1
2 .� / and for all v 2 H1.˝/ satisfying v D ' on � . Let us remark

that if � 2 H 1
2 .� / and u 2 H2.˝/ then this relation corresponds to

8
<̂
:̂

��u C u D 0 in ˝;

@u

@n
D � on �:

Note also that there exists a constant C such that if g 2 H 1
2 .� / there exists a

function u 2 H1.˝/ satisfying u D g on � and

kukH1.˝/ � C kgkH 1
2 .� /

; (1.4)

where, in particular, the function u can be chosen such that �u D 0 in ˝ . In this
case, this one is characterized by the variational equation:

Z

˝

ru � rv dx D 0 8 v 2 H1
0.˝/;

u D g on �:

Let us also mention the useful Poincaré–Friedrichs inequality (see [92] for instance):

krukL2.˝/ C kukL2.� / � C kukH1.˝/: (1.5)

Sometimes, we shall invoke other duality pairings. In this case, we shall still
denote by an integral symbol these dualities because the “pivoting space” is L2.� /.

Another class of function spaces is involved when one deals with unbounded
domains. These spaces are useful for the statement and wel–posedness of exterior
problems for they assign the behaviour at the infinity. It is noteworthy that if  2
H1

loc.R
3/ and if  .x/ behaves like jxj�1 when jxj ! 1, then  is not necessarily

in L2.R3/. For this reason, we introduce the Beppo-Levi or Nédélec space W1.˝ext/

defined by

W1.˝ext/ WD
n
 I  

1C jxj 2 L2.˝ext/; r 2 L2.˝ext/
o
;

equipped with the norm

k kW1.˝ext/ WD
����  

1C jxj
���
2

L2.˝ext/
C kr k2L2.˝ext/

� 1
2
:



1.3 The Three-Dimensional Case 9

We define the semi-norm

j jW1.˝ext/ WD kr kL2.˝ext/
;

which is equivalent to the norm k � kW1.˝ext/ (see [62], Vol. 4, p. 118), i.e.

k kW1.˝ext/ � C j jW1.˝ext/ 8  2 W1.˝ext/; (1.6)

where C is independent of  . Note that the nonzero constant function does not
belong to W1.˝ext/. It is also noteworthy that, in particular, if a function v belongs
to W1.˝ext/, then the restriction of v to any bounded subset D of˝ext is a function
of H1.D/. Consequently, we have a similar trace inequality to (1.3), i.e.

kukH 1
2 .� /

� C kukW1.˝ext/ 8 u 2 W1.˝ext/: (1.7)

A similar inequality to (1.4) can be given for the unbounded case, i.e. if g 2 H 1
2 .� /,

then there exists a function u 2 W1.˝ext/ satisfying u D g on � such that

kukW1.˝ext/ � C kgkH 1
2 .� /

; (1.8)

where here also, u can be chosen as a harmonic function in ˝ext.
The space W1.R3/ is defined in an analogous way to W1.˝ext/. In this case,

(1.6) holds and (1.7), (1.8) are meaningless.
In electromagnetism, we are often faced with the use of the div and curl

operators. The complex spaces H.div;˝/ and H.curl;˝/ are the most appropriate
tools to formulate electromagnetic problems. The space H.div;˝/ is defined by

H.div;˝/ D f v 2 L2.˝/I div v 2 L2.˝/g;

where the partial derivatives are taken in the sense of distributions. This space is
a complex Hilbert space (see [62], Vol. 3, p. 204) when endowed with the inner
product

.u; v/H.div;˝/ WD
Z

˝

u � v dx C
Z

˝

div u div v dx;

and its associated norm

kvkH.div;˝/ WD .kvk2L2.˝/
C k div vk2L2.˝//

1
2 :

For functions v 2 H.div;˝/, the trace of v � n on � can be defined as a function
of H� 1

2 .� / by the duality pairing,

Z

�

v � n' ds WD
Z

˝

v � r' dx C
Z

˝

' div v dx 8 ' 2 H1.˝/: (1.9)
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Remark 1.3.1. This definition of the trace is clearly valid only for � as boundary of
a domain˝ . It is however possible to define, in a weaker sense, traces of the normal
component of a vector field in H.div; � / on any portion of � (see for this [14] for
instance) but this is out of the scope of this book. We shall however make use of
these traces with the same duality notation as (1.9).

The space H.curl;˝/ is defined by

H.curl;˝/ D f v 2 L2.˝/I curl v 2 L2.˝/g:

Here again, the curl operator is the one that involves partial derivatives in the sense
of distributions. This complex space is a Hilbert space (see [62], Vol. 3, p. 204)
when endowed with the inner product

.u; v/H.curl;˝/ WD
Z

˝

u � v dx C
Z

˝

curl u � curl v dx;

and its associated norm

kvkH.curl;˝/ WD .kvk2L2.˝/
C k curl vk2L2.˝/

/
1
2 :

For functions v 2 H.curl;˝/ the trace of v � n on � can be defined as an element
of H� 1

2 .� / by the duality pairing

Z

�

w � .v � n/ ds WD
Z

˝

v � curl wdx �
Z

˝

w � curl v dx 8 w 2 H1.˝/:

The same remark as 1.3.1 applies here.
If X is˝ext or R3, the spaces H.div; X/ and H.curl; X/ are defined in the same

way as above.
The following result is a consequence to the above ones. This one will enable us

to give interface conditions for fields in H.div; � / or H.curl; � /.
Theorem 1.3.1. Let u W R3 ! C

3 denote a vector field.

1. If uj˝ 2 H.div;˝/ and uj˝ext 2 H.div;˝ext/, then

u 2 H.div;R3/ , Œu � n�� D 0:

2. If uj˝ 2 H.curl;˝/ and uj˝ext 2 H.curl;˝ext/, then

u 2 H.curl;R3/ , Œu � n�� D 0:

We recall that Œ � �� denotes the jump through � .

Let us, in addition give the following useful result.
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Theorem 1.3.2. Let v 2 W1.R3/, then we have the identity

Z

R3

jrvj2 dx D
Z

R3

j curl vj2 dx C
Z

R3

j div vj2 dx;

where

jrvj WD
� 3X
i;jD1

� @vi
@xj

�2� 1
2

:

Proof. By density of the space DD.R3/ into W1.R3/ (see [62], Vol. 4, p. 117), it is
sufficient to prove the identity for functions v 2 DD.R3/. We have in each open ball
B with boundary @B (see [62], Vol. 3, p. 210),

Z

B

jrvj2 dx D
Z

B

j curl vj2 dx C
Z

B

j div vj2 dx C IB.v/;

where

IB.v/ D
Z

@B

�
v � r.v � n/ � v � n div v

�
ds:

ChoosingB as a ball that contains the support of v, we obtain IB.v/ D 0. Therefore,
we have for v 2 DD.R3/,

Z

R3

jrvj2 dx D
Z

R3

j curl vj2 dx C
Z

R3

j div vj2 dx: ut

Let us now define some surface operators that are generally used in electromag-
netism. Let v denote a smooth vector field defined on an oriented regular surface S
imbedded in R

3 with the unit normal vector n. Following ([62], Vol. 4, p. 136), we
extend v as a vector field Qv to a neighborhood Sı of S of “thickness” ı,

Sı WD f x C sn.x/I x 2 S; �ı < s < ıg

with ı sufficiently small to guarantee existence and uniqueness of a local projection
operator P W Sı ! S . We also associate to any scalar function ' W S ! C a
function Q' defined on Sı by

Q'.x/ WD '.P.x// x 2 Sı:

We can then define the surface vector field

curlS '.x/ D n.x/ � r Q'.x/ x 2 S: (1.10)
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For a surface vector field v W S ! C
3, we define

Qv.x/ WD v.P.x// x 2 S:

The surface curl of v is then defined by

curlS v.x/ D curl Qv.x/ � n.x/ x 2 S: (1.11)

It is worth noting that if the scalar field ' is smooth then its extension Q' is a smooth
scalar field in Sı . Since curl r Q' D 0, then by Theorem 1.3.1, we deduce that the
surface vector curlS ' D n � r Q' is well defined on S . In an analog way, if the
vector field v is smooth then Qv is a smooth vector field in Sı. Since div curl Qv D 0,
then by Theorem 1.3.1, we deduce that the surface function curlS v D curl Qv � n is
well defined on S .

1.3.2 Behaviour at the Infinity

In electromagnetics, the physical fields are defined in the whole space and con-
sequently, one has to deal with problems formulated in unbounded domains.
A classical technique to numerically handle such problems is to try to represent
the solution outside the conductor domains (a physical field or a potential) on the
boundary of the domains. For this, we make use of integral formulations of partial
differential equations and particularly of integral representation of harmonic fields
since only these ones are involved in eddy currents. In addition, as far as conditions
at the infinity are concerned, a physical point of view dictates that all physical fields
are radial at the infinity, i.e. for x 2 R

3 with jxj large enough, all physical fields
are close to radial fields. In the following, we shall give a precise definition of this
notion and then prove that this leads to appropriate behaviour at the infinity.

Definition 1.3.1. A scalar field u W R3 ! C (resp. vector field u W R3 ! C
3) is said

to be radial at the infinity if there exists a function g W .0;1/ ! R such that for all
" > 0, there is a positive constant R that satisfies

ju.x/� g.jxj/j � " 8 jxj � R:

(resp. ju.x/� g.jxj/xj � " for all x 2 R
3, jxj � R).

The following result is obtained in collaboration with M. Pierre (Private commu-
nication).

Theorem 1.3.3. Let u 2 C2.˝ext/ be a function that is radial at the infinity, and
assume that u is harmonic in ˝ext. Then there exist ˛; ˇ 2 C such that:
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u.x/ D ˛ C ˇ

jxj C O
�
1

jxj2
�

for jxj ! 1; (1.12)

ru.x/ D � ˇ

jxj3 x C O
�
1

jxj3
�

for jxj ! 1: (1.13)

Proof. By considering the Kelvin’s transformation,

v.y/ D 1

jyj u

�
y

jy j2
�

when y is taken in a neighborhood of the origin, it is easy to prove the existence of
an r0 such that ˝ is included in the ball fx 2 R

3I jxj < 1=r0g and such that v is
harmonic in B WD fy 2 R

3I 0 < jyj < r0g.
If R is a rotation in R

3, then since u is radial at the infinity, we deduce by
setting w.y/ WD v.y/ � v.Ry/ that jy jw.y/ is bounded when jy j ! 0. By using
(Proposition 16, in [62], Vol. 1, p. 259), there exists a constant ˛ such that the
function

Qw.y/ D w.y/� ˛

jyj

can be extended to a harmonic function on the ball QB D fy 2 R
3I jyj < r0g and

we have the Poisson integral (see [62], Vol. 1, p. 249),

Qw.y/ D 1

2�r0

�r20
4

� jyj2
� Z

C

Qw.z/
jz � yj3 ds.z/ 8 y with jy j < r0

2
;

where C is the sphere centered at the origin with radius r0=2. It follows that for
0 < jyj < r0=2,

v.y/ � v.Ry/ � ˛

jyj D 1

2�r0

�r20
4

� jyj2
� Z

C

v.z/ � v.Rz/
jz � yj3 ds.z/

� ˛

�r20

�r20
4

� jyj2
� Z

C

1

jz � y j3 ds.z/:

Since

1 D 1

2�r0

�r20
4

� jy j2
� Z

C

1

jz � yj3 ds.z/ for all jyj < r0=2;

then we obtain

v.y/ � v.Ry/ � ˛

jy j D 1

2�r0

�r20
4

� jyj2
� Z

C

v.z/ � v.Rz/
jz � yj3 ds.z/ � 2˛

r0
:
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By setting

h.y/ D v.y/� 1

2�r0

�r20
4

� jyj2
� Z

C

v.z/
jz � yj3 ds.z/;

we obtain for 0 < jy j < r0=2,

h.y/ D h.Ry/C ˛
� 1

jy j � 2

r0

�
:

LetB denote the sphere centered at the origin with radius r0=4 and let n be a positive
integer. For y 2 B , we have Rny 2 B and

h.y/ D h.Rny/C n˛
2

r0
:

Clearly, we have ˛ D 0 since otherwise limn!1 jh.Rny/j D 1, which is in
contradiction with the continuity of h. Therefore h.y/ D h.Ry/ for all 0 < jyj <
r0=2, which proves that h is radial for 0 < jyj < r0=2.

Since h is harmonic for 0 < jyj < r0=2, we obtain by direct computation

h.y/ D a

jyj C b; where a; b 2 C:

It follows that

v.y/ D a

jy j C b C 1

2�r0

�r20
4

� jy j2
� Z

C

v.z/
jz � y j3 ds.z/: (1.14)

Since for z 2 C,

1

jz � y j3 D 1

jzj3 .1C O.jy j// D 8

r30
.1C O.jyj// when jyj ! 0;

we obtain

v.y/ D a

jyj C
�
b C 1

�r20

�
C O.jy j/ when jyj ! 0:

Finally, since

u.x/ D 1

jxj v
� x

jxj2
�
;

then

u.x/ D a C
�
b C 1

�r20

� 1
jxj C O.jxj�2/ when jxj ! 1:
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This proves (1.12) with ˛ D a and ˇ D b C 1=�r20 . To prove (1.13), we calculate
ru from (1.14) and we obtain the result in a similar way. ut
Remark 1.3.2. The same behaviour as (1.12) is obtained if u is assumed to be
bounded at the infinity (see [62], Vol. 1, p. 266). This conclusion can also be drawn
from the proof of Theorem 1.3.3.

1.3.3 Kernel of div and curl Operators

We present now some characterizations of kernels of the operators div and curl.
The proofs of these theorems can be found in ([62], Vol. 3, Chap. IX or [14]) in the
Sobolev space context.

Theorem 1.3.4.

1. Let u denote a function in H.div;R3/ such that

div u D 0:

There exists a function v 2 W1.R3/ such that

u D curl v in R
3:

In addition, v can be chosen such that

div v D 0 in R
3: (1.15)

In this case, v is unique. The additional constraint (1.15) is usually called
Coulomb Gauge.

2. Let u denote a function in H.curl;R3/ such that

curl u D 0:

Then, there exists a unique function ' 2 W1.R3/ such that

u D r':

We next need a characterization of the kernel of the curl operator in the conductor
˝ as well as in the external domain. It is well known that in the case where the
domain ˝ is simply connected, if u is a vector field of H.curl;˝/ that satisfies
curl u D 0 in ˝ , then there exists a scalar field ' in H1.˝/ such that u D r'.
Let us now assume that ˝ is not simply connected and that its boundary � of ˝
is a surface of genus 1, i.e. a torus (cf. Fig. 1.1). Then there is a cut , i.e. a smooth
surface S contained in˝ such that the domain˝ nS is simply connected. It is clear
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Fig. 1.1 A toroidal
conductor (of genus 1) with
cuts S and ˙

then that there exists a cut ˙ , contained in ˝ext such that the domain ˝ext n ˙ is
simply connected.

The following two theorems can be found in Dautray–Lions ([62], Vol. 3, pp. 219
and 230).

Theorem 1.3.5. Assume that the boundary � of ˝ is of genus 1, and let u denote
a function in H.curl;˝/ such that

curl u D 0:

Then there exists a function ' 2 H1.˝/ and a complex number ˛ such that

u D r' C ˛rq in ˝ n S; (1.16)

where the function q is a solution of the following problem,

8
ˆ̂̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂:

�q D 0 in ˝ n S;
Œq�S D 1;
�
@q

@n

�

S

D 0;

@q

@n
D 0 on �:

(1.17)

In addition, there exists a positive constant C such that

k'kH1.˝/ � C kukH.curl;˝/: (1.18)

Note that, although the function q is determined up to an additive constant,
the expansion (1.16) does not depend on this constant. In fact, the function
q 2 H1.˝ n S/ is such that

Z

˝

rq � rv dx D 0 8 v 2 H1.˝/ and Œq�S D 1:
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Theorem 1.3.6. Assume that the boundary � of ˝ is of genus 1, and let u denote
a function in H.curl;˝ext/ such that

curl u D 0:

Then there exists a function ' 2 W1.˝ext/ and a complex number �, such that

u D r' C �rp in ˝ext n˙; (1.19)

where the function p is a solution of the following problem,

8
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�p D 0 in ˝ext n˙;
Œp�˙ D 1;
�
@p

@n

�

˙

D 0;

@p

@n
D 0 on �;

p.x/ D O.jxj�1/ for jxj ! 1:

(1.20)

Note that the function p in this case is unique. In fact, p 2 W1.˝ext n ˙/ is such
that

Z

˝ext

rp � rv dx D 0 8 v 2 W1.˝ext/ and Œp�˙ D 1:

Remark 1.3.3. If the surface � is of genus N > 1 (roughly speaking, a domain
with N holes), we have to introduce N cuts S1; : : : ; SN in order to obtain a simply
connected domain ˝ n [N

jD1Sj . If we associate to these cuts N cuts ˙1; : : : ; ˙N

in order to obtain a simply connected domain˝ext n [N
jD1˙j , we can derive analog

results to those obtained in Theorems 1.3.5 and 1.3.6 with N functions q1; : : : ; qN
and N functions p1; : : : ; pN . Moreover, if ˝ is made ofM connected components,
this process can be repeatedM times.

1.3.4 Integral Representations

Let us summarize some results about integral representations of harmonic fields.
Such fields appear indeed in the modelling of eddy currents in unbounded regions
of the space and their representation on the boundary enable deriving stable and
accurate numerical methods. The given results are all known and most of them
are proved in the book series of Dautray and Lions [62] or in the lectures of J.-C.
Nédélec [135, 138]. We quote them here for a sake of self consistency.
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We start by introducing the Green function

G.x;y/ WD 1

4�

1

jx � y j x;y 2 R
3; x ¤ y : (1.21)

It is well known that

��yG.x; � / D ıx in R
3; (1.22)

where ıx is the Dirac distribution at x and�y is the Laplace operator for the variable
y. As a consequence, it can be shown that if f 2 L2.R3/ with a compact support,
then the solution of the elliptic problem

( ��u D f in R
3;

u.x/ D O.jxj�1/ jxj ! 1;

is given by the expression

u.x/ D
Z

R3

f .y/G.x;y/ dy x 2 R
3: (1.23)

We now give a fundamental result about integral representations.

Theorem 1.3.7. Let u be a function of class .C1.˝/ \ C2.˝// \ .C1.˝ext/ \
C2.˝ext// that satisfies

�u D 0 in ˝ [˝ext;

and assume furthermore that

ju.x/j D O.jxj�1/ when jxj ! 1:

Then we have for x 2 ˝ [˝ext, the representation

u.x/ D �
Z

�

h @u

@n
.y/

i
G.x;y/ ds.y/C

Z

�

Œu.y/�
@G

@ny

.x;y/ ds.y/; (1.24)

and for x 2 � ,

1

2
.uj��.x/C uj�C.x// D �

Z

�

h @u

@n
.y/

i
G.x;y/ ds.y/

C
Z

�

Œu.y/�
@G

@ny

.x;y/ ds.y/: (1.25)
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Proof. This integral representation is well known (see Nédélec [135]). However, for
convenience of the reader we establish its proof for x 2 ˝ .

Let R > 0 be such that the open ball BR centered at the origin with radius R
satisfies ˝ � BR. We denote by @BR the boundary of this ball and˝R

ext D BR n˝ .
For x 2 ˝ , G.x; � / is harmonic in ˝ext and we have by using Green’s formula,

0 D
Z

˝R
ext

�u.y/G.x;y/ ds.y/ �
Z

˝R
ext

u.y/�yG.x;y/ ds.y/

D �
Z

�

@uC

@n
.y/G.x;y/ ds.y/C

Z

�

uC.y/
@G

@ny

.x;y/ ds.y/

C
Z

@BR

@u

@n
.y/G.x;y/ ds.y/�

Z

@BR

u.y/
@G

@ny

.x;y/ ds.y/;

where the unit normal on @BR is oriented outside BR and uC D uj˝ext . By using the
fact that u.x/ D O.jxj�1/ when jxj ! 1, Theorem 1.3.3 and the expression of G,
we easily prove that

lim
R!1

�Z

@BR

@u

@n
.y/G.x;y/ ds.y/ �

Z

@BR

u.y/
@G

@ny

.x;y/ ds.y/

�
D 0:

It follows that

Z

�

@uC

@n
.y/G.x;y/ ds.y/�

Z

�

uC.y/
@G

@ny

.x;y/ ds.y/ D 0: (1.26)

Let " > 0 be such that the open ball B".x/ centered at x with radius " satisfies
B".x/ � ˝ . We denote by @B".x/ the boundary of this ball and˝" WD ˝ nB".x/.
Since G.x; � / and u are harmonic in ˝", we have by using the Green’s formula
in ˝",

0 D �
Z

˝"

u.y/�yG.x;y/ dy C
Z

˝"

G.x;y/�u.y/ dy

D �
Z

�

u�.y/
@G

@ny

.x;y/ ds.y/C
Z

�

@u�

@n
.y/G.x;y/ ds.y/

�
Z

@B".x/

u�.y/
@G

@ny

.x;y/ ds.y/C
Z

@B".x/

@u�

@n
G.x;y/ ds.y/;

where the unit normal vector to @B".x/ points to the center of B".x/. It is easy to
prove that

lim
"!0

Z

@B".x/

u�.y/
@G

@ny

.x;y/ ds.y/ D u.x/;
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and

lim
"!0

Z

@B".x/

@u�

@n
.y/G.x;y/ ds.y/ D 0:

It follows that

u.x/ D �
Z

�

u�.y/
@G

@ny

.x;y/ ds.y/C
Z

�

@u�

@n
.y/G.x;y/ ds.y/: (1.27)

We obtain by subtracting (1.26) from (1.27),

u.x/ D
Z

�

Œu.y/�
@G

@ny

.x;y/ ds.y/ �
Z

�

h @u

@n
.y/

i
G.x;y/ ds.y/: ut

The results of Theorem 1.3.7 can now be used to derive integral representations
of solutions of various problems in unbounded domains. Consider the Dirichlet
problem

8̂
<̂
ˆ̂:

�u D 0 in ˝ [˝ext;

u D g on �;

u.x/ D O.jxj�1/ jxj ! 1;

(1.28)

where g 2 H 1
2 .� /. Denoting by p the jump

	 @u

@n



�

, we have, according to

Theorem 1.3.7, the integral representation

u.x/ D �
Z

�

p.y/G.x;y/ ds.y/ x 2 R
3:

In particular, for x 2 � , the function p satisfies the integral equation

g.x/ D �
Z

�

p.y/G.x;y/ ds.y/ x 2 �: (1.29)

As a problem with the unknown p, (1.29) admits the variational formulation:

8̂
<
:̂

Find p 2 H� 1
2 .� / such that

B.p; q/ D �
Z

�

g q ds 8 q 2 H� 1
2 .� /;

(1.30)
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where B is the sesquilinear form on H� 1
2 .� / � H� 1

2 .� / given by

B.p; q/ WD
Z

�

Z

�

G.x;y/ p.y/ q.x/ ds.y/ ds.x/:

Theorem 1.3.8 ([62], Vol. 4, p. 123). The sequilinear form B is continuous on
H� 1

2 .� / � H� 1
2 .� / and there is a constant C such that

jB.q; q/j � C kqk2
H�

1
2 .� /

8 q 2 H� 1
2 .� /:

As a consequence of Theorem 1.3.8 and of the Lax-Milgram theorem
(Theorem 1.2.1), there exists an isomorphism T W H 1

2 .� / ! H� 1
2 .� / satisfying

B.Tf; q/ D
Z

�

f q ds 8 q 2 H� 1
2 .� /; f 2 H 1

2 .� /:

By setting K D T �1 W H� 1
2 .� / ! H 1

2 .� / we have the identity

Z

�

.Kp/ q ds WD B.p; q/ 8 p; q 2 H� 1
2 .� /: (1.31)

So we obtain u D �K 	 @u

@n



�

on � when u satisfies (1.32).

We have the regularity result.

Theorem 1.3.9 ([62], Vol. 4, p. 124). Assume that the boundary � is smooth
enough (C1, say). Then, the mappingK defines an isomorphism of Hs�1.� / onto
Hs.� / for all s 2 R.

It is then possible to calculate the normal derivative of uC by the following result:

Theorem 1.3.10 ([62], Vol. 4, p. 131). Let u denote the solution of (1.28) and let
p D Œ@u=@n�� . Then the exterior normal derivative of u is given by

@uC

@n
.x/ D 1

2
p.x/ �

Z

�

p.y/
@G

@nx

.x;y/ ds.y/ x 2 �: ut

A second type of integral equations appears in integral representation of har-
monic fields. Consider, for this, the exterior Dirichlet problem:

8
ˆ̂<
ˆ̂:

�u D 0 in ˝ext;

u D g on �;

u.x/ D O.jxj�1/ for jxj ! 1;

(1.32)
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where g 2 H 1
2 .� /. If

Z

�

@u

@n
ds D 0; (1.33)

we can define a harmonic function u in ˝ such that Œ@u=@n� D 0 on � and we set
' WD Œu� on � . Remark that the extension of u on˝ is determined up to an additive
constant. This is the reason for which we consider ' in H 1

2 .� /=C in the following.
We obtain from (1.25) the representation

1

2
'.x/C

Z

�

'.y/
@G

@ny

.x;y/ ds.y/ D g.x/: x 2 �; (1.34)

Equation (1.34) can be written in operator form as

.
1

2
I CR/' D g; (1.35)

where I is the identity operator in H 1
2 .� /=C and R W H 1

2 .� /=C ! H 1
2 .� /=C is

the mapping defined by

R' WD
Z

�

'.y/
@G

@ny

.�;y/ ds.y/: (1.36)

We have the following result (cf. [62], Vol. 4, p. 128).

Lemma 1.3.1. Under the same hypotheses as in Theorem 1.3.9, the mapping R is
linear and continuous from Hs.� / into HsC1.� / for all real s.

In order to formulate (1.35) in H 1
2 .� /, we shall add an extra condition to g to

ensure (1.33). Let us define the exterior problem:

8̂
<̂
ˆ̂:

�v D 0 in ˝ext;

v D 1 on �;

v.x/ D O.jxj�1/ for jxj ! 1:

To apply the Green formula in ˝ext, we denote by BR the ball with center 0 and
radiusR > 0, large enough so that BR � ˝ , and by �R the boundary of BR. Owing
to the properties of u and v and (1.13) we have

lim
R!1

�Z

�R

u
@v

@n
ds �

Z

�R

v
@u

@n
ds

�
D 0:

Then the Green formula in ˝ext yields

Z

�

u
@v

@n
ds D

Z

�

v
@u

@n
ds;
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which implies

Z

�

g
@v

@n
ds D

Z

�

@u

@n
ds D 0:

We have the following result.

Theorem 1.3.11 ([62], Vol. 4, p. 126). Assume that g 2 H 1
2 .� / and satisfies

Z

�

g
@v

@n
ds D 0: (1.37)

Then (1.35) admits a unique solution ' 2 H 1
2 .� /=C. Moreover, the operator 1

2
ICR

defines an isomorphism of H 1
2 .� /=C onto the space of functions g 2 H 1

2 .� / that
satisfy (1.37).

1.3.5 The Exterior Steklov–Poincaré Operator

A major tool that will be used in coupled exterior–interior problems is the so-called
Exterior Steklov–Poincaré operator. This one is defined by (The normal vector n

points outward of˝):

P W ' 2 H 1
2 .� / 7! � @u

@n
ˇ̌
�

2 H� 1
2 .� /; (1.38)

where u is the unique solution, in W1.˝ext/, of the exterior problem

8
ˆ̂<
ˆ̂:

�u D 0 in ˝ext;

u D ' on �;

u.x/ D O.jxj�1/ for jxj ! 1:

(1.39)

We shall in the sequel give an integral representation of this operator and
show some of its properties. For this, let us denote, for ' 2 H 1

2 .� / by u' its
corresponding solution of (1.39). We have by definition of W1.˝ext/ and (1.13),

Z

˝ext

ru' � r Nv dx D 0 8 v 2 W1.˝ext/ with v D 0 on �:

Then by the Green formula applied to

0 D
Z

˝ext

�u'u dx
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we obtain
Z

�

.P'/ ds D
Z

˝ext

ru' � ru dx 8 '; 2 H 1
2 .� /:

Theorem 1.3.12. The operator P is continuous, selfadjoint and coercive.

Proof. Let '; 2 H 1
2 .� /. We have from (1.8) and the definition of H� 1

2 .� / as the
dual space of H 1

2 .� /, for all  2 H 1
2 .� /,

ˇ̌
ˇ
Z

�

.P'/ ds
ˇ̌
ˇ � ku'kW1.˝ext/ ku kW1.˝ext/ � C k'kH 1

2 .� /
k kH 1

2 .� /
:

It results then that

kP'kH�
1
2 .� /

� C k'kH 1
2 .� /

8 ' 2 H 1
2 .� /;

which implies the continuity of P . Furthermore, P is selfadjoint by

Z

�

.P'/ ds D
Z

˝ext

ru' � ru dx D
Z

�

.P / ' ds:

Finally, we have from the trace inequality (1.7) and from (1.6),

Z

�

.P / ds D
Z

˝ext

jru j2 dx � C k k2
H 1

2 .� /
: ut

In order to obtain an integral representation for the operator P , we extend the
solution u of (1.39) to R

3 with a continuous trace, i.e. such that �u D 0 in ˝
and Œu�� D 0. We have then from (1.24) and (1.25) the identity

u.x/ D �
Z

�

p.y/G.x;y/ ds.y/ x 2 R
3;

where p D
h @u

@n

i
�

. Moreover we have from Theorem 1.3.10,

@uC

@n
.x/ D 1

2
p.x/�

Z

�

p.y/
@G

@nx

.x;y/ ds.y/ x 2 �: (1.40)

Let us consider the two operatorsK and R defined in (1.31) and (1.36) respectively
and define the adjoint operatorR0 of R by

Z

�

R0p.x/ .x/ ds.x/ WD
Z

�

p.x/ R .x/ ds.x/

8 p 2 H� 1
2 .� /;  2 H 1

2 .� /: (1.41)



1.3 The Three-Dimensional Case 25

Note that the operator R0 is actually defined on H� 1
2 .� / and that its range is

included in the space

f	 2 H� 1
2 .� /I

Z

�

	 ds D 0g:

Using the fact that the mapping K W H� 1
2 .� / ! H 1

2 .� / is an isomorphism, we
have from (1.40), for '; 2 H 1

2 .� /,

Z

�

.P'/ ds D �
Z

�

@u'
@n

 ds

D �1
2

Z

�

p ds C
Z

�

p .R / ds

D �
Z

�

.
1

2
I � R0/p  ds:

Using the relation Kp D ', we obtain the expression

P D .�1
2
I CR0/K�1: (1.42)

An alternative to the previous representation of the exterior Steklov–Poincaré
operator consists in extending (1.39) to the interior domain and then using an
integral representation to calculate the jump of the normal derivative.

Let ' 2 H 1
2 .� / and let us denote by Qu the unique solution in H1.˝/ of the

Dirichlet problem:
(
�Qu D 0 in ˝;

Qu D ' on �:
(1.43)

Using (1.25), we have, in addition for the jump of the normal derivative on � , the
identity

'.x/C
Z

�

� @u

@n
.y/ � @Qu

@n
.y/

�
G.x;y/ ds.y/ D 0; x 2 �:

By setting � D @u

@n
, multiplying this equation by 
 2 H� 1

2 .� / and integrating over

� , we obtain

Z

�

Z

�

�.y/G.x;y/ 
.x/ ds.y/ ds.x/ D
Z

�

Z

�

@Qu
@n
.y/G.x;y/ 
.x/ ds.y/ ds.x/

�
Z

�

'.x/ 
.x/ ds.x/:
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We can then define the problem:

8
<
:

Find � 2 H� 1
2 .� / such that

B.�; 
/ D L .
/ 8 
 2 H� 1
2 .� /;

(1.44)

where

B.�; 
/ WD
Z

�

Z

�

�.y/
.x/G.x;y/ ds.y/ ds.x/;

L .
/ WD
Z

�

Z

�

@Qu
@n
.y/ 
.x/G.x;y/ ds.y/ ds.x/�

Z

�

' 
ds:

Theorem 1.3.13. Problem (1.44) has a unique solution.

Proof. We use the Lax-Milgram theorem (Theorem 1.2.1), the coercivity of the
form B will be guaranteed by Theorem 1.3.8. The continuity of the antilinear form
L is also a known result in integral representation theory (see [62], Vol. 4, p. 123).

ut
Remark 1.3.4. Since � D @u

@n
, then we have � D �P'. Consequently when ' 2

H 1
2 .� / is given, a procedure to compute P' would consist in solving (1.43) on the

bounded domain˝ and then solving the boundary integral problem (1.44).

1.4 The Two-Dimensional Case

Two-dimensional configurations are obtained by considering a conductor domain
˝ given by the cylinder � � R where � is an open, bounded and connected set.
Here again, the connectivity hypothesis is assumed to simplify problem statements.
More general configurations will be considered when needed. The boundary of� is
denoted by � . In the sequel, we assume that this one is smooth enough (C1, say). Its
connected components are assumed to be closed curves of class C1, with outward
unit normal n. The (unbounded) domain �ext is defined as the complement of the
closure � of �, i.e. �ext D R

2 n �. A generic point of R2 is also denoted here by
x D x1 e1 C x2 e2.

In the sequel, we shall limit ourselves to the statement of results that actually
differ from the three-dimensional case.

Let u denote a function defined in R
2, then uj�� , or simply u� (resp. uj�C or uC)

will stand for the inner (resp. outer) restriction to � . The function Œu�� WD uj�C �uj��

will stand for the jump.
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1.4.1 Function Spaces

The gradient and divergence operators are obviously defined in a similar way than
for the three-dimensional case. For the curl operator, scalar and vector versions are
defined, for functions � W R2 ! C and u W R2 ! C

2 with u D u1e1 C u2e2, by

curl u WD @u2
@x1

� @u1
@x2

;

curl� WD @�

@x2
e1 � @�

@x1
e2:

It is easy to verify that if w is a three-dimensional vector field given by w D uC� e3,
where u D u1e1 C u2e2 and that does not depend on x3, then curl w D curl� C
.curl u/ e3. Function spaces D.�/, Lp.�/, Wm;p.�/, H1.�/, H 1

2 .�/ and H� 1
2 .�/

are defined in the same way as for the three-dimensional case. Moreover, properties
(1.4) and (1.5) are also valid in the present case.

We define the Beppo-Levi or Nédélec space W1.�ext/ by

W1.�ext/ WD
n
 I  

.1C jxj/ ln.2C jxj/ 2 L2.�ext/; r 2 L2.�ext/
o
;

equipped with the norm

k kW1.�ext/ WD
����  

.1C jxj/ ln.2C jxj/
���
2

L2.�ext/
C kr k2L2.�ext/

� 1
2
:

We also define W1
0 .�ext/ as the closure of D.�ext/ in W1.�ext/ and we also define

the semi-norm

j jW1.�ext/ WD kr kL2.�ext/
;  2 W1.�ext/:

In particular, it is known (see [135]) that we have the inequality

k kW1.�ext/ � C j jW1.�ext/ 8  2 W1
0 .�ext/; (1.45)

which implies that the above semi-norm is equivalent to the norm on W1
0 .�ext/. The

space W1.R2/ is defined in a similar way to W1.�ext/. Note that in opposition to the
three-dimensional case, the constant function belongs to W1.�ext/. This explains
why (1.6) does not hold in the two-dimensional case and we have to add in (1.45)
the fact that the functions vanish on � . In addition, it can be proved that the semi-
norm j � jW1.�ext/ and the norm k � kW1.�ext/ are equivalent on the space W1.�ext/=C,
i.e. we have

k kW1.�ext/ � C j jW1.�ext/ 8  2 W1.�ext/=C: (1.46)
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While the space H.div; �/ is defined similarly as for the three-dimensional
case, the two-dimensional analog of H.curl; �/ is actually defined for the curl
operator by

H.curl; �/ WD f v 2 L2.�/I curl v 2 L2.�/g:

This space is a complex Hilbert space when endowed with the inner product

.u; v/H.curl;�/ WD
Z

�

u � v dx C
Z

�

curl u curl v dx;

and its associated norm

kvkH.curl;�/ WD .kvk2L2.�/
C k curl vk2L2.�//

1
2 :

To define traces of functions of this space, it is convenient to introduce a unit tangent
to � by � D �n2 e1Cn1 e2. It can then be shown that the tangential component can
be defined for a field v 2 H.curl; �/ by the duality pairing

Z

�

� .v � �/ ds WD
Z

�

� curl v dx �
Z

�

v � curl� dx 8 � 2 H1.�/:

The spaces H.div; � / and H.curl; � / are defined in the same way on �ext and R
2.

A two-dimensional analog to Theorem 1.3.1 can be stated.

Theorem 1.4.1. Let u W R2 ! C
2 denote a vector field.

1. If uj� 2 H.div; �/ and uj�ext 2 H.div; �ext/, then

u 2 H.div;R2/ , Œu � n�� D 0:

2. If uj� 2 H.curl; �/ and uj�ext 2 H.curl; �ext/, then

u 2 H.curl;R2/ , Œu � ��� D 0:

Remark 1.4.1. It is noteworthy that if u 2 H.curl; �/ and if u? is the vector field
given by

u? WD u2 e1 � u1 e2

then we have div u? D curl u. For this reason, the space H.curl; �/ is rarely used.

The kernels of operators div and curl can be characterized in the two-
dimensional case in a similar way to the three-dimensional one. We shall however
consider the kernel of the divergence operator since this one slightly differs from
the three-dimensional case. For the proof of this result, we refer to Girault–Raviart
[93] for instance.
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Theorem 1.4.2. Let u denote a vector field in H.div;R2/ such that div u D 0. Then
there exists a scalar field � 2 W1.R2/ such that

u D curl� in R
2:

Another result of the same type will be helpful in the sequel.

Theorem 1.4.3. Let f denote a scalar field in L2.�/. Then there exists a unique
vector field v 2 H1.�/2 such that

f D curl v in �;

div v D 0 in �;

v � n D 0 on �:

Proof. Let � denote a function in H1
0.�/ such that

��� D f in �:

Since the boundary of� is smooth, we have � 2 H2.�/. Let us define v D curl� 2
H1.�/. We have

div v D 0 in �:

Moreover, since f D � div r� D curl curl�, we deduce

f D ��� D curl v:

Finally

v � n D r� � � D 0 on �:

The uniqueness of v results from the uniqueness of �. ut

1.4.2 Behaviour at the Infinity

As far as the behaviour of physical fields at the infinity is involved, things do
substantially differ from the three-dimensional case. Introducing the same notion
of radial field at the infinity, we will show here that a harmonic field can have a
logarithmic behaviour at the infinity, which means in particular that it cannot, in
principle, vanish at the infinity and is not even regular enough to be in W1.�ext/.
Here again we speak of a scalar field u W R2 ! C that is radial at the infinity using
Definition 1.3.1. The following result is obtained in collaboration with M. Pierre
(Private communication).
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Theorem 1.4.4. Let u 2 C2.�ext/ be a radial at the infinity and harmonic function.
Then there exist constants ˛; ˇ 2 R such that

u.x/ D ˛ ln jxj C ˇ C O.jxj�1/ for jxj ! 1; (1.47)

ru.x/ D ˛
x

jxj2 C O.jxj�2/ for jxj ! 1: (1.48)

Proof. Consider the new variable y D x=jxj2 and let v be the function defined by

v.y/ D u.x/ D u
� y

jy j2
�

when jy j ! 0:

We verify that there exists r0 > 0 such that v is harmonic in the set B D fy 2
R
2I 0 < jyj < r0g. Moreover, since u is radial at the infinity, the function w.y/ WD

v.y/�v.Ry/ is harmonic on B and bounded when y tends to zero for all rotations
R in R

2. Therefore, w can be extended to a harmonic function on the ball QB D fy 2
R
2I jyj < r0g and we have the Poisson integral (see [62], Vol. 1, p. 249):

w.y/ D 1

�r0

� r20
4

� jyj2
� Z

C

w.z/
jz � yj2 ds.z/ 8 y with jyj < r0

2
;

where C is the circle centered at the origin with radius r0
2

. We have for 0 < jyj <
r0=2:

v.y/ � 1

�r0

� r20
4

� jyj2
� Z

C

v.z/
jz � yj2 ds.z/

D v.Ry/� 1

�r0

�r20
4

� jRy j2
� Z

C

v.z/
jz � Ryj2 ds.z/:

It follows that the function

h.y/ WD v.y/ � 1

�r0

� r20
4

� jyj2
� Z

C

v.z/
jz � yj2 ds.z/

is harmonic for 0 < jyj < r0=2 and it is a radial function. By direct computation
we obtain h.y/ D a ln jyj C b where a; b 2 R, so that

v.y/ D a ln jyj C b C 1

�r0

�r20
4

� jyj2
� Z

C

v.z/
jz � y j2 ds.z/ (1.49)

for 0 < jyj < r0=2. Since

jz � yj�2 D jzj�2.1C O.jy j// when jyj ! 0;
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we obtain

v.y/ D a ln jyj C b C 1

�r0

Z

C

v.z/ ds.z/C O.jyj/ jxj ! 0:

It follows that

u.x/ D �a ln jxj C b C 1

�r0

Z

C

u
� z

jzj2
�
ds.z/C O.jxj�1/

when jxj ! 1:

We then obtain (1.47) by setting

˛ D �a; ˇ D b C 1

�r0

Z

C

u
� z

jzj2
�
ds.z/:

To obtain (1.48), we have from (1.49)

u.x/ D �a ln jxj C b C 1

�r0

�r20
4

� 1

jxj2
� Z

C

v
� z

jzj2
�
ds.z/:

Taking the gradient of this expression and proceeding in a similar way, we retrieve
(1.48). ut

1.4.3 Integral Representations

We introduce the Green function in two dimensions,

G.x;y/ WD � 1

2�
ln jx � yj; x 2 R

2; x ¤ y : (1.50)

We check indeed that

��yG.x; � / D ıx in R
2: (1.51)

Let us now consider the problem of finding a radial at the infinity function u such
that

��u D f in R
2; (1.52)

where f is a function in L2.R2/ with a compact support.
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Theorem 1.4.5. The solution u of (1.52) is given by

u.x/ D
Z

R2

f .y/G.x;y/ dy C ˇ x 2 R
2; (1.53)

where ˇ is the complex constant given by (1.47). Moreover, if f satisfies

Z

R2

f .x/ dx D 0; (1.54)

then, we have u 2 W1.R2/, i.e., we have ˛ D 0 in (1.47).

Proof. Let Br denote the ball centered at the origin with radius r > 0 and let @Br
denote its boundary. The radius r is chosen such that Br contains the support of f .
We have from the Green formula for all x 2 R

2,
Z

Br

u.y/�yG.x;y/ dy �
Z

Br

�u.y/G.x;y/ dy

D
Z

@Br

u.y/
@

@ny

G.x;y/ ds.y/�
Z

@Br

@u

@n
.y/G.x;y/ ds.y/:

From (1.52) and (1.51), we obtain

� u.x/C
Z

Br

f .y/G.x;y/ dy

D
Z

@Br

u.y/
@G

@ny

.x;y/ ds.y/�
Z

@Br

@u

@n
.y/G.x;y/ ds.y/;

for all x 2 R
2. Let us evaluate the boundary integrals for large r . We note first that

when jy j ! 1, we have

jx � yj D jy j C O.1/;
ln jx � yj D ln jyj C O.jy j�1/:

Using Theorem 1.4.4 and the identity n.y/ D y=jyj on @Br , we have with y D
r.cos e1 C r sin e2/,

Z

@Br

u.y/
@G

@ny

.x;y/ ds.y/ �
Z

@Br

@u

@n
.y/G.x;y/ ds.y/

D � 1

2�

Z 2�

0

�
˛ ln r C ˇ C O.r�1/

�� � 1

r
C .x � y/ � x

jx � yj2 r
�
r d

� 1

2�

Z 2�

0

�˛
r

C O.r�2/
��

ln r C O.r�1/
�
r d

D ˇ C O.r�1 ln r/:
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Taking the limit r ! 1, we eventually obtain

u.x/ D
Z

R2

f .y/G.x;y/ dy C ˇ:

Let us now assume (1.54). By integrating (1.52) on Br , we obtain

0 D �
Z

Br

�u dx D �
Z

@Br

@u

@n
ds:

Using again Theorem 1.4.4, we have

0 D �˛ C O.r�1/ when r ! 1;

and consequently ˛ D 0. ut
Remark 1.4.2. The problem of finding a function u 2 W1.R2/=C such that

Z

R2

ru � rv dx D
Z

R2

f v dx 8 v 2 W1.R2/=C;

has a unique solution. This one is a solution of (1.52) if and only if
R
R2
f dx D 0.

This is a consequence of the Lax-Milgram theorem and the fact that the norm on
W1.R2/=C and the semi-norm are equivalent thanks to (1.46).

By using Theorem 1.4.4, we can now quote an analog to Theorem 1.3.7 for the
two-dimensional case. The proof of this result can be found in [135].

Theorem 1.4.6. Let u be a function of class .C2.�/ \ C1.�// \ .C2.�ext/ \
C1.�ext//, that is radial at the infinity and that satisfies

�u D 0 in � [�ext:

Then we have, for x 2 � [�ext, the representation

u.x/ D �
Z

�

h @u

@n
.y/

i
G.x;y/ ds.y/C

Z

�

Œu.y/�
@G

@ny

.x;y/ ds.y/C �; (1.55)

and for x 2 � ,

1

2
.uj��.x/C uj�C.x// D �

Z

�

h @u

@n
.y/

i
G.x;y/ ds.y/

C
Z

�

Œu.y/�
@G

@ny

.x;y/ ds.y/C �; (1.56)

where � is a constant.
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Remark 1.4.3. If u is a harmonic function in �ext that satisfies

lim
jxj!1

ju.x/j D 0;

then � D 0.

We can now proceed as for the three-dimensional case to derive some useful
integral representation results. For this we consider the exterior problem:

8
ˆ̂<
ˆ̂:

�u D 0 in �ext;

u D g on �;

u.x/ D O.1/ for jxj ! 1;

(1.57)

where g 2 H 1
2 .�/.

Lemma 1.4.1. Problem (1.57) has a unique solution u 2 W1.�ext/.

Proof. Let Br denote the ball centered at the origin, with radius r > 0 such that
� � Br . There exists ' 2 H1.Br n �/ such that ' D g on � and ' D 0 on @Br .
Extending ' by zero to the complement of Br , we obtain

' 2 W1.�ext/ and ' D g on �:

Let w 2 W1
0 .�ext/ be such that

Z

�ext

rw � r dx D �
Z

�ext

r' � r dx 8  2 W1
0 .�ext/:

By the Lax-Milgram theorem, such a w exists. Moreover, if u D w C ', then u 2
W1.�ext/ and u D g on � . We have

Z

�ext

ru � r dx D 0 8  2 W1
0 .�ext/;

and then u is harmonic in�ext. Since u 2 W1.�ext/, we have u.x/ D ˛CO.jxj�1/
when jxj ! 1. We conclude by noting that the solution of (1.57) is unique since
for g D 0 the unique solution is 0. ut

Let us define the interior problem

(
�u D 0 in �;

u D g on �:
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If p stands for the jump
	 @u

@n



�
, we have, from Theorem 1.4.6, the integral

representation

u.x/ D �
Z

�

p.y/G.x;y/ ds.y/C � x 2 R
2;

where � 2 C, and for x 2 � ,

g.x/ D �
Z

�

p.y/G.x;y/ ds.y/C � x 2 �: (1.58)

Let QH� 1
2 .�/ denote the space

QH� 1
2 .�/ WD f q 2 H� 1

2 .�/I
Z

�

q ds D 0 g:

Problem (1.58) admits the variational formulation,

8
<̂
:̂

Find p 2 QH� 1
2 .�/ such that

B.p; q/ D
Z

�

gq ds 8 q 2 QH� 1
2 .�/;

(1.59)

where B is the sesquilinear form given by

B.p; q/ WD
Z

�

Z

�

G.x;y/ p.y/ q.x/ ds.y/ ds.x/:

Theorem 1.4.7. Problem (1.59) has a unique solution p 2 QH� 1
2 .�/. Moreover, the

exterior normal derivative of the solution u of (1.57) is given by

@uC

@n
.x/ D 1

2
p.x/ �

Z

�

p.y/
@G

@nx

.x;y/ ds.y/ x 2 �:

Proof. From [135], we deduce that the sesquilinear form B is continuous on
QH� 1

2 .�/ and that there is a constant C such that

jB.q; q/j � C kqk2
H�

1
2 .�/

8 q 2 QH� 1
2 .�/:

It follows from the Lax-Milgram theorem (Theorem 1.2.1) that (1.59) has a unique
solution p 2 QH� 1

2 .�/. ut
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As a consequence, (1.59) defines an isomorphismK W QH� 1
2 .�/ ! H 1

2 .�/=C by the
identity

Z

�

.Kp/ q ds WD B.p; q/ p; q 2 QH� 1
2 .�/: (1.60)

We have the regularity result.

Theorem 1.4.8 ([135]). Assume that the boundary � is smooth enough. Then, the
mappingK�1 defines an isomorphism of Hs.�/=C onto the space

fq 2 Hs�1.�/I
Z

�

q ds D 0g

for all s 2 R.

Similarly to the three-dimensional case, we consider the Dirichlet Problem
(1.57).

This problem has a unique solution and we deduce from Theorem 1.4.4 that

u.x/ D ˇ C O.jxj�1/ jxj ! 1; (1.61)

jru.x/j D O.jxj�2/ jxj ! 1: (1.62)

In addition, since (1.62) implies that

lim
r!1

Z

@Br

@u

@n
ds D 0;

where @Br is the circle centered at the origin with radius r , then we have

Z

�

@u

@n
ds D 0:

Therefore, u can be defined up to a complex constant, in � as a harmonic function

with Œ
@u

@n
�� D 0. Note that this contrasts with the 3-D case where the extra-condition

(1.37), imposed by (1.33) has to be added.
Let ' D Œu�� , which is defined up to a complex constant. We have for ' from

Theorem 1.4.6, the integral representation

g.x/ D 1

2
'.x/C

Z

�

'.y/
@G

@ny

.x;y/ ds.y/C � x 2 �; (1.63)
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where � 2 C. Further, it is noteworthy that by setting u D 1 in � and u D 0 in �ext

in (1.56), one has � D 0 and we obtain

Z

�

@G

@ny

.x;y/ ds.y/ D �1
2

for x 2 �;

and consequently

g.x/�� D 1

2
.'.x/C�/C

Z

�

.'.y/C�/ @G
@ny

.x;y/ ds.y/C� 8 x 2 �; 8 �; � 2 C:

Now, we can write (1.63) in operator form as

.
1

2
I CR/' D g; (1.64)

where R is the mapping defined by

R' WD
Z

�

'.y/
@G

@ny

.�;y/ ds.y/: (1.65)

We have the following property on R (cf. [108]):

Lemma 1.4.2. The mapping R is linear and continuous from Hs.�/ into HsC1.�/
for all real s.

We have the following result.

Theorem 1.4.9 ([135]). Assume that g 2 H 1
2 .�/. Then (1.64) admits a unique

solution ' 2 H 1
2 .�/ up to a complex constant. Moreover, the operator 1

2
I C R

defines an isomorphism of H 1
2 .�/=C onto H 1

2 .�/=C.

1.4.4 The Exterior Steklov–Poincaré Operator

The two-dimensional version of the exterior Steklov–Poincaré operator is defined
exactly in the same way as previously. To summarize, we define

P W g 2 H 1
2 .�/ 7! � @u

@n
ˇ̌
�

2 H� 1
2 .�/; (1.66)

where u is the unique solution, in W1.�ext/, of the exterior problem
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8
ˆ̂<
ˆ̂:

�u D 0 in �ext;

u D g on �;

u.x/ D O.1/ jxj ! 1:

(1.67)

Then, we have

P D .�1
2
I CR0/K�1;

where the operators K and R are defined in (1.60) and (1.65) respectively, and R0
is the adjoint operator of R defined as in (1.41). Using the same techniques as in
Sect. 1.3.5, we can prove the following

Theorem 1.4.10. The operator P is continuous, selfadjoint and coercive.

Here also, like for the three-dimensional case, we can resort to an alternative
formulation that combines solving an interior problem with the use of a simple layer
integral representation. We skip this description since this one is identical to the one
given in Sect. 1.3.5.



Chapter 2
Maxwell and Eddy Current Equations

2.1 Introduction

Maxwell equations stand for the set of partial differential equations that describe
electric and magnetic phenomena. Maxwell equations were derived in several steps
successively by Coulomb, Faraday, Ampère and Maxwell. Their treatment contains
numerous difficulties either from the mathematical or numerical point of view. In
particular, the presence of a large number of unknown fields, conditions at the
infinity, high frequency require specific techniques to handle them. The literature
in Mathematics and Physics is rather plentiful in this field and the reader is referred
to most popular textbooks in electromagnetic theory (e.g. Feynman [74], Jackson
[107], Landau and Lifshitz [116], Robinson [155]) and to Nédélec [138], Monk
[131] and many others for the numerical solution of these equations.

Our purpose throughout this textbook is to study Maxwell equations in the
particular situation where the source current in an electromagnetic setup has a
low frequency. The term “low” means here that the characteristic length of the
considered conducting bodies is small when compared to the wavelength of the
inflowing current. Dimensional analysis considerations show that, in this case,
propagation (hyperbolic) terms can be neglected beside all other terms. In other
words, wave propagation phenomena are neglected and we have the creation of
the so-called eddy currents inside the conductors. Such configurations are present
in some specific industrial setups when induction properties of electromagnetic
phenomena have to be exploited. For example, electric conduction generates heat by
dissipation (Joule effect) and this feature can be used to raise conductor temperature
for many purposes (e.g. forging, welding, surface processing). Another typical
situation is the one where Lorentz forces can be used to stir liquid metals (e.g.
cold crucibles, solidification). Many other examples can be found in metallurgy and
other fields of application. In all these situations, the use of low frequency currents
helps creating eddy currents with a negligible effect of displacement currents.

In this chapter, we start by presenting the general setting of Maxwell equations.
Through these equations, we shall show the existence of a potential vector which

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__2,
© Springer Science+Business Media Dordrecht 2014
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will play a central role in the analysis and modeling of electromagnetic phenomena.
We shall then restrict ourselves to the main object of the present monograph: Study
of low frequency regimes. We show the validity of such an approximation and
consider static (time independent) cases for which we derive models in electrostatics
and magnetostatics. Then, we consider time harmonic regimes that are useful to
study time periodic currents.

2.2 Maxwell Equations

In all the sequel, we shall denote as usual by B, H , D, E and J respectively
magnetic induction field, magnetic field, electric displacement current field, electric
field and electric current density field.

2.2.1 General Setting

Maxwell–Ampère and Faraday equations are respectively given by:

@D

@t
� curl H C J D 0; (2.1)

@B

@t
C curl E D 0: (2.2)

Sometimes, (2.1) is replaced by an equation to take into account a source current
J S , that is

@D

@t
� curl H C J C J S D 0: (2.3)

We have in addition the magnetic flux conservation equation

div B D 0: (2.4)

Remark that taking the divergence of (2.2) yields

@

@t
div B D 0:

This means that (2.4) can be interpreted as an initial condition to (2.2) since its
validity for the initial time t D 0 guarantees it for all times thanks to (2.2).

Equations (2.1)–(2.4) are valid in the whole space R3 and for all times t > 0.
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The related constitutive equations for this system are:

B D 
H ; (2.5)

D D "E ; (2.6)

in R
3. The functions 
 and " stand for magnetic permeability and electric

permittivity respectively. Relation (2.5) is called Magnetic induction law and (2.6)
is the Electric induction law. In the sequel, we shall assume, for obvious physical
reasons that the functions " and 
 fulfill the following conditions:

0 < 
m � 
 � 
M ; (2.7)

0 < "m � " � "M ; (2.8)

where 
m;
M ; "m; "M are defined lower and upper bounds for 
 and ". In addition,

 and " are constant equal to 
0 and "0, called respectively Magnetic permeability
and electric permittivity of the vacuum.

Remark 2.2.1. The charge density %q can be deduced by a charge conservation
equation that is

div D D %q: (2.9)

2.2.2 Presence of Conductors

In the presence of conductors˝ moving with velocity v, we adopt the Ohm’s law:

J D � .E C v � B/ in R
3; (2.10)

where � is the electric conductivity of the given conductor occupying˝ , and � D 0

outside the conductors. The function � is assumed to satisfy the hypothesis:

0 < �m � � � �M : (2.11)

Outside the conductors we have J D 0 and (2.10) can be considered with � D 0. In
most situations, we will consider eddy currents in non moving conductors for which
we have J D �E .

2.2.3 Wave Propagation

Equations (2.1)–(2.6) are of hyperbolic type. To see this, let us consider, for instance,
the simple case of a non moving homogeneous isotropic medium, i.e. the case where
", 
 and � are constant and v D 0. We have from (2.1)–(2.6),
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"
@E

@t
� curl H C J D 0;



@H

@t
C curl E D 0:

Taking the curl of the first equation and the time derivative of the second one, we
obtain by subtracting, the equation

"

@2H

@t2
C curl curl H D curl J :

Since div H D 
 div B D 0, we deduce

"

@2H

@t2
��H D curl J :

If the current density J D J S is given, we obtain a hyperbolic problem that
describes propagation of electromagnetic waves in the space. If the Ohm’s law
(2.10) is assumed in ˝ , we obtain the equations:

"

@2H

@t2
C 
�

@H

@t
��H D 0 in ˝;

"

@2H

@t2
��H D 0 in ˝ext;

with appropriate interface conditions and condition at the infinity.
Here also we have wave propagation but, waves are damped in the conductors,

the damping being proportional to the electric conductivity � . We have the same
conclusion if the coefficients ", 
 and � are not constant but the equations are
slightly more complex.

2.2.4 The Vector Potential

One of the principal ingredients in electromagnetism is the use of a vector
potential. This one is defined in the following way: Using (2.4), we deduce from
Theorem 1.3.4 the existence of a vector valued function A W R

3 ! C
3, called

vector potential, such that

B D curl A in R
3: (2.12)

Such a vector field is in addition unique if we impose the gauge condition

div A D 0: (2.13)
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As far as the regularity of the vector potential A is involved, we see that if the
unknowns of the Maxwell equations are sought in the space L2.R3/, Theorem 1.3.4
says that necessarily A 2 W1.R3/.

We shall characterize later this vector in more specific situations.

2.3 Low Frequency Approximation

In many situations, like in alternating current configurations, low frequencies enable
neglecting the displacement current term @D=@t in the Maxwell equations. This
leads to the set of equations:

curl H D J ; (2.14)

@B

@t
C curl E D 0; (2.15)

div B D 0; (2.16)

B D 
H : (2.17)

Some authors have rigourously proved the validity of such an approximation. We
mention here a result of Ammari, Buffa and Nédélec [13] where the authors use a
formulation with source currents. They show that the external magnetic and electric
fields (outside the conductors) are approximated at the first order with respect to the
frequency by the system (2.14)–(2.17).

Our study deals mainly with this set of equations, and especially in the presence
of the so-called Eddy Currents in the conductors. It is also to be specified that, in
this section, we consider the magnetic permeability 
 as a known function of the
position x. This allows later to describe nonlinear problems in which 
 depends on
H . However, when we address the numerical solution of this kind of problems, we
use an iterative method in which 
 can be taken variable but given.

2.3.1 A Vector Potential Formulation

Let us now see how the vector potential A can be characterized using the system of
equations (2.14)–(2.17). Looking for solutions of (2.14)–(2.17) in the space L2.R3/,
we deduce from Theorem 1.3.4 that A 2 W1.R3/. From (2.14) and (2.17), we
deduce

curl .
�1 curl A/ D J in R
3: (2.18)
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Let us now assume that the current density J is a function of L2.R3/with a compact
support contained in a domain ˝ . We have the system of equations:

curl .
�1 curl A/ D J in R
3; (2.19)

div A D 0 in R
3; (2.20)

jA.x/j D O.jxj�1/ for jxj ! 1; (2.21)

the condition at the infinity being a consequence of A 2 W1.R3/.
To prove existence and uniqueness of a solution of (2.19)–(2.21) for given J , we

derive a variational formulation of it. Let us take a function w 2 DD.R3/. If J is
smooth enough, we have by the Green formula,

Z

R3

curl .
�1 curl A/ � wdx D
Z

R3


�1 curl A � curl wdx:

This leads to the variational formulation of (2.19)–(2.21):

Find A 2 V such that B.A;w/ D L .w/ 8 w 2 V ; (2.22)

where V is the space

V WD f w 2 W1.R3/I div w D 0 g;

equipped with the semi-norm j � jW1.R3/, which is a norm on W1.R3/ (see [62],
Vol. 4, p. 118), and

B.A;w/ WD
Z

R3


�1 curl A � curl wdx;

L .w/ WD
Z

˝

J � wdx:

We have the following result.

Theorem 2.3.1. Assume that 
 satisfies (2.7). Then (2.22) has a unique solution
A 2 V . Moreover, there is a constant C such that

kAkW1.R3/ � C kJ kL2.R3/: (2.23)

Proof. Using Theorem 1.3.2, we deduce that the quantity

jjjwjjj WD .k curl wk2L2.R3/
C k div wk2L2.R3//

1
2 D k curl wkL2.R3/
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defines a norm on the space V that is equivalent to the norm of W1.R3/. This
implies that the sesquilinear form B is continuous and coercive on V � V . The
antilinear form L is also continuous on V . The Lax–Milgram Theorem 1.2.1 gives
then the conclusion. ut

In the particular case where the magnetic permeability 
 is constant (equal
to 
0), we have an integral formula for the vector potential A and the magnetic
induction B.

Theorem 2.3.2. Let J be a given vector field in the space L2.R3/ with a compact
support and assume that 
 D 
0 in R

3. Then the potential A and the magnetic
induction B are respectively given by:

A.x/ D 
0

Z

R3

G.x;y/J .y/ dy; (2.24)

B.x/ D 
0

Z

R3

rxG.x;y/ � J .y/ dy; (2.25)

for x 2 R
3, where G is the Green kernel in dimension 3, defined by (1.21).

Proof. Let us first note that when 
 D 
0 is constant, Eqs. (2.19)–(2.21) become:

curl curl A D 
0 J in R
3; (2.26)

div A D 0 in R
3; (2.27)

jA.x/j D O.jxj�1/ for jxj ! 1: (2.28)

Using the vector identity

��A D curl curl A � r div A;

we deduce

��A D 
0 J in R
3:

A vector field that satisfies the above identity and (2.28), can be written, thanks to
(1.23),

A.x/ D 
0

Z

R3

J .y/G.x;y/ dy:

Remark that this solution is unique and since the support of J is compact we have
(2.21).

The proof of (2.25) is simply obtained by applying the curl operator to (2.24),
the integrand being an integrable function. ut
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Relation (2.25) enables calculating the magnetic induction generated by a
conductor˝ where an electric current of density J flows.

2.3.2 A Scalar Potential Problem

The material developed in the previous subsection shows that when 
 D 
0,
the magnetic induction can be directly calculated from the current density J by
the formula (2.25). When this is not the case (2.19)–(2.21) is not well adapted to
numerical solution. For this, we can proceed as the following.

Let us consider that the electric current density J is a given vector field and has
a compact support˝ with boundary � . We assume that 
 D 
0 outside ˝ . Let us
introduce a magnetic field H 0 defined by

H 0.x/ D
Z

R3

rxG.x;y/ � J .y/ ds.y/ x 2 R
3: (2.29)

This field is due to J when 
 D 
0 in ˝ . According to (2.25), we have the
equations:

curl H 0 D J ; (2.30)

div H 0 D 0 (2.31)

in R
3. Subtracting (2.30) from (2.14), we find

curl .H � H 0/ D 0 in R
3:

This implies (see Theorem 1.3.4) the existence of a scalar field  W R3 ! C such
that

H � H 0 D �r in R
3: (2.32)

Multiplying this equation by 
 and using (2.16), (2.17), we obtain

div.
.r � H 0// D 0 in R
3;

and consequently

div .
r / D div.
H 0/ in ˝ [˝ext; (2.33)

where˝ denotes the conductor,˝ext D R
3 n˝ and in addition

h


@ 

@n

i
�

D Œ
H 0 � n�� :



2.3 Low Frequency Approximation 47

By using (2.31), (2.16), (2.17), we successively obtain

h


@ 

@n

i
�

D Œ
H 0 � n�� D Œ.
 � 
0/H 0 � n�� D .
0 � 
/H 0 � n on �:

We then obtain the problem:

� div .
r / D � div .
H 0/ in ˝; (2.34)

� D 0 in ˝ext; (2.35)

Œ �� D 0; (2.36)
h


@ 

@n

i
�

D .
0 � 
/H 0 � n; (2.37)

 .x/ D O.jxj�1/ for jxj ! 1: (2.38)

Let us now show that (2.34)–(2.38) is well posed if we seek  2 W1.R3/. Using
the exterior Steklov–Poincaré operator P defined in Sect. 1.3.5, we can formulate
equations (2.35)–(2.38) as

� 

@ �

@n
D 
0 P � .
 � 
0/H 0 � n: (2.39)

Multiplying (2.34) by a function  2 H1.˝/ and using the Green formula with
div.
0H 0/ D 0, we obtain then

Z

˝


r �r dx�
Z

�



@ �

@n
 ds D

Z

˝

.
�
0/H 0�r dx�
Z

�

.
�
0/H 0�n  ds:

By using (2.39), this leads to the variational problem:

8
ˆ̂̂
<̂
ˆ̂̂
:̂

Find  2 H1.˝/ such that
Z

˝


r � r dx C 
0

Z

�

P. /  ds D
Z

˝

.
 � 
0/H 0 � r dx

8  2 H1.˝/:

(2.40)

Let us prove the following result.

Theorem 2.3.3. Assume that 
 is given in L1.˝/ and satisfies (2.7). Assume in
addition that the restriction of H 0 to ˝ is given by (2.29). Then (2.40) admits a
unique solution.
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Proof. We define the sesquilinear and antilinear forms:

B. ; / WD
Z

˝


r � r dx C 
0

Z

�

P. /  ds;

L ./ WD
Z

˝

.
 � 
0/H 0 � r dx:

Since H 0 2 L2.˝/, then we have by using (2.7),

jL ./j � .
0 C 
M/ kH 0kL2.˝/ krkL2.˝/

� C kkH1.˝/:

The form L is hence continuous on H1.˝/. The sesquilinear form B is also
continuous since we have from Theorem 1.3.12, the trace theorem [92] and (2.7),

jB. ; /j � C k kH1.˝/ kkH1.˝/:

The coercivity of B is obtained thanks to Theorem 1.3.12, (2.7) and (1.5),

B.; / D
Z

˝


 jr j2 dx C 
0

Z

�

P./  ds

� 
m krk2L2.˝/
C C1 kk2

H 1
2 .� /

� C2 kk2H1.˝/
:

Existence and uniqueness of a solution is then a consequence of the Lax–Milgram
theorem (Theorem 1.2.1). ut

2.4 Static Cases

Static cases stand for configurations where all fields are time independent. We obtain
from (2.14)–(2.17) after dropping time derivatives:

curl H D J ; (2.41)

curl E D 0; (2.42)

div.
H / D 0: (2.43)

This situation enables decoupling electricity and magnetism in the following way.
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2.4.1 Electrostatics

From (2.42) and Theorem 1.3.5, we deduce the existence of a scalar field � W R3 !
C such that

E D �r� in R
3: (2.44)

Assuming that Ohm’s law is satisfied in the static conductor˝ , i.e.

J D �E in ˝; (2.45)

where � is assumed to satisfy (2.11), we obtain from (2.41)–(2.43),

div .�r�/ D 0 in ˝: (2.46)

Equation (2.46) is an elliptic equation that requires appropriate boundary conditions.
In many situations, the boundary � of ˝ is split into parts where Dirichlet or
Neumann conditions can be enforced.

– If a part of the boundary is electrically isolated, we prescribe

@�

@n
D 0

on this part (Homogeneous Neumann boundary condition).
– If a part of the boundary is connected to an electricity generator, we prescribe the

potential � when we have a voltage generator (Dirichlet condition) or the normal
derivative of � by

J � n D �
@�

@n
;

when we have a current generator (Neumann condition).

Let us assume, for instance, that � is divided into three parts �1, �2 and �3 such
that

inf
x2�1; y2�3

jx � y j > 0;

i.e. �1 and �3 are not connected. Assume furthermore that the potential � satisfies
the conditions:

� D V on �1;

� D 0 on �3;
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@�

@n
D 0 on �2;

where V is given. By defining the space

X WD f 2 H1.˝/I  D 0 on �1 [ �3 g;

multiplying (2.46) by  2 X and using the Green formula, we obtain

Z

˝

�r� � r dx D 0: (2.47)

Hence, the mathematical problem consists in seeking a function � 2 H1.˝/ such
that � D V on �1, � D 0 on �3 satisfying (2.47) for all  2 X . Let �0 denote a
function in H1.˝/ such that �0 D V on �1 and � D 0 on �3 and let  D � � �0.
We easily check that  2 X and

Z

˝

�r � r dx D
Z

˝

�r�0 � r dx 8  2 X :

By the Lax–Milgram theorem (Theorem 1.2.1) in X , this problem possesses a
unique solution. It follows that (2.47) is well posed and we have � D  C �0.

2.4.2 Magnetostatics

Let us assume we are in presence of a conductor ˝ and a given current of density
J 0 and let us assume, as usual, that 
 D 
0 in˝ext D R

3 n˝. We define the vector
field

M D .
 � 
0/H ;

called Magnetization. Here above, H is assumed to be the magnetic field generated
by J 0, i.e. curl H D J 0.

In general, materials for which the magnetic permeability 
 is not constant
are called Ferromagnetic materials. By definition, M D 0 for nonferromagnetic
conductors.

In ferromagnetic materials, 
 depends generally on the magnetic field H . When
the function 
 D 
.jH j/ is known, it suffices to compute H in order to deduce M .
To do this, we define H 0 like in (2.30)–(2.31), i.e., H 0 is the magnetic field without
ferromagnetic conductors. It follows by using Sect. 2.3.2 that

H D H 0 � r 
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where  satisfies:

� div .
r / D � div .
H 0/ in ˝; (2.48)

� D 0 in ˝ext; (2.49)

Œ �� D 0 on �; (2.50)
h


@ 

@n

i
�

D .
0 � 
/H 0 � n on �; (2.51)

 .x/ D O.jxj�1/ for jxj ! 1: (2.52)

Problem (2.48)–(2.52) is a nonlinear elliptic problem when we replace H in

.jH j/ by H 0 � r . Note that the nonlinearity appears as well in the partial
differential equation (2.48) as in the boundary condition (2.51). We shall consider
such problems in view of applications (Chap. 11).

2.5 Time–Harmonic Regime

We are frequently faced with the case where data are periodic functions of time. This
corresponds to the case where a source alternating (AC) current is given. To handle
this situation, a time–harmonic solution can be sought. This one is considered by
developing the solution in Fourier series in time. We then seek solutions of (2.1)–
(2.6) of the form:

H .x; t/ D Re.ei!tH .x//;

D.x; t/ D Re.ei!tD.x//;

J .x; t/ D Re.ei!tJ .x//;

E.x; t/ D Re.ei!tE.x//;

for x 2 R
3, where ! 2 R is the angular frequency that we choose positive for

convenience. Relations (2.1)–(2.2), (2.5)–(2.6) lead to

i!D � curl H C J D 0; (2.53)

i!B C curl E D 0; (2.54)

B D 
H ; (2.55)

D D "E : (2.56)
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Note that we have, for the sake of simplicity, kept the same notations for the involved
fields although we are now concerned with time–independent complex functions.
Note also that, since div curl D 0, (2.4) is a consequence of (2.54) if ! ¤ 0.

Remark 2.5.1. An analog to Sect. 2.2.3 can be made for (2.53)–(2.54). We have,
when " and 
 are constant,

curl curl H � !2"
H D curl J :

Using the relation div H D 0, we obtain the Helmholtz equation

��H � !2"
H D curl J :

2.6 Eddy Current Equations

The remaining chapters are devoted to the derivation and analysis of eddy current
models. We consider, in the sequel, a low frequency approximation of the system of
equations (2.53)–(2.56) with appropriate behaviour at the infinity. In this case, we
can neglect the term i!D in (2.53).

As far as problem data are concerned we are faced with two types of
approaches:

1. A first approach consists in assuming that a source current J 0 is given with
a support contained in one (or many) conductor(s). The current density is then
written as J D QJ CJ 0 where QJ is the induced current density that is supposed to
obey to Ohm’s law (2.10) with null velocity (v D 0). We obtain then the system
of equations:

curl H � QJ D J 0 in R
3; (2.57)

i!
H C curl E D 0 in R
3; (2.58)

QJ D �E in R
3; (2.59)

jH .x/j D O.jxj�1/ for jxj ! 1; (2.60)

jE.x/j D O.jxj�1/ for jxj ! 1; (2.61)

with � extended by 0 outside ˝ . Note here that the actual current density QJ
satisfies div QJ D 0 only if the source current J 0 is divergence free. This condition
is furthermore necessary to ensure that the eddy current problem is a good
approximation of the Maxwell equations when ! is small enough (See [13]).

2. An alternative method consists in assuming that we are given either voltage or
total current intensity that can be directly prescribed by a power generator. The
difficulty relies here on the obtention of an adapted formulation that has the
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voltage or the current as unique data. A variant consists in supplying current
power. This corresponds more to realistic and industrial setups.

The first method is the most used one in the literature. Actually, the inductors
are supplied with currents and it is not necessary to prescribe the electric source in
the system. This method is simpler to formulate but does not correspond to realistic
situations unless the conductors supporting source currents are thin enough so one
can approximate a current density with its average.

The second procedure corresponds to an idealization of the real setup in the sense
that voltage is given by prescribing a cut in the inductor represented by a non simply
connected domain. This cut (see Fig. 1.1) stands for a virtual link of the inductor to
the power generator and problem data are the constants given in Theorems 1.3.5
and 1.3.6. In this case, we are constrained to assume that (2.54) is valid in ˝ and in
˝ext but not in the whole space in order to introduce a source current. As in [34,36],
we have chosen to treat in most applications this second category of formulations.

Time harmonic eddy current equations are given by the set of partial differential
equations:

curl H � J D 0 in R
3; (2.62)

i!B C curl E D 0 in ˝ [˝ext; (2.63)

div B D 0 in R
3; (2.64)

B D 
H in R
3; (2.65)

J D �E in R
3; (2.66)

jH .x/j D O.jxj�1/ for jxj ! 1; (2.67)

jE.x/j D O.jxj�1/ for jxj ! 1: (2.68)

This set of equations has to be supplemented with appropriate boundary and
interface conditions on � . For this, let us remark that:

1. As said before, in the case where a source current density is prescribed, (2.62) is
to be replaced by

curl H � J D J S in R
3: (2.69)

2. Equation (2.64) is necessary, since from the previous remark, this one is no more
a consequence of (2.63). However, if (2.63) is satisfied with ! ¤ 0, then (2.64)
is equivalent to assuming that the jump ŒB � n� is null.

3. Equation (2.62) implies

div J D 0 in R
3: (2.70)
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4. From the set of equations (2.62)–(2.68) we can derive interface conditions
(involving continuities and jumps) at boundaries of the conductors. For this, if
we formally obtain by using relations

div J D 0 in R
3; J D 0 in ˝ext;

that

J � n D 0 on �: (2.71)

In addition, (2.62) implies that

ŒH � n�� D 0; (2.72)

when J has no Dirac masses on � , i.e., no surface currents flow on � .
5. Equation (2.63) is assumed to be valid only in the conductors and the free space.

This is necessary when specific data are to be prescribed like voltage and total
current. Depending on the models this restriction is to be relaxed by a prescription
of the equation on R

3 nS , or even R
3 n @S , where S is a cut (or union of cuts) in

the conductors. This restriction is however not necessary ((2.63) is valid in R
3)

if a source current density is specified.



Chapter 3
Two-Dimensional Models

3.1 Introduction

As it is explained in Chap. 1, two-dimensional models are obtained by assuming
that any conductor domain ˝ � R

3 is cylindrical, i.e. of the form ˝ D � � R,
where � is a bounded open set of R

2. The invariance direction is parallel to the
x3-axis. The two-dimensional feature can be expressed in two ways that lead to
significantly different models: either the magnetic field H or the current density
J are aligned with the x3 direction. Another feature of two-dimensional models
is that conditions (2.67), (2.68) are no longer valid since the fields H and E are
assumed x3-independent and can then not vanish at the infinity except in the trivial
case where they are all identically equal to zero. Let us also mention that we deal
in this chapter with linear models, i.e. where the function 
 does not depend on the
magnetic field (nonferromagnetic materials). However, we consider 
 as a function
of x 2 � in view of a possible treatment of nonlinear problems in which we have

 D 
.jH .x/j/.

Let us assume we are given a collection of N cylindrical conductors˝k D �k �
R and set

� D
N[
kD1

�k; �ext D R
2 n�:

In practice we shall develop simple models for a limited number of conductors,
the generalizations to many conductors being straightforward. All two-dimensional
models will be obtained from (2.62)–(2.66) assuming x3–invariance to which we
add a relaxed version of conditions (2.67)–(2.68). To set this, we write

H .x/ D QH .x/CH.x/ e3;

E.x/ D QE.x/C E.x/ e3;

B.x/ D QB.x/C B.x/ e3;

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__3,
© Springer Science+Business Media Dordrecht 2014
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J .x/ D QJ .x/C J.x/ e3;

for x D x1e1Cx2 e2 2 R
2, with QH .x/ D H1.x/e1CH2.x/e2, etc. We then define

the set of equations:

curlH D QJ in R
2; (3.1)

curl QH D J in R
2; (3.2)

i! QB C curlE D 0 in � [�ext; (3.3)

i!B C curl QE D 0 in � [�ext; (3.4)

div QB D 0 in R
2; (3.5)

QB D 
 QH ; B D 
H in R
2; (3.6)

QJ D � QE ; J D �E in R
2; (3.7)

j QH .x/j C j QE.x/j D O.jxj�1/ for jxj ! 1: (3.8)

jH.x/j C jE.x/j D O.jxj�1/ for jxj ! 1: (3.9)

We recall that the scalar and vector curl operators in 2-D are defined in Sect. 1.4.1
and div is the two-dimensional divergence operator. Furthermore, we recall that we
have extended the conductivity � to R

2 by zero in order to obtain (3.1), (3.2) and
(3.7) in R

2.
As far as interface conditions are concerned, (3.1)–(3.5) yield the following

conditions:

ŒH �� D Œ QH � t�� D 0; (3.10)

ŒB�� D Œ QB � n�� D 0; (3.11)

ŒE�� D Œ QE � t�� D 0; (3.12)

ŒJ �� D Œ QJ � n�� D 0; (3.13)

where � is the boundary of �, n D n1e1 C n2e2 is the outward unit normal vector
and t is the unit tangent vector to � defined by

t WD �n2e1 C n1e2:

In the sequel, the development of two-dimensional models will sometimes
require the use of a scalar potential. More precisely, using (3.5), Theorem 1.4.2
implies the existence of a scalar potential A 2 W1.R2/ such that

QB D curlA in R
2: (3.14)

The potential A is clearly defined up to an additive constant.
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3.2 A Solenoidal Two-Dimensional Model

Let us consider the simplest configuration consisting in two conductors˝1 D �1 �
R and ˝2 D �2 � R where �1 is an inductor, i.e. �1 is an annulus that “encloses”
�2, (cf. Fig. 3.1). Let �ext denote the bounded domain located between �1 and �2

and the domains�, O�, and Q� be respectively defined by

� WD �1 [�2; O� WD �1 [�ext [�2; Q� WD R
2 n O�:

Let also �1, �2 stand for the respective boundaries of�1 and�2 and let � D �1[�2.
Clearly, the outward unit normal to the boundaries �1 and �2 is given by the vector
n D n1e1 C n2e2 as shown on Fig. 3.1. This figure shows also the partition of the
boundary �1 D ��

1 [ �C
1 .

From a physical point of view, the inductor �1 is assumed to be connected to
a generator of an alternating current and can be a cut of an infinite coil in the x3–
direction with turns in the plane Ox1x2, and �ext is the free space (or vacuum)
between conductors.

The main issue in deriving the present model is to state that for geometries like
in Fig. 3.1, the current density is sought in the form

J .x1; x2; x3/ D J1.x1; x2/ e1 C J2.x1; x2/ e2: (3.15)

In other words, J does not depend on x3 and J D 0.

Theorem 3.2.1. Let .H ;J ;B;E / denote smooth vector fields that satisfy (3.1)–
(3.9). Then the magnetic field H has the form

H D He3; (3.16)
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configuration of the
conductors for the solenoidal
model
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i.e. QH D 0. Moreover, the functionH satisfies the set of equations:

i!
H � div.��1rH/ D 0 in �; (3.17)

H D H0 in �ext; (3.18)

H D 0 in Q�; (3.19)

ŒH �� D 0; (3.20)

where H0 2 C is a constant to determine.

Proof. Using (3.2) with J D 0, (3.6), and (3.14) we obtain

curl .
�1 curlA/ D � div.
�1rA/ D 0 in R
2:

Since from Theorem 1.4.2, A 2 W1.R2/, we deduce

Z

R2


�1jrAj2 dx D 0:

This implies that rA D 0 in R
2 and consequently QB D 0 and QH D 0. Expression

(3.16) is then obtained.
We now derive equations in the vacuum �ext [ Q�: We have from (3.1), since

QJ D 0 in �ext [ Q�, curlH D 0 and then rH D 0. This implies that H is constant
in �ext and in Q�, and then from (3.9),

H D Const. in �ext;

H D 0 in Q�:

In �1 [�2, we have from (3.4), (3.6), (3.7) and (3.1),

i!
H C curl.��1 curlH/ D 0 in �1 [�2;

or equivalently

i!
H � div.��1rH/ D 0 in �1 [�2;

Finally, the interface condition (3.10) is rewritten as (3.20). ut
It is easy to see that if H0 is given, then (3.17)–(3.20) is a well posed problem

which can be decoupled into two elliptic boundary value problems in �1 and �2.
Since H0 is in principle unknown, it is convenient to deduce an equation to model
the effect of the source connected to the inductor�1. The mappingH0 7! H being
linear, it is sufficient to solve the problem for H0 D 1 and then rescale the solution
by multiplying it by H0.
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Fig. 3.2 A piece of the
inductor

In practical applications, according to electrotechnical devices, one may distin-
guish three types of data:

(i) The total current in the inductor �1 is given. We shall see that this is the case
where H0 is given.

(ii) The current voltage is given.
(iii) The current power is given.

We note that this topic is thoroughly studied in Hiptmair-Sterz [101].

3.2.1 Total Current Data

Consider Fig. 3.2 and denote by S a rectangle parallel toOx3, which is a unit section
of the inductor delimited by Q� and �ext (see Fig. 3.2). Let in addition � denote the
unit normal to the surface S oriented once for all and let � denote the unit tangent
vector to the boundary @S of S , oriented according to Ampère rule (as depicted on
Fig. 3.2).

Integrating (3.1) over S and using the Stokes theorem, we get

Z

S

QJ � � dS D
Z

S

�
@H

@x2
�1 � @H

@x1
�2

�
dS

D
Z

@S

H�3 ds

D Hj�ext �Hj Q�
D H0: (3.21)

The integral of QJ � � is nothing else but the total current flowing in a portion
of the inductor of unit thickness.1 Expression (3.21) show that this value is H0.

1In most applications, H0=N is the total current flowing in a turn of an infinite coil when N is the
total number of turns by unit coil length.
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A prescription of total current (when H0 is given by
R
S

QJ � � ds) consists then in
solving the boundary value problem:

( � div.��1rH/C i!
H D 0 in �2;

H D H0 on �2;
(3.22)

for a givenH0 2 C. Likewise, we have in �1 the problem:

8̂
<̂
ˆ̂:

� div.��1rH/C i!
H D 0 in �1;

H D H0 on ��
1 ;

H D 0 on �C
1 :

(3.23)

We have the following result:

Theorem 3.2.2. Problems (3.22) and (3.23) have unique solutions in H1.�2/ and
H1.�1/ respectively.

Proof. Problem (3.22) can be easily transformed into a homogeneous Dirichlet
problem by setting u D H �H0. We thus define

B.u; v/ WD
Z

�2

��1ru � rv dx C i!
Z

�2


uv dx;

L .v/ WD �i!H0

Z

�2


v dx:

A variational formulation of (3.22) is then

Find u 2 H1
0.�2/ such that B.u; v/ D L .v/ 8 v 2 H1

0.�2/:

The Lax–Milgram theorem (Theorem 1.2.1) can then be applied.
In a same way, standard results for elliptic problems (see Dautray–Lions [62] for

instance) show that (3.23) possesses a unique solution. ut

3.2.2 Voltage Data

In three-dimensional configurations, the current voltage in an electric set-up can be
defined by the following relation (see [126, 139]):

V D
Z

�

.i!A C E/ � t ds; (3.24)

where � is any closed curve in the conductor that cannot be retracted (with a
continuous homotopy) to a point, t is a unit tangent vector to � and A is the vector
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potential obtained by (2.12) and (2.13). For the present two-dimensional case, we
deduce from Theorem 1.4.3 the existence of a vector potential QA such that

B D curl QA; div QA D 0 in O�: (3.25)

As a two-dimensional analog to (3.24), we define the circuit voltage here by the
expression

V D
Z

��

1

�
.i! QA C QE/ � t

��
ds; (3.26)

where we recall that the tangent vector t is given by t D �n2 e1 C n1 e2 and the
superscript ‘-’ means that the trace of .i! QA C QE / � t is taken inside �1. Likewise,
we shall denote hereafter by f � the trace of a function f on ��

1 taken inside �ext.
Note that although the orientation of the tangent vector in (3.26) determines the sign
of V and then the one of H , this one has no influence on more relevant quantities
like jH j which is involved in the computation of the power as we shall see it later.

Remark 3.2.1. From (3.4), (3.6) we deduce in particular

i!
H C curl QE D 0 in �1: (3.27)

By using the Stokes theorem in �1 we should obtain then, using (3.25) and (3.6),

Z

��

1

.i! QA C QE /� � t ds C
Z

�
C

1

.i! QA C QE /� � t ds D
Z

�1

.i! curl QA C curl QE/ dx

D
Z

�1

.i!
H � i!
H/ dx

D 0:

It follows that
Z

��

1

.i! QA C E/� � t ds D �
Z

�
C

1

.i! QA C E/� � t ds:

However, we cannot assume that the Faraday equation

i!
H C curl QE D 0

is valid in R
2 when V ¤ 0. In fact, if this was true, we would obtain from the Stokes

theorem on�2 [�ext,

V D
Z

��

1

.i! QA C QE / � t ds D
Z

�2[�ext

.i!
H C curl QE/ dx D 0:
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As a direct consequence of the previous remark, one must add to the Faraday
equation a singularity supported by �1, �2 or both, on which we admit a jump of
QE � t. This singularity is clearly related to the voltage.

Let us define the following Hilbert space

H WD f� 2 H1
0.

O�/I �j�ext D Const.g:

Since we have for � 2 H,

Z

�

jr�j2 dx D
Z

O�
jr�j2 dx;

then, owing to the Poincaré–Friedrichs inequality (1.5), the expression

j�jH WD
� Z

�

jr�j2 dx
� 1
2
:

defines a norm on H.

Theorem 3.2.3. We have
Z

O�
.i!
H� C QE � curl�/ dx D V �j�ext

8 � 2 H: (3.28)

Proof. Let QE 1 D QE j�1 , QE 0 D QE j�ext . By the Green formula, we check that for
� 2 H,

Z
O�

QE � curl� dx D
Z

�[�ext

curl QE � dx

�
� Z

��

1

Œ QE � t� ds C
Z

�2

Œ QE � t� ds
�
�j�ext

:

Therefore using (3.4) and (3.6), we have
Z

O�
.i!
H� C QE � curl�/ dx D �

� Z

��

1

Œ QE � t� ds C
Z

�2

Œ QE � t� ds
�
�j�ext

: (3.29)

On the other hand, we have by the Stokes theorem and (3.4),

i!
Z

��

1

QA � t ds D i!
Z

�ext[�2
curl QA dx

D �
Z

�ext[�2
curl QE dx

D �
Z

��

1

QE 0 � t ds �
Z

�2

Œ QE � t� ds:
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Then using (3.26):

V D
Z

��

1

�
.i! QA C QE 1

/ � t
��
ds D �

Z

��

1

Œ QE � t� ds �
Z

�2

Œ QE � t� ds: (3.30)

From (3.29) and (3.30) we deduce

V �j�ext
D
Z

O�
.i!
H� C QE � curl�/ dx

for all � 2 H. ut
Remark 3.2.2. The proof of the previous result shows in particular, that the voltage
V can also be defined by the expression

V D �
Z

��

1

Œ QE � t� ds �
Z

�2

Œ QE � t� ds:

Equation (3.28) enables giving a variational formulation for the eddy current
problem with prescribed voltage. For this we note that by using (3.1), (3.7) and the
fact that � is constant in �ext, we obtain for all � 2 H:

Z
O�
.i!
H � C QE � curl�/ dx D

Z
O�
i!
H � dx C

Z

�

��1 curlH � curl� dx

D
Z

O�
i!
H � dx C

Z

�

��1rH � r� dx:

This suggests the variational formulation:

8
<̂
:̂

Find H 2 H such that
Z

�

��1rH � r� dx C i!
Z

O�

H� dx D V �j�ext

8 � 2 H:
(3.31)

Theorem 3.2.4. Let V 2 C be given. Then, there is a unique H 2 H that satisfies
(3.31).

Proof. This is obtained by a direct application of the Lax–Milgram theorem
(Theorem 1.2.1). Obviously, the left-hand side of (3.31) is a continuous sesquilinear
form on H � H and the right-hand side is a continuous antilinear form on H. In
addition, the coercivity is obtained by using (2.11) and writing

Re
� Z

�

��1jrH j2 dxCi!
Z

O�

jH j2 dx

�
D
Z

�

��1jrH j2 dx � ��1
M jH j2H: ut
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An energy interpretation can be derived from the formulation (3.31). We have
indeed by choosing � D H the identity

Z

�

��1jrH j2 dx C i!
Z

O�

jH j2 dx D V H j�ext :

Or, equivalently from (3.1) and (3.7),

Z

�

QJ � QE dx C i!
Z

O�

jH j2 dx D VH j�ext :

Note that, thanks to (3.21), the number Hj�ext is actually the linear current density
(Current by unit length) that flows in �1 in a section of unit length (in the Ox3–
direction). Therefore the above equation is in fact, an energy identity (cf. [74]) in
the form

Electric Energy C Magnetic Energy D Voltage � Current Intensity:

The above identity can also be seen as an equivalent definition of the voltage V .

Remark 3.2.3. A link between the voltage and the total current formulations can be
established in the following way: Let H denote the solution of (3.31) and define
H0 WD Hj�ext and OH WD H=H0. Then obviously OHj�ext D 1. The normalized
magnetic field OH can be computed by solving decoupled problems (3.22), (3.23)
with H replaced by OH and H0 replaced by 1. The value of H0 is then obtained by
using (3.31) with � such that �j�ext[�2 D 1, i.e.

Z

�1

��1r OH � r� dx C i!
Z

�1


 OH� dx C i!
0 j�extj C i!
Z

�2


 OH dx D V

H0

:

To show that the value of H0 does not depend on this choice of the test function �,
for all � with � D 1 on �ext [�2, we write by using the Green formula and (3.4),

Z

�1

��1r OH � r� dx D �
Z

�1

div.��1r OH/� dx C
Z

��

1

��1 @ OH
@n

ds

D �i!
Z

�1


 OH� dx C
Z

��

1

��1 @ OH
@n

ds:

We then obtain the formula

V

H0

D i!
Z

�2


 OH dx C i!
0 j�extj C
Z

��

1

��1 @ OH
@n

ds; (3.32)

from which we deduceH0 in function of OH and V .
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Remark 3.2.4. The generalization to a configuration withN conductors�1; : : : ; �N

is straightforward.

3.2.3 Power Data

In electrotechnical devices the active power is defined by the relation (cf. [126]),

P D !

2�

Z 2�
!

0

Re.ei!tV /Re.ei!t I / dt;

where I is the total current in the inductor per unit length in the Ox3–direction,
i.e. I D H0 (thanks to (3.21)). In other words, the power is averaged on one time
period. We obtain

P D 1

2
Re.V H0/:

Multiplying (3.32) by jH0j2 and taking the real part, we get

P D 1

2
jH0j2 Re

�
i!
Z

�2


 OH dx C i!
0j�extj C
Z

��

1

��1 @ OH
@n

ds

�
:

This shows that the power depends on the modulus of H0 only. The above relation
enables prescribing a value of H0 for a given power P . Note that, as it may be
expected, the active power depends on the modulus of H .

3.3 A Transversal Model

Let us now address another type of two-dimensional models. We shall show that the
choice of a new disposition of the conductors and of the current leads to a model
where the magnetic field is not constant in the vacuum but derives from a scalar
potential. This feature makes the mathematical modelling more delicate.

We consider a typical configuration with three disjointed domains (conductors)
˝k D �k � R, k D 1; 2; 3, and denote by � the union � WD �1 [ �2 [ �3, by �
its boundary and by�ext the vacuum�ext WD R

2 n�. Here the inductor is the union
of the two domains˝2 D �2 � R and ˝3 D �3 � R.

Due to the geometry in Fig. 3.3, we seek an electric current density of the form

J .x1; x2; x3/ D J.x1; x2/ e3; (3.33)
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Fig. 3.3 A typical configuration of the conductors for the transversal model

i.e. QJ D 0. We next assume that the 3-D inductor forms a “loop at the infinity”, in
such a way that the total current flowing in the inductor satisfies the identities

Z

�2

J.x/ dx D �
Z

�3

J.x/ dx D I: (3.34)

This means that the total current flowing inward �2 (in the Ox3–direction) is the
same as the one flowing outward�3. This assumption is compatible with the current
conservation principle since these two conductors are assumed to be linked at the
infinity in the Ox3–direction. Following the same approach, a conductor which is
not inductor must be assumed to have zero total current, i.e.

Z

�1

J.x/ dx D 0: (3.35)

Using (3.2), (3.6), (3.5) and Theorem 1.4.2, we obtain the existence of a scalar
potential A D A.x1; x2/ such that (3.14) holds, and consequently

� div.
�1rA/ D J in R
2: (3.36)

Therefore, since 
 is constant in �ext,

�A D 0 in �ext: (3.37)

Now clearly from the setting (3.33) and (3.1) and since QJ D 0 in R
2, we deduce

that curlH D 0 and then H is constant. The assumption (3.9) yields then H D 0

in R
2.

In summary, we have

H D QH D 
�1 curlA with A D A.x1; x2/:

Our aim is to obtain a well posed problem for eddy currents with the setting
(3.33). For this, we shall describe hereafter the derivation of a model using the
potential A. Let us define
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Ik D
Z

�k

J.x/ dx k D 1; 2; 3;

and set

I1 D 0; I2 D I; I3 D �I;

and define for a function  W R2 ! C, its mean value on �k ,

Mk. / WD 1

j�kj
Z

�k

 dx 1 � k � 3;

where j�kj is the measure (area) of the domain�k . We have the following result.

Theorem 3.3.1. Assume that a total current of amount I flows in the inductor (i.e.
hypotheses (3.34)–(3.35)). Then, the scalar potential A is solution of the following
problem:

� div.
�1rA/C i!�
�
A� Mk.�A/

Mk.�/

�

D �Ik

j�kjMk.�/
in �k; k D 1; 2; 3; (3.38)

�A D 0 in �ext; (3.39)

ŒA� D
h

�1 @A

@n

i
D 0 on �; (3.40)

A.x/ D ˇ C O.jxj�1/ jxj ! 1: (3.41)

Proof. Let us derive equations in each connected component of the domain.

(i) Equation (3.39) is already obtained in (3.37).
(ii) In �k , k D 1; 2; 3, we use (3.3), (3.7), and (3.14) to get

curl .i!AC ��1J / D 0:

In two dimensions, this implies the existence of constants C1; C2; C3 2 C such that

i!�AC J D �Ck in �k; k D 1; 2; 3: (3.42)

In addition, we deduce from (3.36) that

� div.
�1rA/C i!�A D �Ck in �k; k D 1; 2; 3: (3.43)

The constants Ck can be related to the prescribed current I as follows: Integrating
(3.42) on �k and using (3.34), (3.35), we obtain
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Ik D j�kj .Ck Mk.�/ � i!Mk.�A//; k D 1; 2; 3:

From this we deduce

Ck D Ik C i! j�kjMk.�A/

j�kjMk.�/
; k D 1; 2; 3: (3.44)

Replacing these expressions in (3.43), we finally retrieve (3.38).

(iii) From (3.11) and (3.14), we deduce

0 D ŒcurlA � n�� D ŒrA � t�� ;

Therefore, the jump of A is constant across � and can be chosen equal to zero.
Furthermore, we have from (3.10), (3.14) and (3.6):

�

�1 @A

@n

�

�

D Œ
�1 curlA � t�� D 0: ut

Let us look for solutions of (3.38)–(3.41) in the space W1.R2/. Since these
solutions are known up to an additive constant (A DConst. is indeed solution of
(3.38)–(3.41)), we consider the space

V WD f� 2 W1.R2/I M1.�/ D 0g;

and define on it the sesquilinear and antilinear forms:

B.A; �/ WD
Z

R2


�1rA � r� dx C i!
Z

�

�A� dx

� i!
3X

kD1

Mk.�A/Mk.��/

Mk.�/
j�kj;

L .�/ WD
3X

kD1

Mk.��/

Mk.�/
Ik:

We have for (3.38)–(3.41), the variational problem,

(
Find A 2 V such that

B.A; �/ D L .�/ 8 � 2 V :
(3.45)

We have the following result.
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Theorem 3.3.2. Problem (3.45) has a unique solution A 2 V .

Proof. We use for this the Lax–Milgram theorem (Theorem 1.2.1). The continuity
of the sesquilinear form B is obtained by using hypotheses on � (2.11) which imply
for �; 2 V :

Z

�k

ˇ̌
ˇ�
�
� � Mk.��/

Mk.�/

�
 
ˇ̌
ˇ dx � �M

�
k�kL2.�k/ k kL2.�k/

C ��1
m �M k�kL1.�k/ k kL1.�k/

�

� C1 k�kH1.�k/ k kH1.�k/: (3.46)

Therefore, from (2.7) and (3.46), we deduce

jB.�;  /j � C2 kr�kL2.R2/2 kr kL2.R2/2 C C3 k�kH1.�/k kH1.�/

� C4 k�kW1.R2/ k kW1.R2/:

To prove the coercivity of B, we have

B.�; �/ D
Z

R2


�1jr�j2 dx C i!
3X

kD1

� Z

�k

� j�j2 dx � j�kj jMk.��/j2
Mk.�/

�
:

Let us mention a variant of the norm equivalence result that is proved in [149]. It
reads

k�kW1.R2/ � C j�jW1.R2/ 8 � 2 V : (3.47)

Combining this result with Hypothesis (2.7), we obtain

Re .B.�; �// D
Z

R2


�1jr�j2 dx � C k�k2W1.R2/
:

Therefore

jB.�; �/j � Re .B.�; �// � C k�k2W1.R2/
:

The continuity of the antilinear form L is obtained thanks to Property (2.11), i.e.

jL .�/j � �M

�m

3X
kD1

k�kL1.�k/ � C k�kW1.R2/:

Existence and uniqueness of a solution of (3.45) is then established. ut
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Clearly (3.45) is not appropriated for numerical treatment. This one is indeed
formulated in an unbounded domain. A simple idea for solving this problem
would consist in approximating the plane R

2 by a “sufficiently large domain” and
design some transparent boundary condition to replace the condition at the infinity.
This approach maybe in some cases loosely accurate. Rather, we shall resort to a
boundary integral formulation for the exterior domain. In other words, the external
Laplace equation is represented by an integral formulation on the boundary � . This
results in a coupling between partial differential equations in the conductors�k and
an integral equation on � . This coupling can be achieved in many ways and we
shall expose hereafter some coupling formulations and discuss their advantages and
drawbacks.

3.3.1 A Formulation Using the Steklov–Poincaré Operator

Let us consider the exterior Steklov–Poincaré operator P defined in Sect. 1.4.4. We
have, from (3.38) and (3.40) by using the Green formula on R

2:

Z

�


�1rA � r� dx C i!
� Z

�

�A� dx �
3X

kD1

Mk.�A/Mk.��/

Mk.�/
j�kj

�

� 
�1
0

Z

�

@AC

@n
� ds D

3X
kD1

Mk.��/

Mk.�/
Ik: (3.48)

Using the exterior Steklov–Poincaré operator we obtain the variational formulation

(
Find A 2 W such that

B�.A; �/C P.A; �/ D L .�/ 8 � 2 W ;
(3.49)

where

W WD f� 2 H1.�/I M1.�/ D 0g;
and

B�.�;  / WD
Z

�


�1r� � r dxCi!
� Z

�

�� dx�
3X

kD1

Mk.��/Mk.� /

Mk.�/
j�kj

�
;

P.�;  / WD 
�1
0

Z

�

P�  ds:

Let us recall, for the sake of completeness, that the operator P is given by

P D .�1
2
I CR0/K�1;
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where I is the identity operator, K is given by (1.60), R0 is the adjoint operator of
R given by (1.65), and G is the Green function defined by (1.50).

Theorem 3.3.3. Problem (3.49) has a unique solution. Moreover, by extending A
outside � by a harmonic function with the same trace as A on � , we obtain the
solution of (3.45). Conversely, if A is a solution of (3.45), then Aj� is solution of
(3.49).

Proof. The proof of this theorem is an immediate consequence of the above
considerations. However, we can directly prove the existence and uniqueness of
a solution of (3.49) by using the Lax–Milgram theorem (Theorem 1.2.1).

Using the continuity of the operator P and the trace inequality (1.3) and (2.7),
we obtain,

P.�;  / � 
�1
0 kP�kH�

1
2 .�/

k kH 1
2 .�/

� C1 k�kH 1
2 .�/

k kH 1
2 .�/

� C2 k�kH1.�/ k kH1.�/: (3.50)

Combining inequalities (3.46) and (3.50), we obtain the continuity of B�CP . The
coercivity of B� C P is established by using Theorem 1.4.10. We have thanks to
the 2-D version of the Poincaré–Friedrichs inequality (1.5) and (2.7):

Re.B�.�; �//C Re.P.�; �// D
Z

�


�1jr�j2 dx C C1 k�k2
H 1

2 .�/

� 
�1
M k�k2H1.�/

C C2 k�k2H1.�/
:

Existence and uniqueness of a solution of (3.49) is then achieved. ut

3.3.2 A Formulation Using Simple Layer Potentials

As we have already seen in Chap. 1, Sect. 1.4.4, the representation of the exterior
Steklov–Poincaré operator by double layer potentials may present some difficulties
from the implementation point of view. To avoid this, we use the technique used in
Sect. 1.4.4 that involves the Poisson integral. Let us present this in the context of our
problem.

Let us assume that (3.38)–(3.41) is solved and let  denote a solution of the
interior problem

(
� D 0 in �;

 D A on �:
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It follows, by using (1.56), that for x 2 � , we have

A.x/ D �
Z

�

�@AC

@n
.y/� @ 

@n
.y/

�
G.x;y/ ds.y/C �;

where � 2 C and where we recall that AC (resp. A�) is the external (resp. internal)
value of A, G.x;y/ D � 1

2�
ln jx � yj.

By (3.40) we have

@AC

@n
D 
0




@A�

@n

and (3.38)–(3.41) can then be written in the form:

� div.
�1rA/C i!�
�
A� Mk.�A/

Mk.�/

�
D �Ik

j�kjMk.�/
in �k; (3.51)

� D 0 in �k; (3.52)

A.x/ D  .x/ D �
Z

�

�

0p.y/� @ 

@n
.y/

�
G.x;y/ ds.y/C � x 2 �; (3.53)

p D 
�1 @A�

@n
D 
�1

0

@AC

@n
on �; (3.54)

for k D 1; 2; 3.

Remark 3.3.1. It is easy to see that if .A; ; p/ is a solution of (3.51), (3.54) with
given � 2 C, then .A � �;  � �; p/ is also a solution when we fix in (3.53) the
constant � to 0. This is the reason for which we choose in the following � D 0 and
relax the conditionM1.A/ D 0 in (3.45).

A weak formulation of (3.51)–(3.54) with � D 0 consists in finding A 2 H1.�/,
 2 H1.�/ and p 2 H� 1

2 .�/ that satisfy:

Z

�


�1rA � r� dx

C i!
� Z

�

�A� dx �
3X

kD1

Mk.�A/Mk.��/

Mk.�/
j�kj

�

�
Z

�

p� ds D
3X

kD1

Mk.��/

Mk.�/
Ik 8 � 2 H1.�/; (3.55)

Z

�

r � r� dx D 0 8 � 2 H1
0.�/; (3.56)
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Z

�

 q ds D
Z

�

Aq ds D
Z

�

Z

�

�@ 
@n
.y/ � 
0p.y/

�
G.x;y/q.x/ ds.x/ ds.y/ 8 q 2 H� 1

2 .�/: (3.57)

Theorem 3.3.4. Problem (3.55)–(3.57) has a unique solution .A; ; p/. Moreover,

A is the solution, up to a constant, of (3.49) and p D 
�1 @A
@n

. Conversely, if A is

the solution of (3.49), and if  and p are defined by

8̂
ˆ̂<
ˆ̂̂
:

� D 0 in �;

 D A on �;

p D 
�1 @A
@n

on �;

then there exists � 2 C such that the triple .AC �;  C �; p/ is solution of (3.55)–
(3.57).

Proof. The proof follows directly from above calculations and Theorems 3.3.2
and 3.3.3. ut

An variant of the formulation (3.51)–(3.54), can be stated by using Remark 3.3.1.
This one consists in looking for .A; ; p/ 2 W � W � QH� 1

2 .�/ such that

Z

�


�1rA � r� dx

C i!
� Z

�

�A� dx �
3X

kD1

Mk.�A/Mk.��/

Mk.�/
j�kj

�

�
Z

�

p� ds D
3X

kD1

Mk.��/

Mk.�/
Ik 8 � 2 W ; (3.58)

Z

�

r � r� dx D 0 8 � 2 H1
0.�/; (3.59)

Z

�

 q ds D
Z

�

Aq ds

D
Z

�

Z

�

�@ 
@n
.y/ � 
0p.y/

�
G.x;y/q.x/ ds.x/ ds.y/8 q 2 QH� 1

2 .�/: (3.60)

The formulation (3.58)–(3.60) is however less advantageous from a practical point
of view, although a Lagrange multiplier can be used to the handle the �–null integral
condition.
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Theorem 3.3.5. Problem (3.58)–(3.60) has a unique solution .A; ; p/. Moreover,
A is the solution of (3.49) on � and we have

8̂
<
:̂

� D 0 in �;

p D 
�1 @A
@n

on �;

Conversely, if A is the solution of (3.49), if  and p satisfy

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

� D 0 in �;

 D AC � on �;

M1. / D 0;

p D 
�1 @A
@n

on �;

with � 2 C, then the triple .A; ; p/ is a solution of (3.58)–(3.60).

Proof. Let A be the solution of (3.49). By setting p D 
�1@A=@n and  such that
� D 0 in �,  D A C � on � with � chosen such that M1. / D 0, we obtain
(3.59)–(3.60). More precisely, we obtain  2 W and

Z

�

r � r� dx D 0 8 � 2 H1
0.�/:

In addition, we have . �A/j� D � 2 C.
Let us define AC in�ext by�AC D 0 in�ext, AC D A on � and by considering

that A D  � � on � with �. � �/ D 0 in �, we obtain by (1.56),

A.x/ D
Z

�

�@ 
@n
.y/ � @AC

@n
.y/

�
G.x;y/ ds.y/ 8 x 2 �;

or by setting p D 
�1
0

@AC

@n
on � ,

A.x/ D
Z

�

�@ 
@n
.y/ � 
0p.y/

�
G.x;y/ ds.y/ 8 x 2 �:

Equation (3.49) implies that 
�1
0 A

C D 
�1A and we obtain (3.58).
From the above arguments, the reverse proposition is easy to prove. ut
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3.3.3 A Formulation Using a Simple–Double Layer Potential

An alternative variational formulation can be considered by writing an integral
representation of Aj�ext D AC. For this, we consider (3.39) and extend AC by zero
to �. Using (3.41) and (1.56), we have the representation

1

2
AC.x/ D

Z

�

AC.y/
@G

@ny

.x;y/ ds.y/�
Z

�

@AC

@n
.y/G.x;y/ ds.y/C � (3.61)

for x 2 � , where � is a constant. We can then construct a variational formulation
that couples external and internal problems via the normal derivative ofA (following
[26]).

By using (3.38)–(3.39), we obtain

B.A; �/ D B�.A; �/�
Z

�

p� ds;

where p D 
�1
0

@AC

@n
on � . Multiplying (3.61) by q 2 QH� 1

2 .�/ where

QH� 1
2 .�/ D f q 2 H� 1

2 .�/I
Z

�

q ds D 0 g;

and integrating on � (recall that the boundary integrals actually denote duality
pairings), results in

1

2

Z

�

A q ds D
Z

�

Z

�

A.y/
@G

@ny

.x;y/q.x/ ds.y/ ds.x/

� 
0
Z

�

Z

�

p.y/G.x;y/q.x/ ds.y/ ds.x/:

Let us define the sesquilinear forms:

C .�; q/ WD
Z

�

� q ds;

R.�; q/ WD 2

Z

�

R� q ds WD 2

Z

�

Z

�

@G

@ny
.x;y/ �.y/ q.x/ ds.y/ ds.x/;

D.p; q/ WD 2
0

Z

�

Kp q ds WD 2
0

Z

�

Z

�

G.x;y/ p.y/ q.x/ ds.y/ ds.x/:
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We obtain the formulation

8̂
ˆ̂<
ˆ̂̂
:

Find .A; p/ 2 W � QH� 1
2 .�/ such that:

B�.A; �/� C .�; p/ D L .�/ 8 � 2 W ;

D.p; q/ C C .A; q/ � R.A; q/ D 0 8 q 2 QH� 1
2 .�/;

(3.62)

where we recall that

W D f� 2 H1.�/I M1.�/ D 0g:

It is easy to check that if .A; p/ is a solution to (3.62), then we have

p D 
�1
0

@AC

@n
ˇ̌
�
;

where AC is defined by:

8
ˆ̂<
ˆ̂:

�AC D 0 in �ext;

AC D A on �;

A.x/ D ˛ C O.jxj�1/ jxj ! 1;

with ˛ 2 C. The mixed formulation (3.62) was first derived, for the Laplace equa-
tion, by Johnson et al. [108], where a finite element approximation is obtained and
for which convergence is proved. Note also that an alternative mixed formulation
can be found in [87].

Theorem 3.3.6. Problem (3.62) has a unique solution .A; p/. Moreover, A is the
solution of (3.49). Conversely, if A 2 W is a solution of (3.49) and if p WD PA

where P is the Steklov–Poincaré operator, then the pair .A; p/ is the solution of
(3.62).

Proof. Existence and uniqueness are consequences of the equivalence between
problems (3.49)–(3.62). More precisely, let A 2 W denote a solution of (3.49)
and let p D PA, then p 2 QH� 1

2 .�/, and the first variational equation of (3.62) is
valid. To prove the second equation, we recall the same developments that led to
this formulation. ut

3.3.4 A Formulation Using the Poisson Formula

The use of simple and double layer integrals in the formulations given in Sects. 3.3.1
and 3.3.3 may exhibit some difficulties related to the integration of singular
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functions. We can then resort to an alternative formulation that uses the so-called
Poisson formula. To present this formulation, we denote by Br the open disk
centered at 0 with radius r > 0. We denote by Sr the boundary of Br . We assume
furthermore that r is chosen in such a way that � � Sr . Then, using the Poisson
integral formula (see [62], Vol. 1, p. 249), we have

A.x/ D r2 � jxj2
2�r

Z

Sr

A.y/

jx � yj2 ds.y/ for jxj > r:

Let BR stand for the open disk with radius R > r , centered at 0 and with boundary
SR. Problem (3.38)–(3.41) can be casted in the following variational form:

Find A 2 H1.BR/ such that:

Z

BR


�1rA � r dx C i!

�Z

�k

�A dx �
3X

kD1

Mk.�A/Mk.� /

Mk.�/
j�kj

�

D
3X

kD1

Mk.� /

Mk.�/
Ik 8  2 H1

0.BR/; (3.63)

Z

SR

A.x/q.x/ ds.x/ � r2 � R2

2�r

Z

SR

�
q.x/

Z

Sr

A.y/

jx � y j2 ds.y/
�
ds.x/

D 0 8 q 2 H� 1
2 .SR/: (3.64)

We recall that we have 
 D 
0 outside �.
Obviously (3.63)–(3.64) is equivalent to (3.38)–(3.41). Note, in addition, that the

formulation (3.63)–(3.64) requires choosing the values of the radii r and R. This
issue has to be carefully examined when investigating numerical approximation.

3.3.5 Other Formulations

More elaborate variational formulations of (3.38)–(3.41) can be found in [58, 100,
113]. These formulations have the advantage of yielding symmetric bilinear forms
in the case of the Laplace operator. Here, the operator in the inner domain gives a
non hermitian form. For this reason, we believe the usage of such formulations is of
limited interest.



Chapter 4
Three-Dimensional Models

We consider in the present chapter, the fully three-dimensional case defined by
(2.62)–(2.68). We shall consider here, for simplicity, a unique connected domain
of genus 1 (i.e. a torus-like domain, see Fig. 1.1). This one is denoted by ˝ . We
also consider, as in Chap. 1, S as a cut in ˝ , i.e. ˝ n S is simply connected, and
denote by˝ext the set R3 n˝ and by˙ a cut in˝ext, i.e. a surface in˝ext such that
˝ext n ˙ is simply connected (See Fig. 1.1). All the notations and assumptions on
this domain are already described in Chap. 1. Let us recall the set of time-harmonic
eddy current equations (2.62)–(2.68):

curl H D J in R
3; (4.1)

i!B C curl E D 0 in R
3 n S; (4.2)

B D 
H in R
3; (4.3)

J D �E in R
3; (4.4)

div B D 0 in R
3; (4.5)

jH .x/j C jE.x/j D O.jxj�1/ jxj ! 1; (4.6)

and recall also that the coefficients � and 
 are assumed to fulfill the conditions
(2.11) and (2.7) and satisfy (see Sect. 2.2.2)

� D 0; 
 D 
0 D Const. in ˝ext: (4.7)

We consider in addition the vector potential A defined by (2.12), (2.13) and A 2
W1.R3/, i.e.

B D curl A in R
3; (4.8)

div A D 0 in R
3; (4.9)

jA.x/j D O.jxj�1/ jxj ! 1: (4.10)

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__4,
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Remark 4.1. The Faraday equation (4.2) is assumed to be valid in R
3 n S only. If

this one was valid in R
3, we should obtain owing to (4.8),

curl .i!A C E/ D 0 in R
3:

Recalling that the current voltage is defined by

V WD
Z

�

.i!A C E/ � t ds; (4.11)

where � is any closed curve on � that intersects the cut S at one point and t is a unit
tangential vector to �0. In this case, we should deduce from the Stokes theorem that
the voltage is null. This is absurd. In fact, we are in presence of a paradox because a
torus device does not allow for applying a current or voltage. To avoid this obstacle,
we “cut” the torus to connect it to a source.

In the following, we first present a model based on the current density vector
field. The numerical approximation of this model turns out to be rather prohibitive
in terms of computational time since it leads to a nonlocal problem in the whole
domain. Its statement is however useful to introduce a more elaborate model that is
formulated in terms of the magnetic field H . This one is described in detail and its
well–posedness is proved.

4.1 A Current Density Formulation

This model was first derived by Bossavit [32, 34]. Using (4.2), (4.4) and (4.8), we
obtain

curl .i!A C ��1J / D 0 in ˝ n S:

From Theorem 1.3.5, we deduce the existence of a function ' 2 H1.˝/ and a
complex number V such that

i!A C ��1J D r' C V rq in ˝ n S; (4.12)

where q 2 H1.˝ n S/ is a solution to (1.17). Let us define an operator that maps
the current density J to the vector potential A by means of (2.19)–(2.21). For this
end we define the spaces:

X WD f v 2 H.div;˝/I div v D 0 in ˝; v � n D 0 on � g;
Y WD f v 2 H.div;˝/\ H.curl;˝/I div v D 0 in ˝ g;
V WD f v 2 W1.R3/I div v D 0 in R

3 g:
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Clearly, X , Y and V are Hilbert spaces when endowed respectively with the norms:

kvkX WD kvkL2.˝/;

kvkY WD �kvk2L2.˝/
C k curl vk2L2.˝/

� 1
2 ;

kvkV WD k curl vkL2.R3/;

the latter being justified by Theorem 1.3.2.
We define the linear mapping

T W g 2 L2.˝/ 7! u D T g 2 Y ;

where u is the restriction to ˝ of the unique solution of (2.22) with J replaced by
g, i.e.,

8
<̂
:̂

Find u 2 V such that
Z

R3


�1 curl u � curl v dx D
Z

˝

g � v dx 8 v 2 V :
(4.13)

Following the conclusion of Theorem 2.3.1 where A is replaced by u and J by g,
we have T g 2 Y if g 2 X .

From (4.12), (4.1) and the interface condition derived from (4.1) (see Theo-
rem 1.3.1), we deduce the problem for J :

i! T J C ��1J D r' C V rq in ˝ n S; (4.14)

div J D 0 in ˝; (4.15)

J � n D 0 on �: (4.16)

The complex constant V that appears in (4.12) is precisely the current voltage.
To see this, let us consider the boundary � of the surface ˙ . Clearly, � is a closed
curve that intersects the cut S at one point (See Fig. 1.1). We have by integrating
(4.12) along this curve, using (4.11) and setting E D ��1J ,

Z

�

.i!A C E/ � t ds D
Z

�

r' � t ds C V

Z

�

rq � t ds D V

since ' is continuous and q has a jump equal to unity on S .
In order to derive a variational formulation of (4.14)–(4.16), we multiply the

right-hand side of (4.14) by v 2 X and integrate over ˝ n S . We obtain by the
Green formula and (1.17),
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Z

˝

r' � v dx C V

Z

˝nS
rq � v dx D �

Z

˝

' div v dx � V
Z

˝nS
q div v dx

C
Z

�

' v � nds C V

Z

�

q v � nds

C V

Z

S

Œq� v � n ds

D V

Z

S

v � nds:

From this we deduce the problem:

8̂
<
:̂

Find J 2 X such that
Z

˝

.i! T J C ��1J / � v dx D V

Z

S

v � n ds 8 v 2 X :
(4.17)

Remark 4.1.1. An energy identity can be deduced from (4.17) by choosing v D J ,

Z

˝

.i! T J � J C ��1jJ j2/ dx D V

Z

S

J� nds: (4.18)

Let us treat the first term in the left-hand side of (4.18). Using the Green formula,
Eqs. (4.1), (4.3) and (4.8), we deduce

Z

˝

T J � J dx D
Z

˝

A � J dx

D
Z

˝

A � curl H dx

D
Z

˝

curl A � H dx �
Z

�

A � n � H ds

D
Z

˝

B � H dx C
Z

˝ext

H � curl A dx

D
Z

R3

B � H dx:

Using this result and (4.4), Identity (4.18) can then be written

i!
Z

R3

B � H dx C
Z

˝

J � E dx D V

Z

S

J� nds: (4.19)

According to [139] and [74], the left-hand side of (4.19) is the total energy in
the considered system (i.e. the sum of magnetic and electric energies), and the
right-hand side is the product of the voltage V by the total current flowing in the
conductor˝ .
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We now turn to the proof of existence and uniqueness of a solution to (4.17). We
have the following result.

Theorem 4.1.1. Problem (4.17) has a unique solution J 2 X .

Proof. The proof uses the Lax–Milgram theorem (Theorem 1.2.1).
Denoting by B the sesquilinear form

B.J ; v/ WD i!
Z

˝

T J � v dx C
Z

˝

��1J � v dx;

and by L the antilinear form

L.v/ WD V

Z

S

v � nds;

Problem (4.17) reads

B.J ; v/ D L .v/ 8 v 2 X :

Now we deduce from (2.23) that the mapping T is continuous, that is,

kT gkY � C kgkX :

This implies by using (2.11) that

jB.v;w/j � ! kT vkL2.˝/ kwkL2.˝/ C ��1
m kvkL2.˝/ kwkL2.˝/

� ! kT vkY kwkL2.˝/ C ��1
m kvkX kwkX

� C1 kvkX kwkX :

Therefore the form B is continuous. Moreover, the continuity of L is obtained
from the following bound for a v 2 X ,

jL .v/j � jV j kv � nkH�
1
2 .� /

� C .kvk2L2.˝/
C k div vk2L2.˝//

1
2

D C kvkL2.˝/:

Let us prove that the form B is coercive on X � X . Let v denote an element of X .
We have

B.v; v/ D i!
Z

˝

T v � v dx C
Z

˝

��1jvj2 dx:
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Seting u D T v, we have from (4.13),

Z

R3


�1j curl uj2 dx D
Z

˝

v � u dx D
Z

˝

v � T v dx D
Z

˝

v � T v dx:

It follows that

B.v; v/ D i!
Z

R3


�1j curl uj2 dx C
Z

˝

��1jvj2 dx:

Hence, by using (2.11),

jB.v; v/j2 D !2
� Z

R3


�1j curl uj2 dx
�2 C

� Z

˝

��1jvj2 dx
�2

� ��2
M kvk4X :

The existence and uniqueness of a solution is then proved. ut
Problem (4.17) has the advantage to be formulated in a bounded domain. The

major difficulty relies on the evaluation of the operator T .
A particular interesting case is the one of nonmagnetic materials, i.e. when 
 D


0. In this case, T can be expressed as an integral operator by using (2.24). We have
indeed in this case

T J .x/ D 
0

Z

˝

G.x;y/J .y/ dy x 2 ˝;

where G is the Green function defined by (1.21). The current density vector field
can then be obtained by solving the integral equation

i!
0

Z

˝

G.x;y/J .y/ dy C��1J .x/ D r'.x/CVrq.x/ x 2 ˝ nS: (4.20)

This problem can be written in the variational formulation:

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

Find J 2 X such that
Z

˝

�
i!
0

Z

˝

G.x;y/J .y/ dy C ��1J .x/
�

� v.x/ dx

D V

Z

S

v � n ds 8 v 2 X :

(4.21)

For completeness let us interpret (4.21) as a partial differential equation in the whole
space. We clearly have

i!T J C ��1J D V ıS in R
3;



4.2 A Magnetic Field Formulation 85

where ıS is the distribution supported by the surface S and defined by

Z

S

ıS � v ds WD
Z

S

v � nds 8 v 2 DD.R3/; (4.22)

where the left-hand side integral stands for the duality pairing between DD 0.R3/ and
DD.R3/.

The main difficulty in solving (4.21) comes here from the fact that we are
in presence of a nonlocal problem formulated in ˝ . Using a numerical method
will then result in a dense matrix which severely restricts the performances of the
method.

4.2 A Magnetic Field Formulation

Although the model presented in the previous section is inefficient from a computa-
tional point of view, its setting is helpful to derive a more feasible formulation. This
one is due to Bossavit and Vérité (see [33, 34, 36, 171, 172]). We note that if v 2 X ,
then v can be extended to R

3 by setting v D 0 in ˝ext and then div v D 0 in R
3

since v � n D 0 on � (see Theorem 1.3.1). We thus define the space

QX D fv 2 H.div;R3/I div v D 0 in R
3; v D 0 in ˝extg:

Let v denote a function in this space. We deduce from Theorem 1.3.4 the existence
of a function w 2 W1.R3/ such that

v D curl w; div w D 0 in R
3:

By replacing v by curl w and evaluating the first terms of (4.17) in function of the
magnetic field instead of J , we have by setting A D T J and using (4.8), (4.3) and
the Green formula in ˝ and˝ext successively,

Z

˝

T J � curl wdx D
Z

˝

curl A � w dx C
Z

�

A � n � wds

D
Z

˝

curl A � w dx C
Z

˝ext

curl A � wdx

�
Z

˝ext

A � curl wdx

D
Z

R3


H � wdx:
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Finally, we have

i!
Z

R3


H � wdx C
Z

˝

��1 curl H � curl wdx D QL .w/;

where, according to (1.11),

QL .w/ WD L .curl w/ D V

Z

S

curlS wds:

Note that the appropriate choice for the magnetic field is the space

H WD fv 2 H.curl;R3/I curl v D 0 in ˝extg; (4.23)

endowed with the norm

kvkH WD �kvk2L2.R3/
C k curl vk2L2.˝/

� 1
2 :

This yields the variational formulation:

8
ˆ̂̂̂
<
ˆ̂̂̂
:

Find H 2 H such that

i!
Z

R3


H � wdx C
Z

˝

��1 curl H � curl wdx

D QL .w/ 8 w 2 H:

(4.24)

Remark 4.2.1. As it was previously mentioned, the integral that defines the form QL
actually stands for a duality pairing. The integrand is indeed well defined since for a
function w 2 H.curl;R3/, we have div curl w D 0 in the sense of distributions and
then by Theorem 1.3.1, the function curl w � n is well defined on S .

Theorem 4.2.1. Problem (4.24) admits a unique solution H . Moreover, if we define
the fields J ;B;E by J D curl H in R

3, B D 
H in R
3 and E D ��1J in ˝ ,

then the functions H ;J ;B;E solve the system of equations (4.1)–(4.6).

Proof. Let us define the sesquilinear form on H,

QB.v;w/ WD i!
Z

R3


 v � wdx C
Z

˝

��1 curl v � curl wdx:

We deduce the variational formulation

Find H 2 H such that QB.H ;w/ D QL .w/ 8 w 2 H:

Clearly, from (2.7) and (2.11), we deduce that the form B is continuous and
coercive, i.e.
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ˇ̌ QB.v; v/
ˇ̌2 D !2

� Z

R3


jvj2 dx
�2 C

� Z

˝

��1j curl vj2 dx
�2

� min
�
!2
2m; �

�2
M

� kvk4H;

where the constants 
m and �M are defined in (2.7) and (2.11) respectively. The
antilinear form QL is continuous since

div curl w D 0;

implies that curl w 2 H.div;R3/ and then curl w � njS is well defined (see
Theorem 1.3.1).

Existence and uniqueness are obtained thanks to the Lax–Milgram theorem
(Theorem 1.2.1).

Let us now interpret this solution as the one of a set of partial differential
equations. Taking in (4.24) a test function v 2 DD.R3/ with support contained in
˝ n S , we obtain in the sense of distributions:

i!
H C curl .��1 curl H / D 0 in ˝ n S:

Defining E D ��1 curl H , B D 
H in ˝ and J D �E in R
3, we retrieve (4.1)

and (4.2).
Furthermore, since

Bj˝ext D 
0H j˝ext 2 H.curl;˝ext/;

div H D 
�1
0 div B D 0 in ˝ext;

then Theorem 1.3.2 implies H j˝ext 2 W1.˝ext/ and

jH .x/j D O.jxj�1/ when jxj ! 1:

It remains to interpret the constant V . For this, we take w D H in (4.24) and recall
(4.19). ut

It may be instructive to interpret (4.24) as a set of partial differential equation.
For this, we start by writing for any smooth vector field w, using the Stokes theorem,

Z

S

curlS w ds D
Z

@S

w � t dl

where @S is the closed curve that represents the boundary of the surface S and t

is the unit tangent vector to @S oriented according to the Ampère rule. A classical
interpretation of (4.24) leads to:

i!
H C curl E D V ı@S ; (4.25)
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curl H D J ; (4.26)

J D �E (4.27)

inR3, where ı@S is the vector delta distribution supported by the curve @S defined by

Z

R3

ı@S � wdx D
Z

@S

w � t d` 8 w 2 DD.R3/: (4.28)

We recall here that the integral on the left-hand side actually stands for the duality
pairing between a distribution and a test function.

Problem (4.24) is not well suited for numerical treatment. The integral on
R
3 must indeed be transformed. To handle this drawback we consider integral

representation of the external magnetic field H j˝ext . We adopt for this end the
technique used by Bossavit and Vérité in [36, 171, 172].

Let w denote a function in H. Following Theorem 1.3.6, there exist a function
 2 W1.˝ext/ and a complex number ˇ such that

w D r C ˇ rp in ˝ext n˙;

where p is the unique solution of (1.20). We may then write for the solution H 2 H
the form

H D r� C ˛ rp in ˝ext n˙; (4.29)

where � 2 W1.˝ext/ and ˛ 2 C. The first integral in (4.24) can be expanded as
follows:

Z

R3


H � w dx D
Z

˝


H � w dx

C
0ˇ
Z

˝extn˙
r� � rp dx C 
0˛

Z

˝extn˙
rp � r dx

C
0
Z

˝ext

r� � r dx C 
0˛ˇ

Z

˝extn˙
jrpj2 dx:

Let us evaluate each of the above integrals. Since the set˝ext has as boundary� [˙ ,
we have by the Green formula and from the definition of (1.20):

Z

˝extn˙
r� � rp dx D �

Z

˝extn˙
� �p dx �

Z

�

�
@p

@n
ds C

Z

˙

�

�
@p

@n

�
ds D 0:

In the same way,

Z

˝extn˙
rp � r dx D 0:
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Finally, using again (1.20) and the Green formula,

Z

˝extn˙
jrpj2 dx D �

Z

˝extn˙
p�p dx �

Z

�

@p

@n
p ds C

Z

˙

@p

@n
Œp� ds

D
Z

˙

@p

@n
ds:

The quantity

L WD 
0

Z

˝extn˙
jrpj2 dx D 
0

Z

˙

@p

@n
ds (4.30)

is called self inductance of the inductor˝ .
Clearly we have replaced the unknown magnetic field H in (4.24) by the

unknowns .H j˝; �; ˛/. In order to derive a new variational formulation, the space
H is to be replaced by the following one:

K WD ˚
.w;  ; ˇ/ 2 H.curl;˝/ � W1.˝ext/ � CI

w � n C curl�  C ˇ curl� p D 0 on �

: (4.31)

Note that the interface condition that operates in the definition of K is well defined
by similar arguments to those of Remark 4.2.1. In fact, since  2 W1.˝ext/, then
curl r D 0 in the sense of distributions in ˝ext and then r � n is well defined
owing to Theorem 1.3.1.

We obtain the equivalent variational formulation:

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find .H ; �; ˛/ 2 K such that

i!
Z

˝


H � w dx C i!
0

Z

˝ext

r� � r dx C i!L˛ˇ

C
Z

˝

��1 curl H � curl wdx D QL .w/ 8 .w;  ; ˇ/ 2 K:

(4.32)

Naturally, the above formulation is still not ready for numerical approximation. The
integral over ˝ext is indeed to be replaced by an integral representation. A classical
interpretation of this formulation by choosing w D 0, ˇ D 0 and  2 D.˝ext/

shows that  is actually harmonic in˝ext and then it can be represented on � by an
integral equation. This will be done after proving that the formulation (4.32) is well
posed.

Theorem 4.2.2. Problem (4.32) has a unique solution. Moreover, if H is the
solution of (4.24), then the triple .H j˝; �; ˛/, where � 2 W1.˝ext/ and ˛ 2 C

are such that H D r� C ˛rp in ˝ext n ˙ , is solution of (4.32). Conversely, if



90 4 Three-Dimensional Models

.H ; �; ˛/ is solution of (4.32), then the function QH defined by QH D H in ˝ and
QH D r� C ˛rp in ˝ext n˙ is solution of (4.24).

Proof. Let H be the unique solution of (4.24). We have already proven that there
exists � 2 W1.R3/ and ˛ 2 C such that the triple .H j˝ext ; �; ˛/ is solution of
(4.32).

Let now .H j˝ext ; �; ˛/ denote a solution of (4.32) and define QH by QH D H in
˝ , QH D r� C ˛rp in ˝ext n˙ . We remark that QH can be extended as a function
of H.curl;˝ext/ and we have curl QH D 0 in ˝ext. Moreover since H � n D
.r� C ˛rp/ � n on � , we have QH 2 H.curl;R3/ and with curl QH D 0 in ˝ext

we obtain QH 2 H.
Now if w 2 H, Theorem 1.3.6 implies that there exist  2 W1.R3/ and ˇ 2 C

such that w D r C ˇrp in ˝ext n˙ . By computing

i!
0

Z

˝ext

QH � wdx D i!
0

Z

˝ext

.r� C ˛rp/ � .r C ˇrp/ dx

D i!
0

Z

˝ext

r� � r dx C i!L˛ˇ;

and with (4.32), we obtain that QH is a solution of (4.24). ut
Remark 4.2.2. The constant ˛ in the variational formulation (4.32) can be inter-
preted as follows: The total current in the inductor is defined by

I D
Z

S

curl H � nds D
Z

S

curlS H ds:

Let @S stand for the boundary of the surface S and let t denote the unit tangent
vector to t oriented according to the Ampère rule. We have from the interface
condition on � since the vector H � n is tangential to � ,

H � t D r� � t C ˛rp � t on @S:

We thus obtain by the Stokes theorem since p has a jump of unity on @S \˙ ,

I D
Z

@S

H � t ds

D
Z

@S

r� � t ds C ˛

Z

@S

rp � t ds

D ˛:

The number ˛ is then the total current in the inductor˝ .
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We may note that although (4.32) is stated in ˝ and ˝ext, the unknown function
� is harmonic in ˝ext and thus can be represented by an integral formulation over
� . For this end, we resort to using the Steklov–Poincaré operator as defined in
Sect. 1.3.5. From the expansion (4.29) we deduce since div H D 0 in˝ext, that � is
harmonic in ˝ext and then by the Green formula,

Z

˝ext

r� � r dx D �
Z

�

@�

@n
 ds D

Z

�

.P�/ ds;

where the operator P is defined by (1.38).
Let us rewrite (4.32) using this. We first replace the space K by the following

one:

K� WD ˚
.w;  ; ˇ/ 2 H.curl;˝/ � H 1

2 .� / � CI
w � n C curl�  C ˇ curl� p D 0 on �


: (4.33)

Note that the surface functions curl�  and curl� p are well defined for  2
H 1

2 .� / and p 2 H 1
2 .� n @˙/ (see [62], Vol. 4, p. 136 for instance).

We have the equivalent variational formulation to (4.32),

8
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂:

Find .H ; �; ˛/ 2 K� such that

i!
Z

˝


H � wdx C i!
0

Z

�

.P�/ ds C i!L˛ˇ

C
Z

˝

��1 curl H � curl wdx D QL .w/ 8 .w;  ; ˇ/ 2 K� :

(4.34)

It remains now to give a more easy-to-compute formula to calculate the
inductance coefficient. Let us for this define the “Surface Current”

J � WD curl� p D n � rp on �:

We next prove the following preliminary lemma:

Lemma 4.2.1. Let a stand for the vector field

a.x/ D
Z

�

J � .y/G.x;y/ ds.y/ x 2 ˝ext; (4.35)

with G.x;y/ D 1

4�

1

jx � yj :

We have the following properties:

div a D 0; (4.36)
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curl a D rp; (4.37)

in ˝ext.

Proof. We have for x 2 ˝ext by the Green formula:

div a.x/ D
Z

�

rx � .J � .y/G.x;y// ds.y/ D
Z

�

rxG.x;y/ � J � .y/ ds.y/:

Using the identity

ryG.x;y/ D �rxG.x;y/;

and the property Œrp � n� D 0 on � , we obtain, again by the Green formula, for
x 2 ˝ext,

div a.x/ D �
Z

�

ryG.x;y/ � .rp.y/ � n.y// ds.y/

D
Z

˝ext

divy

�ryG.x;y/ � rp.y/�dy

D �
Z

˝ext

�ryG.x;y/ � curl rp.y/� rp.y/ � curly ryG.x;y/
�
dy

D 0:

This proves (4.36).
Defining w D curl a, we get

w.x/ D
Z

�

curlx
�
G.x;y/J � .y/

�
ds.y/

D
Z

�

rxG.x;y/ � J � .y/ ds.y/

D
Z

�

.rp.y/ � rxG.x;y//n.y/ ds.y/

�
Z

�

�
n.y/ � rxG.x;y/

�rp.y/ ds.y/:

Since

ryG.x;y/ D �rxG.x;y/;
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then

w.x/ D �
Z

�

.rp.y/ � ryG.x;y//n.y/ ds.y/C
Z

�

@G

@ny

.x;y/rp.y/ ds.y/

D �I1.x/C I2.x/: (4.38)

To evaluate I1, we first make use of the Gradient theorem to get

I1.x/ D �
Z

˝ext

ry.rp.y/ � ryG.x;y// dy

D �
Z

˝ext

.rp.y/ � ry/ryG.x;y/ dy

�
Z

˝ext

.ryG.x;y/ � ry/rp.y/ dy: (4.39)

We have for the first integral in I1 by the Green formula and (1.20),

Z

˝ext

.rp.y/ � ry/ryG.x;y/ dy

D �
Z

˝extn˙
ryG.x;y/�p.y/ dy �

Z

�

@p

@n
.y/ryG.x;y/ ds.y/

�
Z

˙

h@p
@n
.y/

i
ryG.x;y/ ds.y/ D 0: (4.40)

For I2, we have by the Green formula

I2.x/ D �
Z

˝ext

rp.y/�yG.x;y/ dy �
Z

˝ext

.ryG.x;y/ � ry/rp.y/ dy

D rp.x/�
Z

˝ext

.ryG.x;y/ � ry/rp.y/ dy: (4.41)

Collecting (4.39), (4.40) and (4.41) in (4.38), we obtain w D rp in ˝ext and then
(4.37). ut

Now we have the following result (See also Bossavit–Vérité [36]).

Theorem 4.2.3. The self inductance L defined by (4.30), is also given by

L D 
0

4�

Z

�

Z

�

J � .x/ � J � .y/

jx � yj ds.x/ ds.y/: (4.42)
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Proof. We first note that since the function p is in H1
loc.˝ext/, then curl rp D 0

and then, thanks to (1.3.1), the trace rp � n on � is well defined.
Let us use Lemma 4.2.1 and let a be the vector field defined by (4.35), we can

write using (4.30), (4.37) and the Green formula,

L D 
0

Z

˝extn˙
jrpj2 dy

D 
0

Z

˝extn˙
j curl aj2 dy

D 
0

Z

˝ext

div.a � curl a/ dy C 
0

Z

˝ext

a � curl curl a dy

D 
0

Z

˝ext

div.a � curl a/ dy C 
0

Z

˝ext

a � curl rp dy

D �
0
Z

�

.a � curl a/ � n ds

D �
0
Z

�

.a � rp/ � nds

D 
0

Z

�

a � J � ds

D 
0

4�

Z

�

Z

�

J � .x/ � J � .y/

jx � y j ds.y/ ds.x/: ut

4.3 An Electric Field Model

In a similar way to the magnetic field model, we can derive a model using electric
field as unknown. Electric field models are difficult to use in the cases where an
unknown conductor zone is present. The obtained model involves indeed the electric
conductivity � rather than its inverse (electric resistivity) and the equation naturally
makes sense in the zone where � D 0, i.e. in nonconducting regions.

We have chosen here to present the simple model where a source current density
is prescribed. We show later in a remark that prescribing the voltage in such models
is more delicate since the right-hand side of the resulting variational formulation is
not well defined without modification of the used functional space.

The starting point is the system of equations (2.57)–(2.61). Written in terms of
the electric field E , we obtain the problem:

i!�E C curl .
�1 curl E/ D �i!J 0 in R
3; (4.43)

jE.x/j C j curl E .x/j D O.jxj�1/ for jxj ! 1: (4.44)
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Here the source current J 0 is a function with support in the conductors˝ , given in
L2.R3/ with div J 0 D 0.

It is clear that Eqs. (4.43)–(4.44) are not enough to ensure uniqueness of a
solution. The electric field is indeed determined up to a gradient in the exterior
domain (where � D 0). The following gauge conditions are generally supplied for
this:

div E D 0 in ˝ext; (4.45)
Z

�k

E j˝ext � n ds D 0 k D 1; 2; : : : (4.46)

where the �k are the boundaries of the connected components ˝k of ˝ . We note
that Condition (4.45) is natural since we have from the Maxwell equations (see (2.6),
(2.9)) the equation

div."E/ D %q in R
3:

Assuming that the empty space contains no charges (%q D 0) and that the electric
permittivity is constant (" D "0), we retrieve (4.45).

In the following we shall use the formulation studied by Ammari et al. [13] and
later by Hiptmair [100].

4.3.1 A Formulation in the Whole Space

Following [100], we define the space

V WD
n
vI v

1C jxj 2 L2.R3/I curl v 2 L2.R3/;

div v D 0 in ˝ext;

Z

�k

v � nds D 0; k D 1; 2; : : :
o
:

We have for E the following variational formulation:

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find E 2 V such that

i!
Z

˝

�E � v dx C
Z

R3


�1 curl E � curl v dx

D �i!
Z

˝

J 0 � v dx 8 v 2 V :

(4.47)
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Remark 4.3.1. We have chosen for this problem the use of the weighted Sobolev
space W.curl;R3/ where

W.curl; X/ WD
n
vI v

1C jxj 2 L2.X/; curl v 2 L2.X/
o
;

in which lie functions that behave as O.jxj�1/ when jxj ! 1. It can be
shown however (see [13]) that the resulting electric field behaves like jxj�2 when
jxj ! 1.

The following result is proved in [100].

Theorem 4.3.1. Problem (4.47) has a unique solution E 2 V .

Like for the H –model, the variational formulation is not ready for producing a
practical numerical scheme. The integral over R3 has to be decomposed indeed into
integrals over˝ and˝ext and the latter one is difficult to handle. In [100] considers
a symmetric coupling of the interior and the exterior fields. We have chosen here
to present a formulation that couples the electric field in the conductor with the
magnetic field in the free space. This is presented in the next section.

4.3.2 A Coupled Interior–Exterior Formulation

We consider an original formulation of the electric field model that couples a
scalar potential related to the magnetic field in the vacuum to the E–formulation
in the conductors. This formulation is borrowed from [158] which is obtained for a
bounded domain, and adapted here to the whole space.

We start from the variational formulation (4.47) and consider the case without
a source current but a prescribed voltage or total current. Using the Green formula
and the property

curl curl E D 0 in ˝ext;

we obtain for all v 2 W.curl;˝ext/

Z

˝ext

curl E � curl v dx D �
Z

�

curl E � n � v ds:

We recall that 
 D 
0 is constant in ˝ext (See Chap. 2). Then (4.47) becomes, with
J 0 D 0:

Z

˝

�
i!�E � v C 
�1 curl E � curl v

�
dx

�
Z

�


�1 curl E � n � v ds D 0 8 v 2 H.curl;˝/:
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Using the Faraday equation (4.2) and the interface condition ŒH � n� D 0 on � , we
obtain for all v 2 H.curl;˝/,

Z

˝

�
i!�E � v C 
�1 curl E � curl v

�
dx � i!

Z

�

v � n � H j˝ext ds D 0:

We use the decomposition (4.29) to obtain for all v 2 H.curl;˝/,

Z

˝

�
i!�E � v C 
�1 curl E � curl v

�
dx � i!

Z

�

v � n � r� ds

� i!˛
Z

�

v � n � rp ds D 0: (4.48)

Let us consider the equation in ˝ext. We have in the sense of distributions, when a
voltage V is applied, the Eq. (4.25). Taking the scalar product of (4.25) with r ,
where  2 W1.˝ext/, we get

i!
Z

˝ext


H � r dx C
Z

˝ext

curl E � r dx D V

Z

@S

r � t d` D 0: (4.49)

Using again the decomposition (4.29) and the Green formula, we get for all  2
W1.˝ext/

i!
Z

˝ext


r� � r dx C
Z

�

E � n � r ds D 0: (4.50)

Let us finally take the scalar product of (4.25) with rp where p is defined by (1.20),
we have

i!
Z

˝extn˙

H � rp dx C

Z

˝extn˙
curl E � rp dx D V

Z

@S

rp � t d` D V:

The decomposition (4.29) yields

i!
Z

˝extn˙

r� � rp dx C i!˛

Z

˝extn˙

 jrpj2 dx C

Z

�

E � n � rp ds D V:

Using the Green formula, the definition (1.20) of p and the definition (4.30) of the
self-inductance we get

i!˛LC
Z

�

E � n � rp ds D V: (4.51)
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We now gather (4.48)–(4.51) to obtain for all .v;  / 2 H.curl;˝/ � W1.˝ext/:

i!
Z

˝

�E � v dx C
Z

˝


�1 curl E � curl v dx

� i!
Z

�

v � n � r� ds D i!˛
Z

�

v � n � rp ds; (4.52)

i!
Z

˝ext


r� � r dx C
Z

�

E � n � r ds D 0; (4.53)

i!˛LC
Z

�

E � n � rp D V: (4.54)

We note that the formulation (4.52)–(4.54) enables prescribing either current voltage
V or total current intensity ˛.

The total current model is thus given by looking for .E ; �/ 2 H.curl;˝/ �
W1.˝ext/ such that for all .v;  / 2 H.curl;˝/ � W1.˝ext/,

i!
Z

˝

�E � v dx C
Z

˝


�1 curl E � curl v dx

� i!
Z

�

v � n � r� ds D i!˛
Z

�

v � n � rp ds; (4.55)

!2
Z

˝ext


r� � r dx � i!
Z

�

E � n � r ds D 0; (4.56)

where ˛ 2 C is the applied total current. Likewise, we can prescribe the voltage
V 2 C and look for .E ; �; ˛/ 2 H.curl;˝/ � W1.˝ext/ � C such that for all
.v;  ; ˇ/ 2 H.curl;˝/ � W1.˝ext/ � C,

i!
Z

˝

�E � v dx C
Z

˝


�1 curl E � curl v dx

� i!
Z

�

v � n � r� ds � i!˛
Z

�

v � n � rp ds D 0; (4.57)

!2
Z

˝ext


r� � r dx � i!
Z

�

E � n � r ds D 0; (4.58)

!2L˛ˇ � i!ˇ
Z

�

E � n � rp ds D �i!ˇ V: (4.59)

Let us prove that the variational formulations (4.55)–(4.56) and (4.57)–(4.59) define
well posed problems.

Theorem 4.3.2. Problem (4.55)–(4.56) has a unique solution

.E ; �/ 2 H.curl;˝/ � W1.˝ext/:
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Proof. In view of applying the Lax-Milgram theorem, we consider an equivalent
of the variational formulation (4.55)–(4.56) obtained by multiplying (4.55) by the
complex number .1 � i/, (4.56) by .1 C i/ and adding. We define the sesquilinear
form

B..w; /I .v;  // WD .1C i/ !
Z

˝

�w � v dx C .1 � i/
Z

˝


�1 curl w � curl v dx

C .1C i/ !2
Z

˝ext


r � r dx

C !

�
.1 � i/

Z

�

w � n � r ds � .1C i/
Z

�

v � n � r ds
�
;

and the antilinear form

L ..v;  // WD .1C i/ !˛
Z

�

v � n � rp ds:

Problem (4.55)–(4.56) reads then

B..E ; �/I .v;  // D L ..v;  // 8 .v;  / 2 H.curl;˝/ � W1.˝ext/:

We have for .v;  / 2 H.curl;˝/ � W1.˝ext/

Re B..v;  /I .v;  // D !

Z

˝

� jvj2 dx C
Z

˝


�1j curl vj2 dx

C !2
Z

˝ext


jr j2 dx:

Therefore by using (2.7), (2.11) and (1.6),

jB..v;  /I .v;  //j � Re B..v;  /I .v;  //
� !�mkvk2L2.˝/

C 
�1
M k curl vk2L2.˝/

C !2
mkr k2L2.˝ext/

� C
�kvk2H.curl;˝/ C k k2W1.˝ext/

�
:

The form B is thus coercive.
For the form L we have by the same method

L ..v;  // D i!˛
Z

�

v � n � rp ds D �i!˛
Z

˝extn˙
curl Qv � rp dx;
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where Qv is an extension of v to ˝ext such that Qv 2 H.curl;R3/. Such an extension
exists and we have (see [100]):

k curl QvkL2.R3/ � C1kv � nkH�
1
2 .� /

� C2kvkH.curl;˝/: (4.60)

We have thanks to (4.60), for all .v;  / 2 H.curl;˝/ � W1.˝ext/,

jL ..v;  //j � ! j˛j
ˇ̌
ˇ
Z

˝extn˙
curl Qv � rp dx

ˇ̌
ˇ

� C3krpkL2.˝extn˙/kvkH.curl;˝ext/:

Therefore L is continuous and the Lax–Milgram theorem (Theorem 1.2.1) ensures
then existence and uniqueness of .E ; �/. ut
Remark 4.3.2. Once the variational problem is solved, the voltage can be deduced
from (4.54).

Theorem 4.3.3. Problem (4.57)–(4.59) has a unique solution

.E ; �; ˛/ 2 H.curl;˝/ � W1.˝ext/ � C:

Proof. Multiplying (4.57) by the complex number .1�i/, (4.58) by .1Ci/ and (4.59)
by .1C i/ and adding the three equations, we are led to the variational formulation:

B..E ; �; ˛/I .v;  ; ˇ// D L ..v;  ; ˇ//

for all .v;  ; ˇ/ 2 H.curl;˝/ � W1.˝ext/ � C where

B..w; ; �/I .v;  ; ˇ// D .1C i/ !
Z

˝

�w � v dx

C .1 � i/
Z

˝


�1 curl w � curl v dx � .1C i/ !
Z

�

v � n � r ds

� .1C i/ !˛
Z

�

v � n � rp ds C .1C i/ !2
Z

˝ext


r � r dx

C .1 � i/ !
Z

�

w � n � r ds C .1C i/ !2L�ˇ

C .1 � i/ !ˇ
Z

�

w � n � rp ds;

L ..v;  ; ˇ// D .1 � i/ !ˇV:

Using the same tools as for the proof of Theorem 4.3.2, we can see that the antilinear
form L and the sesquilinear form B are continuous on the space H.curl;˝/ �
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W1.˝ext/ � C. Let us prove the coercivity of B. We have

Re B
�
.v;  ; ˇ/I .v;  ; ˇ/� D !

Z

˝

� jvj2 dx C
Z

˝


�1j curl vj2 dx

C !2
Z

˝ext


 jr j2 dx C !2L jˇj2:

Thus, by (2.7), (2.11) and (1.6),

ˇ̌
B
�
.v;  ; ˇ/I .v;  ; ˇ/�ˇ̌ � Re B

�
.v;  ; ˇ/I .v;  ; ˇ/�

� !�mkvk2L2.˝/
C 
�1

M k curl vk2L2.˝/

C !2
mkr k2L2.˝ext/
C !2L2jˇj2

� C
�kvk2H.curl;˝/ C k k2W1.˝ext/

C jˇj2�:

This proves that B is coercive. The antilinear form L is continuous since we have

ˇ̌
L
�
.v;  ; ˇ/

�ˇ̌ � !jV j jˇj:

The Lax–Milgram theorem (Theorem 1.2.1) enables to conclude. ut
We may observe that, just like for (4.47), problems (4.55)–(4.56) and (4.57)–

(4.59) are still posed in the whole space R
3, the difference being that we have a

scalar elliptic problem in the vacuum. This difficulty can be removed, like for the
magnetic field model (4.34) by using the Steklov–Poincaré operator which enables
representing the scalar potential � by an integral equation on � . We omit the details
since the approach is similar.

Remark 4.3.3. The variational formulations (4.55)–(4.56) and (4.57)–(4.59) can be
viewed as variants of the ones given in [158] (problems (17) and (18)) for the case
of unbounded domains.



Chapter 5
Axisymmetric Models

The present chapter deals with the derivation of some mathematical models for
eddy current setups with symmetry of rotation. The symmetry is assumed for the
geometry and data as well. For a better clarity, we proceed as we have done so far:
we present a formal derivation of the models and then, once a mathematical problem
is defined, we establish a rigorous mathematical result of existence and uniqueness
of a solution.

We present in the following two mathematical models:

• The first one is obtained as an adapted version of the model developed in Chap. 4
to the axisymmetric case. This problem has as unknown the magnetic field. We
shall see that the axisymmetric problem involves only two components of this
field.

• The second one uses the vector potential A as unknown. This choice is motivated
by the fact that, in the case of axial symmetry, A has only one nonvanishing
component and can then be identified to a scalar field.

5.1 Axisymmetric Setting

Let us consider the cylindrical coordinate system

˚ W .r; ; z/ 2 R
C � Œ0; 2�/ � R 7! ˚.r; ; z/ D x D r cos e1 C r sin e2 C ze3;

where we recall that .ei / is the canonical orthogonal basis of R
3. Let now

.er ; r ; ez/ stand for the normalized natural tangent system associated to the
cylindrical system, that is

er D cos  e1 C sin  e2;

e D � sin  e1 C cos  e2;

ez D e3:

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__5,
© Springer Science+Business Media Dordrecht 2014
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To any scalar field u W R3 ! C, we associate the function

Mu.r; ; z/ WD u.˚.r; ; z// .r; ; z/ 2 R
C � Œ0; 2�/ � R:

To any vector field v W R3 ! C
3, we associate the vector function

Mv.r; ; z/ WD v.˚.r; ; z// .r; ; z/ 2 R
C � Œ0; 2�/ � R;

that is

Mv.r; ; z/ D Mvr.r; ; z/ er C Mv .r; ; z/ e C Mvz.r; ; z/ ez

D v1.x/ e1 C v2.x/ e2 C v3.x/ e3;

where x D ˚.r; ; z/. Let us recall the well known formulae:

ru D @Mu
@r

er C 1

r

@Mu
@

e C @Mu
@z

ez;

div v D 1

r

�
@

@r
.r Mvr/C @ Mv

@
C r

@ Mvz

@z

�
;

curl v D 1

r

�@ Mvz

@
� r

@ Mv
@z

�
er C

�@ Mvr
@z

� @ Mvz

@r

�
e C 1

r

� @
@r
.r Mv / � @ Mvr

@

�
ez;

�u D 1

r

�
@

@r

�
r
@Mu
@r

�
C 1

r

@2 Mu
@2

C r
@2 Mu
@z2

�
:

We shall now give some definitions on the notion of axisymmetry applied to
functions, domains and function spaces.

Definition 5.1.1. The scalar field u (resp. vector field v) is said to be Axisymmetric
if Mu (resp. Mvr ; Mv ; Mvz) does not depend on  . In this case we write simply

Mu D Mu.r; z/ and Mv D Mvr.r; z/ er C Mv .r; z/ e C Mvz.r; z/ ez:

Note that if u and v are axisymmetric then we have

ru D @Mu
@r

er C @Mu
@z

ez;

div v D 1

r

@

@r
.r Mvr /C @ Mvz

@z
;

curl v D �@ Mv
@z

er C
�@ Mvr
@z

� @ Mvz

@r

�
e C 1

r

@

@r
.r Mv / ez;

�u D 1

r

@

@r

�
r
@Mu
@r

�
C @2 Mu
@z2

;
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rv D @ Mvr
@r

er ˝ er � Mv
r

er ˝ e C @ Mvr
@z

er ˝ ez

C @ Mv
@r

e ˝ er C Mvr
r

e ˝ e C @ Mv
@z

e ˝ ez

C @ Mvz

@r
ez ˝ er C @ Mvz

@z
ez ˝ ez:

Definition 5.1.2. We shall say that a set ˝ � R
3 is axisymmetric if, for any x D

˚.r; ; z/ 2 ˝ we have

˚.r; �; z/ 2 ˝ 8 � 2 Œ0; 2�/:

When this is the case, we define the set

M̋ D f.r; z/ 2 R
C � RI ˚.r; �; z/ 2 ˝; 8 � 2 Œ0; 2�/g

D f.r; z/ 2 R
C � RI ˚.r; 0; z/ 2 ˝g:

Furthermore, if ˝ is axisymmetric and � is its boundary then we define

M� D f.r; z/ 2 R
C � RI ˚.r; �; z/ 2 �; 8 � 2 Œ0; 2�/g

D f.r; z/ 2 R
C � RI ˚.r; 0; z/ 2 � g:

Definition 5.1.3. Let ˝ � R
3 denote an axisymmetric domain and let W stand for

a Banach space, equipped with the norm k � kW , of axisymmetric scalar functions
u W ˝ ! C (resp. W is a Banach space of vector functions v W ˝ ! C

3 equipped
with the norm k � kW ). We define the space

MW WD fMu W M̋ ! CI 9 u 2 W with Mu.r; z/ D u.˚.r; ; z// 8  2 Œ0; 2�/g

with its norm kMuk MW WD kukW , (respectively

MW WD fMv W M̋ ! C
3I 9 v 2 W with Mv.r; z/ D v.˚.r; ; z// 8  2 Œ0; 2�/g;

with its norm kMuk MW WD kukW .)

Thus, if u 2 L2.˝/ is an axisymmetric function, we have

Z

˝

ju.x/j2 dx D 2�

Z
M̋

jMu.r; z/j2 r dr d z:
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This introduces the space

ML2. M̋ / D
n

Mu W M̋ ! CI
Z

M̋
jMu.r; z/j2 r dr d z < 1

o
;

endowed with the norm

kMuk ML2. M̋ / WD
�
2�

Z
M̋

jMu.r; z/j2 r dr d z
� 1
2
:

As an example, if˝ is an axisymmetric bounded domain of R3 and˝ext WD R
3 n˝,

then ˝ext is axisymmetric and

MH1. M̋ / D
n

Mu W M̋ ! CI Mu; @Mu
@r
;
@Mu
@z

2 ML2. M̋ /
o
;

MW1. M̋ ext/ D
(

Mu W M̋ ext ! CI jMuj
1C .r2 C z2/

1
2

;
@Mu
@r
;
@Mu
@z

2 ML2. M̋ ext/

)
:

The spaces MH1. M̋ / and MW1. M̋ ext/ are respectively equipped with the norms

kMuk MH1. M̋ / WD kukH1.˝/; kMuk MW1. M̋ext/
WD kukW1.˝ext/:

5.2 A Magnetic Field Model

Let us consider a model configuration of conductors as presented in Chap. 4 with
axisymmetric domains. Figure 5.1 illustrates a typical configuration in the space
of cartesian coordinates and its corresponding configuration in the .r; z/–space. We
recall that ˝ D ˝1 [˝2 where˝1 is the inductor and˝2 is the workpiece.

We seek axisymmetric solutions of (2.62)–(2.68) that experience the property

MJ .r; z/ D J.r; z/ e for .r; z/ 2 R
C� R;

with J.r; z/ D 0 for .r; z/ 2 M̋ ext:
(5.1)

Remark that this choice readily implies in particular div J D 0 in R
3.

We start by proving the following result.

Theorem 5.2.1. Let J ;E ;B;H denote smooth axisymmetric vector fields that
satisfy (2.62)–(2.68) such that J satisfies (5.1). Then we have for ME and MH the
expressions,

ME.r; z/ D E.r; z/ e for .r; z/ 2 M̋
1 [ M̋

2; (5.2)

MH .r; z/ D Hr.r; z/ er CHz.r; z/ ez for .r; z/ 2 R
C� R: (5.3)
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Fig. 5.1 An axisymmetric
configuration of conductors

Proof. From (5.1), (2.66) implies readily (5.2). In addition, from (2.62) and since
Hr , H andHz are independent of  , we obtain

@H

@r
D @H

@z
D 0;

which implies, since H D O..r2 C z2/� 1
2 / when .r2 C z2/ ! 1, that H D 0 in

R
C� R. ut
Let us present a mathematical model that is a simple adaptation of the three-

dimensional model obtained in Chap. 4 to the axisymmetric case. Let us for this,
consider (4.24) and use the particular form (5.3) of the magnetic field.

Combining the expression of curl H for an axisymmetric magnetic field H

satisfying (5.3), the variational equation (4.24) can be written

2i�!
Z

RC�R


 .Hrvr CHzvz/ r dr d z

C 2�

Z
M̋
��1

�@Hr

@z
� @Hz

@r

��@vr
@z

� @vz

@r

�
r dr d z

D V

Z
M̋1

�@vr
@z

� @vz

@r

�
dr d z;
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for all smooth vector fields .vr ; vz/ that satisfy

@vr

@z
� @vz

@r
D 0 in M̋ ext:

Here we recall that V stands for current voltage. Note that the cut in the inductor
˝1 is chosen as the surface is defined by

S D f˚.r; 0; z/I .r; z/ 2 M̋
1g;

and the unit normal to this surface is the vector e .
To complete the mathematical setting, we define the function spaces

MU WD
n
v D vrer C vzez 2 MH.curlIRC� R/I @vr

@z
� @vz

@r
D 0 in M̋ ext

o
;

where

MH.curlIX/ WD fMv D vr er C vz ez 2 MH.curlIX/g

D
n
v D vr er C vz ezI Mv 2 ML2

.X/;
@vr

@z
� @vz

@r
2 ML2.X/

o
:

This space is clearly a Hilbert space when endowed with the norm

kMvk MU WD
� Z

RC�R

.jvr j2 C jvzj2/ r dr d z C
Z

M̋

ˇ̌
ˇ@vr
@z

� @vz

@r

ˇ̌
ˇ
2

r dr d z
� 1
2

D
�
kMvk2ML2

.X/
C
���@vr
@z

� @vz

@r

���
2

ML2.X/

� 1
2
:

The variational problem (4.24) has then as axisymmetric version:

8
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Find .Hr ;Hz/ 2 MU such that

2i�!
Z

RC�R


 .Hrvr CHzvz/ r dr d z

C 2�

Z
M̋
��1�@Hr

@z
� @Hz

@r

��@vr
@z

� @vz

@r

�
r dr d z

D V

Z
M̋1

�@vr
@z

� @vz

@r

�
dr d z 8 .vr ; vz/ 2 MU :

(5.4)

Remark 5.2.1. It is clear that since the domain˝1 is the inductor, it must be a loop.
Combining this argument with the symmetry of rotations we obtain the property

˝1 \ fx 2 R
3I x21 C x22 D 0g D ;:
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Consequently, for .r; z/ 2 M̋
1, the radius r can be bounded from below by a positive

constant.

Theorem 5.2.2. Problem (5.4) has a unique solution .Hr ;Hz/ 2 MU .

Proof. Let us define the sesquilinear and the antilinear forms:

B..Hr ;Hz/I .vr ; vz// WD 2i�!
Z

RC�R


.Hrvr CHzvz/ r dr d z

C 2�

Z
M̋
��1�@Hr

@z
� @Hz

@r

��@vr
@z

� @vz

@r

�
r dr d z;

L ..vr ; vz// WD V

Z
M̋1

�@vr
@z

� @vz

@r

�
dr d z:

Problem (5.4) can be written in the form

B..Hr ;Hz/I .vr ; vz// D L ..vr ; vz// 8 .vr ; vz/ 2 MU :

Clearly, the sesquilinear form B is continuous and coercive on MU . Moreover, the
form L is antilinear and we have thanks to Remark 5.2.1,

jL ..vr ; vz//j � jV j k.vr ; vz/k MU
� Z

M̋1
1

r
dr d z

� 1
2 � C k.vr ; vz/k MU :

We can then apply the Lax-Milgram theorem (Theorem 1.2.1) to obtain existence
and uniqueness. ut
Remark 5.2.2. It is worth noting that an equivalent formulation to (5.4) can be given
by using Remark 1.4.1. This one can be formulated as the following: Let MV denote
the space

MV WD
n
v 2 MZ I @vr

@r
C @vz

@z
D 0 in M̋ ext

o
;

where

MZ WD
n
v D .vr ; vz/I v 2 ML2.RC� R/2;

@vr

@r
C @vz

@z
2 ML2.RC� R/

o
:

It is easy to see that the spaces MU and MV can be identified up to the isomorphism
.vr ; vz/ 7! .�vz; vr /. It is also important to mention that MZ is not the cylindrical
version of the H.div;R3/ space. For this reason, to avoid confusion, we have chosen
a different notation. Denoting by H ? the vector field

H ? D Hz er �Hr ez;
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Fig. 5.2 Geometry in
cylindrical coordinates

Problem (5.4) is equivalent to the following one:

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:̂

Find H ? D .H?
r ;H

?
z / 2 MV such that

2i�!
Z

RC�R


H ? � v r dr d z

C 2�

Z
M̋
��1

�@H?
r

@r
C @H?

z

@z

� �@vr
@r

C @vz

@z

�
r dr d z

D V

Z
M̋1

�@vr
@r

C @vz

@z

�
dr d z 8 v 2 MV :

(5.5)

Problem (5.5) may be more suitable for numerical approximation since this one
would be based on more classical H.div; �/ finite elements.

Naturally, as in the fully three-dimensional case, (5.4) has to be cast into a cou-
pled interior/exterior problem by making use of a boundary integral representation.
Since the Green function for the axisymmetric laplacian is rather difficult to handle,
we resort to using the three dimensional integral representation and taking into
account the axial symmetry in the calculation of the integrals.

Likewise, the derivation of an equivalent formulation to (5.4) that couples a
partial differential equation in the conductors with an integral equation on their
boundaries, requires returning back to the three dimensional formulation. More
precisely, for a function v 2 H.curl;R3/ with curl v D 0 in ˝ext, Theorem 1.3.6
implies the existence of ' 2 W1.˝ext/ and ˇ 2 C such that

v D r' C ˇ rp in ˝ext n˙; (5.6)

where p is a solution of (1.20). We naturally choose the surface ˙ as a surface
with symmetry of rotation such that the domain ˝ext n ˙ is simply connected (see
Fig. 5.2).
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Written in cylindrical coordinates and assuming the axisymmetry hypothesis on
v, a simple calculation shows that the potentials  and p are actually axisymmetric
(do not depend on ) and that we have

vr D @ M 
@r

C ˇ
@ Mp
@r
; vz D @ M 

@z
C ˇ

@ Mp
@z

in M̋ 0 n Ṁ ;

where Ṁ is the radial section of ˙ , ˇ 2 C, M 2 MW1. M̋ ext/ and where Mp is the
solution of the following problem:

8
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:̂

1

r

@

@r

�
r
@ Mp
@r

�
C @2 Mp
@z2

D 0 in M̋ ext n Ṁ ;

Œ Mp� Ṁ D 1;

h@ Mp
@r

i
Ṁ D 0;

@ Mp
@r

D 0 on M� ;

Mp.r; z/ D O..r2 C z2/�
1
2 / when .r2 C z2/ ! 1:

For the magnetic field H , we have the expansions:

Hr D @ M'
@r

C ˛
@ Mp
@r
; Hz D @ M'

@z
C ˛

@ Mp
@z

in M̋ ext n Ṁ :

We can now expand the integrals in the unbounded domain by writing, using the
fact that 
 D 
0 in the free space,

Z

˝ext


H � v dx D 2�
0

Z
M̋ 0

.Hrvr CHzvz/ r dr d z

D 2�
0

Z
M̋ 0

�@ M'
@r

@ M 
@r

C @ M'
@z

@ M 
@z

�
r dr d z

C 2�
0˛

Z
M̋ 0n Ṁ

�@ Mp
@r

@ M 
@r

C @ Mp
@z

@ M 
@z

�
r dr d z

C 2�
0ˇ

Z
M̋ 0n Ṁ

�@ M'
@r

@ Mp
@r

C @ M'
@z

@ Mp
@z

�
r dr d z

C 2�
0˛ˇ

Z
M̋ 0n Ṁ

�ˇ̌
ˇ@ Mp
@r

ˇ̌
ˇ
2 C

ˇ̌
ˇ@ Mp
@z

ˇ̌
ˇ
2�
r dr d z:

Using the same arguments as in Sect. 4.2, we find the second and third integrals in
the right-hand side vanish and consequently
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Z

˝ext


H � v dx D 2�
0

Z
M̋ 0

�@ M'
@r

@ M 
@r

C @ M'
@z

@ M 
@z

�
r dr d z C L˛ˇ; (5.7)

where L is the self inductance defined by

L WD 2�
0

Z
M̋ 0n Ṁ

�ˇ̌
ˇ@ Mp
@r

ˇ̌
ˇ
2 C

ˇ̌
ˇ@ Mp
@z

ˇ̌
ˇ
2�
r dr d z:

Defining the space MK as the one obtained by the coordinate transformation from
(4.31), we can convert (5.5) where MH is the unknown to a problem with unknowns
.Hr j M̋ ;Hzj M̋ ; '; ˛/. For this, we first transform (5.4) into the following one:

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Find .Hr ;Hz; M'; ˛/ 2 MK such that

2i�!
Z

M̋

.Hrvr CHzvz/ r dr d z C 2i�!
0

Z
M̋ 0

�@ M'
@r

@ M 
@r

C @ M'
@z

@ M 
@z

�
r dr d z

C 2i�!L˛ˇ C 2�

Z
M̋
��1

�@Hr

@z
� @Hz

@r

��@vr
@z

� @vz

@r

�
r dr d z

D V

Z
M̋1

�@vr
@z

� @vz

@r

�
dr d z 8 .vr ; vz; M ; ˇ/ 2 MK:

Since H is divergence-free in ˝ext, then ' is harmonic in ˝ext and we can write

Z
M̋ext

�@ M'
@r

@ M 
@r

C @ M'
@z

@ M 
@z

�
r dr d z D �

Z
M�

�@ M'
@r
nr C @ M'

@z
nz

� M r ds.r; z/

D
Z

M�
. MP M'/ M r ds.r; z/;

where MP is the exterior Steklov–Poincaré operator in the axisymmetric configura-
tion and Mn is the outward unit normal to � expressed in cylindrical coordinates given
is axisymmetric configurations by

Mn.r; z/ D nr.r; z/ er C nz.r; z/ ez:

The construction of this operator is described in the next subsection. Let us notice
that the interface condition specified in the space K in (4.31) is transformed in the
space MK into

vr D @ M 
@r

C ˇ
@ Mp
@r
; vz D @ M 

@z
C ˇ

@ Mp
@z

on M� 8 .vr ; vz; M ; ˇ/ 2 MK� ;
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where the space MK� is the one obtained by the coordinate transformation from K�

in (4.33). We eventually obtain the variational formulation:

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:̂

Find .Hr ;Hz; M'; ˛/ 2 MK� such that

2i�!
Z

M̋

.Hrvr CHzvz/ r dr d z C 2i�!
0

Z

M�
. MP M'/ M ds.r; z/

C 2i�!L˛ˇ C 2�

Z
M̋
��1

�@Hr

@z
� @Hz

@r

��@vr
@z

� @vz

@r

�
r dr d z

D V

Z
M̋1

�@vr
@z

� @vz

@r

�
dr d z 8 .vr ; vz; M ; ˇ/ 2 MK� :

5.2.1 The Exterior Steklov–Poincaré Operator

According to Sect. 1.3.5, we can construct the axisymmetric version of the exterior
Steklov–Poincaré operator. For this we proceed as in [146, 147]. Before giving the
expression of the operator we need to express the Green function in cylindrical
coordinates. Let us consider the Green function in R

3 and take into account the
axial symmetry. We define the function

MG..r; ; z/; .r 0;  0; z0// WD G.˚.r; ; z/;˚.r 0;  0; z0//

D 1

4�

1
�
.r cos  � r 0 cos  0/2 C .r sin  � r 0 sin  0/2 C .z � z0/2

� 1
2

for .r; ; z/; .r 0;  0; z0/ 2 R
C � Œ0; 2�/ � R, with .r; ; z/ ¤ .r 0;  0; z0/, where G

is the Green function defined by (1.21). We also define the normal derivative MGn
corresponding to G on � by

MGn..r; ; z/; .r 0;  0; z0// WD �n.˚.r 0;  0; z0// � .˚.r; ; z/� ˚.r 0;  0; z0//
j˚.r; ; z/ �˚.r 0;  0; z0/j3 :

We can also express these functions explicitly in cylindrical coordinates:

MG..r; ; z/; .r 0;  0; z0// D 1

4�

1

.r2 C r 02 � 2rr 0 cos. �  0/C .z � z0/2/ 12
;

MGn..r; ; z/; .r 0;  0; z0// D � 1

4�

nr .r
0; z0/.r cos. �  0/ � r 0/

.r2 C r 02 � 2rr 0 cos. �  0/C .z � z0/2/ 32

� 1

4�

nz.r
0; z0/.z � z0/

.r2 C r 02 � 2rr 0 cos. �  0/C .z � z0/2/ 32
:
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Following the same formalism as in Sect. 1.3.5, we define the operators MK and MR
respectively by

Z
M�
. MKp/ q ds WD

Z
M�

Z
M�

Mg..r; z/; .r 0; z0// p.r 0; z0/ q.r; z/ ds.r 0; z0/ ds.r; z/;

MR'.r; z/ WD
Z

M�
'.r 0; z0/ Mgn..r; z/; .r 0; z0// ds.r 0; z0/ .r; z/ 2 M� ;

where

Mg..r; z/; .r 0; z0// WD
Z 2�

0

Z 2�

0

MG..r; ; z/; .r 0;  0; z0// d 0 d;

Mgn..r; z/; .r 0; z0// WD
Z 2�

0

Z 2�

0

MGn..r; ; z/; .r 0;  0; z0// d 0 d:

Following 1.3.5, the axisymmetric version of the exterior Steklov–Poincaré operator
is given by

MP D .�1
2

MI C MR0/ MK�1;

where MI is the Identity operator and MR0 is the dual operator of MR, i.e.

Z
M�
. MR0p/ M ds D

Z
M�

Mp . MR M / ds 8 Mp 2 MH� 1
2 . M� /; 8 M 2 MH 1

2 . M� /:

Remark 5.2.3. The functions Mg and Mgn cannot be evaluated explicitly. For instance,
we have

Mg..r; z/; .r 0; z0// D
Z 2�

0

I..r; z/; .r 0; z0// d 0;

where

I..r; z/; .r 0; z0// D
Z 2�

0

MG..r; ; z/; .r 0;  0; z0// d

D 1

4�

Z 2�

0

1

.r2 C r 02 � rr 0 cos  C .z � z0/2/ 12
d:

By setting � D r 0=r , we obtain
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I..r; z/; .r 0; z0//

D 1

4�r

Z 2�

0

�
1C �2 � � cos  C

� z � z0

r

�2�� 1
2

d

D 1

4�r

�
1C �2 C

� z � z0

r

�2�� 1
2
Z 2�

0

 
1 � � cos 

1C �2 C
� z � z0

r

�2
!� 1

2

d:

By taking

ˇ D �

1C �2 C
� z � z0

r

�2

we are led to the evaluation of the elliptic integral of the first kind

Z 2�

0

d

.1 � ˇ cos /
1
2

d where jˇj < 1:

Such integrals can be evaluated by numerical approximation only.

5.2.2 A Formula for the Self Inductance

The calculation of the self induction coefficient can be performed by means of the
formula (4.42). We simply adapt here this formula to the axisymmetric case. Let p
denote the solution of (1.20). Using Theorem 1.3.7 with p D 0 in˝ , we find that p
is solution of the integral equation

1

2
p.x/ �

Z

�

@G

@ny

.x;y/ p.y/ ds.y/ D
Z

˙

@G

@ny

.x;y/ ds.y/ x 2 �:

Since p is axisymmetric, we have

1

2
Mp.r; z/ �

Z

M�
gn..r; z/; .r

0; z0// Mp.r 0; z0/ dr 0 d z0 D
Z

Ṁ
gn..r; z/; .r

0; z0// dr 0 d z0;

for .r; z/ 2 M� . The surface curl .rp � n/ of p is expressed by the scalar function

MJ M� .r; z/ WD @ Mp
@z
.r; z/ nr .r; z/ � @ Mp

@r
.r; z/ nz.r; z/ .r; z/ 2 M�:
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The self inductance of the conductor˝1 is thus obtained by

L D 
0

Z

�

Z

�

J � .x/ � J � .y/G.x;y/ ds.y/ ds.x/

D 
0

Z

M�

Z

M�
MJ M� .r; z/ MJ M� .r 0; z0/ g..r; z/; .r 0; z0// ds.r 0; z0/ ds.r; z/:

5.3 A Scalar Potential Model

This model was obtained in [48, 147] for induction heating applications (see also
[21, 48]). This one is formulated in terms of the vector potential A, which turns out
to be scalar in the present case as we shall see.

Let A stand for the vector potential defined by (2.12), (2.13) and the property

jA.x/j D O.jxj�1/ when jxj ! 1:

Denoting by

MA D Ar er C A e C Az ez

the decomposition of A in the cylindrical coordinate system, we aim at deriving a
model in terms of the -component � WD A .

The following result summarizes the obtained model:

Theorem 5.3.1. Let J ;E ;B;H denote smooth axisymmetric fields that satisfy
(2.62)–(2.68) such that J experiences the property (5.1) and let A be the vector
potential defined by (2.12), (2.13). Then we have

MA D A.r; z/ e :

Furthermore, the function � D A is solution of the following problem:

� @

@r

�
�1

r

@

@r

�
r�
�� � @

@z

�

�1 @�

@z

�
C i!�� D �Ck

r
in M̋

k; (5.8)

k D 1; 2;

� @

@r

�1
r

@

@r
.r�/

�
� @2�

@z2
D 0 in M̋ ext; (5.9)

Œ�� M�k D 0 k D 1; 2; (5.10)

h

�1�1

r

@

@r
.r�/ nr C @�

@z
nz

�i
M�k

D 0 k D 1; 2; (5.11)
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�.r; z/ D O..r2 C z2/� 1
2 / .r2 C z2/ ! 1; (5.12)

where C1; C2 are complex constants.

Proof. From (2.5), (2.12) and (5.3), we have

@Az

@r
D @Ar

@z
; 
Hr D �@A

@z
; 
Hz D 1

r

@

@r

�
rA

�
: (5.13)

Moreover, we have using (2.13),

0 D @

@r
.rAr/C r

@Az

@z
D r

�@Ar
@r

C @Az

@z
C 1

r
Ar

�
: (5.14)

Dividing by r , using (5.13) and differentiating with respect to z, we get

@2Az

@r2
C @2Az

@z2
C 1

r

@Az

@r
D 0

Then M�Az D 0, where M� is the Laplace operator in cylindrical coordinates for an
axisymmetric field:

M�f D 1

r

@

@r

�
r
@f

@r

�
C @2f

@z2
:

Since A 2 W1.R3/, then Az D 0. To prove that Ar D 0, we have from (5.14)

0 D r
@Ar

@r
C Ar:

This implies Ar D C r�1 where C 2 C. For a smooth potential A, we deduce
C D 0, thus Ar D 0.

Denoting by � the componentA , we obtain from (2.12), (2.63) and (2.65),

@

@z
.i!� CE/ D @

@r

�
r.i!� C E/

� D 0 in M̋ :

This implies the existence of two complex constants C1, C2 such that

i!� C E D Ck

r
in M̋

k; k D 1; 2: (5.15)

But from (5.13) we have in M̋ ,

@Hr

@z
D � @

@z

�

�1 @�

@z

�
;

@Hz

@r
D @

@r

�
�1

r

@

@r
.r�/

�
: (5.16)
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Furthermore, (2.62) and (2.66) give in particular in M̋ ,

@Hr

@z
� @Hz

@r
D � E: (5.17)

Combining (5.17) with (5.16), we get

� @

@r

�
�1

r

@

@r

�
r�
��� @

@z

�

�1 @�

@z

�
D �E in M̋ :

Using (5.15), we get (5.8). To obtain (5.9), we make use of the same procedure with

 D 
0 and � D 0 in the free space.

As far as interface conditions are concerned, we find that (5.10) is a consequence
of the property A 2 W1.R3/. Moreover, the -component of curl A � n is given
by

�1
r

@

@r
.r�/ nr C @�

@z
nz

�
:

The interface condition derived from (4.1) results then in (5.11). ut
Remark 5.3.1. The constants C1, C2 in Theorem 5.3.1 depend on the data to
prescribe (current or voltage). To deal with this issue, we proceed in the sequel
as for the two-dimensional cartesian case (see Chap. 3).

5.3.1 A Prescribed Voltage Model

We define the setup voltage as in (3.24), by the expression,

V WD
Z

@˙1

.i!A C E/ � t ds;

where @˙1 is the boundary of the cut ˙1 defined in Fig. 1.1 and t is a unit tangent
vector to the curve @˙1. Note that the choice of this tangent orientation modifies the
sign of V which has no effect on the relevant quantities in eddy current processes.

To express V according to the results of Theorem 5.3.1 and (5.15), we arrange
to choose a cut ˙1 that is axisymmetric and t D e . Using Proposition 5.3.1 and
relationship (5.15), we obtain

V D
Z 2�

0

.i!� C E/ r d D 2� C1 .r; z/ 2 M̋
1:
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In an analogous way, the conductor Q̋
2 having no injected current, we have

0 D
Z 2�

0

.i!� C E/ r d D 2� C2 .r; z/ 2 M̋
2:

Then

C1 D V

2�
; C2 D 0: (5.18)

The system (5.8)–(5.12) becomes then,

� @

@r

�
�1

r

@

@r

�
r�
�� � @

@z

�

�1 @�

@z

�
C i!�� D �V

2�r
in M̋

1; (5.19)

� @

@r

�
�1

r

@

@r

�
r�
�� � @

@z

�

�1 @�

@z

�
C i!�� D 0 in M̋

2; (5.20)

� @

@r

�1
r

@

@r
.r�/

�
� @2�

@z2
D 0 in M̋ ext; (5.21)

Œ�� M�k D 0 k D 1; 2; (5.22)

h

�1

�1
r

@

@r
.r�/ nr C @�

@z
nz

�i
M�k

D 0 k D 1; 2; (5.23)

�.r; z/ D O..r2 C z2/�
1
2 / .r2 C z2/ ! 1: (5.24)

In order to define a ad-hoc functional setting we prove the following result:

Theorem 5.3.2. The space of axisymmetric vector fields w in W1.R3/ such that
Mwr D Mwz D 0 is isomorphic to the following one:

MW WD
n
 W RC� R ! CI 1

r
 ;
@ 

@r
;
@ 

@z
2 ML2.RC� R/

o
:

Proof. Let w denote an axisymmetric vector field in W1.R3/ that satisfies Mwr D
Mwz D 0. The gradient of w expressed in cylindrical coordinates is given by

Mr Mw D

0
BBBB@

0 �1
r

Mw 0

@ Mw
@r

0
@ Mw
@z

0 0 0

1
CCCCA
:
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We recall that the natural norm on W1.R3/ is

kwk2W1.R3/
D
Z

R3

� jwj2
.1C jxj/2 C

ˇ̌
ˇ @w
@x1

ˇ̌
ˇ
2 C

ˇ̌
ˇ @w
@x2

ˇ̌
ˇ
2 C

ˇ̌
ˇ @w
@x3

ˇ̌
ˇ
2�
dx:

Therefore

kwk2W1.R3/
D 2�

Z

RC�R

� Mw2�
1C .r2 C z2/

1
2

�2 C Mw2
r2

C
�@ Mw
@r

�2C
�@ Mw
@z

�2�
r dr d z:

But we have

Z

RC�R

Mw2 r�
1C .r2 C z2/

1
2

�2 dr d z �
Z

RC�R

Mw2
r
dr d z:

This proves the result. ut
Applying this result, we introduce the space

MW WD
n
 W RC� R ! CI 1

r
 ;
@ 

@r
;
@ 

@z
2 ML2.RC� R/

o
;

with its natural norm

k k MW WD
����1
r
 
���
2

ML2.RC�R/
C
���@ 
@r

���
2

ML2.RC�R/
C
���@ 
@z

���
2

ML2.RC�R/

� 1
2
:

We obtain the variational problem

Find � 2 MW such that BV .�;  / D LV . / 8  2 MW ; (5.25)

where

BV .�;  / WD
Z

RC�R


�1
� 1
r2
� C @�

@r

@ 

@r
C @�

@z

@ 

@z

�
r dr d z

C i!
Z

M̋
��  r dr d z;

LV . / WD V

2�

Z
M̋1
� dr d z:

We deduce the following

Theorem 5.3.3. Problem (5.25) has a unique solution. Moreover, this solution has
a null trace on the axis r D 0.
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Proof. The sesquilinear form BV is continuous and coercive on MW since we have
from (2.7) and (2.11),

jBV .�;  /j � C k�k MW k k MW :

Furthermore, again from (2.7),

ˇ̌
BV . ; /

ˇ̌ � ˇ̌
Re
�
BV . ; /

�ˇ̌ � 
�1
M k k2MW :

The antilinear form LV can be bounded as follows using (2.11) and the Cauchy–
Schwarz inequality:

jLV . /j � VR
1
2

2�

Z
M̋

j j r� 1
2 dr d z

� VR
1
2

2�
j M̋ j 12

� Z
M̋

j j2 1
r
dr d z

� 1
2

� C k k MW ;

where R is the upper bound of r in M̋ .
The Lax-Milgram theorem (Theorem 1.2.1) yields the existence and uniqueness

of a solution. ut

5.3.2 A Prescribed Total Current Model

The current intensity in the setup is defined in the inductor by the expression

I WD
Z

M̋1
J dr d z D

Z
M̋1
� E dr d z:

In the inductor M̋
1, the current is given, using (5.15), by

I D
Z

M̋1
�
�C1
r

� i!�
�
dr d z;

from which we deduce

C1 D I C i!
R

M̋1 �� dr d zR
M̋1 � r

�1 dr d z
:
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The value C2 D 0 is already obtained from (5.18). Equation (5.8) can then be
written,

� @

@r

�
�1

r

@

@r

�
r�
��� @

@z

�

�1 @�

@z

�
C i! � .� � 	.�// D ı in M̋ ; (5.26)

where 	 D 	k in M̋
k , with

	1.�/ D 1

r

R
M̋1 �� dr d zR

M̋1 � r
�1 dr d z

; 	2.�/ D 0

and

ı D

8
<̂
:̂

�I

r
R

M̋1 � r
�1 dr d z

in M̋
1;

0 in M̋
2:

In order to obtain a variational formulation of (5.26), (5.9)–(5.12), we multiply
equations by r  where  2 MW , integrate over R2 and use the Green formula. We
obtain the problem

Find � 2 MW such that BI .�;  / D LI . / 8  2 MW ; (5.27)

where

BI .�;  / D
Z

RC�R


�1� 1
r2
� C @�

@r

@ 

@r
C @�

@z

@ 

@z

�
r dr d z

C i!
Z

M̋
�.� � 	.�//  r dr d z;

LI . / D
Z

M̋
ı r dr d z D I

R
M̋1 � dr d zR

M̋1 �r
�1 dr d z

:

We have the following result:

Theorem 5.3.4. Problem (5.27) has a unique solution � 2 V .

Proof. We use the Lax–Milgram theorem (Theorem 1.2.1). Clearly, the forms BI

and LI are continuous on MW . Moreover, we have for all �; 2 MW ,

Z
M̋
�.� � 	.�//  r dr d z D

Z
M̋1
�.� � 	1.�// . � 	1. // r dr d z

C
Z

M̋2
��  r dr d z:
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Therefore

Re
�
BI . ; /

� D
Z

RC�R


�1�1
r

ˇ̌
ˇ@.r /
@r

ˇ̌
ˇ
2 C r

ˇ̌
ˇ@ 
@z

ˇ̌
ˇ
2�
dr d z

C !

Z
M̋1
� j � 	1. /j2 r dr d z

C !

Z
M̋2
� j j2 r dr d z:

Using (2.7), (2.11) and Theorem 5.3.1, we obtain

ˇ̌
BI . ; /

ˇ̌ � ˇ̌
Re
�
BI . ; /

�ˇ̌ � 
�1
M j j2MW :

The form BI is thus coercive and existence and uniqueness follow. ut

5.3.3 A Boundary Integral Formulation

Problems (5.27) and (5.25) are not well suited for numerical solution. We shall then
proceed as we did for the two-dimensional cartesian case. For the sake of simplicity
we shall treat the voltage model (5.25) only.

Let us first remark that (5.21) implies

�f D 0 in ˝ext;

where

f .x/ D �.r; z/ sin  with x D ˚.r; ; z/;

and � is the Laplace operator considered in the cartesian plane Orz. According to
Theorem 1.3.7, and extending f by 0 to ˝ , we have

1

2
f C.x/ D �

Z

�

@f C

@n
.y/G.x;y/ ds.y/C

Z

�

f C.y/
@G

@ny

.x;y/ ds.y/

for all x 2 � . We recall that f C is the external part of f (restriction to ˝ext).
Remark that

rf .x/ D @�C

@r
sin  er C 1

r
�C cos  e C @�C

@z
sin  ez

and

@f C

@n
D @�C

@ Mn sin  on �;
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where �C denotes the function � in the domain M̋ ext. Since � is continuous in R
3,

we have

1

2
�.r; z/ sin 

D �
Z 2�

0

� Z
M�
@�C

@ Mn .r 0; z0/ sin  0 MG..r; ; z/I .r 0;  0; z0// r 0 ds.r 0; z0/
�
d 0

C
Z 2�

0

� Z
M�
�.r 0; z0/ sin  0 MGMn.r0 ;z0/ ..r; ; z/I .r 0;  0; z0// r 0 ds.r 0; z0/

�
d 0;

where Mn.r 0;z0/ D nr .r
0; z0/ er C nz.r

0; z0/ ez and ds.y/ D r 0 ds.r 0; z0/ d 0 (Here
ds.r 0; z0/ is the length element on � in the plane Orz for the euclidean norm). By
choosing  D �

2
we obtain

1

2
�.r; z/ D �

Z
M�
@�C

@ Mn .r 0; z0/
� Z 2�

0

`..r; z/; .r 0; z0/;  0/ sin  0 d 0� r 0 ds.r 0; z0/

C
Z

M�
�C.r 0; z0/

� Z 2�

0

m..r; z/; .r 0; z0/;  0/ sin  0 d 0
�
r 0 ds.r 0; z0/

where

`..r; z/; .r 0; z0/;  0/ D MG..r; �
2
; z/; .r 0;  0; z0//

D 1

4�

1
�
r2 C r 02 � 2rr 0 sin  0 C .z � z0/2

� 1
2

and

m..r; z/; .r 0; z0/;  0/ D @ MG
@ Mn.r 0;z0/

�
.r;
�

2
; z/; .r 0;  0; z0/

�

D 1

4�

�r 0 cos  0nr.r 0; z0/C .z � z0/nz.r
0; z0/

�
r2 C r 02 � 2rr 0 sin  0 C .z � z0/2

� 1
2

:

Setting

g..r; z/; .r 0; z0// D
Z 2�

0

`..r; z/; .r 0; z0/;  0/ sin  0 d 0;

gn..r; z/; .r
0; z0// D

Z 2�

0

m..r; z/; .r 0; z0/;  0/ sin  0 d 0;
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we obtain

1

2
�.r; z/ D �

Z
M�
�.r 0; z0/ g..r; z/; .r 0; z0// r 0 ds.r 0; z0/

C
Z

M�
�.r 0; z0/ gn..r; z/; .r 0; z0// r 0 ds.r 0; z0/ (5.28)

for .r; z/ 2 M� , where

�.r 0; z0/ WD @�C

@ Mn .r 0; z0/ .r 0; z0/ 2 M� :

Remark 5.3.2. The function g can be expressed by

g..r; z/; .r 0z0// D 1

4�

1

.r2 C r 02 C .z � z0/2/ 12

Z 2�

0

sin  0

.1 � � sin  0/ 12
d 0; (5.29)

where

� D �..r; z/; .r 0; z0// D 2rr 0

r2 C r 02 C .z � z0/2
:

As mentioned in [146], the function � ranges between 0 and 1 and reaches 1 only
when r D r 0 and z D z0. In this last case, the integral (5.29) is singular and
g..r; z/; .r 0; z0// is not defined.

An analogous remark can be made for the function gn. However (5.28) makes
sense and its numerical integration has to be carefully handled (see [146]).

Equation (5.28) provides a relation between the trace of � and its exterior normal
derivative that can be used to couple the inner equation (5.19) with the integral
representation.

We have from the interface conditions (5.22) and (5.23),

0 D
h 1

r

@.r�/

@r
nr C 1




@�

@z
nz

i
M�k

D
h

�1

�@�
@r
nr C @�

@z
nz

�i
M�k

C 1

r
Œ
�1� M�k� nr

D
h

�1 @�

@ Mn
i

M�k
C 1

r
Œ
�1� M�k� nr ;

for k D 1; 2. It follows that

1


0
� C 1


0r
� nr D 1


0

@�C

@ Mn C 1


0r
� nr D 1




@��

@ Mn C 1


r
� nr : (5.30)
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Multiplying (5.19) by r , where  2 X ,

X WD f W M̋ ! CI 1
r
 ;
@ 

@r
;
@ 

@z
2 ML2. M̋ /g;

and integrating by parts, we obtain after using (5.30):

�
Z

M̋

�
@

@r

�
�1

r

@

@r
.r�/

�
C @

@z

�

�1 @�

@z

��
r dr d z C i!

Z
M̋
�� r dr d z

D
Z

M̋

� 1

r

@

@r
.r�/

@

@r
.r /C r




@�

@z

@ 

@z

�
dr d z C i!

Z
M̋
�� r dr d z

�
Z

M�

� 1

r

@

@r
.r��/ nr C 1




@��

@z
nz

�
 r ds.r; z/

D
Z

M̋

� 1

r

@

@r
.r�/

@

@r
.r /C r




@�

@z

@ 

@z

�
dr d z C i!

Z
M̋
�� r dr d z

�
Z

M�

�1
0 � r ds.r; z/:

Let us then define the sesquilinear forms:

MBV .�;  / WD
Z

M̋

� 1

r

@

@r
.r�/

@

@r
.r /C r




@�

@z

@ 

@z

�
dr d z

C i!
Z

M̋
�� r dr d z �

Z
M�

�1
0 � nr ds.r; z/;

C .�;  / WD
Z

M�
� r ds.r; z/;

we obtain from (5.25)

MBV .�;  / � C .�;  / D 
0LV . / 8  2 X : (5.31)

On the other hand, multiplying (5.28) by r� where � is a function defined on M� , and
integrating over M� , we obtain

C .�; �/ D �2
Z

M�

� Z
M�
g..r; z/; .r 0; z0//�.r 0; z0/ r 0 ds.r 0; z0/

�
�.r; z/ r ds.r; z/

� 2

Z
M�

� Z
M�
gn..r; z/; .r

0; z0//�.r 0; z0/ r 0 ds.r 0; z0/
�
�.r; z/ r ds.r; z/:

(5.32)
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Let us define

D.�; �/ WD 2

Z
M�

� Z
M�
g..r; z/; .r 0; z0// �.r 0; z0/ r 0 ds.r 0; z0/

�
�.r; z/ r ds.r; z/;

and

K .�; �/ D 2

Z
M�

� Z
M�
gn..r; z/; .r

0; z0//�.r 0; z0/ r 0 ds.r 0; z0/
�
�.r; z/ r ds.r; z/:

We obtain from (5.32)

C .�; �/C K .�; �/C D.�; �/ D 0: (5.33)

We complete this setting by giving the function space in which we seek �: We define
Q as the dual space of X� where

X� WD f j M� I  2 X g:

The final variational problem reads then:

8̂
<̂
ˆ̂:

Find .�; �/ 2 X � Q such that:

MBV .�;  / � C .�;  / D 
0LV . / 8  2 X ;
C .�; �/C K .�; �/C D.�; �/ D 0 8 � 2 Q:

(5.34)

It is worth noting that coupling a variational formulation in the interior domain
with an integral representation on the boundary gives here very similar settings to
the two-dimensional transversal case (Sect. 3.3). The main difference concerns the
integral representation itself and its numerical evaluation when this topic is involved.



Chapter 6
Eddy Current Models with Thin Inductors

We investigate in this chapter, the derivation of eddy current models when some
specific geometric properties of the conductors are considered. More precisely, in
practice, eddy current devices generally involve two types of conductors:

– “Thick” conductors in which eddy currents are induced. These are generally the
conductors in which “treatment” takes place (heating, melting, stirring, . . . ).

– “Thin” conductors that carry current from a power or voltage generator. These
ones are generally made of highly conducting material (e.g. Copper) and consist
in thin wires or coils.

Combined situations where the treated workpieces are thin conductors are involved
can however be considered. The presented results cover these situations without
major changes. In other words, in an eddy current process, the conductors may
exhibit different space scales. This situation may be at the origin of difficulties for
numerical solution. A standard treatment would require the use of fine meshing
for the thin conductors and this dramatically increases the cost of numerical
simulations in terms of computer time. On the other hand, one is generally not
specifically interested in the electric and magnetic fields in the regions involved by
this treatment. For these reasons, it is natural to resort to asymptotic approximations
in order to simplify equations in the thin devices. We shall see hereafter that these
ones reduce, in the present case of time harmonic fields, to algebraic equations in
the inductors. It is even noticeable that, in some situations, the derivation of the limit
models results in well known circuit equations.

Let us outline the main advantages of considering such simplified models:

1. As we shall see, the obtained models are rather less expensive in terms of
computational time than the complete ones. Equations in the inductors are
reduced indeed to algebraic equations rather than partial differential ones.

2. The obtained problems are better conditioned that the original ones. In fact,
numerical solution of problems with various space scales requires using meshes
with variable sizes which can lead to ill conditioning.

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__6,
© Springer Science+Business Media Dordrecht 2014
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3. As far as optimal shape of inductors is involved (see Chap. 8), the limit models
involve only a finite number of inductor geometrical descriptors (length, area,
curvature) which considerably simplifies the setting of the optimization problem.

Our goal is to show how standard techniques of asymptotic expansions enable
justifying the obtained models. For this, we reconsider throughout this chapter some
of the models presented in previous chapters and prove the derivation of the limit
problems. In the cases where proofs are rather technical and delicate we skip the
details and mention the obtained results with references to papers where the proofs
are given in detail.

All the results quoted in this chapter are borrowed from the papers by
Touzani [169, 170] and Amirat–Touzani [8–10]. Let us also indicate that, since the
material presented in this chapter is still in progress, some of the mentioned results
will be given in their formal form without proof, i.e. they are to be considered as
conjectures that are planned for future research.

In the following, we shall use the same classification of the studied models as
in Chaps. 3 and 4. For the sake of simplicity, we shall consider, throughout this
chapter conductors with constant conductivities and magnetic permeabilities. More
precisely, we assume

�j˝k D Const. 8 k; (6.1)


 D 
0 in R
3: (6.2)

These assumptions simplify the obtention of limit models but can be removed
without major difficulty.

6.1 The Two-Dimensional Solenoidal Model

We recall that this model, described in Sect. 3.2, consists in considering fields of the
form

J .x1; x2; x3/ D J1.x1; x2/ e1 C J2.x1; x2/ e2;

H .x1; x2; x3/ D H.x1; x2/ e3:

Let us consider the typical two-conductor example depicted in Fig. 6.1 where an
annular inductor that surrounds a “thick” conductor ˝2 D �2 � R. The inductor
will be defined more precisely as follows: Let ��

1 denote a closed curve of class C2
parameterized by its curvilinear abscissa by the function

X W s 2 Œ0; `1/ 7! X.s/ D .X1.s/; X2.s// 2 R
2;
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Fig. 6.1 A typical
configuration of the
conductors for the solenoidal
model

where `1 is the length of the curve ��
1 . We assume the properties

X.0/ D X.`1/; X 0.0/ D X 0.`1/: (6.3)

Note that due to the choice of this parameterization, we have jX 0.s/j D 1 for 0 �
s � `1. We denote by n.s/ and t.s/ the unit normal and tangent vectors to ��

1

respectively given by

n.s/ D .X 0
2.s/;�X 0

1.s//; t.s/ D X 0.s/ 0 � s < `1:

We define the mapping

F ".s; �/ WD X.s/C " � n.s/ 0 � s < `1; 0 < � < 1:

The description of the inductor is well defined if its “thickness” " is small enough.
The jacobian of the mapping F " is given by

J".s; �/ D "
ˇ̌
1C " � t.s/ � n0.s/

ˇ̌
.s; �/ 2 Œ0; `1/ � .0; 1/:

Note that, owing to (6.3), there exists "0 > 0 such that if " � "0:

" � J".s; �/ � C1 " 8 .s; �/ 2 Œ0; `1/ � .0; 1/; (6.4)

where the constant C1 is independent of ".
The inductor domain is then defined by �"

1 WD F ".Œ0; `1/ � .0; 1//. The exterior
boundary of the inductor is given by �C;"

1 WD F ".Œ0; `1/�f1g/. The inner free space,
which is independent of ", is the bounded domain�ext such that ��

1 is the boundary
of �ext [�2. We also set O�" WD �2 [�ext [�"

1.
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Let us denote by H" the x3–component of the magnetic field H . It is proven in
Sect. 3.2 that H" is the unique solution of the variational problem:

8̂
<
:̂

Find H" 2 H" such that

i!
0

Z
O�"
H"� dx C

Z

�"1[�2
��1rH" � r� dx D V �j�ext

8 � 2 H";
(6.5)

where H" is the Hilbert space

H" D f � 2 H1
0.

O�"/I �j�ext D Const.g:

Here, the complex constant V stands for the current voltage.
Our purpose is to study the limit of the solution H" when " ! 0. A careful

analysis (see [170]) shows that, in order to obtain a “reasonable” limit problem, it
is necessary to assume that the electric conductivity in �"

1 is large enough. More
precisely, we assume that

1

�
D " ˛ C O."2/ in �"

1; (6.6)

where ˛ is a positive real number. In the following we shall omit the remainder
O."2/ for the sake of simplicity. This assumption roughly means that while the
inductor gets thin, its resistivity goes to zero. This is in some sense necessary to
maintain the same total current intensity in it.

Let us define the following Hilbert space in which lies the limit solution

H0 WD f � 2 H1.�2/I �j�2 D Const.g;

endowed with the norm

k�kH0 WD �kr�k2L2.�2/
C j�j�2 j2

� 1
2 :

Let us furthermore define the following problem:

8̂
ˆ̂̂
<
ˆ̂̂̂
:

Find H 2 H0 such that

i!
0

Z

�2

H� dx C ��1
Z

�2

rH � r� dx

C .i!
0 j�extj C ˛ `1/Hj�2�j�2 D V �j�2 8 � 2 H0;

(6.7)

where `1 is the length of the curve ��
1 and where we recall that j�extj is the area

of �ext.
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Theorem 6.1.1. Problem (6.7) possesses a unique solution.

Proof. Let us define:

B.�;  / WD i!
0

Z

�2

� dx C ��1
Z

�2

r� � r dx

C �
i!
0 j�extj C ˛ `1

�
�j�2 j�2 ;

L . / WD V  j�2 :

Existence and uniqueness can be proved by using the Lax–Milgram theorem
(Theorem 1.2.1). The continuity of the sesquilinear form B and the antilinear form
L are easy to prove. The coercivity is established by using the Poincaré–Friedrichs
inequality (1.5) as follows

Re
�
B.�; �/

� D ��1
Z

�2

jr�j2 dx C ˛`1j�j�2 j2:

Then

jB.�; �/j � ˇ̌
Re B.�; �/

ˇ̌ � C k�k2H1.�2/
:

Therefore, the Lax–Milgram theorem applies. ut
We have the following result proven in [170]:

Theorem 6.1.2. Under the hypothesis (6.6), the function H" converges in H1.�2/

toward the unique solutionH of the variational problem (6.7).

Proof. Choosing � D H" in (6.5) we obtain

i!
0

Z

�2[�"1
jH"j2 dx C ��1

Z

�2

jrH"j2 dx C "˛

Z

�"1

jrH"j2 dx

C i!
0j�0j jH"
j�2 j2 D V H

"

j�2 :

Therefore

kH"k2L2.�2/ C kH"k2L2.�"1/ C krH"k2L2.�2/
C " krH"k2L2.�"1/

C jH"
j�2 j2 � C1 jV j2:

This yields the estimates:

kH"kL2.�2/ C kH"kL2.�"1/ C krH"kL2.�2/
C "

1
2 krH"kL2.�"1/

C jH"
j�2 j � C2: (6.8)
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From this we deduce the following convergence, when " ! 0, for a subsequence of
.H"/, still denoted by .H"/:

H" ! H in L2.�2/;

rH" * rH in L2.�2/ weakly;

H"
j�2 ! Hj�2 in L2.�2/:

We obtain then the limits when " ! 0 for any � 2 H0:

Z

�2

H"� dx !
Z

�2

H� dx;

Z

�2

rH" � r� dx !
Z

�2

rH � r� dx;

H"
j�2�j�2 ! Hj�2�j�2 :

In addition, we have by the Lebesgue convergence theorem:

lim
"!0

Z

�"1

H"� dx D 0 8 � 2 H0:

Taking the limit in the term involving�"
1 is more delicate.

Let us define, for a function � 2 H1.�"
1/, the function O�.s; �/ WD �.F ".s; �//

for .s; �/ 2 Œ0; `1/ � .0; 1/. A straightforward calculation gives

Z

�"1

r� � r dx D
Z 1

0

d�

Z `1

0

1

J"

�
"2
@ O�
@s

@ O 
@s

C ı"
@ O�
@�

@ O 
@�

�
ds;

where ı" WD jX 0 C " � n0j2. Therefore the estimate (6.8) implies

"
���@

OH"

@s

���
L2.Œ0;`1/�.0;1//

C
���@

OH"

@�

���
L2.Œ0;`1/�.0;1//

� C:

This implies that, up to an extraction of a subsequence,

@ OH"

@�
*

@ OH
@�

in L2.Œ0; `1/ � .0; 1// weakly;
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and we then have the limits, when " ! 0:

˛"3
Z 1

0

d�

Z `1

0

1

J"

@ OH"

@s

@ O�
@s
ds ! 0;

˛"

Z 1

0

d�

Z `1

0

ı"

J"

@ OH"

@�

@ O�
@�
ds D ˛

Z 1

0

d�

Z `1

0

jX 0 C " � n0j2
j1C " � t � n0j

@ OH"

@�

@ O�
@�
ds

! ˛

Z 1

0

d�

Z `1

0

@ OH
@�

@ O�
@�
ds:

Let us now select a particular test function v. We choose O�.s; �/ D �j�2 .1 � �/ and
then obtain

˛"

Z 1

0

d�

Z `1

0

ı"

J"

@ OH"

@�

@ O�
@�
ds ! �˛� j�2`1

Z 1

0

@ OH
@�

d� D ˛`1Hj�2�j�2 :

Finally, the uniqueness of solutions of (6.7) implies that the whole sequence .H"/

converges to H in H1.�2/ weakly. ut
It is possible to formulate the limit problem (6.7) like (3.32). For this, Let QH D

H=Hj�2 . Problem (6.7) can be interpreted as the following boundary value problem:

( � ��1� QH C i!
0 QH D 0 in �2;

QH D 1 on �2:
(6.9)

A simple calculation using the Green formula leads to the identity:

H D V QH
ı
; with ı D ��1

Z

�2

@ QH
@n

ds C i!
0j�extj C ˛`1:

An interesting case is the one where we deal with only one inductor˝"
1 D �"

1�R

and no workpiece. The obtained limit problem reduces in this case to the algebraic
equation:

.i!
0 j�extj C ˛`1/Hj�2 D V: (6.10)

We have indeed from (6.9) and since, in this case, � D 0 in �2,

� QH D 0 in �2:

Using the boundary condition in (6.9) we deduce that QH 	 1 in �2. Thus
@ QH
@n

D 0

on �2 and we have:

V D ıHj�2 D Hj�2 .i!
0j�extj C ˛`1/:
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The relation (6.10) is nothing else but the well known Kirchhoff equation in
electrodynamics for a RL (Resistance – Self Inductance) circuit (see [139] for
instance). To see this, one must consider a unit length of depth of the inductor (in the
x3–direction). Defining the resistance and the inductance as usual in electrotechnics
respectively by

R D ˛`1; L D 
0 j�extj;

recalling that ˛ stands for the ratio between resistivity (inverse of conductivity) and
the size of the inductor, we obtain the Kirchhoff circuit equation:

.i!LCR/Hj�2 D V: (6.11)

Note that Hj�2 is the magnetic field value for a unit depth which is also the current
intensity. This observation suggests that the presented limit process has yielded a
coupling between a field equation and a circuit equation.

6.2 The Two-Dimensional Transversal Model

Let us now turn to the 2-D transversal model described in Sect. 3.3. The geometrical
set up of the conductors consists (see Fig. 6.2) in one conductor˝1 D �1 � R and
two inductors˝k D �k �R, k D 2; 3 that we assume thin. Let us recall that in fact
˝2 and ˝3 (and then �2 and �3) represent one unique inductor with two branches
that can be seen as “linked at the infinity”. We denote by �k the boundary of�k and
set � D �1 [ �2 [ �3. This assumption is implemented as follows: We consider that
�k D zk C " O�k, for k D 2; 3 where z2 and z3 are two points in R

2 that do not lie in
�1, " 
 1 is a small parameter and O�2, O�3 are two domains in R

2. For this reason,
the sets �k will be referred to as �"

k for k D 2; 3, where

�"
k WD f x D zk C " Oxk; Oxk 2 O�kg:

Clearly, the domains�"
2 and�"

3 degenerate to z2 and z3 respectively when " ! 0.
Furthermore, for " small enough, the domains�

"

2, �
"

3 do not intersect �1.
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Fig. 6.2 A typical
configuration of the
conductors for the transversal
model
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Let us now recall the eddy current problem for such configurations. The potential
A defined by (3.36), and denoted here by A", is solution of the set of equations
(see (3.38)–(3.41)), by using assumptions (6.1)–(6.2):

��A" C i!
0�.A
" � QA1/ D 0 in �1; (6.12)

��A" C i!
0�.A" � QA"2/ D 
0I

j�"
2j

in �"
2; (6.13)

��A" C i!
0�.A" � QA"3/ D �
0Ij�"
3j

in �"
3; (6.14)

�A" D 0 in �"
ext; (6.15)

QA1 D 0; (6.16)

ŒA"� D
h@A"
@n

i
D 0 on �; (6.17)

A".x/ D ˇ C O.jxj�1/ jxj ! 1; (6.18)

where the complex number I stands for the total current intensity flowing in the
inductor, and the symbol Q means for a function  :

Q 1 WD 1

j�1j
Z

�1

 dx;

Q "k WD 1

j�"
kj
Z

�"k

 dx k D 2; 3:

Let us define the space

V WD f� 2 W1.R2/I Q�1 D 0g:

It is noteworthy that on V , the semi-norm j � jW1.�1/ is a norm on V which is
equivalent to k � kW1.�1/ (see for this [149]). We have for Problem (6.12)–(6.18)
the variational formulation:

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

Find A" 2 V such that
Z

R2

rA" � r� dx C i!
0

Z

�1

�A" � dx

C i!
0

3X
kD2

Z

�"k

�.A" � QA"k/ � dx D 
0 I. Q�"2 � Q�"3/ 8 � 2 V :

(6.19)

Thanks to Theorem 3.3.2, Problem (6.19) has a unique solution.
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We are interested in the limit of A" when " ! 0. In the following, we prove, in a
precise sense, that the limit problem is given by:

��AC i!
0� A D 0 in �1; (6.20)

��A D 
0I .ız1 � ız2 / in R
2 n�1; (6.21)

ŒA� D
h@A
@n

i
D 0 on �1; (6.22)

A.x/ D ˇ C O.jxj�1/ jxj ! 1; (6.23)

where ızk is the Dirac delta concentrated at zk .
We shall, in the following, present the proof given in (Amirat–Touzani [10]).

For this, we first prove an existence and uniqueness result for (6.20)–(6.23). Let us
define the space

L2%.R2/ WD fv W R2 ! CI %v 2 L2.R2/g;

where

%.x/ D 1

.1C jxj/ ln.2C jxj/ x 2 R
2:

Theorem 6.2.1. Problem (6.20)–(6.23) has a unique weak solution in L2%.R2/.
Proof. Let us define the function

OA.x/ WD 
0I .G.x; z1/�G.x; z2// D 
0I

2�
ln
� jx � z2j

jx � z1j
�

x 2 R
2:

Using the properties of the Green functionG we check that

�� OA D 
0I.ız1 � ız2 / and OA 2 L2%.R2/:

Defining QA D A� OA, we obtain the problem

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

�� QAC i!
0� QA D i!
0� OA in �1;

� QA D 0 in R
2 n�1;

Œ QA� D
h@ QA
@n

i
D 0 on �1;

QA.x/ D ˇ C O.jxj�1/ jxj ! 1:
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Therefore, we look for a function QA 2 W1.R2/ such that for all ' 2 W1.R2/

Z

R2

r QA � r' dx C i!
0

Z

�1

� QA' dx D i!
0

Z

�1

� OA' dx: (6.24)

Using the Lax–Milgram theorem (Theorem 1.2.1), we conclude by the existence
and uniqueness of a solution of (6.24).

Let A1 and A2 denote two weak solutions in L2%.R2/ of (6.20)–(6.23). We have
for the difference A D A1 � A2, the equation

Z

R2

A .��' C i!
0	1�'/ dx D 0 8 ' 2 D.R2/;

where 	1 is the characteristic function of the domain �1, (i.e., 	1 D 1 on �1, 0
elsewhere). Now, if  2 L2%.R2/, there exists a unique ' 2 W1.R2/ that satisfies

��' C i!
0�	1' D %2 in R
2:

It follows that
Z

R2

%2A dx D 0 8  2 L2%.R2/;

By choosing  D A, we obtain A D 0, which implies A1 D A2 and uniqueness
follows. ut

It is noteworthy that since (6.20)–(6.23) cannot have a solution in W1.R2/, the
right-hand side of (6.21) being a combination of Dirac masses, then the convergence
of A" to A cannot take place in this space. The following result shows that this one
holds in L2 and gives a bound for the error. In (Amirat–Touzani [10]), a stronger
convergence result is proven.

Theorem 6.2.2. The potential A" converges in L2%.R2/ toward the unique solution
A of (6.20)–(6.23). Moreover, there exists a constant C independent of " such that
the following error bound holds

k%.A" �A/kL2.R2/ � C "˛;

for any 0 < ˛ < 1
2
.

The proof of this result makes use of standard duality techniques due to Lions
and Magenes ([124], p. 177). We decompose the proof in some separate steps for
the sake of clearness. We start by deriving a dual formulation and then prove some
preliminary result on this formulation before passing to the limit.

Let us multiply Eqs. (6.12)–(6.15) by a function ' 2 V \H2
loc.R

2/, and integrate
them over their respective domains, we have
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Z

R2

rA" � r' dx C i!
0

3X
kD2

Z

�"k

�.A" � QA"k/ ' dx

C i!
0

Z

�1

�A"' dx D 
0I. Q'"2 � Q'"3/:

Using the Green formula and the identity

Z

�"k

.A" � QA"k/' dx D
Z

�"k

A".' � Q'"k/ dx D
Z

�"k

.A" � QA"k/.' � Q'"k/ dx;

we get

Z

R2

A"
�

��' dx C i!
0�
3X

kD1
	"k.' � Q'"k/

�
dx D 
0I . Q'"2 � Q'"3/;

where 	"k is the characteristic function of �"
k . Let  denote a function in L2%.R2/

and let '" 2 V be the solution of

��'" C i!
0�
3X

kD2
	"k.'

" � Q'"/C i!
0�	1'" D %2 in R
2: (6.25)

Then we have
Z

R2

%2A" dx D 
0I. Q'"2 � Q'"3/: (6.26)

In the following, we prove that the sequence .'"/ converges to a function ' 2 V
that solves the equation:

Z

R2

r' � rv dx C i!
0

Z

�1

�' v dx

C i!
0

3X
iD2

Z

�i

.' � Q'/v dx D
Z

R2

%2 v dx 8 v 2 V : (6.27)

Note that by using classical regularity results for elliptic equations (see Dautray–
Lions [62] for instance), we have ' 2 H2

loc.R
2/. This result will then be used to take

the limit " ! 0 in the formulation (6.26).
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Lemma 6.2.1. The sequence .'"/ converges toward ' in H2.B/ for any ball of R2

containing�". Moreover we have the error bound:

k'" � 'kH2.B/ � C" k% kL2.R2/; (6.28)

where the constant C is independent of ".

Proof. Multiplying (6.25) by '", integrating and using the Green formula, we obtain

Z

R2

jr'"j2 dxCi!
0

3X
kD2

Z

�"k

� j'"� Q'"kj2 dxCi!
0

Z

�1

� j'"j2 dx D
Z

R2

%2 '" dx:

From the bound (2.11) we deduce

Z

R2

jr'"j2 dx C
3X

kD2

Z

�"k

j'" � Q'"j2 dx C
Z

�1

j'"j2 dx � C
ˇ̌
ˇ
Z

R2

%2 '" dx

ˇ̌
ˇ:

Using the Cauchy–Schwarz inequality we deduce

Z

R2

jr'"j2 dx � C k% kL2.R2/k%'"kL2.R2/:

Then

� Z

R2

jr'"j2 dx
� 1
2 � C k% kL2.R2/:

To derive L2–estimates we first use the equivalence of norms (see [149]) to obtain

k'"kL2.�1/ � C1 kr'"kL2.R2/

� C2 k% kL2.R2/: (6.29)

On the other hand, using the Poincaré–Wirtinger inequality (see [41], p. 194) and a
scaling argument, we obtain for k D 2; 3:

k'" � Q'"kkL2.�"k/ � C3" kr'"kL2.�"k/

� C4" k% kL2.R2/: (6.30)

This proves also that .'"/ is bounded in H1.B/ for any bounded open set B of R2.
Let us prove the H2–estimate. Using standard regularity results for elliptic

equations (see [92], p. 183 for instance), we obtain for any ball B of R2 containing
�", and any regular domainD containing B , by using (6.25), (6.29) and (6.30),
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k'"kH2.B/ � C1

�
k'"kH1.D/ C k%2 kL2.D/ C k'"kL2.�1/

C
3X

kD2
k'" � Q'"kkL2.�"k/

�

� C2 k% kL2.R2/: (6.31)

The estimates (6.29)–(6.31) enable concluding that a subsequence of .'"/ converges
toward ' weakly in H2.B/ for any ball B of R2. Let us characterize the limit.

Let �" D '" � ' 2 V \ H2
loc.R

2/. We have the variational equation

Z

R2

r�"�rv dxCi!
0

Z

�1

��"v dxCi!
0

3X
kD2

Z

�"k

�.'"� Q'"k/ v dx D 0 8 v 2 V :

Choosing v D �", we obtain

Z

R2

jr�"j2 dx C i!
0

Z

�1

� j�"j2 dx D �i!
0

3X
kD2

Z

�"k

�.'" � Q'"k/�" dx:

Then using the estimates (6.30), (2.11) and the Cauchy–Schwarz inequality, we have

Z

R2

jr�"j2 dx C
Z

�1

j�"j2 dx � C1

3X
kD2

k'" � Q'"kkL2.�"k/ k�"kL2.�"k/

� C2" k% kL2.R2/ kr�"kL2.R2/:

Therefore, by (1.46), we have the bounds

kr�"kL2.R2/ � C2" k% kL2.R2/; (6.32)

k�"kL2.�1/ � C3 kr�"kL2.R2/ � C4 " k% kL2.R2/: (6.33)

The sequence .'"/ converges then to ' strongly in W1.R2/. This proves the limit
problem (6.27).

We next have from (1.46) and (6.32), for k D 2; 3,

k�"kL2.�"k/ � C1 k%�"kL2.�"k/
� C1 k%�"kL2.R2/
� C2 kr�"kL2.R2/

� C3" k% kL2.R2/:
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The H2–estimate is handled in the following way: By subtracting (6.25) from (6.27)
written in its strong form, we obtain

���" D �i!
0�	0�" � i!
0�
3X

kD2
	"k.'

" � Q'"k/ in R
2:

Using (6.30), (6.33) and classical regularity results for elliptic problems (see [92],
p. 183 for instance), we get

k�"kH2.B/ � C1

�
k�"kH1.D/ C k�"kL2.�1/ C

3X
kD2

k'" � Q'"kkL2.�"k/
�

� C2

�
" kr�"kL2.R2/ C k�"kL2.�1/ C " k% kL2.R2/

�

� C3 " k% kL2.R2/;

for all compact subsets B of R2 and all regular domainsD that containB . Note that
the constant C3 depends actually on B . ut

We can now derive the convergence result for A". Consider the problem (6.26)
and the following one, for  2 L2%.R2/,

Z

R2

%2A dx D 
I .'.z1/� '.z2//: (6.34)

where ' is the solution of Problem (6.27). Then

Z

R2

%2.A" �A/ dx D 
I
� 1

j�"
2j
Z

�"2

'" dx � '.z2/
�

� 
I
� 1

j�"
3j
Z

�"3

'" dx � '.z3/
�
: (6.35)

Since ' 2 H2.B/ � C0;˛.B/ for all ˛ with 0 < ˛ < 1 (see [41] for instance)
and all compact subsets B of R2, where C0;˛.B/ is the space of Hölder continuous
functions with exponent ˛ on B , we have for k D 2; 3,

ˇ̌
ˇ 1

j�"
kj
Z

�"k

'.x/ dx � '.zk/
ˇ̌
ˇ � 1

j�"
kj
Z

�k"

j'.x/� '.zk/j dx

� C
1

j�"
kj
Z

�"k

jx � zkj˛ dx

� C "˛: (6.36)
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Furthermore, we have from (6.31), the imbedding H2.B/ � C0.B/ and the mean
value theorem,

1

j�"
kj
ˇ̌
ˇ
Z

�"k

.'" � '/ dx

ˇ̌
ˇ � C1 k'" � 'kC0.B/

� C2 k'" � 'kH2.B/

� C3" k% kL2.R2/: (6.37)

Recalling (6.35) and using (6.36), (6.37), we get

lim
"!0

Z

R2

.A" � A/ %2 dx D 0 8  2 L2%.R2/:

The sequence .A"/ converges then weakly to A in L2%.R2/. To obtain the strong
convergence of A", we choose D .A"�A/ 2 L2%.R2/ in (6.35). We have by using
again (6.36), (6.37),

k%.A" � A/k2L2.R2/ � 
I

3X
kD2

ˇ̌
ˇ
Z

�"k

.'" � '/ dx

ˇ̌
ˇC
I

3X
kD2

ˇ̌
ˇ̌
ˇ
1

j�"
kj
Z

�"k

' dx � '.zk/

ˇ̌
ˇ̌
ˇ

� C4 "C C5 "
˛ � C "˛:

Although no convergence in H1–spaces can be obtained, the convergence result
of Theorem 6.2.2 is rather weak. We quote here a sharper convergence result
obtained in [10].

Theorem 6.2.3. We have when " ! 0, the convergence

A" ! A in Lp.B/;
rA" * rA in Lp.B/ weakly;

for all p 2 Œ1; 2/, and all bounded sets B of R2.

Theorems 6.2.2 and 6.2.3 show that the limit problem is a singular one in the
sense that it is an elliptic problem with a measure (linear combination of Dirac
masses) as right-hand side.

Problem (6.20)–(6.23) can be written in an equivalent formulation that is more
adapted to numerical approximation. We start, for this, by considering the Green
function (1.21) that satisfies

��G.zk; �/ D ızk k D 1; 2:

We recall that the functionG is given in 2-D by

G.x;y/ D � 1

2�
ln jx � yj:
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Let us consider the following problem:

�� OA D 
0I .ız1 � ız2 / in R
2;

the solution of which is given by

OA.x/ D 
0I

2�
ln

jx � z2j
jx � z1j :

The solution of Problem (6.20)–(6.23) is then given by A D QAC OA where QA is the
solution of the problem:

�� QAC i!
0� QA D �i!
0� OA in �1; (6.38)

� QA D 0 in R
2 n�1; (6.39)

Œ QA� D
h@ QA
@n

i
D 0 on �1; (6.40)

QA.x/ D ˇ C O.jxj�1/ jxj ! 1: (6.41)

Problem (6.38)–(6.41) is an elliptic problem in R
2 that possesses a unique solution

in W1.R2/ since that right-hand side term does not exhibit any singularity.
Solving (6.38)–(6.41) has at least two advantages over the primary model (6.12)–
(6.18):

1. No computation is to be performed in the inductor domains�"
2, �

"
3 any more.

2. The position of the inductors in a setup can be modified without dramatically
penalizing the computational cost in the sense that this modification has an effect
only in the right-hand side of (6.38)–(6.41).

The last issue has a great importance in the optimization of eddy current processes,
mainly when we are interested in optimal positions of the inductors.

6.3 Three-Dimensional Models

Handling thin inductors in three-dimensional models exhibits more mathematical
difficulties. As only partial results were obtained in this area, we shall give them
hereafter and mention formal results that need to be mathematically justified.
In the following, we start by considering a model problem in three-dimensional
geometries. This problem concerns the computation of the potential A when the
current density J is known. We shall show that, the case of a thin wire, the limit
problem results in the so-called Biot–Savart law.
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An interesting problem that illustrates the mathematical difficulty of treating such
situations is the computation of the self inductance of a (non simply connected)
inductor. We shall, for this problem, retrieve the formal result given in [116].

6.3.1 The Biot–Savart Law

Let us consider a conductor ˝ � R
3 in which a current of density J flows and

consider the vector potential A given by (2.12) and (2.13). Let us recall (2.19)–
(2.21) by using hypothesis (6.2):

��A D 
0J in R
3; (6.42)

div A D 0 in R
3; (6.43)

jA.x/j D O.jxj�1/ jxj ! 1: (6.44)

Let us first notice that since div J D 0 (see (2.70)), then, if u D div A, we have by
taking the divergence of (6.42),

��u D 0 in R
3:

If we look for smooth solution, i.e., that satisfy

div u.x/ ! 0 when jxj ! 1;

then, we obtain by uniqueness u D 0. This means that (6.43) is redundant, and we
are led to the solution of problem:

( ��� D f in R
3;

�.x/ D O.jxj�1/ jxj ! 1;
(6.45)

where � is any component of the potential A and f is the corresponding component
of 
0J . It is also important to note that f vanishes outside the conductors.

We consider here the case where the conductor ˝ is a “thin wire” aligned with
the x3–axis in two distinct situations:

1. The case where the “wire” ˝ is infinite, that is ˝ D � � R, where � is a given
bounded domain in R

2.
2. The case where ˝ is bounded, that is

˝ WD f. Qx; x3/ 2 R
3I Qx 2 �.x3/; 0 < x3 < `g;

where �.x3/ is a given bounded domain in R
2 for each 0 < x3 < `, ` > 0.
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In both cases we shall admit that the domain �" is defined by �" D "� for all
0 < " 
 1. In order to define the right scales for the potential problem and then to
obtain the convenient limit problem, we shall replace in the following (6.45) by

���" D 1

j�"jf
" in R

3;

where f ". Qx; x3/ D f . Qx="; x3/, Qx 2 R
2, x3 2 R. The choice of a right-hand

side that varies rapidly within the x3–variable means that the support of the current
density reduces within the inductor size. The division of this density by the section
area ensures that the total current intensity remains constant when the inductor
becomes thinner.

Let us rewrite Problem (6.45) in the present context. We have

8
<̂
:̂

���" D 1

j�"j f
" in R

3;

�".x/ D O.jxj�1/ jxj ! 1;

(6.46)

where the support of f " is �". To treat this problem, we proceed as in [159] by
taking the Fourier Transform in the x3–variable. Let us define, for a function g 2
L1.R3/, the function

Og. Qx; �/ WD
Z

R

g. Qx; x3/ e�2� ix3� dx3 Qx 2 R
2; � 2 R:

Using classical rules of the Fourier transform, Problem (6.46) becomes

8
<̂
:̂

� Q� O�" C �2 O�" D 1

j�"j
Of " in R

2;

O�". Qx; �/ D O.j Qxj�1/ j Qxj ! 1;

for � 2 R, where Q� is the Laplace operator with respect to the variables Qx D
.x1; x2/. Let us mention the identity (using j�"j D "2j�j):

1

j�"j
Z

R2

Of ". Qx; �/ O . Qx/ d Qx D 1

j�j
Z

R2

Of . Qx; �/ O ." Qx/ d Qx;

Let Qr is the 2–D gradient with respect to the variables Qx D .x1; x2/. Then we have
for a.e. � 2 R the variational formulation:



148 6 Eddy Current Models with Thin Inductors

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

Find O�".�; �/ 2 W1.R2/ such that
Z

R2

Qr O�".�; �/ � Qr O d Qx C
Z

R2

�2 O�" O d Qx

D 1

j�j
Z

R2

Of . Qx; �/ O ." Qx/ d Qx 8 O 2 W1.R2/:

Let us take the limit " ! 0 in this problem. This is done classically by taking
O D O�".�; �/ for � 2 R. We obtain

Z

R2

.j Qr O�".�; �/j2 C �2. O�".�; �//2/ d Qx D 1

j�j
Z

�

Of . Qx; �/ O�"." Qx; �/ d Qx:

Using the Cauchy–Schwarz inequality and Inequality (1.46), we get

k Qr O�".�; �/kL2.R2/ C j�j k O�".�; �/kL2.�/ � C k Of .�; �/kL2.�/ for a.e. � 2 R:

We obtain the limit problem:

( � Q�Ou.�; �/C �2 Ou.�; �/ D Of�.�/ ı in R
2;

Ou. Qx/ D O.j Qxj�1/ j Qxj ! 1;
(6.47)

where

Of�.�/ WD 1

j�j
Z

�

Of . Qx; �/ d Qx;

and ı is the Dirac mass concentrated at Qx D 0. The solution of (6.47) is given
explicitly by (see [159]):

Ou. Qx; �/ D Of�.�/K0.j�j j Qxj/ Qx 2 R
2; � 2 R;

whereK0 is the modified Bessel function of order 0 (see [2]). The limit u is therefore
given by computing the inverse Fourier transform:

u. Qx; x3/ D
Z

R

Of�.�/K0.j�j j Qxj/ e2� ix3� d� Qx 2 R
2; x3 2 R:

We can also write the limit potential:

A. Qx; x3/ D
Z

R

OJ�.�/K0.j�j j Qxj/ e2� ix3� d� Qx 2 R
2; x3 2 R:
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6.3.2 Self Inductance of a Thin Inductor

We have shown in Chap. 4 how the self inductance appears as input data in
some three-dimensional models. Assume now that we are in presence of a unique
conductor˝ that is doubly connected, i.e. there are surfaces S and ˙ such that the
domains

˝ n S and ˝ext n˙ D .R3 n˝/ n˙

are simply connected. More precisely, the inductor can be assumed toroidal. Here
again, in order to obtain a limit model for thin inductor, it is necessary to describe
precisely how the inductor geometry depends on its thickness. Due to the heaviness
of the proof, we have chosen to mention the main result and let the interested reader
consulting the reference [8] that contains the detailed proof.

In order to describe the dependency of the inductor on its thickness small
parameter, we consider a closed smooth curve � in R

3 that is parameterized by
its curvilinear abcissa using a C2–function X W Œ0; `� � ! R

3 that satisfies

X.0/ D X.`� /; X 0.0/ D X 0.`� /; (6.48)

where `� is the length of � . We denote by the triple .t.s/; �.s/;b.s// for s 2
Œ0; `� / the Serret–Frénet coordinates at the point X.s/, i.e. t.s/, �.s/, b.s/ stand
respectively for the unit tangent vector to � , the principal normal and the binormal
given by:

t.s/ D X 0.s/; �.s/ D t 0.s/
jt 0.s/j ; b.s/ D t.s/ � �.s/; s 2 Œ0; `� /:

Let us define the mapping F " W Œ0; `� / � .0; 1/ � .0; 2�� ! R
3 by

F ".s; �; / WD X.s/C " � .cos  �.s/C sin  b.s//:

We define the conductor˝" by

˝" WD F ".Œ0; `� / � .0; 1/ � Œ0; 2�//; (6.49)

and its boundary by

� " WD F ".Œ0; `� / � f1g � Œ0; 2�//:

The exterior domain is given by M̋ "
ext WD R

3 n˝"
. It is important to note that the

cut surface ˙ can be chosen independent of the parameter ".
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Fig. 6.3 A cut in the inductor

We recall that the inductance is given by

L" WD 
0

Z

˙

@p"

@n
ds D 
0

Z
M̋ "extn˙

jrp"j2 dx; (6.50)

where p" is the unique solution to the problem:

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�p" D 0 in M̋ "
ext n˙;

@p"

@n"
D 0 on � ";

Œp"�˙ D 1;

h@p"
@n

i
˙

D 0;

p".x/ D O.jxj�1/ jxj ! 1:

(6.51)

Above n" is the outward unit normal to � ". A closer look to the definition (6.50)
shows that L" might tend to the infinity when " ! 0. In fact, when " vanishes the
domain M̋ "

ext n ˙ tends to the domain R
3 n ˙ and then (6.51) formally tends to

an elliptic problem with a discontinuous trace, the discontinuity appearing on the
boundary of ˙ . It is well known that a function on the boundary that involves a
jump cannot lie in the space H 1

2 (see for instance [92]). In addition, in [116], using
rough arguments, the authors claim that L" behaves like ln " for small values of ".
Our goal is to prove this result by giving more precisely the singular term and the
remainder in an asymptotic expansion in function of ".

Theorem 6.3.1. We have the expansion

L" D �
0 `�
2�

ln "C O.1/ when " ! 0:

This result justifies the approximation given in Landau–Lifshitz [116]. As it was
mentioned before, the complete proof of this result with an additional term in the
expansion can be found in [8].
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6.3.3 The Complete 3-D Model

Let us end this chapter with some words about the derivation of a complete model
for the three-dimensional case. As this was shown in Sect. 6.1, the use of an
H –model is necessary to obtain as a limit problem a circuit Kirchhoff equation
like (6.11). Unfortunately, a rigorous derivation remains an open problem for the
three-dimensional model.

Let us however give some preliminary settings for interested reader. The starting
point is the H –model presented in Sect. 4.2. Here again, we consider first the case
of a unique toroidal conductor ˝". The domain ˝" is defined by (6.49). We recall
the first formulation of the H –model given by (4.24), i.e.

8
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂:

Find H " 2 H" such that

i!
Z

R3


H " � wdx C
Z

˝"

��1 curl H " � curl wdx

D V

Z

S"
curlS" wds 8 w 2 H";

(6.52)

where

H" WD fv 2 H.curl;R3/I curl v D 0 in ˝"
extg;

˝"
ext WD R

3 n˝"
:

Note that we have used the superscript " as we did it throughout this chapter to
mention the dependency of the various fields and space on the thickness of the
inductor.

Using the Green formula we can see that the right-hand side in the variational
formulation (6.52) can be also written

Z

S"
curlS" wds D

Z

˝"nS"
r'" � curl wdx;

where '" is a solution of (1.17). It is proven in [11] that we have the estimate

ˇ̌
ˇ
Z

˝"nS"
r'" � curl wdx

ˇ̌
ˇ � C" k curl wkL2.˝"/; (6.53)

where the constant C is independent of ".
A first estimate for the magnetic field is then classically obtained by choosing

w D H " in (6.52): We have from (6.53) and the bounds (2.7), (2.11),

kH "kL2.R3/ C k curl H "kL2.˝"/ � C": (6.54)

Therefore, the magnetic field H " tends to 0 when " ! 0 in L2.R3/.
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Further information on the limit can be obtained if we write H " D "H "
1 and look

for the limit of H "
1.

As we have mentioned it, our conjecture is that, like in the 2-D case, the limit
problem should be given by

.i!LCR/ I D V:

Here L is the self inductance of the inductor and R is its resistance defined by
R D ��1`� . Furthermore, I is the total current flowing in the inductor, defined by

I D lim
"!0

Z

S"
curl H " � n ds:



Chapter 7
Numerical Methods

This chapter is devoted to the numerical solution of various problems we have
derived in the previous chapters. Our goal is to define some numerical methods
that can be used to approximate the solutions of the presented problems and give
their main properties.

7.1 Introduction and Main Notations

Numerical solution of eddy current problems present specific difficulties due to the
fact that most of the problems we have derived involve both partial differential
equations in bounded domains and integral representations on the boundaries of
these domains. This suggests the use of numerical methods that couple classi-
cal techniques (finite differences, finite elements, finite volumes, . . . ) for partial
differential equations with numerical schemes for boundary integral equations
(collocation, finite elements, . . . ). For its flexibility and popularity, we focus our
presentation on the finite element method. In addition, we shall often restrict the
presentation to the lowest order methods.

We give in the sequel a general abstract framework for the finite element
method for elliptic problems. This is done for the sake of completeness but does
not constitute a general introduction to finite element methods. A more detailed
presentation can be found in more specialized literature: The references [38, 40, 50]
provide theoretical foundations of the method while more practical aspects can be
found in [106, 168] for instance. More specific applications of the method to the
various problems we have presented are then presented:

1. Standard H1–finite element method for two-dimensional eddy current equations
in the conductors like those presented in Chap. 3.

2. H.curl/–finite element methods for three-dimensional eddy current equations as
in Chap. 4.

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__7,
© Springer Science+Business Media Dordrecht 2014
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3. H.div/–finite element methods for three-dimensional models using the current
density as presented in Sect. 4.17 and for two-dimensional problems arising in
axisymmetric formulations obtained in Chap. 5.

4. Finite element methods for integral equations that represent the solution of
harmonic problems in the free space. These are generally referred to as Boundary
Element methods.

Once all these elements are presented, the remaining of this chapter is devoted to
the numerical approximation of the models coupling interior and exterior problems,
i.e. the coupling of finite element and boundary element methods.

Let us consider an abstract variational formulation as follows: Assume we are
given a complex Hilbert space V and the variational problem:

Find u 2 V such that B.u; v/ D L .v/ 8 v 2 V ; (7.1)

where B is a sesquilinear, continuous and coercive form on V � V and L is an
antilinear continuous form on V so that, owing to the Lax–Milgram theorem (The-
orem 1.2.1) (7.1) admits a unique solution. Let Vh stand for a finite–dimensional
subspace of V where h is a parameter that tends to 0 as the dimension of Vh tends
to the infinity in such a way that

[
h

Vh D V :

The discrete problem is defined by

Find uh 2 Vh such that B.uh; v/ D L .v/ 8 v 2 Vh: (7.2)

Classically, uh is referred to as Galerkin approximation of u.
Since Vh is a closed subspace of V , being of finite dimension, it follows that (7.2)

admits a unique solution. Moreover we have obviously

B.u � uh; v/ D 0 8 v 2 Vh:

A direct consequence of this is that

B.u � uh; u � uh/ D B.u � uh; u � v/ 8 v 2 Vh;

and then the coercivity and the continuity of B imply

ku � uhkV � C inf
v2Vh

ku � vkV ; (7.3)

where C is a positive constant that depends on the constants of continuity and
coercivity of B only.
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The inequality (7.3) is basic in finite element theory (see [38,40,50] for instance).
It means in particular that the convergence rate of the method can be obtained by
using basic approximation theory in numerical analysis. The quantity ku � vkV at
the right-hand side of (7.3) depends indeed on the subspace Vh and u.

As a consequence of (7.3), an error estimate for a given finite element method
can be obtained by constructing a projection �hu of u on Vh and bounding the error
between u and �hu.

Let .�i /NiD1 denote a basis of the space Vh and consider an expansion of uh in this
basis. We have

uh D
NX
jD1

uj �j : (7.4)

Replacing in (7.2) and taking v D �i , we get

NX
jD1

B.�j ; �i / uj D L .�i / 1 � i � N:

Denoting by A the matrix with entries Aij D B.�j ; �i /, by b the vector with
components bi D L .�i / and by u the vector u D .ui / we obtain the linear system

A u D b: (7.5)

Theoretical aspects of the finite element method can be summarized in the
following steps:

1. To build up a finite–dimensional subspace Vh of V with basis functions .�i /
having local support. This property ensures, when this is possible, sparsity of the
resulting matrix A.

2. When the evaluation of the matrix and right-hand side vector entries is impossible
or too costly, one generally resorts to numerical integration. In this case, (7.3) is
no more valid and must be adapted. This topic is described in [50] for instance.

3. To evaluate an upper bound of the right-hand side in (7.3) in order to obtain an
error estimate. In the applications, when u is a smooth function, one looks for an
estimate of a projection �hu of u on Vh to obtain

ku � uhk � C ku � �huk:
This projection is generally obtained from an interpolation or a local projection
of u.

Note that the matrix structure (symmetry, sparseness, . . . ) depends strongly on
the chosen numerical method and even on the choice of the basis of the space Vh.
In addition, each choice of the basis .�i / gives a particular interpretation of the
coefficients ui in the expansion (7.4).
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Fig. 7.1 A typical finite element mesh

Remark 7.1.1. Since all eddy current problems we have considered so far use
complex valued functions, as a consequence of using time–harmonic modelling,
we present hereafter the model problems in complex variables. However, basis
functions can be taken real valued.

Let us, before going into the exploration of finite element methods, define a
mesh of the considered domains. For clarity we distinguish hereafter 2-D and 3-
D situations.

For the 2-D case, let � denote a polygonal domain of R2 with boundary � . We
define a finite element mesh of� as a collection of triangles T 2 Th, where h is the
maximal edge length (see Fig. 7.1), that satisfies the following hypotheses:

• The union of triangles, considered as closed sets is the closure of �.
• The intersection of any pair of triangles, considered as closed sets of R2 is either

empty, or a vertex or an edge common to these elements.
• For each T 2 Th, if rT and hT stand respectively for the diameter of the inscribed

and the circumscribed circle of T , then there exists a constantˇ > 0, independent
of h such that

inf
T2Th

rT

hT
� ˇ: (7.6)

For such a mesh, the following additional notations will be needed:

– Eh is the set of edges of the mesh Th. Among these elements e 2 Eh we can
consider the set of boundary edges E

�

h which forms a mesh of the boundary, and
the set of internal edges E int

h (of course Eh D E int
h [ E

�

h ).
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– For an edge e 2 Eh, Te will stand for the set of the pair of elements (of Th) that
share e.

– For an element T 2 Th, ET will stand for the set of edges of T .
– For an element T 2 Th and an edge e of T (e 2 ET ), the vector nTe will stand for

the outward unit normal to T on e.
– Since we shall sometimes deal with multiple domains �k , we shall denote by

T k
h the mesh of the k–th domain and by Th the union of theses meshes.

– The set of all mesh nodes will be denoted by Nh and the set of boundary nodes
by N

�

h . It is also sometimes useful to use the set of node labels, respectively Ih

and I
�

h .
– The set Pr .X/ (or simply Pr ) will stand for the space of polynomials of degree

� r on the set X � R
2, i.e. of the form

rX
i;jD0
iCj�r

˛ij x
i
1x

j
2 x D .x1; x2/ 2 X; ˛ij 2 C:

In the three-dimensional case, we consider a polyhedral domain ˝ of R3 with
boundary � . A mesh of this domain is defined as its subdivision into tetrahedra T
that will be sometimes referred to as elements. The set of all the elements will be
called Th where h is the maximal edge length. Analogous hypotheses to the 2-D
case are assumed, i.e.

• The union of tetrahedra, considered as closed sets is the closure of ˝ .
• The intersection of any pair of tetrahedra, considered as closed sets of R3 is either

empty, a vertex, an edge or a face common to these elements.
• For each T 2 Th, if rT and hT stand respectively for diameter of the inscribed

and circumscribed sphere of T , then there exists a constant ˇ > 0, independent
of h such that

inf
T2Th

rT

hT
� ˇ: (7.7)

The same additional notations hold for the 3-D case, and we add the set of faces
of tetrahedra that will be denoted by Fh, whereas internal (resp. boundary) faces
belong the set F int

h (resp. F�
h ). Analogous definitions are given to the sets Tf , FT ,

. . . . Finally, Pr .X/ (or Pr ) will stand for the set of polynomials of the form

rX
i;j;kD0

iCjCk�r

˛ijkx
i
1x

j
2 x

k
3 x D .x1; x2; x3/ 2 X; ˛ijk 2 C:

Remark 7.1.2. We have considered the case of polyhedral domains. In the general
case of a domain with smooth boundary is generally handled by considering its
approximation by polyhedral domains. The presentation of the methods remains
the same excepting that the domains � and ˝ are replaced by their respective
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approximations �h and ˝h but the analysis is more difficult since in this case, we
have to introduce the approximation of the boundary of � or ˝ by the one of �h

or ˝h.

Remark 7.1.3. It is sometimes convenient to index the vectors or matrices that have
the same size as the number of elements by these elements rather than by their
labels. For example, for a vector b 2 R

N where N is the total number of elements
of a mesh Th, issued for instance from an elementwise constant approximation, we
will sometimes refer to its entries as bT , T 2 Th. The same convention will also
hold for faces or edges.

7.2 Standard (H1) Finite Element Methods

Let us start with the most popular finite element method. We mean by standard finite
element methods, those who may be applied to boundary value problems that result
in variational formulations like (7.1) where V is a space that satisfies H1

0.X/ � V �
H1.X/, whereX is a polygonal (resp. polyhedral) domain in R

2 (resp. R3). In view
of our applications, a typical example for which this method is applied is the 2-D
solenoidal model presented in Sect. 3.2.

7.2.1 A Finite Element Method for the 2-D Solenoidal Model

Let us consider (3.31). We assume that the domains �1 and �2 are polygonal.
This assumption is not fundamental but simplifies the setting of the finite ele-
ment method. Our purpose is to present the simplest finite element method to
discretize (3.31).

A finite–dimensional approximation of the space H in (3.31) is defined by

Hh WD f� 2 C0� O��I �j�ext D Const.; �jT 2 P1.T / 8 T 2 T 1
h [ T 2

h ;

� D 0 on @ O�g:

Let then .ai / denote the set of vertices of all triangles of Th. For a function u 2 H
such that uj�k 2 H2.�k/, k D 1; 2 we define �hu as the Hh–interpolant of u, i.e.

�hu 2 Hh;

�hu.ai / D u.ai / for all vertices ai :
(7.8)
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We have then the following interpolation error bound (see [50] for instance):

Theorem 7.2.1. Let u denote a function in H such that uj�k 2 H2.�k/ for k D 1; 2

and let �hu denote its interpolant defined by (7.8). Then there exists a constant C ,
independent of h, such that

ku � �hukH1.�/ � Ch
�kukH2.�1/ C kukH2.�2/

�
:

The discrete problem is defined by the variational formulation:

8
<̂
:̂

Find Hh 2 Hh such that
Z

�

��1rHh � r� dx C i!
Z

O�

Hh� dx D V �j�ext

8 � 2 Hh:
(7.9)

As for (3.31), Problem (7.9) possesses a unique solution in Hh. Moreover, ifHj�k 2
H2.�k/ for k D 1; 2, then Theorem 7.2.1 with (7.3) imply:

Theorem 7.2.2. There exists a constant C independent of h such that, for k D 1; 2,

kH �HhkH1.�k/ � Ch
�kHkH2.�1/ C kHkH2.�2/

�
:

It can be noticed that the formulation (7.9) couples the conductors �1 and �2

although the coupling reduces to the magnetic field constant value in the region�ext.
This coupling can be removed by using the procedure introduced in Remark 3.2.3.
To present the numerical version of this procedure, we define the spaces in which
lie the normalized magnetic fields:

Hk
h WD f� 2 C0.�k/I �jT 2 P1.T / 8 T 2 T k

h g; k D 1; 2:

and the spaces of test functions:

Hk
h0 WD f� 2 Hk

hI � D 0 on �kg; k D 1; 2:

We next define the following variational problems:

8
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Find OH1
h 2 H1

h such that:
Z

�1

��1r OH1
h � r� dx C i!

Z

�1


 OH1
h� dx D 0 8 � 2 H1

h0;

OH1
h D 1 on ��

1 ;

OH1
h D 0 on �C

1 :

(7.10)
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8
ˆ̂̂̂
<
ˆ̂̂̂
:

Find OH2
h 2 H2

h such that:
Z

�2

��1r OH2
h � r� dx C i!

Z

�2


 OH2
h� dx D 0 8 � 2 H2

h0;

OH2
h D 1 on �2:

(7.11)

We consider the identity (3.32) that gives the value H0 of H on the boundary
��
1 [ �2. Considering now the numerical approximation, the use of the same finite

element method as for (7.9) gives the approximate magnetic field OH . It remains
then to give a discrete version of (3.32). For this, it is well known that a standard
treatment of the normal derivative (i.e., by calculating the gradient on elements
that contain boundary edges and taking their normal component), results in poor
accuracy. Instead, we propose the following approach to calculateH0: Let E 1

h stand
for the set of edges on the boundary ��

1 . For any e 2 E 1
h , we denote by Te the

triangle that owns this edge. We also denote by �e 2 H1
h the function that equals 1

on e and 0 on the remaining vertex of Te .
Let us now consider (3.23) and let OH1 D H=H0, we have the boundary value

problem

8
ˆ̂̂
<
ˆ̂̂
:

� div.��1r OH1/C i!
 OH1 D 0 in �1;

OH1 D 1 on ��
1 ;

OH1 D 0 on �C
1 :

(7.12)

Multiplying the first equation of (7.12) by a function � 2 H1.�1/ with � D 0 on
�C
1 and using the Green formula, we get

Z

��

1

��1 @ OH1

@n
� ds D i!

Z

�1


 OH1� dx C
Z

�1

��1r OH1 � r� dx:

Now choosing � D 1 on ��
1 and � D 0 on the nodes that do not lie on ��

1 we have

Z

��

1

��1 @ OH1

@n
ds D i!

Z

�1


 OH1� dx C
Z

�1

��1r OH1 � r� dx:

The discrete version of this equation is given by

Z

��

1

��1 @ QH1
h

@n
ds D i!

Z

�1


 QH1� dx C
Z

�1

��1r QH1 � r� dx:

Hence we can define an approximation of (3.32) by

V

H0h

D i!
Z

�


 OHh dx C i!
0j�extj C
Z

�1

��1r OHh � r� dx
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where � is a function in H1
h such that � D 1 on ��

1 and � D 0 on any node that
does not belong to ��

1 .
Consequently, the actual approximate magnetic field can be defined by

H1
h WD OH1

hH0h; H2
h WD OH2

hH0h:

Considering the Total Current model defined in (3.22), the numerical solution by
the finite element method is straightforward and does not need further development.

Remark 7.2.1. Classically, the resulting linear system of equations is obtained by
choosing the canonical Lagrange basis of the space Hk

h0, i.e. such that

�i.aj / D ıij i; j 2 Nh:

As a result, the matrix of the linear system is sparse since the support of any basis
function �i is reduced to the union of the triangles that share the node ai . ut

7.2.2 Finite Elements for the Axisymmetric Model

Let us present a finite element method for the numerical solution of a variant
of (5.8)–(5.12) that consists in considering it in a bounded domain. The numerical
approximation of (5.8)–(5.12) will be given later when coupled interior/exterior
problems will be investigated. Let us then define the intermediate model problem:

8̂
<
:̂

� @

@r

�
�1

r

@

@r
.ru/

�
� @

@z

�

�1 @u

@z

�
C i!�u D f in �;

u D 0 on �;

(7.13)

where

� WD f.r; z/ 2 R
C � RI 0 < r < ˚.z/; 0 < z < Lg;

� WD f.r; z/ 2 @�I r > 0g;
where the function˚ is positive, smooth and defined on Œ0; L� and @� stands for the
boundary of�. In (7.13), 
 and � are positive functions that satisfy conditions (2.7)
and (2.11) respectively, and ! 2 R.

Remark 7.2.2. To interpret (7.13) as an axisymmetric version of a 3-D problem, one
has to consider the following boundary value problem:

8
ˆ̂<
ˆ̂:

curl .
�1 curl v/C i!�v D g in ˝;

div v D 0 in ˝;

v D 0 on �;
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where g D f .r; z/ e ,

˝ D fx D .r cos ; r sin ; z/I .r; z/ 2 �; 0 �  < 2�g;

and � is its boundary. Writing v in cylindrical coordinates (see Chap. 5)

Mv D Mvr er C Mv e C Mvz ez

and looking for axisymmetric solutions with the property Mvr D Mvz D 0, it can be
shown that u D Mv is a solution to (7.13).

Problem (7.13) differs from (7.10) and (7.11) essentially by the fact that this one
invokes a singularity at the line r D 0. For this we have to choose an adequate
functional setting and numerical approximation to obtain a well posed variational
formulation. Following the formulation (5.25), we define the space

W WD
n
v W � ! CI v

r
;
@v

@r
;
@v

@z
2 ML2.�/; v D 0 on �

o
;

where we recall that

ML2.�/ D fv W � ! CI
Z

�

jv.r; z/j2 r dr d z < 1g:

Using Theorem 5.3.2, this space can be equipped with the norm:

kvkW WD
�

kr�1vk2ML2.�/ C
���@v
@r

���
2

ML2.�/ C
���@v
@z

���
2

ML2.�/

� 1
2

:

A variational formulation of (7.13) is given by:

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

Find u 2 W such that
Z

�


�1
�1
r

uv C r
@u

@r

@v

@r
C r

@u

@z

@v

@z

�
dr d z

C i!
Z

�

�uv r dr d z D
Z

�

f v r dr d z 8 v 2 W :

(7.14)

Remark 7.2.3. According to Theorem 5.3.2, the solution u of (7.14) experiences the
property:

u.0; z/ D 0 8 z 2 .0; L/: (7.15)
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In order to discretize (7.14), we define the space

Wh D ˚
v 2 C0.�/I vjT 2 P1.T / 8 T 2 Th; v D 0 on �;

v.0; z/ D 0 for z 2 Œ0; L�:

Let us first notice that without the boundary condition at r D 0, the space Wh would
not be included in W (see Remark 7.2.3). Prescribing (7.15) as a boundary condition
ensures that Wh is a subspace of W .

We can now formulate the finite element approximation of (7.14):

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find uh 2 Wh such that
Z

�


�1
�1
r

uhv C r
@uh
@r

@v

@r
C r

@uh
@z

@v

@z

�
dr d z

C i!
Z

�

�uhv r dr d z D
Z

�

f v r dr d z 8 v 2 Wh:

(7.16)

We have the following convergence result (see [122] for instance):

Theorem 7.2.3. Assume that the unique solution of (7.14) has the regularity
property u 2 MH2.�/ where

MH2.�/ D ˚
v 2 D 0.�/I @iCj v

@ri@zj
2 ML2.�/; 0 � i C j � 2


:

Then there exists a constant C , independent of h and u, such that

ku � uhkW � Ch kuk MH2.�/:

Proof. We define the sesquilinear and antilinear forms:

B.u; v/ D
Z

�


�1�1
r

uv C r
@u

@r

@v

@r
C r

@u

@z

@v

@z

�
dr d z C i!

Z

�

�uv r dr d z;

L .v/ D
Z

�

f v r dr d z:

Since B is continuous and coercive and L is continuous, we obtain the result by
using Theorem 7.2.1. ut
Remark 7.2.4. In order to achieve the numerical solution of (5.8)–(5.12), a coupling
condition with the exterior problem must be added. This issue is treated in the
following sections.
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7.3 Finite Elements in H.curl/–Spaces

Most electromagnetic problems in the three-dimensional case are defined in
H.curl; �/–spaces. For their numerical treatment a stable approximation must fulfill
the regularity of these spaces. In other words tangential components of the sought
vector fields must be continuous across element boundaries.

Let us consider the following model problem:

(
curl .��1 curl u/C i!
u D f in ˝;

u � n D 0 on �;
(7.17)

where˝ is a bounded domain in R
3 with boundary � , ! 2 R, 
 and � are positive

functions that satisfy conditions (2.7) and (2.11) respectively, and f 2 L2.˝/.
Denoting by H0.curl;˝/ the space

H0.curl;˝/ WD fv 2 H.curl;˝/I v � n D 0 on � g;

endowed with the norm of H.curl;˝/, we have for (7.17) the variational formula-
tion:

8
ˆ̂̂̂
<
ˆ̂̂̂
:

Find u 2 H0.curl;˝/ such that
Z

˝

.��1 curl u � curl v C i!
u � v/ dx D
Z

˝

f � v dx

8 v 2 H0.curl;˝/:

(7.18)

The construction of a finite–dimensional subspace of Wh of H.curl;˝/ will be
made through the construction of its basis functions.

For a tetrahedron T 2 Th let ET stand for the set of the six edges of T . Along
each edge e 2 Eh, we define a unit tangent vector te to e with arbitrary orientation.
We then associate to the edge e the function �e defined by:

�e.x/ D bT C cT � x; bT ; cT 2 C
3; 8 x 2 T; 8 T 2 Th;

Z

e0

�e � te0 d` D ıee0 8 e0 2 Eh:

A more practical form of the basis functions .�e/ can be derived as follows: For a
tetrahedron T with vertices a1, a2, a3 and a4 such that a1 and a2 are the ends of
an edge e 2 ET , the tangent vector te being directed from a1 to a2, we denote by
�i 2 P1.T / the Lagrange basis of degree 1 on T , i.e. such that �i .aj / D ıij for
1 � i; j � 4. It can be shown (see [136] for instance) that for x 2 T ,

�e.x/ D �2.x/r�1 � �1.x/r�2: (7.19)
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Basic properties of the functions �e can be summarized in the following:

1. We have curl �e 2 L2.˝/.
2. The support of the function �e is the union of all tetrahedra that share the edge e.
3. The inner product �e � te0 is constant on the edge e0 2 ET .
4. The jump of the trace �e � n is null on any face common to two tetrahedra.

Owing to these properties it is easy to see that �e 2 H.curl;˝/ for all e 2 Eh,
and Wh is simply defined as the space spanned by the family of vector functions
.�e/e2Eh .

Remark 7.3.1. Let w 2 Wh, and let us consider its expansion in the basis �e:

w.x/ D
X
e02Eh

˛e0 �e0.x/ x 2 ˝:

The circulation of w on any edge e 2 Eh is given by

Z

e

w � t d` D
X
e02Eh

˛e0

Z

e

�e0 � t d` D ˛e:

Therefore the coefficients of the expansion of the vector field w in the basis .we/ are
the circulations along mesh edges.

The construction, as well as the following convergence result for this finite
element are due to Nédélec [136, 137].

Theorem 7.3.1. Let u 2 H1.˝/ with curl u 2 H1.˝/ and let �hu 2 Wh be
defined by

Z

e

�hu � te d` D
Z

e

u � te d` 8 e 2 Eh:

Then, there is a constant C , independent of h, such that

ku � �hukL2.˝/ C k curl .u � �hu/kL2.˝/ � Ch
�kukL2.˝/ C k curl ukH1.˝/

�
:

Let us now define the space

W0
h WD fv 2 WhI v � n D 0 on � g:

The finite element approximation of (7.18) is given by the variational problem:
8
ˆ̂̂
<̂
ˆ̂̂
:̂

Find uh 2 W0
h such that

Z

˝

.��1 curl uh � curl v C i!
uh � v/ dx D
Z

˝

f � v dx

8 v 2 W0
h;

(7.20)
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which possesses a unique solution thanks to the Lax–Milgram theorem (Theo-
rem 1.2.1).

We have the following convergence theorem:

Theorem 7.3.2. Assume that the solution of (7.18) fulfills the regularity properties:

u 2 H1.˝/; curl u 2 H1.˝/:

Then there exists a constant C , independent of h and u such that

ku � uhkL2.˝/ C k curl .u � uh/kL2.˝/ � Ch
�kukH1.˝/ C k curl ukH1.˝/

�
:

Proof. We first note that (7.18) and (7.20) can be written in the variational forms:

B.u; v/ D L .v/ 8 v 2 H0.curl;˝/;

B.uh; v/ D L .v/ 8 v 2 W0
h;

where

B.u; v/ D
Z

˝

��1 curl u � curl v dx C i!
Z

˝


u � v dx;

L .v/ D
Z

˝

f � v dx:

We note that owing to (2.11) and (2.7), we have the existence of a positive constant
C such that

ˇ̌
B.v; v/

ˇ̌ � C
�kvk2L2.˝/

C k curl vk2L2.˝/

�
;

which proves that B is coercive. Using Theorem 7.3.1 and the abstract estimate (7.3)
we deduce the error bound. ut
Remark 7.3.2. In view of considering the numerical solution of a coupled inte-
rior/exterior problem, instead of imposing u � n D 0 on � , a numerical procedure
that couples the finite element method defined above with an integral representation
can be envisaged. This will be given later in this chapter.

7.4 Finite Elements in H.div/–Spaces

Another type of functional setting that can be used for the formulation of some
eddy current models we have defined is the use of H.div/–spaces. We have indeed
in Chap. 5, and more precisely in (5.5) a mathematical setting that imposes this use.
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Furthermore, 3-D models based on the current density (4.17) impose using these
spaces.

Let us consider the following model problem in R
3:

( � r.��1 div u/C i!
u D f in ˝;

u � n D 0 on �;
(7.21)

where˝ is a bounded domain in R
3 with boundary� , ! > 0, � and
 are functions

that fulfill conditions (2.11) and (2.7) respectively, and f 2 L2.˝/. Let us define
the space

H0.div;˝/ WD fv 2 H.div;˝/I v � n D 0 on � g;

endowed with the norm of H.div;˝/. We deduce for (7.21) the variational
formulation:

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find u 2 H0.div;˝/ such that
Z

˝

�
��1 div u div v C i!
u � v

�
dx

D
Z

˝

f � v dx 8 v 2 H0.div;˝/:

(7.22)

Using the Lax–Migram theorem (Theorem 1.2.1) we have the following result:

Theorem 7.4.1. Problem (7.22) has a unique solution. Moreover, we have the
estimate

kukL2.˝/ C k div ukL2.˝/ � C kf kL2.˝/:

Like for the space H.curl;˝/ we shall construct an approximation space for
H.div;˝/ by defining its basis functions. For each face of a tetrahedron a 2 Fh,
we denote by xa its barycenter. We associate to each face a the function za defined
by

za.x/ D bT C cT x bT 2 C
3; cT 2 C; 8 x 2 T; 8 T 2 Th;

Z

a0

za � na0 ds D ıaa0 8 a0 2 Fh:

Basic properties of the functions za can be summarized in the following:

1. We have div za 2 L2.˝/.
2. The support of za is the union of the two elements containing the face a, except

in the case of a face on the boundary � where the support is the unique element
containing this face.
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3. The inner product za � na0 is constant on the face a0 2 Fh. Moreover, za is
orthogonal to the other faces of Fh.

4. The jump of the trace za � n is null on any face common to two elements.

The above properties enable defining the space spanned by the functions za, that
will be referred to as Vh, as a subspace of H.div;˝/. We define

V0
h WD fw 2 VhI w � n D 0 on � g: (7.23)

The discrete problem is defined by the following variational formulation:

8
<̂
:̂

Find uh 2 V0
h such that

Z

˝

�
��1 div uh div v dx C i!
uh � v

�
dx D

Z

˝

f � v dx 8 v 2 V0
h:

(7.24)

Thanks to the Lax–Milgram theorem (Theorem 1.2.1), Problem (7.24) admits a
unique solution.

The construction and the following convergence result are due to Raviart–
Thomas [137, 153]. This finite element is generally referred to as The Raviart–
Thomas (RT1) element.

Theorem 7.4.2. Let u 2 H1.˝/ with div u 2 H1.˝/ and let �hu 2 V0
h be defined

by

Z

a

�hu � na ds D
Z

a

u � na ds 8 a 2 Fh:

Then there exists a constant C , independent of h and u such that

ku � �hukL2.˝/ C k div .u � �hu/kL2.˝/ � Ch
�kukH1.˝/ C k div ukH1.˝/

�
:

From this we easily prove the following convergence result by using Theo-
rem 7.4.2 and (7.3):

Theorem 7.4.3. Assume that the solution u of (7.22) fulfills the regularity property

u 2 H1.˝/; div u 2 H1.˝/:

Then there exists a constant C , independent of h and u such that

ku � uhkL2.˝/ C k div .u � uh/kL2.˝/ � Ch
�kukH1.˝/ C k div ukH1.˝/

�
:
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7.5 The Boundary Element Method for Boundary
Integral Equations

We now investigate the numerical approximation of integral equations that are used
in the modelling of eddy currents. We have to treat boundary integral equations that
represent the solution of the harmonic equation in the exterior domain. Our aim is
to give a synthetic presentation of the approximation of boundary integral equations
and their coupling to partial differential equations. This coupling will be considered
in view of the various eddy current problems we have analyzed so far. It is a
difficult task to give a bibliographical review of the works on numerical solutions of
boundary integral equations and their couplings with partial differential equations.
It is maybe more instructive to consult the lecture notes of Nédélec [135], the review
of Hsiao and Wendland [105], the overview paper by Hsiao [104] or the dedicated
chapters in Dautray–Lions ([62], Vol. 4, pp. 359–370). For the coupling, authors
have mainly considered the use of finite element equations coupled with boundary
elements. For this, a lot of information can be found in e.g. [58, 87, 108, 113, 167],
and many others.

To start the presentation, we shall proceed as for Chap. 1, i.e. by presenting
separately the 2-D and 3-D cases.

7.5.1 Boundary Integral Equations in R
3

We have seen throughout Chaps. 1 and 3–5 that two types of boundary integral equa-
tions are involved in the representation of harmonic fields in exterior domains:

– A boundary integral equation that involves the Green function as a kernel. This
is referred to as a first kind integral equation.

– A boundary integral equation that involves the normal derivative of the Green
function. This is a second kind integral.

Since these representations differ from each other by the used functional space,
different numerical analyses are to be envisaged for them. Let us also recall
(see (1.21)) that the Green function in the 3-D case is given by

G.x;y/ D 1

4�

1

jx � y j ;

and its normal derivative in the y–variable is

@

@ny

G.x;y/ D � 1

4�

n.y/ � .x � y/

jx � yj3 :
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In order to avoid considering the approximation of the surface � by a polyhedron,
which would lead to tedious technical developments, we assume that � is a
polyhedron. Note that this approximation is considered in ([62], Vol. 4, p. 367).

Let us recall that the domain ˝ is partitioned using a finite element mesh Th of
tetrahedra and that the trace of this mesh on � is a partition F�

h into triangles.

7.5.1.1 First Kind Integrals

We are concerned by the boundary integral equation presented in (1.29):

1

4�

Z

�

p.y/

jx � y j ds.y/ D g.x/ x 2 �; (7.25)

where � is a closed polyhedral surface imbedded in R
3 and g 2 H 1

2 .� /. The
solution p of this problem is sought in the space H� 1

2 .� /.
As it is already stated in (1.30), (7.25) admits the variational formulation:

8
<̂
:̂

Find p 2 H� 1
2 .� / such that

1

4�

Z

�

Z

�

p.y/ q.x/

jx � yj ds.y/ ds.x/ D
Z

�

gq ds 8 q 2 H� 1
2 .� /;

(7.26)

where again the integrals stand for duality pairings between the spaces H 1
2 .� / and

H� 1
2 .� /. We recall (see [135]) that the sesquilinear form

B.p; q/ WD 1

4�

Z

�

Z

�

p.y/ q.x/

jx � yj ds.y/ ds.x/

is continuous and coercive in H� 1
2 .� / and then by the Lax–Milgram theorem

(Theorem 1.2.1), (7.26) possesses a unique solution.
For r � 0, we define the space

Qr
h WD

(
fq 2 C0.� /I qja 2 Pr .a/; 8 a 2 F�

h g if r > 0;

fq 2 L2.� /I qja 2 P0.a/; 8 a 2 F�
h g if r D 0:

In other words, we approximate the solution p either by a discontinuous piecewise
constant function or by a continuous function that is polynomial of degree � r . We
introduce the approximate problem:

8̂
<
:̂

Find ph 2 Qr
h such that

1

4�

Z

�

Z

�

ph.y/ q.x/

jx � y j ds.y/ ds.x/ D
Z

�

g q ds 8 q 2 Qr
h:

(7.27)



7.5 The Boundary Element Method for Boundary Integral Equations 171

Since Qr
h is a finite–dimensional subspace of H� 1

2 .� /, then (7.27) is well posed.
We have the following error estimates (see [62], Vol. 4, p. 360):

Theorem 7.5.1. Assume that p 2 HrC1.� /, then we have the error estimate

kp � phkH�
1
2 .� /

� C hrC 3
2 kpkHrC1.� /;

where the constant C is independent of h, p and ph.

Remark 7.5.1. As shown in Sect. 1.3.4, it can be useful to compute

u.x/ D � 1

4�

Z

�

p.y/

jx � yj ds.y/ x 2 R
3:

The function u satisfies indeed

�u D 0 in ˝ [˝ext

with the conditions

Œu� D 0;
h @u

@n

i
D p on �:

Defining the approximation

uh.x/ D � 1

4�

Z

�

ph.y/

jx � yj ds.y/ x 2 R
3;

where ph is defined by (7.27), we have the error estimate (see [62], Vol. 4, p. 360)

ku � uhkW1.R3/ � C hrC
3
2 kpkHrC1.� /:

Let us consider some practical aspects of the method. Let .qk/NkD1 denote a basis
of the space Qr

h. We obtain the linear system

A p D b;

where the matrix A D .Ak`/ is defined by

Ak` WD 1

4�

Z

�

Z

�

q`.y/qk.x/

jx � y j ds.y/ ds.x/; k; ` D 1; : : : ; N;

and where the entries of p are the coefficients of ph in the expansion

ph.x/ D
NX
`D1

p`q`.x/ x 2 �:
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Let us give some remarks about the implementation of the method:

1. The matrix A is hermitian and dense. This is natural since we are solving a
nonlocal problem. Consequently, numerical solution of the linear system needs
particular attention since this one is rather expensive in terms of computational
time.

2. Matrix entries use integrals with singular kernels. Therefore, unless the inte-
grals are evaluated exactly, any numerical integration formula uses points near
singularities which results in significant numerical discrepancies. Some works
like [69–71] have explored this difficulty. It is worth noting that when the double
integral involves the same triangle, the calculation can be made exactly.

We end this subsection by illustrating the simplest case consisting in piecewise
constant approximations (r D 0). To implement the method we choose as a basis of
this space the set of characteristic functions of the triangles

	a.x/ WD
(
1 if x 2 a;
0 if not;

(7.28)

for a boundary face a 2 F�
h , i.e., ph is defined by

ph.x/ D
X

a2F�
h

pa	a.x/ x 2 �:

Then A and b are given respectively by:

Aaa0 D 1

4�

Z

a

Z

a0

1

jx � yj ds.y/ ds.x/ a; a0 2 F�
h ;

ba D
Z

a

g ds a 2 F�
h :

We note that well known collocation methods [15,175] can be retrieved by adopting
the following numerical integration formulae:

Z

a

Z

a0

1

jx � y j ds.y/ ds.x/ � jaj
Z

a0

1

jxa � yj ds.y/;
Z

a

g ds � jaj g.xa/;

where xa is the barycenter of the triangle a. Remark that the use of the same
numerical integration scheme is not possible if a D a0, since this one would deal
with the evaluation of singular integrands (see above remarks).
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7.5.1.2 Second Kind Integrals

Let us now consider boundary integral equations of the second kind, like the one
involved in Theorem 1.3.10, i.e.

� 1

2
'.x/C 1

4�

Z

�

@

@nx

�
1

jx � yj
�
'.y/ ds.y/ D g.x/ x 2 �; (7.29)

where g 2 H� 1
2 .� /.

We recall the existence and uniqueness (see [62], Vol. 4, p. 131) of a solution
' 2 H� 1

2 .� / to (7.29).
In order to derive a variational formulation of (7.29), we use the so-called solid

angle identity

1

2
 .y/C 1

4�

Z

�

 .y/
@

@nx

�
1

jx � yj
�
ds.x/ D 0 8 y 2 �:

Multiplying (7.29) by  and integrating over � , we deduce

�
Z

�

' ds C 1

4�

Z

�

Z

�

@

@ny

�
1

jx � yj
�
'.x/. .y/�  .x// ds.y/ ds.x/

D
Z

�

g ds:

This results in the variational formulation:
8
<
:

Find ' 2 H� 1
2 .� / such that

B.';  / D L . / 8  2 H� 1
2 .� /;

(7.30)

where:

B.';  / WD �
Z

�

' ds C 1

4�

Z

�

Z

�

@

@ny

�
1

jx � yj
�
'.x/

. .y/�  .x// ds.y/ ds.x/;

L . / WD
Z

�

g ds:

Let us define an approximation of (7.30) by

(
Find 'h 2 Qr

h such that

B.'h;  / D L . / 8  2 Qr
h:

(7.31)
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We have the following convergence result (cf. [62], Vol. 4, p. 366):

Theorem 7.5.2. Let ' 2 HrC1.� / denote the solution of (7.30). Then there exists
a constant C , independent of h, ' and 'h such that

k' � 'hkL2.� / � ChrC1k'kHrC1.� /:

To end this subsection, let us investigate the simplest case of piecewise constant
approximation, i.e. r D 0. In this case, the number of unknowns is the number of
boundary faces and we obtain the linear system:

A' D b;

where the matrix A and the vector b are defined by:

Aaa0 D �jaj ıaa0 C 1

4�

Z

a0

Z

a

@

@ny

�
1

jx � y j
�
ds.x/ ds.y/

� ıaa0

4�

X

a002F�
h

Z

a

Z

a00

@

@ny

�
1

jx � yj
�
ds.x/ ds.y/;

ba D
Z

a

g ds;

for a; a0 2 F�
h , and ' is the vector having as entries the values of 'h at boundary

faces.

7.5.1.3 Numerical Approximation of the Steklov–Poincaré Operator

When one deals with the numerical solution of a coupled interior–exterior problem,
the exterior contribution can be represented by the use of the Steklov–Poincaré
operator. This one is defined with its proper functional setting in this context in
Sect. 1.3.5. A reasonable numerical discretization of the Steklov–Poincaré operator
results obviously in an invertible matrix.

Let us recall from Sect. 1.3.5 that the exterior Steklov–Poincaré operator is a
linear and continuous operator P from H 1

2 .� / ! H� 1
2 .� /, defined by

P D .�1
2
I C S/K�1

where

K W p 2 H� 1
2 .� / 7! Kp 2 H 1

2 .� /
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is the isomorphism defined by the variational equation:

Z

�

Z

�

Kp.y/q.x/ ds.y/ ds.x/ WD
Z

�

Z

�

G.x;y/ p.y/ q.y/ ds.y/ ds.x/

8 p 2 H� 1
2 .� /; q 2 H� 1

2 .� /; (7.32)

and

S W p 2 H� 1
2 .� / 7! Sp 2 H 1

2 .� /

is defined by

Z

�

.Sp.x//  .x/ ds WD
Z

�

p.x/

Z

�

 .y/
@

@ny

G.x;y/ ds.y/ ds.x/

8  2 H 1
2 .� /; p 2 H� 1

2 .� /: (7.33)

Let us now define finite–dimensional subspaces of H 1
2 .� / and H� 1

2 .� / respec-
tively by:

Vh WD f 2 C0.� /I  ja 2 P1.a/ 8 a 2 F�
h g;

Qh WD fq 2 L2.� /I qja 2 P0.a/ 8 a 2 F�
h g;

Note that according to the choice of these spaces, the dimension of Vh (resp. Qh)
is the number of nodes (resp. triangles) on the boundary � . Let .�i /i (resp. .	a/a)
stand for a basis of Vh (resp. Qh). More precisely, we can make for these bases the
following choices:

– For Vh we choose the Lagrange basis functions .�i /, i.e. such that �i .aj / D ıij ,
i; j 2 I �

h .
– For Qh, the natural choice for basis functions consists in characteristic functions
	a (see (7.28)), a 2 F�

h .

In order to derive an approximation of the operator P we shall follow the same
procedure as for obtaining its representation in Sect. 1.3.5. Let ' stand for a function
in H 1

2 .� / and let 'h denote an approximation of ' in Vh, we have the expansion

'h.x/ D
X

i2I �
h

'i �i .x/ x 2 �:
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Consider now the problem

8
ˆ̂<
ˆ̂:

�u D 0 in ˝ [˝ext;

u D ' on �;

u.x/ D O.jxj�1/ jxj ! 1:

and set p D 	@'
@n



. According to the representation (1.25), we can define an

approximation ph of p in Qh by the variational integral equation:

�
Z

�

Z

�

G.x;y/ ph.y/ q.x/ ds.y/ ds.x/ D
Z

�

'hq ds 8 q 2 Qh:

Choosing a basis function 	e as a test function and using the expansion of ph in this
basis, we obtain the matrix formulation

Kp D B'; (7.34)

where p is the vector in C
nq with entries pe , ' is the vector with entries 'i and K

and B are the matrices with coefficients:

Kaa0 D �
Z

�

Z

�

G.x;y/ 	a0.y/ 	a.x/ ds.y/ ds.x/

D �
Z

a

Z

a0

G.x;y/ ds.y/ ds.x/ a; a0 2 F�
h ;

Baj D
Z

�

�j 	a ds D
Z

a

�j ds j 2 I �
h ; a 2 F�

h :

Note that the matrix K appears here as a finite–dimensional approximation of the
operatorK and B is a projection from Vh on Qh.

To go further, we recall that the Steklov–Poincaré operator P is defined by

P'.x/ D 1

2
p.x/ �

Z

�

@G

@ny

.x;y/ p.y/ ds.y/ x 2 �:

With this we can define the approximation Ph W Vh ! Vh by

Z

�

Ph'h  ds D 1

2

Z

�

ph  ds

�
Z

�

Z

�

@G

@ny

.x;y/ ph.y/  .x/ ds.y/ ds.x/ 8  2 Vh: (7.35)
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Here also we choose as a test function the basis function D �i of Vh to obtain for
i 2 I �

h :

Z

�

Ph'h �i ds D 1

2

Z

�

ph �i ds �
Z

�

Z

�

@G

@ny

.x;y/ ph.y/ �i .x/ ds.y/ ds.x/:

Now, we expand 'h and ph in their respective bases to get eventually the linear
system

P' D .M C R/p;

where M and R are the matrices defined by:

Mia D 1

2

Z

�

	a �i ds D 1

2

Z

a

�i ds;

Ria D �
Z

�

Z

�

@G

@ny

.x;y/ 	a.y/ �i .x/ ds.y/ ds.x/

D �
Z

�

Z

a

@G

@ny

.x;y/ �i .x/ ds.y/ ds.x/;

for i 2 I �
h , a 2 F�

h , and P is the sought Steklov–Poincaré matrix. Using (7.34),
we obtain

P' D .M C R/K�1B ' 8 ' D .'i /i2I �
h
:

This implies the definition of the Steklov–Poincaré matrix:

P D .M C R/K�1B: (7.36)

7.5.2 Boundary Integral Equations in R
2

Let us consider two-dimensional boundary integral equations involving as kernel
the Green function. The boundary is generally considered as a union of closed arcs
in R

2. We restrict ourselves here to the case of a single closed polygonal curve � .
We recall (see (1.50)) that the Green function in the 2-D case is given by

G.x;y/ D � 1

2�
ln jx � yj;

and its normal derivative in the y–variable is

@

@ny

G.x;y/ D � 1

2�

n.y/ � .x � y/

jx � yj2 :
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Let us recall that the finite element mesh of� is denoted by Th and that the trace of
this mesh on � is a partition of � , denoted by E

�

h into edges of triangles.

7.5.2.1 First Kind Integrals

Let us consider the boundary integral equation presented in (1.58):

Z

�

G.x;y/ p.y/ ds.y/C � D g.x/ x 2 �; (7.37)

where � is a closed regular arc imbedded in R
2, g 2 H 1

2 .�/, and � is a constant.
The solution p of this problem is required in the space

QH� 1
2 .�/ WD

n
q 2 H� 1

2 .�/I
Z

�

q ds D 0
o
:

As it is already stated in (1.59), (7.37) admits the variational formulation:

8
<̂
:̂

Find p 2 QH� 1
2 .�/ such that

Z

�

Z

�

G.x;y/ p.y/ q.x/ ds.x/ ds.y/ D
Z

�

gq ds 8 q 2 QH� 1
2 .�/:

(7.38)

We recall (see [135]) that the sesquilinear form

B.p; q/ WD
Z

�

Z

�

G.x;y/ p.y/ q.x/ ds.x/ ds.y/

is coercive in QH� 1
2 .�/ and then by the Lax–Milgram theorem (Theorem 1.2.1) (7.38)

possesses a unique solution.
In order to discretize the problem, we assume that � is polygonal with avoiding

difficulties related to regularity of the solution, like in the 3-D case. Then we
consider a partitioning of the curve � into lines (or triangle edges) e 2 E

�

h with
ends ai 2 N

�

h (N �

h is the set of boundary nodes). We also denote by ei the line
joining ai�1 and ai for 1 � i � I and by eI the one with ends a0 and aI .

We define the spaces:

Qr
h WD

(
fq 2 C0.�/I qje 2 Pr .e/; e 2 E

�

h g if r > 0;

fq 2 L2.�/I qje 2 P0.e/; e 2 E
�

h g if r D 0;

Qr;0
h WD

n
q 2 Qr

hI
Z

�

q ds D 0
o
;
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where r � 0. In other words, we approximate the solution p by a continuous
function that is piecewise polynomial of degree � r for r > 0 and discontinuous
piecewise constant for r D 0.

We introduce the approximate problem:

8̂
<
:̂

Find ph 2 Qr;0
h such that

Z

�

Z

�

G.x;y/ ph.y/ q.x/ ds.x/ ds.y/ D
Z

�

g q ds 8 q 2 Qr;0
h :

(7.39)

Since Qr;0
h is a finite–dimensional subspace QH� 1

2 .�/, then (7.39) is well posed. We
have the following error estimates (see [68, 103]):

Theorem 7.5.3. Assume that solution p has the regularity property p 2 HrC1.�/,
then we have the error estimate

kp � phkH�
1
2 .�/

� C hrC
3
2 kpkHrC1.�/;

where the constant C is independent of h, p and ph.

It is clear that it is not easy to construct an approximation that enforces the constraint
in Qr;0

h . To remedy to this difficulty, a Lagrange multiplier can be introduced
following [104] by substituting to (7.39) the following variational formulation:

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
:̂

Find .ph; �h/ 2 Qr
h � C such that

Z

�

Z

�

G.x;y/ ph.y/ q.x/ ds.x/ ds.y/

C �h

Z

�

q ds D
Z

�

g q ds 8 q 2 Qr
h;

Z

�

ph ds D 0:

(7.40)

Let us consider now some practical aspects of the method in the case where r D
0. Let .	e/e2E

�
h

denote the basis of the space Q0
h made of characteristic functions of

edges. We obtain the linear system

A p C c�h D b;

cTp D 0:

where the matrix A and the vectors c and b are respectively defined by:

Ae;e0 WD
Z

�

Z

�

G.x;y/ 	e.x/	e0 .y/ ds.x/ ds.y/ D
Z

e

Z

e0

G.x;y/ ds.x/ ds.y/;
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ce WD
Z

�

	e ds D jej (length of e);

be WD
Z

�

g	e ds D
Z

e

g ds;

for e; e0 2 E
�

h , and where the entries of p are the coefficients of ph in the expansion

ph.x/ D
X

e2E
�
h

pe	e.x/ x 2 �:

Clearly, the matrix A is symmetric and dense. Here we have the same type of
remarks than in Sect. 7.5.1.

7.5.2.2 Second Kind Integrals

Second kind integrals in the two-dimensional case can be handled by the same
techniques as in Sect. 7.5.1.2. We skip here the details.

7.6 Approximation of a Domain Integral Equation

We consider in this section a formulation of 3-D eddy current problems that leads
to an integral equation formulated in the domain of the conductors. The major
drawback of this model is that we are faced with a nonlocal problem (and then with
a dense matrix when numerical solution is involved) in the whole domain rather
than on its boundary. We shall see that this difficulty can be avoided by means of an
iterative procedure where the global matrix does not have to be stored.

Let us consider the three-dimensional current density model described in
Sect. 4.1 with a constant magnetic permeability (i.e. 
 D 
0). We recall that in
this case, the model is given by (4.20), with the variational formulation (4.21).

Remark 7.6.1. The case of a nonconstant magnetic permeability can be handled by
the same method, but further developments are required. In particular, the solution
of an auxiliary problem involving a scalar potential is to be supplied. We skip these
details, since we are mainly interested here in the solution of a nonlocal problem in
the conductors˝ .

Let us consider the variational formulation (4.17) and define a finite–dimensional
approximation of the space X , defined by

X h WD fv 2 V0
hI div v D 0 in ˝g;
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where V0
h is the space defined in (7.23), We have the discrete problem

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

Find J h 2 X h such that
Z

˝

�
i!
0

Z

˝

G.x;y/J h.y/ dy C ��1J h.x/
�

� v.x/ dx

D V

Z

S

v � nds 8 v 2 X h;

(7.41)

where we recall that V is the current voltage.
Let us investigate the implementation of the finite element scheme defined

in (7.41). It is clear that the definition of the space X h suggests the use of H.div; �/
finite elements (see Sect. 7.4) with the additional constraint of divergence free vector
fields. Following Sect. 7.4, we define the basis functions

�e.x/ D bT C cTx; bT 2 C
3; cT 2 C; 8 x 2 T; 8 T 2 Th:

Now, the constraint div �e D 0 in T 2 Th implies cT D 0. This means that the
approximate solution is a piecewise constant vector such that its normal components
are continuous across the faces a 2 Fh. A convenient finite element space is then
given by

X〈 WD fv 2 L2.˝/I vjT 2 P
3
0.T / 8 T 2 Th; Œv � n�a D 0 8 a 2 F int

h ;

v � n D 0 on a 8 a 2 F�
h g:

Clearly, it is not easy to enforce directly the constraint of continuous normal
components across the faces. In [32], the problem is handled at the matrix level.
More precisely, the author introduces a Lagrange multiplier that enables imposing
the constraint. The matrix form of the variational problem is then written as

Au C DTp D b;

Du D 0;

where u is the vector whose components are the approximate constant vector J h at
elements. The second equation is the expression of the constraint of continuity of
the normal components of J h at the faces. The vector p is the Lagrange multiplier
vector that results from this constraint. Note that the matrix D is sparse but A is
not. In [32], the author reports good performances of an Uzawa solver that uses the
Conjugate Gradient method to solve the linear system for p.

We propose here a similar procedure at the variational level by using the so-called
hybrid formulations. To derive such a formulation, we relax the continuity of normal
components and free divergence constraints by defining the spaces:
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QX〈 WD fv 2 L2.˝/I vjT D bT C cTx bT 2 C
3; cT 2 C 8 T 2 Thg;

X T
h WD fv D bT C cT x; x 2 T; bT 2 C

3; cT 2 Cg;
Qh WD fq 2 L2.˝/I qjT 2 P0.T / 8 T 2 Thg;
Mh WD f� 2 L2.Fh/I �ja 2 P0.a/ 8 a 2 Fhg:

We consider then the variational formulation:

Find .J h; ph; �h/ 2 QX h � Qh � Mh such that:
Z

T

�
i!
0

Z

˝

G.x;y/J h.y/ dy C ��1J h.x/
�

� v.x/ dx

�
Z

T

ph div v dx C
X
a2FT

Z

a

�hv � n ds

D V

Z

S

v � nds 8 v 2 X T
h ;

8 T 2 Th; (7.42)
Z

T

div J h dx D 0 8 T 2 Th; (7.43)

Z

a

ŒJ h � n� ds D 0 8 a 2 Fh; (7.44)

Z

a

J h � n ds D 0 8 a 2 F�
h : (7.45)

We recall here that FT is the set of faces of the tetrahedron T and that Ta is the set
of (2) tetrahedra that share the face a.

In the system (7.42)–(7.45) we have two Lagrange multipliers, the first one ph
takes into account the divergence–free constraint, while the second one �h is useful
to enforce the continuity of the normal components of J h across internal edges and
the homogeneous boundary condition.

In order to obtain a linear system, let us write the unknowns in the form:

J h.x/ D J T C ˛T x x 2 T; T 2 Th;

ph.x/ D pT x 2 T; T 2 Th;

�h.x/ D �a x 2 a; a 2 Fh:

We first note that (7.43) implies readily ˛T D 0. We then select test functions
in (7.42)–(7.45) in the following way: we choose successively v D bT 2 C

3 and
v D x. We obtain the linear system of equations:
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X
T 02Th

AT T 0J T 0 C
X
a2FT

BaT �a D cT 8 T 2 Th; (7.46)

X
T 02Th

DT T 0 � J T 0 CNT pT C
X
a2FT

CTa�a D dT 8 T 2 Th; (7.47)

X
T2Fa

BaT � J T D 0 8 a 2 Fh n T �
h ; (7.48)

where naT is the normal to the face a pointing outside the tetrahedron T , and

AT T 0 D i!
0

Z

T

� Z

T 0

G.x;y/ dy
�
dx C ıT T 0

Z

T

��1 dx;

DT T 0 D i!
0

Z

T

� Z

T 0

G.x;y/ dy
�
x dx C ıT T 0

Z

T

��1x dx;

NT D �3 jT j;

BaT D
Z

a

nTa ds D jaj nTa ;

CTa D
Z

a

x � nTa ds;

cT D V

Z

S\T
nds;

dT D V

Z

S\T
n � x ds:

Let us put the system (7.46)–(7.48) in the matrix form:

0
B@

A 0 BT

D N C

B 0 0

1
CA

0
B@

u

p

�

1
CA D

0
B@

c

d

0

1
CA

Numerical solution of this system can be tackled by a block Gauss elimination
procedure, i.e. by solving successively the linear systems:

BA�1BT� D BA�1c;

Np D d � DA�1C � .C � DA�1BT/�;

Au D c � BT�:
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7.7 Coupled Finite Element/Boundary Element Methods

Once we have seen how (interior) boundary value problems and (exterior) boundary
integral problems can be numerically solved, we turn now to the most encountered
case, i.e. where these formulations are coupled. We shall present then the numerical
discretization of the involved coupled problems and the structure of the linear
systems this discretization induces.

7.7.1 The 2-D Transversal Model

We consider in this section the numerical solution of the two-dimensional model
presented in Sect. 3.3, i.e. we deal with Eqs. (3.38)–(3.41). As we have seen, we
are typically in presence of three domains �1, �2, �3. Let us then consider a
triangulation T k

h of each domain �k . We assume that these triangulations fulfill
the property (7.6) and define

Th D T 1
h [ T 2

h [ T 3
h :

Since the boundary is assumed polygonal, we denote by E k
h the set of edges on the

boundary of �k and set similarly

Eh D E 1
h [ E 2

h [ E 3
h :

Let us first note that in (3.38)–(3.41) and then in its variational formula-
tion (3.45), the presence of the mean values Mk makes the problem nonlocal.
To avoid this difficulty, we reformulate the problem in the following way: The
variational formulation (3.49) can be interpreted as (see the proof of Theorem 3.3.1):

8
ˆ̂<
ˆ̂:

� div.
�1rA/C i!�A D �

3X
kD1

Ck	k in R
2;

A.x/ D ˇ C O.jxj�1/ jxj ! 1;

(7.49)

for ˇ 2 C, where 	k is the characteristic function of the domain �k (i.e. 	k D 1 in
�k , 0 elsewhere), and

Ck D Ik C i!j�k jMk.�A/

j�kjMk.�/
; k D 1; 2; 3; (7.50)

and where we recall that

Mk.�/ WD 1

j�kj
Z

�k

� dx; k D 1; 2; 3:
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Let Ak stand for the solution of the problem:

( � div.
�1rAk/C i!�Ak D �	k in R
2;

Ak.x/ D ˇ C O.jxj�1/ jxj ! 1;
(7.51)

for ˇ 2 C. It is clear that the function A D C1A1 C C2A2 C C3A3 is a solution
of (7.49). It remains to give an expression of Ck in function of A1;A2; A3. We have
from (7.50):

j�kjMk.�/Ck D Ik C i!j�kj
�
C1Mk.�A1/C C2Mk.�A2/C C3Mk.�A3/

�
;

for k D 1; 2; 3. This yields the linear system of equations:

�
i!M1.�A1/ �M1.�/

�
C1 C i!M1.�A2/ C2 C i!M1.�A3/ C3 D � I1

j�1j ;

i!M2.�A1/ C1 C �
i!M2.�A2/�M2.�/

�
C2 C i!M2.�A3/ C3 D � I2

j�2j ;

i!M3.�A1/ C1 C i!M3.�A2/ C2 C �
i!M3.�A3/ �M3.�/

�
C3 D � I3

j�3j :

Consequently, solving (3.49) can be performed by solving (7.51) for each k D
1; 2; 3. Let us address the numerical solution of this problem and set for shortness
u D Ak for a fixed k. Defining the space

V WD fv 2 W1.R2/I M1.v/ D 0g;

we have for k D 1; 2; 3 the variational formulation:

8̂
<
:̂

Find u 2 V such that
Z

R2


�1ru � rv dx C i!
Z

�

� uv dx D
Z

�k

�v dx 8 v 2 V :
(7.52)

7.7.1.1 A Formulation Using the Steklov–Poincaré Operator

Let us investigate the formulation defined in (3.3.1) applied to (7.52). We have the
variational formulation:

(
Find u 2 W such that

B�.u; v/C P.u; v/ D L .v/ 8 v 2 W ;
(7.53)
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where

W WD fv 2 H1.�/I M1.v/ D 0g;

B�.v;w/ WD
Z

�


�1rv � rwdx C i!
Z

�k

�vw dx;

P.v;w/ WD 
�1
0

Z

�

.Pv/w ds;

L .v/ WD
Z

�k

�v dx:

Here P stands for the Steklov–Poincaré operator defined in Sect. 1.4.4. We define
the finite–dimensional space

Wh WD fv 2 C0.�/I vjT 2 P1.T / 8 T 2 Thg;

and define Ph as the approximation of the operator P defined by (7.35). In order to
account for the condition M1.v/ D 0 we introduce the Lagrange multiplier �h and
define the discrete problem:

8
ˆ̂<
ˆ̂:

Find .uh; �h/ 2 Wh � C such that:

B�.uh; v/C Ph.uh; v/ � �hM1.v/ D L .v/ 8 v 2 Wh;

M1.uh/ D 0:

(7.54)

where

Ph.v;w/ WD 
�1
0

Z

�

.Phv/wds:

Let us derive the resulting linear system. We assume for this, that the mesh nodes
are ordered such that internal nodes are labelled first and then boundary nodes.1

Denoting as before by .�i / the canonical Lagrange basis of Wh, we obtain the linear
system

Bu C 
�1
0 Pu � d�h D c;

dTu D 0:

1This assumption is not mandatory but simplifies the presentation.
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where P is the Steklov–Poincaré matrix defined by (7.36) and B, c and d are the
matrix and vectors defined by:

Bij D
Z

�


�1r�j � r�i dx C i!
Z

�k

��j �i dx;

ci D
Z

�

��i dx;

di D M1.�i/;

for i; j 2 Ih, and where u is the vector of node values of uh.

7.7.1.2 A Formulation with Simple and Double Layer Potentials

Let us consider the coupled problem defined in Sect. 3.3.3, i.e. the variational
formulation (3.62). Let us consider again a triangulation Th of the domain � that
consists in the union of triangulations T k

h of the domains �k for k D 0; 1; 2. We
start by defining finite–dimensional spaces:

Wh WD ˚
� 2 C0.�/I �jT 2 P1.T / 8 T 2 Th


;

Hh WD ˚
q 2 L2.�/I qje 2 P0.e/ 8 e 2 Eh


:

We define the discrete problem:

8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂:

Find .Ah; ph; �h; �h/ 2 Wh � Hh � C � C such that:

B�.Ah; �/� E .�; ph/ � �h
Z

�0

v dx D L .�/ 8 � 2 Wh;

D.ph; q/ C E .Ah; q/� R.Ah; q/� h

Z

�

q ds D 0 8 q 2 Hh;

Z

�0

Ah dx D 0;

Z

�

ph ds D 0:

(7.55)

where we recall:

E .�; q/ WD
Z

�

� q ds;

R.�; q/ WD 2

Z

�

.R�/ q ds WD 2

Z

�

Z

�

@G

@ny
.x;y/ �.y/ q.x/ ds.y/ ds.x/;
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D.p; q/ WD 2
0

Z

�

.Kp/ q ds WD 2
0

Z

�

Z

�

G.x;y/ p.y/ q.x/ ds.y/ ds.x/:

The matrix formulation of (7.55) is obtained, as usual, by choosing a basis of the
spaces Wh and Hh. For Wh we choose the standard Lagrange canonical basis .�i /
and for Hh the space of piecewise constant functions with the basis qk . We obtain
the linear system:

Bu � Ep � d�h D c;

.E � R/u C D � fh D 0;

dTu D 0;

fTp D 0;

where u is the vector having as components the values of Ah at nodes and

Bij D B.vj ; vi /;

Ei` D E .vi ; q`/;

Dk` D D.qk; q`/;

Rkj D R.vj ; qk/;

di D
Z

�0

�i dx;

fk D
Z

�

qk ds:

7.7.2 The 3-D H –Model

Chapter 4 gives some models where a coupling between partial differential equa-
tions in the conductors and the harmonic equation in the outer space is used. This
again suggests the use of coupled finite element/boundary element techniques. We
shall focus the presentation on the magnetic field model described in Sect. 4.2. This
one is in fact the most popular and is at the origin of the Trifou code (see [36]).

Let us recall the magnetic field model (4.34): Denoting by K� the space

K� WD ˚
.w;  ; ˇ/ 2 H.curl;˝/ � H 1

2 .� / � CI
w � n C curl�  C ˇ curl� p D 0 on �


;
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where p is the solution of (1.20), we have the variational formulation:

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find .H ; �; ˛/ 2 K� such that

i!
Z

˝


H � wdx C i!
0

Z

�

.P�/ ds C i!L˛ˇ

C
Z

˝

��1 curl H � curl wdx D QL .w/ 8 .w;  ; ˇ/ 2 K� :

(7.56)

Let us also recall that Th is the set of tetrahedra constituting the finite element
mesh. The set of faces of theses tetrahedra is denoted by Fh while Eh is the set of
all mesh edges. In addition, F�

h (resp. E �
h ) stands for the set of faces (resp. edges)

that lie on the boundary � .
We consider the construction of a finite–dimensional subspace of K� in order to

define a variational finite element/boundary element method.
Let eij 2 Eh stand for an edge whose ends are the nodes ai ; aj 2 Nh, where

Nh is the set of nodes. As we have already defined, to eij we can associate the basis
function

� ij WD �e D �ir�j � �ir�i ;

where �i is the Lagrange basis function associated to ai in the space of continuous
piecewise affine functions. Hence we can define

Wh D fw 2 L2.˝/I � jT D bT C cT � x; bT ; cT 2 C
3; 8 T 2 Th;

Œw � n�f D 0 8 f 2 Fhg
D Spanf�ij I eij 2 Ehg:

Let us also define a finite element subspace of H 1
2 .� / by

Vh D f 2 C0.� /I  jf 2 P1.f / 8 f 2 F�
h g;

D Spanf�j I aj 2 N� g;

where N� is the set of nodes lying on � . Thus K� can be approximated by the
finite–dimensional space

K�;h WD f.w;  ; ˇ/ 2 Wh � Vh � CI w � n C curl�  C ˇ curl� ph D 0 on � g;

where ph is an approximation of p, solution of (1.20), that will be defined later.

Remark 7.7.1. It is easy to see that if we take ph D p then K�;h is a subspace of
K� . In practice this is impossible since Problem (1.20) cannot be in general solved
exactly since ph is an approximation of p.
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We define the discrete variational problem:

8
ˆ̂̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂:

Find .H h; 'h; ˛h/ 2 K�;h such that

i!
Z

˝


H h � w dx C i!
0

Z

�

.Ph'h/ ds C i!Lh˛hˇ

C
Z

˝

��1 curl H h � curl wdx D V

Z

S

curl w � nds

8 .w;  ; ˇ/ 2 K�;h:

(7.57)

Our aim is to exhibit the expression of the resulting linear system. To this end,
several issues are to be tackled:

(i) An approximation ph of the potential p.
(ii) A definition of an approximationLh of the inductance L.

(iii) A definition of the approximation Ph of the Steklov-Poincaré operator follow-
ing Sect. 7.5.1.3 is to be given.

(iv) An implementation of the interface condition on � given in the definition of
K�;h.

7.7.2.1 Approximation of the Potential p

The potential p defined by (1.20) is needed for the computation of the inductance
and for the interface condition enforced in the space K�;h.

Let us recall that by using Theorem 1.3.7 with p D 0 in ˝ , we have the integral
equation:

1

2
p.x/ �

Z

�

p.y/
@G

@ny

.x;y/ ds.y/ D
Z

˙

@G

@n
.x;y/ ds.y/ x 2 �:

In view of a finite element approximation, a variational formulation of this equation
is given by the problem:

8̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

Find p 2 H 1
2 .� / such that

1

2

Z

�

pq ds �
Z

�

�Z

�

@G

@ny

.x;y/ p.y/ q.x/ ds.y/

�
ds.x/

D
Z

�

�Z

˙

@G

@ny

.x;y/ q.x/ ds.y/

�
ds.x/ 8 q 2 H 1

2 .� /:

(7.58)
We use the space Vh to approximate functions of H 1

2 .� /. Problem (7.58) is hence
approximated by the following one:
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8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find ph 2 Vh such that

1

2

Z

�

phq ds �
Z

�

�Z

�

@G

@ny

.x;y/ ph.y/ q.x/ ds.y/

�
ds.x/

D
Z

�

�Z

˙

@G

@ny

.x;y/ q.x/ ds.y/

�
ds.x/ 8 q 2 Vh:

(7.59)

In other terms, the potential p is approximated by a continuous piecewise linear
function ph. Using the canonical Lagrange basis .�i / of Vh, we obtain the matrix
formulation

A p D b;

where the matrix A D .Aij / and the vectors b D .bi /, p D .pi / are respectively
defined by:

Aij D 1

2

Z

�

�j �i ds �
Z

�

�Z

�

@G

@ny

.x;y/ �j .y/ �i .x/ ds.x/

�
ds.y/;

bi D
Z

�

�Z

˙

@G

@ny

.x;y/ �i .x/ ds.x/

�
ds.y/;

pi D ph.ai /;

for all boundary nodes i; j 2 I �
h . Clearly the main difficulty relies on numerical

evaluation of the above integrals, the integrands being singular.

7.7.2.2 Approximation of the Inductance

Applying Theorem 4.2.3, the inductance coefficient is defined by

L D 
0

4�

Z

�

�Z

�

J � .x/ � J � .y/

jx � y j ds.x/

�
ds.y/;

where J � is the surface vector-field given by curl� p, the function p standing for
the unique solution of (1.20).

Clearly, the numerical solution of (7.59) provides the vector p having as entries
the values of ph at the nodes ai of � . Since the mesh Th is made of tetrahedra T ,
the faces of F�

h on � are triangles f 2 F�
h . For a face f 2 F�

h with vertices a
f
1 ,

a
f
2 , a

f
3 , the outer normal to f is given by

nf D .a2 � a1/ � .a3 � a1/

ja2 � a1j ja3 � a1j :
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Therefore, an approximation of curl� p is obtained by

J h
� jf WD nf � rph 8 f 2 F�

h :

In other words, we have obtained an approximation of J � as a piecewise constant
vector. An approximation of the inductance is then given by

Lh WD 
0

4�

Z

�

�Z

�

J h
� .x/ � J h

� .y/

jx � y j ds.y/

�
ds.x/

D 
0

4�

X

f;f 02F�
h

J f � J f 0

Z

f

�Z

f 0

1

jx � yj ds.y/
�
ds.x/;

where J f D J h
� jf .

7.7.2.3 Approximation of the Steklov–Poincaré Operator

We have already presented in Sect. 7.5.1.3 an approximation method for the
Steklov–Poincaré operator, where it turns out that this one is given by a dense
matrix, as expressed in (7.36).

7.7.2.4 Interface Conditions

The interface conditions contained in the space K�;h can be discretized as follows:
Let e denote a face on the boundary � , that belongs to a tetrahedon T 2 Th.

It can be proven (see [36, 88, 152]) that we have the characterization:

K�;h D ˚
.w;  ; ˇ/ 2 Wh � Vh � CI

wj� D r� . C ˇph/ on � n S;
Z

@S

w � t d` D ˇ

;

where t is the unit tangent vector to the boundary @S of the cut S , and r� is the
tangential gradient vector on � , i.e.

r�  WD r � .r � n/n on �:

Let us now denote by .�e/e2Eh and .�i /i the respective bases of the spaces Wh

and Vh. More precisely, we recall that the basis .�e/ is defined by (7.19). We also
recall the identity

�e.x/ D �i .x/r�j .x/ � �j .x/r�i.x/ D �ij .x/;
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where ai and aj are the ends of the edge e. Let eij 2 Eh denote an edge with ends
ai and aj . For any node ak 2 N �

h we define the index

ıkij WD ıjk � ıik:

Then we associate to each node ak the vector function

�k.x/ D
X
i;j

ıkij � ij .x/:

In order to express the resulting linear system of equations, it can be shown
(see [88, 152]) that the approximate magnetic field H h 2 Wh in the conductor
can be expanded as

H h.x/ D
X

e2E in
h

He�e.x/�
X

e2E �
h

�j �j .x/C ˛h�h.x/ x 2 ˝;

where �h D r� ph.
We are now ready to write down the obtained linear system of equations. Let us

define the following vectors:

Qh D .He/e2E int
h
; ' D .'i /i2I �

h
:

Taking in (7.57) successively w D �e for e 2 E int
h ,  D �i for i 2 I �

h and ˇ D 1,
we obtain the linear block system of equations:

0
BB@

A11 A12 c1

AT
12 A22 c2

cT
1 cT

2 d

1
CCA

0
BB@

Qh
'

˛h

1
CCA D

0
BB@

0

0

V

1
CCA (7.60)

Here above the involved matrices are defined as follows:

.A11/e;e0 D i!
Z

˝


 �e0 � �e dx C
Z

˝

��1 curl �e0 � curl �e dx;

.A12/e;j D �i!
Z

˝


 �j � �e dx C
Z

˝

��1 curl �j � curl �e dx;

.A22/i;j D i!
Z

˝


 �j � �i dx C
Z

˝

��1 curl �j � curl �i dx � i!
0Pij ;

.c1/e D i!
Z

˝


�h � curl we dx C
Z

˝

��1 curl �h � curl �e dx;
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.c2/i D �i!
Z

˝


�h � �i dx �
Z

˝

��1 curl �h � curl �i dx;

d D i!
Z

˝


 j�hj2 dx C
Z

˝

��1j curl �hj2 dx;

for e; e0 2 E int
h and i; j 2 I �

h . Here P D .Pij / is the discretization of the Steklov–
Poincaté operator defined in (7.36).

Numerical implementation of the linear system (7.60) is not a simple task
for it involves a collection of block matrices with different storage schemes. For
numerical solution of this system, one can resort either to a Schur complement
method or to an iterative procedure. It is noteworthy, in addition, that the matrix
of the linear system (7.60) is not hermitian but actually symmetric which reduces
the set of available iterative methods for numerical solution. In [152], numerical
tests show that the QMR (Quasi-Minimal Residual) iterative method gives the best
convergence behavior for such a matrix.

Remark 7.7.2. The previous developments can be generalized to the case of many
inductors˝k, k D 1; : : : ; N with prescribed voltages V1; : : : ; VN .

Numerical investigations on this problem have been carried out in some scientific
computing groups. We mention for this among several studies:

– The code TRIFOU developed at EDF (Électricité de France) by A. Bossavit, J.-
C. Vérité et al. and related works (see [32–34, 36, 171, 172]) are considered as
basic contributions for numerical solution of 3-D eddy current problems by finite
element methods.

– In (Rappaz et al. [152]) this model is developed for an induction heating
application. In particular, the authors consider a thin inductor approximation.
A software is developed for this purpose and numerical results are compared to
experimental measurements.

– In her PhD thesis, S. Gauthier [88] has studied the implementation of the
presented 3-D model. Practical aspects are considered in this work.

– In his PhD thesis, Henneron [96] considers development and numerical approxi-
mation of various three-dimensional eddy current models.

This list shows the main works that have inspired the authors’ contribution but this
one remains far from being exhaustive.



Part II
Selected Applications



Chapter 8
Induction Heating Processes

The rest of this book is devoted to a presentation of mathematical modelling and
numerical solution of some well known applications of low frequency electro-
magnetics (eddy current and magnetostatics) in industry. For each application, we
present the set of equations that govern the process, give some mathematical results
when they are known and present the numerical methods to solve the set of equations
as well as a series of numerical experiments.

The present chapter is concerned with induction heating processes. Induction
heating is a non-contact heating method that consists in inducing a low frequency
alternating current and magnetic field in the workpiece to treat. The induction results
in a heating of the treated piece. This energy dissipation has two origins:

– Electric energy due to the Joule effect. Its density is expressed in terms of the
function J � E which acts as a heat source for the heat transfer equation.

– In ferromagnetic materials, hysteresis cycle represented by the mapping H 7! B

results in energy losses that contribute to conductor heating. Induction heating is
therefore better suited for ferromagnetic media.

We shall in the following focus on the first issue. Applications that use induction
heating include:

• Metal melting: Induction furnaces are industrial devices that heat metals to their
melting point. This melting can be combined with the use of a moderately
high frequency current to stir the liquid metal in order to homogenize its
metallurgical properties. Other applications that involve metal melting include
forging, welding, thixoforming and other similar processes.

• Metal hardening: The flexibility and the power provided by induction heating
allow its use in metal hardening. Fast rates of cooling enable producing harder
or softer metals in the piece depending on the nature of the alloy we are working
with.

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__8,
© Springer Science+Business Media Dordrecht 2014
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In the following we address two topics in induction heating modelling:

1. We present and describe some mathematical models, quote mathematical results
about of these problems. The proofs of the results are not given. This is
because mathematical analysis of these coupled nonlinear problems requires
mathematical tools that are beyond the scope of this monograph. We however
mention references where the interested reader can find more details.

2. In view of practical applications, we consider some optimization issues of
the process. More precisely, we formulate and solve the problem of finding
process parameters, like frequency, voltage, . . . , that achieve a desired goal.
This approach is generally referred to as optimal control. We present then some
numerical experiments related to thixoforming of metals.

8.1 A Mathematical Model

Induction heating devices can be schematically represented by a workpiece to treat
surrounded by an inductor, which is generally a thin metal piece made of highly
electrically conducting material (e.g. a Copper coil). Such devices can be cold
crucibles or Induction ovens which are containers that hold a quantity of metal to be
melted. In the case of metal hardening, the device can consist in a solid workpiece
which is locally heated then suddenly cooled to obtain the desired phase transition
phenomenon.

From a mathematical modelling point of view, induction heating involves a heat
equation that handles phase change either in the case where a transition from solid
to liquid (or even gas if an ablation process is present) occurs or if a metallurgical
phase transition is to be considered. From a numerical simulation point of view, it
is clear that the first class of applications generally involves a temperature field, or
equivalently an enthalpy, distributed in the whole workpiece whereas heat treatment
mostly deals with surface treatment which implies that the temperature and all
related quantities exhibit large gradient at the surface of the considered workpiece.
This can generally require a specific treatment due to the resulting boundary layer.

The source density produced by the Joule power is given by

fJoule.x; t/ D J .x; t/ � E.x; t/:

To consider heat transfer with phase change, we resort to a formulation in terms
of enthalpy. This formulation has indeed the advantage of dealing with one fixed
domain rather than using a free boundary formulation. We have the equation (see
Rappaz et al. [151], p. 236),

@h

@t
� div.kr/ D f �

Joule;

 D ˇ.h/;
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Fig. 8.1 A typical temperature–enthalpy diagram

where t is the time variable t 2 Œ0; tmax�,  is the temperature, h is the enthalpy, and
ˇ is a given mapping that describes the relation between temperature and enthalpy.
Now since we deal, as we did it so far, with time-harmonic magnetic fields, the
Joule power density is approximated by the term f �

Joule defined as the average source
density on one time period. This means that we admit as an approximation that
thermal quantities (h and ) are influenced by time averaged Joule losses rather
than their instantaneous values. The averaged source density is defined by

f �
Joule WD !

2�

Z 2�
!

0

Re.ei!tJ .�; t// � Re.ei!tE.�; t// dt D 1

2
Re .J � E /:

The mapping ˇ depends on the material and often experiences some critical
behaviour that requires a suitable numerical treatment. As an example, we give here
a typical relation between  and h for an alloy of Aluminium and Silicium (see
[151], p. 238) (Fig. 8.1).

An alternative to the enthalpy formulation would consist in solving the heat
equation in each domain representing a phase. But this approach has the drawback to
transform the problem into a free boundary one which requires heavy front tracking
techniques for numerical solution.

Let us now present a complete three-dimensional induction heating model based
on the problem (4.32). This one consists in looking for
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A magnetic field H W R3 � .0; tmax/ ! C
3;

A temperature  W ˝ � .0; tmax/ ! R;

and an enthalpy h W ˝ � .0; tmax/ ! R

such that for all 0 < t � tmax, (4.24) holds and

@h

@t
� div.kr/ D f �

Joule in ˝; (8.1)

 D ˇ.h/ in ˝; (8.2)

with appropriate boundary conditions on  and initial conditions on h. For a general
setting of the model, it is to be pointed out that the coefficients of Eqs. (4.24)
and (8.1)–(8.2), � , 
, %, k generally depend on the temperature  or the enthalpy
h and, for the case of a ferromagnetic material, the magnetic permeability 


depends on H and on the temperature. More precisely, we assume a dependency

 D 
.jH j; /.

Problem (4.24), (8.1)–(8.2) is therefore a nonlinear system of equations where
the nonlinearities occur in the dependencies:

� D �./; % D %./; k D k./; 
 D 
.jH j; /;
 D ˇ.h/;

f �
Joule D 1

2
��1./ curl H � curl H :

Note that we have expressed the Joule source term in function of the magnetic field
H by using (4.1).

Clearly, Problem (4.24), (8.1)–(8.2) exhibits a time evolution in (8.1) while the
electromagnetic equations (4.24) use the time variable as a parameter. However, in
the simple case where the coefficients � and 
 do not depend on the temperature or
enthalpy, Problem (4.24) is decoupled from the system (8.1)–(8.2).

One important issue in the modelling of coupled equations when eddy current
problems are involved is that, in the general case, one cannot assume that the elec-
tromagnetic fields are time periodic. This is due to the nonlinearity of the system. In
addition, it seems reasonable to assume that the time scale for temperature evolution
is much larger than the period 2�=!. To handle this difficulty a possible remedy
procedure is described in [55] where the eddy current equations do not use time
harmonic fields, i.e. a time dependent eddy current problem is considered. To take
into account the presence of two time scales, a double time stepping technique is
adopted in the time discretization scheme. More precisely, each time step of the
heat equation is divided into a given (large) number of time steps to solve the
eddy current equations. For these time steps, the material properties 
 and � are
approximated by a constant in time.
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Let us give some remarks about this model:

1. Although mathematical analysis of induction heating problems experiences some
difficulties due to the lack of regularity of the Joule heating term (see for
this [53, 54] for instance), this issue has no influence on the discretization
schemes. Classical finite element formulations are well defined in standard finite
element spaces. Let us mention here the work in [45] where a finite element
approximation is defined for this class of problems and its convergence is proved.

2. The enthalpy formulation has proven to be efficient in the sense that the resulting
model handles accurately the Curie point passage. In [47, 48, 55], numerical
simulations show good agreement with experimental data.

8.2 Bibliographical Comments

Let us mention some references in the mathematical modelling and numerical
simulation of Induction Heating processes. This list is rather a selection of papers
and is by no means exhaustive.

For a mathematical analysis of the equations, we refer to [35] where an induction
heating problem in a bounded 3-D domain is formulated and existence of solutions
is established. In [52–54] the authors consider a two-dimensional geometry like
in Sect. 3.2. For this model, existence results are proved either in the stationary
[53, 54] or the evolution cases [52]. In [140, 141] a model for induction heating
for 2-D geometries as in Sect. 3.3 is analyzed. Numerical solution techniques and
industrial applications are considered in [17, 47, 48, 55, 72, 115, 125, 146, 174].
More specifically, [47, 48, 55, 146] consider a 2-D model for induction heating with
numerical solutions compared to experimental data. In [17] the authors treat an
axisymmetric geometry including thermomechanical deformations, i.e. the system
is coupled with continuum mechanics (elasticity equation). In [174] a 3-D model for
induction heating is numerically solved. Earlier papers have developed numerical
methods for the axisymmetric case [72] or in 1–D for a ferromagnetic material
[115]. Let us also mention other references that use Optimal Control to adjust
process parameters for induction heating like in [30, 73, 126–128]. This issue will
be addressed at the end of this chapter.

Let us now investigate some mathematical models used in induction heating. Our
goal is rather to point out some of the difficulties related to mathematical analysis
of these problems rather than making detailed study of these types of equations.
We shall mention however the main references to these studies. For this end the
choice of two-dimensional models seems to be judicious since it mentions the main
difficulties without going into technical details mostly related to three-dimensional
modelling of eddy currents.
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8.3 A 2-D Stationary Problem

The simplest model to consider in this section is related to induction heating of long
workpieces using two-dimensional solenoidal eddy current modelling (see Sect. 3.2,
Fig. 3.1). More specifically, using the eddy current model (3.22) and the steady state
version of (8.1)–(8.2) where the source Joule heating term is obtained by

f �
Joule D 1

2�
curlH � curlH D 1

2�
rH � rH;

we obtain the system of equations:

� div.��1./rH/C i!
./H D 0 in �; (8.3)

H D H0 on �; (8.4)

� div.k./r/ D 1

2�./
rH � rH in �; (8.5)

 D 0 on �: (8.6)

Some comments about the above system are in order:

1. We have restricted ourselves, for the electromagnetic problem, to the case of
only one conductor � with boundary � . It was shown indeed in Sect. 3.2 that it
is always possible to reduce the problem to this case.

2. For this stationary case, we have chosen for simplicity to impose a Dirichlet
boundary condition. In the case of time dependent problems Neumann boundary
conditions, corresponding for instance to thermal insulation can be prescribed.

3. Since the prescribed magnetic fieldH0 is constant (see Sect. 3.2), we can replace
the magnetic fieldH by QH WD H�H0. Then (8.3) can be replaced by an equation
with a constant right-hand side f WD �i!
H0.

4. Equations (8.3) and (8.5) are coupled via the source term in (8.5) and the fact
that, in general, the material properties k, 
 and � depend on the temperature.

Let us complete this system with appropriate assumptions on the coefficients. The
electric conductivity � , the magnetic permeability 
 and the thermal conductivity k
are assumed such that:

0 < �m < �..x// � �M ; (8.7)

0 < 
0 � 
..x// � 
M ; (8.8)

0 < km � k..x// � kM ; (8.9)

for x 2 �.
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Mathematical analysis of the nonlinear system of partial differential equa-
tions (8.7)–(8.9) exhibits difficulties that are mainly related to the structure of the
Joule power density nonlinear term. More precisely, if one seeks solutions such
that the function H is in the space H1, which is the space of finite energy for the
magnetic field, then the function rH � rH lies in L1 and the temperature  cannot
be sought in H1, i.e. the Lax–Milgram theorem (Theorem 1.2.1) cannot be applied.
To overcome this difficulty, earlier works [52–54] have considered the formulation
of the problem (8.3)–(8.6) in Sobolev spaces W1;p for p > 2 and the use of the
Schauder fixed point theorem to prove existence of a solution. Let us quote the
result obtained in [54]. This one adds to (8.7)–(8.9) the choice 
 D 
0. Note that
these additional hypotheses are not essential in the proof. We have the following
result [54]:

Theorem 8.3.1. There exists p > 2 such that (8.3)–(8.6) has at least one solution
.H; / satisfying

.H; / 2 W1;p.�/ � W1;q
0 .�/;

where q is arbitrary (in Œ1;1�) if p � 4 and satisfies 2 < q < 2p=.4 � p/ if
2 < p < 4. Moreover, there exists a constant C such that

kHkW∞;√
.�/

C kkW∞;�.�/ � C jH0j:

More recent works on nonlinear elliptic equations with L1 right-hand side using the
so-called renormalized solutions (cf. [19, 29, 86]) have been considered as a natural
framework for the formulation of problems like (8.3)–(8.6). In view of applying
this theory to our problem, the work of Gallouët–Herbin [86] can be adapted to
prove that under less regularity assumptions on the domain and with extending the
assumptions on k and 
, by assuming that they depend also on the position x, i.e.
by allowing heterogeneous material, the solution .H; / satisfies

H 2 H1.�/;  2 W1;p.�/ 8 p 2 Œ1; 2/:

We also mention here the paper of Parietti–Rappaz [141] and the PhD thesis
of Parietti [140] where the two-dimensional induction heating problem using the
transversal model for electromagnetics (see Sect. 3.3) is analyzed. Similar results
for existence of solutions are obtained. This work is completed by considering
numerical analysis of the problem by using a finite element method (see [142]).

8.4 A 2-D Time Dependent Problem

We consider here the time dependent version of the two-dimensional model
presented in the previous section. The system of equations reads:
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8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:

� div.��1./rH/C i!
./H D 0 in �;

@h

@t
� div.k./r/ D 1

2
��1./rH � rH in �;

 D ˇ.h/ in �;

h.t D 0/ D h0 in �;

H D H0 on �;

k./r � n D 0 on �:

(8.10)

We may notice that the use of a Neumann boundary condition for the temperature
(i.e., assumption of insulated boundary) is allowed since we are dealing with a time
dependent problem and, in addition, this is more justified from a physical point
of view. In this form, there is no known result of existence of a solution to this
system, up to our knowledge. We shall however mention connected works where an
evolution equation is considered for the electromagnetic problem. In other words,
we do not assume a time harmonic behaviour evolution for the electromagnetic
process. We mention for this two major works:

– In the paper by Bossavit and Rodrigues [35] the electromagnetic problem is
stated in a bounded domain assuming either a perfectly conductive or a perfectly
permeable boundary. The authors prove existence of weak solution of the system
of partial differential equations.

– In the PhD thesis of S. Clain [52], the case of the electromagnetic problem in the
whole space is considered. Using a regularization technique, existence of a less
weak solution is proved for the coupled system of parabolic equations.

One can reasonably conjecture that existence of a solution in the same type of spaces
can be obtained for (8.10) using either the technique of [52] or the one developed in
[19, 86].

8.5 Numerical Experiments

Let us present some numerical experiments illustrating an induction heating process.
We report here numerical tests as described in [152] where a three-dimensional
model is compared to an axisymmetric one to test the code effectiveness. The
simulation uses an axisymmetric toroidal workpiece as depicted in Fig. 8.2, where
the multivalued external potential p, solution of (1.20), is presented. Figure 8.3
shows temperature contours and Fig. 8.4 the current density vector.
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Fig. 8.2 The multivalued potential

8.6 An Optimal Control Problem

Eddy current processes in general and induction heating in particular involve a
wide variety of optimization problems (shape optimization, optimal control, inverse
problems, . . . ). We have chosen to illustrate here an optimal control problem of
an induction heating process. This problem is mainly associated to a particular
industrial application. The process can be described in its general setting in the
following form: Assume we want to heat a workpiece by means of electromagnetic
induction but we want to control the process in such a way that:

(i) The temperature, at a given final time, is as close as possible to a given value.
(ii) The temperature does not exceed, at any time, a given prescribed value.

To realize such an objective we assume that we have control on the frequency and
the voltage. As a typical practical application we can think of the optimization of
the thixoforming process (see [126–128]) where the metal has to be heated without
reaching the melting point. To give further flexibility to the process, we assume that
we have time intervals in which the voltage can be chosen constant. In other words,
we consider a partitioning of the time interval Œ0; T �:

0 D t0 < t1 < t2 < : : : < tM D tmax;
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Fig. 8.3 Temperature contours

where the voltage is assumed of the form

V.t/ D Re
�
ei!t

MX
jD1

Vj	j .t/
�
; 0 � t � tmax: (8.11)

Here 	j .t/ is the characteristic function of the interval Œtj�1; tj /, i.e. 	j .t/ D 1

on Œtj�1; tj / and 0 on the other intervals, and Vj are complex values. In this
presentation, we consider the two-dimensional induction heating model defined
in (8.10) as a typical problem for which some industrial investigations have been
made (see [126–128]). Extension to other eddy current models as in Chaps. 3, 4 or 5
is formally easy and requires only some technical developments. Since the voltage
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Fig. 8.4 Current density vector
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Fig. 8.5 Notation for
conductor domains

has the form (8.11), we have to start from time dependent eddy current equations,
i.e. we consider (2.14)–(2.17) where we look for a magnetic field of the form:

H .x; t/ D Re.ei!tHj .x1; x2// e3 for tj�1 � t < tj :

Recalling the definition of the conductors stated in Chap. 3 as presented in Fig. 8.5,
we obtain for each j D 1; : : : ;M the problem arising for t 2 .tj�1; tj /
(see (3.22), (3.23), (3.32)):
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8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂:

� div.��1rHj /C i!
Hj D 0 in �1 [�2;

Hj D H0j in �ext;

Hj D 0 on �C
1 ;

ŒHj � D 0 on ��
1 [ �2;

i!
Z

�2


Hj dx C i!
0j�extjH0j

C
Z

��

1

��1 @Hj

@n
ds D Vj :

(8.12)

Here H0j is the magnetic field in the free space that separates the conductors �1

and �2, which is also a constant unknown value. The equations in the conductors
can be arranged by a scaling argument. Here unlike in Chap. 3 the scaling will be
made by using the voltage values Vj rather than the magnetic field. We clearly have

Hj D uVj ; H0j D u0Vj for 1 � j � M; (8.13)

where (u,u0) is the unique solution of the following problem:

8
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:

� div.��1ru/C i!
u D 0 in �1 [�2;

u D u0 in �0;

u D 0 on �C
1 ;

Œu� D 0 on ��
1 [ �2;

i!
Z

�2


u dx C i!
0j�0ju0 C
Z

��

1

��1 @u

@n
ds D 1:

(8.14)

Let us denote by u D u.!/, the unique solution of (8.14). Let us now turn to
the heat transfer problem. We consider the enthalpy formulation given by (8.10)
where the magnetic field is written in the form (8.13) and where the heat problem
takes place in�2. The source term in the heat equation is given by averaging on one
period for each time interval Œtj�1; tj /. We obtain

8
ˆ̂̂
<
ˆ̂̂
:

@h

@t
� div.kr/ D 1

2�
ru � ruV 2

j in �2;

 D ˇ.h/ in �2;

k r � n D 0 on �2;

(8.15)

for t 2 Œtj�1; tj / with j D 1; : : : ;M . The initial condition is given by

h.x; 0/ D h0 in �2:
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Here we have assumed, for simplicity, that physical properties of the media (electric
conductivity, thermal conductivity, magnetic permeability) do not depend on the
temperature. This assumption simplifies the problem setting in the sense that the
variation of these properties with respect to control parameters will not be involved
in the optimality system.

Let us turn now to the optimal control problem. We define the cost functional

J.!; .Vj // WD
Z

�2

.h.x; T / � Qh/2 dx

C �

MX
jD1

Z tj

tj�1

� Z

�2

�
.h.x; t/ � hmax/

C�2 dx
�
dt; (8.16)

where the superscript ‘+’ stands for the positive part of a real number (zC WD
max.z; 0/). Here Qh is the constant target enthalpy that we want to reach, hmax is
a critical value of the enthalpy. By minimizing the cost functional, the first integral
in the functional imposes that the final enthalpy must be as close as possible to
Qh, in the L2–norm, while the second integral imposes, by penalty, that at all times
the enthalpy must be smaller that a critical enthalpy, which is typically the fusion
enthalpy. The real positive number � is large enough to enforce this condition. Note
in addition that we have omitted to mention the dependency of h on ! and the
voltages .Vj / in order to simplify the notation.

The optimal control problem can now be stated as the following:

8
<
:

Find .!; .Vj // 2 Uad such that

J.!; .Vj // D inf
.!�;.Vj /�/2Uad

J.!�; .Vj /�/
(8.17)

where Uad is the set of admissible controls defined by

Uad WD f.!; .Vj /MjD1/ 2 Œ!m; !M � � R
M I 0 � Vj � VM ; 1 � j � M g:

This set is simply defined by prescribing bound constraints on the control variables.
This enables using standard optimization libraries for the numerical solution.

From a theoretical viewpoint, Problem (8.17) is not easy to solve. This one
involves indeed a penalty formulation of a problem with constraints on the state
variable h. More clearly, the term using the parameter � should be removed and
replaced by the additional constraint h � hmax in the set Uad. This implies in general
singular adjoint problems (see [46] for a mathematical analysis). The formulation
we have adopted here gives, as numerical experiments show, satisfactory results for
our application.
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Numerical solution of (8.17) is handled by using the well known adjoint problem
technique (see [31] for instance). For this, we have chosen to apply the method on
the time discretized problem. It well known indeed that it is not always equivalent
to first discretize then derive the optimality system and to do the reverse approach.

8.6.1 Time Discretization

Let us define a discretization scheme that avoids dealing with the degeneracy of the
mapping ˇ. This scheme was introduced in [7].

For an integer j D 1; : : : ;M , we denote by Nj and ıtj > 0 the number of time
steps in the time interval Œtj�1; tj / and the time step, so that

Nj ıtj D tj � tj�1:

We define a time subdivision .tnj / by tnj D tj�1 C nıtj for n D 1; : : : ; Nj , 1 � j �
M . The approximation hnj of h.tnj / is defined by the following Chernoff scheme:

�
nC1
j � ˇ.hnj /

ıtj
� div.krnC1

j / D 1

2�
ru � ruV 2

j in �2; (8.18)

krnC1
j � n D 0 on �2; (8.19)

hnC1
j D hnj C �.nC1

j � ˇ.hnj // in �2; (8.20)

h0j D h
Nj�1

j�1 in �2; (8.21)

where � is a positive parameter that must be chosen (see [7]) such that

0 < � <
1

sups2R ˇ0.s/
:

In (8.18) and (8.20), nC1
j is an auxiliary variable at time tnC1

j that has the same

dimension as a temperature but is not the actual temperature, which is ˇ.hnC1
j /.

8.6.2 The Optimality System

The optimality system associated to the optimal control problem (8.17) will be
derived by using the so-called adjoint state technique (see [46] for instance). Without
detailing the theory of adjoint problems we directly consider the development for
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our problem. We start by defining the associated lagrangian to the functional J
where h and  are considered as independent variables from control variables. Let
w (resp. #) stand for the adjoint variable to h (resp. ). In other words, w (resp.
#) can be seen as the Lagrange multiplier associated to the state equation (8.20)
(resp. (8.18)–(8.19)) viewed as a constraint. The time discrete version of the
Lagrangian is defined by

L .!; .Vj /; .h
n
j /; .

n
j /I .wnj /; .#nj //

WD
Z

�2

.h
NM
M .x/ � Qh/2 dx

C �

MX
jD1

ıtj

Nj�1X
nD0

Z

�2

�
.hnj .x/ � hmax/

C�2 dx

C
MX
jD1

�
ıtj

Nj�1X
nD0

� �
ıtj

Z

�2

.nC1
j � ˇ.hnj //#

nC1
j dx

C
Z

�2

krnC1
j � r#nC1

j dx

� V 2
j

2

Z

�2

��1rH � rH #nC1
j dx

C 1

ıtj

Z

�2

.hnC1
j � hnj /wnC1

j dx

� �

ıtj

Z

�2

.nC1
j � ˇ.hnj //wnC1

j dx
��
;

(8.22)

where for a function u.x; t/, un.x/ is an approximation of u.x; tn/. Using the
identity

Nj�1X
nD0

Z

�2

.hnC1
j � hnj /w

nC1
j dx D

Nj �1X
nD0

Z

�2

hnj .w
n
j � wnC1

j / dx

C
Z

�2

h
Nj
j w

Nj
j dx �

Z

�2

h0jw0j dx;
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we obtain

L .!; .Vj /; .h
n
j /; .

n
j /I .wnj /; .#nj //

D
Z

�2

.h
NM
M .x/� Qh/2 dx

C �

MX
jD1

ıtj

Nj�1X
nD0

Z

�2

�
.hnj .x/ � hmax/

C�2 dx

C
MX
jD1

�
ıtj

Nj �1X
nD0

� �
ıtj

Z

�2

.nC1
j � ˇ.hnj //#

nC1
j dx

C
Z

�2

krnC1
j � r#nC1

j dx

� V 2
j

2

Z

�2

��1rH � rH #nC1
j dx

C 1

ıtj

Z

�2

hnj .w
n
j � wnC1

j / dx

� �

ıtj

Z

�2

.nC1
j � ˇ.hnj //wnC1

j dx
��

C 1

ıtj

Z

�2

h
NM
M wNMM dx � 1

ıtj

Z

�2

h01w
0
1 dx:

The optimality system is given by:

@L

@.hj /

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
D 0; (8.23)

@L

@.wj /

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
D 0; (8.24)

@L

@.j /

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
D 0; (8.25)

@L

@.#j /

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
D 0; (8.26)

@L

@!

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
.!� � !/ � 0; (8.27)

@L

@.Vj /

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
.V �
i � Vi / � 0 1 � i � M;

(8.28)
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for all .!�; .Vj /�/ 2 Uad, where
�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�
is a solution of

the optimal control problem.
Let us write down the expression of these directional derivatives to get the final

system to solve. We skip here computation details that can be found in [126]:

– From (8.23) we deduce for all n D 1; : : : ; Nj and j D 1; : : : ;M the following
problem:

8̂
ˆ̂̂
<
ˆ̂̂
:̂

� ˇ0.hni /
wnC1
i � #ni
ıti

C wni � wnC1
i

ıti
C � .hni � hM /C D 0 in �2;

wNMM D Qh� h
NM
M in �2;

wNii D h0iC1 in �2:

(8.29)

– Equation (8.25) yields the adjoint equation for .#j /:

8̂
<̂
ˆ̂:

� div.kr#nC1
i /C ˛

ıti
#nC1
i D ˛

ıti
wnC1
i in �2;

k
@#nC1

i

@n
D 0 on �2:

(8.30)

– Equation (8.26) results in the electromagnetic problem
– To express (8.27) we obtain after differentiating:

@L

@.Vj /

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�

D �ıti
Ni�1X
nD0

Vi

Z

�2

��1#nC1
i rH � rH dx: (8.31)

– We obtain from (8.28) after differentiating:

@L

@!

�
!; .Vj /; .h

n
j /; .

n
j /I .wnj /; .#nj /

�

D �
MX
jD1

ıtj V
2
j

Nj�1X
nD0

Z

�2

��1 Re.rH � rH!/#
nC1
j dx; (8.32)

where H! is the solution of the following problem:
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8
ˆ̂<
ˆ̂:

� div.��1rH!/C i!
H! D �i
H in �1 [�2;

H! D 0 on �2;

H! D 0 on �C
1 [ ��

1 :

(8.33)

Here (8.33) is obtained by differentiating (8.14) with respect to !.

8.6.3 An Iterative Procedure

Let us give now an iterative procedure to compute an optimal solution. We define
the following flowchart of an iterative algorithm that was extensively tested:

1. Give an initial guess of the control parameters .!0; .V 0
j // 2 Uad, and set iteration

counter r to 0.
2. Compute the pair .u; u0/ by solving (8.14), and deduce Hj D uVj for j D
1; : : : ;M .

3. Compute the enthalpy h and the temperature  by solving (8.18)–(8.21).
4. Compute w and # by solving the adjoint problems (8.29) and (8.30) successively.
5. Evaluate J as given by (8.16).
6. Calculate partial derivatives of L with respect to .Vj / and ! from (8.31) to

(8.32).
7. Update control parameters by calculating !kC1 and .V kC1

j / by a descent
algorithm.

8. Project control parameters on the set Uad.
9. If convergence is achieved then stop; otherwise set r WD r C 1, go to 2.

From a practical viewpoint, we perform steps 7 and 8 using as a descent
algorithm the BFGS method (see [31] for instance).

8.6.4 A Numerical Test

We report in this section a numerical experiment concerning a case with simple
geometry. The details of the experiment as well as physical properties of the used
materials are presented in [126,128]. The inductor consists in a cylinder with annular
section and the heated conductor has a square section (see Fig. 8.6).

The inductor has as internal diameter 175mm and thickness 10mm and is made
of copper. The inductor is also assumed to be at a constant temperature, which is a
reasonable approximation since in a realistic situation this one is cooled by a water
circuit. For the test we have chosen the following values for electric conductivity
and magnetic permeability:

� D 0:59 � 108 ��1 m�1; 
 D 
0 D 4� � 10�7 H m�1:
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Fig. 8.6 Domain and finite element mesh

The square–section conductor has a side size of 88mm and is made of alu-
minium. Its electric conductivity is � D 0:37 � 108 ��1 m�1 and the magnetic
permeability is 
 D 
0. The thermal conductivity is k D 140W m�1 K�1 and the
graph of the function ˇ is given in Fig. 8.7.

For the tests, we have chosen the initial temperature 0 D 293K and the target
temperature Q D 847K, which implies the target enthalpy Qh D 2:18 � 109 J m�3.

Numerical simulations are carried out with two types of control data:

1. In the first test, we consider two control variables: the frequency and one voltage
value. This results in a 2-variable optimization problem. To run this test we use
as initial angular frequency !0 D 2� � 104 rad s�1. In addition, no upper bound
for the voltage is used (VM D 1). For the frequency, we used the lower and
upper bounds !m D 2� � 103 rad s�1 and !M D 2� � 104rad s�1. Finally, the
penalty parameter � was chosen equal to zero.

Figure 8.8 gives isocontour lines of the cost function for a frequency varying
from 1;000 to 10;000Hz and a voltage varying from 1 to 60V. This figure
shows also the optimization path (white line) where the descent behaviour of the
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Fig. 8.7 Graph of the function ˇ

algorithm is clearly outlined. Convergence is obtained after 44 iterations giving
the control values:

! D 6;280 rad s�1; V D 10:7V:

Figure 8.9 shows the iterated values of the cost function. Clearly, the cost
function decreases rapidly to a given value corresponding to the lower bound
of frequency. This shows that the choice of control variables is not relevant. The
second choice of control variables confirms this observation.

2. The second test attempts to give more flexibility to the process in order to try
to obtain a better heating behaviour. For this, we fix the frequency to a constant
value, that is the optimal one obtained in Test 1 (! D 6;280 rad s�1), and choose
to select a series of 4 voltage values each acting during 100 s. We impose that
the voltage values remain lower than a fixed maximal value 17V. In addition we
impose a maximal value for the temperature that is M D 868K, which results a
maximal enthalpy equal to 2:53�109 J m�3. We also choose a penalty parameter
� D 100.

After 64 iterations, numerical solution of the optimal control problem gives
the control values:

V1 D 17V; V2 D 11:6V; V3 D 4:8V; V4 D 0V:
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Fig. 8.11 Isocontours of the
solid fraction function

It is noteworthy that the optimization process confirms the intuition that the
best way to obtain a close to uniform temperature is to switch off the current
for a given time period in order to privilege diffusion. In fact the higher is the
frequency, the higher the heating is concentrated near the boundary (Screen
effect). Figure 8.10 presents the iteration history for the cost function. Here a
more relevant behaviour than in the first test can be observed.

Figure 8.11 displays isocontours of the solid fraction. This function, denoted
by fs , is defined through the mapping  7! h (inverse of ˇ) by

h D
Z 

0

Cp.s/ ds C L.1 � fs.//;
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where Cp is the specific heat at constant pressure and L is the latent heat. We
note that the solid fraction values are all close to a constant (0:5), which means
that the temperature, and then the enthalpy, is close to a uniform field, which is
the desired goal. We notice here that, since the current density is small in the
angles of the conductor, their heating is more difficult.



Chapter 9
Magnetohydrodynamics and Magnetic Shaping

The term Magnetohydrodynamics (MHD) refers in general to mathematical models
that couple electromagnetic phenomena, including wave propagation, with fluid
dynamics. These models are generally involved in plasma physics, stellar dynamics,
metal liquid flows and many other applications. Here we are concerned, as this
is the case throughout this textbook, with the particular case of eddy current
problems, i.e. when wave propagation is neglected. We consider again only time
harmonic currents, which result in a time–independent (or quasi-static) problem
for electromagnetics. Moreover, we restrict ourselves in the present chapter to the
incompressible fluid dynamics case. An application with compressible fluid flow is
presented in Chap. 10. Let us notice that [91] contains a family of magnetohydrody-
namic problems with applications in aluminium electrolysis.

An important feature of magnetohydrodynamics is that when the fluid, or a part
of it, is not confined in a container, i.e. in contact with the ambient air, the shape of
the fluid domain is a priori unknown and we are faced with a free boundary problem.
This is at the origin of magnetic shaping problems with interesting industrial
applications such as electromagnetic casting.

We present in this chapter a collection of mathematical models borrowed from
industrial applications. In a first step, we consider fixed domain magnetohydro-
dynamics where the coupling between eddy current and incompressible fluid
dynamics is described. We report the most known mathematical results, up to our
knowledge. In a second step, we consider magnetic shaping applications: We start
by considering simple models where no fluid flow is present, the position of the
free boundary being described by a pressure balance equation. We see how such
models can be formulated in terms of optimization problems enabling the use of
optimization and optimal control theory for their analysis. More complete setting
of more sophisticated models where coupling with incompressible Navier-Stokes
equations is then presented.

When dealing with liquid metal flow induced by the use of Lorentz forces, two
major types of applications are encountered:

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__9,
© Springer Science+Business Media Dordrecht 2014

221
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– The Lorentz force helps maintaining the fluid in levitation and in particular
giving a particular shape of the fluid domain. Applications of this feature include
magnetic shaping. In this case, it is desirable that the gradient part of the Lorentz
force is more significant than the remaining part. It is clear indeed that the
gradient part of an external force field in the Navier-Stokes equations has no
effect on the fluid motion.

– The Lorentz force is at the origin of fluid stirring. This property can be used for
instance in melting in order to homogenize the liquid metal and avoid formation
of undesired microstructures. This feature can be used especially when the non-
gradient part of the Lorentz force is significant.

9.1 Incompressible Magnetohydrodynamics

The instantaneous density of the Lorentz force is given by the vector field f L WD
J � B (see [74] for instance). Analogously to the induction heating application,
it seems reasonable to assume that fluid motion is not sensitive to the current
frequency and then only the time average on each period of the Lorentz force drives
this motion. Following this, the applied force f L is approximated by the vector field

f �
L WD !

2�

Z 2�
!

0

Re.ei!tJ .�; t// � Re.ei!tB.�; t// dt

D 1

2
Re .J � B/: (9.1)

Let us assume that the liquid metal motion is governed by the incompressible
Navier-Stokes equations (see [117] for instance):

%
@v

@t
C % .v � r/v D 2 �div D.v/� rp C 1

2
Re .J � B/; (9.2)

div v D 0; (9.3)

where v and p are respectively fluid velocity and pressure, � and % stand for
molecular viscosity and density of the fluid, and D.v/ is the symmetric deformation
tensor

D.v/ WD 1

2
.rv C .rv/T/: (9.4)

In (9.2), the divergence of the tensor D is defined by

div D WD
3X

i;jD1

@Dij

@xj
ei :
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We can remark that by using (9.3), Eqs. (9.2)–(9.3) reduce to the more common
form:

%
@v

@t
C % .v � r/ v D ��v � rp C 1

2
Re .J � B/; (9.5)

div v D 0: (9.6)

This formulation is however less practical when natural (Neumann) boundary
conditions are to be imposed.

The electromagnetic problem can be derived by using Eqs. (2.62)–(2.65), (2.67)–
(2.68) and replacing (2.66) by Ohm’s law (2.10) for a moving conductor.

Let us summarize a three-dimensional magnetohydrodynamic problem based
on the H –model (4.24) (or equivalently (4.32)). To this end, let us denote by
˝F the domain in which lies the fluid, with boundary �F . In fact, in most
applications, the eddy current setup consists in a container filled with liquid metal
to stir and the remaining conductors are “solid” conductors that actually stand either
for inductors or any other devices.

Clearly, the H –model (4.24) must be updated in order to take into account the
use of Ohm’s law (2.10). The system of equations (4.25)–(4.27) can now replaced
by:

i!
H C curl E D V ı@S ;

curl H D J ;

J D �.E C v � B/;

in R
3. Following the same approach as in Chap. 4 we eventually obtain the

variational formulation:
8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
:̂

Find H 2 H such that

i!
Z

R3


H � k dx C
Z

˝

��1 curl H � curl kdx

C
Z

˝F


 .H � v/ � curl k dx

D V

Z

S

curlS kds 8 k 2 H;

(9.7)

where V is the current voltage and H is the space defined in (4.23), and where a
Green formula has been used to obtain the term involving v with minimal regularity
requirement on it.

Some remarks can be made about (9.7):

1. As far as numerical solution of this problem is concerned, we can resort like
for (4.24) to the formulation (4.32).
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2. The coupling term is a nonlinear convection-like term. However, it is common to
neglect this term in most melt flows. In this case, problems (9.7) and (9.5)–(9.6)
are decoupled.

The final model consists then in looking for:

A magnetic field H W R3 � .0; tmax/ ! C
3;

A velocity v W ˝F � .0; tmax/ ! R
3;

and a pressure p W ˝F � .0; tmax/ ! R

such that for t 2 .0; tmax/, the pair .H ; v/ satisfies the variational problem (9.7) and

%
@v

@t
C % .v � r/ v � 2�div D.v/C rp D 


2
Re.curl H � H / in ˝F ; (9.8)

div v D 0 in ˝F : (9.9)

Here tmax > 0 is the maximal time value for a simulation.
The system of equations (9.8)–(9.9) must be supplied with the condition at the

infinity (4.5) and appropriate boundary conditions for v on the boundary�F as well.
Let us give some additional remarks about the system (9.7)–(9.9) and its

properties:

1. As it can be noticed, the hydrodynamic problem is time dependent, whereas the
electromagnetic problem is quasistatic in the sense that the electromagnetic fields
are assumed periodic in time. This means that we have assumed, for this type of
problem, two time scales: The small time scale for electromagnetics in which the
fields are assumed to oscillate with a frequency !=2� and the large time scale
that governs evolution of velocity and pressure. Due to the nonlinearity of the
problem, a rigorous formulation would not enable time periodic electromagnetic
fields but, as a first approximation, it is reasonable to assume that the large time
scale does not affect this periodicity.

2. Considering the Lorentz force term, we have the classical vector identity:

Re .curl H � H / D Re ..H � r/H / � 1

2
r.H � H /:

The second term in the right-hand side can be viewed as a Magnetic Pressure.
Indeed, if we define a new pressure field Qp by

Qp WD p C 


4
H � H ;
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Equation (9.8) becomes

@v

@t
C .v � r/ v � 2�div D.v/C r Qp D 


2
Re ..H � r/H / in ˝F ; (9.10)

for all t with 0 < t � tmax.
It is well known that, from a numerical point of view (see for instance [90]),

using (9.10) is more advantageous than (9.8). This is due to the fact that the
gradient part of the body force term can be large and consequently produces
a significant numerical error on the velocity. Proceeding in this way does not
however remove completely the difficulty. Indeed the right-hand side of (9.10)
can still contain a gradient contribution. To handle this, we use the Helmholtz
decomposition of this vector




2
Re ..H � r/H / D r' C curl w;

by minimizing the Euclidean norm of curl w. It is then well known that if .H �
r/H 2 L2.˝F / then the vector r' is given by the projection of the force term
on all the gradients of H1–functions (see [26] for instance). This is obtained by
solving the elliptic problem:

8
ˆ̂<
ˆ̂:

��' D �

2

Re
�
div..H � r/H /

�
in ˝F ;

@'

@n
D 


2

�
Re.H � r/H � � n on �F :

9.1.1 A 3-D MHD Problem Using the Magnetic Field

Let us consider the model given by (9.7)–(9.9). To this system we add the boundary
condition

v D 0 on �F ;

that expresses that the fluid is confined in its container. Of course, other types of
boundary conditions can be envisaged.

Let us define the space in which lies the velocity field

V WD fv 2 H1
0.˝F /I div v D 0g:
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We have the variational problem:

8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
:̂

Find .H ; v/ 2 H � V such that for all .k;w/ 2 H � V W

i!
Z

R3


H � k dx C
Z

˝

��1 curl H � curl k dx

C
Z

˝F


 .H � v/ � curl k dx

D V

Z

S

curlS kds;

2�

Z

˝F

D.v/ W D.w/ dx C
Z

˝F

.v � rv/ � wdx

D 1

2

Z

˝F


Re. curl H � H / � w dx:

(9.11)

Note that, as this is usually the case for Navier-Stokes equations (see [93] for
instance), an equivalent formulation is given by:

8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:

Find .H ; v; p/ 2 H � H1
0.˝F / � L20.˝F / such that for all

.k;w; q/ 2 H � H1
0.˝F / � L20.˝F / W

i!
Z

R3


H � k dx C
Z

˝

��1 curl H � curl k dx

C
Z

˝F


 .H � v/ � curl kdx

D V

Z

S

curlS k ds;

2�

Z

˝F

D.v/ W D.w/ dx C
Z

˝F

.v � rv/ � w dx �
Z

˝F

p div wdx

D 1

2

Z

˝F


Re.curl H � H / � wdx;

Z

˝F

q div v dx D 0;

where

L20.˝F / D ˚
q 2 L2.˝F /I

Z

˝F

q dx D 0

:
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9.1.2 A 2-D MHD Problem Using the Magnetic Potential

To illustrate a system of equations in incompressible magnetohydrodynamics, we
present a two-dimensional problem that is considered in [149] for a mathematical
analysis. The electromagnetic model is the one presented in Sect. 3.3. More
precisely, if we assume we are given a collection of conductors as schematically
presented in Fig. 3.3 where the liquid metal is confined in the domain�1 and where
�2 and �3 stand for the cross-section on the Ox1x2 plane of a unique inductor
parallel to the Ox3–axis. Recalling that when the current density J is assumed
aligned with the x3–axis, there exists a scalar potential A that satisfies (3.36). We
can then derive an analogous to the system (3.38)–(3.41) by using Ohm’s law (2.10)
in �1. Since in this case we have B D B1 e1 C B2 e2 and E D E e3, we obtain
with v D v1e1 C v2e2:

J D �.E C v1B2 � v2B1/ D �.E � v � rA/ in �1: (9.12)

Moreover, we have from (3.3) the existence of constants Ck , k D 1; 2; 3 such that

i!AC E D Ck in �k; k D 1; 2; 3:

The Ohm’s law (9.12) combined with (3.1) gives

�.E � v � rA/ D curl H

D curl.
�1 curlA/

D � div.
�1rA/:
Then we have

i!�A � div .
�1rA/C �v � rA D �Ck in �k: (9.13)

where the constants Ck are calculated in the same way as for (3.44). More precisely,
by using (9.12), and (3.34), (3.35):

Z

�2

J dx D �
Z

�3

J dx D I;

Z

�1

J dx D 0;

where I is the prescribed total current in the inductor, we obtain

C1 D i!M1.�A/CM1.�v � rA/
M1.�/

;

C2 D I C i!j�2jM2.�A/

j�2jM2.�/
;

C3 D �C2;
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with

Mk.�/ WD 1

j�kj
Z

�k

� dx:

The instantaneous Lorentz force expressed in terms of A and v is given by

f L D � .C1 � i!A � v � rA/rA in �1

D �

�
i!M1.�A/CM1.�v � rA/

M1.�/
� v � rA � i!A

�
rA:

Averaging this expression on one time period, we obtain according to (9.1),

f �
L D �!

2
Im

��
A� M1.�A/

M1.�/

�
rA

�

C �

2
Re

��M1.�v � rA/
M1.�/

� v � rA
�

rA
�
:

The derivation of the final system of equations is now straightforward. To
simplify the presentation, let us give this model for the particular case where the
conductivity is constant in each conductor �k , k D 1; 2; 3. Let us first notice that
we have in this case, by using the Green formula and the fact that v will be required
as to be divergence free and to vanish on �1:

Z

�1

�v � rAdx D �j�1
Z

�1

div.Av/ dx � �j�1
Z

�1

A div v dx

D �j�1
Z

�1

A v � nds

D 0:

The Lorentz force becomes then in this case:

f �
L D �

2

�
! Im .A�M1.A//� Re .v � rA/�rA:

We can now deduce the final system of equations for k D 1; 2; 3:

� div.
�1rA/C i!�.A �Mk.A//C �v � rA D Ik

j�kj in
3[

kD1
�k; (9.14)

�A D 0 in �ext; (9.15)
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� 2� div D.v/C % .v � r/v C rp � �!

2
Im .ArA/

C �

2
Re ..v � rA/rA/ D 0 in �1; (9.16)

div v D 0 in �1; (9.17)

M1.A/ D 0; (9.18)

ŒA� D
h

�1 @A

@n

i
D 0 on �; (9.19)

A.x/ D ˇ C O.jxj�1/ jxj ! 1; (9.20)

v D 0 on �1; (9.21)

where the constants Ik are given by

I1 D 0; I2 D I; I3 D �I;

the constant I denoting the imposed total current in the generator device. Note here
that without Condition (9.18) the previous problem would have a solution .A; v; p/
with A known up to an additive constant. Condition (9.18) is then helpful to fix the
value of this constant.

The mathematical model (9.14)–(9.20) was studied in [149] where existence of
a solution .A; v; p/ is obtained and where uniqueness of this solution is ensured
if the viscosity � is “large enough”. In addition, a numerical method is established
in [150]. It consists in coupling the use of a standard finite element method in the
conductors and a boundary element method to represent the external potential A
on the boundary � . The convergence of the constructed numerical method is then
proved.

More precisely we have the following result (cf. Rappaz–Touzani [149]).

Theorem 9.1.1. Problem (9.14)–(9.20) has at least one solution

.A; v; p/ 2 W1.R2/ � W1;4.�1/ � L20.�1/:

As far as uniqueness of solutions is concerned, we have the same uniqueness
result type as for the stationary Navier-Stokes equations. We quote here a result in
[149] where the proof can be found.

Theorem 9.1.2. Assume that the ratio I�� 1
2 is small enough, then Problem (9.14)–

(9.21) has a unique solution.
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9.1.3 Bibliographical Comments

All the results we have mentioned here concern the coupling of stationary incom-
pressible Navier-Stokes equations with the eddy current models presented in
Chaps. 3 and 4. Let us mention some related works concerning either mathematical
or numerical analysis of coupling between incompressible Navier-Stokes and eddy
current equations.

– In [99] R.V. Hernandez considers a general purpose model that takes into account
in addition to magnetohydrodynamics, heat transfer, i.e., induction heating. He
studies existence and possible uniqueness of solution of the obtained system. This
analysis concerns the case of steady state solutions, i.e., only magnetostatics are
handled in this case.

– In [22] A. Bermúdez et al. develop a model that couples a quasi-static eddy
current model with hydrodynamics and heat transfer. Numerical solution of the
resulting system is obtained by a finite element method.

– A. Meir and P.G. Schmidt [129, 130] have considered the coupling of the
stationary Navier-Stokes equations with magnetostatics, the problem being
formulated with realistic boundary conditions, i.e. in the whole space. For this
system they have shown well–posedness of the problem. Moreover, in [129],
additional coupling with the heat equation is considered.

– In [91] J.-F. Gerbeau, C. Le Bris and T. Lelièvre derive and analyze various
models for magnetohydrodynamics. In particular, they consider first a one-fluid
time dependent model in which either magnetostatics or evolution eddy current
equations (i.e. no time harmonic hypothesis is assumed) are considered. The
also study a two-fluid model in which the multifluid feature is handled by a
density dependent electric conductivity. This adds a mass conservation equation
to the system. Existence of solutions of various models is proved. Numerical
analysis of the equations is also considered. Note that, in all these cases,
electromagnetic equations are formulated in a bounded domain by assuming a
perfectly conducting boundary, i.e. by prescribing

B � n D 0; curl B � n D 0

on the conductor boundary.

The above list is not exhaustive. We have mainly quoted the works that are close to
the models presented here.

9.2 Eddy Current Free Boundary Problems

Most of melt flow applications involve free boundaries, where a part of the fluid
domain boundary is in contact with the free space and has unknown shape. This
shape is entirely determined by a balance between the fluid pressure and the free
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space pressure. The mathematical formulation of the problem involves then the so-
called Laplace-Young equation (see [116] for instance):

�� D pF � pA (9.22)

where pF and pA denote the fluid and air pressures respectively, � is the fluid
surface tension and � is the curvature (mean Gauss curvature in the three-
dimensional case) of the free boundary. Let us present some models that have been
studied by some authors where mathematical and/or numerical approaches have
been considered:

1. A first family presents simple models in which no fluid flow is available in the
fluid part. In addition, the problem is simplified by assuming that the current
density vector is given. This is equivalent to say that the induced current is
neglected when compared to the source current. For these cases we first consider
2-D models where we assume in addition that the magnetic field does not
penetrate the conductor. This yields a condition on the conductor boundary which
results in a problem in a bounded domain. A 3-D model is also presented. For
all these models, we present the mathematical setting as well as mathematical
results when they are available.

2. In the second family we reconsider the two-dimensional magnetohydrodynamic
problem studied in Sect. 9.1.2 and add the fact that a part of the boundary � is
unknown.

9.2.1 A 2-D Simple Magnetic Shaping Model

Magnetic shaping is the making of metal workpieces by solidifying molten metal,
the shape being a result of a chosen configuration of inductors. A relevant issue
in this domain is to consider the inverse problem consisting in prescribing the
desired shape of the workpiece and trying to determine the shape and position of the
inductor(s) that produce this shape. Some authors have studied, as we shall outline,
this issue.

The term ‘simple model’ means here that a series of simplifying assumptions are
made:

– The current density is given and its support lies outside the workpiece.
– No fluid flow is present, i.e. the metal workpiece shape is determined by the

hydrostatic pressure only.
– The boundary of the molten metal domain is perfectly electrically conducting.

We consider the making of a cylindrical tube˝ D ��R by magnetic shaping. Due
to this geometry, the current density vector is assumed to be parallel to theOx3–axis
and to be independent of x3:
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Fig. 9.1 Setup for a 2-D
magnetic shaping problem

J .x1; x2; x3/ D J.x1; x2/ e3:

Figure 9.1 shows a typical section � of the conductor as well as the inductors.
Using the same technique as in Sect. 3.3, the magnetic induction has the form

B.x1; x2; x3/ D B1.x1; x2/ e1 CB2.x1; x2/ e2;

and we have the existence of a potential A such that (see (3.36))

��A D 
0J in R
2:
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Considering boundary conditions, the assumption of a perfectly electrically con-
ducting boundary � of � means that the magnetic induction B does not penetrate
the conductor, i.e.

B � n D 0 on �:

This assumption implies first that the above partial differential equation can be
reduced to the exterior domain �ext WD R

2 n �, and second that the potential A
is constant along � . Since this one can be chosen up to an additive constant, we
enforce

A D 0 on �:

In addition, we have, according to (2.26)–(2.28) the condition at the infinity:

A.x/ D ˇ C O.jxj�1/ jxj ! 1;

where ˇ 2 R. These conditions are sufficient to solve the problem in the conductor
if the domain � is known. Since this one is unknown, an additional condition
is necessary. This is obtained by expressing a pressure balance equation. More
precisely, we have for the Lorentz force the expression

f L D J � B

D 1


0
curl B � B

D 1

2
0
rjBj2 � 1


0
.B � r/B:

We note that no time averaging is involved here like in (9.1) since we deal with real
valued fields, the current density being given.

It is classical in magnetohydrodynamics (see [165] for instance) to assume
that for large frequencies, the fluid flow is mainly due to the gradient part of the
Lorentz force, and therefore the pressure on the free boundary can be reasonably
approximated by the term 1

2
0
jBj2. Now, since the pressure of the ambient air is

constant, we have the balance equation

1

2
0
jBj2 D 1

2
0
jrAj2 D Const. on �: (9.23)

We can now summarize the obtained free boundary problem as follows: We seek a
function A W �ext ! R and a closed curve � which is the boundary of � such that:

��A D 
0J in �ext; (9.24)
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A D 0 on �; (9.25)

1

2
0
jrAj2 D � on �; (9.26)

A.x/ D ˇ C O.jxj�1/ jxj ! 1; (9.27)

where the positive constant � is given. We note that since A D 0 on � then its
tangential derivative is also null and then (9.26) can be replaced by the Neumann
boundary condition:

@A

@n
D
p
2
0� on �: (9.28)

Remark 9.2.1. Problem (9.24)–(9.27) is known as the Bernoulli problem. For
the mathematical analysis (existence, uniqueness and non-uniqueness, stability,
qualitative properties), we refer to [63, 64, 76, 98] for instance and the references
therein. For numerical aspects of the problem and the design of efficient solvers, we
refer to [37, 114].

Remark 9.2.2. An interesting variant of (9.24)–(9.26) consists in taking into
account surface tension. For this, (9.23) is replaced by the Laplace–Young equation

1

2
0
jrAj2 C �� D � on �;

where � is the curvature of � and � > 0 is the surface tension of the liquid
metal (see [117] and [91]). In this case, additional conditions called wetting angle
conditions have to be added. In fact, any parameterization of the boundary �

involves for the expression of the curvature a second order derivative (with respect
to curvilinear coordinates). The above equation appears then as a second order
ordinary differential equation that requires for its solution, boundary conditions for
the curvilinear abscissa.

Remark 9.2.3. Condition (9.26) is valid if the problem is formulated in theOx1x2–
plane. Otherwise, a gravity potential term must be added to the left-hand side of the
equation, i.e.

1

2
0
jrAj2 C %gx3 D � on �;

where g is the gravity acceleration.

Without further precision, we mention here existence results in Henrot–Pierre [98]
and studies on stability of the obtained shapes in Descloux [63, 64].
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9.2.2 A Level Set Formulation of the Magnetic Shaping Model

Let us briefly present a formulation of (9.24)–(9.26) that is more adapted to its
numerical solution.

Traditional methods for the numerical solution of (9.24)–(9.26) consist in the
so-called Front Tracking Methods, i.e. the unknown boundary � is considered as a
perturbation of a reference boundary �0 following its outward unit normal. We then
have to look for a closed curve

�t D �0 C tn WD fx C tn.x/I x 2 �0g; t > 0; (9.29)

where n is the outward unit normal to �0. Once �0 is parameterized, Eq. (9.29) is
expressed as a first-order ordinary differential equation since the normal vector
involves the derivative of the parameterization function. The variable t drives the
iteration process. This approach yields a simple formulation that we do not intend
to detail here, but it requires sufficient regularity of the boundary and furthermore
the computation of the normal vector n which needs much care in the discrete case.

An alternative approach, referred to as level set formulation, has been success-
fully used in [37, 114] with accurate results even for non regular situations.

Like for the Front Tracking method, we deal here with a parameter that drives
the iterations when numerical solution is involved. This parameter plays the role of
a pseudo-time. Let us consider various boundaries �.t/ obtained for various “time”
values t > 0 with given “initial” boundary �0 and let us define �.t/ as the 0-level
set of a function �, i.e.

�.t/ D fx 2 R
2I �.x; t/ D 0g; t > 0:

We have for � (see [164]) the level set equation

@�

@t
C F jr�j D 0 in R

2; t > 0; (9.30)

where the initial condition is computed from the reference boundary �0 and F is the
“propagation speed” of the front �.t/. In general the level set equation is defined on
the boundary and needs then to be extended to a fixed domain that contains

[
t>0

�.t/:

The propagation speed function can be defined in an adequate way. For instance,
in [37, 114] Problem (9.24), (9.25), and (9.28) is solved by defining the following
iterative procedure: Given a boundary �k of the exterior domain �k

ext at the k-
iteration, we solve the Neumann problem:
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8
ˆ̂̂
<̂
ˆ̂̂
:̂

��Ak D 
0J in �k
ext;

@Ak

@nk
D
p
2
0� on �k;

Ak.x/ D ˇ C O.jxj�1/ jxj ! 1:

(9.31)

Problem (9.31) has a unique solution, up to an additive constant, given by the
representation (see the proof of Theorem 1.4.5):

1

2
Ak.x/ �

Z

�k

@

@ny

G.x;y/Ak.y/ ds.y/ D 
0

Z

�kext

J.y/G.x;y/ dy

�
p
2
0�

Z

�k
G.x;y/ ds.y/C ˇ x 2 �k; (9.32)

where ˇ 2 R, andG is the Green function given by (1.50). Note that the integral on
�k

ext reduces actually to the support of J which is a bounded set.
The propagation speed function at current iteration is then defined by Fk D Ak .

To extend the level set function, the function Fk is extended by a Fast Marching
technique (see [164] for instance). The updated function � is defined by using a
Forward Euler scheme to the Eq. (9.30), i.e.

�kC1 D �k � �Fkjr�kj;

where � > 0 is a pseudo-time step that has to be chosen carefully (see [37]). The
new boundary is naturally defined by

�kC1 WD fxI �kC1.x/ D 0g:

Implementation details of this method can be found in [37] or [114] for a fast solver
version.

Remark 9.2.4. One of the main features of level set formulations is that the
geometric properties can be intrinsically deduced from the level set function �. The
unit normal to � is defined by

n.x/ D r�.x/
jr�.x/j :

Moreover, if the surface tension formulation is used, the curvature can be obtained
from the formula:

�.x/ D r �
� r�.x/

jr�.x/j
�
:
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Mould

Vaccum

Inductor

Molten Metal

Fig. 9.2 Setup for a 2-D
magnetic shaping problem

9.2.3 A Variant of the 2-D Model

We consider here a different configuration from the previous one, where the molten
metal is confined in a mould. Figure 9.2 gives a schematic representation where
we have a solid mould and the molten metal occupies a domain where a part of it
adheres to the mould and another part is assumed to be in contact with a free space
that separates it from the inductor.

We denote by � the domain consisting of the inductor and the vacuum between
this one and the molten metal domain, and by �ext D R

2 n�. We also denote by �
the (unknown) boundary of �. Clearly the molten metal domain has a known part
of its boundary that it shares with the mould and an unknown one that shares with
�.

We use here the same hypotheses than for the first variant and add the assumption
that the current density has its support contained in the inductor. Furthermore, we
assume, as it may seem physically reasonable that the constant � is not known but
the area of � is known. This is equivalent to say that the area of the molten metal
domain is known. We obtain by the same approach as before the following system
of equations:

��A D 
0J in R
2; (9.33)

A D 0 on �; (9.34)

j�j D m; (9.35)

wherem > 0 is the prescribed measure (area) of �.
Let us now give a mathematical setting for this problem and quote an existence

result. We follow for this the formulation proposed by Crouzeix [60] which is based
on the definition of (9.33)–(9.35) as an optimization problem.
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We seek a solution .A; �/ of (9.33)–(9.35) such that the potentialA lies in the set:

X WD fv 2 H1.R2/I j�j D mg;

We next define the functional

W.v/ WD 1

2

Z

R2

jrvj2 dx � 
0

Z

R2

J v dx;

and the optimization problem:

Find A 2 X such that W.A/ D inf
v2X W.v/; (9.36)

We have the following result, due to Crouzeix [60]:

Theorem 9.2.1. Assume that the given current density J is a bounded function
with a support contained in the inductor. Then, Problem (9.36) admits at least one
solution.

Numerical solution of (9.36) can be naturally tackled by optimization techniques.

9.2.4 A 3–D Magnetic Shaping Problem

Let us apply the same approach for the three-dimensional case. For more details,
the reader is referred to Pierre and Roche [144]. We consider the same setting
as in Sect. 9.2.1. In other words, ˝ will stand for a conductor made of an
electrically conducting liquid metal with boundary � , and ˝ext is the exterior
domain. Adopting again the hypothesis of nonpenetrating magnetic field, we obtain
the set of equations:

curl B D 
0J in ˝ext; (9.37)

div B D 0 in ˝ext; (9.38)

B � n D 0 on �; (9.39)

1

2
0
jBj2 C �� C %gx3 D � on �: (9.40)

where again, the magnetic permeability is assumed constant and equal to 
0. Note
that (9.40) involves the potential due to the gravity since this one is a part of
the external pressure. A usual difficulty in the three-dimensional modelling is that
the potential is vector-valued unlike the two-dimensional case where this one is
scalar valued. We shall adopt hereafter an approach similar to the one described
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in Sect. 2.3.2 that consists in splitting the potential into a vector part that can be
explicitly expressed and the gradient of a scalar field.

Let us define the vector field

B0.x/ WD 
0

4�

Z

R3

J .y/ � .x � y/

jx � yj3 ds.y/ x 2 R
3:

According to the calculations made in Sect. 2.3.2, we have:

curl B0 D 
0J ; (9.41)

div B0 D 0: (9.42)

From (9.37) and (9.41), we deduce that curl .B � B0/ D 0, and then owing to
Theorem 1.3.4 there exists a scalar field ' such that

B D B0 C r' in ˝: (9.43)

Moreover, (9.38) and (9.42) imply

�' D 0 in ˝: (9.44)

A boundary condition for the potential ' is obtained from (9.43) and (9.39):

@'

@n
D �B0 � n on �: (9.45)

Note that using Theorem 1.3.7, we have for the solution ' the expression

'.x/ D 1

4�

Z

�

p.y/

jx � yj ds.y/ 8 x 2 �;

where p is the unique solution in H 1
2 .� / of the integral equation:

1

2
p.x/C 1

4�

Z

�

p.y/
n.x/ � .x � y/

jx � yj3 ds.y/ D B0.x/ � n0.x/ 8 x 2 �:

Completing the system of equations with a prescribed volume constraint, the
magnetic shaping problem can then be summarized as follows:

Given m > 0; J W R3 ! R
3;

Find B W ˝ ! R
3; ˝ � R

3; � 2 R such that:

B D B0 C r' in ˝; (9.46)
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B0.x/ WD 
0

4�

Z

R3

J .y/ � .x � y/

jx � y j3 dy 8 x 2 ˝; (9.47)

'.x/ D 1

4�

Z

�

p.y/

jx � y j ds.y/ 8 x 2 ˝; (9.48)

1

2
p.x/C 1

4�

Z

�

p.y/
n.x/ � .x � y/

jx � yj3 ds.y/

D B0.x/ � n.x/ 8 x 2 �; (9.49)

1

2
0
jBj2 C %gx3 D � on �: (9.50)

j˝j D m; (9.51)

where m > 0 is the prescribed volume of ˝ . More clearly, if the domain ˝ (and
then its boundary � ) is given, then the solution of (9.46)–(9.49) is obtained by
performing the following steps:

(i) The magnetic induction B0 in ˝ is computed by (9.47).
(ii) We compute p by solving the integral equation (9.49) on � .

(iii) We compute the scalar potential ' on ˝ by (9.48).
(iv) Finally the magnetic induction B is updated by (9.46).

9.3 An Electromagnetic Casting Problem

Let us consider (9.14)–(9.20) and assume that a part �F of � is unknown. This
situation is encountered in various applications like in Electromagnetic Casting
(see [26] for instance). Figure 9.3 presents a schematic representation of an
electromagnetic caster.

Electromagnetic casting (also called EMC) consists in solidifying liquid metals
by making use of electromagnetic field. This field is generated by an alternating
current which flows in the inductor. The Lorentz force maintains the melt flow
in levitation and consequently avoids using sand moulds. The main advantage of
such technology—in contrast with classical casting technologies—is the presence
of stirring in the melt, which results in a reduction of the grain size in the solidified
workpiece. More detailed descriptions of the process can be found for instance in
[21, 161].

From a mathematical viewpoint simulation of an EMC process requires taking
into account at least electromagnetic and hydrodynamic phenomena. We omit here
to study the solidification process, this one being considered as independent of
the others. The model we need here was already presented in Sect. 9.1.2 in the
case where the ingot is assumed infinite in the Ox3 direction, the only remaining
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Fig. 9.3 An electromagnetic casting setup

difficulty is that the domain occupied by the fluid is a priori not known. The
equation (9.22) has then to be added to describe the whole process.

Let us now translate (9.22) in terms of the unknowns involved in (9.14)–(9.20).
The fluid pressure is defined by the normal traction on the free boundary �F and the
external pressure is constant by assuming that the ambient air is static. This implies

�� D p � 2 �nTD.v/n � pA on �F ; (9.52)

where the tensor D.v/ is defined by (9.4) and n is the outward unit normal to �F .
Note that the value of the pressure pA is unknown and, due to this, an additional
condition must be supplied. For this, the value of the “height” of the liquid zone is
imposed in [26]. Another possible choice is to prescribe the area of this zone.

At last, since we are dealing with a free boundary problem, the boundary
condition on �F for v and p must be relaxed and replaced by a slip boundary
condition. To summarize, the problem consists in looking for the potentialA W R2 !
C, the velocity v W � ! R

2, the pressure p W � ! R, the free boundary �F and a
real number pA such that:

� div.
�1rA/C i!�.A �Mk.A//C �v � rA D Ik

j�kj in
3[

kD1
�k; (9.53)

�A D 0 in �ext; (9.54)

� 2� div D.v/C % .v � r/v C rp � �!

2
Im .ArA/

C �

2
Re ..v � rA/rA/ D 0 in �1; (9.55)
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div v D 0 in �1; (9.56)

M1.A/ D 0; (9.57)

ŒA� D
h

�1 @A

@n

i
D 0 on �; (9.58)

A.x/ D ˇ C O.jxj�1/ jxj ! 1; (9.59)

v � n D 0 on �F ; (9.60)

nTD.v/ t D 0 on �F ; (9.61)

v D 0 on �1 n �F ; (9.62)

�� C p � 2 �nTD.v/n D pA on �F ; (9.63)

j�1j D m; (9.64)

where m > 0 is given, t is the unit tangent vector to �F such that the pair .t;n/ is
positively oriented. Here again, if the boundary �F is known, then (9.53)–(9.62) is
well defined. This remark suggests an iterative procedure for the numerical solution
of (9.53)–(9.64).

To end, let us refer for a practical implementation of this model and its
application in the aluminium industry to Besson et al. [26].

Remark 9.3.1. The interest of (9.53)–(9.64) goes beyond electromagnetic casting
and defines a general setting for free boundary magnetohydrodynamic flows.



Chapter 10
Inductively Coupled Plasma Torches

We investigate in this chapter another type of application using eddy currents. An
Inductively Coupled Plasma torch (commonly referred to as ICP) is a technical
device used to analyze a given sample (gas, solid or liquid prepared as an aerosol)
by injecting it in a plasma (generally made of argon) (see Fig. 10.1). The sample
atoms are thus ionized thanks to the high temperature of the plasma. In such
devices, energy is supplied by Joule heating to maintain a plasma source to a given
temperature. This source is useful to dissolve, vaporize and ionize gas and a sample
to analyze. An ICP generally includes a sample introduction system (generally a
nebulizer), an ICP torch, a radio frequency generator and a spectrometer. More
detailed description and applications of ICP torches can be found for instance in
[1, 25, 133].

From a modelling point of view we are in presence of a compressible fluid flow
where the energy is maintained by Joule heating. In addition, a closer look to an ICP
experiment shows that the process can be considered as stationary.

10.1 The Model

Mathematical modelling of ICP devices requires the coupling of induction heating
with the plasma and gas flow. A specific difficulty arises in this application in the
fact that the electrically conducting region of the computational domain is not a
priori known. This region consists in the inductors, any metallic component in the
ICP device and the part of the gas which is transformed by heating into plasma. This
part is characterized by its (unknown) temperature (or enthalpy or internal energy)
when it exceeds a known critical value which depends on the chosen gas.

Let ˝ stand for the open set in R
3 made of the union of conducting parts with

boundary � and let ˝ext stand, as usual, for the nonconducting parts, including
the free space (˝ext WD R

3 n ˝). As explained before, one should refer to these
domains as ˝.e/ and ˝ext.e/ respectively, where e is the internal energy. We shall

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__10,
© Springer Science+Business Media Dordrecht 2014
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Fig. 10.1 An ICP device
(Courtesy of the Laboratoire
de l’arc électrique et plasmas
thermiques, Université Blaise
Pascal, France)

however avoid this notation for conciseness. In the sequel, we shall need to mention
the domain that contains the fluid (gas), denoted by ˝F , with its boundary �F .
This domain is given once for all since the gas is confined in a quartz container.
Figure 10.2 illustrates the different parts of the conducting and nonconducting
domains in the ICP setup. Let us now write down the model by distinguishing
electromagnetic and hydrodynamic phenomena.

10.1.1 Eddy Currents

The main issue in choosing an eddy current model is the requirement that such a
model should degenerate naturally from the equations in the conductors to those of
the vacuum. More clearly, the choice of H –model in Sect. 4.2 does not fulfill this
condition since the term involving ��1 becomes singular in the vacuum. The E–
model presented in Sect. 4.3 seems to be the most adapted to this situation. We note
that models based on the vector potential A are also used for this purpose in some
commercial codes.

Let us start by recalling a typical conductor setup where ˝k is collection of
conductors, which are connected and bounded domaines in R

3, with respective
boundaries �k and defining

˝ WD
[
i

˝i ; ˝ext WD R
3 n˝:
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Fig. 10.2 Typical geometry
of an ICP setup

We have the set of equations:

curl .
�1 curl E/C i!�E D �i!J 0 in R
3; (10.1)

div E D 0 in ˝ext; (10.2)
Z

�k

E � nds D 0 k D 0; 1; : : : (10.3)

jE.x/j D O.jxj�1/ jxj ! 1; (10.4)

where J 0 is a source current. Note that we have neglected convection contribution
to the Ohm’s law (2.10), where v is the fluid velocity. This hypothesis is generally
made in ICP applications. Without this assumption (10.1) should be replaced by

curl .
�1 curl E/ � �v � curl E C i!�E D �i!J 0 in R
3; (10.5)

where the velocity field v is extended by 0 outside the fluid domain.
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A crucial point in (10.1)–(10.4) is that the electric conductivity is null in
the pure gas part and positive in the plasma, this one being ionized and then
electrically conducting. This plasma region can be characterized by the fact that
its temperature (or internal energy) is beyond the ionization energy. This is the
main coupling between eddy current problem and the fluid flow. Consequently, the
electric conductivity in the fluid is defined here as a function of the internal energy
e with

� D
(
�.e/ if e � eI ;

0 if e < eI ;
(10.6)

where eI > 0 is the ionization energy. This value is generally typical of gases.

10.1.2 Hydrodynamics

The gas flow is assumed to be governed by the compressible Navier-Stokes
equations (see [16]) where the fluid motion is driven by the Lorentz force and the
energy source is given by the Joule heating power density. Looking for a steady state
solution, we have the system of equations:

� 2��div D.v/� 1

3
r div v

�C div.%v ˝ v/C rp D f L; (10.7)

div.%v/ D 0; (10.8)

� div
�
kr�C div..%E C p/v/ D �

2
E � E �R.e/; (10.9)

E D e C 1

2
jvj2; (10.10)

 D �.%; e/; (10.11)

p D P.%; e/; (10.12)

in ˝F , i.e. the domain occupied by the fluid. Here  is the temperature, E and
e are respectively the total and internal energies, p is the pressure, % is the fluid
density. The coefficients � and k stand respectively for the molecular viscosity and
the thermal conductivity. For a realistic model, � and k depend strongly on the
temperature. External sources are the Lorentz force density f L, the Joule heating
density SJ and the radiation dissipation density R.e/ assumed to be dependent on
the internal energy. Equations (10.11) and (10.12) are state equations of the used
gas. Finally D is the symmetric deformation rate tensor defined by

D.v/ WD 1

2
.rv C .rv/T/:
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We note that in (10.7)–(10.12) the following approximations have been adopted:

1. In (10.9) dissipation terms (due to viscosity) expressed by

2� .D.v/ W D.v/ � 1

3
.div v/2/C v � rp

(see [16], p. 153) are neglected.
2. The electric current due to fluid motion is neglected. Otherwise, one should

use (2.10) to obtain (10.5) for the electric field and more complex expressions
for the Lorentz force and the Joule heating power density.

Let us express the coupling terms in (10.7)–(10.10) in function of E :

1. The instantaneous Lorentz force is given by J � B. Since we are seeking a
stationary solution, it is judicious to follow (9.1) and approximate this term by
its average value over on time period, i.e., we define

f L WD 1

2
Re .J � B/ D �

2!
Im.E � curl E/:

2. The instantaneous Joule power density is given by J � E . Proceeding in the same
way as for the Lorentz force, we define

SJ WD 1

2
Re.J � E / D �

2
E � E :

3. The radiation dissipation term should be expressed by a radiative transfer
equation. We avoid this difficulty by using net emission approximation models
(see [94]) that involve an explicit dependency of R D R.e/ on the internal
energy, where R is a nondecreasing function of e.

10.1.3 The Complete Model

We can now write down the complete set of equations that govern the ICP torch
process:

curl .
�1 curl E /C i!�E D �i!J 0 in R
3; (10.13)

div E D 0 in ˝ext; (10.14)

� 2��div D.v/ � 1

3
r div v

�C div.%v ˝ v/C rp

D �

2!
Im.E � curl E / in ˝F ; (10.15)
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div.%v/ D 0 in ˝F ; (10.16)

� div
�
kr�C div..%E C p/ v/ D �

2
E � E � R.e/ in ˝F ; (10.17)

E D e C 1

2
jvj2 in ˝F ; (10.18)

 D �.%; e/ in ˝F ; (10.19)

p D P.%; e/ in ˝F : (10.20)

To these equations are associated the following conditions:

jE.x/j D O.jxj�1/ jxj ! 1; (10.21)
Z

�k

E � nds D 0 k D 0; 1; : : : (10.22)

v D 0 on �FC ; (10.23)

v D vI on �FI ; (10.24)

�
.p C 2

3
� div v/ I � 2�D.v/�n D 0 on �FO; (10.25)

p D patm on �FO; (10.26)

 D 0 on �; (10.27)

where I is the identity tensor. In (10.23)–(10.26) the boundary �F is partitioned into
an input part �FI in which the gas is injected with velocity vI , an output part �FO
from which the gas escapes and then the pressure patm (pressure of the atmosphere)
and null traction are imposed, and finally the remaining part on which a null velocity
is prescribed. In (10.27), a Dirichlet boundary condition for the temperature is
prescribed for simplicity. Of course, other types of boundary conditions can be
imposed on any part of the boundary.

Problem (10.13)–(10.26) is a nonlinear system of stationary partial differential
equations. For this system no mathematical analysis is yet available.

In the sequel, we shall define a numerical procedure to solve the prob-
lem (10.13)–(10.26) and then give some numerical results for an application of
the ICP process.
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10.2 Numerical Approximation

In order to tackle the numerical solution of (10.13)–(10.26), two main approaches
can be made:

1. The first one consists in defining an iterative procedure to solve the resulting
nonlinear system of equations, once space discretization is applied. Using such
a procedure can result in a large size system of equations and, moreover the
choice of an initial guess to start the iterations can be a serious difficulty. Due
to the strong nonlinearities that appear in this system, one generally resort to the
Newton’s method for its solution. This approach is used in works like [24, 176].

2. The second approach consists in considering the time dependent problem and
performing a time stepping scheme where convergence toward a stationary
solution is sought. This choice would lead to a more reliable solution technique
where, an explicit scheme can be used for the solution of fluid flow equations,
viscosity and thermal conductivity coefficients (� and k) being small. The
drawback is that this needs a large number of time steps to converge to a
stationary solution. Moreover it is well known that the use of an explicit scheme
results in a restrictive time stepping condition (CFL condition).

We have chosen to present the second approach for its simplicity and because our
numerical experiments are based on it.

Let us then consider Eqs. (10.13)–(10.26) where the fluid flow equations are
replaced by their time dependent version, i.e.

@

@t
.%v/� 2�

�
div D.v/� 1

3
r div v

�C div.%v ˝ v/C rp

D �

2!
Im.E � curl E/; (10.28)

@%

@t
C div.%v/ D 0; (10.29)

@

@t
.%E/� div

�
kr�C div..%E C p/ v/ D �

2
E � E � R.e/; (10.30)

E D e C 1

2
jvj2; (10.31)

 D �.%; e/; (10.32)

p D P.%; e/; (10.33)

in ˝F , for all times t > 0. The system (10.28)–(10.33) is to be supplemented with
the conditions (10.23)–(10.26)and with adequate initial conditions on the unknowns
%, %v and %E .

We do not intend to present in detail the numerical approximation of the
above problem. It is clear indeed that numerical approximation of compressible
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Navier-Stokes equations presents some specific aspects that would drive us out of
the scope of this book. For this we refer the reader to [56, 57]. Let us present the
time stepping procedure that enables decoupling the equations in this system. This
procedure was tested with realistic data and has given satisfactory results as it is
shown in the following section.

Let us consider a maximal time value T and define a time step ıt > 0 and time
values tn D n ıt for n D 0; 1; : : : ; N .

To start the time stepping procedure we define the initial values of %, %v, and %E
denoted respectively by %0, .%v/0, and %E0. In particular, we initialize with a no flow
configuration .%v/0 D 0, %0 D Const. This yields a starting value for the electric
field E 0 by solving (10.13), (10.14), (10.21), (10.22). Note that it is necessary to
initialize a plasma zone where electric current flows. It is noteworthy that this is
also required for the experimental setup.

We can now define the following algorithm: Assuming that the approximate
values of E , %v, %, %E are given at time t D tn and denoted respectively by

E n; .%v/n; %n; .%E/n;

the computation of the other unknowns at the same time value is defined as
follows:

– The velocity

vn D .%v/n

%n
: (10.34)

– We update the electric conductivity by setting �n D �.en/, where en is obtained
from (10.31) by

en WD .%E/n

%n
� 1

2
jvnj2: (10.35)

– We update the pressure by the state equation:

pn D P.%n; en/: (10.36)

– The temperature is obtained from the state equation:

n D �.%n; en/: (10.37)

– We compute the external force and heat source and radiation terms by

f n
L D �n

2!
Im.En � curl E

n
/;
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SnJ D �n

2
En � E

n
;

Rn D R.en/:

The computation of the values at t D tnC1 are performed through the following
steps:

– We obtain the approximate values of %v, %, %E , v, e, p and  by performing one
step of the forward Euler scheme:

.%v/nC1 D .%v/n C 2ıt �
�

div D.vn/ � 1

3
r div vn

�

� ıt div..%v/n ˝ vn/� ıt rpn C ıt f n
L;

%nC1 D %n � ıt div.%v/n;

vnC1 D .%v/nC1

%nC1 ;

.%E/nC1 D .%E/n C ıt div.krn/ � ıt div..%nEn C pn/ vnC1/

C ıt .SnJ � Rn/:

– The fields enC1, pnC1 and nC1 are then computed using (10.34)–(10.37).

10.3 A Numerical Simulation

Let us report here some numerical simulations made in collaboration with
D. Rochette in the framework of his habilitation thesis [156] and with S. Clain. Due
to the geometry, we assume rotational symmetry thus using cylindrical coordinates
with axisymmetry. This assumes that the inductor which is a coil formed of a few
turns is actually approximated by a series of circular toroidal conductors.

For this, we use for eddy currents the model described in Chap. 5 and for fluid
flow an axisymmetric version of (10.28)–(10.29).Numerical approximation uses the
finite element method for the electric field, which is then piecewise linear while a
finite volume method is used to solve the fluid flow problem that provides piecewise
constant velocity, density, pressure and energy fields.

An important issue in the simulation of ICP torches is the presence of different
space scales of electromagnetics and hydrodynamics: While for eddy currents, the
mesh is rather coarse with local refinement in the inductors and their vicinity in
order to capture the skin effect, a finer mesh is needed in the plasma region where an
accurate knowledge of the Lorentz force and the dissipated Joule power is required.
Figure 10.3 shows both meshes for a configuration with seven toroidal inductors.
Naturally, the use of these meshes requires a strategy for information transmission
from one mesh to another. For this, we use an intermediate very fine mesh for
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Fig. 10.3 Meshes for the ICP, Left: eddy currents (Zoom: mesh of an inductor), Right: hydrody-
namics

which obtained fields are computed at nodes or element centers. These fields are
then deduced for a mesh target simply by using piecewise linear approximation.

The simulation of the transient process of the ICP torch is made in two phases.
In the first step, a constant rate of argon gas is injected at a part of the lower
boundary of the setup. Initial conditions for hydrodynamics are given by the ambient
temperature, atmospheric pressure and a zero-velocity, with no current alimentation.
This phase takes 1 s. In a second phase a plasma zone with arbitrary size is created
and a current voltage is prescribed. The argon plasma develops then in the torch and
a stationary regime is obtained at a time of 400 ms.

We present hereafter in Fig. 10.4 the contour of the norm of the electric field (left)
and the magnetic induction (right) around the inductor.

Figure 10.5 displays contours of the temperature and velocity vectors.
This numerical experiment shows that it is possible to obtain a stationary solution

by using a time dependent model. Our hope is to model more properly the ignition
phase and the starting of the torch. We mention that in other works (see [1, 25, 133]
for instance), it is possible to obtain this solution from a stationary model where an
iterative scheme is required to handle the nonlinearities of the model.
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Fig. 10.4 Norm of the electric field (left) and the magnetic induction (right)

Fig. 10.5 Isothermal lines
(left) and velocity field (right)



Chapter 11
Ferromagnetic Shielding

We present in this chapter an application of stationary electromagnetics in the case
of ferromagnetic materials related to magnetic shielding.

It is well known that in a ferromagnetic conductor, the dependency of the
magnetic induction B in function of the magnetic field H is nonlinear, and that
B and H are often not collinear thus resulting in hysteresis phenomena. However,
in most industrial applications, it is a good approximation to consider that B is
collinear to H , especially when the euclidean norm of H is large and in the
stationary situation. In this case we have the relation

B D 
0
r.jH j/H ;

where 
r is the relative magnetic permeability which is a positive, decreasing and
convex function of the euclidean norm of H . The nonlinear mapping B 7! H

results in limiting the penetration of electromagnetic fields into a space, that is often
referred to as electromagnetic shielding or screening of the ferromagnetic conductor.

A typical example takes place in the screen effect of the steel shell supporting a
cell for aluminium production. Let us describe this case: In the aluminium industry,
pure metal is produced in electrolytic cells by electrolytic processing of alumina
by using very strong stationary electric currents (several hundreds of thousands of
Amperes). The liquid aluminium produced at cell cathodes, and the electrolytic bath
in which are placed the anodes, are submitted to intensive electromagnetic forces
that produce motion of the liquids. To ensure strength of the device, lower and lateral
cell faces are covered by plates in steel called “shell of the cell”. The magnetic
induction is shielded by these shells and has as effect to minimize Lorentz forces
and consequently liquid motion in the cells. In order to compute the fluid flow and
analyze the cell stability, it is important to predict this screen effect.

Let us consider a bounded domain˝ in the three-dimensional space occupied by
a ferromagnetic material with relative magnetic permeability
r and let˝ext WD R

3n
˝ stand for the exterior domain. We assume that a stationary electric current with
density J flows in a conductor � surrounding ˝ and creates a magnetic field H

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__11,
© Springer Science+Business Media Dordrecht 2014
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Fig. 11.1 A schematic ferromagnetic shielding setup

and a magnetic induction B (see Fig. 11.1). Following [49, 65] we start by deriving
an equation that governs the electromagnetic induction in terms of the magnetic
field H . An existence and uniqueness result for the obtained model is then given
following the approach in [67]. The numerical solution by an iterative procedure
is then addressed: We first derive a fixed point algorithm to solve the nonlinear
problem by a sequence of linear problems to solve at each iteration. The analysis
of the method is handled for the continuous problem and a domain decomposition
technique is presented and analyzed. This technique avoids solving the problem
outside a bounded region. Finally we present a finite element method to solve the
problem. We analyze convergence of the iterative procedure for the discrete problem
and then present some numerical experiments performed on a realistic setup. Let us
mention that this chapter is published in the paper [67].

A large number of publications is devoted to the mathematical modelling and
numerical solution techniques for absorbing ferromagnetic materials with Landau-
Lifschitz law for propagation and scattering of electromagnetic waves. Let us
mention [109,132] and the references therein. Other papers concern magnetostatics
in thin plates [65, 95] for which the thickness of the plate tends to zero when 
r
tends to the infinity.

We have the magnetostatic equations (see Sect. 2.4.2):

curl H D J in R
3; (11.1)

div B D 0 in R
3; (11.2)

B D 
0
rH in R
3; (11.3)

jB.x/j D O.jxj�2/ jxj ! 1; (11.4)

with 
r D 
r.jH j/ in ˝ and 
r D 1 in ˝ext.
The main simplifying assumption is that the source current density J is given in

the wire �. To obtain a well posed set of equations for this problem, we denote by
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H 0 the magnetic field obtained in the absence of the plate ˝ . Following the model
presented in Sect. 2.4.2, we have for H 0 the integral expression:

H 0.x/ D
Z

�

rxG.x;y/ � J .y/ dy x 2 R
3; (11.5)

where we recall that G is the Green function associated to the operator �� in the
three-dimensional space, that is

G.x;y/ D 1

4�

1

jx � y j x;y 2 R
3; x ¤ y :

Note that, in practice, the support of the current density J is a compact set with a
positive measure. The case of a current supported by a wire with null measure is not
covered by the present analysis. Consequently we assume that H 0 2 L2.R3/ and

jH 0.x/j D O.jxj�2/ for jxj ! 1: (11.6)

The magnetic induction resulting from H 0 is then obtained by:

curl H 0 D J in R
3; (11.7)

div B0 D 0 in R
3: (11.8)

The ferromagnetic property of the conductor ˝ is generally expressed by the fact
that the relative permeability depends on the norm of the magnetic field, that is

r D 
r.jH j/. We can then extend the function 
r to R

3 by defining

Q
r.x; s/ D
(

r.s/ if x 2 ˝;
1 if x 2 ˝ext:

Hence, Q
r is a positive function defined on R
3. It maybe noticed that the extension

Q
r depends on the position x and that it may exhibit a jump on the boundary of ˝ .
Combining (11.1) and (11.7) and assuming that the presence of the plate ˝ does

not change the electric current in the wire �, we obtain curl .H � H 0/ D 0 and
then using Theorem 1.3.6 we deduce the existence of a scalar field  such that

H � H 0 D r in R
3:

Taking into account (11.2) and (11.3), we obtain the equation

div
� Q
r.�; jH 0 C r j/.H 0 C r /

�
D 0 in R

3: (11.9)
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Let us give some remarks about this problem:

1. The assumption (11.6) and a similar behaviour for H imply

 .x/ D O.jxj�1/ jxj ! 1:

2. The relative magnetic permeability depends on jH j D jH 0 C r j. This implies
that the obtained Eq. (11.9) is nonlinear. In the external domain ˝ext we have,
since 
r D 1 and div H 0 D 0 the Laplace equation:

� D 0 in ˝ext:

11.1 Mathematical Analysis

We consider a variational formulation of (11.9) in the space W1.R3/. This is clearly
motivated by the fact that the problem is stated in the whole space R

3. We obtain
the weak formulation:
8
<̂
:̂

Find  2 W1.R3/ such that
Z

R3

Q
r. � ; jH 0 C r j/.H 0 C r / � r' dx D 0 8 ' 2 W1.R3/:
(11.10)

Let us give an alternative formulation of this problem by considering the right-hand
side. For any ' 2 W1.R3/, we have

�
Z

R3

Q
r. � ; jH 0 C r j/H 0 � r' dx D �
Z

˝


r.jH 0 C r j/H 0 � r' dx

�
Z

˝ext

H 0 � r' dx

D
Z

˝

�
1 � 
r.jH 0 C r j/�H 0 � r' dx

�
Z

R3

H 0 � r' dx

D
Z

˝

�
1 � 
r.jH 0 C r j/�H 0 � r' dx

C
Z

R3

' div H 0 dx

D
Z

˝

�
1 � 
r.jH 0 C r j/�H 0 � r' dx:
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This means that the a priori calculation of the magnetic field H 0 can be made in the
conductor˝ only.

Problem (11.10) can then be rewritten in the following form:

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

Find  2 W1.R3/ such that
Z

˝


r.jH 0 C r j/r � r' dx C
Z

˝ext

r � r' dx D

�
Z

˝

�

r.jH 0 C r j/ � 1

�
H 0 � r' dx 8 ' 2 W1.R3/:

(11.11)

We remark that if 
r D 1 everywhere, i.e., if the conductor˝ is not ferromagnetic,
we obtain

Z

R3

r � r' dx D 0 8 ' 2 W1.R3/;

which implies  D 0 and then H D H 0.
Let us define, for  2 W1.R3/, the bilinear and linear forms:

B .�; '/ D
Z

˝


r.jH 0 C r j/r� � r' dx C
Z

˝ext

r � r' dx;

L .'/ D
Z

˝

�
1 � 
r.jH 0 C r j/�H 0 � r' dx:

Then (11.10) or (11.11) is equivalent to finding a function 2 W1.R3/ that satisfies

B . ; '/ D L .'/ 8 ' 2 W1.R3/:

This formulation will be useful for the numerical approximation of (11.10).
We make the following assumption on the function 
r :

Hypothesis 11.1.1. The function 
r W RC ! R
C is a C1 decreasing function on

Œ0;1/ that satisfies the following properties:

1 � 
r.s/ � ˇ; 
r.s/C s
0
r .s/ � 1 8 s 2 R

C;

where ˇ is a positive constant.

This hypothesis is reasonable from a physical point of view since it means in
particular that the magnetic permeability is bounded and that the magnetic energy
density is strictly convex. This property will be clarified in the proof of the following
theorem.

Theorem 11.1.1. Assume that Hypothesis 11.1.1 holds. Then (11.10) (or (11.11))
admits a unique solution  2 W1.R3/.
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Proof. The complete proof can be found in [67]. The main argument is the following
one:

Let g W RC ! R
C be the function defined by

g.s/ D
Z s

0

t
r .t/ dt; s � 0:

Then the functional K given by

K .'/ D
Z

˝

g.jH 0 C r'j/ dx C 1

2

Z

˝ext

jH 0 C r'j2 dx

is well defined for ' 2 W1.R3/. In [67], it is proved that under Hypothesis 11.1.1:

1. The functional K W W1.R3/ ! R is C1, strictly convex and coercive.
2. The Gâteaux derivative dK . I �/ for � 2 W1.R3/ is

dK . I �/ D
Z

R3

Q
r. � ; jH 0 C r j/.H 0 C r / � r� dx:

The Euler equation is then given by

Z

R3

Q
r. � ; jH 0 C r j/.H 0 C r / � r� dx D 0 8 � 2 W1.R3/:

By using ([61], Chap. 3, Theorem 1.1) the functional K admits a unique
minimum  2 W1.R3/ which is the unique solution to (11.11). ut

11.2 An Iterative Procedure

Problem (11.10) is a nonlinear problem and its numerical solution requires con-
structing an iterative procedure. We present here an iterative algorithm to compute
the potential  , each iteration consisting in solving a linear variational problem that
can be solved by the finite element method. This algorithm is given in [67].

We define a mapping F W W1.R3/ ! W1.R3/ by the variational identity:

Z

R3

Q
r. � ; jH 0 C r�j/.H 0 C rF.�// � r' dx D 0 8 '; � 2 W1.R3/:

The mapping F is well defined since Hypothesis 11.1.1 implies that the bilinear
form

B� .'; �/ WD
Z

R3

Q
r. � ; jH 0 C r�j/r' � r� dx
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is continuous and coercive on W1.R3/ for every � 2 W1.R3/. Moreover, we have
the estimate

krF.�/kL2.R3/ � ˇ kH 0kL2.R3/ 8 � 2 W1.R3/:

Clearly,  2 W1.R3/ is solution of Problem (11.10) if and only if  is a fixed point
of F in W1.R3/, i.e.  D F. /.

In order to compute the solution of Problem (11.10) we construct a fixed point
method that involves a relaxation parameter:

(i) We choose a function  0 2 W1.R3/ and a relaxation parameter " > 0.
(ii) For k D 0; 1; : : : we compute:

Q kC1 D F. k/; (11.12)

 kC1 D .1 � "/  k C " Q kC1: (11.13)

(The case " D 1 corresponds to the fixed point algorithm).

Note that solving (11.12) is equivalent to solving the linear variational problem
(see (11.11)):

Z

˝


r.jH 0 C r k j/r Q kC1 � r' dx C
Z

˝ext

r Q kC1 � r' dx

D
Z

˝

.1 � 
r.jH 0 C r kj/H 0 � r' dx 8 ' 2 W1.R3/ (11.14)

for k D 0; 1; : : :

The following convergence result is proved in [67].

Theorem 11.2.1. Assume that Hypothesis 11.1.1 holds. Then, if " < 2=ˇ, where ˇ
is the upper bound of 
r , the iterative procedure (11.12)–(11.13) converges toward
the unique solution  of (11.10), i.e.

lim
k!1 kr. k �  /kL2.R3/ D 0:

11.3 Solution of the Linear Problem by a Domain
Decomposition Method

Numerical solution of (11.14) requires solving a partial differential equation in an
unbounded domain. Let us write this problem simply:

Z

R3


kr Q kC1 �r' dx D �
Z

˝

.
k �1/H 0 �r' dx 8 ' 2 W1.R3/; (11.15)
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with


k WD Q
r. � ; jH 0 C r k j/:

Since 
k D 1 in˝ext, we have that Q kC1 is harmonic in˝ext. We shall use the same
technique as in Chap. 3: Considering an open ball Br containing ˝ centered at the
origin, with radius r , and boundary @Br , we have by the Poisson formula (see [62],
Vol. 1, p. 249):

Q kC1.x/ D jxj2 � r2

4�r

Z

@Br

Q kC1.y/
jx � y j3 ds.y/ 8 x 2 R

3 n Br : (11.16)

Hence, if BR is a ball centered at the origin with radius R > r , Problem (11.15) is
equivalent to finding Q kC1 2 H1.BR/ satisfying (11.16) on the boundary @BR of
BR, and for every ' 2 H1

0.BR/:

Z

BR


kr Q kC1 � r' dx D
Z

˝

.1 � 
k/H 0 � r' dx:

We want now to construct an alternating Schwarz domain decomposition method
for the computation of Q kC1. We define for this the following algorithm:

(a) Define an initial guess  .0/ 2 H1
0.BR/ by solving the problem:

Z

BR


kr .0/ � r' dx D
Z

˝

.1 � 
k/H 0 � r' dx 8 ' 2 H1
0.BR/:

(b) For n D 0; 1; 2; : : : we compute  .nC1/ 2 H1.BR/ satisfying

8
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂:

Z

BR


kr .nC1/ � r' dx D
Z

˝

.1� 
k/H 0 � r' dx

8 ' 2 H1
0.BR/;

 .nC1/.x/ D R2 � r2

4�r

Z

@Br

 .n/.y/

jx � y j3 ds.y/ x 2 @BR:

(11.17)

We have the following convergence result:

Theorem 11.3.1. Let Q kC1 2 W1.R3/ denote the solution of (11.15). We have the
estimate:

k Q kC1 �  .n/kL1.BR/ �
� r
R

�n k Q kC1 �  .0/kL1.BR/:



11.3 Solution of the Linear Problem by a Domain Decomposition Method 263

In particular,

lim
n!1 k Q kC1 �  .n/kL1.BR/ D 0:

Proof. Let us a give here a sketch of the proof of this result. The complete proof can
be found in [67].

Let us define e.n/ D Q kC1 � 	.n/ on BR. We have

e.n/.x/ D R2 � r2
4�r

Z

@Br

e.n�1/.y/
jx � yj3 ds.y/ for x 2 @BR: (11.18)

It follows that

ke.n/kL1.@BR/ �
�R2 � r2

4�r
max

x2@BR

Z

@Br

1

jx � y j3 ds.y/
�

ke.n�1/kL1.@B∇/:

By using spherical coordinates we obtain

ke.n/kL1.@BR/ � r

R
ke.n�1/kL1.@BR/:

The maximum principle for a harmonic function between Br and BR (see for
instance [92]) implies

ke.n/kL1.@BR/ � r

R
ke.n�1/kL1.@Br / � r

R
ke.n�1/kL1.@BR/:

The conclusion of the theorem follows then. ut
Remark 11.3.1. Using (11.18) we prove that ke.n/kH∞∈ .@BR/

is bounded by

ke.n�1/kL1.@B∇/ and consequently there exists a constant C such that

ke.n/kH1.BR/ � C ke.n�1/kL1.@B∇/:

It follows that

ke.n/kH1.BR/ � C ke.n�1/kL1.BR/:

From Theorem 11.3.1 and from the definition of e.n/, we deduce that there is a
constant, also denoted by C , such that

k Q kC1 �  .n/kH1.BR/ � C
� r
R

�n
:
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11.4 An Iterative Procedure for the Discrete
Nonlinear Problem

Let Wh be a finite dimensional subspace of W1.R3/ \ W1;1.˝/. By using the
same arguments used for proving the existence and uniqueness of the solution
 2 W1.R3/ of the exact problem, it is possible to prove that there exists a unique
solution  h 2 Wh satisfying:

Z

R3

Q
r. � ; jH 0 C r hj/ .H 0 C r h/ � r'h dx D 0 8 'h 2 Wh: (11.19)

Let us consider the mapping Fh W Wh ! Wh defined by

Z

R3

Q
r. � ; jH 0 C rzhj/ .H 0 C rFh.zh// � r'h dx D 0 8 'h; zh 2 Wh:

Clearly Fh is well defined since Hypothesis 11.1.1 implies that the bilinear form
B is continuous and coercive on W1.R3/ for every  2 W1.R3/ and the linear
form L is continuous for every  2 W1.R3/. Moreover we have

krFh. /kL2.R3/ � ˇ kH 0kL2.R3/ 8  2 W1.R3/;

and  h is solution of (11.19) if and only if  h is a fixed point of Fh in Wh i.e.
 h D Fh. h/.

In order to compute the solution  h of (11.19), we will use the following fixed
point method

 
.kC1/
h D Fh. 

.k/

h /; k D 0; 1; : : :

which is equivalent to solve at each iteration k the finite dimensional linear problem:

8
<
:

Find  .kC1/
h 2 Wh such that

B
 
.k/
h

. 
.kC1/
h ; '/ D L

 
.k/
h

.'/ 8 ' 2 Wh;

the initial guess  .0/h 2 Wh being given.
Let us introduce the inner product in Wh

..u;w// h D
Z

R3

Q
r. � ; jH 0 C r hj/ru � rwdx;

and its associated norm

kuk h WD ..u; u//
1
2

 h
:
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Note that, since Wh has a finite dimension, this norm is equivalent to all norms
in Wh.

We reinforce Hypothesis 11.1.1 by setting:

Hypothesis 11.4.1. The function 
r is C2 decreasing on Œ0;1/ and fulfills for all
s � 0 the property:

j
00
r .s/j � �; 
0

r .0/ D 0;

where � is a nonnegative constant.

Remark that Hypothesis 11.1.1 implies

lim
s!1 j
0

r .s/j D lim
s!1.�


0
r .s// � lim

s!1

r.s/� 1

s
D 0;

and Hypothesis 11.4.1 gives

lim
s!0

j
0
r .s/j
s

D lim
s!0

j
0
r .s/ � 
0

r .0/ j
s

D 
00
r .0/:

As a consequence, there exists a positive constant � such that

j
0
r .s/j
s

� � 8 s 2 Œ0;1/:

Theorem 11.4.1. Assume that H 0 2 L2.R3/\L1.R3/ and that Hypotheses 11.1.1
and 11.4.1 hold. Let  h 2 Wh be the unique solution of (11.19). Then there exists
� > 0 such that if k h �  .0/h k h � �, then we have

lim
k!1 k h �  

.k/

h k h D 0:

The proof of this theorem is based on two technical lemmas that are easy to prove.

Lemma 11.4.1. Let f W R
3 ! R be the function defined by f .�/ D 
r.j�j/. If

�;	 2 R
3, � ¤ 0, then we have:

f 0.�/	 D 
0
r .j�j/ � � 	

j�j ;

f 00.�/.	; �/ D 
00
r .j�j/� � 	

j�j
� � �

j�j C 
0
r .j�j/

�� � 	

j�j � � � 	

j�j2
� � �

j�j
�
:

Lemma 11.4.2. Under the same hypotheses as in Lemma 11.4.1, we have the bound

jf 00.�/.	; �/j � .� C 2�/j�j j	j 8 �;	; � 2 R
3:
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In order to give a sketch of the proof to Theorem 11.4.1 (The complete proof can
be found in [67]), we define

�h D Fh. h C 'h/� Fh. h/ D Fh. h C 'h/�  h for 'h 2 Wh:

Using the Taylor expansion and Lemma 11.4.2, we can prove that

k�hk2 h �
Z

˝

�
j
0
r .jH 0 C r hj/j jr'hj C 1

2
.� C 2�/jr'hj2

�

�
jr�hj2 C jH 0 C r hj jr�hj

�
dx:

From Hypothesis 11.1.1 we have

0 � �s
0
r .s/ � 
r.s/� 1;

and by setting

M D sup
s2Œ0;1/

j
0.s/j;

k�hk2 h �
Z

˝

�

r.jH 0 C r hj/� 1

�jr'hj jr�hj dx

CM

Z

˝

jr'hj jr�hj2 dx

C 1

2
.� C 2�/

Z

˝

jr'hj2jr�hj2 dx

C 1

2
.� C 2�/

Z

˝

jr'hj2jH 0 C r hj jr�hj dx:

From this, we can deduce (see [67]) that there exists � > 0 such that if k'hk h � �

then

k�hk h � �
1 � 1

2ˇ

� k'hk h :

Setting 'h D  
.k/

h �  h, we obtain �h D  
.kC1/
h �  h and the above inequality

implies that if we choose  .0/h 2 Wh such that k .0/h �  hk h < �, then

k .k/h �  hk h � �
1 � 1

2ˇ

�k
�:

This achieves the proof. ut
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11.5 Numerical Results

We end this chapter by reporting some numerical experiments that were made on
the presented ferromagnetic shielding model in [67]. The goal is mainly to test the
features of the iterative solution algorithm presented in Sect. 11.2.

In Sect. 11.2 we have seen that the relaxed fixed point method converges when
the relaxation parameter " < 2=ˇ independently of the initial guess  .0/ 2 W1.R3/

(see Theorem 11.3.1). In our physical applications we have ˇ D 4;000 (see
Fig. 11.3) which implies very small values for ". This choice of " would lead to a
poor convergence behaviour, the relaxation parameter being small. However for the
numerical approximation (see Sect. 11.4), the convergence of  .k/h to  h �  when
k tends to the infinity is faster since we can take " D 1 (see Theorem 11.4.1), but in
this case  .0/h must be chosen close enough to  h. Actually our convergence result

holds when k h� .0/h k h � � but � could depend on h. Theorems 11.1.1 and 11.4.1
claim that � converges to zero when Wh becomes dense to the limit in W1.R3/, but
numerical tests show that this is not the case. In all our tests, the iterative procedure
presented in Sect. 11.2 with " D 1 converges for any initial guess  .0/:

div
� Q
r. � ; jH 0 C r .k/j/ .H 0 C r .kC1//

� D 0:

In the following, we present an industrial setup with dimensions measured in
meters and current intensities in Amperes. We consider a ferromagnetic rectangular
plate ˝ D .�0:01; 0:01/ � .�2:5; 2:5/ � .�2; 2/ placed in front of an idealized

Fig. 11.2 Geometry of the
test case with the plate in the
Oyz plane, the observation
plane in the Oxz plane
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Fig. 11.3 Relative permeability (Curve jH j 7! 
r.jH j/)

infinitely long wire with zero section. The total electric current is equal to 1 and
flows in the wire parallel to Oy and passes through the point .1:01; 0; 0/ (see
Fig. 11.2). The relative magnetic permeability 
r as a function of jH j is given in
Fig. 11.3. In Fig. 11.2 we also represent the observation plane we have chosen to
observe the screening effect behind the plate when we go away perpendicularly
from it. The small ball Br is with radius r D 3:5 centered at the origin O and the
radius of the ball BR is R D 4:4.

In order to build the finite dimensional space Wh, we use a finite element method
with piecewise polynomials of degree 1 on a tetrahedral mesh Th discretizing the
large ball BR and we solve the approximate problem set in all the space R3 by using
the domain decomposition algorithm presented in Sect. 11.3.

Figure 11.4 shows (left) on the observation plane the magnetic field H 0 as if the
plate was not present. Since the current support is perpendicular to the observation
plane, the magnetic field is parallel to that plane. Figure 11.4 shows (right) on the
observation plane the magnetic field H at the same scale. We can see the shielding
effect behind the plate. Moreover, we can observe that near the plate boundary, the
magnetic field is perpendicular to the plate when outside and parallel to the plane of
the plate when inside. This is due to the jump of 
r across the plate boundary with
continuity of B � n and H � n.

Figure 11.5 shows H on the observation plane for different values of the current:
to the left we used 106 and to the right 108. We can see the saturation effect: with a
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Fig. 11.4 Magnetic field in the observation plane without (left) and with the plate (right)

Fig. 11.5 Magnetic field H in the observation plane as for a current of 106 A (left) and of 108 A
(right)

current of 108 the plate has no shielding effect anymore. This can also be seen with

r : for a current equal to 1, the relative permeability in the plate is almost constant
to 4;136; for a current of 108, 
r is almost constant to 106.



Chapter 12
The Electrolytic Process for Aluminium
Production

12.1 Introduction

The industrial production of aluminium is based, since the end of the nineteenth
century, on the electrolysis process. Aluminium is in fact not present in the nature
in its pure metallic form but as an oxide called Alumina (Al2O3) and an adapted
processing (electrolysis) is to be used to extract the metal. Aluminium electrolysis
is performed in large Hall-Héroult cells, as illustrated for an industrial setting in
Fig. 12.1. In the aluminium industry, these cells are connected electrically in series
and supplied with direct current (DC). The electric current is supplied to the cells
through metal busbars made of aluminium or copper. Figure 12.2 gives a schematic
representation of one Hall-Héroult cell.

The procedure can be roughly outlined as the following: Alumina is dissolved
in a bath essentially composed of molten cryolite (a double fluoride of aluminium
and sodium). The resulting mixture is then electrolyzed by experiencing a strong
static1 electric current (current density J is about 10;000A m�2) that deposits the
aluminium liquid metal at the bottom and the bath while the liberated oxygen
combines with the carbon of the anode to form carbon dioxide.

In this process the liquids (aluminium and electrolyte) are immiscible and have
respective densities %al and %el with %el < %al. They occupy at time t > 0

respectively the domains˝al.t/ and ˝el.t/. The union of these domains constitutes
the fixed fluid domain, denoted by ˝ where

˝ WD ˝el.t/ [˝al.t/ t > 0:

Since liquid aluminium is heavier than electrolyte, the domain ˝al.t/ is below
˝el.t/ as shown in Fig. 12.2.

1A precise definition of this term is given later

R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics:
With Selected Applications, Scientific Computation, DOI 10.1007/978-94-007-0202-8__12,
© Springer Science+Business Media Dordrecht 2014
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Fig. 12.1 View of a potroom. Photo Rio Tinto Alcan (Copied from website: http://www.
lawyersweekly.ca)

The motion of both fluids is driven by the Lorentz force produced by the
electric current density J and the induced magnetic induction B, and by gravity
acceleration. In addition, it is well known that this motion results in a deformation of
the interface between the liquids. It is then essential to control as much as possible
this motion in order to prevent shortcut damages caused by contact between the
anode and the liquid aluminium which is a good electric conductor. Following these
considerations, all the involved fields will be considered as time dependent. We
note that this is not in contradiction with the fact that electromagnetic phenomena
are static, since in a first approximation, time dependency involves the time variable
as a parameter, and no time derivative in the electromagnetic equations is present.

Let us finally denote by Q̋ the union of all electrical conductors of the cell, and

by ˝ext the vacuum defined by ˝ext D R
3 n Q̋ .

In this chapter we present a mathematical model for the aluminium electrolysis,
define a numerical method to solve the resulting system of equations and then
present some numerical results that were obtained in an industrial environment.

http://www.lawyersweekly.ca
http://www.lawyersweekly.ca
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Fig. 12.2 A schematic Hall-Héroult cell (cf. Hofer [102])

12.2 The Model

From the preceding, we conclude that a reliable modeling of the electrolytic
process for aluminium production has to take into account electromagnetics and
hydrodynamics coupled with free surface description. Moreover, since we are
interested in time evolution of the process and, in particular, in stability issues, the
model we present is time dependent.

Let us note that it would be unfeasible to simulate the whole hall of cells. Instead,
one generally assumes that a static current with given intensity is brought to each
cell (by the busbars) and that this current is not modified by the electromagnetic
phenomena in cells. This enables considering the cells individually. Figure 12.3
illustrates the computational domain, where each color corresponds to a different
material.

We now describe each of the involved physical phenomena separately before
stating the coupled system that governs the process.
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Fig. 12.3 A cell computational domain (˝el.t / is above ˝al.t /)

12.2.1 Electromagnetics

Since a DC current is used, the electromagnetic part of the model can be simply
described by an electromagnetostatic model such as in Sect. 2.4. This means in this
context that the electromagnetic induction term is neglected, i.e. all time derivatives
are dropped. However, due to domain motions, the electric conductivity depends
on time which implies that time is a parameter in the equations (see [80] and the
references therein for more details). We obtain the set of equations:

curl H D J ; (12.1)

curl E D 0; (12.2)

div B D 0; (12.3)

in R
3. Now we assume that all conducting parts of the setup are not ferromagnetic,

except in the steel shell described in Chap. 11 which is not taken into account in this
chapter. This implies

B D 
0H : (12.4)

Moreover, due to the presence of the fluids, we have the Ohm’s law for a moving
electric conductor (see (2.10))

J D � .E C v � B/; (12.5)
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where v is the fluid velocity extended by zero outside the fluid domain. Using
Theorem 1.3.4, we deduce from (12.2) the existence of a scalar potential � such that

E D �r� in R
3: (12.6)

Reporting (12.5) in (12.1) and taking the divergence of the resulting equation, we get

div.� r�/ D div.�v � B/ in R
3: (12.7)

The equation for the magnetic induction B is clearly given by (2.25) when J is
known. Finally, we assume that a source current density is given at the boundary of
Q̋ , that is

J � n D jS on @ Q̋ ;

where the function jS is given and fulfills the compatibility property

Z

@ Q̋
jS ds D 0: (12.8)

In practice the input current jS is prescribed on boundary parts at which the current
enters or leaves. Its value is null on any other part of the boundary.

This prescription can be written as a boundary condition for (12.7) by expressing
the normal component of (12.5) on @ Q̋ , using (12.6) and the fact that the fluid
velocity v is assumed to vanish on the boundary:

�
@�

@n
D �jS on @ Q̋ : (12.9)

Hence, thanks to (12.8) for a given v and B and a fixed interface between aluminium
and bath � .t/, by Theorem 1.2.1, (12.7) and (12.9) provide a well posed problem
for a potential �, up to an additive constant. It is, at this point, worth noting that �
admits a jump on the interface � .t/.

Let us now recall that we have assumed that the cells are decoupled. This implies
in particular that the fluid motion, and then the interface, does not modify the electric
current supplied by the busbars. This hypothesis can be implemented by assuming
that the electric current density J is split as

J .x; t/ D J 0.x/C ıJ .x; t/ x 2 R
3; t > 0; (12.10)

where J 0 is the electric current density which flows in all the busbars and cells of
the hall and ıJ is a perturbation of J 0 in the cell Q̋ when the interface between the
liquids moves. We have

div J 0 D div ıJ D 0 in R
3; (12.11)
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and the current perturbation ıJ has its support included in Q̋ . Consequently, we
can define a static magnetic induction B0 by

curl B0 D 
0J 0 in R
3;

div B0 D 0 in R
3:

Using (2.25), we have for x 2 R
3,

B0.x/ D 
0

Z

R3

rxG.x;y/ � J 0.y/ dy

D 
0

4�

Z

R3

.x � y/ � J 0.y/

jx � yj3 dy: (12.12)

Let now ıB denote the perturbed magnetic induction due to ıJ defined by

curl ıB D 
0ıJ ;

div ıB D 0

in R
3. We have obviously

B.x; t/ D B0.x/C ıB.x; t/ x 2 R
3; t > 0:

Note that ıB can be obtained by using the vector potential A (see Sect. 2.2.4) that
satisfies:

8̂
<̂
ˆ̂:

ıB D curl A in R
3;

div A D 0 in R
3;

jA.x; t/j D O.jxj�1/ jxj ! 1:

It follows that:

8
ˆ̂<
ˆ̂:

� 
A D 
0ıJ in R
3;

div A D 0 in R
3;

jA.x; t/j D O.jxj�1/ jxj ! 1:

(12.13)

Since ıJ has a compact support in Q̋ , the field A is harmonic outside Q̋ . From the
first equation of (12.13), we deduce

( ��Aj D 
0ıJj in R
3;

Aj .x; t/ D O.jxj�1/ jxj ! 1;
(12.14)



12.2 The Model 277

for j D 1; 2; 3. Setting  D div A and taking the divergence of the first equation
in (12.14), we have for all t > 0,

(
� D 0 in R

3;

 .x; t/ D O.jxj�2/ jxj ! 1;

the condition at the infinity resulting also from the fact that A is harmonic outside
Q̋ . Therefore, trivially D div A D 0 and the second equation in (12.13) is useless.

The main advantage of using the current splitting approximation (12.10) is that
the current density J 0, which has a wide support (in principle all conducting parts
of the whole aluminium production hall) induces the static magnetic induction B0

which has to be computed once for all, whereas the time dependent perturbed
magnetic induction ıB involves a current density with reduced support˝ .

12.2.2 Hydrodynamics

The fluid flow is assumed governed by the incompressible Navier-Stokes equa-
tions, i.e.

%
@v

@t
C % .v � r/ v � 2 div.�D.v//C rp D f in ˝el.t/ [˝al.t/; (12.15)

div v D 0 in ˝el.t/ [˝al.t/; (12.16)

for t > 0, where p is the fluid pressure, � is the molecular viscosity, assumed
constant in each fluid, % is the density that equals %al in ˝al.t/ and %el in ˝el.t/. In
addition, D.v/ is the symmetric strain tensor defined by

D.v/ D 1

2
.rv C .rv/T/;

and f is the sum of external forces given by

f D %g C J � B; (12.17)

where g is the gravity acceleration vector and the term J �B expresses the Lorentz
force that drives the fluid motion. Note that in view of formulating the final problem
in terms of � and B, the external forces can be expressed as

f .v;B; �/ WD %g � �r� � B C � .v � B/ � B:

Considering boundary conditions, we have a homogeneous Dirichlet boundary
condition for v on @˝ . On the interface

� .t/ WD ˝al.t/ \˝el.t/ t > 0;
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that separates the two fluids, we have naturally the continuity of the velocity

Œv� D 0 on � .t/; t > 0:

Here, the jump Œ�� stands for the value

Œv� WD vj˝el.t/ � vj˝al.t/:

Next, taking into account surface tension effects we have the Laplace–Young
equation

Œ.2�D.v/� p I/n� D ��n on � .t/; t > 0; (12.18)

where n is the unit normal to � .t/ pointing from ˝al.t/ to ˝el.t/, � is the surface
tension coefficient that depends on the fluids and � is the Gauss curvature of the
surface � .t/ positively counted with respect to the normal n. Such a condition
requires enforcing a wetting angle condition (see [91]). We restrict however
ourselves in this presentation to the case where the surface tension can be neglected.
In this case, (12.15)–(12.16) with interface conditions reduce to

%
@v

@t
C % .v � r/ v � 2 div.�D.v//C rp D f in ˝; (12.19)

div v D 0 in ˝; (12.20)

in the sense v.�; t/ 2 H1.˝/, p.�; t/ 2 L2.˝/, for almost all t > 0.

Remark 12.2.1. For the sake of simplicity we do not consider here turbulence
modelling. In practice, a mixing length model is used to derive a turbulent viscosity,
and Navier’s conditions are prescribed on the boundary @˝ instead of Dirichlet
boundary conditions.

12.2.3 The Interface

The interface � .t/ that separates the aluminium and the electrolyte is described by
a level set equation. Let ' denote a continuous function defined on ˝ � R

C such
that ' > 0 in ˝al.t/ and ' < 0 in ˝el.t/ for instance. The interface � .t/ is then the
0-level set for '. We have the following transport equation:

8
<̂
:̂

@'

@t
C v � r' D 0 in ˝; t > 0;

'.�; 0/ D '0 in ˝;
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where the initial level set function '0 resulting from the initial configuration. For
instance the signed distance function can be chosen, i.e., such that '0 satisfies the
eikonal equation

jr'0j D 1:

12.2.4 The Complete Model

Let us now summarize the complete set of equations and boundary conditions after
adding an initial condition on the velocity and on '. Setting

B0.x/ D 
0

Z

R3

rxG.x;y/ � J 0.y/ dy x 2 ˝; (12.21)

we have the following equations:

%
@v

@t
C % .v � r/ v � 2 div.�D.v//C rp D f .v;B; �/ in ˝; (12.22)

div v D 0 in ˝; (12.23)

div.�r�/ D div.�v � B/ in Q̋ ; (12.24)

B.x; t/ D curl A.x; t/C B0.x/ x 2 ˝; (12.25)

� 
A D 
0ıJ in R
3; (12.26)

ıJ D �.v � B � r�/ � J 0 in Q̋ ; (12.27)

@'

@t
C v � r' D 0 in ˝; (12.28)

for t > 0, with the infinity and boundary conditions:

jA.x/j D O.jxj�1/ jxj ! 1; (12.29)

�
@�

@n
D �jS on @ Q̋ ; (12.30)

v D 0 in Q̋ n˝; (12.31)

for t > 0, and the initial conditions:

v D v0 in ˝; t D 0; (12.32)

' D '0 in ˝; t D 0: (12.33)
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In (12.24) and (12.27) the velocity v is extended by 0 outside ˝ . Problem (12.22)–
(12.33) constitutes a system of equations and boundary and initial conditions
that govern the electrolysis process for aluminium production. Note that we have
omitted, for simplicity, to mention the dependency of the interface � .t/ on ', being
defined by ' D 0. In addition, the physical parameters %, �, � depend on˝el.t/ and
˝al.t/, and consequently on '.

Remark 12.2.2. A more complete model would take into account heat transfer in
the cell by Joule heating. A discussion about this topic can be found in [79].

Remark 12.2.3. In the case where surface tension on � .t/ is taken into account, it
can be shown that we have the following equivalent formulation:

%
@v

@t
C % .v � r/ v � 2 div.�D.v//C rp D f .v;B; �/C ��ı� .t/ in ˝;

where ı� .t/ is the surface Dirac distribution defined by the duality pairing

< ı� .t/;  >WD
Z

� .t/

 ds 8  2 D.˝/; t > 0:

Note that, after use of the Green formula on the interface � .t/, the contribution
of the surface tension term involves the prescription of wetting angles where the
interface is in contact with the domain boundary. This topic is developed in [91].

12.3 Numerical Approximation

Starting from the evolution equation (12.28), we construct a time integration scheme
to discretize in time the system (12.22)–(12.33). Furthermore, in view of deriving
an efficient scheme, in terms of computational time, we intend to decouple through
this algorithm the involved fields.

In the following, we describe a time integration scheme that allows for such
decoupling and present it step by step. Let us for this consider the time interval
.0; T / and let ıt D T=N denote the time step and consider time values tn D n ıt ,
for n D 0; : : : ; N , with tN D T .

In the sequel, each step will be presented for the continuous problem and then
space discretization is considered. For that end we define a finite element mesh

QTh of the domain Q̋ into tetrahedra and assume that this mesh fulfills the regularity
assumptions of Chap. 7. This mesh is constructed in the following way: We consider

QTh as the union of the mesh Th of ˝ and the one of its complement Q̋ n ˝ . In
addition, since we deal in the present numerical method with a lagrangian approach
for interface description, Th is constructed as the union of two meshes T n

h;el and T n
h;al

of ˝el.t
n/ and ˝al.t

n/ respectively. Consequently, in this approach, the discretized
interface � n

h obtained at t D tn is defined as a union of triangles. For simplicity,
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we shall omit the subscript h when there is no confusion. For these reasons all used
meshes depend on the time tn and will thus have superscript n. The construction of
these meshes will be described later.

In the sequel, we consider piecewise linear and constant finite elements by
defining the following finite element spaces:

Vnh D fv 2 C0.˝/I vjT 2 P1 8 T 2 T n
h g; Vn

h D .Vnh /3; (12.34)

QVnh D fv 2 C0. Q̋ /I vjT 2 P1 8 T 2 QT n
h g; QVn

h D . QVnh /3; (12.35)

QX n
h D fv 2 L2. Q̋ /I vjT 2 P0 8 T 2 QT n

h g; QX n

h D . QX n
h /
3: (12.36)

12.3.1 Initialization

The initial conditions are given by:

v0 D v0; '
0 D '0:

This means that initial domains˝0
al and˝0

el are given and therefore an initial electric
conductivity �0, density %0 and viscosity �0 are defined. A particularly interesting
choice for our application is to take a no flow initial condition (v0 D 0). We set in
addition at t D 0

ıJ 0 D ıB0 D 0:

The initial interface � 0 is assumed given by a flat horizontal surface for instance.
We have next to compute the static magnetic induction B0 by using (12.12). We

consider for this a piecewise constant approximation of B0, i.e. we define B0;h 2
QX h by

B0;h.xT / D 
0

4�

Z

R3

xT � y

jx � yj3 � J 0.y/ dy; (12.37)

where xT is the barycenter of the tetrahedron T 2 T 0
h .

12.3.2 Time Stepping

Now, we assume that at a time tn WD n ıt , the following approximations are known:

'n � '.�; tn/; vn � v.�; tn/; J n � J .�; tn/; Bn � B.�; tn/; �n � �.�; tn/:
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This enables setting

� n WD fx 2 R
3I 'n.x/ D 0g;

and the resulting subdomains˝n
al � ˝al.t

n/ and˝n
el � ˝el.t

n/. We emphasize that
this implies a finite element mesh T n

h .
We compute the approximate solution at t D tnC1 by performing the following

steps:

1. We compute 'nC1 on the mesh T n
h by running one time step of the backward

Euler scheme for (12.28), i.e.

'nC1 � 'n

ıt
C vn � r'nC1 D 0 in ˝: (12.38)

2. We look for the zeros of the function 'nC1, which yield � nC1 and then the
subdomains ˝al.t

nC1/, ˝el.t
nC1/. We obtain consequently a new mesh T nC1

h

and %nC1, �nC1 and �nC1.
3. We interpolate vn, Bn and �n on T nC1

h , which results in Ovn, OBn
and O�n

respectively, and compute vnC1 by solving the semi-discrete (by a semi-implicit
Euler scheme) incompressible Navier-Stokes equations:

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

%n
vnC1 � Ovn

ıt
� 2 div.�nC1 D.vnC1//

C %n . Ovn � r/ vnC1 C rpnC1 D f . Ovn; OBn
; O�n/ in ˝;

div vnC1 D 0 in ˝;

vnC1 D 0 on @˝:

(12.39)

4. We compute �nC1 on the mesh T nC1
h by solving the boundary value problem:

8
<̂
:̂

div.�nC1r�nC1/ D div.�nC1vnC1 � OBn
/ in Q̋ ;

�nC1 @�nC1

@n
D �jS on @ Q̋ :

(12.40)

5. We compute ıJ nC1 by

ıJ nC1 D �nC1.vnC1 � OBn � r�nC1/� J 0:

6. We compute components AnC1
j , j D 1; 2; 3 of the vector potential AnC1 by

solving the problems:
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8
<
:

��AnC1
j D 
0 ıJ

nC1
j in R

3;

AnC1
j D O.jxj�1/ jxj ! 1;

(12.41)

and update the magnetic induction by

BnC1 D OBn C curl AnC1:

Steps 1. to 6. are repeated for n D 1; : : : ; N where T D Nıt is the final time value.
Let us now describe space discretization of each step of this time integration

scheme.

12.3.3 Space Discretization

1. Solution of the interface propagation equation.
Let us consider the space discretization of (12.38). We consider for this a
finite element Streamline Upwind (SU) method in order to treat the convection
term (see [42]). Let us introduce this through a variational formulation. The
approximation of (12.38) consists in looking for 'nC1

h 2 Vnh such that for all
 2 Vnh ,

Z

˝

�'nC1
h � 'nh
ıt

C vnh � r'nC1
h

�
 dx

C
X
T2Th

ˇhT

2 kvnhkL2.T /

Z

T

.vnh � r'nC1
h / .vnh � r / dx D 0; (12.42)

the given functions vnh and 'nh being respectively in Vn
h;0 and Vnh . Here ˇ is an

upwinding parameter to choose independently of h. Note that the method used
in (12.42) is a variant of the method developed in [42] that adds a streamwise
artificial diffusion to stabilize the numerical solution.

2. Interface updating
The discrete updated interface is defined by

� nC1
h WD fx 2 R

3I 'nC1
h .x/ D 0g:

Since 'nC1
h is a piecewise linear function, its trace on any straight line (e.g.

vertical) connecting nodes on � n
h can be computed. The new interface � nC1

h

is then determined by moving the nodes to the points where 'nC1
h D 0.
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This induces the updated mesh T nC1
h and provides new physical properties

�nC1, %nC1 and �nC1. We do not intend to present in detail the procedure that
deduces T nC1

h from T n
h . This is described in [166].

3. Solution of fluid flow equations
Space discretization of (12.39) makes use of the spaces:

VnC1
h;0 WD fv 2 VnC1

h I v D 0 on @˝g;

QnC1
h WD

n
q 2 VnC1

h I
Z

˝

q dx D 0
o
:

Note that we have used the same approximation degree (P1) for both velocity
and pressure. This is allowable thanks to the following stabilized finite element
method (cf. [81]):

Find vnC1
h 2 VnC1

h;0 , pnC1
h 2 QnC1

h such that for all .w; q/ 2 VnC1
h;0 � QnC1

h :

Z

˝

%nC1 vnC1
h � Ovnh
ıt

� wdx C 2

Z

˝

�nC1 D.vnC1
h / WD.w/ dx

C
Z

˝

%nC1 . Ovnh � r/ vnC1
h � wdx �

Z

˝

pnC1
h div wdx

C
X
T2Th

˛h2T
�n

Z

T

rpnC1
h � rq dx

C
Z

˝

q div vnC1
h dx D

Z

˝

f . Ovnh; OBn

h;
O�nh/ � wdx;

(12.43)

where ˛ > 0 is a parameter to choose independently of h and hT is the diameter
of the tetrahedron T . We recall that Ovnh, O�nh and OBn

h are respective interpolations
of vnh, �

n
h and Bn

h on the mesh T nC1
h .

4. Solution of the potential equation
Clearly (12.40) is an elliptic boundary value problem that can be solved using a
standard finite element method. Using the finite element space QVnC1

h we have the
discrete variational formulation that consists in seeking �nC1

h 2 QVnC1
h such that

Z
Q̋
�nC1r�nC1

h � r dx D
Z

Q̋
�nC1.vnC1

h � OBn

h/ � r dx

�
Z

@ Q̋
jS ds 8  2 QVnC1

h :

Note that the right-hand side is obtained after the use of a Green formula that
enables handling the Neumann boundary condition.
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5. Computation of the current density
Compute the electric current density J nC1 by using (12.5) and (12.6),

J nC1 D �nC1 .vnC1 � OBn � r�nC1/;

ıJ nC1 D J nC1 � J 0;

in Q̋ , where J 0 is the given static current density.
The evaluation of the current density by using (12.40) is rather simple

and enables constructing a piecewise constant function J nC1
h , that we define

elementwise by the following:

J nC1
hjT D 1

jT j
Z

T

�nC1 .vnC1
h � OBn

h � r�nC1
h / dx 8 T 2 QT nC1

h :

6. Computation of the magnetic induction
Update the magnetic induction BnC1 by setting

BnC1.x/ D B0.x/C ıBnC1.x/ x 2 ˝: (12.44)

The perturbed magnetic induction ıBnC1 is obtained by solving (12.14) for each
componentAj of A.

Numerical solution of (12.14) can be carried out by using the same technique
as in Sect. 3.3.4, i.e. by using the Poisson formula. This can be formulated as the

following: Let � be a domain that contains Q̋ , with boundary @� , and let Br
denote the ball with center 0 and radius r such that

Q̋ � Br; Br � �:

Using ([62], Vol. 1, p. 249), we deduce that (12.14) is equivalent to:

��AnC1
j D 
0 ıJ

nC1
j in �; (12.45)

AnC1
j .x/ D r2 � jxj2

4�r

Z

@Br

AnC1
j .y/

jx � y j3 ds.y/ x 2 @�; (12.46)

for j D 1; 2; 3. Problem (12.45)–(12.46) is solved by an iterative procedure that
can be presented as a domain decomposition technique, and that can be outlined
as follows:

(1) Initialization: Define the j -th component AnC1;0
j of AnC1;0 as the unique

solution of the Dirichlet problem:

8
<
:

��AnC1;0
j D 
0 ıJ

nC1
j in �;

A
nC1;0
j D 0 on @�:
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Here the second index in the superscript starts for the domain decomposition
iteration index. Note that the boundary condition can be justified by the fact
that if @� is far enough from @ Q̋ , then AnC1;0

j is a good approximation of
the condition at the infinity in (12.14). If we consider the numerical solution
of (12.14), it is necessary to extend the mesh QT nC1

h outside Q̋ in order to

obtain a conforming mesh MT n
h of � .

(2) Given the iterate AnC1;k
j for a k � 0, update the value on the boundary g

by (12.46), i.e.

gkC1.x/ D r2 � jxj2
4�r

Z

@Br

A
nC1;k
j .y/

jx � y j3 ds.y/ 8 x 2 @�:

The above integral does not involve any singularity, the sphere @Br being far
from the nodes on the boundary of � .

Space discretization of this step uses standard finite element approximation
with the mesh MT nC1

h .
(3) Solve, by finite elements, the boundary value problem:

8
<
:

��AnC1;kC1
j D 
0 ıJ

nC1
j;h in �;

A
nC1;kC1
j D gkC1

j;h on @�:
(12.47)

(4) Set k WD k C 1 and repeat (2)–(3) until convergence
(5) The numerical solution of problems (12.47) provides the components of

the approximate potential Ah. The magnetic induction is then obtained by
computing the piecewise constant vector

BnC1
h WD B0;h C curl AnC1

h in Q̋ :

where B0;h is defined by (12.37).

Remark 12.3.1. The presented iterative scheme has some analogy with the one
described in [18], where an integral representation of the exterior solution
replaces the Poisson formula.

12.3.4 Lagrangian or Eulerian Approach

We have presented in this section a Lagrangian procedure to describe the interface
motion. The finite element mesh is deformed according to the obtained interface
displacement. This method is rather complex to implement but has the advantage of
yielding a fitted mesh to the interface which enables accurate handling of the gaps
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in physical properties (mainly �). More details about the implementation of this
method can be found in [166]. An alternative consists in using an Eulerian procedure
where the mesh is constant throughout time steps and the obtained interface, at
each time step determines the values of � , % and � in the tetrahedra where their
discontinuity appears. The advantage of this approach is that no remeshing is
required each time step. However, it well known that the use of a non fitting mesh
yields poor accuracy of the finite element method. To overcome this difficulty,
tetrahedra in which the interface is localized must be split into tetrahedra such that
the interface appears as union of boundaries of elements. This creates new nodes at
each time step and requires an efficient technique to handle the resulting change of
the matrix size and structure at each time step (See for this [75]).

12.4 Numerical Results

Let us present a numerical benchmark of the time stepping procedure introduced
in the previous section. For this end, let us consider a simplified geometry that
illustrates the main behaviour of Hall-Héroult cells. This geometry was mainly
studied by Steiner [166] in his PhD thesis. The model geometry consists in a cylinder
with a circular section of radius 3.5 cm and height 15 cm (See Fig. 12.4). An electric
current flows in this tank entering from a cylindrical anode with radius 2.5 cm placed
at the top of the tank and partially immersed in the bath. It leaves by a cathode that
entirely covers the bottom. This experimental setup is relevant since it has been
already considered in some studies (see [91] for instance). It enables observing
typical MHD instabilities.

js

2.5 cm

3.5 cm

js

Aluminum

Bath

Anode

Interface

Cathode

15 cm

Fig. 12.4 A crucible: model
for aluminium production
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Fig. 12.5 Illustration of the rolling phenomenon in a model crucible

Fig. 12.6 Vertical position of a node on the interface

Let us now consider a numerical experiment. We consider for this the material
properties

%al D 2;270 kg m�3; %el D 2;130 kg m�3;

�al D 3:33�106 S m�1; �el D 210 S m�1:
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Fig. 12.7 Unstable rolling: Time values 0 and 11 s

Fig. 12.8 Unstable rolling: Time values 23 and 31 s

We note that these data show a significant gap of the electric conductivity on
the interface. This implies that particular care must be taken in the mesh motion
procedure or if an eulerian technique is adopted.

We still note that when the source current is null (jS D 0), this one being
the unique source of motion in this setup, we have a stationary solution of the
system (12.22)–(12.32) given by:

v D 0; � D Const.; B D J D 0:

Moreover, it is easy to see that in this case the interface is flat.
Now, we prescribe a source electric current jS D 10A on the anode and increase

an external vertical magnetic induction B0 in the range 10–160Gauss. By taking
a non flat interface � as initial condition with v D 0, we can compute the vertical
oscillations of the nodes on the interface. As an illustration, we represent in Fig. 12.6
the time history (t D 0 to t D 25 s.) of the vertical position of a node located near
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the boundary of the interface for various values of the external vertical magnetic
induction. We note that if the vertical component of B0 is less than 80Gauss, then
the oscillation amplitude decreases as time increases which means stability. In this
case, the interface tends asymptotically to the flat interface. For larger values of
B0 the amplitude increases which results in instability. In both cases, the “rolling”
phenomenon takes place as show Figs. 12.7–12.8. From a practical viewpoint, a
severe instability can result in contact between the interface and the anode, and then
in current shortcut.



Mathematical Symbols

Physical Fields and Quantities

B Magnetic induction,
H Magnetic field,
D Electric displacement field,
E Electric field,
J Electric current density,
M Magnetization field,
v Velocity of fluid,
p Pressure of fluid,
 Temperature,
h Enthalpy,
V Voltage,
I Total electric current.

Physical Coefficients

%q Charge density,
� Electric conductivity,
" Electric permittivity,

r Relative magnetic permeability,

0 Magnetic permeability of vacuum,

 Magnetic permeability: 
 D 
r
0,
! Angular frequency,
k Thermal conductivity,
% Density,
� Molecular viscosity,
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� Surface tension,
� Mean curvature of a surface.

Other Symbols

ek k-th vector of the canonical basis of R3,
x Generic point of Rd , x D x1 e1 C : : : xd ed ,
G(x,y) Green function of the operator �� for both two-dimensional and three-

dimensional situations depending on the context.

Differential Operators (Cartesian Coordinates)

curl u WD
�@u3
@x2

� @u2
@x3

�
e1 C

� @u1
@x3

� @u3
@x1

�
e2 C

�@u2
@x1

� @u1
@x2

�
e3

(curl operator in 3-D),

curl u WD @u

@x2
e1 � @u3

@x1
e2 (Vector curl operator in 2-D),

curl u WD @u2
@x1

� @u1
@x2

(Scalar curl operator in 2-D),

div u WD Pd
iD1

@ui
@xi

(Divergence operator),

div D WD Pd
i;jD1

@Dij

@xj
ei (Divergence of a second–order tensor D),

ru WD Pd
iD1

@u

@xi
ei (Gradient operator for a scalar field),

ru WD
� @ui
@xj

�
ij

(Gradient operator for a vector field),

�u WD Pd
iD1

@2u

@x2i
(Laplace operator).


u WD Pd
iD1

@2u

@x2i
(Laplace operator for a vector field).

Function Spaces

Let X denote an open subset of Rd , d D 2; 3 with boundary @X .
D.X/ Space of indefinitely differentiable functions on X with compact

support,
DD.X/ WD D.X/d ,
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Ck.X/ Space of k-times continuously differentiable functions on X ,
C0;˛.X/ Space of Hölder continuous functions with exponent ˛ on X ,
Lp.X/ (1 � p < 1) Space of measurable functions f such that jf jp is

Lebesgue–integrable over X ,
Lp.X/ WD Lp.X/d ,
L1.X/ Space of measurable functions that are almost everywhere bounded

on X ,
H1.X/ WD fu 2 L2.X/I ru 2 L2.X/g with weak partial derivatives (in the

sense of distributions),
H1.X/ WD H1.X/d ,
H1
0.X/ WD fu 2 H1.X/I u D 0 on @Xg,

Wm;p.X/ WD ˚
v 2 Lp.X/I @j˛jv

@x
˛1
1 : : :C @x

˛d
d

2 Lp.X/; j˛j D ˛1C: : :C˛d �
m

,

H 1
2 .@X/ Space of traces of functions of H1.X/ on the boundary @X of X ,

H� 1
2 .@X/ Dual space of H 1

2 .@X/,
W1.X/ WD fv W X ! CI v 2 L2.X/; rv 2 L2.X/g,

with .x/ D

8
<̂
:̂

1

1C jxj if d D 3;

1

.1C jxj/ ln.2C jxj/ if d D 2;

W1.X/ WD W1.X/d ,
W1

0 .X/ Closure of D.X/ for the semi-norm ' 7! kr'kL2.X/,

WD fv W X ! CI rv 2 L2.X/g,
H.curl; X/ WD fu 2 L2.X/I curl u 2 L2.X/g,
H.div; X/ WD fu 2 L2.X/I div u 2 L2.X/g.
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