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As always — for Debbie





. . . more ceterum censeo is perhaps necessary in order to rouse pharmacology from its sleep.

The sleep is not a natural one since pharmacology, as judged by its past accomplishments, has

no reason for being tired . . .

— Rudolph Bucheim (1820–1879)





I am indebted to GlaxoSmithKline Research and Development for support during the
preparation of this book and for the means and scientific environment to make the

science possible.

T.P.K., Research Triangle Park, NC





Foreword to Second Edition

With publication of the human genome has come an

experiment in reductionism for drug discovery. With the
evaluation of the number and quality of new drug
treatments from this approach has come a reevaluation

of target-based versus systems-based strategies. Pharmacol-
ogy, historically rooted in systems-based approaches
and designed to give systems-independent measures
of drug activity, is suitably poised to be a major (if

not the major) tool in this new environment of drug
discovery.
Compared to the first edition, this book now expands

discussion of tools and ideas revolving around allosteric

drug action. This is an increasingly therapeutically relevant

subject in pharmacology as new drug screening utilizes cell
function for discovery of new drug entities. In addition,
discussion of system-based approaches, drug development

(pharmacokinetics, therapeutics), sources of chemicals for
new drugs, and elements of translational medicine have
been added. As with the first edition, the emphasis of this
volume is the gaining of understanding of pharmacology

by the nonpharmacologist.

Terry P. Kenakin, Ph.D.

Research Triangle Park, 2006
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Foreword to First Edition

If scientific disciplines can be said to go in and out

of vogue, pharmacology is exemplary in this regard. The
flourishing of receptor theory in the 1950s, the growth of
biochemical binding technology in the 1970s, and the

present resurgence of interest in defining cellular pheno-
typic sensitivity to drugs has been interspersed with
troughs such as that brought on by the promise of the

human genome and a belief that this genetic roadmap may
make classical pharmacology redundant. The fallacy
in this belief has been found in experimental data showing
the importance of phenotype over genotype which under-

scores a common finding with roadmaps: they are not as
good as a guide who knows the way. Pharmacology is
now more relevant to the drug discovery process than ever

as the genome furnishes a wealth of new targets to
unravel. Biological science often advances at a rate defined
by the technology of its tools (i.e., scientists cannot see

new things in old systems without new eyes). A veritable

explosion in technology coupled with the great gift of

molecular biology have definitely given pharmacologists
new eyes to see.

This book initially began as a series of lectures at

GlaxoSmithKline Research and Development on receptor
pharmacology aimed at increasing the communication
between pharmacologists and chemists. As these lectures

developed it became evident that the concepts were useful
to biologists, not specifically trained in pharmacology.
In return, the exchange between the chemists and biologists
furnished new starting points from which to view the

pharmacological concepts. It is hoped that this book will
somewhat fill what could be a gap in present biological
sciences; namely, the study of dose-response relationships

and how cells react to molecules.

Terry P. Kenakin, Ph.D.

Research Triangle Park, 2003
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1.1 About This Book

Essentially this is a book about the methods and tools

used in pharmacology to quantify drug activity. Receptor

pharmacology is based on the comparison of experimental

data to simple mathematical models with a resulting

inference of drug behavior to the molecular properties of

drugs. From this standpoint, a certain understanding of the

mathematics involved in the models is useful but it is not

imperative. This book is structured such that each chapter

begins with the basic concepts, then moves on to the

techniques used to estimate drug parameters, and, finally,

for those so inclined, the mathematical derivations of the

models used. Understanding the derivation is not a

prerequisite to understanding the application of the

methods or the resulting conclusion; these are included

for completeness and are for readers who wish to pursue

exploration of the models. In general, facility with

mathematical equations is definitely not required for

pharmacology; the derivations can be ignored to no

detriment to the use of this book.

Second, the symbols used in the models and derivations,

on occasion, duplicate each other (i.e., a is an extremely

popular symbol). However, the use of these multiple

symbols has been retained since this preserves the context

of where these models were first described and utilized.

Also, changing these to make them unique would cause

confusion if these methods are to be used beyond the

framework of this book. Therefore, care should be taken

to consider the actual nomenclature of each chapter.
Third, an effort has been made to minimize the need

to cross reference different parts of the book (i.e., when a

particular model is described the basics are reiterated

somewhat to minimize the need to read the relevant but

different part of the book where the model is initially

described). While this leads to a small amount of repeated

description, it is felt that this will allow for a more

uninterrupted flow of reading and use of the book.

1.2 What Is Pharmacology?

Pharmacology (an amalgam of the Greek Pharmakos,

medicine or drug, and logos, study) is a broad discipline

describing the use of chemicals to treat and cure disease.

The Latin term pharmacologia was used in the late 1600s

but the term pharmacum was used as early as the fourth

century to denote the term drug or medicine. There are

subdisciplines within pharmacology representing specialty

areas. Pharmacokinetics deals with the disposition of drugs

in the human body. To be useful, drugs must be absorbed

and transported to their site of therapeutic action. Drugs

will be ineffective in therapy if they do not reach the

organs(s) to exert their activity; this will be discussed

specifically in Chapter 8 of this book. Pharmaceutics is

the study of the chemical formulation of drugs to

optimize absorption and distribution within the body.

Pharmacognosy is the study of plant natural products and

their use in the treatment of disease. A very important

discipline in the drug discovery process is medicinal

chemistry, the study of the production of molecules for

therapeutic use. This couples synthetic organic chemistry

with an understanding of how biological information can

be quantified and used to guide the synthetic chemistry

to enhance therapeutic activity. Pharmacodynamics is the

study of the interaction of the drug molecule with the

biological target (referred to generically as the ‘‘receptor,’’

A Pharmacology Primer 1 Copyright � 2006 by Academic Press, Inc.
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vide infra). This discipline lays the foundation of pharma-

cology since all therapeutic application of drugs has a

common root in pharmacodynamics (i.e., as a prerequisite

to exerting an effect, all drug molecules must bind to and

interact with receptors).

Pharmacology as a separate science is approximately

120 to 140 years old. The relationship between chemical

structure and biological activity began to be studied

systematically in the 1860s [1]. It began when physiologists,

using chemicals to probe physiological systems, became

more interested in the chemical probes than the systems

they were probing. By the early 1800s, physiologists were

performing physiological studies with chemicals that

became pharmacological studies more aimed at the defini-

tion of the biological activity of chemicals. The first

formalized chair of pharmacology, indicating a formal

university department, was founded in Estonia by Rudolf

Bucheim in 1847. In North America, the first chair was

founded by John Jacob Abel at Johns Hopkins University

in 1890. A differentiation of physiology and pharmacology

was given by the pharmacologist Sir William Paton [2]:

If physiology is concerned with the function, anatomy with

the structure, and biochemistry with the chemistry of

the living body, then pharmacology is concerned with the

changes in function, structure, and chemical properties

of the body brought about by chemical substances.

—W. D. M. Paton (1986)

Many works about pharmacology essentially deal

in therapeutics associated with different organ systems in

the body. Thus, in many pharmacology texts, chapters are

entitled drugs in the cardiovascular system, the effect of

drugs on the gastrointestinal system, CNS, and so on.

However, the underlying principles for all of these is the

same; namely the pharmacodynamic interaction between

the drug and the biological recognition system for that

drug. Therefore, a prerequisite to all of pharmacology is an

understanding of the basic concepts of dose response and

how living cells process pharmacological information. This

generally is given the term pharmacodynamics or receptor

pharmacology, where receptor is a term referring to any

biological recognition unit for drugs (membrane receptors,

enzymes, DNA, and so on). With such knowledge in hand,

readers will be able to apply these principles to any branch

of therapeutics effectively. This book treats dose-response

data generically and demonstrates methods by which drug

activity can be quantified across all biological systems

irrespective of the nature of the biological target.
The human genome is now widely available for drug

discovery research. Far from being a simple blueprint

of how drugs should be targeted, it has shown biologists

that receptor genotypes (i.e., properties of proteins resulting

from genetic transcription to their amino acid sequence) are

secondary to receptor phenotypes (how the protein interacts

with the myriad of cellular components and how cells tailor

the makeup and functions of these proteins to their

individual needs). Since the arrival of the human genome,

receptor pharmacology as a science is more relevant than

ever in drug discovery. Current drug therapy is based

on less than 500 molecular targets yet estimates utilizing the

number of genes involved in multifactorial diseases suggest

that the number of potential drug targets ranges from 5,000

to 10,000 [3]. Thus, current therapy is using only 5 to 10%

of the potential trove of targets available in the human

genome.
A meaningful dialogue between chemists and pharma-

cologists is the single most important element of the drug

discovery process. The necessary link between medicinal

chemistry and pharmacology has been elucidated by

Paton [2]:

For pharmacology there results a particularly close relation-

ship with chemistry, and the work may lead quite naturally,

with no special stress on practicality, to therapeutic

application, or (in the case of adverse reactions) to

toxicology.

—W. D. M. Paton (1986)

Chemists and biologists reside in different worlds from the

standpoint of the type of data they deal with. Chemistry is an

exact science with physical scales that are not subject to

system variance. Thus, the scales of measurement are

transferrable. Biology deals with the vagaries of complex

systems that are not completely understood. Within this

scenario, scales of measurement are much less constant and

much more subject to system conditions. Given this, a gap

can exist between chemists and biologists in terms

of understanding and also in terms of the best method

to progress forward. In the worst circumstance, it is a gap of

credibility emanating from a failure of the biologist to make

the chemist understand the limits of the data. Usually,

however, credibility is not the issue and the gap exists due to

a lack of common experience. This book was written in an

attempt to limit or, hopefully, eliminate this gap.

1.3 The Receptor Concept

One of the most important concepts emerging from early

pharmacological studies is the concept of the receptor.

Pharmacologists knew that minute amounts of certain

chemicals had profound effects on physiological systems.

They also knew that very small changes in the chemical

composition of these substances could lead to huge

differences in activity. This led to the notion that something

on or in the cell must specifically read the chemical

information contained in these substances and translate it

into physiological effect. This something was conceptually

referred to as the ‘‘receptor’’ for that substance. Pioneers

such as Paul Ehrlich (1854–1915, Figure 1.1a) proposed the

existence of ‘‘chemoreceptors’’ (actually he proposed a

collection of amboreceptors, triceptors, and polyceptors)

on cells for dyes. He also postulated that the chemorecep-

tors on parasites, cancer cells, and microorganisms were

different from healthy host and thus could be exploited

therapeutically. The physiologist turned pharmacologist

John Newport Langley (1852–1926, Figure 1.1b), during his

studies with the drugs jaborandi (which contains the

alkaloid pilocarpine) and atropine, introduced the concept

2 1. WHAT IS PHARMACOLOGY?



that receptors were switches that received and generated

signals and that these switches could be activated or

blocked by specific molecules. The originator of quantita-

tive receptor theory, the Edinburgh pharmacologist

Alfred Joseph Clark (1885–1941, Figure 1.1c), was the

first to suggest that the data, compiled from his studies of

the interactions of acetylcholine and atropine, resulted from

the unimolecular interaction of the drug and a substance

on the cell surface. He articulated these ideas in the classic

work The Mode of Action of Drugs on Cells [4], later revised

as the Handbook of Experimental Pharmacology [5]. As put

by Clark:

It appears to the writer that the most important fact shown

by a study of drug antagonisms is that it is impossible

to explain the remarkable effects observed except by

assuming that drugs unite with receptors of a highly specific

pattern . . . . No other explanation will, however, explain a

tithe of the facts observed.
—A. J. Clark (1937)

Clark’s next step formed the basis of receptor theory by

applying chemical laws to systems of ‘‘infinitely greater

complexity’’ [4]. It is interesting to note the scientific

atmosphere in which Clark published these ideas. The

dominant ideas between 1895 and 1930 were based

on theories such as the law of phasic variation essentially

stating that ‘‘certain phenomena occur frequently.’’

Homeopathic theories like the Arndt-Schulz law and

Weber-Fechner law were based on loose ideas around

surface tension of the cell membrane but there was little

physico-chemical basis to these ideas [6]. In this vein,

prominent pharmacologists of the day such as Walter

Straub (1874–1944) suggested that a general theory

of chemical binding between drugs and cells utilizing recep-

tors was ‘‘. . . going too far. . . and . . . not admissable’’ [6].

The impact of Clark’s thinking against these concepts

cannot be overemphasized to modern pharmacology.

Drug receptors can exist in many forms from cell surface

proteins, enzymes, ion channels, membrane transporters,

DNA, and cytosolic proteins (see Figure 1.2). There are

examples of important drugs for all of these. This book

deals with general concepts that can be applied to a range

of receptor types but most of the principles are illustrated

with the most tractable receptor class known in the human

genome; namely seven transmembrane (7TM) receptors.

These receptors are named for their characteristic structure,

which consists of a single protein chain that traverses the

cell membrane seven times to produce extracellular and

intracellular loops. These receptors activate G-proteins

to elicit response thus they are also commonly referred to as

G-protein-coupled receptors (GPCRs). There are between

800 and 1,000 [7] of these in the genome (the genome

sequence predicts 650 GPCR genes, of which approxi-

mately 190 [on the order of 1% of the genome of superior

organisms] are categorized as known GPCRs [8] activated

a b c

FIGURE 1.1 Pioneers of pharmacology. (a) Paul Ehrlich (1854–1915). Born in Silesia, Ehrlich graduated from

Leipzig University to go on to a distinguished career as head of Institutes in Berlin and Frankfurt. His studies

with dyes and bacteria formed the basis of early ideas regarding recognition of biological substances by

chemicals. (b) John Newport Langley (1852–1926). Though he began reading mathematics and history in

Cambridge in 1871, Langley soon took to physiology. He succeeded the great physiologist M. Foster to the Chair

of Physiology in Cambridge in 1903 and branched out into pharmacological studies of the autonomic nervous

system. These pursuits led to germinal theories of receptors. (c) Alfred. J. Clark (1885–1941). Beginning as a

demonstrator in pharmacology in King’s College (London), Clark went on to become Professor of Pharmacology

at University College London. From there he took the Chair of Pharmacology in Edinburgh. Known as the

originator of modern receptor theory, Clark applied chemical laws to biological phenomena. His books on

receptor theory formed the basis of modern pharmacology.
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by some 70 ligands). In the United States in the year 2000,

nearly half of all prescription drugs were targeted toward

7TM receptors [3]. These receptors, comprising of between

1 and 5% of the total cell protein, control a myriad

of physiological activities. They are tractable for drug

discovery because they are on the cell surface and therefore

drugs do not need to penetrate the cell to produce effect.

In the study of biological targets such as GPCRs and other

receptors, a ‘‘system’’ must be employed that accepts

chemical input and returns biological output. It is worth

discussing such receptor systems in general terms before
their specific uses are considered.

1.4 Pharmacological Test Systems

Molecular biology has transformed pharmacology and

the drug discovery process. As little as ten years ago,

screening for new drug entities was carried out in surrogate

animal tissues. This necessitated a rather large extrapola-

tion spanning differences in genotype and phenotype.

The belief that the gap could be bridged came from the

notion that the chemicals recognized by these receptors in

both humans and animals were the same (vide infra).

Receptors are unique proteins with characteristic amino

acid sequences. While polymorphisms (spontaneous altera-

tions in amino acid sequence, vide infra) of receptors exist in

the same species, in general the amino acid sequence of a

natural ligand binding domain for a given receptor type

largely may be conserved. There are obvious pitfalls

of using surrogate species receptors for prediction of

human drug activity and it never can be known for certain

whether agreement for estimates of activity for a given set

of drugs ensures accurate prediction for all drugs.

The agreement is very much drug and receptor dependent.

For example, the human and mouse a2-adrenoceptor
are 89% homologous and thus considered very

similar from the standpoint of amino acid sequence.

Furthermore, the affinities of the a2-adrenoceptor antago-
nists atipamezole and yohimbine are nearly indistinguish-

able (atipamezole human a2-C10Ki¼ 2.9� 0.4 nM, mouse

a2-4H Ki¼ 1.6� 0.2 nM; yohimbine human a2-C10Ki¼

3.4� 0.1 nM, mouse a2-4H Ki¼ 3.8� 0.8 nM). However,

there is a 20.9-fold difference for the antagonist prazosin

(human a2-C10 Ki¼ 2034� 350 nM, mouse a2-4H
Ki¼ 97.3� 0.7 nM) [9]. Such data highlight a general

theme in pharmacological research; namely, that a hypoth-

esis, such as one proposing two receptors that are identical

with respect to their sensitivity to drugs are the same,

cannot be proven, only disproven. While a considerable

number of drugs could be tested on the two receptors (thus

supporting the hypothesis that their sensitivity to all drugs

is the same), this hypothesis is immediately disproven by the

first drug that shows differential potency on the two

receptors. The fact that a series of drugs tested show

identical potencies may only mean that the wrong sample of

drugs has been chosen to unveil the difference. Thus, no

general statements can be made that any one surrogate

system is completely predictive of activity on the target

human receptor. This will always be a drug-specific

phenomenom.

The link between animal and human receptors is the fact

that both proteins recognize the endogenous transmitter

(e.g., acetylcholine, norepinephrine), and therefore

the hope is that this link will carry over into other drugs

that recognize the animal receptor. This imperfect system

formed the basis of drug discovery until human cDNA for

human receptors could be used to make cells express human

receptors. These engineered (recombinant) systems now are

used as surrogate human receptor systems and the leap

of faith from animal receptor sequences to human receptor

sequences is not required (i.e., the problem of differences

in genotype has been overcome). However, cellular signal-

ing is an extremely complex process and cells tailor

their receipt of chemical signals in numerous ways.

Drug targets

Receptors

Ion channelsEnzymes

DNA

Nuclear
receptors

FIGURE 1.2 Schematic diagram of potential drug targets. Molecules can affect the function

of numerous cellular components both in the cytosol and on the membrane surface. There are

many families of receptors that traverse the cellular membrane and allow chemicals to

communicate with the interior of the cell.
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Therefore, the way a given receptor gene behaves in a

particular cell can differ in response to the surroundings in

which that receptor finds itself. These differences in

phenotype (i.e., properties of a receptor produced by

interaction with its environment) can result in differences

in both the quantity and quality of a signal produced by a

concentration of a given drug in different cells. Therefore,

there is still a certain, although somewhat lesser, leap of

faith taken in predicting therapeutic effects in human

tissues under pathological control from surrogate recombi-

nant or even surrogate natural human receptor systems.

For this reason it is a primary requisite of pharmacology to

derive system independent estimates of drug activity that

can be used to predict therapeutic effect in other systems.
A schematic diagram of the various systems used in

drug discovery, in order of how appropriate they

are to therapeutic drug treatment, is shown in Figure 1.3.

As discussed previously, early functional experiments in

animal tissue have now largely given way to testing

in recombinant cell systems engineered with human

receptor material. This huge technological step greatly

improved the predictability of drug activity in humans but

it should be noted that there still are many factors that

intervene between the genetically engineered drug testing

system and the pathology of human disease.
A frequently used strategy in drug discovery is to express

human receptors (through transfection with human cDNA)

in convenient surrogate host cells (referred to as ‘‘target-

based’’ drug discovery; see Chapter 8 for further discus-

sion). These host cells are chosen mainly for their technical

properties (i.e., robustness, growth rate, stability) and not

with any knowledge of verisimilitude to the therapeutically

targeted human cell type. There are various factors relevant

to the choice of surrogate host cell such as a very low

background activity (i.e., a cell cannot be used that

already contains a related animal receptor for fear of

cross-reactivity to molecules targeted for the human

receptor). Human receptors often are expressed in animal

surrogate cells. The main idea here is that the cell is a

receptacle for the receptor, allowing it to produce

physiological responses, and that activity can be monitored

in pharmacological experiments. In this sense, human

receptors expressed in animal cells are still a theoretical

step distanced from the human receptor in a human cell

type. However, even if a human surrogate is used (and there

are such cells available) there is no definitive evidence that a

surrogate human cell is any more predictive of a natural

receptor activity than an animal cell when compared to the

complex receptor behavior in its natural host cell type

expressed under pathological conditions. Receptor pheno-

type dominates in the end organ and the exact differences

between the genotypic behavior of the receptor (resulting

from the genetic makeup of the receptor) and the

phenotypic behavior of the receptor (due to the interaction

of the genetic product with the rest of the cell) may be

cell specific. Therefore, there is still a possible gap between

the surrogate systems used in the drug discovery process

and the therapeutic application. Moreover, most drug

discovery systems utilize receptors as switching mechanisms

and quantify whether drugs turn on or turn off the switch.

The pathological processes that we strive to modify may

be more subtle. As put by pharmacologist Sir James

Black [10]:

. . . angiogenesis, apoptosis, inflammation, commitment

of marrow stem cells, and immune responses. The cellular

reactions subsumed in these processes are switch like in their

behavior . . . biochemically we are learning that in all these

processes many chemical regulators seem to be involved.

From the literature on synergistic interactions, a control

model can be built in which no single agent is effective. If a

number of chemical messengers each bring information

from a different source and each deliver only a subthreshold

Therapeutic effect
in humans

Pharmacological
test systems

Human receptors
Human target cells

under influence
of pathology

Human receptors
Human target cells

Human receptors
Surrogate cells

Animal receptors
Animal tissues

Current state of the art

FIGURE 1.3 A history of the drug discovery process. Originally, the only biological

material available for drug research was animal tissue. With the advent of molecular

biological techniques to clone and express human receptors in cells, recombinant

systems supplanted animal isolated tissue work. It should be noted that these

recombinant systems still fall short of yielding drug response in the target human tissue

under the influence of pathological processes.
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stimulus but together mutually potentiate each other, then

the desired information-rich switching can be achieved with

minimum risk of miscuing.

—J. W. Black (1986)

Such complex end points are difficult to predict from any
one of the component processes leading to yet another leap

of faith in the drug discovery process. For these reasons, an

emerging strategy for drug discovery is the use of natural
cellular systems. This approach is discussed in some detail

in Chapter 8.
Even when an active drug molecule is found and activity

is verified in the therapeutic arena, there are factors that

can lead to gaps in its therapeutic profile. When drugs are
exposed to huge populations, genetic variations in this

population can lead to discovery of alleles that code

for mutations of the target (isogenes) and these can lead
to variation in drug response. Such polymorphisms can

lead to resistant populations (i.e., resistance of some
asthmatics to the b-adrenoceptor bronchodilators [11]). In
the absence of genetic knowledge, these therapeutic failures
for a drug could not easily be averted since they in essence

occurred because of the presence of new biological targets
not originally considered in the drug discovery process.

However, with new epidemiological information becoming
available these polymorphisms can now be incorporated

into the drug discovery process.
There are two theoretical and practical scales that can be

used to make system independent measures of drug activity
on biological systems. The first is a measure of the

attraction of a drug for a biological target; namely,
its affinity for receptors. Drugs must interact with receptors

to produce an effect and the affinity is a chemical term used
to quantify the strength of that interaction. The second is

much less straightforward and is used to quantify the
degree of effect imparted to the biological system after the

drug binds to the receptor. This is termed efficacy. This
property was named by R. P. Stephenson [12] within

classical receptor theory as a proportionality factor for

tissue response produced by a drug. There is no absolute
scale for efficacy but rather it is dealt with in relative terms

(i.e., the ratio of the efficacy of two different drugs on a
particular biological system can be estimated and, under

ideal circumstances, will transcend the system and be
applicable to other systems as well). It is the foremost task

of pharmacology to use the translations of drug effect
obtained from cells to provide system independent esti-

mates of affinity and efficacy. Before specific discussion
of affinity and efficacy it is worth considering the molecular

nature of biological targets.

1.5 The Nature of Drug Receptors

While some biological targets such as DNA are not
protein in nature, most receptors are. It is useful to consider

the properties of receptor proteins to provide a context
for the interaction of small molecule drugs with them.

An important property of receptors is that they have a

3D structure. Proteins usually are comprised of one or

more peptide chains; the composition of these chains make

up the primary and secondary structure of the protein.

Proteins also are described in terms of a tertiary structure

which defines their shape in 3D space and a quarternary

structure which defines the molecular interactions

between the various components of the protein chains

(Figure 1.4). It is this 3D structure that allows the protein

to function as a recognition site and effector for drugs and

other components of the cell, in essence, the ability of the

protein to function as a messenger shuttling information

from the outside world to the cytosol of the cell.

For GPCRs, the 3D nature of the receptor forms binding

domains for other proteins such as G-proteins (these are

activated by the receptor and then go on to activate

enzymes and ion channels within the cell; see Chapter 2)

and endogenous chemicals such as neurotransmitters,

hormones, and autacoids that carry physiological messages.

For other receptors, such as ion channels and single

transmembrane enzyme receptors, the conformational

change per se leads to response either through an opening

of a channel to allow the flow of ionic current or the

initiation of enzymatic activity. Therapeutic advantage can

be taken by designing small molecules to utilize these

binding domains or other 3D binding domains on the

receptor protein in order to modify physiological and

pathological processes.

1.6 Pharmacological Intervention and the

Therapeutic Landscape

It is useful to consider the therapeutic landscape with

respect to the aims of pharmacology. As stated by

Sir William Ossler (1849–1919), ‘‘. . . the prime distinction

between man and other creatures is man’s yearning to take

medicine.’’ The notion that drugs can be used to cure

disease is as old as history. One of the first written records

of actual ‘‘prescriptions’’ can be found in the Ebers Papyrus

(circa 1550 B.C.): ‘‘. . . for night blindness in the eyes . . .

liver of ox, roasted and crushed out . . . really excellent!’’

Now it is known that liver is an excellent source of vitamin

A, a prime treatment for night blindness, but that chemical

detail was not known to the ancient Egyptians. Disease can

be considered under two broad categories: those caused by

invaders such as pathogens and those caused by intrinsic

breakdown of normal physiological function. The first

generally is approached through the invader (i.e., the

pathogen is destroyed, neutralized, or removed from the

body). The one exception of where the host is treated when

an invader is present is the treatment of HIV-1 infection

leading to AIDS. In this case, while there are treatments

to neutralize the pathogen, such as anti-retrovirals to block

viral replication, a major new approach is the blockade

of the interaction of the virus with the protein that mediates

viral entry into healthy cells, the chemokine receptor

CCR5. In this case, CCR5 antagonists are used to prevent

HIV fusion and subsequent infection. The second approach

to disease requires understanding of the pathological
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process and repair of the damage to return to normal

function.
The therapeutic landscape onto which drug discovery

and pharmacology in general combats disease can

generally be described in terms of the major organ systems

of the body and how they may go awry. A healthy

cardiovascular system consists of a heart able to pump

deoxygenated blood through the lungs and to pump

oxygenated blood throughout a circulatory system that

does not unduly resist blood flow. Since the heart requires

a high degree of oxygen itself to function, myocardial

ischemia can be devastating to its function. Similarly, an

inability to maintain rhythm (arrhythmia) or loss in

strength with concomitant inability to empty (congestive

heart failure) can be fatal. The latter disease is exacerbated

by elevated arterial resistance (hypertension). A wide

range of drugs are used to treat the cardiovascular system

including coronary vasodilators (nitrates), diuretics,

renin-angiotensin inhibitors, vasodilators, cardiac glyco-

sides, calcium antagonists, beta and alpha blockers,

antiarrhythmics, and drugs for dyslipidemia. The lungs

must extract oxygen from the air, deliver it to the blood,

and release carbon dioxide from the blood into exhaled

air. Asthma, chronic obstructive pulmonary disease

(COPD), and emphysema are serious disorders of the

lungs and airways. Bronchodilators (beta agonists), anti-

inflammatory drugs, inhaled glucocorticoids, anticholiner-

gics, and theophylline analogues are used for treatment of

these diseases. The central nervous system controls all

conscious thought and many unconscious body functions.

Numerous diseases of the brain can occur, including

depression, anxiety, epilepsy, mania, degeneration, obses-

sive disorders, and schizophrenia. Brain functions such as

those controlling sedation and pain also may require

treatment. A wide range of drugs are used for CNS

disorders, including serotonin partial agonists and uptake

inhibitors, dopamine agonists, benzodiazepines, barbitu-

rates, opioids, tricyclics, neuroleptics, and hydantoins.

The gastrointestinal tract receives and processes food to

extract nutrients and removes waste form the body.

Diseases such as stomach ulcers, colitis, diarrhea,

nausea, and irritable bowel syndrome can affect this

Primary structure
Sequence of 

amino acid residues

Secondary structure
Repeating 3D units such as

α-helices and β-sheets
(buried main chain H bonds)

Tertiary structure
Single folded and arranged poly-

peptide chain, the structure of which is 
determined by the amino acids

Quaternary structure
Arrangement of 
separate chains

FIGURE 1.4 Increasing levels of protein structure. A protein has a given amino acid

sequence to make peptide chains. These adopt a 3D structure according to the free energy of

the system. Receptor function can change with changes in tertiary or quaternary structure.
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system. Histamine antagonists, proton pump blockers,

opioid agonists, antacids, and serotonin uptake blockers
are used to treat diseases of the GI tract.

The inflammatory system is designed to recognize self
from non-self and destroy non-self to protect the body. In

diseases of the inflammatory system, the self-recognition

can break down leading to conditions where the body
destroys healthy tissue in a misguided attempt at protec-

tion. This can lead to rheumatoid arthritis, allergies, pain,

COPD, asthma, fever, gout, graft rejection, and problems
with chemotherapy. Non-steroidal anti-inflammatory drugs

(NSAIDs), aspirin and salicylates, leukotriene antagonists,

and histamine receptor antagonists are used to treat
inflammatory disorders. The endocrine system produces

and secretes crucial hormones to the body for growth and

function. Diseases of this class of organs can lead to growth

and pituitary defects; diabetes; abnormality in thyroid,
pituitary, adrenal cortex, and androgen function; osteo-

porosis; and alterations in estrogen/progesterone balance.

The general approach to treatment is through replacement
or augmentation of secretion. Drugs used are replacement

hormones, insulin, sulfonylureas, adrenocortical steroids,

and oxytocin. In addition to the major organ and
physiological systems, diseases involving neurotransmission

and neuromuscular function, ophthalmology, hemopoiesis

and hematology, dermatology, immunosuppression, and
drug addiction and abuse are amenable to pharmacological

intervention.
Cancer is a serious malfunction of normal cell growth.

In the years from 1950 through 1970, the major approach

to treating this disease had been to target DNA and DNA
precursors according to the hypothesis that rapidly dividing

cells (cancer cells) are more susceptible to DNA toxicity

than normal cells. Since that time, a wide range of new

therapies based on manipulation of the immune system,

induction of differentiation, inhibition of angiogenesis, and

increased killer T-lymphocytes to decrease cell proliferation

has greatly augmented the armamentarium against neo-

plastic disease. Previously lethal malignancies such as

testicular cancer, some lymphomas, and leukemia are now

curable.
Three general treatments of disease are surgery, genetic

engineering (still an emerging discipline), and pharmaco-

logical intervention. While early medicine was subject to the

theories of Hippocrates (460–357 BCE), who saw health

and disease as a balance of four humors (i.e., black and

yellow bile, phlegm and blood), by the sixteenth century

pharmacological concepts were being formulated. These

could be stated concisely as [13]:

. Every disease has a cause for which there is a specific

remedy.
. Each remedy has a unique essence that can be

obtained from nature by extraction (‘‘doctrine

of signatures’’).

. The administration of the remedy is subject to a dose-

response relationship.

The basis for believing the pharmacological interven-

tion can be a major approach to the treatment of

disease is the fact that the body generally functions in

response to chemicals. Table 1.1 shows partial lists of

hormones and neurotransmitters in the body. Many

more endogenous chemicals are involved in normal

physiological function. The fact that so many physio-

logical processes are controlled by chemicals provides

TABLE 1.1

Some endogenous chemicals controlling normal physiological function.

Neurotransmitters

Acetylcholine 2-Arachidonylglycerol Anandamide

ATP Corticotropin-releasing hormone Dopamine

Epinephrine Aspartate Gamma-aminobutyric acid

Galanin Glutamate Glycine

Histamine Norepinephrine Serotonin

Hormones

Thyroid stim. hormone Follicle-stim. hormone Luteinizing hormone

Prolactin Adrenocorticotropin Antidiuretic hormone

Thyrotropin-releasing hromone Oxytocin Gonadotropin-releasing hormone

Growth-horm-rel. hormone Corticotropin-releasing hormone Somatostatin

Melatonin Thyroxin Calcitonin

Parathyroid hormone Glucocorticoid(s) Mineralocorticoid(s)

Estrogen(s) Progesterone Chorionic gonadotropin

Androgens Insulin Glucagon

Amylin Erythropoietin Calcitriol

Calciferol Atrial-nartiuretic peptide Gastrin

Secretin Cholecystokinin Neuropeptide Y

Insulin-like growth factor Angiotensinogen Ghrelin

Leptin
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the opportunity for chemical intervention. Thus, phy-

siological signals mediated by chemicals can be

initiated, negated, augmented, or modulated. The

nature of this modification can take the form of

changes in the type, strength, duration, or location of

signal.

1.7 System-independent Drug Parameters:

Affinity and Efficacy

The process of drug discovery relies on the testing

of molecules in systems to yield estimates of biological

activity in an iterative process of changing the structure of

the molecule until optimal activity is achieved. It will be

seen in this book that there are numerous systems available

to do this and that each system may interpret the activity

of molecules in different ways. Some of these interpreta-

tions can appear to be in conflict with each other leading

to apparent capricious patterns. For this reason, the way

forward in the drug development process is to use only

system-independent information. Ideally, scales of biologi-

cal activity should be used that transcend the actual

biological system in which the drug is tested. This is

essential to avoid confusion and also because it is quite

rare to have access to the exact human system under

the control of the appropriate pathology available for

in vitro testing. Therefore, the drug discovery process

necessarily relies on the testing of molecules in surrogate

systems and the extrapolation of the observed activity to all

systems. The only means to do this is to obtain system-

independent measures of drug activity; namely, affinity and

efficacy.

If a molecule in solution associates closely with a

receptor protein it has affinity for that protein. The area

where it is bound is the binding domain or locus. If the

same molecule interferes with the binding of a physiolo-

gically active molecule such as a hormone or a neuro-

transmitter (i.e., if the binding of the molecule precludes

activity of the physiologically active hormone or neuro-

transmitter), the molecule is referred to as an antagonist.

Therefore, a pharmacologically active molecule that

blocks physiological effect is an antagonist. Similarly, if

a molecule binds to a receptor and produces its own effect

it is termed an agonist. It also is assumed to have the

property of efficacy. Efficacy is detected by observation of

pharmacological response. Therefore, agonists have both

affinity and efficacy.
Classically, agonist response is described in two stages,

the first being the initial signal imparted to the immediate

biological target; namely, the receptor. This first stage is

comprised of the formation, either through interaction

with an agonist or spontaneously, of an active state

receptor conformation. This initial signal is termed the

stimulus (Figure 1.5). This stimulus is perceived by the cell

and processed in various ways through successions of

biochemical reactions to the end point; namely, the

response. The sum total of the subsequent reactions is

referred to as the stimulus-response mechanism or cascade

(see Figure 1.5).
Efficacy is a molecule-related property (i.e., different

molecules have different capabilities to induce physiological

response). The actual term for the molecular aspect of

response-inducing capacity of a molecule is intrinsic efficacy

(see Chapter 3 for how this term evolved). Thus, every

molecule has a unique value for its intrinsic efficacy

(in cases of antagonists this could be zero). The different

abilities of molecules to induce response are illustrated in

Figure 1.6. This figure shows dose-response curves for

four 5-HT (serotonin) agonists in rat jugular vein. It can

be seen that if response is plotted as a function of

the percent receptor occupancy different receptor occupan-

cies for the different agonists lead to different levels of

response. For example, while 0.6 g force can be generated

by 5-HT by occupying 30% of the receptors, the agonist

5-cyanotryptamine requires twice the receptor occupancy

to generate the same response (i.e., the capability of

5-cyanotryptamine to induce response is half that of

5-HT [14]). These agonists are then said to possess different

magnitudes of intrinsic efficacy.
It is important to consider affinity and efficacy as

separately manipulatable properties. Thus, there are

chemical features of agonists that pertain especially

to affinity and other features that pertain to efficacy.

Figure 1.7 shows a series of key chemical compounds made

en route to the histamine H2 receptor antagonist cimetidine

(used for healing gastric ulcers). The starting point for this

discovery program was the knowledge that histamine, a

naturally occurring autacoid, activates histamine H2

receptors in the stomach to cause acid secretion. This

constant acid secretion is what prevents healing of lesions

and ulcers. The task was then to design a molecule that

would antagonize the histamine receptors mediating acid

secretion and prevent histamine H2 receptor activation to

allow the ulcers to heal. This task was approached with the

knowledge that molecules, theoretically, could be made that

retained or even enhanced affinity but decreased the

Response

Cellular
  Stimulus-Response
    Cascade

StimulusStimulus

Response
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FIGURE 1.5 Schematic diagram of response production by an

agonist. An initial stimulus is produced at the receptor as a result

of agonist-receptor interaction. This stimulus is processed by the

stimulus-response apparatus of the cell into observable cellular

response.
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efficacy of histamine (i.e., these were separate properties).

As can be seen in Figure 1.7, molecules were consecutively

synthesized with reduced values of efficacy and enhanced

affinity until the target histamine H2 antagonist cimetidine

was made. This was a clear demonstration of the power

of medicinal chemistry to separately manipulate affinity

and efficacy for which, in part, the Nobel prize in medicine

was awarded in 1988.

1.8 What Is Affinity?

The affinity of a drug for a receptor defines the strength

of interaction between the two species. The forces control-

ling the affinity of a drug for the receptor are thermo-

dynamic (enthalpy as changes in heat and entropy as

changes in the state of disorder). The chemical forces

between the components of the drug and the receptor vary

in importance in relation to the distance the drug is away

from the receptor binding surface. Thus, the strength

of electrostatic forces (attraction due to positive and

negative charges and/or complex interactions between

polar groups) varies as a function of the reciprocal of the

distance between the drug and the receptor. Hydrogen

bonding (the sharing of a hydrogen atom between an acidic

and basic group) varies in strength as a function of the

fourth power of the reciprocal of the distance. Also

involved are Van der Waals forces (weak attraction

between polar and nonpolar molecules) and hydrophobic

bonds (interaction of nonpolar surfaces to avoid interaction

with water). The combination of all of these forces causes

the drug to reside in a certain position within the protein

binding pocket. This is a position of minimal free energy. It

is important to note that drugs do not statically reside in

one uniform position. As thermal energy varies in the

system, drugs approach and dissociate from the protein

surface. This is an important concept in pharmacology as it

sets the stage for competition between two drugs for a

single binding domain on the receptor protein. The

probability that a given molecule will be at the point of

minimal free energy within the protein binding pocket thus

depends on the concentration of the drug available to fuel

the binding process and also the strength of the interactions

for the complementary regions in the binding pocket

(affinity). Affinity can be thought of as a force of attraction

and can be quantified with a very simple tool first used to

study the adsorption of molecules onto a surface; namely

the Langmuir adsorption isotherm.

1.9 The Langmuir Adsorption Isotherm

Defined by the chemist Irving Langmuir (1881–1957,

Figure 1.8), the model for affinity is referred to as the

Langmuir adsorption isotherm. Langmuir reasoned that

molecules had a characteristic rate of diffusion toward a

surface (referred to as condensation and denoted a in his

nomenclature) and also a characteristic rate of dissociation

(referred to as evaporation and denoted as V1;

see Figure 1.8). He assumed that the amount of surface

that already has a molecule bound is not available to bind

another molecule. The surface area bound by molecule is

denoted y1, expressed as a fraction of the total area. The

amount of free area open for the binding of molecule,

expressed as a fraction of the total area, is denoted as

1� y1. The rate of adsorption toward the surface therefore

is controlled by the concentration of drug in the medium

(denoted m in Langmuir’s nomenclature) multiplied by the

rate of condensation on the surface and the amount of free

area available for binding:

Rate of diffusion toward surface ¼ am 1� y1ð Þ: ð1:1Þ

The rate of evaporation is given by the intrinsic rate

of dissociation of bound molecules from the surface
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FIGURE 1.6 Differences between agonists producing contraction of rat jugular vein through

activation of 5-HT receptors. (a) Dose-response curves to 5-HT receptor agonists, 5-HT (filled

circles), 5-cyanotryptamine (filled squares), N,N-dimethyltryptamine (open circles), and N-benzyl-5-

methoxytryptamine (filled triangles). Abscissae: logarithms of molar concentrations of agonist. (b)

Occupancy response curves for curves shown in panel a. Abscissae: percent receptor occupancy by

the agonist as calculated by mass action and the equilibrium dissociation constant of the agonist-

receptor complex. Ordinates: force of contraction in g. Data drawn from [14].
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FIGURE 1.7 Key compounds synthesized to eliminate the efficacy (burgundy red) and

enhance the affinity (green) of histamine for histamine H2 receptors to make cimetidine, one of

the first histamine H2 antagonists of use in the treatment of peptic ulcers. Quotation from

James Black [10].
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multiplied by the amount already bound:

Rate of evaporation ¼ V1y1: ð1:2Þ

Once equilibrium has been reached, the rate of adsorption

equals the rate of evaporation. Equating [1.1] and [1.2] and

rearranging yields:

y1 ¼
am

amþV1
: ð1:3Þ

This is the Langmuir adsorption isotherm in its original

form. In pharmacological nomenclature, it is rewritten

in the convention

r ¼
AR½ �

Rt½ �
¼

A½ �

A½ � þKA
, ð1:4Þ

where [AR] is the amount of complex formed between the

ligand and the receptor and [Rt] is the total number

of receptor sites. The ratio r refers to the fraction of

maximal binding by a molar concentration of drug [A] with

an equilibrium dissociation constant of KA. This latter term

is the ratio of the rate of offset (in Langmuir’s terms V1 and

referred to as k2 in receptor pharmacology) divided by the

rate of onset (in Langmuir’s terms a denoted k1 in receptor

pharmacology).

It is amazing to note that complex processes such as drug

binding to protein, activation of cells, and observation

of syncytial cellular response should apparently so closely

follow a model based on these simple concepts. This was

not lost on A. J. Clark in his treatise on drug receptor

theory The Mode of Action of Drugs on Cells [4]:

It is an interesting and significant fact that the author in

1926 found that the quantitative relations between the

concentration of acetylcholine and its action on muscle

cells, an action the nature of which is wholly unknown,

could be most accurately expressed by the formulae devised

by Langmuir to express the adsorption of gases on metal

filaments

—A. J. Clark (1937)

The term KA is a concentration and it quantifies affinity.

Specifically, it is the concentration that binds to 50% of

the total receptor population (see Equation 1.4 when

[A]¼KA). Therefore, the smaller the KA, the higher is the

affinity. Affinity is the reciprocal of KA. For example, if

KA¼ 10�8M, then 10�8M binds to 50% of the receptors.

If KA¼ 10�4M, a 10,000-fold higher concentration of the

drug is needed to bind to 50% of the receptors (i.e., it is of

lower affinity).
It is instructive to discuss affinity in terms of the

adsorption isotherm in the context of measuring the

amount of receptor bound for given concentrations of

drug. Assume that values of fractional receptor occupancy

can be visualized for various drug concentrations. The

kinetics of such binding are shown in Figure 1.9. It can be

seen that initially the binding is rapid in accordance with

the fact that there are many unbound sites for the drug to

choose. As the sites become occupied, there is a temporal

reduction in binding until a maximal value for that

concentration is attained. Figure 1.9 also shows that the

binding of higher concentrations of drug is correspondingly

increased. In keeping with the fact that this is first-order

binding kinetics (where the rate is dependent on a rate

constant multiplied by the concentration of reactant), the

time to equilibrium is shorter for higher concentrations

than for lower concentrations. The various values for

receptor occupancy at different concentrations constitute a

θ  =
αµ

αµ + V11

FIGURE 1.8 The Langmuir adsorption isotherm representing the binding of a molecule to

a surface. Photo shows Irving Langmuir (1881–1957), a chemist interested in the adsorption of

molecules to metal filaments for the production of light. Langmuir devised the simple equation

still in use today for quantifying the binding of molecules to surfaces. The equilibrium is

described by condensation and evaporation to yield the fraction of surface bound (y1) by a

concentration m.
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concentration-binding curve (shown in Figure 1.10a). There

are two areas in this curve of particular interest

to pharmacologists. The first is the maximal asymptote

for binding. This defines the maximal number of receptive

binding sites in the preparation. The binding isotherm

Equation 1.4 defines the ordinate axis as the fraction of the

maximal binding. Thus, by definition the maximal value is

unity. However, in experimental studies real values of

capacity are used since the maximum is not known. When

the complete curve is defined, the maximal value of binding

can be used to define fractional binding at various

concentrations and thus define the concentration at which

half maximal binding (binding to 50% of the receptor

population) occurs. This is the equilibrium dissociation

constant of the drug-receptor complex (KA), the important

measure of drug affinity. This comes from the other

important region of the curve; namely, the midpoint. It

can be seen from Figure 1.10a that graphical estimation of

both the maximal asymptote and the midpoint is difficult

to visualize from the graph in the form shown. A much

easier format to present binding, or any concentration

response data, is a semi-logarithmic form of the isotherm.

This allows better estimation of the maximal asymptote and

places the midpoint in a linear portion of the graph where

intrapolation can be done (see Figure 1.10b). Dose-

response curves for binding are not often visualized as

they require a means to detect bound (over unbound) drug.

However, for drugs that produce pharmacological response

(i.e., agonists) a signal proportional to bound drug can be

observed. The true definition of dose-response curve is the

observed in vivo effect of a drug given as a dose to a whole

animal or human. However, it has entered into the common

pharmacological jargon as a general depiction of drug and

effect. Thus, a dose-response curve for binding is actually a

binding concentration curve, and an in vitro effect of an

agonist in a receptor system is a concentration-response

curve.

1.10 What Is Efficacy?

The property that gives a molecule the ability to change a

receptor, such that it produces a cellular response, is termed

efficacy. Early concepts of receptors likened them to locks

and drugs as keys. As stated by Paul Ehrlich, ‘‘Substances

can only be anchored at any particular part of the organism

if they fit into the molecule of the recipient complex like

a piece of mosaic finds it’s place in a pattern.’’ This

historically useful but inaccurate view of receptor function

has in some ways hindered development models of efficacy.

Specifically, the lock-and-key model implies a static system

with no moving parts. However, a feature of proteins is

their malleability. While they have structure, they do not

have a single structure but rather many potential shapes

referred to as conformations. A protein stays in a particular

conformation because it is energetically favorable to do so

(i.e., there is a minimal free energy for that conformation).

If thermal energy enters the system, the protein may adopt

another shape in response. Stated by Lindstrom-Lang and

Schellman [15]:

. . . a protein cannot be said to have ‘‘a’’ secondary structure

but exists mainly as a group of structures not too different

from one another in free energy . . . In fact, the molecule

must be conceived as trying every possible structure . . .

—Lindstrom and Schellman (1959)
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FIGURE 1.9 Time course for increasing concentrations of a

ligand with a KA of 2 nM. Initially the binding is rapid but slows as

the sites become occupied. The maximal binding increases with

increasing concentrations as does the rate of binding.
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FIGURE 1.10 Dose-response relationship for ligand binding according to the Langmuir adsorption

isotherm. (a) Fraction of maximal binding as a function of concentration of agonist. (b) Semi-logarithmic

form of curve shown in panel a.
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Not only are a number of conformations for a given protein

possible, the protein samples these various conformations

constantly. It is a dynamic not a static entity. Receptor

proteins can spontaneously change conformation in

response to the energy of the system. An important concept

here is that small molecules, by interacting with the receptor

protein, can bias the conformations that are sampled. It is

in this way that drugs can produce active effects on receptor

proteins (i.e., demonstrate efficacy). A thermodynamic

mechanism by which this can occur is through what is

known as conformational selection [16]. A simple illustra-

tion can be made by reducing the possible conformations of

a given receptor protein to just two. These will be referred

to as the ‘‘active’’ (denoted [Ra]) and ‘‘inactive’’ (denoted

[Ri]) conformation.
Thermodynamically it would be expected that a

ligand may not have identical affinity for both

receptor conformations. This was an assumption in early

formulations of conformational selection. For example,

differential affinity for protein conformations was pro-

posed for oxygen binding to hemoglobin [17] and for

choline derivatives and nicotinic receptors [18].

Furthermore, assume that these conformations exist in

an equilibrium defined by an allosteric constant L (defined

as [Ra]/[Ri]) and that a ligand [A] has affinity for

both conformations defined by equilibrium association

constants Ka and aKa, respectively, for the inactive and

active states:

: ð1:5Þ

It can be shown that the ratio of the active species Ra in

the presence of a saturating concentration (r1) of the

ligand versus in the absence of the ligand (r0) is given by

(see Section 1.13):

r1
r0
¼

a 1þ Lð Þ

1þ aLð Þ
: ð1:6Þ

It can be seen that if the factor a is unity (i.e., the affinity

of the ligand for Ra and Ri is equal [Ka¼ aKa]), then there

will be no change in the amount of Ra when the ligand is

present. However, if a is not unity (i.e., if the affinity of the

ligand differs for the two species), then the ratio necessarily

will change when the ligand is present. Therefore, the

differential affinity for the two protein species will alter

their relative amounts. If the affinity of the ligand is higher

for Ra, then the ratio will be >1 and the ligand will enrich

the Ra species. If the affinity for the ligand for Ra is less

than for Ri, then the ligand (by its presence in the system)

will reduce the amount of Ra. For example, if the affinity

of the ligand is 30-fold greater for the Ra state, then in a

system where 16.7% of the receptors are spontaneously

in the Ra state the saturation of the receptors with this

agonist will increase the amount of Ra by a factor of 5.14

(16.7 to 85%).
This concept is demonstrated schematically in

Figure 1.11. It can be seen that the initial bias in a system

of proteins containing two conformations (square and

spherical) lies far toward the square conformation. When a

ligand (filled circles) enters the system and selectively binds

to the circular conformations, this binding process removes

the circles driving the backward reaction from circles back

to squares. In the absence of this backward pressure, more

square conformations flow into the circular state to fill the

gap. Overall, there is an enrichment of the circular

conformations when unbound and ligand-bound circular

conformations are totaled.
This also can be described in terms of the Gibbs free

energy of the receptor-ligand system. Receptor conforma-

tions are adopted as a result of attainment of minimal free

energy. Therefore, if the free energy of the collection

of receptors changes so too will the conformational makeup

of the system. The free energy of a system comprised of two

conformations ai and a0 is given by [19]:

X
�Gi ¼

X
�G0

i �RT

�
X

ln 1þKa,i A½ �
� ��

ln 1þKa,0 A½ �
� �

, ð1:7Þ

where Ka,i and Ka,0 are the respective affinities of the ligand

for states i and 0. It can be seen that unless Ka,i¼Ka,0 the

logarithmic term will not equal zero and the free energy of

the system will change (
P

�Gi 6¼
P

�G0
i ). Thus, if a ligand

has differential affinity for either state, then the free energy

of the system will change in the presence of the ligand.

Under these circumstances, a different conformational bias

will be formed by the differential affinity of the ligand.

From these models comes the concept that binding is not a

passive process whereby a ligand simply adheres to a

protein without changing it. The act of binding can itself

bias the behavior of the protein. This is the thermodynamic

basis of efficacy.

1.11 Dose-response Curves

The concept of ‘‘dose response’’ in pharmacology has

been known and discussed for some time. A prescription

written in 1562 for hyoscyamus and opium for sleep clearly

states, ‘‘If you want him to sleep less, give him less’’ [13]. It

was recognized by one of the earliest physicians, Paracelsus

(1493–1541), that it is only the dose that makes something

beneficial or harmful: ‘‘All things are poison, and nothing is

without poison. The Dosis alone makes a thing not

poison.’’
Dose-response curves depict the response to an agonist

in a cellular or subcellular system as a function of the

agonist concentration. Specifically, they plot response as a

function of the logarithm of the concentration. They can be

defined completely by three parameters; namely, location

along the concentration axis, slope, and maximal asymptote
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(Figure 1.12). At first glance, the shapes of dose-response

curves appear to closely mimic the line predicted by the

Langmuir adsorption isotherm and it is tempting to assume

that dose-response curves reflect the first-order binding and

activation of receptors on the cell surface. However, in most

cases this resemblance is happenstance and dose-response

curves reflect a far more complex amalgam of binding,

activation, and recruitment of cellular elements of response.

In the end, these may yield a sigmoidal curve but in reality

they are far removed from the initial binding of drug and

receptor. For example, in a cell culture with a collection of

cells of varying threshold for depolarization the single-cell

response to an agonist may be complete depolarization

(in an all-or-none fashion). Taken as a complete collection,
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FIGURE 1.11 Conformational selection as a thermodynamic process to bias mixtures of

protein conformations. (a) The two forms of the protein are depicted as circular and square

shapes. The system initially is predominantly square. Gaussian curves to the right show the

relative frequency of occurrence of the two conformations. (b) As a ligand (black dots) enters

the system and prefers the circular conformations, these are selectively removed from the

equilibrium between the two protein states. The distributions show the enrichment of the

circular conformations at the expense of the square one. (c) A new equilibrium is attained in the

presence of the ligand favoring the circular conformation because of the selective pressure of

affinity between the ligand and this conformation. The distribution reflects the presence of the

ligand and the enrichment of the circular conformation.
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the depolarization profile of the culture where the cells all

have differing thresholds for depolarization would have a

Gaussian distribution of depolarization thresholds—some

cells being more sensitive than others (Figure 1.13a). The

relationship of depolarization of the complete culture to the

concentration of a depolarizing agonist is the area under

the Gaussian curve. This yields a sigmoidal dose-response

curve (Figure 1.13b), which resembles the Langmuirian

binding curve for drug-receptor binding. The slope of the

latter curve reflects the molecularity of the drug-receptor

interaction (i.e., one ligand binding to one receptor yields a

slope for the curve of unity). In the case of the sequential

depolarization of a collection of cells, it can be seen that a

more narrow range of depolarization thresholds yields a

steeper dose-response curve, indicating that the actual

numerical value of the slope for a dose-response curve

cannot be equated to the molecularity of the binding

between agonist and receptor. In general, shapes of dose-

response curves are completely controlled by cellular

factors and cannot be used to discern drug-receptor

mechanisms. These must be determined indirectly by null

methods.

1.11.1 Potency and Maximal Response

There are certain features of agonist dose-response

curves that are generally true for all agonists. The first is

that the magnitude of the maximal asymptote is totally

dependent on the efficacy of the agonist and the efficiency

of the biological system to convert receptor stimulus into
tissue response (Figure 1.14a). This can be an extremely

useful observation in the drug discovery process when

attempting to affect the efficacy of a molecule. Changes in

chemical structure that affect only the affinity of the agonist

will have no effect on the maximal asymptote of the dose-

response curve for that agonist. Therefore, if chemists wish

to optimize or minimize efficacy in a molecule they can

track the maximal response to do so. Second, the location,

along the concentration axis of dose-response curves

quantifies the potency of the agonist (Figure 1.14b). The

potency is the molar concentration required to produce a

given response. Potencies vary with the type of cellular

system used to make the measurement and the level

of response at which the measurement is made. A

common measurement used to quantify potency is the

EC50; namely the molar concentration of an agonist
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FIGURE 1.12 Dose-response curves. Any dose-response curve

can be defined by the threshold (where response begins along the

concentration axis), the slope (the rise in response with changes in

concentration), and the maximal asymptote (the maximal

response).
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FIGURE 1.13 Factors affecting the slope of dose-response curves. (a) Gaussian distributions of the

thresholds for depolarization of cells to an agonist in a cell culture. Solid line shows a narrow range of
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curve in panel b.
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required to produce 50% of the maximal response to the

agonist. Thus, an EC50 value of 1mM indicates that 50% of

the maximal response to the agonist is produced by a

concentration of 1mM of the agonist (Figure 1.15). If the

agonist produces a maximal response of 80% of the system

maximal response, then 40% of the system maximal

response will be produced by 1mM of this agonist

(Figure 1.15). Similarly, an EC25 will be produced by a

lower concentration of this same agonist; in this case, the

EC25 is 0.5 mM.

1.11.2 p-Scales and the Representation of Potency

Agonist potency is an extremely important parameter

in drug receptor pharmacology. Invariably it is determined

from log-dose response curves. It should be noted that since

these curves are generated from semi-logarithmic plots

the location parameter of these curves are log normally

distributed. This means that the logarithms of the sensitiv-

ities (EC50) and not the EC50 values themselves are

normally distributed (Figure 1.16a). Since all statistical

parametric tests must be done on data that come from

normal distributions, all statistics (including comparisons

of potency and estimates of errors of potency) must come

from logarithmically expressed potency data. When log

normally distributed EC50 data (Figure 1.16b) is converted

to EC50 data, the resulting distribution is seriously skewed

(Figure 1.16c). It can be seen that error limits on the mean

of such a distribution are not equal (i.e., 1 standard error of

the mean unit [see Chapter 8] either side of the mean gives

different values on the skewed distribution [Figure 1.16c]).

This is not true of the symmetrical normal distribution

(Figure 1.16b).
One representation of numbers such as potency estimates

is with the p-scale. The p-scale is the negative logarithm

of number. For example, the pH is the negative logarithm

of a hydrogen ion concentration (10�5 Molar¼ pH¼ 5). It

is essential to express dose-response parameters as p-values

(�log of the value, as in the pEC50) since these are log

normal. However, it sometimes is useful on an intuitive

level to express potency as a concentration (i.e., the antilog

value). One way this can be done and still preserve the error

estimate is to make the calculation as p-values and then

convert to concentration as the last step. For example,

Table 1.2 shows five pEC50 values giving a mean pEC50

of 8.46 and a standard error of 0.21. It can be seen that the

calculation of the mean as a converted concentration (EC50

value) leads to an apparently reasonable mean value of

3.8 nM, with a standard error of 1.81 nM. However, the

95% confidence limits (range of values that will include the

true value) of the concentration value is meaningless in that

one of them (the lower limit) is a negative number. The true

value of the EC50 lies within the 95% confidence limits

given by the meanþ 2.57� the standard error, which leads

to the values 8.4 nM and �0.85 nM. However, when pEC50

values are used for the calculations this does not occur.

Specifically, the mean of 8.46 yields a mean EC50 of

3.47 nM. The 95% confidence limits on the pEC50 are 7.8

to 9.0. Conversion of these limits to EC50 values yields

95% confidence limits of 1 nM to 11.8 nM. Thus, the true

potency lies between the values of 1 and 11.8 nM 95%

of the time.
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Maximal responses solely reflect efficacy while the potency

(location along the concentration axis) reflects a complex function

of both efficacy and affinity.
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agonist that produces 80% of the system maximal response. The
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1.12 Chapter Summary and Conclusions

. Some ideas on the origins and relevance of pharma-

cology and the concept of biological ‘‘receptors’’ are

discussed.

. Currently there are drugs for only a fraction of the

druggable targets present in the human genome.

. While recombinant systems have greatly improved the

drug discovery process, pathological phenotypes still

are a step away from these drug testing systems.
. Because of the previously cited, system-independent

measures of drug activity (namely, affinity and

efficacy) must be measured in drug discovery.
. Affinity is the strength of binding of a drug to a

receptor. It is quantified by an equilibrium dissocia-

tion constant.

. Affinity can be depicted and quantified with the

Langmuir adsorption isotherm.
. Efficacy is measured in relative terms (having no

absolute scale) and quantifies the ability of a molecule

to produce a change in the receptor (most often

leading to a physiological response).

. Dose-response curves quantify drug activity. The

maximal asymptote is totally dependent on efficacy,

while potency is due to an amalgam of affinity and

efficacy.
. Measures of potency are log normally distributed.

Only p-scale values (i.e., pEC50) should be used

for statistical tests.

1.13 Derivations: Conformational Selections as a

Mechanism of Efficacy

Consider a system containing two receptor conforma-

tions Ri and Ra that coexist in the system according to an

allosteric constant denoted L:

:

Assume that ligand A binds to Ri with an equilibrium

association constant Ka and Ra by an equilibrium associa-

tion constant aKa. The factor a denotes the differential

affinity of the agonist for Ra (i.e., a¼ 10 denotes a tenfold

greater affinity of the ligand for the Ra state). The effect of

a on the ability of the ligand to alter the equilibrium

between Ri and Ra can be calculated by examining the
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FIGURE 1.16 Log normal distributions of sensitivity of a pharmacological preparation to an agonist. (a) Dose-

response curve showing the distribution of the EC50 values along the log concentration axis. This distribution is

normal only on a log scale. (b) Log normal distribution of pEC50 values (�log EC50 values). (c) Skewed

distribution of EC50 values converted from the pEC50 values shown in panel b.

TABLE 1.2

Expressing mean agonist potencies with error.

pEC50
1 EC50 (nM)2

8.5 3.16

8.7 2

8.3 5.01

8.2 6.31

8.6 2.51

Mean¼ 8.46 Mean¼ 3.8

SE¼ 0.21 SE¼ 1.81

1Replicate values of �1/Nlog EC50’s.
2Replicate EC50 values in nM.
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amount of Ra species (both as Ra and ARa) present in
the system in the absence of ligand and in the

presence of ligand. The equilibrium expression
for [Ra]þ [ARa])/[Rtot] where [Rtot] is the total receptor
concentration given by the conservation equation
[Rtot]¼ [Ri]þ [ARi]þ [Ra]þ [ARa]) is:

r ¼
L 1þ a A½ �=KAð Þ

A½ �=KA 1þ aLð Þ þ 1þ L
, ð1:8Þ

where L is the allosteric constant, [A] is the concentration
of ligand, KA is the equilibrium dissociation constant of

the agonist-receptor complex (KA¼ 1/Ka), and a is the
differential affinity of the ligand for the Ra state. It can be
seen that in the absence of agonist ([A]¼ 0), r0¼L/(1þL)

and in the presence of a maximal concentration of ligand
(saturating the receptors; [A]!1) r1¼ (a(1þL))/
(1þ aL). The effect of the ligand on changing the

proportion of the Ra state is given by the ratio r/r0. This
ratio is given by

r1
r0
¼

a 1þ Lð Þ

1þ aLð Þ
: ð1:9Þ

Equation 1.9 indicates that if the ligand has an equal
affinity for both the Ri and Ra states (a¼ 1) then r1/r0 will
equal unity and no change in the proportion of Ra will

result from maximal ligand binding. However, if a>1,
then the presence of the conformationally selective ligand
will cause the ratio r1/r0 to be >1 and the Ra state will be
enriched by presence of the ligand.
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2
How Different Tissues Process Drug Response

[Nature] can refuse to speak but she cannot give a wrong answer.

— DR. CHARLES BRENTON HUGINS (1966)

We have to remember that what we observe is not nature in itself, but nature exposed to our method of questioning . . .

— WERNER HEISENBERG (1901–1976)
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2.1 Drug Response as Seen Through the ‘‘Cellular Veil’’

If a drug possesses the molecular property of efficacy,
then it produces a change in the receptor that may be

detected by the cell. However, this can only occur if the
stimulus is of sufficient strength and if the cell has the

amplification machinery necessary to convert the stimulus
into an observable response. In this sense, the cellular host

system completely controls what the experimenter observes
regarding the events taking place at the drug receptor. Drug

activity is thus revealed through a ‘‘cellular veil’’ that can,
in many cases, obscure or substantially modify drug-

receptor activity (Figure 2.1). Minute signals, initiated
either at the cell surface or within the cytoplasm of the cell,

are interpreted, transformed, amplified, and otherwise
altered by the cell to tailor that signal to its own particular

needs. In receptor systems where a drug does produce a
response, the relationship between the binding reaction

(drugþ receptor protein) and the observed response can be
studied indirectly through observation of the cellular

response as a function of drug concentration (dose-

response curve). A general phenomenon observed experi-

mentally is that cellular response most often is not linearly

related to receptor occupancy (i.e., it does not require 100%

occupation of all of the receptors to produce the maximal

cellular response). Figure 2.2a shows a functional dose-

response curve to human calcitonin in human embryonic

kidney (HEK) cells transfected with cDNA for human

calcitonin receptor type 2. The response being measured

here is hydrogen ion release by the cells, a sensitive measure

of cellular metabolism. Also shown (dotted line) is a curve

for calcitonin binding to the receptors (as measured with

radioligand binding). A striking feature of these curves is

that the curve for function is shifted considerably to the left

of the binding curve. Calculation of the receptor occupancy

required for 50% maximal tissue response indicates that

less than 50% occupancy; namely, more on the order of 3

to 4% is needed. In fact, a regression of tissue response

upon the receptor occupancy is hyperbolic in nature

(Figure 2.2b), showing a skewed relationship between

receptor occupancy and cellular response. This skewed

relationship indicates that the stimulation of the receptor

initiated by binding is amplified by the cell in the process of

response production.
The ability of a given agonist to produce a maximal

system response can be quantified as a receptor reserve. The

reserve refers to the percentage of receptors not required for

production of maximal response (i.e., sometimes referred to

as spare receptors). For example, a receptor reserve of 80%

for an agonist means that the system maximal response is

produced by activation of 20% of the receptor population

by that agonist. Receptor reserves can be quite striking.

Figure 2.3 shows guinea pig ileal smooth muscle contrac-

tions to the agonist histamine before and after irreversible

inactivation of a large fraction of the receptors with

the protein alkylating agent phenoxybenzamine. The fact

that the depressed maximum dose-response curve is

observed so far to the right of the control dose-response

curve indicates a receptor reserve of 98% (i.e., only 2% of

the receptors must be activated by histamine to produce the

tissue maximal response [Figure 2.3b]). In teleological

terms, this may be useful since it allows neurotransmitters

to produce rapid activation of organs with minimal

receptor occupancy leading to optimal and rapid control

of function.
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Receptor reserve is a property of the tissue (i.e., the

strength of amplification of receptor stimulus inherent to

the cells) and it is a property of the agonist (i.e., how much

stimulus is imparted to the system by a given agonist

receptor occupancy). This latter factor is quantified as the

efficacy of the agonist. A high-efficacy agonist need occupy

a smaller fraction of the receptor population than a

lower-efficacy agonist to produce a comparable stimulus.

Therefore, it is incorrect to ascribe a given tissue or cellular

response system with a characteristic receptor reserve. The

actual value of the receptor reserve will be unique to each

agonist in that system. For example, Figure 2.4 shows the

different amplification hyperbolae of CHO cells transfected

with b-adrenoceptors in producing cyclic AMP responses to

Drug cellular response

Drug stimulus

FIGURE 2.1 The cellular veil. Drugs act on biological receptors in cells to change cellular activity.

The initial receptor stimulus usually alters a complicated system of interconnected metabolic

biochemical reactions and the outcome of the drug effect is modified by the extent of these

interconnections, the basal state of the cell, and the threshold sensitivity of the various processes

involved. This can lead to a variety of apparently different effects for the same drug in different cells.

Receptor pharmacology strives to identify the basic mechanism initiating these complex events.
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FIGURE 2.2 Binding and dose-response curves for human calcitonin on human calcitonin receptors

type 2. (a) Dose-response curves for microphysiometry responses to human calcitonin in HEK cells

(open circles) and binding in membranes from HEK cells (displacement of [125I]-human calcitonin).

Data from [1]. (b) Regression of microphysiometry responses to human calcitonin (ordinates) upon

human calcitonin fractional receptor occupancy (abscissae). Dotted line shows a direct correlation

between receptor occupancy and cellular response.
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three different b-adrenoceptor agonists. It can be seen that

isoproterenol requires many times less receptors to produce

50% response than do both the agonists BRL 37344 and

CGP 12177. This underscores the idea that the magnitude

of receptor reserves are very much dependent on the

efficacy of the agonist (i.e., one agonist’s spare receptor is

another agonist’s essential one).

2.2 The Biochemical Nature of Stimulus-response Cascades

Cellular amplification of receptor signals occurs through

a succession of saturable biochemical reactions. Different

receptors are coupled to different stimulus-response

mechanisms in the cell. Each has its own function and

operates on its own timescale. For example, receptor

tyrosine kinases (activated by growth factors) phosphor-

ylate target proteins on tyrosine residues to activate protein

phosphorylation cascades such as MAP kinase pathways.

This process, on a timescale on the order of seconds to

days, leads to protein synthesis from gene transcription

with resulting cell differentiation and/or cell proliferation.

Nuclear receptors, activated by steroids, operate on a

timescale of minutes to days and mediate gene transcription

and protein synthesis. This leads to homeostatic, metabolic,

and immunosuppression effects. Ligand gated ion channels,

activated by neurotransmitters, operate on the order of

milliseconds to increase the permeability of plasma

membranes to ions. This leads to increases in cytosolic

Ca2þ, depolarization or hyperolarization of cells. This

results in muscle contraction, release of neurotransmitters

or inhibition of these processes.
G-protein coupled receptors (GPCRs) react to a wide

variety of molecules from some as small as acetylcholine to

as large as the protein SDF-1a. Operating on a timescale of

minutes to hours, these receptors mediate a plethora of

cellular processes. The first reaction in the activation

cascade for GPCRs is the binding of the activated receptor

to a trimeric complex of proteins called G-proteins

(Figure 2.5). These proteins—comprised of three subunits

named a, b, and g—act as molecular switches to a number

of other effectors in the cell. The binding of activated

receptors to the G-protein initiates the dissociation of GDP

from the a-subunit of the G-protein complex, the binding

of GTP, and the dissociation of the complex into a- and bg-
subunits. The separated subunits of the G-protein can

activate effectors in the cell such as adenylate cyclase and

ion channels. Amplification can occur at these early stages
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FIGURE 2.3 Guinea pig ileal responses to histamine. (a) Contraction of guinea pig ileal

longitudinal smooth muscle (ordinates as a percentage of maximum) to histamine (abscissae,

logarithmic scale). Responses obtained before (filled circles) and after treatment with the

irreversible histamine receptor antagonist phenoxybenzamine (50 mM for 3 minutes; open

circles). (b) Occupancy response curve for data shown in (a). Ordinates are percentage of

maximal response. Abscissae are calculated receptor occupancy values from an estimated

affinity of 20 mM for histamine. Note that maximal response is essentially observed after only

2% receptor occupancy by the agonist (i.e., a 98% receptor reserve for this agonist in this

system). Data redrawn from [2].
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FIGURE 2.4 Occupancy-response curves for b-adrenoceptor
agonists in transfected CHO cells. Occupancy (abscissae) calcu-

lated from binding affinity measured by displacement of

[125I]iodocyanopindolol. Response measured as increases in cyclic

AMP. Drawn from [3].
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if one receptor activates more than one G-protein. The

a-subunit also is a GTPase, which hydrolyzes the bound

GTP to produce its own deactivation. This terminates the

action of the a-subunit on the effector. It can be seen that

the length of time that the a-subunit is active can control

the amount of stimulus given to the effector and that this

also can be a means of amplification (i.e., one a-subunit
could activate many effectors). The a- and bg- subunits

then reassociate to complete the regulatory cycle

(Figure 2.5). Such receptor-mediated reactions generate

cellular molecules called second messengers. These mole-

cules go on to activate or inhibit other components of the

cellular machinery to change cellular metabolism and state

of activation. For example, the second messenger (cyclic

AMP) is generated by the enzyme adenylate cyclase from

ATP. This second messenger furnishes fuel, through protein

kinases, for phosphorylation of serine and threonine

residues on a number of proteins such as other protein

kinases, receptors, metabolic enzymes, ion channels, and

transcription factors (see Figure 2.6). Activation of other

G-proteins leads to activation of phospholipase C. These

enzymes catalyze the hydrolysis of phosphatidylinositol

4,5-bisphosphate (PIP2) to 1,2 diacylglycerol (DAG) and

inositol1,4,5-triphosphate (IP3) (see Figure 2.7). This latter

second messenger interacts with receptors on intracellular

calcium stores resulting in the release of calcium into the

cytosol. This calcium binds to calcium sensor proteins such

as calmodulin or troponin C, which then go on to regulate

the activity of proteins such as protein kinases, phospha-

tases, phosphodiesterase, nitric oxide synthase, ion chan-

nels, and adenylate cyclase. The second messenger DAG

diffuses in the plane of the membrane to activate protein

kinase C isoforms, which phosphorylate protein kinases,

transcription factors, ion channels, and receptors. DAG

also functions as the source of arachidonic acid which goes

on to be the source of eicosanoid mediators such as

prostanoids and leukotrienes. In general, all of these

processes can lead to a case where a relatively small

amount of receptor stimulation can result in a large

biochemical signal. An example of a complete stimulus-

response cascade for the b-adrenoceptor production of

blood glucose is shown in Figure 2.8.
There are numerous second messenger systems such as

those utilizing cyclic AMP and cyclic GMP, calcium

and calmodulin, phosphoinositides, and diacylglerol with

accompanying modulatory mechanisms. Each receptor is

coupled to these in a variety of ways in different cell types.

Therefore, it can be seen that it is impractical to attempt

to quantitatively define each stimulus-response mechanism

for each receptor system. Fortunately, this is not an
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FIGURE 2.5 Activation of trimeric G-proteins by activated receptors. An agonist produces a receptor active state that

goes on to interact with the G-protein. A conformational change in the G-protein causes bound GDP to exchange with

GTP. This triggers dissociation of the G-protein complex into a- and bg- subunits. These go on to interact with effectors

such as adenylate cyclase and calcium channels. The intrinsic GTPase activity of the a-subunit hydolyzes bound GTP back

to GDP and the inactived a-subunit reassociates with the bg- subunits to repeat the cycle.

24 2. HOW DIFFERENT TISSUES PROCESS DRUG RESPONSE



important prerequisite in the pharmacological process of

classifying agonists since these complex mechanisms can be

approximated by simple mathematical functions.

2.3 The Mathematical Approximation of

Stimulus-response Mechanisms

Each of the processes shown in Figure 2.8 can be

described by a Michaelis-Menten type of biochemical

reaction, a standard generalized mathematical equation

describing the interaction of a substrate with an enzyme.

Michaelis and Menten realized in 1913 that the kinetics of

enzyme reactions differed from the kinetics of conventional

chemical reactions. They visualized the reaction of sub-

strate and an enzyme yielding enzyme plus substrate as a

form of the equation: reaction velocity¼ (maximal velocity

of the reaction� substrate concentration)/(concentration of

substrateþ a fitting constant Km). The constant Km

(referred to as the Michaelis-Menten constant) charac-

terizes the tightness of the binding of the reaction between

substrate and enzyme, essentially a quantification of the

coupling efficiency of the reaction. The Km is the

concentration at which the reaction is half the maximal

value, or in terms of kinetics the concentration at which

the reaction runs at half its maximal rate. This model

forms the basis of enzymatic biochemical reactions and can
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be used as a mathematical approximation of such

functions.
As with the Langmuir adsorption isotherm, which in

shape closely resembles Michaelis-Menten type biochemical

kinetics, the two notable features of such reactions are the

location parameter of the curve along the concentration

axis (the value of Km or the magnitude of the coupling

efficiency factor) and the maximal rate of the reaction

(Vmax). In generic terms, Michaelis-Menten reactions can

be written in the form

Velocity ¼
substract½ � � Vmax

substract½ � þKm
¼

input½ � �MAX

input½ � þ b
, ð2:1Þ

where b is a generic coupling efficiency factor. It can be

seen that the velocity of the reaction is inversely propor-

tional to the magnitude of b (i.e., the lower the value of b
the more efficiently is the reaction coupled). If it is assumed

that the stimulus-response cascade of any given cell is a

series succession of such reactions, there are two general

features of the resultant that can be predicted mathemati-

cally. The first is that the resultant of the total series of

reactions will itself be of the form of the same hyperbolic

shape (see Section 2.11.1). The second is that the location

parameter along the input axis (magnitude of the coupling

efficiency parameter) will reflect a general amplification of

any single reaction within the cascade (i.e., the magnitude

of the coupling parameter for the complete series will be

lower than the coupling parameter of any single reaction;

see Figure 2.9). The magnitude of btotal for the series sum of

two reactions (characterized by b1 and b2) is given by (see

Section 2.11.2)

btotal ¼
b1b2
1þ b2

: ð2:2Þ

It can be seen from Equation 2.2 that for positive non-zero

values of b2, btotal< b1. Therefore, the location parameter

of the rectangular hyperbola of the composite set

of reactions in series is shifted to the left (increased
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FIGURE 2.8 Stimulus response cascade for the production of blood glucose by

activation of b-adrenoceptors. Redrawn from [4].
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potency) of that for the first reaction in the sequence

(i.e., there is amplification inherent in the series of
reactions).

The fact that the total stimulus-response chain can be

approximated by a single rectangular hyperbola furnishes
the basis of using end organ response to quantify agonist

effect in a non-system-dependent manner. An important

feature of such a relationship is that it is monotonic (i.e.,

there is only one value of y for each value of x). Therefore,
the relationship between the strength of signal imparted

to the receptor between two agonists is accurately reflected

by the end organ response (Figure 2.10). This is the primary

reason pharmacologists can circumvent the effects of the
cellular veil and discern system-independent receptor events

from translated cellular events.

2.4 System Effects on Agonist Response: Full

and Partial Agonists

For any given receptor type, different cellular hosts

should have characteristic efficiencies of coupling and

these should characterize all agonists for that same

receptor irrespective of the magnitude of the efficacy of
the agonists. Different cellular backgrounds have differ-

ent capabilities for amplification of receptor stimuli. This

is illustrated by the strikingly different magnitudes of the

receptor reserves for calcitonin and histamine receptors
shown in Figures 2.2 and 2.3. Figure 2.11 shows the

response produced by human calcitonin activation of the

human calcitonin receptor type 2 when it is expressed

in three different cell formats (human embryonic kidney
cells [HEK 293 cells], Chinese hamster ovary cells

[CHO cells], and Xenopus laevis melanophores).

From this figure it can be seen that while only 3%

receptor activation by this agonist is required for 50%

response in melanophores this same occupancy in CHO

cells produces only 10% response and even less in

HEK cells.
One operational view of differing efficiencies of receptor

coupling is to consider the efficacy of a given agonist as

a certain mass characteristic of the agonist. If this mass

were to be placed on one end of a balance, it would depress

that end by an amount dependent on the weight. The

amount that the end is depressed would be the stimulus (see

Figure 2.12). Consider the other end of the scale as

reflecting the placement of the weight on the scale

(i.e., the displacement of the other end is the response of

the cell). Where along the arm this displacement is viewed
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FIGURE 2.10 The monotonic nature of stimulus-response mechanisms. (a) Receptor stimulus generated by two agonists

designated 1 and 2 as a function of agonist concentration. (b) Rectangular hyperbola characterizing the transformation of receptor

stimulus (abscissae) into cellular response (ordinates) for the tissue. (c) The resulting relationship between tissue response to the

agonists as a function of agonist concentration. The general rank order of activity (2>1) is preserved in the response as a

reflection of the monotonic nature of the stimulus-response hyperbola.
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FIGURE 2.11 Receptor-occupancy curves for activation of

human calcitonin type 2 receptors by the agonist human calcitonin.

Ordinates (response as a fraction of the maximal response to

human calcitonin). Abscissae (fractional receptor occupancy by

human calcitonin). Curves shown for receptors transfected into

three cell types: human embryonic kidney cells (HEK), Chinese

hamster ovary cells (CHO), and Xenopus laevis melanophores. It

can be seen that the different cell types lead to differing

amplification factors for the conversion from agonist receptor

occupancy to tissue response.
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reflects the relative amplification of the original stimulus

(i.e., the closer to the fulcrum the less the amplification).

Therefore, different vantage points along the displaced end

of the balance arm reflect different tissues with different

amplification factors (different magnitudes of coupling

parameters). The response features of cells have limits

(i.e., a threshold for detecting the response and a maximal

response characteristic of the tissue). Depending on the

efficiency of stimulus-response coupling apparatus of the

cell, a given agonist could produce no response, a partially

maximal response, or the system maximal response (see

Figure 2.12). The observed response to a given drug gives a

label to the drug in that system. Thus, a drug that binds to

the receptor but produces no response is an antagonist, a

drug that produces a submaximal response is a partial

agonist, and a drug that produces the tissue maximal

response is termed a full agonist (see Figure 2.13). It should

be noted that while these labels often are given to a

drug and used across different systems as identifying

labels for the drug they are in fact dependent on

the system. Therefore, the magnitude of the response

can completely change with changes in the coupling

efficiency of the system. For example, the low-efficacy

b-adrenoceptor agonist prenalterol can be an antagonist

in guinea pig extensor digitorum longus muscle, a

partial agonist in guinea pig left atria, and nearly a full

agonist in right atria from thyroxine-treated guinea pigs

(Figure 2.14).
As noted previously, the efficacy of the agonist deter-

mines the magnitude of the initial stimulus given to the
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FIGURE 2.12 Depiction of agonist efficacy as a weight placed on a balance to produce displacement of the arm (stimulus) and the

observation of the displacement of the other end of the arm as tissue response. The vantage point determines the amplitude of the

displacement. Where no displacement is observed, no agonism is seen. Where the displacement is between the limits of travel of the arm

(threshold and maximum), partial agonism is seen. Where displacement goes beyond the maximal limit of travel of the arm, uniform full

agonism is observed.
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FIGURE 2.13 The expression of different types of drug activities

in cells. A drug that produces the full maximal response of the

biological system is termed a full agonist. A drug that produces a

submaximal response is a partial agonist. Drugs also may produce

no overt response or may actively reduce basal response. This latter

class of drug is known as inverse agonist. These ligands have

negative efficacy. This is discussed specifically in Chapter 3.

28 2. HOW DIFFERENT TISSUES PROCESS DRUG RESPONSE



receptor, and therefore the starting point for the input into

the stimulus-response cascade. As agonists are tested in

systems of varying coupling efficiency, it will be seen that

the point at which system saturation of the stimulus-

response cascade is reached differs for different agonists.

Figure 2.15 shows two agonists, one of higher efficacy than

the other. It can be seen that both are partial agonists in

tissue A but that agonist 2 saturates the maximal response

producing capabilities of tissue B and is a full agonist. The

same is not true for agonist 1. In a yet more efficiently

coupled system (tissue C), both agonists are full agonists.

This illustrates the obvious error in assuming that all

agonists that produce the system maximal response have

equal efficacy. All full agonists in a given system may not

have equal efficacy.
The more efficiently coupled is a given system the more

likely agonists will produce the system maximum response

(i.e., be full agonists). It can be shown also that if an
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FIGURE 2.14 Dose-response curves to the b-adrenoceptor low-
efficacy agonist prenalterol in three different tissues from guinea

pigs. Responses all mediated by b1-adrenoceptors. Depending on

the tissue, this drug can function as nearly a full agonist, a partial

agonist, or a full antagonist. Redrawn from [5].
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FIGURE 2.15 Depiction of agonist efficacy as a weight placed on a balance to produce displacement of the arm (stimulus) and the

observation of the displacement of the other end of the arm as tissue response for two agonists, one of higher efficacy (Efficacy2) than the

other (Efficacy1). The vantage point determines the amplitude of the displacement. In system A, both agonists are partial agonists. In

system B, agonist 2 is a full agonist and agonist 1 a partial agonist. In system C, both are full agonists. It can be seen that the tissue

determines the extent of agonism observed for both agonists and that system C does not differentiate the two agonists on the basis of

efficacy.
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agonist saturates any biochemical reaction within the

stimulus-response cascade it will produce full agonism (see

Section 2.11.3). This also means that there will be an

increasing tendency for an agonist to produce the full

system maximal response the further down the stimulus-

response cascade the response is measured. Figure 2.16

shows three agonists all producing different amounts of

initial receptor stimulus. These stimuli are then passed

through three successive rectangular hyperbolae simulat-

ing the stimulus-response cascade. As can be seen from the

figure, by the last step all of the agonists are full agonists.

Viewing response at this point gives no indication of

differences in efficacy.

2.5 Differential Cellular Response to Receptor Stimulus

As noted in the previous discussion, different tissues have

varying efficiencies of stimulus-response coupling.

However, within a given tissue there may be the capability

of choosing or altering the responsiveness of the system to

agonists. This can be a useful technique in the study of
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FIGURE 2.16 Effects of successive rectangular hyperbolae on receptor stimulus. (a) Stimulus to three

agonists. (b) Three rectangular hyperbolic stimulus-response functions in series. Function 1 (b¼ 0.1) feeds

function 2 (b¼ 0.03), which in turn feeds function 3 (b¼ 0.1). (c) Output from function 1. (d) Output from

function 2 (functions 1 and 2 in series). (e) Final response: output from function 3 (all three functions in series).

Note how all three are full agonists when observed as final response.
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agonists. Specifically, the ability to observe full agonists as

partial agonists enables the experimenter to compare

relative efficacies (see previous material). Also, if stimu-

lus-response capability can be reduced weak partial

agonists can be studied as antagonists to gain measures

of affinity. There are three general approaches to add

texture to agonism: (1) choice of response pathway, (2)

augmentation or modulation of pathway stimulus, and (3)

manipulation of receptor density. This latter technique is

operable only in recombinant systems where receptors are

actively expressed in surrogate systems.

2.5.1 Choice of Response Pathway

The production of second messengers in cells by receptor

stimulation leads to a wide range of biochemical reactions.

As noted in the previous discussion, these can be

approximately described by Michaelis-Menten type reac-

tion curves and each will have unique values of maximal

rates of reaction and sensitivities to substrate. There are

occasions where experimenters have access to different end

points of these cascades, and with them different amplifica-

tion factors for agonist response. One such case is the

stimulation of cardiac b-adrenoceptors. In general, this

leads to a general excitation of cardiac response comprised

of an increase in heart rate (for right atria), an increased

force of contraction (inotropy), and an increase in the rate

of muscle relaxation (lusitropy). These latter two cardiac

functions can be accessed simultaneously from measure-

ment of isometric cardiac contraction and each has its own

sensitivity to b-adrenoceptor excitation (lusitropic

responses being more efficiently coupled to elevation of

cyclic AMP than inotropic responses). Figure 2.17a shows

the relative sensitivity of cardiac lusitropy and intropy to

elevations in cyclic AMP in guinea pig left atria. It can be

seen that the coupling of lusitropic response is fourfold

more efficiently coupled to cyclic AMP elevation than is

inotropic response. Such differential efficiency of coupling

can be used to dissect agonist response. For example, the

inotropic and lusitropic responses of the b-adrenoceptor
agonists isoproterenol and prenalterol can be divided into

different degrees of full and partial agonism (Figure 2.18).

It can be seen from Figure 2.18a that there are concentra-

tions of isoproterenol that increase the rate of myocardial

relaxation (i.e., 0.3 nM) without changing inotropic state.

As the concentration of isoproterenol increases the

inotropic response appears (Figure 2.18b and c). Thus,

the dose-response curve for myocardial relaxation for this

full agonist is shifted to the left of the dose-response curve

for inotropy in this preparation (Figure 2.18d). For a

partial agonist such as prenalterol, there is nearly a

complete dissociation between cardiac lusitropy and

inotropy (Figure 2.18e). Theoretically, an agonist of low

efficacy can be used as an antagonist of isoproterenol

response in the more poorly coupled system (inotropy) and

then compared with respect to efficacy (observation of

visible response) in the more highly coupled system.

2.5.2 Augmentation or Modulation of Stimulus Pathway

The biochemical pathways making up the cellular

stimulus-response cascade are complex systems with feed-

back and modulation mechanisms. Many of these are

mechanisms to protect against overstimulation. For exam-

ple, cells contain phosphodiesterase enzymes to degrade

cyclic AMP to provide a fine control of stimulus strength

and duration. Inhibition of phosphodiesterase therefore can

remove this control and increase cellular levels of cyclic

AMP. Figure 2.19a shows the effect of phosphodiesterase

inhibition on the inotropic response of guinea pig papillary

muscle. It can be seen from this figure that whereas 4.5%

receptor stimulation by isoproterenol is required for 50%

inotropic response in the natural system (where phospho-

diesterase modulated intracellular cyclic AMP response)

this is reduced to only 0.2% required receptor stimulation

after inhibition of phosphodiesterase degradation of

intracellular cyclic AMP. This technique can be used to

modulate responses as well. Smooth muscle contraction

requires extracellular calcium ion (calcium entry mediates

contraction). Therefore, reduction of the calcium concen-

tration in the extracellular space causes a modulation of the

contractile responses (see example for the muscarinic

contractile agonist carbachol, Figure 2.19b). In general

the sensitivity of functional systems can be manipulated by

antagonism of modulating mechanisms and control of

cofactors needed for cellular response.

2.5.3 Differences in Receptor Density

The number of functioning receptors controls the

magnitude of the initial stimulus given to the cell by an

agonist. Number of receptors on the cell surface is one

means the cell can control its stimulatory environment.

Thus, it is not surprising that receptor density varies with

different cell types. Potentially, this can be used to control
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FIGURE 2.17 Differential efficiency of receptor coupling for

cardiac function. (a) Guinea pig left atrial force of contraction

(inotropy, open circles) and rate of relaxation (lusitropy, filled

circles) as a function (ordinates) of elevated intracellular cyclic

AMP concentration (abscissae). Redrawn from [6].
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FIGURE 2.18 Inotropic and lusitropic responses of guinea pig left atria to b-adrenoceptor stimulation. Panels A to C: isometric tension

waveforms of cardiac contraction (ordinates are mg tension; abscissae are msec). (a) Effect of 0.3 nM isoproterenol on the waveform. The

wave is shortened due to an increase in the rate of diastolic relaxation, whereas no inotropic response (change in peak tension) is observed

at this concentration. (b) A further shortening of waveform duration (lusitropic response) is observed with 3 nM isoproterenol.

This is concomitant with positive inotropic response (increase maximal tension). (c) This trend continues with 100 nM isoproterenol.

(d) Dose-response curves for inotropy (filled circles) and lusitropy (open circles) in guinea pig atria for isoproterenol. (e) Dose-response curves

for inotropy (filled circles) and lusitropy (open circles) in guinea pig atria for the b-adrenoceptor partial agonist prenalterol. Data redrawn

from [6].
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FIGURE 2.19 Potentiation and modulation of response through control of cellular processes.

(a) Potentiation of inotropic response to isoproterenol in guinea pig papillary muscle by the

phosphodiesterase inhibitor isobutylmethylxanthine (IBMX). Ordinates: percent of maximal response

to isoproterenol. Abscissa: percent receptor occupancy by isoproterenol (log scale). Responses shown

in absence (open circles) and presence (filled circles) of IBMX. Data redrawn from [7]. (b) Effect of

reduction in calcium ion concentration on carbachol contraction of guinea pig ileum. Responses in the

presence of 2.5mM (filled circles) and 1.5mM (open circles) calcium ion in physiological media

bathing the tissue. Data redrawn from [8].
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the responses to agonists since low receptor densities will

produce less response than higher densities. Experimental

control of this factor can be achieved in recombinant

systems. The methods of doing this are discussed more fully

in Chapter 5. Figure 2.20 shows the cyclic AMP and

calcium responses to human calcitonin activating calcitonin

receptors in human embryonic kidney cells. Shown are

responses from two different recombinant stable recombi-

nant cell lines of differing receptor density. It can be seen

that not only does the quantity of response change with

increasing receptor number response (note ordinate scales

for cyclic AMP production in Figure 2.20b and c) but the

quality of the response changes. Specifically, calcitonin

is a pleiotropic receptor with respect to the G-proteins with

which it interacts (this receptor can couple to Gs, Gi, and

Gq proteins). In cells containing a low number of receptors,

there is an insufficient density to activate Gq proteins and

thus no Gq response (calcium signaling) is observed (see

Figure 2.20b). However, in cells with a higher receptor

density both a cyclic AMP and a calcium response

(indicative of concomitant Gs and Gq protein activation)

is observed (Figure 2.20c). In this way, the receptor density

controls the overall composition of the cellular response to

the agonist.
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FIGURE 2.20 Effect of receptor expression level on responses of human calcitonin receptor type 2 to human calcitonin. (a) Cyclic AMP

and calcium responses for human calcitonin activation of the receptor. Abscissae: logarithm of receptor density in fmole/mg protein.

Ordinates: pmole cyclic AMP (left-hand axis) or calcium entry as a percentage maximum of response to human calcitonin. Two receptor

expression levels are shown: at 65 fmole/mg, there is sufficient receptor to only produce a cyclic AMP response. At 30,000 fmole/mg receptor,

more cyclic AMP is produced, but there is also sufficient receptor to couple to Gq protein and produce a calcium response. (b and c) Dose-

response curves to human calcitonin for the two responses in cell lines expressing the two different levels of receptor. Effects on cyclic AMP

levels (open circles; left-hand ordinal axes) and calcium entry (filled squares; right-hand ordinal axes) for HEK cells expressing calcitonin

receptors at 65 fmole/mg (panel b) and 30,000 fmole/mg (panel c). Data redrawn from [10].
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2.6 Receptor Desensitization and Tachyphylaxis

There is a temporal effect that must be considered in

functional experiments; namely, the desensitization of the

system to sustained or repeated stimulation. Receptor

response is regulated by processes of phosphorylation and

internalization, which can prevent overstimulation of

physiological function in cells. This desensitization can be

specific for a receptor, in which case it is referred to as

homologous desensitization, or it can be related to modula-

tion of a pathway common to more than one receptor and

thus be heterologous desensitization. In this latter case,

repeated stimulation of one receptor may cause the

reduction in responsiveness of a number of receptors. The

effects of desensitization on agonist dose-response curves

are not uniform. Thus, for powerful highly efficacious

agonists desensitization can cause a dextral displacement of

the dose-response with no diminution of maximal response

(see Figure 2.21a). In contrast, desensitization can cause a

depression of the maximal response to weak partial

agonists (see Figure 2.21b). The overall effects of desensi-

tization on dose-response curves relate to the effective

receptor reserve for the agonist in a particular system. If the

desensitization process eliminates receptor responsiveness

where it is essentially irreversible in terms of the timescale

of response (i.e., response occurs in seconds whereas

reversal from desensitization may require hours), then the

desensitization process will mimic the removal of active

receptors from the tissue. Therefore, for an agonist with a

high receptor reserve (i.e., only a small portion of the

receptors are required for production of maximal tissue

response) desensitization will not depress the maximal

response until a proportion greater than the reserve is

affected. In contrast, for an agonist with no receptor reserve

desensitization will produce an immediate decrease in the

maximal response. These factors can be relevant to the

choice of agonists for therapeutic application. This is

discussed more fully in Chapter 10.

2.7 The Measurement of Drug Activity

In general there are two major formats for pharmaco-

logical experiments: cellular function and biochemical

binding. Historically, function has been by far the more

prevalent form of experiment. From the turn of the century,

isolated tissues have been used to detect and quantify drug

activity. Pioneers such as Rudolph Magnus (1873–1927)

devised methods of preserving the physiological function of

isolated tissues (i.e., isolated intestine) to allow the

observation of drug-induced response. Such preparations

formed the backbone of all in vitro pharmacological

experimental observation and furnished the data to develop

drug receptor theory. Isolated tissues were the workhorses

of pharmacology and various laboratories had their

favorite. As put by W. D. M Paton [9]:

The guinea pig longitudinal muscle is a great gift to the

pharmacologist. It has low spontaneous activity; nicely

graded responses (not too many tight junctions); is highly

sensitive to a very wide range of stimulants; is tough, if

properly handled, and capable of hours of reproducible

behavior.

—W. D. M. Paton (1986)

All of drug discovery relied upon such functional assays

until introduction of binding techniques. Aside from the

obvious shortcoming of using animal tissue to predict

human responsiveness to drugs, isolated tissue formats did

not allow for high-throughput screening of compounds

(i.e., the experiments were labor intensive). Therefore, the

numbers of compounds that could be tested for potential

activity were limited by the assay format. In the mid 1970s,

a new technology (in the form of biochemical binding) was

introduced and this quickly became a major approach to

the study of drugs. Both binding and function are valuable

and have unique application and it is worth considering the

strengths and shortcomings of both approaches in the

context of the study of drug-receptor interaction.
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FIGURE 2.21 Effects of desensitization on inotropic responses of guinea pig atria to isoproterenol (panel a)

and prenalterol (panel b). Ordinates: response as a percent of the maximal reaponse to isoproterenol. Abscissae:

logarithms of molar concentrations of agonist (log scale). Responses shown after peak response attained (within

5 minutes, filled circles) and after 90 minutes of incubation with the agonist (open triangles). Data redrawn

from [6].
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2.8 Advantages and Disadvantages of

Different Assay Formats

High-throughput volume was the major reason for the

dominance of binding in the 1970s and 1980s. However,

technology has now progressed to the point where the

numbers of compounds tested in functional assays can

equal or even exceed the volume that can be tested in

binding studies. Therefore, this is an obsolete reason for

choosing binding over function and the relative scientific

merits of both assay formats can now be used to make the

choice of assay for drug discovery. There are advantages

and disadvantages to both formats. In general, binding

assays allow the isolation of receptor systems by use of

membrane preparations and selective radioligand (or other

traceable ligands; see material following) probes. The

interference with the binding of such a probe can be used

as direct evidence of an interaction of the molecules with

the receptor. In contrast, functional studies in cellular

formats can be much more complex in that the interactions

may not be confined to the receptor but rather extend

further into the complexities of cellular functions. Since

these may be cell-type dependent, some of this information

may not be transferable across systems and therefore not

useful for prediction of therapeutic effects. However,

selectivity can be achieved in functional assays through

the use of selective agonists. Thus, even in the presence of

mixtures of functional receptors a judicious choice of

agonist can be used to select the receptor of interest and

reduce nonspecific signals.
In binding, the molecules detected are only those that

interfere with the specific probe chosen to monitor receptor

activity. There is a potential shortcoming of binding assays

in that often the pharmacological probes used to monitor

receptor binding are not the same probes that are relevant

to receptor function in the cell. For example, there are

molecules that may interfere with the physiological relevant

receptor probe (the G-proteins that interact with the

receptor and control cellular response to activation of

that receptor) but not with the probe used for monitoring

receptor binding. This is true for a number of interactions

generally classified as allosteric (vide infra; see Chapters

4 and 7 for details) interactions. Specifically, allosteric

ligands do not necessarily interact with the same binding

site as the endogenous ligand (or the radioligand probe in

binding) and therefore binding studies may not detect them.
Receptor levels in a given preparation may be insufficient

to return a significant binding signal (i.e., functional

responses are highly amplified and may reveal receptor

presence in a more sensitive manner than binding).

For example, CHO cells show a powerful 5-HT1B

receptor-mediated agonist response to 5-HT that is blocked

in nanomolar concentrations by the antagonist

(�)-cyanopindolol [11]. However, no significant binding

of the radioligand [125I]-iodocyanopindolol is observed.

Therefore, in this case the functional assay is a much more

sensitive indicator of 5-HT responses. The physiological

relevant probe (one that affects the cellular metabolism)

can be monitored by observing cellular function.

Therefore, it can be argued that functional studies offer a

broader scope for the study of receptors than do binding

studies. Another major advantage of function over binding

is the ability of the former, and not the latter, to directly

observe ligand efficacy. Binding only registers the presence

of the ligand bound to the receptor but does not return the

amount of stimulation that the bound agonist imparts to

the system.
In general, there are advantages and disadvantages to

both assay formats and both are widely employed in

pharmacological research. The specific strengths and

weaknesses inherent in both approaches are discussed in

more detail in Chapters 4 and 5. As a preface to the

consideration of these two major formats, a potential issue

with both of them should be considered; namely, dissim-

ulations between the concentrations of drugs added to the

experimentally accessible receptor compartment and the

actual concentration producing the effect.

2.9 Drug Concentration as an Independent Variable

In pharmacological experiments the independent variable

is drug concentration and the dependent (observed)

variable is tissue response. Therefore, all measures of

drug activity, potency, and efficacy are totally dependent

on accurate knowledge of the concentration of drug at the

receptor producing the observed effect. With no knowledge

to the contrary, it is assumed that the concentration added

to the receptor system by the experimenter is equal to the

concentration acting at the receptor (i.e., there is no

difference in the magnitude of the independent variable).

However, there are potential factors in pharmacological

experiments that can negate this assumption and thus lead

to serious error in the measurement of drug activity. One is

error in the concentration of the drug that is able to reach

the receptor.

2.9.1 Dissimulation in Drug Concentration

The receptor compartment is defined as the aqueous

volume containing the receptor and cellular system. It is

assumed that free diffusion leads to ready access to this

compartment (i.e., that the concentration within this

compartment is the free concentration of drug at the

receptor). However, there are factors that can cause

differences between the experimentally accessible liquid

compartment and the actual receptor compartment. One

obvious potential problem is limited solubility of the drug

being added to the medium. The assumption is made tacitly

that the dissolved drug in the stock solution, when added to

the medium bathing the pharmacological preparation, will

stay in solution. There are cases where this may not be a

valid assumption.
Many drug-like molecules have aromatic substituents

and thus have limited aqueous solubility. A routine practice

is to dissolve stock drugs in a solvent known to dissolve

many types of molecular structures. One such solvent is
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dimethylsulfoxide (DMSO). This solvent is extremely useful

because physiological preparations such as cells in culture

or isolated tissues can tolerate relatively high concentra-

tions of DMSO (i.e., 0.5 to 2%) with no change in function.

When substances dissolved in one solvent are diluted into

another solvent where the substance has different (less)

solubility, local concentration gradients may exceed the

solubility of the substance in the mixture. When this occurs,

the substance may begin to come out of solution in these

areas of limited solubility (i.e., microcrystals may form).

This may in turn lead to a phenomenon known as

nucleation, whereby the microcrystals form the seeds

required for crystallization of the substance from the

solution. The result of this process can be the complete

crystallization of the substance from the entire mixture. For

this reason, the dilution into the solution of questionable

solubility (usually the aqueous physiological salt solution)

should be done at the lowest concentration possible to

ensure against nucleation and potential loss of solubility of

the drug in the pharmacological medium. All dilutions of

the stock drug solution should be carried out in the solution

of maximal solubility, usually pure DMSO and the solution

for pharmacological testing taken directly from these

stocks. Even under these circumstances, the drug may

precipitate out of the medium when added to the aqueous

medium. Figure 2.22 shows the effects of limited solubility

on a dose-response curve to an agonist. Solubility limits are

absolute. Thus, once the limit is reached no further addition

of stock solution will result in an increased soluble drug

concentration. Therefore, the response at that solubility

limit defines the maximal response for that preparation. If

the solubility is below that required for the true maximal

response to be observed (dotted line Figure 2.20), then an

erroneously truncated response to the drug will be

observed. A further effect on the dose-response curve can

be observed if the drug, upon entering the aqueous

physiological solution, precipitates because of local super-
saturated concentration gradients. This could lead to

nucleation and subsequent crystallization of the drug

previously dissolved in the medium. This would reduce

the concentration below the previously dissolved concen-
tration and lead to a decrease in the maximal response (bell-

shaped dose-response curve, Figure 2.22).
Another potential problem causing differences in the

concentration of drug added to the solution (and that

reaching the receptors) is the sequestration of drug in

regions other than the receptor compartment (Figure 2.23).
Some of these effects can be due to active uptake or

enzymatic degradation processes inherent in the biological

preparation. These are primarily encountered in isolated

whole tissues and are not a factor in in vitro assays
comprised of cellular monolayers. However, another factor

that is common to nearly all in vitro systems is the potential

adsorption of drug molecules onto the surface of the vessel

containing the biological system (i.e., well of a cell culture
plate). The impact of these mechanisms depends on the

drug and the nature of the surface, being more pronounced

for some chemical structures and also more pronounced for

some surfaces (i.e., non-silanized glass). Table 2.1 shows the
striking differences in adsorption of [3H]-endorphin with

pretreatment of the surface with various agents. It can be

seen that a difference of over 99.9% can be observed when
the surface is treated with a substance that prevents

adsorption such as myelin basic protein.

2.9.2 Free Concentration of Drug

If the adsorption process is not saturable within the

concentration range of the experiment, it becomes a sink

claiming a portion of the drug added to the medium—the

magnitude of which is dependent on the maximal capacity
of the sink ([�]) and the affinity of the ligand for the site
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FIGURE 2.22 Theoretical effects of agonist insolubility on dose-

response curves. Sigmoidal curve partially in dotted lines shows the

theoretically ideal curve obtained when the agonist remains in

solution throughout the course of the experiment determining the

dose-response relationship. If a limit to the solubility is reached,

then the responses will not increase beyond the point at which

maximal solubility of the agonist is attained (labeled limited

solubility). If the precipitation of the agonist in solution causes

nucleation that subsequently causes precipitation of the amount

already dissolved in solution, then a diminution of the previous

response may be observed.

External
solution

Biophase
(receptor compartment)

Receptor

Surface of adsorption

FIGURE 2.23 Schematic diagram showing the routes of possible

removal of drug from the receptor compartment. Upon diffusion

into the compartment, the drug may be removed by passive

adsorption en route. This will cause a constant decrease in the

steady-state concentration of the drug at the site of the receptor

until the adsorption process is saturated.
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of adsorption (1/Kad, where Kad is the equilibrium

dissociation constant of the ligand-adsorption site com-

plex). The receptor then interacts with the remaining free

concentration of drug in the compartment. The free

concentration of drug, in the presence of an adsorption

process, is given as (see Section 2.11.4):

½Afree� ¼ ½AT� �
1

2

�
½AT� þKad þ�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A�T� þKad þ�
� �2

� 4½AT��

q �
: ð2:3Þ

The free concentration of a drug [Afree] in a system

containing an adsorption process with maximal capacity

ranging from 0.01 to 10 mM and for which the ligand has an

affinity (1/Kd) is shown in Figure 2.24a. It can be seen that

there is a constant ratio depletion of free ligand in the

medium at low concentrations until the site of adsorption

begins to be saturated. When this occurs, there is a

curvilinear portion of the line reflecting the increase in the

free concentration of ligand in the receptor compartment

due to cancellation of adsorption-mediated depletion

(adsorption sites are fully bound and can no longer deplete

ligand). It is useful to observe the effects such processes can

have on dose-response curves to drugs. Figure 2.24b shows

the effect of an adsorption process on the observed effects

of an agonist in a system where an adsorption process

becomes saturated at the higher concentrations of agonist.

It can be seen that there is a change of shape of the dose-

response curve (increase in Hill coefficient with increasing

concentration). This is characteristic of the presence of an

agonist removal process that is saturated at some point

within the concentration range of agonist used in the

experiment.
In general, it should be recognized that the most carefully

designed experimental procedure can be completely

derailed by processes causing differences in what is thought

to be the concentration of drug at the receptor and the

actual concentration producing the effect. Insofar as

experiments can be done to indicate that these effects are

not operative in a given experiment they should be.

2.10 Chapter Summary and Conclusions

. It is emphasized that drug activity is observed through

a translation process controlled by cells. The aim of

pharmacology is to derive system-independent con-

stants characterizing drug activity from the indirect

product of cellular response.
. Different drugs have different inherent capacities to

induce response (intrinsic efficacy). Thus, equal

cellular responses can be achieved by different frac-

tional receptor occupancies of these drugs.

TABLE 2.1

Effect of pretreatment of surface on adsorption of [3H]-endorphin.

Treatment fmole Adsorbed

% Reduction over

Lysine Treatment

Lysine 615 0

Arginine 511 16.9

Bovine serum albumin 383 38

Choline chloride 19.3 97

Polylysine 1.7 99.5

Myelin basic protein 1.5 99.9

Data from [12].
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FIGURE 2.24 Effects of a saturable adsorption process on concentrations of agonist (panel a) and dose-

response curves to agonists (panel b). (a) Concentrations of drug added to system (abscissae, log scale) versus

free concentration in solution (ordinates, log scale). Numbers next to curves indicate the capacity of the

adsorption process in mM. The equilibrium dissociation constant of the agonist/adsorption site is 10 nM.

Dotted line indicates no difference between added concentrations and free concentration in solution. (b) Effect

of a saturable adsorption process on agonist dose-response curves. Numbers next to curves refer to the

maximal capability of the adsorption process. The equilibrium dissociation constant of the agonist/adsorption

site is 0.1 mM. Curve furthest to the left is the curve with no adsorption taking place.
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. Some cellular stimulus-response pathways and second

messengers are briefly described. The overall efficiency

of receptor coupling to these processes is defined as the

stimulus-response capability of the cell.
. While individual stimulus-response pathways are

extremely complicated, they all can be mathematically

described with hyperbolic functions.

. The ability to reduce stimulus-response mechanisms to

single monotonic functions allows relative cellular

response to yield receptor-specific drug parameters.

. When the maximal stimulus-response capability of

a given system is saturated by agonist stimulus,

the agonist will be a full agonist (produce full system

response). Not all full agonists are of equal efficacy;

they only all saturate the system.

. In some cases, the stimulus-response characteristics

of a system can be manipulated to provide a means

to compare maximal responses of agonists (efficacy).

. Receptor desensitization can have differing overall

effects on high- and low-efficacy agonists.
. All drug parameters are predicated on an accurate

knowledge of the concentration of drug acting at the

receptor. Errors in this independent variable negate all

measures of dependent variables in the system.
. Adsorption and precipitation are two commonly

encountered sources of error in drug concentration.

2.11 Derivations

. Series hyperbolae can be modeled by a single hyper-

bolic function (2.11.1)
. Successive rectangular hyperbolic equations necessa-

rily lead to amplification (2.11.2)
. Saturation of any step in a stimulus cascade by two

agonists leads to identical maximal final responses for

the two agonists (2.11.3)
. Measurement of free drug concentration in the

receptor compartment (2.11.4)

2.11.1 Series Hyperbolae Can Be Modeled by a

Single Hyperbolic Function

Rectangular hyperbolae are of the general form

y ¼
Ax

xþ B
: ð2:4Þ

Assume a function

y1 ¼
x

xþ b1
, ð2:5Þ

where the output y1 becomes the input for a second

function of the form

y2 ¼
y1

y1 þ b2
: ð2:6Þ

It can be shown that a series of such functions can be

generalized to the form

yn¼
x

xð1þbnð1þbn�1ð1þbn�2ð1þbn�3Þ::Þ::Þ . . .Þþ ðbn�::b1Þ
,

ð2:7Þ

which can be rewritten in the form of Equation 2.4,

where A¼ (1þ bn(1þ bn�1(1þ bn�2(1þ bn�3)..). . . )..)�1 and

B¼ (bn. . . �..b1)/(1þ bn(1þ bn�1(1þ bn�2(1þ bn�3)..). . . )..).

Thus, it can be seen that the product of a succession of

rectangular hyperbolae is itself a hyperbola.

2.11.2 Successive Rectangular Hyperbolic

Equations Necessarily Lead to Amplification

Assume a rectangular hyperbola of the form

r1 ¼
½A�

½A� þKA
, ð2:8Þ

where [A] is the molar concentration of drug and KA is the

location parameter of the dose-response curve along the

concentration axis (the potency). Assume also a second

rectangular hyperbola where the input function is defined

by Equation 2.8:

r2 ¼
½A�=ð½A� þKAÞ

ð½A�=ð½A� þKAÞÞ þ b
: ð2:9Þ

The term b is the coupling efficiency constant for the

second function. The location parameter (potency) of the

second function (denoted Kobs) is given by

Kobs ¼
KAb
1þ b

: ð2:10Þ

It can be seen that for non-zero and positive values of b that

Kobs<KA (i.e., the potency of the overall process will be

greater than the potency for the initial process).

2.11.3 Saturation of Any Step in a Stimulus Cascade by

Two Agonists Leads to Identical Maximal Final

Responses for the Two Agonists

For a given agonist [A], the product of any one reaction

in the stimulus response cascade is given by

Output1 ¼
½A� �M1

½A� þ b1
, ð2:11Þ

where M1 is the maximal output of the reaction and b1 is

the coupling constant for the reaction. When this product

becomes the substrate for the next reaction, the output

becomes

Output2 ¼
½A� �M1M2

½A�ðM1 þ b2Þ þ b1b2
: ð2:12Þ
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The maximal output from this second reaction (i.e., as

[A]!1) is

Max2 ¼
M1M2

M1 þ b2
: ð2:13Þ

By analogy, the maximal output from the second reaction

for another agonist [A0] is

Max02 ¼
M01M2

M01 þ b2
: ð2:14Þ

The relative maximal responses for the two agonists are

therefore

Relative Maxima ¼
Max2
Max02

¼
1þ b2=M

0
1

1þ b2=M1
: ð2:15Þ

It can be seen from this equation that if M1 ¼M01 (i.e., if

the maximal response to two agonists in any previous

reaction in the cascade is equal) the relative maxima of the

two agonists in subsequent reactions will be equal

ðMax2=Max02 ¼ 1Þ.

2.11.4 Measurement of Free Drug Concentration

in the Receptor Compartment

Assume that the total drug concentration [AT] is the

sum of the free concentration [Afree] and the concentration

bound to a site of adsorption [AD] (therefore,

[Afree]¼ [AT]� [AD]). The mass action equation for

adsorption is

AD½ � ¼
AT½ � � AD½ �ð Þ�

AT½ � � AD½ � þKad
, ð2:16Þ

where the maximal number of adsorption sites is � and

the equilibrium dissociation constant of the drug site

of adsorption is Kad. Equation 2.16 results in the quadratic

equation

AD½ �
2
� AD½ � �þ AT½ � þKadð Þ þ AT½ �� ¼ 0, ð2:17Þ

one solution for which is

1

2
AT½ � þKad þ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�T
� �

þKad þ�
� �2

� 4 AT½ ��

q� �
:

ð2:18Þ

Since [Afree]¼ [AT]� [AD], then

Afree½ � ¼ AT½ � �
1

2

�
AT½ � þKad þ�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�T
� �

þKad þ�
� �2

� 4 AT½ ��

q �
:

ð2:19Þ
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3
Drug-Receptor Theory

What is it that breathes fire into the equations and makes a universe for them to describe?

— STEPHEN W. HAWKING

An equation is something for eternity. . .

— ALBERT EINSTEIN

Casual observation made in the course of a purely theoretical research has had the most important results in practical

medicine. . . .

Saul was not the last who, going forth to see his father’s asses, found a kingdom.

— ARTHUR ROBSERTSON CUSHNY (1866–1926)
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3.1 About This Chapter

This chapter discusses the various mathematical models

that have been put forward to link the experimental

observations (relating to drug-receptor interactions) and

the events taking place on a molecular level between the

drug and protein recognition sites. A major link between

the data and the biological understanding of drug-receptor

activity is the model. In general, experimental data is a

sampling of a population of observations emanating from a

system. The specific drug concentrations tested control the

sample size and the resulting dependent variables reflect

what is happening at the biological target. A model defines

the complete relationship for the whole population (i.e., for

an infinite number of concentrations). The choice of model,

and how it fits into the biology of what is thought to be

occurring, is critical to the assessment of the experiment.

For example, Figure 3.1a shows a set of dose-response data

fit to two mathematical functions. It can be seen that both

equations appear to adequately fit the data. The first curve

is defined by

y ¼ 78 1� e� 0:76ð A½ �0:75Þð Þ
� �

� 2: ð3:1Þ

This is simply a collection of constants in an exponential

function format. The constants cannot be related to the

interactions at a molecular level. In contrast, the refit of the

data to the Langmuir adsorption isotherm

y ¼
80 � A½ �

A½ � þ EC50
ð3:2Þ

allows some measure of interpretation (i.e., the location

parameter along the concentration axis may reflect affinity

and efficacy while the maximal asymptote may reflect

efficacy; Figure 3.1b). In this case, the model built

on chemical concepts allows interpretation of the data

in molecular terms. The fitting of experimental data

to equations derived from models of receptor function are

at least consistent with the testing and refinement of these

models with the resulting further insight into biological

behavior. An early proponent of using such models and

laws to describe the very complex behavior of physiological

systems was A. J. Clark, known as the originator

of receptor pharmacology. As put by Clark in his

monograph The Mode of Action of Drugs on Cells [1]:

The general aim of this author in this monograph has been

to determine the extent to which the effects produced by

drugs on cells can be interpreted as processes following

known laws of physical chemistry.

— A. J. Clark (1937)

A classic example of where definitive experimental data

necessitated refinement and extension of a model of drug-

receptor interaction involved the discovery of constitutive

receptor activity in GPCR systems. The state of the art

model before this finding was the ternary complex

model for GPCRs, a model that cannot accommodate

ligand-independent (constitutive) receptor activity.
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With the experimental observation of constitutive activity

for GPCRs by Costa and Herz [2], a modification was

needed. Subsequently, Samama and colleagues [3] pre-

sented the extended ternary complex model to fill the void.

This chapter discusses relevant mathematical models and

generally offers a linkage between empirical measures of

activity and molecular mechanisms.

3.2 Drug-Receptor Theory

The various equations used to describe the quantitative

activity of drugs and the interaction of those drugs with

receptors is generally given the name drug receptor theory.

The models used within this theory originated from those

used to describe enzyme kinetics. A. J. Clark is credited

with applying quantitative models to drug action. His

classic books The Mode of Action of Drugs on Cells [1] and

Handbook of Experimental Pharmacology [4] served as the

standard texts for quantitative receptor pharmacology for

many years.

A consideration of the more striking examples of specific

drug antagonisms shows that these in many cases follow

recognizable laws, both in the case of enzymes and cells.

— A. J. Clark (1937)

With increasing experimental sophistication has come

new knowledge of receptor function and insights into the

ways in which drugs can affect that function. In this

chapter, drug receptor theory is described in terms of what

is referred to as ‘‘classical theory’’; namely, the use and

extension of concepts described by Clark and other

researchers such as Stephenson [5], Ariens [6, 7], MacKay

[8], and Furchgott [9, 10]. In this sense, classical theory is an

amalgam of ideas linked chronologically. These theories
were originated to describe the functional effects of drugs

on isolated tissues and thus naturally involved functional

physiological outputs. Another model used to describe

functional drug activity, derived by Black and Leff [11], is

termed the operational model. Unlike classical theory, this

model makes no assumptions about the intrinsic ability of

drugs to produce response. The operational model is a very
important new tool in receptor pharmacology and is used

throughout this book to illustrate receptor methods and

concepts. Another model used primarily to describe the

function of ion channels is termed two-state theory. This
model contributed ideas essential to modern receptor

theory, specifically in the description of drug efficacy in

terms of the selective affinity for protein conformation.

Finally, the idea that proteins translocate within cell
membranes [12] and the observation that seven transmem-

brane receptors couple to separate G-proteins in the

membrane led to the ternary complex model.
This scheme was first described by De Lean and colleagues

[13] and later modified to the extended ternary complex

model by Samama and co-workers [3]. These are described

separately as a background to discussion of drug-receptor
activity and as context for the description of the quantita-

tive tools and methods used in receptor pharmacology to

quantify drug effect.

3.3 The Use of Mathematical Models in Pharmacology

Mathematical models are the link between what is

observed experimentally and what is thought to occur at
the molecular level. In physical sciences, such as chemistry,

there is a direct correspondence between the experimental

observation and the molecular world (i.e., a nuclear

magnetic resonance spectrum directly reflects the interac-
tion of hydrogen atoms on a molecule). In pharmacology

the observations are much more indirect, leaving a much

wider gap between the physical chemistry involved in drug-
receptor interaction and what the cell does in response to

those interactions (through the ‘‘cellular veil’’). Hence,

models become uniquely important.
There are different kinds of mathematical models, and

they can be classified in two ways: by their complexity and

by the number of estimatable parameters they use. The
most simple models are cartoons with few very parameters.
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FIGURE 3.1 Data set fit to two functions of the same general shape. (a) Function fit to the

exponential Equation 3.1. (b) Function fit to rectangular hyperbola of the form 80*[A]/([A]þ 1).
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These, such as the ‘‘black box’’ that was the receptor at

the turn of the century, usually are simple input/output

functions with no mechanistic description (i.e., the drug

interacts with the receptor and a response ensues). Another

type, termed the Parsimonious model, is also simple but has

a greater number of estimatable parameters. These do not

completely characterize the experimental situation com-

pletely but do offer insights into mechanism. Models can be

more complex as well. For example, complex models with a

large number of estimatable parameters can be used to

simulate behavior under a variety of conditions (simulation

models). Similarly, complex models for which the number

of independently verifiable parameters is low (termed

heuristic models) can still be used to describe complex

behaviors not apparent by simple inspection of the system.
In general, a model will express a relationship between an

independent variable (input by the operator) and one or

more dependent variables (output, produced by the model).

A ubiquitous form of equation for such input/output

functions are curves of the rectangular hyperbolic form.

It is worth illustrating some general points about models

with such an example. Assume that a model takes on the

general form

Output ¼
Input½ � �A

B � Input½ � þ C
: ð3:3Þ

The form of that function is shown in Figure 3.2. There

are two specific parameters that can be immediately

observed from this function. The first is that the maximal

asymptote of the function is given solely by the magnitude

of A/B. The second is that the location parameter of the

function (where it lies along the input axis) is given by C/B.

It can be seen that when [Input] equals C/B the output

necessarily will be 0.5. Therefore, whatever the function the

midpoint of the curve will lie on a point at Input ¼ C/B.

These ideas are useful since they describe two essential

behaviors of any drug-receptor model; namely, the maximal

response (A/B) and the potency (concentration of input

required for effect; C/B). Many of the complex equations

used to describe drug-receptor interaction can be reduced to

these general forms and the maxima and midpoint values

used to furnish general expressions for the dependence of

efficacy and potency on the parameters of the mechanistic

model used to furnish the equations.

3.4 Some Specific Uses of Models in Pharmacology

Models can be very useful in designing experiments,

predicting drug effect and describing complex systems.

Ideally, models should be comprised of species that can be

independently quantified. Also, the characteristics of the

processes that produce changes in the amounts of these

species should be independently verifiable. The difference

between a heuristic model and a simulation model is that

the latter has independently verifiable constants for at least

some of the processes. An ideal model also has internal

checks that allow the researcher to determine that the

calculation is or is not following predicted patterns set out

by the model. A classic example of an internal check for a

model is the linearity and slope of a Schild regression for

simple competitive antagonism (see Chapter 6). In this case,

the calculations must predict a linear regression of linear

slope or the model of simple competitive antagonism is not

operable. The internal check determines the applicability of

the model.
Models can also predict apparently aberrant behaviors in

systems that may appear to be artifactual (and therefore

appear to denote experimental problems) but are in fact

perfectly correct behaviors according to a given complex

system. Simulation with modeling allows the researcher to

determine if the data is erroneous or indicative of a correct

system activity. For example, consider a system in which

the receptors can form dimers and where the affinity of a

radioligand (radioactive molecule with affinity for the

receptor allowing measurement of ligand-receptor complex

binding to be measured) is different for the single receptor

and the dimer. It is not intuitively obvious how the system

will behave when a nonradioactive ligand that also binds to

the receptor is added. In a standard single receptor system,

preincubation with a radioligand followed by addition of a

nonradioactive ligand will produce displacement of the

radioligand. This will cause a decrease in the bound

radioactive signal. The result usually is a sigmoidal

dose-response curve for displacement of the radioligand

by the nonradioactive ligand (see Figure 3.3). This is

discussed in some detail in Chapter 4. The point here is that

addition of the same nonradioactive ligand to a system of

pre-bound radioligand would be expected to produce a

decrease in signal. However, in the case of dimerization if

the combination of two receptors forms a ‘‘new’’ receptor

of higher affinity for the radioligand addition of a

nonradioligand may actually increase the amount of

radioligand bound before it decreases it [14]. This is an

apparent paradox (addition of a nonradioactive species

actually increasing the binding of radioactivity to a

receptor). The equation for the amount of radioactive

ligand [A*] bound (signal denoted o) in the presence of a
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rectangular hyperbolic form (y¼ 50x/(10xþ 100)). The maximal
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x axis) is given by C/B (see text).
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range of concentrations of nonradioactive ligand [A] is

(derivation 3.13.1) given as

As shown in Figure 3.3, addition of the nonradioactive

ligand to the system can increase the amount of bound

radioactivity for a system where the affinity of the ligand is

higher for the dimer than it is for the single receptor.

The prediction of this effect by the model changes the

interpretation of a counterintuitive finding to one that

conforms to the experimental system. Without the benefit

of the modeling, an observation of an increased binding

of radioligand with the addition of a nonradioactive ligand

might have been interpreted erroneously.
Models also can assist in experimental design and the

determination of the limits of experimental systems.

For example, it is known that three proteins mediate the

interaction of HIV with cells; namely, the chemokine

receptor CCR5, the cellular protein CD4, and the viral coat

protein gp120. An extremely useful experimental system to

study this interaction is one in which radioactive CD4,

prebound to soluble gp120, is allowed to bind to cellular

receptor CCR5. This system can be used to screen for

potential drugs that may block this interaction and thus be

useful as a treatment for AIDS. One of the practical

problems with this approach is the availability and expense
of purified gp120. This reagent can readily be prepared in

crude broths but very pure samples are difficult to obtain.
A practical question then is to what extent would

uncertainty in the concentration of gp120 affect an assay
that examines the binding of a complex of radioactive CD4

and gp120 with the CCR5 receptor in the presence of
potential drugs that block the complex. It can be shown in

this case that the model of interaction predicts the following
equation for the relationship between the concentrations

of radioactive CD4 [CD], crude gp120 [gp], [CCR5], and
the ratio of the observed potency of a displacing ligand [B]

to its true potency (i.e., to what extent errors in the potency
estimation will be made with errors in the true concentra-

tion of gp120; see Section 3.13.2):

K4 ¼
IC50½ �

CD½ �=K1ð Þ gp½ �=K2ð Þ þ 1
, ð3:5Þ

where K4, K1, and K2 are the equilibrium dissociation

constants of the ligand [B], CD4, and gp120 and the site of
interaction with CCR5/CD4/gp120. The relationship

between the concentration of radioligand used in the
assay and the ratio of the observed potency of the ligand

in blocking the binding to the true potency is shown
in Figure 3.4. The gray lines indicate this ratio with a

50% error in the concentration of gp120 (crude gp120
preparation). It can be seen from this figure that as long as

the concentration of radioligand is kept below [CD4]/
K1¼ 0.1 differences between the assumed concentration of

gp120 in the assay and true concentrations make little
difference to the estimation of ligand potency. In this case,

the model delineates experimental parameters for the

optimal performance of the assay.

3.5 Classical Model of Receptor Function

The binding of a ligand [A] to a receptor R is assumed to

follow mass action according to the Langmuir adsorption
isotherm (see Equation 1.4), as defined by Clark [1, 4].

No provision for different drugs of differing propensities to
stimulate receptors was made until E. J. Ariens [6, 7]

introduced a proportionality factor (termed intrinsic
activity and denoted a in his terminology) was added

to the binding function [5]. Intrinsic activity is the maximal
response to an agonist expressed as a fraction of the

o ¼
A�½ �=Kd þ a A�½ � A½ �=K2

d þ 2a A�½ �=Kdð Þ
2

� �
1þ A�½ �=Kd þ a A�½ �=Kdð Þ

2
� �

ð1þ A½ �=Kd þ A�½ �=Kd þ að A�½ � A½ �=K2
d þ að A�½ �=KdÞ

2
þ a A½ �=Kdð Þ

2
Þ A�½ �=Kd þ 2a A�½ �=Kdð Þ

2
� � :

ð3:4Þ
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FIGURE 3.3 Displacement of prebound radioligand [A*] by

non-radioactive concentrations of [A]. Curve for a¼ 1 denotes no

cooperativity in binding (i.e., formation of the receptor dimer does

not lead to a change in the affinity of the receptor for either [A] or

[A*]). The curve a¼ 10 indicates a system whereby formation of

the receptor dimer leads to a tenfold increase in the affinity for

both [A*] and [A]. In this case, it can be seen that addition on the

nonradioactive ligand [A] actually leads to an increase in the

amount of radioligand [A*] bound before a decrease at higher

concentrations of [A]. For this simulation [A*]/Kd¼ 0.1.

44 3. DRUG-RECEPTOR THEORY



maximal response for the entire system (i.e., a¼ 1 indicates

that the agonist produces the maximal response, a¼ 0.5

indicates half the maximal response, and so on). An

intrinsic activity of zero indicates no agonism. Within this

framework, the equation for response is thus:

Response ¼
A½ �a

A½ � þKA
, ð3:6Þ

where KA is the equilibrium dissociation of the agonist-

receptor complex. Note how in this scheme response is

assumed to be a direct linear function of receptor

occupancy multiplied by a constant. This latter requirement

was seen to be a shortcoming of this approach since it was

known that many nonlinear relationships between receptor

occupancy and tissue response existed. This was rectified by

Stephenson [5], who revolutionized receptor theory by

introducing the abstract concept of stimulus. This is the

amount of activation given to the receptor upon agonist

binding. Stimulus is processed by the tissue to yield

response. The magnitude of the stimulus is a function

(denoted f in Equation 3.7) of another abstract quantity,

referred to as efficacy (denoted e in Equation 3.7).

Stephenson also assumed that the tissue response was

some function (not direct) of stimulus. Thus, tissue

response was given by

Response ¼ fðStimulusÞ ¼ f
A½ �e

A½ � þKA

� �
: ð3:7Þ

It can be seen that efficacy in this model is both an agonist

and a tissue-specific term. Furchgott [9] separated the tissue

and agonist components of efficacy by defining a term

intrinsic efficacy (denoted e), which is a strictly agonist-

specific term (i.e., this term defines the quantum stimulus

given to a single receptor by the agonist). The product of

receptor number ([Rt]) and intrinsic efficacy is then

considered to be the agonist- and tissue-dependent element

of agonism:

Response ¼ f
A½ � � e � Rt½ �

A½ � þKA

� �
: ð3:8Þ

The function f is usually hyperbolic, which introduces the

nonlinearity between receptor occupancy and response.

A common experimentally observed relationship between

receptor stimulus and response is a rectangular hyperbola

(see Chapter 2). Thus, response can be thought of as a

hyperbolic function of stimulus:

Response ¼
Stimulus

Stimulusþ b
, ð3:9Þ

where b is a fitting factor representing the efficiency

of coupling between stimulus and response. Substituting

for stimulus from Equation 3.7 and rearranging, response

in classical theory is given as

Response ¼ f
A½ � Rt½ �e=b

A½ �ð Rt½ �e=bÞ þ 1ð Þ þKA

� �
: ð3:10Þ

The various components of classical theory relating

receptor occupancy to tissue response are shown schema-

tically in Figure 3.5. It will be seen that this formally is

identical to the equation for response derived in the

operational model (see material following), where

t¼ [Rt]e/b.
It is worth exploring the effects of the various

parameters on agonist response in terms of classical

receptor theory. Figure 3.6 shows the effect of changing

efficacy. It can be seen that increasing efficacy causes an

increased maximal response with little shift to the left of

the dose-response curves until the system maximal response

is achieved. Once this occurs (i.e., the agonist is a full

agonist in the system), increasing efficacy has no further

effect on the maximal response but rather causes shifts to

the left of the dose-response curves (Figure 3.6a). In

contrast, changing KA the equilibrium dissociation con-

stant of the agonist-receptor complex has no effect on

maximal response but only shifts the curves along the

concentration axis (Figure 3.6b).

3.6 The Operational Model of Receptor Function

Black and Leff [11] presented a model, termed the

operational model, that avoids the inclusion of ad hoc

terms for efficacy. This model is based on the experimental

observation that the relationship between agonist concen-

tration and tissue response is most often hyperbolic.

This allows for response to be expressed in terms of
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FIGURE 3.4 Errors in the estimation of ligand potency for

displacement of radioactive CD4-gp120 complex (surrogate for

HIV binding) as a function of the concentration of radioactive

CD4 (expressed as a fraction of the equilibrium dissociation

constant of the CD4 for its binding site). Gray lines indicate a 50%

error in the concentration of gp120. It can be seen that very little

error in the potency estimation of a displacing ligand is incurred at

low concentrations of radioligand but that this error increases as

the concentration of CD4 is increased.
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receptor and tissue parameters (see Section 3.13.3):

Response ¼
A½ � � t � Emax

A½ � tþ 1ð Þ þKA
, ð3:11Þ

where the maximal response of the system is Emax, the

equilibrium dissociation constant of the agonist-receptor

complex is KA, and t is the term that quantifies the power

of the agonist to produce response (efficacy) and the ability

of the system to process receptor stimulus into response.

Specifically, t is the ratio [Rt]/KE, which is the receptor

density divided by a transducer function expressing the

ability of the system to convert agonist-receptor complex to

response and the efficacy of the agonist. In this sense, KE

resembles Stephenson’s efficacy term except that it ema-

nates from an experimental and pharmacological rationale

(see Section 3.13.3). The essential elements of the opera-

tional model can be summarized graphically. In Figure 3.7,

the relationship between agonist concentration and recep-

tor binding (plane 1), the amount of agonist-receptor

complex and response (plane 2), and agonist concentration

and response (plane 3) can be seen. The operational model

furnishes a unified view of receptor occupancy, stimulation,

and production of response through cellular processing.

Figure 3.8a shows the effects of changing t on dose-

response curves. It can be seen that the effects are identical

to changes in efficacy in the classical model; namely, an

increased maximal response of partial agonism until the
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FIGURE 3.5 Major components of classical receptor theory.

Stimulus is the product of intrinsic efficacy (e), receptor number

[R], and fractional occupancy as given by the Langmuir adsorption

isotherm. A stimulus-response transduction function f translates

this stimulus into tissue response. The curves defining receptor

occupancy and response are translocated from each other by the

stimulus-response function and intrinsic efficacy.
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FIGURE 3.6 Classical model of agonism. Ordinates: response as a fraction of the system maximal

response. Abscissae: logarithms of molar concentrations of agonist. (a) Effect of changing efficacy

as defined by Stephenson [24]. Stimulus-response coupling defined by hyperbolic function

Response¼ stimulus/(stimulusþ 0.1). (b) Dose-response curves for agonist of e¼ 1 and various values

for KA.
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FIGURE 3.7 Principal components of the operational model.

The 3D array defines processes of receptor occupation (plane 1),

the transduction of the agonist occupancy into response (plane 2)

in defining the relationship between agonist concentration, and

tissue response (plane 3). The term a refers to the intrinsic activity

of the agonist.
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system maximal response is attained followed by sinistral

displacements of the curves. As with the classical model,

changes in KA cause only changes in the location

parameter of the curve along the concentration axis

(Figure 3.8b).

The operational model, as presented, shows dose-

response curves with slopes of unity. This pertains

specifically only to stimulus-response cascades where there

is no cooperativity and the relationship between stimulus

([AR] complex) and overall response is controlled by a

hyperbolic function with slope¼ 1. In practice, it is known

that there are experimental dose-response curves with

slopes that are not equal to unity and there is no a priori

reason for there not to be cooperativity in the stimulus-

response process. To accommodate the fitting of real data

(with slopes not equal to unity) and the occurrence of

stimulus-response cooperativity, a form of the operational

model equation can be used with a variable slope

(see Section 3.13.4):

E ¼
Emaxtn A½ �n

A½ � þKAð Þ
n
þ tn A½ �n

: ð3:12Þ

The operational model is used throughout this book

for the determination of drug parameters in functional

systems.

3.7 Two-state Theory

Two-state theory was originally formulated for ion

channels. The earliest form, proposed by Del Castillo and

Katz [15], was comprised of a channel that when bound to

an agonist changed from a closed to an open state. In the

absence of agonist, all of the channels are closed:

AþR��! ��ARclosed
��! ��ARopen: ð3:13Þ

From theories on cooperative enzymes proposed by Monod

and co-workers [16] came the idea that channels could

coexist in both open and closed states:

: ð3:14Þ

The number of channels open, as a fraction of the total

number of channels, in the presence of a ligand [A] is given

as (see Section 3.13.5).

ropen ¼
aL A½ �=KA þ L

A½ �=KA 1þ aLð Þ þ Lþ 1
: ð3:15Þ

There are some features of this type of system of note.

First, it can be seen that there can be a fraction of the

channels open in the absence of agonist. Specifically,

Equation 3.15 predicts that in the absence of agonist

([A]¼ 0) the fraction of channels open is equal to

ropen¼L/(1þL). For non-zero values of L this indicates

that ropen will be41. Second, ligands with preferred affinity

for the open channel (a41) cause opening of the channel

(will be agonists). This can be seen from the ratio of

channels open in the absence and presence of a saturating

concentration of ligand [r1/r0¼ a(1þL)/(1þaL)]. This

equation reduces to

r1
r0
¼

1þ L

1=að Þ þ L:
: ð3:16Þ

It can be seen that for values a41, the value (1/a)51,

and the denominator in Equation 3.16 will be less than the

numerator. The ratio with the result that r1/r0 will be41

(increased channel opening; i.e., agonism). Also, the

potency of the agonist will be greater as the spontaneous
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FIGURE 3.8 Operational model of agonism. Ordinates: response as a fraction of the system maximal

response. Abscissae: logarithms of molar concentrations of agonist. (a) Effect of changing t values.

(b) Effect of changing KA.
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channel opening is greater. This is because the observed

EC50 of the agonist is

EC50 ¼
KA 1þ Lð Þ

1þ aLð Þ
: ð3:17Þ

This equation shows that the numerator will always be

less than the denominator for a41 (therefore, the

EC505KA, indicating increased potency over affinity) and

that this differential gets larger with increasing values of L

(increased spontaneous channel opening). The effects of an

agonist, with a tenfold greater affinity for the open channel,

in systems of different ratios of spontaneously open

channels are shown in Figure 3.9. It can be seen that the

maximal agonist activity, the elevated basal activity, and

the agonist potency are increased with increasing values

of L. Two-state theory has been applied to receptors [17–19]

and was required to explain the experimental findings

relating to constitutive activity in the late 1980s.

Specifically, the ability of channels to spontaneously open

with no ligand present was adapted for the model of

receptors that could spontaneously form an activated state

(in the absence of an agonist vide infra).

3.8 The Ternary Complex Model

Numerous lines of evidence in the study of G-protein-

coupled receptors indicate that these receptors become

activated, translocate in the cell membrane, and subse-

quently bind with other membrane bound proteins. It was

first realized that guanine nucleotides could affect the

affinity of agonists but not antagonists, suggesting two-

stage binding of ligand to receptor and subsequently the

complex to a G-protein [20–22]. The model describing such

a system, first described by De Lean and colleagues [13],

is termed the ternary complex model. Schematically,

the process is

AþR��! ��ARþG��! ��ARG, ð3:18Þ

where the ligand is A, the receptor R, and the G-protein G.

For a number of years this model was used to describe

pharmacological receptor effects until new experimental

evidence forced modification of the original concept.

Specifically, the fact that recombinant G-protein-coupled

receptor systems demonstrate constitutive activity shows

that receptors spontaneously form activated states capable

of producing response through G-proteins in the absence

of agonists. This necessitated modification of the ternary

complex model.

3.9 The Extended Ternary Model

The resulting modification is called the extended ternary

complex model [3], which describes the spontaneous

formation of active state receptor ([Ra]) from an inactive

state receptor ([Ri]) according to an allosteric constant

(L¼ [Ra]/[Ri]). The active state receptor can form a

complex with G-protein ([G]) spontaneously to form

RaG, or agonist activation can induce formation of a

ternary complex ARaG:

: ð3:19Þ

As described in Section 3.13.6, the fraction r of

G-protein-activating species (producing response)—

namely, [RaG] and [ARaG]—as a fraction of the total

number of receptor species [Rtot] is given by

r ¼
L G½ �=KG 1þ ag A½ �=KAð Þ

A½ �=KA 1þ aL 1þ g G½ �=KGð Þð Þ þ L 1þ G½ �=KGð Þ þ 1
,

ð3:20Þ

where the ligand is [A] and KA and KG are the equilibrium

dissociation constants of the ligand-receptor and G-protein/

receptor complexes, respectively. The term a refers to the

multiple differences in affinity of the ligand for Ra over Ri

(i.e., for a¼ 10 the ligand has a tenfold greater affinity for Ra

over Ri). Similarly, the term g defines the multiple difference

in affinity of the receptor for G-protein when the receptor

is bound to the ligand. Thus, g¼ 10 means that the
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FIGURE 3.9 Dose-response curves to an agonist in a two-state

ion-channel system. Ordinates: fraction of open channels.

Abscissae: logarithms of molar concentrations of agonist.

Numbers next to the curves refer to values of L (ratio of

spontaneously open channels to closed channels). Curve calculated

for an agonist with a tenfold higher affinity for the open channel

(a¼ 10). Open circles show EC50 values for the dose-response

curves showing the increased potency to the agonist with increasing
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ligand-bound receptor has a tenfold greater affinity for the

G-protein than the ligand-unbound receptor.
It can be seen that the constants a and g, insofar as they

quantify the ability of the ligand to selectively cause the

receptor to couple to G-proteins, become the manifestation

of efficacy. Therefore, if a ligand produces a bias of the

system toward more active receptor species (positive a)
and/or enables the ligand-occupied receptor to bind to

G-proteins with a higher affinity (positive g), then it will be

an agonist with positive efficacy. In addition, if a ligand

selectively stabilizes the inactive state of the receptor (a51)

or reduces the affinity of the receptor for G-proteins (g51),

then it will have negative efficacy and subsequently will

reverse elevated basal receptor activity. This will be

observed as inverse agonism, but only in systems that

demonstrate constitutive receptor activity.

3.10 Constitutive Receptor Activity

The extended ternary complex model can take into

account the phenomenon of constitutive receptor activity.

In genetically engineered systems where receptors can be

expressed in high density, Costa and Herz [2] noted that

high levels of receptor expression uncovered the existence of

a population of spontaneously active receptors and that

these receptors produce an elevated basal response in the

system. The relevant factor is the ratio of receptors and

G-proteins (i.e., elevated levels of receptor cannot yield

constitutive activity in the absence of adequate amounts of

G-protein, and vice versa). Constitutive activity (due to

the [RaG] species) in the absence of ligand ([A]¼ 0) is

expressed as

Constitutive Activity ¼
L G½ �=KG

L 1þ G½ �=KGð Þ þ 1
: ð3:21Þ

From this equation it can be seen that for a given

receptor density systems can spontaneously produce

physiological response and that this response is facilitated

by high G-protein concentration, high-affinity receptor/

G-protein coupling (low value of KG), and/or a natural

tendency for the receptor to spontaneously form the active

state. This latter property is described by the magnitude

of L, a thermodynamic constant unique for every receptor.
Constitutive receptor activity is extremely important

because it allows the discovery of ligands with negative

efficacy. Before the discovery of constitutive GPCR

activity, efficacy was considered only as a positive vector

(i.e., producing an increased receptor activity and only

ligand-mediated activation of receptors was thought to

induce G-protein activity). With the discovery of sponta-

neous activation of G-proteins by unliganded receptors

came the prospect of ligands that selectively inhibit this

spontaneous activation, specifically inverse agonism.
Constitutive activity can be produced in a recombinant

system by increasing the level of receptors expressed on the

cell membrane. The formation of the constitutively active

species ([RaG]) is shown as

: ð3:22Þ

The dependence of constitutive activity on [Ri] is given by

(see Section 3.13.7)

RaG½ �

Gtot½ �
¼

Ri½ �

Ri½ � þ KG=Lð Þ
, ð3:23Þ

where [Ri] is the receptor density, L is the allosteric constant

describing the propensity of the receptor to spontaneously

adopt the active state, and KG is the equilibrium dissocia-

tion constant for the activated receptor/G-protein complex.

It can be seen from Equation 3.23 that a hyperbolic

relationship is predicted between constitutive activity and

receptor concentration. Constitutive activity is favored by a

large value of L (low-energy barrier to spontaneous

formation of the active state) and/or a tight coupling

between the receptor and the G-protein (low value for KG).

This provides a practical method of engineering constitu-

tively active receptor systems; namely, through the induc-

tion of high levels of receptor expression. For example, in a

system containing 1,000 receptors with a native KG/L value

of 105 M 0.9% of the G-proteins (i.e., nine G-proteins) will

be activated. If this same system were to be subjected to an

engineered receptor expression (through genetic means) of

100,000 receptors, then the number of activated G-proteins

would rise to 50% (50,000 G-proteins). At some point, the

threshold for observation of visibly elevated basal response

in the cell will be exceeded and the increased G-protein

activation will result in an observable constitutive receptor

activity.

Constitutive receptor systems are valuable in that they

are capable of detecting inverse agonism and negative

efficacy. Ligands that destabilize spontaneous formation of

activated receptor/G-protein complexes will reduce consti-

tutive activity and function as inverse agonists in constitu-

tively active receptor systems. The therapeutic relevance of

inverse agonism is still unknown but it is clear that inverse

agonists differ from conventional competitive antagonists.

As more therapeutic experience is gained with these two

types of antagonists, the importance of negative efficacy in

the therapeutic arena will be determined. At this point it is

important to note if a given antagonist possesses property

for retrospective evaluation of its effects.
The most probable mechanism for inverse agonism is the

same one operable for positive agonism; namely, selective

receptor state affinity. However, unlike agonists that have a

selectively higher affinity for the receptor active state (to

induce G-protein activation and subsequent physiological

response) inverse agonists have a selectively higher affinity

for the inactive receptor state and thus uncouple already

spontaneously coupled [RaG] species in the system.

It can be seen from Equation 3.23 that the magnitude

of the allosteric constant L and/or the magnitude of

the receptor/G-protein ratio determines the amount of
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constitutive activity in any receptor system. In binding

studies, low levels of [RaG] complex (with concomitant

activation of G-protein) may be insignificant in compar-

ison to the levels of total ligand-bound receptor species

(i.e., [ARaG] and [AR]). However, in highly coupled

functional receptor systems a low level of spontaneous

receptor interaction may result in a considerable obser-

vable response (due to stimulus-response amplification of

stimulus; see Chapter 2). Thus, the observed constitutive

activity in a functional system (due to high receptor

density) can be much greater than expected from the

amounts of active receptor species generated (see

Figure 3.10). This suggests that for optimal observation

of constitutive receptor activity and detection of inverse

agonism functional, and not radioligand binding, systems

should be used.
A practical approach to constructing constitutively active

receptor systems, as defined by Equation 3.23, is through

receptor overexpression. Thus, exposure of surrogate cells

to high concentrations of cDNA for receptors yields

increasing cellular expression of receptors. This, in turn,

can lead to elevated basal response due to spontaneous

receptor activation. Figure 3.11 shows the development of

constitutive receptor activity in melanophore cells trans-

fected with cDNA for human calcitonin receptor.

Melanophores are especially well suited for experiments

with constitutive activity, as the effects can be seen in real

time with visible light. Figure 3.11a and b show the

difference in the dispersion of melanin (response to Gs

protein activation due to constitutive calcitonin receptor

activity) upon transfection with cDNA for the receptor.

Figure 3.11c shows the dose-response relationship between

the cDNA added and the constitutive activity as predicted

by Equation 3.23.
As described by the extended ternary complex model, the

extent of constitutive activity observed will vary with the

receptor according to the magnitude of L for each receptor.

This is shown in Figure 3.12, where the constitutive activity

as a function of cDNA concentration is shown for a

number of receptors. It can be seen from this figure that

increasing receptor expression (assumed to result from the

exposure to increasing concentrations of receptor cDNA)

causes elevation of basal cellular response. It can also be

seen that the threshold and maximal asymptotic value

for this effect varies with receptor type, thereby reflecting

the different propensity of receptors to spontaneously form

the active state (varying magnitudes of L).

3.11 The Cubic Ternary Complex Model

While the extended ternary complex model accounts

for the presence of constitutive receptor activity in the

absence of ligands, it is thermodynamically incomplete

from the standpoint of the interaction of receptor and

G-protein species. Specifically, it must be possible from a

thermodynamic point of view for the inactive state receptor

(ligand bound and unbound) to interact with G-proteins.

The cubic ternary complex model accommodates this

possibility [23–25]. From a practical point of view, it

allows for the potential of receptors (whether unbound or

bound by inverse agonists) to sequester G-proteins into a

nonsignaling state.
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FIGURE 3.10 Constitutive activity due to receptor overexpression: visualization through binding and

function. (a) Constitutive activity observed as receptor species ([RaG]/[Rtot]) and cellular function ([RaG]/

([RaG]þ b), where b¼ 0.03. Stimulus-response function ([RaG]/([RaG]þb)) shown in inset. The output of the

[RaG] function becomes the input for the response function. Dotted line shows relative amounts of elevated

receptor species and functional response at [R]/KG¼ 1. (b) Effects of an inverse agonist in a system with [R]/

KG¼ 1 (see panel a) as observed through receptor binding and cellular function.
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A schematic representation of receptor systems in terms

of the cubic ternary complex model is shown in Figure 3.13.

The amount of signaling species (as a fraction of total

receptor) as defined by the cubic ternary complex model see

Section 3.13.8 is expressed as

There are some specific differences between the cubic and

extended ternary complex models in terms of predictions of

system and drug behavior. The first is that the receptor,

either ligand bound or not bound, can form a complex with

the G-protein and that this complex need not signal

(i.e., [ARiG] and [RiG]). Under these circumstances an

inverse agonist (one that stabilizes the inactive state of the

receptor) theoretically can form inactive ternary complexes

and thus sequester G-proteins away from signaling path-

ways. There is evidence that this can occur with cannabi-

noid receptor [26]. The cubic ternary complex model also

predicts that the constitutive activity of receptor systems

can reach a maximal asymptote that is below the system

maximum (partial constitutive activity). This is because

the cubic ternary complex model predicts the maximal

constitutive activity, as given by (see Equation 3.24,

where [A]¼ 0 and [G]!1)

Maximal Constitutive Activity ¼ bL= 1þ bLð Þ: ð3:25Þ

It can be seen from this equation that maximal

constitutive activity need not reach a maximal asymptote

of unity. Submaximal constitutive activity has been observed

with some receptors with maximal receptor expression [28].

While there is scattered evidence that the cubic ternary

complex is operative in some receptor systems, and while it

is thermodynamically more complete, it also is heuristic

FIGURE 3.11 Constitutive activity in melanophores expressing

hCTR2 receptor. (a) Basal melanophore activity. (b) Effect of

transfection with human cDNA for human calcitonin receptors

(16 mg/ml). (c) Concentration response curve for cDNA for human

calcitonin receptors (abscissae as log scale) and constitutive activity.

Data redrawn from [27].

r ¼
bL G½ �=KG 1þ agd A½ �=KAð Þ

A½ �=KA 1þ aLþ g G½ �=KG 1þ agbdLð Þð Þ þ G½ �=KG 1þ bLð Þ þ Lþ 1
: ð3:24Þ
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in that there are more individually nonverifiable constants

than othermodels. This makes this model limited in practical

application.

3.12 Chapter Summary and Conclusions

. Models are constructed from samples of data and can

be used to predict the behavior of the system for all

conditions (the population of data).

. Preferred models have parameters that have

some physiological or pharmacological rationale.
In general, the behavior of these parameters can

be likened to changes in potency and/or efficacy of

drugs.
. Models can resolve apparent conflicts in observed

data and can be used to optimally design experiments.
. From the time of A. J. Clark until the late 1970s,

receptor models have been refined to describe drug

affinity and efficacy. These ideas are collectively
referred to as ‘‘classical’’ receptor theory.

. A major modification to describe drug function is
termed the operational model. This model is theo-

retically more sound than classical theory and

is extremely versatile for the estimation of drug
parameters in functional systems.

. The observation that receptors can demonstrate
spontaneous activity necessitated elements of ion

two-state theory to be incorporated into receptor

theory.
. The ternary complex model followed by the

extended ternary complex model were devised to

describe the action of drugs on G-protein-coupled
receptors.

. The discovery of constitutive receptor activity uncov-
ered a major new idea in receptor pharmacology;

namely, the concept of negative efficacy and inverse

agonism.
. The cubic ternary complex model considers

receptors and G-proteins as a synoptic system
with some interactions that do not lead to visible

activation.

3.13 Derivations

. Radioligand binding to receptor dimers demonstrating

co-operative behavior (3.13.1)
. Effect of variation in an HIV-1 binding model (3.13.2)
. Derivation of the operational model (3.13.3)
. Operational model forcing function for variable slope

(3.13.4)
. Derivation of two-state theory (3.13.5)

. Derivation of the extended ternary complex model
(3.13.6)

. Dependence of constitutive activity on receptor
density (3.13.7)

. Derivation of the cubic ternary complex model
(3.13.8)

3.13.1 Radioligand Binding to Receptor Dimers

Demonstrating Cooperative Behavior

It is assumed that receptor dimers can form in the cell
membrane (two [R] species to form one [R-R] species).

Radioligand [A*] can bind to the receptor [R] to form radio-

active complexes [A*R], [A*R�AR], and [A*R�A*R]. It
is also assumed that there is an allosteric interaction between
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FIGURE 3.12 Dependence of constitutive receptor activity as

ordinates (expressed as a percent of the maximal response to a full

agonist for each receptor) versus magnitude of receptor expression

(expressed as the amount of human cDNA used for transient

transfection, logarithmic scale) in Xenopus laevis melanophores.

Data shown for human chemokine CCR5 receptors (open circles),

chemokine CXCR receptors (filled triangles), neuropeptide Y type

1 receptors (filled diamonds), neuropeptide Y type 2 receptors

(open squares), and neuropeptide Y type 4 receptors (open inverted

triangles). Data recalculated and redrawn from [27].
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FIGURE 3.13 Major components of the cubic ternary complex

model [25–27]. The major difference between this model and the

extended ternary complex model is the potential for formation

of the [ARiG] complex and the [RiG] complex, both receptor/

G-protein complexes that do not induce dissociation of G-protein

subunits and subsequent response. Efficacy terms in this model are

a, g, and d.
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the receptors when they dimerize. Therefore, the affinity of

the receptor(s) changes with dimerization:

:

ð3:26Þ

The conservation equation for the total receptor species

is given as

Rtot½ � ¼ R½ � þ AR½ � þ A�R½ � þ A�R�AR½ � þ AR�AR½ �

þ A�R�A�R½ �: ð3:27Þ

The radioactive signal (denoted r) is produced from the

receptor species bound to radioligand [A*]:

r ¼
A�R½ � þ A�R�AR½ � þ 2 A�R�A�R½ �

Rtot½ �
: ð3:28Þ

Using the equilibrium equations for the system, this

equation becomes

r¼
A�½ �Kþ a A�½ � A½ �K2 þ 2a A�½ �2K2

1þ A½ �Kþ A�½ �Kþ a A�½ � A½ �K2 þ a A½ �2K2 þ a A�½ �
2
K2

,

ð3:29Þ

where K is the association constant. Assume that a fixed

concentration of radioligand [A*] is bound to the receptor,

yielding a fixed radioactive signal. In the presence of a

range of concentrations of a nonradioactive version

of ligand [A], the signal from a fixed concentration

of radioactive ligand ([A*]) (denoted o) can be calculated

from the ratio of Equation 3.29 with [A]¼ 0 and [A*] fixed

over the equations evaluated with [A*] fixed:

where Kd¼ 1/K. Using Equation 3.30, displacement

curves for this system can be calculated. If the binding

of one ligand is positively cooperative with respect to the

binding of the other (a41) (binding of one [A] and

subsequent dimerization with another receptor increases

the affinity for the second [A]), then an apparently

paradoxical increase in the radioactive signal is observed

from addition of nonradioactive ligand if low concentra-

tions of radioligand are used.

3.13.2 Effect of Variation in an HIV-1 Binding Model

Assuming that all interactions of the species are possible,

the system consists of the receptor CCR5 [R], radioligand

CD4 [CD]), viral coat protein gp120 [gp], and potential

displacing ligand [B]:

:

ð3:31Þ

The CCR5 receptor conservation equation is given as

Rtotal½ � ¼ R½ � þ CDR½ � þ gpCDR½ � þ gpR½ � þ BR½ �,

where the concentration of the complex between viral coat

protein gp120 and receptor is [gpR], concentration of

complex between the receptor and complex between gp120

and CD4 is [gpCDR], membrane protein CD4 receptor

complex density is [CDR], and foreign ligand B receptor

complex is [BR]. The signal is generated by radioactive

CD4 resulting from the two receptor-bound species

[gpCDR] and [CDR]. It is assumed that [gp]4[CD]4[R]

(as is common in experimental systems). The signal, as a

fraction of the total receptor concentration, is given by

Fractional signal ¼ r ¼
gpCDR½ � þ CDR½ �

Rtotal½ �
: ð3:32Þ

From the equilibrium equations, expressions for the

various receptor species can be derived and substituted into

Equation 3.32. With conversion of all equilibrium associa-

tion constants to equilibrium dissociation constants, a

general binding expression results for radioactive CD4

o ¼
A�½ �=Kd þ a A�½ � A½ �=K2

d þ 2a A�½ �=Kdð Þ
2

� �
1þ A�½ �=Kd þ a A�½ �=Kdð Þ

2
� �

ð1þ A½ �=Kd þ A�½ �=Kd þ að A�½ � A½ �=K2
d þ að A�½ �=KdÞ

2
þ a A½ �=Kdð Þ

2
Þ A�½ �=Kd þ 2a A�½ �=Kdð Þ

2
� � , ð3:30Þ
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binding to CCR5 with gp120 as a cofactor [18]:

r ¼
CD½ �=K1ð Þ gp½ �=K2ð Þ þ CD½ �=K5

CDK1½ � gp½ �=K2� þK1=K5ð Þ þ gp½ �=K3 þ B½ �=K4 þ 1
,

ð3:33Þ

where the equilibrium dissociation constants are

denoted K1 (gp/CD4), K2 (gp-CD4 complex/Receptor),

K3 (gp/Receptor), K4 (ligand B/Receptor), and K5

(CD4/Receptor). The observed affinity of the radiolabel

CD4 is given by the expression

Kobs ¼
K1 gp½ �=K3 þ B½ �=K4 þ 1ð Þ

gp½ �=K2 þK1=K5
: ð3:34Þ

Solving Equation 3.34 for [B]¼ 0 and variable [B] yields

the equation defining the IC50 of a nonradioactive ligand

inhibitor (defined as the molar concentration of ligand [B]

that blocks the radioactive binding signal by 50%).

This yields the equation for the concentration of [B] that

produces 50% inhibition of radioactive CD4 binding:

IC50 ¼ K4 CD½ �=K1 gp½ �=K2 þK1=K5ð Þ þ gp½ �=K3 þ 1ð Þ:

ð3:35Þ

From Equation 3.35 it can be seen that the system-

independent measure of affinity (K4) is given by

K4 ¼
IC50½ �

CD½ �=K1 gp½ �=K2 þK1=K5ð Þ þ gp½ �=K3 þ 1ð Þ
ð3:36Þ

The assay returns the IC50, the concentration of [B] that

blocks the binding by 50%. The desired estimate is K4, the

system-independent estimate of the affinity of [B] for

the interactants of the system. This model addresses the

following question: What is the effect of variation in

[gp120] on the IC50 and hence the estimate of K4? At this

point it is useful to define two ratios. The first is the ratio

of the differential affinity of the gp/CD4 complex versus the

affinity of gp120 for the receptor alone. This is defined as

y¼K3/K2. Large values of y indicate that the preformed

complex gp/CD4 is the principal binding species to the

receptor and that the affinity of gp for the receptor is

relatively unimportant. In experimental systems, this is

found to be true. The second useful ratio is the differential

affinity of CD4 for gp120 over the receptor. This is defined

as c¼K5/K1. High values of c indicate that CD4 prefers to

form the CD4/gp120 complex over binding to the receptor,

and this agrees with the known physiology of HIV entry

into cells via this mechanism:

K4 ¼
IC50½ �

CD½ �=K1 gp½ �=K2 þ 1=cð Þ þ gp½ �=yK2 þ 1ð Þ
: ð3:37Þ

Consistent with the known physiology, the values of

both y and c are high. Therefore, 1/y and 1/c ! 0 and

Equation 3.37 leads to a relation of the form

K4 ¼
IC50½ �

CD½ �=K1ð Þ gp½ �=K2ð ÞÞ þ 1
: ð3:38Þ

It can be seen from Equation 3.38 that unknown

variation in gp120 levels can lead to differences in the

correction factor between the experimentally observed IC50

and the desired quantity K4. However, this variation is

minimal if low levels of control signal are used for screening

(i.e., minimal concentration of CD4 is used to gain an

acceptable signal to noise ratio).

3.13.3 Derivation of the Operational Model

The basis of this model is the experimental fact that most

agonist dose-response curves are hyperbolic in nature.

The reasoning for making this assumption is as follows.

If agonist binding is governed by mass action, then the

relationship between the agonist-receptor complex and

response must either be linear or hyperbolic as well.

Response is thus defined as

Response ¼
A½ � � Emax

A½ � þ n
, ð3:39Þ

where the concentration of agonist is [A], Emax is the

maximal response of the system, and n is a fitting parameter

for the hyperbolic function. This expresses the agonist

concentration as

A½ � ¼
Response � n

Emax A½ � �Response
: ð3:40Þ

Also, mass action defines the concentration of agonist-

receptor complex as

AR½ � ¼
A½ � � Rt½ �

A½ � þKA
, ð3:41Þ

where [Rt] is the receptor density and KA is the equilibrium

dissociation constant of the agonist-receptor complex. This

yields a function for [A] as well:

A½ � ¼
AR½ � �KA

Rt½ � � AR½ �
: ð3:42Þ

Equating Equations 3.40 an 3.42 and rearranging yield:

Response ¼
AR½ � � Emax �KA

AR½ � KA � nð Þ þ Rt½ �n
: ð3:43Þ

It can be seen that if KA5n then negative and/or infinite

values for response are allowed. No physiological counter-

part to such behavior exists. This leaves a linear relation-

ship between agonist concentration and response (where

KA¼ n) or a hyperbolic one (KA4n). There are few if any

cases of truly linear relationships between agonist concen-

tration and tissue response. Therefore, the default for the

relationship is a hyperbolic one.
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Assuming a hyperbolic relationship between response

and the amount of agonist-receptor complex, response is

defined as

Response

Emax
¼

AR½ �

AR½ � þKE
, ð3:44Þ

where KE is the fitting parameter for the hyperbolic

response. However, KE also has a pharmacological mean-

ing as well in that it is the concentration of [AR] complex

that produces half the maximal response. It also defines the

ease with which the agonist produces response (i.e., it is

a transduction constant). The more efficient the process

from production to [AR] to response the smaller is KE.

Combining Equations 3.43 and 3.44 yields the quintessen-

tial equation for the operational model:

Response ¼
A½ � � Rt½ � � Emax

A½ � Rt½ � þKEð Þ þKA �KE
: ð3:45Þ

A very useful constant used to characterize the

propensity of a given system and a given agonist to

yield response is the ratio [Rt]/KE. This is denoted t.
Substituting for t yields the working equation for the

operational model:

Response ¼
A½ � � t � Emax

A½ � tþ 1ð Þ þKA
: ð3:46Þ

This model also can accommodate dose-response curve

having Hill coefficients different from unity. This can occur

if the stimulus-response coupling mechanism has inherent

cooperativity. A general procedure can be used to change

any receptor model into a variable slope operational

function. This is done by passing the receptor stimulus

through a forcing function.

3.13.4 Operational Model Forcing Function for

Variable Slope

The operational model allows simulation of cellular

response from receptor activation. In some cases, there may

be cooperative effects in the stimulus-response cascades

translating activation of receptor to tissue response. This

can cause the resulting concentration-response curve to

have a Hill coefficient different from unity. In general, there

is a standard method for doing this; namely, reexpressing

the receptor occupancy and/or activation expression

(defined by the particular molecular model of receptor

function) in terms of the operational model with Hill

coefficient not equal to unity. The operational model

utilizes the concentration of response-producing receptor as

the substrate for a Michaelis-Menten type of reaction,

given as

Response ¼
Activaed Receptor½ �Emax

Activated Receptor½ � þ KE
, ð3:47Þ

where KE is the concentration of activated receptor species

that produces half maximal response in the cell and Emax is

the maximal capability of response production by the cell.

If the system exhibits cooperativity at the cellular level, then

Equation 3.47 can be rewritten as

Response ¼
Activated Receptor½ �

nEmax

Activated Receptor½ �
n
þKEn

, ð3:48Þ

where n is the slope of the concentration-response curve.

The quantity of activated receptor is given by rAR� [Rt],

where rAR is the fraction of total receptor in the

activated form and [Rt] is the total receptor density of

the preparation. Substituting into Equation 3.48 and

defining t¼ [Rt]/KE yields

Response ¼
rARntnEmax

rARntn þ 1
: ð3:49Þ

The fractional receptor species rAR is generally given by

rARn ¼
Active Receptor Species½ �

n

Total Receptor Species½ �
n , ð3:50Þ

where the active receptor species are the ones producing

response and the total receptor species given by the receptor

conservation equation for the particular system

(rAR¼ numerator/denominator). It follows that

Response ¼
Active Receptorð Þ

ntnEmax

Active Receptorð Þ
ntn þ Total Receptorð Þ

n :

ð3:51Þ

Therefore, the operational model for agonism can be

rewritten for variable slope by passing the stimulus

equation through the forcing function (Equation 3.51)

to yield

Response ¼
tn � A½ �n �Emax

A½ � þKAð Þ
n
þ tn A½ �n

: ð3:52Þ

3.13.5 Derivation of Two-state Theory

A channel exists in two states: open (Ropen) and closed

(Rclosed). A ligand [A] binds to both with an equilibrium

association constant K for the closed channel and aK
for the closed channel:

: ð3:53Þ
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The equilibrium equations for the various species are

ARclosed½ � ¼ ARopen

� �
=aL, ð3:54Þ

Rclosed½ � ¼ ARopen

� �
=aL A½ �K, and ð3:55Þ

Ropen

� �
¼ ARopen

� �
=a A½ �K: ð3:56Þ

The conservation equation for channel species is

Rtotal½ � ¼ ARopen

� �
þ ARclosed½ � þ Ropen

� �
þ Rclosed½ �:

ð3:57Þ

The amount of open channel, expressed as a fraction of

total channel (ropen¼ ([ARopen]þ [Ropen])/[Rtotal]), is

ropen ¼
aL A½ �=KA þ L

A½ �=KA 1þ aLð Þ þ Lþ 1
, ð3:58Þ

where KA is the equilibrium dissociation constant of the

ligand-channel complex.

3.13.6 Derivation of the Extended Ternary Complex Model

The extended ternary complex model [23] was conceived

after it was clear that receptors could spontaneously

activate G-proteins in the absence of agonist. It is an

amalgam of the ternary complex model [12] and two-state

theory that allows proteins to spontaneously exist in

two conformations, each having different properties with

respect to other proteins and to ligands. Thus, two receptor

species are described: [Ra] (active state receptor able

to activate G-proteins) and [Ri] (inactive state receptors).

These coexist according to an allosteric constant

(L¼ [Ra]/[Ri]):

: ð3:59Þ

The equilibrium equations for the various species are

ARi½ � ¼ ARaG½ �=agL G½ �Kg, ð3:60Þ

ARa½ � ¼ ARaG½ �=g G½ �Kg, ð3:61Þ

Ra½ � ¼ ARaG½ �=ag G½ �Kg A½ �Ka, ð3:62Þ

Ri½ � ¼ ARaG½ �=agL G½ �Kg A½ �Ka, and ð3:63Þ

RaG½ � ¼ ARaG½ �=ag½A�Ka: ð3:64Þ

The conservation equation for receptor species is

Rtot½ � ¼ ARaG½ � þ RaG½ � þ ARa½ � þ ARi½ � þ Ra½ � þ Ri½ �:

ð3:65Þ

It is assumed that the receptor species leading to

G-protein activation (and therefore physiological response)

are complexes between the activated receptor ([Ra]) and the

G-protein; namely, [ARaG]þ [RaG]. The fraction of the

response-producing species of the total receptor species

(([ARaG]þ [RaG])/Rtot) is denoted r and is given by

r ¼
L G½ �=KG 1þ ag A½ �=KAð Þ

A½ �=KA 1þ aL 1þg G½ �=KGð Þð Þ þ L 1þ G½ �=KGð Þ þ 1
:

ð3:66Þ

3.13.7 Dependence of Constitutive Activity on

Receptor Density

The production of signaling species ([RaG]) by sponta-

neous coupling of the active state receptor species ([Ra]) to

G-protein ([G]) is shown as

: ð3:67Þ

The equilibrium equations are

L ¼ Ra½ �= Ri½ � and ð3:68Þ

KG ¼ RaG½ �= Ra½ � G½ �: ð3:69Þ

The conservation equation for G-protein is [Gtot]¼ [G]þ

[RaG]. The amount of receptor-activated G-protein

expressed as a fraction of total G-protein ([RaG]/[Gtot]) is

RaG½ �

Gtot½ �
¼

Ri½ �

Ri½ � þ KG=Lð Þ
, ð3:70Þ

where L is the allosteric constant and [Ri] is the amount

of transfected receptor in the inactive state.

3.13.8 Derivation of the Cubic Ternary Complex Model

The cubic ternary complex model takes into the account

the fact that both the active and inactive receptor species

must have a finite affinity for G-proteins [26–28]. The two

receptor species are denoted [Ra] (active state receptor able

to activate G-proteins) and [Ri] (inactive state receptors).

These can form species [RiG] and [RaG] spontaneously, and

species [ARiG] and [ARaG] in the presence of ligand.
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This forms eight vertices of a cube (see Figure 3.12).

The equilibrium equations for the various species are

ARi½ � ¼ ARaG½ �=agdbL G½ �Kg, ð3:71Þ

ARa½ � ¼ ARaG½ �=gbd G½ �Kg, ð3:72Þ

Ra½ � ¼ ARaG½ �=agdb G½ �Kg A½ �Ka, ð3:73Þ

Ri½ � ¼ ARaG½ �=agdbL G½ �Kg A½ �Ka, ð3:74Þ

RaG½ � ¼ ARaG½ �=agd A½ �Ka, ð3:75Þ

RiG½ � ¼ ARaG½ �=agdbL A½ �Ka, and ð3:76Þ

ARiG½ � ¼ ARaG½ �=adbL: ð3:77Þ

The conservation equation for receptor species is

Rtot½ � ¼ ARaG½ � þ ARiG½ � þ RiG½ � þ RaG½ � þ ARa½ �

þ ARi½ � þ Ra½ � þ Ri½ �: ð3:78Þ

It is assumed that the receptor species leading to

G-protein activation (and therefore physiological response)

are complexes between the activated receptor ([Ra]) and

the G-protein; namely, [ARaG]þ [RaG]. The fraction of

the response-producing species of the total receptor

species—([ARaG]þ [RaG])/Rtot—is denoted r and is

given by
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4.1 The Structure of This Chapter

This chapter discusses the application of binding
techniques to the study of drug-receptor interaction. It

will be seen that the theory of binding and the methods used

to quantify drug effect are discussed before the experi-
mental prerequisites for good binding experiments

are given. This may appear to be placing the cart before
the horse in concept. However, the methods used to detect

and rectify nonequilibrium experimental conditions utilize
the very methods used to quantify drug effect. Therefore,

they must be understood before their application to

optimize experimental conditions can be discussed. This
chapter first presents what the experiments strive to

achieve, and then explores the possible pitfalls of experi-
mental design that may cause the execution to fall short of

the intent.

4.2 Binding Theory and Experiment

A direct measure of the binding of a molecule to a

protein target can be made if there is some means to
distinguish bound molecule from unbound and a means to

quantify the amount bound. Historically, the first widely
used technique to do this was radioligand binding.

Radioactive molecules can be detected by observation of

radioactive decay and the amount of quantified through
calibration curves relating the amount of molecule to the

amount of radioactivity detected. An essential part of this
process is the ability to separate the bound from the

unbound molecule. This can be done by taking advantage
of the size of the protein versus the soluble small molecule.

The protein can be separated by centrifugation, equilibrium

dialysis, or filtration. Alternatively, the physical proximity

of the molecule to the protein can be used. For example, in

scintillation proximity assays the receptor protein adheres

to a bead containing scintillant, a chemical that produces

light when close to radioactivity. Thus, when radioactive

molecules are bound to the receptor (and therefore are near

the scintillant) a light signal is produced heralding the

binding of the molecule. Other methods of detecting

molecules such as fluorescence are increasingly being

utilized in binding experiments. For example, molecules

that produce different qualities of fluorescence, depending

on their proximity to protein, can be used to quantify

binding. Similarly, in fluorescence polarization experi-

ments, fluorescent ligands (when not bound to protein)

reduce the degree of light polarization of light passing

through the medium through free rotation. When these

same ligands are bound, their rotation is reduced, thereby

concomitantly reducing the effect on polarization. Thus,

binding can be quantified in terms of the degree of light

polarization in the medium.
In general, there are emerging technologies available to

discern bound from unbound molecules and many of these

can be applied to receptor studies. It will be assumed from

this point that the technological problems associated with

determining bound species are not an experimental factor

and subsequent discussions will focus on the interpretation

of the resulting binding data. Several excellent sources of

information on the technology and practical aspects of

binding are available [1–3].
Binding experiments can be done in three modes:

saturation, displacement, and kinetic. Saturation binding

directly observes the binding of a tracer ligand (radioactive,

fluorescent, or otherwise detectable) to the receptor. The

method quantifies the maximal number of binding sites and

the affinity of the ligand for the site (equilibrium dissocia-

tion constant of the ligand-receptor complex). This is a

direct measure of binding using the Langmuir adsorption

isotherm model. A major limitation of this technique is the

obvious need for the ligand to be traceable (i.e., it can

only done for radioactive or fluorescent molecules).

Displacement studies overcome this limitation by allowing

measurement of the affinity of nontraceable ligands

through their interference with the binding of tracer

ligands. Thus, molecules are used to displace or otherwise

prevent the binding of tracer ligands and the reduction in

signal is used to quantify the affinity of the displacing
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ligands. Finally, kinetic studies follow the binding of a

tracer ligand with time. This can yield first-order rate

constants for the onset and offset of binding, which can be

used to calculate equilibrium binding constants to assess the

temporal approach to equilibrium or to determine binding

reversibility or to detect allosteric interactions. Each

of these is considered separately. The first step is to discuss

some methodological points common to all of these types

of binding experiments.

The aim of binding experiments is to define and quantify

the relationship between the concentration of ligand in the

receptor compartment and the portion of the concentration

that is bound to the receptor at any one instant. A first

prerequisite is to know that the amount of bound ligand

that is measured is bound only to the receptor and not to

other sites in the sample tube or well (i.e., cell membrane,

wall of the vessel containing the experimental solution, and

so on). The amount of ligand bound to these auxiliary sites

but not specifically to the target is referred to as nonspecific

binding (denoted nsb). The amount bound only to the

pharmacological target of interest is termed the specific

binding. The amount of specific binding is defined

operationally as the bound ligand that can be displaced

by an excess concentration of a specific antagonist for the

receptor that is not radioactive (or otherwise does not

interfere with the signals). Therefore, another prerequisite

of binding experiments is the availability of a nontracer

ligand (for the specific target defined as one that does not

interfere with the signal whether it be radioactivity,

fluorescence, or polarized light). Optimally, the chemical

structure of the ligand used to define nsb should be

different from the binding tracer ligand. This is because the

tracer may bind to nonreceptor sites (i.e., adsorption sites,

other nonspecific proteins), and if a nonradioactive version

of the same molecular structure is used to define specific

binding it may protect those very same nonspecific sites

(which erroneously define specific binding). A ligand with

different chemical structure may not bind to the same

nonspecific sites and thus lessen the potential of defining

nsb sites as biologically relevant receptors.

The nonspecific binding of low concentrations

of biologically active ligands is essentially linear and

nonsaturable within the ranges used in pharmacological

binding experiments. For a traceable ligand (radioactive,

fluorescent, and so on), nonspecific binding is given as

nsb ¼ k � ½A��, ð4:1Þ

where k is a constant defining the concentration relation-

ship for nonspecific binding and [A*] is the concentra-

tion of the traceable molecule. The specific binding

is saturable and defined by the Langmuir adsorption

isotherm

Specific binding ¼
½A��

½A�� þKd
, ð4:2Þ

where Kd is the equilibrium dissociation constant of the

ligand-receptor complex. The total binding is the sum of

these and is given as

Total binding ¼
½A�� � Bmax

½A�� þKd
þ k � ½A�� ð4:3Þ

The two experimentally derived variables are nsb and

total binding. These can be obtained by measuring the

relationship between the ligand concentration and the

amount of ligand bound (total binding) and the amount

bound in the presence of a protecting concentration

of receptor specific antagonist. This latter procedure defines

the nsb. Theoretically, specific binding can be obtained by

subtracting these values for each concentration of ligand,

but a more powerful method is to fit the two data sets (total

binding and nsb) to Equations 4.1 and 4.3 simultaneously.

One reason this is preferable is that more data points are

used to define specific binding. A second reason is that a

better estimate of the maximal binding (Bmax) can be made

by simultaneously fitting of two functions. Since Bmax is

defined at theoretically infinite ligand concentrations, it

is difficult to obtain data in this concentration region.

When there is a paucity of data points, nonlinear fitting

procedures tend to overestimate the maximal asymptote.

The additional experimental data (total plus nonspecific

binding) reduces this effect and yields more accurate Bmax

estimates.
In binding, a good first experiment is to determine

the time required for the binding reaction to come

to equilibrium with the receptor. This is essential to know

since most binding reactions are made in stop-time mode

and real-time observation of the approach to equilibrium is

not possible (this is not true of more recent fluorescent

techniques where visualization of binding in real time

can be achieved). A useful experiment is to observe the

approach to equilibrium of a given concentration of tracer

ligand and then to observe reversal of binding by addition

of a competitive antagonist of the receptor. An example of

this experiment is shown in Figure 4.1. Valuable data is

obtained with this approach since it indicates the time

needed to reach equilibrium and confirms the fact that the

binding is reversible. Reversibility is essential to the

attainment of steady states and equilibria (i.e., irreversible

binding reactions do not come to equilibrium).

4.2.1 Saturation Binding

A saturation binding experiment consists of the equili-

bration of the receptor with a range of concentrations of

traceable ligand in the absence (total binding) and presence

of a high concentration (approximately 100�Kd) of

antagonist to protect the receptors (and thus determine

the nsb). Simultaneous fitting of the total binding curve

(Equation 4.3) and nsb line (Equation 4.1) yields the

specific binding with parameters of maximal number of

binding sites (Bmax) and equilibrium dissociation constant

of the ligand-receptor complex (Kd). (See Equation 4.2.) An

example of this procedure for the human calcitonin
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receptor is shown in Figure 4.2. Before the widespread use

of nonlinear fitting programs, the Langmuir equation was

linearized for ease of fitting graphically. Thus, specific

binding ([A*R]) according to mass action, represented as

½A�R�

Bmax
¼

½A��

½A�� þKd
, ð4:4Þ

yields a straight line with the transforms

½A�R�

½A��
¼

Bmax

Kd
�
½A�R�

Kd
, ð4:5Þ

referred to alternatively as a Scatchard, Eadie, or Eadie-

Hofstee plot. From this linear plot, Kd¼�1/slope and the

x intercept equals Bmax.

Alternatively, another method of linearizing the data

points is with

1

½A�R�
¼

1

½A��
�
Kd

Bmax
þ

1

Bmax
: ð4:6Þ

This is referred to as a double reciprocal or lineweaver

Burk plot. From this linear plot, Kd¼ slope/intercept and

the 1/intercept¼Bmax. Finally, a linear plot can be achieved

with

½A��

½A�R�
¼
½A��

Bmax
þ

Kd

Bmax
: ð4:7Þ

This is referred to as a Hanes, Hildebrand-Benesi, or Scott

plot. From this linear plot, Kd¼ intercept/slope and

1/slope¼Bmax.
Examples of these are shown for the saturation data in

Figure 4.2. At first glance, these transformations may seem

like ideal methods to analyze saturation data. However,

transformation of binding data is not generally recom-

mended. This is because transformed plots can distort

experimental uncertainty, produce compression of data,

and cause large differences in data placement. Also, these

transformations violate the assumptions of linear regression

and can be curvilinear simply because of statistical factors

(for example, Scatchard plots combine dependent and

independent variables). These transformations are valid

only for ideal data and are extremely sensitive to different

types of experimental errors. They should not be used for

estimation of binding parameters. Scatchard plots compress

data to the point where a linear plot can be obtained.

Figure 4.3 shows a curve with an estimate of Bmax that falls

far short of being able to furnish an experimental estimate

of the Bmax, yet the Scatchard plot is linear with an

apparently valid estimate from the abscissal intercept.
In general, nonlinear fitting of the data is essential for

parameter estimation. Linear transformations, however,

are useful for visualization of trends in data. Variances

from a straight edge are more discernible to the human eye

than are differences from curvilinear shapes. Therefore,

linear transforms can be a useful diagnostic tool. An

example of where the Scatchard transformation shows

significant deviation from a rectangular hyperbola is shown

in Figure 4.4. The direct presentation of the data show little

deviation from the saturation binding curve as defined by

the Langmuir adsorption isotherm. The data at 10 and 30

nM yield slightly underestimated levels of binding, a

common finding if slightly too much protein is used in

the binding assay (see Section 4.4.1). While this difference is

nearly undetectable when the data is presented as a direct

binding curve, it does produce a deviation from linearity in

the Scatchard curve (see Figure 4.4b).

Estimating the Bmax value is technically difficult since it

basically is an exercise in estimating an effect at infinite

drug concentration. Therefore, the accuracy of the estimate

of Bmax is proportional to the maximal levels of radioligand

that can be used in the experiment. The attainment of

saturation binding can be deceiving when the ordinates are

plotted on a linear scale, as they are in Figure 4.2.
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FIGURE 4.1 Time course for the onset of a radioligand onto the receptor and the reversal

of radioligand binding upon addition of a high concentration of a nonradioactive antagonist

ligand. The object of the experiment is to determine the times required for steady-state

receptor occupation by the radioligand and confirmation of reversibility of binding.

The radioligand is added at point A and an excess competitive antagonist of the receptor

at point B.
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Figure 4.5 shows a saturation curve for calcitonin binding

that appears to reach a maximal asymptote on a linear

scale. However, replotting the graph on a semilogarithmic

scale illustrates the illusion of maximal binding on the

linear scale and, in this case, how far short of true maxima

a linear scale can present a saturation binding curve.

An example of how to measure the affinity of a radioligand

and obtain an estimate of Bmax (maximal number of

binding sites for that radioligand) is given in Section 12.1.1.

4.2.2 Displacement Binding

In practice, there will be a limited number of ligands

available that are chemically traceable (i.e., radioactive,

fluorescent). Therefore, the bulk of radioligand experiments

designed to quantify ligand affinity are done in a

displacement mode whereby a ligand is used to displace

or otherwise affect the binding of a traceable ligand.

In general, an inverse sigmoidal curve is obtained with

reduction in radioligand binding upon addition of non-

radioactive antagonist. An example of how to measure the

affinity of a displacing ligand is given in Section 12.1.2.
The equations describing the amount of bound radio-

ligand observed in the presence of a range of concentrations

of nontraceable ligand vary with the model used for the

molecular antagonism. These are provided in material

following, with brief descriptions. More detailed discus-

sions of these mechanisms can be found in Chapter 6. If the

binding is competitive (both ligands compete for the same

binding domain on the receptor), the amount of tracer

ligand-receptor complex (r*) is given as (see Section 4.6.1)

r� ¼
½A��=Kd

½A��=Kd þ ½B�=KB þ 1
, ð4:8Þ

where the concentration of tracer ligand is [A*], the

nontraceable displacing ligand is [B], and Kd and KB are
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FIGURE 4.2 Saturation binding. Left panel: Curves showing total binding (filled circles), nonspecific binding

(filled squares), and specific binding (open circles) of the calcitonin receptor antagonist radiolabel 125I AC512

(Bmax¼ 6.63 pM; Kd¼ 26.8 pM). Data redrawn from [1]. Panels to the right show linear variants of the specific

binding curve: Scatchard (Equation 4.5), double reciprocal (Equation 4.6), and Hanes plots (Equation 4.7) cause

distortion and compression of data. Nonlinear curve fitting techniques are preferred.
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respective equilibrium dissociation constants. If the binding

is noncompetitive (binding of the antagonist precludes

the binding of the tracer ligand), the signal is given by

(see Section 4.6.2)

r� ¼
½A��=Kd

½A��=Kdð½B�=KB þ 1Þ þ ½B�=KB þ 1
: ð4:9Þ

If the ligand allosterically affects the affinity of the

receptor (antagonist binds to a site separate from

that for the tracer ligand) to produce a change in

receptor conformation to affect the affinity of the tracer

(vide infra) for the tracer ligand (see Chapter 6 for

more detail), the displacement curve is given by (see

Section 4.6.3)

r� ¼
½A��=Kdð1þ a½B�=KBÞ

½A��=Kdð1þ a½B�=KBÞ þ ½B�=KB þ 1
, ð4:10Þ

where a is the multiple factor by which the nontracer ligand

affects the affinity of the tracer ligand (i.e., a¼ 0.1 indicates

that the allosteric displacing ligand produces a tenfold

decrease in the affinity of the receptor for the tracer ligand).
As noted previously, in all cases these various functions

describe an inverse sigmoidal curve between the displacing

ligand and the signal. Therefore, the mechanism

of interaction cannot be determined from a single displace-

ment curve. However, observation of a pattern of such

curves obtained at different tracer ligand concentrations

(range of [A*] values) may indicate whether the displace-

ments are due to a competitive, noncompetitive, or

allosteric mechanism.
Competitive displacement for a range of [A*] values

(Equation 4.8) yields the pattern of curves shown

in Figure 4.6a. A useful way to quantify the displacement

is to determine the concentration of displacing ligand

that produces a diminution of the signal to 50% of the
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FIGURE 4.3 Erroneous estimation of maximal binding with Scatchard plots. The saturation

binding curve shown to the left has no data points available to estimate the true Bmax. The Scatchard

transformation to the right linearizes the existing points, allowing an estimate of the maximum to be

made from the x-axis intercept. However, this intercept in no way estimates the true Bmax since there

are no data to define this parameter.
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FIGURE 4.4 Saturation binding expressed directly and with a Scatchard plot. (a) Direct

representation of a saturation binding plot (Bmax¼ 25 pmole/mg, Kd¼ 50 nM). Data points are slightly

deviated from ideal behavior (lower two concentrations yield slightly lower values for binding as is

common when slightly too much receptor protein is used in the assay, vide infra). (b) Scatchard plot of

the data shown in panel a. It can be seen that the slight deviations in the data lead to considerable

deviations from linearity on the Scatchard plot.
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FIGURE 4.5 Saturation binding of the radioligand human 125I-human calcitonin to human

calcitonin receptors in a recombinant cell system in human embryonic kidney cells. Left-hand panel

shows total binding (open circles), nonspecific binding (open squares), and specific receptor binding

(open triangles). The specific binding appears to reach a maximal asymptotic value. The specific

binding is plotted on a semi-logarithmic scale (shown in the right-hand panel). The solid line on this

curve indicates an estimate of the maximal receptor binding. The data points (open circles) on this

curve show that the data defines less than half the computer-estimated total saturation curve. Data

redrawn from [4].
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FIGURE 4.6 Displacement of a radioligand by a competitive nonradioactive ligand. (a)

Displacement of radioactivity (ordinate scale) as curves shown for a range of concentrations

of displacing ligand (abscissae as log scale). Curves shown for a range of radioligand

concentrations denoted on the graph in units of [A*]/Kd. Curved line shows the path of the

IC50 for the displacement curves along the antagonist concentration axis. (b) Multiple values

of the Ki for the competitive displacing ligand (ordinate scale) as a function of the

concentration of radioligand being displaced (abscissae as linear scale). Linear relationship

shows the increase in observed IC50 of the antagonist with increasing concentrations of

radioligand to be displaced (according to Equation 4.11).

64 4. PHARMACOLOGICAL ASSAY FORMATS: BINDING



original value. This concentration of displacing ligand will

be referred to as the IC50 (inhibitory concentration for 50%

decrease). For competitive antagonists, it can be shown that

the IC50 is related to the concentration of tracer ligand [A*]

by (see Section 4.6.4)

IC50 ¼ KB � ð½A
�
�=Kd þ 1Þ: ð4:11Þ

This is a linear relation often referred to as the Cheng-

Prusoff relationship [5]. It is characteristic of competitive

ligand-receptor interactions. An example is shown in

Figure 4.6b.
The displacement of a tracer ligand, for a range of tracer

ligand concentrations, by a noncompetitive antagonist is

shown in Figure 4.7. In contrast to the pattern shown for

competitive antagonists, the IC50 for inhibition of tracer

binding does not change with increasing tracer ligand

concentrations. In fact, it can be shown that the IC50 for

inhibition is equal to the equilibrium dissociation constant

of the noncompetitive antagonist-receptor complex (see

Section 4.6.2).
Allosteric antagonist effects can be an amalgam of

competitive and noncompetitive profiles in terms of the

relationship between IC50 and [A*]. This relates to the

magnitude of the term a, specifically the multiple ratio of

the affinity of the receptor for [A*] imposed by the binding

of the allosteric antagonist. A hallmark of allosteric

inhibition is that it is saturable (i.e., the antagonism

maximizes upon saturation of the allosteric binding site).

Therefore, if a given antagonist has a value of a of 0.1 this

means that the saturation binding curve will shift to the

right by a factor of tenfold in the presence of an infinite

concentration of allosteric antagonist. Depending on the

initial concentration of radioligand, this may cause the

displacement binding curve to not reach nsb levels. This

effect is illustrated in Figure 4.8. Therefore, in contrast to

competitive antagonists, where displacement curves all take

binding of the radioligand to nsb values, an allosteric ligand

will only displace to a maximum value determined by the

initial concentration of radioligand and the value of a for

the allosteric antagonist. In fact, if a displacement curve is

observed where the radioligand binding is not displaced to

nsb values, this is presumptive evidence that the antagonist

is operating through an allosteric mechanism. The max-

imum displacement of a given concentration of radioligand

[A*] by an allosteric antagonist with given values of a is (see

Section 4.6.5)

Maximal Fractional Inhibition ¼
½A��Kd þ 1

½A��=Kd þ 1=a
, ð4:12Þ

where Kd is the equilibrium dissociation constant of

the radioligand-receptor complex (obtained from satura-

tion binding studies). The observed displacement for a

range of allosteric antagonists for two concentrations of

radioligands is shown in Figure 4.9. The effects shown in

Figure 4.9 indicate a practical test for the detection of

allosteric versus competitive antagonism in displacement
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FIGURE 4.7 Displacement curves for a noncompetitive antago-

nist. Displacement curve according to Equation 4.9 for values of

radioligand [A*]/Kd¼ 0.3 (curve with lowest ordinate scale

beginning at 0.25), 1, 3, 10, 30, and 100. While the ordinate scale

on these curves increases with increasing [A*]/Kd values, the

location parameter along the x axis does not change.
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FIGURE 4.8 Displacement curves according to Equation 4.10 for an allosteric antagonist with

different cooperativity factors (panel a a¼ 0.01, panel b a¼ 0.1). Curves shown for varying values of

radioligand ([A*]/Kd). It can be seen that the curves do not reach nsb values for high values of

radioligand and that this effect occurs at lower concentrations of radioligand for antagonists of higher

values of a.
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binding studies. If the value of the maximal displacement

varies with different concentrations of radioligand,

this would suggest that an allosteric mechanism is

operative. Figure 4.10 shows the displacement of the

radioactive peptide ligand 125I-MIP-1a from chemokine

CCR1 receptors by nonradioactive peptide MIP-1a and by

the allosteric small molecule modulator UCB35625.

Clearly, the nonpeptide ligand does not reduce binding

to nsb levels, indicating an allosteric mechanism for this

effect [6].

Another, more rigorous, method to detect allosteric

mechanisms (and one that may furnish a value of a for the

antagonist) is to formally observe the relationship between

the concentration of radioligand and the observed antag-

onism by displacement with the IC50 of the antagonist.

As shown with Equation 4.11, for a competitive antagonist

this relationship is linear (Cheng-Prusoff correction). For

an allosteric antagonist, the relationship is hyperbolic and

given by (see Section 4.6.6)

IC50 ¼
KBð½A

�
�=KdÞ

a½A��=Kd þ 1
: ð4:13Þ

It can be seen from this equation that the maximum of

the hyperbola defined by a given antagonist (with ordinate

values expressed as the ratio of IC50 to KB) will have a

maximum asymptote of 1/a. Therefore, observation of a

range of IC50 values needed to block a range of radioligand

concentrations can be used to estimate the value of a for a

given allosteric antagonist. Figure 4.11 shows the relation-

ship between the IC50 for allosteric antagonism and the

concentration of radioligand used in the assay, as a

function of a. It can be seen that unlike the linear

relationship predicted by Equation 4.11 (see Figure 4.6b)
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Ordinates: bound radioligand. (a) Concentration of radioligand [A*]/Kd¼ 0.1. (b) Displacement of higher

concentration of radioligand [A*]/KA¼ 3.
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FIGURE 4.10 Displacement of bound 125I-MIP-1a from che-

mokine C receptors type 1 (CCR1) by MIP-1a (filled circles) and

the allosteric ligand UCB35625 (open circles). Note how the

displacement by the allosteric ligand is incomplete. Data redrawn

from [6].
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the curves are hyperbolic in nature. This is another

hallmark of allosteric versus simple competitive antagonist

behavior.

An allosteric ligand changes the shape of the receptor,

and in so doing will necessarily alter the rate of association

and dissociation of some trace ligands. This means that

allosterism is tracer dependent (i.e., an allosteric change

detected by one radioligand may not be detected in

the same way, or even detected at all, by another).

For example, Figure 4.12 shows the displacement binding

of two radioligand antagonists, [3H]-methyl-QNB and

[3H]-atropine, on muscarinic receptors by the allosteric

ligand alcuronium. It can be seen that quite different effects

are observed. In the case of [3H]-methyl-QNB, the allosteric

ligand displaces the radioligand and reduces binding to the

nsb level. In the case of [3H]-atropine, the allosteric ligand

actually enhances binding of the radioligand [7]. There are

numerous cases of probe dependence for allosteric effects.

For example, the allosteric ligand strychnine has little effect

on the affinity of the agonist methylfurmethide (twofold

enhanced binding) but a much greater effect on the

agonist bethanechol (49-fold enhancement of binding [8]).

An example of the striking variation of allosteric effects

on different probes by the allosteric modulator alcuronium

is shown in Table 4.1 [7, 9, 10].

4.2.3 Kinetic Binding Studies

A more sensitive and rigorous method of detecting and

quantifying allosteric effects is through observation of the

kinetics of binding.
In general, the kinetics of most allosteric modulators

have been shown to be faster than the kinetics of binding

of the tracer ligand. This is an initial assumption for this

experimental approach. Under these circumstances, the rate

of dissociation of the tracer ligand (rA*t) in the presence of

the allosteric ligand is given by [11, 12]

rA�t ¼ rA� � e
�koff-obs�t, ð4:14Þ

where rA* is the tracer-ligand receptor occupancy

at equilibrium and koff-obs is given by

koff-obs ¼
a½B�koff-A�B=KB þ koff-A�

1þ a½B�=KB
: ð4:15Þ

Therefore, the rate of offset of the tracer ligand in the

presence of various concentrations of allosteric ligand can

be used to detect allosterism (change in rates with

allosteric ligand presence) and to quantify both the

affinity (1/KB) and a value for the allosteric ligand.

Allosteric modulators (antagonists) will generally decrease

the rate of association and/or increase the rate of

dissociation of the tracer ligand. Figure 4.13 shows the

effect of the allosteric ligand 5-(N-ethyl-N-isopropyl)-

amyloride (EPA) on the kinetics of binding (rate of

offset) of the tracer ligand [3H]-yohimbine to a2-adreno-
ceptors. It can be seen from this figure that EPA produces

a concentration-dependent increase in the rate of offset of

the tracer ligand, thereby indicating an allosteric effect on

the receptor.

4.3 Complex Binding Phenomena:

Agonist Affinity from Binding Curves

The foregoing discussion has been restricted to the

simple Langmuirian system of the binding of a ligand

−9

[3H]Atropine binding

[3H]methyl-QNB binding

−8 −6−7 −5 −4
Log [alcuronium]

−3
0

50

100

150

250

200

%
 b

as
al

FIGURE 4.12 Effect of alcuronium on the binding of [3H]

methyl-QNB (filled circles) and [3H] atropine (open circles) on

muscarinic receptors. Ordinates are percentage of initial radioli-

gand binding. Alcuronium decreases the binding of [3H] methyl-

QNB and increases the binding of [3H] atropine. Data redrawn

from [7].

TABLE 4.1

Differential effects of the allosteric modulator alcuronium on various

probes for the m2 muscarinic receptor.

Agonistsa (1/a)

Arecoline 1.7

Acetylcholine 10

Bethanechol 10

Carbachol 9.5

Furmethide 8.4

Methylfurmethide 7.3

Antagonists

Atropineb 0.26

Methyl-N-piperidinyl benzilateb 0.54

Methyl-N-quinuclidinyl benzilatec 63

Methyl-N-scopolamine 0.24

aFrom [9].
bFrom [7].
cFrom [10].
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to a receptor. The assumption is that this process produces

no change in the receptor (i.e., analogous to Langmuir’s

binding of molecules to an inert surface). The conclusions

drawn from a system where the binding of the ligand
changes the receptor are different. One such process is

agonist binding in which due to the molecular property of

efficacy the agonist produces a change in the receptor upon

binding to elicit response. Under these circumstances, the

simple schemes for binding discussed for antagonists may

not apply. Specifically, if the binding of the ligand changes

the receptor (produces an isomerization to another form)
the system can be described as

AþR ��! ��

Ka

AR ��! ��

�

�

AR�: ð4:16Þ

Under these circumstances, the observed affinity of

the ligand for the receptor will not be described by KA

(where KA¼ 1/Ka) but rather by that microaffinity

modified by a term describing the avidity of the isomeriza-

tion reaction. The observed affinity will be given by (see
Section 4.6.7)

Kobs ¼
KA � �=�

1þ �=�
: ð4:17Þ

One target type for which the molecular mechanism of

efficacy has been partly elucidated is the G-protein-coupled

receptor (GPCR). It is known that activation of GPCRs
leads to an interaction of the receptor with separate

membrane G-proteins to cause dissociation of the

G-protein subunits and subsequent activation of effectors

(see Chapter 2). For the purposes of binding, this process

can lead to an aberration in the binding reaction as

perceived in experimental binding studies. Specifically, the
activation of the receptor with subsequent binding of that

receptor to another protein (to form a ternary complex of

receptor, ligand, and G-protein) can lead to the apparent

observation of a ‘‘high-affinity’’ site—a ghost site that has

no physical counterpart but appears to be a separate

binding site on the receptor. This is caused by two-stage

binding reactions, represented as

AþR ��! ��

Ka

ARþ ½G� ��! ��

Kg

ARG: ð4:18Þ

In the absence of two-stage binding, the relative

quantities of [AR] and [R] are controlled by the magnitude

of Ka in the presence of ligand [A]. This, in turn, defines the

affinity of the ligand for R (affinity¼ [AR]/([A] [R])).

Therefore, if an outside influence alters the quantity of

[AR], the observed affinity of the ligand for the receptor R

will change. If a ligand predisposes the receptor to bind to

G-protein, then the presence of G-protein will drive the

binding reaction to the right (i.e., [AR] complex will be

removed from the equilibrium defined by Ka). Under these

circumstances, more [AR] complex will be produced than

that governed by Ka. The observed affinity will be higher

than it would be in the absence of G-protein. Therefore, the

property of the ligand that causes the formation of the

ternary ligand/receptor/G-protein complex (in this case,

efficacy) will cause the ligand to have a higher affinity than

it would have if the receptor were present in isolation (no

G-protein present). Figure 4.14 shows the effect of adding a

G-protein to a receptor system on the affinity of an agonist.

As shown in this figure, the muscarinic agonist oxotremor-

ine has a receptor equilibrium dissociation constant of 6

mM in a reconstituted phospholipid vesicle devoid of

G-proteins. However, upon addition of G0 protein the

affinity increases by a factor of 600 (10 nM).
This effect can actually be used to estimate the efficacy of

an agonist (i.e., the propensity of a ligand to demonstrate
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FIGURE 4.13 Effect of the allosteric modulator 5-(N-ethyl-N-isopropyl)-amyloride (EPA) on the

kinetics dissociation of [3H] yohimbine from a2-adrenoceptors. (a) Receptor occupancy of [3H]

yohimbine with time in the absence (filled circles) and presence (open circles) of EPA 0.03 mM, 0.1 mM

(filled triangles), 0.3 mM (open squares), 1 mM (filled squares), and 3 mM (open triangles).

(b) Regression of observed rate constant for offset of concentration of [3H] yohimbine in the presence of

various concentrations of EPA on concentrations of EPA (abscissae in mM on a logarithmic scale).

Data redrawn from [13].
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high affinity in the presence of G-protein, vide infra).

The observed affinity of such a ligand is given by

(see Section 4.6.8)

Kobs ¼
KA

1þ ½G�=KG
, ð4:19Þ

where KG is the equilibrium dissociation constant of the

receptor/G-protein complex. A low value for KG indicates

tight binding between receptors and G-proteins (i.e., high

efficacy). It can be seen that the observed affinity of the

ligand will be increased (decrease in the equilibrium

dissociation constant of the ligand-receptor complex) with

increasing quantities of G-protein [G] and/or very efficient

binding of the ligand-bound receptor to the G-protein (low

value of KG, the equilibrium dissociation constant for the

ternary complex of ligand/receptor/G-protein). The effects

of various concentrations of G-protein on the binding

saturation curve to an agonist ligand are shown in

Figure 4.15a. It can be seen from this figure that increasing

concentrations of G-protein in this system cause a

progressive shift to the left of the saturation dose-response

curve. Similarly, the same effect is observed in displacement

experiments. Figure 4.15b shows the effect of different

concentrations of G-protein on the displacement of a

radioligand by a nonradioactive agonist.
The previous discussion assumes that there is no

limitation in the stoichiometry relating receptors and

G-proteins. In recombinant systems, where receptors are

expressed in surrogate cells (often in large quantities), it is

possible that there may be limiting quantities of G-protein

available for complexation with receptors. Under these

circumstances, complex saturation and/or displacement

curves can be observed in binding studies. Figure 4.16a

shows the effect of different submaximal effects of

G-protein on the saturation binding curve to an agonist

radioligand. It can be seen that clear two-phase curves can

be obtained. Similarly, two-phase displacement curves also

can be seen with agonist ligands displacing a radioligand in

binding experiments with subsaturating quantities of

G-protein. (Figure 4.16b). Figure 4.17 shows an experi-

mental displacement curve of the antagonist radioligand for

human calcitonin receptors [125I]-AC512 by the agonist

amylin in a recombinant system where the number of

receptors exceeds the amount of G-protein available for

complexation to the ternary complex state. It can be seen

that the displacement curve has two distinct phases: a high-

affinity (presumably due to coupling to G-protein) binding

process followed by a lower-affinity binding (no benefit of

G-protein coupling).
While high-affinity binding due to ternary complex

formation (ligand binding to the receptor followed by
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FIGURE 4.14 Effects of G-protein on the displacement of the

muscarinic antagonist radioligand [3H]-L-quinuclidinyl benzylate

by the agonist oxotremorine. Displacement in reconstituted

phospholipid vesicles (devoid of G-protein sububits) shown in

filled circles. Addition of G-protein (G0 5.9 nmol bg-subunit/3.4
nmol a0-IDP subunit) shifts the displacement curve to the left

(higher affinity, see open circles) by a factor of 600. Data redrawn

from [14].
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FIGURE 4.15 Complex binding curves for agonists in G-protein unlimited receptor systems.

(a) Saturation binding curves for an agonist where there is high-affinity binding due to G-protein

complexation. Numbers next to curves refer to the amount of G-protein in the system.

(b) Displacement of antagonist radioligand by same agonist in G-protein unlimited system.

4.3 COMPLEX BINDING PHENOMENA: AGONIST AFFINITY FROM BINDING CURVES 69



binding to a G-protein) can be observed in isolated systems

where the ternary complex can accumulate and be

quantified, this effect is cancelled in systems where the

ternary complex is not allowed to accumulate. Specifically,

in the presence of high concentrations of GTP (or a

chemically stable analogue of GTP such as GTPgS)
the formation of the ternary complex [ARG] is followed

immediately by hydrolysis of GTP and the G-protein and

dissociation of the G-protein into a- and gb-subunits
(see Chapter 2 for further details). This causes subsequent

dissolution of the ternary complex. Under these conditions,

the G-protein complex does not accumulate and the

coupling reaction promoted by agonists is essentially

nullified (with respect to the observable radioactive species

in the binding reaction). When this occurs, the high-affinity

state is not observed by the binding experiment. This has a

practical consequence in binding experiments. In broken-

cell preparations for binding, the concentration of GTP can

be depleted and thus the two-stage binding reaction is

observed (i.e., the ternary complex accumulates). However,

in whole-cell experiments the intracellular concentration of

GTP is high and the ternary complex [ARG] species does

not accumulate. Under these circumstances, the high-

affinity binding of agonists is not observed, only the so-

called ‘‘low-affinity’’ state of agonist binding to the

receptor. Figure 4.18 shows the binding (by displacement

experiments) of a series of adenosine receptor agonists to a

broken-cell membrane preparation (where high-affinity

binding can be observed) and the same agonists to a

whole-cell preparation where the results of G-protein
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FIGURE 4.16 Complex binding curves for agonists in G-protein limited receptor systems.

(a) Saturation binding curves for an agonist where the high-affinity binding due to G-protein

complexation¼ 100�Kd (i.e., Kobs¼Kd/100). Numbers next to curves refer to ratio of G-protein to

receptor. (b) Displacement of antagonist radioligand by same agonist in G-protein limited system.
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FIGURE 4.17 Displacement of antagonist radioligand
125I-AC512 by the agonist amylin. Ordinates: percentage of initial

binding value for AC512. Abscissae: logarithms of molar

concentrations of rat amylin. Open circles are data points, solid

line fit to two-site model for binding. Dotted line indicates a single

phase displacement binding curve with a slope of unity. Data

redrawn from [4].
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FIGURE 4.18 Affinity of adenosine receptor agonists in whole

cells (dark bars) and membranes (cross-hatched bars, high-affinity

binding site). Data shown for (1) 2-phenylaminoadenosine, (2)

2-chloroadenosine, (3) 50-N-ethylcarboxamidoadenosine, (4)

N6-cyclohexyladenosine, (5) (-)-(R)-N6-phenylisopropyladenosine,

and (6) N6-cyclopentyladenosine. Data redrawn from [15].
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coupling are not observed. It can be seen from

this figure that a phase shift for the affinity of the agonists

under these two binding experiment conditions is observed.

The broken-cell preparation reveals the effects of the ability

of the agonists to promote G-protein coupling of the

receptor. This latter property, in effect, is the efficacy of the

agonist. Thus, ligands that have a high observed affinity in

broken cell systems often have a high efficacy. A measure of

this efficacy can be obtained by observing the magnitude of

the phase shift of the affinities measured in broken-cell and

whole-cell systems.
A more controlled experiment to measure the ability

of agonists to induce the high-affinity state, in effect a

measure of efficacy, can be done in broken-cell prepara-

tions in the presence and absence of saturating concentra-

tions of GTP (or GTPgS). Thus, the ratio of the affinity in

the absence and presence of GTP (ratio of the high-affinity

and low-affinity states) yields an estimate of the efficacy of

the agonist. This type of experiment is termed the ‘‘GTP

shift’’ after the shift to the right of the displacement curve

for agonist ligands after cancellation of G-protein coupling.

Figure 4.19 shows the effects of saturating concentrations

of GTPgS on the affinity of b-adrenoceptor agonists in

turkey erythrocytes. As can be seen from this figure, a

correlation of the magnitude of GTP shifts for a series of

agonists and their intrinsic activities as measured in

functional studies (a more direct measure of agonist

efficacy; see Chapter 5). The GTP-shift experiment is a

method to estimate the efficacy of an agonist in binding

studies.
The previous discussions indicate how binding experi-

ments can be useful in characterizing and quantifying the

activity of drugs (provided the effects are detectable as

changes in ligand affinity). As for any experimental

procedure, there are certain prerequisite conditions that

must be attained for the correct application of this

technique to the study of drugs and receptors. A short list

of required and optimal experimental conditions

for successful binding experiments is given in Table 4.2.

Some special experimental procedures for determining

equilibrium conditions involve the adjustment of biological

material (i.e., membrane or cells) for maximal signal-
to-noise ratios and/or temporal approach to equilibrium.

These are outlined in material following.

4.4 Experimental Prerequisites for Correct

Application of Binding Techniques

4.4.1 The Effect of Protein Concentration on Binding Curves

In the quest for optimal conditions for binding experi-
ments, there are two mutually exclusive factors with regard

to the amount of receptor used for the binding reaction.

On one hand, increasing receptor (Bmax) also increases the
signal strength and usually the signal-to-noise ratio. This is

a useful variable to manipulate. On the other hand, a very
important prerequisite to the use of the Langmuirian type

kinetics for binding curves is that the binding reaction does
not change the concentration of tracer ligand being bound.

If this is violated (i.e., if the binding is high enough
to deplete the ligand), then distortion of the binding curves

will result. The amount of tracer ligand-receptor complex as
a function of the amount of receptor protein present is

given as (see Section 4.6.9)

½A�R� ¼
1

2

�
½A�T� þKd þ Bmax

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A�T� þKd þ Bmax

� �2
� 4½A�T�Bmax

q �
, ð4:20Þ

where the radioligand-receptor complex is [A*R] and ½A�T�

is the total concentration of radioligand. Ideally, the
amount of receptor (magnitude of Bmax) should not limit

the amount of [A*R] complex formed and there should be a
linear relationship between [A*R] and Bmax. However,

Equation 4.20 indicates that the amount of [A*R] complex

formed for a given [A*] indeed can be limited by the
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FIGURE 4.19 Correlation of the GTP shift for b-adrenoceptor
agonists in turkey erythocytes (ordinates) and intrinsic activity

of the agonists in functional studies (abscissae). Data redrawn

from [16].

TABLE 4.2

Criteria for Binding Experiments.

Minimal criteria and optimal conditions for binding experiments:

. The means of making the ligand chemically detectable

(i.e., addition of radioisotope label, fluorescent probe) does not

significantly alter the receptor biology of the molecule.
. The binding is saturable.

. The binding is reversible and able to be displaced by other

ligands.
. There is a ligand available to determine nonspecific binding.

. There is sufficient biological binding material to yield a good

signal-to-noise ratio but not too much so as to cause depletion

of the tracer ligand.
For optimum binding experiments, the following conditions should

be met:

. There is a high degree of specific binding and a concomitantly

low degree of nonspecific binding.
. Agonist and antagonist tracer ligands are available.

. The kinetics of binding are rapid.

. The ligand used for determination of nonspecific binding has a

different molecular structure from the tracer ligand.
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amount of receptor present (magnitude of Bmax) as Bmax

values exceed Kd. A graph of [A*R] for a concentration

of [A*]¼ 3�Kd as a function of Bmax is shown in

Figure 4.20. It can be seen that as Bmax increases the

relationship changes from linear to curvilinear as the

receptor begins to deplete the tracer ligand. The degree of

curvature varies with the initial amount of [A*] present.

Lower concentrations are affected at lower Bmax values

than are higher concentrations. The relationship between

[AR] and Bmax for a range of concentrations of [A*] is

shown in Figure 4.21a. When Bmax levels are exceeded

(beyond the linear range), saturation curves shift to the

right and do not come to an observable maximal

asymptotic value. The effect of excess receptor concentra-

tions on a saturation curve is shown in Figure 4.21b.
For displacement curves, a similar error occurs with

excess protein concentrations. The concentration of [A*R]

in the presence of a nontracer-displacing ligand [B] as a

1 20 3 4 5
[AR] nM

6
0

3

1

4

2

B
m

ax
 (

m
ol

/L
) 
x

 1
09

FIGURE 4.20 Effect of increasing protein concentration on the

binding of a tracer ligand present at a concentration of 3�Kd.

Ordinates: [A*R] in moles/L calculated with Equation 4.20.

Abscissae: Bmax in moles/L� 109. Values of Bmax greater than

the vertical solid line indicate region where the relationship

between Bmax and [A*R] begins to be nonlinear and where

aberrations in the binding curves will be expected to occur.
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function of Bmax is given by (see Section 4.6.10)

½A�R� ¼
1

2

�
½A�T� þKdð1þ ½B�=KBÞ þBmax

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A�T� þKdð1þ ½B�=KBÞ þBmax

� �2
�4½A�T�Bmax

q �
,

ð4:21Þ

where the concentration of the displacing ligand is [B] and

KB is the equilibrium dissociation constant of the displacing

ligand-receptor complex. A shift to the right of displace-

ment curves, with a resulting error in the IC50 values, occurs

with excess protein concentration (see Figure 4.22).

4.4.2 The Importance of Equilibration Time for

Equilibrium Between Two Ligands

In terms of ensuring that adequate time is allowed for the

attainment of equilibrium between a single ligand and

receptors, the experiment shown in Figure 4.1 is useful.

However, in displacement experiments there are two

ligands (tracer and nontraceable ligand) present and they

must compete for the receptor. This competition can take

considerably longer than the time required for just a single

ligand. This is because the free ligands can only bind to free

unbound receptors (except in the case of allosteric

mechanisms, vide infra). Therefore, the likelihood of a

receptor being free to accept a ligand depends on the

reversibility of the other ligand, and vice versa. The

fractional occupancy at time t for a ligand [A*] bound to

a receptor (denoted [A*Rt]) in the presence of another

ligand [B] has been derived by [17]

½A�R�t¼
k1½Rt�½A

�
T�

KF�KS

�
k4ðKFþKSÞ

KFKS
þ
ðk4�KFÞe

�KFt

KF
�
ðk4�KSÞe

�KSt

KS

� �
,

ð4:22Þ

where

KA ¼ k1½A
�
� þ k2

KB ¼ k3½B� þ k4

KF ¼ 0:5ðKA þKBÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKA þKBÞ

2
þ 4k1k3½A

�
�½B�

q

KF ¼ 0:5ðKA þKBÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKA þKBÞ

2
þ 4k1k3½A

�
�½B�

q
:

Radioligand binding experiments are usually initiated

by addition of the membrane to a premade mixture
of radioactive and nonradioactive ligand. After a period
of time thought adequate to achieve equilibrium (guided by

experiments like that shown in Figure 4.1), the binding
reaction is halted and the amount of bound radioligand

quantified. Figure 4.23 shows the potential hazard of using
kinetics observed for a single ligand (i.e., the radioligand) as

being indicative of a two-ligand system. In the absence
of another ligand, Figure 4.23a shows that the radioligand
comes to equilibrium binding within 30 minutes.

However, in the presence of a receptor antagonist (at two
concentrations [B]/KB¼ 10 and 30) a clearly biphasic

receptor occupancy pattern by the radioligand can be
observed where the radioligand binds to free receptors
quickly (before occupancy by the slower acting antagonist)

and then a reequilibration occurs as the radioligand and
antagonist redistribute according to the rate constants for

receptor occupancy of each. The equilibrium for the two
ligands does not occur until4 240 minutes. Figure 4.23b
shows the difference in the measured affinity of the

antagonist at times¼ 30 and 240 minutes. It can be seen
from this figure that the times thought adequate from

observation of a single ligand to the receptor (as that shown
in Figure 4.1) may be quite inadequate compared to the
time needed for two ligands to come to temporal

equilibrium with the receptor. Therefore, in the case of
displacement experiments utilizing more than one ligand

temporal experiments should be carried out to ensure that
adequate times are allowed for complete equilibrium to be
achieved for two ligands.

4.5 Chapter Summary and Conclusions

. If there is a means to detect (i.e., radioactivity,
fluorescence) and differentiate between protein-

bound and free ligand in solution, then binding can
directly quantify the interaction between ligands and

receptors.
. Binding experiments are done in three general modes:

saturation, displacement, and kinetic binding.

. Saturation binding requires a traceable ligand but
directly measures the interaction between a ligand and

a receptor.
. Displacement binding can be done with any molecule

and measures the interference of the molecule with a

bound tracer.
. Displacement experiments yield an inverse sigmoidal

curve for nearly all modes of antagonism.
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FIGURE 4.22 Effect of excess protein concentration on

displacement curves (as predicted by Equation 4.21). As the Bmax

increases (�log Bmax values shown next to curves) the displacement

curves shift to the right.
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Competitive, noncompetitive, and allosteric antagon-

ism can be discerned from the pattern of multiple

displacement curves.

. Allosteric antagonism is characterized by the fact that

it attains a maximal value. A sensitive method for the

detection of allosteric effects is through studying the

kinetics of binding.
. Kinetic experiments are also useful to determine the

time needed for attainment of equilibria and

to confirm reversibility of binding.

. Agonists can produce complex binding profiles

due to the formation of different protein species

(i.e., ternary complexes with G-proteins). The extent

of this phenomenon is related to the magnitude

of agonist efficacy and can be used to quantify

efficacy.
. While the signal-to-noise ratio can be improved with

increasing the amount of membrane used in binding

studies, too much membrane can lead to depletion

of radioligand with a concomitant introduction of

errors in the estimates of ligand affinity.

. The time to reach equilibrium for two ligands and a

receptor can be much greater than that required for a

single receptor and a single ligand.

4.6 Derivations

. Displacement binding: competitive interaction (4.6.1)

. Displacement binding: noncompetitive interaction

(4.6.2)

. Displacement of a radioligand by an allosteric

antagonist (4.6.3)
. Relationship between IC50 and KI for competitive

antagonists (4.6.4)
. Maximal inhibition of binding by an allosteric

antagonist (4.6.5)

. Relationship between IC50 and KI for allosteric

antagonists (4.6.6)
. Two-stage binding reactions (4.6.7)

. The effect of G-protein coupling on observed agonist

affinity (4.6.8)

. Effect of excess receptor in binding experiments:

saturation binding curve (4.6.9)

. Effect of excess receptor in binding experiments:

displacement experiments (4.6.10)

4.6.1 Displacement Binding: Competitive Interactions

The effect of a nonradioactive ligand [B] displacing a

radioligand [A*] by a competitive interaction is shown

schematically as

; ð4:23Þ

where Ka and Kb are the respective ligand-receptor

association constants for radioligand and nonradioactive

ligand. The following equilibrium constants are defined

½R� ¼
½A�R�

½A��Ka
ð4:24Þ

½BR� ¼ Kb½B�½R� ¼
Kb½B�½A

�R�

½A��Ka
ð4:25Þ

Total receptor concentration ½Rtot� ¼ ½R� þ ½A
�R� þ ½BR�:

ð4:26Þ
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FIGURE 4.23 Time course for equilibration of two ligands for a single receptor. (a) Time course for

displacement of a radioligand present at a concentration of [A*]/Kd¼ 1. Kinetic parameter for the

radioligand k1¼ 105 s�1mol�1, k2¼ 0.05 s�1. Equilibrium is attained within 30 minutes in the absence

of a second ligand ([B]/KB¼ 0). Addition of an antagonist (kinetic parameters¼ k1¼ 106 s�1mol�1,

k2¼ 0.001 s�1) at concentrations of [B]/KB¼ 10 and 30, as shown in panel A. (b) Displacement of

radioligand [A*] by the antagonist B measured at 30 minutes and at 240 minutes. It can be seen that a

tenfold error in the potency of the displacing ligand [B] is introduced into the experiment by inadequate

equilibration time.
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This leads to the expression for the radioactive species

[A*R]/[Rtot] (denoted as r*):

r� ¼
½A��Ka

½A��Ka þ ½B�Kb þ 1
: ð4:27Þ

Converting to equilibrium dissociation constants

(i.e., Kd¼ 1/Ka) leads to the equation

r� ¼
½A��=Kd

½A��=Kd þ ½B�=KB þ 1
: ð4:28Þ

4.6.2 Displacement Binding: Noncompetitive Interaction

It is assumed that mass action defines the binding of the

radioligand to the receptor and that the nonradioactive

ligand precludes binding of the radioligand [A*]

to receptor. There is no interaction between the radioligand

and displacing ligand. Therefore, the receptor occupancy by

the radioligand is defined by mass action times the fraction

q of receptor not occupied by noncompetitive antagonist:

r� ¼
½A��=Kd

½A��=Kd þ 1
� q, ð4:29Þ

where Kd is the equilibrium dissociation constant of the

radioligand-receptor complex. The fraction of receptor

bound by the noncompetitive antagonist is given as (1� q).

This yields the following expression for q:

q ¼ ð1þ ½B�=KBÞ
�1: ð4:30Þ

Combining Equations 4.29 and 4.30 and rearranging yield

the following expression for radioligand bound in the

presence of a noncompetititve antagonist:

r� ¼
½A��=Kd

½A��=Kdð½B�=KB þ 1Þ þ ½B�=KB þ 1
: ð4:31Þ

The concentration that reduces binding by 50% is denoted

as the IC50. The following relation can be defined:

½A��=Kd

½A��=KdðIC50=KB þ 1Þ þ IC50=KB þ 1
¼

0:5½A��=Kd

½A��=Kd þ 1
:

ð4:32Þ

It can be seen that the equality defined in Equation 4.32

is true only when IC50¼KB (i.e., the concentration of

a non-competitive antagonist that reduces the binding

of a tracer ligand by 50% is equal to the equilibrium

dissociation constant of the antagonist-receptor complex).

4.6.3 Displacement of a Radioligand by an

Allosteric Antagonist

It is assumed that the radioligand [A*] binds to a site

separate from one binding an allosteric antagonist [B].

Both ligands have equilibrium association constants for

receptor complexes of Ka and Kb, respectively. The binding

of either ligand to the receptor modifies the affinity of the

receptor for the other ligand by a factor a. There can be

three ligand-bound receptor species; namely [A*R], [BR],

and [BA*R]:

: ð4:33Þ

The resulting equilibrium equations are:

Ka ¼ ½A
�R�=½A��½R� ð4:34Þ

Kb ¼ ½BR�=½B�½R� ð4:35Þ

aKa ¼ ½A
�RB�=½BR�½A�� ð4:36Þ

aKb ¼ ½A
�RB�=½A�R�½B�: ð4:37Þ

Solving for the radioligand-bound receptor species [A*R]

and [A*RB] as a function of the total receptor species

([Rtot]¼ [R]þ [A*R]þ [BR]þ [A*RB]) yields

½A�R� þ ½A�RB�

½Rtot�

¼
ðð1=a½B�KbÞ þ 1Þ

ðð1=a½B�KbÞ þ ð1=aKaÞ þ ð1=a½A��KaKbÞ þ 1Þ
:

ð4:38Þ

Simplifying and changing association to dissociation

constants (i.e., Kd¼ 1/Ka) yield (as defined by Ehlert, [18])

r� ¼
½A��=Kdð1þ a½B�=KBÞ

½A��=Kdð1þ a½B�=KBÞ þ ½B�=KB þ 1
: ð4:39Þ

4.6.4 Relationship Between IC50 and KI for

Competitive Antagonists

A concentration of displacing ligand that produces a

50% decrease in r* is defined as the IC50. The following

relation can be defined:

½A��=Kd

½A��=Kd þ 1
¼

0:5½A��=Kd

½A��=Kd þ IC50=KB þ 1
: ð4:40Þ

From this, the relationship between the IC50 and the

amount of tracer ligand [A*] is defined as [2]

IC50 ¼ KB � ð½A
�
�=Kd þ 1Þ:
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4.6.5 Maximal Inhibition of Binding by an

Allosteric Antagonist

From Equation 4.39, the ratio of bound radioligand [A*]

in the absence and presence of an allosteric antagonist [B],

denoted by rA*/rA*B, is given by

rA�B
rA�
¼
½A��=Kdð1þ a½B�=KBÞ þ ½B�=KB þ 1

ð½A��=Kd þ 1Þ � ð1þ a½B�=KBÞ
: ð4:41Þ

The fractional inhibition is the reciprocal; namely,

rA*/rA*B. The maximal fractional inhibition occurs as

[B]/KB!1. Under these circumstances, maximal inhibi-

tion is given by

Maximal Inhibition ¼
½A��=Kd þ 1

½A��=Kd þ 1=a
: ð4:42Þ

4.6.6 Relationship Between IC50 and KI for

Allosteric Antagonists

The concentration of allosteric antagonist [B] that

reduces a signal from a bound amount [A*] of radioligand

by 50% is defined as the IC50:

ð1þ ½A��=KdÞ

ð½A��=Kdð1þ aIC50=KBÞ þ IC50=KB þ 1
¼ 0:5: ð4:43Þ

This equation reduces to:

IC50 ¼ KB
ð1þ ð½A��=KdÞÞ

ð1þ að½A��=KdÞÞ
: ð4:44Þ

4.6.7 Two-stage Binding Reactions

Assume that the ligand [A] binds to receptor [R]

to produce a complex [AR], and by that reaction changes

the receptor from [R] to [R*]:

AþR ��! ��

Ka

AR ��! ��

�

�

AR�: ð4:45Þ

The equilibrium equations are:

Ka ¼ ½A�½R�=½AR� . . . ð4:46Þ

�=� ¼ ½AR�=½AR��: ð4:47Þ

The receptor conservation equation is

½Rtot� ¼ ½R� þ ½AR� þ ½AR��: ð4:48Þ

Therefore, the quantity of end product [AR*] formed

for various concentrations of [A] is given as

½AR��

½Rtot�
¼

½A�=KA

½A�=KAð1þ �=�Þ þ �=�
, ð4:49Þ

where KA¼ 1/Ka. The observed equilibrium dissociation

constant (Kobs) of the complete two-stage process is

given as

Kobs ¼
KA � �=�

1þ �=�
: ð4:50Þ

It can be seen that for non-zero positive values of �/�
(binding promotes formation of R*), Kobs5KA.

4.6.8 The Effect of G-protein Coupling on

Observed Agonist Affinity

Receptor [R] binds to agonist [A] and goes on to form a

ternary complex with G-protein [G]:

AþR ��! ��

Ka

ARþ ½G� ��! ��

Kg

ARG: ð4:51Þ

The equilibrium equations are:

Ka ¼ ½A�½R�=½AR� . . . ð4:52Þ

Kg ¼ ½AR�½G�=½ARG�: ð4:53Þ

The receptor conservation equation is

½Rtot� ¼ ½R� þ ½AR� þ ½ARG�: ð4:54Þ

Converting association to dissociation constants (i.e.,

1/Ka¼KA):

½ARG�

½Rtot�
¼

ð½A�=KAÞð½G�=KGÞ

½A�=KAð1þ ½G�=KGÞ þ 1
: ð4:55Þ

The observed affinity according to Equation 4.5.5 is

Kobs ¼
KA

1þ ð½G�=KGÞ
: ð4:56Þ

4.6.9 Effect of Excess Receptor in Binding Experiments:

Saturation Binding Curve

The Langmuir adsorption isotherm for radioligand

binding [A*] to a receptor to form a radioligand-receptor

complex [A*R] can be rewritten in terms of one where it is

not assumed that receptor binding produces a negligible

effect on the free concentration of ligand ([A*free]):

½A�R� ¼
ð½A�T� � ½A

�R�ÞBmax

½A�T� � ½A
�R� þKd

, ð4:57Þ

where Bmax reflects the maximal binding (in this case, the

maximal amount of radioligand-receptor complex). Under

these circumstances, analogous to the derivation shown

in Section 2.11.4, the concentration of radioligand bound is

½A�R�2 � ½A�R�ðBmax þ ½A
�
T� þKdÞ þ ½A

�
T�Bmax ¼ 0:

ð4:58Þ
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One solution to Equation 4.58 is

½A�R� ¼
1

2

�
½A�T� þKd þ Bmax

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A�T� þKd þ Bmax

� �2
�4½A�T�Bmax

q �
:

ð4:59Þ

4.6.10 Effect of Excess Receptor in Binding Experiments:

Displacement Experiments

The equation for displacement of a radioligand [A*] by a
nonradioactive ligand [B] can be rewritten in terms of
one where it is not assumed that receptor binding does
not deplete the amount of radioligand in the medium

(no change in [A*free]):

½A�R� ¼
ð½A�T� � ½A

�R�ÞBmax

½A�T� � ½A
�R� þKd þ ½B�=KB

, ð4:60Þ

where Bmax reflects the maximal binding the maximal
amount of radioligand-receptor complex. Under these
circumstances, the concentration of radioligand bound

in the presence of a nonradioactive ligand displacement is

½A�R�2 � ½A�R�ðBmax þ ½A
�
T� þKdð1þ ½B�=KBÞ

þ ½A�T�Bmax ¼ 0: ð4:61Þ

One solution to Equation 4.61 is

½A�R� ¼
1

2

�
½A�T� þKdð1þ ½B�=KBÞ þ Bmax

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A�T� þKdð1þ ½B�=KBÞ þ Bmax

� �2
� 4½A�T�Bmax

q �

ð4:62Þ
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5.1 Functional Pharmacological Experiments

Another major approach to the testing of drug activity
is with functional assays. These are comprised of any

biological system that yields a biochemical product or
physiological response to drug stimulation. Such assays

detect molecules that produce biological response or those
that block the production of physiological response. These

can be whole tissues, cells in culture, or membrane
preparations. Like biochemical binding studies, the phar-

macological output can be tailored by using selective
stimulation. Whereas the output can be selected by the

choice of radioligand or other traceable probe with binding
studies, in functional studies the output can be selected by

choice of agonist. When necessary, selective antagonists can
be used to obviate unwanted functional responses and

isolate the receptor of interest. This practice was more
prevalent in isolated tissue studies where the tissue was

chosen for the presence of the target receptor, and in some
cases this came with concomitant presence of other related

and obfuscating receptor responses. In recombinant sys-
tems, a surrogate host cell line with a blank cellular

background can often be chosen. This results in much more
selective systems and less need for selective agonist probes.

There are two main differences between binding and

functional experiments. The first is that functional

responses are usually highly amplified translations of

receptor stimulus (see Chapter 2). Therefore, while binding

signals emanate from complete receptor populations func-

tional readouts often utilize only a small fraction of the

receptor population in the preparation. This can lead to a

greatly increased sensitivity to drugs that possess efficacy.

No differences should be seen for antagonists. This

amplification can be especially important for the detection

of agonism since potency may be more a function of ligand

efficacy than affinity. Thus, a highly efficacious agonist

may produce detectable responses at 100 to 1,000 times

lower concentrations than those that produce measurable

amounts of displacement of a tracer in binding studies. The

complex interplay between affinity and efficacy can be

misleading in structure activity studies for agonists. For

example, Figure 5.1 shows the lack of correlation of relative

agonist potency for two dopamine receptor subtypes and

the binding affinity on those receptor subtypes for a series

of dopamine agonists. This data show, that for these

molecules changes in chemical structure lead to changes in

relative efficacy not reflected in the affinity measurement.

The relevant activity is relative agonist potency. Therefore,

the affinity data is misleading. In this case, a functional

assay is the correct approach for optimization of these

molecules.
Functional assays give flexibility in terms of what

biochemical functional response can be monitored for

drug activity. Figure 5.2 shows some of the possibilities. In

some cases, the immediate receptor stimulus can be

observed, such as the activation of G-proteins by agonist-

activated receptor. Specifically, this is in the observation of

an increased rate of exchange of GDP to GTP on the

G-protein a-subunit. Following G-protein activation comes

initiation of effector mechanisms. For example, this can

include activation of the enzyme adenylyl cyclase to

produce the second messenger cyclic AMP. This and

other second messengers go on to activate enzymatic

biochemical cascades within the cell. A second layer of

response observation is the measurement of the quantity of

these second messengers. Yet another layer of response is

the observation of the effects of the second messengers.

Thus, activation of enzymes such as MAPKinase can be

used to monitor drug activity.
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A second difference between binding and function is the

quality of drug effect that can be observed. Specifically,

functional studies reveal interactions between receptors and

cellular components that may not be observed in

binding studies such as some allosteric effects or other

responses in a receptor’s pharmacological repertoire (i.e.,

receptor internalization). For example, the cholecystokinin

(CCK) receptor antagonist D-Tyr-Gly-[(Nle28,31,D-

Trp30)cholecystokinin-26-32]-phenethyl ester is a receptor

antagonist and does not produce receptor stimulation.

While ostensibly this may appear to indicate a lack of

efficacy, this ligand does produce profound receptor

internalization [2]. Therefore, a different kind of efficacy

is revealed in functional studies that would not have been

evident in binding.
A practical consideration is the need for a radioactive

ligand in binding studies. There are instances where there is

no such traceable probe or it is too expensive to be a viable

approach. Functional studies require only that an

endogenous agonist be available. As with binding studies,

dissimulations in the value of the independent variable

(namely, drug concentration) lead to corresponding errors

in the observed value of the dependent variable (in the case

of functional experiments, cellular response). The factors

involved (namely, drug solubility and adsorption, see

Chapter 2) are equally important in functional experiments.

However, there are some additional factors unique to

functional studies that should be considered. These are

dealt with in Section 5.4.

5.2 The Choice of Functional Assays

There are a number of assay formats available to test

drugs in a functional mode. As discussed in Chapter 2, a

main theme throughout the various stimulus-response

cascades found in cells is the amplification of receptor

stimulus occurring as a function of the distance, in

biochemical steps and reactions, away from the initial

receptor event. Specifically, the further down the stimulus-
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response pathway the agonism is observed the more

amplified the signal. Figure 5.3 illustrates the effects of

three agonists at different points along the stimulus-

response cascade of a hypothetical cell. At the initial step

(i.e., G-protein activation, ion channel opening), all are

partial agonists and it can be seen that the order of potency

is 24143 and the order of efficacy is 34241. If the effects

of these agonists were to be observed at a step further in the

stimulus-response cascade (i.e., production of second

messenger), it can be seen that agonists 2 and 3 are full

agonists while agonist 1 is a partial agonist. Their rank

order of potency does not change but now there is no

distinction between the relative efficacies of agonists 2 and

3. At yet another step in the cascade (namely, end organ

response), all are full agonists with the same rank order of

potency. The point of this simulation is to note the

differences, in terms of the characterization of the agonists

(full versus partial agonists, relative orders of efficacy), that

occur by simply viewing their effects at different points

along the stimulus-response pathway.
Historically, isolated tissues have been used as the

primary form of functional assay, but since these usually

come from animals the species differences coupled with the

fact that human recombinant systems now can be used have

made this approach obsolete. Functional assays in whole-

cell formats, where end organ response is observed (these

will be referred to as group I assays), can be found as

specialized cells such as melanophores, yeast cells, or

microphysiometry assays. Group II assays record the

product of a pharmacological stimulation (for example,

an induction of a gene that goes on to produce a traceable

product such as light sensitive protein). Second messengers

(such as cyclic AMP, calcium, and inositol triphosphate)

can also be monitored directly either in whole-cell or

broken-cell formats (group III assays). Finally, membrane

assays such as the observation of binding of GTP�S to G-

proteins can be used. While this is an assay done in binding

mode, it measures the ability of agonists to induce response

and thus may also be considered a functional assay. It is

worth considering the strengths and shortcomings of all of

these approaches:

Group I assays (end organ response) are the most highly

amplified and therefore most sensitive assays. This is an

advantage in screening for weakly efficacious agonists but

has the disadvantage of showing all agonists above a given

level of efficacy to be full agonists. Under these circum-

stances, information about efficacy cannot be discerned

from the assay since at least for all the agonists that

produce maximal system response no information regard-

ing relative efficacy can be obtained. There are cell culture

group I assays. One such approach uses microphysiometry.

All cells respond to changes in metabolism by adjustment of

internal hydrogen ion concentration. This process is tightly

controlled by hydrogen ion pumps that extrude hydrogen

ions into the medium surrounding the cell. Therefore, with

extremely sensitive monitoring of the pH surrounding cells

in culture a sensitive indicator of cellular function can be

obtained. Microphysiometry measures the hydrogen ion

extrusion of cells to yield a generic readout of cellular

function. Agonists can perturb this control of hydrogen ion

output. One of the major advantages of this format is that it

is generic (i.e., the observed does not depend on the nature

of the biochemical coupling mechanisms in the cytosol of

the cell). For example, the success of cell transfection
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FIGURE 5.3 Different types of functional readouts of agonism.

Receptors need not mediate cellular response but may demonstrate

behaviors such as internalization into the cytoplasm of the cell

(mechanism 1). Receptors can also interact with membrane proteins

such as G-proteins (mechanism 2) and produce cytosolic messenger

molecules (mechanism 3), which can go on to mediate gene

expression (mechanism 4). Receptors can also mediate changes in

cellular metabolism (mechanism 5).
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experiments can be monitored with microphysiometry.

Unless receptors are biochemically tagged, it may be

difficult to determine whether the transfection of cDNA

for a receptor into a cell actually results in membrane

expression of the receptor. On occasion, the cell is unable to

process the cDNA to form the complete receptor and it is

not expressed on the cell surface. Figure 5.4a shows

microphysiometry responses to calcitonin (an agonist for

the human calcitonin receptor) before and after transfection

of the cells with cDNA for the human calcitonin receptor.

The appearance of the calcitonin response indicates that

successful membrane expression of the receptor occurred.

Another positive feature of this format is the fact that

responses can be observed in real time. This allows the

observation of steady states and the possibility of obtaining

cumulative dose-response curves to agonists (see

Figure 5.4b and c).

A specialized cell type that is extremely valuable in drug

discovery is the Xenopus laevis melanophore. This is a cell

derived from the skin of frogs that controls the dispersion

of pigment in response to receptor stimulation. Thus,

activation of Gi protein causes the formation of small

granules of pigment in the cell rendering them transparent

to visible light. In contrast, activation of Gs and Gq protein

causes dispersion of the melanin resulting in an opaque cell

(loss of transmittance of visible light). Therefore, the

activation of receptors can be observed in real time through

changes in the transmittance of visible light through a cell

monolayer. Figure 5.5 shows the activation of human

b-adrenoceptors in melanophores by b-adrenoceptor ago-

nists. It can be seen that activation of Gs protein by the

activated b-adrenoceptor leads to an increase in pigmenta-

tion of the melanophore. This, in turn, is quantified as a

reduced transmittance of visible light to yield graded

responses to the agonists. One of the key features of this

format is that the responses can be observed in real time.

Figure 5.6a shows the reduced transmittance to visible light

of melanophores transfected with human calcitonin recep-

tor acitvated with the agonist human calcitonin. Another

feature of this format is that the transfected receptors are

very efficiently coupled (i.e., agonists are extremely potent

in these systems). Figure 5.6b shows the dose-response

curve to human calcitonin in transfected melanophores

compared to the less efficiently coupled calcium fluores-

cence assay in human embryonic kidney cells for this same

receptor.
Another specialized cell line that has been utilized for

functional drug screening are yeast cells. A major
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FIGURE 5.4 Microphysiometry responses of HEK 293 cells transfected with human calcitonin receptor.

(a) Use of microphysiometry to detect receptor expression. Before transfection with human calcitonin receptor

cDNA, HEK cells do not respond to human calcitonin. After transfection, calcitonin produces a metabolic

response, thereby indicating successful membrane expression of receptors. (b) Cumulative concentration-

response curve to human calcitonin shown in real time. Calcitonin added at the arrows in concentrations of 0.01,

0.1, 1.10, and 100 nM. Dose-response curve for the effects seen in panel B.
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advantage of this format is that there are few endogenous

receptors and G-proteins, leading to a very low background

signal (i.e., the major signal is the transfected receptor of

interest). Yeast can be genetically altered to not grow in

medium not containing histidine unless a previously

transfected receptor is present. Coupled with the low

maintenance and high growth rate, yeast cells are a viable

system of high-throughput screening and secondary testing

of drugs.

Group II assays consist of those monitoring cellular

second messengers. Thus, activation of receptors to cause

Gs-protein activation of adenylate cyclase will lead to

elevation of cytosolic or extracellularly secreted cyclic

AMP. This second messenger phosphorylates numerous

cyclic AMP-dependent protein kinases, which go on to

phosphorylate metabolic enzymes and transport and

regulatory proteins (see Chapter 2). Cyclic AMP can be

detected either radiometrically or with fluorescent probe

technology.

Another major second messenger in cells is calcium ion.

Virtually any mammalian cell line can be used to measure

transient calcium currents in fluorescence assays when cells

are preloaded with an indicator dye that allows monitoring

of changes in cytosolic calcium concentration. These

responses can be observed in real time, but a characteristic

of these responses is that they are transient. This may lead

to problems with hemi-equilibria in antagonist studies

whereby the maximal responses to agonists may be

depressed in the presence of antagonists. These effects are

discussed more fully in Chapter 6.
Another approach to the measurement of functional

cellular responses is through reporter assays (group III).

Reporter assays yield an amount of cellular product made

in response to stimulation of the cell. For example,

elevation of cyclic AMP causes activation of protein

kinase A. The activated subunits resulting from protein

kinase A activation bind to cyclic AMP response element

binding (CREB) protein, which then binds to a promoter

region of cyclic-AMP-inducible genes. If the cell is

previously stably transfected with genes for the transcrip-

tion of luciferase in the nucleus of the cell, elevation of

cyclic AMP will induce the transcription of this protein.

Luciferase produces visible light when brought into contact

with the substrate LucLite, and the amount of light

produced is proportional to the amount of cyclic AMP

produced. Therefore, the cyclic AMP produced through

receptor stimulation leads to a measurable increase in the

observed light produced upon lysis of the cell. There are

numerous other reporter systems for cyclic AMP and

inositol triphosphate, two prevalent second messengers in

cells (see Chapter 2). It can be seen that such a transcription

system has the potential for great sensitivity, since the time

of exposure can be somewhat tailored to amplify the

observed response. However, this very advantage can also

be a disadvantage, since the time of exposure to possible

toxic effects of drugs is also increased. One advantage of

real-time assays such as melanophores and microphysio-

metry is the ability to obtain responses in a short period of

time and thereby possibly reducing toxic effects that require
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FIGURE 5.6 Calcitonin receptor responses. (a) Real-time melanin dispersion (reduced light transmittance)

caused by agonist activation (with human calcitonin) of transfected human calcitonin receptors type II in

melanophores. Responses to 0.1 nM (filled circles) and 10 nM (open circles) human calcitonin. (c) Dose-

response curves to calcitonin in melanophores (open circles) and HEK 293 cells, indicating calcium transient

responses (filled circles).

5.2 THE CHOICE OF FUNCTIONAL ASSAYS 83



longer periods of time to become manifest. Reporter

responses are routinely measured after a 24-hour incuba-

tion (to give sufficient time for gene transcription).

Therefore, the exposure time to drug is increased with a

concomitant possible increase in toxic effects.

Finally, receptor stimulus can be measured through

membrane assays directly monitoring G-protein activation

(group IV assays). In these assays, radiolabeled GTP (in a

stable form; for example, GTP�S) is present in the medium.

As receptor activation takes place, the GDP previously

bound to the inactive state of the G-protein is released and

the radiolabeled GTP�S binds to the G-protein. This is

quantified to yield a measure of the rate of GDP/GTP�S

exchange and hence receptor stimulus.
The majority of functional assays involve primary

signaling. In the case of GPCRs, this involves activation

of G-proteins. However, receptors have other behaviors—

some of which can be monitored to detect ligand activity.

For example, upon stimulation many receptors are

desensitized through phosphorylation and subsequently

taken into the cell and either recycled back to the cell

surface or digested. This process can be monitored by

observing ligand-mediated receptor internalization. For

many receptors this involves the migration of a cytosolic

protein called b-arrestin. Therefore, the transfection of

fluorescent b-arrestin to cells furnishes a method to track

the movement of the fluorescent b-arrestin from the cytosol

to the inner membrane surface as receptors are activated

(Figure 5.7). Alternative approaches to detecting interna-

lization of GPCRs involve pH-sensitive cyanine dyes such

as CypHer-5 that fluoresce when irradiated with red laser

light, but only in an acidic environment. Therefore, epitope

tagging of GPCRs allows binding of antibodies labeled

with CypHer-5 to allow detection of internalized receptors

(those that are in the acidic internal environment of the cell

and thus fluoresce to laser light) [3]. A general list of

minimal and optimal conditions for functional assays is

given in Table 5.1.

5.3 Recombinant Functional Systems

With the advent of molecular biology and the ability to

express transfected genes (through transfection with

cDNA) into surrogate cells to create functional recombi-

nant systems has come a revolution in pharmacology.

P PGRK
GRK 

phosphorylation β-arrestin
binding

Recycling

Degradation

Internalization

Before internalization

After internalization

β-Arrestin

Endosomes

β-Arrestin

β-Arrestin

(a) (b)

FIGURE 5.7 Internalization of GPCRs. (a) Receptors adopt an active conformation either spontaneously or through

interaction with a ligand and become phosphorylated. This promotes b-arrestin binding, which precedes internalization of

the receptor into clatherin pits. Receptors then are either degraded in endosomes or recycled to the cell surface. (b) A

fluorescent analog of b-arrestin can be visualized and tracked according to location either at the cell membrane (receptors

not internalized) or near the cell nucleus (internalized receptors). This enables detection of changes in GPCRs.
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Previously, pharmacologists were constrained to the pre-

wired sensitivity of isolated tissues for agonist study. As

discussed in Chapter 2, different tissues possess different

densities of receptor, different receptor co-proteins in the

membranes, and different efficiencies of stimulus-response

mechanisms. Judicious choice of tissue type could yield

uniquely useful pharmacologic systems (i.e., sensitive

screening tissues). However, before the availability of

recombinant systems these choices were limited. With the

ability to express different densities of human target

proteins such as receptors has come a transformation in

drug discovery. Recombinant cellular systems can now

be made with a range of sensitivities to agonists. The

techniques involved in the construction of recombinant

receptor systems is beyond the scope of this Chapter.

However, some general ideas are useful in that they can be

used for the creation of optimal systems for drug discovery.

The first idea to consider is the effect of receptor density

on sensitivity of a functional system to agonists. Clearly,

if quanta of stimulus are delivered to the stimulus-response

mechanism of a cell per activated receptor the amount of

the total stimulus will be directly proportional to the

number of receptors activated. Figure 5.8 shows

Gi-protein-mediated responses of melanophores transiently

transfected with cDNA for human neuropeptide Y-1

receptors. As can be seen from this figure, increasing

receptor expression (transfection with increasing concen-

trations of receptor cDNA) causes an increased potency

and maximal response to the neuropeptide Y agonist PYY.

Receptor density has disparate effects on the potency and

maximal responses to agonists. The operational model

predicts that the EC50 to an agonist will vary with receptor

density according to the following relationship (see Section

3.13.3)

EC50 ¼
KA �KE

Rt½ � þKE
, ð5:1Þ

where [Rt] is the receptor density, KA is the equilibrium

dissociation constant of the agonist-receptor complex, and

KE is the concentration of activated receptor that produces

half maximal response (a measure of the efficiency of the

stimulus-response mechanism of the system) (see Section

3.13.3 for further details). Similarly, the agonist maximal

response is given by

MaximalResponse ¼
Rt½ � � Emax

Rt½ � þKE
, ð5:2Þ

where Emax is the maximal response capability of the

system. It can be seen that increases in receptor density will

cause an increase in agonist maximal response to the limit

of the system maximum (i.e., until the agonist is a full

agonist). Thereafter, increases in receptor density will have

no further effect on the maximal response to the agonist. In

contrast, Equation 5.1 predicts that increases in receptor

density will have concomitant increases in the potency of

full agonist with no limit. These effects are shown in

Figure 5.9. It can be seen from this figure that at receptor

density levels where the maximal response reaches an

asymptote agonist potency increases linearly with increases

in receptor density. Figure 5.9b shows the relationship

between the pEC50 for the b2-adrenoceptor agonist

isoproterenol and b2-adrenoceptor density in rat C6

glioma cells. It can be seen that while no further increases

in maximal response are obtained the agonist potency

increases with increasing receptor density.

Recombinant systems can also be engineered to pro-

duce receptor-mediated responses by introducing adjunct

proteins. For example, it has been shown that the Ga16

G-protein subunit couples universally to nearly all

TABLE 5.1

Minimal and optimal criteria for experiments utilizing

cellular function.

Minimal

. An agonist and antagonist to define the response on the target

are available.

. The agonist is reversible (after washing with drug-free medium).

Optimal

. The response should be sustained and not transient. No

significant desensitization of the response occurs within the

time span of the experiment.
. The response production should be rapid.

. The responses can be visualized in real time.

. There are independent methods to either modulate or

potentiate functional responses.
. There is a capability to alter the receptor density (or cells

available with a range of receptor densities).
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FIGURE 5.8 Dose-response curves to peptide PYY

(YPAKPEAPGEDASPEELSRYYASLRHYLNLVTRQRYNH2)

in melanophores. Ordinates: minus values for 1�Tf/Ti reflecting

increases in light transmission. Abscissae: logarithms of molar

concentrations of PYY. Cells transiently transfected with cDNA

for the human NPY1 receptor. Levels of cDNA¼ 10 mg (filled

circles), 20 mg (open circles), 40 mg (filled triangles), and 80 mg
(open squares). Data redrawn from [4].
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receptors [6]. In recombinant systems, where expression of

the receptor does not produce a robust agonist response,

co-transfection of the Ga16 subunit can substantially

enhance observed responses. Figure 5.10 shows that both

the maximal response and potency of the neuropeptide Y

peptide agonist PYY is enhanced when neuropeptide Y-4

receptors are co-transfected with cDNA for receptor and

Ga16. Similarly, other elements may be required for a useful

functional assay. For example, expression of the gluata-

mate transporter EAAT1 (a glutamate aspirate transporter)

is required in some cell lines to control extracellular

glutamate levels (which lead to receptor desensitization) [7].

While high receptor density may strengthen an agonist

signal, it may also reduce its fidelity. In cases where

receptors are pleiotropic with respect to the G-proteins with

which they interact (receptors interact with more than one

G-protein), high receptor numbers may complicate signal-

ing by recruitment of modulating signaling pathways. For

example, Figure 5.11 shows a microphysiometry response

to human calcitonin produced in human embryonic kidney

cells transfected with human calcitonin receptor. It can be

seen that the response is sustained. In a transfected cell line

with a much higher receptor density, the response is not of

higher magnitude and is also transient, presumably because
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FIGURE 5.9 Effects of receptor density on functional assays. (a) Effect of increasing receptor density

on potency (pEC50) and maximal response to an agonist. Left ordinal axis is ratio of observed EC50 and

KA as �Log Scale; Right ordinal axis fraction of system maximal response (intrinsic activity). (b)

Observed pEC50 values for isoproterenol for increases in cyclic AMP in rat glioma cells transfected with

human b2-adrenoceptors (open circles) and maximal response to isoproterenol (as a fraction of system

maxima, filled circles) as a function of b2-adrenoceptor density on a log scale (fmol/mg protein). Data

redrawn from [5].
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FIGURE 5.10 Effects of co-expressed G-protein (Ga16) on neuropeptide NPY4 receptor responses

(NPY-4). (a) Dose-response curves for NPY-4. Ordinates: Xenopus laevis melanophore responses (increases

light transmission). Ordinates: logarithms of molar concentrations of neuropeptide Y peptide agonist PYY.

Curves obtained after no co-transfection (labeled 0 mg) and co-transfection with cDNA for Ga16. Numbers

next to the curves indicate mg of cDNA of Ga16 used for co-transfection. (b) Maximal response to

neuropeptide Y (filled circles) and constitutive activity (open circles) as a function of mg cDNA of

co-transfected Ga16.
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of complications due to the known pleiotropy of this

receptor with other G-proteins. The responses in

such systems are more difficult to quantify, and cumulative

dose-response curves are not possible. These factors make a

high-receptor-density system less desirable for pharmaco-

logical testing. This factor must be weighed against

the possible therapeutic relevance of multiple G-protein

coupling to the assay.

5.4 Functional Experiments: Dissimulation in Time

A potential problem when measuring drug activity relates

to the temporal ability of systems to come to equilibrium,

or at least to a steady state. Specifically, if there are

temporal factors that interfere with the ability of the system

to return cellular response or if real-time observation of

response is not possible the time of exposure to drugs,

especially agonists, becomes an important experimental

variable. In practice, if responses are observed in real time

then steady states can be observed and the experiment

designed accordingly. The rate of response production can

be described as a first-order process. Thus, the effect of a

drug ([E]) expressed as a fraction of the maximal effect of

that drug (receptors saturated by the drug, [Em]) is

E½ �

Em½ �
¼ 1� e�kont, ð5:3Þ

where kon is a first-order rate constant for approach of the

response to the equilibrium value and t is time. The process

of drug binding to a receptor will have a temporal

component. Figure 5.12 shows three different rates of

response production by an agonist or binding of a ligand in

general. The absolute magnitude of the equilibrium binding

is the same, but the time taken to achieve the effect is quite

different. It can be seen from this figure that if response is

measured at t¼ 1,000 s only drug A is at steady state. If

comparisons are made at this time point, the effect of the

other two drugs will be underestimated. As previously

noted, if responses are observed in real time steady states

can be observed and temporal inequality ceases to be an

issue. However, this can be an issue in stop-time experi-

ments where real-time observation is not possible and the

product of a drug response interaction is measured at a

given time point. This is further discussed later in the

chapter.

Another potential complication can occur if the respon-

siveness of the receptor system changes temporally. This

can happen if the receptor (or host system, or both)

demonstrates desensitization (tachyphylaxis) to drug stim-

ulation (see Chapter 2). There are numerous systems where

constant stimulation with a drug does not lead to a

constant steady-state response. Rather, a ‘‘fade’’ of the

response occurs. This can be due to depletion of a cofactor

in the system producing the cellular response or a

conformational change in the receptor protein. Such

phenomena protect against overactive stimulation of
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FIGURE 5.11 Microphysiometry responses to 1 nM human calcitonin. (a) Responses obtained from

HEK 293 cells stably transfected with low levels of human calcitonin receptor (68 pM/mg protein).

Response is sustained. (b) Response from HEK 293 cells stably transfected with high levels of receptor

(30,000 pM/mg protein). Data redrawn from [8].
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FIGURE 5.12 First-order rate of onset of response for three

agonists of equal potency but differing rates of receptor onset.

Ordinates: response at time t as a fraction of equilibrium response

value. Abscissae: time in seconds. Curve 1: k1¼ 3� 106 s�1mol�1,

k2¼ 0.003 s�1. Curve 2: k1¼ 106 s�1 mol�1, k2¼ 0.001 s�1. Curve 3:

k1¼ 5� 105 s�1mol�1, k2¼ 0.0005 s�1.
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systems to physiological detriment. Whatever the cause, the
resulting response to the drug is temporally unstable,

leading to a dependence of the magnitude of the response
on the time at which the response was recorded. The

process of desensitization can be a first-order decay
according to an exponential function, the time constant

for which is independent of the magnitude of the response.

Under these circumstances, the response tracings would
resemble those shown in Figure 5.13a. Alternatively, the

rate of desensitization may be dependent on the intensity of
the stimulation (i.e., the greater the response the more rapid

will be the desensitization). Under these circumstances, the
fade in response will resemble a pattern shown in

Figure 5.13b. These temporal instabilities can lead to
underestimation of the response to the agonist. If the wrong

time point for measurement of response is taken this can
lead to a shift to the right of the agonist dose-response

curve (Figure 5.14a) or a diminution of the true maximal
response (see Figure 5.14b). Temporal studies must be done

to ensure that the response values are not dependent on the

time chosen for measurement.

5.5 Experiments in Real Time Versus Stop Time

The observation of dependent variable values (in func-

tional experiments this is cellular response) as they happen
(i.e., as the agonist or antagonist binds to the receptor and

as the cell responds) is referred to as real time. In contrast, a
response chosen at a single point in time is referred to as

stop-time experimentation. There are certain experimental
formats that must utilize stop-time measurement of

responses since the preparation is irreparably altered by
the process of measuring response. For example, measure-

ment of gene activation through reporter molecules

necessitates lysis of the cell. Therefore, only one

measurement of response can be made. In these instances,

the response is a history of the temporal process of response

production from the initiation of the experiment to the time

of measurement (for example, the production of the second

cellular messenger cyclic AMP as a function of time). In

specially constructed reporter cells, such as those contain-

ing an 8-base-pair palindrome sequence called cyclic AMP

response element (CRE), receptor activation causes this

element to activate a p-promoter region of cyclic-AMP-

inducible genes. This, in turn, causes an increase in

transcription of a protein called luciferase. This protein

produces light when brought into contact with an appro-

priate substrate, making it detectable and quantifiable.

Therefore, any agonist increasing cyclic AMP will lead to

an increase in luciferase. This is one of a general type of

functional assays (called reporter assays) where agonism

results in the production and accumulation of a detectable

product. The amount of product accumulated after

agonism can be measured only once. Therefore, an

appropriate time must be allowed for assumed equilibrium

before reading of the response. The addition of an agonist

to such an assay causes the production of the second

(reporter) messenger, which then goes on to produce the

detectable product. The total amount of product made

from the beginning of the process to the point where the

reaction is terminated is given by the area under the curve

defining cyclic AMP production. This is shown in

Figure 5.15. Usually the experimenter is not able to see

the approach to equilibrium (real-time response shown in

Figure 5.15a) and must choose a time point as the best

estimate regarding when equilibrium has been attained.

Figure 5.15b shows the area under the curve as a function

of time. This area is the stop-time response. This function is

not linear in the early stages during approach to

equilibrium but is linear when a steady state or true
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FIGURE 5.13 Fade of agonist-induced responses in systems with a uniform rate constant for

desensitization (panel a) or a rate of desensitization proportional to the magnitude of the response

(panel b). Abscissae: time in seconds. Ordinates: fractions of maximal response; responses ranging from

0.25 to 0.95x maximum. (a) Temporal response multiplied by an exponential decay of rate constant

10�3 s�1. Numbers refer to the concentration of agonist expressed as a fraction of the EC50. (b) Rate

constant for exponential decay equals the magnitude of the fractional response multiplied by a uniform

rate constant 10�3 s�1. For panel b, the rate of desensitization increases with increasing response.
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equilibrium has been attained. Therefore, a useful method

to determine whether equilibrium has been achieved in

stop-time experiments is to stop the reaction at more than

one time point and ensure that the resulting signal (product

formed) is linear with time. If the relationship between three

stop-time responses obtained at three different time points

is linear, then it can be assumed that the responses are being

measured at equilibrium.
A potential pitfall with stop-time experiments comes with

temporal instability of responses. When a steady-state

sustained response is observed with time, then a linear

portion of the production of reporter can be found (see

Figure 5.15b). However, if there is desensitization or any

other process that makes the temporal responsiveness of the

system change the area under the curve will not assume the

linear character seen with sustained equilibrium reactions.

For example, Figure 5.16 shows a case where the

production of cyclic AMP with time is transient. Under

these circumstances, the area under the curve does not

assume linearity. Moreover, if the desensitization is linked

to the strength of signal (i.e., becomes more prominent at

higher stimulations) the dose-response relationship may be

lost. Figure 5.16 shows a stop-time reaction dose-response

curve to a temporally stable system and a temporally

unstable system where the desensitization is linked to the

strength of signal. It can be seen that the dose-response
curve to the agonist is lost in the stop-time temporally

unstable system.

5.6 The Measurement of Agonist Affinity in

Functional Experiments

Binding experiments can yield direct measurements of

ligand affinity (Chapter 4). However, with the use of null
techniques these same estimates can also be obtained in
functional studies. The concepts and procedures used to do

this differ for partial and full agonists.

5.6.1 Partial Agonists

As noted in Chapter 2, the functional EC50 for a full
agonist may not, and most often will not, correspond to the

binding affinity of the agonist. This is due to the fact that
the agonist possesses efficacy and the coupling of agonist

binding to production of response is nonlinear. Usually, a
hyperbolic function links the binding reaction to the

observed dose-response curve—leading to a phase shift of
the location parameters (midpoint values) of the two
curves. The relationship of the EC50 for an agonist in any
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FIGURE 5.14 Temporal desensitization of agonist response. (a) Patterns of response for a concentration of

agonist producing 80% maximal response. Curve 1: no desensitization. For concentration of agonist [A]¼ 5x

EC50, first-order rate of onset k1¼ sec�1mol�1, k2¼ 10�3 sec�1. Curve 2 equals constant desensitization

rate¼ kdesen¼ 10�3. Curve 3: variable desensitization rate equals rkdesen, where r equals fractional receptor

occupancy. (b) Complete dose-response curves to the agonist taken at equilibrium with no desensitization

(curve 1), and at peak response for constant desensitization rate (curve 2) and variable desensitization rate

(curve 3). (c) Curves as per panel B but response measured after 10 minutes equilibration with the agonist.
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system to the affinity, as defined by the classical model, is

given by (see Section 5.9.1)

EC50 ¼
KA � b
eþ bð Þ

, ð5:4Þ

where b refers to the hyperbolic coupling constant relating

receptor stimulus to response, affinity is KA (equilibrium

dissociation constant of the agonist-receptor complex), and

e is efficacy. The steepness of the hyperbolic relationship

between agonist receptor occupancy (and resulting stimu-

lus) and tissue response is given by the magnitude of b (see

Figure 5.17). It can be seen that low values of b or high

values of efficacy displace the EC50 from the KA along the

concentration axis. A similar effect can be seen in terms of

the operational model (see Section 5.9.1), where the EC50 is

related to the KA by

EC50 ¼
KA

1þ tð Þ
¼ KA, ð5:5Þ

where t is the term relating efficacy of the agonist and the
efficiency of the receptor system in converting receptor

activation to response (high values of t reflect either high
efficacy, highly efficient receptor coupling, or both). High

values of t are associated with full agonism. It can be seen

from Equation 5.5 that full agonism produces differences
between the observed EC50 and the affinity (KA).

Both Equation 5.4 and Equation 5.5 show that as the
efficacy of agonist decreases the EC50!KA. Thus, as e! 0

in Equation 5.4 EC50!KA. Similarly, as t! 0 EC50!KA

(Equation 5.5). Therefore, in general the EC50 of a weak

partial agonist can be a reasonable approximation of the

KA (see Section 5.9.1 for further details). The lower
the magnitude of the maximal response (lower t) the

closer the EC50 will approximate the KA. Figure 5.18 shows
the relationship between agonist receptor occupancy for

partial agonists and the response for different levels of
maximal response (different values of t). It can be seen that

as the maximal response! 0 the relationship between

agonist receptor occupancy and tissue response becomes
linear and the EC50!KA.

By utilizing complete dose-response curves, the method
devised by Barlow, Scott, and Stephenson [9] can be used to

measure the affinity of a partial agonist. Using null
procedures, the effects of stimulus-response mechanisms

are neutralized and receptor-specific effects of agonists are
isolated. This method, based on classical or operational

receptor theory, depends on the concept of equiactive

concentrations of drug. Under these circumstances, recep-
tor stimuli can be equated since it is assumed that equal

responses emanate from equal stimuli in any given system.
An example of this procedure is given in Section 12.2.1.

Dose-response curves to a full agonist [A] and a partial
agonist [P] are obtained in the same receptor preparation.

From these curves, reciprocals of equiactive concentrations

of the full and partial agonist are used in the following
linear equation (derived for the operational model; see

Section 5.9.2)

1

A½ �
¼

1

P½ �
�
ta �KP

tp �KA
þ

ta � tp
tp �KA

, ð5:6Þ

where ta and tp are efficacy terms for the full and partial
agonist, respectively, and KA and KP their respective

ligand-receptor equilibrium dissociation constants. Thus,

a regression of 1/[A] upon 1/[P] yields the KB modified by
an efficacy term with the following parameters from

Equation 5.6:

KP ¼
Slope

Intercept
1�

tp
ta

� �
: ð5:7Þ

It can be seen from Equation 5.7 that a more accurate
estimate of the affinity will be obtained with partial

agonists of low efficacy (i.e., as ta� tp, tp/ta! 0).
Double reciprocal plots are known to produce
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FIGURE 5.15 Different modes of response measurement.

(a) Real time shows the time course of the production of response

such as the agonist-stimulated formation of a second messenger in

the cytosol. (b) The stop-time mode measures the area under the

curve shown in panel A. The reaction is stopped at a designated

time (indicated by the dotted lines joining the panels) and the

amount of reaction product is measured. It can be seen that in the

early stages of the reaction, before a steady state has been attained

(i.e., a plateau has not yet been reached in panel A), the area under

the curve is curvilinear. Once the rate of product formation has

attained a steady state, the stop-time mode takes on a linear

character.
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over-emphasis of some values, skew the distribution of data

points, and be heterogeneously sensitive to error. For these

reasons, it may be useful to use a metameter of Equation

5.6 as a linear plot to measure the KP. Thus, the KP can be

estimated from a plot according to

P½ �

A½ �
¼

P½ �

KA
ððtA=tpÞ � 1Þ þ

taKP

tpKA
, ð5:8Þ

where

KP ¼
Intercept

Slope
1� tp=ta
� �

: ð5:9Þ

Another variant is

A½ �

P½ �
¼

tpKA

taKP
� A½ � �

1� tp=ta
� �

KP
, ð5:10Þ

where

KP ¼
tp=ta � 1
� �

slope
: ð5:11Þ

An example of the application of this method to the

measurement of the affinity of the histamine receptor

partial agonist E-2-P (with full agonist histamine) is shown

in Figure 5.19. A full example of the application of this

method for the measurement of partial agonists is given in

Section 12.2.2.

5.6.2 Full Agonists

For full agonists, the approximation of the EC50 as

affinity is not useful and other methods must be employed

to estimate affinity. A method to measure the affinity of

−3 3

No desensitization

No desensitization

+ Desensitization

Log ([A] /KA)
−2 −1 0 1 2

0.0

0.6

0.8

0.2

0.4

1.0

Fr
ac

t. 
m

ax
. r

es
po

ns
e

0 600100 200 300

[A] /KA = 10

400 500
0

2

4

6

8

10

0 600100 200 300

[A] /KA = 1

400 500
0.0

0.1
0.2
0.3

0.4

0.6

0.5

0.0

0.1
0.2
0.3

0.4

0.6

0.5

0 600100 200 300

[A] /KA = 0.1

400 500

Desensitization

0 600100 200 300

[A] /KA = 10

400 500
0

2

4

6

8

10

0 600100 200 300

[A] /KA = 1

400 500
0.0

0.1
0.2
0.3

0.4

0.6

0.5

0.0

0.1
0.2
0.3

0.4

0.6

0.5

0 600100 200 300

[A] /KA = 0.1

400 500

Time

FIGURE 5.16 The effect of desensitization on stop-time mode measurements. Bottom panels show the time course of response

production for a system with no desensitization, and one in which the rate of response production fades with time. The top dose

response curves indicate the area under the curve for the responses shown. It can be seen that whereas an accurate reflection of

response production is observed when there is no desensitization the system with fading response yields an extremely truncated

dose-response curve.
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high-efficacy agonists has been described by Furchgott [11].

This method is based on the comparison of the responses to

an agonist in a given receptor system under control

conditions and again after a fraction of the receptor

population has been irreversibly inactivated. For some

receptors—such as a-adrenoceptors, muscarinic, serotonin,

and histamine receptors—this can be accomplished through

controlled chemical alkylation with site-directed alkylating

agents such as b-haloalkylamines. Thus, equiactive

responses obtained before and after receptor alkylation

are compared in the following double reciprocal relation

(see Section 5.9.3):

1

A½ �
¼

1

A0½ �
�
1

q
þ

1

KA
�
1� q

q
, ð5:12Þ

where [A] and [A0] are equiactive agonist concentrations

measured before and after receptor alkylation, respectively,

q is the fraction of receptors remaining after alkylation, and

KA is the equilibrium dissociation constant of the agonist-

receptor complex. Thus, a regression of 1/[A] upon 1/[A0]

yields a straight line with given slope and intercept. From

these, the equilibrium dissociation constant of the agonist-

receptor complex can be calculated:

KA ¼
Slope� 1

Intercept
: ð5:13Þ

An example of the use of this approach is given in

Figure 5.20. The method of Furchgott indicates that the

affinity of the muscarinic agonist oxotremorine in guinea

pig ileal smooth muscle is 8.2mM. The EC50 for half

maximal contractile response to this agonist is 25 nM (a

330-fold difference). This underscores the fact that the EC50

for full agonists can differ considerably from the KA. A full

example of the use of this method to measure the affinity of

a full agonist is given in Section 12.2.3.

This method can also be employed with the operational

model. Specifically, the operational model defines receptor

response as

Response ¼
A½ � � t � Emax

A½ � 1þ tð Þ þKA
, ð5:14Þ
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FIGURE 5.17 Relationship between receptor occupancy and tissue response for two agonists.

(a) Occupancy-response curves for two agonists that differ in efficacy (agonist A t¼ 3 and agonist B

t¼ 30). (b) Doseresponse (solid line) and receptor occupancyresponse (dotted line) for agonist A. Stimulus-

response coupling and efficacy cause a 166-fold phase shift between the curves. (b) Dose-response curve

(solid line) and receptor occupancy (dotted line) curves for agonist B. Stimulus-response coupling and

efficacy cause a twofold phase shift between the curves.

92 5. AGONISTS: THE MEASUREMENT OF AFFINITY AND EFFICACY IN FUNCTIONAL ASSAYS



where Emax is the maximal response of the system, KA is the

equilibrium dissociation constant of the agonist-receptor

complex, and t is the ratio of the receptor density divided

by the transducer function for the system (defined as KE).

The transducer function defines the efficiency of the system

to translate receptor stimulus into response and defines

the efficacy of the agonist. Specifically, it is the fitting

parameter of the hyperbolic function linking receptor
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FIGURE 5.18 The relationship between the EC50 for partial agonists and the affinity (KA).

For higher-efficacy partial agonists (t¼ 3), the relationship between receptor occupancy and

response is hyperbolic (note solid versus dotted line in right-hand panel where the dotted line

represents a linear and direct relationship between the occupancy of the receptor by the agonist

and the production of response). This deviation lessens with lower efficacy values for the partial

agonist (note panels for agonist with t¼ 1). With weak partial agonists, the EC50 and KA values

nearly coincide (see panels with t¼ 0).
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FIGURE 5.19 Method of Barlow for measurement of affinity of a partial agonist. (a) Guinea pig

ileal smooth muscle contraction to histamine (filled circles) and partial histamine receptor agonist E-2-P

(N,N-diethyl-2-(1-pyridyl)ethylamine (open circles). Dotted lines show equiactive concentrations of each

agonist used for the double reciprocal plot shown in panel b. (b) Double reciprocal plot of equiactive

concentrations of histamine (ordinates) and E-2-P (abscissae). Linear plot has a slope of 55.47 and an

intercept of 1.79� 106. This yields a KB � (1� tp/tA)¼ 30.9 mM. (c) Variant of double reciprocal plot

according to Equation 5.8. (d) Variant of double reciprocal plot according to Equation 5.10.

Data redrawn from [10].
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FIGURE 5.20 Measurement of the affinity of a full agonist by the method of Furchgott.

(a) Concentration response curves to oxotremorine in guinea pig ileal smooth muscle strips. Ordinates:

percent maximal contraction. Abscissae: logarithms of molar concentrations of oxotremorine. Control

curve (filled circles) and after partial alkylation of muscarinic receptors with phenoxybenzamine 10 mM for

12 minutes (open circles). Lines represent equiactive concentrations of oxotremorine before and after

receptor alkylation. (b) Regression of reciprocals of equiactive concentrations of oxotremorine before

(ordinates) and after (abscissae) receptor alkylation. The regression is linear with a slope of 609 and an

intercept of 7.4� 107. Resulting KA estimate for oxotremorine according to Equation 5.12 is 8.2 mM. Data

redrawn from [12].
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occupancy and tissue response. Thus, t¼ [Rt]/KE (see

section on the operational model in Chapter 3 for further

details). Under these circumstances, a reduction in receptor

number will lead to a modified value of t.
The Furchgott method can be effectively utilized by

fitting the dose-response curves themselves to the opera-

tional model with fitted values of t (before and after

alkylation) and a constant KA value. When fitting

experimental data, the slopes of the dose-response curves

may not be unity. This is a relevant factor in the

operational model since the stimulus-transduction function

of cells is an integral part of the modeling of responses.

Under these circumstances, the data is fit to (see Section

3.13.3 and Equation 3.49)

E ¼
Emaxtn A½ �n

A½ � þKAð Þ
n
þtn A½ �n

: ð5:15Þ

Fitting the data directly to either Equation 5.14 or

Equation 5.15 eliminates bias in the data imposed by

reciprocal linear curve fitting. Figure 5.21 shows the use

of nonlinear curve fitting to measure the affinity of the

a-adrenoceptor agonist oxymetazoline in rat annoccycy-

geus muscle after alkylation of a portion of the receptors

with phenoxybenzamine. This data shows how all three

curves can be used for a better estimate of the affinity with

nonlinear curve fitting, a technique not possible with the

double reciprocal plot approach where only two dose-

response curves can be used. The use of three curves

increases the power of the analysis since more data is

utilized for the fit and all must comply with a single

estimate of KA.

5.7 Estimates of Relative Efficacy of Agonists

in Functional Experiments

The other system-independent measure of drug activity

that can be measured for an agonist is efficacy, the power of

the molecule to induce a change in the biological system. As

discussed in Chapter 2, an agonist of high efficacy will need

to activate fewer receptors to induce a given response than

an agonist of lower efficacy (to induce the same response).

Therefore, in theory comparison of the response produced

by agonists should be proportional to efficacy, the receptor

density, and the efficiency of stimulus-response coupling.

These factors can be quantified by examining the multiple

difference in system sensitivity to receptor occupancy by the

agonist and tissue (i.e., if it requires 1/20 the receptor

occupancy to produce 50% maximal agonist response, then

the combination of efficacy, receptor density, and stimulus-

response coupling produces a net amplification factor of 20

for that agonist). Such a difference is shown in panels B and

C of Figure 5.17. Assume that for another agonist in the

same receptor system the factor were 100. Since the

receptor density and efficiency of the stimulus-response

mechanism is common for both agonists, it can be assumed

that the agonist-specific aspect of the amplification

(namely, the efficacy) differs by 100/20¼ 5-fold. Thus, the

second agonist has five times the efficacy of the first. This

reasoning forms the basis of a method devised to quantify

the relative efficacies of agonists by Furchgott [11]. In this

method, agonist response is plotted as a function of

receptor occupancy on a log scale. The relative displace-

ment along the receptor occupancy axis, for equiactive

responses of agonist, is the logarithm of the relative efficacy

of the agonists. While sound in theory, this method is

flawed in practice because of the necessity of independent

measures of agonist affinity that are not affected by

efficacy. As noted in Chapter 4, the isomerization of

receptors to an active form by agonists can affect

observed affinity. Therefore, the object of the Furchgott

method, agonist efficacy, can itself modify the independent

variable on which the measurement is made; namely, the

affinity.
A practical way around this shortcoming is to obviate

dependence of the measurement on affinity. Since the

maximal response to an agonist is totally dependent on

efficacy and the efficiency of receptor stimulus-response

coupling (receptor occupancy is maximal and thus affinity

is not an issue), the relative maxima of agonists can be used

to estimate the relative efficacy of agonists. In terms of

operational theory, the maximal response to a given agonist

(Max) is given by (see Section 5.9.4)

Max ¼
Emax � t
1þ t

: ð5:16Þ

The relative maximal response to two agonists with t
values denoted t and t0 is given by (see Section 5.9.4)

Max0

Max
¼

t0 1þ tð Þ

t 1þ t0ð Þ
: ð5:17Þ
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FIGURE 5.21 Measurement of affinity of a full agonist by the

method of Furchgott [4] utilizing nonlinear curve-fitting techniques

according to the operational model. Contractions of rat anocco-

cygeus mucsle to a-adrenoceptor agonist oxymetazoline before

(filled circles) and after irreversible receptor alkylation with

phenoxybenzamine (open squares: 30 nM for 10 minutes) and

(open triangles: 0.1 mM for 10 minutes). Curves fit simultaneously

to Equation 5.15 with Emax¼ 105 and t values for curves of

(t1¼ 12), (t2¼ 2.6), and (t3¼ 0.15). The equilibrium dissociation

constant for the agonist-receptor complex is 0.3 mM. Estimation by

the double reciprocal plot method is KA¼ 0.32 mM and by the

Schild method (whereby oxymetazoline is utilized as a competitive

antagonist of responses to the higher-efficacy agonist norepinephr-

ine after receptor alkylation is 0.2 mM). Data redrawn from [13].
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It can be seen that the relative maxima are completely

dependent on efficacy, receptor density, and the efficiency

of stimulus-response coupling (t¼ [R]/KE, see Chapter 3).

However, the relationship is not a direct one. Figure 5.22

shows the relative maximum response to two agonists in a

range of systems of varying receptor number and how

the relative maxima correlate with the relative efficacy of

the two agonists. It can be seen that as receptor density

increases both agonists will become full agonists and any

texture, with respect to differences in maximal response, is

lost. However, at low values of receptor density the relative

maximal response approximates the relative efficacy of the

two agonists (as t, t0 � 1, Max0/Max! t0/t). This simula-

tion and Equation 5.17 indicate that if both agonists are

weak partial agonists in a given receptor system the relative

maximal response will be an approximation of the relative

efficacy of the two agonists. At the least, even in cases

where the maxima approach the system maximum the rank

order of the maxima of two agonists is an accurate estimate

of the rank order of the efficacy of the agonists.

5.8 Chapter Summary and Conclusions

. There are practical advantages to measuring biological

responses in functional experiments and numerous

formats are available to do this.
. Functional responses can be measured near their

cytosolic origin (immediately proximal to the activa-

tion of the biological target) further on down in the

stimulus-response mechanism or as an end-organ

response. Amplification occurs as the progression is

made from point of origin to end-organ response.

. Recombinant assays have revolutionized pharmacol-

ogy and now functional systems can be constructed

with engineered levels of responsiveness (i.e., through

difference in receptor levels or co-transfection of other

proteins).
. One possible complication to consider in functional

experiments is the dependence of response on time. If

fade occurs in the response, time becomes an

important factor in determining the magnitude of

response.

. The complications of time become much more

important in stop-time measurement of response,

where a time is chosen to measure an amount of

product from a biochemical reaction. Observing

linearity in the production of response with respect

to time allows determination that a steady state has

been reached.

. The affinity of partial agonists can be made in

functional experiments by the method of Barlow,

Scott, and Stephenson [9] and for full agonists by the

method of Furchgott [11].

. The relative efficacy of agonists can be estimated by

measuring their relative maximal responses if those

responses are considerably below the maximal

response capability of the system (i.e., if they are

both partial agonists producing 530 to 50% system

maximal response).

5.9 Derivations

. Relationship between the EC50 and affinity of agonists

(5.9.1)

. Method of Barlow, Scott, and Stephenson for affinity

of partial agonists (5.9.2)
. Measurement of agonist affinity: method of Furchgott

(5.9.3)
. Maximal response of a partial agonist is dependent on

efficacy (5.9.4)

5.9.1 Relationship Between the EC50 and Affinity of

Agonists

The response to an agonist [A] in terms of the classical

model is given as a function of stimulus, which is

Stimulus ¼
A½ � � e

A½ � þKA
: ð5:18Þ

A hyperbola of the form Response¼ Stimulus/

(Stimulusþ b) translates stimulus to response. Under

these circumstances, response is given as

Response ¼
A½ �=KA � e

A½ �=KA eþ bð Þ þ b
: ð5:19Þ

From Equation 5.19, the observed EC50 is given as

EC50 ¼
KA � b
eþ bð Þ

: ð5:20Þ
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FIGURE 5.22 Relative maximal responses for two agonists in a

range of receptor systems of differing receptor density (abscissae,

log scale). Agonists vary by a fivefold difference in efficacy.

Maximal response to the agonist of higher efficacy shown in open

circles; maximal response to agonist of lower efficacy shown in

open squares. At high receptor densities, both agonists produce

the maximal response (both are full agonists). At low maximal

response values for both agonists, the relative maximal response

closely approximates the true relative efficacy (value of 0.2 on

ordinate scale).
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For high-efficacy agonists and/or highly efficiently

coupled systems (low value for b), then EC505KA.

However, for low-efficacy agonists and/or high values

of b (both conditions conducive to partial agonism),

efficacy e is low (e! 0) and thus e 5 b for a partial

agonist. Under these circumstances, EC50!KA, the

equilibrium dissociation constant of the partial agonist-

receptor complex.
In terms of the operational model, the EC50 of a partial

agonist can also be shown to approximate the KA. The

response to an agonist [A] in terms of the operational model

is given as

Response ¼
Emax � A½ � � t

A½ � 1þ tð Þ þKA
, ð5:21Þ

where Emax is the maximal response of the system, t is a

factor quantifying the ability of both the agonist (in terms

of the agonist efficacy) and the system to generate response

(in terms of the receptor density [Rt] and the efficiency of

stimulus-response coupling KE, t¼ [Rt]/KE). For a partial

agonist, the maximal response Max5Emax. Therefore, from

Equation 5.21

Max ¼
Emax � t
1þ t

: ð5:22Þ

For Max5Emax (partial agonist), Equation 5.22 shows

that t is not considerably greater than unity. Under these

circumstances, it can be approximated that (tþ 1)! 1.

Under these circumstances, the equation for EC50 for a

partial agonist reduces to

EC50 ¼
KA

1þ tð Þ
¼ KA: ð5:23Þ

5.9.2 Method of Barlow, Scott, and Stephenson for

Affinity of Partial Agonists

In terms of the classical model, the stimulus to a full [A]

is given by

StimulusA ¼
A½ � � eA
A½ � þKA

, ð5:24Þ

where KA refers to the equilibrium dissociation constant of

the agonist-receptor complex and eA is the efficacy of the

agonist [A]. Similarly, the stimulus produced by a partial

agonist [P] is given by

Stimulusp ¼
P½ � � eP
P½ � þKP

: ð5:25Þ

Equating stimuli from these equations and grouping terms

leads to the following linear double reciprocal equation:

1

A½ �
¼

1

P½ �
�
ea �KP

ep �KA
þ

ea � ep
ep �KA

: ð5:26Þ

In terms of the operational model, the response to a full [A]

is given by

ResponseA ¼
Emax � A½ � � tA

A½ � 1þ tAð Þ þKA
, ð5:27Þ

where Emax is the maximal response capability of the

system, KA refers to the equilibrium dissociation constant

of the agonist-receptor complex, tA is the term describing

the ability of the agonist to produce response (efficacy,

receptor density, and the stimulus-response capability of

the system; see Chapter 3). Similarly, the response produced

by a partial agonist [P] is given by

Responsep ¼
Emax � P½ � � tp

P½ � 1þ tp
� �

þKP

: ð5:28Þ

For equiactive responses, Equation 5.27 equals Equation

5.28, and after simplification

1

A½ �
¼

1

P½ �
�
ta �KP

tp �KA
þ

ta � tp
tp �KA

: ð5:29Þ

5.9.3 Measurement of Agonist Affinity:

Method of Furchgott

In terms of classical receptor theory, equiactive responses

to an agonist are compared in the control situation ([A])

and after irreversible inactivation of a fraction of the

receptors ([A0]). Assume that after alkylation the remaining

receptors equal a fraction q:

A½ �

A½ � þKA
¼

A0½ �

A0½ � þKA
� q, ð5:30Þ

where KA is the equilibrium dissociation constant of the

agonist-receptor complex. Rearrangement of Equation 5.30

leads to

1

A½ �
¼

1

A0½ �
�
1

q
þ

1

KA
�
1� q

q
: ð5:31Þ

The equilibrium dissociation constant of the agonist-

receptor complex (KA) can be obtained by a regression of

1/[A] upon 1/[A0]. This leads to a linear regression from

which

KA ¼
Slope� 1

Intercept
: ð5:32Þ

An identical equation results from utilizing the operational

model. The counterpart to Equation 5.30 is

A½ � � t
A½ � 1þ tð Þ þKA

¼
A0½ � � t0

A0½ � 1þ t0ð Þ þKA
, ð5:33Þ

where t equals the receptor density divided by the

magnitude of the transducer function, which depends on

the efficiency of receptor coupling and the efficacy of the

agonist: t¼ [Rt]/KE). The difference between t and t0 is
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that t0 represents the system with a depleted (through

irreversible receptor inactivation) receptor density; that is,

[R0t� < ½Rt]). This leads to

1

A½ �
¼

1

A0½ �
�
t
t0
þ

t=t0ð Þ � 1

KA
: ð5:34Þ

Equation 5.33 can then be used to obtain the KA from a

regression of 1/[A] upon 1/[A0].

5.9.4 Maximal Response of a Partial Agonist Is

Dependent on Efficacy

In terms of classical receptor theory—where response is a

hyperbolic function of stimulus (Response¼ Stimulus/

(Stimulusþ b), b is a transducer function reflecting

the efficiency of the stimulus-response mechanism of

the system), and stimulus is given by Stimulus¼

[A] � e/([A]þKA) (e is the efficacy of the agonist)—

Response is given by

Response ¼
A½ � � e

A½ � eþ bð Þ þ bKA

, ð5:35Þ

where Emax is the maximal response of the system. At

maximal agonist concentration ([A]!1):

Max ¼
e � Emax

eþ b
: ð5:36Þ

Thus, the relative maxima for two agonists [A] and [A0] is

given by

Max0

Max
¼

e0 eþ bð Þ

e e0 þ bð Þ
: ð5:37Þ

In systems of extremely poor receptor coupling, b will

be a large value and e�b. Alternatively, for agonists

of very low efficacy e�b. In either case, eþ b!b
and Max0/Max! e0/e (the relative maximal response

approximates the relative efficacy of the agonists). In

terms of the operational model, response is given by

ResponseA ¼
Emax � A½ � � tA

A½ � 1þ tAð Þ þKA
, ð5:38Þ

where t is a factor quantifying the ability of both the

agonist (in terms of the agonist efficacy) and the system (in

terms of the receptor density [Rt] and the efficiency of

stimulus-response coupling KE, t¼ [Rt]/KE). The maximal

response to the agonist (i.e., as [A]!1) is

Max ¼
Emax � t
1þ t

: ð5:39Þ

The relative maxima of two agonists is therefore

Max0

Max0
¼

t0 1þ tð Þ

t 1þ t0ð Þ
: ð5:40Þ

It can be seen that as t, t0 � 1 then Max0/Max! 1

(i.e., both are full agonists). However, when the efficacy is
low or when the stimulus-response coupling is inefficient

(both conditions of low values for t), then tþ 1! 1 and

Max0/Max¼ t0/t (the relative maxima approximate the
relative efficacy of the agonists).
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6
Orthosteric Drug Antagonism

One of the features of this subject which hitherto has been regarded as mysterious, is that in a homologous series of

drugs some members may not only fail to produce the action typical of the series but may even antagonize the action

of other members .

— ALFRED JOSEPH CLARK (1885–1941)
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6.1 Introduction

Drugs can actively change physiological function directly

(agonists) or indirectly through modification of physio-

logical stimulus. If the modification is inhibitory, this is
referred to as antagonism. This chapter discusses the

blockade of agonist-induced response through interaction

with receptors. Antagonism can be classified operationally,

in terms of the effects of antagonists on agonist dose-
response curves, and mechanistically in terms of the

molecular effects of the antagonist on the receptor protein.

The interference of agonist-induced response can take

different forms in terms of the effects on agonist dose-
response curves. Specifically, concentration-dependent

antagonism can be saturable (coming to a maximal limit

of the antagonism irrespective of the antagonist concentra-
tion) or apparently unsaturable (concentration-dependent

increases in antagonism with no limit except those imposed

by the drug solubility or the induction of secondary drug

effects). The antagonism can be surmountable (dextral
displacement of the dose-response curve with no diminu-

tion of maxima) or insurmountable (depression of the

maximal agonist response). Antagonism of receptors can
produce many patterns of concentration-response curves

for agonists, including concentration-dependent surmoun-

table antagonism (Figure 6.1a), surmountable antagonism

that comes to a maximal limit (Figure 6.1b), depression of
dose-response curves with no dextral displacement

(Figure 6.1c), and dextral displacement before depression

of maximal response in systems with a receptor reserve for
the agonist (Figure 6.1d). These patterns should be

recognized as behaviors of antagonists in different systems
and not necessarily characteristics of the molecular nature

of the antagonism (i.e., more than one molecular mechan-

ism can produce the same behavior of the concentration-

response curves). Therefore, it is important to discover the
molecular mechanism of the antagonism and not just

describe the antagonistic behavior, as this latter can change

with experimental conditions. For example, kinetic factors
can cause some antagonists to produce surmountable

antagonism in some systems and insurmountable antagon-

ism in others.
In general, there are two basic molecular mechanisms by

which receptor antagonism can take place. One is where the
antagonist blocks access of the agonist to the receptor

through steric hindrance (prevents agonist binding by

binding to the agonist binding site, referred to as
orthosteric antagonism; see Figure 6.2a). The other is

where the antagonist binds to its own site on the receptor to

induce a change in the affinity of the receptor for the
agonist through a change in conformation of the receptor

(referred to as allosteric antagonism; see Figure 6.2b). This

chapter deals with orthosteric antagonism whereby the

agonist and antagonist compete for the same binding site
on the receptor. For orthosteric antagonist, the interaction

between the agonist and antagonist is competitive and the

relative affinity and concentrations of the agonist and
antagonist determine which molecule occupies the common

binding site. Whether this results in surmountable or

insurmountable antagonism depends on the kinetics of
the system. In this regard, it is worth considering kinetics as

a prerequisite to discussion of orthosteric antagonism.

6.2 Kinetics of Drug-Receptor Interaction

In experimental pharmacology, the sensitivity of the
preparation to the agonist is determined in a separate

concentration-curve analysis, the agonist removed by

washing, and then the preparation is equilibrated with
antagonist (antagonist added to the preparation for a given

period of time). This latter step is intended to cause the

receptors and antagonist to come to equilibrium with
respect to the numbers of receptors bound by antagonist for

any given concentration of antagonist in a temporally

stable manner (i.e., will not change with time). Under these
equilibrium conditions, the fraction of receptor bound by

A Pharmacology Primer 99 Copyright � 2006 by Academic Press, Inc.
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the antagonist is determined by the concentration of

antagonist in the receptor compartment and the equi-

librium dissociation constant of the antagonist-receptor

complex (denoted KB). Thus, the receptor occupancy by the

antagonist will resemble the onset curve for binding shown

in Figure 4.1. This will be referred to as the equilibration

phase of the antagonism (see Figure 6.3). After it is thought

that the receptors and antagonist have come to equilibrium
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FIGURE 6.1 Effects of antagonists on agonist dose-response curves. (a) Surmountable

antagonism with no diminution of maxima and no limiting antagonism (competitive antagonists).

(b) Surmountable dextral displacement to a limiting value produced by an allosteric modulator.

(c) Depression of dose-response curves with no dextral displacement produced by noncompetitive

antagonists. (d) Dextral displacement with depression of maximum at higher concentrations

produced by noncompetitive antagonists in systems with a receptor reserve for the agonist.
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FIGURE 6.2 Schematic diagram of orthosteric effects (two ligands compete for the same binding domain on the receptor) and allosteric

effects (whereby each ligand has its own binding domain and the interaction takes place through a conformational change of the receptor).
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according to concentration and the KB, an agonist

concentration-response curve is then obtained in the

presence of the antagonist. The resulting change in the

location parameter (EC50) and/or maximal asymptote of

the agonist concentration-response curve is then used to

determine the extent of antagonism, and together with the

antagonist concentrations used to assess the potency of the

antagonist. During this latter phase of the analysis, it is

assumed that during the course of the determination of the

agonist response the system again comes to equilibrium

with the now three species present; namely, the antagonist,

receptors, and the agonist. Therefore, the dissociation of

the prebound antagonist from the receptor must be

sufficiently rapid during the period in which the response

to the agonist is obtained for the agonist to bind to the

correct fraction of receptors according to the concentration

of agonist and the equilibrium-dissociation constant of the

agonist receptor complex. If this does not occur, a true

equilibrium condition will not be attained. This can affect

how the antagonism is expressed in the system. This latter

time period will be referred to as the reequilibration period

(see Figure 6.3). In practice, the rate of offset of antagonists

generally can be much lower than the rate of offset of

agonists. Under these conditions, there may be insufficient

time for reequilibration to occur and the agonist may never

occupy as many receptors as mass action dictates, especially

at higher agonist concentrations where higher receptor

occupancy is required.

The kinetic equation for the adjustment of receptor

occupancy (rt) by a preequilibrated concentration of an

antagonist [B] with rate of offset k2 upon addition of a fast-

acting agonist [A] was derived by Paton and Rang [1] as

rt ¼
B½ �=KB

B½ �=KB þ A½ �=KA þ 1

�
B½ �=KB

B½ �=KB þ A½ �=KA þ 1
�

B½ �=KB

B½ �=KB þ 1

� �

� e�k2 ðB�=KBþ A½ �=KAþ1Þ=ð A½ �=KAþ1Þt½ �: ð6:1Þ

It is worth considering the effect of varying rates of offset

(k2) and varying time periods allowed for reequilibration of

agonist, antagonist, and receptors (time t). From Equation

6.1, the equation for agonist occupancy in the presence of

an antagonist for the temporal receptor occupancy for the

antagonist can be derived as

rA ¼ A½ �KA= A½ �=ðKAþ 1ð ÞÞ 1� W 1� e�k2�t
� �

þrBe
�k2�t

� �� �
,

ð6:2Þ

where

W ¼ B½ �=KB= B½ �=KB þ A½ �=KA þ 1ð Þ, ð6:3Þ

rB ¼ B½ �=KB= B½ �=KB þ 1ð Þ, and ð6:4Þ

� ¼ B½ �=KB þ A½ �=KA þ 1ð Þ= A½ �=KA þ 1ð Þ: ð6:5Þ

Equation 6.2 can be evaluated in a number of temporal

situations. Thus, if there is adequate time for reequilibra-

tion of agonist, antagonist, and receptors true competition

between agonist and antagonist for receptors will result.

Under these circumstances, the equation for agonist

occupancy in the presence of antagonist can be evaluated

by setting t�k�12 in Equation 6.2 to yield

rA ¼
A½ �=KA

A½ �=KA þ B½ �=KB þ 1
, ð6:6Þ

where [A] and [B] are the agonist and antagonist

concentrations, respectively, and KA and KB are the

respective equilibrium dissociation constants of the drug-

receptor complexes. These are the molar concentrations

that bind to 50% of the receptor population, and as such

quantify the affinity of the antagonist for the receptor.

This is the equation used to quantify the receptor

occupancy by the agonist (which is proportional to the

agonist response) derived by Sir John Gaddum [2] (see

Section 6.8.1).

The receptor occupancy curve can be converted to

concentration-response curves by processing occupancy

through the operational model for agonism (see Section

3.6). Under these circumstances, Equation 6.6 becomes

Response ¼
A½ �=KAtEmax

A½ �=KA 1þ tð Þ þ B½ �=KB þ 1
: ð6:7Þ

It can be seen from Equation 6.7 that the antagonism will

always be surmountable (i.e., there will be no concentration

Kinetics of
reequilibration

A + R                                     AR

B

+

BR

KB

KA

Kinetics of
equilibration

FIGURE 6.3 Antagonist potency generally is assessed by

determining the sensitivity of the receptor to agonist and then

equilibrating with antagonist. This first period (termed equilibra-

tion period) allows the antagonist and receptor to come to

equilibrium in accordance with mass action (i.e., according to the

concentration of the antagonist and KB). Then, in the presence of

the antagonist, agonist is added and response measured. During

the period allowed for collection of response, the agonist,

antagonist, and receptors must all come to a new equilibrium

according to the relative concentrations of each and the KA and

KB. This period is referred to as the reequilibration period.
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of antagonist that causes depression of the maximal

response to the agonist). This is because as [A] !1 the

fractional maximal response! 1 [the control maximal

response in the absence of antagonism is given by t/(1þ t)].
The other extreme is to assume that there is no effective

reequilibration of agonist, antagonist, and receptors during

the time allotted for response collection. Thus, the

fractional receptor occupancy by the antagonist does not

change when agonist is added. Such conditions can occur

when t� k�12 (i.e., there is a very short period of time

available for measurement of agonist response and/or there

is a very slow offset of antagonist from the receptor). Under

these circumstances, Equation 6.2 becomes

rA ¼
A½ �=KA

A½ �=KA 1þ B½ �=KBð Þ þ B½ �=KB þ 1
: ð6:8Þ

This is formally identical to the equation derived by

Gaddum and colleagues [3] (see Section 6.8.2) for non-

competitive antagonism. In this case, it is assumed that the

only available receptor population in the presence of a

fractional receptor occupancy rB by a noncompetitive

antagonist is the fraction 1-rB. Thus, agonist receptor

occupancy is given by

rA ¼
A½ �=KA

A½ �=KA þ 1
1� rB
� �

: ð6:9Þ

This equation reduces to Equation 6.8 upon simplification.

In terms of agonist response, Equation 6.8 becomes

Response ¼
A½ �=KAtEmax

A½ �=KA 1þ tþ B½ �=KBð Þ þ B½ �=KB þ 1
:

ð6:10Þ

The maximal response in the presence of antagonist is

given by (1þ t)/(1þ tþ [B]/KB). It can be seen that for low

values of t (low efficacy agonist and/or low receptor density

or poor receptor coupling) the maximal response to the

agonist will be51.
Thus, the two kinetic extremes yield surmountable

antagonism ðt� k�12 Þ and insurmountable antagonism

ðt� k�12 Þ. The intervening conditions can yield a mixture

of dextral displacement and moderate depression of the

maximal response. This is a condition described by Paton

and Rang [1] as a ‘‘hemi-equilibrium’’ state whereby

the agonist, antagonist, and receptors partially but

incompletely come to equilibrium with one another. The

agonist receptor occupancy under these conditions

(when t� k2¼ 0.01 to 1) is given by Equation 6.2. The

response is the operational metameter of that equation;

specifically:

Response

¼
A½ �=KA 1� W 1� e�k2�t

� �
þ rBe

�k2�t
� �� �

tEmax

A½ �=KA 1� W 1� e�k2�tð Þ þ rBe�k2�t

� �� �
tþ 1

� �
þ 1

:

ð6:11Þ

It is worth considering each of these kinetic conditions in
detail, as these are behaviors that are all observed

experimentally and can be observed for the same antagonist
under different experimental conditions. A summary of

these various kinetic conditions is shown schematically in
Figure 6.4.

6.3 Surmountable Competitive Antagonism

The first condition to be examined is the case where
t� k�12 (i.e., there is sufficient time for true reequilibration

among agonist, antagonist, and receptors to occur). Under
these conditions, parallel dextral displacement of agonist

concentration-response curves results with no diminution
of maxima (Equation 6.7). This concentration-response

curve pattern is subjected to analyses that utilize the
magnitude of the displacement to yield an estimate of the

affinity of the antagonist. Historically, the first procedure
to rigorously define the quantitative relationship between

such displacement and the concentration of antagonist was
Schild analysis.

6.3.1 Schild Analysis

When both the agonist and antagonist compete for a

common binding site, the antagonism is termed competi-
tive. The equation (Equation 6.6) used to quantify the

receptor occupancy by the agonist (which is proportional to
the agonist response) was derived by Sir John Gaddum [2]

(see Section 6.8.1 for derivation). The major pharmaco-
logical tool used to quantify the affinity of competitive

antagonists is Schild analysis. Utilizing this method, a
system-independent estimate of the affinity of a competitive

antagonist can be made in a functional system. The method
can also compare the pattern of antagonism to that

predicted by the simple competitive model, thereby allow-
ing definition of the mechanism of action of the antagonist.

Schild analysis refers to the use of an equation derived by
Arunlakshana and Schild [4] to construct linear plots

designed to graphically estimate the affinity of simple
competitive antagonists. The Schild equation was derived

from the Gaddum equation (Equation 6.6, see Section
6.8.3):

Log DR-1ð Þ ¼ Log B½ � � LogKB: ð6:12Þ

The method is based on the notion that both the

concentration of the antagonist in the receptor compart-
ment and its affinity determine the antagonism of agonist

response. Since the antagonism can be observed and
quantified and the concentration of the antagonist is

known, the affinity of the antagonist (in the form of KB)
can be calculated.

The antagonism is quantified by measuring the ratio

of equiactive concentrations of agonist measured in the
presence of and absence of the antagonist. These are

referred to as dose ratios (DRs). Usually, EC50 concentra-
tions of agonist (concentration producing 50% maximal
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response) are used to calculate dose ratios. An example

calculation of a DR is shown in Figure 6.5. Thus, for every

concentration of antagonist [B] there will be a correspond-

ing DR value. These are plotted as a regression of

Log (DR-1) upon Log [B]. If the antagonism is competitive,

there will be a linear relationship between Log (DR-1) and

Log [B] according to the Schild equation. Under these

circumstances it can be seen that a value of zero for the

ordinate will give an intercept of the x axis where Log

[B]¼Log KB. Therefore, the concentration of antagonist

that produces a Log (DR-1)¼ 0 value will be equal to the

Log KB, the equilibrium dissociation constant of the

antagonist-receptor complex. This is a system-independent

and molecular quantification of the antagonist affinity that

should be accurate for every cellular system containing the

Equilibration time x rate of offset

ρt = – e-k2t–( )[B]/KB
————————
[B]/KB + [A]/KA + 1

ρ =
[A]/KA

————————
[A]/KA + [B]/KB + 1

ρ =
[A]/KA

————————–––––––––––
[A]/KA ([B]/KB + 1) + [B]/KB + 1

ρ =
[A]/KA (1-(ϑ(1-e-k2Φt) + ρB e-k2Φt)
————————––––––––––––

[A]/KA + 1

[B]/KB + [A]/KA + 1
————————

[A]/KA + 1
[B]/KB

————————
[B]/KB + [A]/KA + 1

[B]/KB
—————
[B]/KB + 1

t>>k2
-1

Competitive

(surmountable)

t x k2
-1 = 0.01 to 1

Hemi-equilibria

(surmountable →  insurmountable)

t<<k2
-1

Noncompetitive

(insurmountable)

ϑ = [B]/KB / ([B]/KB + [A]/KA +1)
ρB = [B]/KB / ([B]/KB + 1) 

Φ = ([B]/KB + [A]/KA + 1) / ([A]/KA +1)
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FIGURE 6.4 The range of antagonist behaviors observed under different kinetic conditions. When there is sufficient time for complete

reequilibration ðt� k�12 Þ, surmountable antagonism is observed (panel furthest to the left). As the time for reequilibration diminishes (relative

to the rate of offset of the antagonist from the receptor; t� k�12 ¼ 0:1 to 0.01), the curves shift according to competitive kinetics (as in the case

for surmountable antagonism) but the maxima of the curves are truncated (middle panel). When there is insufficient time for reequilibration,

the antagonist essentially irreversibly occludes the fraction of receptors it binds to during the equilibration period (t� k2
�1) and depression of

the maxima occurs with dextral displacement is determined by the extent of receptor reserve for the agonist (panel to the right).
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FIGURE 6.5 Calculation of equiactive dose ratios (DR values)

from two dose-response curves.
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receptor. When the concentration of antagonist in the

receptor compartment is equal to the KB value (the

concentration that binds to 50% of the receptors), then

the dose-ratio will be 2. Since KB values are obtained from

a logarithmic plot, they are log normally distributed and

are therefore conventionally reported as pKB values. These

are the negative logarithm of the KB used much like pEC50

values are used to quantify agonist potency. The negative

logarithm of this particular concentration is also referred to

empirically as the pA2, the concentration of antagonist that

produces a twofold shift of the agonist dose-response curve.

Antagonist potency can be quantified by calculating the

pA2 from a single concentration of antagonist producing a

single value for the dose ratio from the equation:

pA2 ¼ Log DR-1ð Þ � Log B½ �: ð6:13Þ

It should be noted that this is a single measurement.

Therefore, comparison to the model of competitive

antagonism cannot be done. The pA2 only serves as an

empirical measure of potency. Only if a series of DR values

for a series of antagonist concentrations yields a linear

Schild regression with a slope of unity can the pA2 value

(obtained from the intercept of the Schild plot) be

considered a molecular measure of the actual affinity of

the antagonist for the receptor (pKB). Therefore, a pKB

value is always equal to the pA2. However, the converse

(namely, that the pA2 can always be considered an estimate

of the pKB) is not necessarily true. For this to occur, a

range of antagonist concentrations must be tested and

shown to comply with the requirements of Schild analysis

(linear plot with slope equal to unity). A precept of Schild

analysis is that the magnitude of DR values must not be

dependent on the level of response used to make the

measurement. This occurs if the dose-response curves

(control plus those obtained in the presence of antagonist)

are parallel and all have a common maximal asymptote

response (as seen in Figure 6.5).
There are statistical procedures available to determine

whether the data can be fit to a model of dose-response

curves that are parallel with respect to slope and all share a

common maximal response (see Chapter 11). In general,

dose-response data can be fit to a three-parameter logistic

equation of the form

Response ¼
Emax

1þ 10 LogEC50�Log A½ �ð Þ
n , ð6:14Þ

where the concentration of the agonist is [A], Emax refers to

the maximal asymptote response, EC50 is the location

parameter of the curve along the concentration axis, and n

is a fitting parameter defining the slope of the curve. A

variant four-parameter logistic curve can be used if the

baseline of the curves does not begin at zero response ([i.e.,

if there is a measurable response in the absence of agonist

basal]):

Response ¼ Basalþ
Emax � Basal

1þ 10 LogEC50�Log A½ �ð Þ
n : ð6:15Þ

In practice, a sample of data will be subject to random

variation, and curve fitting with nonlinear models most

likely will produce differences in slope and/or maxima for

the various dose-response curves. Therefore, the question to

be answered is, does the sample of data come from a

population that consists of parallel dose-response curves

with common maxima? Hypothesis testing can be used to

determine this (see Chapter 11). Specifically, a value for the

statistic F is calculated by fitting the data to a complex

model (where each curve is fit to its own value of n, EC50,

and Emax) and to a more simple model (where a common

Emax and n values are used for all of the curves and the only

differences between them are values of EC50). (See Chapter

11 for further details.) If the F statistic indicates that a

significantly better fit is not obtained with the complex

model (separate parameters for each curve), then this

allows fitting of the complete data set to a pattern of curves

with common maxima and slope. This latter condition

fulfils the theoretical requirements of Schild analysis.

An example of this procedure is shown in Chapter 11

(see Figure 11.14).
If the data set can be fit to a family of curves of common

slope and maximum asymptote, then the EC50s of each

curve can be used to calculate DR values. Specifically, the

EC50 values for each curve obtained in the presence of

antagonist are divided by the EC50 for the control curve

(obtained in the absence of antagonist). This yields a set of

equiactive dose ratios. If hypothesis testing indicates that

individually fit curves must be used, then a set of EC50

values must be obtained graphically. A common level of

response (i.e., 50%) is chosen and EC50 values are either

calculated from the equation or determined from the graph.

With slopes of the dose-response curves near unity, this

approximation is not likely to produce substantial error in

the calculation of DR values and should still be suitable for

Schild analysis. However, this approach is still an

approximation and fitting to curves of common slope and

maxima is preferred. It should be noted that an inability

to fit the curves to a common maximum and slope indicates

a departure from the assumptions required for assigning

simple competitive antagonism.

The measured dose ratios are then used to calculate

Log (DR-1) ordinates for the corresponding abscissal

logarithm of the antagonist concentration that produced

the shift in the control curve. A linear equation of the form

y ¼ mxþ b ð6:16Þ

is used to fit the regression of Log (DR-1) upon Log [B].

Usually a statistical software tool can furnish an estimate of

the error on the slope.
The model of simple competitive antagonism

predicts that the slope of the Schild regression should be

unity. However, experimental data is a sample from the

complete population of infinite DR values for infinite

concentrations of the antagonist. Therefore, random

sample variation may produce a slope that is not unity.

Under these circumstances, a statistical estimation of

the 95% confidence limits of the slope (available in most
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fitting software) is used to determine whether the sample

data could have come from the population describing

simple competitive antagonism (i.e., have unit slope).

If the 95% confidence limits of the experimentally fit

slope include unity, then it can be concluded that the

antagonism is of the simple competitive type and that

random variation caused the deviation from unit slope. The

regression is then refit to an equation where m¼ 1 and the

abscissal intercept taken to be the logarithm of the KB. An

example of Schild analysis for the inhibition of muscarinic-

receptor-mediated responses of rat tracheae, to the agonist

carbachol by the antagonist pirenzepine, is shown in

Figure 6.6.

If the slope of the regression is not unity or if the

regression is not linear, then the complete data set cannot

be used to estimate the antagonist potency. Under these

circumstances, either the antagonism is not competitive or

some other factor is obscuring the competitive antagonism.

An estimate of the potency of the antagonist can still be

obtained by calculating a pA2 according to Equation 6.13.

This should be done using the lowest positive Log(DR-1)

value. Hypothesis testing can be used to determine the

lowest statistically different value for DR from the family

of curves (see Figure 11.16).

A schematic diagram of some of the logic used in Schild

analysis is shown in Figure 6.7. It should be pointed out
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FIGURE 6.6 Schild regression for pirenzepine antagonism of rat tracheal responses to carbachol. (a) Dose-

response curves to carbachol in the absence (open circles, n¼ 20) and presence of pirenzepine 300 nM (filled

squares, n¼ 4), 1 mM (open diamonds, n¼ 4), 3mM (filled inverted triangles, n¼ 6), and 10 mM (open

triangles, n¼ 6). Data fit to functions of constant maximum and slope. (b) Schild plot for antagonism shown

in panel A. Ordinates: Log (DR-1) values. Abscissae: logarithms of molar concentrations of pirenzepine.

Dotted line shows best line linear plot. Slope¼ 1.1þ 0.2; 95% confidence limits¼ 0.9 to 1.15. Solid line is the

best fit line with linear slope. pKB¼ 6.92. Redrawn from [5].
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FIGURE 6.7 Schematic diagram of some of the logic used in Schild analysis.
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that a linear Schild regression with a unit slope are the

minimal requirements for Schild analysis, but that it does

not necessarily prove that a given inhibition is of the simple
competitive type. For example, in guinea pig tracheae

relaxant b-adrenoceptors and contractile muscarinic recep-

tors coexist. The former cause the tissue to relax, while the

latter counteract this relaxation and cause the tissue to

contract. Thus, the b-adrenoceptor agonist isoproterenol,

by actively producing relaxation, will physiologically

antagonize contractile responses to the muscarinic agonist

carbachol. Figure 6.8 shows a Schild plot constructed from

the concentration-dependent relaxation of guinea pig

trachea of the contractile dose-response curves to carba-

chol. It can be seen that the plot is linear with a slope of

unity, apparently in agreement with a mechanism of simple

competitive antagonism. However, these opposing

responses occur at totally different cell surface receptors

and the interaction is further down the stimulus-response

cascade in the cytoplasm. Thus, the apparent agreement

with the competitive model for this data is spurious (i.e., the

plot cannot be used as evidence of simple competitive

antagonism). An example of the use of this method is given

in Section 12.2.4.

6.3.2 Patterns of Dose-Response Curves That Preclude

Schild Analysis

There are patterns of dose-response curves that preclude

Schild analysis. The model of simple competitive antagon-

ism predicts parallel shifts of agonist dose-response curves
with no diminution of maxima. If this is not observed it

could be because the antagonism is not of the competitive

type or some other factor is obscuring the competitive

nature of the antagonism. The shapes of dose-response

curves can prevent measurement of response-independent

dose ratios. For example, Figure 6.9a shows antagonism

where clearly there is a departure from parallelism, and in

fact a distinct decrease in slope of the curve for the agonist

in the presence of the antagonist is observed. This is

indicative of noncompetitive antagonism. Irrespective of

the mechanism, this pattern of curves prevents estimation

of response-independent DR values and thus Schild

analysis would be inappropriate for this system.

Figure 6.9b shows a pattern of curves with depressed

maximal responses but shifts that are near parallel in

nature. This is a pattern indicative of hemi-equilibrium

conditions whereby the agonist and antagonist do not

have sufficient time (due to the response collection window)

to come to temporal equilibrium. If this could be

determined, then Schild analysis can estimate antagonist

potency from values of response below where depression of

responses occurs (i.e., EC30). The differentiation of hemi-

equilibria from noncompetitive blockade is discussed in

Section 6.5.
The pattern shown in Figure 6.9c is one of parallel shift

of the dose-response curves up to a maximal shift. Further

increases in antagonist concentration do not produce

further shifts of the dose-response curves beyond a limiting

value. This is suggestive of an allosteric modification of the

agonist affinity by the antagonist, and other models can be

used to estimate antagonist affinity under these conditions

(see Chapter 7). This is discussed further on in this chapter.

Finally, if the agonist has secondary properties that affect

the response characteristics of the system (i.e., toxic effects

at high concentrations), then dextral displacement of the

dose-response curve into these regions of agonist concen-

tration may affect the observed antagonism. Figure 6.9

shows depression of the maximal response at high agonist

concentrations. This pattern may preclude full Schild

analysis but a pA2 may be estimated.
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FIGURE 6.8 Apparent simple competitive antagonism of carbachol-induced contraction of guinea pig trachea

through physiological antagonism of tracheal contractile mechanisms by b-adrenoceptor relaxation of the muscle.

(a) Schematic diagram of the physiological interaction of the muscarinic receptor-induced contraction and

b-adrenoceptor-induced relaxation of tracheal tissue. (b) Schild regression for isoproterenol (b-adrenoceptor
agonist) antagonism of carbachol-induced contraction. The regression is linear with unit slope

(slope¼ 1.02þ 0.02) apparently, but erroneously indicative of simple competitive antagonism. Redrawn from [6].
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6.3.3 Best Practice for the Use of Schild Analysis

There are two ways to make Schild analysis more

effective. The first is to obtain Log (DR-1) values as near

to zero as possible (i.e., use concentrations of the antagonist

that produce a low level of antagonism such as a twofold to

fivefold shift in the control dose-response curve). This will

ensure that real data is in close proximity to the most

important parameter sought by the analysis; namely, the

abscissal intercept (pKB or pA2 value). If Log (DR-1)

values are greater than 1.0, then the pKB (or pA2) will need

to be extrapolated from the regression. Under these

circumstances any secondary effects of the antagonist that

influence the slope of the Schild regression will subse-

quently affect the estimate of antagonist potency. Second,

at least a 30-fold (and preferably 100-fold) concentration

range of antagonist (concentrations that produce an effect

on the control dose-response curve) should be utilized. This

will yield a statistically firm estimate of the slope of the

regression. If the concentration range is below this, then the

linear fit of the Log(DR-1) versus Log [B] will produce

large 95% confidence limits for the slope. While unity most

likely will reside within this broad range, the fit will be

much less useful as an indicator of whether or not unity

actually is a correct slope for the antagonist. That unity is

included could simply reflect the fact that the confidence

range is so large.

There are Schild regressions that deviate from ideal

behavior but can still be useful either to quantify antagonist

potency or to indicate the mechanism of antagonism. For

example, Figure 6.10a shows a linear Schild regression at

low antagonist concentrations that departs from ideal

behavior (increased slope) at higher antagonist concentra-

tions. This is frequently encountered experimentally as

secondary effects from higher concentrations of either the

agonist or the antagonist come into play, leading to toxicity

or other depressant effects on the system. The linear

portion of the regressions at lower antagonist concentra-

tions can still be used for estimation of the pKB (if a large

enough concentration range of antagonist is used) or for the

pA2 (if not).

Figure 6.10b shows a pattern of antagonism often

observed in isolated tissue studies but not so often in cell-

based assays. Saturation of uptake systems for the agonist

or saturation of an adsorption site for the agonist can

account for this effect. The linear portion of the regression

can be used to estimate the pKB or the pA2. If there is a loss

of concentration dependence of antagonism, as seen in
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FIGURE 6.9 Patterns of dose-response curves produced by antagonists that may preclude Schild

analysis. (a) Depression of maximal response with nonparallelism indicative of noncompetitive blockade.

DR values are not response independent. (b) Depressed maxima with apparent parallel displacement

indicative of hemi-equilibrium conditions (vide infra). (c) Loss of concentration dependence of antagonism

as a maximal shift is attained with increasing concentrations of antagonist indicative of saturable allosteric

blockade. (d) Depressed maximal responses at high concentration of agonist where the antagonist shifts

the agonist response range into this region of depression (indicative of toxic or nonspecific effects of

agonist at high concentrations).
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Figure 6.10c, this indicates a possible allosteric mechanism

whereby a saturation of binding to an allosteric site is

operative. This is dealt with further on in this chapter.
One of the strengths of Schild analysis is the capability of

unveiling nonequilibrium conditions in experimental

preparations such as inadequate time of equilibration or

removal of drugs from the receptor compartment.

Figure 6.11 shows a range of possible experimentally

observed but problematic linear Schild regressions that

could be encountered for competitive antagonists.

6.3.4 Analyses for Inverse Agonists in Constitutively

Active Receptor Systems

In constitutively active receptor systems (where the

baseline is elevated due to spontaneous formation of

receptor active states, see Chapter 3 for full discussion),

unless the antagonist has identical affinities for the inactive

receptor state, the spontaneously formed active state, and

the spontaneously G-protein coupled state (three different

receptor conformations, see discussion in Chapter 1 on

receptor conformation) it will alter the relative concentra-

tions of these species—and in so doing alter the baseline

response. If the antagonist has higher affinity for the

receptor active state, it will be a partial agonist in an

efficiently coupled receptor system. This is discussed in the

next section. If the antagonist has higher affinity for the

inactive receptor, then it will demonstrate simple competi-

tive antagonism in a quiescent system and inverse agonism

in a constitutively active system.
The dose-response curves reflecting inverse agonism do

not conform to the strict requirements of Schild analysis

(i.e., parallel shift of the dose-response curves with no

diminution of maxima). In the case of inverse agonists in a

constitutively active receptor system, the dextral displace-

ment of the agonist concentration-response curve is

accompanied by a depression of the elevated basal response

(due to constitutive activity). (See Figure 6.12a.)

This figure shows the nonparallel nature of the curves as

the constitutively elevated baseline is reduced by the inverse

agonist activity. In quiescent receptor systems (nonconsti-

tutively active), both competitive antagonists and inverse

agonists produce parallel shifts to the right of the agonist

dose-response curves (see Figure 6.12b).
The effects of high values of constitutive activity can be

determined for functional systems where function is defined

by the operational model. Thus, it can be assumed in a

simplified system that the receptor exists in an active (R*)

and inactive (R) form and that agonists stabilize
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FIGURE 6.10 Some commonly encountered patterns of Schild regressions. (a) Initial linearity with increased

slope at higher concentration indicative of toxic effects of either the agonist or antagonist at higher concentrations.

(b) Region of decreased slope with reestablishment of linearity often observed for saturation of uptake or other

adsorption effects. (c) Hyperbolic loss of antagonism indicative of saturable allosteric antagonism.
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●  Ideal Schild regression

●  Wide concentration range

●  Data near log (DR-1) = 0 value

●  Linear with unit slope

●  Slope = 0.8 but not significantly different from unity

●  Data near log (DR-1) = 0 value

●  Wide concentration range

●  Refit regression to unit slope (orange line) and calculate pKB

●  Slope significantly less than unity−cannot fit to unit slope

●  Data near log (DR-1) = 0 value

●  Estimate pA2 from single point using lowest log (DR-1) value

●  Slope significantly greater than unity

●  Probably inadequate equilibration time for antagonist

●  Lowest log (DR-1) value cannot be taken for pA2 calculation

●  Repeat analysis with longer time of equilibration for antagonist

●  Inadequate antagonist concentration range

●  Inordinately large range on slope

●  Even though slope includes unity, the ordinal intercept cannot 

    adequately be estimated since log (DR-1) values too high

●  Repeat analysis adding lower antagonist concentrations

FIGURE 6.11 Some examples of commonly encountered Schild data and some suggestions as to how antagonism should be

quantified for these systems.

6.3 SURMOUNTABLE COMPETITIVE ANTAGONISM 109



(and therefore enrich the prevalence of) the active form

while inverse agonists prefer the inactive form. It also is

assumed that response emanates from the active form of the

receptor:

Under these circumstances, the fractional response in a

functional system can be derived from the expression

defining the amount of active-state receptor coupled to

G-protein. This yields the following expression for response

with a Hill coefficient of unity (see Section 6.8.4):

Response

¼
aL A½ �=KAtþbL B½ �=KBtþLt

A½ �=KA 1þaL 1þtð Þð Þþ B½ �=KB 1þbL 1þtð Þð ÞþL tþ1ð Þþ1
,

ð6:17Þ

where t is the efficacy of the full agonist, n is a fitting

parameter for the slope of the agonist concentration-

response curve, KA and KB are the respective equilibrium

dissociation constants of the full agonist and inverse

agonist for the inactive state of the receptor, a and b are

the relative ratios of the affinity of the full and inverse

agonist for the active state of the receptor, and L is the

allosteric constant for the receptor (L¼ [R*]/[R]).
There are two ways to estimate the potency of an inverse

agonist from the system described by Equation 6.17. The

first is to observe the concentration of inverse agonist that
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FIGURE 6.12 Schild analysis for constitutively active receptor systems. (a) Competitive antagonism

by the inverse agonist in a constitutively active receptor system with DR values calculated at the EC80.

(b) Competitive antagonism by the same inverse agonist in a nonconstitutively active receptor system.

(c) Direct effects of an inverse agonist in systems of differing levels of constitutive activity. Open circles

show midpoints of the concentration-response curves. (d) Schild regression for an inverse agonist in a

nonconstitutive assay where the inverse agonist produces no change in baseline (solid line) and in a

constitutively active assay where depression of elevated baseline is observed (dotted line). A small shift to

the left of the Schild regression is observed, leading to a slight overestimation of inverse agonist potency.
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reduces the level of constitutive activity by 50%, the IC50 of

the compound as an active inverse agonist. This is done by

observing the level of constitutive response in the absence

of full agonist ([A]¼ 0) with a variant of Equation 6.17:

ConstitutiveResponse

¼
bL B½ �=KBtþ Lt

B½ �=KB 1þ bL 1þ tð Þð Þ þ L tþ 1ð Þ þ 1
: ð6:18Þ

Figure 6.12c shows the effect of increasing levels of

constitutive activity on the midpoint of a curve to an

inverse agonist. This shows that with increasing levels of

inverse agonism—either through increasing intrinsic con-

stitutive activity, increased L, or increasing levels of

receptor and/or efficiency of receptor coupling (increasing

t)—the IC50 of the inverse agonist will increasingly be

larger than the true KB. This is important to note since it

predicts that the value of the pIC50 for an inverse agonist

will be system dependent and can vary from cell type to cell

type (just as observed potency for positive agonists).

However, in the case of inverse agonists the effects of

increasing receptor density and/or receptor coupling are

opposite those observed for positive agonists where

increases cause a concomitant increase in observed potency.

This trend in the observed potency of inverse agonism on

system conditions (L and t) can be seen from the midpoint

of the curve defined by Equation 6.18. This is the IC50 for

an inverse agonist inhibition of constitutive activity:

Observed IC50 ¼
KB L tþ 1ð Þ þ 1ð Þ

bL 1þ tð Þ þ 1ð Þ
: ð6:19Þ

Equation 6.19 predicts an increasing IC50 with either

increases in L or t. In systems with low-efficacy inverse

agonists or in systems with low levels of constitutive

activity, the observed location parameter is still a close

estimate of the KB (equilibrium dissociation constant of the

ligand-receptor complex, a molecular quantity that tran-

scends test system type). In general, the observed potency of

inverse agonists only defines the lower limit of affinity.
As observed in Figure 6.12a, inverse agonists produce

dextral displacement of concentration-response curves to

full agonists and thus produce dose ratios that may be used

in Schild analysis. It is worth considering the use of dose

ratios from such curves and the error in the calculated pKB

and pA2 produced by the negative efficacy of the inverse

agonist and changes in basal response levels. It can be

shown that the pA2 value for an inverse agonist in a

constitutively active receptor system is given by (see section

6.8.5)

pA2 ¼ pKB � Log A½ � a� 1ð Þ= A½ � a� 1ð Þ þ 1� bð Þð Þð Þ:

ð6:20Þ

This expression predicts that the modifying term will

always be51 for an inverse agonist (b5 1). Therefore, the

calculation of the affinity of an inverse agonist from dextral

displacement data (pA2 measurement) will always over-

estimate the potency of the inverse agonist. However, since

b51 and the a value for a full agonist will be� 1, the error

most likely will be very small. Figure 6.12d shows the effect

of utilizing dextral displacements for an inverse agonist in a

constitutively active system. The Schild regression is linear

but is phase shifted to the right in accordance with the slight

overestimation of inverse agonist potency.

6.3.5 Analyses for Partial Agonists

Schematically, response is produced by the full agonist

([AR]) complex—which interacts with the stimulus

response system with equilibrium association constant

Ke—and the partial agonist (lower efficacy), which inter-

acts with an equilibrium association constant K0e:

Therefore, there are two efficacies for the agonism: one

for the full agonist (denoted t) and one for the partial

agonist (denoted t0). In terms of the operational model for

functional response, this leads to the following expression

for response to a full agonist [A] in the presence of a partial

agonist [B] (see Section 6.8.6):

Response ¼
A½ �=KAtþ B½ �=KBt0

A½ �=KA 1þ tð Þ þ B½ �=KB 1þ t0ð Þ þ 1
: ð6:21Þ

If the partial agonism is sufficiently low so as to allow a

full agonist to produce further response, then a pattern of

curves of elevated baseline (due to the partial agonism)

shifted to the right of the control curve (due to the

antagonist properties of the partial agonist) will be

obtained. (See Figure 6.13a.) However, low-efficacy ago-

nists can be complete antagonists in poorly coupled

receptor systems and partial agonists in systems of higher

receptor density and/or coupling efficiency (Figure 6.13b).
The observed EC50 for partial agonism can be a good

estimate for the affinity (KB). However, in systems of high

receptor density and/or efficient receptor coupling where

the responses approach full agonism, the observed EC50

will overestimate the true potency of the partial agonist.

This can be seen from the location parameter of the partial

agonist in Equation 6.22 in the absence of full agonist

([A]¼ 0):

ObservedEC50 ¼
B½ �=KB

1þ t0ð Þ
: ð6:22Þ
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Figure 6.13C shows the effect of increasing receptor

density and/or efficiency of receptor coupling on the

magnitude of the EC50 of the partial agonist. Equiactive

dose ratios still can be estimated from the agonist-

dependent region of the dose-response curves. For example,

Figure 6.13a shows DR values obtained as ratios of the

EC75. The resulting Schild regression slightly underesti-

mates the KB (see Figure 6.13d). However, the error will be

minimal. Underestimation of the true pKB is also predicted

by the operational model (Section 6.8.7):

pA2 ¼ pKB � Log t= t� t0ð Þð Þ: ð6:23Þ

It can be seen that the modifying term will always be41,

but will also have a relatively low magnitude (especially for

low values of partial agonist efficacy t0). Also, in systems

where the partial agonist does not produce response (t0! 0),

the pA2¼ pKB as required by simple competitive antago-

nism (as shown in Figure 6.13b). The use of dose ratios for

partial agonists where the partial agonist produces response

will always slightly underestimate affinity by the Schild

method (or calculation of the pA2). The Schild regression for

a partial agonist reflects this in that it is still linear but

slightly shifted to the right of the true regression for simple

competitive antagonism (Figure 6.13d).

Another method to measure the affinity of a partial

agonist has been presented by Stephenson [7] and modified

by Kaumann and Marano [8]. The method of Stephenson

compares equiactive concentrations of full agonist in

the absence of and the presence of a concentration of

partial agonist to estimate the affinity of the partial agonist.

The following equation is used (see Section 6.8.8):

A½ � ¼
A0½ �

1þ 1� tp=ta
� �� �

� P½ �=Kp

� �

þ
tp=ta
� �

� P½ �=Kp

� �
�KA

1þ 1� tp=ta
� �� �

� P½ �=Kp

� � : ð6:24Þ

A regression of [A] upon [A0] yields a straight line.

The Kp can be estimated by

Kp ¼
P½ �slope

1� slope
� 1� tp=ta

� �� �
: ð6:25Þ
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FIGURE 6.13 Schild analysis for a partial agonist. (a) Competitive antagonism by a partial agonist.

DR values calculated at EC75 for agonist response. (b) Schild regressions for antagonism of same

receptor in a low receptor-density/coupling-efficiency receptor where no partial agonism is observed.

(c) Dose-response curve for directly observed partial agonism. Under some conditions, the EC50 for the

partial agonist closely approximates the KB. (d) Schild regression for a partial agonist in a low receptor/

coupling assay where the partial agonist produces no observed response (solid line) and in a high

receptor/coupling assay where agonism is observed (dotted line). A small shift to the right of the Schild

regression is observed, leading to a slight underestimation of partial agonist potency.
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A full example of the use of this method is given in

Section 12.2.6.
A more rigorous version of this method has been

presented by Kauman and Marano [8]. In this method,

the slopes from a range of equiactive agonist concentration

plots are utilized in another regression (see Section 6.8.8):

Log
1

slope
� 1

� �
¼ Log P½ � � LogKp ð6:26Þ

where m is the slope for a particular regression of equiactive

concentrations of an agonist in the absence and presence of

a particular concentration of partial agonist [P]. An

example of the use of this method for the measurement of

the partial agonist chloropractolol is shown in Figure 6.14.

The various plots of equiactive concentrations (insets to

panels A to D) furnish a series of values of m for a series of

concentrations of chloropractolol. These are used in a

regression according to Equation 6.26 (see Figure 6.14) to

yield an estimate of the KP for chloropractolol from the

intercept of the regression. Further details on the use of this

method is given in Section 12.2.7.

6.3.6 The Method of Lew and Angus:

Nonlinear Regressional Analysis

One shortcoming of Schild analysis is an overemphasized

use of the control dose-response curve (i.e., the accuracy of

every DR value depends on the accuracy of the control

EC50 value). An alternative method utilizes nonlinear

regression of the Gaddum equation (with visualization of

the data with a Clark plot [10], named for A. J. Clark). This

method, unlike Schild analysis, does not emphasize control

pEC50, thereby giving a more balanced estimate of

antagonist affinity. This method, first described by Lew

and Angus [11], is robust and theoretically more sound than

Schild analysis. On the other hand, it is not as visual. Schild

analysis is rapid and intuitive, and can be used to detect

nonequilibrium steady states in the system that can corrupt
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FIGURE 6.14 Method of Stephenson [7] and Kaumann and Marano [8] used to measure the affinity of the partial b-adrenoceptor agonist
chloropractolol in rat atria. Panels a to d show responses to isoproterenol in the absence (filled circles) and presence of chloropractolol

(open circles). Curves shown in the presence of 10 nM (panel a), 100 nM (panel b), 1mM (panel c) and 10 mM (panel d) chloropractolol.

Note elevated basal responses in response to the partial agonist chloropractolol. Insets to panels a through d show plots of equiactive

concentrations of isoproterenol in the absence (ordinates) and presence of chloropractolol according to Equation 6.24. Slopes from these

graphs used for plot shown in panel E according to the method of Kaumann and Marano [9] (see Equation 6.26). This plot is linear with a

slope of 0.95, yielding a KP estimate of 16.5 nM. Data redrawn from [9].
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estimates of pKB. Also, nonlinear regression requires

matrix algebra to estimate the error of the pKB. While

error estimates are given with many commercially available

software packages for curve fitting, they are difficult to

obtain without these (from first principles). In contrast,

Schild analysis furnishes an estimate of the error for the

pKB from the linear regression using all of the data. If an

estimate of the error is required and the means to calculate

it are not available in the curve fitting software, manual

calculation with Schild analysis is a viable alternative.

In general, the method of Lew and Angus still holds

definite advantages for the measurement of competitive

antagonist potency. One approach to rigorously describe

competitive antagonism is to use Schild analysis to visualize

the data and the method of Lew and Angus to estimate

the pKB.
To apply this method, the pEC50 values of the control

and shifted dose-response curves and the corresponding

concentrations of antagonist [B] values associated with

those pEC50s are used to construct a Clark plot [10]

according to the equation

pEC50 ¼ �Log B½ � þ 10�pKB
� �

� Log c, ð6:27Þ

where pKB and c are fitting constants. Note that the control

pEC50 is used with [B]¼ 0. The relationship between the

pEC50 and increments of antagonist concentration can be

shown in a Clark plot of pEC50 versus �Log

([B]þ 10� pKB). Constructing such a plot is useful because

although it is not used in any calculation of the pKB it

allows visualization of the data to ensure that the plot is

linear and has a slope of unity.
Although the Clark plot can be used to visualize the slope

relationship between pEC50 and �Log ([B]þ 10� pKB),

deviation of the slope from unity is better obtained by

refitting the data to a ‘‘power departure’’ version of

Equation 6.27:

pEC50 ¼ �Log B½ �mþ10�pKB
� �

� Log c, ð6:28Þ

where m is allowed to vary as part of the nonlinear fit. A

value of F is calculated for comparison of the fits to

Equations 6.27 and 6.28, respectively. If the value of F is

not significant, then there is no reason to use the power

departure equation and the antagonism can be considered

to be simple competitive. To test for significant deviation

from linearity of the Clark plot (indicating a departure

from simple competitive antagonism at some concentration

used in the experiment), the data is fit to a ‘‘quadratic

departure’’ version of Equation 6.27:

pEC50 ¼ �Log B½ � 1þ n B½ �10�pKB
� �

þ 10�pKB
� �

� Log c,

ð6:29Þ

where n is allowed to vary with the nonlinear fitting

procedure. As with the analysis for slope, a value for F is

calculated. If the quadratic departure is not statistically

supported, then the regression can be considered linear.

The method of Lew and Angus uses nonlinear curve

fitting procedures to estimate the pKB. An estimate of the

error calculated with Equation 6.27 is provided by the

estimate of the fitting error. This is obtained from most if

not all commercially available fitting programs (or can be

calculated with matrix algebra). An example of this type of

analysis is shown in Figure 6.15a. The pEC50 values for the

dose-response curves and the concentrations of antagonist

were fit to the equation shown in panel in Figure 6.15b to

yield the Clark plot shown in panel B. The resulting pKB

value is 8.09þ 0.145. The data was then refit to the power

departure version of the equation to yield the Clark plot

shown in panel C. The calculated F for comparison of the

simple model (slope¼ unity) to the more complex model

(slope fit independently) yielded a value for F which is not

greater than that required for 95% confidence of difference.

Therefore, the slope can be considered not significantly

different from unity. Finally, the data was again refit to the

quadratic departure version of the equation to yield the

Clark plot shown in panel D to test for nonlinearity. The

resulting F indicates that the plot is not significantly

nonlinear.

6.4 Noncompetitive Antagonism

From an examination of Equation 6.1, and noted in

Figure 6.4, if the rate of offset of the orthosteric antagonist

is slow such that a correct reequilibration cannot occur

between the agonist, antagonist, and receptors during the

period of response collection in the presence of antagonist,

then essentially a pseudo-irreversible blockade of receptors

will occur. Thus, when t� k�12 in Equation 6.1 the agonist

will not access antagonist-bound receptors and a noncom-

petitive antagonism will result. This is the opposite extreme

of the case for simple competitive antagonism discussed in

Section 6.3.
The term competitive antagonism connotes an obvious

mechanism of action (i.e., two drugs compete for the same

binding site on the receptor to achieve effect). Similarly, the

term noncompetitive indicates that two drugs bind to the

receptor and that these interactions are mutually exclusive

(i.e., when one drug occupies the binding site then another

cannot exert its influence on the receptor). However, this

should not necessarily be related to binding loci on the

receptor. Two drugs may interact noncompetitively but still

require occupancy of the same receptor binding site.

Alternatively, the sites may be separate as in allosteric

effects (see next chapter).
In an operational sense, noncompetitive antagonism is

defined as the case where the antagonist binds to the

receptor and makes it functionally inoperative. This can

occur through preclusion of agonist binding or through

some other biochemical mechanism that obviates agonist

effect on the receptor and thereby blocks response due to

agonist. Under these circumstances, no amount of increase

in the agonist concentration can reverse the effect of a

noncompetitive antagonist. A distinctive feature of non-

competitive antagonists is the effect they may have on the
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maximal agonist response. In situations where 100% of the

receptors need be occupied to achieve the maximal response

to the agonist (i.e., partial agonists), any amount of

noncompetitive antagonism will lead to a diminution of

the maximal response. However, in systems where there is a

receptor reserve there will not be a depression of the

maximal response until such a point where there is

sufficient antagonism to block a fraction of receptor

larger than that required to achieve maximal response. As

discussed in Chapter 2, the magnitude of the receptor

reserve is both system dependent (dependent on receptor

number and the efficiency of stimulus-response coupling)

and agonist dependent (intrinsic efficacy). Therefore,

noncompetitive antagonists will have differing capabilities

to depress the maximal response to the same agonist in

different systems. The same will be true for different

agonists in the same system.
The equation describing agonist receptor occupancy

under conditions of noncompetitive antagonism is given

by Equation 6.8. The effect of antagonist on the maximal

agonist receptor occupancy (i.e., as [A] ! 1) and

comparison to the control maximal stimulus from

Equation 6.8 is

Maximal agonist occupancy ¼
1

1þ ½B�=KB
: ð6:30Þ

It can be seen that at non-zero values of [B]/KB the

maximal agonist receptor occupancy will be depressed.

However, as discussed in Chapter 2, some high efficacy

agonists and/or some highly coupled receptor systems (high

receptor density) yield maximal tissue response by activa-

tion of only a fraction of the receptor population (‘‘spare

receptors’’). Thus, a noncompetitive antagonist may pre-

clude binding of the agonist to all of the receptors, but this

may or may not result in a depression of the maximal

response to the agonist. To discuss this further requires

conversion of the agonist receptor occupancy curve
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FIGURE 6.15 Example of application of method of Lew and Angus [10]. (a) Dose-response data. (b) Clark plot according to

Equation 6.27 shown. (c) Data refit to ‘‘power departure’’ version of Equation 6.27 to detect slopes different from

unity (Equation 6.28). (d) Data refit to ‘‘quadratic departure’’ version of Equation 6.27 to detect deviation from linearity

(Equation 6.29).
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(Equation 6.8) into tissue response through the operational

model:

;

whereby the antagonist precludes agonist activation and

response is produced through interaction of the [AR]

complex with the tissue stimulus-response cascade through

the constant KE according to the operational model. Under

these circumstances, the response to an agonist obtained in

the presence of a noncompetitive antagonist is given by:

Response ¼
½A�=KAt Emax

½A�=KAð1þ tþ ½B�=KBÞ þ ½B�=KB þ 1
:

ð6:31Þ

Now it can be seen that the maximal response (as a fraction

of the control maximal response) to the agonist (as [A]

!1) is given by

Maximal Response ¼
ð1þ tÞ

ð1þ tþ ½B�=KBÞ
: ð6:32Þ

Here it can be seen that for very efficacious agonists, or

in systems of high receptor density or very efficient receptor

coupling (all leading to high values of t), the maximal

response to the agonist may not be depressed in the

presence of the noncompetitive antagonist. In Figure 6.16,

the effect of a noncompetitive antagonist on the receptor

response to an agonist in a system with no receptor reserve

(t¼ 1) is shown. It can be seen that the maximal response to

the agonist is depressed at all non-zero values of [B]/KB. In

Figure 6.16b, the same antagonist is used to block

responses to a highly efficacious agonist in a system with

high receptor reserve (t¼ 100). From these simulations it

can be seen that observation of insurmountable antagonism

is not necessarily a prerequisite for a noncompetitive

receptor mechanism.
In terms of measuring the potency of insurmountable

antagonists, the data can be fit to an explicit model. As

shown in Figure 6.17a, responses to an agonist in the

absence and presence of various concentrations of an

insurmountable antagonist are fit to Equation 6.31

(Figure 6.17b) and an estimate of the KB for the antagonist

obtained. One shortcoming of this approach is the

complexity of the model itself. It will be seen in the next

chapter that allosteric models of receptor antagonism can

also yield patterns of agonist concentration response curves

like those shown in Figure 6.17, and that these can be fit

equally well with allosteric models. Thus, model fitting can

be ambiguous if the molecular mechanism of the antago-

nism is not known beforehand.
Historically, Gaddum and colleagues [3] devised a

method to measure the affinity of insurmountable antago-

nists based on a double reciprocal linear transformation.

With this method, equiactive concentrations of agonist in

the absence ([A]) and presence ([A0]) of a noncompetitive

antagonist ([B]) are compared in a double reciprocal plot
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FIGURE 6.16 Effects of a slow offset orthosteric antagonist that essentially does not

reequilibrate with agonist and receptors upon addition of agonist to the system (pseudo-

irreversible receptor blockade). (a) In this system a low value of t is operative (i.e., the efficacy
of the agonist is low) if there is a low receptor density and/or poor coupling of receptors. Under

these circumstances, little to no dextral displacement is observed for the concentration-response

curves upon antagonism (insurmountable blockade). (b) If the t value is high (high efficacy,

high receptor density, highly efficient receptor coupling, high receptor reserve), then the same

antagonist may produce dextral displacement of the concentration-response curves with no

depression of maximal response until relatively large portions of the receptor population are

blocked.
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describing a straight line (see Section 6.8.9):

1=½A� ¼ 1=½A0�ð½B�=KBÞ þ 1Þ þ ½B�=ðKBKAÞ: ð6:33Þ

According to Equation 6.33, a regression of values for 1/[A]

upon 1/[A0] should give a straight line. The equilibrium

dissociation constant of the antagonist-receptor complex is

given by

KB ¼ ½B�=ðslope� 1Þ: ð6:34Þ

At the time that this method was developed, the linear

regression was a major advantage (in lieu of the general

inaccessibility of nonlinear fitting). However, linearization

of data is known to distort errors and weighting and to

emphasize certain regions of the data set, and generally is

not recommended. This is especially true of double

reciprocal plots such as that defined by Equation 6.33.

This shortcoming can be somewhat alleviated by a

metameter such as:

½A0�

½A�
¼ ½A0�

½B�

KBKA
þ
½B�

ðKBÞ
þ 1, ð6:35Þ

where a regression of [A0]/[A] upon [A0] yields a straight

line, with the KB being equal to

KB ¼ ½B�=ðintercept� 1Þ: ð6:36Þ

Figure 6.18 shows the procedure for using this method.

In terms of the practical application, an important point to

note is that the maximal response to the agonist must be

depressed by the noncompetitive antagonist for this method

to be effective. In fact, the greater the degree of maximal

response inhibition the more robust is the fit according to

Equation 6.33. Moreover, data points at the concentrations

of agonist yielding the higher responses (near the depressed

maximal response in the presence of the antagonist) provide

more robust fits with this method. An example of the use of

this method is given in Section 12.2.8.

In cases where there is a substantial receptor reserve such
that there is a measurable dextral displacement of the

concentration response curves, then another reliable

method for determining the affinity of the noncompetitive
antagonist is to measure the pA2 (�log of the molar

concentration that produces a twofold shift to the right of

the agonist concentration-response curve). It can be shown
that for purely noncompetitive antagonists the pA2 is

related to the pKB with the relation (see Section 6.8.10)

pKB ¼ pA2 � Logð1þ 2½A�=KAÞ: ð6:37Þ

Equation 6.37 predicts that the pA2 is an accurate estimate

of the pKB at low levels of agonist receptor occupancy

([A]/KA ! 0). For high values of agonist receptor
occupancy, the observed pA2 will overestimate the true

affinity of the antagonist. However, for low levels of

response (where dose ratios for insurmountable antagonists
likely will be measured) and for high-efficacy agonists,

[A]/KA�EC50 for response—and under these circum-

stances the pA2 will be an accurate estimate of the pKB.
The use of dextral displacement to measure the affinity

of noncompetitive antagonists is illustrated in Figure 6.19.
An example of the use of this technique is given in

Section 12.2.11.

6.5 Agonist-Antagonist Hemi-equilibria

All models of antagonism assume that sufficient time is

allowed for an equilibrium to be established among the

receptors, the agonist, and the antagonist. For experiments
carried out in real time, the approach to steady-state

response for an agonist in the presence of a preequilibrated

concentration of antagonist can be observed and the
conditions of the experiment can be adjusted accordingly

to make measurements at equilibrium. As discussed with
binding experiments, the time required to achieve
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FIGURE 6.17 Fitting of data to models. (a) Concentration response curves obtained to an agonist

in the absence (circles) and presence of an antagonist at concentrations 3mM (triangles) and 30 mM
(diamonds). (b) Data fit to model for insurmountable orthosteric antagonism (Equation 6.31) with

Emax¼ 1, KA¼ 1 mM, t¼ 30 and KB¼ 1 mM.

6.5 AGONIST-ANTAGONIST HEMI-EQUILIBRIA 117



equilibrium to an agonist in the presence of an antagonist

may be much longer than the time required for only the

agonist if the rate of offset of the antagonist is much slower

than that of the agonist. Unlike binding experiments, where

the tracer ligand and displacing ligand are added together

to start the reaction, functional experiments usually are

done in a mode whereby the agonist dose-response curve is

obtained in the presence of the antagonist in a preparation

where the antagonist has been preequilibrated with the

tissue. This preequilibration period is designed to be

sufficient to ensure that an equilibrium has been attained

between the receptors and the antagonist. Under these

conditions, as the agonist is added the receptors must

reequilibrate with the added agonist and the antagonist

already bound to the receptor population. Given sufficient

time, this occurs according to the Gaddum equation, but

the time may be longer than if the agonist were equilibrat-

ing with an empty receptor population. This is because the

agonist can only bind when the antagonist dissociates from

the receptor. If this is a slow process, then it may take a

great deal of time relative to an empty receptor population

for enough antagonist to dissociate for attainment of

equilibrium receptor occupancy by the agonist.
As discussed in Section 6.2, the kinetic equation for the

adjustment of receptor occupancy (rt) by a preequilibrated

concentration of a slow-acting antagonist [B] with rate of

offset k2 upon addition of a fast-acting agonist [A] is given

by Equation 6.1 [1]. As considered in Section 6.3, if there is

sufficient time for reequilibration among agonist, antago-

nist, and receptors, then simple competitive surmountable

antagonism results. Similarly, as further described in

Section 6.4, if there is no reequilibration (due to insufficient

time and/or a very slow offset of the antagonist), then

noncompetitive insurmountable antagonism results.

Between these two kinetic extremes are conditions where

the agonist, antagonist, and receptors can partially reequil-

ibrate. These conditions were described by Paton and

Rang [1] as hemi-equilibria. The shortfall with respect to

reequilibration occurs at the high end of the agonist
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FIGURE 6.18 Measurement of the affinity of a noncompetitive antagonist by the method of Gaddum

(Equation 6.33). (a) Dose-response curves for an agonist without noncompetitive antagonist present and in

the presence of a concentration of antagonist of 1 mM. Dots and connecting lines show equiactive

responses in the absence and presence of the noncompetitive antagonist. (b) Double reciprocal plot of

equiactive concentrations of agonist in the presence (abscissae) and absence (ordinates) of noncompetitive

antagonist. Plot is linear with a slope of 32.1. Method of Gaddum [2] indicates that the equilibrium

dissociation constant of the antagonist-receptor complex is [B]/(Slope� 1)¼ 1 mM/(31.2-1)¼ 33 nM.

DR = 2.2
pA2 = -Log [B] + Log(DR-1)

= 6 + 0.08 = 6.1

DR = 5.2
pA2 = -Log [B] + Log(DR-1)

= 5.5 + 0.62 = 6.12
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FIGURE 6.19 Use of the dextral displacement produced by an

insurmountable antagonist to estimate dose ratios and subsequent

pA2 values. Response according to model for orthosteric non-

competitive blockade (Equation 6.31 with Emax¼ 1, t¼ 3,

KA¼ 0.3 mM, KB¼ 1mM) for 1mM and 3mM antagonist. Dose

ratios measured at response¼ 0.24 for 1mM antagonist and

response¼ 0.15 for 3 mM antagonist. Resulting pA2 values are

close estimates of the true pKB (6.0) as modified by the [A]/KA

term (see Equation 6.37).

118 6. ORTHOSTERIC DRUG ANTAGONISM



receptor occupancy scale. Figure 6.20a shows the time

course for the production of response by a high concentra-

tion of agonist in a hemi-equilibrium system with a slow

offset antagonist. It can be seen from this figure that with

the parameters chosen (k2¼ 10�3 s�1, [B]/KB¼ 3, [A]/

KA¼ 100) a true maximal response is not attained until

data is collect over a period of 55 minutes. Therefore, if the

period for response collection is555 minutes a truncated

response will be measured. This will not be nearly as

prevalent at lower agonist receptor occupancies. The result

of such high-level response truncation is a shifted concen-

tration-response curve with depressed maximal responses

(as shown in Figure 6.20b). It can be seen that if sufficient

time is allowed the insurmountable antagonism becomes

surmountable.

A characteristic of hemi-equilibria is the observation of a

depressed plateau of maximal responses. Thus, while a

truly insurmountable antagonist will eventually depress

the concentration-response curves to basal levels hemi-

equilibrium conditions can produce partial but not

complete inhibition of the agonist maximal response. This

is shown in Figure 6.21.
Practical problems with hemi-equilibria can be avoided

by allowing sufficient time for equilibrium to occur.

However, there are some situations where this may not be

possible. One is where the functional system desensitizes

during the span of time required for equilibrium to be

attained. Another is where the actual type of response being

measured is transitory and where the only measurement of

calcium transients where a spike of effect is the only

response observed in the experimental system.
In systems comprised of cells in culture, there is no

formal architecture (such as might be encountered in a

whole tissue) that would hinder free diffusion. Such

obstruction could intensify the effects of a removal process

such as adsorption of drug to the side of the culture well.

However, there is a possible effect of the thin unstirred

water layer coating the surface of the cell monolayer. Free

diffusion is known to be slower in unstirred, versus stirred,

bodies of water. In isolated tissues where organ baths are

oxygenated vigorously, the effects of unstirred layers can be

minimized. However, in 96- and 384-well formats for cells

in culture such stirring is not possible. In these cases

unstirred layers, for some ligands where there is an avid

adsorption mechanism capable of removing the ligand from

the receptor compartment, may be a factor causing

exaggeration of apparent loss of drug potency due to

adsorption. Reduced diffusion due to unstirred layers also

may play a role in the observed magnitude of agonist

response in systems where hemi-equilibria could be a factor.

In these cases there could be a practical problem classifying

competitive receptor antagonism erroneously as noncom-

petitive antagonism (where maximal responses also are

depressed).

6.6 Resultant Analysis

Schild analysis, like all pharmacological tools, necessarily

is predicated on the idea that the drugs involved have one

and only one pharmacological activity. This often may not

be the case and selectivity is only a function of concentra-

tion. If the concentrations used in the assay are below those

that have secondary effects, then the tool will furnish the

parameter of interest with no obfuscation. However, if a

secondary effects are operative in the concentration

range required to measure antagonism then the resulting

parameter may be tainted by this secondary activity.
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FIGURE 6.20 Increasing times for measurement of response for a slow-acting orthosteric

antagonist (k2¼ 1 msec�1) for [B]/KB¼ 3. Inset shows the kinetics of response production by a

concentration of the agonist producing maximal response ([A]/KA¼ 100). It can be seen that a

rapid initial increase in response (due to occupation of unoccupied receptors) is followed by a

slower phase where the agonist and antagonist reequilibrate with the receptor population.

If only 2 minutes is allowed for measurement of response, a severely depressed concentration-

response curve results. With increasing equilibration times, the maxima increase until at 40

minutes simple competition with no depression of the maximal response is observed.

6.6 RESULTANT ANALYSIS 119



One approach to nullify these effects for simple competitive

antagonists is through the use of resultant analysis.
Derived by Black, Shankley, Leff, and Wood [12], this

procedure essentially allows calculation of the potency of a

test antagonist through measurement of the added effects

this test antagonist has on another antagonist (referred to as

the reference antagonist). The idea is that the initial response

is obtained in the presence of the test antagonist and then

again in the presence of both antagonists. The secondary

effects of the test antagonist will be operative in both

the initial and subsequent dose-response curves. Therefore,

under null conditions these effects will cancel.

This allows the antagonist portion of the test antagonist

activity to be observed as an added component to the

antagonism of a known concentration of a known reference

antagonist. The principle of additive dose ratios [1] then can

be used to isolate the receptor antagonism due to the test

antagonist.
In practice, a series of Schild regressions is obtained for

the reference antagonist in the absence and presence of a

range of concentrations of the test antagonist. The dextral

displacement, along the antagonist concentration axis of

these regressions, are utilized as ordinates for a resultant

plot in the form of ratios of Log (DR-1) values for the

different Schild plots. These are designated k. The k values

are related to the concentrations of the test antagonist by

the Equation (see Section 6.8.11):

Logðk� 1Þ ¼ Log½Btest� � LogKBtest: ð6:38Þ

An example of the procedure is shown in Figure 6.22.

Specifically, a series of Schild analyses were done for the

reference antagonist scopolamine in the presence of

different concentrations of the test antagonist atropine.

The resultant plot according to Equation 6.38 yields

an estimate of the KB for atropine as the intercept

(Log (k�1)¼ 0). If atropine had secondary effects on the

system, this procedure will cancel them and allow

measurement of the receptor antagonism. An example of

this procedure is given in Section 12.2.5.

6.7 Chapter Summary and Conclusions

. Molecules that retard the ability of agonists to initiate

biological signal are called antagonists.
. Two general molecular modes of antagonism are

orthosteric (where the agonist and antagonist compete

for the same binding site on the protein) and allosteric

(where there are separate binding sites on the receptor

for both the agonist and the antagonist and the effects

of the antagonist are transmitted through the protein).

. These different molecular mechanisms for antagonism

can produce varying effects on agonist dose-response

curves ranging from shifts to the right with no

diminution of the maxima (surmountable antagonism)

to depression of the maximal response (insurmoun-

table antagonism) with or without a shift of the curve.
. The kinetics of offset of the antagonist from the

receptor can dictate whether surmountable or insur-

mountable antagonism is observed.
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FIGURE 6.21 Hemi-equilibrium among antagonist, agonist, and receptors.

Hemi-equilibrium condition according to Equation 6.11 showing a resulting in a

depressed maximal response to the agonist that reaches a plateau (k2¼ 5� 10�5 s�1,

t¼ 10, t¼ 90min). Antagonist concentrations of 0¼ control curve furthest to the

left; [B]/KB¼ 1, 3, 10, 30, and 100, with dotted lines showing what would be expected

from purely noncompetitive behavior of the same antagonist (no reequilibration).

Pure surmountable blockade would be observed for response times of � 200 seconds.
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. The most common method used to measure the

affinity of surmountable competitive antagonists is

Schild analysis. This method is visual and also is useful

to detect nonequilibrium steady states in receptor

preparations.

. The method of Lew and Angus allows the advantage

of nonlinear fitting techniques to yield competitive

antagonist pKB values.
. The same principles (Schild analysis) can be applied

to competitive antagonists that demonstrate either

positive (partial agonists) or negative (inverse

agonists).
. In systems where there is insufficient time for the

agonist, antagonist, and receptor to equilibrate

according to mass action slow-offset antagonists can

produce essentially irreversible occlusion of a portion

of the receptor population. This can result in

insurmountable antagonism.
. The degree of depression of the maximal response to

agonists with slow offset pseudo-irreversible

antagonists is inversely proportional to the efficacy

of agonist and receptor density (i.e., agonists and/or in

systems with high receptor reserve are resistant to

depression of maximal response by antagonists).
. In some systems with truncated response observation

times and utilizing slow acting antagonists a depres-

sion of the maximal response can be observed that is

due to the kinetics of offset of the molecules and not

a molecular mechanism of antagonism (hemi-

equilibrium conditions).
. A method called resultant analysis can be used to

measure the receptor blockade produced by an

antagonist with secondary properties.

6.8 Derivations

. Derivation of the Gaddum equation for competitive

antagonism (6.8.1)
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FIGURE 6.22 Pharmacological, resultant analysis of atropine. Panels a through d: dose-response curves to carbachol in the absence (filled

circles) and presence of various concentrations of the reference antagonist scopolamine. (a) Scopolamine¼ 1 nM (open diamonds), 3nM

(filled triangles), 10 nM (open inverted triangles), and 30 nM (filled squares). (b) As for a, except experiment carried out in the presence of

3 nM atropine. Conc of scopolamine¼ 3 nM, 10 nM, 30 nM, and 100 nM. Dotted line shows control curve to carbachol in the absence of

atropine. (c) As for b, except atropine¼ 10 nM and scopolamine 10 nM, 30 nM, 100 nM, and 300 nM. (d) As for c, except atropine¼ 30 nM.

(e) Schild regression for scopolamine in the absence (filled circles) and presence of atropine 3 nM (open circles), 10 nM (filled triangles), and

30 nM (open inverted triangles). (f) Resultant plot for atropine. Log (f� 1) values (see text versus Log[atropine]). Data redrawn from [5].
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. Derivation of the Gaddum equation for noncompeti-

tive antagonism (6.8.2)
. Derivation of the Schild equation (6.8.3)
. Functional effects of an inverse agonist with the

operational model (6.8.4)
. pA2 measurement for inverse agonists(6.8.5)

. Functional effects of a partial agonist with the

operational model (6.8.6)

. pA2 measurements for partial agonists (6.8.7)

. Method of Stephenson for partial agonist affinity

measurement (6.8.8)
. Derivation of the Method of Gaddum for noncompe-

titive antagonism (6.8.9)
. Relationship of pA2 and pKB for insurmountable

orthosteric antagonism (6.8.10)
. Resultant analysis (6.8.11)

6.8.1 Derivation of the Gaddum Equation for

Competitive Antagonism

Analogous to competitive displacement binding,

agonist [A] and antagonist [B] compete for receptor (R)

occupancy:

; ð6:39Þ

where Ka and Kb are the respective ligand-receptor

association constants. The following equilibrium constants

are defined:

½R� ¼
½AR�

½A�Ka
, ð6:40Þ

½BR� ¼ Kb½B�½R� ¼
Kb½B�½AR�

½A�Ka
, and ð6:41Þ

Total Receptor concentration ½Rtot� ¼ ½R� þ ½AR� þ ½BR�:

ð6:42Þ

These lead to the expression for the response-producing

species [AR]/[Rtot] (denoted as r):

r ¼
½A�Ka

½A�Ka þ ½B�Kb þ 1
: ð6:43Þ

Converting to equilibrium dissociation constants

(KA¼ 1/Ka) leads to the Gaddum equation [4]:

r ¼
½A�=KA

½A�=KA þ ½B�=KB þ 1
: ð6:44Þ

6.8.2 Derivation of the Gaddum Equation

for Noncompetitive Antagonism

The receptor occupancy by the agonist is given by mass

action:

rA ¼
½A�=KA

½A�=KAþ 1
: ð6:45Þ

It is also assumed that the antagonist produces an

essentially irreversible blockade of receptors such that the

agonist can only activate the fraction of receptors not

bound by the antagonist. If the fractional receptor

occupancy by the antagonist is given by rB, then the

agonist receptor occupancy in the presence of the antago-

nist is given by

rA ¼
½A�=KA

½A�=KAþ 1
ð1� rBÞ: ð6:46Þ

Defining rB as [B]/([B]þKB), substituting this into

Equation 6.46, and rearranging yields

rA ¼
½A�=KA

½A�=KAð1þ ½B�=KBÞ þ ½B�=KBþ1Þ
: ð6:47Þ

6.8.3 Derivation of the Schild Equation

In the presence of a competitive antagonist, the response

producing species ([AR]/[Rtot]¼ r0) is given by the Gaddum

equation as

r0 ¼
½A0�=KA

½A0�=KA þ ½B�=KB þ 1
: ð6:48Þ

In the absence of antagonist ([B]¼ 0):

r ¼
½A�=KA

½A�=KA þ 1
: ð6:49Þ

For equal responses (r0 ¼ r):

½A0�=KA

½A0�=KA þ ½B�=KB þ 1
¼
½A�=KA

½A�=KA þ 1
: ð6:50Þ

Defining [A0]/[A] as DR (the ratio of equiactive doses) and

rearranging yield

DR-1 ¼
½B�

KB
: ð6:51Þ
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The logarithmic metameter of this is the Schild equation:

LogðDR-1Þ ¼ Log½B� � LogKB: ð6:52Þ

In terms of the operational model, the equation corre-

sponding to Equation 6.44 is

r ¼
½A�t

½A�=KAð1þ tÞ þ 1
, ð6:53Þ

where t¼ the receptor concentration divided by the

coupling constant for tissue/agonist response production

(see Chapter 3) (t¼ [Rt]/KE). The counterpart to Equation

6.53 is:

r0 ¼
½A0�t

½A0�=KAð1þ tÞ þ ½B�=KB þ 1
: ð6:54Þ

Rearrangement of these equations leads to the Schild

equation (Equation 6.52) as well.

6.8.4 Functional Effects of an Inverse Agonist with the

Operational Model

ð6:55Þ

Equilibrium Equations:

Ka ¼ ½AR�=½A�½R� ð6:56Þ

Kb ¼ ½BR�=½B�½R� ð6:57Þ

aKa ¼ ½AR��=½A�½R�� ð6:58Þ

bKb ¼ ½BR
��=½B�½R�� ð6:59Þ

L ¼ ½R��=½R� ð6:60Þ

aL ¼ ½AR��=½AR� ð6:61Þ

bL ¼ ½BR��=½BR� ð6:62Þ

Let KA¼ 1/Ka, KB¼ 1/Kb, KE¼ 1/Ke. Thus,

rRESP ¼
½AR�� þ ½BR�� þ ½R��

½AR�� þ ½BR�� þ ½R�� þ ½AR� þ ½BR� þ ½R�
,

ð6:63Þ

¼
aL½A�=KA þ bL½B�=KB þ L

½A�=KAð1þ aLÞ þ ½B�=KBð1þ bLÞ þ ½B�=KB þ 1
,

ð6:64Þ

Response ¼
rRESP½Rt�

rRESP½Rt� þKE
¼

rRESPt
rRESPtþ 1

, and ð6:65Þ

Response

¼
aL½A�=KAtþbL½B�=KBtþLt

½A�=KAð1þaLð1þtÞÞþ½B�=KBð1þbLð1þtÞÞþLðtþ1Þþ1
ð6:66Þ

6.8.5 pA2 Measurement for Inverse Agonists

The pA2 calculation is derived by equating the response

produced by the full agonist in the absence of the inverse

agonist (Equation 6.64 with [B]¼ 0) to the response in the

presence of a concentration of the inverse agonist that

produces a dose ratio of 2 (by definition the pA2). For

calculation of KB from 10�pA2:

which leads to

10�pA2 ¼ KB �
ð½A�=KAtða� 1ÞÞ

½A�=KAða� 1Þ þ ð1� bÞ
: ð6:69Þ

It can be seen from Equation 6.69 that for a neutral

antagonist (b¼ 1) the correction term reduces to unity.

Therefore as expected, 10�pA2¼KB. The negative

logarithmic metameter of Equation 6.67 yields the

expression for the pA2:

pA2¼ pKB� logð½A�ða�1Þ=ð½A�ða�1Þþ ð1�bÞÞ: ð6:70Þ

2aL½A�=KAtþ bL½10�pA2 �=KBtþ Lt
2½A�=KAð1þ aLð1þ tÞÞ þ ½10�pA2 �=KBð1þ bLð1þ tÞÞ þ Lðtþ 1Þ þ 1

ð6:67Þ

¼
aL½A�=KAtþ Lt

½A�=KAð1þ aLð1þ tÞÞþLðtþ 1Þ þ 1
, ð6:68Þ
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6.8.6 Functional Effects of a Partial Agonist

with the Operational Model

ð6:71Þ

Equilibrium equations:

Ka ¼ ½AR�=½A�½R� ð6:72Þ

Ke ¼ ½ARE�=½AR�½E� ð6:73Þ

Kb ¼ ½BR�=½B�½R� ð6:74Þ

K0e ¼ ½BRE�=½BR�½E� ð6:75Þ

Let KA¼ 1Ka, KB¼ 1/Kb, KE¼ 1/Ke, and K0E ¼ 1=K0.

Thus,

rA ¼
½A�=KA

½A�=KA þ ½B�=KB þ 1
ð6:76Þ

rB ¼
½B�=KB

½A�=KA þ ½B�=KB þ 1
: ð6:77Þ

Response¼
½ARE� þ ½BRE�

½ARE� þ ½BRE� þ 1
¼
½AR�=KEþ ½BR�=K

0
E

½AR�=KE þ ½BR�=K
0
E þ 1

¼
rA½Rt�=KE þ rB½Rt�=K

0
E

rA½Rt�=KE þ rB½Rt�=K0E þ 1
ð6:78Þ

Let t¼ [Rt]/KE and t0 ¼ [Rt]/K
0
E

Response ¼
½A�=KAtþ ½B�=KBt

½A�=KAð1þ tÞ þ ½B�=KBð1þ t0Þ þ 1
: ð6:79Þ

6.8.7 pA2 Measurements for Partial Agonists

As with Section 6.8.5 (inverse agonists), the pA2 is

derived by equating the response produced by the full

agonist in the absence of the partial agonist (Equation 6.77

with [B]¼ 0) to the response in the presence of a

concentration of the partial agonist that produces a dose

ratio of 2 (by definition, the pA2). For calculation of KB

from 10�pA2:

2½A�=KAtþ ½B�=KBt
2½A�=KAð1þ tÞ þ ½B�=KBð1þ t0Þ þ 1

¼
½A�=KAt

½A�=KAð1þ tÞ þ 1
,

ð6:80Þ

which reduces to

10�pA2 ¼
KB½A�=KAðt=t0Þ
½A�=KAðt=t0 � 1Þ

, ð6:81Þ

which further results in

pA2 ¼ pKB � Logðt=ðt� t0ÞÞ: ð6:82Þ

6.8.8 Method of Stephenson for Partial Agonist

Affinity Measurement

In terms of the operational model, the response produced

by an agonist [A0] obtained in the presence of a concentra-

tion of partial agonist [P] is given by [13]

Responseap ¼
Emax½A

0�ta
½A0�ð1þ tÞ þKAð1þ ½P�=KpÞ

þ
Emax½P�tp

½P�ð1þ tpÞ þKpð1þ ½A0�=KAÞ
, ð6:83Þ

where Emax is the maximal response of the system, KA and

Kp are the equilibrium dissociation constant of the full and

partial agonist-receptor complexes, and ta and tp reflect the
efficacies of the full and partial agonist. In the absence

of the partial agonist, responsea to the full agonist [A] is

given by

Responseap ¼
Emax½A�ta

½A�ð1þ taÞ þKA
: ð6:84Þ

Comparing equiactive responses to the full agonist in the

absence ([A]) and presence ([A0]) of the partial agonist

(Responseap¼Responsea) and rearranging yield

½A� ¼
½A0�

1þ ð1� ðtp=taÞÞ � ð½P�=KpÞ

þ
ðtp=taÞ � ð½P�=KpÞ �KA

1þ ð1� ðtp=taÞÞ � ð½P�=KpÞ
: ð6:85Þ

This is an equation for a straight line with slope:

Slope ¼ ð1þ ð1� ðtp=taÞÞ � ð½P�=KpÞÞ
�1: ð6:86Þ

Rearranging:

Kp ¼
½P�slope

1� slope
� ð1� ðtp=taÞÞ: ð6:87Þ

From Equation 6.87 it can be shown that for a range of

concentrations of [P] yielding a range of slopes according to

regressions of equiactive agonist concentrations that KP

can be estimated from the following regression [9]:

Log
1

slope
� 1

� �
¼ Log½P� � LogKp: ð6:88Þ
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6.8.9 Derivation of the Method of Gaddum

for Noncompetitive Antagonism

In this model, it is assumed that the noncompetitive

antagonist reduces the fraction of available receptor
population. Therefore, equating stimuli in the absence

and presence of noncompetitive antagonist:

½A�t
½A�ð1þ tÞ þKA

¼
½A0�t0

½A0�ð1þ t0Þ þKA
: ð6:89Þ

The receptor population is reduced by a fraction r upon
antagonist binding. Therefore, [R0t]¼ (1 – r) [Rt], resulting

in t0 ¼ t (1� r). Rearrangement of equation:

Response ¼
½A0�tð1� rÞEmax

½A0�ð1þ tð1� rÞÞ þKA
: ð6:90Þ

Substitution for r in terms of the receptor occupancy by the
antagonist (r¼ [B]/KB/([B]/KBþ 1)) results in:

Response ¼
½A0�=KAtEmax

½A�=KAð1þ tþ ½B�=KBÞ þ ½B�=KB þ 1
:

ð6:91Þ

For equiactive responses:

½A0�=KAtEmax

½A0�=KAð1þ tþ ½B�=KBÞ þ ½B�=KBþ 1
¼
½A�=KAtEmax

½A0�=KAð1þ tÞ þ 1
:

ð6:92Þ

Rearrangement of the equation yields

1=½A� ¼ 1=½A0�ð½B�=KBÞ þ 1Þ þ ½B�=ðKBKAÞ: ð6:93Þ

Therefore, a double reciprocal plot of equiactive agonist
concentrations in the presence (1/[A0] as abscissae) and

absence (1/[A] as ordinates) of antagonist should yield a

straight line. The equilibrium dissociation constant of the
antagonist is calculated by

KB ¼ ½B�=ðslope� 1Þ: ð6:94Þ

6.8.10 Relationship of pA2 and pKB for Insurmountable

Orthosteric Antagonism

It is useful to describe agonist response in the presence of

any antagonist as

Response ¼
rAð1� rBÞtEmax

rAð1� rBÞtþ 1
, ð6:95Þ

where rA and rB are the agonist and antagonist fractional

receptor occupancies. For simple competitive antagonism,

rB is given by [B]/KB/([B]/KBþ [A]/KAþ 1) to yield the
well-known Gaddum equation for simple competitive

antagonism for agonist receptor occupancy in the

presence of the antagonist (denoted rAB) ([A]/KA/
([A]/KAþ [B]/KA þ1)). This yields

Response ¼
½A�=KAtEmax

½A�=KAð1þ tÞ þ ½B�=KB þ 1
: ð6:96Þ

The relationship between equiactive agonist concentra-

tions in the absence and presence of antagonist to yield a

dose ratio of 2 ([B]¼ 10�pA2) is then calculated by equating

2½A�=KAtEmax

2½A�=KAð1þtÞ þ ½10�pA2 �=KB þ 1
¼
½A�=KAtEmax

½A�=KAð1þ tÞ þ 1
:

ð6:97Þ

Simplifying yields

10�pA2 ¼ KB, ð6:98Þ

as predicted by the Schild equation (i.e., pA2¼ pKB) of

unit slope.

An analogous procedure can equate the empirical pA2 to

pKB for noncompetitive antagonists. Utilizing the equation

for agonist response in the presence of a noncompetitive

antagonist (Equation 6.10), equiactive concentrations with

a dose ratio of 2 in the presence and absence of antagonist

is given by:

2½A�=KAtEmax

2½A�=KAð1þ tþ ½10�pA2 �=KBÞþ½10�pA2 �=KB þ 1

¼
½A�=KAtEmax

½A�=KAð1þ tÞ þ 1
: ð6:99Þ

Simplification of this relationship yields an equation

relating pA2 and KB:

10�pA2 ¼ KB=ð1þ 2½A�=KAÞ ð6:100Þ

pKB ¼ pA2 � Logð1þ 2½A�=KAÞ ð6:101Þ

6.8.11 Resultant Analysis

The receptor occupancy for an agonist [A] in the presence

of a test antagonist [Btest] is given as

r ¼
½A�

½A� þKAð1þ ½Btest�=KBtestÞ
: ð6:102Þ

Similarly, receptor occupancy equal to the occupancy

above (agonist concentration [A0]) in the presence of the test

antagonist and a reference antagonist [B0] is given as

r0 ¼
½A0�

½A� þKAð1þ ½B0�=KB þ ½Btest�=KBtestÞ
: ð6:103Þ

If equal responses to the agonist under these two

conditions (leading to equal receptor occupancies for the

same agonist, r¼ r0) are compared, then equating

Equations 6.102 and 6.103 and rearranging yield

½A�

½A�
¼ r0 ¼ 1þ

½B0�

KB
� 1þ

½Btest�

KBtest

� �
, ð6:104Þ

where r0 is the dose ratio for the agonist. A dose ratio r for

antagonism by the reference antagonist is defined in the
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absence of the test antagonist ([Btest]¼ 0):

r ¼ 1 ½B�=KB: ð6:105Þ

Schild plots for the test antagonist alone and the test
antagonist plus a range of concentrations of reference

antagonist are obtained. Equieffective dose ratios are
compared. Therefore, the ratio of the dose ratio produced
by both the test and reference antagonist (r0) is equated to
the dose ratio for the reference antagonist alone (r).

Equating Equation 6.104 to 6.105 and simplifying yield

1þ ½B�=KB ¼ 1þ ½B0�=KBð1þ ½Btest�=KBtestÞ: ð6:106Þ

A term k is derived, which is [B]/[B0]; specifically, the ratio
of reference antagonist concentrations giving equal Log

(DR-1) values (the shift, along the antagonist axis, of the
Schild regressions) in the presence of various concentra-
tions of test antagonist. This yields the resultant plot:

Logðk� 1Þ ¼ Logð½Btest�Þ � LogKBtest: ð6:107Þ
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7
Allosteric Drug Antagonism

When one tugs at a single thing in nature, he finds it attached to the rest of the world.

— JOHN MUIR

Whatever affects one directly, affects all indirectly . . . This is the interrelated structure of reality.

— MARTIN LUTHER KING JR.
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7.1 Introduction

A major molecular mechanism of receptor antagonism

involves the binding of the antagonist to its own site on the
receptor separate from the binding site of the endogenous

agonist. When this occurs, the interaction between the
agonist and antagonist takes place through the receptor

protein. This is referred to as an allosteric interaction (for
schematic diagram see Figure 6.2). Thus, an allosteric

antagonist produces a conformational change of shape of
the receptor, which in turn changes the affinity of the

receptor for the agonist and/or changes the receptor
function.
Some operational classifications of antagonism relate

solely to certain molecular mechanisms. For example,
allosteric antagonists produce saturable effects (i.e., a

maximum antagonism is produced after which further
increases in antagonist concentration have no further

effect). However, operational effects on dose-response
curves do not always unambiguously indicate a molecular

mechanism in that experiments can reveal combinations of
compatible operational and mechanistic classifications (i.e.,

an allosteric molecular mechanism can produce either
surmountable and insurmountable effects on dose-response

curves depending on the system). Finally, since allosteric
effects produce a change in shape of the receptor it cannot

be assumed a priori that a uniform antagonistic effect on
agonism will result. In fact, it will be seen that some

allosteric ligands produce an increase in the affinity of the

receptor for ligands (note the stimulation of the binding of
[3H]-atropine by alcuronium in Figure 4.12). In addition,

the effect of an allosteric ligand on a receptor probe (this
can be an agonist or radioligand) is totally dependent on

the nature of the probe (i.e., a conformational change that
increases the affinity of the receptor for one agonist may

decrease it for another). For example, while the allosteric
ligand alcuronium produces a tenfold change in the affinity

of the muscarinic m2 receptor for acetylcholine it produces
only a 1.7-fold change in the affinity for arecoline [1]. These

effects make consistent nomenclature for allosteric ligands
difficult. For this reason, allosteric ligands will be referred

to as allosteric modulators with the understanding that
modulation in this sense means modification, either in a

positive or negative direction.

7.2 The Nature of Receptor Allosterism

The word allosteric comes from the Greek allos, meaning

different, and steric, which refers to arrangement of atoms
in space. As a word allostery literally means a change in

shape. Specifically in the case of allosterism of proteins, the
change in shape is detected by its interaction with a probe.

Therefore, there can be no steric interference at this probe
site. In fact, allosteric effects are defined by the interaction

of an allosteric modulator at a so-called allosteric binding
site on the protein to affect the conformation at the probe

site of the protein. Since the probe and modulator
molecules do not interact directly, their influence on each

other must take place through a change in shape of the
protein. Historically, allosteric effects have been studied

and described for enzymes. Early discussions of allosteric
enzyme effects centered on the geography of substrate and

modulator binding. Koshland [2], a pioneer of allosteric
enzyme research, classified binding geography of enzymes

in terms of ‘‘contact amino acids’’ and intimate parts of the
active site for substrate binding and ‘‘contributing amino

acids,’’ those important for preservation of the tertiary
structure of the active site but not playing a role in
substrate binding. Finally, he defined ‘‘noncontributing

amino acids’’ as those not essential for enzyme catalysis but
perhaps serving a structural role in the enzyme. Within

Koshland’s hypothesis, binding to these latter two cate-
gories of amino acids constituted a mechanism of
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allosterism rather than pure endogenous ligand competi-

tion. Within this context, pharmacological antagonists can

bind to sites distinct from those utilized by the endogenous

agonist (i.e., hormone, neurotransmitter) to alter binding

and subsequent tissue response (Figure 7.1). Some of these

differences in binding loci can be discerned through point

mutation of receptors. For example differences in amino

acids required for competitive antagonist binding and

allosteric effector binding can be seen in mutant muscarinic

m1 receptors where substitution of an aspartate residue at

position 71, but not at positions 99 and 122, affects the

affinity of the allosteric modulator gallamine but not the

affinity of the competitive antagonist radiolabeled [3H]-N-

methylscopolamine [3].
Allosteric sites can be remote from an enzyme active

site. For example, the binding site for nevirapine, an

allosteric modulator of HIV-reverse transcriptase, is 10

angstroms away from the enzyme active site [4].

Similarly, allosteric inhibition of �-lactamase occurs 16

angstroms away from the active site [5]. The binding site

for CP320626 for glycogen phosphorylase b is 33

angstroms from the catalytic site and 15 angstroms

from the site for cyclic AMP [6]. A visual demonstration

of the relative geography of allosteric binding and

receptor active sites can be seen in Figure 7.2. Here,

the integrin LFA1, which binds to molecules on other

cell membranes to mediate cell adhesion, has a receptor

probe active site binding intercellular adhesion molecule-1

(ICAM1) and an allosteric binding site for the drug

lovastatin, in a deep hydrophobic cleft next to the a7
helix (see Figure 7.2) [7].

While visualization of the relative binding sites for

receptor probes and allosteric modulators is conceptually

helpful, preoccupation with the geography of ligand

binding is needlessly confining since the actual binding

sites involved are secondary to the mechanism of alloster-

ism. As shown by the above examples, the modulator and

probe binding sites need not be near each other for

allosteric effects to occur (i.e., the binding of the modulator

does not necessarily need to produce a deformation near

the receptor probe site). In fact, there is data to suggest that

the relative geometry of binding is immaterial except for the

fact that the receptor probe and modulator must bind to

exclusively different sites.

Just as the location of allosteric sites is secondary to

the consequences of allosteric effect, there is evidence to

suggest that the structural requirements of allosteric sites

may be somewhat more permissive with respect to the

chemical structures bound to them (i.e., the structure

activity relationships for allosteric sites may be more

relaxed due to the fact that allosteric proteins are more

flexible than other proteins). For example, as shown in

Figure 7.3a, structurally diverse molecules such as

efavirenz, nevirapine, UC-781, and Cl-TIBO all bind to

HIV reverse transcriptase [8]. Similarly, HIV-entry

inhibitors Sch-C, Sch-D, UK427,857, aplaviroc, and

TAK779 all demonstrate prohibitive binding (consistent

with binding at the same site) for the CCR5 receptor of

Figure 7.3b [9].

It is useful to think of the allosteric binding not in

terms of deformation of the receptor active site but rather

as a lever to lock the receptor into a given conformation.

Direct steric
hindrance

Direct 
interaction

Indirect (allosteric)
interaction

FIGURE 7.1 Enzyme ortho- and allosterism as presented by

Koshland [2]. Steric hindrance whereby the competing molecules

physically interfered with each other as they bound to the substrate

site was differentiated from a direct interaction where only portions

of the competing molecules interfered with each other. If no direct

physical interaction between the molecules occurred, then the

effects were solely due to effects transmitted through the protein

structure (allosteric).

ICAM-1
binding site

I-domain
allosteric site

FIGURE 7.2 Model of LFA-1 showing the binding domain of

ICAM-1 (the endogenous ligand for this protein) and the binding

site for lovastatin, an allosteric modulator for this protein.

Redrawn from [7].
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As discussed in Chapter 1, receptors and other biologically

relevant proteins are a dynamic system of interchanging

conformations referred to as an ensemble. These various

conformations are sampled according to the thermal energy

of the system, in essence the protein roams on a conceptual

‘‘energy landscape.’’ While there are preferred low energy

conformations, the protein has the capacity to form a large

number of conformations. An allosteric modulator may

have a high affinity for some of these and thus bind to them

preferentially when they are formed. Thus, by selectively

binding to these conformations the allosteric modulators

stabilize them at the expense of other conformations. This

creates a bias and a shift in the number of conformations

toward the ligand-bound conformation (Figure 7.4; see

Section 1.10 for further details).
The fact that the allosterically preferred conformation

may be relatively rare in the library of conformations

available to the receptor may have kinetic implications.

Specifically, if the binding site for the modulator appears

only when the preferred conformation is formed sponta-

neously, then complete conversion to allosterically modified

receptor may require a relatively long period of equilibra-

tion. For example, the allosteric p38 MAP kinase inhibitor

BIRB 796 binds to a conformation of MAP kinase

requiring movement of a Phe residue by 10 angstroms

(so-called ‘‘out’’ conformation). The association rate for

this modulator is 8.5� 105 M�1 s�1, 50 times slower than

that required for other inhibitors (4.3� 107 M�1 s�1). The

result is that while other inhibitors reach equilibrium within

30 minutes, BIRB 376 requires 2 full hours of equilibration

time [8].

7.3 Properties of Allosteric Modulators

The fact that global conformations of the receptor are

stabilized by allosteric modulators has implications for

their effects. Specifically, this opens the possibility of

changes in multiple regions of the receptor instead of a

single point change in conformation and with this, comes

the possibility of changing multiple points of contact

between the receptor and other proteins (see Figure 7.5).

An example of the global nature of the conformational

changes due to allosteric interaction is made evident in the

interaction of CP320626 on glycogen phosphorylase b. In
this case, the binding of this allosteric modulator causes the

release of 9 of 30 water molecules from a cavity capped by

a-helices of the enzyme subunits [6]. Such global conforma-

tional effects make possible the influence of the interaction

of large proteins by small allosteric molecules. For example,

HIV-1 entry is mediated by the interaction of the

chemokine receptor CCR5 and the HIV viral coat protein

gp120, both large (70- to 100-K Daltons) proteins. Analysis

by point mutation indicates that all four extracellular loops

of the receptor and multiple regions of gp120 associate

for HIV fusion [10–13] yet small allosteric molecules such

as aplaviroc and Sch-D (0.6% of their size) are able

to block this interaction at nanomolar concentrations
(see Figure 7.6). In general, the stabilization of receptor

conformations by allosteric ligands makes possible the

alteration of large protein-protein interaction making this a

potentially very powerful molecular mechanism of action.

Another particularly unique aspect of allosteric mechan-

isms is that they can be very probe specific (i.e., a
conformational change that is catastrophic for one receptor

HIV reverse transcriptase (a) CCR5 receptor(b)
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FIGURE 7.3 Diversity of structures that interact with the (a) HIV reverse transcriptase inhibitor binding site [8] and (b) the

CCR5 receptor mediating HIV-1 fusion [9].
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FIGURE 7.4 Histograms depicting the frequency of occurrence of various receptor

conformations. (a) The natural ‘‘native’’ ensemble of receptor structures consists of

various conformations in varying numbers at any one instant. (b) The addition of an

allosteric modulator that preferentially binds to two receptor conformations causes

these to become stabilized and thus enriched in the native milieu of conformations.

(c) Ordering the conformations by frequency of occurrence forms Gaussian

distributions for the ensemble. The addition of the selective ligand enriches certain

conformations, reducing the frequency of sampling of other conformations. The mean

conformation is shifted to an allosterically altered one.
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Allosteric modulator
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FIGURE 7.5 Schematic diagram of a GPCR in a native conformation (black) and

allosterically altered conformation (red). When these are superimposed upon each other

it can be seen that more than one region of the receptor is altered upon allosteric

modulation (see circled areas).
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probe may be inconsequential to another). This is

illustrated in Figure 7.7. where it can be seen that the

allosteric modulator eburnamonine produces a 25-fold

antagonism of the muscarinic agonist pilocarpine, no

effect on the agonist arecaidine propargyl ester (APE),

and a 15-fold potentiation of the agonist arecoline [1]. Also,

because allosteric modulation involves a change in the

receptor conformation there is the potential of texture in

antagonism. Orthosteric antagonists which occlude the

agonist binding site prevent all agonist signaling equally

(i.e., the end result of all orthosteric antagonist-bound

receptors is the same; namely, a receptor uniformly

insensitive to all agonists). This may not necessarily be

true for allosteric modulators. Just as a given allosteric

modulator can produce different effects on different

receptor probes, different modulators can produce different

effects on the same modulator. For example, Table 7.1

shows the effects of different allosteric modulators on

common agonists of muscarinic receptors. It can be seen

from these data that different allosteric modulators have

Natural peptide
ligand

HIV viral envelope
protein

Synthetic ligand

G

MIP-1αα
(mw = 8000)

gp 120
(mw = 100,000)

N

C

GW873140
(mw = 600)

FIGURE 7.6 Cartoons showing the relative size of the CCR5 receptor, gp120 HIV viral coat protein,

the natural ligand for the CCR5 receptor (the chemokine MIP-1a), and GW873140 (aplaviroc) [9], an

allosteric modulator that blocks the interaction of CCR5 with both MIP-1a and gp120.
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FIGURE 7.7 Effect of the allosteric modulator eburnamonine on the potency of

muscarinic agonists on m2 receptors. It can be seen that while no change in potency is

observed for APE (arecaidine propargyl ester) pilocarpine is antagonized and arecoline

is potentiated, illustrating the probe dependence of allosterism. From [1].
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the ability to antagonize and potentiate muscarinic

agonists, clearly indicative of the production of different

allosteric conformational states. Similarly, the allosterically

modified CCR5 receptor demonstrates heterogeneity with

respect to sensitivity of antibody binding. In this case,

antibodies such as 45531, binding to a specific region of the

receptor, reveal different conformations stabilized by

aplaviroc and Sch-C, two allosteric modulators of the

receptor. This is shown by the different affinity profiles of

the antibody in the presence of each modulator (see

Figure 7.8). This also has implications for the therapeutic

use of such modulators. In the case of Sch-D and aplaviroc

in Figure 7.8, the allosterically blocked receptors are similar

in that they do not support HIV entry but quite dissimilar

with respect to binding of the 45531 antibody. This latter

fact indicates that the allosteric conformations produced by

each modulator are not the same and this could have

physiological consequences. Specifically, it is known that

HIV spontaneously mutates [14, 15] and that the mutation

in the viral coat protein can lead to resistance to CCR5

entry inhibitors. For example, passage of the virus in the

continued presence of the CCR5 antagonist AD101 leads to

an escape mutant able to gain cell entry through use of the

allosterically modified receptor [16, 17]. It would be

postulated that production of a different conformation

with another allosteric modulator would overcome viral

resistance since the modified virus would not be able to

recognize the newly formed conformation of CCR5. Thus,

the texture inherent in allosteric modification of receptors

(different tertiary conformations of protein) offers a unique

opportunity to defeat accommodation of pathological

processes to chronic drug treatment.
Texture in antagonism can lead to a unique approach to

the therapeutic evaluation of biological targets. For

example, if a receptor is required for normal physiological

function then eliminating this target pharmacologically is

prohibited. This can lead to the elimination of a therapeutic

opportunity if that same target is involved in a pathological

function. Such a case occurs for the chemokine X-type

receptor CXCR4 since loss of normal CXCR4 receptor

function may be deleterious to normal health. It specifically

has been shown that deletion of the genes known to mediate

expression of the CXCR4 receptor or the natural agonist

for CXCR4 (stromal cell derived factor 1-a, SDF-1a) is

lethal and leads to developmental defects in the cerebellum,

heart, gastrointestinal tract as well as hematopoiesis [18–20]

(i.e., this receptor is involved in normal physiological

function and interference with its normal function will lead

to serious effects). However, this receptor also mediates

entry of the X4 strain of HIV virus leading to AIDS.

Therefore, an allosteric modulator that could discern

between the binding of HIV and the natural agonist

for CXCR4 (SDF-1a) could be a very beneficial drug.

TABLE 7.1

The effects of different allosteric modulators on common agonists of muscarinic receptors.

Receptor Receptor Probe Modulator Effect1 Difference2

m3 Bethanechol Strychnine 49x potentiation 73x

Brucine 0.67x inhibition

m2 P-TZTP3 Alcuronium 4.7x potentiation 36x

Brucine 0.13x inhibition

m2 Acetylcholine Vincamine 18x potentiation 31x

Eburnamonine 0.32x inhibition

1a value for changes in potency.
2ratio of a values for the two modulators.
33-(3-pentylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine.

From [1].
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FIGURE 7.8 Binding of the CCR5 antibody 45531 to native

receptor (peak labeled solvent) and in the presence of 1mM Sch-C

(blue line) and 1 mM aplaviroc (magenta peak). Different locations

of the distributions show different binding sensitivities to the

antibody indicative of different receptor conformations. Data

courtesy of S. Sparks and J. Demarest, Dept of Clinical Virology,

GlaxoSmithKline.
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The probe-dependent aspect of allosteric mechanisms could

still allow CXCR4 to be considered as a therapeutic target

in spite of its crucial role in normal physiology. Suggestions

of ligand-mediated divergence of physiological activity and

mediation of HIV entry have been reported for CXCR4 in

peptide agonists such as RSVM and ASLW. These peptides

are not blocked by the CXCR4 antagonist AMD3100, an

otherwise potent antagonist of HIV entry suggesting a

dissociation of signaling and HIV binding effects [21].

Similar dissociation between HIV and chemokine activity

also is observed with other peptide fragments of SDF-1a
[22]. These data open the possibility that allosteric

molecules can be found that block HIV entry but do not

interfere with CXCR4-mediated chemokine function.
Allosteric probe dependence, as well as offering a positive

avenue of therapeutic advancement as discussed previously,

can have negative effects. For example, allosteric modifica-

tion of an endogenous signaling system requires the effect

to be operative on the physiologically relevant agonist.

There are practical circumstances where screening for new

drug entities in this mode may not be possible. For

example, the screening of molecules for HIV entry

theoretically should be done with live AIDS virus but this

is not possible for safety and containment reasons. In this

case, a surrogate receptor probe, such as radioactive

chemokine, must be used and this can lead to dissimilation

in activity (i.e., molecules may modify the effects of the

chemokine but not HIV). This is discussed specifically in

relation to screening in Chapter 8. Another case is the

potentiation of cholinergic signaling for the treatment of

patients with Alzheimer’s disease. It has been proposed that

a reduction in cholinergic function results in cognitive and

memory impairment in this disease [23]. Therefore, an

allosteric potentiation of cholinergic function could be

beneficial therapeutically but it would have to be operative

for the natural neurotransmitter—in this case, acetylcho-

line. This agonist is unstable and difficult to use as a

screening tool and surrogate cholinergic agonists have been

used in drug discovery. However, effects on such surrogates

may have no therapeutic relevance if they do not translate

to concomitant effects on the natural agonist. For example,

the cholinergic test agonist arecoline is potentiated 15-fold

by the allosteric modulator eburnamonine but no potentia-

tion, in fact a threefold antagonism, is observed with the

natural agonist acetylcholine [1]. Such effects underscore

the importance of probe dependence in screening for

allosteric modulators.
One of the key properties of allosteric modulators is their

saturability of effect. With this comes the capability to

modulate but not necessarily completely block agonist-

induced signals. This stems from the fact that while the

allosterically modified receptor may have a diminished

affinity and/or efficacy for the agonist the agonist may still

produce receptor activation in the presence of the

modulator. This submaximal effect on ligand-receptor

interaction is shown in Figure 4.10, where it is seen that

the displacement of bound 125I-MIP-1a from chemokine C

receptor type 1 (CCR1) by allosteric ligand UCB35625

is incomplete (i.e., the 125I-MIP-1a still binds to the

receptor but with a lower affinity). An orthosteric

antagonist binding to the same binding site as MIP-1a
necessarily must completely reverse the binding of MIP-1a.
In general, this leads to the possibility that allosteric

modulators can modify (i.e., reduce or increase by a small

amount) endogenous agonist signals without completely

blocking them.
Saturability of the binding to the allosteric site also offers

the potential to dissociate duration of effect from magni-

tude of effect. Since allosteric effects reach an asymptotic

value upon saturation of the allosteric site, there is the

potential to increase the duration of allosteric effect by

loading the receptor compartment with large concentra-

tions of modulator. These large concentrations will have no

further effect other than to prolong the saturated allosteric

response. For example, consider a system where the

therapeutic goal is to produce a tenfold shift to the right

of the agonist dose-response curve. A concentration of an

orthosteric simple competitive antagonist of [B]/KB¼ 10

will achieve this and the duration of this effect will be

determined by the kinetics of washout of the antagonist

from the receptor compartment and the concentration of

antagonist. A longer duration of action of such a drug

could be achieved by increasing the concentration but this

necessarily would increase the maximal effect as well (i.e.,

[B]/KB¼ 100 would produce a 100-fold shift of the curve).

In contrast, if an allosteric modulator with a¼ 0.1 were to

be employed an increased concentration would increase the

duration of effect but the antagonism would never be

greater than tenfold (as defined by the cooperativity factor

a). Thus, the saturability of the allosteric ligand can be used

to limit effect but increase the duration.
Another discerning feature of allosterism is the potential

for increased selectivity. For example, it could be postu-

lated that it would be difficult for orthosteric antagonists

that bind to the acetylcholine recognition site of muscarinic

receptors to be selective for muscarinic subtypes (i.e.,

teleologically these have evolved all to recognize a common

agonist). However, the same is not true for the surrounding

scaffold protein of the acetylcholine receptor and it is in

these regions that the potential for selective stabilization of

receptor conformations may be achieved [24].
Finally, the fact that allosteric modulators alter the

signaling properties and/or sensitivity of the receptor to

physiologically signaling means that their effect is linked to

the receptor signal. This being the case, allosteric mod-

ulators will augment or modulate function in a reflection of

the existing pattern. This may be especially beneficial for

complex signal patterns such as those found in the brain.

For this reason, the augmentation of the cholinergic system

in Alzheimer’s disease with cholinesterase inhibitors (these

block the degradation of acetylcholine in the synapse and

thus potentiate response in accordance with neural firing)

has been one approach to treatment of this disease [25].

However, there are practical problems with this idea

associated with nonspecific increase in both nicotinic and

muscarinic receptor when only selective nicotinic function is
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required. This has opened the field for other strategies such

as selective allosteric potentiation of acetylcholine receptor

function [26, 27]. In general, as a theoretical approach,
allosteric control of function allows preservation of

patterns of innervation, blood flow, cellular receptor
density, and efficiencies of receptor coupling for complex

systems of physiological control in the brain and other
organs. The unique properties of allosteric modulators are

summarized in Table 7.2.

7.4 Functional Study of Allosteric Modulators

In essence, an allosteric ligand produces a different
receptor if the tertiary conformation of the receptor is

changed through binding. These different tertiary confor-
mations can have a wide range of effects on agonist

function. A different receptor conformation can change its

behavior toward G-proteins (and hence the cell and
stimulus-response mechanisms) or the agonist, or both.

Under these circumstances, there is a wide range of effects
that allosteric ligands can have on agonist dose-response

curves.
From the point of view of agonist activation, allosteric

modulation can be thought of in terms of two separate

effects. These effects may not be mutually exclusive and
both can be relevant. The first, and most easily depicted, is

a change in affinity of the receptor toward the agonist.
The most simple system consists of a receptor [R] binding

to a probe [A] (a probe being a molecule that can assess

receptor behavior; probes can be agonists or radioligands)
and an allosteric modulator [B] [28]:

:

The equation for receptor occupancy for an agonist [A]

in the presence of an allosteric ligand [B] is given by (see

Section 7.8.1)

AR½ �

Rtot½ �
¼

A½ �=KA 1þ a B½ �=KBð Þ

A½ �=KA 1þ a B½ �=KBð Þ þ B½ �=KB þ 1
, ð7:1Þ

where KA and KB are the equilibrium dissociation

constants of the agonist and antagonist receptor complexes

respectively and a is the cooperativity factor. Thus, a value

for a of 0.1 means that the allosteric antagonist causes a

tenfold reduction in the affinity of the receptor for the

agonist. This can be seen from the relationship describing

the affinity of the probe [A] for the receptor, in the presence

of varying concentrations of antagonist:

Kobs ¼
KA B½ �=KB þ 1ð Þ

1þ a B½ �=KBð Þ
: ð7:2Þ

It can be seen that a feature of allosteric antagonists is

that their effect is saturable (i.e., a theoretically infinite

concentration of [B] will cause Kobs to reach a maximal

asymptote value of KA/a). This is in contrast to simple

competitive antagonists where the degree of antagonism

theoretically is infinite for an infinite concentration of

antagonist. Therefore, the maximal change in affinity that

can be produced by the allosteric modulator is Kobs/

KA¼KA/aKA¼ a�1. Thus, a modulator with a¼ 0.1 will

reduce the affinity of the receptor for the agonist by a

maximal value of 10.
As well as changing the affinity of the receptor for an

agonist, an allosteric effect could just as well change the

reactivity of the receptor to the agonist. This could be

reflected in a complete range of receptor effects (response

production, internalization, desensitization, and so on).

This is depicted schematically in the following, below where

the agonist-bound receptor goes on to interact with the cell

in accordance with the operational model for receptor

function [29]. Thus, the receptor bound only to agonist

TABLE 7.2

Comparison of properties of orthosteric and allosteric ligands.

Orthosteric Antagonists Allosteric Modulators

Orthosteric antagonists block all agonists with equal potency. Allosteric antagonists may block some agonists but no others (at

least as well).
There is a mandatory link between the duration of effect and the

intensity of effect.

Duration and intensity of effect may be dissociated (i.e., duration

can be prolonged though receptor compartment loading with no

target overdose).
High concentrations of antagonist block signals to basal levels. Receptor signaling can be modulated to a reduced (but not to

basal) level.

Less propensity for receptor subtype effects. Greater potential for selectivity.

No texture in effect (i.e., patterns of signaling may not be

preserved).

Effect is linked to receptor signal. Thus, complex physiological

patterns may be preserved.

All antagonist-bound receptors are equal. Texture in antagonism where allosterically modified receptors may

have different conformations from each other may lead to

differences in resistance profiles with chronic treatment.
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([AR] complex) interacts with an equilibrium association
constant Ke (to yield an efficacy term t) and the

allosterically altered agonist-bound receptor complex
([ABR] complex) interacts with the cell with equilibrium

association constant K0e (to yield an altered efficacy t0). It is
useful to define a ratio of efficacies for the native and
allosterically modulated receptor of t0/t (denoted x, where
x¼ t0/t).

The response to an agonist in the presence of an allosteric
modulator that can alter the affinity and efficacy of the
receptor is given by (see Section 7.8.2)

Response

¼
A½ �=KA� 1þ ax B½ �=KBð ÞEmax

A½ �=KA 1þ a B½ �=KB þ � 1þ ax B½ �=KBð Þð Þ þ B½ �=KB þ 1
,

ð7:3Þ

where KA and KB are the respective equilibrium dissocia-
tion constants of the agonist [A] and modulator [B] receptor

complexes, a is the ratio of affinity of the agonist for the
receptor in the presence and absence of the modulator, t
the efficacy of the agonist for the native receptor, and x the

ratio of t values of the agonist for the receptor in the
presence and absence of modulator. From this general

equation, a number of cases can be described.

7.4.1 Surmountable Allosteric Modulation (n^1)

The first case to consider is where the modulator affects

only the affinity of the receptor for the agonist but does not

alter receptor signaling. Under these circumstances, x¼ 1

and Equation 7.3 reduces to

Response ¼
A½ �=KA 1þ a B½ �=KBð Þ� Emax

A½ �=KA 1þ �ð Þ 1þ a B½ �=KBð Þ þ B½ �=KB þ 1
:

ð7:4Þ

Equation 7.4 predicts that even when the modulator

reduces the affinity of the receptor for the agonist (a51)

the effects will be surmountable with respect to the agonist

(i.e., the agonist will produce the control maximal

response). This can be seen from Equation 7.4 when [A]

! 1 and the fractional maximal response ! 1. If the

signaling properties of the receptor are not altered by the

allosteric modulator, then the concentration-response curve

to the agonist will be shifted either to the right (if a51, see

Figure 7.9a) or to the left (a41, see Figure 7.9b). The

distinctive feature of such an allosteric effect is that while

the displacements are parallel with no diminution of

maxima there is a limiting value (equal to a�1) to the

maximal displacement. Figure 7.10a shows an experimen-

tally observed allosteric displacement of acetylcholine

effects in cardiac muscle by the allosteric modulator

gallamine and the saturable maximal effect (Figure 7.10b).

When an antagonist produces parallel shifts to the right

of the dose-response curve with no diminution of the

maximal response, the first approach used to quantify

potency is Schild analysis (see Section 6.3.1). In cases where

the value of a is low (i.e., a¼ 0.01), a tenfold concentration

range of the antagonist would cause shifts commensurate

with those produced by a simple competitive antagonist.
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FIGURE 7.9 Functional responses in the presence of allosteric modulators as simulated with

Equation 7.4 (t¼ 30). (a) Allosteric antagonism. Agonist KA¼ 0.3 mM, a¼ 0.05, and KB¼ 1mM.

Curve furthest to the left is control in absence of modulator. From left to right, concentrations

of modulator equal 3 mM, 10 mM, 30 mM, and 100 mM. Arrow indicates effect of modulator. Note the

limited shift to the right. (b) Allosteric potentiation. Agonist KA¼ 30 mM, a¼ 10, KB¼ 3 mM. Curve

furthest to the right is control in absence of modulator. From right to left, concentrations

of modulator equal 3 mM, 10 mM, 30 mM, and 100 mM. Arrow indicates effect of modulator. Note the

limited shift to the left.
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However, the testing of a wide range of concentrations of

an allosteric antagonist would show the saturation of the

allosteric binding site as revealed by an approach to a

maximal value for the antagonism. The Schild equation for

an allosteric antagonist is given by (see Section 7.8.3)

Log DR-1ð Þ ¼ Log
B½ � 1� að Þ

a B½ � þKB

� �
: ð7:5Þ

Expected Schild regressions for allosteric antagonists

with a range of a values are shown in Figure 7.11. It can be

seen that the magnitude of a is inversely proportional to the

ability of the allosteric antagonist to appear as a simple

competitive antagonist (i.e., the lower the value of a the
more the antagonist will appear to be competitive). This is

discussed further in Section 10.3.1, and an example of this

type of analysis is given in Section 12.2.9.
The foregoing discussion has been restricted to allosteric

ligands that reduce the affinity of the receptor for the

agonist (i.e., allosteric antagonists or modulators). Since

allosteric change is the result of a conformational change in
the receptor, there is no a priori reason for allosterism to

produce only a reduced agonist affinity, and in fact such
changes can lead to increases in the affinity of the receptor

for the agonist (note the stimulation of the binding of [3H]-

atropine by alcuronium in Figure 4.12).

7.4.2 Insurmountable Allosteric Antagonism (n^0)

Another possible allosteric effect is to render the receptor

insensitive to agonist stimulation (i.e., remove the capacity
for agonist response). This may or may not be accompanied

by a change in the affinity of the receptor for the agonist.

This can be simulated by setting x¼ 0 in Equation 7.3 to
yield

Response ¼
A½ �=KA�Emax

A½ �=KA 1þ � þ a B½ �=KBð Þ þ B½ �=KB þ 1
:

ð7:6Þ

It can be seen that when there is no effect on the affinity
of the receptor for the agonist (a¼ 1) Equation 7.6 is

identical to the describing orthosteric noncompetitive

antagonism derived by Gaddum and colleagues [31] (see
Equation 6.10). However, while the equation is identical

and the pattern of concentration-response curves is the
same as that for an orthosteric antagonist it should be

(a) (b)

FIGURE 7.10 Operational model fit of the allosteric effects of gallamine on electrically evoked

contractions of guinea pig left atrium. (a) Dose-response curves obtained in the absence (filled circles) and

presence of gallamine 10 mM (open circles), 30 mM (filled triangles), 100mM (open triangles), 300mM (filled

squares), and 500 mM (open squares). Data fit to operational model (Equation 7.4) with KA¼ 30 nM,

Emax¼ 200, t¼ 1. Data fit for gallamine KB¼ 1 mM and a¼ 0.0075. (b) Ratio of observed EC50 values

(EC050 for curve in presence of gallamine/EC50 control curve) as a function of concentrations of gallamine.

Data fit to rectangular hyperbola of max¼ 134 (1/maximum ¼ a ¼ 0.0075). Data redrawn from [30].

FIGURE 7.11 Schild regressions for allosteric antagonists

of differing values of a. Dotted line shows the expected Schild

regression for a simple competitive antagonist. With allosteric

antagonists of lower values for a, the regression reaches a plateau

at higher antagonist concentrations (i.e., curvature occurs at higher

antagonist concentrations).
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noted that the molecular mechanism is completely different.

Whereas the system described by Gaddum et al. consists of

a slow offset antagonist occluding the agonist binding site,

the system described by Equation 7.6 consists of the

modulator binding to its own site on the receptor separate

from that of the agonist. This ambiguity underscores the

failure of observing patterns of concentration-response

curves to determine molecular mechanism of action and

how different experimental approaches to discerning

allosteric versus orthosteric mechanisms are required

(vide infra).
Equation 7.6 defines the allosteric noncompetitive

antagonism of receptor function and predicts insurmoun-

table effects on agonist maximal response (i.e., as [A]!1)

the expression for maximal response is

Maximal Response ¼
1þ �ð Þ

1þ � þ a B½ �=KBð Þ
: ð7:7Þ

It can be seen that just as in the case of orthosteric

noncompetitive antagonism for high-efficacy agonists or in

systems of high receptor density and/or very efficient

receptor coupling (high t values, basically systems where

there is a receptor reserve for the agonist) the maximal

response may not be depressed until relatively high

concentrations of antagonist are present. Under these

circumstances, there may be dextral displacement with no

diminution of maximal response until fairly considerable

receptor antagonism is achieved (e.g., see Figure 6.16b).

The difference between the orthosteric system described in

Chapter 6 and the allosteric system described here is that

there can be an independent effect on receptor affinity. No

such effect is possible in an othosteric system. Figure 7.12

shows concomitant effects on receptor affinity for the

agonist in allosteric noncompetitive systems. Figure 7.12a

shows the effects of an allosteric modulator that prevents

agonist receptor activation and also decreases the affinity of

the receptor for the agonist by a factor of 20 (a¼ 0.05). It

can be seen from this figure that the EC50 agonist

concentrations shift to the right as the maximal response

to the agonist is depressed. In contrast, Figure 7.12b shows

the effects of a modulator that prevents agonist activation

of the receptor but also increases the affinity of the receptor

for the agonist (a¼ 50). Here it can be seen that as the

maximal response to the agonist is depressed by the

modulator the sensitivity of the receptor to the agonist

actually increases. It should be noted that a shift to the left

of EC50 values should not automatically be expected when

an allosteric modulator increases the affinity of the receptor

for the agonist. This is because if there is a large receptor

reserve in the system the EC50 will naturally shift to the

right with noncompetitive blockade. Therefore, what is

observed is an average of this effect shifting curves to the

right and the increased affinity shifting curves to the left.

The example shown in Figure 7.12b was deliberately

modeled in a system with little to no receptor reserve to

illustrate the effect of allosterism on the EC50 values.

Figure 7.13a shows the effect of the allosteric modulator

Sch-C on the responses of the CCR5 chemokine receptor to

the chemokine RANTES, and Figure 7.13b shows the effect

of the allosteric modulator UK 427,857.
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FIGURE 7.12 Effect of insurmountable allosteric antagonists that block receptor signaling to the

agonist and also affect affinity of the receptor for the agonist. (a) Responses according to Equation 7.6

with t¼ 3, KA¼ 0.1 mM, a¼ 0.03, and KB¼ 1mM. Curves from left to right: control (no modulator

present) and curves in the presence of modulator concentrations 3mM, 10 mM, 30 mM, and 100mM.

Open circles show the EC50 of each concentration response curve (and also the shift to the right of the

location parameter of each curve with increasing modulator concentration). (b) Responses with t¼ 3,

KA¼ 0.1 mM, a¼ 50, KB¼ 1mM. Curves from left to right: control (no modulator present) and curves

in the presence of modulator concentrations 20 nM, 50 nM, 0.2mM, and 0.5 mM. Open circles show the

EC50 of each concentration response curve. In this case, the modulator blocks signaling but increases

the affinity of the receptor to the agonist. Note also that lower concentrations of antagonist block

responses (as compared to panel a).
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7.4.3 Variable Effects on Efficacy (n 6̂ 0)

There is no specific reason for an allosteric modulator to

completely inhibit receptor activation. Receptor function

may partially be modulated (15x40) or even increased

(x41). To consider an increase in efficacy first, on the

surface it might be expected that an increase in efficacy

would result in an increase in the maximal response, and in

systems where the agonists are not full agonists (stimulus

does not saturate the stimulus-response capability of the cell)

this is true (see Figure 7.14b). However, it should be noted

that if the agonist stimulus already saturates the maximal

capability of the system to return response (agonist is already

a full agonist) then further increases in efficacy will not

change the maximal response but rather will potentiate

response (i.e., shift agonist dose-response curves to the left)

(see Figure 7.14). These effects may be observed concomi-

tantly with effects on affinity. For example, if the agonist

produces a maximal response that is lower than the system

maximal response in the control situation (it is a partial

agonist) then x41 will cause an increased maximal response

with variable effects on receptor affinity. Figure 7.15a shows

the effect of a modulator that increases the efficacy but

decreases the affinity of the agonist. Figure 7.15b shows the

effects of a modulator that partially attenuates the efficacy

of the agonist to a limiting value (in this case, 0.5). Under

these circumstances the modulator will not block agonist

response to basal levels but rather to a different new setpoint

below the control value.

7.5 Measurement of the Potency of Allosteric

Insurmountable Antagonists

As with insurmountable orthosteric antagonists (see

Section 6.4), in systems with a receptor reserve for the

agonists there will be a measurable dextral displacement

of the concentration response curves either with or

without concomitant depression of the maximal response.

Under these circumstances, a useful method for determin-

ing the affinity of allosteric insurmountable antagonists

is to measure the pA2 (-log of the molar concentration

that produces a twofold shift to the right of the

agonist concentration-response curve). It can be shown

that for allosteric noncompetitive antagonists, the

pA2 is related to the pKB with the relation (see Section

7.8.4):

pKB ¼ pA2 � Log 1þ 2a A½ �=KAð Þ: ð7:8Þ

It can be seen that for modulators of a51 the impact of

the insurmountable property of the antagonist is dimin-

ished and the pA2 is a close estimate of the pKB. In cases

where the modulator increases the affinity of the receptor

for the agonist, the difference between the measured pA2

and the true pKB can be considerable. However, as with

insurmountable orthosteric antagonists, if there is a

substantial receptor reserve in the system (i.e., high efficacy

agonist) then the response usually is measured at very low

levels of [A]/KA [i.e., the EC50 for the agonist concentra-

tion-response curve is KA/(1þt), where t is efficacy] and

thus the impact of the insurmountable character of the

modulator is reduced. In general, the pA2 is a useful

estimate of the pKB for allosteric insurmountable antago-

nists. An example of the use of this method is given in

Section 12.2.11.

If there is no receptor reserve for the system,

then an insurmountable antagonist, whether allosteric

or orthosteric, will produce immediate depression

of the agonist concentration-response curve with no

concomitant shift to the right. Under these circumstances,
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FIGURE 7.13 Insurmountable allosteric blockade of CCR5-mediated calcium transient responses

produced by the chemokine agonist RANTES by (a) Sch-C: Control (filled circles) and presence of

Sch-C 10 nM (open circles) and 30 nM (filled triangles); n¼ 4. Data fit with Equation 7.6 t¼ 16, KA

RANTES¼ 120 nM, a¼ 0.14, and KB¼ 12.6 nM. (b) Blockade of RANTES response with UK

427,857 3 nM (open circles); n¼ 4. Data fit with Equation 7.6 t¼ 16, KA RANTES¼ 140 nM,

a¼ 0.2, and KB¼ 2 nM. Redrawn from [9].
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no pA2 estimate can be made. In these cases,

an alternative approach is to measure the IC50 of

the antagonist as it produces antagonism of a given

concentration of agonist. This procedure is demonstrated

in Figure 7.16. From Equation 7.6, the ratio of the

response to the agonist in the presence and absence of

an antagonist as a fraction of the control response to

the agonist can be rewritten as a displacement curve

with abscissae [B]:

Response ¼
A½ �=KA 1þ �ð Þ þ 1

B½ �=KB a A½ �=KA þ 1ð Þ þ A½ �=KA 1þ �ð Þ þ 1
:

ð7:9Þ

The location along the abscissal axis for this curve yields

the IC50 for the 50% inhibition of the response ([B]¼ IC50)
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FIGURE 7.14 Effect of an allosteric modulator that increases the efficacy of the agonist but

has no effect on affinity in two different systems. (a) For full agonists, increases in efficacy

produce parallel shifts to the left of the concentration-response curves. Responses modeled with

Equation 7.3 with a¼ 1, x¼ 5, t¼ 20, and KA¼ 3mM. Curves shown for [B]/KB¼ 0, 0.3, 1, 3,

10, and 30. (b) In systems with lower receptor density and/or poorer receptor coupling where

the agonists does not produce the full system maximal response, an allosteric modulator

increases the maximal response and shifts the curves to the left. Responses modeled with

Equation 7.3 for the same agonist and same allosteric modulator but in a different tissue

(parameters as for A except t¼ 1).
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FIGURE 7.15 Effect of an allosteric modulator that changes both the affinity and

efficacy of the agonist for the receptor. (a) Modulator increases the efficacy but

decreases the affinity of the agonist for the receptor. Responses modeled with Equation

7.3 with a¼ 0.01, x¼ 5, and t¼ 1. Curves shown for [B]/KB¼ 0, 1, 3, 10, 30, and 100.

(b) Modulator decreases both the efficacy and affinity of the agonist. However, the

decrease in efficacy is modest and a new plateau of agonist is observed (response not

blocked to basal levels). Responses modeled with Equation 7.3 with a¼ 0.3, x¼ 0.5, and

t¼ 1. Curves shown for [B]/KB¼ 0, 1, 3, 10, 30, and 100.
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when [B]/KB(a[A]/KAþ 1)¼ [A]/KA(1þ t)þ 1. From this,

the following equation for the IC50 can be derived:

IC50 ¼
KB A½ �=KAð1þ �ð Þ þ 1

a A½ �=KA þ 1
: ð7:10Þ

Equation 7.10 predicts that in systems of low receptor

density and/or efficiency of coupling (or for agonists of low

intrinsic efficacy), conditions whereby no shift of the

concentration-response curve to the agonist will occur

with an insurmountable antagonist, as t! 0 then IC50!

KB for orthosteric antagonists (a¼ 1). For allosteric

modulators, if they reduce affinity of the receptor for the

agonist (a51) then most likely a shift to the right of the

concentration-response curve will be observed and the pA2

method can be used. If the modulator increases the affinity

of the receptor for the agonist (a41), then the magnitude

of the IC50 will actually be inversely proportional to the

amount of agonist present in the receptor compartment.

This can be used as a unique identifier of allosteric

molecules that increase agonist affinity, since under

normal circumstances the IC50 of antagonists is propor-

tional or unresponsive to the amount of agonist present in

the system (e.g., see Equation 4.12 for orthosteric

competitive antagonists and Equation 7.10 with a¼ 1 for

allosteric insurmountable antagonists that have no effect on

agonist affinity). Figure 7.17 shows the various relation-

ships between the pIC50 and true pKB for allosteric

antagonists (according to Equation 7.10) and the influence

of a (see legend for Figure 7.17 for discussion of specific

effects). An example of the use of this method is given in

Section 12.2.12.

7.6 Methods for Detecting Allosterism

Under certain conditions, allosteric modulators can

behave identically to orthosteric ligands. For example, a
modulator antagonist with a50.03 for a number of

agonists produces apparent nonspecific simple competitive

antagonism within a limited concentration range. However,

it can be seen from Section 7.3 that allosteric modulators

possess a number of unique properties making them

different from orthosteric ligands. For this reason it is

important to differentiate allosteric from orthosteric

ligands. The major approaches to doing so involve the

properties of saturability of effect and probe dependence for

antagonists and loss of sensitivity to classical antagonists
for agonists.

Beginning with agonists, the usual method of determin-

ing the identity of the biological target for an agonist is to

block the effect with antagonists for that same target
(receptor). However, if an agonist produces its effect

through binding to a site separate from the one bound by

the antagonist, responses may not be sensitive to antagon-

ism. For example, the classical muscarinic receptor agonist

carbachol produces inhibition of cyclic AMP responses due

to activation of muscarinic m2 receptors. The effect is

blocked by the classical muscarinic receptor antagonist

QNB (Figure 7.18a). However, the muscarinic m2 allosteric

agonist alcuronium also activates the receptor but the

effects are totally impervious to QNB (Figure 7.18b). In this

circumstance, the criterion of blockade by a classical
receptor antagonist is not met.

Modulators can be classified as potentiators of effect or

antagonists. If potentiation is observed, it is clearly an

allosteric effect as orthosteric obfuscation of the agonist
binding site cannot lead to potentiation of agonism.
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FIGURE 7.16 Effect of allosteric modulator that does not affect agonist affinity but does

completely block receptor signaling to the agonist in a system with no receptor reserve.

Concentration-response curves modeled with Equation 7.6 with a¼ 1 and t¼ 3. Open

circles show the effect on the modulator of the response to a concentration of agonist¼ [A]/

KA¼ 3. Small graph shows the effect of the modulator as an antagonist of the response at

[A]/KA¼ 3 (according to Equation 7.9).
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Antagonism can be unclear therefore the concepts of

saturability of effect and probe dependence may need to

be actively pursued to tease out allosteric mechanisms. If a

clear plateau of effect is observed then allosterism is

implicated (see Figure 7.15b). If an allosteric antagonism

does not interfere with receptor function then surmountable

antagonism will be observed (Equation 7.4). A limited

Schild analysis may not detect the characteristic curvi-

linearity of allosteric blockade (Figure 7.11). Therefore,

detection of possible allosterism requires extension of

normal concentration ranges for testing of blockade (see

Figure 7.19).

Differentiation of orthosterism and allosterism also can

be made by using different receptor probes. For orthosteric

antagonists, the choice of agonist is immaterial (i.e., the

same pKB will result, see Figure 11.21). However, this is not

true of allosteric effect where a and x values may be unique

for every receptor probe. This is a logical consequence of

the allosteric model where it can be seen that mathematical

terms exist containing the concentration of the antagonist,

the a and x values for allosterism and the concentration of

agonist are together ([A]/KA tax[B]/KB term in both the

numerator and denominator of Equation 7.3). This allows

the magnitude of a and x to moderate the degree of

antagonism. Since these constants are unique for every

receptor probe, then the antagonism may also depend on

the nature of the receptor probe (agonist). This is in

contrast to orthosteric antagonist models where there are

no terms containing both [A]/KA and [B]/KB. In this latter

case, there is no possibility of the nature of the agonist

determining the magnitude of antagonist effect. Figure 7.20

shows probe dependence on the CCR5 receptor with the
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FIGURE 7.17 Effect of varying allosteric effects on agonist affinity on the ratio of the IC50 to the true KB. Graph

A shows the effects of a modulator that decreases the affinity of the receptor for the agonist (inset panel a

for a¼ 0.01). Shown are inhibition curves in the presence of increasing concentrations of agonist. These shift the

inhibition curves to the right and cause an increased ratio for IC50/KB. Graph b shows the effects of a modulator that

has no effect on affinity (a¼ 1). Little shift to the right of the inhibition curve is observed. The slight observable shift

is caused by the small receptor reserve due to the value of t¼ 3. Graph c shows the effects of a modulator that

increases the affinity of the agonist for the receptor (a¼ 30). In this case, the inhibition curves actually shift to the left

with increasing concentrations of agonist. The ratio of IC50/KB decreases with increasing agonist concentrations.
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allosteric modulator aplaviroc. It can be seen that the

affinity of 125I-MIP-1a is decreased considerably (a50.03)

while the affinity for 125I-RANTES is unchanged

(a estimated to be 0.8 [9]).

7.7 Chapter Summary and Conclusions

. Allosteric modulators affect the interaction of the

receptor and probe molecules (i.e., agonists or radi-

oligands) by binding to separate sites on the receptor.

These effects are transmitted through changes in the

receptor protein.
. Allosteric modulators possess properties different

from orthosteric ligands. Specifically, allosteric

effects are saturable and probe dependent (i.e., the

modulator produces different effects for different

probes).

. Allosteric effects can result in changes in affinity and

or efficacy of agonists.

. Sole effects on affinity (with no change in

receptor function) result in surmountable antagonism.

(a) (b)

FIGURE 7.18 Ligand-target validation. Lack of sensitivity of putative agonist effect to classical receptor

antagonists. (a) Inhibition of cyclic AMP due to activation of muscarinic m2 receptors by the classical muscarinic

agonist carbachol in the absence (filled circles) and presence (open circles) of the classical muscarinic antagonist

QNB present in a concentration that shifts the agonist curve to the location shown by the dotted line.

This concentration of QNB completely blocks the response. (b) Inhibition of cyclic AMP through activation

of muscarinic m2 receptors by the allosteric agonist alcuronium in the absence (filled circles) and presence

(open circles) of the same concentration of QNB. In this case, the response is insensitive to this concentration of the

antagonist. Data redrawn from [32].
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FIGURE 7.19 Schild regression for allosteric modulator of KB¼ 200 nM that has

a¼ 0.03 for the agonist. It can be seen that the regression is linear with unit slope at dose

ratios510. However, extension of concentrations greater than 300 nM reveal saturation of

the antagonism and a curvilinear portion of the Schild regression (indicative of allosteric

antagonism).
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The dextral displacement reaches a maximal value

leading to a curvilinear Schild regression.

. Allosteric modulators that block receptor function

produce insurmountable antagonism. In addition,

modulators that block function also can alter (increase

or decrease) affinity.

7.8 Derivations

. Derivation of allosteric model of receptor activity

(7.7.1)
. Effects of allosteric ligands on response: changing

efficacy (7.7.2)
. Schild analysis for allosteric antagonists (7.7.3)
. Relationship of pA2 and pKB for insurmountable

allosteric antagonism (7.7.4)

7.8.1 Allosteric Model of Receptor Activity

Consider two ligands ([A] and [B]), each with its own

binding site on the receptor with equilibrium association

constants for receptor complexes of Ka and Kb, respec-

tively. The binding of either ligand to the receptor modifies

the affinity of the receptor for the other ligand by a

factor a. There can be three ligand-bound receptor species;

namely, [AR], [BR], and [ARB]:

: ð7:11Þ

The resulting equilibrium equations are

Ka ¼ AR½ �= A½ � R½ �, ð7:12Þ

Kb ¼ BR½ �= B½ � R½ �, ð7:13Þ

aKa ¼ ARB½ �= BR½ � A½ �, and ð7:14Þ

aKb ¼ ARB½ �= AR½ � B½ �: ð7:15Þ

Solving for the agonist bound receptor species [AR] and

[ARB] as a function of the total receptor species

([Rtot]¼ [R]þ [AR]þ [BR]þ [ARB]) yields

AR½ � þ ARB½ �

Rtot½ �

¼
1=a B½ �Kbð Þ þ 1ð Þ

1=a B½ �Kbð Þ þ 1=aKað Þ þ 1=a A½ �KaKbð Þ þ 1ð Þ
: ð7:16Þ

Simplifying and changing association to dissociation

constants (i.e., KA¼ 1/Ka) yields [28]

r ¼
A½ �=KA 1þ a B½ �=KBð Þ

A½ �=KA 1þ a B½ �=KBð Þ þ B½ �=KB þ 1
: ð7:17Þ

7.8.2 Effects of Allosteric Ligands on Response:

Changing Efficacy

The receptor can bind both the probe (agonist, radi-

oligand, [A]) and allosteric modulator ([B]). The agonist

bound receptor signal through the normal operational

model ([AR] complex interacting with cellular stimulus-

response machinery with association constant Ke) and in a

possibly different manner when the allosteric modulator is

bound (complex [ABR] interacting with cell with
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FIGURE 7.20 Effects of aplaviroc, an allosteric modulator of the CCR5 receptor, on the binding of the

chemokine 125I-MIP-1a (panel a) and 125I-RANTES (panel b). It can be seen that aplaviroc blocks the

binding of MIP-1a but has very little effect on the binding of RANTES. Such probe dependence is indicative

of allosteric effect. Data from [32].
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association constant K0e):

:

ð7:18Þ

The equilibrium species are

AR½ � ¼ ABR½ �=a B½ �Kb, ð7:19Þ

BR½ � ¼ ABR½ �=a A½ �Ka, and ð7:20Þ

R½ � ¼ ABR½ �=a B½ �Kb B½ �Kb: ð7:21Þ

According to the operational model, the response

producing species activate the response elements of the

cell according to

Response ¼
AR½ �=KE þ ABR½ �=K0E

AR½ �=KE þ ABR½ �=K0E þ 1
, ð7:22Þ

where KE¼Ke
�1 and K0E ¼ K0e � 1. The amount of any

receptor species is given by the fractional amount

of receptor multiplied by the total receptor number. Thus,

Equation 7.22 can be rewritten as

Response ¼
rAR Rt½ �=KE þ rABR Rt½ �=K

0
E

rAR Rt½ �=KE þ rABR Rt½ �=K0E þ 1
, ð7:23Þ

where rAR is the fraction of receptor in the [AR] form

given by

rAR ¼ A½ �=KA= A½ �=KA 1þ a B½ �=KBð Þ þ B½ �=KB þ 1ð Þ

ð7:24Þ

and rABR is the fraction of receptor in the [ABR] form

given by

rABR ¼ a A½ �=KA B½ �=KB=ð A½ �=KA 1þ a B½ �=KBð Þ

þ B½ �=KB þ 1Þ:
ð7:25Þ

Substituting Equations 7.24 and 7.25 into 7.23 and defining

t as [Rt]/KE and t0 as ½Rt�=K
0
E, Equation 7.23 can be

rewritten as

Response

¼
A½ �=KA �þ a�0 B½ �=KBð ÞEmax

A½ �=KA 1þ a B½ �=KB þ �þ a�0 B½ �=KBð Þð Þ þ B½ �=KB þ 1
:

ð7:26Þ

Finally, defining x as the ratio of t values for the

agonist bound receptor when it is and is not bound to

modulator (x¼ t0/t), Equation 7.26 becomes

Response

¼
A½ �=KA� 1þ ax B½ �=KBð ÞEmax

A½ �=KA 1þ a B½ �=KB þ � 1þ ax B½ �=KBð Þð Þ þ B½ �=KB þ 1
:

ð7:27Þ

7.8.3 Schild Analysis for Allosteric Antagonists

From Equation 7.3, the observed EC50 for the agonist, in

the presence of a concentration of allosteric antagonist [B]

is given by

EC050 ¼
EC50 B½ �=KB þ 1

� �

1þ a B½ �=KBð Þ
, ð7:28Þ

where EC50 refers to the EC50 of the control concentration-

respones curve in the absence of modulator. The ratio of

the EC50 values (concentrations of agonist producing 50%

response in the presence and absence of the allosteric

antagonist) is given by

EC050
EC50

¼ DR ¼
B½ �=KB þ 1ð Þ

1þ a B½ �=KBð Þ
: ð7:29Þ

This leads to the logarithmic metameter form of the Schild

equation:

LogðDR-1Þ ¼ Log
B½ � 1� að Þ

a B½ � þKB

� �
: ð7:30Þ

7.8.4 Relationship of pA2 and pKB for Insurmountable

Allosteric Antagonism

As with insurmountable orthosteric antagonists, the shift

to the right of concentration-response curves produced by

allosteric insurmountable antagonists can be used to

calculate a pA2 value, and in turn this can be related to

the pKB of the antagonist. A concentration of antagonist

equal to the pA2 (i.e., concentration¼ 10�pA2) causes a

dose ratio of 2, leading to the following equality:

2 A½ �=KA�Emax

2 A½ �=KA 1þ � þ a 10�pA2

� �
=KB

� �
þ 10�pA2
� �

=KB þ 1

¼
A½ �=KA�Emax

A½ �=KA 1þ �ð Þ þ 1
: ð7:31Þ

The equation for the relationship between the pA2 and

the KB of an insurmountable allosteric modulator then

becomes

10�pA2 ¼ KB= 1þ 2a A½ �=KAð Þ and ð7:32Þ

pKB ¼ pA2 � Log 1þ 2a A½ �=KAð Þ: ð7:33Þ

For allosteric modulators that decrease the affinity of the

receptor for the antagonist (a51), the insertion of the a
term decreases the error between the observed pA2 and the
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true pKB (thus improving the method). However, if the

allosteric modulator increases the affinity of the receptor

for the agonist (a41) the error produced by the insur-

mountable nature of the blockade may become substantial.

If the allosteric modulator does not completely

block receptor signaling (x 6¼ 0), then there is even a closer

correspondence between the pA2 and true pKB, as

shown by

10�pA2 ¼ KB= 1þ 2a A½ �=KA 1� xð Þ � 2axð Þ ð7:34Þ

Thus, the non-zero x term reduces the effect of a on the

pA2 estimate. It can be seen that when receptor signaling is

blocked by the allosteric modulator (x¼ 0), Equation 7.34

reduces to Equation 7.32.
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The Process of Drug Discovery

One doesn’t discover new lands without consenting to lose sight of the shore for a very long time.

— ANDRÉ GIDE (1869–1951)

The real voyage of discovery consists not in seeking new landscapes but in having new eyes.

— MARCEL PROUST (1871–1922)
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8.1 Pharmacology in Drug Discovery

The drug discovery process can be envisioned as four

interconnected phases (see Figure 8.1). Generally, these are

the acquisition of chemicals to be tested for biological

activity, the determination of the activity of those chemicals

on biological systems (pharmacodynamics), the formula-

tion of the most active of these for therapeutic testing in

humans (pharmaceutics), and the determination of ade-

quate delivery of the active drug to diseased tissues

(pharmacokinetics). Each of these collections of processes

is interconnected with the others and failure in any one of

them can halt the development process. It is worth

considering each process separately, as well as the relation-

ships between them.

8.2 Chemical Sources for Potential Drugs

A starting point to this process is the definition of what

the therapeutic end point of the drug discovery process will

be; namely, a drug. There are certain properties molecules

must have to qualify as therapeutically useful chemicals.

While in theory any molecule possessing activity that can be

introduced into the body compartment containing the

therapeutic target could be a possible drug, in practice

therapeutically useful molecules must be absorbed into the

body (usually by the oral route), distribute to the biological

target in the body, be stable for a period of time in the

body, be reversible with time (excreted or degraded in the

body after a reasonable amount of time), and be nontoxic.

Ideally, drugs must be low-molecular-weight bioavailable

molecules. Collectively, these desired properties of mole-

cules are often referred to as ‘‘drug-like’’ properties. A

useful set of five rules for such molecules has been proposed

by Lipinski and co-workers [1]. Molecules that fulfill these

critieria generally can be considered possible therapeutically

useful drugs provided they possess target activity and few

toxic side effects. Specifically, these rules state that ‘‘drug-

like’’ molecules should have less than five hydrogen-bond

donor atoms, have a molecular mass of5500 Da, have high

lipophilicity (cLogP45), and that the sum of the nitrogen

and oxygen atoms should be 510. Therefore, when

estimating the potential therapeutic drug targets these

properties must be taken into consideration.
There are numerous chemical starting points for drugs.

Historically, natural products have been a rich source of

molecules. The Ebers Papyrus, one of the earliest docu-

ments recording ancient medicine, describes 700 drugs—

most of them from plants. Similarly, the Chinese Materia

Medica (100 BCE), the Shennong Herbal (100 BCE), Tang

Herbal (659AD), the Indian Ayurvedic system (1000 BCE),

and books of Tibetan medicine Gyu-zhi (800AD) all

document herbal remedies for illness. Some medicinal

substances have their origins in geographical exploration.

For example, tribes indigenous to the Amazon River had

long been known to use the bark of the Cinchona officinalis

to treat fever. In 1820, Caventou and Pelletier extracted the

active antimalarial quinine from the bark that provided the

starting point for the synthetic antimalarials chloroquine

and mefloquine. Traditional Chinese herbal medicine has

yielded compounds such as artemisinin and derivatives

for the treatment of fever from the Artemisia annua. The

anticancer vinca alkaloids were isolated from the

Madagascar periwinkle Catharanthus roseus. Opium is an

ancient medicinal substance described by Theophrastus in

the third century BCE, used for many years by Arabian

physicians for the treatment of dysentery and for the relief

of suffering (as described by Sydenham in 1680) in the

Middle Ages. Known to be a mixture of alkaloids, opium

furnished therapeutically useful pure alkaloids when

Serturner isolated morphine in 1806, Robiquet isolated

codeine in 1832, and Merck isolated papaverine in 1848. At

present, only 5 to 15% of the 25,000 species of higher plants

have been studied for possible therapeutic activity. Of

prescriptions in the United States written between 1959 and

1980, 25% contained plant extracts or active principals.
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Marine life can also be a rich source of medicinal

material. For example, C-nucleosides spongouridine and

spongothymidine isolated from the Caribbean sponge

Cryptotheca crypta possess antiviral activity. Synthetic

analogues led to the development of cytosine arabinoside,

a useful anticancer drug. Microbes also provide extremely

useful medicines—the most famous case being penicillin

from Penicillium chrysogenum. Other extremely useful

bacterial=derived products include the fungal metabolites,

the cephalosporins (from Cephalosporium cryptosporium),

aminoglycosides and tetracyclines from Actinomycetales,

immunosuppressives such as the cyclosporins and rapamy-

cin (from Streptomyces), cholesterol-lowering agents

mevastatin and lovastatin (from Penicillium), and antihel-

mintics and antiparasitics such the ivermectins (from

Streptomyces). As with plants, less than 1% of bacterial

and less than 5% of fungal sources have been explored for

medicinal value. In general, the World Health Organization

estimates that 80% of the world’s population relies on

traditional medicine with natural products.
From this perspective, natural products appear to be a

great future source of drugs. However, teleologically there

may be evolutionary pressure against biological activity of

natural products. Thus, while millions of years of selective

pressure has evolved molecules that specifically interact

with physiological receptors (i.e., neurotransmitters, hor-

mones) with little ‘‘cross-talk’’ to other targets it can be

argued that those same years exerted a selective evolu-

tionary pressure to evolve receptors that interact only with

those molecules and not the myriad of natural products to

which the organism has been exposed. In practical terms,

natural products as drugs or starting points for drugs have

certain inherent disadvantages as well. Specifically, these

tend to be expensive, not chemically tractable (structurally

complex and difficult to derivatize), and involve difficult

and expensive scale-up procedures (active species tend to be

minor components of samples). Natural products also often

contain a larger number of ring structures and more chiral

centers and have sp3 hybridization bridgehead atoms

present. Natural products are often high in stereo complex-

ity, and in that they contain few nitrogen, halogen, and

sulfur atoms and are oxygen rich with many hydrogen

donors natural products often are very prone to enzymatic

reactions. In addition, a practical problem in utilizing such

pharmacophores is the unpredictable novelty and intellec-

tual property that may result. In spite of these short-

comings, between the years 1981 and 2002 of the 67% of

877 synthetic new chemical entities 16.4% utilized pharma-

cophores derived directly from natural products.
Another approach to the discovery of drugs is ‘‘rational

design.’’ The basis for this strategy is the belief that detailed

structural knowledge of the active site binding the drug will

yield corresponding information to guide the design of

molecules to interact with that active site. One of the best

known examples, yielding rich dividends, is the synthesis

of the angiotensin-converting enzyme (ACE) inhibitor

captopril from a detailed analysis of the enzyme active

site. Similar design of small molecules to fit specific binding

loci of enzymes was accomplished for HIV protease

(nelfinavir) and Relenza for the prevention of influenza.

Other rational design approaches utilize dual pharmaco-

phores from other active drugs to combine useful ther-

apeutic activities. This approach offers the advantage that

the dual biological activity will be absorbed, metabolized,

and excreted in a uniform manner (i.e., the activity profile

of the drug will not change with varying ratios of two

Chemical
libraries

Medicinal
chemistry

Natural
products

Pharmacodynamics

Drug discovery

Process of drug discovery

Pharmacokinetics

Pharmaceutical
development

FIGURE 8.1 Schematic diagram of four interactive but separate stages of

drug discovery and development.
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simultaneously dosed drugs). This also gives medicinal

chemists a place to start. For example, ICS 205-903 (a novel

and potent antagonist of some neural effects of serotonin in

migraine) was made by utilizing the structure of cocaine, a

substance known to have seriously debilitating central

effects but also known to block some of the neural effects of

serotonin with the serotonin structure. The result was a

selective serotonin antagonist devoid of the disadvantages

of cocaine (Figure 8.2a). Similarly, a beta-adrenoceptor

blocker with vasodilating properties has been made by

combining the structure of the beta-blocker propranolol

with that of a vasodilator (Figure 8.2b). The idea of

introducing dual or multi-target activities in molecules is

discussed further in Section 9.5.

There are numerous natural substances that have useful

therapeutic properties as well as other undesirable proper-

ties. From these starting points, medicinal chemists have

improved on nature. For example, while extremely useful in

the treatment of infection penicillin is not available by the

oral route. This shortcoming is overcome in the analogue

ampicillin (Figure 8.3a). Similarly, the obvious deleterious

effects of cocaine have been eliminated in the local

anesthetic procaine (Figure 8.3b). The short activity and

weak steroid progesterone is converted to a stronger long

acting analogue (þ)-norgestrel through synthetic modifica-

tion (Figure 8.3c). Catecholamines are extremely important

to sustaining life and have a myriad of biological activities.

For example, norepinephrine produces a useful bronchodi-

lation that has utility in the treatment of asthma. However,

it also has a short duration of action, is a chemically

unstable catechol, and produces debilitating tachycardia,

vasoconstriction, and digital tremor. Synthetic modifica-

tion to salbutamol eliminated all but the tremorogenic side

effects to produce a very useful bronchodilator for the

treatment of asthma (Figure 8.3d).

It can be argued that drugs themselves can be extremely

valuable starting points for other drugs in that by virtue of

the fact that they are tolerated in humans they allow the
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observation of their other effects. Some of those effects

(‘‘side effects’’) may lead to useful therapeutic indications.

For example, the observed antiedemal effects of the

antibacterial sulfanilamide in patients with congestive

heart failure led to the discovery of its carbonic anhydrase

inhibitor activity and the subsequent development of the

diuretic furosemide (Figure 8.4a). Similarly, the antidia-

betic effects of the antibiotic carbutamide led to the

development of the antidiabetic tolbutamide

(Figure 8.4b). Some of the early antihistamines were

found to exert antidepressant and antipsychotic properties.

These led to modern psychopharmaceuticals. The immu-

nosuppressant activity of the fungal agent cyclosporine also

was exploited for therapeutic utility.
Endogenous substances such as serotonin, amino acids,

purines, and pyrimidines all have biological activity and are

tolerated in the human body. Therefore, these can be used

in some cases as starting points for synthetic drugs. For

example, the amino acid tryptophan and neurotransmitter

serotonin were used to produce selective ligands for 5-

HT5A receptors and a selective somatostatin3 antagonist,

adenosine A2b receptor antagonists from adenine, and a

selective adenosine 2A receptor agonist from adenosine

itself (Figure 8.5).
Major pharmaceutical efforts revolve around the testing

of large chemical libraries for biological activity. Assuming

that most drugs must have a molecular weight of less than

600 (due to desired pharmacokinetic properties as discussed

later), there are wide ranges in the estimates of the number

of molecules that exist in ‘‘chemical space’’ (i.e., how many

different molecules can be made within this size limit). The

estimates range from 1040 to 10100 molecules, although the

need for activated carbon centers for the construction of

carbon-carbon bonds in synthetic procedures reduces the

possible candidates for synthetic congeners. In spite of this

fact, the number of possibilities is staggering. For example,

in the placement of 150 substituents on mono to 14-

substituted hexanes there are 1029 possible derivatives.
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Considering a median value of 1064 possible structures in

chemical space clearly indicates that the number of possible

structures available is far too large for complete coverage

by chemical synthesis and biological screening. It has been

estimated that a library of 24 million compounds would be

required to furnish a randomly screened molecule with

biological activity in the nanomolar potency range. While

combinatorial libraries have greatly increased the
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FIGURE 8.4 Examples of case where the side effects of drugs used for another

indication led to the discovery and development of a new therapeutic entity for another
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productivity of medicinal chemists (i.e., a single chemist

might have produced 50 novel chemical structures in a year

10 years ago, but with the availability of solid and liquid

phase synthesis and other combinatorial techniques a single

chemist can produce thousands of compounds in a single

month at a fraction of the cost of previous techniques), 24

million compounds per lead is still considerably larger than

the practical capability of industry.
One proposed reason for the failure of many high-

throughput screening campaigns is the lack of attention to

drug-like (namely, the ability to be absorbed into the

human body and having a lack of toxicity) properties in the

chemical library. The non-drug-like properties of molecules

lead to biological activity that cannot be exploited

therapeutically. This is leading to improved drug design

in chemical libraries incorporating features to improve

drug-like properties. One difficulty with this approach is the

multifaceted nature of the molecular properties of drug-like

molecules (i.e., while drug-like chemical space is more

simple than biological target space the screens for drug-like

activity are multimechanism based and difficult to predict).

Thus, incorporating favorable drug-like properties into

chemical libraries can be problematic. Also, different

approaches can be counterintuitive to the incorporation

of drug-like properties. Thus, rational design of drugs tends

to increase molecular weight and leads to molecules with

high hydrogen bonding and unchanged lipophilicity. This

generally can lead to reduced permeability. A target

permeability for drug-like molecules (which should have

aqueous solubility minimum of452 mg/ml) should achieve

oral absorption from a dose of41 mg/kg. High-throughput

screening approaches tend to increase molecular weight,

leave hydrogen bonding unchanged from the initial hit, and

increase lipophilicity. This can lead to decreases in aqueous

solubility with concomitant decrease in drug-like

properties.
The assumption made in estimations of the number of

molecules that would be required to yield biologically active

molecules is that potential drugs are randomly and

uniformly distributed throughout chemical space.

Analysis of known drugs and biologically active structures

indicates that this latter assumption probably is not valid.

Instead, drugs tend to cluster in chemical space (i.e., there

may be as few as 10,000 drug-like compounds in

pharmacological space [4]). The clustering of drug-like

molecules in chemical space has led to the concept of

‘‘privileged structures’’ from which medicinal chemists may

choose for starting points for new drugs. A privileged

structure is defined as a molecular scaffold with a range of

binding properties that yields potent and selective ligands

for a range of targets through modification of functional

groups. Privileged structures can be a part of already

known drugs such as the dihydropyridines (known as

calcium channel blockers). In this case, inhibitors of platelet

aggregation (PAF inhibitors) and neuropeptide Y type 1

receptor ligands have been made form the dihydropyridine

backbone (Figure 8.6). Privileged structures also can simply

be recurring chemical motifs (such as the indole motif

shown in Figure 8.7) shared by marketed drugs and

investigational ligands. Similarly, the 2-tetrazole-biphenyl

motif is found in the angiotensin2 receptor antagonist

losartan and GHS receptor ligand L-692,429 (Figure 8.8a)

and a wide range of biologically active structures are based

in spiropiperidines (Figure 8.8b).

8.3 Pharmacodynamics and High-throughput Screening

The history of medicine and pharmacology abound with

anecdotes of serendipitous drug discovery. Perhaps the

most famous example of this is the discovery of penicillin

by Fleming in 1928. This led to the systematic screening of

hundreds of microorganisms for antibiotics. However, even

in those early discovery efforts the value of screening was

appreciated. For example, though Ehrlichs’ invention of

salvarsan for syphilis has many serendipitous elements it

was nevertheless the result of a limited screening of 600

synthetic compounds.
Without prior knowledge of which chemical structure

will be active on a particular target, as wide as possible

a sampling of chemical space (i.e., diverse choice of

chemical structures) must be made to detect biological

activity. This is done through so-called high-throughput

screening (HTS), whereby a robust biological assay is used

to test as large as possible a sample of chemical compounds.

Usually robotic automation is employed in this process.

Presently, sophisticated liquid-handling devices, extremely

sensitive detection devices, and automated assay platforms

allow testing of multiple thousands of compounds in very

small volumes (5100 mL). The ideal HTS is generic (i.e., can

be used for a wide range of targets utilizing formats in

which any receptor can be transfected and subsequently

expressed), is robust (insensitive to assumptions), is

relatively low cost with a low volume (does not require

large quantities of substance), is amenable to automation

(has a simple assay protocol), ideally is nonradioactive, and

has a high tolerance to solvents such as DMSO. Some

requirements for functional screening assays are given in

Table 8.1.
One of the most negative aspects of drug screening is that

it basically is a one-way experiment. The single direction

stems from the fact that while activity guides structure

activity relationships much less use can be made of lack of

activity. This is because of the numerous reasons a

compound may not show activity (i.e., there are more

defined reasons a molecule is active on a biological target

than the reasons it lacks activity [4]). For example, lack of

aqueous solubility accounts for a substantial number of

potentially false negatives in the screening process.
A major consideration in screening is the detection

capability of the screen for both false negatives (lack of

detection of an active drug) and propensity to find false

positives (detection of a response to the compound not due

to therapeutic activity of interest). Ostensibly, false

positives might not be considered a serious problem in

that secondary testing will detect these and they do not

normally interfere with the drug discovery process.
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However, this can be a serious practical problem if the hit

rate of a given HTS is abnormally high due to false

positives and the major resource for decoding (following up

initial hits) becomes limiting. In this regard, binding

assays generally have a lower false positive rate than

do functional assays. Also, the false positive rate in

functional assays where the exposure time of the assay to

the compounds is short (i.e., such as calcium transient

studies) is lower than in assays such as reporter assays

where the time of exposure is on the order of 24 hours. On

the other hand, binding studies require confirmation of

primary activity in a functional assay to identify therapeutic

activity.
A more serious problem is the one of false negatives,

since there is no way of knowing which compounds are

active but not detected by the assay. In this regard, binding

assays have the shortcoming of detecting only compounds

that interfere with the binding of the tracer probe. Within

this scenario, allosteric compounds that affect the physio-

logical function of the target but otherwise do not interfere

with binding of the tracer are not detected. Since allosterism

is probe dependent (i.e., not all molecules are equally

affected by an allosteric ligand, see Chapter 7), the

endogenous agonist should be used for screening to detect

physiologically relevant activity. For example, the allosteric

ligand (alcuronium) for muscarinic receptors produces a

tenfold change in the affinity of the receptor for the natural

endogenous agonist acetylcholine but only a 1.7-fold

change is observed for the synthetic muscarinic agonist

arecoline [5]. Therefore, screening with arecoline may not

have detected a physiologically relevant (for acetylcholine,

the natural agonist) activity of alcuronium.

There are instances where the screen for biologically

active molecules cannot be the ideal and appropriate

biological test. For example, the screening process for

drugs that block against HIV infection theoretically should

involve live HIV. However, there are obvious limitations

and constraints with using virus that can cause AIDS.

Specifically, the containment required with such virulent

species is not compatible with HTS. Therefore, a surrogate

screen must be done. In this case, a receptor screen of the

protein recognition site for HIV (namely, the chemokine

receptor CCR5) can be used to screen for drugs that block

HIV infection. What is required is a secondary assay to
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ensure that the ligands that block CCR5 also block HIV

infection.

The complex protein-protein interactions involved in

HIV entry strongly suggest that the blockade of these

effects by a small molecule requires an allosteric mechanism

(i.e., a specific orthosteric hindrance of a portion of the

protein interfaces will not be adequate to block HIV

infection). Therefore, the surrogate screen for HIV blockers

would be a surrogate allosteric screen. As noted in

Chapter 7 and discussed previously, allosteric effects are

notoriously probe dependent. Therefore, there is the

possibility that the HTS will detect molecules devoid of

the therapeutically relevant activity (i.e., block the binding

of the probe for screening but not HIV). This also means

that the screen may miss therapeutically relevant molecules

by using a therapeutically irrelevant allosteric probe.

Figure 8.9 shows how usage of a surrogate probe for

biological testing can deviate from therapeutic relevance.

Initially, a molecule with potent blocking effects on the

surrogate probe (radioactive chemokine binding) was

shown also to be a potent antagonist of HIV infection

(ordinate scale as the IC95 for inhibition of HIV infection,

see data point for compound A in Figure 8.9). In efforts to

optimize this activity through modification of the initial

chemical structure, it was found that chemokine blocking

potency could be retained while HIV activity was lost (see

data point for compound B in Figure 8.9). In this case,

alteration of the chemical structure caused a twofold

decrease in chemokine antagonist potency and a dispropor-

tionate 3,020-fold decrease in HIV antagonist potency.

These compounds clearly show the independence of

chemokine binding and HIV binding effects with this

molecular series.

The major requirements for a screen are high sensitivity

and a large signal-to-noise ratio for detection of effect. This

latter factor concerns the inherent error in the basal signal

and the size of the window for production of biological

effect. A large detection window for response (i.e.,

difference between basal response and maximal agonist-

stimulated response) is useful but not necessary if the

random error intrinsic to the measurement of biological

effect is low. A smaller maximal detection window, but with

a concomitant lower random error in measurement, may be

preferable. Since the vast majority of compounds will be

exposed to an HTS only once, it is critical that the assay

used for screening has a very high degree of sensitivity and

accuracy. These factors are quantified in a statistic called

the Z0 factor [7].
The Z0 factor calculates a number that is sensitive to the

separation between the mean control values for an HTS
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FIGURE 8.7 The preferred indole structure forms the basis of a number of selective ligands for receptors.
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(background) and mean of the positive sample as well as the

relative standard deviations of both of those means. In

validating a screen, a number of negative controls (back-

ground signal) and positive controls (wells containing a

ligand that gives a positive signal) are run. This process

yields a mean value. A positive control mean signal (mcþ)
(for example, the maximal response to an agonist for the

target receptor) with accompanying standard deviation

(denoted scþ) and negative control signal (background

noise, no agonist) denoted mc� (with sc�) are generated

with a standard positive control drug (i.e., full agonist for

the receptor). The bandwidth of values 3 s units either side

of the mean is designated the data variability band, and the

width of the spread between the two means (þ 3 s units) is

denoted the separation band (or the dynamic range) of the

screen. It is assumed that 3 s units represents a 99.73%

confidence that a value outside of this limit is different from

the mean (see Chapter 11 for further discussion). An

optimum screen will have a maximum dynamic range and

minimum data variability band (see Figure 8.10a). It can be

seen that problems can occur with either a large intrinsic

standard error of measurement (Figure 8.10b) or small

separation band (Figure 8.10c). Interestingly, an efficient

and accurate HTS can be achieved with a low separation

band (contrary to intuition) if the data variability band is

very small (see Figure 8.10d). The Z0 factor (for a control

drug of known high activity for the assay target this is

referred to as a Z0 factor) calculates these effects by

subtracting the difference between the means from the sum
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idines, panel b) yielding selective ligands for receptors.

TABLE 8.1

Requirements for a functional screening assay.

Minimal

. Cell line with appropriate receptor is available.

. There is some means of detecting when there is a

ligand-receptor interaction taking place.

. Agonist and selective antagonist available.

. Agonist is reversible.

Optimal

. There is a commercial cell line available.

. Response should be sustained, not transient.

. Response should be rapid.
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of the difference of the standard deviations of the means

divided by the difference between the means:

Z0 ¼
mcþ � mc�
�� ��� ð3scþ þ 3sc�Þ

jmcþ � mc�j
¼ 1�

ð3scþ þ 3sc�Þ

jmcþ � mc�j
:

ð8:1Þ

Table 8.2 shows the range of possible Z0 values, with

comments on their meaning in terms of high-throughput

screening assays.

The calculation of Z values for experimental compounds

can yield valuable data. Values of Z for test compounds are

calculated in the same way as Z0 values except that the mcþ
and scþ values are the signals from the test compounds

(denoted ms and ss for test sample) and mc� and sc� from

the assay with no test compounds run (i.e., controls for

noise, denoted mc and sc for controls). While the Z0

indicates the robustness and detection capability of the

screen (calculated with known active compounds), a value

of Z for a set of unknown compounds can also test other

factors related to the screen such as the concentration at

which the compounds are tested and/or the chemical

makeup of the compound set. For example, Figure 8.11a

shows a screen with an excellent Z0 value (Z0 ¼ 0.7) and Z

values for a set test compounds run at two concentrations.

It can be seen that the higher concentration yields a higher

signal and variation (possibly due to toxic effects of the

high concentration). This, in turn, will lead to a lower Z

factor. Similarly, Figure 8.11b shows distributions for two

chemical libraries. It can be seen that there is a clear

difference in the quality of the assay with these two sets of

compounds, indicating a possible inherent property of one

of the chemical scaffolds leading to variability in the screen.

In effect, the quality of the compound set can be quantified

for this assay with a value of Z [7].
Of major importance for an HTS is sensitivity to weak

ligands. As discussed in Chapter 2, functional systems

generally amplify responses as the signal is measured distal

to the agonist-receptor interaction. For this reason, agonist

screens utilizing end organ response are preferred (i.e.,

melanophore function, reporter assays). In contrast, the

sensitivity of antagonist screening can be controlled by

adjustment of the magnitude of the agonism used to detect

the blockade. Clearly, the lower the amount of stimulation

to the receptor of the system the more sensitive it will be to

antagonism. This effect is inversely proportional to the

window of detection for the system. On one hand, as large a

window of agonist response as possible is preferred to

maximize signal-to-noise ratios. On the other hand, too

large a window may require a strong agonist stimulation

that in turn would create insensitivity to antagonism. This

can be offset by screening at a higher concentration of

antagonist, but this can introduce obfuscating factors such

as toxic effects of high concentrations of weakly active

compounds. Thus, for antagonist screening it becomes a

trade-off of strength of agonist stimulation against con-

centration of antagonist. An optimal screening assay must

adjust for maximal sensitivity and minimal variability.

Figure 8.12 shows some potential scenarios for single

concentration inhibition of different levels of agonist

stimulation by different concentrations of an antagonist.

It can be seen that the maximal sensitivity to antagonism is

observed with low levels of receptor stimulation

(Figure 8.12a, see [A]/KA¼ 0.3). However, the standard

deviation of the signal is large enough to interfere with the

determination of antagonism. As the magnitude of

the receptor stimulation increases ([A]/KA¼ 1.5, and 10),

the standard deviation of the signal ceases to be a problem

but there is less inhibition of the signal. This can be

overcome by increasing the concentration of antagonist

(Figure 8.12a). Figure 8.12b shows the relationship between

the initial level of receptor stimulation and the percent

inhibition of that signal by an antagonist. If it assumed that

a 40% or greater inhibition of the signal is unequivocal

for detection of antagonism, then it can be seen from

this figure that the initial level of receptor stimulation

cannot exceed 33% maximum for screening antagonist

concentrations at the equilibrium dissociation constant

(KB) and 590% maximum stimulation for antagonist

concentration¼ 10�KB.
From the standpoint of sensitivity to antagonist, a

receptor stimulation level of 50% is optimal for

functional studies. However, in view of signal-to-noise

factors and the need for a clear window of inhibition an

80% level of stimulation often is employed. In this

regard, binding may hold some advantages since the

window of detection for a binding assay with a low level

of nsb may be greater than that for a functional assay.

Figure 8.13 shows the antagonism by a concentration of

antagonist of [B]¼KB, of a dose-response curve for

receptor stimulation of 80% (function, see Figure 8.13a),

FIGURE 8.9 Correlation between blockade of chemokine bind-

ing to CCR5 (abscissae as pKi values) and 95% inhibition of HIV

infection as pIC95 (ordinates) for a series of CCR5 antagonists.

It can be seen that compound A is nearly equiactive as a blocker of

chemokine binding (pKi¼ 8.5) and HIV infection (pIC95¼ 8.4;

ratio of affinities¼ 1.3), whereas structural analogues (filled circles)

clearly differentiate these activities. For the structure B shown,

the chemokine-blocking activity has been somewhat retained

(pKi¼ 8.2), whereas the HIV-blocking activity has largely been

lost (pIC95¼ 4.9; ratio of affinities¼ 3,020). Data drawn from [6].
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and receptor binding level of 10%. It is assumed that

both of these initial levels of receptor stimulation yield

adequate windows of detection for the respective assay

formats. It can be seen that the concentration of

antagonist produces 50% inhibition of the binding and

only 23% inhibition of the functional signal (i.e., the

binding assay format is more sensitive to the antagon-

ism). A reexpression of this effect in terms of the minimal

potency of antagonist that each screen could detect

(assuming that a 40% inhibition is required for detection)

indicates that the binding assay would be capable of

detecting antagonists with a KB� 8mM while the func-

tional assay would only detect antagonists of KB� 3mM
(a 2.7-fold loss of sensitivity). It should be stressed that

binding and function have been somewhat arbitrarily

assigned these two levels of receptor stimulation.

(a)

(b)

(c)

(d)

FIGURE 8.10 Representation of Z0 values (a) Shaded areas represent distribution of

values for control readings (no drug) and the distribution for readings from the system

obtained in the presence of a maximal concentration of standard active drug. The signal

window for this assay is the separation between the distributions at values 3� the

standard deviation of the mean away from the mean. (b) A representation of an assay

with a low Z0 value. Although there is a separation, the scatter about the mean values

is large and there is no clear window between the lower and upper values. (c) An assay

with a low signal window. This assay has a low Z0 value. (d) An assay with a low signal

window but correspondingly low error leading to a better Z0 value.
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The association of an assay format need not be

associated with the sensitivity. In practice, if the functional

signal-to-noise level is high there would be no need to turn

to radioligand binding to increase sensitivity of the screen.

Similarly, if the nsb levels of the binding screen were high

the level of initial Bo values for screening would need to be

increased to levels comparable to functional assays (i.e.,

50% stimulation) and the advantage of binding over

function would be lost. In general, sensitivity is not the

major factor in the choice of screening format.
The process of tracking screening hits and determining

which chemical series is likely to produce a fruitful lead

involves the verification of activity within a series of related

structures. While the absolute potency of the hit is clearly

important, it is recognized that factors such as selectivity,

favorable physicochemical properties, absence of toxo-

phores (pharmacophores leading to toxicity), and the

capability for the rapid production of chemical analogues

are also very important features of lead molecules. For this

reason, the concept of ‘‘ligand efficiency’’ has been used to

evaluate the worth of screening hits. This idea converts

ligand affinity to the experimental binding energy per

atom (so-called Andrews binding energy [8]) to normalize

the activity of ligand to its molecular weight [9]. It has

been estimated that a maximum affinity per atom for

organic compounds is �1.5 kcalmol�1 per non-hydrogen

atom (�g (free energy of binding)¼�RT lnKd/number of

non hydrogen atoms) [10].
Before discussion of the drug discovery process following

lead identification, it is relevant to discuss variations on the

theme of hit identification. Screening traditionally

has been based on finding a defined primary biological

activity (i.e., receptor-based agonism or antagonism

of physiological effect). Such an approach presupposes

that all potentially useful receptor activity will be

made manisfest through these effects. However, some

receptor activities may not be mediated through G-protein

activation. For example, the CCK antagonist D-Tyr-Gly-

[(Nle28,31,D-Trp30)cholecystokinin-26-32]-phenethyl ester

actively induces receptor internalization without producing

receptor activation [11]. This suggests that screening assays

TABLE 8.2

Z0 values and high-throughput screening assays.

Z0 Value Description of Assay Comments

Z0 ¼ 1 No variation (s¼ 0)

or infinite band of separation

Ideal assay

14Z0 � 0.5 Large dynamic range Excellent assay

0.54Z040 Small dynamic range Adequate assay

0 No band of separation,

scþ and sc� touch

Dubious quality

50 No band of separation,

scþ and sc� overlap

Impossbible

for screening

From [7].

(a)

(b)

FIGURE 8.11 Distributions for various screens. (a) The larger distribution represents inactive

compounds while the smaller one shows a small sample with values greater than the mean of the total

compound library. Distributions are shown for two concentrations tested from this library. It can be seen

that while the mean of the higher concentration is slightly further away from the control distribution the

error is also much greater, leading to a lower Z0 value. (b) The results of single concentration of two

compound libraries are shown. It can be seen that library A has a smaller standard error about the mean

and therefore is a higher-quality library for potentially active molecules.
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other than simple agonism and/or antagonism may be

useful for the detection of ligand activity.
A similar idea involves the modification of screening

assays for the detection of special ligands. For example,

certain inhibitors of enzyme function trap the enzyme in

dead-end complexes that cannot function. This is referred

to as interfacial inhibition [12]. Thus, inhibitors such as

brefeldin A and camptothecin target a transient kinetic

(a) (b)

FIGURE 8.12 Antagonism of single concentration stimulation (either functional or radioligand

binding) by two concentrations [B]/KB¼ 1 and 10) of a simple competitive antagonist in screening

experiments. (a) Various levels of receptor stimulation in the absence of antagonist (open bars), in the

presence of a concentration equal to the KB (cross-hatched bars), and in the presence of 10�KB

antagonist (shaded bars). (b) Percent inhibition (ordinates) of initial receptor stimulation (abscissae)

produced by two concentrations of antagonist. If it is assumed that a minimum of 40% inhibition of initial

signal is required for adequate detection of antagonism then the receptor stimulation levels must not be

greater than those that produce 33% and 90% receptor activation (or initial radioligand binding Bo value)

in the HTS for antagonist concentrations of [B]/KB¼ 1 and 10, respectively.

(a) (b)

FIGURE 8.13 Windows of detection for antagonism. A twofold shift in a dose response curve

(either to an agonist in a functional study or a radioligand in a saturation binding study) will be

perceived differently in different regions of the dose-response curve. Thus, a concentration that

produces 80% response will be blocked 23%, while a concentration that produces only 10% will

be blocked by a factor of 50%. Therefore, the lower the initial signal input to an antagonist assay

the more sensitive it will be to antagonists. In general, functional assays require stronger input

signals to achieve acceptable windows (usually an EC80 agonist concentration) than do binding

studies (such as scintillation proximity assays SPA). Inset shows where a 10% maximal initial

radioligand binding signal can still yield a useful window for observation of antagonism. (b)

Ordinate axis shows the lowest potency of hypothetical antagonists that are detectable in an assay

(assume 50% blockade of initial signal) as a function of the signal strength used for the assay. If it

is assumed that a minimal signal strength for functional assays is [A]/Ks¼ 2.5 while that for an

SPA can be lower ([A]/Kd¼ 0.5), it can be seen that the binding assay will detect weaker

antagonists (IC5058 mM) than will the functional assay (must be IC50543 mM).
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intermediate that is not normally present in a nonactivated

protein. Screening assays designed to detect these types of

inhibitors have a small concentration of substrate in the

medium to produce the enzyme transition state (the target

of the interfacial inhibitor). Similarly, topoisomerase assays

have been designed to identify transient trapping of

catalytic-cleavage complexes. Interestingly, such inhibitors

may offer an added measure of selectivity since they are

active only when both partners of a physiological interac-

tion are present and target only this interaction.

This has particular relevance to allosteric modification

of receptors. As described in Chapter 7, the fraction of

receptor bound to an agonist [A], expressed in terms of the

presence of an allosteric modulator [B], is given as

½AR�

½Rtot�
¼

½A�=KAð1þ a½B�=KBÞ

½B�=KBða½A�=KA þ 1Þ þ ½A�=KA þ 1
: ð8:2Þ

This leads to the expression for the observed affinity

(expressed as equilibrium dissociation constant of the

ligand-receptor complex) of the modulator as

Kobs ¼
KBð½A�=KA þ 1Þ

a½A�=KA þ 1
: ð8:3Þ

It can be seen from Equation 8.3 that the concentration

of the probe molecule ([A]/KA) affects the observed affinity

of the modulator. This can have practical consequences,

especially when allosteric potentiators are the desired

chemical target. Just as an allosteric potentiator will

increase the affinity of the probe molecule (agonist,

radioligand), the reciprocal also is true; namely, that the

agonist will increase the affinity of the receptor for the

modulator. This can be used in the screening process to

make an assay more sensitive to potentiators. For example,

for a potentiator that increases the affinity of the agonist

30-fold (a¼ 30), the observed affinity of the modulator will

increase by a factor of 15.5 when a small concentration of

agonist ([A]/KA¼ 1) is present in the medium. Such

modification of screening assays can be used to tailor

detection for specific types of molecules.

Finally, as a corollary to the screening process, there are

thermodynamic reasons for supposing that any ligand that

has affinity for a biological target may also change that

target in some way (i.e., have efficacy). This is because the

energetics of binding involve the same forces responsible for

protein conformation (i.e., as discussed in Section 1.10, a

ligand will bias the natural conformational ensemble of the

receptor). This can be simulated with a probabilistic model

of receptor function [13, 14].
To describe this model quantitatively, it is simplest to

arbitrarily begin with one receptor state (referred to as [Ro])

and define the affinity of a ligand [A] and a G-protein [G]

for that state as

Ako ¼ ARo½ �= Ro½ � A½ � ð8:4Þ

and

Gko ¼ ½GRo�=½Ro�½G�, ð8:5Þ

respectively. The probability of the receptor being in that

state is denoted po. The probability of the receptor forming

another conformation [R1] is defined as p1, and the ratio of

the probabilities for forming state R1 vs Ro is given as j1,

where j1¼ p1/po. The value j controls the energy

of transition between the states. The relative probability

of forming state [R1] with ligand binding is denoted
Aj1¼

Ap1/
Apo, and with G-protein binding as

Gj1¼
Gp1/

Gpo. An important vector operating on this

system is defined as b, where b refers to the fractional

stabilization of a state with binding of either ligand (defined

as Ab1¼
Aj1/ji) or G-protein (Gb1¼

Gj1/ji). Every ligand and

G-protein has characteristic values of b for each receptor

state and it is these b vectors that constitute ligand affinity

and efficacy. With these probabilities and vectors, the

following operators are defined:

� ¼ 1þ
X

ji, ð8:6Þ

�A ¼ 1þ�
X

Abipi, ð8:7Þ

�G ¼ 1þ�
X

Gbipi, and ð8:8Þ

�AG ¼ 1þ�
X

AbGi bipi, ð8:9Þ

where i refers to the specific conformational state and the

superscripts G and A refer to the G-protein and ligand

bound forms, respectively. With these functions defined, it

can be shown that macroaffinity is given by

Macroaffinity ðKÞ ¼ Ak0�Að�Þ
�1, ð8:10Þ

where k0 is related to the interaction free energy between

ligand and a reference microstate of the receptor. A

measure of efficacy is given by

Efficacy ðaÞ ¼ ð��AGÞð�A�GÞ
�1: ð8:11Þ

Figure 8.14 shows calculated values for affinity (ordinates)

and efficacy (abscissae) for 5,000 simulated ligands. The

probabilities are random but it can seen that there is a

correlation between affinity and efficacy. The calculations

show that the energy vectors that cause a ligand to associate

with the protein will also cause a shift in the bias of protein

conformations (i.e., the act of binding will cause a change in

the nature of the protein ensemble). This suggests that if a

ligand binds to a receptor protein it will in some way

change its characteristics toward the system. This has

implication in screening since it suggests that all com-

pounds with measured affinity should be tested for all

aspects of possible biological activity, not just interference

with the binding of an endogenous agonist [15].

Once hits have been identified, they must be confirmed.

The test data obtained from a screen form a normal

distribution. One criterion for determining possible active

molecules is to retest all initial values43 s units away from

the mean. This will capture values for which there is

499.3% probability of being significantly greater than the
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mean of the population (see Figure 8.15). The distribution

of the apparently active compounds, when retested, will

have a mean centered on the 3 s value for the distribution

of the total compound set. It can be seen that 50% of these

will retest as active (be greater than 3 s units away from the

initial total compound set mean). Therefore, the com-

pounds that retest will have a 99.85% probability of having

values greater than the mean of the original data set. The

criteria for retest may be governed by practical terms. If the

hit rate is inordinately high, then it may be impractical to

test all hits that give values 43 s units from the mean.

A lower (having a greater probability of retest) number of

‘‘hits’’ (44 s or 5 s units away from the mean) may need to

be tested to reduce the retest load.
Another important concept in the process of early

confirmation of lead activity is ligand-target validation.

The first and most obvious criterion for selective target

interaction is that the ligand effect is observed in the host

cell only when the target is present. Thus, in a cell-based

assay using cells transfected with receptor the response to a

putative agonist should be observed only in the transfected

cell line and not in the host cell line (or at least a clearly

different effect should be seen in the host cell line, see

Figure 8.16).

There are two general types of observable biological

responses: agonism and antagonism. The lead optimization

process is the topic of Chapter 10, where specifics of the

methods and theory of determining molecular activity are

outlined. For the remainder of this chapter, it is assumed

that the hit from screening has been through the lead

optimization process to the point where it can be considered

a drug candidate. As shown in Figure 8.1, the next stages

involve the developability of the molecule(s) in terms of

pharmacokinetics, pharmaceutics, and propensity for

adverse drug reactions.
The preceding discussion involves the elucidation of the

primary hit and lead activity, obviously a crucial step in the

drug discovery process. However, there are numerous other

reasons a molecule with good primary activity may still fail
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FIGURE 8.14 Simulation for 5,000 theoretical ligands with

calculated efficacy (Equation 8.11) and affinity (Equation 8.10).

It can be seen that efficacy and affinity are correlated suggesting

that all ligands that have been shown to bind to a receptor should

be extensively tested for possible efficacy effects on the receptor

directly, through agonist-effects on the receptor or changes in

constitutive behavior of the receptor itself. Redrawn from [15].

FIGURE 8.15 Confirmation of initial hits in the HTS. Top panel

shows the distribution of values from a single test concentration of

a high-throughput screen. The criteria for activity and subsequent

retest is all values 43 standard error units away from the mean

(dotted line). The process of retesting will generate another

distribution of values, half of which will be below the original

criteria for activity.

FIGURE 8.16 Ligand-target validation. Dose-response curves

to a putative agonist for a therapeutic target on cell line transfected

with the the target receptor (filled circles) and on a cell line not

transfected with the target receptor (dotted lines, open circles, and

open triangles). The open symbol curves reflect nonspecific and

non-target-related effects of the compound on the host cell line.

The clear differentiation between the target curves and the host

curves indicate a specific effect on the therapeutically relevant

target.
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as a drug and it is becoming increasingly clear that the

factors that lead to this failure need to be addressed as early

as possible in the lead optimization process. Figure 8.17

shows the outcome of a risk analysis for the probability of a

new compound emerging as a drug. It can be seen that

attrition is extremely high. An active molecule must be

absorbed into the body, reach the biological target, be

present for a time period sufficient for therapeutic activity,

and not produce untoward side effects. It will be seen that

an important part of the lead optimization process is to

incorporate these properties into the primary lead molecule

early on in the process [16]. One reason this is important is

that the concepts involved are, in some cases, diametrically

opposed. For example, while low molecular weight is a

known positive property of drugs the lead optimization

process generally results in increased molecular weight as

pharmacophores are added to increase potency. For this

reason, the concept of ‘‘lead likeness’’ [17] can be used to

determine the suitability of lead molecules for beginning the

lead optimization process (vide infra). The problems

involved in introducing lead likeness into screening hits is

exacerbated by the fact that as analogues become more

potent there is less tolerance for chemical analogueing to

improve physicochemical properties. In fact, it is a general

observation that there often are relatively minor differences

between leads and launched drug candidates (see

Figure 8.18) [24]. On the other hand, there is abundant

evidence to show that apparently very minor changes in

chemical structure can impose large effects on biological

activity (see Figure 8.19).

In general, there are three milestones for the drug

discovery process. The first is the identification of a verified

hit series (primary activity in a related series of molecules),

the second the determination of a lead series (series with

primary activity and drug-like properties), and the third a

clinical candidate (activity, positive pharmaceutical, and

pharmacokinetic properties devoid of toxicity). An example

of developability being a key factor in the emergence of a

drug from an active molecule can be found in the histamine

H2 receptor antagonist molecules. The first active hista-

mine active H2 antagonist burimamide, while active by the

parenteral route, did not have the oral absorption proper-

ties required for an oral drug (Figure 8.20). The second in

the series, metiamide, was active by the oral route but had

fatal bone marrow toxicity (thereby precluding clinical

utility). The third in the series fulfilled the requirements of

target activity, acceptable absorption, and toxicity profile

and thus became a prototype blockbuster drug in the new

series (Figure 8.20).

8.4 Pharmacokinetics

The essence of pharmacology is the relationship between

the dose of a drug given to a patient and the resulting

change in physiological state (the response to the drug).

Qualitatively, the type of response is important, but since

(as put by the German pharmacologist Walter Straub in

1937) ‘‘there is only a quantitative difference between a

drug and poison’’ the quantitative relationship between the

dose and the response is paramount. Thus, the concentra-

tion (or dose) of drug is the independent variable (that set by

the experimenter) and the pharmacological effect returned
by the therapeutic system is the dependent variable.

The value of the dependent variable only has meaning if

the value of the independent variable is correct (i.e., if the

experimenter truly knows the magnitude of this variable).

Pharmacokinetics furnishes the tools for the clinician to

determine the true value of the independent variable.

Drugs can only be effective if enough is present at the

target site and they can be harmful if too much is present so

as to produce toxic side effects. Any attempt to draw

conclusions about the clinical efficacy of a drug in a clinical

trial without knowledge of the concentration at the target
site is premature. The science of pharmacokinetics basically
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seeks to answer the questions: how much of the drug that is

given to the patient actually reaches the target organ?,

where in the body does the drug go?, and how long does it

stay in the body? Therefore, as a prerequisite to pharma-
codynamics (study of drug-receptor interactions), pharma-

cokinetics examines the journey of drugs into the body and

toward their intended therapeutic target organ. For

example, a drug taken by the oral route is absorbed from

the stomach into the systemic circulation and carried by the
bloodstream throughout the body. Thus, an antiarrhythmic

drug intended to prevent fatal arrhythmia of the heart must

travel through the systemic circulation and the coronary

arteries and be absorbed through the wall of capillaries and

into the heart muscle. As it diffuses through layers of cells it
finally encounters the sinus node and interacts with specific

sites on the cell membrane to mediate electrical activity

of the cell. Each barrier to this distribution can affect

the concentration of the drug reaching the target site. A

useful acronym to describe pharmacokinetics is ADME.

This generally describes the process of drug absorption into

the body, distribution throughout the body, metabolism by

degradative and metabolizing enzymes in the body, and

finally elimination from the body. It is useful to consider

each of these steps because together they summarize
pharmacokinetics.

There are numerous routes of administration of drugs
into the body. The choice of which route to use in a given

therapeutic situation can be determined by convenience,

maximization of compliance (for example, a drug taken

once a day by the oral route is much easier to sustain on a

chronic basis than one that needs to be injected twice a

day), and attainment of concentration bias to gain
advantage therapeutically. For example, b-adrenoceptor
agonists such as salbutamol are very useful for rapid

relaxation of constricted bronchioles in asthma. However,

these drugs also can produce some tachycardia and notably

a debilitating digital tremor. However, if taken by aeorsol
salbutamol reaches the target organ first (bronchioles) for
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maximal effect and then diffuses throughout the blood-

stream in a reduced concentration for minimal effect on the

heart and skeletal muscle. Thus, side effects are minimized.

Similarly, ocular drugs for glaucoma can be introduced as

eyedrops directly into the eye for maximal concentration

effect and minimal cardiovascular side effects.

While there is interstitial space between cells, drugs

generally must go through, not around, cells to penetrate

membranes and gain access to internal organs. Under these

circumstances, the ability of molecules to pass through cell

membranes is a very important determinant of absorption.

A passive concentration gradient may be the only driving

force behind the passage of a drug from the central

compartment into secondary specialized compartments

(i.e., organs, the brain). In these cases, the lipophilicity

of the molecule is important (i.e., a non-lipophilic

molecule will not pass through a lipid bilayer easily). The

state of ionization also is relevant (ionized charged

molecules do not pass easily), as is the size (a general

target maximal size for most orally available drugs is m.w.

5600). For some molecules, active processes of transport

into the cell are operative, and in these cases general

lipophilicity and size issues are less prominent. As discussed

in Section 8.2, some guidelines for medicinal chemists are

contained in a set of rules known as the ‘‘rule of 5’’ derived

by Lipinski [1]. In general, any molecule that violates any

two of these rules would be predicted to yield poor

absorption in vivo. In this analysis, drug-like properties

(leading to good ADME properties) were found in

molecules of molecular weight less than 500, with less

than 10 total nitrogen and oxygen atoms, containing less

than 5 hydrogen bond donors and less than 10 hydrogen

bond acceptors. In addition, more lipophilic molecules

(Log P45, where P is the partition coefficient in the

aqueous versus organic phase) were absorbed to a greater

extent.
As discussed in Section 8.3, the process of lead

optimization often leads to increased molecular weight

and lipophilicity. Therefore, the idea that initial leads

should possess lead-likeness properties has been proposed

[24]. For example, assuming that the lead optimization

process will increase both the lipophilicity and molecular

weight of a lead, good lead-likeness values for a screening

hit would be molecular weight5350 and cLogP53 with a

primary affinity for the biological target of approximately

0.1 mM.

If the entry of a molecule into the body were simply a

temporally restricted absorption process, then a steady-

state concentration would be achieved given enough time

for complete absorption. However, what in fact is observed

in drug pharmacokinetics is a complex curve reflecting

absorption of the drug into the body and the diminution of

the concentration that is absorbed back down to negligible

levels. The reason for this complex pattern of rise and fall in
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drug concentration in vivo is due to the number of

processes that impinge on the drug concentration as it

passes into and out of the body. These are summarized in

Figure 8.21. First, the drug must pass into the systemic

circulation via the chosen route of administration. Once it is

in the circulation, it is subject to a number of processes that

reduce the concentration of freely accessible drug. One of

these is binding to proteins in the blood, usually albumin

for acidic drugs and alpha1-acid glycoprotein for basic

drugs. The complex between proteins and drug can cause a

sequestration of free drug into a pool not readily accessible

for therapeutic purpose (i.e., only free drug can cross

plasma membranes). Drugs are also excreted unchanged,

mainly by the kidneys. In addition, the liver metabolizes

drugs, thereby effectively eliminating them from the

circulation. As well as converting drugs to inactive

metabolites, the liver converts many drugs to polar

metabolites that are then rapidly excreted. Various tissues

(such as fat) can act as reservoirs for drugs also sequestering

them into compartments. For example, the antimalarial

drug quinacrine can concentrate several-thousand-fold in

the liver. All of these elimination processes compete for the

target organ for concentration of drug.
The liver (and other organs) removes active drugs through

two general processes. One is through the conversion of

biologically active to inactive molecules. The other is to the

conversion into polar metabolites that are readily excreted

(to a greater extent than the parent drug). The actual

metabolic processes can be biochemically classified into two

types of reactions—so-called phase I and phase II metabo-

lism. Phase I metabolic reactions place a functional group on

the parent molecule to render them biologically inactive

(in some rare instances, retention or even enhancement of

activity can result). Phase II reactions (conjugation reac-

tions) covalently link between a functional group on the

molecule and glucuronic acid, sulfate, amino acids, glu-

tathione, or acetate to create highly polar metabolites that

are rapidly excreted in urine. In general, the liver and other

organs in the body participate in the removal of foreign

chemicals from the body through conjugation, hydrolysis,

oxidation, reduction, and finally excretion.
While pharmacokinetics is the science of drug disposition

in the body, the field of clinical pharmacokinetics is

concerned with the practical presentation of therapeutic

drugs to the target organ(s) for the therapy of disease. The

main consideration here is the attainment of a consistent

concentration of drug freely accessible to the biological

target for a sustained period in order to nullify, reverse, or

ameliorate a pathological process. There are four general

parameters that are of paramount importance to clinicians

in the study of clinical pharmacokinetics. Thus, the

clearance yields a measure of the body’s efficiency to

eliminate the drug. The volume of distribution of the drug is

the apparent volume of fluid containing the drug in the

body. A measure of the length of time the drug stays in the

body can be gained from the half time. Specifically, this is

the length of time it takes for the concentration of the drug

to be reduced by half its initial value. Finally, the

bioavailability of the drug is a measure of the efficiency of

absorption and presentation to the systemic circulation.

For example, a drug taken by the oral route may have a

bioavailability of only 20%; that is, only 20% of the orally

ingested amount reaches the general systemic circulation

after ingestion. Clearance is measured as the volume of

Site of action

Absorption Excretion

Tissue reservoirs
Biotransformation

(metabolism)

Central compartment
(systemic circulation)

Free drug

MetabolitesProtein-bound

FIGURE 8.21 Schematic representation of the pharmacokinetic processes involved

in drug absorption, distribution, and elimination.
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fluid per unit time from which the drug would have to be

completely removed to account for the elimination from the

body. The efficiency of clearance is dependent on the ability

of the organ to remove the drug and also the rate of blood

flow through the organ.
Referring to the observed temporal relationship between

concentration of an ingested drug in a central compartment

such as the systemic circulation, there are various param-

eters that can be used to describe a drug’s pharmacokinetic

performance. These are summarized in Figure 8.22. There is

a required level of drug needed for therapeutic effect

(minimal effective concentration for desired response), and

usually a toxic level of drug as well (minimum effective

concentration for adverse effects). Thus, the therapeutic

aim is to exceed the first limit but stay below the second.

The time at which the level of drug achieves the minimal

therapeutic level describes the time to onset of effect. The

difference between the minimal effective concentration for

response and highest concentration (peak effect) is referred

to as the intensity of effect. The length of time that the

concentration exceeds the minimal effective therapeutic

concentration is called the duration of effect.

A measure of the actual amount of drug in the body can

be obtained from the area under the curve of the temporal

concentration curve (calculated by integration).

Interestingly, the temporal behavior of a drug can be

extremely important in therapeutics. For example, consider

three preparations of a drug that present identical values

for area under the curve (i.e., amount of drug absorbed) but

have different kinetics of absorption (Figure 8.23). As

shown, preparation B produces a useful profile whereby the

concentration exceeds the minimal effective concentration
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but stays below the toxic level. In contrast, preparation A

exceeds this level (to produce toxic effects) and

preparation C never achieves the minimal effective con-

centration though very similar amounts of the drug are

absorbed. In general, unfavorable pharmacokinetics can

completely preclude the effective therapeutic of an active

molecule. The discipline of clinical pharmacokinetics

quantifies the ADME properties of new drugs.
It is worth considering the actual mechanics of clinical

pharmacokinetics to get an idea of what data actually

drives the conclusions around determining ADME proper-

ties of drugs. A basic and important process is the

measurement of the concentration of drug in the blood-

stream at various times after administration. The elimina-

tion of a drug from the body can be approximated by the

exit of a substance from a single compartment via a first-

order elimination process. Thus, the fraction of drug at any

time (denoted by rt) is given by e�ket, where ke is an

elimination rate constant and t is time. One very useful

feature of exponential relationships is the fact that they are

linear when plotted on a semilogarithmic scale. Thus, ln rt
as a function of time yields a straight-line, the slope of

which can readily be estimated for an estimate of the

elimination rate constant (Figure 8.24a). This is the fraction

of drug eliminated from the body per unit time. The slope

of the linear plot of ln rt on time can be used to measure the

elimination half time (t1/2) for a drug. This is time it takes

for the concentration to be reduced to half its initial value.

It is calculated by dividing �0.693 (ln 0.5) by the ke. It is

inversely proportional to the rate of elimination (i.e., a drug

with a t1/2 of 4 hours is present in the body approximately

twice as long as one with a half time of t1/2 of 2 hours).

Relating the temporal concentration of a drug in the body

during the elimination phase with ke values is not intuitive.

Therefore, it is frequently expressed in terms of t1/2. Thus, a

period of one t1/2 is the time required for the drug

concentration to fall to 50% of its original value and

97% of the drug is eliminated after five periods of t1/2. For

the kinetic process of elimination, the velocity of elimina-

tion is first order unless the eliminating mechanism is

saturated. In the first-order phase, the velocity of the

process is linearly related to the concentration. However, at

high doses of drug where the elimination is saturated the

process is zero order. This means that a constant amount,

not a constant fraction, of drug is eliminated until the

process is no longer saturated.
Drug elimination may not be first order at high doses due

to saturation of the capacity of the elimination processes.

When this occurs, a reduction in the slope of the

elimination curve is observed since elimination is governed

by the relationship Vmax/(Kmþ [conc]), where Vmax is the

maximal rate of elimination, Km is the concentration at

which the process runs at half maximal speed, and [conc] is

the concentration of the drug. However, once the concen-

tration falls below saturating levels first-order kinetics

prevail. Once the saturating levels of drugs fall to ones

eliminated via first-order kinetics, the half time can be

measured from the linear portion of the ln rt versus time

relationship. Most elimination processes can be estimated

by a one compartment model. This ‘‘compartment’’ can
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actually be physically separated (as in blood versus a tissue

depot) and still behave as one compartment kinetically if

the rate constants for exchange between them are relatively

fast. Using this approach, clinical data on temporal

concentration in the blood can be used to estimate

parameters useful for tailoring of dosage. For example,

blood samples can be taken at regular intervals from a

patient who received a 3-mg dose of a drug and used to

determine the half time and volume of distribution of the

drug by assuming a first-order elimination process. A semi-

logarithmic (natural logarithms) of the data yields a

straight line, which is then extrapolated to time zero. The

ordinate intercept yields the concentration of the drug in

the blood at time zero. Knowing the dose given allows a

calculation to be made of the volume of distribution for this

drug. This is the volume containing the drug assuming

complete absorption. For example, a 3-mg dose giving a

calculated concentration at time zero of 0.25mg/L gives a

volume of distribution of 12 liters, approximately the

complete volume of fluid in a 70-kg male. Therefore, it

appears from these data that the drug is reasonably

distributed throughout the body. An estimate of the

clearance for a drug (in volume that the body can

completely clear per unit time) can be made from the rate

constant for elimination (ke) and the extrapolated volume

of distribution. It should be noted that there can be

exceptions to this simple rule and it is based on a one-

compartment assumption.

There are instances where the observable kinetics of

elimination clearly are not due to first-order exit from a

single compartment. For example, a steep curve relating

drug concentration and time may indicate a two-compart-

ment system in which the drug exits in two phases, one fast

and one slow (Figure 8.24b). In practical cases, usually the

second slower half time is clinically relevant. However, the

first elimination is often indicative of distribution into an

important body compartment for the drug. Thus, the drug

may be sequestered in various organs upon absorption,

thereby giving rise to two-compartment kinetics. The first

phase is one of distribution to the sites of sequestration,

while the second represents elimination from the entire

central compartment. This can be seen in a semilogarithmic

plot that is clearly nonlinear. Under these circumstances,

two half times for elimination are calculated (Figure 8.24b).

The rapid phase is usually due to redistribution of the drug

from the central compartment to other specialized com-

partments such as organs, protein, or fat. The second

reflects elimination from the central compartment.

This type of analysis can yield insights into the

distribution of some drugs. For example, the administra-

tion of 500mg of the cardiac glycoside digoxin yields a zero

time concentration of 0.75 ng/ml. The calculation of volume

of distribution in this case provides a volume of 665 liters,

nearly ten times the possible volume of fluid in a human

being—suggesting a gross miscalculation in the volume of

distribution. These types of data reveal how sequestration

of drugs in tissue depots can severely skew volume of

distribution estimates. The calculation for volume of

distribution assumes a uniform distribution in the plasma.

In this case, it is known that digoxin selectively concen-

trates in muscle and fat. Therefore, the free concentration

in the plasma is inordinately low. This, in turn, provides the

serious overestimation of the volume of distribution.

As noted previously, the aim of clinical pharmacokinetics

is to achieve a steady concentration of blood at the site of

action over a prolonged period of time. Unless a drug has
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extraordinary pharmacokinetics, repeated administration

of the drug is necessary. This reveals another complication

in the practical dosing for therapeutic effect. Just as a

uniform area under the curve does not ensure uniform

presentation of drug to tissues, the kinetics of absorption

and elimination can confound multiple dose regimens. As

shown in Figure 8.25, assume that the pattern shown for

drug B is the desired pharmacokinetic profile.
The same dosing regimen with another drug (drug A)

that is not eliminated as quickly as drug B shows that

accumulation to dangerous levels occurs with repeated

administration. In contrast, the same regimen with a

drug that is cleared more quickly (drug C) shows that

the desired sustained drug level is never attained even

though the peak concentration for drug C is higher than for

drug B.
An important concept in clinical pharmacokinetics is the

bioavailablility of a drug. This is the actual fraction of drug

that enters the central systemic circulation upon adminis-

tration via the chosen therapeutic route. For example,

drugs taken by the oral route must be absorbed either

through the stomach or most likely the small intestine into

the bloodstream. The blood preferentially flows through

the liver. Thus, the drug is subjected to metabolism before it

enters the general circulation. This first barrier of metabo-

lism is referred to as the first-pass effect. Bioavailability is

calculated as the ratio of area under the curves when the

drug is given intravenously (assume 100% bioavailability)

versus the chosen route of administration.
It is useful to finish with a restatement of the driving

questions in clinical pharmacokinetics and how the various

tools previously discussed can be used to answer them.

Thus, to the question of how much of the drug

administered reaches the therapeutic site an indirect

answer can be obtained by measuring the bioavailability

of the molecule. As to determining where in the body the

drug goes, compartmental analysis can sometimes show

patterns of distribution. Also, the volume of distribution

can be used to detect sequestration. Finally, how long the

drug stays in the body can readily be determined by

measuring t1/2, although it should be noted that this would

be from the central compartment and not necessarily from

the therapeutic site of action. In general, it can be seen that

pharmacokinetics can completely control the outcome of a

clinical trial, and as such deserves as much attention as the

pharmacodynamic process.
A drug candidate must be adequately absorbed, reside in

the body for a time sufficient to reach its target organ(s),

and be excreted or degraded completely. There are general

guidelines that can be used to determine early in the process

whether or not a given molecule will fulfill these criteria.

For example, a molecule with a clearance of425% of liver

blood flow by the intravenous route or 510% oral

availability (assuming it is designed to be a drug taken by

the oral route) would not augur well for further develop-

ment. In contrast, a molecule with525% liver blood flow

clearance and430% oral bioavailability would be a good

candidate. In addition to pharmacokinetics, the chemical

form of the candidate also is important. This issue can be

addressed by pharmaceutical studies.

8.5 Pharmaceutical Development

Pharmaceutics is the process of determining the best form

for use in the study of the molecule in toxicological and

clinical studies and the most stable preparation for

dispensability as a drug product. It is a complete discipline

within itself, the full discussion of which is beyond the scope

of this present book. The pharmaceutical development of

drug candidates is an important step that must go on in

partnership with the study of pharmacokinetics. Ideally, the

oral absorption of the molecular substance in capsule form

should be equal to or greater than its absorption when

administered as an soluble aqueous solution. The substance

should be stable in a crystalline form as well. If stable

crystals are not evident, nanomilled solid suspensions or

spray-dried preparations can be made. Alternatively,

polyethylene-glycol-surfactant-enhanced solutions can be

used to model soft gel caps. In general, while these

techniques can assist in the presentation of molecules for

in vivo study pharmaceutical preparation is limited in terms

of making a molecule suitable as a drug substance.

Absorption via the oral route (preferably in a capsule)

should be adequate to allow 30� to 100� dosing for

toxicological studies. There are guidelines for these devel-

opmental steps. For example, the DCS (Developability

Classification System) classifies compounds in terms of

possessing high/low solubility and high/low permeability

from studies of aqueous and gastrointestinal tract solubility

and calculated or cell-based permeability measures.

Figure 8.26 shows a graphical depiction of various regions

of developability based on the aqueous solubility

(abscissae) and permeability of the substance (ordinates).

Ideal developability resides in the top left-hand quadrant

(DCI), passable profiles in the green DCIIa area, and

problematic profiles elsewhere on this grid (DCIIb, DCIII,

and DCIV).

8.6 Adverse Drug Effects

New drugs must be efficacious, reach the site of action,

and do no harm. This latter condition is the subject of drug

liability studies. For the decade 1991 to 2000, new drug

registration was a mere 11% of compounds submitted for

first in human studies with toxicity and safety issues

accounting for approximately 30% of the failures. There

are clear ‘‘zero-tolerance’’ toxicities, and there are those

that are tolerable—with tolerance depending on the

indication, patient population (i.e., age and gender),

length of treatment, and seriousness of illness. Table 8.3

shows some of most common clinically observed side effects

of drugs.
Side effects commonly arise from exaggerated effects at

the primary target (mechanism-based toxicity), problems

with dosing, prolonged use, or cytotoxicity (i.e.,
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FIGURE 8.26 Developability criteria based on a grid showing the aqueous solubility

of compounds (abscissae) and permeability through a lipid bilayer (ordinates). Adequate
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TABLE 8.3

Major adverse side effects associated with clinical use of drugs.

Cardiovascular Hematological Renal

Arrhythmias Agranulocytosis Nephritis

Hypotension Hemolytic anemia Nephrosis

Hypertension Pancytopenia Tubular necrosis

Congestive heart failure Thrombocytopenia Renal dysfunction

Angina/chest pain Megaloblastic anemia Bladder dysfunction

Pericarditis Clotting/bleeding Nephroliythiasis

Cardiomyopathy Eosinophilia

Respiratory

Dermatological Musculoskeletal Airway obstruction

Erythema Myalgia/myopathy Pulmonary infiltrates

Hyperpigmentation Rhabdomyolysis Pulmonary edema

Photodermatitis Osteoporosis Respiratory depression

Eczema Nasal congestion

Urticaria Metabolic

Acne Hyperglycemia Ophthalmic

Alopecia Hypoglycemia Disturbed color vision

Hyperkalemia Cataract

Endocrine Hypokalemia Optic neuritis

Thyroid dysfunction Metabolic acidosis Retinopathy

Sexual dysfunction Hyperuricemia Glaucoma

Gynecomastia Hyponatremia Corneal opacity

Addison syndrome

Galactorrhea Neurological Otological

Seizures Deafness

Gastrointestinal Tremor Vestibular disorders

Hepatitis/hepatocellular damage Sleep disorders

Constipation Peripheral neuropathy Psychiatric

Diarrhea Headache Delirium/confusion

Nausea/vomiting Extrapyramidal effects Depression

Ulceration Hallucination

Pancreatitis Drowsiness

Dry mouth Schizophrenia/paranoia

Sleep disturbances
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hepatoxicity and bone marrow toxicity). Effects on other

biological targets (i.e., GPCRs), ion channels, and liver

metabolic enzymes account for major drug liabilities. In

most cases, such as effects on GPCRs, the untoward effects

are a direct result of the receptor activation (or blockade).

Table 8.4 shows some liability effects commonly associated

with some GPCRs [25]. In some cases, the receptor activity

belies effects that are not obvious. For example, muscarinic

m3 receptor activity has been associated with type 2

diabetes [26]. Promiscuous GPCR activity is a potential

problem with GPCR active drugs. Similarly, hydrophobic

drugs have been shown to have affinity for calcium

channels, and notably potassium channels. This latter

activity is a clear liability since blockade of the hERG

potassium channel can lead to cardiac QTc prolongation

and a condition called torsades de pointes, a potentially fatal

cardiac arrhythmia. Other promiscuous targets are the

pregnane X-receptor, a nuclear receptor associated with

regulation of cytochrome P450 enzymes. Induction of PXR

can have large effects on metabolism, drug-drug interac-

tions, multi-drug resistance, and transport mechanisms.

Cytochrome P450 enzymes are particularly susceptible to

drug activity due to their broad substrate specificity. Four

of these enzymes (CYP3A4, CYP2C9, CYP2C19, and

CYP2D6) account for 80% of known oxidative drug

metabolism [27]. Blockade of these enzymes can lead to

detrimental interactions with other drugs. For example, the

antihistamine terfenadine was high-affinity for the hERG

channel (leading to serious liability). This drug is rapidly

metabolized and the metabolite fexofenadine is weakly

active at the hERG channel. However, in the presence of

other drugs that interfere with terfenadine metabolism

(ctyochrome enzymes) this antihistamine poses a serious

risk of life-threatening arrhythmia.

In general, the detection of adverse drug reactions early

in the drug discovery process is becoming commonplace.

So-called ‘‘liability panels’’ of receptors, hERG channel

activity, and cytochrome enzymes are utilized to identify

TABLE 8.4

Cardiovascular targets assoicated with adverse drug effects.

Target Possible Adverse Drug Effects

Adenosine A1 Bradycardia/AV-block/renal vasoconstrict

Adenosine A2a Hypotension/coronary vasodilation/platelet aggreg

Adenosine A3 Mediator release

a1a-adrenoceptor Hypertension/orthostatic hypotension/inotropy

a1b-adrenoceptor Othostatic hypotension

a2a-adrenoceptor Hypertension/possible hyperglycemia

a2b-adrenoceptor Hypertension /cardiac ischemia/vasoconstriction/central # blood pressure

a2c-adrenoceptor Hypertension/cardiac ischemia/skel. muscle blood flow

b1-adrenoceptor Cardiac inotropy bronchospasm/heart rate/ventricular fibrillation

b2-adrenoceptor Fascil. cardiac arrest/impairs cardiac perform

Angiotensin AT1 Hypertension/cell proliferation and migration/tubular Naþ resorption

Bradykinin B1 Nociception/inflammation/cough

Bradykinin B2 Nociception/inflammation/cough

CGRP Hypocalcemia/hypophosphatemia

Ca2þ channel Hypotension

Dopamine D1 Induces dyskinesia/vasodilatation, schizophrenia/# coordination

Endothelin ETa Vasoconstriction/cell proliferation/aldosterone secretion

Endothelin ETb Vasoconstriction/cell proliferation/bronchoconstriction

Histamine H3 #memory, sedation/vasodilatation/# GI motility

Muscarinic m1 � blood pressure/# GI secretion

Muscarinic m2 Vagal effects/� blood pressure/tachycardia

Muscarinic m3 Vagal effects, salivation/� blood pressure, dry mouth/# ocular accommodation

Muscarinic m4 Vagal effects, salivation adrenergic/� blood pressure/facilitates D1 stim

NE transporter Hyperreactivity/facilitates a-activation
Nicotinic Ach Autonomic functions/palpitations, nausea, sweating # gut motility, gastric/tremor, ganglionic function

NPY1 Venous vasoconstriction/emptying/anxiogenic

Kþ channel (hERG) Cardiac QTc prolongation

Kþ channel [ATP] Hypotension/hypoglycemia

5-HT2b Cardiac valvulopathy

5-HT4 Facilitates GI transit/mechanical intestinal allodynia

Naþ channel (site 2) Cardiac arrhythmia

Thromboxane a2 Vascular constriction/bronchial constriction/allergic inflamm. platelet ag

Vasopressin V1a Vasopressor

Vasopressin V1b Vasopressor, anxiogenic

Taken from [19].
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liability activity in chemical series. Pharmacophore model-

ing of ‘‘anti-targets’’ [28] can also be used to virtually screen
for potential problematic drug activity.

8.7 Chapter Summary and Conclusions

. The drug discovery process can be divided into four
subsets: acquisition of chemical drug candidates,

pharmacodynamic testing of large numbers of com-
pounds (screening), and the optimization of pharma-

cokinetic and pharmaceutical properties.
. Potential chemical structures for drug testing can

originate from natural products, design from modeling
the active site of the biological target, modification of

natural substances, hybridization of known drugs, or
random screening of chemical diversity.

. There is evidence to suggest that drug-like structures
exist in clusters in chemical space (privileged struc-

tures). Identification of these can greatly enhance
success in screening.

. Large-scale sampling of chemical space can be
achieved with high-throughput screening. This process

involves the design of robust but sensitive biological
test systems and the statistical sifting of biological

signals from noise. The Z statistic can be useful in this
latter process.

. Surrogate screening (utilizing similar but not exact
therapeutically relevant targets) can lead to dissimula-

tion in screening data, especially for allosteric mole-
cules. For this reason, frequent reality testing with a

therapeutically relevant assay is essential.
. Lack of favorable ADME properties (absorption,

distribution, metabolism, elimination) can preclude
therapeutic use of an otherwise active molecule. The

clinical pharmacokinetic parameters of clearance, half-
life, volume of distribution, and bioavailability can be

used to characterize ADME properties.
. Active molecules also must not have toxic side effects

and must have favorable pharmaceutical properties
for qualification as useful drugs.
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9
Target- and System-based Strategies for Drug Discovery

I am interested in physical medicine because my father was. I am interested in medical research because I believe in

it. I am interested in arthritis because I have it.

— BERNARD BARUCH (1959)

New techniques may be generating bigger haystacks as opposed to more needles.

— D. F. HORROBIN (2000)
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9.1 Some Challenges for Modern Drug Discovery

The identification of primary biological activity on the

target of interest is just one of a series of requirements
for a drug. The capability to screen massive numbers

of compounds has been ever-increasing over the past 10 to

15 years yet no corresponding increase in successfully

launched drugs has ensued. As discussed in Chapter 8, there
are required pharmacokinetic properties and absence of

toxic effects that must be features of a therapeutic entity. In

the 1990s, 40% of the attrition in drug discovery was due to
lack of bioavailability and pharmacokinetics. As more

attention was paid to ADME, properties of chemical

screening libraries, toxicity, lack of therapeutic efficacy,

and differentiation from currently marketed drugs have
become the major problems. As shown in Figure 9.1, the

number of new drug entities over the years has decreased.

This particular representation is normalized for the
increasing costs of drug discovery and development, but it

does reflect some debilitating trends in the drug discovery

process. Undue reliance on robotic screening with simplistic

single-gene-target approaches (inappropriate reliance on
the genome as an instruction booklet for new drugs)

coupled with a deemphasis of pharmacological training

may have combined to cause the current deficit in new
drugs [2]. The lack of success in drug discovery is reflected

in the number of drugs that have failed in the transition

from phase II clinical trials (trial in a small number of

patients designed to determine efficacy and acute side
effects) to phase III clinical trials (larger trials meant to

predict effects in overall populations and to determine

overall risk-to-benefit ratio of drug). (See Figure 9.2.)
While the 62 to 66% of the new drugs entering phase I

passed from phase II to phase III in the years 1995 to 1997,

this percentage fell to 45% in 2001 through 2002 [3]. In view

of the constantly increasing number of new drugs offered

for clinical trial, this suggests that the quality of molecules

presented to the clinic is diminishing from that seen 10

years ago.
At the heart of the strategies for drug discoveries are two

fundamentally different approaches, one focusing on the

target whereby a molecule is found to interact with a single

biological target thought to be pivotal to the disease process

and one focusing on the complete system. It is worth

considering these separately.

9.2 Target-based Drug Discovery

A target-based strategy for drug discovery has also been

referred to as a ‘‘reductionist approach.’’ The term

originates in physics, where it describes complex matter at

the level of fundamental particles. In drug discovery, target-

based refers to the fact that the responsible entity for a

pathological process or disease is thought to be a single

gene product (or small group of defined gene products) and

is based on the premise that isolation of that gene product

in a system is the most efficient and least ambiguous

method of determining an active molecule for the target.

Reductionist approaches are best suited for ‘‘me-too’’

molecules with well-validated targets when first-in-class

already exists. They are also well suited to Mendelian

diseases such as cystic fibrosis and sickle cell anemia, where

the inheritance of a single gene mutation can be linked

to the disease.
Reductionist systems are most often recombinant ones

with the target of interest (for example, human GPCR)

expressed in a surrogate cell. The nature of the cell is

thought to be immaterial since the cell is simply a unit

reporting activation of the target of interest. For example,

belief that peptic ulcer healing is facilitated by blockade of

histamine-H2-receptor-induced acid secretion suggests a

reductionist system involving antagonism of histamine

response in surrogate cells transfected with human hista-

mine H2 receptors. In this case, refining primary activity

when the target-based activity disease relationship has been

verified is a useful strategy. It can be argued that
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considerable value may be mined in this approach since

first-in-class is often not best-in-class.
Focusing in on a single target may be a way of treating a

disease but not necessarily curing it. The interplay of

multiple genes and the environment leads to complex

diseases such a diabetes milletus, coronary artery disease,

rheumatoid arthritis, and asthma. To consider this latter

disease, it is known that bronchial asthma is the result of

airway hypereactivity that itself is the result of multiple

system breakdowns involving allergic sensitization, failure

of neuronal and hormonal balance to airway smooth

muscle, and hyperreactivity of smooth muscle. Bronchial

spasm can be overcome by a system override such as

powerful b-adrenergic muscle relaxation, providing a life-

saving treatment, but this does not address the origins of

the disease nor does it cure it. The divergence in phase II

from phase III studies (shown in Figure 9.2) is cited as

evidence that the target approach is yielding molecules, but

that they may be wrong molecules for curing (or even

treating) the disease.
Whereas in physics the path from the fundamental

particle to the complex matter is relatively linear

(reductionism requires linearity and additivity), in biology

it often is extremely nonlinear. This can be because of

system-specific modifications of genes and highly complex

interactions at the level of the cell integration of the genes.

This can lead to some impressive disconnections (i.e., the

principal defect is known in type I diabetes but targeted

approaches have still been unable to cure the disease). In

theory, pathways can be identified in disease processes,

critical molecules in those pathways identified, prediction

of the effects of interference with the function of those

molecules determined, and the effect of this process on the

disease process observed. However, this simple progression

can be negated if many such pathways interact in a

nonlinear manner during the course of the disease. In

fact, in some cases the design of a surrogate system based

on the target may be counterproductive. For example, for

anticancer drugs the test system tumors are sometimes

chosen or genetically manipulated for sensitivity to drugs.

This can make the models overpredictive of drug activity in

wild-type tumors where multiple pathways may be affected

by numerous accumulated mutations and/or chromosomal

abnormalities used to maintain their phenotype. A classic

example of where a single target fails to emulate the

properties of diseases is in the therapy of psychiatric

disorders. These diseases have a shortage of validated

targets (it is unlikely that there are single-gene lesions

accounting for psychiatric disorders) and the high-through-

put screening systems bear little resemblance to the in vivo

pathology. Genetic approaches in psychiatry are prob-

lematic since the effects of ‘‘nurture’’ and epigenetic

changes (identical genotypes yielding different phenotypes)

are prevalent. In addition, animal models cannot be

transposed to phase I and phase II clinical testing. In the

clinic, placebo effects can approach 60% (in anxiety and

depression studies), and inappropriate inclusion of patients

clouds interpretation of data. In general, it is extremely

difficult to use a single gene product as a target for

psychiatric diseases, making a reductionist approach in this

realm impractical [4].

In a target-based strategy, the preclinical process of drug

discovery can be roughly divided into three stages. The first

is the discovery phase. This involves the identification of a

valid therapeutic target (i.e., receptor), the development of

a pharmacological assay for that target, and the screening

of large numbers of molecules in the search for initial

activity. The next phase is the optimization phase, where

chemical analogs of the initial lead molecule are made and

tested in either the screening assay or a related assay

thought to reflect the therapeutically desired activity. From

this stage of the process comes the optimized lead molecule

that has sufficient activity and also no obvious non-drug-

like properties that would preclude development to a

candidate for clinical study. The third phase is the

development phase, where the pharmacokinetic properties

of the lead molecules are optimized for maximal drug-like

properties in the clinic. In terms of strategies for drug

development, the latter two steps are common to all modes

(i.e., screening and lead optimization are required).
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FIGURE 9.1 Histograms show the number of new drugs
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176 9. TARGET- AND SYSTEM-BASED STRATEGIES FOR DRUG DISCOVERY



However, the target validation step is unique to target-
based drug discovery.

Once a target-based approach is embarked upon, the
choice of target is the first step. In biological systems, there

are generally four types of macromolecules that can interact
with drug-like molecules: proteins, polysaccharides, lipids,

and nucleic acids. As discussed in Chapter 1, by far the
richest source of targets for drugs are proteins. The

sequencing of the human genome was completed in April
2003 and the outcome predicts that of the estimated 30,000

genes in the human genome approximately 3,000 code for
proteins that bind drug-like molecules [5]. Of the estimated

3,000 to 10,000 disease-related genes [6, 7], knockout
studies (animals bred devoid of a specific naturally

occurring gene) indicate that 10% of these genes have the
potential to be disease modifying. From these estimates, it

can be proposed that there are potentially 600 to 1,500
small-molecule drug targets as yet undiscovered (see

Figure 9.3) [5].

9.2.1 Target Validation and the Use of Chemical Tools

A detailed discussion of the science of target validation is

beyond the scope of this book, but some of the general
concepts will be illustrated by example. Evidence in

estimating a given target’s relevance in a disease can be
pharmacologic and/or genetic. For example, the chemokine

receptor CCR5 has been described as the critical target
for M-tropic HIV entry into healthy cells (vide infra). It is

useful to examine the data supporting this idea as an
illustration of how these lines of evidence converge to

validate a target. One line of evidence to support this is co-
location of the target with sensitivity to the disease. Thus, it

is known that CCR5 receptors must be present on the cell
membrane for HIV infection to occur [8, 9]. Similarly,

removal of CCR5 from the cell membrane in vitro leads to

resistance to M-tropic HIV [10]. Another line of evidence is

in vitro data to show that ligands for CCR5, such as natural

chemokines and chemokine small-molecule antagonists,

interfere with HIV infection [11–15]. This effect extends

in vivo, where it has been shown that individuals with high

levels of circulating chemokines (ligands for CCR5) have a

decreased progression to AIDS [16, 17]. Similarly,

patients with herpes virus 6 (HHV-6) have increased

levels of chemokine and this leads to suppression of HIV

replication [18].

Genetic evidence can be powerful for target validation.

For example, an extremely useful finding from genetic

evidence are data to indicate the effects of a long-term

absence of the target. For CCR5, this is the most

compelling evidence to show this protein is the target

for HIV. Specifically, individuals with a mutation leading

to lack of expression of operative CCR5 receptors

(�32 CCR5 allele) are highly resistant to HIV infection.

These individuals are otherwise completely healthy, indi-

cating that this drug therapy to render this target

inoperative should not be detrimental to the host [19–23].

Often these types of data are obtained in genetically

modified animals; for example, a knockout mouse where

genetic therapy leaves the mouse devoid of the target from

birth. In the case of CCR5, the knockout mouse is healthy,

indicating the benign consequences of removal of this

receptor [24]. Complementary genetic evidence also is

available to show that AIDS patients possessing a CCR5

promoter (�2450 A/G leading to high cellular expression

levels of CCR5) have a highly accelerated progression

toward death [25]. In general, the data for CCR5 serve as

an excellent example of where pharmacological and genetic

evidence combine to highly validate a therapeutic target.

Genetic knockout animals can also be used to identify

Druggable
genome ≈ 3000

Human genome ≈ 30,000 genes

Disease-modifying
genes ≈ 3000

Drug targets
  ≈600–1500

FIGURE 9.3 Venn diagram indicating the human genome and the subsets of genes

thought to mediate disease and those that are druggable (thought to be capable of influence

by small molecules such as proteins). The intersection of the subsets comprises the set that

should be targeted by drug discovery. Adapted from [5].
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pathways relevant to pathological phenotypes. For exam-

ple, a number of inbred strains of mice fed a diet that

promotes hyperlipidemia develop lesions and lipid plaques.

However, knockout mice lacking the major carrier of

plasma cholesterol, apolipoprotein E, spontaneously form

plaques on a normal diet—thereby implicating a role for

cholesterol in cardiovascular disease. Gene knockout

animals can be used to explore phenotypes resulting from

the removal of a given target. Thus, CNS-target expression

of RGS-I Gqa protein leads to tremulousness, decreased

body mass, heightened response to the 5-HT2C receptor

agonist RO60-0175 (which induces anorexia), and convul-

sions to the the 5-HT2A receptor agonists 2,5-dimethoxy-

4-iodoamphetamine and muscarinic agonist pilocarpine

(at concentrations that are ineffective in normal mice) [26].

Another approach to target validation is through

chemical tool compounds. A reductionist view of drug

discovery is premised on the fact that a single gene product

(or small collection of identifiable gene products) is

responsible for a given disease. There are numerous

untestable assumptions made in this process, and if these

are unchecked the final test becomes a very expensive one

(namely, the clinical testing of a drug molecule). A large

part of the expense of this process results from the fact that

the test molecule must be a drug (i.e., there are numerous

criteria that a molecule must pass to be become a ‘‘drug’’

candidate, and this constitutes much effort and expense

en route to the final testing of the reductionist hypothesis).

The use of chemical tools that may not qualify as drug

candidates may substantially reduce the effort and expense

of this process (i.e., use of a molecule with target activity

that does not qualify as a drug per se to test the disease

target-link hypothesis). Such hypothesis-testing molecules

may be parenterally administered (obviating the need for

oral absorption) and the results assessed on a timescale that

may avoid longer-term toxicity problems. For example,

the natural product staurosporine (not a drug in its own

right) provided useful information regarding tyrosine

kinase inhibition in cancer, leading to the anticancer drug

imatinib (inhibitor of BCR-ABL tyrosine kinase). A classic

example of tool compound validation (although unin-

tended) is the progression of histamine H2 receptor

antagonists for the treatment of ulcer (see Figure 8.20). In

this case, the data obtained with the ultimately unsuitable

compounds burimamide and cimetide led to the clinically

useful drug metiamide. Chemical tools have intrinsic

advantages over genetic approaches since the latter can

adequately answer questions of removal of gene function,

but not gain of function. Chemical tools can approach both

loss and gain of function. To determine whether the

addition of gene activity is involved in disease, an agonist

of the gene product is required—a role that can be fulfilled

by a chemical tool. This has lead to the terms chemical

genetics and chemical genomics for the use of molecules to

determine the relevance of gene products in disease. A

shortcoming of this approach is that molecules are usually

not exquisitely selective (as genetic knockouts are), leading

to some ambiguity in the analysis of results.

The requirement for target validation can be a serious

limitation of target-based strategies. In addition to being a

high-resource requirement (estimates suggest three years

and US$390 million per target), target validation has

intrinsic hazards in terms of equating the data with a

conclusion that the given target is the causative factor of (or

even intimately related to) a disease. One of the mainstays

of target validation is the observation of animal health and

behavior after the gene controlling the target of interest is

knocked out. However, a problem with this strategy is the

different genomic background the organism is exposed to

when the gene is eliminated from birth as opposed to when

it is eliminated by a drug in adult life. Removing the gene

from birth may bring into effect compensating mechanisms

that allow the organism to survive. These may not be

operative (or there may not be enough time for them to

compensate) in adult life upon sudden elimination of the

target. For example, while it is known that humans

containing the �32 CCR5 mutation (which prevents cell

surface expression of CCR5) are otherwise healthy it still is

not certain that elimination of CCR5 with CCR5-based

HIV entry inhibitors to adult AIDS patients will not cause

abnormalities in chemotaxis. The induction of compensa-

tory mechanisms can be substantially overcome by the

construction of conditional knockouts whereby inducible

promoters are used to produce tissue dependent and/or

time-dependent knockout after animal development.
In general, systems achieve robustness with redundancy

(i.e., several isoenzymes catalyze the same reaction),

making the interaction with a single target of questionable

value. Also, the use of mouse knockouts brings in obvious

questions as to species-dependent differences between

humans and mice (‘‘mice are not men’’ [27]). Animal

studies in general have been shown not to be infallible

predictors of clinical activity in humans. For example,

preclinical studies in animals indicated that antagonists of

the neurokinin NK1 receptor attenuate nociceptive

responses. Studies with nonsteroidal anti-inflammatory

drugs (NSAIDs) indicate that this should be a predictor

of analgesic activity in humans. However, unlike NSAIDs

the NK1 activity in animals does not transfer into an

analgesic activity in humans [28].

It is prudent to not treat target validation as a single-

answer type of experiment (i.e., if the appropriate data

indicates that the target is ‘‘validated’’ then no further

examination is required). As with all hypothesis testing,

theories cannot be proven correct only incorrect. The fact

that data is obtained to support the notion that a given

target is involved in a disease does not prove that

interference with that target will influence the disease.

Target validation is an ongoing process that really does not

end until the drug is tested in the actual disease state in

patients with a properly controlled clinical trial.
Finally, another consideration in target selection and

subsequent prosecution of a biological target is random

variation in gene expression leading to slightly modified

proteins. These could be devastating to drug activity.

As discussed in Section 8.3, an antagonist of the chemokine

178 9. TARGET- AND SYSTEM-BASED STRATEGIES FOR DRUG DISCOVERY



receptor CCR5 can be a very potent antagonist of HIV

entry. However, the HIV viral coat protein undergoes

frequent mutation, and thus in essence there are a multitude
of targets involved. As seen in Figure 8.9, the potency of the

CCR5 antagonist SCH 351125 for various strains of HIV

vary with clade, indicating the effects of genetic mutation of

the viral coat recognition protein [29]. It can be seen that
there is considerable variability due to polymorphism

(20-fold range of potency of the antagonist on USA clade

B and a 500-fold difference from Russian HIV clade G).

Thus, it can be seen that the therapeutic systems for which a
given drug is required to have activity may differ

considerably from the available test system used to develop

the drug. Receptor polymorphisms can create subpopula-

tions of patients for drugs. For example, b2-adrenoceptor
agonists are widely used for acute opening of constricted
airways in asthma. However, polymorphism in human b2-
adrenoceptors can cause reduction in clinical efficacy as

some mutations render the receptor much less sensitive to

b2-agonists (see Figure 9.4) [30].

9.2.2 Recombinant Systems

Once a target is validated to a point where it is thought

worthy of pharmacological pursuit, a pharmacological

assay to screen molecules for potential biological activity

must either be found or engineered. Historically, receptor
activity has been monitored in isolated tissues from

animals. These systems necessitated extrapolations across

species and were less than optimal (see Chapter 1).

However, with the advent of technologies that enable the
surrogate expression of human genes in cultured cells a

completely new paradigm of therapeutic drug discovery was

born. Presently, host cells in culture can be transfected with
human cDNA for biological targets. These cells then can be

subjected to large scale exposure to molecules and the

physiological functions controlled by the particular targets

can be monitored for changes in physiological activity.
One of the most versatile technologies for this are

baculovirus expression vectors engineered to contain

mammalian cell-active promoter elements. Baculoviruses,

while able to replicate in insect cells, cannot do so in

mammalian cells to cause infection making them safe for
use in laboratories. The virus has little to no cytopathic

effect and can readily be manipulated to accommodate

large pieces of foreign DNA [31]. This technology is

extremely convenient in that the level of receptor (or

other transduced protein) can be controlled by the amount
of virus added to the cells in culture. For example,

Figure 9.5 shows the effect of transduction of U2OS cells

with increasing amounts of baculovirus containing DNA

for CCR5 receptors. Modeling the responses to RANTES

in this system indicates that there is a 30-fold functional
increase in the receptor expression in this experiment. Such

ability to control receptor levels is extremely valuable in the

lead-optimization process to assess the affinity of agonists

(method of Furchgott, see Chapter 5) and relative efficacy

with the operational model (see Chapter 10).
In general, the use of recombinant systems is very

valuable in a target-based approach to drug discovery.
However, while the manipulatability of such systems is

extremely powerful it should be recognized that the

numerous interconnections of cellular pathways and

influence of cellular milieu on signaling targets may make

the reconstruction of therapeutic physiological systems
impractical. This can be illustrated by examining the

possibilities involved in constructing a GPCR recombinant

system (Figure 9.6). In the case of GPCRs, the immediate

reacting partner for the receptor, is a G-protein, or in the

case of pleiotropic receptors a collection of G-proteins.
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In this latter scenario, it may not be evident exactly which
single or combination of G-proteins is therapeutically

relevant and construction of a recombinant system
theoretically could bias a test system to an irrelevant

G-protein. Similarly, the relative stoichiometry of the
reactants (receptors and G-proteins) is important in

determining the primary signaling characteristics of
a functional system. The physiologically relevant stoi-

chiometry may not be known. In this regard, as well as

relative stoichiometry, the absolute stoichiometry may be
important in terms of controlling the overall sensitivity of

the system to agonism or production of constitutive activity
to demonstrate inverse agonism. Finally, it should be noted

that a recombinant test system most likely will not have the
pathophysiological tone that diseased tissues have; leading

to possible dissimulations between the test and therapeutic
system. For these reasons, it is evident that attempts at

absolute recreation of therapeutic systems for drug testing
most likely will be futile.

9.2.3 Defining Biological Targets

In a target-based system, the chemical end point is clearly

defined (i.e., a molecule with a desired agonism/antagonism
activity on the biological target). In some cases, the target

may be clearly defined as for the BCR-ABL kinase
inhibitor Gleevec, which inhibits a constitutively active

kinase known to be present only in patients with chronic
myelogenous leukemia. In other cases, the endogenous

players for a biological target may not be known yet a

synthetic molecule with activity on the target still may be

thought to be of value (orphan receptors). Also, there are

combinations of biological targets that could themselves

become new phenotypic targets (i.e., homodimers, hetero-

dimers) and combinations of targets and accessory proteins

that could constitute a new target. It is worth considering

all of these ideas in the context of the definition of what is a

therapeutically relevant biological target.
Targets that have no known endogenous ligands are

known as orphan receptors and there are still many such

receptors in the genome. A process of ‘‘de-orphanization’’

either with techniques such as reverse pharmacology (in

silico searches of databases to match sequences with known

receptors) or ligand fishing with compound collections and

tissue extracts have been implemented over the past 10

years, yielding a list of newly discovered pairings of ligands

and receptors (see Table 9.1). As chemical tools for such

receptors are discovered, they can be used in a chemical

genomic context to associate these receptors with diseases.

Once an endogenous ligand for a target is known, there

may still be physiological mechanisms that create texture

with that target that may not be captured in a recombinant

system. Biological phenotype overrides genotype as a single

gene can be expressed in different host cells and take on

different functions and sensitivities to molecules. One such

mechanism is homo- or heterodimerization of receptors.
For proteins such as tyrosine-kinase receptors, dimeriza-

tion (the association of two receptors to form a new species
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FIGURE 9.6 Schematic diagram of the layers of construction of a recombinant GPCR cell

assay system. The correct receptor must be transfected into the cell containing the correct

G-proteins in the physiologically relevant stoichiometries. The absolute levels of receptor and

G-protein will control the sensitivity (with respect to low-level agonism of low-efficacy agonists

and/or constitutive activity for inverse agonists). At each step, the recombinant system may

differ from the therapeutically relevant natural system. Finally, the therapeutic system is under

pathological control, whereas the recombinant system does not have this property.
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in the membrane) is a well-known mechanism of action [33].

Increasingly, this has also been shown for GPCRs and

evidence suggests that this phenomenon may be relevant to

drug discovery [34]. The relevance comes from the

acquisition of new drug-sensitive phenotypes for existing

receptors upon dimerization. These new phenotypes

can take the form of increased sensitivity to agonists.

For example, recombinant systems containing transfected

angiotensin II receptors can be insensitive to angiotensin

(subthreshold level of receptor expression) until bradykinin

receptors are co-transfected into the system. When this

occurs, the angiotensin response appears (angiotensin

sensitivity increases through the formation of an angioten-

sin-bradykinin receptor heterodimer) (see Figure 9.7a.) [35].

TABLE 9.1

De-orphanized receptors for cardiovascular function.

Orphan Receptor Ligand Cardiovascular Effect

UT (GPR14, SENR) Urotensin II Vasoconstriction, cardiac inotropy

Mas Angiotensin (1-7) Anti-diuresies, vasorelaxation

GPR66 (TGR1, FM3) Neuromedin U Regional vasoconstriction, inotropy

APJ Apelin Vasoconstriction, cardiac inotropy

PTH2 TIP-39 Renal vasodilatation

GPR10 (GE3, UHR-1) Prolactin rel. peptide Regulation of BP

OXR (HFGAN72) Orexin A,B Regulation of BP

GPR103 (HLWAR77) RF-amides Regulation of BP

TA Trace amines (tyramine) Vasoconstriction

GPR38 Motilin Vasodilatation

GHS-R Ghrelin Vasodilatation

LGR7,8 Relaxin Cardiac inotropy, vasodilatation

CRF1/2 Urocortin Vasodilatation

edg-1 (LPB1) Sphingosine-1-phosphate PLC, MAPK activation

edg-2,4,7 (LPA1-3) Lysophosphatidic acid DNA synthesis

G2A Lysophosphatidylcholine Macrophage function

P2Y12 (SP1999) ADP Platelet aggregation

HM74/-A Nicotinic acid Lipid lowering, anti-lipolytic

GOR40 Medium chain fatty acids Insulin regulation

AdipoR1,R2 Adiponectin Fatty acid metabolism

From [32].
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Such heterodimerization may have relevance to the observa-

tion that an increased number of bradykinin receptors and

angiotensin-bradykinin receptor heterodimers in women

with pre-eclampsia (a malady associated with abnormal

vasoconstriction) [36]. Similarly, chemokines show a 10- to

100-fold increased potency on a heterodimer of CCR2 and

CCR5 receptors than with either receptor alone [37].

Oligomerization can be especially prevalent among some

receptor types such as chemokine or opioid receptors.

A historical mystery in the opioid field had been the

question of how only three genes for opioid receptors

could foster so many opioid receptor phenotypes in tissues

(defined as m1, m2, d1, d2, k1, k2, k3), until it became

clear that opioid receptor heterodimerization accounted for

the diversity. This latter receptor family illustrates another

possible therapeutic application of dimerization; namely,

the acquisition of new drug sensitivity. For example, the

agonist 60-guanidinonaltrindole (60-GNTI) produces no

agonist response at d-opioid receptors and very little at

k-opioid receptors. However, this agonist produces powerful

responses on the heterodimer of d- and k-opioid receptors

(see Figure 9.7b) [38]. Interestingly, the responses to

60-GNTI are blocked by antagonists for either d- or k-
opioid receptors. Moreover, 60-GNTI produces analgesia

only when administered into the spinal cord, demonstrating

that the dimerization is organ specific and that reductions in

side effects of agonists (and antagonists) may be achieved

through targeting receptor dimers. In the case of 60GNTI,

reduced side effects with spinal analgesia is the projected

drug phenotype.

The systematic study of drug profiles on receptor dimers

is difficult, although controlled expression of receptor levels

through technologies such as the baculovirus expression

system (see Figure 9.5) provides a practical means to begin

to do so. The study of receptor association also is facilitated

by technologies such as bioluminescence resonance energy

transfer (BRET) and fluorescence resonance energy trans-

fer (FRET) [39]. BRET monitors energy transfer between a

bioluminescent donor and a fluorescent acceptor (each on a

C-terminal tail of a GPCR) as the two are brought together

through dimerization. This technique requires no excitation

light source and is ideal for monitoring the real-time

interaction of GPCR interaction in cells. FRET enables

observation of energy transfer between two fluorophores

bound in close proximity to each other. The change in

energy is dependent on the distance between the donor and

acceptor fluorophores to the sixth power, making the

method sensitive to very small changes in distance. When

the fluorophores are placed on the C-terminal end of

GPCRs, interaction between receptors can be detected. As

homo- and heterodimerization is studied, the list of

receptors observed to utilize this mechanism is growing.

Table 9.2 shows a partial list of the receptors known to

form dimers with themselves (Table 9.2a) or other receptors

TABLE 9.2

Homo- and heterodimeric receptors.

Homo-oligomers

Adenosine A1 Histamine H2 Somatostatin SSTR1B

AT1 angiotensin II Lutenizing horm./hCG Somatostatin SSTR1C

b2-adrenoceptor Melatonin MT1 Somatostatin SSTR2A

Bradykinin B2 Melatonin MT2 Thyrotropin

Chemokine CCR2 Muscarinic Ach M2 Vasopressin V2

Chemokine CCR5 Muscarinic Ach M3 IgG hepta

Chemokine CXCR4 m-opioid Gonadotropin rel. horm.

Dopamine D1 d-opioid Metabotropic mGluR1

Dopamine D2 k-opioid Metabotropic mGluR2

Dopamine D3 Serotonin 5-HT1B Ca2þ sensing

Histamine H1 Serotonin 5-HT1D GABAB(2)

GABAB(1) Somatostatin SSTR1A

Hetero-oligomers

5-HT1B plus 5-HT1D SSTR2A plus SSTR1B

Adenosine A1 plus Dopamine D1 SSTR1A plus m-opioid
Adenosine A1 plus mGluR1 SSTR1A plus SSTR1C

Adenosine A1 plus Purinergic P2Y1 SSTR1B plus dopamine D2

Adenosine A2 plus Dopamine D2 T1R1 a.a. taste plus T1R3 a.a. taste

Angiotensin AT1 plus Angiotensin AT2 T1R2 a.a. taste plus T1R3 a.a. taste

CCR2 plus CCR5 d-opioid plus k-opioid
Dopamine D2 plus Dopamine D3 m-opioid plus d-opioid
GABAB(1) plus GABAB(2) d-opioid plus b2-adrenoceptor
Muscarinic M2 plus Muscarinic M3 k-opioid plus b2-adrenoceptor
Melatonin MT1 plus Melatonin MT2

From [34].
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(Table 9.2b). Increasing also is the list of phenotypes

associated with these dimerization processes. With

the emergence of receptor dimers as possible therapeutic

targets have come parallel ideas with dimerized ligands (see

Section 9.5).
Drug targets can be complexes made up of more than one

gene product (i.e., integrins, nicotinic acetylcholine ion

channels). Thus, each combination of targets could be

considered a target in itself [40]. Some of these phenotypes

may be the result of protein-protein receptor interactions

[41–43]. For example, the human calcitonin receptor has a

distinct profile of sensitivity to and selectivity for various

agonists. Figure 9.8a shows the relative potency of the

human calcitonin receptor to the agonists human calcitonin

and rat amylin. It can be seen that human calcitonin is a

20-fold more potent agonist for this receptor than is rat

amylin [41]. When the antagonist AC66 is used to block

responses, both agonists are uniformly sensitive to blockade

(pKB¼ 9.7, Figure 9.8b). However, when the protein

RAMP3 (receptor activity modifying protein type 3) is

coexpressed with the receptor in this cell the sensitivity to

agonists and antagonists completely changes. As seen in

Figure 9.8c, the rank order of potency of human calcitonin

and rat amylin reverses such that rat amylin is now

threefold more potent than human calcitonin. Similarly, the

sensitivity of responses to AC66 is reduced by a factor of 7

when amylin is used as the agonist (pKB¼ 8.85,

Figure 9.8d). It can be seen from these data that the

phenotype of the receptor changes when the cellular milieu

into which the receptor is expressed changes. RAMP3 is

one a family of proteins that affect the transport, export,

and drug sensitivity of receptors in different cells. The

important question for the drug development process is, if a

given receptor target is thought to be therapeutically

relevant, what is the correct phenotype for screening? As

can be seen from the example with the human calcitonin

FIGURE 9.8 Assumption of a new receptor phenotype for the human

calcitonin receptor upon coexpression with the protein RAMP3. (a)

Melanophores transfected with cDNA for human calcitonin receptor type 2

show a distinct senstivity pattern to human calcitonin and rat amylin. hCAL

is 20-fold more potent than rat amylin. (b) A distinct pattern of sensitivity

to the antagonist AC66 is also observed. Both agonists yield a pKB for AC66

of 9.7. (c) Coexpression of the protein RAMP3 (receptor activity modifying

protein type 3) completely changes the sensitivity of the receptor to the

agonists. The rank order is now changed such that amylin has a threefold

greater potency than human calcitonin. (d) This change in phenotype is

carried over into the sensitivity to the antagonist. With coexpression

of RAMP3, the pKB for AC66 changes to 8.85 when rat amylin is used as

the agonist. Data redrawn from [41].
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receptor, if a RAMP3 phenotype for the receptor is the

therapeutically relevant phenotype then screening in a

system without RAMP3 coexpression would not be useful.

9.3 Systems-based Drug Discovery

With a target-based approach, the activity of molecules

interacting with the previously identified target of interest

can readily be assessed. As discussed previously, such an

approach requires a linear relationship between targets and

cellular activity. If pathways interact in a complex and

nonlinear fashion, then redundancy and feedback effects

may make predictions from single targets difficult and

erroneous. A major criticism of target approaches is that

they stray from a relatively tried and true successful

historical strategy in drug research, whereby discovery

relied upon proven physiology and/or pathophysiology and

appropriate models. Another more pragmatic criticism

of target-based strategies is that while they yield drugs for

targets, this activity does not necessarily translate to overall

clinical utility (see Figures 9.1 and 9.2).
An alternative to target-based strategies is referred to as

‘‘systems-based’’ drug discovery. The study of the

assembled cellular system has evolved into ‘‘systems

biology,’’ whereby natural cells are used for screening

with complex outputs obtained ranging from secreted

cellular products to genomic data utilized to measure

system responses to drugs. The term originated in

engineering, where it describes a theoretical framework

for controlling a complicated system (i.e., flying an

airplane). The assembly of genes into living cells creates

an infinitely richer palette for potential intervention.

Move over human genome, your day in the spotlight is

coming to a close. The genome . . . contains only the recipes

for making proteins . . . it’s the proteins that constitute the

bricks and mortar of cells and that do most of the work.

— Carol Ezzell, Scientific American (April 2002)

Systems approaches may yield more abundant opportu-

nities for drug discovery. In organs under the control

of pathological mechanisms, genes can interact to provide

multifactorial phenotypes. This can greatly expand the

possible targets for drugs. Therefore, the study of the same

target in its therapeutic environment can enrich the

recognition possibilities for new drugs, in essence increasing

the biological space of that target [40].
There is a fundamental difference between the target-

based approach (where a very large number of compounds

are screened against one target) versus a systems approach,

where a smaller number of compounds (but perhaps higher

quality more drug-like molecules) are screened in a system

that has many targets. Systems can have a great many

(possibly hundreds) small-molecule intervention sites and

can be engineered to incorporate many disease relevant

pathways. The output of such systems can be extremely

complex and requires high-throughput genomic tools and

technologies to process. The development of sophisticated

computing tools as well as the advancement of genetic

technology has facilitated the construction of biological

systems for screening and the study of structure-activity

relationships. Specifically, short interfering RNA duplex

molecules (siRNA) can be used to silence specific genes in

the cell, which allows the observation of their relevance to

total cellular function (Figure 9.9a). This approach is

vulnerable to biological redundancy in the system but

overexpression of targets in the cell also can be used in

conjunction with siRNA approaches to identify and

characterize pathways. Analysis of multiple readouts

of cellular function then act as fingerprints for the

particular silenced portion of a pathway. As multiple

histograms viewed from the top and color coded for

response, these outputs form a heat map for cell function

that can be used to compare control conditions and the

effects of drugs (Figure 9.9b).
In general, systems allow the identification of unknown

(and previously hidden) drug activity and/or can add

texture to known drug activity. This can lead to the

identification of new uses for existing targets, identification

of new targets (so-called ‘‘therapeutic target space’’

involving discovery of a molecular phenotype in a system

and subsequent determination of the molecular target), and

determination of an entry point into signaling cascades that

may be amenable to drug intervention (optimize efficacy

and minimize side effects). Comparison of normal and

diseased samples can be used to determine disease-specific

signaling as a target for drug intervention. The complexity

of the systems response output allows discrimination of

subtle drug activities. For example, Figure 9.10 shows three

levels of output from a system and the results observed for

three hypothetical compounds. Compound A is inactive in

the system, whereas compounds B and C block different

points on the integrated pathway cascades. The first level

of output (i.e., second-messenger production) does not

indicate activity in any of the three ligands. It can be seen

that the second level of output does not discriminate

between the activity seen for compounds B and C, whereas

the third (and more complex) level of output shows

them to be different. In general, systems are designed to

provide maximally complex outputs in different contexts

(different milieu of cellular activating agents) to yield

complex heat-map fingerprints of drug activity. Statistical

methods such as multidimensional scaling are then used

to associate similar profiles (define functional similarity

maps) and determine differences. This gives added levels

of power to screening systems and subsequent lead-

optimization assays. In general, integrated systems can be

used to correlate functional responses with mechanistic

classes of compounds, identify secondary activities for

molecules, provide insight into the mechanism of action of

compounds that give clinical activities, and characterize

pathways and correlate them with functional phenotypes

[44, 45].
Cellular screening systems can be developed with primary

human cells cultured in biologically relevant contexts. The

outputs of these systems are focused sets of biologically

relevant parameters (gene transcription, protein
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production). For example, vascular endothelium cells in

different contexts, defined by stimulation with different

proinflammatory cytokines, are used to screen for drugs of

possible use in inflammatory diseases such as rheumatoid

arthritis (Figure 9.11). Cellular outputs can be enhanced by

overexpression to constitutively active levels. For asthma

(TH2-mediated inflammation), arthritis and autoimmune

diseases (TH1-mediated disease), transplantation (T-cell

driven), and cardiovascular disease-related (monocyte and

endothelial cell driven) inflammatory responses, four

complex cell systems can be utilized [44]. With this

approach, the NF-kB signaling pathway, phosphatidylino-

sitol 3-kinase (PI3K/Akt pathway), and RAS/mitogen-

activated protein kinase (MAPK) pathways can be used to

model proinflammatory activity. Measurement of surface

proteins such as VCAM-1, ICAM-1, and E-selectin

(vascular adhesion molecules for leukocytes); MIG/

CXCL9 and IL-8/CXCL8 (chemokines that mediate

selective leukocyte recruitment); platelet-endothelial cell

adhesion molecule 1/CD31 (controls leukocyte transmigra-

tion); and HLA-DR (MHC class II; the protein responsible

for antigen presentation) are then used to monitor drug

effect. Figure 9.11 shows the components of the system.

Integrated systems are useful to differentiate intracellular

targets such as kinase. The kinome is large, and the targeted

ATP binding sites are very similar. In this regard, systems

can show texture where there is none in isolated target

assays. For example, general tyrosine kinase inhibitors with

poor target specificity (such as AG126 and genisten);

nonspecific JAK inhibitors ZM39923, WHI-P131, and

AG490; and the nonselective 5-lipoxygenase inhibitors

AA861 and NGDA are quite dissimilar when tested in an

integrated system [44]. Systems are also useful in detecting

off-target or secondary activities. For example, differences

can be seen among Raf1 inhibitors BAY 43–9006,

GW5074, and ZM336372 and among casein kinase

inhibitors apigenin, DRB (5,6-dichloro-1-b-D-ribofurano-

sylbenzimidazole, and TBB 4,5,6,7-tetrabromo-2-aza-ben-

zimidazole. The selective p38 MAPK inhibitors PD169316

and SB2033580 have similar potency for the primary target

p38a. However, testing in an integrated system reveals

significant differences between the two drugs consistent

with newly detected inhibiton of P-selectin expression

and strong inhibition of VCAM-1, E-selectin, and IL-8

for SB203580 (consistent with an off-target activity for this

compound).
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FIGURE 9.9 Study of integrated cellular pathways. (a) The activation of six extracellular targets is represented by

histograms. Selective inhibition of various points along the pathways (by application of siRNA) yields characteristic

patterns for the activity histograms. The letters on the sets of histograms refer to the effect of blocking the

corresponding letter intersecting point of the pathway. (b) A collection of such histograms are combined into a 3D
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readings obtained for the same cellular context) or by coding the height of the various histograms with colors to form a

heat map. These 2D representations become characteristic fingerprints for a given biological activity in the system.
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Systems can also reveal similarity in functional responses

by mechanistically distinct drugs. For example, the activity

of the mTOR antagonist rapamycin correlates with that

of general PI-3 kinase inhibitors LY294002 and wortman-

nin. Similarly, nonsteroidal fungal estrogen receptor

agonists zearalenone and b-zearalenol cluster activity with

many p38 MAPK inhibitors. In fact, some striking

mechanistic dissimilarities show like behavior in integrated

systems. For example, phosphodiesterase IV inhibitors

Ro-20–1724 and rolipram cluster with glucocorticoids

dexamethasone, budesonide, and prednisolone. Both

classes of drug have shown involvement in suppression of

leukocyte function.

Studying established drugs in systems can yield new

biological insights into mechanisms. For example, statins

targeting HMG-CoA reductase for lipid lowering show

anti-inflammatory effects (reduction in the leukocyte

activation antigen CD69), activity shared by other

HMG-CoA inhibitors. Subsequent studies have shown

that the integrated activity is the consequence of

HMG-Co-A inhibition and not an off-target activity.

Interestingly, experiments in systems-based assays have

shown different ranking of potency from isolated target

potency. Specifically, the anti-inflammatory potency of

statins in an integrated cellular system is cerivastatin �

atorvastatin� simvastatin� lovastatin� rosuvastatin�

pravastatin. However, the most potent target-based

HMg-acetyl coA (cholesterol-lowering) compounds are

atorvastatin and rosuvastatin.
Clearly, as testing of candidate molecules progresses

toward the clinical therapeutic end point the complexity

increases. Thus, complications ensue along the journey

from biochemical studies (isolated receptors, enzymes)

through recombinant cellular systems to natural whole

systems. The next level of complexity beyond these involve

assays in context and in vivo systems (Figure 9.12). It

should be noted that while the veracity of data to the true

clinical profile for a molecule increases as the testing enters

into these realms so too does the resource requirement and

risk. For this reason, a paramount need in drug discovery is

the collection of quality data capable of predicting failure

in these expensive systems, as early as possible in the drug

discovery process. It is worth discussing some unique

applications of complex conditions in testing systems for

drug screening and the determination of surrogate markers

for prediction of successful therapeutic activity.
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FIGURE 9.10 Levels of complexity for response readouts of cellular systems.

Extracellular targets (light blue boxes) activate intracellular networks to produce

biological response. Histograms show the activity of three hypothetical compounds

(coded green, blue, and red). The green compound is inactive, the blue componud blocks

an intracellular target (green pentangle labeled with oval marked B), and the red

compound blocks another intracellular target (blue hexagram), labeled with oval

marked C. If the response is read at a primary level of response (for example, levels of

intracellular second messenger), the three compounds all appear to be inactive. Readings

further down the cellular cascade detect one active compound (output level 2), and even

further down detect the other active compound and differentiate the activity of the two

active compounds (output level 3).
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Cellular context refers to the physiological conditions

present for the particular tissue of interest in a therapeutic

environment. It can be important in determining the effects

of drugs, and therefore in how drugs are screened and

tested. For example, the signaling molecule TGF-b helps

prevent malignant transformation of cells in breast

epithelium. However, if the cells are already transformed

TGF-b enhances blood vessel formation and tumor-cell
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FIGURE 9.11 An example of a cellular system designed to study inflammatory processes related to asthma and arthritis.

Multiple readouts (ELISA measurements) from each of four cell types are obtained under conditions of four contexts (mixture of

stimulating agents). This results in a complex heat map of basal cellular activities that can be affected by compounds. The changes

in the heat map (measured as ratios of basal to compound-altered activity) are analyzed statistically to yield associations and

differences.
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invasiveness—thereby promoting tumor growth and disper-

sion [46]. Context can be especially important in vivo, and

this may be critical to the therapeutic use of new drugs.

Some context can be discerned with knockout animals. For

example, the role of b-adrenoceptors, bradykinin B2,

prostanoid EP2, and dopamine D3 receptors in the control

of blood pressure becomes evident only if physiological

stress is applied (i.e., salt-loading or exercise). For these

reasons, it is important that cell models mimic conditions

in vivo and incorporate environmental effects and cell-cell

interactions.
Through ‘‘context-dependent’’ biological effect,

increased breadth of function can be detected. Additional

discrimination (context-dependent activity) can be obtained

by changing conditions. For example, as discussed pre-

viously, PDE-IV inhibitors and glucocorticoids cluster

in leukocyte dependent systems. However, they can be

differentiated in lipopolysaccharide systems under different

cell stimulus. For drugs that produce effect by modifying

signaling, context can be critical. For example, the

phosphodiesterase inhibitor fenoximone produces positive

cardiac inotropy and can be useful for congestive heart

failure. The positive inotropic effects can be observed

in vivo [47] in a working myocardium under hormonal and

transmitter control (Figure 9.13a). However, in an isolated

heart in vitro with no such neural tone fenoximone has no

visible effect (Figure 9.13b). Fenoximone blocks the

degradation of intracellular cyclic AMP. Therefore,

increased inotropy is observed only under conditions

where cyclic AMP is being produced by transmitter tone.

These conditions can be simulated by adding a very low

concentration of weak b-adrenoceptor agonist (in this case,

prenalterol). Figure 9.13b shows the positive inotropic

effect to fenoximone observed in the presence of sub-

threshold levels of prenaloterol [48]. This defines a possible

context for assays designed to potentiate cyclic AMP levels;

namely, the presence of a subthreshold of b-adrenoceptor
agonism. Similarly, adenosine receptors mediate renal

vascular tone but mainly through the modification of the

existing renal tone. Figure 9.14 shows the relative lack of

effect of the adenosine agonist 2-chloroadenosine on

vascular tone in a perfused kidney in vitro. In a different

context—namely, subthreshold a-adrenoceptor vasocon-

striction with methoxamine and vasodilation with forskolin

(elevated cyclic AMP)—2-chloroadenosine vascular effects

become evident (Figure 9.14). In this case, a context of

physiological vascular tone increases the effect of the

modifying adenosine agonism [49].
The interplay of levels of low-intrinsic-efficacy com-

pounds with levels of physiological tone is very important.

For example, the effects of b-adrenoceptor partial agonists/
antagonists pirbuterol, prenalterol, and pindolol are quite

different in conditions of high-basal and low-basal physio-

logical tone (as altered by types of anesthesia, Figure 9.15)

[50]. It can be seen that the partial agonist with the highest

intrinsic efficacy (pirbuterol) produces elevated heart rate

under conditions of low basal tone, and little effect on heart

rate with anesthesia producing high basal tone

(Figure 9.15a). Prenalterol has a lower intrinsic efficacy

and produces less tachycardia under conditions of low tone

and a slight bradycardia with high tone (Figure 9.15b).

Finally, the very-low-intrinsic-efficacy b-adrenoceptor par-
tial agonist pindolol produces very little tachycardia with

high tone and profound bradycardia in conditions of high

tone (Figure 9.15c). Such changes in the effects of drugs

with low levels of intrinsic efficacy make prediction of
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(a) In vivo effects of fenoximone in anesthetized dogs. Ordinates reflect positive inotropy. Redrawn from

[47]. (b) In vitro effects of fenoximone in guinea pig untreated isolated left atria (filled circles) and atria

in the presence of subthreshold b-adrenoceptor stimulation with prenalterol (open circles). Redrawn

from [48].
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therapeutic response in vivo difficult without data obtained

in cellular context.

9.4 In Vivo Systems, Biomarkers, and Clinical Feedback

Pharmacological hypotheses are the most rigorously

tested in all of biological science. A potential drug molecule

must emerge through the entire drug discovery and

development process and be tested in humans to give a

desired therapeutic effect before the initial hypothesis

beginning the process can be negated. In keeping with the

notion that systems are more predictive of eventual

therapeutic worth than isolated target assays, the next

step in complexity are in vivo models of normal physiolo-

gical function and disease (Figure 9.12). Historically, drug

discovery was based on animal models and natural cell

systems. On one hand, the differences in species (humans

and animals) was a hurdle and a potential stopping point

for the development of drugs for humans in such systems.

On the other hand, it could be argued that testing was done

in systems of proven physiology and pathology. The system

was more like what the drug would encounter when it was

used in the therapeutic environment. In vivo systems also

allow observation of what a small drug molecule usually is

designed to do; namely, perturb the diseased state to cause

it to return to a normal state or at least to alleviate

symptoms.

The relevant phenotype for complex multifaceted dis-

eases such as obesity, atherosclerosis, heart failure, stroke,

behavioral disorders, neurodegenerative diseases, and

hypertension can only be observed in vivo. Historically,

in vivo animal testing has led to the initiation of some

classical treatments for disease. For example, the mode of

action of the antihypertensive clonidine and subsequent

elucidation of presynaptic a2-adrenoceptors resulted from

in vivo experimentation. Similarly, the demonstration of an

orally active ACE inhibitor showing reduced blood

pressure in spontaneously hypertensive rats led the emer-

gence of captopril and other clinically active ACE

inhibitors for hypertension. While investigation of drug

effect is more complicated in vivo there are tools and

techniques that can be used to better derive this informa-

tion. Thus, protein-specific antibodies, gene knockouts and

knock-ins, RNA interference, and imaging techniques can
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provide rich information on in vivo processes and valida-

tion of pathways. In vivo experimentation can show

integrated response from multiple sources, reveal unex-

pected results, determine therapeutic index (ratio between

efficacious and toxic concentrations), help assess the

importance of targets and processes identified in vitro,

and assess pharmacokinetics and help predict clinical

dosing. These obvious advantages come with the price tag

of high resource requirement (Figure 9.12).
While the obvious value of in vivo animal models is clear,

there also are instances—especially in cases of inflamma-

tory arthritis, behavior, and tumor growth—where they

have failed to be predictive of useful clinical activity in

humans [51]. For example, leukotriene B4 (LTB4) antago-

nists showed activity in animal models of inflammatory

arthritis yet failed to be useful in rheumatoid arthritis [52].

Similarly, dopamine D4 antagonists showed activity

in animal behavior models previously predictive of dopa-

mine D2 antagonists in schizophrenia. However, testing

of dopamine D4 antagonists showed no efficacy in

humans [53].
The ultimate in vivo model is humans in a controlled

clinical environment, and there are considerable data

to show that even complex models fail to predict clinical

utility [40, 54]. Increasingly it is becoming evident that the

complexities of disease states modify, cancel, and change

target-based drug effects sometimes in unpredictable ways.

Clinical data is extremely valuable in the assessment of both

the drug in question and understanding of the relationship

between the target and the disease state. Therefore, clinical

feedback of these data is an essential part of the drug

discovery process. The emerging field that relates to the use

of clinical data in the drug discovery process is translational

medicine. The metaphor used to describe the translational

medicine process of information utilization from the clinic

is that of a highway. The insights and information gained

have led to the idea that whereas in the past the drug

discovery process has been a one-way highway (from the

bench to the clinic) it now needs to be a two-way highway

where the learnings in the clinic should directly be applied

to the criteria used early on in discovery. Furthermore, the

lanes of this highway need to be expanded and much more

information from the clinic needs to be regarded earlier.
The next question is therefore what tools are available to

obtain such clinical data. Imaging techniques can be used to

gain insight into drug activity in a noninvasive manner.

Similarly, surrogate (from the Latin surrogare, ‘‘to sub-

stitute’’) end points are increasingly used, especially in

cancer research where monitoring of effects such as cell

cycle, mitotic spindle separation, apoptosis, angiogenesis,

and tumor invasion are relevant to the assessment of

clinical value. Thus, readings of tumor shrinkage and time-

to-disease progression can be better predictors of long-term

survival. Another increasingly valuable avenue of efficacy

assessment is through biomarkers. These are especially

useful in the treatment of diseases requiring long-term

administration of drugs. The impact of drugs on cellular

processes requires metabolite data predictive of subtle

changes in molecular networks not accessible in target

studies. In cancer, serum biochemical tumor markers can be

useful predictors of outcome. Biomarkers are especially

useful in cases where the precise mechanism of the drug is

known. This can open the possibility of restricting clinical

testing to those patients expressing the marker. In cancer

patients, this includes HER2b overexpression I breast

cancer (Herceptin), bcr-abl translocation in chronic mye-

loid leukemia (Gleevec), and expression of CD20 in non-

Hodgkin’s lymphoma (Rituximab) [55]. In general, a

biomarker can be a physiological by-product (i.e., hypoten-

sion, platelet aggregation) or a biochemical substance

(tumor markers). In this latter case, serum cholesterol or

glycated hemoglobin can be a useful biomarker for statin

therapy, control of diabetes, or antihypertensive treatment.

A biomarker also can be a change in image (i.e., positron

emission tomography). Thus, functional imaging can

be used to visualize mitosis, apotosis, inflammation,

structural changes in tumor regression, and blood flow.

Immunohistology also can be used to furnish predictive

markers of success of a given treatment.

9.5 Types of Therapeutically Active Ligands

In addition to diversity in biological targets, there is

emerging diversity in the types of chemicals that can be

used therapeutically to interact with these targets. Before

the advent of widespread functional high-throughput

screening (HTS), the majority of new therapeutic entities

could be classed as full agonists, partial agonists, or

antagonists. Since the screening mode used to discover

these often was orthosterically based (i.e., displacement of a

radioligand in binding), the resulting leads were usually

correspondingly orthosteric. With HTS in functional mode,

there is the potential to cast a wider screening net to include

allosteric modulators. The changing paradigm of biologi-

cally active molecules found in HTS is shown in

Figure 9.16. With the use of the cellular functional

machinery in detecting biologically active molecules

comes the potential to detect allosteric antagonists (mod-

ulators), where a5 1 or potentiators (a4 1). As discussed

in Chapter 7, there are fundamental differences between

orthosteric and allosteric ligands that result in different

profiles of activity and different therapeutic capability (see

Section 7.3). As more allosteric ligands are detected in

functional HTS, the ligand-target validation issues may

become more prominent. In general, the requirement of

target presence in the system to demonstrate an effect is the

first, and most important, criterion to be met. In cases

where sensitivity of the effect to known target antagonists is

not straightforward, demonstration of the target effect

when the target is transfected into a range of host cells is a

useful confirmation (see Figure 8.16).
Another variation on a theme for biological targets

involves a concept known as polypharmacology (pharma-

cology involving, ligands with activity at more than one

target within the same concentration range). The unique

therapeutic profiles of such molecules rely on the interplay
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of activities on multiple biological targets. There are

increasing examples of clinically active drugs in psychiatry

that have multiple target activities. For example, olanza-

pine (a useful neuroleptic) has highly unspecific antagonist

activity at 10 different neurotransmitter receptors.

Similarly, there is evidence that this may be an important

aspect of kinase inhibitors in oncology. The unique value of

the antiarrhythmic drug amiodarone is its activity on

multiple cardiac ion channels [56].

Introducing multiple activities into molecules can be a

means of maximizing possible therapeutic utility.

Figure 9.17 shows the theoretical application for activity

at two types of receptors; namely, a- and b-adrenoceptors.
Depending on the dominant activities, molecules from a

program designed to yield dual a- and b-adrenoceptor
ligands could be directed toward a range of therapeutic

applications. Chemical strategies for introducing multiple

activities into a single molecule range from dimerization of

structures known to possess the single activities to

utilization of structures known to possess multiple activ-

ities. In the latter case, it is known that drug activity is

seldom specific (i.e., the molecule possesses only one single

activity at all concentration ranges) but rather is selective

possessing a range of activities over a broad concentration

range. Figure 9.18 shows the numerous activities found in

the a2-adrenoceptor antagonist yohimbine (Figure 9.18a)

and antidepressant amitriptyline (Figure 9.18b). The

linkage of known active chemical structures for multiple

activity has been described as a strategy in Chapter 8 (see

Section 8.2), but an even more obvious amalgam of

structures (joined with a linker) can be used to target

receptor homo- and heterodimers [57]. Dimeric ligands can

show increased potency. For example, a dimer of the 5-

HT1B receptor sumatriptan used for the treatment of

migraine shows a 100-fold increase in potency over

monomeric sumatriptan [58]. Dimerization of ligands is a

way to introduce mixtures of activity. One example of this

is a dimeric linking of a d-opioid antagonist (naltrindole)

and k1-opioid agonist (ICI-199,441) to yield a molecule of

greater potency and mixed activity [59]. (See Figure 9.19.)

Dimeric ligands need not be obvious amalgams of active

structures. For example, in view of clinical data suggesting

that a mixture of histamine and leukotriene antagonism

was superior to either agent singly in asthma—as well as in

view of the finding that the antihistamine cyproheptadine

was a weak antagonist of LTD4—a molecule based on

cyproheptadine and modified with features from the

endogenous leukotriene agonist LTD4 yielded a molecule

with better activity in asthma [60]. (See Figure 9.20a.) Dual

activity has also been designed from knowledge of similar

substrates. The treatment of hypertension with the angio-

tensin-converting enzyme (ACE) inhibitor captopril is

established. The enzyme-neutral endopeptidase (NEP) is a

metalloprotease that degrades atrial natriuretic factor, a

peptide known to cause vasodilatation and oppose the

action of angiotensin. These activities led to the postulate

that a combined ACE/NEP inhibitor would be efficacious

in hypertension, and one approach to this utilizes the

notion that these two enzymes cleave similar dipeptide

fragments. From this, a constrained anti-phenylalanine

dipeptide mimetic (designed to mimic a low-energy

conformation of the His-Leu portion of angiotensin

bound to ACE) and the Phe-Leu portion of leu-enkephalin

bound to NEP were used to produce a dual inhibitor

of both ACE and NEP (Figure 9.20b). This formed the

basis for the synthesis of a potent ACE/NEP inhibitor

of nanomolar potency (Figure 9.20b).

One of the practical problems involved with ligands

yielding polypharmacology is that their therapeutic profiles

of action can often only effectively be tested in vivo.

For example, debilitating concomitant tachycardia seen

with beneficial increases in cardiac performance is a

common finding for standard b-adrenoceptor agonist

catecholamines such as isoproterenol (see Figure 9.21a).

However, b-adrenoceptor agonist dobutamine produces

much less tachycardia for the same increased cardiac

performance. This interesting differentiation has been

shown to be due to a low-level pressor effect of dobutamine

FIGURE 9.16 The use of new screening techniques employing functional assays

promises a richer array of biologically active molecules that will not only mimic

natural endogenous ligands for the targets but modify existing physiological

activity.
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(which opposes tachycardia through a reflex vagal stimula-

tion) caused by a weak a-adrenoceptor agonism [61].

Blockade of a-adrenoceptors in vivo greatly reduces the

difference between isoproterenol and dobutamine (see

Figure 9.21b). This inotropic (over chronic selectivity)

cannot be seen in isolated organs; only in the in vivo

system. In this case, the whole animal is needed to detect

the beneficial properties of dobutamine polypharmacology

(a- þ b-agonism).
Another type of therapeutically active molecule is one

designed primarily with pharmacokinetics in mind

(designed to be well absorbed and to enter the central

compartment readily), which can then be converted to the

therapeutically active molecule in the body. These are

referred to as pro-drugs. This process, called latentiation,

consists of the conversion of hydrophilic drugs into lipid-

soluble drugs (usually by masking hydroxyl, carboxyl, and

primary amino groups). A concentrating effect can be

achieved once the pro-drug enters a compartment and the

active moiety is released and trapped by enzymatic

hydrolysis. This can be a useful strategy for drug therapy

in the central nervous system, which is protected by the

blood-brain barrier (an obstacle relatively impervious

to polar molecules). For example, a lipid-soluble diacetyl

derivative of morphine crosses the blood-brain barrier at

a rate 100 times faster than morphine. Once in the brain,

pre-capillary pseudocholinesterase deacylates the molecule

to morphine (Figure 9.22a). Similarly, the delivery of

gamma-aminobutyric acid (GABA) into the CNS for

treatment of depression, anxiety, Alzheimer’s disease,

parkinsonism, and schizophrenia is difficult due to the

presence of the blood-brain barrier. However, the Schiff-

base progamide crosses into the CNS to release gabamide

and then GABA (Figure 9.22b). A particularly effective
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                α-Adrenoceptors   β-Adrenoceptors      Possible Indication

A     Full agonist  
B     Partial agonist             Shock, trauma
C     Antagonist             Hypertension
D     Full agonist              Full agonist
E     Partial agonist         Full agonist             Acute cardiac decompensation
F     Partial agonist          Antagonist             Nasal decongestion, glaucoma,
              shock, cardiopulmonary resuscitation
G     Antagonist               Antagonist             Hypertension
H     Partial agonist          Partial agonist           Lipolysis
I       Full agonist              Partial agonist
J      Antagonist               Partial agonist           Asthma, hypertension,
              congestive heart failure
K                               Full agonist             Asthma
L                               Partial agonist           Asthma
M                               Antagonist                 Hypertension, angina, glaucoma

FIGURE 9.17 Venn diagram consisting of the various possible activities (agonism and

antagonism) on two receptor subtypes (a- and b-adrenoceptors). Letters label the areas

of intersection denoting joint activity. The table shows possible therapeutic application

of such joint activity.
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pro-drug strategy is the use of the dual ester dipivalyl

epinephrine for the treatment of glaucoma. Epinephrine

reduces intraocular pressure and is an effective

treatment for the disease. However, it does not readily

penetrate the cornea (it is unstable and short acting).

Dipivalyl epinephrine easily penetrates the cornea, and

active epinephrine is released in the eye through enzymatic

hydrolysis, making the pro-drug 17 times more potent

than the parent by the ocular route. Since epinephrine itself

is metabolically unstable, it degrades before reaching

the general circulation (thereby eliminating side effects

(Figure 9.23)). The use of the pro-drug optimally produces

a maximally effective concentration of the active drug in the

eye, the target organ.

9.6 Summary and Conclusions

. There is evidence to suggest that while more drugs are

being discovered there is no commensurate increase in

the number of novel treatments for disease.
. A major approach to discovery is the target-based

approach, whereby a single biological target is
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identified (and validated) as a primary cause of disease.

Ligands that produce a defined action at the target (i.e.,

agonism, antagonism) are therefore expected to alle-

viate the disease in the therapeutic situation.

. Recombinant systems are the main tools of target-

based approaches. These can be manipulated, but

information is lacking for complete modeling

of therapeutic systems.
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FIGURE 9.22 Latentiation of morphine and gamma amino-butyric acitd (GABA) allows entry

through the blood-brain barrier and subsequent trapping by enzymatic hydrolysis. Diacetylmorphine is

converted to morphine by pseudocholinesterase, while progamide is converted to gabamide and

subsequently to the active drug GABA.
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to produce epinephrine in the eye to alleviate high pressure in glaucoma.
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. Biological targets may consist of single-entity proteins,

complexes of receptors (dimers), or receptors plus
accessory proteins. Mixtures of gene products can

produce unique phenotypic biological targets.
. An alternative approach involves testing of new drug

entities on whole-cell systems and measuring effects

on integrated cellular pathways. Favorable phenotypic
responses are identified with this approach that may

better produce alteration of multicomponent disease

processes.
. An added complexity, but one that may better predict

therapeutic activity, is the testing of drugs in assays
with different contexts (i.e., basal stimulation).

. Testing in vivo can further produce therapeutic model
systems. Certain multicomponent disease conditions

can only be adequately modeled in vivo.
. The ultimate model is the human in the clinical

situation. Translational medicine with noninvasive

imaging techniques and biomarkers is now able to
furnish valuable information that can be used in the

initial discovery process to produce better defined

drugs.
. As well as complex biological targets, complex

chemical targets (drugs with multiple activity, pro-

drugs) can be used to produce therapeutically useful
phenotypic responses.
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10
‘‘Hit’’ to Drug: Lead Optimization

It’s all a game . . . sometimes you’re cool . . . sometimes you’re lame . . .

— GEORGE HARRISON (1943–2001)

Success is the ability to go from one failure to another with no loss of enthusiasm.

— SIR WINSTON CHURCHILL (1874–1965)
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10.1 Tracking SARs and Determining Mechanism of Action:

Data-driven Drug-based Pharmacology

There are pharmacological tools and techniques designed

to determine system-independent measures of the potency
and efficacy of drugs. However, to apply them effectively

the molecular mechanism of the drug must be known
beforehand. In new drug discovery, this is seldom the case,

and in fact the observed profile of the molecules must be
used to discern the molecular mechanism. In this setting, it

is not always possible to apply the correct technique or
model for quantification of drug activity and the tool

chosen for analysis is based on initial observation of drug
activity (i.e., the process is data driven). In practical terms,

a wide range of potential drug behaviors can be described
by a limited number of molecular models, and it is useful to

describe these and their application in the drug discovery
process. In general, drugs can be divided into two general

initial types: those that do and those that do not initiate
pharmacological response in the preparation. As a preface

to specific discussion of the use of data-driven analyses, it is
useful to consider the application of surrogate parameters.
Ideally, pharmacological data should directly be fit to

specific models and parameters derived from the direct fit.
However, there are cases where the specific models predict

surrogate parameters that can be derived without fitting
data to the specific model. This can be an advantage. For

example, the equation for simple competitive antagonism of
receptors (see Section 6.3) is

Response ¼
½A�ntnð ÞEmax

½A�ntn þ ½A� þKAð1þ ½B�=KBÞð Þ
n , ð10:1Þ

where n is a fitting parameter for the slopes of the

concentration response curves, Emax is the maximal

response capability of the system, [A] and [B] the agonist

and antagonist (respectively), t the efficacy of agonist, and

KA and KB the respective equilibrium dissociation con-

stants of the agonist and antagonist receptor complexes. It

will be seen that fitting sets of concentration-response

curves in the absence ([B]¼ 0) and presence of a range of

concentrations of antagonist can yield a value of KB.

However, this requires fitting to five parameters, some of

which (for example, KA) cannot be independently estimated

without separate experiments. Alternatively, it is known

that equiactive dose ratios (DRs) from parallel concentra-

tion-response curves shifted to the right by the antagonist

can be used in Schild analysis. Therefore, DR values can be

used as surrogates for the analysis of antagonism without

need to fit to the explicit model. Under these circumstances,

the data can be fit to a generic sigmoidal curve of the form

Response ¼ Basalþ
Max� Basal

1þ 10ðLogEC50�Log½A�Þ
n ð10:2Þ

and the shift in EC50 values used to calculate DR estimates

for Schild analysis (see Section 6.3.1). There are certain

instances in data-driven pharmacological analysis where it

is useful to use such surrogate parameters.

10.2 Drug Initiation of Response: Agonism

The first observable effect of a drug in a biological

preparation is the initiation of some pharmacological effect

(referred to as response). If this is seen, then it must be

determined that it is specific for the biological target of

interest (i.e., not a general nonspecific stimulation of the

cell) and that a concentration-response relationship can be

determined. Once activity for a given molecule has been

confirmed by retest at a single concentration, a dose-

response curve for the effect must be determined. The

biological effect must be related to the concentration in a

predictive manner. Figure 10.1 shows some possible

outcomes of determining a possible dose-response curve

for an activity determined at one concentration. It can be
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seen that not all outcomes represent true or useful dose-

response activity.
A frequently asked question at this point is, does the

array of responses for given concentrations represent a true

dose-response relationship or just random noise around a

given mean value? It is useful to demonstrate approaches to

this question with an example. Assume that a compound is

tested in dose-response mode and 11 ‘‘responses’’ are

obtained for 11 concentrations of compound giving a

maximal ordinal response of 7.45%. On one hand, it might

not be expected that noise could present a sigmoid pattern

indicative of a concentration-response curve (although such

patterns might be associated with location on plates or

counters). However, a maximal ordinate response of 7.45%

is also extremely low. A useful rule of thumb is to set the

criterion of 43s (where s is the standard error of the

mean) of basal noise responses as the definition of a real

effect. In this case, the signal from 1,325 wells (for the

experiment run that same day; historical data should not be

used) obtained in the presence of the lowest concentration

of compound (10 pM, assumed to be equivalent to basal

response) yielded a mean percentage response of �0.151%,

with a standard deviation of 1.86%. Under these circum-

stances, 3s¼ 5.58%. With this criterion, the response to the

agonist would qualify as a signal above noise levels.
A pharmacological method to determine if a very low

level of response constitutes a real dose-response curve is to

use a maximal concentration of the ‘‘very weak partial

agonist’’ to block responses to a standard full agonist. The

basis for this method is the premise that the EC50 of a weak

partial agonist closely approximates its affinity for the

receptor (see Chapter 5). For example, assume that a fit to

the data points shows a partial agonist to have a maximal

response value of 8% and EC50 of 3 mM. Under these

circumstances, the dose-response curve to the standard

agonist would be shifted tenfold to the right by 30 mM of

the weak partial agonist (Figure 10.2). This could indicate

that the 8% represents a true response to the compound.

Also, it could furnish a lead antagonist series for the

screening program. However, this method requires con-

siderable follow-up work for each compound.
Another method of detecting a dose-response relation-

ship is to fit the data to various models for dose-response

curves. This method statistically determines whether or not

a dose-response model (such as a logistic function) fits the

data points more accurately than simply the mean of the

values. This method is described fully in Chapter 11. The

most simple model would be to assume no dose-response

relationship and to calculate the mean of the ordinate data

as the response for each concentration of ligand (horizontal

straight line parallel to the abscissal axis). A more complex

model would be to fit the data to a sigmoidal dose-response

function (Equation 10.2). A sum of squares can be

calculated for the simple model (response¼mean of all

response) and then for a fit of the data set refit to the four-

parameter logistic shown previously (Equation 10.2). A

value for the F statistic is then calculated, which determines

whether there is a statistical basis for assuming there is a

dose-response relationship. An example of this procedure is

given in the next chapter (see Figure 11.13). The remainder

of this discussion assumes that it has been determined that

the drug in question produces a selective pharmacological

response in a biological preparation that can be defined by

a concentration-response curve (i.e., it is an agonist).
The next step is to compare the maximal response to the

agonist to the maximal response capability of the biological

preparation. If there is no statistical difference between the

maximal response of the agonist to the maximal response of

the tissue, then the drug is a full agonist. If the magnitude

of the maximal response to the agonist is lower than that of

the tissue, then the drug is a partial agonist. There is

separate information that can be gained from either of these

two categories of agonist.

10.2.1 Analysis of Full Agonism

As discussed previously, the location parameter of a

dose-response curve (potency) of a full agonist is a complex

amalgam of the affinity and efficacy of the agonist for the

receptor and the ability of the system to process receptor

stimulus and return tissue response. This latter complica-

tion can be circumvented by comparing the agonists in the

same functional receptor system (null methods). Under

these circumstances, the receptor density and efficiency of

receptor coupling effects cancel each other since they are

common for all of the agonists. The resulting relative

potency ratios of the full agonists (provided the concentra-

tions are taken at the same response level for each agonist)

are system independent measures of the molecular proper-

ties of the agonists; namely, their affinity and efficacy for

the receptor. This is shown, in terms of both classical

receptor theory and the operational model in Section

10.6.1. Such potency ratios for full agonists are sometimes

referred to as EMRs (equimolar potency ratios) or EPMRs

FIGURE 10.1 Possible dose-response curves that could yield the

ordinate value shown at a concentration of 20 mM compound.
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(equipotent molar potency ratios) and are a standard

method of comparing full agonists across different systems.
There are two major prerequisites for the use of this tool

in SARs determination. The first is that the agonists must

truly all be full agonists. If one is a partial agonist, then the

system independence of the potency ratio measurement is

lost. This is because of the different effects that variation in

receptor density, efficiency of coupling, and measurement

variation have on the location parameters of dose-response

curves to partial versus full agonists. For example,

Figure 10.3 shows the effect of an increase in receptor

number on a high-efficacy agonist (t¼ 500) and low-

efficacy agonist (t¼ 5). It can be seen from

this figure that the curve for the high-efficacy agonist

shifts to the left directly across the concentration axis,

whereas the curve for the lower-efficacy agonist rises

upward along the ordinal axis with little concomitant

displacement along the concentration axis (i.e., the potency

of the full agonist changes, whereas the potency of the

partial agonist does not). This is because potency is

dependent on efficacy and affinity to different extents for

full and partial agonists. Therefore, it is inconsistent to

track SARs changes for full and partial agonists with the

same tool; in this case, potency ratios.

Figure 10.4 shows the potency ratios of two agonists as a

function of the receptor density of the receptor systems in

which they are measured (expressed as the operational t
value for the lower-efficacy agonist). Also shown is the

maximal response of the higher-efficacy agonist. Of note in

this figure is the fact that the potency ratios are not

constant until the maximal responses of the two agonists

are equal (i.e., until they are both full agonists, region II of

the figure). When one of the agonists is a partial agonist,

the potency ratio for the two agonists varies with system

parameters; in this case, receptor density. Since SARs must

be conducted with system-independent measures of drug

activity, potency ratios of full and partial agonists are not

useful in this region.
The other prerequisite for the use of potency ratios for

agonist SARs is that the ratio be independent of the level of

response at which it is measured. Figure 10.5 shows dose-

response curves to two full agonists. It can be seen that a

rigorous fit to the data points results in two curves that are

not parallel. Under these circumstances, the potency ratio

of these agonists varies depending on which level of

response the ratio is measured (see Figure 10.5a). In this

situation, the measure of drug activity is system dependent

and not useful for SARs. However, the nonparallelism of

(a)

(c)

(b)

FIGURE 10.2 Dose-response curves for agonists of very low intrinsic activities. (a) A set of responses

for a range of concentrations of an unknown molecule is observed. In comparison to a full agonist for the

assay, the maximal ordinate value is low (8% of maximal response). (b) An expanded scale shows that the

response pattern follows a sigmoidal shape consistent with a true weak agonism for the receptor.

(c) Addition of 30 mM of the unknown compound would be predicted to cause a tenfold shift to the right of

the agonist dose-response curve if the weak activity truly reflects partial agonist of the unknown at the

receptor with an EC50 of 3 mM.
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these curves may be the result of random variation in

response measurement and not a true reflection of the
agonist activity. A statistical test can be done to determine

whether these curves are from a single population of curves
with the same slope (i.e., if the data can be described by
parallel curves with the result that the potency ratio will not

be system dependent). Application of this test to the curves
shown in Figure 10.5a yields the parallel curves shown in

Figure 10.5b. In this case, there is no statistical reason the

data cannot be described by parallel curves (see Chapter 11

for a detailed description of the application of this test).

Therefore, the potency ratio can be derived from parallel

curves with the result that system-independent data for

SARs can be generated.

10.2.2 Error and Agonist Dose-Response Curves

In the course of SARs determination, dose-response

curves are replicated to confirm activity. It is important to

note that different regions of these curves, depending on the

level of agonist activity, will be more subject to random

error than others. Specifically, the maximal responses of

weak partial agonists will be more sensitive (than that to

full agonists) to random variation than their potency (EC50

value). (See Figure 10.6a.) The potency of full agonists will

be more prone to random variation than the maxima (see

Figure 10.6b). Figure 10.6 also shows the effect of random

noise on t values (variation in levels of receptor density

and/or efficiency of receptor coupling) on the maxima

of agonists (Figure 10.6c) and potency of agonists

(Figure 10.6d) as a function of t. It can be seen from this

figure that variation in t has different effects on intrinsic

activity and potency throughout the range of possible t
values. In the SARs process, this should be noted and

expected as agonists are modified to produce higher

activity.

10.2.3 Quantifying Full Agonist Potency Ratios

The scheme for comparing two full agonists according to

the operational model is shown in Figure 10.7. In this case,

a surrogate reading of EPMR values from curves fit to a

generic sigmoidal function (i.e., Equation 10.2) yields a

(a) (b)

FIGURE 10.3 Comparative potencies of two agonists in two receptor systems containing the same receptor at different

receptor densities. (a) Relative potency in system with high receptor density (t1¼ 500, t2¼ 100). The potency ratio¼ 5. (b)

Dose-response curves for same two agonists in receptor system with 1/100 the receptor density. Potency ratio¼ 1.3.

FIGURE 10.4 Changes in the relative maximal response and

potency ratio of two agonists tested in a series of preparations with

a wide range of sensitivities (due to either differences in receptor

densities or efficiencies of receptor coupling or both). Abscissae:

Logarithms of the t value in the system of the weaker agonist. The

efficacy of the more efficacious agonist is 3x that of the weaker

agonist. Left ordinates: Potency ratios as measured by the ratio of

the concentrations of each required to produce 50% of the

maximal response to that agonist and relative maxima of the two

agonists. Right ordinates: Potency ratios of the agonists. Region I:

Both agonists are partial agonists. Region II: Both agonists are full

agonists.
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(a) (b)

FIGURE 10.5 Full agonist potency ratios. (a) Data fit to individual three-parameter logistic functions. Potency ratios

are not independent of level of response. At 20%, PR¼ 2.4; at 50%, PR¼ 4.1; and at 80%, PR¼ 6.9. (b) Curves refit

to logistic with common maximum asymptote and slope. PR¼ 4.1. The fit to common slope and maximum is not

statistically significant from individual fit.

(a) (b)

(c) (d)

FIGURE 10.6 Effect of 100% variation in values on the maximal response to an agonist (a) and the pEC50 of the

agonist (b). Panel c shows the variation (as standard errors) of the maximal response as a function of the efficacy of

agonism and ability of the system to produce response (t values for agonists). It can be seen that the magnitude of

the error is not uniform as a function of t but rather is highest at partial agonism (maximal response51). Panel d

shows the errors associated with the pEC50 as a function of agonism. It can be seen that these increase as the agonist

tends toward full agonism.
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useful parameter dependent only on the molecular proper-

ties of the full agonists (see Section 10.6.1):

EPMR ¼
KAð1þ t0Þ
K0Að1þ tÞ

: ð10:3Þ

For full agonists, t,t0 � 1, allowing the estimate

EC50¼KA/t. Substituting t¼ [Rt]/KE, the potency ratio

of two full agonists is

EPMR ¼
EC50

EC050
¼

KA �KE

K0A �K
0
E

, ð10:4Þ

where KE is the Micahelis-Menten constant for the

activation of the cell by the agonist-bound active receptor

complex (a parameter unique to the agonist).

10.2.4 Analysis of Partial Agonism

If the agonist does not produce the full system maximal

response, then it is a partial agonist and more information

can be gained about its molecular properties. Specifically,

the location parameter of the partial agonist concentration-

response curve (EC50) is a relatively close estimate of the

affinity (KA) while changes in maximal response are good

indicators of changes in efficacy. The scheme for fitting

concentration response curves to a full and partial agonist

(or to two partial agonists) is shown in Figure 10.8. Unlike

the analysis for full agonists, certain experimentally derived

starting points for the fit are evident for partial agonist. For

example, Emax can be determined separately with full

agonists and the KA for the partial agonist can be

approximated by the EC50. Figure 10.9 shows the analysis

of the full agonist isoproterenol and partial agonist

prenalterol. It can be seen that once the relative efficacy

values are determined in one tissue the ratio is predictive in

other tissues as well. This advantage can be extrapolated to

the situation whereby the relative efficacy and affinity of

agonists can be determined in a test system and the activity

of the agonist then predicted in the therapeutic system.

10.2.5 Affinity-dependent versus Efficacy-dependent

Agonist Potency

In the early stages of lead optimization, agonism

is usually detectable but at a relatively low level (i.e., the

lead probably will be a partial agonist). Partial agonists are

the optimal molecule for pharmacological characterization.

This is because there are assays that can estimate the two

system-independent properties of drugs; namely, affinity

and efficacy (for partial agonists). Under these circum-

stances, medicinal chemists have two scales of biological

activity that they can use for lead optimization. As

discussed in Chapter 5, the EC50 of a partial agonist is a

reasonable approximation of its affinity (see Section 5.9.1).

The observed EC50 for weak agonists in SARs studies can
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FIGURE 10.7 Figure illustrating the comparison of concentration-response curves to two full agonists.

Equations describe response in terms of the operational model (variable slope version equation; see Section

10.6.1). Schematic indicates the interacting species; in this case, two full agonists A1 and A2 activating a common

receptor R to produce response. Boxes show the relevant measurements (EPMRs) and definitions of the

parameters of the model used in the equation.
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be used to track the effect of changing chemical structure

on ligand affinity. Similarly, the relative maximal responses

of partial agonists can be useful indicators of relative

efficacy (see Section 5.9.4). Thus, partial agonism provides

a unique opportunity for medicinal chemists to observe the

effects of changes in chemical structure on either affinity or

efficacy. Figure 10.10 shows the effects of increasing alkyl

chain length on a series of alkylammonium muscarinic
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FIGURE 10.9 Concentration-response curves to the b-adrenoceptor agonists isoproterenol (filled circles) and prenalterol

(open circles) obtained in (a) guinea pig left atria and (b) rat left atria. Data fit to the operational model (isoproterenol:

KA¼ 400 nM for both tissues, t¼ 100 for rat and 300 in guinea pig left atria and prenalterol: KA¼ 13 nM for rat atria and

20M for guinea pig atria, t¼ 0.21 for rat and 0.8 in guinea pig left atria). Notably, data for the two agonists can be fit with

relatively constant ratios of t (0.0021, 0.0027) and KA (30, 20) for both tissues, illustrating the tissue independence of KA

and relative t measurements.
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agonists. It can be seen from these data that the increased

chain length selectively produces changes in efficacy while

not affecting affinity to any great extent.
It is important to note that it may be very useful to

determine whether an observed agonist potency is more

dependent on high efficacy or high affinity. In a given

receptor system, two agonists may have identical potency

and thus seem indistinguishable (see Figure 10.11a).

However, the potency of one agonist may emanate from

high efficacy (denoted ‘‘efficacy dominant’’), while the

potency of the other agonist may emanate from high

affinity (and concomitant low efficacy, denoted ‘‘affinity

dominant’’). The importance of knowing this is the fact that

these agonists will deviate from such identical potency

profiles in systems of different receptor number and/or

receptor coupling efficiency. Specifically, the maximal

response to the efficacy-dominant agonist will be more

resistant to decreases in receptor number than will the

lower-efficacy agonist. Therefore, the dose-response curve

to the high-efficacy agonist will shift to the right with

decreases in coupling efficiency, receptor number, or onset

of tachyphylaxis (desensitization, see Figure 10.11b),

whereas the dose-response curves to the affinity-dependent

agonist will return a depressed maximal response with no

shift to the right (see Figure 10.11c). Thus, these agonists

can be equiactive in some tissues but show completely

different profiles of activity in others. In general, efficacy-

dominant agonists are more resistant to tachyphylaxis (or

at least an increase in dosage can regain response) and give

a more uniform stimulation to all tissues in vivo. In

contrast, affinity-dominant agonists are more sensitive to

tachyphylaxis (and no increase in dosage can regain

response, and in fact the agonist can then function as an

antagonist of other agonists at the receptor) and demon-

strate more texture with respect to organ selective agonism

in vivo. Figure 10.12 shows the agonist effects of two b-
adrenoceptor agonists. Isoproterenol is efficacy dominant,

while prenalterol is affinity dominant. It can be seen that

the responses to prenalterol are more sensitive to tissue

type, with respect to the maximal response, than are the

responses to isoproterenol. It can also be seen that the

guinea pig extensor digitorum longus muscle produces a

response to isoproterenol but no agonist response to

prenalterol. In this tissue, prenalterol functions as a full

competitive antagonist of responses to isoproterenol.

10.3 Inhibition of Agonist Response: Antagonism

Data-driven analysis of antagonism relies on the

observed pattern of agonist concentration-response curves

produced in the presence of varying concentrations of the

antagonist. Thus, after the process of determining that the

data can be described by concentration-response curves

(‘‘curve determination,’’ see Figure 10.13) the set of curves

in analyzed to determine the effect of the antagonist on the

agonist response (‘‘curve comparison,’’ Figure 10.13). As a

prerequisite to the discussion of the various molecular

mechanisms of antagonism and how they are analyzed, the

effect of antagonists on the parameters of agonist

concentration-response curves should be determined. This

can be done statistically. In general, while antagonists can

produce numerous permutations of effects on agonist

concentration-response curves there are some pharmaco-

logically key effects that denote distinct receptor activities.

FIGURE 10.10 The effects of chain length elongation on alkyltrimethylammonium agonists

of muscarinic receptors in guinea pig ileum. Responses to C7TMA (filled circles), C8TMA (open circles),

C9TMA (filled triangles), and C10TMA (open squares). Note the selective effect on efficacy and lack

of effect on affinity. Drawn from [1].
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Thus, an antagonist may

1. Alter the baseline of concentration-response curves
2. Depress the maximal response to the agonist

3. Alter the location parameter of the concentration-

response curve

Determination of any of these effects can serve to

characterize antagonism into broad categories from which

a more specific analysis can be done. Significant effects on

the baseline and maximal response values of four parameter

logistic curves of the form of Equation 10.2 can be

determined with a statistical F-test (see Section 11.4.5).

Figure 10.13 shows the options available for broad

classification of concentration-response curves. Option 1

is the most simple (lowest number of degrees of freedom),

where data can be fit to a set of parallel (common slope)

curves with a common maximum and no effect on baseline.

The only floating parameters in this option are the

locations of the curves (EC50 values), and those can be

used for DR estimates for Schild analysis and EPMRs for

surmountable antagonists and full agonists, respectively.

Option 2 describes curves of common slope and maximum

but varying baseline and location along the x axis. This

pattern is observed for partial and inverse agonists. Option

3 describes insurmountable effects where there is no effect

on baseline but location and maxima can vary (i.e.,

noncompetitive antagonists, full and partial agonist com-

parisons). Finally, option 4 yields the least data in that it

does not allow any commonality in curve-fitting param-

eters. Basically, no pharmacological molecular model easily

predicts such effects, and the only benefit of such fits

is that they enable calculation of equiactive agonist

concentrations.

A data-driven process classifies curve patterns and

associates them with molecular mechanism. A schematic

diagram of this process for antagonists is shown in

Figure 10.14. Assuming that the effects on baseline and

maxima are clear (either obvious or discernible with an

F-test, see Figure 10.13), then certain models of interaction

between receptors, agonists, and antagonists can be

identified. It can be seen from Figure 10.14 that a first

step would be to observe possible changes in the baseline in

the presence of the antagonist. If the baseline is increased,

this suggests that the antagonist is demonstrating partial

agonist activity in the preparation. Under these circum-

stances, the data can be described by the model shown in

Figure 10.15 (see Section 10.6.2). Alternatively, if the

baseline is decreased this could be a constitutively active

receptor system and the antagonist could be demonstrating

inverse agonism (see Section 10.6.3). Under these circum-

stances, the scheme shown in Figure 10.16 is used for

analysis.
The next consideration is to determine whether the

antagonism is surmountable or insurmountable (see

Figure 10.13). In the case of surmountable antagonism, a

Schild analysis is carried out (dose ratios can be used from

FIGURE 10.11 Effects of decreasing receptor number on two agonists. The efficacy-dominant agonist has high efficacy (t¼ 5,000)

and low affinity (KA¼ 1), while the affinity-dominant agonist has lower efficacy (t¼ 50) and high affinity (KA¼ 0.01). Top curves

show that both agonists are equiactive in a high-receptor-density system. However, as receptor density decreases in tenfold

increments the curves for the efficacy-dominant agonist shift to the right but retain maximal response until a 100-fold shift is attained

while the curves to the affinity-dominant agonist show depressed maxima with any decrease in receptor number.
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curves generically fit to four parameter logistic equations,

see Section 6.3). The behavior of the relationship between

Log(DR-1) values and the logarithm of the molar

concentrations of antagonist can be used to determine

whether the antagonism best fits an orthosteric or allosteric

mechanism. If the Schild regression is linear with unit slope,

then a Gaddum/Schild model of orthosteric competitive

antagonism is used to fit the data (see Figure 10.17). If there

is curvature in the Schild regression resulting from

attainment of a saturably maximal dose ratio, this would

suggest that a surmountable allosteric mechanism of action

is operative. In this case, it is assumed that the allosteric

modulator alters (reduces) the affinity of the agonist for the

receptor but does not interfere with the agonist’s ability to

induce response (i.e., the [ARB] complex signals with

efficacy equal to that of the [AR] complex). The model for

this type of interaction is shown in Figure 10.18 (see Section

10.6.4).
If the antagonism is insurmountable, then there are a

number of molecular mechanisms possible. The next

question to ask is if the maximal response to the agonist

can be completely depressed to basal levels. If this is not the

case, then there could be partial allosteric alteration of the

signaling properties of the receptor. Alternatively, this

could be due to a hemi-equilibrium condition that produces

a partial shortfall to true competitive equilibrium, leading

to incomplete depression of the maximal response but also

antagonist concentration-related dextral displacement of

the concentration response curve to the agonist (see

Figure 10.19a). The model (see Section 10.6.5) used to fit

these data is discussed in Section 6.5 and shown in

Figure 10.20. A partial alteration in the efficacy of the

agonist results in a different steady state whereby the curve

is partially depressed but no further dextral displacement is

observed (Figure 10.19b and Figure 10.21, see Section

10.6.6). While the models used to describe allosteric

alteration of both affinity and efficacy of receptors are

complex and require a number of parameters, the

identification of such effects (namely, incomplete antagon-

ism of agonist response) is experimentally quite clear and

straightforward.

Less straightforward is the differentiation of ortho-

steric versus allosteric antagonism when the antagonist

produces insurmountable and complete blockade of

agonist response (see Figure 10.14). Specifically, there

are two completely different mechanisms of action for

receptor blockade that can present nearly identical

patterns of concentration-response curves. Orthosteric

insurmountable antagonism (see Section 10.6.7) occurs

when the antagonist binds to the agonist binding site

and the rate of offset of the antagonist is insufficient for

complete reequilibration of agonist, antagonist, and

receptors (see Section 6.4 for further details). This is

shown schematically in Figure 10.22. Allosteric antagon-

ism, whereby the antagonist binds to its own site on the

receptor and precludes receptor activation by the agonist

(see Section 7.4.2 for further details), can produce

insurmountable blockade as well (Section 10.6.8). The

patterns of curves observed for this mechanism are

shown in Figure 10.23. There are numerous combina-

tions of a, t, and KB values that can fit insurmountable

data to either model. For example, Figure 10.24 shows a

(a) (b)

FIGURE 10.12 Dependence of agonist response on efficiency of receptor coupling and/or receptor density.

Responses to the high-efficacy b-adrenoceptor agonist isoproterenol (panel a) and the low-efficacy

b-adrenoceptor agonist prenalterol (panel b) in thyroxine pretreated guinea pig right atria (filled circles),

rat left atria (open circles), guinea pig left atria (filled triangles), and guinea pig extensor digitorum longus

muscle (filled squares). Data redrawn from [2].
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hypothetical data set fit to the orthosteric model in

Figure 10.24a and the allosteric model in Figure 10.24b.

The circled data points were changed very slightly to

cause an F-test to prefer either model for each respective

model, illustrating the fallacy of relying on computer

fitting of data and statistical tests to determine

molecular mechanism. As discussed in Chapter 7, what

is required to delineate orthosteric versus allosteric

mechanism is the conscious testing of predictions of

each mechanism through experiment. Thus, the blockade

of a range of agonists through a large range of

antagonist concentrations should be carried out to

detect possible saturation of effect and probe dependence

(see Section 7.6 for further discussion).

10.4 ‘‘Short-form’’ Measures of Antagonism for

Following Structure-activity Relationship

The foregoing discussion centers on the in-depth analysis

of antagonism through comparison of full curve data to

models. While this is important in late-stage drug discovery

to determine molecular mechanism of action, it is

impractical during the lead optimization phase of drug

discovery where potentially large numbers of molecules

need to be assessed for antagonist potency. Shorter and less

labor-intensive procedures for determining antagonist

potency can be used for this purpose.
There are two observable phases to the process of

antagonism. The first is characterized by a threshold
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FIGURE 10.13 Data-driven analysis of concentration-response data. Once it is determined that the data points represent concentration-

response curves, then comparison of a set of curves is initiated. Generally four characteristic sets of behavior are encountered. The most

statistically simple (option 1) utilizes common basal, maximum, and slope values varying only the location parameters. For multiple agonists,

this allows calculation of potency ratios. For antagonism, this allows Schild analysis for orthosteric competitive antagonists and allosteric

modulators. Option 2 utilizes a common maximum and slope with varying location and basal. This is used for analysis of inverse or partial

agonists. Option 3 describes insurmountable antagonism (common basal and slope with varying location and maxima) for orthosteric or

allosteric antagonists. Option 4 simply fits the data to separate four parameter logistic functions to enable calculation of equiactive

concentrations.
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concentration of antagonist that begins to inhibit agonist-

induced response. The second is characterized by the pattern

of antagonism of agonist response produced by increasing

concentrations of antagonist. The first phase can be used to

quantify the potency of the antagonist for the receptor. The

second can be used to discern the molecular mechanism of

the antagonism. In the drug discovery process, often the

mechanism is secondary to determining the structure-

activity relationships (SARs) involved in optimizing antago-

nist potency. Defining the threshold for antagonism is

sufficient to guide SARs until potency is optimized and the

detailed mechanism of action becomes relevant. The thresh-

old for antagonism can readily be measured by determining

the concentration dependence of the antagonism of the

response to a fixed concentration of agonist (much like a

displacement binding curve). The means to do this is

through the use of antagonist inhibition curves.
Antagonists can produce varying combinations of

dextral displacement and depression of maxima of agonist

dose-response curves. The concentration-related effect of

an antagonist on the system response to a single concentra-

tion of agonist constitutes what will be referred to as an

inhibition curve. One of the most straightforward examples

to illustrate this is with a simple competitive antagonist.

Figure 10.25a shows the characteristic dextral displacement

with no diminution of maxima effects of a simple

competitive antagonist on agonist dose-response curves.

The filled circles indicate the effect of the antagonist

blocking the effects of a concentration of agonist producing

a 50% maximal response (EC50). The regression on this

response on the concentration of antagonist producing the

effect is shown in Figure 10.25b. This is the inhibition curve

for that antagonist in this system at the EC50 level. The

characteristic parameter for this curve is the IC50; namely,

the concentration of antagonist that produces 50%

antagonism of the agonist response. It should be noted

that the location of this inhibition curve along the

antagonist concentration axis is determined by the con-

centration of agonist used for the initial response. For

example, if the concentration of agonist producing 80%

response is used (EC80; see open circles in Figure 10.25a)

then the inhibition curve is shifted to the right (see

Figure 10.25b). That is, the more powerful the agonist

stimulus the more antagonist is needed to block the effect.
The important relationship, from the point of view of

drug development, is the one between the actual molecular

Change
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FIGURE 10.14 Schematic diagram of steps involved in analyzing pharmacological antagonism. Key questions to be answered are

in blue, beginning with assessments of changes in baseline followed by assessment of whether or not the antagonism is surmountable,

followed by assessment of possible probe dependence and/or saturability.
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affinity of the competitive antagonist (KB) and the observed

location of the inhibition curve (IC50). As seen in

Figure 10.25c, the greater the concentration of agonist

that must be antagonized the greater amount of antagonist

is needed and this is reflected in an increased value for the

IC50. It can be shown that the relationship between the IC50

and the KB in functional experiments is given by Leff and

Dougall [3] and derived in Section 10.6.9:

KB ¼ IC50= ð2þ ð½A�=EC50Þ
n
Þ
1=n
� 1

� �
, ð10:5Þ

where the concentration of agonist is [A], the concentra-

tion of agonist producing 50% maximal response is EC50,

and n is the Hill coefficient of the agonist dose-response

curve. From Equation 10.5 it can be seen that the KB,

which is a system-independent estimate of antagonist

potency, can be made from an estimate of the IC50 that is

corrected for the level of agonism. However, this is true

only for a competitive antagonist. According to Equation

10.5, if the IC50 for the blockade of a series of increasing

concentrations of agonist is linear this is presumptive

evidence that the antagonism is of the simple competitive

type. An example of the measurement of antagonist pIC50

values through antagonist inhibition curves is given in

Section 12.2.12.

10.4.1 Erroneous Application of Correction Factors to

Noncompetitive Antagonists

A drawback of relying solely on inhibition curves to

determine antagonist potency is the fact that the mechan-

ism of action of the antagonist cannot be discerned from

the curve, and this in turn may affect whether or not the

correction described by Equation 10.5 should be applied to

the IC50. Specifically, if the antagonism is noncompetitive

and if there is little receptor reserve for the agonist, then the

antagonist will depress the dose-response curve to the

agonist (as shown in Figure 10.26a). Under these circum-

stances, the IC50 is not affected by the magnitude of the

concentration of agonist used to invoke the initial response

and the IC50¼KB (see Section 4.6.2). The most simple case

of noncompetitive blockade is to assume that the antago-

nist precludes agonist activation of the receptor with no

concomitant effect on agonist affinity. Under these

circumstances, the IC50 does not depend on the agonist

concentration and is equal to the KB (see Figure 10.26b).

It can be seen that if it is assumed that the antagonism is

competitive and a correction is applied according to

Equation 10.5, then an error in the calculated KB, equal to

the factor ((2þ ([A]/EC50)
n)1/n –1), will be applied to the

estimate.
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FIGURE 10.15 Figure illustrating the effects of a partial agonist on concentration-response curves to a full agonist.

Equations describe response in terms of the operational model (variable slope version equation derived in Section

10.6.2). Schematic indicates the interacting species, in this case, a full agonist A and partial agonist B activating a

common receptor R to produce response. Boxes show the relevant measurements and definitions of the parameters of

the model used in the equation.
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FIGURE 10.16 Figure illustrating the effects of an inverse agonist on concentration-response curves to a full agonist.

Equations describe response in terms of the operational model (variable slope version equation derived in Section

10.6.3). Schematic indicates the interacting species; in this case, a full agonist A and inverse agonist B activating a

common receptor R to produce response. Boxes show the relevant measurements and definitions of the parameters

of the model used in the equation.
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FIGURE 10.17 Figure illustrating the effects of an orthosteric competitive antagonist on concentrations-response

curves to a full agonist. Equations describe response in terms of the operational model. Schematic indicates the

interacting species; in this case, a full agonist A activating the receptor and an antagonist B competing for the receptor

but producing no response. Boxes show the relevant measurements and definitions of the parameters of the model used

in the equation.
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FIGURE 10.18 Figure illustrating the effects of an allosteric modulator that alters the affinity of the receptor

for agonists but does not interfere with agonist activation of the receptor on concentration-response curves to a full

agonist. Equations describe response in terms of the operational model (variable slope version equation derived in

Section 10.6.4); Schematic indicates the interacting species (in this case, a full agonist A and allosteric modulator B)

that can bind to the receptor simultaneously (species ARB). The affinity of the receptor for each ligand is altered by a

factor (a) when one of the ligands is already bound.
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FIGURE 10.19 Patterns of insurmountable blockade of receptors under conditions of (a) hemi-equilibria and (b)

allosteric modulation by a modulator that only partially reduces receptor signaling. (a) Concentration-response curves

to the full agonist are shifted to the right in a concentration-dependent manner. The maximal response is partially

depressed and may attain a plateau level. (b) Curves are shifted to a limiting value characteristic of saturable allosteric

modulation. In addition, the maximal response is depressed to a new asymptote. Note that the maximal response is not

blocked to basal levels indicative of x40 (see Section 7.8.2 and Equation 7.3).

10.4 ‘‘SHORT-FORM’’ MEASURES OF ANTAGONISM FOR FOLLOWING STRUCTURE-ACTIVITY RELATIONSHIP 213



10.4.2 Noncompetitive Antagonism in Systems with

Receptor Reserve

Immediate depression of the maximal responses will be

observed for inhibition of responses to partial agonists.

However, if the agonist has high efficacy and/or if the

receptor system is very efficiently coupled (or the system

has a high receptor density) there will be a receptor reserve

for the agonist (i.e., the maximal response will be obtained

with submaximal receptor activation). Under these circum-

stances, noncompetitive blockade of receptors will not

necessarily depress the maximal response. Maximal

responses will be depressed only after the proportion of

receptors blocked exceeds the magnitude of the reserve for

the agonist. Therefore, a noncompetitive antagonist will

produce an initial shift to the right of the agonist dose-

response curve with no diminution of maximal response.

Higher doses of the antagonist will then produce depression

of the maximal response (see Figure 10.27a). The initial

dextral displacement of the dose-response curves yields a

direct relationship between the IC50 needed for antagonism

and the KB according to Equation 10.5 (an apparent linear

Cheng-Prusoff relationship). However, once depression of

the maxima occurs, then the IC50 ceases to shift to the

right and it becomes independent of the concentration of

agonist used to produce the initial response. Thus, the

inhibition curves for a noncompetitive antagonist in a

system with receptor reserve resemble an amalgam of those

for competitive (i.e., Figure 10.25c) and noncompetitive

antagonism (i.e., Figure 10.26b) (as shown in

Figure 10.27b).

10.4.3 Inhibition Curves for Allosteric Modulators

As discussed in Chapter 7, antagonists may bind to a

separate loci on the receptor and thereby allosterically

modify the affinity of the receptor for the agonist. The

maximal change in the agonist affinity is denoted by a term

a. It is useful to distinguish allosteric effects in terms of

whether the modulator affects signaling and affinity or just

affinity. In the latter situation, the modulator produces

parallel shifts to the right of the concentration response

curve up to a maximal point. This is discussed in Section

7.4.1 (x¼ 1). Under these circumstances, the curve for
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FIGURE 10.20 Figure illustrating the effects of an orthosteric slow-offset antagonist on concentration-response

curves to a full agonist in a system demonstrating hemi-equilibrium conditions (see Section 6.5). Equations describe

response in terms of the operational model (variable slope version equation derived in Section 10.6.5). Schematic

indicates the interacting species; in this case, a full agonist A activating the receptor and an antagonist B competing

for the receptor but producing no response. In this case, the rate of offset of the antagonist (k2) once bound is very slow

compared to the time available to measure an equilibrium response to the agonist (note dotted line in schematic).

Boxes show the relevant measurements and definitions of the parameters of the model used in the equation.
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inhibition of agonism by the allosteric modulator is

given by

Response¼
1þa½B�=KBÞð½A�=KAð1þtÞþ1ð Þ

½B�=KBð1þa½A�=KAð1þtÞÞþ ½A�=KAð1þtÞþ1
:

ð10:6Þ

A feature of Equation 10.6 is the fact that there are

conditions where the binding will not diminish to basal

levels in the presence of maximal concentrations of

allosteric modulator. This effect is exacerbated by high

levels of initial stimulation (as [A]/KA!1). The maximal

inhibition by an allosteric modulator for Equation 10.6 is

Max: Inhib: ¼
að½A�=KAð1þ tÞÞ
ð1þ a½A�=KAð1þ tÞÞ

, ð10:7Þ

which can approach zero for modulators with a very small

cooperativity constant (a� 1) and/or low levels of stimula-

tion ([A]/KA� 1). However, it can be seen that as the level

of stimulation increases (increased values of [A]/KA) the

maximal inhibiton will be greater than zero. In general, the

inhibition curves may not reach zero asymptote values, at

some agonist concentrations, if the value of a is greater

than 0.1 to 0.05. Figure 10.28 illustrates the effect of the

interplay of a values and the level of initial stimulation for

inhibition curves for allosteric modulators. It can be seen

that the inability to completely inhibit stimulation results

from the limited effect modulators may have on the affinity

of the receptor for the receptor probe (agonist). This is

discussed in more detail in terms of binding in Chapter 4

(see Section 4.2.2).
This effect is not observed with allosteric modulators that

block signaling. Under these circumstances, the equation

for inhibition of a given agonist response is given by

Response¼
ð½A�=KAð1þ tÞþ1Þ

½B�=KBð1þa½A�=KAð1þ tÞÞþ ½A�=KAð1þ tÞþ1
:

ð10:8Þ

The maximal inhibition in this case approaches complete

(maximal response to the agonist! 0) as [B]/KB!1 (i.e.,

there is no condition where the maximal inhibition will fall
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• KA = Equilibrium dissociation constant of agonist-receptor complex.

• KB = Equilibrium dissociation constant of antagonist-receptor complex.

• τ = transducer function for response to the full agonist and 
 constitutively active receptor state.

• α = ratio of affinities of each ligand when the other ligand is bound to 
 the receptor (cooperativity constant).

• ξ = ratio of τ values for the activation of the receptor by agonist alone 
 and agonist through allosterically modulated receptor.

• Used to estimate system- 
    independent potency of an 
 allosteric modulator 
 that affects the affinity (α) 
 and possibly the efficacy (ξ) 
 of the agonist for the receptor.

FIGURE 10.21 Figure illustrating the effects of an allosteric modulator that both alters the affinity of the receptor

for the agonist and the signaling capability of the agonist on concentration-response curves to a full agonist. Equations

describe response in terms of the operational model (variable slope version equation derived in Section 10.6.6).

Schematic indicates the interacting species; in this case, a full agonist A activating the receptor and an allosteric

modulator B that binds to the receptor to alter agonist affinity (by the factor a) and the signaling capability of the

agonist on the receptor (Ke changes to K0e for agonist response production upon binding of the modulator). Thus, the

ratio of the efficacy of the agonist on the receptor in the presence and absence of modulator is given by x. Boxes show
the relevant measurements and definitions of the parameters of the model used in the equation.
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short of basal levels). The location parameter of the

inhibition (defining the IC50) is given by

IC50 ¼
KBð½A�=KAð1þ tÞ þ 1Þ

ð1þ a½A�=KAð1þ tÞÞ
, ð10:9Þ

where it can be seen that as for orthosteric noncompetitive

antagonists if there is a considerable receptor reserve (high t
values) or high levels of receptor stimulation, or both, the

IC50 is4KB (i.e., the IC50 underestimates the potency of the

antagonist just as with orthosteric antagonists in systems

with receptor reserve). However, unlike all orthosteric

noncompetitive antagonists in cases where the allosteric

modulator increases the affinity of the receptor for the

agonist while blocking receptor signaling (a41) the IC50 can

actually be5KB (i.e., the IC50 may overestimate the potency

of the antagonist). This is described in more detail in Section

7.5. With no independent knowledge of the value of an

allosteric modulator, it is not possible to calculate a general

correction factor for the conversion of IC50 values to the KB

for allosteric modulators. However, some guidelines can be

discussed for all types of antagonists in general.

10.4.4 Practical Application

Under ideal conditions, inhibition curves should be

obtained by blockade of an EC50 concentration of agonist.

This yields a correction between the IC50 and KB of 2.

However, in practice a large window is required for robust

inhibition curves and EC80 agonist windows may be

preferable. When an EC80 is used, a correction factor is

required to obtain a system-independent estimate of the

antagonist potency. In the case of simple competitive

antagonists, the correction factor (Equation 10.5) is clearly

indicated since it would make antagonist estimates of

antagonism more uniform and system independent.

However, for noncompetitive antagonists in systems

where the agonist has no receptor reserve application of

the factor will introduce an error; namely, an overestima-

tion of antagonist potency. In practical terms, the

magnitude of such an error, provided that the slopes of

the dose-response curves lie between values of 1 to 2 and

assuming that the agonist window is limited by the EC80

response (80% maximal response to the agonist), will be

(for n¼ 1, EC80¼ [A]/KA¼ 5) on the order of sixfold. For

shallow dose-response curves (i.e., 0.5), the correction

factor can be quite substantial (for n¼ 0.5, EC80¼ [A]/

KA¼ 16, correction¼ 35). However, standard agonists

usually have high efficacy (natural agonist or potent

surrogate). Therefore, there probably will be an effective

receptor reserve for the agonist and some shift in the

agonist dose-response curve upon noncompetitive blockade

of a portion of the antagonist population will occur. Under

these circumstances, there will be a partial correction factor
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FIGURE 10.22 Figure illustrating the effects of an orthosteric noncompetitive antagonist on concentration-response

curves to a full agonist. Equations describe response in terms of the operational model (variable slope version equation

derived in Section 10.6.7). Schematic indicates the interacting species; in this case, a full agonist A activating the

receptor and an antagonist B binding to the receptor and precluding receptor occupancy and activation. Boxes show

the relevant measurements and definitions of the parameters of the model used in the equation.
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• KA = Equilibrium dissociation constant of 
 agonist-receptor complex.

• KB = Equilibrium dissociation constant of 
 antagonist-receptor complex.

• τ = transducer function for response to the full 
 agonist and constitutively active receptor state.

• α = ratio of affinities of each ligand when the 
 other ligand is bound to the receptor
 (cooperativity constant).

• Used to estimate system-independent  
 potency of an allosteric modulator that 
 affects the affinity of the agonist for the 
 receptor and also does not allow the 
 receptor to respond to the agonist 
 (no receptor signaling capability).  

• Surrogate parameter:  DR values to 
 calculate pA2.
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FIGURE 10.23 Figure illustrating the effects of an allosteric noncompetitive modulator on concentrations-response

curves to a full agonist. Equations describe response in terms of the operational model (variable slope version equation

derived in Section 10.6.8). Schematic indicates the interacting species; in this case, a full agonist A activating the receptor

and an allosteric modulator binding to the receptor and precluding receptor activation. Boxes show the relevant

measurements and definitions of the parameters of the model used in the equation.
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FIGURE 10.24 Simulation data set fit to an allosteric model (Equation 7.6; panel a) and to an orthosteric model

(Equation 6.31; panel b). The data points circled with the dotted line were altered very slightly to cause the sum of squares

for computer fit of the points to the model to favor either the allosteric or orthosteric model. It can be seen that very small

differences can support either model even though they describe completely different molecular mechanisms of action.
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applicable and the error for noncompetitive antagonists

could be considerably less than 6.
There are two practical reasons to err toward the correc-

tion of the IC50 of an antagonist to estimate the KB. The first

is that an overestimation of antagonist potency will only

result in a readjustment of values upon rigorous measure-

ment of antagonism in subsequent analysis. However, more

importantly, if the correction is not applied then there is a

risk of not detecting weak but still useful antagonism due to

an underestimation of potency (due to nonapplication of the

correction factor). These reasons support the application of

the correction in all cases as a default.

10.5 Summary and Conclusions

. When dealing with large numbers of investigational

compounds to be tested for agonist or antagonist

activity, the methods used to determine system-

independent measures of activity must be identified

from the initial profile of activity (data-driven analysis).
. Short-form measures of activity—potency ratios

for agonists, apparent KB values (pA2, IC50)—for

antagonists can adequately drive structure activity

relationships if appropriate corrections for system

effects are made.

. Surmountable antagonism can be quantified by pA2

values. Insurmountable antagonism through IC50

values that in some cases can be corrected for the

strength of stimulation in the system.
. In all cases, the molar concentration at which

blockade of an agonist response is first encountered

is a reasonable indication of the molecular potency of

the antagonist, with the possible exception being

allosteric modulators that block receptor signaling

but increase the affinity of the receptor for the agonist.

10.6 Derivations

. System independence of full agonist potency ratios:

classical and operational models
. Operational model for partial agonist interaction with

agonist: variable slope
. Operational model for inverse agonist interaction with

agonist: variable slope

(a) (b)

(c)

FIGURE 10.25 The relationship between IC50 and KB for simple competitive antagonists. (a) Surmountable

antagonism of agonist response. Control dose-response curve (furthest to the left) and repeat dose-response

curves in the presence of increasing concentrations of competitive antagonist at 3.3-fold increment increases in

concentration from [B]/KB¼ 3 to 100. Filled circles indicate the EC50 for agonism and the effect of the antagonist

on the response to this agonist concentration. The open circles represent the same for the EC80. (b) Inhibition

curves of the response to the EC50 (filled circle indicates the IC50) and the EC80 (open circle indicates the IC50).

Ordinates: percent maximal response to the agonist. Abscissae: logarithm of the molar concentration of the

antagonist. (c) A range of inhibition curves for blockade of responses to the EC10, EC50, EC76, EC90, and EC99.

Filled circles indicate the increasing values for the experimentally observed IC50 for the antagonist.
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. Surmountable allosteric antagonism: variable slope

. Functional model for hemi-equilibrium effects: vari-

able slope
. Allosteric antagonism with changes in efficacy: vari-

able slope
. Orthosteric insurmountable antagonism: operational

model with variable slope
. Allosteric insurmountable antagonism: operational

model with variable slope
. IC50 correction factors: competitive antagonists

10.6.1 System Independence of Full Agonist Potency Ratios:

Classical and Operational Models

The response to an agonist [A] in terms of the classical

model is given as a function of stimulus:

Stimulus ¼
½A� � e

½A� þKA
: ð10:10Þ

Assuming that a hyperbola of the form Response¼

Stimulus/(Stimulusþ b) translates stimulus to response.

Response is given as

Response ¼
½A�=KA � e

½A�=KAðeþ bÞ þ b
: ð10:11Þ

From Equation 10.11 the observed EC50 is given as

EC50 ¼
KA � b
ðeþ bÞ

: ð10:12Þ

The potency ratio of two agonists (ratio denoted as

EC050/EC50) is

Potency Ratio ¼
KA � ðe

0 þ bÞ
K0A � ðeþ bÞ

: ð10:13Þ

(a)

(b)

FIGURE 10.26 The effects of noncompetitive antagonism on

agonist dose-response curves. (a) A control dose-response curve

to an agonist (curve with the highest value for the ordinate

asymptote) and the curve to the same agonist in the presence of

increasing concentrations of a noncompetitive antagonist ([B]/KB

¼ 1, 3, and 10). In this panel, the tissue response is directly

proportional to receptor occupancy. (b) Inhibition curves for the

noncompetitive antagonist producing inhibition of the EC10, EC50,

EC85, EC95, and EC99. Note that the IC50 for antagonist does not

change with increasing agonist concentration.

(a)

(b)

FIGURE 10.27 Noncompetitive antagonism in a system that has

a receptor reserve for that agonist (i.e., where maximal response

to the agonist can be obtained with submaximal receptor

occupancy). (a) Control dose-response curve to the agonist

(furthest to the left) and dose-response curves to the agonist in

the presence of increasing concentrations of noncompetititve

antagonist (3.33-fold increments of concentration beginning

with [B]/KB¼ 1). (b) Inhibition curves for the noncompetitive

antagonist in this system for inhibition of increasing concentrations

of agonist.
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In well-coupled systems where both agonists are full

agonists, b! 0. Therefore, the potency ratio approximates:

Potency Ratio ¼
KA � e

0

K0A � e
: ð10:14Þ

These are system-independent constants relating only to

the agonists. The same analysis can be done with the

operational model. The response to an agonist [A] in terms

of the operational model is given as

Response ¼
Emax � ½A� � t
½A�ð1þ tÞ þKA

, ð10:15Þ

where Emax is the maximal response of the system, t is a

factor quantifying the ability both the agonist (in terms of

the agonist efficacy) and the system (in terms of the

receptor density [Rt] and the efficiency of stimulus-response

coupling KE, t¼ [Rt]/KE). From Equation 10.15, the EC50

for a full agonist is

EC50 ¼
KA

1þ t
, ð10:16Þ

where KA is the equilibrium dissociation constant of

the agonist-receptor complex. For full agonists t� 1.

Therefore, the EC50¼KA/t. Substituting t¼ [Rt]/KE, the

potency ratio of two full agonists is

Potency Ratio ¼
EC050
EC50

¼
K0A �K

0
E

KA �KE
: ð10:17Þ

It can be seen that the potency ratio of two full agonists,

as defined by Equation 10.17, is comprised of factors

unique to the agonists and not the system, assuming that

the stimulus-response coupling components of KE (being

common for both agonists) cancel.

10.6.2 Operational Model for Partial Agonist Interaction

with Agonist: Variable Slope

The response-producing species for a partial agonist that

competes for the agonist is given by Equation 6.85

(rewritten here):

Response ¼
rA½Rt�=KE þ rB½Rt�=K

0
E

rA½Rt�=KE þ rB½Rt�=K
0
E þ 1

: ð10:18Þ

Defining [Rt]/KE as t, ½Rt�=K
0
E as t0 employing

the operational forcing function for variable slope

(a) (b)

(c) (d)

FIGURE 10.28 Effects of allosteric modulators on agonist dose-response curves and the resulting

inhibition curves for the modulators. (a) Effects of various concentrations of an allosteric modulator with

a¼ 0.1 (producing a tenfold decrease in the affinity of the receptor for the agonist). A limiting value of a

tenfold shift to the right of the curves is observed. (b) Inhibition curves for the blockade of various

concentrations of agonist for an allosteric modulator a¼ 0.3, a¼ 0.1 (panel c), and a¼ 0.01 (panel d).

Note how ordinate curves for the higher concentrations of agonist do not diminish to zero.
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(see Section 3.13.4) yields

Resp:

¼
ðð½A�=KAÞ

ntn þ ð½B�=KBÞ
nt0nÞEmax

ð½A�=KAÞ
ntn þ ð½B�=KBÞ

nt0n þ ð½A�=KA þ ½B�=KB þ 1Þn
:

ð10:19Þ

10.6.3 Operational Model for Inverse Agonist Interaction

with Agonist: Variable Slope

From Equation 6.64, the expressions for the response

producing species can be identified as

½AR�� ¼ aL½A�=KA, ð10:20Þ

½BR�� ¼ bL½B�=KB, and ð10:21Þ

½R�� ¼ L, ð10:22Þ

and the total receptors as ¼ [A]/KA(1þ aL)þ [B]/KB

(1þ bL)þ [B]/KBþ 1. The operational forcing function

for variable slope (see Section 3.13.4) yields

10.6.4 Surmountable Allosteric Antagonism: Variable Slope

The fraction of response-producing species for a

modulator that affects the affinity of the receptor for the

agonist but does not alter signaling is given by

rAR ¼
½A�=KAð1þ a½B�=KBÞ

½A�=KAð1þ a½B�=KBÞ þ ½B�=KB þ 1
, ð10:24Þ

leading to the response species:

½AR� ¼ ½A�=KA, ð10:25Þ

½ABR� ¼ a½A�=KA½B�=KB, and ð10:26Þ

Total Receptor species

¼ ½A�=KAð1þ a½B�=KBÞ þ ½B�=KB þ 1: ð10:27Þ

The operational forcing function for variable slope (see
Section 3.13.4) yields

10.6.5 Functional Model for Hemi-equilibrium Effects:

Variable Slope

The agonist receptor occupancy according to the

hemi-equilibrium model of orthosteric antagonism (see

Section 6.5) is given by Equation 6.2. The response

species is

½AR� ¼ ð½A�=KAÞð1� ðWð1� e�k2�t Þ þ rBe
�k2�t ÞÞ, ð10:29Þ

and the total receptor species is given by ([A]/KAþ 1).

The operational forcing function for variable slope

(see Section 3.13.4) yields

Response

¼
ð½A�Þnð1� ðWð1� e�k2�t Þ þ rBe

�k2�t ÞÞ
ntnEmax

ð½A�Þnð1� ðWð1� e�k2�t Þ þ rBe�k2�t ÞÞ
ntnð½A� þKAÞ

n :

ð10:30Þ

10.6.6 Allosteric Antagonism with Changes in Efficacy:

Variable Slope

In this case the modulator may alter both the affinity

(through a) and efficacy (through x) of the agonist effect on
the receptor (see Section 7.4). The fractional receptor

Resp: ¼
ðaL½A�=KAtÞ

n
þ ðbL½B�=KBtÞ

n
þ ðLtÞnEmax

ðaL½A�=KAtÞ
n
þ ðbL½B�=KBtÞ

n
þ ðLtÞn þ ð½A�=KAð1þ aLÞ þ ½B�=KBð1þ bLÞ þ ½B�=KB þ 1Þn

: ð10:23Þ

Response ¼
ð½A�=KAtÞ

n
ðð1þ a½B�=KBÞ

nEmax

ð½A�=KAtÞ
n
ð1þ a½B�=KBÞ

n
þ ð½A�=KAð1þ a½B�=KBÞ þ ½B�=KB þ 1Þn

: ð10:28Þ
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occupancy by the agonist is given by Equation 7.3, leading

to the response species:

½AR� ¼ ½A�=KA, ð10:31Þ

½ABR� ¼ a½A�=KA½B�=KB, and ð10:32Þ

Total Receptor ¼ ½A�=KAð1þ a½B�=KBÞ þ ½B�=KB þ 1:

ð10:33Þ

The operational forcing function for variable slope

(Equation 3.14.4) yields

Defining x as t0/t and rearranging, Equation 10.34

becomes

10.6.7 Orthosteric Insurmountable Antagonism:

Operational Model with Variable Slope

The antagonist blocks the receptor and does not allow

reequilibration with the agonist according to mass action.

The receptor occupancy equation for the agonist is given by

Equation 6.8, leading to the response species

½AR� ¼ ½A�=KA ð10:36Þ

and total receptor species given by [A]/KA

(1þ [B]/KB)þ [B]/KBþ 1. The operational forcing function

for variable slope (Equation 3.14.4) yields

Response ¼
½A�ntnEmax

½A�ntn þ ð½A�ð1þ ½B�=KBÞ þKA½B�=KB þKAÞ
n :

ð10:37Þ

10.6.8 Allosteric Insurmountable Antagonism:

Operational Model with Variable Slope

In this case the antagonist blinds to its own site on the

receptor to affect the affinity of the agonist (through the

term a) and prevents receptor activation of the receptor by
the agonist. It is assumed that the only response-producing

species is [AR]:

The resulting equilibrium equations are

Ka ¼ ½AR�=½A�½R�, ð10:38Þ

Kb ¼ ½BR�=½B�½R�, ð10:39Þ

aKa ¼ ½ARB�=½BR�½A�, and ð10:40Þ

aKb ¼ ½ARB�=½AR�½B�: ð10:41Þ

Solving for the agonist-bound response-producing receptor

species [AR] as a function of the total receptor species

([Rtot]¼ [R]þ [AR]þ [BR]þ [ARB]) yields

½AR�

½Rtot�
¼

ðð1=a½B�KbÞ þ 1Þ

ðð1=a½B�KbÞ þ ð1=aKaÞ þ ð1=a½A�KaKbÞ þ 1Þ
:

ð10:42Þ

Simplifying and changing association to dissociation

constants (i.e., KA¼ 1/Ka) yields

rAR ¼
½A�=KA

½A�=KAð1þ a½B�=KBÞ þ ½B�=KB þ 1
: ð10:43Þ

The operational forcing function for variable slope (see

Section 3.13.4) for Equation 10.43 yields

Response¼
½A�ntnEmax

½A�ntnþð½A�ð1þa½B�=KBÞþKA½B�=KBþKAÞ
n :

ð10:44Þ

Resp: ¼
ð½A�=KAtÞ

n
þ ða½A�=KA½B�=KBt0Þ

nEmax

ð½A�=KAtÞ
n
þ ða½A�=KA½B�=KBt0Þ

n
þ ð½A�=KAð1þ a½B�=KBÞ þ ½B�=KB þ 1Þn

: ð10:34Þ

Resp: ¼
ð½A�ntnð1þ ax½B�=KBÞ

nEmax

½A�ntnð1þ ax½B�=KBÞ
n
þ ð½A�ð1þ a½B�=KBÞ þKA½B�=KB þKAÞ

n : ð10:35Þ
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10.6.9 IC50 Correction Factors: Competitive Antagonists

The relationship between the concentration of antagonist

that produces a 50% inhibition of a response to an agonist
(antagonist concentration referred to as the IC50) and
the equilibrium dissociation constant of the antagonist-

receptor complex (KB) can be derived from the mass action
equations describing the agonist receptor response in the
presence and absence of the antagonist. The response in
the absence of antagonist can be fit to a logistic curve of

the form

Response ¼
Emax½A�

n

½A�n þ ½EC50�
n , ð10:45Þ

where the concentration of agonist is [A], Emax is the
maximal response to the agonist, n is the Hill coefficient of

the dose-response curve, and [EC50] is the molar concen-
tration of agonist producing 50% maximal response to the
agonist.

In the presence of a competitive antagonist, the EC50 of
the agonist dose-response curve will be shifted to the right
by a factor equal to the dose ratio. This is given by the

Schild equation as [B]/KBþ 1, where the concentration of
the antagonist is [B] and KB is the equilibrium dissociation
constant of the antagonist-receptor complex:

Response ¼
Emax½A�

n

½A�n þ ð½EC50�ð1þ ½B�=KBÞÞ
n : ð10:46Þ

The concentration of antagonist producing a 50%

diminution of the agonist response to concentration [A] is

defined as the IC50 for the antagonist. Therefore:

0:5Emax½A�
n

½A�n þ ½EC50�
n ¼

Emax½A
0�
n

½A0�n þ ð½EC50�ð1þ ½IC50�=KBÞÞ
n :

ð10:47Þ

After rearrangement [3]:

KB ¼
½IC50�

ð2þ ð½A�=½EC50�Þ
n1=n
Þ � 1

: ð10:48Þ
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11
Statistics and Experimental Design

To call in the statistician after the experiment is done may be no more than asking him to perform a postmortem

examination: he may be able to say what the experiment died of.

— RONALD FISHER
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11.1 Structure of This Chapter

This chapter is divided into three main sections. The first
is devoted to methods, ideas, and techniques aimed at

determining whether a set of pharmacological data is

internally consistent (i.e., to what extent a given value

obtained in the experiment will be obtained again if the

experiment is repeated). The second section is devoted to

methods and techniques aimed at determining to what
extent the experimentally observed value is externally

consistent with literature, other experimental data sets, or

values predicted by models. This second section is divided

into two subsections. The first deals with comparing

experimental data to models that predict values for the

entire population (i.e., curve fitting, and so on) and the

second subsection is concerned with differences between
experimentally determined data (or an experimentally

determined data set) and values from the literature.

Finally, some ideas on experimental design are discussed

in the context of improving experimental techniques.

11.2 Introduction

Statistics in general is a discipline dealing with ideas on

description of data, implications of data (relation to general

pharmacological models), and questions such as what

effects are real and what effects are different? Biological

systems are variable. Moreover, often they are living.

What this means is that they are collections of biochemical

reactions going on in synchrony. Such systems will have an
intrinsic variation in their output due to the variances in the

rates and set points of the reactions taking place during the
natural progression of their function. In general, this will be

referred to as biological ‘‘noise’’ or variation. For example,
a given cell line kept under culture conditions will have a

certain variance in the ambient amount of cellular cyclic
AMP present at any instant. Pharmacological experiments

strive to determine whether or not a given chemical can
change the ambient physiological condition of a system and

thus demonstrate pharmacological activity. The relevant
elements in this quest are the level of the noise and the level

of change in response of system imparted by the chemical
(i.e., the signal-to-noise ratio).

11.3 Descriptive Statistics: Comparing Sample Data

In general, when a pharmacological constant or param-

eter is measured it should be done so repeatedly to give a
measure of confidence in the value obtained (i.e., the

likelihood that if the measurement were repeated it would
yield the same value). There are various statistical tools

available to determine this. An important tool and concept
in this regard is the Gaussian distribution.

11.3.1 Gaussian Distribution

When an experimental value is obtained numerous times,

the individual values will symmetrically cluster around
the mean value with a scatter that depends on the number

of replications made. If a very large number of replications
are made (i.e.,42,000), the distribution of the values will

take on the form of a Gaussian curve. It is useful to
examine some of the features of this curve since it forms the

basis of a large portion of the statistical tools used in this
chapter. The Gaussian curve for a particular population of

N values (denoted xi) will be centered along the abscissal
axis on the mean value where the mean (Z) is given by

Z ¼
P

i xi
N

: ð11:1Þ

The measure of variation in this population is given by the

standard deviation of the population (s):

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � ZÞ2

N

s

: ð11:2Þ
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The ordinates of a Gaussian curve are the relative

frequency that the particular values on the abscissae are

encountered. The frequency of finding these values for a

particular value diminishes the farther away it is from

the mean. The resulting curve is shown in Figure 11.1a.

The abscissal axis is divided into multiples of s values.

Thus, þ1 or �1 refers to values that are within one

standard deviation either greater than or less than the

mean. It is useful to consider the area under the curve at

particular points along the abscissae since this gives a

measure of the probability of finding a particular value

within the standard deviation limits chosen. For example,

for a standard Gaussian curve 68.3% of all the values reside

within 1 standard deviation unit of the mean. Similarly,

95.5% of all the values lie within 2s units, and 99.7% of the

values within 3s units (see Figure 11.1a). Most statistical

tests used in pharmacology are parametric (i.e., require the

assumption that the distribution of the values being

compared are from a normal distribution). If enough

replicates are obtained, a normal distribution of values will

be obtained. For example, Figure 11.1b shows a collection

of 58 replicate estimates of the pKB of a CCR5 antagonist

TAK 779 as an inhibitor of HIV infection. It can be seen

that the histograms form a relatively symmetrical array

around the mean value. As more values are added to such

collections, they take on the smoother appearance of a

Gaussian distribution (Figure 11.1c). It should be noted

that the requirements of normal distribution are paramount

for the statistical tests that are to be described in this

chapter. As discussed in Chapter 1, while pKI, pEC50, and

pKB estimates are normally distributed because they are

derived from logarithmic axes on curves the corresponding

IC50, EC50, and KB values are not (see Figure 1.16) and

thus cannot be used in parametric statistical tests.

11.3.2 Populations and Samples

Populations are very large collections of values. In

practice, experimental pharmacology deals with samples

(much smaller collections) from a population. The statis-

tical tools used to deal with samples differ somewhat from

those used to deal with populations. When an experimental

sample is obtained, the investigator often wants to know

about two features of the sample: central tendency and

variability. The central tendency refers to the most

representative estimate of the value, while the variability

defines the confidence that the estimate is a true reflection

of that value. Central tendency estimates can be the median

(value that divides the sample into two equal halves) or the
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FIGURE 11.1 Normal distributions. (a) Gaussian distribution showing the frequency

of values in a population expressed as a function of distance away the value is from the mean

of the population. Percentage values represent areas in the strips of curve (i.e., between 0 and

1 represents the area within 1 standard deviation unit from the mean). (b) Histogram showing

the pKB of an antagonist (TAK 779, an antagonist of HIV infection) divided into bins

consisting of 1 SEM unit away from the mean value. (c) The histogram is an approximation

of a Gaussian normal distribution shown in panel b.
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mode (most commonly occurring value). These values

(especially the median) are not affected by extreme values

(outliers). However, the most common estimate of central

tendency in experimental work is the mean (xm) defined for

a set of n values as

xm ¼

P
i xi
n

: ð11:3Þ

The estimate of variability for a sample mean is the

standard error of the mean:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � xmÞ

2

ðn� 1Þ

s

: ð11:4Þ

Alternatively, this frequently used quantity can be calcu-

lated as

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2 �
P

x
� �2

nðn� 1Þ
:

s

ð11:5Þ

There are instances where deviations, as measured by the

standard error, are scaled to the magnitude of the mean to

yield the coefficient of variation. This is calculated by

C:V: ¼ 100� standard deviation=mean: ð11:6Þ

A frequently asked question is: Are two experimentally

derived means equal? In fact, this question really should be

stated: Do the two experimentally derived samples come

from the same population? Hypothesis testing is used

to answer this question. This process is designed to disprove

what is referred to as the null hypothesis (i.e., condition

of no difference). Thus, the null hypothesis states that there

is no difference between the two samples (i.e., that they

both come from the same population). It is important to

note that experiments are designed to disprove the null

hypothesis, not prove the hypothesis correct. Theoretically

speaking, a hypothesis can never be proven correct since

failure to disprove the hypothesis may only mean that the

experiment designed to do so is not designed adequately.

There could always be an as yet to be designed experiment

capable of disproving the null hypothesis. Thus, it is a

Sysyphean task to prove it ‘‘correct.’’ However, the danger

of overinterpreting failure to disprove the null hypothesis

cannot be overemphasized. As put by the statistician

Finney (1955), ‘‘Failure to disprove that certain observa-

tions no not disprove a hypothesis does not amount to

proof of a hypothesis.’’

This concept is illustrated by the example shown in

Table 11.1. Shown are three replicate pEC50 values for the

agonist human calcitonin obtained from two types of cells:

wild-type HEK 293 cells and HEK 293 cell enriched with

Gas-protein. The respective pEC50 values are 7.47� 0.15

and 8.18� 0.21. The question is: Do these two estimates

come from the same population? That is, is there a

statistically significant difference between the sensitivity of

cells enriched and not enriched with Gas-protein to human

calcitonin? To go further toward answering this question

requires discussion of the concepts of probability and the

t-distribution.

Statistical tests do not declare anything with certainty;

they only assess the probability that the result is true. Thus,

values have a ‘‘level of confidence’’ associated with them.

Within the realm of hypothesis testing, where the verisi-

militude of a data set to predictions made by two

hypotheses is examined, a probability is obtained. As

discussed previously, the approach taken is that the data

must disprove the null hypothesis (stating that there is no

difference). For example, when testing whether a set of data

is consistent with or disproves the null hypothesis a level of

confidence of 95% states that the given hypothesis is

disproved but that there is 5% chance that this result

occurred randomly. This means that there is a small (5%)

chance that the data supported the hypothesis but that the

experiment was unable to discern the effect. This type

of error is termed a type I error (rejection of a true

hypothesis erroneously) and is often given the symbol a.
Experimenters preset this level before the experiment (i.e.,

a¼ 0.05 states that the investigator is prepared to accept a

5% chance of being incorrect). Statistical significance is

then reported as p50.05, meaning that there is less than a

5% probability that the experiment led to a type I error.

Another type of error (termed type II error) occurs when a

hypothesis is erroneously accepted (i.e., the data appears to

be consistent with the null hypothesis) but in fact the

samples do come from separate populations and are indeed

different.
So how does one infer that two samples come from

different populations when only small samples are avail-

able? The key is the discovery of the t-distribution by

Gosset in 1908 (publishing under the pseudonym

of Student) and development of the concept by Fisher

in 1926. This revolutionary concept enables the estimation

of s ( standard deviation of the population) from values of

standard errors of the mean and thus to estimate

TABLE 11.1

T-test for differences between experimental means.

pEC50 values for human calcitonin in wild-type HEK 293 cells

(x2) and HEK 293 cells enriched with Gas-protein (x1).

x1 x2
7.9 7.5

8.2 7.3

8.3 7.6P
x1¼ 24.4

P
x2¼ 22.4P

x21 ¼ 198:54
P

x22¼ 167:3

xm1¼ 8.13 xm2¼ 7.47

sx1¼ 0.21 sx2¼ 0.15

s2p ¼ 0:033

difference¼ 0.67

SE(difference)¼ 0.149

t¼ 4.47

df¼ 4

Data from [9].
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population means from sample means. The value t is

given by

t ¼ ðxm � ZÞ=SEx, ð11:7Þ

where SEx is the standard deviation and Z is the mean of

the population. Deviation of the estimated mean from the

population mean in SEx units yields values that can then be

used to calculate the confidence that given sample means

come from the same population. Returning to the data

in Table 11.1 (two sample means xm1 and xm2 of size n1 and

n2, respectively), the difference between the two means is

(xm1� xm2)¼ 0.67 log units. A standard error of this

difference can be calculated by

S:E:difference ¼ s2pð1=n1 þ 1=n2Þ
½, ð11:8Þ

where s2p is the pooled variance given as

s2p ¼

P
x21 þ

P
x22 � ð

P
x1=n1Þ � ð

P
x2=n2Þ

n1 þ n2 � 2
: ð11:9Þ

For the example shown in Table 11.1, S.E.difference¼ 0.15.

The value of t is given by

t ¼ ðxm1 � xm2Þ=S:E:difference: ð11:10Þ

For the example shown in Table 11.1, the calculated t

is 4.47. This value is associated with a value for the number

of degrees of freedom in the analysis. For this test, the

degrees of freedom (df) is n1þ n2� 2¼ 4. This value can be

compared to a table of t values (Appendix A) to assess

significance. There are t values for given levels of

confidence. Referring to Appendix A, it can be seen that

for df¼ 4 the value for t at a level of significance of 95% is

2.776. This means that if the calculated value of t is less

than 2.776 there is a greater than a 5% chance that the two

samples came from the same population (i.e., they are not

different). However, as can be seen from Table 11.1 the

calculated value of t is42.776, indicating that there is less

than a 5% chance (p50.05) that the samples came from the

same population.
In fact, a measure of the degree of confidence can be

gained from the t calculation. Shown in Appendix A are

columns for greater degrees of confidence. The value for

df¼ 4 for a 98% confidence level is 3.747 and it can be seen

that the experimentally calculated value is also greater than

this value. Therefore, the level of confidence that these

samples came from different populations is raised to 98%.

However, the level of confidence in believing that these two

samples came from separate populations does not extend to

99% (t¼ 4.604). Therefore, at the 98% confidence level this

analysis indicates that the potency of human calcitonin

is effectively increased by enrichment of Gas-protein in

the cell.
A measure of variability of the estimate can be gained

from the standard error but it can be seen from Equations

11.4 and 11.5 that the magnitude of the standard error is

inversely proportional to n (i.e., the larger the sample size

the smaller will be the standard error). Therefore, without

prior knowledge of the sample size a reported standard

error cannot be evaluated. A standard error value of 0.2

indicates a great deal more variability in the estimate if
n¼ 100 than if n¼ 3. One way around this shortcoming is

to report n for every estimate of mean � standard error.

Another, and better, method is to report confidence

intervals of the mean.

11.3.3 Confidence Intervals

The confidence interval for a given sample mean
indicates the range of values within which the true

population value can be expected to be found and the

probability that this will occur. For example, the 95%

confidence limits for a given mean are given by

c:l:95 ¼ xm þ sxðt95Þ, ð11:11Þ

where sx is the standard error and the subscripts refer to the

level of confidence (in the case previously cited, 95%).

Values of t increase with increasing levels of confidence.
Therefore, the higher the level of confidence required

for defining an interval containing the true value from a

sample mean the wider the confidence interval. This is

intuitive since it would be expected that there would be a
greater probability of finding the true value within a wider

range. The confidence limits of the mean pEC50 value for

human calcitonin in wild-type and Gas-protein-enriched

HEK 293 cells are shown in Table 11.2. A useful general

rule (but not always explicitly accurate especially for small
samples, see Section 11.6.1) is to note that if the mean

values are included in the 95% confidence limits of the

other mean (if p50.05 is the predefined level of significance

in the experiment) then the means probably are from

the same population. In general, reporting variability
as confidence limits eliminates ambiguity with respect

to the sample size since the limits are calculated with a

t value which itself is dependent on degrees of freedom

(the sample size).
While statistical tests are helpful in discerning differences

in data, the final responsibility in determining difference
remains with the researcher. While a given statistical test

may indicate a difference, it will always do so as a

TABLE 11.2

Confidence intervals for the means in Table 11.1.

xm1 xm2

Lower c.l. Mean Greater c.l. Lower c.l. Mean Greater c.l.

95% 7.55

8.13

to 8.71 7.05

7.47

to 7.89

98% 7.34

8.13

to 8.92 6.91

7.47

to 8.03

99% 7.16

8.13

to 9.10 6.78

7.47

to 8.16

99.5% 6.95

8.13

to 9.31 6.63

7.47

to 8.31
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probability (i.e., 95% confidence that a given value is

different). This means that there is always a 5% chance that

this conclusion is incorrect. Therefore, statistics only

furnish confidence limits for conclusions and the individual

researcher must take responsibility for applying those limits

to particular research problems.

11.3.4 Paired Data Sets

The previous discussion is concerned with two samples

independently and randomly chosen from populations.

A more powerful test of difference can be gained if paired

data are used (i.e., if the data can be associated). This is

because the variance between subsamples is lower than the

variance between independent samples. For instance, the

effect of a drug on the body weight of rats can be

determined by weighing the rats before dosage of drug, and

then again after the treatment. Each rat becomes its own

control, and variation is reduced. Figure 11.2 shows the

effects of an inverse agonist AC512 on constitutive activity

of melanophores transfected with human calcitonin recep-

tor. In this scenario, paired data is important because

constitutive activity from transient transfection with

receptor cDNA can be quite variable. Therefore, the effects

of a drug that affects the magnitude of the constitutive

activity (such as an inverse agonist) must be paired to the

original basal value of constitutive activity. The data for the

inverse agoinst AC512 (shown in Figure 11.2) is given in

Table 11.3, which shows the observed constitutive receptor

activity as a value of visible light transmittance (1� (final

light transmittance/original light transmittance)) obtained

with five separate transient transfections of receptor. It can

be seen that the results are variable [mean value for

1� (Tf/Ti)¼ 0.56 � 0.29]. After treatment with 100 nM

AC512 for 60 minutes, the resulting mean transmittance

value of the five experiments is 0.3� 0.23.
In the example shown in Figure 11.2, an unpaired t-test

finds these samples not significantly different from each

other (t¼ 1.21, df¼ 8). However, it can be seen from the

individually graphed changes for each preparation that

there was a consistent fall in constitutive activity for every

one of the five preparations (Figure 11.2). Examining the

differences for each (difference where d¼ x1� x2) indicates

a mean difference of �0.26 [1� (Tf/Ti) units]. The fact that

the change can be associated with each individual experi-

ment eliminates the obfuscating factor that the different

preparations each started from different values of consti-

tutive activities. The ability to pair the values greatly

strengthens the statistical analysis. The value of t for paired

data is given by

t ¼ dm=sdm, ð11:12Þ

where sdm is given by

sdm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðdi � dmÞ

2

nðn� 1Þ

s

: ð11:13Þ

As can be seen from the analysis in Table 11.3, the

paired t-test indicates that the effect of AC512 on the

constitutive activity is significant at the 99% level of

confidence (p50.01 and AC512 is an inverse agonist and

does decrease the constitutive receptor activity of calcitonin

receptors).

11.3.5 One-way Analysis of Variance

A comparison of two or more means can be made with

a one-way analysis of variance. This tool compares
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FIGURE 11.2 Paired experimental data. Values of constitutive

calcitonin receptor activity [1� (Tf/Ti) units] in transiently

transfected melanophores. Five separate experiments are shown.

Points to the left indicate the basal level of constitutive activity

before (filled circles) and after (open circles) addition of 100 nM

AC512 (calcitonin receptor inverse agonist). Lines join values for

each individual experiment. Points to the right are the mean values

for constitutive activity in control (filled circles) and after AC512

(open circles) for all five experiments (bars represent standard

errors of the mean). Data shown in Table 11.3.

TABLE 11.3

Paired t-tests: Changes in constitutive calcitonin receptor responses

with 100 nM AC512.

Values are levels of constitutive activity [1� (Tf/Ti)] for four

individual transfection experiments (denoted x1); x2 are the

constitutive receptor activity values after exposure to AC512 in

the same experiment.

x1 x2 d

0.8 0.5 �0.3

0.5 0.4 �0.1

0.2 0 �0.2

0.9 0.5 �0.4

0.4 0.1 �0.3P
d¼�1.3P
d2¼ 0.39

dm¼�0.26

n¼ 5

sdm¼ 0.05

t¼�5.10

df¼ 4

d¼ x1� x2.
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sample variability between groups to the sample variability

within groups. The data is grouped and the question

is asked: Is there a significant difference between any of the

means of the groups? An example of this procedure is

shown in Table 11.4. In this example, as discussed

previously, the magnitude of the inverse agonism observed

for an inverse agonist is dependent on the amount of

constitutive receptor activity present in the system.

Therefore, this system effect must be controlled between

experiments if comparisons of drug activity are to be made

on different test occasions. Table 11.4 shows four basal

readings of light transmittance in melanophores [1� (Tf/Ti)

values] after transient transfection of the cells with cDNA

for calcitonin receptor activity. The basal readings are

indicative of constitutive receptor activity. This same

experiment was repeated four times (four separate test

occasions with four basal readings in each) and the question

asked: Was there a significant difference in the levels of

constitutive receptor activity on the various test occasions?

Histograms of the mean basal readings for the four test

occasions are shown in Figure 11.3. It can be seen that there

is an apparently greater constitutive activity on test

occasion 1 but the standard errors are great enough to

cast doubt on the significance of this apparent difference.

Analysis of variance is used to calculate a value for F, a

variance ratio, which is then compared to a table (such as is

done with t-tables) for given degrees of freedom. The data

and calculations are shown in Table 11.4, where it can be

seen that the analysis indicates no significant difference in

the readings at the p50.05 level (tables of F values given

in Appendix A). A useful statistic in this analysis is

the standard error of the difference between two of

the groups. The standard error of the difference between

two of the means in the data set xm1 and xm2 (differ-

ence¼ |xm1� xm2|) is

sd ¼
s2i1
n1
þ
s2i2
n2

� �1=2

, ð11:14Þ

where s2i is given by

s2i ¼
n
P

x2 �
P

x
� �2

nðn� 1Þ
: ð11:15Þ

For the data shown in Table 11.4, the difference between

the two extreme means of constitutive activity is

0.098� 0.04 (1� (Tf/Ti)) units. It can be seen from the

general rule t � sx� either mean (xm1¼ 0.11þ 0.05,

xm2¼ 0.013þ 0.05) that this difference is not significant at

the p50.05 level (t¼ 3.182 at df¼ 3). This can also be seen

from the fact that t � sd is4the difference.

TABLE 11.4

One-way analysis of variance.

Differences in constitutive calcitonin receptor activity in four separate receptor transfection experiments (x1 to x4). Four readings of activity

taken for each transfection.

Data

x1 x2 x3 x4
0.1 0.08 �0.03 0

0.15 0 0.03 0.07

0.04 �0.05 0.08 0.08

0.15 0.02 �0.02 0.02P
x¼ 0.44 0.05 0.06 0.17

n¼ 4 4 4 4P
x2¼ 0.0566 0.0093 0.0086 0.0117P

((
P

x)
2/n)¼ 0.1

P
(
P

x)
2
¼ 0.0862P

(
P

x)¼ 0.72

Calculations

SSq df MSq Vratio

Between groups A a� 1 S2c
Within groups C N� a S2 F ¼ S2c=S

2

Total B N� 1

N¼ total number of x values and a¼ number of groups, where

A ¼
X

X
x

� �2

n

2

64

3

75�

X X
x

� �h i2

X
n

B ¼
X X

x2
� �

�

X X
x

� �h i2

X
n

C ¼ A� B S2c ¼
A

a� 1
, S2 ¼

C

N� a
:
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11.3.6 Two-way Analysis of Variance

Data can also be ordered in two ways and the question is

asked: Is there a difference in the means of data sets when

analyzed according to either criteria of ordering. For

example, in cellular functional assays, a convenient

practical method of obtaining dose-response curve data

on a 96-well cell culture plate is to test a range of

concentrations in one row of the plate (i.e., a 12-point

dose-response curve). In robotic systems, it is possible that

there could be a systematic position effect with respect to

rows on a plate (dependent on which row is used to obtain

the data for the curve) or which plate in the collection of

plates is used for the data. A two-way analysis of variance

can be done to test whether such an effect exists. For this

analysis, the data is arranged in a table according to one

criterion by row and by one column. For example,

Table 11.5 shows a set of 32 pEC50 values for a calcitonin

receptor agonist (human calcitonin) in a functional

melanophore experiment. The rows of data correspond to

the row of the 96-well plate that the agonist was placed on

to obtain the value. This will test the possible effect of row

position on the plate on the magnitude of the pEC50. The

columns are four separate plates to test if the position of the

plate in the queue had an effect on the value of the pEC50.

The type of data obtained is shown in Figure 11.4. The

analysis is shown in Table 11.6, where it can be seen that

there was no effect either from the standpoint of the rows

(FR¼ 1.02, df¼ 7, 21) or plate position (columns, Fc¼ 0.56,

df¼ 3, 21).

11.3.7 Regression and Correlation

Two major categories of research are experimental

(where one variable is manipulated to influence another)

and correlational, where neither variable is manipulated but

only the relationship between them is quantified.

Correlations can be useful to determine relationships

between variables, but it should be noted that only

experimental research can determine a true causal relation-

ship between them. In fact, quite erroneous conclusions can

be drawn from observing correlations and assuming they

are due to a causal relationship. For example, Figure 11.5a

shows an apparent inverse correlation between the instance

when houses in a given neighborhood are painted and

house value (i.e., it appears that painting your house will

actually decrease its value). This correlation is really the

product of two other causal relationships; namely, the fact

that as a house ages the probability that it will require

painting increases and the fact that the value of a house

decreases as it gets older (Figure 11.5a). Taking out

the common variable of age and plotting the probability

of painting and value leads to the surprising, but not causal,

relationship. What the correlation really means is that the

houses that are being repainted are in fact older and of less

value. This is a type of ‘‘reverse Simpson’s effect’’

(Simpson’s paradox whereby the association between two

variables is confounded by a strong association with a third

variable to obscure the original effect). The correlation

between variables can be quantified by a correlation

coefficient (denoted r). Considering two samples x and y,

r is given by:

r ¼
sxyffiffiffiffiffiffiffiffi
s2xs

2
y

q , ð11:16Þ

where

sxy ¼
X

xyi �

P
xi

� � P
yi

� �

ni
, ð11:17Þ

s2x ¼
X

x2i �

P
x

� �2

ni
, ð11:18Þ

and

s2y ¼
X

y2i �

P
y

� �2

ni
: ð11:19Þ

The correlation coefficient ranges between 1 and �1.

A perfect positive correlation has r¼ 1, no correlation at

all is r¼ 0, and a perfect negative correlation r¼�1.

Some examples of correlations are shown in Figure 11.5b.

A measure of the significance of a relationship between two

variables can be gained by calculating a value of t:

t ¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þ

ð1� r2Þ

s

, df ¼ n� 2: ð11:20Þ
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FIGURE 11.3 One-way ANOVA (analysis of variance).

One-way analysis of variance of basal rates of metabolism in

melanophores (as measured by spontaneous dispersion of pigment

due to Gs-protein activation) for four experiments. Cells were

transiently transfected with cDNA for human calcitonin receptor

(8 mg/ml) on four separate occasions to induce constitutive receptor

activity. The means of the four basal readings for the cells for each

experiment (see Table 11.4) are shown in the histogram

(with standard errors). The one-way analysis of variance is used

to determine whether there is a significant effect of test occasion

(any one of the four experiments is different with respect to level of

constitutive activity).
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11.3.8 Detection of Single Versus Multiple Populations

Often it is important in pharmacological experiments

to discern whether or not one or more population

of biological targets (i.e., receptors) mediate an effect

or one or more properties of a drug are being observed.

One approach to this problem is through population

analysis. Under ideal circumstances, a frequency histogram

of the data set (as a function of intervals that are some

multiple of the standard error) will indicate whether the

sample is normally distributed around the mean.

Figure 11.6a shows a data set of 59 pEC50 values for

an agonist in a series of transient transfection experiments

(i.e., each experiment consists of transfecting the cells with

cDNA for the receptor therefore a certain intrinsic

variability for this process is expected). The data set

(mean pEC50¼ 8.7 � 0.36) appears to be normally

distributed, as seen by the frequency histogram. In contrast,

another set of 59 pEC50 values yields an ambiguous

distribution (Figure 11.6b), with no clear normality around

the mean. This is often the case with small data sets

(i.e., there are too few data to clearly evaluate the

distribution by sorting into bins and observing the

frequency distribution). A more sensitive method is to

plot the cumulative frequency of the value as a function of

the value itself. Figure 11.6c shows the cumulative

frequency distribution of the data shown in Figure 11.6a.

It can be seen that the curve (it will be some form of

sigmoidal curve) is consistent with one population of values

(it is unimodal). In contrast, the cumulative frequency

distribution curve for the data in Figure 11.6b clearly shows

two phases, thereby suggesting that the data sample may

come from two populations.

11.4 How Consistent Is Experimental Data with Models?

Experiments yield samples of data that can be likened to

the tip of the iceberg (i.e., showing a little of what a given

system or drug can do). The general aim of experimental

pharmacology is to extend this to reveal the complete

iceberg and define the model for the complete behavior of

the system. Thus, the sample is used to fuel models and the

verisimilitude of the result assessed to determine whether or

not the complete population has been described. Once this

is the case, predictions of other behaviors of the system are

made and tested in other experiments.

11.4.1 Comparison of Data to Models: Choice of Model

One of the most important concepts in pharmacology is

the comparison of experimental data to models, notably to

TABLE 11.5

Two-way analysis of variance.

pEC50 for human calcitonin obtained in culture plates arranged by row (row of the 96-well plate yielding the data) and plate number

(columns). See Figure 11.4.

x1 x2 x3 x4 Rsum R2
sum

9.1 8.6 9.5 9.2 36.4 1325.0

8.7 9.2 9.2 8.2 35.3 1246.1

9.5 8.4 9.2 9.4 36.5 1332.3

9.4 8.5 8.9 9.1 35.9 1288.8

8.8 9.3 9 8.6 35.7 1274.5

8.4 9 9.1 8.9 35.4 1253.2

8.5 8.4 8.5 9.2 34.6 1197.2

8.7 8.4 8.9 9.6 35.6 1267.4

C¼ 71.1 69.8 72.3 72.2

c¼ 4 T¼ 285.4

r¼ 8
P

x2¼ 2550.1P
R¼ 10184.28 N¼ 32

R¼ sum of rows.

Two-way analysis of variance: calculations

SSq df MSq Vratio

Between rows A r� 1 s2R FR ¼ s2R=s
2

Within columns B c� 1 s2c Fc ¼ s2c=s
2

Residuals E (r� 1)(c� 1) s2

Total D N� 1

c¼ number of columns

r¼number of rows

T¼
P

all values

R¼ sum of values in each row

C¼ sum of values in each column

A ¼
X

R2=c� T2=N B ¼
X

C2=r� T2=N

C ¼
X

x2 � T2=N E ¼ D� ðAþ BÞ
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models describing dose-response curves. The aim is to take

a selected sample of data and predict the behavior of the

system, generating that data over the complete concentra-

tion range of the drug (i.e., predict the population of

responses). Nonlinear curve fitting is the technique used to

do this.
The process of curve fitting utilizes the sum of least

squares (denoted SSq) as the means of assessing ‘‘goodness

of fit’’ of data points to the model. Specifically, SSq is the

sum of the differences between the real data values (yd) and

the value calculated by the model (yc) squared to cancel the

effects of arithmetic sign:

SSq ¼
X
ðyd � ycÞ

2: ð11:21Þ

There are two approaches to curve fitting. The first uses

empirical models that may yield a function that closely fits

the data points but has no biological meaning. An example

of this was given in Chapter 3 (see Figure 3.1). A danger in

utilizing empirical models is that nuances in the data points

that may be due to random variation may be unduly

emphasized as true reflections of the system. The second

approach uses parameters rooted in biology (i.e., the

constants have biological meaning). In these cases, the

model may not fit the data quite as well. However, this

latter strategy is preferable since the resulting fit can be

used to make predictions about drug effect that can be

experimentally tested.

It is worth considering hypothesis testing in general from

the standpoint of the choice of models one has available to

fit data. On the surface, it is clear that the more complex a

model is (more fitting parameters) the greater the verisimi-

litude of the data to the calculated line (i.e., the smaller will

be the differences between the real and predicted values).

Therefore, the more complex the model the more likely it

will accurately fit the data. However, there are other factors

that must be considered. One is the physiological relevance
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FIGURE 11.4 Two-way analysis of variance. Arrangement of data in rows and columns such that each row of the cell culture plate (shown

at the top of the figure) defines a single dose-response curve to the agonist. Also, data is arranged by plate in that each plate defines eight

dose-response curves and the total data set is comprised of 32 dose-response curves. The possible effect of location with respect to row on the

plate and/or which plate (order of plate analysis) can be tested with the two-way analysis of variance.

TABLE 11.6

Results of the two-way analysis of variance for data shown

in Figure 11.4 and Table 11.5.

SSq df MSq F

Between rows 0.66 7 0.09 0.56

Between columns 0.51 3 0.17 1.02

Residual 3.52 21 0.17

Total 4.69 31
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of the mathematical function used to fit the data. For
example, Figure 11.7 shows a collection of responses to an

agonist. A physiologically relevant model to fit this data is a
variant of the Langmuir adsorption isotherm (i.e., it is

likely that these responses emanate from a binding reaction

such as that described by the isotherm followed by a series
of Michaelis-Menten type biochemical reactions that also

resemble the adsorption isotherm). Therefore, a model such
as that described by an equation rooted in biology would

seem to be pharmacologically relevant. The fit to such a
model is shown in Figure 11.7a. However, a better

mathematical fit can be obtained by a complex mathe-
matical function of the form

Response ¼
Xn¼1

n¼4

ane�ðð½A��bnÞ=cnÞ: ð11:22Þ

While better from a mathematical standpoint, the

physiological relevance of Equation 11.22 is unknown.

Also, the more complex is a fitting function is the greater

the chance that problems in computer curve fitting will

ensue. Fitting software generally use a method of least

squares to iteratively come to a best fit (i.e., each parameter

is changed stepwise and the differences between the fit

function and real data calculated). The best fit is concluded

when a ‘‘minimum’’ in the calculated sum of those

differences is found. The different fitting parameters often

have different weights of importance in terms of the overall

effect produced when they are changed. Therefore, there

can occur ‘‘local minima,’’ where further changes in

parameters do not appear to produce further changes in

the sum of the differences. However, these minima may still

fall short of the overall minimum value that could be
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FIGURE 11.5 Misleading correlations. (a) Correlation between percentage of houses that are repainted and house value. It can be seen that

the relationship is inverse (i.e., painting a house will decrease its value). This correlation comes from two other correlations showing that the

value of a house decreases as it ages and the fact that as a house ages there is greater probability it will need to be repainted. (b) Some

correlations. A very good negative correlation (r¼�0.9), a weak negative correlation (r¼�0.5), no correlation (r¼ 0), a weak positive

correlation (r¼ 0.5), and strong positive correlation (r¼ 0.9).
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attained if further iteration were allowed. The likelihood of

encountering such local minima (which in turn leads to

incorrect fitting of functions to data) increases as the model

used to fit the data is more complex (has many fitting

parameters). Therefore, complex models with many fitting

parameters can lead to practical problems in computer

fitting of data. A sampling of mathematical fitting

functions is given in Appendix A for application to fitting

data to empirical functions.
Local minima will rarely be observed if the data has

little scatter, if an appropriate equation has been chosen,

and if the data is collected over an appropriate range of

x values. A way to check whether or not a local minimum

has been encountered in curve fitting is to observe the effect
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FIGURE 11.6 Distibution of 59 pEC50 values. (a) Frequency of pEC50 values displayed as a function of

binning by increments of 0.5 x standard error (mean pEC50¼ 8.7 � 0.36). (b) Another data set with an equivocal

(with respect to single or bimodal) distribution (mean pEC50¼ 9.0 � 0.67). (c) Cumulative distribution curve for

the data set shown in panel a. The data is best fit by a single-phase curve. (d) Cumulative distribution curve for the

data set shown in panel b. In this case, a single-phase curve clearly deviates from the data that indicates

bimodality.
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FIGURE 11.7 Fitting dose-response data. (a) Data points fit to Langmuir adsorption isotherm

with Emax¼ 0.00276, n¼ 4.36 and EC50¼ 65. (b) Data fit to empirical model of the form

y¼ (600�1)e�((x�60)2/80)þ (400�1)e�((x�85)2/400)þ (320�1)e�((x�130)2/300)þ (280�1)e�((x�180)2/800).
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of making large changes in one of the variables on the sum

of squares. If there is a correspondingly large change in

the sum of squares, it is possible that a local minimum

is operative. Ideally, the sum of squares should converge

to the same value with any changes in the values

of parameters.
Another criterion for goodness of fit is to assess the

residual distribution (i.e., how well the model predicts

values throughout the complete pattern of the data set).

Some models may fit some portions of the data well but not

other portions, and thus the residuals (differences between

the calculated and real values) will not be uniformly

distributed over the data set. Figure 11.8 shows a set of

data fit to an empirical model (Equation 3.1) and the

Langmuir adsorption isotherm. Inspection of the fit dose-

response curves does not indicate a great difference in the

goodness of fit. However, an examination of the residuals,

expressed as a function of the concentration, indicates that

while the adsorption isotherm yields a uniform distribution

along the course of the data set (uniform distribution of

values greater than and less than zero) the empirical fit

shows a skewed distribution of errors (values at each end

positive and values in the middle negative). A uniform

distribution of the residual errors is desired, and models

that yield such balanced residuals statistically are preferred.

Finally, complex models may be inferior for fitting

data purely in statistical terms. The price of low sums

of differences between predicted and real values obtained

with a complex model is the loss of degrees of freedom.
This results in a greater (dfs� dfc) value for the numerator

of the F-test calculation and a greater denominator values

since this is SSqc divided by dfc (see following section on

hypothesis testing). Therefore, it is actually possible to

decrease values of F (leading to a preference for the

more simple model) by choosing a more complex model
(vide infra).

11.4.2 Curve Fitting: Good Practice

There are practical guidelines that can be useful
for fitting pharmacological data to curves.

1. All regions of the function should be defined with

real data. In cases of sigmoidal curves it is especially

important to have data define the baseline, maximal

asymptote, and mid-region of the curve.
2. In usual cases (slope of curve is unity), the ratio

of the maximum to the minimum concentrations

should be on the order of 3,200 (approximately 3.5
log units).

%
 m

ax
. r

es
p.

−3

Log ([A] / KA)

0−2 −1 21 3
0

20

40

60

80

100

(a)

%
 m

ax
. r

es
p.

[A] / KA

20 40 60 80

−2

−1

0

1

2

3

(b)

%
 m

ax
. r

es
p.

−3

Log ([A] / KA)

0−2 −1 21 3
0

20

40

60

80

100

(c)

%
 m

ax
. r

es
p.

[A] / KA

20 40 60 80

−2

−1

0

1

2

3

(d)

FIGURE 11.8 Residual distribution as a test for goodness of fit. (a) Data points fit to a physiologically

appropriate model (Langmuir isotherm). (b) Residuals (sum of squares of real data points minus calculated data

points) expressed as a function of the x value on the curve. It can be seen that the residuals are relatively

symmetrically centered around the mean of the residual value over the course of the data set. (c) Same data fit to a

general mathematical function (Equation 3.1). (d) The residuals in this case group below the mean of the residuals,

indicating a nonsymmetrical fitting of the values.
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3. The middle of the concentration range should be as

near to the location parameter (i.e., EC50, IC50) of

the curve as possible.
4. The spacing of the concentration intervals should

be equal on a logarithmic scale (i.e., threefold

increments).
5. Ideally, there should be 44 data points for each

estimated parameter. Under this guideline, a 3

parameter logistic function should have 12 data

points. At the least, the number of data points minus

the number of parameters should be43.

6. An inspection of the residuals should indicate no

systematic deviation of the calculated curve from the

data points.

7. It is better to have more points at different x values

than many replicates of x. This leads to higher

precision in estimating parameters.
8. If the fit is poor and it is suspected that

the full concentration range of data has not been

tested, the top and/or bottom of the fit may be

constrained if no data are available in these regions.

If control data from other sources are available, this

may be used to constrain maxima and/or minima.
9. The scales of the various parameters should be

comparable. Large differences in scale can lead to

problems in fitting convergence.

In general, there are general rules associated with curve

fitting that should be kept in mind when interpreting the

curves.

. The estimates of errors given by nonlinear curve

fitting programs are not estimates of biological

variability but rather estimates of errors in fitting the

data to the line. The magnitude of these errors depend

on the model and the data. The estimation of

biological error is gained from repeated

experimentation.
. Correlations between parameters are not favorable

and can lead to difficulty in making unique estimates

of the parameters.
. Simple models (fewer parameters) are more robust,

but more complex models will usually provide a

better fit.

There can be confusion regarding the number of replicate

data points used for a curve fit. Replicates are independent

(and therefore considered separately) when the source of

error for each data point is the same. For example, separate

wells in a cell culture plate (each containing a collection of

cells) are independent in that if the error in one of the wells

is inordinately high there is no a priori reason to assume

that the error in other wells also will be as high. Replicate

values that are not independent when a measurement is

repeated many times for the same biological sample

(i.e., three readings of radioactivity of tube containing

radioligand). Similarly, three replicate readings of a

response of a given preparation to the same concentration

of agonist are not independent. In these cases, the mean of

the readings should be taken as a single value.

11.4.3 Outliers and Weighting Data Points

There are occasions when one or more data points do not

appear to fit the observed dose-response relationship for an

agonist or an antagonist. In this situation, the errant data

point(s) can either be weighted or rejected. One common

method is to weight the ordinate values according to the

square of their value (1/Y2 method). The rationale for this

approach is the expectation that the distance a given point

(yd) is away from a calculated regression line (yc) is larger

for larger ordinate values and therefore scaling them

reduces this differential. Under these circumstances, the

sum of least squares for assessment of goodness of fit

(Equation 11.21) is

SSq ¼
X ðyd � ycÞ

yd

� �2

¼
X ðyd � ycÞ

2

y2d
: ð11:23Þ

A useful method of weighting is through the use of an

iterative reweighted least squares algorithm. The first step

in this process is to fit the data to an unweighted model.

Table 11.7 shows a set of responses to a range of

concentrations of an agonist in a functional assay.

The data is fit to a three-parameter model of the form

Response ¼ Basalþ
Max� Basal

1þ 10ðLogEC50�Log½A�Þ
n : ð11:24Þ

The fit is shown in Figure 11.9. It can be seen from this

figure that the third from the last response point appears to

be abnormally higher than the rest of the data set. The next

step is to calculate an estimate of the scale of the error

(referred to as n):

n ¼
median yi �medianðyiÞ

�� ��� �

0:6745
, ð11:25Þ

where y is the residual error of the point i from the point

calculated with the model. The median of these residuals is

found and subtracted from the rest of the residuals. The

median of the absolute value of these differences is found

and divided by 0.6745 to yield the estimate of n (see

Table 11.7). The weighting for each point i is then

calculated by

wi ¼ 1�
ðyi=nÞ
B

	 
2" #2

if yij j=n � B, ð11:26Þ

where B is a tuning constant with a default value of 4.685.

The weighting factors (wi) for each data point are

calculated with Equation 11.26 with the caveat that

wi ¼ 0 if yij j=n > B ð11:27Þ

As seen in Table 11.7, the yi value for the errant response

value obtained for 1 mM agonist (93% versus a calculated

value of 77.9%) leads to a value for yi/n of 4.97. Since

this value is greater than the default for B, the weighting for

this point is zero and the point is removed. Figure 8.9 shows

the weighted fit (calculated in Table 11.7) for the same data.
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It can be seen that the weighting factor for the third from

the last data point was zero, thereby eliminating it from

the fit.
Extreme cases of weighting lead to rejection of outlier

points (weighting¼ 0). This raises scientific issues as to the

legitimate conditions under which a data point can be

eliminated from the analysis (see Section 11.6.1). Is the

rejection of a point due to a truly aberrant reading or just

cosmetics for a better fit? This becomes a practical issue

with automated curve fitting procedures for large data sets.

For example, in a screening campaign for agonist activity

all single concentrations of compounds that satisfy a

criteria for activity (i.e., produce a response above basal

noise level at a single concentration) are retested in a dose-

response mode to determine a dose-response curve and

potency. Under these circumstances, there are a large

number of curves to be fit and robotic procedures often are

employed. Figure 11.10a shows instances where the curves

are continued into regions of concentration, which may

produce toxic or secondary effects (bell-shaped dose-

response curves). Elimination of the low values in these

data sets allows a curve to be fit. It should be noted that no

value judgment is made (i.e., the bell-shaped dose-response

curve may in fact reflect true dual agonist activity that

should be noted). The elimination of the point only allows

an empirical estimation of potency as a guide for more

detailed testing. In other cases, the outlier may be bounded

by data (Figure 11.10b). In this case, fitting the curve to all

of the data points clearly gives a nonrepresentative curve,

and elimination of the outlier at least summarizes the

potency of the agonist empirically. In cases of possible

‘‘cosmetic’’ elimination of outliers, it should be noted that

for rough indications of agonist potency the elimination of

a single apparent outlier may make little difference to the

essential parameters estimated by the curve (see

Figure 11.11). The important idea to note is whether or

TABLE 11.7

Iterative least squares weighting.

[Conc] (mM) Response Calculated1 Residual (yi)
2

jyi�median(yi)j Weighting3

0.01 2 0.8 �1.2 1.2 0.99

0.03 8 5.2 �2.8 2.8 0.94

0.1 28 28 0 0 1.00

0.3 59 62.6 3.6 3.6 0.90

1 95 77.9 �17.1 17.1 0

3 78 80.4 2.4 2.4 0.96

10 80 80.8 0.8 0.8 1.00

Median residual¼ 2.4

n¼ 3.56

1Calculated from model.
2Residual¼Calculated – experimental data.
3Weighting calculated with Equation 11.26.
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FIGURE 11.9 Outliers. (a) Dose-response curve fit to all of the data points. The potential outlier value

raises the fit maximal asymptote. (b) Iterative least squares algorithm weighting of the data points (Equation

11.25) rejects the outlier and a refit without this point shows a lower-fit maximal asymptote.
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not one or more outliers lead the curve fitting procedure to
pass over a possibly valuable agonist activity because of

SSq issues. At least in automated procedures, the bias is to

err on the side of fitting the data points to obtain

parameters that can be confirmed with repeat testing.

11.4.4 Overextrapolation of Data

Another important issue in the determination of possible

drug activity is the observation of incomplete curves. This is

especially important in the confirmation of weak activity,
since the concentrations needed to delineate the complete

curve may not be run in the experiment (either through

the design of the experiment or solubility constraints).

For example, apparent curves such as those shown

in Figure 11.12a are obtained. The question is: How can
a characteristic parameter characterizing the potency of

such compounds be calculated? Computer curve fitting

procedures will utilize the existing points and fit a curve.

The estimated parameters (Emax, n) from such fits can be

used to estimate potency (pEC50), but the magnitude of the
Emax estimate directly affects the potency estimate.

Figure 11.12a shows data with a maximal reading at 48%

of the system maximal response. Curve fitting procedures

yield a fit with an estimated Emax value of 148%. It should

first be noted that Emax values4100% should be suspect if

the Emax value for the system has been determined with a

powerful standard agonist. In contrast, another data set (by
virtue of the shape of the existing pattern of dose-response)

is fit to a much lower Emax value (57%). A general practical

guideline is to accept fits where the difference between the

actual data point and estimated Emax value is525% and

where the fitted Emax is �100% if this value is known.

11.4.5 Hypothesis Testing: Examples with

Dose-response Curves

A very important concept in statistical comparison is the
idea of hypothesis testing. The object of this inferential

statistical tool is to compare groups, taking into account

variability, to ascertain whether or not the differences

between groups are greater than those predicted by chance.

In general, hypothesis testing consists of a procedure
whereby SSq values are calculated for two models, one

more complex (more fitting parameters) than the other.

The default is to choose the most simple model if possible.

[That is, as put by the Franciscan Friar William of Occam

(1280–1349): ‘‘When you have competing theories which
make the same predictions, the one that is simplest is

better.’’ The two SSq estimates are used to calculate a value

for the statistic F (variance ratio), which in turn is

compared to statistical tables to determine significance at

various levels of confidence (see Appendices A for F tables).
If the value of F indicates significance, then this constitutes
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FIGURE 11.10 Removal of outliers points to achieve curve fits. (a) The least squares fitting procedure cannot fit a sigmoidal

curve to the data points due to the ordinate value at 20mM. Removal of this point allows an estimate of the curve. (b) The

outlier point at 2 mM causes a capricious and obviously errant fit to the complete data set. Removal of this point indicates a

clearer view of the relationship between concentration and response.

11.4 HOW CONSISTENT IS EXPERIMENTAL DATA WITH MODELS? 239



evidence to support the notion that the more complex

model better fits the data and therefore should be used.
A common problem in pharmacology is: When can a

molecule be considered to have biological activity? For this

to be confirmed, there must be a clear pattern of biological

response with increasing concentration of drug (i.e., a clear

concentration-response relationship). If a drug has weak

effects on the biological system, such a dose-relationship

may not seem obvious. Consider the following problem. A

range of concentrations of a possible agonist are tested on a

functional pharmacological receptor system. The result is a

very low level of response that may be a true dose-response

relationship or simply represent random noise. Hypothesis

testing can be used to discern the difference. The two

models to which the data can be compared are one of

random noise and one describing a sigmoid dose-response

relationship. The model for random noise is the mean of all

the responses. For example, Figure 11.13 shows a set of

low-level responses to a possible agonist. The most

simple model for this data is a straight line mean of

all the responses (random noise level) shown by the

dotted line:

Simple Model ¼ ym ¼
X

y
� �.

n: ð11:28Þ

The responses are values of y, and n is the number of

responses. A calculated SSq value will have associated with

it a value for the degrees of freedom. If there are no fitting

parameters involved in applying the model, the number
of degrees of freedom will be n. For the data in

Figure 11.13, dfs¼ 10. A more complex model for these

data is a four-parameter logistic function of the form

Complex Model ¼ yc ¼ Basalþ
Emax � Basal

1þ 10�ðLogEC50þLog½A�Þ
n ,

ð11:29Þ
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FIGURE 11.11 Rejection of outliers for curve fitting. The curve shown in the left-hand panel (Emax¼ 81.8%; pEC50¼ 5.4) can be refit

eliminating a single data point. Eliminating point A leads to Emax¼ 61%; pEC50¼ 5.46, elimination point B to (Emax¼ 68.4%; pEC50¼ 5.3),

and point C to (Emax¼ 130%; pEC50¼ 5.8).
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where the concentration of the agonist is [A], Emax refers to

the maximal asymptote response, EC50 the location

parameter of the curve along the concentration axis, basal
is the response value in the absence of drug, and n is a

fitting parameter defining the slope of the curve. The data

points in Figure 11.13 fit to Equation 11.29 provide an
estimate of SSqc (sum of squares for the complex model).

This SSqc has associated with it a value for the degrees of

freedom equal to the number of data points n (number of
parameters used to fit the data points). In this case, there

are four parameters (Emax, n, basal, and EC50). Therefore,

df¼ 6. The data and calculations are shown in Table 11.8.
A variance ratio known as the F statistic is then

calculated by

F ¼
ðSSqs � SSqcÞ=ðdfs � dfcÞ

ðSSqcÞ=dfc
: ð11:30Þ

This value is identified in F tables for the corresponding

dfc and dfs. For example, for the data in Figure 11.13,
F¼ 7.26 for df¼ 6, 10. To be significant at the 95% level

of confidence (5% chance that this F actually is not

significant), the value of F for df¼ 6, 10 needs to be44.06.
In this case, since F is greater than this value there is

statistical validation for usage of the most complex model.

The data should then be fit to a four-parameter logistic
function to yield a dose-response curve.

Another potential application of this method is to
determine whether or not a given antagonist produces

dextral parallel displacement of agonist dose-response

curves with no diminution of maximum response or
change in slope. There are pharmacological procedures,

such as Schild analysis, where it is relevant to know if the

data can be fit by dose-response curves of common
maximal response and slope. For example, Figure 11.14

shows data points for a control dose-response curve and a

family of curves obtained in the presence of a range of
antagonist concentrations. The data is first fit to the most

complex model; specifically, a three-parameter logistic

equation where Emax, n, and EC50 values are specific

for each curve (curves are fit to their own maximum and

slope). An estimate of SSqc (sum of squares for the complex

model) is then obtained with a three-parameter logistic

function equation fit. This SSqc will have degrees of

freedom (dfc) for the four six-point dose-response curves

shown in Figure 11.8 of dfc¼ number of data points minus

the number of constants used to fit the model. For the

complex model, there are four values for max, n, and K.

Therefore, dfc¼ 24� 12¼ 12. This complete procedure is

then repeated for a model where the maxima and slopes of

the curves are the average of the individual maxima and

slopes. This is a more simple model, and the resulting sum

of squares is denoted SSqs. The degrees of freedom for the
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FIGURE 11.12 Overextrapolation of data. (a) Nonlinear curve fitting techniques estimate an ordinate

maximal asymptote that is nearly 100% beyond the last available data point. (b) The curve fitting procedure

estimates a maximal asymptote much closer to the highest available data point. A useful rule is to reject fits that

cause an estimated maximal asymptote that is425% the value of the highest available data point.
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FIGURE 11.13 A collection of 10 responses (ordinates) to a

compound resulting from exposure of a biological preparation

to 10 concentrations of the compound (abscissae, log scale).

The dotted line indicates the mean total response of all of the

concentrations. The sigmoidal curve indicates the best fit of a four-

parameter logistic function to the data points. The data were fit to

Emax¼ 5.2, n¼ 1, EC50¼ 0.4 mM, and basal¼ 0.3. The value for F

is 9.1, df¼ 6, 10. This shows that the fit to the complex model is

statistically preferred (the fit to the sigmoidal curve is indicated).
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TABLE 11.8

Hypothesis testing: F-test.

Calculations for F for data shown in Figure 11.13.

[Conc] (nM) Response (yd)
P

(yd� ym)
2 Fit Response

P
(yd� yc)

2

0.11 0.30 2.51 0.50 0.04

0.46 1.20 0.47 0.50 0.48 Max¼5.2

1.83 1.00 0.78 0.52 0.23 EC50 (nM)¼ 40

7.32 1.30 0.34 0.57 0.53 n¼ 1

29.30 �0.36 5.05 0.78 1.30 Basal¼ 0.30

117.00 1.64 0.06 1.45 0.04

469.00 1.50 0.15 2.92 2.02

1,860.00 5.27 11.49 4.44 0.69

7,500.00 5.10 10.35 5.19 0.01

30,000.00 4.10 4.92 5.42 1.74

SSqs¼ 31.19 SSqc¼ 5.34

ym¼ 2.10

F¼ 7.26

Simple Model ¼ ym ¼
X

y
� ��

n

dfs¼n

Complex Model:

yc ¼ Basalþ
Emax � Basalð Þ

1þ 10ðLogEC50�Log½A�Þ
n

dfc¼ n� k, where k¼ the number of parameters used to fit the data.

F ¼
ðSSqs � SSqcÞðdfs � dfcÞ

ðSSqcÞdfc
Þ
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FIGURE 11.14 Data set consisting of a control dose-response curve and curves obtained in the presence of

three concentrations of antagonist. Panel a: curves fit to individual logistic functions (Equation 11.29) each to

its own maximum, K value, and slope. Panel b: curves fit to the average maximum of the individual curves

(common maximum) and average slope of the curves (common n) with only K fit individually. The F value

for the comparison of the two models is 2.4, df¼ 12, 18. This value is not significant at the 95% level.

Therefore, there is no statistical support for the hypothesis that the more complex model of individual

maxima and slopes is required to fit the data. In this case, a set of curves with common maximum and slope

can be used to fit these data.
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SSqs (dfs) is number of data points minus the common max,

common slope, and four fitted values for EC50. Thus,

dfs¼ 24� 6¼ 18. The value for F for comparison of the

simple model (common maximum and slope) to

the complex model (individual maxima and slopes) for

the data shown in Figure 11.14 is F¼ 2.4. To be significant

at the 95% level of confidence (5% chance that this F

actually is not significant), the value of F for df¼ 12, 18

needs to be42.6. Therefore, since F is less than this value

there is no statistical validation for usage of the most

complex model. The data should then be fit to a family of

curves of common maximum and slope and the individual

EC50 values used to calculate values of DR.
The same conclusion can be drawn from another

statistical test for model comparison; namely, through

the use of Aikake’s information criteria (AIC) calculations.

This is often preferred, especially for automated

data fitting, since it is more simple than F tests and

can be used with a wider variety of models. In this test, the

data is fit to the various models and the SSq determined.

The AIC value is then calculated with the following

formula

AIC ¼ n � ln
SSq

n

	 

þ 2 �Kþ

2 �K � ðKþ 1Þ

ðn�K� 1Þ

	 

, ð11:31Þ

where n is the number of total data points and K is the

number of parameters used to fit the models. The fit to the

model with the lowest AIC value is preferred. A set of dose-

response curves is shown in Figure 11.15. As with the

previous example, the question is asked: Can these data

points be fit to a model of dose-response curves with

common maximum and slope? The AIC values for the
various models for the data are given in the table shown

in Figure 11.15. It can be seen that the model of common

slope and maximum has the lowest AIC value. Therefore,

this model is preferred.

11.4.6 One Curve or Two? Detection of Differences

in Curves

There are instances where it is important to know the

concentration of a drug, such as a receptor antagonist, that
first produces a change in the response to an agonist.

For example, a competitive antagonist will produce a

twofold shift to the right of an agonist dose-response curve

when it is present in the receptor compartment at a
concentration equal to the KB. A tenfold greater concen-

tration will provide a tenfold shift to the right. With an

antagonist of unknown potency, a range of concentrations

is usually tested and there can be ambiguity about small
differences in the dose-response curves at low antagonist

concentrations. Hypothesis testing can be useful here.

Figure 11.16 shows what could be two dose-response

curves: one control curve and one possibly shifted slightly

to the right by an antagonist. An alternative interpretation
of these data is that the antagonist did nothing at this

concentration and what is being observed is random noise

around a second measurement of the control dose-response

curve. To resolve this, the data is fit to the most simple
model (a single dose-response curve with one max, slope,

and location parameter EC50 for all 12 data points) and

then refit to a more complex model of two dose-response

curves with a common maximum and slope but different
location parameters EC50. Calculation of F can then be
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Common maxima  211 73.0 23 7
Common slope/maxima  119 65.4 23 5 

FIGURE 11.15 Aikake’s information criteria (AIC) calculations.

Lower panel shows three dose-response curves that can alternately be

fit to a three-parameter logistic such that each curve is fit to its own

particular value of maximum and slope (individual fits), with common

maxima but individual slopes (common maxima), or with common

maxima and slope. The IAC values (Equation 11.30) for the fits are

shown in the table above the figure. It can be seen that the lowest value

corresponds to the fit with common maxima and slope. Therefore, this

fit is preferred.
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used to resolve whether the data is better fit to a single

curve (indicating noise around the control curve and no

antagonism) or to two separate curves (antagonist produces

a low level of receptor blockade). For the data shown in

Figure 11.16, the value for F indicated that a statistically

significant improvement in the fit was obtained with

two dose-response curves as opposed to one. This indicates,

in turn, that the antagonist had an effect at this

concentration.

11.4.7 Asymmetrical Dose-Response Curves

As noted in Chapter 1, the most simple and theoretically

sound model for drug-receptor interaction is the Langmuir

adsorption isotherm. Other models, based on receptor

behavior (see Chapter 3), are available. One feature of all of

these models (with the exception of some instances of the

operational model) is that they predict symmetrical curves.

A symmetrical curve is one where the half maximal

abscissal point (EC50, concentration of x that yields 50%

of the maximal value of y) and the inflection point of the

curve (where the slope is zero) are the same (see

Figure 11.17a). However, many experimentally derived

dose-response curves are not symmetrical because of

biological factors in the system. Thus, there can be curves

where the EC50 does not correspond to the point at which

the slope of the curve is zero (see Figure 11.17b).

Attempting to fit such data with symmetrical functions

leads to a lack of fit on either end of the data set.

For example, Figure 11.18a shows an asymmetrical data set

fit to a symmetrical Langmuir isotherm. The values

n¼ 0.65 and EC50¼ 2.2 fit the upper end of the curve,

whereas a function n¼ 1 and EC50¼ 2 fit the lower end. No

single symmetrical function fits the entire data set.

There are a number of options, in terms of empirical

models, for fitting asymmetrical data sets. For example,

−11
Log [agonist]

Fr
ac

t. 
m

ax
. r

es
po

ns
e

−9 −7 −5
0.0

0.2

0.6

0.8

1.0

0.4

1.2

(a)

−11
Log [agonist]

Simple model

Fr
ac

t. 
m

ax
. r

es
po

ns
e

−9 −7 −5
0.0

0.2

0.6

0.8

1.0

0.4

1.2

(b)

−11
Log [agonist]

Complex model

Fr
ac

t. 
m

ax
. r

es
po

ns
e

−9 −7 −5
0.0

0.2

0.6

0.8

1.0

0.4

1.2

(c)

FIGURE 11.16 Control dose-response curve and curve obtained in the presence of a low concentration

of antagonist. Panel a: data points. Panel b: data fit to a single dose-response curve. SSqs¼ 0.0377. Panel c:

data fit to two parallel dose-response curves of common maximum. SSqc¼ 0.0172. Calculation of F indicates

that a statistically significant improvement in the fit was obtained by using the complex model (two curves;

F¼ 4.17, df¼ 7, 9). Therefore, the data indicate that the antagonist had an effect at this concentration.
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the Richards function can be used [7]:

y ¼
Emax

1þ 10mðLog½A�þpEC50Þ
s : ð11:32Þ

In this model, the factor s introduces the asymmetry.

Alternatively, a modified Hill equation can be used [1]:

y ¼
Emax

1þ 10ðLog½A�þpEC50Þ
p : ð11:33Þ

The introduction of the p factor yields asymmetry. Finally,

the Gompertz function can be used [5]:

y ¼
Emax

e10�mðLog½A�þpEC50Þ
: ð11:34Þ

For this model, the factor m introduces asymmetry.

The asymmetrical data set shown in Figure 11.18a is fit well

with the Gompertz model.
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FIGURE 11.17 Symmetrical and asymmetrical dose-response curves. (a) Symmetrical Hill equation with

n¼ 1 and EC50¼ 1.0. Filled circle indicates the EC50 (where the abscissa yields a half maximal value for the

ordinate). Below this curve is the second derivative of the function (slope). The zero ordinate of this curve

indicates the point at which the slope is zero (inflection point of the curve). It can be seen that the true EC50

and the inflection match for a symmetrical curve. (b) Asymmetrical curve (Gompertz function with m¼ 0.55

and EC50¼ 1.9). The true EC50 is 1.9, while the point of inflection is 0.36.
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FIGURE 11.18 Asymmetrical dose-response curves. (a) Dose-response data fit to a symmetrical Hill

equation with n¼ 0.65 and EC50¼ 2.2 (solid line) or n¼ 1, EC50¼ 2 (dotted line). It can be seen that

neither symmetrical curve fits the data adequately. (b) Data fit to the Gompertz function with m¼ 0.55

and EC50¼ 1.9.
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In general, these models are able to fit asymmetrical data
sets but require the use of added parameters (thereby

reducing degrees of freedom). Also, some of the parameters
can be seriously correlated (see discussion in [2, 3, 8]).

Most importantly, these are empirical models with no
correspondence to biology.

11.4.8 Comparison of Data to Linear Models

There are instances where data are compared to models
that predict linear relationships between ordinates and
abscissae. Before the widespread availability of computer

programs allowing nonlinear fitting techniques, linearizing
data was a common practice because it yielded simple

algebraic functions and calculations. However, as noted in
discussions of Scatchard analysis (Chapter 4) and double
reciprocal analysis (Chapter 5), such procedures produce

compression of data points, abnormal emphasis on certain
data points, and other unwanted aberrations of data. For

these reasons, nonlinear curve fitting is preferable.
However, in cases where the pharmacological model
predicts a linear relationship (such as Schild regressions,

see Chapter 6), there are repeated questions asked in the
process: (1) Is the relationship linear?, (2) Do two data sets

form one, two, or more lines? It is worth discussing these
questions with an example of each.

11.4.9 Is a Given Regression Linear?

There are instances where it is important to know if a
given regression line is linear. For example, simple
competitive antagonism should yield a linear Schild

regression (see Chapter 6). A statistical method used to
assess whether or not a regression is linear utilizes analysis

of covariance. A prerequisite to this approach is that there

must be multiple ordinates for each value of the abscissae.

An example of this method is shown in Figure 11.19, where

a Schild regression for the a-adrenoceptor antagonist

phentolamine is shown for blockade of norepinephrine

responses in rat anococcygeus muscle. Saturation of

neuronal catecholamine uptake is known to produce

curvature of Schild regressions and resulting aberrations

in pKB estimates. Therefore, this method can be used to

determine whether the regression is linear (with a slope less

than unity) or curved. The conclusions regarding the

relationship between the intercept and the pKB differ for

these two outcomes. The data for this example are given in

Table 11.9. The calculations for this procedure are detailed

in Table 11.10a. As can be seen in Table 11.10b, the value

for F2 is significant at the 1% level of confidence, indicating

that the regression is curved (p50.05).
Curvature in a straight line can be a useful tool to detect

departures from model behavior. Specifically, it is easier for

the eye to detect deviations from straight lines than from

curves (i.e., note the detection of excess protein in the

binding curve in Figure 4.4 by linearization of the binding

curve). An example of this is detection of cooperativity in

binding. Specifically, a biomolecular interaction between a

ligand and a receptor predicts a sigmoidal binding curve

(according to the Langmuir adsorption isotherm) with a

slope of unity if there is no cooperativity in the binding.

This means that the binding of one ligand to the receptor

population does not affect the binding of another ligand to

the population. If there is cooperativity in the binding

(as, for example, the binding of oxygen to the protein

hemoglobin), then the slope of the binding curve will

deviate from unity. Figure 11.20 shows a series of binding

curves with varying degrees of cooperativity (n¼ 0.8 to 2).

While there are differences between the curves, they must be

compared to each other to detect them. In contrast, if

the binding curves are linearized (as, for example, through

the Scatchard transformation see Chapter 4), then the
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FIGURE 11.19 Test for linearity. Schild regressions for phentolamine antagonism of norepinephrine

responses in rat anococcygeus muscle. Ordinates: log (dose ratio� 1). Abscissae: logarithms of molar

concentrations of phentolamine. (a) Individual Log (DR-1) values plotted and a best fit straight line passed

through the points. (b) Joining the means of the data points (shown with SEM) suggests curvature.

The statistical analysis of these data is shown in Table 11.3. Data redrawn from [6].
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deviations can readily be seen. This is because the eye is

accustomed to identifying linear plots (no cooperativity,

n¼1) and therefore can identify nonlinear regressions with

no required comparison.

11.4.10 One or More Regression Lines? Analysis

of Covariance

There are methods available to test whether or not two or

more regression lines statistically differ from each other in

the two major properties of lines in Euclidean space;

namely position (or elevation) and slope. This can be very

useful in pharmacology. An example is given later in the

chapter for the comparison of Schild regressions (see

Chapter 6).

A Schild regression for an antagonist in a given receptor

preparation is equivalent to a fingerprint for that receptor

and antagonist combination. If the receptor population is

uniform (i.e., only one receptor is interacting with the

agonist) and the antagonist is of the simple competitive

type, then it should be immaterial which agonist is used to

produce the receptor stimulation. Under these circum-

stances, all Schild regressions for a given antagonist in a

given uniform preparation should be equivalent for

blockade of all agonists for that receptor. However, if

there is receptor heterogeneity and the antagonist does not

have equal affinity for the receptor types unless the

agonists used to elicit response all have identical efficacy

for the receptor types there will be differences in the Schild

regressions for the antagonist when different agonists are

used. Before the advent of recombinant systems, natural

cells and/or tissues were the only available test systems

available and often these contained mixtures of receptor

subtypes. Therefore, a test of possible receptor hetero-

geneity is to use a number of agonists to elicit response

and block these with a single antagonist. This is a

common practice for identifying mixtures of receptor

populations. Conformity of Schild regressions suggests no

receptor heterogeneity. A useful way to compare Schild

regressions is with analysis of covariance of regression

lines.
Figure 11.21 shows three sets of Log (DR-1) values for

the b1-adrenoceptor antagonist atenolol in guinea pig

tracheae. The data points were obtained by blocking the

effects of the agonists norepinephrine, isoproterenol, and

salbutamol. These were chosen because they have differing

efficacy for b1- versus b2-adrenoceptors (see Figure 11.21).

If a mixture of two receptors mediates responses in this

tissue, then responses to the selective agonists should be

differentially sensitive to the b1-adrenoceptor selective

antagonist. In the example shown in Figure 11.21, it is

not immediately evident if the scatter around the abscissal

values is due to random variation or there is indeed some

dependence of the values on the type of agonist used. The

data for Figure 11.21 are shown in Table 11.11. The

procedure for determining possible differences in slope of

the regressions is given in Table 11.12a; for the data set in

Figure 11.21, the values are given in Table 11.12b. The

resulting F value indicates that there is no statistical

difference in the slopes of the Schild regressions obtained

with each agonist.
The procedure for determining possible differences in

position of regression lines is given in Table 11.13a. In

contrast to the analysis for the slopes, these data indicate

TABLE 11.9

Schild regression data for phentolamine blockade of norepinephrine

responses in rat anococcygeus muscle (data shown in Figure 11.19).

Log[phent] Log[DR-1] T

�7 0.25 0.4

�7 �0.05

�7 0.2

�6 0.53 1.53

�6 0.3

�6 0.7

�5.5 0.71 2.19

�5.5 0.57

�5.5 0.91

�5 1 3.12

�5 0.82

�5 1.3

�4.5 1.7 4.25

�4.5 1.1

�4.5 1.45
P

x¼�84.00
P

y¼ 11.49
P

T2
i =ni ¼ 11.70P

x2¼ 481.50
P

y2¼ 12.19

n¼ 20
P

xy¼�58.75

k¼ 5

T¼ sum of each replicate Log (DR-1) value.

Data from [6].

TABLE 11.10

Test for linearity.

(a) Procedure

SSq df Mean Sq. Var. Ratio

Due to regression A 1 s21
Deviation of means D k� 2 s22 F1¼ s21=s

2
3

Within-assay residual B n� k s23 F2¼ s22=s
2
3

Total C n� 1

A ¼

P
xy�

P
x
P

y
� �.

n

h i

P
x2

P
x

� �.
n

� �2 B ¼
P

y2 �
P

T2
i =ni

C ¼
P

y2 �

P
y2

n
D ¼ C�A� B

(b) Calculations

SSq df Mean Sq. Var. Ratio
Due to regression 0.86 1 0.855

Deviation of means 4.24 3 1.414 26.19

Within-assay residual 0.49 15 0.033 43.29

Total 5.59 19
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FIGURE 11.20 Use of linear transformation to detect deviation from model behavior. (a) A series

of binding curves with various levels of cooperativity in the binding. Numbers next to the curves show

the value of the slope of the binding curve according to the equation [AR]¼Bmax [A]n/([A]nþKn).

(b) Scatchard tranformation of the curves shown in panel A according to the equation [AR]/

[A]¼ (Bmax/K)� ([AR]/K) (Equation 4.5). Numbers are the value of the slope of the binding curves.

Cooperativity in binding occurs when n 6¼ 1.
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FIGURE 11.21 Analysis of straight lines to detect receptor heterogeneity. (a) Schematic diagram depicts

the relative affinity and efficacy of three agonists for two subtypes of b-adrenoceptors. Norepinephrine is relatively

b1-adrenoceptor selective while salbutamol is relatively b2-adrenoceptor selective. (b) Schild regression for

blockade of b-adenoceptor mediated relaxation of guinea pig tracheae using the three agonists: salbutamol (filled

circles), isoproterenol (open circles), and norepinephrine (open triangles). Data points fit to a single regression.

(c) Regression for each agonist fit to a separate regression. Analysis for these data given in Tables 11.12b and

11.13b. In this case, the data best fits three separate regressions, indicating that there is a difference in the

antagonism produced by atenolol and therefore probably a heterogeneous receptor population mediating the

responses.
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that there is a statistical difference in the elevation of

these regressions (F¼ 9.31, df¼ 2, 8; see Table 11.13b).

This indicates that the potency of the antagonist varies with

the type of agonist used in the analysis. This, in turn,

indicates that the responses mediated by the agonists are

not due to activation of a homogeneous receptor

population.

11.5 Comparison of Samples to ‘‘Standard Values’’

In the course of pharmacological experiments, a

frequent question is: Does the experimental system

return expected (standard) values for drugs? With the

obvious caveat that ‘‘standard’’ values are only a sample

of the population that have been repeatedly attained

under a variety of circumstances (different systems,

different laboratories, different investigators), there is a

useful statistical test that can provide a value of

probability that a set of values agree or do not agree

with an accepted standard value. Assume that four

replicate estimates of an antagonist affinity are made

(pKB values) to yield a mean value (see Table 11.14). A

value of t can be calculated that can give the estimate

probability that the mean value differs from a known

value with the formula

tcalculated ¼
known value� xmj j

s

ffiffiffi
n
p

, ð11:35Þ

where xm is the mean of the values. For the example shown

in Table 11.14, t¼ 2.36 (df¼ 3). Comparison of this value

to the table in Appendix A indicates that there is 95%

confidence that the mean value obtained in the experi-

mental system is not different from the accepted standard

TABLE 11.11

Analysis of covariance of regression lines.

Data for Figure 11.15. Schild analysis for atenolol in guinea pig

trachea.

Log[phentol] Norepi Iso. Salb.

�5.5 0.8 0.7 0.6

�5 1.4 1.29 1.25

�4.5 1.8 1.75 1.6

�4 2.35 2.3 2.2P
xi¼�19

P
yi¼ 6.35 6.04 5.65P

x2i ¼ 91:15
P

y2i ¼ 11:36 10.51 9.32P
xyi¼�28.90 �27.38 �25.55

Norepi¼ norepinephrine; Iso¼ isoproterenol; salb.¼ salbuta-

mol; phentol¼phentolamine.

TABLE 11.12

Regression line and slope covariance.

(a) Analysis of Covariance of Regression Lines (Comparison of Slopes)

SSq df Mean Sq

Due to common slope A 1.00

Differences between slopes B k� 1 C

Residual D n� 2k E

F ¼ C=E;df ¼ ðk� 1Þ, ðn� 2kÞ:

s2x ¼
P

x2i �

P
x

� �2
ni

s2y ¼
P

y2i �

P
y

� �2
ni

sxy ¼
P

xyi �

P
xi

� � P
yi

� �

ni
A ¼

Pk

i¼1

sxy
� �

i

	 
2�Pk

i¼1

s2x
� �

i

B ¼
Pk

i¼1

sxyð Þ
2

i

s2xð Þi

	 

�A C ¼

B

ðk� 1Þ

D ¼
Pk

i¼1

s2y

� �

i
�
Pk

s2x

ðsxy
2
Þ

ðs2xÞi
E ¼

D

ðn� 2kÞ

(b) Calculations: Analysis of Data in Figure 11.15 (Analysis of Covariance of Slopes)

SSq df Mean Sq

Due to common slope 3.98 1

Difference between slopes 0.001 2 0.0006

Residual 0.03 6 0.00042

F¼ 0.13

df¼ 2.6
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value of pKB¼ 7.4. Therefore, there is a 95% level of

certainty that the experimental value falls within the

accepted normal standard for this particular antagonist in

the experimental system.

11.5.1 Comparison of Means by Two Methods

or in Two Systems

Another frequent question asked considers whether the

mean of a value measured by two separate methods differs

significantly. For example, does the mean pKB value of an

antagonist measured in a binding experiment differ

significantly from its affinity as an antagonist of agonist

function? The value of t for the comparison of the mean

values xm1 and xm2 can be calculated with the following

equation:

tcalculated ¼
ðxm1 � xm2Þ

spooled

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2
,

r
ð11:36Þ

where:

spooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21ðn1 � 1Þ þ s22ðn2 � 1Þ

n1 þ n2 � 2

s

ð11:37Þ

and s21 and s22 are given by Equation 11.4.

Table 11.15 shows the mean of four estimates of the

affinity of an antagonist measured with radioligand binding

TABLE 11.13

Covariance of position.

(a) Analysis of Covariance of Regression Lines (Comparison of Position)

s2x sxy s2y SSq df Mean Sq

Within groups A B C D n� k� 1 E

Total F G H I

Between groups J k� 1 K

F ¼ K=E;df ¼ ðk� 1Þ; ðn� k� 1Þ:

A ¼
X

x2
� �

total
¼
Xk

i¼1

X
x

� �2
i

ni
B ¼

X
x2

� �

total
¼
Xk

i¼1

X
x

� �

i

X
y

� �

i

ni

D ¼ C�
ðBÞ2

A

C ¼
X

y2
� �

total
¼
Xk

i¼1

X
y

� �2
i

ni
E ¼

D

n� k� 1

F ¼
X

x2
� �

total
¼

X
x

� �2
total

ntotal
G ¼

X
xy

� �

total
¼

X
x

� �

total

X
y

� �

total

� �

ntotal

I ¼ C�
ðGÞ2

F
J ¼ jD� 1j

H ¼
X

y2
� �

total
¼

X
y

� �2
total

ntotal
K ¼

J

K� 1

(b) Analysis of Covariance of Position (Calculations for Data Shown in Figure 11.15)

s2x sxy s2y SSq df Mean Sq

Within groups 3.75 3.86 4.01 0.03 8.00 0.003

Total 3.75 3.86 4.07 0.09

Between groups 0.06 2.00 0.03

F¼ 9.31

df¼ 2, 8

TABLE 11.14

Experimental estimates of antagonist affinity:

comparison to standard value.

pKB Standard

7.6 Value¼ 7.4

7.9

8.1

7.5 t¼ 2.36

df¼ 3

mean¼ 7.775

s¼ 0.28
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and also in a functional assay. Equation 11.34 yields a value

for t of 2.29. For n1þ n2� 2 degrees of freedom, this value

of t is lower than the t for confidence at the 95% level

(2.447, see Appendix A table of t values). This indicates that

the estimate of antagonist potency by these two different

assay methods does not differ at the 95% confidence level.

It should be noted that the previous calculation for pooled

standard deviation assumes that the standard deviation for

both populations is equal. If this is not the case, then the

degrees of freedom are calculated by

degrees of freedom

¼
s21=n1 þ s22=n2

ððs21=n1Þ
2=ðn1 þ 1ÞÞ þ ððs22=n2Þ

2=ðn2 þ 1ÞÞ

" #
� 2: ð11:38Þ

11.5.2 Comparing Assays/Methods with a Range of Ligands

One way to compare receptor assays is to measure

a range of agonist and antagonist activities in each.

The following example demonstrates a statistical method

by which two pharmacological assays can be compared.

Table 11.16 shows the pKB values for a range of receptor

antagonists for human a1B adrenoceptors carried out with a

filter binding assay and with a scintillation proximity assay

(SPA). The question asked is: Does the method of

measurement affect the measured affinities of the antago-

nists? The relevant measurement is the difference between

the estimates made in the two systems (defined as

x1i� x2i¼ d):

tcalculated ¼
dm
sd

ffiffiffi
n
p

, ð11:39Þ

where dm is the mean difference and sd is given by

sd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
di � dð Þ

2
q

n� 1
: ð11:40Þ

As seen in Table 11.16, the values for a1B-adrenoceptor
antagonists obtained by filter binding and SPA do not

differ significantly at the p50.05 level. This suggests that

there is no difference between the two methods of

measurement.

11.6 Experimental Design and Quality Control

11.6.1 Detection of Difference in Samples

In a data set it may be desirable to ask the question: Is

any one value significantly different from the others in the

sample? A t statistic (for n� 1 degrees of freedom where the

sample size is n) can be calculated that takes into account

the difference of the magnitude of that one value (xi) and

the mean of the sample (xm):

tn�1 ¼
ðxm � xiÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1=nÞ þ 1Þ

p , ð11:41Þ

where s is the standard error of the means. This can be used

in screening procedures where different compounds are

tested at one concentration and there is a desire is to detect

a compound that gives a response significantly greater than

basal noise. As samples get large, it can be seen that the

square root term in the denominator of Equation 11.39

approaches unity and the value of t is the deviation divided

by the standard error. In fact, this leads to the the standard

rule where values are different if they exceed t � s limits (i.e.,

for t95 these would be the 95% confidence limits; see

Section 11.3.3). This notion leads to the concept of control

charts (visual representation of confidence intervals for the

distribution), whereby the scatter and mean of a sample are

tracked consecutively to detect possible trends of deviation.

For example, in a drug activity screen a standard agonist is

tested routinely for quality control and the pEC50 noted

chronologically throughout the screen. If on a given day the

pEC50 of the control is outside of the 95% c.l. of the sample

means collected throughout the course of the screen, then

the data collected on that day is suspect and the experiment

may need to be repeated. Figure 11.22a shows such a chart

where the definitions of a warning limit are the values that

exceed 95.5% (42 s units) of the confidence limits of the

TABLE 11.15

Comparing two mean values to evaluate method/assays.

Binding pKI Function pKB

8.1 7.6

8.3 7.7

7.9 7.9

7.75 7.5

mean¼ 8.01 7.68

s¼ 0.24 0.17

spooled¼ 0.21

t¼ 2.29

df¼ 6

TABLE 11.16

Multiple values to compare methods.

pKB values for human a1B-adrenoceptor antagonists obtained in

binding studies with SPA and filter binding.1

pKI pKI Difference

Prazosin 10.34 10.27 0.0049

5-CH3 urapidil 7.05 7.32 0.0729

Yohimbine 6.1 6.31 0.0441

BMY7378 7.03 7.06 0.0009

Phentolamine 7.77 7.91 0.0196

mean¼ 0.03

s¼ 0.03

t¼ 2.12

df¼ 5

1Data from [4].
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mean and action (removal of the data) applies to values

499.7% (3 s units) c.l. of the mean. Caution should be

included in this practice since the presence of outliers

themselves alters the outcome of the criteria for the test (in

this case, the standard mean and standard error of that

mean). Figure 11.22b shows a collection of data where

inclusion of the outlier significantly alters the mean and

standard error to the extent that the decision to include or

exclude two other data points are affected. This effect is

more serious with smaller samples and loses importance as

sample size increases.
Another method that may be employed to test whether

single data points should be included in a sample mean is

the Q-test. This simple test determines the confidence with

which a data point can or cannot be considered part of the

data set. The test calculates a ratio of the gap between

the data point and its nearest neighbor and the range of the

complete data set:

Qcalculated ¼ gap=range: ð11:42Þ

If Q is greater than values from a table yielding Q values

for 90% probability of difference, then the value may be

removed from the data set (p50.10). An example of how

this test is used is given in Table 11.17a. In this case, the

pKB value of 8.1 appears to be an outlier with respect to the

other estimates made. The calculated Q is compared to

a table of Q values for 90% confidence (Table 11.17b) to

determine the confidence with which this value can be

accepted into the data set. In the case shown in Table 8.17,

Q50.51. Therefore, there is 590% probability that the

value is different. If this level of probability is acceptable to

the experimenter, then the value should remain in the set.
Scientifically, the question of oultiers is a difficult one.

On one hand, they could be due to high random biological

and/or measurement variation and therefore legitimately

rejected. On the other hand, they might be the most

interesting data in the set and indicative of a rare but

important effect. For instance, in a psychological cognition

test outliers may represent a rare but real cognitive problem

leading to a fractal change in the test score. As with

hypothesis testing, the ultimate responsibility lies with the

investigator.

11.6.2 Power Analysis

There is an increasing appreciation of the importance of

power analysis in the drug discovery process. This method

enables decisions regarding the size of the experimental

sample needed to make accurate and reliable judgments and

to estimate the likelihood that the statistical tests will find

differences of a given magnitude. The size of the sample is

important since too small a sample will be useless (the result

will be too imprecise for definitive conclusions to be drawn)

and too large a sample leads to diminishing returns and

wasted resources. These ideas can be dealt with in sampling

theory and power analysis.
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FIGURE 11.22 Control charts and outliers. (a) pEC50 values (ordinates) run as a quality control for a drug screen over

the days on which the screen is run (abscissae). Dotted lines are the 95% c.l. and the solid lines the 99.7% c.l. Data points

that drift beyond the action lines indicate significant concern over the quality of the data obtained from the screen on those

days. (b) The effect of significant outliers on the criteria for rejection. For the data set shown, the inclusion of points A and

B lead to a c.l. for 95% confidence that includes point B. Removal of point A causes the 95% limits to fall below points B,

causing them to be suspect as well. Thus, the presence of the data to be possibly rejected affects the criteria for rejection of

other data.

TABLE 11.17

Q-test for rejection of data points.

Table A Table B

pKB Values Gap Q@90% n

7.5 0.76 4

7.6 0.1 0.64 5

7.6 0 0.56 6

7.7 0.1 0.51 7

7.8 0.1 0.47 8

7.8 0 0.44 9

8.1 0.3 0.41 10

Range¼ 0.6

Q¼ 0.5

n¼ 7
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Essentially, the decision regarding the sample size

involves the question: How large does a sample need to

be to accurately reflect the characteristics of the popula-
tion? For example, the question could be stated: Is the

potency of a given agonist in a recombinant assay equal to

the known potency of the same agonist in a secondary

therapeutic assay? The true value of the potency in the
recombinant system, denoted l, is estimated by choosing a

sample of n values from the population. The mean observed

potency of the agonist in this sample is denoted c. Unless

the sample size is nearly infinite, the value l will not equal c
since l was obtained by random sampling. The magnitude
of the difference is referred to as the sampling error. The

larger the value of n, the lower is the sampling error.

Computer calculation of power curves can yield guidelines

for the sample needed to find a defined difference between

the population and the sample (if there is one), the
probability that this difference is real, and the likelihood

that the defined sample size will be successful in doing so

(i.e., find the minimal sampling error).
Statistical power can be illustrated with a graphical

example. There are three principal components to power

analysis: (1) define the magnitude of the difference d that

one wishes to detect, (2) quantify the error in measuring the
values, and (3) choose the power (make the experimental

choice of defining the probability that the experiment will

reject the null hypothesis). Assume that the aim of a study is

to find values that are greater than 95% of a given
population (p50.05 for difference). The sample of data we

obtain will be represented by a normal distribution. The

difference we wish to find is denoted d (see Figure 11.23).

We want to know what proportion of the sample

distribution is greater than the 95th percentile of the
population distribution (shaded area of the sample

distribution in Figure 11.23). The proportion of the

sample distribution that lies in the defined region (in this

case,495th percentile) is defined as the power to be able to

detect the sample value that is greater than the 95th

percentile. The sample for a given experiment will yield a

distribution of values. In Figure 11.23a, the percentage of

the sample distribution greater than the 95th percentile of

the population is 67%. Therefore, that is the power of the

analysis as shown. This means that with the experiment

designed in the present manner there will be a 67% chance

that the defined difference d will be detected with 495%

probability. One way to increase the chances of detecting

the defined difference d is to produce a sampling distribu-

tion that has a larger area lying to the right of the 95th

percentile. Figure 8.23b shows a distribution with 97% of

the area 495th percentile of the population. This second

situation has a much greater probability of finding a value

4d (i.e., has a higher statistical power). It can be seen that

this is because the distribution is more narrow. One way of

getting from the situation shown in Figure 11.23a to the

one in Figure 11.23b (more narrow sampling distribution)

is to reduce the standard error. This can be done by

increasing the number of samples (n, see Equation 11.4).

Therefore, the power and n are interrelated, allowing

researchers to let power define the value of n (sample size)

needed to determine a given difference d with a defined

probability. The number of samples given by power

analysis to define a difference d, the measurement of

which has a standard deviation s, is given by

n �
2ðti þ tpÞ

2s2

d2
, ð11:43Þ

where ti is the t value for significance level desired (in the

example in Figure 11.23, this was 95%) and tp is the level of

power (67% for Figure 11.23a and 97% for Figure 11.23b).
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FIGURE 11.23 Power analysis.The desired difference is 42 standard deviation units

(l�c¼ d). The sample distribution in panel a is wide and only 67% of the distribution values

are4d. Therefore, with an experimental design that yields the sample distribution shown in panel

a will have a power of 67% to attain the desired endpoint. In contrast, the sample distribution

shown in panel b is much less broad and 97% of the area under the distribution curve is4d.
Therefore, an experimental design yielding the sample distribution shown in panel B will gave a

much higher power (97%) to attain the desired end point. One way to decrease the broadness of

sample distributions is to increase the sample size.

11.6 EXPERIMENTAL DESIGN AND QUALITY CONTROL 253



This latter value (tp) is given by power analysis software
and can be obtained as a power curve. Figure 11.24 shows a

series of power curves giving the samples sizes required to
determine a range of differences. From these curves, for
example, it can be seen that a sample size of 3 will be able to
detect a difference of 0.28 with a power of 0.7 (70% of time)

but that a sample size of 7 would be needed to increase this
power to 90%. In general, power analysis software can be
used to determine sample sizes for optimal experimental

procedures.

11.7 Chapter Summary and Conclusions

. Descriptive statistics quantify central tendency and

variance of data sets. The probability of occurrence
of a value in a given population can be described in
terms of the Gaussian distribution.

. The t distribution allows the use of samples to make
inferences about populations

. Statistical tests simply define the probability that a
hypothesis can be disproven. The experimenter still

must assume the responsibility of accepting the risk
that there is a certain probability that the conclusion
may be incorrect.

. The most useful description of variance are confidence
limits since these take into account the sample size.

. While a t-test can be used to determine if the means of

two samples can be considered to come from the same
population, paired data sets are more powerful to
determine difference.

. Possible significant differences between samples can be

estimated by one-way and two-way analysis of

variance.
. While correlation can indicate relationships, it does

not imply cause and effect.
. There are statistical methods to determine

the verisimilitude of experimental data to models.

One major procedure to do this is nonlinear curve

fitting to dose-response curves predicted by receptor

models.
. Choosing models that have parameters that can be

related to biology is preferable to generic mathema-

tical functions that may give better fits.

. There are statistical procedures available to choose

models (hypothesis testing), assess outliers (or weight

them), and deal with partial curves.
. Procedures can also be used to analyze straight lines

with respect to slope and position, compare sample

values to standard population means, compare meth-

ods, and detect differences in small samples.
. Power analysis can be used to optimize experiments

for detection of difference with minimal resources.
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FIGURE 11.24 Power curves. Abscissae is the sample size

required to determine a difference between means shown on the

ordinate. Numbers next to the curves refer to the power of finding

that difference. For example, the gray lines show that a sample size

of n¼ 3 will find a difference of 0.28 with a power of 0.7 (70% of

the time) but that the sample size would need to be increased to 7 to

find that same difference 90% of the time. The difference of 0.28

has previously been defined as being 95% significantly different.
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12
Selected Pharmacological Methods

In mathematics you don’t understand things. You just get used to them.

— JOHANN VON NEUMANN (1903–1957)

12.1 BINDING EXPERIMENTS 255
12.2 FUNCTIONAL EXPERIMENTS 257

12.1 Binding Experiments

12.1.1 Saturation Binding

Aim: To measure the binding of a radioligand (or ligand

that is traceable by other means) to a receptor. The object is

to obtain an estimate of the equilibrium dissociation

constant of the radioligand-receptor complex (denoted

Kd) and the maximal number of binding sites (denoted

Bmax).

General Procedure: The receptor preparation is incubated

with a range of concentrations of radioligand (to give a

measure of total binding) and again in the presence of a

high concentration of nonradioactive receptor-selective

ligand (present at a concentration of 100�Kd for the

nonradioactive ligand) to give a measure of nonspecific

binding (nsb). After a period of equilibration (30 to

90minutes), the amount of bound ligand is quantified and

the total binding and nsb are fit to simultaneous equations

to yield a measure of the ligand specifically bound to

receptor.

Procedure:

1. A range of concentrations of radioligand are added

to a range of tubes (or wells). An example of such a

range of concentrations (in pM) is shown in

Table 12.1. A parallel array of tubes is prepared

with an added concentration of nonradioactive

ligand (to define nsb) at a concentration 100� the

Kd for binding to receptor.
2. The membrane (or cell) preparation is added to the

tubes to begin the binding reaction. The reagents are

equilibrated for 30 to 90 minutes (time required for

equilibration must be determined experimentally)

and then the amount of bound ligand is quantified

(either by separation or reading of scintillation

proximity beads). The nsb and total binding

are obtained from this experiment as shown

(in bound pM).
3. The total binding and nsb are plotted as a function

of added radiolabel (as shown in Figure 12.1a), and

fit simultaneously with nonlinear curve fitting

techniques. For the example shown in

Figure 12.1a, the data are fit to

Total Binding ¼
½A��n � Bmax

½A��n þKdn
þ k � ½A�� ð12:1Þ

and

nsb ¼ k � ½A��: ð12:2Þ

4. The data for Table 12.1 columns A through C
were fit to Equations 12.1 and 12.2 simultaneously

to yield Bmax¼ 6.63� 1.5 pmoles/mg protein,

n¼ 0.95� 0.2, and Kd¼ 26.8 pM (pKd¼ 10.57�

0.3). The fitted curves are shown in Figure 12.1b
along with a dotted line to show the calculated

specific binding.

12.1.2 Displacement Binding

Aim: To measure the affinity of a ligand by observing the

inhibition it produces of a receptor-bound radioligand (or

ligand that is traceable by other means). The object is to
obtain an estimate of the equilibrium dissociation constant

of the nonradioactive ligand receptor complex (alternately

denoted KB or Ki). The pattern of displacement curves can
also be used to determine whether or not the antagonism is

competitive.

General Procedure: The receptor preparation is incubated

with a single concentration of radioligand (this furnishes
the B0 value) in the absence and presence of a range of

concentrations of nonradioactive displacing ligand. This

is also done in the presence of a high concentration of

nonradioactive ligand (present at a concentration of
100�Kd for the nonradioactive ligand) to give a

measure of nonspecific binding (nsb). After a period of

equilibration (30 to 90 minutes), the amount of bound

ligand is quantified. The nsb value is subtracted from the
estimates of total binding to yield a measure of the ligand

specifically bound to receptor. The resulting displacement

curves are fit to models to yield the equilibrium
dissociation constant of the displacing ligand-receptor

complex.

Procedure:

1. Choice of radioligand concentration. The optimal
concentration is one that is below the Kd for
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saturation binding (i.e., [A*]¼ 0.1 Kd, 0.3 Kd) such

that the IC50 of the displacement curves will not be

significantly higher than the KB for the antagonist.

This will minimize the extrapolation required for

determination of the Ki. However, a higher concen-

tration may be required to achieve a useful window

of specific binding and sufficient signal-to-noise

ratio. The amount of membrane protein can also

be adjusted to increase the signal strength, with the

caveat that too much protein will deplete the

radioligand and produce error in the measure-

ments (see Section 4.4.1). For this example, four

radioligand concentrations are chosen to illustrate

the Cheng-Prusoff correction for determination of

KB from the IC50 values.
2. The chosen concentration of radioligand is added to

a set of tubes (or wells). To a sample of these a

concentration of a designated nonradioactive ligand

used to define nsb is added at a concentration

100 nM the Kd for binding to receptor. Then, a range

of concentrations of the nonradioactive ligand for

which the displacement curve will be determined is

added to the sample of tubes containing prebound

radioligand. The concentrations for this example are

shown in Table 12.2a.
3. The membrane (or cell) preparation is added to the

tubes to begin the binding reaction. The reagents are

equilibrated for 30 to 90 minutes (see considerations

of temporal effects for two ligands coming to

equilibrium with a receptor in Section 4.4.2), and

then the amount of bound ligand is quantified (either

by separation or reading of scintillation proximity

beads). The nsb and total binding are obtained from

this experiment, as shown in Table 12.2a (in bound

pM). For a radioligand concentration of [A*]/

Kd¼ 0.1, the total binding is shown in Table 12.2a.

For three higher concentrations of radioligand, the

data are shown in the columns to the right in

Table 12.2a.
4. The nsb for this example was shown to be

15.2� 0.2 pM/mg protein. This value is subtracted

from the total binding numbers or the total binding

fit to displacement curves. Total binding with a

representation of nsb is used in this example and is

shown in Figure 12.2a.
5. Nonlinear fitting techniques (for example, to

Equation 12.3) are used to fit the data points to

curves. The IC50 values form the fit curves are shown

in Table 12.2b.

r� ¼
B0 � basal

1þ ð10Log½B�=10Log½IC50�Þ
þ Basal ð12:3Þ

Here, B0 is the initial binding of radioligand

in the absence of displacing ligand and basal is

the nsb.

6. It can be seen that the IC50 increases with increasing

values of [A*]/Kd in accordance with simple

competitive antagonism. This can be tested by

comparison of the data to the Cheng-Prusoff

equation (Equation 4.12). The data in Table 12.2b

TABLE 12.1

Data for saturation binding curves.

A

[A*]: M

B

nsb

C

Total Binding

4.29� 10�12 0.16 0.97

1.3� 10�11 0.45 2.42

2.7� 10�11 0.81 3.87

4.0� 10�11 1.29 5.16

6.86� 10�11 2.10 6.77

1.37� 10�10 4.19 10.00

2.2� 10�10 6.94 12.58

Binding in pmoles/mg protein.

(a) (b)

FIGURE 12.1 Human calcitonin receptor binding. Ordinates: pmole 125I-AC512 bound/mg protein.

Abscissae: concentration of 125I-AC512 (pM). Total binding (filled circles) and nsb (open circles). Curves fit

simultaneously to Equations 4.3 and 4.1. (Bmax¼ 6.63 pmoles/mg protein, n¼ 0.95, Kd¼ 26.8 pM). Dotted

line shows specific binding.
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is fit to

IC50 ¼ KB � ½A
�
�=Kd þ 1ð Þ: ð12:4Þ

The resulting fit is shown in Figure 12.2c. The

regression is linear with a slope not significantly

different from unity (slope¼ 0.95� 0.1). The inter-

cept yields the KB value; in this case, 1 pM.

7. In cases where the plot of [A*]/Kd vs IC50 is not

linear, other mechanisms of antagonism may be

operative. If there is a nearly vertical relationship,

this be due to noncompetitive antagonism in a

system with no receptor reserve (see Figure 12.2d).

Alternatively, if the plot is linear at low values of

[A*]/Kd and then approaches an asymptotic value

the antagonism may be allosteric (the value of a
defines the value of the asymptote) or noncompeti-

tive in a system with receptor reserve (competitive

shift until the maximal response is depressed,

Figure 12.2d).

12.2 Functional Experiments

12.2.1 Determination of Equiactive Concentrations on

Dose-response Curves

Aim: Mathematical estimation of concentrations on a dose-

response curve that produce the same magnitude of

response as those on another dose-response curve. This is

a procedure common to many pharmacological methods

aimed at estimating dose-response curve parameters.

General Procedure: A function is fit to both sets of data

points and a set of responses are chosen that have data

points for at least one of the curves within the range of the

other curve. A metameter of the fitting function is then used

to calculate the concentrations of agonist for the other

curve that produce the designated responses from the first

curve.

Procedure:

1. Dose-response data are obtained and plotted on a

semi-logarithmic axis, as shown in Figure 12.3a

(data shown in Table 12.3a).
2. The data points are fit to a function with nonlinear

fitting procedures. For this example, Equation 12.5

is used:

Response ¼ Basalþ
Emax½A�

n

½A�n þ ðEC50Þ
n : ð12:5Þ

The procedure calculates the concentrations from

both curves that produce the same level of response.

Where possible, one of the concentrations will be

defined by real data and not the fit curve (see

Figure 12.3b). The fitting parameters for both curves

are shown in Table 12.3b. Some alternative fitting

equations for dose-response data are shown in

Figure 12.4.

TABLE 12.2

Displacement binding.

(a) Data for Displacement of Radioligand Binding Curves

[B]: M

[A*]/

Kd¼ 0.1

[A*]/

Kd¼ 0.3

[A*]/

Kd¼ 1.0

[A*]/

Kd¼ 3.0

10�14 17.7 21.87 29.93 37.44

3� 10�14 17.65 21.77 29.78 37.33

10�13 17.5 21.43 29.29 36.95

3� 10�13 17.14 20.63 28.04 35.93

10�12 16.43 18.91 25 33

3� 10�12 15.73 17.09 21 27.86

10�11 15.27 15.8 17.5 21.43

3� 10�11 15.1 15.29 15.94 17.65

10�10 15.03 15.09 15.29 15.87

3� 10�10 15.01 15.03 15.1 15.3

Concentration of displacing ligand in pM.

Binding shown as pmoles/mg protein.

nsb¼ 15� 0.2 pmoles/mg protein.

(b) Fit Parameters to Data Shown in A

[A*]/Kd IC50 (M) n

0.9 1.1� 10�12 0.95

2.7 1.3� 10�12 0.97

9 2� 10�12 0.92

27 3.9� 10�12 0.95
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(a) (b)

(c) (d)

FIGURE 12.2 Displacement of a radioligand by a nonradioactive competitive ligand. Ligand displaces signal

to nsb, which in this case is 15 pmoles/mg protein. Ordinates: pmoles/mg protein bound. Abscissae

concentration of displacing ligand in pM on a logarithmic scale. (a) Data for displacement curves shown

for increasing concentrations of radioligand. Curves shown for [A*]/Kd¼ 0.1 (filled circles), [A*]/Kd¼ 0.3

(open circles), [A*]/Kd¼ 1.0 (filled squares), and [A*]/Kd¼ 3.0 (open squares). (b) Nonlinear curve fitting

according to Equation 4.9. (c) Cheng-Prusoff correction for IC50 to KB values for data shown in panel b.

(d) Theoretical Cheng-Prusoff plots for competitive antagonist (dotted line) and noncompetitive and/or

allosteric antagonists in different systems.

(a) (b)

FIGURE 12.3 Determination of equiactive concentrations of agonist. (a) Two dose-response curves.

(b) Concentrations of agonist (denoted with filled and open circles) that produce equal responses are

joined with arrows that begin from the real data point and end at the calculated curve.
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3. A range of responses (corresponding to real data

points) are chosen from the dose-response curves.

For this example, the responses from concentrations

of curve 1 (3, 10, and 30 nM) and responses from

curve 2 (30, 100, and 300 nM) are compared. The

corresponding responses are 0.06, 0.145, 0.25, 0.3,

and 0.145 (1-(Tf/Ti)) units (melanophore responses).

4. These responses are used for response in the

concentration metameter for the fit for the second

curve. For example, the response defined by real

data for curve 1 at 3 nM is 0.06. The corresponding

equiactive concentration from curve 2 is given by

Equation 12.6, with Response ¼ 0.06, basal ¼ 0, and

the values of n0, E0max, and EC050 derived from the fit

TABLE 12.3

Estimation of equiactive agonist concentrations.

(a) Dose-Response Data for Two Curves

Control Treated

[A]: M Curve 1 Curve 2

10�9 0.025 0

3� 10�8 0.06 0.02 *

10�8 0.25 0.04 * Designated responses

3� 10�8 0.49 0.145 *

10�7 0.755 0.3

3� 10�7 0.8 0.4

10�6 0.85 0.47

3� 10�6 0.84 0.51

(b) Parameters for Fit Curves

Curve 1 Curve 2

Emax¼ 0.86 E0max¼ 0:52

EC50¼ 22 nM EC050¼ 79nM

n¼ 1.2 n0 ¼ 1

Basal¼ 0 Basal0 ¼ 0

(c) Equiactive Agonist Concentrations

Responce [A1]: M [A2]: M

0.06 3� 10
�9 1.03� 10�8

0.145 3.38� 10�9 3.0� 10
�8

0.25 10�8 7.3� 10�8

0.3 7.8� 10�9 10�7

0.4 1.17� 10�8 3.0� 10
�7

0.49 3.0� 10
�8 1.29� 10�6

Real data points in bold font. Calculated from fit curves in normal font.

(a)

(b)

(c)

FIGURE 12.4 Metameters for determining equiactive concentrations of agonist.
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of curve 2 (1, 0.52, and 79 nM, respectively, see

Table 12.3b). The calculated equiactive concentra-

tion for curve 2 from Equation 12.6 is 10.3 nM.

½A� ¼ ðEC050Þ �
ðResponse� Basal0Þ

E0max �Response

� �1=n0
ð12:6Þ

5. The complete set of equiactive concentrations (real

data in bold font, calculated data in normal font) is

shown in Table 12.3c.

12.2.2 Method of Barlow, Scott, and Stephenson for

Measurement of the Affinity of a Partial Agonist

Aim: To measure the affinity of partial agonists.

General Procedure: Full dose-response curves to a full and

partial agonist are obtained in the same receptor prepara-

tion. It is essential that the same preparation be used as

there can be no differences in the receptor density and/or

stimulus-response coupling behavior for the receptors for

all agonist curves. From these dose-response curves,

concentrations are calculated that produce the same

response (equiactive concentrations). These are used in

linear transformations to yield estimates of the affinity of

the partial agonist.

Procedure:

1. A dose-response curve to a full agonist is obtained.

Shown for this example (see Table 12.4) are data to

the full agonist histamine in guinea pig ileal smooth

muscle (responses as a percentage of the maximal

response to histamine).
2. After a period of recovery for the preparation (to

avoid possible desensitization), a dose-response

curve to a partial agonist is obtained. Data are

shown in Table 12.4a for the histamine partial

agonist E-2-P ((N,N-diethyl-2-(1-pyridyl) ethyla-

mine). Response to E-2-P is expressed as a percen-

tage of the maximal response to histamine.
3. Data points are subjected to nonlinear curve fitting.

For these data, Equation 12.5 is used to fit the curve

with basal ¼ 0. The fitting parameters for histamine

and E-2-P are given in Table 12.4b. The curves are

shown in Figure 12.5a.
4. Equiactive concentrations of histamine and E-2P are

calculated (see method in Section 12.2.1). For this

calculation, responses produced by E-2-P are used

since they covered a convenient range to characterize

both dose-response curves. The equiactive concen-

trations are shown in Table 12.4c.
5. A regression of 1/[E-2-P] versus 1/[Histamine]

is constructed. This is shown in Figure 12.5b.

TABLE 12.4

Method of Barlow, Scott, and Stephenson for partial agonist affinity.

(a) Data for Dose-Response Curves.

[Histamine]: M Response [E-2-P]: M Response

10�8 0.12 10�6 0.04

3� 10�8 0.27 3� 10�6 0.12

10�7 0.53 10�5 0.26

3� 10�7 0.76 3� 10�5 0.42

10�6 0.93 10�4 0.53

3� 10�6 1.01 3� 10�4 0.58

10�3 0.61

(b) Parameters for Fit Curves

Histamine E-2-P

Emax¼ 1.05 0.62

EC50¼ 90 nM 12.5 mM
n¼ 0.95 0.95

(c) Equiactive Agonist Concentrations

Response [Histamine]: M 1/[Hist] [E-2-P]: M 1/[E-2-P]

0.12 5� 10�8 2� 107 3� 10�6 3.3� 105

0.26 1.3� 10�7 7.7� 106 10�5 105

0.42 2.8� 10�7 3.57� 106 3� 10�5 3.3� 104

0.53 4.4� 10�7 2.27� 106 10�4 104

0.58 5.4� 10�7 1.85� 106 3� 10�4 3.33� 103
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This regression is linear, has a slope of 55.47� 0.855,

and an intercept of 1.793� 0.132� 106M�1. The Kp

estimate (denoted K0p) is calculated by K0p¼ slope/

Intercept. For this example, K0p¼ 30.9mM.
6. This is an estimate of the Kp modified by an

efficacy term alternatively depicted as (1� tp/tA) or
(1� ep/eA). Since tA� tp (also eA� ep), it is

considered that the K0p is a fairly accurate descrip-

tion of Kp.

12.2.3 Method of Furchgott for the Measurement of the

Affinity of a Full Agonist

Aim: To measure the affinity of full agonists.

General Procedure: Dose-response curves to a full agonist,

before and after irreversible inactivation of a portion of the

receptor population, are obtained in the same receptor

preparation. It is essential that the same preparation be

used as there can no differences in the stimulus-response

coupling behavior of the preparation for both curves. From

these dose-response curves, concentrations are calculated

that produce the same response (equiactive concentrations).

These are used in linear transformations to yield estimates

of the affinity of the full agonist.

Procedure:

1. A dose-response curve to a full agonist is obtained.

Shown are data for the dose response to the full

agonist oxotremorine (responses as a percentage of

the maximal response to oxotremorine) in

Table 12.5a. The dose-response curve is shown in

Figure 12.6a.
2. After completion of determination of the control

dose-response curve, the receptor preparation is

treated to reduce the number of active receptors.

There are numerous methods to do this. A common

method is through chemical alkylation. For the

example shown, the tissue is treated with phenox-

ybenzamine 10mM for 12 minutes. After treatment,

the tissue is washed for 60 minutes with fresh

physiological salt solution. It should be noted that

there are specific protocols for these treatments

unique for different receptors.
3. The dose-response curve after receptor alkylation is

shown in Figure 12.6a (open circles). The same

function is used to fit the data as employed for the

control curve (for this example, Equation 12.5). The

parameters of the fit dose-response curves are

shown in Table 12.5b. Equiactive concentrations of

oxotremorine are calculated according to the proce-

dure given in Section 12.2.1.

4. The equiactive concentrations are shown

in Table 12.5c. A regression using the reciprocals

of these equiactive concentrations is shown in

Figure 12.6b. The regression is linear with a slope

of 609� 11.2 and an intercept of 7.43� 0.68� 107.

Resulting KA estimate for oxotremorine

according to Equation 5.13 (KA¼ slope/intercept)

is 8.1mM.

12.2.4 Schild Analysis for the Measurement of

Competitive Antagonist Affinity

Aim: To measure the potency of a competitive antagonist

(and/or to determine if a given antagonist is competitive).

The object is to obtain an estimate of the equilibrium

dissociation constant of the antagonist-receptor complex

(denoted KB).

(a) (b)

FIGURE 12.5 The method of Barlow, Scott, and Stephenson for the measurement of the affinity of a

partial agonist. (a) Concentrations of a full agonist (histamine, filled circles) are compared to concentrations

of a partial agonist that produce an equal response the same receptor (E-2-P; (N,N-diethyl-2-(1-pyridyl)

ethylamine, open circles). For these examples real data for the partial agonist was used with fit data for the

full agonist (note arrows). (a) Double reciprocal plot of equiactive concentrations of histamine (ordinates)

and E-2-P (abscissae) according to Equation 5.6. The regression is linear with a slope of 55.47 and intercept

of 1.79� 106M�1.
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General Procedure: A set of dose-response curves to an

agonist are obtained, one in the absence of and the others in

the presence of a range of concentrations of the antagonist.

The magnitude of the displacement of the curves along the

concentration axis is used to determine the potency of the

antagonist.

Procedure:

1. Dose-response curves to the agonist carbachol are

obtained in the presence and absence of the

antagonist scopolamine. The data are given in

Table 12.6a. Responses are contractions of rat

trachea resulting from muscarinic receptor

TABLE 12.5

Method of Furchgott for measuring affinity of full agonists.

(a) Data for Dose-Response Curves to Oxotremorine

[A]: M Response [A0]: M Response

3� 10�9 3.7 10�6 0.0

10�8 21.0 3� 10�6 2.0

3� 10�8 59.3 10�5 14.0

10�7 90.1 3� 10�5 22.2

3� 10�7 98.8 10�4 27.0

10�6 100.0 3� 10�4 28.0

(b) Parameters for Fit Curves

Control Alkylated

Curve Curve

Emax¼ 101 28

EC50¼ 2.4� 10�8 10�5

n¼ 1.54 1.5

(c) Equiactive Agonist Concentrations

Response [A0]: M 1/[A0] [A]: M 1/[A]

14 10�5 105 7.4� 10�9 1.35� 108

22 3� 10�5 3.3� 104 1.1� 10�8 9.1� 107

27 10�4 104 1.3� 10�8 7.7� 107

(a) (b)

FIGURE 12.6 Measurement of full agonist affinity by the method of Furchgott. (a) Dose-response

curve to oxotremorine obtained before (filled circles) and after (open circles) partial alkylation of the

receptor population with controlled alkylation with phenoxybenzamine (10 mM for 12minutes followed by

60minutes of wash). Real data for the curve after alkylation was compared to calculated concentrations

from the fit control curve (see arrows). (b) Double reciprocal of equiactive concentrations of oxotremorine

before (ordinates) and after (abscissae) alkylation according to Equation 5.12. The slope is linear with a

slope of 609 and an intercept of 7.4� 107M�1.
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activation by the agonist (expressed as a percentage

maximum contraction to carbachol). Columns also

show responses obtained in the presence of the

designated concentrations of the muscarinic antago-

nist scopolamine. The antagonist must be preequili-

brated with the tissue before responses to carbachol

are obtained (preequilibration period 30 to 60

minutes).

2. The responses are plotted on a semi-logarithmic axis,

as shown in Figure 12.7a. The curves can be fit to a

four-parameter logistic equation if there are appreci-

able effects on the basal response, or to a three-

parameter logistic equation if basal effects are not

observed. The curves for the data shown were fit to a

three-parameter logistic equation (Equation 12.5).

3. The data are fit to curves with individual Emax, slope,

and EC50 values. The parameters for these fit curves

are given in Table 12.6b.

4. The mean maximal response for the five curves

is 96.1 and the mean slope is 1.27. The five curves

are then refit to three-parameter logistic functions

utilizing the mean maximal response and mean

slope. The EC50 for the curves fit in this manner

are shown in Table 12.6b (EC50 values in column

labeled Mean).
5. A statistical test is performed to determine whether

or not the data may be fit to a set of curves of

common maximal response and slope or if they must

be fit to individual equations. For this example,

Aikake’s information criteria are calculated (see

TABLE 12.6

Schild analysis.

(a) Data for Scopolamine Antagonism of Responses to Carbachol

Scopol. Scopol. Scopol. Scopol.

[Carbachol]: M Control 1 nM 3nM 10nM 30nM

10�7 0 0 0

3� 10�7 14.3 8.6 0

10�6 44.3 19 2.9 0 0

3� 10�6 80 48 22.9 11.4 0

10�5 93 77.1 60 32.9 9

3� 10�5 98 91.4 82.9 65.7 24

10�4 97.1 94.3 81.4 51

3� 10-4 96 88.6 73

10�3 97.1 88.6

3� 10�3 94.3

(b) Parameters for Fit Dose-Response Curves

Individ. Mean

Emax n EC50 EC50

Control 98 1.46 1.1� 10�6 1.1� 10�6

1 nM Scopol. 97.7 1.17 3.1� 10�6 3.0� 10�6

3 nM Scopol. 95 1.44 7.0� 10 7.2� 10�6

10 nM Scopol. 94 1.2 1.6� 10�5 1.7� 10�5

30 nM Scopol. 96 1.1 9.4� 10�5 9.1� 10�5

Individ. EC50 refers to EC50 values for curve fit to individual values of Emax, and slope. Mean EC50 refers to

EC50 values from curves fit to a common Emax and slope.

(c) Aikake’s Information Criteria for Assessment of Fit to Common Slope and Maximum

Model SSq K n AIC

Individ. 240.64 15 31 125.53

Mean 403.95 7 31 98.46

(d) Data for Scopolamine Schild Plot

[Scopol.]: M Log[Scopol.] DR Log(DR-1)

10�9 �9 2.7 0.24

3� 10�9 �8.5 6.5 0.74

10�8 �8 13.6 1.1

3� 10�8 �7.5 82.7 1.91
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Section 11.4.5). The responses calculated by the

logistic equations are subtracted from the actual

data points and the result squared. The sum of these

deviations becomes the sum of squares for the

deviations.

6. The squared deviations between the calculated and

actual responses are shown in Table 12.6c (see

column labeled SSq). The AIC values are calculated

according to Equation 11.30. The values are shown

in Table 12.6c. It can be seen that the fit to the curves

with a mean Emax and slope gives a lower AIC value.

Therefore, this model is statistically preferable. It is

also the most unambiguous model for simple

competitive antagonism since it fulfills the criteria

of parallel dextral displacement of dose-response

curves with no diminution of maxima. The calcu-

lated curves are shown in Figure 12.7b.
7. The fit EC50 values for the mean curves (Table 12.6b,

column labeled Mean EC50) are used to calculate

dose ratios. These are shown in Table 12.6d.
8. The values of Log (DR-1) are plotted as a function

of the logarithm of scopolamine concentrations for a

Schild plot (see Figure 12.7c).

9. A linear equation is fit to the data (y¼mxþ b). The

plot shown in Figure 12.7c has a slope of 1.09 with

95% confidence limits of 0.66 to 1.5. Since unity is

within the 95% confidence limits of this slope, the

data is refit to a linear model of unit slope

(y¼ xþ b).

10. The fit to a linear model of unit slope is shown in

Figure 12.7d. The best fit equation is y¼ xþ 9.26.

This yields the pKB for scopolamine of 9.26 with

95% confidence limits of 9.1 to 9.4.

12.2.5 Resultant Analysis for Measurement of Affinity of

Competitive Antagonists with Multiple Properties

Aim: This procedure can be used to measure the potency of

a competitive antagonist (denoted the test antagonist) that

has secondary properties that complicate observation of the

antagonism.

General Procedure: Schild regressions to a reference

antagonist are obtained in the presence of a range of

concentrations of the test antagonist. The multiple Schild

(a) (b)

(c) (d)

FIGURE 12.7 Schild analysis. (a) Dose-response data showing carbachol responses in the absence

(filled circles) and presence of scopolamine 1 nM (open circles), 3 nM (filled triangles), 10 nM (open

inverted triangles), and 30 nM (filled squares). (b) Data points fit to a set of logistic functions with a

common maximum and slope. (c) Schild regression for the data shown in panels a and b. Regression is

linear with a slope of 1.09 (95% c.l. ¼ 0.66 to 1.5). (d) Schild regression refit to a slope of unity (solid line).

Dotted line is regression from panel c.
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regressions are plotted on a common antagonist concentra-

tion axis and their dextral displacement along the

concentration axis used to construct a resultant plot. This

plot, if linear with a slope of unity, yields the pKB of the test

antagonist as the intercept.

Procedure:

1. Schild regressions to a reference antagonist are

obtained according to standard procedures (see

Section 12.2.4) in the absence and presence of a

range of concentrations of the test antagonist. In the

cases where the test antagonist is present, it is

included in the medium for the control dose-

response curve as well as the curves obtained in the

presence of the reference antagonist. For this

example, the scheme for the dose-response curves

used for the construction of regressions I to IV is

shown in Table 12.7a. The test antagonist is atropine

and the reference antagonist is scopolamine.
2. The Schild regressions for scopolamine, obtained in

the absence (regression I) and presence of a range of

concentrations of atropine (regressions II to IV) are

shown in Figure 12.8a. The data describing these

regressions is given in Table 12.7b.

3. The displacement, along the antagonist concentra-

tion axis, of the Schild regressions is calculated. To

obtain a value for [B0]/[B] (shift along the concentra-

tion axis) that is independent of Log (DR-1) values

the Schild regressions must be parallel. The first step

is to fit the regressions to a common slope of unity.

This can be done if the 95% confidence limits of the

slopes of each regression include unity (which is true

for this example, see Table 12.7b).

4. The pKB values for scopolamine from slopes I to IV,

each fit to a slope of unity, are given in Table 12.7c.
5. The resultant plot is constructed by calculating the

shift to the right of the Schild regressions produced

by the addition of atropine (pKB for unit slope

regression for scopolamine regressions II to IV

divided by the pKB for scopolamine found for

regression I). (See Table 12.7c.) These yield values

of k for every concentration of atropine added. For

example, the k value for regression II ([Atropine] ¼ 3

nM) is 10�8.7/10�9.4¼ 5. These values of k are used

in a resultant plot of Log (k�1) versus the

concentration of the test antagonist (atropine) used

for the regression. The resultant plot is shown in

Figure 12.8c.

TABLE 12.7

Resultant analysis.

(a) Concentration Scheme for Resultant Analysis

Regression I Regression II Regression III Regression IV

Ref Antagonist Test Antag. Test Antag. Test Antag. Test Antag.

Scopol. (M) Atropine Atropine (M) Atropine (M) Atropine (M)

10�9 0

3� 10�9 0 3� 10�9

10�8 0 3� 10�9 10�8 3� 10�8

3� 10�8 0 3� 10�9 10�8 3� 10�8

10�7 3� 10�9 10�8 3� 10�8

3� 10�7 10�8 3� 10�8

Test antagonist ¼ atropine. Reference antagonist ¼ scopolamine. The Schild regression is obtained to the concentrations of

scopolamine shown in the left-hand column in the presence of the concentrations of atropine shown in columns labeled

Regression I to IV.

(b) Data Describing Schild Analyses for Scopolamine (I) and Scopolamine and Atropine (II to IV)

Regression Slope 95% c.l. Intercept

I 1.3 0.9 to 1.5 11.88

II 1.2 0.9 to 1.4 10.34

III 1.06 0.76 to 1.3 8.77

IV 0.95 0.78 to 1.1 7.5

(c) Parameters for Schild Regressions Fit to Unit Slope and Data for Resultant Regression (Log [Atropine] vs. Log (k�1))

pKB from

Regression slope¼ 1 k [Atropine]: M Log (k�1)

I 9.4þ 0.1

II 8.7þ 0.07 5 3.00E�09 0.60

III 8.29þ 0.04 12.9 1.00E�08 1.08

IV 7.9þ 0.02 31.6 3.00E�08 1.49
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6. The resultant regression is linear and has a slope not

significant from unity (slope ¼ 0.9� 0.07; 95%

c.l.¼ 0.4 to 1.35). A refit of the data points to a

linear plot with unit slope yields a pKB for atropine

of 9.05� 0.04 (95% c.l. 8.9 to 9.2).

12.2.6 Method of Stephenson for Measurement of

Partial Agonist Affinity

Aim: This procedure measures the affinity of a partial

agonist by quantifying the antagonism of responses to a full

agonist by the partial agonist.

General Procedure: Dose-response curves to a full agonist

are obtained in the absence and presence of a range of

concentrations of partial agonist. For a single pair of curves

(full agonist alone and in the presence of one concentration

of partial agonist), a plot of equiactive concentrations of

full agonist yields a linear regression. The Kp for the partial

agonist can be calculated from the slope of this regression.

An extension of this method utilizes a number of these

slopes for a more complete analysis. For this method, the

individual slopes are used in a metameter of the equation to

yield a single linear regression from which the Kp can be

calculated much like in Schild analysis.

Procedure:

1. A dose-response curve to a full agonist is obtained.

A concentration of partial agonist is equilibrated

with the same preparation (30 to 60 minutes) and

then the dose-response curve is repeated in the

presence of the partial agonist. The data are fit to

curves (for this example, Equation 12.5) to yield a

pair of curves like those shown in Figure 12.9a.

For this example, the full agonist is isoproterenol,

the partial agonist is chloropractolol, and the

response emanates from rat atria containing

b-adrenoceptors.
2. Equiactive concentrations of isoproterenol, in the

absence [A] and presence [A0] of chloropractolol

(100 nM), are calculated according to the general

procedure described in Section 12.2.1. These are

given in Table 12.8a. A plot of these equiactive

concentrations yields a linear regression (according

to Equation 6.25, see Figure 12.9b). The x values are

the concentrations of isoproterenol [A0] in the

presence of chloropractolol and the y values are

the control concentrations of isoproterenol [A].

3. The slope of this regression is given in Table 12.8a

(slope¼ 0.125). The Kp for the partial agonist

is given by Equation 6.26 (Kp¼ [P] � Slope/

(1� Slope) � W).The term W represents an efficacy

term modifying the estimate of affinity (1� (tp/ta))
in terms of the operational model and (1� (ep/ea)) in

terms of the classical model. For weak partial

agonists and highly efficacious full agonists,

this factor approaches unity and the method

approximates the affinity of the partial agonist.

(a)

(c)

(b)

FIGURE 12.8 Resultant analysis. (a) Schild regressions for scopolamine in the absence (I, filled

circles) and presence of atropine 3 nM (II, open circles), 10 nM (III, filled triangles), and 30 nM (IV,

open triangles). (b) Schild regressions shown in panel a fit to regressions of unit slope. (c) Resultant

plot for atropine. Displacements of the Schild regressions shown in panel b furnish values for k for a

regression according to Equation 6.18.

266 12. SELECTED PHARMACOLOGICAL METHODS



12.2.7 Extension of the Stephenson Method: Method of

Kaumann and Marano

1. The previous procedure can be repeated for a

number of concentrations of partial agonist (see

Figure 12.9c) to provide a wider base of data on

which to calculate the partial agonist affinity. Thus,

a number of regressions (like that shown in

Figure 12.9b) are constructed to yield a number of

slopes for a range of partial agonist concentrations.

An example is shown in Table 12.8b.
2. The slope values are used in a metameter

(Log (1/slope)� 1)) as the y values for the

corresponding Log concentrations of the partial

agonists (x values) to construct a linear regression

according to Equation 6.27. The regression for

chloropractolol is shown in Figure 12.9d.
3. This regression is linear, with a slope of 0.96� 0.05.

This slope is not significantly different from unity.

Thus, the data points are refit to a linear regression

with a slope of unity. The intercept of this regression

yields an estimate of the pKp for the partial agonist

(as for Schild analysis). For this example,

pKp¼ 7.74� 0.05 (95% c.l.¼ 7.6 to 7.9).

12.2.8 Method of Gaddum for Measurement of

Noncompetitive Antagonist Affinity

Aim: This method is designed to measure the affinity of a

noncompetitive antagonist.

General Procedure: Dose-response curves to a full agonist

are obtained in the absence and presence of the non-
competitive antagonist. From these curves, equiactive

concentrations of full agonist are compared in a linear

regression (see Section 12.2.1). The slope of this regression

is used to estimate the KB for the noncompetitive

antagonist.

Procedure:

1. A dose-response curve is obtained to the agonist.
Then the same preparation is equilibrated with a

(a) (b)

(c) (d)

FIGURE 12.9 Method of Stephenson for measurement of partial agonist affinity. (a) Dose-response curves to

isoproterenol in the absence (filled circles) and presence of chloropractolol (100 nM, open circles). (b) Regressions

of equiactive concentrations of isoproterenol in the absence (ordinates) and presence (abscissae) of

chloropractolol (100 nM, data from panel a). Regression is linear with a slope of 0.125. (c) Extension of this

method by Kaumann and Marano. Dose-response curves to isoproterenol in the absence and presence of a range

of concentrations of chloropractolol. (d) Each shift of the isoproterenol dose-response curve shown in panel c

yields a regression such as that shown in panel b. A regression of the respective slopes of these regressions is made

upon the 4 concentrations of partial agonist (chloropractolol) according to Equation 6.13. The regression is linear

with a slope of 0.96� 0.
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known concentration of noncompetitive

antagonist (for 30 to 60minutes, depending on

the time needed to reach temporal equilibrium)

and a dose-response curve to the agonist repeated

in the presence of the antagonist. A hypothetical

example is shown in Figure 12.10a. The data are

given in Table 12.9a. For this example, the

preparation is equilibrated with a 100-nM

antagonist.
2. The data points are fit to an appropriate function

(Equation 12.5). (See Figure 12.10b.) From the real

data points and calculated curves, equiactive con-

centrations of agonist in the absence and presence of

the antagonist are calculated (see Section 12.2.1).

For this example, real data points for the blocked

curve were used and the control concentrations

calculated (control curve Emax¼ 1.01, n¼ 0.9, and

EC50¼ 10 mM). The equiactive concentrations are

shown in Table 12.9b.

3. A regression of 1/[A] where [A] equal the equiactive

concentrations for the control curve (no antagonist)

upon 1/[A0] (x values) where [A0] equal the equiactive

concentrations in the presence of the antagonist is

constructed. For the example, this is shown in

Figure 12.10c. This regression is linear, with a

slope of 13.4.
4. The KB for the noncompetitive antagonist is

calculated with Equation 6.35 (KB¼ [B]/(slope�1)).

For this example, the calculated KB for the

antagonist is 8.06 nM.

12.2.9 Measurement of the Affinity and Maximal Allosteric

Constant for Allosteric Modulators Producing

Surmountable Effects

Aim: This procedure measures the affinity and cooperativ-

ity constant of an allosteric antagonist. It is used for known
allosteric antagonists or molecules that produce a saturable

antagonism that does not appear to follow the Gaddum

equation for simple competitive antagonism.

General Procedure: Dose-response curves are obtained for

an agonist in the absence and presence of a range of
concentrations of the antagonist. The dextral displacement

of these curves (EC50 values) are fit to a hyperbolic

equation to yield the potency of the antagonist and the

maximal value for the cooperativity constant (a) for the
antagonist.

Procedure:

1. Dose-response curves are obtained for an agonist in

the absence and presence of a range of concentra-
tions of the antagonist and the data points fit with

standard linear fitting techniques (Equation 12.5) to

a common maximum asymptote and slope. An

example of acetylcholine responses in the presence

of a range of concentrations of gallamine are shown
in Table 12.10a. The curves are shown in

Figure 12.11a.
2. The EC50 values for the fit curves (see Table 9.10b)

are then fit to a function of the form (variant of

Equation 7.2)

EC050
EC50

¼
ðx=Bþ 1Þ

ðCx=Bþ 1Þ
, ð12:7Þ

where EC050 and EC50 are the location parameters of

the dose-response curves in the absence and presence
of the allosteric antagonist, respectively, x is the

molar concentration of antagonist, and B and C are

fitting constants.
3. The data in Table 12.10b are fit to Equation 12.7 to

yield estimates of B¼ 9.5� 10�7 and C¼ 0.011. (See

Figure 12.11b.) These values can be equated to the
model for allosteric antagonism (Equation 6.31) to

yield a KB value of 95 nM and a value for a of 0.011.

12.2.10 Measurement of pA2 for Antagonists

Aim: This method allows estimation of the potency of an

unknown antagonist. It does not indicate the mechanism of

antagonism (by the pattern of effect on dose-response

curves) but does give a starting point for further analysis.
The potency of the antagonist is quantified as the pA2

defined as the molar concentration of antagonist that

produces a twofold shift to the right of the agonist dose-

response curve.

General Procedure: A dose-response curve to an agonist is

obtained and a concentration of agonist that produces

TABLE 12.8

Method of Stephenson for affinity of partial agonists

(Qmethod of Lemoine and Kaumann).

(a)

Response [A] [A0]

0.51 5.9� 10�10 1.79� 10�9

0.76 1.43� 10�9 8.3� 10�9

0.90 4.0� 10�9 2.89� 10�8

Slope¼ 0.125

Kp¼ 1.43� 10�8

(b)

[Chloro]: M Slope(s)

10�8 0.619

10�7 0.127

10�6 0.023

10�5 0.0018

Slope¼ 0.96� 0.05

pKp¼ 7.74� 0.05

95%c.l.¼ 7.6 to 7.9
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between 50 and 80% maximal response chosen for further

study. Specifically, the effects of a range of antagonist

concentrations on the response produced to the chosen

agonist concentration is measured and the IC50 (concentra-

tion of antagonist that produces a 50% blockade of the
initial agonist response) is measured to yield an inhibition

curve. This concentration is then corrected to yield an

estimate of the antagonist pA2.

Procedure:

1. A dose-response curve to the agonist is obtained.

Ideally, it should be done as near the time for

analysis of antagonism as possible to negate possible

variances in preparation sensitivity. Dose-response
data are shown in Table 12.11a (and Figure 12.12a).

The data are fit to a curve. For this example, they

are fit to Equation 12.8 with fitting parameters

Emax¼ 96, n¼ 0.7, and EC50¼ 20 nM. The curve is

shown in Figure 12.12b.

Response ¼
Emax � ½A�

n

½A�n þ EC50n
ð12:8Þ

2. A target agonist concentration is chosen. For this

example, a concentration of 0.3mM agonist was

used. This approximates the concentration that

produces an 80% maximal response. The antagonist

is tested against the response produced by 0.3mM
agonist.

3. A set of responses to the target agonist concentration

is measured in the absence and presence of a range of

antagonist concentrations. The fit agonist response

curve is shown in Figure 12.12c. For this example,

the repeat test of the target concentration (0.3 mM
agonist) gives a response value of 86. The repeat

response to the target agonist concentration is shown

as the open circle. The addition of the antagonist to

the preparation theoretically produces a shift of the

agonist dose-response curve shown as the dotted

lines. The arrow on Figure 12.12c indicates the

expected response to the target concentration of

agonist as increasing concentrations of the antago-

nist are added.
4. The responses to the target concentration of agonist

in the presence of a range of concentrations of the

(a)

(c)

(b)

FIGURE 12.10 Measurement of affinity for noncompetitive antagonists. (a) Dose-response curve

to an agonist in the absence (filled circles) and presence (open circles) of a noncompetitive

antagonist. (b) Data points in panel A fit to dose-response curves. Equiactive concentrations of

agonists determined as in Section 12.2.1. Real data points used from curve in the presence of

antagonist. Equiactive concentrations of agonist from control curve calculated (see arrows).

(c) Double reciprocal plot of equiactive concentrations of agonist in the absence (ordinates) and

presence (abscissae) of antagonist. Regression is linear with a slope of 13.4.
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TABLE 12.9

Gaddum method for measuring the affinity of a noncompetitive antagonist.

(a)

[A] Control Resp. Blocked Resp.

10�6 0.08 0.01

3.0� 10�6 0.25 0.03

10�5 0.47 0.1

3.0� 10�5 0.64 0.15

10�4 0.84 0.29

3.0� 10�4 0.9 0.39

10�3 0.89 0.46

3.0� 10�3 0.48

10�2 0.46

(b)

Response [A0] 1/[A0] [A] 1/[A]

0.1 10�5 105 7.0� 10�7 1.4� 106

0.15 3� 10�5 3.33� 104 1.7� 10�6 5.88� 105

0.29 10�4 104 4.3� 10�6 2.32� 105

0.39 3� 10�4 3.33� 103 7.26� 10�6 1.37� 105

0.46 10�3 103 1.02� 10�5 9.76� 104

Intercept¼ 1.01� 105

Slope¼ 13.4

TABLE 12.10

Allosteric antagonism.

(a) Dose-Response Data for Gallamine Blockade of Acetylcholine Responses

[A]: M Control Resp. [A]: M 1� 10�5M Gallamine [A]: M 3.0� 10�5M Gallamine

10�9 3.1 3� 10�8 9.38 3� 10�7 29.69

10�8 20.3 10�7 25 5� 10�7 41

3� 10�8 53.1 3� 10�7 45 10�6 56.25

10�7 74 10�6 76.56 2� 10�6 67.19

2� 10�7 85.9

3� 10�7 92.2

5� 10�7 93.7

[A]: M 1.00� 10�4M Gallamine [A]: M 3� 10�4M Gallamine [A]: M 5.00E� 04 Gallamine

5� 10�7 25 10�7 3.1 10�6 31.2

10�6 40.6 5� 10�7 15.6 2� 10�6 46.87

3� 10�6 71.87 10�6 31.25 5� 10�6 65.62

10�5 87.5 2� 10�6 46.87 10�5 78.12

5� 10�6 73.44

10�5 79.69

3� 10�5 89.06

(b) Parameters for Fit Dose-Response Curves for Acetylcholine

Curve EC50(M)

I 2.94� 10�8

II 2.9� 10�7

III 7.5� 10�7

IV 1.3� 10�6

V 2� 10�6

VI 2.4� 10�6

common Emax¼ 97.6

common slope¼ 1.09
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antagonist are given in Table 12.11b and shown in

Figure 12.12d.
5. The data points are fit to a function. For this

example, Equation 12.9 is used:

Response ¼ Basal�
Resp0½B�

n

½B�n þ IC50n
, ð12:9Þ

where Resp0 refers to the response produced by the

target agonist concentration in the absence of

antagonist. For the example, values for the fit

curve are Resp0¼ 86, n¼ 0.93, and IC50¼ 1mM.

The fit curve is shown in Figure 12.12e.

6. The IC50 is used in a version of the Cheng-Prusoff

equation for functional assays. Thus, the apparent

KB (apparent equilibrium dissociation constant for

the antagonist-receptor complex) is given by

Antilog pA2 ¼ IC50=ðð2þ ð½A�=EC50Þ
n
Þ
1=n
� 1Þ,

ð12:10Þ

where the values of n and EC50 are the values from

the control agonist dose-response curve (n¼ 0.7,

EC50¼ 20 nM, and [A]¼ 30 nM). Equation 12.10

yields the molar concentration that produces a

twofold shift to the right of the agonist dose-

response curve. The negative logarithm of this

value is the pA2. For this example (IC50¼ 1 mM),

the antilog pA2¼ 48 nM and the pA2 ¼ 7.3.

12.2.11 Method for Estimating Affinity of Insurmountable

Antagonist (Dextral Displacement Observed)

Aim: This method is designed to measure the affinity of an

antagonist that produces insurmountable antagonism

(depression of maximal response to the agonist) but also

shifts the curve to the right by a measurable amount.

General Procedure: Dose-response curves to a full agonist

are obtained in the absence and presence of the antagonist.

At a level of response approximately 30% of the maximal

response of the depressed concentration response curve, an

equiactive dose ratio for agonist concentrations is mea-

sured. This is used to calculate a pA2.

Procedure:

1. A dose-response curve is obtained to the agonist.

Then the same preparation is equilibrated with a

(a) (b)

FIGURE 12.11 Measurement of allosteric antagonism. (a) Dose-response curves to acetylcholine in the

absence (filled circles) and presence of gallamine 10 mM (open circles), 30 mM (filled triangles), 100mM
(open inverted triangles), 300mM (filled squares), and 500 mM (open squares). Data points fit to curves

with a common maximum and slope. (b) Displacement of dose response curves shown in panel a used to

furnish dose ratios for acetylcholine ([EC050 in the presence of gallamine]/[EC50 for control curve])

ordinates. Abscissae are concentrations of gallamine. Line is the best fit according to Equation 12.7.

TABLE 12.11

Measurement of antagonist pA2.

(a) Dose-Response Data for Agonist

[A] Resp

10�9 10

3� 10�9 25

10�8 33

3� 10�8 55

10�7 72

3� 10�7 80

10�6 90

3� 10�6 93

(b) Response to the Test Concentration of Agonist in the

Presence of a Range of Concentrations of the Antagonist

[B] Response

10�8 86

3� 10�8 86

5� 10�8 84

10�7 80

3� 10�7 65

10�6 43

3� 10�6 26

10�5 10
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known concentration of noncompetitive antagonist

(for 30 to 60minutes, depending on the time needed

to reach temporal equilibrium) and a dose-response

curve to the agonist repeated in the presence of the

antagonist. A hypothetical example is shown in

Figure 12.13a. The data are given in Table 12.12.

For this example, the preparation is equilibrated

with 2 mM antagonist.
2. The data points are fit to an appropriate function

(Equation 12.5). (See Figure 12.13b.) At a response

level of 0.3, an equiactive dose ratio of agonist is

calculated. The respective concentrations of agonist

producing this response are 50 nM (control) and

0.20 mM in the presence of the antagonist. The dose

ratio is (DR¼ 2.0/0.5¼ 4).
3. The value for DR is converted to Log (DR-1) value,

which in this case equals 0.48. The pA2 is calculated

with the equation

pA2 ¼ �Log½B� þ LogðDR-1Þ, ð12:11Þ

which in this case is 5.7þ 0.48¼ 6.18. This translates

into a KB value of 0.67mM.
4. This value should be considered an upper limit for

the potency of the antagonist as the pA2 corresponds

(a)

(b)

(c)

(d) (e)

FIGURE 12.12 Measurement of pA2 values for antagonists. (a) Dose-response curve data for an agonist.

(b) Curve fit to data points according to Equation 12.8. (c) Open circle represents EC80 concentration of

agonist chosen to block with a range of concentrations of antagonist. The antagonist, if competitive, will

produce shifts to the right of the agonist dose-response curve as shown by dotted lined. The inhibition curve

tracks the response to the target concentration of agonist (open circle), as shown by arrow. Note that if the

antagonism is noncompetitive the curves will not shift to the right but rather will be depressed. This will still

produce diminution of the response to the target agonist concentration and production of an inhibition

curve. (d) Inhibition curve produced by a range of antagonist concentrations (abscissae) producing

blockade of response to the target concentration of agonist. (e) Data points fit to curve according to

Equation 12.9. The IC50 is shown. The pA2 of the antagonist is calculated from this value.
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to the pKB according to the equation (6.38)

pKB ¼ pA2 � Logð1þ 2½A�=KAÞ ð12:12Þ

for orthosteric insurmountable antagonists and

(Equation 7.8)

pKB ¼ pA2 � Logð1þ 2a½A�=KAÞ ð12:13Þ

for allosteric insurmountable antagonists.

It is worth examining the possible magnitudes of the

error with various scenarios. The maximal value for [A]/KA

can be approximated, assuming a system where response is

directly proportional to receptor occupancy. Under these

circumstances, Response¼ 0.3¼ [A]/KA/([A]/KAþ 1),

which in this case is [A]/KA¼ 0.5. Therefore, the pA2 is

pKBþLog (2) (i.e., the pA2 will overestimate the affinity of

the antagonist by a maximal factor of 2). If the

insurmountable antagonist is allosteric antagonist that

reduces the affinity of the receptor for agonist (a51),

then the error will be 52. However, if the modulator

increases the affinity of the receptor for the agonist, then

the error could be as high as 2 a, where a41.

12.2.12 Method for Estimating Affinity of Insurmountable

Antagonist (No Dextral Displacement Observed)

Aim: This method is designed to measure the affinity of a

noncompetitive antagonist, which produces depression of

the maximal response of the agonist concentration-response

curve with no dextral displacement.

General Procedure: The response to the agonist is

determined in the absence and presence of a range of

concentrations of the insurmountable antagonist. The

data points may be fit to logistic functions (for

observation of trends; this is not necessary for calculation

of IC50). A concentration of agonist is chosen, and the

response to that concentration (expressed as a fraction of

control) is plotted as a function of the concentration of

antagonist to form an inhibition curve. This curve is fit

to a function and the midpoint (IC50) calculated. This is

an estimate of the affinity of the insurmountable

antagonist. To detect possible allosteric increase in

affinity of the antagonist with agonist concentration,

more than one concentration may be chosen for this

procedure.

Procedures:

1. Responses to the agonist are obtained in the absence

and presence of a range of concentrations of

antagonist. A sample set of data is given in

Table 12.13 and Figure 12.14a.
2. Data may be fit to an appropriate function (i.e.,

Equation 12.5), but this is not necessary for the

analysis (see Figure 12.14b).
3. Two concentrations of agonist are chosen for

further analysis. These should be two concentra-

tions as widely spread as possible along the
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FIGURE 12.13 Calculation of a pA2 value for an insurmountable antagonist. (a) Conncration-

response curve for control (filled circles) and in the presence of 2 mM antagonist (open circles).

(b) Data points fit to logistic functions. Dose ratio measured at response value 0.3 (dotted line). In this

case, the DR ¼ (200 nM/50 nM¼ 4).

TABLE 12.12

Responses in the absence and presence of an insurmountable

antagonist that causes dextral displacement of the concentration-

response curve.

Conc. Control Response1 Modulated Response1

1� 10�8 0.06

3� 10�8 0.17 0.05

1� 10�7 0.47 0.2

3� 10�7 0.73 0.42

1� 10�6 0.86 0.64

3� 10�6 0.92 0.74

1� 10�5 0.93 0.8

3� 10�5 0.79

1Fraction of system maximal response.
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TABLE 12.13

Responses in the absence and presence of an insurmountable antagonist that causes no dextral displacement of the concentration-response curve.

(a) Concentration Response Curve Data

Agonist

Concentration Control

1� 10�7

Antagonist

2� 10�7

Antagonist

5� 10�7

Antagonist

1� 10�6

Antagonist

2� 10�6

Antagonist

1� 10�8 0.02

3� 10�9 0.05 0.03 0.04 0.03 0.02 0.02

1� 10�7 0.15 0.13 0.12 0.085 0.05 0.03

3� 10�7 0.3 0.25 0.22 0.15 0.1 0.05

1� 10�6 0.5 0.38 0.32 0.22 0.13 0.06

3� 10�6 0.6 0.45 0.37 0.23 0.15 0.07

1� 10�5 0.646 0.48 0.39 0.25 0.13 0.06

1� 10�5 0.67 0.49 0.4 0.26 0.16 0.07

(b) Conversion to Inhibition Curves

Concentration

Antagonist

Concentration

Agonist

1� 10�7

Response

Percent

Response

Concentration

Agonist

1� 10�5

Response

Percent

Response

0 0.15 100 0.64 100

1� 10�7 0.13 87 0.48 75

2� 10�7 0.12 80 0.39 61

5� 10�7 0.09 60 0.25 39

1� 10�6 0.05 33 0.13 29

2� 10�6 0.03 20 0.07 11
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FIGURE 12.14 Measurement of potency of a noncompetitive antagonist that produces

little dextral displacement of the agonist concentration-response curve. (a) Data points for

control response to agonist (filled circles) and response in the presence of noncompetitive

antagonist at concentrations ¼ 0.1 mM (open circles), 0.2 mM (filled triangles), 0.5 mM (open

triangles), 1 mM (filled squares), and 2 mM (open diamonds). (b) Logistic function

(Figure 12.4) fit to data points (optional). (c) Response to two specific concentrations of

agonist identified (10mM in red and 100 nM in blue). (d) Effects of antagonist on responses

to 10 mM (red) and 100 nM (blue) agonist expressed as a percent of the control response

plotted as a function of the concentration of antagonist to yield an inhibition curve (data

shown in Table 12.13b). Arrows indicate the IC50 values for each curve.
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concentration axis and with the lowest producing
a robust size of response. For this example,

responses chosen for agonist concentration were
100 nM (blue, Figure 12.14c) and 10 mM (red,
Figure 12.14c).

4. The responses to the respective concentrations of

agonist are expressed as a percentage of the initial
control response (obtained in the absence of
antagonist) as a function of the concentration of

antagonist. The data for this step are shown in
Table 12.13b, and the resulting inhibition curves
(plot on a semi-logarithmic concentration scale) are

shown in Figure 12.14d.
5. The inhibition curves are fit to an appropriate

function to allow estimation of the half maximal

value for blockade (IC50). For example, the data

from Table 13.13b were fit to

Percent ¼ 100�
100½B�n

½B�n þ ðIC50Þ
n , ð12:14Þ

where the concentration of antagonist is [B], n a
slope fitting parameter, and IC50 the half maximal
value for blockade. For this example, the IC50 values

for the two curves are 0.65mM (n¼ 1.15) for 100 nM
agonist (blue) and 0.3 mM (n¼ 1.05) for 10mM
agonist (red).

6. It can be seen from this example that the inhibition
curve shifts to the left with increasing concentration
of agonist, indicating an allosteric mechanism
whereby the modulator blocks receptor signaling

but increases the affinity of the receptor for the
agonist.

12.2 FUNCTIONAL EXPERIMENTS 275





Appendices

A.1 Statistical Tables of Use for Assessing Significant Difference

1. t distribution
2. F Distribution (p, 0.05)

3. F Distribution (p50.025)
4. F Distribution (p50.01)

A.1.1 t Distribution

To determine the 0.05 critical value from t distribution with 5 degrees of freedom, look in the 0.05 column at the fifth row:

t(.05,5)¼ 2.015048.

A.1.1.1 F Distribution

By convention, the numerator degrees of freedom are always given first [switching the order of degrees of freedom changes

the distribution, that is, F(10,12) does not equal F(12,10)]. For the following F tables, rows represent denominator degrees of

freedom and columns represent numerator degrees of freedom.

TABLE A.1

t Table with right tail probabilities

df\p 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005

1 0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192

2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991

3 0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240

4 0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103

5 0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688

6 0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588

7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079

8 0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413

9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869

11 0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370

12 0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178

13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208

14 0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405

15 0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728

16 0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150

17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651

18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216

19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834

20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495

21 0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193

22 0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921

23 0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676

24 0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454

25 0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251

26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066

27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896

28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739

29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594

30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460

inf 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905
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A.1.2 F Table for aV0.05

df2/df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 INF

1 161.4476 199.5000 215.7073 224.5832 230.1619 233.9860 236.7684 238.8827 240.5433 241.8817 243.9060 245.9499 248.0131 249.0518 250.0951 251.1432 252.1957 253.2529 254.3144

2 18.5128 19.0000 19.1643 19.2468 19.2964 19.3295 19.3532 19.3710 19.3848 19.3959 19.4125 19.4291 19.4458 19.4541 19.4624 19.4707 19.4791 19.4874 19.4957

3 10.1280 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452 8.8123 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.5720 8.5494 8.5264

4 7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.0410 5.9988 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.7170 5.6877 5.6581 5.6281

5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725 4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3985 4.3650

6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2067 4.1468 4.0990 4.0600 3.9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6689

7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767 3.6365 3.5747 3.5107 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3.2298

8 5.3177 4.4590 4.0662 3.8379 3.6875 3.5806 3.5005 3.4381 3.3881 3.3472 3.2839 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276

9 5.1174 4.2565 3.8625 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789 3.1373 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7475 2.7067

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782 2.9130 2.8450 2.7740 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379

11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962 2.8536 2.7876 2.7186 2.6464 2.6090 2.5705 2.5309 2.4901 2.4480 2.4045

12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964 2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.3410 2.2962

13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144 2.6710 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064

14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458 2.6022 2.5342 2.4630 2.3879 2.3487 2.3082 2.2664 2.2229 2.1778 2.1307

15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437 2.4753 2.4034 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658

16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377 2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096

17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943 2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.1040 2.0584 2.0107 1.9604

18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563 2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 1.9681 1.9168

19 4.3807 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227 2.3779 2.3080 2.2341 2.1555 2.1141 2.0712 2.0264 1.9795 1.9302 1.8780

20 4.3512 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3660 2.3210 2.2504 2.1757 2.0960 2.0540 2.0102 1.9645 1.9165 1.8657 1.8117

22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419 2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.9380 1.8894 1.8380 1.7831

23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201 2.2747 2.2036 2.1282 2.0476 2.0050 1.9605 1.9139 1.8648 1.8128 1.7570

24 4.2597 3.4028 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551 2.3002 2.2547 2.1834 2.1077 2.0267 1.9838 1.9390 1.8920 1.8424 1.7896 1.7330

25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.7110

26 4.2252 3.3690 2.9752 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655 2.2197 2.1479 2.0716 1.9898 1.9464 1.9010 1.8533 1.8027 1.7488 1.6906

27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501 2.2043 2.1323 2.0558 1.9736 1.9299 1.8842 1.8361 1.7851 1.7306 1.6717

28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360 2.1900 2.1179 2.0411 1.9586 1.9147 1.8687 1.8203 1.7689 1.7138 1.6541

29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2783 2.2229 2.1768 2.1045 2.0275 1.9446 1.9005 1.8543 1.8055 1.7537 1.6981 1.6376

30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646 2.0921 2.0148 1.9317 1.8874 1.8409 1.7918 1.7396 1.6835 1.6223

40 4.0847 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 2.0772 2.0035 1.9245 1.8389 1.7929 1.7444 1.6928 1.6373 1.5766 1.5089

60 4.0012 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401 1.9926 1.9174 1.8364 1.7480 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893

120 3.9201 3.0718 2.6802 2.4472 2.2899 2.1750 2.0868 2.0164 1.9588 1.9105 1.8337 1.7505 1.6587 1.6084 1.5543 1.4952 1.4290 1.3519 1.2539

inf 3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799 1.8307 1.7522
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A.1.3 Table for aV0.025

df2/df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 INF

1 647.7890 799.5000 864.1630 899.5833 921.8479 937.1111 948.2169 956.6562 963.2846 968.6274 976.7079 984.8668 993.1028 997.2492 1001.414 1005.598 1009.800 1014.020 1018.258

2 38.5063 39.0000 39.1655 39.2484 39.2982 39.3315 39.3552 39.3730 39.3869 39.3980 39.4146 39.4313 39.4479 39.4562 39.465 39.473 39.481 39.490 39.498

3 17.4434 16.0441 15.4392 15.1010 14.8848 14.7347 14.6244 14.5399 14.4731 14.4189 14.3366 14.2527 14.1674 14.1241 14.081 14.037 13.992 13.947 13.902

4 12.2179 10.6491 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047 8.8439 8.7512 8.6565 8.5599 8.5109 8.461 8.411 8.360 8.309 8.257

5 10.0070 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6811 6.6192 6.5245 6.4277 6.3286 6.2780 6.227 6.175 6.123 6.069 6.015

6 8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996 5.5234 5.4613 5.3662 5.2687 5.1684 5.1172 5.065 5.012 4.959 4.904 4.849

7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8993 4.8232 4.7611 4.6658 4.5678 4.4667 4.4150 4.362 4.309 4.254 4.199 4.142

8 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4333 4.3572 4.2951 4.1997 4.1012 3.9995 3.9472 3.894 3.840 3.784 3.728 3.670

9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1970 4.1020 4.0260 3.9639 3.8682 3.7694 3.6669 3.6142 3.560 3.505 3.449 3.392 3.333

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790 3.7168 3.6209 3.5217 3.4185 3.3654 3.311 3.255 3.198 3.140 3.080

11 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638 3.5879 3.5257 3.4296 3.3299 3.2261 3.1725 3.118 3.061 3.004 2.944 2.883

12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118 3.4358 3.3736 3.2773 3.1772 3.0728 3.0187 2.963 2.906 2.848 2.787 2.725

13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880 3.3120 3.2497 3.1532 3.0527 2.9477 2.8932 2.837 2.780 2.720 2.659 2.595

14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093 3.1469 3.0502 2.9493 2.8437 2.7888 2.732 2.674 2.614 2.552 2.487

15 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227 3.0602 2.9633 2.8621 2.7559 2.7006 2.644 2.585 2.524 2.461 2.395

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488 2.9862 2.8890 2.7875 2.6808 2.6252 2.568 2.509 2.447 2.383 2.316

17 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610 2.9849 2.9222 2.8249 2.7230 2.6158 2.5598 2.502 2.442 2.380 2.315 2.247

18 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 3.0999 3.0053 2.9291 2.8664 2.7689 2.6667 2.5590 2.5027 2.445 2.384 2.321 2.256 2.187

19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8801 2.8172 2.7196 2.6171 2.5089 2.4523 2.394 2.333 2.270 2.203 2.133

20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365 2.7737 2.6758 2.5731 2.4645 2.4076 2.349 2.287 2.223 2.156 2.085

21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.8740 2.7977 2.7348 2.6368 2.5338 2.4247 2.3675 2.308 2.246 2.182 2.114 2.042

22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628 2.6998 2.6017 2.4984 2.3890 2.3315 2.272 2.210 2.145 2.076 2.003

23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9023 2.8077 2.7313 2.6682 2.5699 2.4665 2.3567 2.2989 2.239 2.176 2.111 2.041 1.968

24 5.7166 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791 2.7027 2.6396 2.5411 2.4374 2.3273 2.2693 2.209 2.146 2.080 2.010 1.935

25 5.6864 4.2909 3.6943 3.3530 3.1287 2.9685 2.8478 2.7531 2.6766 2.6135 2.5149 2.4110 2.3005 2.2422 2.182 2.118 2.052 1.981 1.906

26 5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.8240 2.7293 2.6528 2.5896 2.4908 2.3867 2.2759 2.2174 2.157 2.093 2.026 1.954 1.878

27 5.6331 4.2421 3.6472 3.3067 3.0828 2.9228 2.8021 2.7074 2.6309 2.5676 2.4688 2.3644 2.2533 2.1946 2.133 2.069 2.002 1.930 1.853

28 5.6096 4.2205 3.6264 3.2863 3.0626 2.9027 2.7820 2.6872 2.6106 2.5473 2.4484 2.3438 2.2324 2.1735 2.112 2.048 1.980 1.907 1.829

29 5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686 2.5919 2.5286 2.4295 2.3248 2.2131 2.1540 2.092 2.028 1.959 1.886 1.807

30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746 2.5112 2.4120 2.3072 2.1952 2.1359 2.074 2.009 1.940 1.866 1.787

40 5.4239 4.0510 3.4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519 2.3882 2.2882 2.1819 2.0677 2.0069 1.943 1.875 1.803 1.724 1.637

60 5.2856 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344 2.2702 2.1692 2.0613 1.9445 1.8817 1.815 1.744 1.667 1.581 1.482

120 5.1523 3.8046 3.2269 2.8943 2.6740 2.5154 2.3948 2.2994 2.2217 2.1570 2.0548 1.9450 1.8249 1.7597 1.690 1.614 1.530 1.433 1.310

inf 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136 2.0483 1.9447
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A.1.4 F Table for aV0.05

df2/df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 INF

1 4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 5928.356 5981.070 6022.473 6055.847 6106.321 6157.285 6208.730 6234.631 6260.649 6286.782 6313.030 6339.391 6365.864

2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388 99.399 99.416 99.433 99.449 99.458 99.466 99.474 99.482 99.491 99.499

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051 9.888 9.722 9.553 9.466 9.379 9.291 9.202 9.112 9.020

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874 7.718 7.559 7.396 7.313 7.229 7.143 7.057 6.969 6.880

7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620 6.469 6.314 6.155 6.074 5.992 5.908 5.824 5.737 5.650

8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 5.667 5.515 5.359 5.279 5.198 5.116 5.032 4.946 4.859

9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 5.111 4.962 4.808 4.729 4.649 4.567 4.483 4.398 4.311

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849 4.706 4.558 4.405 4.327 4.247 4.165 4.082 3.996 3.909

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539 4.397 4.251 4.099 4.021 3.941 3.860 3.776 3.690 3.602

12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296 4.155 4.010 3.858 3.780 3.701 3.619 3.535 3.449 3.361

13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100 3.960 3.815 3.665 3.587 3.507 3.425 3.341 3.255 3.165

14 8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939 3.800 3.656 3.505 3.427 3.348 3.266 3.181 3.094 3.004

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 3.666 3.522 3.372 3.294 3.214 3.132 3.047 2.959 2.868

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691 3.553 3.409 3.259 3.181 3.101 3.018 2.933 2.845 2.753

17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593 3.455 3.312 3.162 3.084 3.003 2.920 2.835 2.746 2.653

18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508 3.371 3.227 3.077 2.999 2.919 2.835 2.749 2.660 2.566

19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434 3.297 3.153 3.003 2.925 2.844 2.761 2.674 2.584 2.489

20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 3.231 3.088 2.938 2.859 2.778 2.695 2.608 2.517 2.421

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310 3.173 3.030 2.880 2.801 2.720 2.636 2.548 2.457 2.360

22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258 3.121 2.978 2.827 2.749 2.667 2.583 2.495 2.403 2.305

23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211 3.074 2.931 2.781 2.702 2.620 2.535 2.447 2.354 2.256

24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 3.032 2.889 2.738 2.659 2.577 2.492 2.403 2.310 2.211

25 7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129 2.993 2.850 2.699 2.620 2.538 2.453 2.364 2.270 2.169

26 7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094 2.958 2.815 2.664 2.585 2.503 2.417 2.327 2.233 2.131

27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062 2.926 2.783 2.632 2.552 2.470 2.384 2.294 2.198 2.097

28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032 2.896 2.753 2.602 2.522 2.440 2.354 2.263 2.167 2.064

29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092 3.005 2.868 2.726 2.574 2.495 2.412 2.325 2.234 2.138 2.034

30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067 2.979 2.843 2.700 2.549 2.469 2.386 2.299 2.208 2.111 2.006

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801 2.665 2.522 2.369 2.288 2.203 2.114 2.019 1.917 1.805

60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 2.496 2.352 2.198 2.115 2.028 1.936 1.836 1.726 1.601

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559 2.472 2.336 2.192 2.035 1.950 1.860 1.763 1.656 1.533 1.381

inf 6.635 4.605 3.782 3.319 3.017 2.802 2.639 2.511 2.407 2.321 2.185 2.039 1.878 1.791 1.696 1.592 1.473 1.325 1.000
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Glossary of Pharmacological Terms

Affinity/affinity constant, ligands reside at a point of

minimal energy within a binding locus of a protein

according to a ratio of the rate that the ligand leaves the

surface of the protein (koff) and the rate it approaches the

protein surface (kon). This ratio is the equilibrium dissocia-

tion constant of the ligand–protein complex (denoted

Keq¼ koff/kon) and defines the molar concentration of the

ligand in the compartment containing the protein where

50% of the protein has ligand bound to it at any one

instant. The ‘‘affinity’’ or attraction of the ligand for the

protein is the reciprocal of Keq.
Agonist, a molecule that produces physiological response

through activation of a receptor.
Alkylating agent, a reactive chemical that forms a

covalent bond with chemical moieties on the biological

target (usually a protein). For instance, b-haloalkylamines

generate an aziridinium ion in aqueous base that inserts

into –SH, –CHOH, or other chemical structures in

peptides. Once inserted, the effects of the alkylating agent

are irreversible.
Allele, different forms of a gene at a given locus.

Allosterism (allosteric), the imposition of an effect on a

protein through interaction of a molecule with a site on the

protein distinct from the natural binding locus for the

endogenous ligand for that protein. Interactions between

the allosteric molecule and the endogenous ligand occur

through the protein and not through direct steric

interaction.
Allosteric modulators, unlike competitive antagonists that

bind to the same domain on the receptor as the agonist,

allosteric modulators bind to their own site on the receptor

and produce an effect on agonism through a protein

conformational change. Allosteric modulators can affect

the affinity or the responsiveness of the receptor to the

agonist. A hallmark of allosteric interaction is that the

effect reaches a maximal asymptote corresponding to

saturation of the allosteric sites on the receptor. For

example, an allosteric modulator may produce a maximal

10-fold decrease in the affinity of the receptor for a ligand

upon saturation of the allosteric sites.
Analysis of variance (ANOVA), a statistical procedure

that quantifies differences between means of samples and

the extent of variances within and between those means to

determine the probability of there being a difference in the

samples.
Antagonist, a molecule that interferes with the interaction

of an agonist and a receptor protein or a molecule that

blocks the constitutive elevated basal response of a

physiological system.

Association constant, the ratio of the rate of onset of a

molecule to a receptor binding site and the rate of

dissociation of the molecule away from that site (reciprocal

of Keq; see Affinity).

Bmax, a term denoting the maximal binding capacity of

an experimental binding system, usually a preparation

containing receptors (membranes, cells). The magnitude is

most often expressed in number of receptors per cell or

molar concentration of receptors per milligram protein.

cDNA, complementary DNA copied from a messenger

RNA coding for a protein; it is inserted into surrogate host

cells to cause them to express the protein.
Cheng–Prusoff correction, published by Cheng and

Prusoff (Biochem. Pharmacol. 22, 3099–3108, 1973),

this method is used to derive the equilibrium dissocia-

tion constant of a ligand–receptor (or enzyme) pair from

the experimentally observed IC50 (concentration that

produces 50% reduction in effect) for that molecule; see

Eqn 4.11.
Clone, identical cells (with respect to genetic constitution)

derived from a single cell by asexual reproduction.

Receptors can be cloned into cells by inserting a gene into

the cell line; a colony of cells results that are identical and

all have the expressed receptor.
Competitive antagonist, by definition, competitive

antagonists compete with the agonist for the same binding

domain on the receptor. Therefore, the relative affinities

and quantities of the agonist and antagonist dictate which

ligand dominates. Under these circumstances, the concen-

tration of agonist can be raised to the point where the

concomitant receptor occupancy by the antagonist is

insignificant. When this occurs, the maximal response to

the agonist is observed, that is, surmountable antagonism

results.

Concentration ratio, the ratio of molar concentrations of

agonist that produce equal levels of response in a given

pharmacological preparation (usually the ratio of EC50

concentrations). This term is used most often when

discussing antagonism (equiactive concentration of agonist

in the absence and presence of an antagonist).
Concentration–response curve, a more specific (and

technically correct) term for a dose–response curve done

in vitro. This curve defines the relationship between the

concentrations of a given molecule and the observed

pharmacological effect.
Constitutive receptor activity, receptors spontaneously

produce conformations that activate G-proteins in the

absence of agonists. This activity, referred to as constitutive

activity, can be observed in systems in which the receptor

expression levels are high and the resulting levels of

spontaneously activating receptor species produce a visible

physiological response. An inverse agonist reverses this

constitutivie activity and thus reduces, in a dose-dependent
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manner, the spontaneously elevated basal response of a

constitutively active receptor system.

Cooperativity, the interaction of molecules on a protein

resulting from the mutual binding of those molecules. The

cooperativity may be positive (whereby the binding of one

of the substances facilitates the interaction of the protein

with the other molecule) or negative (binding of one

molecule decreases the interaction of the protein with the

other molecule).
Cooperativity factor, an allosteric ligand has an effect on

a receptor protein mediated through the binding of that

ligand to the allosteric binding domain. The intensity of

that effect, usually a change in the affinity of the receptor

for other ligands or the efficacy of a ligand for the receptor,

is quantified by the cooperativity factor. Denoted a,
a positive value for a defines a potentiation. Conversely,

a fractional value denotes an inhibition. Thus if a¼ 0.1,

a 10-fold decrease in the affinity of a tracer ligand for the

receptor is produced by the allosteric modulator.

Magnitudes of the a factor for a given allosteric molecule

are unique for the tracer for receptor function/binding used

to measure the interaction; see Chapters 7.4.

Coupling, processes that cause the interaction of mole-

cules with membrane receptors to produce an observable

cellular response; see Chapter 2.2.
Cubic ternary complex model, a molecular model (J. Ther.

Biol. 178, 151–167, 1996a; 178, 169–182, 1996b; 181, 381–

397, 1996c) describing the coexistence of two receptor states

that can interact with both G-proteins and ligands. The

receptor/G-protein complexes may or may not produce a

physiological response; see Chapter 3.11.
Degrees of Freedom, statistical term for the number of

choices that can be made when fixing values of expected

frequency leading to the number of independent compar-

isons that can be made in a sample of observations.
Desensitization, the reduction in response to an agonist

or other physiological stimulation upon repeated instance

of stimulation or continued presence of an agonist. Also

referred to as tachyphyllaxis.
Dissociation constant, the ratio of the rate of offset of

ligand away from a receptor divided by the rate of onset of

the ligand approaching the receptor. It has the units

of concentration and specifically is the concentration of

ligand that occupies 50% of the total number of sites

available for ligand binding at equilibrium (see Affinity).

Domain, sequence of amino acids in a protein that can be

identified as controlling a specific function, that is,

recognition of ligands.
Dose ratio, the concentration of agonist producing the

same response in the presence of a given concentration of

antagonist divided by the concentration of agonist produ-

cing the same response in the absence of the antagonist. For

instance, if the control EC50 for an agonist dose–response

curve is 10 nM and the EC50 in the presence of a given

concentration of antagonist is 30 nM, then the dose ratio in

this case is 3 (see Concentration ratio).
Downregulation, the reduction in the number of biologi-

cal targets (e.g., cell surface receptors, enzymes) usually

occurring with repeated stimulation of the system. For

example, repeated stimulation of receptors by an agonist

can lead to uncoupling of the receptors from stimulus–

response mechanisms (due to phosphorylation of the

receptors) followed by internalization of the receptor

protein into the cell. This latter process is referred to as

downregulation of receptors; see Chapter 2.6 and Fig. 5.7.

EC50/ED50, the ‘‘effective concentration’’ of an agonist

producing (in this case) 50% maximal response to that

particular drug (not necessarily 50% of the maximal

response of the system). Other values can be quantified

for other levels of response in which case the subscript

denotes the response level (i.e., EC25 refers to the

concentration of agonist producing 25% maximal response

to that agonist). ED50 is the in vivo counterpart of EC50

referring to the dose of an agonist that produces 50%

maximal effect.
Efficacy, historically, this term was given to agonists to

define the property of the molecule that causes the

production of a physiological response. However, with

the discovery of negative efficacy (inverse agonists) and

efficacy related to other properties of receptors that do not

involve a physiological response, a more general definition

of efficacy is that property of a molecule that causes the

receptor to change its behavior toward the host.
Emax, Conventional term for the maximal response

capable of being produced in a given system.
Equiactive dose ratios, ratios of molar concentrations of

drug (usually agonists) that produce the same response in a

given system; also referred to as EMR and EPMR; see

Chapter 10.2.3.
Equiactive (equieffective) molar concentration (potency)

ratios (EMR, EPMR), variants of the term dose ratio or

equiactive dose ratios. Usually pertaining to agonists, these

are the molar concentrations that produce the same

response in a given system. These ratios are dependent on

the affinity and efficacy of the agonists and thus are system

independent, that is, characterize agonists and receptors in

all systems. Care must be taken that the maximal responses

of the agonists concerned are equal.
Equilibrium (dissociation) constant, reciprocal of the

association constant and affinity; characterizes the binding

of a molecule to a receptor. Specifically, it is the ratio of the

rate of offset of the molecule away from the receptor

divided by the rate of onset toward the receptor. It also is a

molar concentration that binds to 50% of the receptor

population.
Extended ternary complex model, a modification of the

original ternary complex model for GPCRs (J. Biol. Chem.

268, 4625–4636, 1993) in which the receptor is allowed to

spontaneously form an active state that can then couple

to G-proteins and produce a physiological response due to

constitutive activity.
Fade, the time-dependent decrease in response upon

prolonged exposure of a biological system to an agonist.

Originally, this was defined as the characteristic peak

contraction followed by relaxation produced by guinea pig

vas deferentia, but the term has also been generalized to
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include all forms of real time observed loss of responsive-

ness (often termed tachyphyllaxis). It can be due to

desensitization of the receptor or other factors. Fade is

generally thought of as a case of decline of response in the

continued presence of agonist as opposed to frequent

stimulation.
Full agonist, name given to an agonist that produces

the full system maximal response (Emax). It is a system-

dependent phenomenon and should not necessarily be

associated with a particular agonist, as an agonist can be a

full agonist in some systems and a partial agonist in others.
Functional antagonism, reduction in the responsiveness

to a given agonist by activation of cellular mechanisms that

produce a counterstimulus to the cell.
Furchgott analysis, a technique [in ‘‘Advances in Drug

Research’’ (N. J. Harper and A. B. Simmonds, eds.), Vol. 3,

pp. 21–55. Academic Press, London, 1996] used to measure

the affinity of a full agonist in a functional assay (see

Chapters 5.6.2 and 12.2.3).
Gaddum analysis, Gaddum (method of), this method (Q. J.

Exp. Physiol. 40, 49–74, 1955) compares equiactive

concentrations of an agonist in the absence and presence

of a concentration of noncompetitive antagonist that

depresses the maximal agonist response. These are com-

pared in a double reciprocal plot (or variant thereof) to

yield the equilibrium dissociation constant of the non-

competitive antagonist–receptor complex (see Chapters 6.4

and 12.2.8).
Gaddum equation (competitive antagonism), the pivotal

simple equation (see Chapters 6.2 and 6.8.1) describing the

competition between two ligands for a single receptor site.

It forms the basis for Schild analysis.
Gaddum equation (noncompetitive antagonism), this tech-

nique measures the affinity of a noncompetitive antagonist

based on a double reciprocal plot of equiactive agonist

concentrations in the absence and presence of the non-

competitive antagonist. The antagonist must depress the

maximal response to the agonist for the method to be

effective; see Chapter 6.4.
Gene, the sequence of DNA that codes for a complete

protein.
Genetic polymorphism, due to two or more alleles in a

gene leading to more than one phenotype with respect to

biological target reactivity to drugs.

Genome, the set of genes for an organism that determines

all inherited characteristics. In general, the sequence and

location of every gene responsible for coding every protein.
Genotype, the pattern of genes inherited by an individual.

The makeup of a biological target due to coding of the gene

for that target.

G-proteins, trimeric membrane-bound proteins that

have intrinsic GTPase activity and act as intermediaries

between 7TM receptors and a host of cellular effectors;

see Section 2.2.

Hemiequilibria, a pseudoequilibrium that can occur when

a fast-acting agonist equilibrates with a receptor system

where a slow acting antagonist is present. The agonist will

occupy the nonantagonist bound receptors quickly and

then must equilibrate with antagonist bound receptors; this

latter process can be extremely slow so as to be essentially

irreversible within the time frame of some experiments.

Under these conditions, a slow-acting competitive antago-

nist may appear to be an irreversibly acting antagonist.
Heptahelical receptors, another name for 7TM receptors

or G-protein-coupled receptors. It refers to the motif of the

helices of the protein crossing the cell membrane seven

times to form intracellular and extracellular domains.
Hyperbola (hyperbolic), a set of functions defining

nonlinear relationships between abscissae and ordinates.

This term is used loosely to describe nonlinear relationships

between the initial interaction of molecules and receptors

and the observed response (i.e., stimulus–response cascades

of cells).
IC50, the concentration (usually molar) of an inhibitor

(receptor, enzyme antagonist) that blocks a given prede-

fined stimulus by 50%. It is an empirical value in that its

magnitude varies with the strength of the initial stimulus to

be blocked.
Insurmountable antagonism, a receptor blockade that

results in depression of the maximal response. Under these

circumstances, unlike competitive antagonism, no increase

in the concentration of agonist will regain the control

maximal response in the presence of the antagonist.
Intrinsic activity, a scale of agonist activity devised by

Ariens (Arch. Int. Pharmacodyn. Ther. 99, 32–49, 1954)

referring to the fractional maximal response to an agonist

relative to a standard ‘‘full agonist’’ in the same system

(where a full agonist produces the full system maximal

response). Thus, a partial agonist that produces a maximal

response 50% that of a full agonist has an intrinsic activity

(denoted a) of 0.5. Full agonists have a¼ 1 and antagonists

a¼ 0.

Intrinsic efficacy, the term efficacy, as defined originally

by Stephenson (Br. Pharmacol., 11, 379–393, 1956),

involved agonist and system components. Intrinsic efficacy

(as given by Furchgott; ‘‘Advances in Drug Research’’

(N. J. Harper and A. B. Simmonds, eds.), Vol. 3, pp. 21–55.

Academic Press, London, 1966) was defined to be a solely

agonist-specific quantification of the ability of the agonist

to induce a physiological or pharmacological response.

Thus efficacy is the product of intrinsic efficacy multiplied

by the receptor density (see Chapter 3.5).
Inverse agonist, these ligands reverse constitutive receptor

activity. Currently it is thought that this occurs because

inverse agonists have a selectively higher affinity for the

inactive vs the active conformation of the receptor. It is

important to note that while inverse agonist activity

requires constitutive activity to be observed, the property

of the molecule responsible for this activity does not

disappear when there is no constitutive activity. In these

cases, inverse agonists function as simple competitive

antagonists.

Irreversible antagonists, irreversible ligands have negligi-

ble rates of offset (i.e., once the ligand binds to the receptor

it essentially stays there). Under these circumstances,

receptor occupancy does not achieve a steadystate but,
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rather, increases with increasing exposure time to the

ligand. Thus, once a receptor is occupied by the irreversible

antagonist, it remains inactivated throughout the course of

the experiment.
IUPHAR, an acronym for International Union of

Pharmacology, a nongovernment organization of national

societies functioning under the International Council of

Scientific Unions.

In vitro, Latin in vitro veritas (in glass lies the truth)

referring to experiments conducted in an artificial environ-

ment (i.e., organ bath, cell culture) leading to conditions of

fewer and more controllable variables.
In vivo, with reference to in vitro, referring to experiments

conducted in whole living organisms.
k1, referring to the rate of onset of a molecule to a

receptor with units of s–1mol–1.
k2 (kR1), referring to the rate of offset of molecule from a

receptor in units of s–1.
KA, standard pharmacologic convention for the equili-

brium dissociation constant of an agonist–receptor complex

with units of M. It is the concentration that occupies half

the receptor population at equilibrium. It also can be

thought of as the reciprocal of affinity.
KB, convention for the equilibrium dissociation constant

of an antagonist–receptor complex usually determined in a

functional assay denoting antagonism of a physiological

response, although it can be associated with an antagonist

when it is used in other types of experiment. It has units of

M and is the concentration that occupies half the receptor

population at equilibrium. It also can be thought of as the

reciprocal of affinity.

Kd, convention for the equilibrium dissociation constant

of a radioligand–receptor complex.

KI, basically the KB for an antagonist but specifically

measured in a biochemical binding study (or enzyme assay).

Ligand, a molecule that binds to a biological receptor.
Ligand binding, a biochemical technique that measures

the physical association of a ligand with a biological target

(usually a protein); see Chapter 4.2.

Logistic function, generally yields a sigmoidally

shaped line similar to that defined by drug dose–response

relationships in biological systems. It is defined by

y¼ (1þ e�(aþbx))–1. Substituting a as log(EC50) and x as

log [A] leads to the Langmuir adsorption isotherm form of

dose–response curves y¼ [A]b/([A]bþ (EC50)
b).

Log normal distribution, the distribution of a sample that

is normal only when plotted on a logarithmic scale. The

most prevalent cases in pharmacology refer to drug

potencies (agonist and/or antagonist) that are estimated

from semilogarithmic dose–response curves. All parametric

statistical tests on these must be performed on their

logarithmic counterparts, specifically their expression as a

value on the p scale (–log values); see Chapter 1.11.2.

Mass action, this law states that the rate of a chemical

reaction is proportional to the concentration (mass) of the

reactants.
Michaelis–Menten kinetics, in 1913 L. Michaelis and

M. Menten realized that the rate of an enzymatic reaction

differed from conventional chemical reactions. They

postulated a scheme whereby the reaction of a substrate

plus enzyme yields enzyme plus substrate and placed it into

the form of the equation: reaction velocity¼ (maximal

velocity of the reaction� substrate concentration)/(concen-

tration of substrateþ a fitting constant Km). The Km

(referred to as the Michaelis-Menten constant) is the

concentration of the substrate at which the reaction rate

is half the maximal value; it also characterizes the tightness

of the binding between substrate and enzyme.
Negative efficacy, by definition, efficacy is that property

of a molecule that causes the receptor to change its

behavior toward the biological host. Negative efficacy

refers to the property of selective affinity of the molecule

for the inactive state of the receptor; this results in inverse

agonism. Negative efficacy causes the active antagonism of

constitutive receptor activity but is only observed in

systems that have a measurably elevated basal response

due to constitutive activity. It is a property of the molecule

and not the system.
Noncompetitive antagonism, if an antagonist binds to the

receptor and precludes agonist activation of that receptor

by its occupancy, then no amount of agonist present in the

receptor compartment can overcome this antagonism and it

is termed noncompetitive. This can occur either by binding

to the same binding domain as the agonist or another

(allosteric) domain. Therefore, this definition is operational

in that it does not necessarily imply a molecular mechan-

ism, only a cause and effect relationship. The characteristic

of noncompetitive antagonism is eventual depression of the

maximal response; however, parallel displacement of

agonist dose–response curves, with no diminution of

maximal response, can occur in systems with receptor

reserve for the agonist; see Chapter 6.4.

Nonlinear regression, a technique that fits a specified

function of x and y by the method of least squares (i.e., the

sum of the squares of the differences between real data

points and calculated data points is minimized).
Nonspecific binding (nsb), binding of a traceable (i.e.,

radioactive) ligand (in a binding assay designed to measure

the specific binding of the ligand) that binds to other

components of the experimental system (i.e., other non-

related proteins, wall of the vessel). It is defined oper-

ationally as the amount of ligand not displaced by an excess

(approximately 100�KB) of a selective antagonist for the

biological target; see Chapter 4.2.
Null method, physiological or pharmacological effects are

translations of biochemical events by the cell. The null

method assumes that equal responses emanate from equal

initial stimulation of the receptor; therefore, when compar-

ing equal responses, the complex translation is cancelled

and statements about the receptor activity of agonists can

be made. Relative potencies of agonists producing equal

responses thus are interpreted to be measures of the relative

receptor stimuli produced by the agonists at the receptor;

see Chapter 5.6.2.
Occupancy, the probability that a molecule will be bound

to a receptor at a given concentration. For example, an

280 GLOSSARY OF PHARMACOLOGICAL TERMS



occupancy of 50% states that, at any one instant, half of the

receptors will have a molecule bound and half will not. This

is a stochastic process and the actual receptors that are

bound change constantly with time. However, at any one

instant, the total fraction bound will be the fractional

occupancy.
Operational model, devised and published by James Black

and Paul Leff (Proc. R. Soc. Lond. Biol. 220,141–162,

1983), this model uses experimental observation to describe

the production of a physiological response by an agonist in

general terms. It defines affinity and the ability of a drug to

induce a response as a value of t, which is a term describing

the system (receptor density and efficiency of the cell to

convert an activated receptor stimulus into a response) and

the agonist (efficacy). It has provided a major advance in

the description of functional effects of drugs; see Chapter

3.6 for further discussion.
Orphan receptor, a gene product that is predicted to be a

receptor through structure and spontaneous interaction

with G-proteins but for which there is no known

endogenous ligand or physiological function.

Outliers, observations that are very inconsistent with the

main sample of data, i.e., apparently significantly different

from the rest of the data. While there are statistical methods

to test whether these values may be aberrant and thus should

be removed, caution should be exercised in this practice as

these data may also be the most interesting and indicative of

a rare but important occurrence.
Partial agonist, whereas a full agonist produces the

system maximal response, a partial agonist produces a

maximal response that is below that of the system

maximum (and that of a full agonist). As well as producing

a submaximal response, partial agonists produce antagon-

ism of more efficacious full agonists.
pA2/pAX, this negative logarithm of the molar concen-

tration of an antagonist produces a twofold (for a pA2)

shift to the right of an agonist dose–response curve. If the

shift is different from 2, then it may be defined as pAx,

where the degree of the shift of the dose–response curve is x

(i.e., pA5 is the –log concentration that produces a fivefold

shift to the right of the agonist dose–response curve). The

pA2 is by far the most prevalent value determined, as this

also may have meaning on a molecular level (i.e., under

certain conditions the pA2 is also the pKB for an

antagonist).
pD2, historical term for the negative logarithm of the

EC50 for an agonist in a functional assay, not often used in

present-day pharmacology.
Phenotype, characteristics that result from the expression

of a genotype.
pKB, negative logarithm of the KB. This is the common

currency of antagonist pharmacology, as pKB values are log

normally distributed and thus are used to characterize

receptors and antagonist potency.
pKI, negative logarithm of the KI, the equilibrium

dissociation constant of an antagonist–receptor complex

measured in a biochemical binding or enzyme study (also

log normally distributed).

Polymorphisms, in pharmacology, these are associated

with genetic polymorphisms of biological targets (see

Genetic polymorphisms).

Potency, the concentration (usually molar) of a drug that

produces a defined effect. Often, potencies of agonists are

defined in terms of EC50 or pEC50 values. The potency

usually does not involve measures of maximal effect but

rather only in locations along the concentration axis of

dose–response curves.
Potentiation, the increase in effect produced by a

molecule or procedure in a pharmacological preparation.

This can be expressed as an apparent increase in efficacy

(i.e., maximal response), potency, both.
Pseudoirreversible antagonism, true irreversible antagon-

ism involves a covalent chemical bond between the

antagonist and the receptor (such that the rate of offset

of the antagonist from the receptor is zero). However, on

the time scale of pharmacological experiments, the rate of

offset of an antagonist can be so slow as to essentially be

irreversible. Therefore, although no covalent bond is

involved, the antagonist is for all intents and purposes

bound irreversibly to the receptor.

Receptor reserve, in highly efficiently coupled receptor

systems, high-efficacy agonists may produce excess stimulus

that saturates cellular stimulus–response mechanisms.

Under these conditions, these agonists produce the system

maximal response through activation of only a fraction of

the existing receptor population. The remaining fraction is

thus ‘‘spare’’ or a ‘‘reserve’’ in that irreversible removal of

this fraction will cause a shift to the right of the agonist

dose–response curve but no diminution of maximum. For

example, in a system where the maximal response to an

agonist can be attained by activation of 5% of the receptor

population, there will be a 95% receptor reserve.

Receptors, in theoretical terms, a receptor is a biological

recognition unit that interacts with molecules of other

stimuli (i.e., light) to translate information to cells.

Receptors technically can be any biological entity such as

enzymes, reuptake recognition sites, and genetic material

such as DNA; however, the term usually is associated with

proteins on the cell surface that transmit information from

chemicals to cells. The most therapeutically relevant

receptor class is G-protein-coupled receptors, presently

comprising 45% of all existing drug therapies.
Recombinant DNA, this is DNA containing new genetic

material in an order different from the original. Genetic

engineering can be used to do this deliberately to produce

new proteins in cells.
Relative intrinsic activity, this actually is redundant, as

intrinsic activity itself is defined only in relative terms, i.e.,

the maximal response of an agonist as a fraction of the

maximal response to another agonist.
Relative potency, absolute agonist potency is the product

of receptor stimulus (brought about by agonist affinity and

efficacy) and the processing of the stimulus by the cell into

an observable response. Because this latter process is system

(cell type) dependent, absolute potencies are system-

dependent measures of agonist activity. However, when
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comparing two agonists in the system, null procedures

cancel these effects; therefore, the relative potency of

agonists (provided both are full agonists) are system-

independent estimates of agonist activity that can be

compared across systems; see Chapter 10.2.3.
Resultant analysis, this procedure, developed by James

Black and colleagues (Br. J. Pharmacol. 84,561–571, 1985),

allows measurement of the receptor affinity of a competi-

tive antagonist, which has secondary properties that

obscure the receptor antagonism; see Chapter 6.6 for

further discussion.
Saturation binding, a biochemical procedure that quan-

tifies the amount of traceable ligand (i.e., radioligand) to a

receptor protein. It yields the affinity of the ligand and the

maximal number of binding sites (Bmax); see Chapter 4.2.1.
Scatchard analysis, a common linear transformation of

saturation binding data used prevalently before the wide-

spread availability of nonlinear fitting software. The

Scatchard transformation (see Chapter 4.2.1), while easy

to perform, can be misleading and lead to errors.
Schild analysis, this powerful method of quantifying the

potency of a competitive antagonist was developed by

Heinz Schild (Br. J. Pharmacol. 14,48–58, 1959; see Chapter

6.3). It is based on the principle that the antagonist-induced

dextral displacement of a dose–response curve is due to its

potency (KB value) and its concentration in the receptor

compartment. Because the antagonism can be observed and

the concentration of antagonist is known, the KB can be

calculated.

Schild plot, the relationship between antagonism and

concentration is loglinear according to the Schild equation.

The tool to determine if this is true experimentally is the

Schild plot, namely a regression of log (DR–1) values

(where DR is the dose ratio for the agonist in the presence

and absence of antagonist) upon the logarithm of the molar

concentration of the antagonist. If this regression is linear

with unit slope, then the antagonism adheres to the simple

competitive model and the intercept of regression is the

pKB. For further discussion, see Chapter 6.3.
Second messenger, these are molecules produced by

cellular effectors that go on to activate other biochemical

processes in the cell. Some examples of second messengers

are cyclic AMP, inositol triphosphate, arachidonic acid,

and calcium ion (see Chapter 2.2).

Selectivity, the difference in activity a given biologically

active molecule has for two or more processes. Thus, if a

molecule has a 10-fold (for example) greater affinity for

process A over process B, then it can be said to have

selectivity for process A. However, the implication is that

the different activity is not absolute, that is, given enough

molecule, the activation of the other process(es) will occur.
Sigmoid, the characteristic ‘‘S-shaped’’ curves defined by

functions such as the Langmuir isotherm and logistic

function (when plotted on a logarithmic abscissal scale).
Spare receptors, another term for receptor reserve

(see Receptor reserve).

Specificity, this can be thought of as an extreme form of
selectivity (see Selectivity) where, in this case, no increase in

the concentration of the molecule will be sufficient to
activate the other process(es). This term is often used
erroneously in that the extremes of concentration have not
been tested (or cannot be tested due to chemical, toxic, or

solubility constraints in a particular system) to define what
probably is only selectivity.

Stimulus, this is quanta of initial stimulation given to the

receptor by the agonist. There are no units to stimulus and
it is always utilized as a ratio quantity comparing two or
more agonists. Stimulus is not an observable response but is

processed by the cell to yield a measurable response.
Stimulus–response coupling, another term for receptor

coupling (see Receptor Coupling). It describes the series of

biochemical reactions that link the initial activation of the
receptor to the observed cellular (or organ) response.

Subtype, often refers to a receptor and denotes a
variation in the gene product such that the endogenous

ligand is the same (i.e., neurotransmitter, hormone) but the
function, distribution, and sensitivity of the receptor
subtypes differ. Antagonists often can distinguish receptor

subtypes.
Surmountable antagonism, an antagonist-induced shift to

the right of an agonist dose–response curve with no

diminution of the maximal response to the agonist
(observed with simple competitive antagonists and some
types of allosteric modulators).

Tachyphyllaxis, the progressive reduction in response due
to repeated agonist stimulation (see Desensitization and
Fade). The maximal response to the agonist is reduced in
tachyphyllaxis (whereas the sensitivity is reduced with

tolerance).
Ternary complex (model), this model describes the

formation of a complex among a ligand (usually an

agonist), a receptor, and a G-protein. Originally described
by De Lean and colleagues (J. Biol. Chem. 255, 7108–7117,
1980), it has been modified to include other receptor

behaviors (see Chapters 3.8 to 3.11), such as constitutive
receptor activity.

Transfection, the transfer of DNA from one cell into
another cell. This DNA then replicates in the acceptor cell.

Two-state model, a model of proteins that coexists in two
states controlled by an equilibrium constant. Molecules with
selective affinity for one of the states will produce a bias in

that state upon binding to the system. Two-state theory was
conceived to describe the function of ion channels but also
has relevance to receptors (see Chapter 3.7).

Uncompetitive antagonism, form of inhibition (originally
defined for enzyme kinetics) in which both the maximal
asymptotic value of the response and the equilibrium

dissociation constant of the activator (i.e., agonist) are
reduced by the antagonist. This differs from noncompeti-
tive antagonism where the affinity of the receptor for the
activating drug is not altered. Uncompetitive effects can

occur due to allosteric modulation of receptor activity by
an allosteric modulator (see Chapter 6.4).
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A

Abscissae, 254f

Absolute stoichiometry, 180

Adenosine receptor agonists, 70

Adenylate cyclase, 23, 25f

ß2-Adrenoceptor antagonists, 4

ß-Adrenoceptors, 82

Adsorption process

agonists affected by, 37f

saturable, 37

Adverse drug effects, 169–172. See also

Side effects

Affinity

agonist potency dependent on, 204–206

definition of, 6, 9–10

forces that control, 10

Langmuir adsorption isotherm, 10–13

of agonists. See Agonist affinity

of competitive antagonists, 261–264

of insurmountable antagonists, 271–275

of ligand for receptor conformations, 14

of noncompetitive antagonists, 267–268

Agonism

classical model of, 46f

description of, 199–206

full, 200–202

inverse, 49, 108, 123

operational model of, 47f

partial

analysis of, 204

description of, 46

EC50 for, 111

positive, 49

Agonist(s)

activation of, 48

adenosine receptor, 70

definition of, 9

dose-response curves, 14, 16–17, 36f,

48f, 202, 211

efficacy of

description of, 22, 28–29, 68–69

relative, 95–96

equiactive concentrations of, 259f

full

affinity measurements, in functional

experiments, 91–95

affinity of, 261

description of, 27–30

dose-response curves for, 90, 200–202

Furchgott method for affinity

measurements, 261

potency ratios for, 202–204, 219–220

in functional assays, 35

functional system sensitivity to, 85

hemi-equilibria, 117–119

high-affinity state induced by, 71

high-throughput screening, 156

intrinsic activity, 44–46

inverse

concentration-response curves

affected by, 212

description of, 108–111, 123

operational model for, 221

maximal response of, 85

muscarinic receptor, 132t

partial. See Partial agonists

potency of

affinity-dependent, 204–206

description of, 16–17, 47–48, 80f, 85

efficacy-dependent, 204–206

ratios, 201–204, 219–220

receptor density and, 31–33

receptor reserve for, 21

relative efficacy of, 95–96

response pathway for, 31

saturable adsorption process effect on,

37f

stimulus cascade by, 38–39

stimulus pathway augmentation or

modulation, 31

stimulus-response mechanism, 9

system maximum response and, 29–30

Agonist affinity

Barlow method, 94f, 97, 260–261

from binding curves, 67–71

EC50 and, relationship between, 96–97

full, 91–95, 261

Furchgott method, 92, 95, 97–98

G-protein coupling effects on, 76

partial, 89–91, 97, 124, 260–261

potency and, 80f

Agonist occupancy, 115

Aikake’s information criteria, 243, 243f

Alleles, 6

Allosteric antagonism

definition of, 99

detection of, 140–142

with efficacy changes, 221–222

insurmountable, 136–137

nature of, 127–129

operational model with variable slope,

222

orthosteric antagonism differentiated

from, 141, 208

sites of, 128–129

Allosteric antagonists

description of, 65, 66f, 127

IC50 and K1 for, relationship between,

76

insurmountable, potency of, 138–140

maximal inhibition of binding by, 76

probe dependence of, 129, 133, 140,

153

radioligand displacement by, 75

Schild analysis for, 136, 144

Allosteric binding, 127, 133

Allosteric constant, 18, 268

Allosteric enzymes, 127

Allosteric interactions, 35

Allosteric ligands

description of, 67, 134, 134t

efficacy affected by, 143–144

Allosteric modulation, 135–136

Allosteric modulators

affinity of, 268

classification of, 140–141

efficacy effects, 138

expression of, 160

functional study of, 134–138

inhibition curves for, 214–216

maximal inhibition by, 215

muscarinic receptor agonists affected by,

132t

potentiation of effect, 140

properties of, 129–134

receptor signal and, 133

saturability of effect, 133, 140

selectivity of, 133

surmountable effects produced by, 268

Allosteric potentiators, 160

Amiodarone, 191

Ampicillin, 149, 150f

Analysis of covariance of regression lines,

247–249, 249t–250t

Analysis of variance

one-way, 229–230, 230f–231f

two-way, 231

Andrews binding energy, 158

Angiotensin-converting enzyme inhibitors,

148, 189

Antagonism

allosteric. See Allosteric antagonism

competitive

description of, 114

Gaddum equation for, 101–102, 113,

122

data-driven analysis of, 206

description of, 206–209

equilibration phase of, 99

insurmountable

description of, 136–137, 208

pA2 and pKB for, 144–145

mechanisms of, 99

noncompetitive

description of, 114–117
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Antagonism (continued)

Gaddum equation for, 122, 125

nonsurmountable, 99

operational classifications of, 127

operational definition of, 99

orthosteric

allosteric antagonism differentiated

from, 141, 208

definition of, 99

insurmountable, 125

operational model with variable

slope, 222

pA2 and pKB for, 125

resultant analysis, 119–120, 125–126,

264–266

phases of, 209–210

short-form measures of, 209–218

surmountable

definition of, 99

description of, 99, 102, 207–208

inverse agonists, 108–111

partial agonists, 111–113

Schild analysis. See Schild analysis

variable slope, 221

Antagonists

allosteric. See Allosteric antagonists

cholecystokinin receptor, 80

competitive

affinity of, 261–264

description of, 75

IC50 correction factors for, 223

Schild analysis, 261–264

definition of, 9, 28

dextral displacement caused by, 210

dose-response curves affected by, 100f,

107f

hemi-equilibria, 117–119

high-throughput screening for, 156

histamine H2 receptor, 9–10

insurmountable, 116

noncompetitive

correction factors applied to,

211–213, 223

description of, 65f

orthosteric, 131

pA2 for, 268–271

potency of, 101f, 104

Schild regression for, 247

ARaG, 48

Arecaidine propargyl esther, 131

Arecoline, 131, 153

Arndt-Schulz law, 3

ß-Arrestin, 84

Assays

advantages and disadvantages of, 35

functional. See Functional assays

Asymmetrical dose-response curves,

244–246, 245f

Atipamezole, 4

Ayurveda, 147

B

Barlow, Scott, and Stephenson method,

94f, 97, 260–261

Binding

allosteric, 127, 133

allosteric antagonist inhibition of, 76

displacement, 62–67, 255–257

kinetic, 67

measurement of, 59

molecules in, 35

noncompetitive, 63

nonspecific, 60

of calcium, 24

radioligand, 59

saturation, 59–62, 255

specific, 60

theory of, 59

total, 60

two-stage, 76

Binding curves

agonist affinity from, 67–71

displacement, 72–73

excess receptor in, 76–77

Langmuirian type kinetics for, 71

protein concentration effects on, 71–73

protein excess effects on, 73f

saturation, 76–77

Binding domain, 9

Binding experiments

criteria for, 71t

description of, 59–60

displacement, 62–67, 255–257

functional experiments vs., 79, 153

radioligand, 73, 80

saturation, 60–62, 255

Binding reactions, 68

Bioavailability, 165, 169

Bioluminescence resonance energy

transfer, 182

Biomarkers, 190

BIRB 796, 129

Black, Sir James, 5–6

Brefelding A, 159

Bucheim, Rudolf, 2

Bulaquine, 163f

C

Calcitonin, 33, 82, 83f

Calcitonin receptor, 86

Calcium

binding of, 24

intracellular stores of, 24

Calcium ion, 83

Calmodulin, 24

Camptothecin, 159

Cancer, 8

Carbutamide, 150, 151f

Cardiovascular disorders, 7

Catechol, 149

Catecholamines, 149, 150f

CCR5, 6, 44, 53, 129, 132, 177

CD4, 44

cDNA, 4

Cellular context, 187

Cellular screening systems, 184–185

Cellular signaling, 4–5

Central nervous system disorders, 7

Central tendency, 226–227

Chemical genomics, 178

Chemical tools, in target-based drug

discovery, 178–179

Chemokine C receptor type 1, 133

Chemokine receptors, 6, 44, 53, 129, 132,

177

Chemokine X-type receptor, 132

Chemoreceptors, 2

Cheng-Prusoff relationship, 65–66, 214

Cholecystokinin receptor antagonists, 80

Cimetidine, 9–10

Clark, Alfred J., 3, 3f, 12, 41

Clark plot, 114

Clearance, 165–166

Clinical pharmacokinetics, 165

Cocaine, 149, 150f

Competitive antagonism

description of, 114

Gaddum equation for, 101–102, 113,

122

Competitive antagonists

affinity of, 261–264

description of, 75

IC50 correction factors for, 223

Schild analysis, 261–264

Concentration-dependent antagonism, 99

Concentration-response curve, 13

Confidence intervals, 228–229

Conformations, 13–14

Constitutive activity of receptors

description of, 49–51

receptor density and, 56

Schild analysis, 108–111

Context-dependent biological effect, 188

Correction factors, 211–213, 223

Correlational research, 231

CP320626, 128

Cubic ternary complex model, 50–52,

56–57

Curve fitting

approaches to, 233

automated, 238

goodness of fit, 236, 236f

guidelines for, 236–237

nonlinear, 233

Cyclic adenosine monophosphate, 25f

Cyclic adenosine monophosphate response

element binding, 83, 88

Cytochrome P450 enzymes, 171

D

Data

consistency with models, 232–249

linear model comparisons, 246

overextrapolation of, 239

Data points

Q-test for rejection of, 252t

weighting, 237–239

Degrees of freedom, 241

De-orphanization, 180

Dependent variables, 35, 162

Depolarization thresholds, 16

Descriptive statistics
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confidence intervals, 228–229

Gaussian distribution, 225–226

normal distribution, 226f

one-way analysis of variance, 229–230,

230f–231f

paired data sets, 229

populations, 226–228, 232

regression, 231, 246

sample, 226–228

two-way analysis of variance, 231

Desensitization of receptors, 34

Developability classification system, 169

Dextral displacement, 120, 210, 271–273

1,2-Diacylglycerol, 24

Difference, in samples, 251–252

Dihydropyridines, 152

Dimerization, 53, 180–181, 191

Dimethylsulfoxide, 36

Diseases

causes of, 6

treatment modalities for, 8

Displacement binding

competitive interactions, 74–75

curves, 72–73

description of, 62–67

excess receptor effects, 77

noncompetitive interactions, 75

Displacement binding experiments, 62–67,

255–257

Distribution, of drugs, 163, 165, 168

Dose ratios, 102–103

Dose-response curves

agonists, 14, 16–17, 36f, 48f, 202, 211

antagonists’ effect on, 100f, 107f

asymmetrical, 244–246, 245f

to calcitonin, 82

description of, 14–15

equiactive concentrations on, 257–260

fitting of. See Curve fitting

for full agonists, 90, 200–202

hypothesis testing using, 239–243

illustration of, 16f

for inverse agonism, 108

for ligand binding, 13f

log, 17

number of, 243–244

operational effects on, 127

operational model, 47

for partial agonists, 90

potency and, 16–17

Schild analysis, 106, 107f

sigmoidal, 16, 43, 200, 240

symmetrical, 244, 245f

Drug(s)

absorption of, 163–164

activity of, 34, 191

administration of, 163–164

aqueous solubility of, 35

bioavailability of, 165, 169

chemical sources of, 147–152

clearance of, 165–166

developability classification system, 169

dosing regimens, 169

free concentration of, 36–37

marine sources of, 148

minimum effective concentration of, 166

from natural products, 148

pro-drugs, 192–193

in receptor compartment, 36f

sequestration of, 36

side effects of, 150

Drug candidates, 169

Drug concentration

as independent variable, 35–37

dissimulation in, 35–36

free, 36–37, 39

Drug discovery

accidental examples of, 152

biomarkers, 190

challenges for, 175

high-throughput screening. See High-

throughput screening

hybridization approach, 149f

in vivo systems, 189–190

from marine sources, 148

milestones in, 162

organ system-specific applications, 7–8

preclinical process in, 176–177

privileged structures, 152

process of, 5, 5f, 147, 148f

rational design approach to, 148–149,

152

side effects as starting point for, 150,

151f

structure-activity relationships, 210

surrogate end points, 190

system-independent information used in,

9

systems-based, 184–189

target-based. See Target-based drug

discovery

therapeutic landscape for, 7

therapeutically active ligands, 190–193

Drug receptors. See also Receptor(s)

classical model of, 44–45

classical theory of, 42, 46f

kinetics of, 99–102

nature of, 6

proteins, 6

theory of, 42

two-state theory of, 42, 55–56

Drug response

description of, 21

through ‘‘cellular veil,’’ 21–23

Drug-like properties, 147, 152

E

EAAT1, 86

Ebers Papyrus, 6, 147

EC50

agonist affinity and, 96–97

description of, 16–17

inhibition curves and, 216

KA and, 93f

for partial agonism, 111

Efficacy

agonist potency dependent on,

204–206

allosteric antagonism with changes in,

221–222

allosteric ligand effects on, 143–144

allosteric modulator effects on, 138

conformational selections as a

mechanism of, 18–19

definition of, 6, 9, 13, 45

intrinsic, 9, 45, 115

maximal response of partial agonists

and, 98

of agonists, 22, 28–29, 68–69

relative, 95–96

Egualen sodium, 163f

Ehrlich, Paul, 2, 3f, 13

Elimination, of drugs, 163, 165, 167

Endocrine disorders, 8

Enthalpy, 10

Epinephrine, 193, 195f

Equiactive concentrations, on

dose-response curves, 257–260

Equilibrium dissociation constants, 53–54,

69

Equilibrium expression, 19

Equimolar potency ratios, 200–201

Etodolac, 154f

Evaporation rate, 10, 12

Exemestane, 163f

Experiment(s)

binding. See Binding experiments

dependent variable in, 35

independent variable in, 35

Experimental pharmacology, 99

Experimental research, 231

Extended ternary complex model, 48–49,

56

F

F statistic, 239, 241

False negatives, 152–153

False positives, 152–153

Fenoximone, 188

First-order kinetics, 167

Fluorescence resonance energy transfer,

182

Free drug concentration

description of, 36–37

measurement of, in receptor

compartment, 39

Frovatriptan, 163f

Full agonism, 200–202

Full agonists

affinity of, 261

description of, 27–30

dose-response curves for, 90, 200–202

Furchgott method for affinity

measurements, 261

potency ratios for, 202–204, 219–220

Functional assays

agonist affinity measurements in

full agonists, 91–95

partial agonists, 89–91

binding experiments vs., 79, 153

composition of, 79

description of, 35, 79–80
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Functional assays (continued)

dissimulation, 87–88

group I, 81–82

group II, 81, 83

group III, 83–84

group IV, 84

isolated tissues for, 81

membrane, 81

output from, 79

primary signaling involved in, 84

in real time vs. stop time, 83, 88–89

receptor density effects on, 85, 86f

recombinant, 84–87

reporter assays, 83–84

screen requirements, 155t

selective agonists used in, 35

types of, 80–84

Xenopus laevis melanophores, 82

yeast cells used in, 81–82

Furchgott method, 92, 95, 97–98, 261

Furosemide, 150, 151f

G

Gaddum equation

for competitive antagonism, 122

description of, 101–102, 113

for noncompetitive antagonism, 122,

125, 267–268

Gastrointestinal tract disorders, 7–8

Gaussian distribution, 16, 225–226

Genotypes, 2

Gibbs free energy, 14

Gleevec, 180

Gompertz function, 245

Goodness of fit, 236, 236f

gp120, 44, 53

G-protein(s)

activation of, 24f, 49, 56

description of, 6, 23

dissociation of, 68

equilibrium dissociation constant for, 69

saturation binding curve affected by, 69

G-protein coupling

agonist affinity affected by, 76

description of, 71

G-protein¼ coupled receptors

activation of, 23, 68

description of, 3–4, 6, 41

internalization of, 84f

recombinant systems, 179–180

schematic diagram of, 130f

Group I functional assays, 81–82

Group II functional assays, 81, 83

Group III functional assays, 83–84

Group IV functional assays, 84

GTP shift, 71

GTPase, 24

6’-Guanidinonaltrindole, 182

H

Half time, 165

Hemi-equilibria, 117–119, 221

Hemi-equilibrium state, 102

Heterodimeric receptors, 182t

Heterodimerization, 181

Heterologous desensitization, 34

High-throughput screening

agonists, 156

antagonists, 156

biologically active molecules not used,

153–154

definition of, 152

effects of, 152

failure of, 152

false negatives and positives, 152–153

in functional mode, 190

hit identification, 158

ligand-target validation, 161

screens used in

distributions for, 158f

modifications of, 159–160

requirements for, 154

sensitivity of, 154, 156

surrogate, 153–154

weak ligand sensitivity, 156

Z factor, 154–155

Hildebrand-Benesi plot, 61

Hill equation, 245

Hippocrates, 8

Histamine H2 receptor antagonists, 9–10

HIV

CCR5 receptors, 177

high-throughput screening of drugs for,

153–154

protein-protein interactions in, 154

reverse transcriptase inhibitors for, 129

HIV-1 binding model, 53–54

Homodimeric receptors, 182t

Homologous desensitization, 34

Hormones, 8t

Human embryonic kidney cells, 21

Human genome, 2

Hydrogen bonding, 10

Hypothesis testing

definition of, 239

description of, 227, 233

dose-response curves for, 239–243

F-test, 242t

I

IC50

correction factors, for competitive

antagonists, 223

description of, 65–66

K1 and, 75–76

ICS 205-903, 149

Imigran, 154f

In vivo systems, 189–190

Independent variable, 35, 162

Indomethacin, 154f

Inflammatory system diseases and

disorders, 8

Inhibition curve, 210

Inositol 1,4,5-triphosphate, 24, 25f

Insurmountable allosteric antagonism

description of, 136–137, 208

pA2 and pKB for, 144–145

Insurmountable antagonism

description of, 136–137, 208

pA2 and pKB for, 144–145

Insurmountable antagonists

affinity of, 271–275

description of, 116

Intercellular adhesion molecule-1, 128

Interfacial inhibition, 159

Intrinsic activity, 44–46

Intrinsic efficacy, 9, 45, 115

Inverse agonism, 49, 108

Inverse agonists

concentration-response curves affected

by, 212

description of, 108–111, 123

operational model for, 221

Ion channels, 47

Isoproterenol, 31, 206

J

JAK inhibitors, 185

K

K1, 75–76

Kaumann and Marano method, 267

Kinetic binding, 67

Koshland’s hypothesis, 127–128

L

Langley, John Newport, 2–3, 3f

Langmuir, Irving, 10, 12f

Langmuir adsorption isotherm

description of, 10–13

dose-response curves and, 15

Michaelis-Menten reaction and, 26

physiologically relevant model to, 234

saturation binding and, 59

specific binding and, 60

symmetrical, 244

Least squares weighting, 237, 238t

Lew and Angus method, 113–114

Ligand(s)

affinity of, 62

allosteric, 67, 134, 134t

dimerization of, 191

equilibrium between, equilibration time

for, 73

nontraceable, 59

orthosteric, 134t

therapeutically active, 190–193

traceable, 59

Ligand binding, 13f

Ligand-gated ion channels, 23

Ligand-receptor complex, 62

Line curvature, 246

Linear transformations, 61

Linearity tests, 247t

Local minima, 234–236

Locus, 9

Log-dose response curves, 17

Lowest positive Log(DR-1) value, 105

LTD4, 191

Luciferase, 83, 88
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Lung disorders, 7

LY294002, 186

M

Macroaffinity, 160

Magnus, Rudolph, 34

Materia Medica, 147

Mathematical models, 42–43

Maximal fractional inhibition, 65

Maximal response of agonists, 85, 98

Medicinal chemistry, 1–2

Melanin, 50

Melanophores

description of, 50, 51f

Xenopus laevis, 82

Membrane assays, 81

Metabolism, of drugs, 163, 165

Methylfurmethide, 67

Michaelis-Menten reactions, 25–26,

31, 55

Microphysiometry, 81–83, 82f

Minimum effective concentration, 166

Models

aberrant behaviors in systems detected

using, 43

classical, 44–45

data comparison with, 232–236

experimental design uses of, 44

mathematical, 42–43

operational, 45–47, 46f, 54–55

parsimonious, 43

simulation using, 43

Myocardial ischemia, 7

N

Naltrindole, 191

Natural products, 148

Neuropeptide Y

antagonists of, 153f

description of, 86

Neurotransmitters, 8t

Neutral endopeptidase, 191

Nevirapine, 128

Nifedipine, 153f

Noncompetitive antagonism

description of, 114–117

Gaddum equation for, 122, 125,

267–268

in receptor reserve systems, 214

Noncompetitive antagonists

correction factors applied to, 211–213,

223

description of, 65f

Noncompetitive binding, 63

Nonlinear regressional analysis, 113–114

Nonspecific binding, 60

Nonsurmountable antagonism, 99

Norepinephrine, 149, 150f

Norgestrel, 149, 150f

Normal distribution, 226f

Nuclear receptors, 23

Nucleation, 36

Null hypothesis, 227

O

One-way analysis of variance, 229–230,

230f–231f

Operational model

derivation of, 54–55

description of, 45–47, 46f

function for variable slope, 55

for inverse agonists, 221

of agonism, 47f

orthosteric antagonism, 222

partial agonists with, 124, 220–221

Opium, 147

Orphan receptors, 180

Orthosteric antagonism

allosteric antagonism differentiated

from, 141, 208

definition of, 99

insurmountable, 125

operational model with variable slope,

222

pA2 and pKB for, 125

resultant analysis, 119–120, 125–126,

264–266

Orthosteric antagonists, 131

Orthosteric ligands, 134t

Osler, Sir William, 6

Outliers, 237–239, 252

P

pA2

for antagonists, 268–271

for inverse agonists, 123

for partial agonists, 124

pKB and, 125, 144–145

Paired data sets, 229

Paracelsus, 14

Parsimonious model, 43

Partial agonism

analysis of, 204

description of, 46

EC50 for, 111

Partial agonists

affinity measurements

Barlow, Scott, and Stephenson

method, 260–261

in functional experiments, 89–91, 97,

124, 260–261

Stephenson method, 266

agonist interactions with, 220

description of, 27–30

maximal response of, 98

with operational model, 124, 220–221

pA2 measurements for, 124

surmountable antagonism analyses for,

111–113

Paton, Sir William, 2

Penicillin, 149, 150f

Perospirone, 163f

Pharmaceutics, 1, 169

Pharmacodynamics, 1–2, 163

Pharmacognosy, 1

Pharmacokinetics

absorption, 163–164

clinical, 165

definition of, 1

description of, 162–169

distribution, 163, 165

elimination, 163, 165, 167

first-order, 167

metabolism, 163, 165

schematic diagram of, 165f

Pharmacologic experiments

functional assays. See Functional assays

overview of, 79–80

Pharmacology

definition of, 1

history of, 2

interventions, 6–9

mathematical models in, 42–43

medicinal chemistry and, relationship

between, 2

organ system-specific applications,

7–8

test systems, 4–6

therapeutic landscape for, 7

Pharmacophore modeling, 172

Phase I metabolic reactions, 165

Phase II metabolic reactions, 165

Phenotypes, 2, 5

Phosphatidylinositol 4,5-bisphosphate,

24

Phospholipase C, 24

pKB, 125, 144–145

Polar metabolites, 165

Polymorphisms, 4

Polypharmacology, 190–192

Pooled variance, 228

Populations, 226–228, 232

Positive agonism, 49

Potency

of agonists, 16–17, 47–48, 80f, 85

of antagonists, 101f, 104

of insurmountable antagonists, 116,

138–140

of inverse agonists, 110–111

Potency ratios

description of, 201–204

for full agonists, 202–204, 219–220

Power analysis, 252–254

Power curves, 254f
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