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1 Physical Principles  
This chapter introduces the basic physical principles behind mechanisms as well as basic 
concepts and principles required for this course.  

1.1 Force and Torque  

1.1.1 Force  

Force: an agent or influence that, if applied to a free body results chiefly in an 
acceleration of the body and sometimes in elastic deformation and other effects.  

Every day we deal with forces of one kind or another. A pressure is a force. The earth 
exerts a force of attraction for all bodies or objects on its surface. To study the forces 
acting on objects, we must know how the forces are applied, the direction of the forces 
and their value. Graphically, forces are often represented by a vector whose end 
represents the point of action.  

A mechanism is what is responsible for any action or reaction. Machines are based on the 
idea of transmitting forces through a series of predetermined motions. These related 
concepts are the basis of dynamic movement.  

1.1.2 Torque  

Torque: Something that produces or tends to produce rotation and whose effectiveness is 
measured by the product of the force and the perpendicular distance from the line of 
action of the force to the axis of rotation.  

Consider the lever shown in Figure 1-1. The lever is a bar that is free to turn about the 
fixed point, A, called the fulcrum; a weight acts on the one side of the lever, and a 
balancing force acts on the other side of the lever.  

 

Figure 1-1 A lever with balanced forces 

To analyze levers, we need to find the torques of the forces acting on the lever. To get the 
torque of force W about point A, multiply W by l1, its distance from A. Similarly F x l2 is 
the torque of F about fulcrum A.  

 



1.2 Motion  

Motion: a change of position or orientation.  

1.2.1 Motion Along a Straight Path  

We begin our study of motion with the simplest case, motion in a straight line.  

1. Position and displacement along a line  
The first step in the study of motion is to describe the position of a moving object. 
Consider a car on an east-west stretch of straight highway. We can describe the 
displacement of the car by saying "the car is 5 kilometers west of the center 
town". In this description, we specified two factors, the original point of measure 
and the direction of the displacement.  

2. Velocity  
We can define the velocity of an object moving steadily as its displacement per 
unit time:  

 

 
(1-1)  

where t = t2 - t1 is the time interval during which the displacement occurred. 
When velocity varies, we can let the time interval become infinitesimally small, 
thus  

  

 
(1-2)  

3. Acceleration  
Acceleration is the variation of the velocity in a unit time period. If the velocity 
changes in a constant rate, then we can describe the acceleration by  

 

 
(1-3)  



More generally, acceleration is  

 

 
(1-4)  

1.2.2 Linear Motion in Space  

The picture becomes more complicated when the motion is not merely along a straight 
line, but rather extends into a plane.  Here we can describe the motion with a vector 
which includes the magnitude and the direction of movement.  

1. Position vector and displacement vector  
The directed segment which describes the position of an object relative to an 
origin is the position vector, as d1 and d2 in Figure 1-2  

 

Figure 1-2 Position vector and displacement vector 

If we wish to describe a motion from position d1 to position d2, for example, we 
can use vector d1, the vector starts at the point described by d1 and goes to the 
point described by d2, which is called the displacement vector.  

 

 
(1-5)  

2. Velocity vector  
For a displacement d occurring in a time interval t, the average velocity during 
the interval is  

 

 
(1-6)  



Clearly Vave has the direction of d.  

In the limit as delta t approaches zero, the instantaneous velocity is  

 

 
(1-7)  

The direction of V is the direction of d for a very small displacement; it is 
therefore along, or tangent to, the path.  

3. Acceleration vector  
The instantaneous acceleration is the limit of the ratio V/ t as t becomes very 
small:  

 

(1-8)  

1.2.3 Motion of a Rigid Body in a Plane  

The previous sections discuss the motion of particles. For a rigid body in a plane, its 
motion is often more complex than a particle because it is comprised of a linear motion 
and a rotary motion. Generally, this kind of motion can be decomposed into two motions 
(Figure 1-3), they are:  

1. The linear motion of the center of the mass of the rigid body. In this part of the 
motion, the motion is the same as the motion of a particle on a plane.  

2. The rotary motion of the rigid body relative to its center of mass.  

 

Figure 1-3 Motion of a rigid body in a plane 

 

 

 



1.3 Newton's Law of Motion  

1.3.1 Newton's First Law  

When no force is exerted on a body, it stays at rest or moves in a straight line with 
constant speed. This principle of inertia is also known as Newton's first law. It is from 
this law that Newton was able to build up our present understanding of dynamics.  

1.3.2 Newton's Second Law  

From our daily life, we can can observe that:  

1. When a force F is applied on an object, V, the change of the velocity of the 
object, increases with the length of time delta t increases;  

2. The greater the force F, the greater V; and  
3. The larger the body (object) is, the less easily accelerated by forces.  

It is convenient to write the proportionality between F t and V in the form:  

 
(1-9)  

The proportionality constant m varies with the object. This constant m is refered to as the 
inertial mass of the body. The relationship above embodies Newton's law of motion 
(Newton's second law). As  

 
(1-10)  

in which a is the acceleration of the object. We have  

 
(1-11)  

If m = 1 kg and a = 1m/sec2, than F = 1 newton.  

Forces and accelerations are vectors, and Newton's law can be written in vector form.  

 
(1-12)  

 

 



1.4 Momentum and Conservation of Momentum 

1.4.1 Impulse  

Try to make a baseball and a cannon ball roll at the same speed. As you can guess, it is 
harder to get the cannon ball going. If you apply a constant force F for a time t, the 
change in velocity is given by Equation 1-9. So, to get the same v, the product F t must 
be greater the greater the mass m you are trying to accelerate.  

To throw a cannon ball from rest and give it the same final velocity as a baseball (also 
starting from rest), we must push either harder or longer. What counts is the product F t. 
This product F t is the natural measure of how hard and how long we push to change a 
motion. It is called the impulse of the force.  

1.4.2 Momentum  

Suppose we apply the same impulse to a baseball and a cannon ball, both initially at rest. 
Since the initial value of the quantity mv is zero in each case, and since equal impulses 
are applied, the final values mv will be equal for the baseball and the cannon ball. Yet, 
because the mass of the cannon ball is much greater than the mass of the baseball, the 
velocity of the cannon ball will be much less than the velocity of the baseball. The 
product mv, then, is quite a different measure of the motion than simply v alone. We call 
it the momentum p of the body, and measure it in kilogram-meters per second.  

 
(1-13)  

Velocity and momentum are quite different concepts: velocity is a kinematical quantity, 
whereas momentum is a dynamic one, connected with the causes of changes in the 
motion of masses.  

Because of its connection with the impulse which occurs naturally in Newton's law 
(Equation 1-9), we expect momentum to fit naturally into Newtonian dynamics. Newton 
did express his law of motion in terms of the momentum, which he called the quantity of 
motion. We can express Newton's law in terms of the change in momentum instead of 
change in velocity:  

 
(1-14)  

where v and v' are the velocities before and after the impulse. The right-hand side of the 
last equation can be written as  

 
(1-15)  

the change in the momentum. Therefore  



 
(1-16)  

or, in other words, the impulse equals the change in the momentum.  

1.4.3 Conservation of Momentum  

In Figure 1-4 a moving billiard ball collides with a billiard ball at rest. The incident ball 
stops and the ball it hits goes off with the same velocity with which the incident ball 
came in. The two billiard balls have the same mass. Therefore, the momentum of the 
second ball after the collision is the same as that of the incident ball before collision. The 
incident ball has lost all its momentum, and the ball it struck has gained exactly the 
momentum which the incident ball lost.  

 

Figure 1-4 Collision of billiard balls 

This phenomenon is consistent with the law of conservation of momentum which says 
that the total momentum is constant when two bodies interact.  

1.5 Work, Power and Energy  

1.5.1 Work  

Work is a force applied over a distance. If you drag an object along the floor you do work 
in overcoming the friction between the object and the floor. In lifting an object you do 
work against gravity which tends to pull the object toward the earth. Steam in a 
locomotive cylinder does work when it expands and moves the piston against the 
resisting forces. Work is the product of the resistance overcome and the distance through 
which it is overcome.  

1.5.2 Power  

Power is the rate at which work is done.  

In the British system, power is expressed in foot-pounds per second. For larger 
measurements, the horsepower is used.  

1horsepower = 550ft *lb/s = 33,000ft*lb/min  

In SI units, power is measured in joules per second, also called the watt (W).  

1hp = 746 W = 0.746kW  



1.5.3 Energy  

All object possess energy.   This can come from having work done on it at some point in 
time.  Generally, there are two kinds of energy in mechanical systems, potential and 
kinetic.  Potential energy is due to the position of the object and kinetic energy is due to 
its movement.  

For example, an object set in motion can overcome a certain amount of resistance before 
being brought to rest, and the energy which the object has on account of its motion is 
used up in overcoming the resistance, bring the object to rest. Fly wheels on engines both 
receive and give up energy and thus cause the energy to return more smoothly throughout 
the stroke.  

Elevated weights have power to do work on account of their elevated position, as in 
various types of hammers, etc.  

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Mechanisms and Simple Machines  
Mechanism: the fundamental physical or chemical processes involved in or responsible 
for an action, reaction or other natural phenomenon.  

Machine: an assemblage of parts that transmit forces, motion and energy in a 
predetermined manner.  

Simple Machine: any of various elementary mechanisms having the elements of which 
all machines are composed.  Included in this category are the lever, wheel and axle, 
pulley, inclined plane, wedge and the screw.  

The word mechanism has many meanings. In kinematics, a mechanism is a means of 
transmitting, controlling, or constraining relative movement (Hunt 78). Movements 
which are electrically, magnetically, pneumatically operated are excluded from the 
concept of mechanism. The central theme for mechanisms is rigid bodies connected 
together by joints.  

A machine is a combination of rigid or resistant bodies, formed and connected do that 
they move with definite relative motions and transmit force from the source of power to 
the resistance to be overcome. A machine has two functions: transmitting definite relative 
motion and transmitting force.  These functions require strength and rigidity to transmit 
the forces.  

The term mechanism is applied to the combination of geometrical bodies which 
constitute a machine or part of a machine. A mechanism may therefore be defined as a 
combination of rigid or resistant bodies, formed and connected so that they move with 
definite relative motions with respect to one another (Ham et al. 58).  

Although a truly rigid body does not exist, many engineering components are rigid 
because their deformations and distortions are negligible in comparison with their relative 
movements.  

The similarity between machines and mechanisms is that  

• they are both combinations of rigid bodies  
• the relative motion among the rigid bodies are definite.  

The difference between machine and mechanism is that machines transform energy to do 
work, while mechanisms so not necessarily perform this function. The term machinery 
generally means machines and mechanisms. Figure 2-1 shows a picture of the main part 
of a diesel engine. The mechanism of its cylinder-link-crank parts is a slider-crank 
mechanism, as shown in Figure 2-2.  



 

Figure 2-1 Cross section of a power cylinder in a diesel engine 

 

Figure 2-2 Skeleton outline 

2.1 The Inclined Plane  

Figure 2-3a shows an inclined plane, AB is the base, BC is the height and AC the 
inclined plane. With the use of the inclined plane a given resistance can be overcome 
with a smaller force than if the plane is not used. For example, in Figure 2-3b, suppose 
we wish to raise a weight of 1000 lb. through the vertical distance BC = 2 ft. If this 
weight were raised vertically and without the use of the inclined plane the force 1000 lb. 
would have to be exerted through the distance BC. If, however, the inclined plane is used 
and the weight is moved over its inclined plane AC, a force of only 2/3 of 1000 lb. or 667 
lb. is necessary, although this force is exerted through a distance AC which is greater 
than distance BC.  

 

Figure 2-3 Inclined plane 

Using an inclined plane requires a smaller force exerted through a greater distance to do a 
certain amount of work.  



Letting F represent the force required to raise a given weight on the inclined plane, and 
W the weight to be raised, we have the proportion:  

 
(2-1)  

2.1.1 Screw Jack  

One of the most common application of the principle of the inclined plane is in the screw 
jack which is used to overcome a heavy pressure or raise a heavy weight of W by a much 
smaller force F applied at the handle. R represents the length of the handle and P the 
pitch of the screw, or the distance advances in one complete turn.  

 

Figure 2-4 The screw jack 

Neglecting the friction the following rule is used: The force F multiplied by the distance 
through which it moves in one complete turn is equal to the weight lifted times the 
distance through which it is lifted in the same time. In one complete turn the end of the 
handle describes a circle of circumference 2 R. This is the distance through which the 
force F is exerted.  

Therefore from the rule above  

 
(2-2)  

and  

 
(2-3)  

Suppose R equals 18 in., P equals 1/8 in. and the weight to be lifted equals 100,000 lb., 
then the force required at F is then 110 lb. This means that, neglecting friction, 110 lb. at 
F will raise 100,000 lb. at W, but the weight lifted moves much slower than the force 
applied at F.  

 



2.2 Gears  

A gear, or toothed wheel, when in operation, may actually be considered as a lever with 
the additional feature that it can be rotated continuously, instead of rocking back and 
forth through a short distance. One of the basic relationships for a gear is the number of 
teeth, the diameter, and the rotary velocity of gears. Figure 2-5 shows the ends of two 
shafts A and B connected by 2 gears of 24 and 48 teeth respectively. Notice that the 
larger gear will make only one-half turn while the smaller makes a complete turn. That is, 
the ratio of speeds (velocity ratio) of the large to the smaller is as 1 to 2.  

 

Figure 2-5 Gears 

The gear that is closer to the source of power is called the driver, and the gear that 
receives power from the driver is called the driven gear.  

2.2.1 Gear Trains  

A gear train may have several drivers and several driven gears.  

 

Figure 2-6 Gear train 

When gear A turns once clockwise, gear B turns 4 times counter-clockwise and gear C 
turns once clockwise. Hence gear B does not change the speed of C from what it would 
have been if geared directly to gear A, but it changes its direction from counterclockwise 
to clockwise.  

The velocity ratio of the first and last gears in a train of simple gears dose not changed by 
putting any number of gears between them.  

Figure 2-7 shows compound gears in which two gears are on the middle shaft. Gears B 
and D rotate at the same speed since they are keyed (fixed) to the same shaft. The number 
of teeth on each gear is given in the figure. Given these numbers, if gear A rotates at 100 
r.p.m. clockwise, gear B turns 400 r.p.m. (rotations per minute) counterclockwise and 
gear C turns 1200 r.p.m. clockwise.  



 

Figure 2-7 Compound gears 

2.2.2 Gear Ratios  

It is important when working with gears to know what number of teeth the gears should 
have so that they can mesh properly in a gear train. The size of the teeth for connecting 
gears must be match properly.  

2.3 Belts and Pulleys  

Belts and pulleys are an important part of most machines. Pulleys are nothing but gears 
without teeth and instead of running together directly they are made to drive one another 
by cords, ropes, cables, or belting of some kinds.  

As with gears, the velocities of pulleys are inversely proportional to their diameters.  

 

Figure 2-8 Belts and pulleys 

Pulleys can also be arranged as a block and tackle.  

2.4 Lever 

2.5 Wheel and Axle 

2.6 Wedge 

2.7 Efficiency of Machines 

In working out the problems on levers, belts and pulleys, inclined planes and so forth, we 
have not taken account of friction or other sources of energy loss. In other words, we 
have supposed them to be perfect, when in fact they are not. To measure the performance 
of a machine, we often find its efficiency, which is defined as  



 
(2-4) 

where  

= the efficiency of a machine,  
Win = the input work to a machine, and  
Wout = the output work of a machine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 More on Machines and Mechanisms  

3.1 Planar and Spatial Mechanisms  

Mechanisms can be divided into planar mechanisms and spatial mechanisms, according 
to the relative motion of the rigid bodies. In a planar mechanisms, all of the relative 
motions of the rigid bodies are in one plane or in parallel planes. If there is any relative 
motion that is not in the same plane or in parallel planes, the mechanism is called the 
spatial mechanism. In other words, planar mechanisms are essentially two dimensional 
while spatial mechanisms are three dimensional. This tutorial only covers planar 
mechanisms.  

3.2 Kinematics and Dynamics of Mechanisms 

Kinematics of mechanisms is concerned with the motion of the parts without considering 
how the influencing factors (force and mass) affect the motion. Therefore, kinematics 
deals with the fundamental concepts of space and time and the quantities velocity and 
acceleration derived there from.  

Kinetics deals with action of forces on bodies. This is where the the effects of gravity 
come into play.  

Dynamics is the combination of kinematics and kinetics.  

Dynamics of mechanisms concerns the forces that act on the parts -- both balanced and 
unbalanced forces, taking into account the masses and accelerations of the parts as well 
as the external forces.  

3.3 Links, Frames and Kinematic Chains 

A link is defined as a rigid body having two or more pairing elements which connect it to 
other bodies for the purpose of transmitting force or motion (Ham et al. 58).  

In every machine, at least one link either occupies a fixed position relative to the earth or 
carries the machine as a whole along with it during motion. This link is the frame of the 
machine and is called the fixed link.  

The combination of links and pairs without a fixed link is not a mechanism but a 
kinematic chain.  

 

 

 



3.4 Skeleton Outline  

 

Figure 3-1 Skeleton outline 

For the purpose of kinematic analysis, a mechanism may be represented in an 
abbreviated, or skeleton, form called the skeleton outline of the mechanism. The skeleton 
outline gives all the geometrical information necessary for determining the relative 
motions of the links. In Figure 3-1, the skeleton outline has been drawn for the engine 
shown in Figure 2-1. This skeleton contains all necessary information to determine the 
relative motions of the main links, namely, the length AB of the crank; the length BC of 
the connecting rod; A the location of the axis of the main bearing; and the path AC of 
point C, which represents the wrist-pin axis.  

3.5 Pairs, Higher Pairs, Lower Pairs and Linkages  

A pair is a joint between the surfaces of two rigid bodies that keeps them in contact and 
relatively movable. For example, in Figure 3-2, a door jointed to the frame with hinges 
makes revolute joint (pin joint), allowing the door to be turned around its axis. Figure 3-
2b and c show skeletons of a revolute joint. Figure 3-2b is used when both links joined by 
the pair can turn. Figure 3-2c is used when one of the link jointed by the pair is the frame. 

 

Figure 3-2 Revolute pair 

In Figure 3-3a a sash window can be translated relative to the sash. This kind of relative 
motion is called a prismatic pair. Its skeleton outlines are shown in b, c and d. c and d are 
used when one of the links is the frame. 



 

Figure 3-3 Prismatic pair 

Generally, there are two kinds of pairs in mechanisms, lower pairs and higher pairs. 
What differentiates them is the type of contact between the two bodies of the pair. 
Surface-contact pairs are called lower pairs. In planar (2D) mechanisms, there are two 
subcategories of lower pairs -- revolute pairs and prismatic pairs, as shown in Figures 3-
2 and 3-3, respectively. Point-, line-, or curve-contact pairs are called higher pairs. 
Figure 3-4 shows some examples of higher pairs Mechanisms composed of rigid bodies 
and lower pairs are called linkages.  

 

Figure 3-4 Higher pairs 

3.6 Kinematic Analysis and Synthesis  

In kinematic analysis, a particular given mechanism is investigated based on the 
mechanism geometry plus other known characteristics (such as input angular velocity, 
angular acceleration, etc.). Kinematic synthesis, on the other hand, is the process of 
designing a mechanism to accomplish a desired task. Here, both choosing the types as 
well as the dimensions of the new mechanism can be part of kinematic synthesis. (Sandor 
& Erdman 84)  

 

 

 

 

 



4 Basic Kinematics of Constrained Rigid Bodies 

4.1 Degrees of Freedom of a Rigid Body 

4.1.1 Degrees of Freedom of a Rigid Body in a Plane  

The degrees of freedom (DOF) of a rigid body is defined as the number of independent 
movements it has. Figure 4-1 shows a rigid body in a plane. To determine the DOF of 
this body we must consider how many distinct ways the bar can be moved. In a two 
dimensional plane such as this computer screen, there are 3 DOF. The bar can be 
translated along the x axis, translated along the y axis, and rotated about its centroid.  

 

Figure 4-1 Degrees of freedom of a rigid body in a plane 

4.1.2 Degrees of Freedom of a Rigid Body in Space  

An unrestrained rigid body in space has six degrees of freedom: three translating motions 
along the x, y and z axes and three rotary motions around the x, y and z axes respectively.  

 

Figure 4-2 Degrees of freedom of a rigid body in space 

4.2 Kinematic Constraints  

Two or more rigid bodies in space are collectively called a rigid body system. We can 
hinder the motion of these independent rigid bodies with kinematic constraints. 
Kinematic constraints are constraints between rigid bodies that result in the decrease of 
the degrees of freedom of rigid body system.  

The term kinematic pairs actually refers to kinematic constraints between rigid bodies. 
The kinematic pairs are divided into lower pairs and higher pairs, depending on how the 
two bodies are in contact.  

 



4.2.1 Lower Pairs in Planar Mechanisms  

There are two kinds of lower pairs in planar mechanisms: revolute pairs and prismatic 
pairs.  

A rigid body in a plane has only three independent motions -- two translational and one 
rotary -- so introducing either a revolute pair or a prismatic pair between two rigid bodies 
removes two degrees of freedom.  

 

Figure 4-3 A planar revolute pair (R-pair) 

 

Figure 4-4 A planar prismatic pair (P-pair) 

4.2.2 Lower Pairs in Spatial Mechanisms  

There are six kinds of lower pairs under the category of spatial mechanisms. The types 
are: spherical pair, plane pair, cylindrical pair, revolute pair, prismatic pair, and screw 
pair.  

 

Figure 4-5 A spherical pair (S-pair) 

A spherical pair keeps two spherical centers together. Two rigid bodies connected by this 
constraint will be able to rotate relatively around x, y and z axes, but there will be no 
relative translation along any of these axes. Therefore, a spherical pair removes three 
degrees of freedom in spatial mechanism. DOF = 3.  

 



 

Figure 4-6 A planar pair (E-pair) 

A plane pair keeps the surfaces of two rigid bodies together. To visualize this, imagine a 
book lying on a table where is can move in any direction except off the table. Two rigid 
bodies connected by this kind of pair will have two independent translational motions in 
the plane, and a rotary motion around the axis that is perpendicular to the plane. 
Therefore, a plane pair removes three degrees of freedom in spatial mechanism. In our 
example, the book would not be able to raise off the table or to rotate into the table. DOF 
= 3.  

 

Figure 4-7 A cylindrical pair (C-pair) 

A cylindrical pair keeps two axes of two rigid bodies aligned. Two rigid bodies that are 
part of this kind of system will have an independent translational motion along the axis 
and a relative rotary motion around the axis. Therefore, a cylindrical pair removes four 
degrees of freedom from spatial mechanism. DOF = 2.  

 

Figure 4-8 A revolute pair (R-pair) 

A revolute pair keeps the axes of two rigid bodies together. Two rigid bodies constrained 
by a revolute pair have an independent rotary motion around their common axis. 
Therefore, a revolute pair removes five degrees of freedom in spatial mechanism. DOF = 
1.  

 

Figure 4-9 A prismatic pair (P-pair) 



A prismatic pair keeps two axes of two rigid bodies align and allow no relative rotation. 
Two rigid bodies constrained by this kind of constraint will be able to have an 
independent translational motion along the axis. Therefore, a prismatic pair removes five 
degrees of freedom in spatial mechanism. DOF = 1.  

 

Figure 4-10 A screw pair (H-pair) 

The screw pair keeps two axes of two rigid bodies aligned and allows a relative screw 
motion. Two rigid bodies constrained by a screw pair a motion which is a composition of 
a translational motion along the axis and a corresponding rotary motion around the axis. 
Therefore, a screw pair removes five degrees of freedom in spatial mechanism.  

4.3 Constrained Rigid Bodies  

Rigid bodies and kinematic constraints are the basic components of mechanisms. A 
constrained rigid body system can be a kinematic chain, a mechanism, a structure, or 
none of these. The influence of kinematic constraints in the motion of rigid bodies has 
two intrinsic aspects, which are the geometrical and physical aspects. In other words, we 
can analyze the motion of the constrained rigid bodies from their geometrical 
relationships or using Newton's Second Law.  

A mechanism is a constrained rigid body system in which one of the bodies is the frame. 
The degrees of freedom are important when considering a constrained rigid body system 
that is a mechanism. It is less crucial when the system is a structure or when it does not 
have definite motion.  

Calculating the degrees of freedom of a rigid body system is straight forward. Any 
unconstrained rigid body has six degrees of freedom in space and three degrees of 
freedom in a plane. Adding kinematic constraints between rigid bodies will 
correspondingly decrease the degrees of freedom of the rigid body system. We will 
discuss more on this topic for planar mechanisms in the next section.  

4.4 Degrees of Freedom of Planar Mechanisms 

4.4.1 Gruebler's Equation  

The definition of the degrees of freedom of a mechanism is the number of independent 
relative motions among the rigid bodies. For example, Figure 4-11 shows several cases of 
a rigid body constrained by different kinds of pairs.  



 

Figure 4-11 Rigid bodies constrained by different kinds of planar pairs  

In Figure 4-11a, a rigid body is constrained by a revolute pair which allows only 
rotational movement around an axis. It has one degree of freedom, turning around point 
A. The two lost degrees of freedom are translational movements along the x and y axes. 
The only way the rigid body can move is to rotate about the fixed point A.  

In Figure 4-11b, a rigid body is constrained by a prismatic pair which allows only 
translational motion. In two dimensions, it has one degree of freedom, translating along 
the x axis. In this example, the body has lost the ability to rotate about any axis, and it 
cannot move along the y axis.  

In Figure 4-11c, a rigid body is constrained by a higher pair. It has two degrees of 
freedom: translating along the curved surface and turning about the instantaneous contact 
point.  

In general, a rigid body in a plane has three degrees of freedom. Kinematic pairs are 
constraints on rigid bodies that reduce the degrees of freedom of a mechanism. Figure 4-
11 shows the three kinds of pairs in planar mechanisms. These pairs reduce the number of 
the degrees of freedom. If we create a lower pair (Figure 4-11a,b), the degrees of freedom 
are reduced to 2. Similarly, if we create a higher pair (Figure 4-11c), the degrees of 
freedom are reduced to 1.  

 

Figure 4-12 Kinematic Pairs in Planar Mechanisms 

Therefore, we can write the following equation:  

 
(4-1) 



Where  

F = total degrees of freedom in the mechanism  
n = number of links (including the frame)  
l = number of lower pairs (one degree of freedom)  
h = number of higher pairs (two degrees of freedom)  

This equation is also known as Gruebler's equation.  

Example 1  

Look at the transom above the door in Figure 4-13a. The opening and closing mechanism 
is shown in Figure 4-13b. Let's calculate its degree of freedom.  

 

Figure 4-13 Transom mechanism 

n = 4 (link 1,3,3 and frame 4), l = 4 (at A, B, C, D), h = 0  

 
(4-2) 

Note: D and E function as a same prismatic pair, so they only count as one lower pair.  

Example 2  

Calculate the degrees of freedom of the mechanisms shown in Figure 4-14b. Figure 4-14a 
is an application of the mechanism.  



 

Figure 4-14 Dump truck 

n = 4, l = 4 (at A, B, C, D), h = 0  

 
(4-3) 

Example 3  

Calculate the degrees of freedom of the mechanisms shown in Figure 4-15.  

 

Figure 4-15 Degrees of freedom calculation 

For the mechanism in Figure 4-15a  

n = 6, l = 7, h = 0  

 
(4-4) 

For the mechanism in Figure 4-15b  

n = 4, l = 3, h = 2  

 
(4-5)  



Note: The rotation of the roller does not influence the relationship of the input and output 
motion of the mechanism. Hence, the freedom of the roller will not be considered; It is 
called a passive or redundant degree of freedom. Imagine that the roller is welded to link 
2 when counting the degrees of freedom for the mechanism.  

4.4.2 Kutzbach Criterion  

The number of degrees of freedom of a mechanism is also called the mobility of the 
device. The mobility is the number of input parameters (usually pair variables) that must 
be independently controlled to bring the device into a particular position. The Kutzbach 
criterion, which is similar to Gruebler's equation, calculates the mobility. 

In order to control a mechanism, the number of independent input motions must equal the 
number of degrees of freedom of the mechanism. For example, the transom in Figure 4-
13a has a single degree of freedom, so it needs one independent input motion to open or 
close the window. That is, you just push or pull rod 3 to operate the window.  

To see another example, the mechanism in Figure 4-15a also has 1 degree of freedom. If 
an independent input is applied to link 1 (e.g., a motor is mounted on joint A to drive link 
1), the mechanism will have the a prescribed motion.  

4.5 Finite Transformation  

Finite transformation is used to describe the motion of a point on rigid body and the 
motion of the rigid body itself.  

4.5.1 Finite Planar Rotational Transformation  

 

Figure 4-16 Point on a planar rigid body rotated through an angle  

Suppose that a point P on a rigid body goes through a rotation describing a circular path 
from P1 to P2 around the origin of a coordinate system. We can describe this motion with 
a rotation operator R12:  

 
(4-6)  



where  

 
(4-7) 

4.5.2 Finite Planar Translational Transformation  

 

Figure 4-17 Point on a planar rigid body translated through a distance  

Suppose that a point P on a rigid body goes through a translation describing a straight 
path from P1 to P2 with a change of coordinates of ( x, y). We can describe this motion 
with a translation operator T12:  

 
(4-8) 

where  

 
(4-9) 

4.5.3 Concatenation of Finite Planar Displacements  



 

Figure 4-18 Concatenation of finite planar displacements in space  

Suppose that a point P on a rigid body goes through a rotation describing a circular path 
from P1 to P2' around the origin of a coordinate system, then a translation describing a 
straight path from P2' to P2. We can represent these two steps by  

 
(4-10) 

and  

 
(4-11) 

We can concatenate these motions to get  

 
(4-12) 

where D12 is the planar general displacement operator :  

 
(4-13) 

 



4.5.4 Planar Rigid-Body Transformation  

We have discussed various transformations to describe the displacements of a point on 
rigid body. Can these operators be applied to the displacements of a system of points such 
as a rigid body?  

We used a 3 x 1 homogeneous column matrix to describe a vector representing a single 
point. A beneficial feature of the planar 3 x 3 translational, rotational, and general 
displacement matrix operators is that they can easily be programmed on a computer to 
manipulate a 3 x n matrix of n column vectors representing n points of a rigid body. Since 
the distance of each particle of a rigid body from every other point of the rigid body is 
constant, the vectors locating each point of a rigid body must undergo the same 
transformation when the rigid body moves and the proper axis, angle, and/or translation 
is specified to represent its motion. (Sandor & Erdman 84). For example, the general 
planar transformation for the three points A, B, C on a rigid body can be represented by  

 
(4-14) 

4.5.5 Spatial Rotational Transformation 

We can describe a spatial rotation operator for the rotational transformation of a point 
about an unit axis u passing through the origin of the coordinate system. Suppose the 
rotational angle of the point about u is , the rotation operator will be expressed by  

 
(4-15) 

where  

ux, uy, uz are the othographical projection of the unit axis u on x, y, and z axes, 
respectively.  
s  = sin  
c  = cos   
v  = 1 - cos   

4.5.6 Spatial Translational Transformation 



Suppose that a point P on a rigid body goes through a translation describing a straight 
path from P1 to P2 with a change of coordinates of ( x, y, z), we can describe this 
motion with a translation operator T:  

 
(4-16) 

4.5.7 Spatial Translation and Rotation Matrix for Axis Through the Origin 

Suppose a point P on a rigid body rotates with an angular displacement about an unit axis 
u passing through the origin of the coordinate system at first, and then followed by a 
translation Du along u. This composition of this rotational transformation and this 
translational transformation is a screw motion. Its corresponding matrix operator, the 
screw operator, is a concatenation of the translation operator in Equation 4-7 and the 
rotation operator in Equation 4-9.  

 
(4-17) 

4.6 Transformation Matrix Between Rigid Bodies 

4.6.1 Transformation Matrix Between two Arbitray Rigid Bodies  

For a system of rigid bodies, we can establish a local Cartesian coordinate system for 
each rigid body. Transformation matrices are used to describe the relative motion 
between rigid bodies.  

For example, two rigid bodies in a space each have local coordinate systems x1y1z1 and 
x2y2z2. Let point P be attached to body 2 at location (x2, y2, z2) in body 2's local 
coordinate system. To find the location of P with respect to body 1's local coordinate 
system, we know that that the point x2y2z2 can be obtained from x1y1z1 by combining 
translation Lx1 along the x axis and rotation z about z axis. We can derive the 
transformation matrix as follows:  



 
(4-18)  

If rigid body 1 is fixed as a frame, a global coordinate system can be created on this body. 
Therefore, the above transformation can be used to map the local coordinates of a point 
into the global coordinates.  

4.6.2 Kinematic Constraints Between Two Rigid Bodies  

The transformation matrix above is a specific example for two unconstrained rigid 
bodies. The transformation matrix depends on the relative position of the two rigid 
bodies. If we connect two rigid bodies with a kinematic constraint, their degrees of 
freedom will be decreased. In other words, their relative motion will be specified in some 
extent.  

Suppose we constrain the two rigid bodies above with a revolute pair as shown in Figure 
4-19. We can still write the transformation matrix in the same form as Equation 4-18. 

 

Figure 4-19 Relative position of points on constrained bodies  

The difference is that the Lx1 is a constant now, because the revolute pair fixes the origin 
of coordinate system x2y2z2 with respect to coordinate system x1y1z1. However, the 
rotation z is still a variable. Therefore, kinematic constraints specify the transformation 
matrix to some extent.  

4.6.3 Denavit-Hartenberg Notation  

Denavit-Hartenberg notation (Denavit & Hartenberg 55) is widely used in the 
transformation of coordinate systems of linkages and robot mechanisms. It can be used to 
represent the transformation matrix between links as shown in the Figure 4-20.  



 

Figure 4-20 Denavit-Hartenberg Notation  

In this figure,  

• zi-1 and zi are the axes of two revolute pairs;  
• i is the included angle of axes xi-1 and xi;  
• di is the distance between the origin of the coordinate system xi-1yi-1zi-1 and the 

foot of the common perpendicular;  
• ai is the distance between two feet of the common perpendicular;  
• i is the included angle of axes zi-1 and zi;  

The transformation matrix will be T(i-1)i  

 
(4-19)  

The above transformation matrix can be denoted as T(ai, i, i, di) for convenience.  

4.6.4 Application of Transformation Matrices to Linkages  

A linkage is composed of several constrained rigid bodies. Like a mechanism, a linkage 
should have a frame. The matrix method can be used to derive the kinematic equations of 
the linkage. If all the links form a closed loop, the concatenation of all of the 
transformation matrices will be an identity matrix. If the mechanism has n links, we will 
have:  

T12T23...T(n-1)n = I  



5 Planar Linkages  
5.1 Introduction  

5.1.1 What are Linkage Mechanisms?  

Have you ever wondered what kind of mechanism causes the wind shield wiper on the 
front widow of car to oscillate ( Figure 5-1a)? The mechanism, shown in Figure 5-1b, 
transforms the rotary motion of the motor into an oscillating motion of the windshield 
wiper.  

 

Figure 5-1 Windshield wiper 

Let's make a simple mechanism with similar behavior. Take some cardboard and make 
four strips as shown in Figure 5-2a.  

Take 4 pins and assemble them as shown in Figure 5-2b. 

Now, hold the 6in. strip so it can't move and turn the 3in. strip. You will see that the 4in. 
strip oscillates.  

 

Figure 5-2 Do-it-yourself four bar linkage mechanism 



The four bar linkage is the simplest and often times, the most useful mechanism. As we 
mentioned before, a mechanism composed of rigid bodies and lower pairs is called a 
linkage (Hunt 78). In planar mechanisms, there are only two kinds of lower pairs --- 
revolute pairs and prismatic pairs.  

The simplest closed-loop linkage is the four bar linkage which has four members, three 
moving links, one fixed link and four pin joints. A linkage that has at least one fixed link 
is a mechanism. The following example of a four bar linkage was created in SimDesign 
in simdesign/fourbar.sim 

 

Figure 5-3 Four bar linkage in SimDesign 

This mechanism has three moving links. Two of the links are pinned to the frame which 
is not shown in this picture. In SimDesign, links can be nailed to the background thereby 
making them into the frame. 

How many DOF does this mechanism have? If we want it to have just one, we can 
impose one constraint on the linkage and it will have a definite motion. The four bar 
linkage is the simplest and the most useful mechanism.  

Reminder: A mechanism is composed of rigid bodies and lower pairs called linkages 
(Hunt 78). In planar mechanisms there are only two kinds of lower pairs: turning pairs 
and prismatic pairs. 

5.1.2 Functions of Linkages  

The function of a link mechanism is to produce rotating, oscillating, or reciprocating 
motion from the rotation of a crank or vice versa (Ham et al. 58). Stated more specifically 
linkages may be used to convert: 

1. Continuous rotation into continuous rotation, with a constant or variable angular 
velocity ratio.  

2. Continuous rotation into oscillation or reciprocation (or the reverse), with a 
constant or variable velocity ratio.  

3. Oscillation into oscillation, or reciprocation into reciprocation, with a constant or 
variable velocity ratio.  



Linkages have many different functions, which can be classified according on the 
primary goal of the mechanism: 

• Function generation: the relative motion between the links connected to the 
frame,  

• Path generation: the path of a tracer point, or  
• Motion generation: the motion of the coupler link.  

5.2 Four Link Mechanisms  

One of the simplest examples of a constrained linkage is the four-link mechanism. A 
variety of useful mechanisms can be formed from a four-link mechanism through slight 
variations, such as changing the character of the pairs, proportions of links, etc. 
Furthermore, many complex link mechanisms are combinations of two or more such 
mechanisms. The majority of four-link mechanisms fall into one of the following two 
classes: 

1. the four-bar linkage mechanism, and  
2. the slider-crank mechanism.  

5.2.1 Examples  

Parallelogram Mechanism  

In a parallelogram four-bar linkage, the orientation of the coupler does not change during 
the motion. The figure illustrates a loader. Obvioulsy the behavior of maintaining 
parallelism is important in a loader. The bucket should not rotate as it is raised and 
lowered. The corresponding SimDesign file is simdesign/loader.sim.  

 

Figure 5-4 Front loader mechanism 

Slider-Crank Mechanism 

The four-bar mechanism has some special configurations created by making one or more 
links infinite in length. The slider-crank (or crank and slider) mechanism shown below is 
a four-bar linkage with the slider replacing an infinitely long output link. The 
corresponding SimDesign file is simdesign/slider.crank.sim.  



 

Figure 5-5 Crank and Slider Mechanism 

This configuration translates a rotational motion into a translational one.  Most 
mechanisms are driven by motors, and slider-cranks are often used to transform rotary 
motion into linear motion. 

Crank and Piston 

You can also use the slider as the input link and the crank as the output link. In this case, 
the mechanism transfers translational motion into rotary motion. The pistons and crank in 
an internal combustion engine are an example of this type of mechanism. The 
corresponding SimDesign file is simdesign/combustion.sim. 

 

Figure 5-6 Crank and Piston 

You might wonder why there is another slider and a link on the left. This mechanism has 
two dead points. The slider and link on the left help the mechanism to overcome these 
dead points. 

Block Feeder 

One interesting application of slider-crank is the block feeder. The SimDesign file can be 
found in simdesign/block-feeder.sim 



 

Figure 5-7 Block Feeder 

5.2.2 Definitions  

In the range of planar mechanisms, the simplest group of lower pair mechanisms are four 
bar linkages. A four bar linkage comprises four bar-shaped links and four turning pairs 
as shown in Figure 5-8.  

 

Figure 5-8 Four bar linkage 

The link opposite the frame is called the coupler link, and the links whick are hinged to 
the frame are called side links. A link which is free to rotate through 360 degree with 
respect to a second link will be said to revolve relative to the second link (not necessarily 
a frame). If it is possible for all four bars to become simultaneously aligned, such a state 
is called a change point.  

Some important concepts in link mechanisms are:  

1. Crank: A side link which revolves relative to the frame is called a crank.  
2. Rocker: Any link which does not revolve is called a rocker.  
3. Crank-rocker mechanism: In a four bar linkage, if the shorter side link revolves 

and the other one rocks (i.e., oscillates), it is called a crank-rocker mechanism.  
4. Double-crank mechanism: In a four bar linkage, if both of the side links revolve, 

it is called a double-crank mechanism.  
5. Double-rocker mechanism: In a four bar linkage, if both of the side links rock, it 

is called a double-rocker mechanism.  

 

 



5.2.3 Classification 

Before classifying four-bar linkages, we need to introduce some basic nomenclature.  

In a four-bar linkage, we refer to the line segment between hinges on a given link as a bar 
where:  

• s = length of shortest bar  
• l = length of longest bar  
• p, q = lengths of intermediate bar  

Grashof's theorem states that a four-bar mechanism has at least one revolving link if  

s + l <= p + q  

(5-1)  

and all three mobile links will rock if  

s + l > p + q  

(5-2)  

The inequality 5-1 is Grashof's criterion.  

All four-bar mechanisms fall into one of the four categories listed in Table 5-1:  

Case  l + s vers. p + q Shortest Bar Type  
1  < Frame  Double-crank  
2  < Side  Rocker-crank  
3  < Coupler  Doubl rocker  
4  =  Any  Change point  
5  >  Any  Double-rocker 

Table 5-1 Classification of Four-Bar Mechanisms 

From Table 5-1 we can see that for a mechanism to have a crank, the sum of the length of 
its shortest and longest links must be less than or equal to the sum of the length of the 
other two links. However, this condition is necessary but not sufficient. Mechanisms 
satisfying this condition fall into the following three categories:  

1. When the shortest link is a side link, the mechanism is a crank-rocker mechanism. 
The shortest link is the crank in the mechanism.  

2. When the shortest link is the frame of the mechanism, the mechanism is a double-
crank mechanism.  

3. When the shortest link is the coupler link, the mechanism is a double-rocker 
mechanism.  



5.2.4 Transmission Angle  

In Figure 5-11, if AB is the input link, the force applied to the output link, CD, is 
transmitted through the coupler link BC. (That is, pushing on the link CD imposes a force 
on the link AB, which is transmitted through the link BC.) For sufficiently slow motions 
(negligible inertia forces), the force in the coupler link is pure tension or compression 
(negligible bending action) and is directed along BC. For a given force in the coupler 
link, the torque transmitted to the output bar (about point D) is maximum when the angle 

between coupler bar BC and output bar CD is /2. Therefore, angle BCD is called 
transmission angle.  

 

(5-3)  

 

Figure 5-11 Transmission angle 

When the transmission angle deviates significantly from /2, the torque on the output bar 
decreases and may not be sufficient to overcome the friction in the system. For this 
reason, the deviation angle =| /2- | should not be too great. In practice, there is no 
definite upper limit for , because the existence of the inertia forces may eliminate the 
undesirable force relationships that is present under static conditions. Nevertheless, the 
following criterion can be followed.  

5.2.5 Dead Point  

When a side link such as AB in Figure 5-10, becomes aligned with the coupler link BC, it 
can only be compressed or extended by the coupler. In this configuration, a torque 
applied to the link on the other side, CD, cannot induce rotation in link AB. This link is 
therefore said to be at a dead point (sometimes called a toggle point).  



 

Figure 5-10 Dead point 

In Figure 5-11, if AB is a crank, it can become aligned with BC in full extension along the 
line AB1C1 or in flexion with AB2 folded over B2C2. We denote the angle ADC by and 
the angle DAB by . We use the subscript 1 to denote the extended state and 2 to denote 
the flexed state of links AB and BC. In the extended state, link CD cannot rotate 
clockwise without stretching or compressing the theoretically rigid line AC1. Therefore, 
link CD cannot move into the forbidden zone below C1D, and must be at one of its two 
extreme positions; in other words, link CD is at an extremum. A second extremum of link 
CD occurs with = 1.  

Note that the extreme positions of a side link occur simultaneously with the dead points 
of the opposite link.  

In some cases, the dead point can be useful for tasks such as work fixturing (Figure 5-11).  

 

Figure 5-11 Work fixturing 

In other cases, dead point should be and can be overcome with the moment of inertia of 
links or with the asymmetrical deployment of the mechanism (Figure 5-12).  

 

Figure 5-12 Overcoming the dead point by asymmetrical deployment (V engine) 



5.2.6 Slider-Crank Mechanism  

The slider-crank mechanism, which has a well-known application in engines, is a special 
case of the crank-rocker mechanism. Notice that if rocker 3 in Figure 5-13a is very long, 
it can be replaced by a block sliding in a curved slot or guide as shown. If the length of 
the rocker is infinite, the guide and block are no longer curved. Rather, they are 
apparently straight, as shown in Figure 5-13b, and the linkage takes the form of the 
ordinary slider-crank mechanism.  

 

Figure 5-13 Slider-Crank mechanism  

5.2.7 Inversion of the Slider-Crank Mechanism  

Inversion is a term used in kinematics for a reversal or interchange of form or function as 
applied to kinematic chains and mechanisms. For example, taking a different link as the 
fixed link, the slider-crank mechanism shown in Figure 5-14a can be inverted into the 
mechanisms shown in Figure 5-14b, c, and d. Different examples can be found in the 
application of these mechanisms. For example, the mechanism of the pump device in 
Figure 5-15 is the same as that in Figure 5-14b.  

 

Figure 5-14 Inversions of the crank-slide mechanism 



 

Figure 5-15 A pump device 

Keep in mind that the inversion of a mechanism does not change the motions of its links 
relative to each other but does change their absolute motions.  

 

 

 

 

 

 

 

 

 

 

 



6 Cams 
6.1 Introduction 

6.1.1 A Simple Experiment: What is a Cam? 

 

Figure 6-1 Simple Cam experiment 

Take a pencil and a book to do an experiment as shown above. Make the book an inclined 
plane and use the pencil as a slider (use your hand as a guide). When you move the book 
smoothly upward, what happens to the pencil? It will be pushed up along the guide. By 
this method, you have transformed one motion into another motion by a very simple 
device. This is the basic idea of a cam. By rotating the cams in the figure below, the bars 
will have either translational or oscillatory motion.  

6.1.2 Cam Mechanisms  

The transformation of one of the simple motions, such as rotation, into any other motions 
is often conveniently accomplished by means of a cam mechanism A cam mechanism 
usually consists of two moving elements, the cam and the follower, mounted on a fixed 
frame. Cam devices are versatile, and almost any arbitrarily-specified motion can be 
obtained. In some instances, they offer the simplest and most compact way to transform 
motions.  

A cam may be defined as a machine element having a curved outline or a curved groove, 
which, by its oscillation or rotation motion, gives a predetermined specified motion to 
another element called the follower . The cam has a very important function in the 
operation of many classes of machines, especially those of the automatic type, such as 
printing presses, shoe machinery, textile machinery, gear-cutting machines, and screw 
machines. In any class of machinery in which automatic control and accurate timing are 
paramount, the cam is an indispensable part of mechanism. The possible applications of 
cams are unlimited, and their shapes occur in great variety. Some of the most common 
forms will be considered in this chapter. 

 

 



6.2 Classification of Cam Mechanisms  

We can classify cam mechanisms by the modes of input/output motion, the configuration 
and arrangement of the follower, and the shape of the cam. We can also classify cams by 
the different types of motion events of the follower and by means of a great variety of the 
motion characteristics of the cam profile. (Chen 82)  

 

Figure 6-2 Classification of cam mechanisms 

4.2.1 Modes of Input/Output Motion 

1. Rotating cam-translating follower. (Figure 6-2a,b,c,d,e)  
2. Rotating follower (Figure 6-2f):  

The follower arm swings or oscillates in a circular arc with respect to the follower 
pivot.  

3. Translating cam-translating follower (Figure 6-3).  
4. Stationary cam-rotating follower:  

The follower system revolves with respect to the center line of the vertical shaft.  

 

Figure 6-3 Translating cam - translating follower 



6.2.1 Follower Configuration 

1. Knife-edge follower (Figure 6-2a)  
2. Roller follower (Figure 6-2b,e,f)  
3. Flat-faced follower (Figure 6-2c)  
4. Oblique flat-faced follower  
5. Spherical-faced follower (Figure 6-2d)  

6.2.2 Follower Arrangement 

1. In-line follower: 
The center line of the follower passes through the center line of the camshaft.  

2. Offset follower: 
The center line of the follower does not pass through the center line of the cam 
shaft. The amount of offset is the distance between these two center lines. The 
offset causes a reduction of the side thrust present in the roller follower.  

6.2.3 Cam Shape 

1. Plate cam or disk cam: 
The follower moves in a plane perpendicular to the axis of rotation of the 
camshaft. A translating or a swing arm follower must be constrained to maintain 
contact with the cam profile.  

2. Grooved cam or closed cam (Figure 6-4): 
This is a plate cam with the follower riding in a groove in the face of the cam.  

 

Figure 6-4 Grooved cam 

 

3. Cylindrical cam or barrel cam (Figure 6-5a): 
The roller follower operates in a groove cut on the periphery of a cylinder. The 
follower may translate or oscillate. If the cylindrical surface is replaced by a 
conical one, a conical cam results.  

4. End cam (Figure 6-5b):  
This cam has a rotating portion of a cylinder. The follower translates or oscillates, 
whereas the cam usually rotates. The end cam is rarely used because of the cost 
and the difficulty in cutting its contour.  



 

Figure 6-5 Cylindrical cam and end cam 

6.2.4 Constraints on the Follower 

1. Gravity constraint: 
The weight of the follower system is sufficient to maintain contact.  

2. Spring constraint: 
The spring must be properly designed to maintain contact.  

3. Positive mechanical constraint: 
A groove maintains positive action. (Figure 6-4 and Figure 6-5a) For the cam in 
Figure 6-6, the follower has two rollers, separated by a fixed distance, which act 
as the constraint; the mating cam in such an arrangement is often called a 
constant-diameter cam.  

 

Figure 6-6 Constant diameter cam  

 
A mechanical constraint cam also be introduced by employing a dual or conjugate 
cam in arrangement similar to what shown in Figure 6-7. Each cam has its own 
roller, but the rollers are mounted on the same reciprocating or oscillating 
follower.  



 

Figure 6-7 Dual cam  

6.2.5 Examples in SimDesign  

Rotating Cam, Translating Follower  

 

Figure 6-8 SimDesign translating cam  

Load the SimDesign file simdesign/cam.translating.sim. If you turn the cam, the 
follower will move. The weight of the follower keeps them in contact. This is called a 
gravity constraint cam.  

Rotating Cam/Rotating Follower  

 

Figure 6-9 SimDesign oscillating cam  



The SimDesign file is simdesign/cam.oscillating.sim. Notice that a roller is used at 
the end of the follower. In addition, a spring is used to maintain the contact of the cam 
and the roller.  

If you try to calculate the degrees of freedom (DOF) of the mechanism, you must imagine 
that the roller is welded onto the follower because turning the roller does not influence 
the motion of the follower.  

6.3 Cam Nomenclature  

Figure 6-10 illustrates some cam nomenclature:  

 

Figure 6-10 Cam nomenclature 

 

• Trace point: A theoretical point on the follower, corresponding to the point of a 
fictitious knife-edge follower. It is used to generate the pitch curve. In the case of 
a roller follower, the trace point is at the center of the roller.  

• Pitch curve: The path generated by the trace point at the follower is rotated about 
a stationary cam.  

• Working curve: The working surface of a cam in contact with the follower. For 
the knife-edge follower of the plate cam, the pitch curve and the working curves 
coincide. In a close or grooved cam there is an inner profile and an outer working 
curve.  

• Pitch circle: A circle from the cam center through the pitch point. The pitch circle 
radius is used to calculate a cam of minimum size for a given pressure angle.  



• Prime circle (reference circle): The smallest circle from the cam center through 
the pitch curve.  

• Base circle: The smallest circle from the cam center through the cam profile 
curve.  

• Stroke or throw:The greatest distance or angle through which the follower moves 
or rotates.  

• Follower displacement: The position of the follower from a specific zero or rest 
position (usually its the position when the f ollower contacts with the base circle 
of the cam) in relation to time or the rotary angle of the cam.  

• Pressure angle: The angle at any point between the normal to the pitch curve and 
the instantaneous direction of the follower motion. This angle is important in cam 
design because it represents the steepness of the cam profile.  

6.4 Motion events  

When the cam turns through one motion cycle, the follower executes a series of events 
consisting of rises, dwells and returns. Rise is the motion of the follower away from the 
cam center, dwell is the motion during which the follower is at rest; and return is the 
motion of the follower toward the cam center.  

There are many follower motions that can be used for the rises and the returns. In this 
chapter, we describe a number of basic curves.  

 

Figure 6-11 Motion events 

Notation 
: The rotary angle of the cam, measured from the beginning of the motion event;  
: The range of the rotary angle corresponding to the motion event;  

h : The stoke of the motion event of the follower;  
S : Displacement of the follower;  
V : Velocity of the follower;  
A : Acceleration of the follower.  

 



6.4.1 Constant Velocity Motion  

If the motion of the follower were a straight line, Figure 6-11a,b,c, it would have equal 
displacements in equal units of time, i.e., uniform velocity from the beginning to the end 
of the stroke, as shown in b. The acceleration, except at the end of the stroke would be 
zero, as shown in c. The diagrams show abrupt changes of velocity, which result in large 
forces at the beginning and the end of the stroke. These forces are undesirable, especially 
when the cam rotates at high velocity. The constant velocity motion is therefore only of 
theoretical interest.  

 

(6-1) 

6.4.2 Constant Acceleration Motion  

Constant acceleration motion is shown in Figure 6-11d, e, f. As indicated in e, the 
velocity increases at a uniform rate during the first half of the motion and decreases at a 
uniform rate during the second half of the motion. The acceleration is constant and 
positive throughout the first half of the motion, as shown in f, and is constant and 
negative throughout the second half. This type of motion gives the follower the smallest 
value of maximum acceleration along the path of motion. In high-speed machinery this is 
particularly important because of the forces that are required to produce the accelerations.  

When 

, 

 

(6-2)  

When  

, 



 

(6-3) 

6.4.3 Harmonic Motion  

A cam mechanism with the basic curve like g in Figure 6-7g will impart simple harmonic 
motion to the follower. The velocity diagram at h indicates smooth action. The 
acceleration, as shown at i, is maximum at the initial position, zero at the mid-position, 
and negative maximum at the final position.  

 

(6-4) 

6.5 Cam Design 

The translational or rotational displacement of the follower is a function of the rotary 
angle of the cam. A designer can define the function according to the specific 
requirements in the design. The motion requirements, listed below, are commonly used in 
cam profile design.  

6.5.1 Disk Cam with Knife-Edge Translating Follower  

Figure 6-12 is a skeleton diagram of a disk cam with a knife-edge translating follower. 
We assume that the cam mechanism will be used to realize the displacement relationship 
between the rotation of the cam and the translation of the follower.  



 

Figure 6-12 A Skeleton Diagram of disk cam with knife-edge translation 

Below is a list of the essential parameters for the evaluation of these types of cam 
mechanisms. However, these parameters are adequate only to define a knife-edge 
follower and a translating follower cam mechanism.  

Parameters: 

ro: The radius of the base circle;  
e: The offset of the follower from the rotary center of the cam. Notice: it could be 
negative.  
s: The displacement of the follower which is a function of the rotary angle of the 
cam -- .  
IW: A parameter whose absolute value is 1. It represents the turning direction of 
the cam. When the cam turns clockwise: IW=+1, otherwise: IW=-1.  

Cam profile design principle:  

The method termed inversion is commonly used in cam profile design. For example, in a 
disk cam with translating follower mechanism, the follower translates when the cam 
turns. This means that the relative motion between them is a combination of a relative 
turning motion and a relative translating motion. Without changing this feature of their 
relative motion, imagine that the cam remains fixed. Now the follower performs both the 
relative turning and translating motions. We have inverted the mechanism.  

Furthermore, imagine that the knife-edge of the follower moves along the fixed cam 
profile in the inverted mechanism. In other words, the knife edge of the follower draws 
the profile of the cam. Thus, the problem of designing the cam profile becomes a problem 
of calculating the trace of the knife edge of the follower whose motion is the combination 
of the relative turning and the relative translating.  

 

 

 



 

Design equations:  

 

Figure 6-13 Profile design of translating cam follower 

In Figure 6-13, only part of the cam profile AK is displayed. Assume the cam turns 
clockwise. At the beginning of motion, the knife edge of the follower contacts the point 
of intersection A of the base circle and the cam profile. The coordinates of A are (So, e), 

and So can be calculated from equation  

Suppose the displacement of the follower is S when the angular displacement of the cam 
is . At this moment, the coordinates of the knife edge of the follower should be (So + S, 
e).  

To get the corresponding position of the knife edge of the follower in the inverted 
mechanism, turn the follower around the center of the cam in the reverse direction 
through an angle of . The knife edge will be inverted to point K, which corresponds to 
the point on the cam profile in the inverted mechanism. Therefore, the coordinates of 
point K can be calculated with the following equation:  

 

(6-5)  

Note:  

• The offset e is negative if the follower is located below the x axis.  
• When the rotational direction of the cam is clockwise: IW = +1, otherwise: IW = 

-1.  

 



6.5.2 Disk Cam with Oscillating Knife-Edge Follower 

Suppose the cam mechanism will be used to make the knife edge oscillate. We need to 
compute the coordinates of the cam profile that results in the required motion of the 
follower.  

 

Figure 6-14 Disk cam with knife-edge oscillating follower 

The essential parameters in this kind of cam mechanisms are given below.  

ro: The radius of the base circle;  
a: The distance between the pivot of the cam and the pivot of the follower.  
l: The length of the follower which is a distance from its pivot to its knife edge.  

: The angular displacement of the follower which is a function of the rotary 
angle of the cam -- .  
IP: A parameter whose absolute value is 1. It represents the location of the 
follower. When the follower is located above the x axis: IP=+1, otherwise: IP=-
1.  
IW: A parameter whose absolute value is 1. It represents the turning direction of 
the cam. When the cam turns clockwise: IW=+1, otherwise: IW=-1.  

Cam profile design principle 

The fundamental principle in designing the cam profiles is still inversion, similar to that 
that for designing other cam mechanisms, (e.g., the translating follower cam mechanism). 
Normally, the follower oscillates when the cam turns. This means that the relative motion 
between them is a combination of a relative turning motion and a relative oscillating 
motion. Without changing this feature of their relative motion, let the cam remain fixed 
and the follower performs both the relative turning motion and oscillating motion. By 
imagining in this way, we have actually inverted the mechanism.  



 

Figure 6-15 Cam profile design for a rotating follower 

In Figure 6-15, only part of the cam profile BK is shown. We assume that the cam turns 
clockwise.  

At the beginning of motion, the knife edge of the follower contacts the point of 
intersection (B) of the base circle and the cam profile. The initial angle between the 
follower (AB) and the line of two pivots (AO) is 0. It can be calculated from the triangle 
OAB.  

When the angular displacement of the cam is , the oscillating displacement of the 
follower is which measures from its own initial position. At this moment, the angle 
between the follower and the line passes through two pivots should be + 0.  

The coordinates of the knife edge at this moment will be 

 

(6-6) 

To get the corresponding knife-edge of the follower in the inverted mechanism, simply 
turn the follower around the center of the cam in the reverse direction of the cam rotation 
through an angle of . The knife edge will be inverted to point K which corresponds to 
the point on the cam profile in the inverted mechanism. Therefore, the coordinates of 
point K can be calculated with the following equation:  

 

(6-7)  

Note:  

• When the initial position of the follower is above the x axis, IP = +1, otherwise: 
IP = -1.  



• When the rotary direction of the cam is clockwise: IW = +1, otherwise: IW = -1.  

6.5.3 Disk Cam with Roller Follower  

Additional parameters:  

• r: the radius of the roller.  
• IM: a parameter whose absolute value is 1, indicating which envelope curve will 

be adopted.  
• RM: inner or outer envelope curve. When it is an inner envelope curve: RM=+1, 

otherwise: RM=-1.  

Design principle:  

The basic principle of designing a cam profile with the inversion method is still used. 
However, the curve is not directly generated by inversion. This procedure has two steps:  

1. Imagine the center of the roller as a knife edge. This concept is important in cam 
profile design and is called the trace point) of follower. Calculate the pitch curve 
aa, that is, the trace of the pitch point in the inverted mechanism.  

2. The cam profile bb is a product of the enveloping motion of a series of rollers.  

 

Figure 6-16 The trace point of the follower on a disk cam  

Design equations:  

The problem of calculating the coordinates of the cam profile is the problem of 
calculating the tangent points of a sequence of rollers in the inverted mechanism. At the 
moment shown Figure 6-17, the tangent point is P on the cam profile.  

 

Figure 6-17 The tangent point, P, of a roller to the disk cam 



The calculation of the coordinates of the point P has two steps:  

1. Calculate the slope of the tangent tt of point K on pitch curve, aa.  
2. Calculate the slope of the normal nn of the curve aa at point K.  

Since we have already have the coordinates of point K: (x, y), we can express the 
coordinates of point P as  

 

(6-8)  

Note:  

• When the rotary direction of the cam is clockwise: IW = +1, otherwise: IW = -1.  
• when the envelope curve (cam profile) lies inside the pitch curve: RM = +1, 

otherwise: RM = -1.  

 

 

 

 

 

 

 

 

 

 



7 Gears  
Gears are machine elements that transmit motion by means of successively engaging 
teeth. The gear teeth act like small levers.  

7.1 Gear Classification  

Gears may be classified according to the relative position of the axes of revolution. The 
axes may be  

1. parallel,  
2. intersecting,  
3. neither parallel nor intersecting.  

Here is a brief list of the common forms. We will discuss each in more detail later.  

• Gears for connecting parallel shafts  
• Gears for connecting intersecting shafts  
• Neither parallel nor intersecting shafts  

 

Gears for connecting parallel shafts  

1. Spur gears  

    

The left pair of gears makes external contact, and the right pair of gears makes 
internal contact 

 

 

 

 



2.   Parallel helical gears  

 

2. Herringbone gears (or double-helical gears)  

 

3. Rack and pinion (The rack is like a gear whose axis is at infinity.)  

 

Gears for connecting intersecting shafts  

1. Straight bevel gears  

 

2. Spiral bevel gears  

 

 



Neither parallel nor intersecting shafts  

1. Crossed-helical gears  

 

2. Hypoid gears  
3. Worm and wormgear  

 

7.2 Gear-Tooth Action 

7.2.1 Fundamental Law of Gear-Tooth Action 

Figure 7-2 shows two mating gear teeth, in which  

• Tooth profile 1 drives tooth profile 2 by acting at the instantaneous contact point 
K.  

• N1N2 is the common normal of the two profiles.  
• N1 is the foot of the perpendicular from O1 to N1N2  
• N2 is the foot of the perpendicular from O2 to N1N2.  



 

Figure 7-2 Two gearing tooth profiles 

Although the two profiles have different velocities V1 and V2 at point K, their velocities 
along N1N2 are equal in both magnitude and direction. Otherwise the two tooth profiles 
would separate from each other. Therefore, we have  

 
(7-1)  

or  

 
(7-2)  

We notice that the intersection of the tangency N1N2 and the line of center O1O2 is point 
P, and  

 
(7-3)  

Thus, the relationship between the angular velocities of the driving gear to the driven 
gear, or velocity ratio, of a pair of mating teeth is  



 
(7-4)  

Point P is very important to the velocity ratio, and it is called the pitch point. Pitch point 
divides the line between the line of centers and its position decides the velocity ratio of 
the two teeth. The above expression is the fundamental law of gear-tooth action.  

7.2.2 Constant Velocity Ratio 

For a constant velocity ratio, the position of P should remain unchanged. In this case, the 
motion transmission between two gears is equivalent to the motion transmission between 
two imagined slipless cylinders with radius R1 and R2 or diameter D1 and D2. We can get 
two circles whose centers are at O1 and O2, and through pitch point P. These two circle 
are termed pitch circles. The velocity ratio is equal to the inverse ratio of the diameters 
of pitch circles. This is the fundamental law of gear-tooth action.  

The fundamental law of gear-tooth action may now also be stated as follow (for gears 
with fixed center distance) (Ham 58):  

The common normal to the tooth profiles at the point of contact must always pass 
through a fixed point (the pitch point) on the line of centers (to get a constant velocity 
ration).  

7.2.3 Conjugate Profiles  

To obtain the expected velocity ratio of two tooth profiles, the normal line of their 
profiles must pass through the corresponding pitch point, which is decided by the velocity 
ratio. The two profiles which satisfy this requirement are called conjugate profiles. 
Sometimes, we simply termed the tooth profiles which satisfy the fundamental law of 
gear-tooth action the conjugate profiles.  

Although many tooth shapes are possible for which a mating tooth could be designed to 
satisfy the fundamental law, only two are in general use: the cycloidal and involute 
profiles. The involute has important advantages -- it is easy to manufacture and the center 
distance between a pair of involute gears can be varied without changing the velocity 
ratio. Thus close tolerances between shaft locations are not required when using the 
involute profile. The most commonly used conjugate tooth curve is the involute curve 
(Erdman & Sandor 84).  

7.3 Involute Curve  

The following examples are involute spur gears. We use the word involute because the 
contour of gear teeth curves inward. Gears have many terminologies, parameters and 
principles. One of the important concepts is the velocity ratio, which is the ratio of the 
rotary velocity of the driver gear to that of the driven gears.  



 

The SimDesign file for these gears is simdesign/gear15.30.sim. The number of teeth 
in these gears are 15 and 30, respectively. If the 15-tooth gear is the driving gear and the 
30-teeth gear is the driven gear, their velocity ratio is 2.  

Other examples of gears are in simdesign/gear10.30.sim and 
simdesign/gear20.30.sim  

7.3.1 Generation of the Involute Curve  

 

Figure 7-3 Involute curve 

The curve most commonly used for gear-tooth profiles is the involute of a circle. This 
involute curve is the path traced by a point on a line as the line rolls without slipping on 
the circumference of a circle. It may also be defined as a path traced by the end of a string 
which is originally wrapped on a circle when the string is unwrapped from the circle. The 
circle from which the involute is derived is called the base circle.  

In Figure 7-3, let line MN roll in the counterclockwise direction on the circumference of a 
circle without slipping. When the line has reached the position M'N', its original point of 
tangent A has reached the position K, having traced the involute curve AK during the 
motion. As the motion continues, the point A will trace the involute curve AKC.  

 

7.3.2 Properties of Involute Curves  

1. The distance BK is equal to the arc AB, because link MN rolls without slipping on 
the circle.  

2. For any instant, the instantaneous center of the motion of the line is its point of 
tangent with the circle. 



Note: We have not defined the term instantaneous center previously. The 
instantaneous center or instant center is defined in two ways (Bradford & 
Guillet 43):  

1. When two bodies have planar relative motion, the instant center is a point 
on one body about which the other rotates at the instant considered.  

2. When two bodies have planar relative motion, the instant center is the 
point at which the bodies are relatively at rest at the instant considered.  

3. The normal at any point of an involute is tangent to the base circle. Because of the 
property (2) of the involute curve, the motion of the point that is tracing the 
involute is perpendicular to the line at any instant, and hence the curve traced will 
also be perpendicular to the line at any instant.  

4. There is no involute curve within the base circle.  

7.4 Terminology for Spur Gears  

Figure 7-4 shows some of the terms for gears.  

 

Figure 7-4 Spur Gear 

In the following section, we define many of the terms used in the analysis of spur gears. 
Some of the terminology has been defined previously but we include them here for 
completeness. (See (Ham 58) for more details.)  

• Pitch surface : The surface of the imaginary rolling cylinder (cone, etc.) that the 
toothed gear may be considered to replace.  

• Pitch circle: A right section of the pitch surface.  
• Addendum circle: A circle bounding the ends of the teeth, in a right section of 

the gear.  
• Root (or dedendum) circle: The circle bounding the spaces between the teeth, in 

a right section of the gear.  
• Addendum: The radial distance between the pitch circle and the addendum circle.  
• Dedendum: The radial distance between the pitch circle and the root circle.  



• Clearance: The difference between the dedendum of one gear and the addendum 
of the mating gear.  

• Face of a tooth: That part of the tooth surface lying outside the pitch surface.  
• Flank of a tooth: The part of the tooth surface lying inside the pitch surface.  
• Circular thickness (also called the tooth thickness) : The thickness of the tooth 

measured on the pitch circle. It is the length of an arc and not the length of a 
straight line.  

• Tooth space: The distance between adjacent teeth measured on the pitch circle.  
• Backlash: The difference between the circle thickness of one gear and the tooth 

space of the mating gear.  
• Circular pitch p: The width of a tooth and a space, measured on the pitch circle.  
• Diametral pitch P: The number of teeth of a gear per inch of its pitch diameter. A 

toothed gear must have an integral number of teeth. The circular pitch, therefore, 
equals the pitch circumference divided by the number of teeth. The diametral 
pitch is, by definition, the number of teeth divided by the pitch diameter. That is,  

 

(7-5)  

and  

 

(7-6) 

Hence  

 

(7-7) 

where  

p = circular pitch  
P = diametral pitch  
N = number of teeth  
D = pitch diameter  

That is, the product of the diametral pitch and the circular pitch equals .  

• Module m: Pitch diameter divided by number of teeth. The pitch diameter is 
usually specified in inches or millimeters; in the former case the module is the 
inverse of diametral pitch.  

• Fillet : The small radius that connects the profile of a tooth to the root circle.  



• Pinion: The smaller of any pair of mating gears. The larger of the pair is called 
simply the gear.  

• Velocity ratio: The ratio of the number of revolutions of the driving (or input) 
gear to the number of revolutions of the driven (or output) gear, in a unit of time.  

• Pitch point: The point of tangency of the pitch circles of a pair of mating gears.  
• Common tangent: The line tangent to the pitch circle at the pitch point.  
• Line of action: A line normal to a pair of mating tooth profiles at their point of 

contact.  
• Path of contact: The path traced by the contact point of a pair of tooth profiles.  
• Pressure angle : The angle between the common normal at the point of tooth 

contact and the common tangent to the pitch circles. It is also the angle between 
the line of action and the common tangent.  

• Base circle :An imaginary circle used in involute gearing to generate the 
involutes that form the tooth profiles.  

Table 7-1 lists the standard tooth system for spur gears. (Shigley & Uicker 80)  

 

Table 7-1 Standard tooth systems for spur gears 

Table 7-2 lists the commonly used diametral pitches.  

Coarse pitch  2  2.25 2.5 3  4  6  8  10  12  16  

Fine pitch  20  24  32  40 48 64 96 120 150  200  

Table 7-2 Commonly used diametral pitches  

Instead of using the theoretical pitch circle as an index of tooth size, the base circle, 
which is a more fundamental circle, can be used. The result is called the base pitch pb, 
and it is related to the circular pitch p by the equation  

 



(7-8)  

7.5 Condition for Correct Meshing  

Figure 7-5 shows two meshing gears contacting at point K1 and K2.  

 

Figure 7-5 Two meshing gears 

To get a correct meshing, the distance of K1K2 on gear 1 should be the same as the 
distance of K1K2 on gear 2. As K1K2 on both gears are equal to the base pitch of their 
gears, respectively. Hence  

 
(7-9) 

Since  

 
(7-10) 

and  

 
(7-11) 



Thus  

 
(7-12) 

To satisfy the above equation, the pair of meshing gears must satisfy the following 
condition:  

 
(7-13) 

7.6 Ordinary Gear Trains  

Gear trains consist of two or more gears for the purpose of transmitting motion from one 
axis to another. Ordinary gear trains have axes, relative to the frame, for all gears 
comprising the train. Figure 7-6a shows a simple ordinary train in which there is only 
one gear for each axis. In Figure 7-6b a compound ordinary train is seen to be one in 
which two or more gears may rotate about a single axis.  

 

Figure 7-6 Ordinary gear trains  

 

7.6.1 Velocity Ratio 

We know that the velocity ratio of a pair of gears is the inverse proportion of the 
diameters of their pitch circle, and the diameter of the pitch circle equals to the number of 
teeth divided by the diametral pitch. Also, we know that it is necessary for the to mating 
gears to have the same diametral pitch so that to satisfy the condition of correct meshing. 



Thus, we infer that the velocity ratio of a pair of gears is the inverse ratio of their number 
of teeth.  

For the ordinary gear trains in Figure 7-6a, we have  

 
(7-14) 

These equations can be combined to give the velocity ratio of the first gear in the train to 
the last gear:  

 
(7-15)  

Note:  

• The tooth number in the numerator are those of the driven gears, and the tooth 
numbers in the denominator belong to the driver gears.  

• Gear 2 and 3 both drive and are, in turn, driven. Thus, they are called idler gears. 
Since their tooth numbers cancel, idler gears do not affect the magnitude of the 
input-output ratio, but they do change the directions of rotation. Note the 
directional arrows in the figure. Idler gears can also constitute a saving of space 
and money (If gear 1 and 4 meshes directly across a long center distance, their 
pitch circle will be much larger.)  

• There are two ways to determine the direction of the rotary direction. The first 
way is to label arrows for each gear as in Figure 7-6. The second way is to 
multiple mth power of "-1" to the general velocity ratio. Where m is the number of 
pairs of external contact gears (internal contact gear pairs do not change the rotary 
direction). However, the second method cannot be applied to the spatial gear 
trains.  

Thus, it is not difficult to get the velocity ratio of the gear train in Figure 7-6b:  

 
(7-16) 

 

7.7 Planetary gear trains  

Planetary gear trains, also referred to as epicyclic gear trains, are those in which one 
or more gears orbit about the central axis of the train. Thus, they differ from an ordinary 
train by having a moving axis or axes. Figure 7-8 shows a basic arrangement that is 



functional by itself or when used as a part of a more complex system. Gear 1 is called a 
sun gear , gear 2 is a planet, link H is an arm, or planet carrier.  

 

Figure 7-8 Planetary gear trains 

 

Figure 7-7 Planetary gears modeled using SimDesign  

The SimDesign file is simdesign/gear.planet.sim. Since the sun gear (the largest 
gear) is fixed, the DOF of the above mechanism is one. When you pull the arm or the 
planet, the mechanism has a definite motion. If the sun gear isn't frozen, the relative 
motion is difficult to control.  

7.7.1 Velocity Ratio  

To determine the velocity ratio of the planetary gear trains is slightly more complex an 
analysis than that required for ordinary gear trains. We will follow the procedure:  

1. Invert the planetary gear train mechanism by imagining the application a rotary 
motion with an angular velocity of H to the mechanism. Let's analyse the motion 
before and after the inversion with Table 7-3: 

 



Table 7-3 Inversion of planetary gear trains.  

Note: H is the rotary velocity of gear i in the imagined mechanism.  

Notice that in the imagined mechanism, the arm H is stationary and functions as a 
frame. No axis of gear moves any more. Hence, the imagined mechanism is an 
ordinary gear train. 

2. Apply the equation of velocity ratio of the ordinary gear trains to the imagined 
mechanism. We get  

 

(7-17) 

or  

 

(7-18) 

7.7.2 Example 

Take the planetary gearing train in Figure 7-8 as an example. Suppose N1 = 36, N2 = 18, 
1 = 0, 2 = 30. What is the value of N? 

With the application of the velocity ratio equation for the planetary gearing trains, we 
have the following equation:  

 
(7-19) 

From the equation and the given conditions, we can get the answer: N = 10.  

 

 

 



Chapter 8. Other Mechanisms  

8.1 Ratchet Mechanisms  

A wheel provided with suitably shaped teeth, receiving an intermittent circular motion 
from an oscillating or reciprocating member, is called a ratchet wheel. A simple form of 
ratchet mechanism is shown in Figure 8-1.  

 

Figure 8-1 Ratchet 

A is the ratchet wheel, and B is an oscillating lever carrying the driving pawl, C. A 
supplementary pawl at D prevents backward motion of the wheel.  

When arm B moves counterclockwise, pawl C will force the wheel through a fractional 
part of a revolution dependent upon the motion of B. When the arm moves back 
(clockwise), pawl C will slide over the points of the teeth while the wheel remains at rest 
because of fixed pawl D, and will be ready to push the wheel on its forward 
(counterclockwise) motion as before.  

The amount of backward motion possible varies with the pitch of the teeth. This motion 
could be reduced by using small teeth, and the expedient is sometimes used by placing 
several pawls side by side on the same axis, the pawls being of different lengths.  

The contact surfaces of wheel and pawl should be inclined so that they will not tend to 
disengage under pressure. This means that the common normal at N should pass between 
the pawl and the ratchet-wheel centers. If this common normal should pass outside these 
limits, the pawl would be forced out of contact under load unless held by friction. In 
many ratchet mechanisms the pawl is held against the wheel during motion by the action 
of a spring.  

The usual form of the teeth of a ratchet wheel is that shown in the above Figure, but in 
feed mechanisms such as used on many machine tools it is necessary to modify the tooth 
shape for a reversible pawl so that the drive can be in either direction. The following 
SimDesign example of a ratchet also includes a four bar linkage. 



 

If you try this mechanism, you may turn the crank of the link mechanism. The rocker will 
drive the driving pawl to drive the ratchet wheel. The corresponding SimDesign data file 
is: 

/afs/andrew.cmu.edu/cit/ce/rapidproto/simdesign/ratchet.sim 

8.2 Overrunning Clutch 

A special form of a ratchet is the overrunning clutch. Have you ever thought about what 
kind of mechanism drives the rear axle of bicycle? It is a free-wheel mechanism which is 
an overrunning clutch. Figure 8-2 illustrates a simplified model. As the driver delivers 
torque to the driven member, the rollers or balls are wedged into the tapered recesses. 
This is what gives the positive drive. Should the driven member attempt to drive the 
driver in the directions shown, the rollers or balls become free and no torque is 
transmitted.  

 

Figure 8-2 Overrunning clutch 

8.3 Intermittent Gearing 

A pair of rotating members may be designed so that, for continuous rotation of the driver, 
the follower will alternately roll with the driver and remain stationary. This type of 
arrangement is know by the general term intermittent gearing. This type of gearing 
occurs in some counting mechanisms, motion-picture machines, feed mechanisms, as 
well as others.  



 

Figure 8-3 Intermittent gearing 

The simplest form of intermittent gearing, as illustrated in Figure 8-3 has the same kind 
of teeth as ordinary gears designed for continuous rotation. This example is a pair of 18-
tooth gears modified to meet the requirement that the follower advance one-ninth of a 
turn for each turn of the driver. The interval of action is the two-pitch angle (indicated on 
both gears). The single tooth on the driver engages with each space on the follower to 
produce the required motion of a one-ninth turn of the follower. During the remainder of 
a driver turn, the follower is locked against rotation in the manner shown in the figure.  

To vary the relative movements of the driver and follower, the meshing teeth can be 
arranged in various ways to suit requirements. For example, the driver may have more 
than one tooth, and the periods of rest of the follower may be uniform or may vary 
considerably. Counting mechanisms are often equipped with gearing of this type.  

8.4 The Geneva Wheel 

An interesting example of intermittent gearing is the Geneva Wheel shown in Figure 8-4. 
In this case the driven wheel, B, makes one fourth of a turn for one turn of the driver, A, 
the pin, a, working in the slots, b, causing the motion of B. The circular portion of the 
driver, coming in contact with the corresponding hollow circular parts of the driven 
wheel, retains it in position when the pin or tooth a is out of action. The wheel A is cut 
away near the pin a as shown, to provide clearance for wheel B in its motion. 



 

Figure 8-4 Geneva wheel 

If one of the slots is closed, A can only move through part of the revolution in either 
direction before pin a strikes the closed slot and thus stops the motion. The device in this 
modified form was used in watches, music boxes, etc., to prevent overwinding. From this 
application it received the name Geneva stop. Arranged as a stop, wheel A is secured to 
the spring shaft, and B turns on the axis of the spring barrel. The number of slots or 
interval units in B depends upon the desired number of turns for the spring shaft.  

An example of this mechanism has been made in SimDesign, as in the following picture. 

 

The corresponding SimDesign data file is: 

/afs/andrew.cmu.edu/cit/ce/rapidproto/simdesign/geneva.sim 

8.5 The Universal Joint  

The engine of an automobile is usually located in front part. How does it connect to the 
rear axle of the automobile? In this case, universal joints are used to transmit the motion.  



 

Figure 8-5 Universal joint 

The universal joint as shown in Figure 8-5 is also known in the older literature as 
Hooke's coupling. Regardless of how it is constructed or proportioned, for practical use 
it has essentially the form shown in Figure 8-6, consisting of two semicircular forks 2 and 
4, pin-jointed to a right -angle cross 3.  

 

Figure 8-6 General form for a universal joint 

The driver 2 and the follower 4 make the complete revolution at the same time, but the 
velocity ratio is not constant throughout the revolution. The following analysis will show 
how complete information as to the relative motions of driver and follower may be 
obtained for any phase of the motion.  

8.5.1 Analysis of a Universal Joint 

   

Figure 8-7 Analysis of a universal joint 

If the plane of projection is taken perpendicular to the axis of 2, the path of a and b will 
be a circle AKBL as shown in Figure 8-7.  



If the angle between the shafts is , the path of c and d will be a circle that is projected as 
the ellipse ACBD, in which  

OC = OD = OKcos  = OAcos   
(8-1)  

If one of the arms of the driver is at A, an arm of the follower will be at C. If the driver 
arm moves through the angle to P, the follower arm will move to Q. OQ will be 
perpendicular to OP; hence: angle COQ = . But angle COQ is the projection of the real 
angle describes by the follower. Qn is the real component of the motion of the follower in 
a direction parallel to AB, and line AB is the intersection of the planes of the driver's and 
the follower's planes. The true angle described by the follower, while the driver 
describes the angle , can be found by revolving OQ about AB as an axis into the plane 
of the circle AKBL. Then OR = the true length of OQ, and ROK = = the true angle that is 
projected as angle COQ = . 

Now  

tan  = Rm/Om  

and  

tan  = Qn/On  

But  

Qn = Rm  

Hence  

 

Therefore  

tan  = cos tan   

The ratio of the angular motion of the follower to that of the driver is found as follower, 
by differentiating above equation, remembering that is constant  

 

Eliminating :  



 

Similarly, can be eliminated: 

 

According to the above equations, when the driver has a uniform angular velocity, the 
ratio of angular velocities varies between extremes of cos  and 1/cos . These variations 
in velocity give rise to inertia forces, torques, noise, and vibration which would not be 
present if the velocity ratio were constant.  

8.5.2 Double Universal Joint 

By using a double joint shown on the right in Figure 8-7, the variation of angular motion 
between driver and follower can be entirely avoided. This compensating arrangement is 
to place an intermediate shaft 3 between the driver and follower shafts. The two forks of 
this intermediate shaft must lie in the same plane, and the angle between the first shaft 
and the intermediate shaft must exactly be the same with that between the intermediate 
shaft and the last shaft. If the first shaft rotates uniformly, the angular motion of the 
intermediate shaft will vary according to the result deduced above. This variation is 
exactly the same as if the last shaft rotated uniformly, driving the intermediate shaft. 
Therefore, the variable motion transmitted to the intermediate shaft by the uniform 
rotation of the first shaft is exactly compensated for by the motion transmitted from the 
intermediate to the last shaft, the uniform motion of either of these shafts will impart, 
through the intermediate shaft, uniform motion to the other.  

Universal joints, particularly in pairs, are used in many machines. One common 
application is in the drive shaft which connects the engine of an automobiles to the axle.  

 

 

 

 

 

 



Index of Mechanism Terminologies 
 [a] 
acceleration 
acceleration vector 
arm 
 
[b] 
base circle (of cam) 
base circle (of gear) 
belts 
 
[c] 
cam 

• cylindrical cam 
• disk cam 
• end cam 
• grooved cam 

cam mechanism 
change point 
compound gears 
conjugate profiles 
constant acceleration motion 
constant velocity motion 
coupler link 
crank 
crank-rocker 
cylindrical pair 
cycloidal motion 
 
[d] 
dead point 
definite motion 
degrees of freedom (DOF) 
degrees of freedom of mechanism 

• passive 
• redundant 

Denative-Hartenberg notation 
displacement 
displacement vector 
deviation angle 
double-crank mechanism 
double-rocker mechanism 



dwell 
dynamics 
 
[e] 
efficiency 
energy 
epicyclic gear train 
external contact gears 
 
[f] 
follower 

• flat-faced follower  
• knife-edge follower  
• oblique flat-faced follower  
• roller follower  
• spherical-faced follower  

follower displacement 
force 
four-bar linkage 
four-link mechanisms 
frame 
function generation 
fundamental law of gear-tooth action 
 
[g] 
gears (1) 
gears (2) 

• addendum 
• addendum circle 
• backlash 
• base circle 
• base pitch 
• circular pitch 
• circular thickness 
• clearance 
• common tangent 
• >dedendum 
• dedendum circle 
• diametral pitch 
• face of a tooth 
• fillet 
• flank of a tooth 
• line of action 
• module 
• path of contact 



• pinion 
• pitch circle 
• pitch point 
• pitch surface  
• pressure angle 
• root circle 
• tooth space 
• tooth thickness 
• velocity ratio 
•  

gear train (1) 
gear train (2) 
Geneva Wheel 
Geneva stop 

• driven wheel 
• driver 
• pin 
• slot 

• ordinary gear train 
o simple ordinary train 
o compound ordinary train 

• planetary gear train 

Grashof's criterion 
Grashof's theorem 
Gruebler's equation 
 
[h] 
harmonic motion 
higher pair 
Hook's coupling 
 
[i] 
idler gear 
impulse 
inertial mass 
inclined plane 
instantaneous center 
instant center 
intermittent gearing 
internal contact gears 
inversion 
involute curve 
 
[j] 



 
 
[k] 
kinematic analysis 
kinematic chain 
kinematic constraints 
kinematic pair 
kinematics 
kinematic synthesis 
kinetic energy 
kinetics 
Kutzbach Criterion 
 
[l] 
link 
linkages 
lower pair 
 
[m] 
machine 
mechanism 
machinery 
mobility 
moment 
motion 
motion generation 
 
[n] 
Newton's first law 
Newton's second law 
 
[o] 
offset 
overruning clutch 
 
[p] 
pair 
pressure angle 

• higher pair 
• lower pair 

o prismatic pair 
o revolute pair 

path generation 
pitch circle (of cam) 
pitch circles (of gears) 
pitch curve 



pitch point 
planar general displacement operator 
planar mechanism 
plane pair 
planar rigid-body transformation 
planar rotational transformation 
planar translational transformation 
planet 
plannet carrier 
planetary gear train 
prime circle 
potential energy 
power 
prismatic pair (1) 
prismatic pair (2) 
pulleys 
 
[q] 
 
 
[r] 
ratchet mechanism 

• driving pawl 
• ratchet wheel 
• supplementary pawl 

return 
revolute pair (1) 
revolute pair (2) 
revolve 
rise 
rocker 
(planar) rotation operator 
(spatial) rotation operator 
 
[s] 
screw jack 
screw pair 
screw operator 
side link 
slider-crank mechanism 
spatial mechanism 
spatial rotational transformation 
spherical pair 
stroke of throw 
sun gear 
 



[t] 
torque 
toggle point 
trace point 
(planar) translation operator 
(spatial) translation operator 
transmission angle 
 
[u] 
universal joint 
 
[v] 
velocity 
velocity ratio (1) 
velocity ratio (2) 
velocity vector 
 
[w] 
work 
working curve 
 
[x] 
 
 
[y] 
 
 
[z] 
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