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Preface

Many college students take a couple of courses in calculus. Afterwards, they either
(i) take no more calculus, (ii) take calculus of several variables, or (iii) take real
analysis. This book offers another option, not exclusive from options (ii) or (iii).

In the first two college calculus courses, much attention is given (naturally) to
preparing students for things to come. But typically there is little time devoted to
appreciating the bigger picture or for generally admiring the scenery. Many of the
most appealing aspects of the subject are often left for students to pick up on their
own. Unfortunately, however, students seldom do so.

I have taught undergraduate real analysis and graduate real analysis for teachers
for over 15 years. These courses have evolved in a direction which attempts to
address these concerns, and this book is a product of the evolution. The main goal
is to see how beautifully things fit together, while admiring the scenery along the
way. There are a lot of things in this book that experts in real and classical analysis
already know; part of the idea here is that there is no reason why a good calculus
student should not know them as well.

The book could be used as a text for a third course in calculus of a single
real variable, as a supplementary text for a first course in real analysis, or as
a reference for anyone who teaches calculus. The book is almost entirely self-
contained, but readers would be best to have already taken the equivalent of two
one-semester courses in single variable calculus. Some familiarity with sequences
and some experience with proofs would be beneficial, though not entirely necessary.

I have presented ideas in a manner which emphasizes breadth as much as depth.
Throughout the text and in the exercises, alternative approaches to many topics are
taken. Such explorations are frequently more meaningful than simply aiming for
generalization. Indeed, different arguments offer different insights. But whenever I
have diverged from what is customary, I have given the usual treatments their due
attention.

Many of the methods, examples, and exercises in the text are adapted from papers
in the recent mathematics literature, chiefly: The American Mathematical Monthly,
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viii Preface

The College Mathematics Journal, Mathematics Magazine, The Mathematical
Gazette, and the International Journal of Mathematics and Mathematical Sciences
in Education and Technology. I hope that readers will be encouraged to read these
and other mathematics journals. At the very least, they will find therein solutions to
many of the exercises.

I have also tried to emphasize pattern: pattern of development, pattern of proof,
pattern of argument, and pattern of generalization. In calculus many threads are
related in many ways, but in the end it is a coherent subject. Theorems are often
named to emphasize pattern, for example the Cauchy–Schwarz Inequality and
the Cauchy–Schwarz Integral Inequality, Jensen’s Inequality and Jensen’s Integral
Inequality, the Mean Value Theorem for Sums and the Mean Value Theorem for
Integrals, etc.

• The real numbers are introduced carefully, but with an eye on economy. One can
be something of an expert in calculus without necessarily knowing all there is
to know about the real numbers. As presented here, the “completeness axiom”
for the real numbers is the Increasing Bounded Sequence Property, rather than
the Least Upper Bound Property or Cauchy-completeness, though the latter two
notions are explored in some exercises. The Archimedean Property of the real
numbers is used freely without explicit mention, but it too is addressed in a few
exercises. The word “compact” is never used. The Nested Interval Property,
a close cousin of the Increasing Bounded Sequence Property, also plays an
important part, with bisection algorithms getting their fair attention.

• Important throughout the entire book is the pair of inequalities

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
for n D 1; 2; 3; : : :

where e is Euler’s number e Š 2:71828. These estimates are frequently revisited,
refined, and extended. Inequalities in general play a prominent role as well.
The most important of these are Bernoulli’s Inequality, the Arithmetic Mean –
Geometric Mean Inequality (the AGM Inequality for short), 1 C x � ex; and
Jensen’s Inequality.

• Considerable emphasis is given to the symbiotic relationship between the expo-
nential function and calculus itself. The former, for example, gives meaning to
functions involving real exponents, it enables us to extend Bernoulli’s Inequality
and the AGM Inequality, and many of their consequences.

• Considerable attention is devoted to three consequences of the Intermediate
Value Theorem which are often overlooked: the Universal Chord Theorem, the
Average Value Theorem for Sums and its weighted version, the Mean Value
Theorem for Sums. The latter two are so named because of their integral
analogues, the Average Value Theorem and the Mean Value Theorem for
Integrals. In obtaining these, the Extreme Value Theorem is indispensable. The
relationship between sums and integrals is emphasized throughout.
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• The definite integral is developed as an extension of the notion of the average
value of a continuous function evaluated at N points. Proving that the average
value of a continuous function exists is deferred to Appendix A; the proof
uses some rather sophisticated ideas which are not used elsewhere. The definite
integral’s relationship with area is then discussed. Readers who go on to study
mathematical analysis will see that the integral as an average is a more enduring
theme than the integral as area.

• Chapter 7 (Other Mean Value Theorems) contains some results which have
a flavor similar to that of the Mean Value Theorem. Subsequent chapters are
independent of this one.

• Chapter 12 (Classic Examples) is also independent of the rest of the book, except
that Wallis’s product in Sect. 12.1 is used in Chap. 13 to obtain the constant

p
2 

which appears in Stirling’s formula.

• Some important series are studied, for example, Geometric series, p-series, the
Alternating Harmonic series, the Gregory-Leibniz series, and some Taylor series.
But series in general are not covered systematically. For example, there is no
treatment of power series, tests for convergence, radius of convergence, etc.

• Quadrature rules are studied as means for doing calculus and studying inequal-
ities, rather than being used for conventional numerical methods. Indeed, the
quadrature rules are usually applied to a function whose definite integral is
known. Particular attention is given to the Trapezoid and Midpoint Rules applied
to convex/concave functions.

• Motivated largely by the Mean Value Theorem for the Second Derivative,
error terms are studied in Chap. 14. An inequality can often be recast as an
equality which contains an error term. Jensen’s Inequality, the AGM Inequality,
Young’s Integral Inequality (among others), and quadrature rules are considered
in this way.

Many of the topics in the book, even the better-known ones, have not been
collected elsewhere in any single volume. And a good number of these have
been published heretofore only in journals. As a result, this book is not in direct
competition with any others. Still, there is naturally some overlap between this and
other books. Most notably:

A Primer of Real Functions, by R.P. Boas Jr. (Math. Assoc. of America, 1981).

Excursions in Classical Analysis: Pathways to Advanced Problem Solving and
Undergraduate Research, by H. Chen (Math. Assoc. of America, 2010).

The Cauchy-Schwarz Master Class, by J.M. Steele (Math. Assoc. of America
and Cambridge University Press, 2004).

Inequalities, by G.H. Hardy, J.E. Littlewood & G. Polya (Cambridge Mathemat-
ical Library, 2nd edition, 1988).
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Analytic Inequalities, by D.S. Mitrinović (Springer-Verlag, New York, 1970).

Mean Value Theorems and Functional Equations, by P.K. Sahoo & T. Riedel
(World Scientific, Singapore, 1998).

I have tried to write the sort of book that I would use, that I would like to own
as a reference, and that I would fairly recommend to others. To borrow a phrase
from G. H. Hardy: I can hardly have failed completely, the subject matter being so
attractive that only extravagant incompetence could make it dull.
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Chapter 1
The Real Numbers

Everything is vague to a degree you do not realize till you have
tried to make it precise.

—Bertrand Russell

We assume that the reader has some familiarity with the set of real numbers, which
we denote by R. We review interval notation, absolute value, rational and irrational
numbers, and we say a few things about sequences. The main point of this chapter
is to acquaint the reader with two very important properties of R: the Increasing
Bounded Sequence Property, and the Nested Interval Property.

1.1 Intervals and Absolute Value

For two real numbers a < b; we write

Œa; b� D fx 2 R W a � x � bg ;
.a; b/ D fx 2 R W a < x < bg ;

.�1; b� D fx 2 R W x � bg ; and

.a;C1/ D fx 2 R W a < xg ;
along with the obvious definitions for Œa; b/ etc.

For a < b; the distance from a to b is b�a: One half of this distance is b�a
2

. The
midpoint of the interval Œa; b� is c D aCb

2
: It satisfies

aC b � a
2

D c D b � b � a
2

:

These are simple but useful observations. See Fig. 1.1.
The distance between any two real numbers is measured via the absolute value

function. For x 2 R, the absolute value of x is given by

j x j D
p
x2:

© Springer Science+Business Media New York 2014
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2 1 The Real Numbers

b−a
2

b−a
2

a ba+b
2

Fig. 1.1 aC b�a
2

D aCb
2

D b � b�a
2

Here we agree to take the nonnegative square root of x2. Therefore,

� j x j � x � j x j :
Since j x � a j D p

.x � a/2, we see that j x � a j is the distance that x is from a.
So for r > 0; we have

j x � a j < r , x 2 .a � r; aC r/:

We might say that “x is within r of a.” See Fig. 1.2.

xa − r a + ra

∣∣x−a
∣∣ < r

Fig. 1.2 j x � a j < r , x 2 .a � r; aC r/

A few basic but important facts about absolute value are as follows.

Lemma 1.1. Let x; y 2 R: Then

(i) j xy j D j x j jy j ;
(ii) j x � y j D jy � x j ;

(iii) j x C y j � j x j C jy j ;
(iv) j x � y j � ˇ̌ j x j � jy j ˇ̌ :
Proof. For (i), j xy j D p

.xy/2 D p
x2y2 D �p

x2
��p

y2
� D j x jjy j:

For (ii), we need only observe that .x � y/2 D .y � x/2.
For (iii),

j x C y j2 D .x C y/2 D x2 C 2xy C y2

D j x j2 C 2xy C jy j2 � j x j2 C 2 j xy j C jy j2
D j x j2 C 2 j x j jy j C jy j2 ( by (i) )

D � j x j C jy j �2:
Then taking (nonnegative) square roots, we get j x C y j � j x j C jy j:
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For (iv), we write j x j D j .x � y/C y j and apply (iii) to obtain

j x j � j x � y j C jy j ; which gives j x j � jy j � j x � y j :

Now we reverse the roles of x and y; and use (ii), to get

jy j � j x j � j x � y j :

Taken together, these last two inequalities read

˙� j x j � jy j � � j x � y j :

That is,

ˇ̌ j x j � jy j ˇ̌ � j x � y j :

ut
In Lemma 1.1, item (iii) is known as the triangle inequality, which is very

useful. We’ll see in Sect. 2.3 why it gets this name. Item (iv) is also useful; it is
called the reverse triangle inequality.

Remark 1.2. The trick used in the proof of item (iv) in Lemma 1.1, of subtracting
y and adding y; then using the triangle inequality, is very common in calculus and
real analysis. ı

1.2 Rational and Irrational Numbers

We denote by N the set of natural numbers:

N D f 1; 2; 3; 4; : : : g:

The set N is closed under addition and multiplication, but it is not closed under
subtraction—that is, the difference of two natural numbers need not be a natural
number.

Appending to N all differences of all pairs of elements from N, we get the set of
integers:

Z D f : : : ;�2; �1; 0; 1; 2; 3; : : : g:

The set Z is closed under addition, multiplication, and subtraction. But Z it is not
closed under division—that is, the quotient of two integers need not be an integer.

Appending to Z all quotients of all pairs of elements from Z (with nonzero
denominators) we get the set of rational numbers:
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Q D
�
p

q
W p; q 2 Z; and q ¤ 0

�
:

The set Q is closed under addition, multiplication, subtraction, and division. (The
reader should agree that it is indeed closed under division.) But as the following
lemma shows, Q is not closed under the operation of taking square roots—that is,
the square root of a rational number need not be a rational number.

Lemma 1.3. There is no rational number x such that x2 D 2: That is,
p
2 is an

irrational number.

Proof. (e.g., [10, 21]) We prove by contradiction. Suppose that x D p=q, where
p; q 2 Z; with q ¤ 0; is such that x2 D 2: Then 2q2 D p2. If we factor p into
a product of prime numbers, then there is a certain number of 20s in the product.
Whatever this certain number is, p2 then has an even number of 20s in its product of
primes. Likewise, q2 has an even number of 20s in its product of primes. But then
2q2 must have an odd number of 20s in its product of primes. Therefore 2q2 D p2

cannot hold and we have a contradiction, as desired. ut
For other proofs of Lemma 1.3, see Exercises 1.13 and 1.14. Essentially the same

argument as given above shows that the square root of any prime number (e.g.,
p
3;

or
p
5; : : : etc.) is irrational. Therefore the square root of any natural number that is

not itself a perfect square, is irrational.
Extending this argument a little further, we can see that the nth root of any prime

number (like
p
2 or

p
3; but also 3

p
2; or 3

p
3; : : : ; or 4

p
2; or 4

p
3; : : : etc.) is

irrational. Therefore the nth root of any natural number that is not itself a perfect
nth power, is irrational. (See Exercise 1.15.)

In older textbooks, numbers like 3
p
2;

3
p
3;

4
p
2;

4
p
3 etc. are called surds. For other

proofs that many surds are irrational, see Exercises 1.16 and 1.17.

Remark 1.4. The reader will be aware of the usual English meaning of the word
irrational. The English meaning of the word surd is something like lacking sense.ı

To expand Q to include numbers like
p
2, and indeed all the surds, a reasonable

idea now might be to append to Q all nth roots of all rational numbers. But still,
important numbers like e and   would remain excluded. (We’ll say a little more
about this later.) So instead we take a different approach.

Observe that any number whose decimal expansion (i.e., base 10) either termi-
nates or eventually repeats, is a rational number. For example,

0:825 D 33

40
, 0:2 D 2

9
, 3:2142857 D 45

14
, and 51:821571428 D 362;751

7;000
.

The reader is probably familiar with this observation, although a proper proof is
somewhat cumbersome. We explore this in Exercise 1.19. (And we’ll see it again in
Sect. 2.1.)
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Remark 1.5. The converse of this observation is also true: the decimal expansion
of any rational number either terminates or repeats. See Exercise 1.20. ı

So since
p
2 is irrational (by Lemma 1.3), its decimal expansion neither

terminates nor repeats. It begins 1:414213562373095 : : : and continues endlessly
with no repeating pattern. This gives us an ida of how to proceed.

We append to Q all nonterminating nonrepeating decimals. This gives the set of
real numbers R:

R D f all decimals: terminating, repeating, or otherwise g :

As we have already indicated with our pictures, a model for R is the familiar
number line: x 2 R corresponds to some specific point on the number line. But a
real number can have two different decimal expansions. For example, if x D 0:9

then 10x D 9:9; and subtracting the first equation from the second, we get 9x D 9.
Therefore, x D 1:0 (as well). Likewise 3:59 D 3:6 ; �6:02379 D �6:0238 ; etc.
Fortunately, ambiguities of this sort are the only ones that exist.

1.3 Sequences

Our description of the real numbers thus far has been very qualitative. To describe
the real numbers precisely (and to remove our dependency on base 10, or on any
other base), one must use sequences.

A sequence is a function a W N ! R. That is, the domain of the function is N.
As such its set of values, or terms can be written as

˚
a.1/; a.2/; a.3/; : : :

�
:

But it is more customary to write fa1; a2; a3; : : : g; or fang1
nD1; or simply fang.

Remark 1.6. For a sequence fang, the domain doesn’t really need to be N.
Sometimes it is convenient to start at index zero, or somewhere else. For example
fa.0/; a.1/; a.2/; a.3/; : : :g; or fa.5/; a.6/; a.7/; : : :g; or fa.2/; a.4/; a.6/; : : :g etc.
Or a sequence may be finite, for example, f 1; 3; 5; 7; 9 g. Sequences that we
consider will generally not be finite, unless otherwise stated; the domain of the
sequence is usually clear from the context. ı

Saying that the sequence fang converges toAmeans intuitively that an gets closer
and closer to A; as n gets larger and larger. When fang converges to A; we often
write simply: an ! A:

Example 1.7. The reader is surely comfortable accepting that the sequence

fang D
�
1

n

�
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converges to 0: That is,

1

n
! 0 :

Some other examples are

1p
n

! 0 ;
1

n2
! 0 ;

1

n1=10
! 0 ;

indeed
1

np
! 0 for any p > 0 ;

n

nC 3
D n=n

n=nC 3=n
! 1

1C 0
D 1 ;

p
n

nC 3
D

p
n=n

n=nC 3=n
! 0

1C 0
D 0 ; and

p
nC 1

2
p
n

D
p
n=

p
n C 1=

p
n

2
p
n=

p
n

! 1C 0

2
D 1

2
: ˘

As we have done in Example 1.7, one can often think along the lines of the
intuitive notion of convergence of a sequence. But sometimes more care is required.

Precisely, fang converges to A means that for any " > 0 (no matter how small)
we can find N > 0 (which is typically large) such that

for n > N , it is the case that jan � Aj < ":
That is: for this N; each of the terms aNC1; aNC2;aNC3; : : : is within " of A: When
no explicit mention of A is necessary, we might simply say that fang converges, or
fang is convergent.

Example 1.8. We show that 1p
n

! 0; as claimed in Example 1.7. Suppose that
" > 0 is given. First of all,

ˇ̌̌
ˇ 1pn � 0

ˇ̌̌
ˇ D

ˇ̌̌
ˇ 1pn

ˇ̌̌
ˇ D 1p

n
:

And we can easily make 1p
n
< " :

1p
n
< " , n >

1

"2
:

So we choose N D 1="2. Then for n > this N; we have
ˇ̌
ˇ 1p

n
� 0

ˇ̌
ˇ < " as desired. ˘

Example 1.9. Consider the sequence

fang D
�
nC 100

3n2

�
D
�
1

3n
C 100

3

1

n2

�
:
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It appears that the terms of this sequence are getting closer and closer to 0 as n gets
larger and larger. We prove that indeed nC100

3n2
! 0: Suppose that " > 0 is given.

First,

ˇ̌̌
ˇnC 100

3n2
� 0

ˇ̌̌
ˇ D nC 100

3n2
:

The idea now is to show that nC100
3n2

is < something, wherein the something can
easily be made <": There are any number of ways to proceed from here. (This is
part of the reason why showing that a sequence converges can be tricky.) We observe
that for n large enough, we shall have 1

3n
C 100

3
1
n2
< 1

n
. More precisely,

nC 100

3n2
<

1

n
for n > 50: (1.1)

And

1

n
< " , n >

1

"
:

The inclination now might be to choose N D 1=": But to make every step of the
above analysis valid, we must actually choose N D the larger of 1=" and 50. That
is, N D maxf50; 1="g: (If " D 1=10 for example, then simply taking N D 10 does
not guarantee that (1.1) holds.) Then for n > this N; we have

ˇ̌
nC100
3n2

� 0ˇ̌ < " as
desired. ˘

The reader should agree that a proof that
˚
1
n

�
converges to 0 is more or less

contained in Example 1.9.

Example 1.10. Consider the sequence

fang D
�
3n � 1
4nC 2

�
:

Since
˚
3n�1
4nC2

� D ˚
3�1=n
4C2=n

�
; it appears that the terms are getting closer and closer to

3=4 as n gets larger and larger. We prove that indeed 3n�1
4nC2 ! 3

4
: Let " > 0 be given.

Here,

ˇ̌̌
ˇ 3n � 1
4nC 2

� 3

4

ˇ̌̌
ˇ D

ˇ̌̌
ˇ12n � 4 � 12n � 6

4.4nC 2/

ˇ̌̌
ˇ D

ˇ̌̌
ˇ �10
4.4nC 2/

ˇ̌̌
ˇ D 10

4.4nC 2/
D 5

4.2nC 1/
;

and this is about as much simplifying as can be done. The idea again is to show that
5

4.2nC1/ is < something, wherein the something can easily be made <": And again,
there are any number of ways to proceed. Observe that
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5

4.2nC 1/
<

5

2nC 1
<

5

2n
;

and

5

2n
< " , n >

5

2"
:

So we choose N D 5=.2"/. Then for n > this N; we have
ˇ̌
3n�1
4nC2 � 3

4

ˇ̌
< " as

desired.
Note: This example can be regarded as finished, but let us show another way that

we might have proceeded. We could have observed that

5

4.2nC 1/
D 5

8nC 4
<

5

8n
<
1

n
:

And here,

1

n
< " , n >

1

"
:

In this case we would choose N D 1=". Then for n > this N; we haveˇ̌
3n�1
4nC2 � 3

4

ˇ̌
< " as desired.

The latter approach yielded N D 1=". So the N D 5=.2"/ chosen in the former
approach is larger than it really needs to be. But no matter, we just wanted to find
any N that works. (If something is true from Monday onwards and it is true from
Thursday onwards, then it is (obviously) true from Thursday onwards.) ˘
Example 1.11. Consider the sequence

fang D
�

1

2n2 � 1;001
�
:

It appears that the terms are getting closer and closer to 0 as n gets larger and larger.
We prove that indeed 1

2n2�1;001 ! 0: Suppose that " > 0 is given. First off,

ˇ̌̌
ˇ 1

2n2 � 1;001 � 0
ˇ̌̌
ˇ D

ˇ̌̌
ˇ 1

2n2 � 1;001
ˇ̌̌
ˇ :

Now for n > 22 we have 2n2 � 1;001 > 0 and so for such n,

ˇ̌̌
ˇ 1

2n2 � 1;001
ˇ̌̌
ˇ D 1

2n2 � 1;001 :

The idea again is to show that 1
2n2�1;001 is < something, wherein the something can

easily be made <": And again, there are any number of ways to proceed. Notice
that
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1

2n2 � 1;001 <
1

n2
not for all n; but for n > 31 :

And

1

n2
< " , n >

1p
"
:

Now to make every step of our analysis valid, we choose

N D max

�
22; 31;

1p
"

�
D max

�
31;

1p
"

�
:

Then for n > this N , we have
ˇ̌̌

1
2n2�1;001 � 0

ˇ̌̌
< " as desired.

Note: Again we could regard this example as finished, but let us show another
way that we might have proceeded. An application of the quadratic formula shows
that for n > 22 we have

1

2n2 � 1;001 <
1

n
:

In this case we would choose N D maxf22; 1="g. Then for n > this N; we haveˇ̌̌
1

2n2�1;001 � 0
ˇ̌̌
< " as desired. Whether the N in this latter approach is larger than

the N of the former approach, depends on ". ˘
The reader should look again at Example 1.9 and find a way to proceed different

from the way given there, thus obtaining (probably) a different N:
The following is an important fundamental fact about sequences, which is almost

obvious. One uses it routinely without explicit mention.

Lemma 1.12. If an ! A1 and an ! A2; then A1 D A2:

Proof. We show that for any given " > 0; no matter how small, it is the case thatˇ̌
A1 � A2

ˇ̌
< ": For then we must have A1 D A2: So let " > 0 be arbitrary. By the

triangle inequality (i.e., item (iii) of Lemma 1.1) and item (ii) of Lemma 1.1,

ˇ̌
A1�A2

ˇ̌ D ˇ̌
A1�anCan�A2

ˇ̌ � ˇ̌
A1�an

ˇ̌C ˇ̌
an�A2

ˇ̌ D ˇ̌
an�A1

ˇ̌C ˇ̌
an�A2

ˇ̌
:

These last two terms are getting small as n gets large, since an ! A1 and an ! A2.
So things look good. To make their sum<", we proceed as follows. Since an ! A1,
there is N1 such that

ˇ̌
an � A1

ˇ̌
<
"

2
for n > N1:

Since an ! A2, there is N2 such that
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ˇ̌
an � A2

ˇ̌
<
"

2
for n > N2:

So for n > N D maxfN1;N2g,

ˇ̌
A1 � A2

ˇ̌
<
"

2
C "

2
D ";

as desired. ut
Remark 1.13. In the proof of Lemma 1.12 we used that trick again: subtracting an
and adding an, then applying the triangle inequality. ı

Lemma 1.12 (see Exercise 1.22 for another proof) says that if an ! A; then the
limit A is unique. The limit is typically denoted by

A D lim
n!1 an :

Of course, not all sequences are convergent. We say that the sequence fang
diverges, or is divergent, if there exists no A 2 R for which an ! A:

Example 1.14. Consider the sequence

fang D f.�1/nC1g D f 1; �1; 1; �1; 1; �1; : : : g:

For any real number A we have, by the triangle inequality:

j anC1 � an j D j anC1 � AC A � an j � janC1 � Aj C jan � Aj :

If an ! A then for any " > 0, we can make the right-hand side above<", by taking
n large enough. But this is impossible since j anC1 � an j D 2 for every n. Therefore
fang diverges. ˘
Remark 1.15. In Example 1.14 above we used that trick again: subtracting A and
adding A; then applying the triangle inequality. ı

Now back to the real numbers, for a moment. We have seen that the decimal
expansion of

p
2 begins 1:414213562 : : : : So let us associate with

p
2 the sequence

fang D f 1:4; 1:41; 1:414; 1:4142; 1:41421; 1:414213; 1:4142135; : : : g:

This sequence is increasing: each term (after the first) is larger than the previous
term. This sequence is also bounded above: each term is less than 1:5 say, or less
than 2, or less than 1:42, etc. Now each term an of this sequence is a rational number,
and

ˇ̌̌
an � p

2
ˇ̌̌
<

1

10n
! 0:
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So, by its very construction, the sequence converges to
p
2, which is irrational. So Q

is not closed under the operation of taking the limit of a sequence which is increasing
and bounded above.

This suggests a way to extend the rational numbers to include the irrational
numbers: we append to Q all limits of all sequences of rational numbers which
are increasing and bounded above. But we must do some more groundwork in order
to make these ideas precise.

1.4 Increasing Sequences

A sequence fang is increasing if an � anC1 for n D 1; 2; : : : : And fang is strictly
increasing if an < anC1 for n D 1; 2; : : : :

A sequence fang is decreasing if an � anC1 for n D 1; 2; : : : : (That is, f�ang is
increasing.) And fang is strictly decreasing if an > anC1 for n D 1; 2; : : : :

A sequence fang is bounded above if there exists a number U such that an � U

for n D 1; 2; : : : : The number U is called an upper bound for fang:
A sequence fang is bounded below if there exists a number L such that L � an

for n D 1; 2; : : : : (In which case, f�ang is bounded above.) The number L is called
a lower bound for fang:
Remark 1.16. If a sequence fang has an upper bound U; then U is not unique:
the number U C 1; for example, also serves as an upper bound for fang: So does
U C 1=10; as does U C 1;000; etc. Likewise, if fang has a lower bound L; then L
is not unique. ı
Example 1.17. The sequence fang D fpn g is not bounded above: there is noU for
which an � U for n D 1; 2; : : : : It is bounded below, by L D 1 (and by L D 1=2,
and by L D 0, and by L D �10 etc.). This sequence is strictly increasing. ˘
Example 1.18. The sequence fang D f n

nC1g is bounded above, by U D 1 for
example. It is also bounded below, by L D 1=2 for example. This sequence is also
strictly increasing (as the reader may verify). ˘

A sequence fang is bounded if fang is bounded above and bounded below. That
is, there are numbers L;U such that an 2 ŒL; U � for every n 2 N: Setting M D
maxfjLj ; jU jg; we see that this is equivalent to saying that there exists a numberM
such that janj � M for every n 2 N:

Example 1.19. Since �4=3 � .�1/n � 1=3 � 2=3 for every n 2 N; the sequence
fang D f.�1/n � 1=3g is bounded above and bounded below. As such fang is
bounded: janj � 4=3 for every n 2 N: This sequence is neither increasing nor
decreasing. ˘
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Example 1.20. The terms of the sequence fang D f n2

nC1g D f n
1C1=ng appear to be

getting arbitrarily large as n increases. We show that indeed this sequence is not
bounded above. Let M be any given number (to be thought of as large). Then

n2

nC 1
> M , n2 �Mn �M > 0:

Using the quadratic formula, we see that

n > MCp
M2C4M
2

) n2 �Mn �M > 0:

So by taking n larger than MCp
M2C4M
2

, we can make fang > M . That is, we can

make fang as large as we like. Therefore fang D f n2

nC1g is not bounded above. ˘
If a sequence is increasing without any upper bound, or decreasing without any

lower bound, then its terms cannot be getting arbitrarily close to any particular
number. This, in its contrapositive form, is the idea behind the following.

Lemma 1.21. If an ! A; then fang is bounded.

Proof. This is Exercise 1.26. ut
Example 1.22. We saw in Example 1.20 that the sequence fang D f n2

nC1g D
f n
1C1=ng is not bounded. So applying Lemma 1.21 in its contrapositive form, fang

diverges. We might say that fang diverges to C1. ˘
The converse of Lemma 1.21 does not hold: The sequence fang D ˚

.�1/nC1� is
bounded, but as we saw in Example 1.14, it diverges.

Example 1.23. Suppose that an ! A. We show that a2n ! A2: But here we forgo
the formal definition (i.e., the " and theN ); this is usually done by people with some
experience in real analysis. By the triangle inequality,

ˇ̌
a2n � A2 ˇ̌ D j an C A j j an � A j � .j an j C jA j/ j an � A j :

Now by Lemma 1.21, fang is bounded because it converges. That is, there isM > 0

such that

j an j � M for n D 1; 2; 3; : : : :

Therefore

.j an j C jA j/ j an � A j � .M C jAj / j an � A j for n D 1; 2; 3; : : : :

And again, since fang converges,

.M C jAj/ j an � A j ! 0:

Therefore
ˇ̌
a2n � A2 ˇ̌ ! 0, and so a2n ! A2: ˘
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We close this section by stating four more useful facts which again, one uses
routinely without explicit mention. We assume that the reader can prove these, or is
quite comfortable in accepting them. We leave their proofs as exercises.

Lemma 1.24. Let ’; “ 2 R. If an ! A and bn ! B; then ’an C “bn ! ’AC “B:

In particular, an C bn ! AC B and an � bn ! A � B:
Proof. This is Exercise 1.28. ut
Lemma 1.25. If an ! A and bn ! B; then anbn ! AB:

Proof. This is Exercise 1.29. ut
Lemma 1.26. If an ! A and bn ! B; with bn ¤ 0 for all n and B ¤ 0; then
an
bn

! A
B
:

Proof. This is Exercise 1.30. ut
Lemma 1.27. If an ! A and an � 0, then A � 0: Consequently (upon
consideration of bn � an ), if an ! A and bn ! B; with an � bn; then A � B:

Proof. This is Exercise 1.31. ut
These four lemmas say, respectively, that convergent sequences respect linear

combinations, products, quotients, and nonstrict inequalities. Nonstrict because
even if an > 0 in Lemma 1.27, we can still only conclude that A � 0: For example,
1=n > 0, but lim

n!1 1=n D 0.

Example 1.28. As indicated, the proof of Lemma 1.25 is the content of
Exercise 1.29. But here is another approach. In Example 1.23 we showed that
if cn ! C then c2n ! C2: Now it is easily verified that

anbn D 1

4

�
.an C bn/

2 � .an � bn/2
�
:

So if an ! A and bn ! B then anbn ! AB; by applying Lemma 1.24, in various
combinations, to the right-hand side. ˘

1.5 The Increasing Bounded Sequence Property

We have seen that Q is not closed under the operation of taking the limit of a
sequence which is increasing and bounded above. (Again, such a sequence may well
have a limit, but this limit may not be in Q—as is the case with

p
2.) So appending

to Q all such limits, we get the set real numbers R :

R D Q [
flimits of all sequences from Q which are increasing & bounded aboveg:
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Example 1.29. The irrational number
p
2 is the limit of the sequence of rational

numbers

fang D f 1:4; 1:41; 1:414; 1:4142; 1:41421; 1:414213; 1:4142135; : : : g;

which is increasing and bounded above. Therefore
p
2 2 R. ˘

Example 1.30. The number x D 1:234567891011121314 : : : is irrational because
its decimal expansion continues endlessly, with no repeating pattern. This number
is the limit of the sequence of rational numbers

fang D f1; 1:2; 1:23; 1:234; 1:2345; 1:23456; 1:234567; : : : g:

And this sequence is increasing and bounded above (by 2; say). So x 2 R. ˘
Remark 1.31. The two sequences in Examples 1.29 and 1.30, which converge top
2 and to x respectively, are not unique. The reader should think of other sequences

fang which are increasing and bounded above, for which an ! p
2; and an ! x: ı

The following is a very important example of a sequence which is increasing and
bounded above.

Example 1.32. Using an idea from [12], we show that sequence
�	
1C 1

n


n�

of rational numbers is increasing and bounded above. As such, it converges to some
real number. For n 2 N and a ¤ b, the following identity can be found by doing
long division on the left-hand side, or simply verified by cross multiplication:

bnC1 � anC1

b � a D bn C abn�1 C a2bn�2 C � � � C an�2b2 C an�1b C an:

There are nC 1 terms on the right-hand side so for 0 � a < b,

bnC1 � anC1

b � a < .nC 1/bn:

This inequality is easily rearranged to get

bn
�
.nC 1/a � nb � < anC1:

Now setting a D 1C 1
nC1 and b D 1C 1

n
we get

�
1C 1

n

�n
<

�
1C 1

nC 1

�nC1
;
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and so
˚�
1C 1

n

�n�
is an increasing sequence. Setting instead a D 1 and b D 1C 1

2n
;

we get

�
1C 1

2n

�n
< 2; and so

�
1C 1

2n

�2n
< 4:

But since
˚�
1C 1

n

�n�
is increasing,

�
1C 1

n

�n
<
�
1C 1

2n

�2n
: Therefore

�
1C 1

n

�n
<

4; and so
˚�
1C 1

n

�n�
is bounded above. ˘

The real number to which
˚
.1C 1

n
/n
�

converges is denoted by e. The symbol
e is used in honor of the great Swiss mathematician Leonhard Euler (1701–1783);
it is often called Euler’s number. We shall prove in Sect. 8.4 that e is irrational.
Approximately, e D 2:718281828459 � � � .

Remark 1.33. Saying that e is irrational is the same as saying that e is not the
solution to any equation ax C b D 0; where a and b are integers. Notice that
axCb D 0 is a polynomial equation of degree 1: The French mathematician Charles
Hermite (1822–1901) proved in 1873 that e is not a solution to any polynomial
equation of any degree with integer coefficients. That is, e is a transcendental
number. So even by somehow attaching to Q all nth roots of all rational numbers,
or even all linear combinations of these, we would still not obtain all of the real
numbers because e would remain excluded. ı

The following theorem contains a fundamental property of the real numbers. We
shall appeal to it many times. It says that R is closed under the operation of taking
the limit of a sequence which is increasing and bounded above.

Theorem 1.34. (The Increasing Bounded Sequence Property of R:) Any sequence
of real numbers which is increasing and bounded above converges to a real number.

Proof. Let fang be a sequence of real numbers which is increasing and bounded
above. If each an 2 Q then an ! A 2 R, exactly by our definition of R; and we are
finished. Otherwise, we consider a related sequence fbng defined by

bn D an; but truncated after the nth decimal place.

Then fbng is increasing and bounded above and each bn 2 Q, and so we must have
bn ! B; for some B 2 R. Now by the triangle inequality,

jan � Bj D jan � bn C bn � Bj � jan � bnj C jbn � Bj

� 1

10n
C jbn � Bj :

Therefore, since 1
10n

! 0 and bn ! B; we see that an ! B also, as desired. ut
Remark 1.35. There’s that trick again: subtracting bn and adding bn; then using
the triangle inequality. ı
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Example 1.36. Consider the sequence fang of real numbers defined recursively via
a1 D 1; and

anC1 D
p
1C an for n D 1; 2; 3; : : : :

The first few terms of this sequence are as follows.

f an g D
n
1;

p
2 ;

q
1C p

2 ;

r
1C

q
1C p

2 ;

s
1C

r
1C

q
1C p

2 ; : : :
o

Š ˚
1; 1:414214; 1:553774; 1:598053; 1:611848; : : :

�
:

This is a sequence of real numbers which is increasing and bounded above. (We
leave the verification of this for Exercise 1.40.) As such, by the Increasing Bounded
Sequence Property (Theorem 1.34), fang converges to some real number ': To find
'; notice that since an ! ' and anC1 D p

1C an, we must have ' D p
1C '.

Then squaring both sides and using the quadratic formula gives ' D 1Cp
5

2
Š

1:618 . ˘
Remark 1.37. The number ' is called the golden mean. It is irrational. But it is
clearly not transcendental because as we saw, it is the root of a quadratic equation
with integer coefficients. There is some debate among historians of mathematics as
to whether

p
2 or ' was the first-ever irrational number to be discovered [23]. ı

Example 1.38. The ubiquitous number   is the ratio of the circumference to the
diameter of any circle. The reader is surely familiar with the formula A D  r2,
where A is the area of a circle with radius r . By approximating the area of a circle
of radius r D 1 with the area of an inscribed equilateral triangle, square, regular
pentagon, regular hexagon etc., we see that   is the limit of an increasing sequence
of real numbers which is bounded above. As such,   is a real number. We shall
prove in Sect. 12.2 that   is irrational. (So, in particular,   ¤ 22=7 !!) ˘
Remark 1.39. The German mathematician F. Lindemann (1852–1939) proved in
1882 that   is in fact transcendental. So again, even by somehow attaching to Q all
nth roots of all rational numbers, or even all linear combinations of these, we would
still not obtain all of the real numbers—  would remain excluded. ı
Remark 1.40. One doesn’t normally worry too much about such things, but all of
this gives meaning to arithmetic in R: For example, consider

p
2 C e: Each of

p
2

and e is the limit of a sequence of rational numbers which is increasing and bounded
above, say an ! p

2; and bn ! e: Then each an C bn is a rational number, andp
2Ce is the limit of fan C bng ; a sequence of rational numbers which is increasing

and bounded above. And one can verify (but not easily) that this limit is independent
of the specific choice of the sequences fang and fbng of rationals, as long as each is
increasing and bounded above, with an ! p

2 and bn ! e respectively. ı
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1.6 The Nested Interval Property

If fang converges to A; then f�ang clearly converges to �A: Therefore, by the
Increasing Bounded Sequence Property of R (Theorem 1.34), every sequence fang
of real numbers which is decreasing and bounded below also converges to a real
number. This leads to another very important property of R, as follows.

Theorem 1.41. (Nested Interval Property of R) For any collection of nested
intervals Œa1; b1� � Œa2; b2� � Œa3; b3� � � � � with the property that bn � an ! 0;

there is a unique point which belongs to each interval.

Proof. The sequence fang is increasing and bounded above (by b1) and so by
the Increasing Bounded Sequence Property (Theorem 1.34), it converges to some
A 2 R: The sequence fbng is decreasing and bounded below (by a1) and so it
converges to some B 2 R: We must then have an � A � B � bn for
n D 1; 2; 3; : : : : But we cannot have A < B because bn � an ! 0: Therefore
A D B; and this real number belongs to each interval Œan; bn�; as desired. ut
Example 1.42. Again, the decimal expansion for

p
2 begins 1:41421356 � � � : The

number
p
2 is the only point that belongs to each of the nested intervals:

Œ1:4; 1:5� � Œ1:41; 1:42� � Œ1:414; 1:415� � Œ1:4142; 1:4143� � � � � : ˘

Example 1.43. We showed in Example 1.32 that the sequence
˚
.1C 1

n
/n
�

is
increasing and bounded above. So it has a limit, which is denoted by e (Euler’s
number). In a similar way, which we leave for Exercise 1.39, it happens that the
sequence

˚
.1C 1

n
/nC1� is decreasing and bounded below. Now observe that

�
1C 1

n

�nC1

�
�
1C 1

n

�n
D
�
1C 1

n

�n ��
1C 1

n

�
� 1

�
D
�
1C 1

n

�n
1

n
! 0 :

Therefore, by the Nested Interval Property of R (Theorem 1.41), the collection of
nested intervals

h �
1C 1

n

�n
;
�
1C 1

n

�nC1 i
; where n D 1; 2; 3; : : :

contains a single point, which must be e. Taking n D 5;000; for example, gives
2:7180 � e � 2:7186: ˘

The basic string of inequalities which comes from Examples 1.32 and 1.43 is

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
:

We shall revisit these inequalities many times.
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Example 1.44. By approximating the area of a circle of radius 1 by areas of
inscribed regular polygons with increasing areas, we described   as the limit
of an increasing sequence of real numbers which is bounded above. By also
approximating the area of the same circle by areas of circumscribed regular
polygons with decreasing areas, we can describe   as the single point which belongs
to a sequence of nested intervals. ˘
Remark 1.45. Around 250 B.C., Archimedes used 96-sided inscribed and circum-
scribed polygons to obtain the rather impressive estimates

3:14085 Š 223

71
<   <

22

7
Š 3:14286 : ı

Finally, we point out that the three collections of nested intervals in
Examples 1.42–1.44, which yielded the numbers

p
2; e, and  , are not unique.

Exercises

1.1. Let x 2 R. (a) Find all real numbers y for which j x C y j D j x j C jy j:
(b) Find all real numbers y for which

ˇ̌ jxj � jyj ˇ̌ D jx � yj :
1.2. (a) Show that

jxj D
�

x if x � 0

�x if x < 0 :

(b) Use the observation � jxj � x � jxj (and � jyj � y � jyj) to prove the
triangle inequality. This is the proof in most books.

(c) We proved the reverse triangle inequality using the triangle inequality. Prove
the reverse triangle inequality using the definition of absolute value.

1.3. (a) Prove that if x; y; z 2 R, then jx C y C zj � jxj C jyj C jzj :
(b) Prove that if x1; x2; : : : ; xn 2 R, then jx1 C x2 C : : :C xnj � jx1j C jx2j C

� � � C jxnj :
1.4. [2] Show that if jx C yj D jxj C jyj ; then jux C vyj D u jxj C v jyj for all
u; v � 0:

1.5. Let x < y : (a) Show that x < xCy
2
< y:

(b) For p; q > 0; show that x < pxCqy
pCq < y: (The quotient pxCqy

pCq is a weighted
average of x and y:)

1.6. [5] Let a > b � 0 and let x 2 .0; 1/. Show that

�
1C xb

�a
>
�
1C xa

�b
:
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1.7. Let a; b 2 R. Show that

maxfa; bg D aC b C ja � bj
2

and minfa; bg D aC b � ja � bj
2

:

1.8. Let a; b 2 R. Prove that jaj C jbj � jaC bj C ja � bj : When does equality
occur?

1.9. Let a; b 2 R. Prove that jaCbj
1CjaCbj � jaj

1Cjaj C jbj
1Cjbj : When does equality occur?

1.10. [8] Let x 2 R. Prove that j1C xj � j1C xj2 C jxj : When does equality
occur?

1.11. [14] Fill in the details of the following proof of a sharpened version of the
triangle inequality: For nonzero x1; x2; : : : ; xn 2 R,

ˇ̌̌
ˇ̌̌ nX
jD1

xj

ˇ̌̌
ˇ̌̌C

0
@n �

nX
jD1

xjˇ̌
xj
ˇ̌
1
A min
1�j�n

ˇ̌
xj
ˇ̌ �

nX
jD1

ˇ̌
xj
ˇ̌
:

(a) Let jxkj D min
1�j�n

ˇ̌
xj
ˇ̌

and K D fj W 1 � j � n and
ˇ̌
xj
ˇ̌ ¤ jxkjg. Verify that

ˇ̌̌
ˇ̌̌ nX
jD1

xjˇ̌
xj
ˇ̌
ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌̌ nX
jD1

xj

jxkj �
X
j2K

 
1

jxkj � 1ˇ̌
xj
ˇ̌
!
xj

ˇ̌̌
ˇ̌̌ :

(b) Apply the reverse triangle inequality. This result is improved somewhat in [18].

1.12. Here is a simple but useful fact, which is really just a consequence of
algebraic manipulations. We shall refer to it in a number of subsequent exercises
in this book, but not in the text proper. Show that the area A of a triangle T with
vertices .x1; y1/; .x2; y2/; and .x3; y3/ is given by

A D 1

2

ˇ̌̌
x1.y2 � y3/C x3.y1 � y2/C x2.y3 � y1/

ˇ̌̌
:

(If the vertices of the triangle are arranged counterclockwise then A > 0

without the absolute value signs.) Hint: In Fig. 1.3, use the fact that Area.T / D
Area.Trapezoid ABQP/CArea.Trapezoid BCRQ/�Area.Trapezoid ACRP ).
Note: Readers who know some Linear Algebra might recognize that

A D 1

2

ˇ̌̌
ˇ̌ det


x1 x2
y1 y2

�
C det


x2 x3
y2 y3

�
C det


x3 x1
y3 y1

� ˇ̌̌
ˇ̌

D 1

2

ˇ̌
ˇ̌̌ det

2
4 1 1 1

x1 x2 x2
y1 y2 y3

3
5
ˇ̌
ˇ̌̌
:



20 1 The Real Numbers

Fig. 1.3 For Exercise 1.12
B(x2,y2)

A(x1,y1)

C(x3,y3)

P Q R x

y

Here, “det” is short for determinant. See [4] for some interesting extensions of this
formula.

1.13. Fill in the details of the standard textbook proof that
p
2 is irrational. (This

proof was known to Euclid (�300 B.C.) and was probably known even to Aristotle
(384–322 B.C.)) Assume that

p
2 D p=q is rational, so that 2 D p2=q2: Then

2q2 D p2 must be even. Therefore p is even. Therefore q2 even and so q is even.
So from each of p and q we may cancel a factor of 2: Repeat.

1.14. [6] Fill in the details of the following very slick proof that
p
2 is irrational,

due to American mathematician Ivan Niven (1915–1999). If
p
2 is rational then

there is a smallest positive integer b such that b
p
2 is an integer. Then b

p
2� b is a

smaller positive integer. Now consider .b
p
2 � b/p2:

1.15. (a) Prove that
p
3 is irrational. (b) Prove that 3

p
11 irrational. (c) Prove that

7
p
45 irrational. (d) Describe how to prove that the nth root of any natural number

which is not itself an nth power, is irrational.

1.16. [16] Fill in the details of another proof that the square root of any natural
number that is not itself a perfect square is irrational: Let

p
n D p=q where p and

q are positive integers, and have no common factors. Then p2 and q also have no
common factors. But then p2=q D p

p
n D qn; which is an integer:

1.17. [3] Fill in the details of another proof that the square root of any natural
number that is not itself a perfect square is irrational: Suppose that

p
n D p=q

where p and q are positive integers, and have no common factors. Then
p
n D

nq=p also, but this is not in lowest terms. Therefore p is an integer multiple of q.
Therefore n is a perfect square, a contradiction.

1.18. We haven’t officially met logarithms yet. Still, prove that log10.2/ is irra-
tional. (log10.2/ is that real number x for which 10x D 2.)

1.19. (a) Write 0:823; 0:455; and �0:9999 : : : as fractions.
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(b) Multiply x D 0:2 by 10 and subtract x from the result. Then solve for x to write
x as a fraction.

(c) Multiply y D 0:91 by 100 and subtract y from the result. Then solve for y to
write y as a fraction.

(d) Write 0:237 and 6:457132 as fractions.
(e) Describe how to prove that any decimal which eventually repeats is a rational

number. We’ll see another way to do some of this in Sect. 2.1; see also
Exercise 2.4.

1.20. Show by doing long division that (a) 1=3 D 0:3 (and conclude that 0:9 D 1),
(b) 1

11
D 0:09; and (c) 22

7
D 3:142857. (d) Describe how to prove that any rational

number is either a terminating or repeating decimal. (e) Let x D p=q be a rational
number. What is the longest that the repeating string in its decimal expansion could
possibly be? (The length of the repeating string in the decimal expansions in each
of 1=7 and 1=97; for example, is maximal.)

1.21. (a) Is it true that the sum of two rational numbers is rational? Explain.
(b) How about the sum of a rational number and an irrational number? Explain.
(c) How about the sum of two irrational numbers? Explain.

1.22. Prove Lemma 1.12 another way: Looking for a contradiction, assume that
A1 ¤ A2; say A1 < A2: Then let " D .A2 � A1/=2.

1.23. Four of the following seven sequences converge. Decide which four they are,
then prove that each of them converges. (a) f 1

n3=2
g; (b)

˚
cos. n 

2
/C 1

n

�
; (c) fn.�1/ng;

(d)
˚p
nC 1 � p

n
�
; (e)

˚
1

5n�61
�
; (f)

n
n2C3

n2C2n�1
o
, (g)

n
1p

nC1�p
n

o
:

1.24. Use the reverse triangle inequality to prove that if an ! A then janj ! jAj :
1.25. (a) Prove that if an ! A then for any " > 0 there exists N > 0 such that

all of the terms of fang belong to the interval .A � "; A C "/; except possibly
a1; a2; : : : ; aN�1; aN :

(b) Use (a) to prove the following. If an ! A with A > 0 then there exists m > 0

and N > 0 such that an � m for n > N .

1.26. Prove Lemma 1.21. Suggestion: Use Exercise 1.25(a).

1.27. (a) Prove that if an ! 0 and fbng is a bounded sequence, then anbn ! 0:

(b) Show that .�1/
nC1=2
n

! 0:

(c) Show that sin.n/p
nC3 ! 0:

(d) Show that n cos.nŠ/
n2C100 ! 0:

1.28. Prove Lemma 1.24. Hint: Use

j.’an C “bn/ � .’AC “B/j � j’an � ’Aj C j“bn � “Bj D j’j jan � Aj C j“j jbn � Bj :
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1.29. Prove Lemma 1.25. Hint: Observe that

janbn � ABj D janbn � anB C anB � ABj
D jan.bn � B/C B.an � A/j � janj jbn � Bj C jBj jan � Aj ;

then use Lemma 1.21.

1.30. Prove Lemma 1.26. Hint: Observe that
ˇ̌
ˇ anbn � A

B

ˇ̌
ˇ D

ˇ̌
ˇ anB�Abn

bnB

ˇ̌
ˇ D

ˇ̌
ˇ anB�ABCAB�Abn

bnB

ˇ̌
ˇ D

ˇ̌
ˇB.an�A/CA.B�bn/

bnB

ˇ̌
ˇ ;

then use the triangle inequality and Exercise 1.25(b).

1.31. (a) Prove the first part of Lemma 1.27. Hint: Assume that A < 0 to get a
contradiction.

(b) Explain how (a) implies the second part of Lemma 1.27: if an ! A and bn !
B; with an � bn; then A � B:

1.32. Prove that if an ! A, with an � 0 (so that A � 0 too) then
p
an ! p

A:

Hint: First dispense with the case A D 0: Then for A ¤ 0;

ˇ̌
ˇpan � p

A
ˇ̌
ˇ D

ˇ̌̌
ˇ̌ an � Ap
an C p

A

ˇ̌̌
ˇ̌ �

ˇ̌̌
ˇan � Ap

A

ˇ̌̌
ˇ :

1.33. Suppose that an ! A: For n D 1; 2; 3; : : : ; set bn D .a1 Ca2 C � � � Can/=n:

Show that bn ! A. Is the converse true? Explain.

1.34. Associate with each of the four real numbers x D 3:6912151821242730 : : : ,
x D 0:3; x D 0:1002000300004 : : : , and x D 10:567 an increasing sequence
which converges to x.

1.35. (e.g., [1, 11, 13, 15])

(a) Prove that there exist irrational numbers a and b such that ab is rational. Hint:

Begin by considering
p
2

p
2
.

(b) Prove that there exist irrational numbers a and b such that ab is irrational. Hint:

Begin by considering
p
2

p
2C1

. See also Exercise 1.36.

1.36. [20] Here is a constructive approach to Exercise 1.35.

(a) We haven’t officially met logarithms yet. Still, prove that log2.3/ is irrational.
(log2.3/ is that real number x for which 2x D 3.)

(b) Verify that
p
2
2 log2.3/ is rational. So there are irrational numbers a and b such

that ab is rational.
(c) Verify that

p
2

log2.3/ is irrational. So there are irrational numbers a and b such
that ab is irrational.
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1.37. [19] Consider the area between the circumscribed and inscribed circles of a
regular n sided polygon with side lengths 1: Show that this area is independent of n
and find the area.

1.38. (a) Show that between any two real numbers there are infinitely many
rational numbers.

(b) Show that between any two real numbers there are infinitely many irrational
numbers.

1.39. [12] Show that the sequence
˚
.1C 1

n
/nC1� is decreasing and bounded below

(and hence converges), as follows. (a) Show that for 0 � a < b,

an.b � a/ < bnC1 � anC1

nC 1
:

(b) Now set a D 1C 1
nC1 and b D 1C 1

n
.

1.40. Consider the sequence fang � R defined recursively via a1 D 1; and anC1 Dp
1C an for n D 1; 2; 3; : : : . Use the Increasing Bounded Sequence Property

(Theorem 1.34) and mathematical induction to show that fang converges to a real
number '. Show that ' D .1C p

5/=2; the golden mean. Show that ' is irrational.

1.41. For each of the four real numbers x D 3:69121518 : : : ; x D
0:1002000300004 : : : ; x D 0:3; and x D 10:567; construct a sequence of nested
intervals Œa1; b1� � Œa2; b2� � : : : , with bn � an ! 0; such that each interval
contains x.

1.42. Consider the sequence defined by a0 D 1; and anC1 D 1
1Can for n D

0; 1; 2; 3; : : :.

(a) Show that
˚
Œa2n; a2nC1�

�
is a collection of nested intervals, with a2nC1�a2n!0.

(b) Show that the point given by the Nested Interval Property (Theorem 1.41) is the
golden mean ' D .1C p

5/=2.

1.43. A set A is countable if there is a one-to-one onto function � W N !A. (So
all of its elements can be listed off: �.1/; �.2/; �.3/; : : : :)

(a) Show that Z is countable.
(b) Show that fx 2 Q W 0 < x < 1g is countable.
(c) Show that fx 2 R W 0 < x < 1g is uncountable, that is, is not countable.
(d) Show that Q is countable. (A formula for a one-to-one onto � W Z ! Q can be

found in [9]. For a very slick proof that Q is countable, see [7] or [22].)

1.44. [17] (If you did Exercise 1.43.) Fill in the details of the following proof that
the set of algebraic numbers—that is, the set of all roots of all polynomials of any
degree, with integer coefficients—is countable. This amazing fact was discovered in
1871 by the great German mathematician Georg Cantor (1845–1918). But first:

(a) Show that a quick consequence of Cantor’s discovery is that Q is countable.
(b) Consider the polynomial equation
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p.x/ D anx
n C an�1xn�1 C : : :C a1x C a0 D 0;

where the aj 0s are integers. This equation has at most n solutions. We may
assume that an � 1: How?

(c) Define the index of any such polynomial p as

index.p/ D janj C jan�1j C : : :C ja1j C ja0j :
Show, for example, that there is only one such polynomial with index 2. There
are four such polynomials with index 3. There are 11 such polynomials with
index 4. Argue that there are only finitely many polynomials with a given index.

(d) Now show that the set of algebraic numbers is countable.
(e) Show that the set of transcendental numbers is uncountable.
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Chapter 2
Famous Inequalities

I speak not as desiring more, but rather wishing a more strict
restraint.

—Isabella, in Measure for Measure, by William Shakespeare

In this chapter we meet three very important inequalities: Bernoulli’s Inequality, the
Arithmetic Mean–Geometric Mean Inequality, and the Cauchy–Schwarz Inequality.
At first we consider only pre-calculus versions of these inequalities, but we shall
soon see that a thorough study of inequalities cannot be undertaken without calculus.
And really, calculus cannot be thoroughly understood without some knowledge of
inequalities. We define Euler’s number e by a more systematic method than that of
Example 1.32. We’ll see that this method engenders many fine extensions.

2.1 Bernoulli’s Inequality and Euler’s Number e

The following is a very useful little inequality. It is named for the Swiss mathemati-
cian Johann Bernoulli (1667–1748).

Lemma 2.1. (Bernoulli’s Inequality) Let n D 1; 2; 3; : : : : Then for x > �1;

.1C x/n � 1C nx :

Proof. If n D 1; the inequality holds, with equality. For n D 2;

.1C x/2 D 1C 2x C x2 � 1C 2x:

For n D 3; we use the n D 2 case:

.1C x/3 D .1C x/.1C x/2 � .1C x/ .1C 2x/ D 1C 3x C 2x2 � 1C 3x:

© Springer Science+Business Media New York 2014
P.R. Mercer, More Calculus of a Single Variable, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-1926-0__2
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For n D 4; we use the n D 3 case:

.1C x/4 D .1C x/.1C x/3 � .1C x/ .1C 3x/ D 1C 4x C 4x2 � 1C 4x:

Etcetera: We could clearly continue this procedure up to any positive integer n; and
so our proof is complete. ut
Example 2.2. We show that for jxj < 1; the sequence fxng converges to 0. First,
for 0 < x < 1 we can write x D 1

1Cq , for some q > 0: Then by Bernoulli’s
Inequality (Lemma 2.1),

.1C q/n � 1C nq;

so that

0 < xn D 1

.1C q/n
� 1

1C nq
:

Letting n ! 1; the result follows. For �1 < x < 0; we simply replace x with �x
above. (The case x D 0 is trivial.) ˘

Exercise 2.1 contains the fact that for any x > 0;
˚
x1=n

�
converges to 1:

Example 2.3. The series

1C x C x2 C x3 C � � � D
1X
kD0

xk

is called a geometric series. In it, each term xk after the first is the geometric mean
of the term just before it and the term just after it: xk D p

xk�1xkC1: Here we
find a formula for the sum of a geometric series, when it exists. For x ¤ 1 the
following identity can be found by doing long division on the right-hand side, or
simply verified by cross multiplication:

nX
kD0

xk D 1C x C x2 C � � � C xn D 1 � xnC1

1 � x :

So if jxj < 1 then by Example 2.2, the sequence of partial sums fSng D
�

nP
kD0

xk
�

converges to 1
1�x : Therefore,

1X
kD0

xk D 1

1 � x for jxj < 1: ˘

Example 2.4. We write x D 0:611111 : : : as a fraction. Observe that

10x D 6C
1X
kD1

�
1

10

�k
D 5C

1X
kD0

�
1

10

�k
:
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The series here is a geometric series, so by Example 2.3,

10x D 5C 1

1 � 1=10 D 55

9
:

Therefore, x D 11=18: ˘
Example 2.5. [2] Here we show that the sequence

˚
n1=n

�
converges to 1: Setting

x D 1=
p
n in Bernoulli’s Inequality (Lemma 2.1) we get

�
1C 1p

n

�n
� 1C p

n >
p
n:

Therefore

�
1C 1p

n

�2
>
�p
n
�2=n D n1=n � 1;

and the result follows upon letting n ! 1: ˘
Example 2.6. [12,16,55] Using Bernoulli’s Inequality (Lemma 2.1) we show again
(cf. Example 1.32) that

˚ �
1C 1

n

�n �
converges. We have seen that the number to

which this sequence converges is Euler’s number e: First, observe that

.1C 1
nC1 /

nC1

.1C 1
n
/n

D
�
1C 1

n

� 
1C 1

nC1
1C 1

n

!nC1
D
�
1C 1

n

��
1 � 1

.nC 1/2

�nC1
:

Then applying Bernoulli’s Inequality,

�
1C 1

n

��
1 � 1

.nC 1/2

�nC1
�
�
1C 1

n

��
1 � 1

nC 1

�
D 1:

Therefore
�
1C 1

nC 1

�nC1
�
�
1C 1

n

�n

and so
˚ �
1C 1

n

�n �
is increasing. In a very similar way, which we leave for

Exercise 2.6 (see also Example 1.43 and Exercise 1.39), one can show that˚ �
1C 1

n

�nC1 �
is decreasing. Then we have

�
1C 1

n

�n
�
�
1C 1

n

�nC1
�
�
1C 1

1

�1C1
D 4 ;

and so
˚ �
1C 1

n

�n �
is also bounded above. Therefore, by the Increasing Bounded

Sequence Property (Theorem 1.34), this sequence has a limit: Euler’s number, e: ˘
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Again we emphasize that the basic string of inequalities here, is:

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
for n D 1; 2; 3; � � � :

2.2 The AGM Inequality

We begin with a simple yet incredibly useful fact. It turns out to be a special case of
the main result of this section (Theorem 2.10).

Lemma 2.7. Let a and b be positive real numbers. Then

p
ab � aC b

2
; and equality occurs here , a D b:

Proof. It is easily verified that

.aC b/2 � 4ab D .a � b/2 � 0:

Therefore,

.aC b/2 � 4ab; or
aC b

2
�

p
ab :

Now if a D b; then clearly
p
ab D aCb

2
: Conversely, if

p
ab D aCb

2
then in the

first line of the proof we must have .a � b/2 D 0; and so a D b: ut
The average A D aCb

2
is known as the Arithmetic Mean of a and b: The quantity

G D p
ab is known as their Geometric Mean. A rather satisfying Proof Without

Words for Lemma 2.7, which also suggests why
p
ab is called the Geometric Mean,

is shown Fig. 2.1. See also Exercise 2.19

A G

a b

Fig. 2.1 G D p
ab � A D aCb

2
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Example 2.8. Suppose we use a balance to determine the mass of an object.
We place the object on the left side of the balance and a known mass on the right
side, to obtain a measurement a: Then we place the object on the right side of
the balance and a known mass on the left side, to obtain a measurement b: By the
principle of the lever (or more generally, the principle of moments) the true mass of
the object is the Geometric Mean

p
ab. (See also Exercise 2.15.) ˘

Sometimes the most important feature of an inequality is the case in which
equality occurs, as the following example illustrates.

Example 2.9. A rectangle with side lengths a and b has perimeter P D 2a C 2b

and area T D ab: Lemma 2.7 reads ab � . aCb
2
/2; or T � .P=4/2: So a rectangle

with given perimeter has greatest area when a D b; i.e., when the rectangle is a
square. Likewise, a rectangle with given area has least perimeter when a D b; again
when the rectangle is a square. In either case, T D .P=4/2: ˘

The most natural extension of Lemma 2.7 is to allow n positive numbers instead
of just two. But we need to know what would be meant by Arithmetic Mean and
Geometric Mean in this case. These turn out to be exactly as one might expect, as
follows.

Let a1; a2; : : : ; an be real numbers. Their Arithmetic Mean is given by

A D a1 C a2 C � � � C an

n
D 1

n

nX
jD1

aj :

If these numbers are also nonnegative, then their Geometric Mean given by

G D �
.a1/.a2/ � � � .an/

�1=n D
0
@ nY
jD1

aj

1
A
1=n

:

A number M D M.a1; a2; : : : ; an/ which depends on a1; a2; : : : ; an is called a
mean simply if it satisfies

min
1�j�nfaj g � M � max

1�j�nfaj g:

However, for practical purposes one often desires other properties, like (i) having
M.a1; a2; : : : ; an/ independent of the order in which the numbers a1; a2; : : : ; an are
arranged, and (ii) having M.ta1; ta2; : : : ; tan/ D tM.a1; a2; : : : ; an/ for any t � 0:

The reader should agree that A and G each satisfy (i) and (ii).
The Arithmetic Mean–Geometric Mean Inequality below, or what we shall

call the AGM Inequality for short, extends Lemma 2.7 to n numbers. This
inequality is of fundamental importance in mathematical analysis. The great French
mathematician Augustin Cauchy (1789–1857) was the first to prove it, in 1821.
We provide his proof at the end of this section. (The Scottish mathematician Colin
Maclaurin (1698–1746) had an earlier proof, around 1729, which wasn’t quite
complete.)
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The list of mathematicians who have offered proofs of the AGM Inequality over
the years is impressive. It includes Liouville, Hurwitz, Steffensen, Bohr, Riesz,
Sturm, Rado, Hardy, Littlewood, and Polya. (See, e.g., [5,9,18,32,49]; the book [9]
contains over 75 proofs.) Below we provide the clever 1976 proof given by K.M.
Chong [10].

Theorem 2.10. (AGM Inequality) Let a1; a2; : : : ; an be n positive real numbers,
where n � 2. Then

G � A ;

and equality occurs here , a1 D a2 D � � � D an:

Proof. If n D 2 then the result is simply Lemma 2.7, so we consider n � 3: By
rearranging the aj 0s if necessary, we may suppose that a1 � a2 � � � � � an�1 � an.
Then 0 < a1 � A � an, and so

A.a1 C an � A/ � a1an D .a1 � A/.A � an/ � 0:

That is,

a1 C an � A � a1an

A
: (2.1)

Take n D 3 here, and notice that the Arithmetic Mean of the two numbers a2 and
a1 C a3 �A is A: Now we apply Lemma 2.7 to these two numbers, along with (2.1)
to get

A2 � a2.a1 C a3 � A/ � a2
a1a3

A
:

That is,

A3 � a1a2a3:

Now take n D 4: The Arithmetic Mean of the three numbers a2; a3 and a1 Ca4 �A
is again A; so by what we have just shown applied to these three numbers, along
with (2.1),

A3 � a2a3.a1 C a4 � A/ � a2a3
a1a4

A
:

That is,

A4 � a1a2a3a4:

Clearly we could continue this procedure indefinitely, showing that A � G for any
positive integer n; and so we have proved the main part of the theorem. Now to
address the equality conditions. If a1 D a2 D � � � D an, then it is easily verified that
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G D A. Conversely, if A D G for some particular n; then in the argument above,
.a1�A/.A�an/ D 0 so that a1 D an D A; and therefore a1 D a2 D � � � D an D A:

ut
Example 2.11. Suppose that an investment returns 10% in the first year, 50% in
the second year, and 30% in the third year. Using the Geometric Mean

Œ.1:1/.1:5/.1:3/�1=3 Š 1:289 ;

the average rate of return over the 3 years is just under 29%: The Arithmetic Mean
gives an overestimate of the average rate of return, at 30%: ˘
Example 2.12. We saw in Example 2.9 that a rectangle with given perimeter has
greatest area when the rectangle is a square, and that a rectangle with given area has
least perimeter when the rectangle is a square. Likewise, using the AGM Inequality
(Theorem 2.10), a box (even in n dimensions) with given surface area has greatest
volume when the box is a cube, and a box (even in n dimensions) with given volume
has least surface area when the box is a cube. ˘
Example 2.13. Named for Heron of Alexandria (c. 10–70 AD), Heron’s formula
gives the area T of a triangle in terms of its three side lengths a; b; c and
perimeter P; as follows:

16T 2 D P.P � 2a/.P � 2b/.P � 2c/:

So if we apply the AGM Inequality (Theorem 2.10) to the three numbers P � 2a;

P � 2b and P � 2c, we obtain

16T 2 � P

�
.P � 2a/C .P � 2b/C .P � 2c/

3

�3
; or

T � P 2

12
p
3
:

Therefore, for a triangle with fixed perimeter P , its area T is largest possible when
P � 2a D P � 2b D P � 2c: This is precisely when a D b D c, that is, when the
triangle is equilateral. Likewise a triangle with fixed area T has least perimeter P
when it is an equilateral triangle. In either case, T D P 2=.12

p
3/: ˘

Remark 2.14. We saw in Example 2.13 that for a triangle, we have T �
P 2=.12

p
3/: In Example 2.9, we saw that for a rectangle, T � P 2=16: This

latter inequality persists for all quadrilaterals having area T and perimeter P:
See Exercise 2.29. These inequalities are called isoperimetric inequalities. The
isoperimetric inequality for an n-sided polygon is

T � P 2

4n tan .�=n/
;
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and equality holds if and only if the polygon is regular. The isoperimetric inequality
for any plane figure with area T and perimeter P is

T � P 2

4�
:

The famous isoperimetric problem was to prove that equality holds here if and
only if the plane figure is a circle. The solution of the isoperimetric problem takes
up an important and interesting episode in the history of mathematics [37]. For a
polished modern solution, see [25]. The reader might find it somewhat comforting
that

lim
n!1

h
n tan

	�
n


i
D �:

This can be verified quite easily (see Exercise 5.46) using L’Hospital’s Rule, which
we meet in Sect. 5.3. ı
Example 2.15. [26] We show that Bernoulli’s Inequality (Lemma 2.1)

.1C x/n � 1C nx

for x > �1 and n D 1; 2; 3; : : : follows from the AGM Inequality (Theorem 2.10).
First, if �1 < x � �1=n; then 1C nx � 0 < 1C x; and so 1C nx < .1C x/n :

Therefore we assume that x > �1=n. We write

1C x D 1C nx C .n � 1/
n

D 1C nx C 1C 1C � � � C 1

n
;

where there are n� 1 1’s to the right of nx in the second numerator. Then applying
the AGM Inequality (Theorem 2.10) to the n positive numbers 1Cnx; 1; 1; : : : ; 1 ,
we get

.1C x/n D
�
1C nx C 1C 1C � � � C 1

n

�n
� .1C nx/.1/.1/ � � � .1/ D 1C nx;

as desired. ˘
Conversely, it happens that the AGM Inequality (Theorem 2.10) follows from

Bernoulli’s Inequality (Lemma 2.1), and so the two are equivalent. We leave the
verification of this for Exercise 2.10.

Example 2.16. For n positive numbers a1; a2; : : : ; an, their Harmonic Mean is
given by

H D
�
1=a1 C 1=a2 C � � � C 1=an

n

��1
:

Replacing aj with 1=aj in the AGM Inequality (Theorem 2.10) we get

H � G:
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Then in H � G � A; the outside inequality can be rewritten rather nicely as

nX
jD1

aj

nX
jD1

1

aj
� n2: (2.2)

Again, equality occurs here if and only if a1 D a2 D � � � D an: The Harmonic Mean
of two numbers a; b > 0 is simply

H D 2ab

aC b
:

In this case, (2.2) reads

�
aC b

� �1
a

C 1

b

�
� 4;

and equality occurs here if and only if a D b: ˘
To close this section, we supply Cauchy’s brilliant 1821 proof of the AGM

Inequality (Theorem 2.10) but without addressing the equality conditions—these
we leave for Exercise 2.35. The pattern of argument here is powerful and has since
been used by mathematicians in many other contexts. (We shall see it applied in
one other context in Sect. 8.3.)

Proof. Again, if n D 2; this is simply Lemma 2.7. If n D 4; we use Lemma 2.7
twice:

.a1 � a2 � a3 � a4/1=4 D
	
.a1 � a2/1=2


1=2 	
.a3 � a4/1=2


1=2

�
�
1

2
.a1 C a2/

�1=2
�
�
1

2
.a3 C a4/

�1=2

� 1

2

�
1

2
.a1 C a2/C 1

2
.a3 C a4/

�

D 1

4
.a1 C a2 C a3 C a4/ :

If n D 8; we use Lemma 2.7 then the n D 4 case:

.a1 � a2 � a3 � a4 � a5 � a6 � a7 � a8/1=8

D
	
.a1 � a2 � a3 � a4/1=4


1=2 	
.a5 � a6 � a7 � a8/1=4


1=2

�
�
1

4
.a1 C a2 C a3 C a4/

�1=2
�
�
1

4
.a5 C a6 C a7 C a8/

�1=2
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� 1

2

�
1

4
.a1 C a2 C a3 C a4/C 1

4
.a5 C a6 C a7 C a8/

�

D 1

8
.a1 C a2 C a3 C a4 C a5 C a6 C a7 C a8/ :

Clearly we could continue this procedure indefinitely, and so we may assume that
we have proved that G � A for any n of the form n D 2m: For any (other) n; we
choose m so large that 2m > n: Now,

a1 C a2 C � � � � C an C .2m � n/A
2m

D A:

The numerator of the left-hand side here has 2m members in the sum and so we can
apply what we have proved so far to see that

	
a1 � a2 � � � � an � A.2m�n/
1=2m � A:

That is,

a1 � a2 � � � � an � A2m�n � A2
m ) Gn � An:

ut
Remark 2.17. Extending Lemma 2.7 to n D 4; 8; 16; : : : as above is not too hard,
just a bit messy. Cauchy’s genius lies in being able to extending the result to
any n: With this in mind we mention that T. Harriet proved the AGM Inequality
(Theorem 2.10) for n D 3 around 1,600 [39]. No small feat for the time. ı

2.3 The Cauchy–Schwarz Inequality

Let a1; a2; : : : ; an and b1; b2; : : : ; bn be real numbers. The Cauchy–Schwarz

Inequality provides an upper bound for the sum of products
nP

jD1
aj bj . The proof we

provide below uses Lemma 2.7.

Theorem 2.18. (Cauchy–Schwarz Inequality) Let a1; a2; : : : ; an and b1; b2; : : : ; bn
be real numbers. Then

0
@ nX
jD1

aj bj

1
A
2

�
nX

jD1
a2j

nX
jD1

b2j :
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Proof. If
nP

jD1
a2j D 0 or

nP
jD1

b2j D 0 then the inequality holds, with equality.

Otherwise, we set aj D a2j
nP

kD1

a2k

and bj D b2j
nP

kD1

b2k

in Lemma 2.7 to obtain

ajs
nP

kD1
a2k

bjs
nP

kD1
b2k

� 1

2

0
BB@

a2j
nP

kD1
a2k

C b2j
nP

kD1
b2k

1
CCA :

Then summing from j D 1 to n we get

nP
jD1

aj bj

s
nP

kD1
a2k

s
nP

kD1
b2k

� 1

2

0
BBB@

nP
jD1

a2j

nP
kD1

a2k

C

nP
jD1

b2j

nP
kD1

b2k

1
CCCA D 1

2
.1C 1/ D 1 ;

which is really what we wanted to show. ut
Example 2.19. The Root Mean Square of the real numbers a1; a2; : : : ; an is :

R D
vuut 1

n

nX
jD1

a2j :

For example, suppose that three squares with side lengths a1; a2 and a3 have
average area T . Then the single square with area T is the one with side length R.
The reader should verify that R is a mean. We have seen that G � A. The
Cauchy–Schwarz Inequality (Theorem 2.18) shows that A � R, on taking
b1 D b2 D � � � D bn D 1=n. ˘
Remark 2.20. Readers who know some linear algebra might recognize the
Cauchy–Schwarz Inequality in the following form. For two vectors u D
.a1; a2; : : : ; an/ and v D .b1; b2; : : : ; bn/ in Rn; their dot product is given by

u � v D
nP

jD1
aj bj , and the length of u is given by kuk D p

u � u . Then the Cauchy–

Schwarz Inequality reads

ju � vj � kuk kvk :

(See [48], for example, for a proof of the Cauchy–Schwarz Inequality in this
context.) This says that for non-zero vectors u and v we have
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�1 � u � v
kuk kvk � 1;

so we may define the angle � between such vectors in Rn as that � 2 Œ0;  � for
which

cos.�/ D u � v
kuk kvk :

Moreover,

ku C vk2 D .u C v/ � .u C v/ D kuk2 C 2u � v C kvk2 � kuk2 C 2 kuk kvk C kvk2 ;

by the Cauchy–Schwarz Inequality. This last piece equals
� kukCkvk �2; and so we

have the triangle inequality in Rn :

ku C vk � kuk C kvk :

So the Cauchy–Schwarz Inequality is fundamental for working in Rn. And, in Rn it
is evident why the triangle inequality is so named—see Fig. 2.2. ı

Fig. 2.2 The Triangle
Inequality ku C vk �
kuk C kvk

u

vu+v

There are many other proofs of the Cauchy–Schwarz Inequality, a few of which
we explore in the exercises. However, we would be remiss if we did not supply what
is essentially H. Schwarz’s (1843–1921) own ingenious proof, as follows. (See also
Exercises 2.38 and 2.41.) For any real number t ,

nX
jD1

.taj C bj /
2 � 0:

That is,

t 2
nX

jD1
a2j C 2t

nX
jD1

aj bj C
nX

jD1
b2j � 0:
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Now the left-hand side is a quadratic in the variable t and since it is � 0, it must have
either no real root or one real root. (It cannot have two distinct real roots.) Therefore
its discriminant B2 � 4AC must be � 0: That is,

0
@2

nX
jD1

aj bj

1
A
2

� 4

nX
jD1

a2j

nX
jD1

b2j � 0:

Rearranging this inequality yields the desired result. Pretty slick.

Exercises

2.1. Show that for x > 0; the sequence
˚
x1=n

�
converges to 1:

Hint: Write x1=n D �
1C nx�1

n

�1=n
.

2.2. Show that Bernoulli’s Inequality (Lemma 2.1), implies Lemma 2.7:

p
ab � aC b

2
:

Hint: Assume that a � A D .aC b/=2, take n D 2, and x D A=a � 1.

2.3. [35] Show that Bernoulli’s Inequality (Lemma 2.1), holds also for x 2
Œ�2;�1�.
2.4. (a) Write 0:237 and 6:457132 as fractions. (b) Describe how to write any
repeating decimal as a fraction.

2.5. [2] Take x D �1=n2 in Bernoulli’s Inequality (Lemma 2.1) to show that the
sequence

˚�
1C 1

n

�n�
is increasing.

2.6. Show that
˚ �
1C 1

n

�nC1 �
is decreasing, as follows.

(a) Verify that

.1C 1
nC1 /

nC2

.1C 1
n
/nC1 D �

1C 1
nC1

� 	
1 � 1

.nC1/2

nC1

:

(b) Apply Bernoulli’s Inequality (Lemma 2.1) to get

�
1C 1

nC1
� 	
1 � 1

.nC1/2

nC1 �

	
1 � 1

.nC1/4

nC1

< 1:

2.7. [47] Find the least positive integer N such that for all n > N ,

�
nnC1

.nC 1/n

�n
< nŠ <

�
nnC1

.nC 1/n

�nC1
:
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2.8. (e.g., [24,34,52,54]) Show that x D �
1C 1

u

�u
and y D �

1C 1
u

�uC1
(and vice-

versa) are solutions to the equation xy D yx , for x; y > 0. (Taking u D 1; 2; 3; : : :

in fact yields all nontrivial (i.e., x ¤ y) rational solutions to this equation.)

2.9. [28] Denote by bxc the greatest integer not exceeding x: This function is often
called the Floor function. Prove that for x � 1,

�
1C x

bxc
�bxc

� 2 x �
�
1C x

bx C 1c
�bxC1c

:

2.10. [26] In Example 2.15 we showed that the AGM Inequality implies Bernoulli’s
Inequality. Show that Bernoulli’s Inequality implies the AGM Inequality.

2.11. Explain how the inequality .a C b/2 � 4ab D .a � b/2 � 0 in the proof of
Lemma 2.7 relates to Fig. 2.3.

Fig. 2.3 For Exercise 2.11

a

a

a

a b

b

b

b

a − b

2.12. (a) Fill in the details of another proof of Lemma 2.7, as follows. Let a; b � 0:

Since .t � p
a/.t � p

b/ has real zeros, conclude that
p
ab � aCb

2
:

(b) Let a; c > 0: Show that if jbj > a C c then ax2 C bx C c has two (distinct)
real roots.

2.13. [19] In Fig. 2.4, ABCD is a trapezoid with AB parallel to DC, and EF is
parallel to each of these. Show that m is a weighted average of a and b. That is,
m D pbCqa

pCq ; for some p; q > 0.

2.14. (a) Show that for x > 0; we have x C 1=x � 2; with equality if and only if
x D 1:

(b) Conclude (even though we have not yet officially met the exponential function)
that
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cosh.x/ D ex C e�x

2
� 1;

with equality if and only if x D 0:

(c) [31] Show that for x > 0,

xn

1C x C x2 C � � � C x2n
� 1

2nC 1
:

Fig. 2.4 For Exercise 2.13 a

bA B

CD

E F
m

2.15. [51] The bank in your town sells British pounds at the rate 1£ D $S and buys
them at the rate 1£ D $B . You and your friend want to exchange dollars and pounds
between the two of you, at a rate that is fair to both. Show that the fair exchange rate
is 1£ D p

SB; the Geometric Mean of S and B:

2.16. [13] Let H � G � A denote respectively the Harmonic, Geometric and
Arithmetic Means of two positive numbers.

(a) Show that H;G; and A are the side lengths of a triangle if and only if

3 � p
5

2
<

A

H
<

3C p
5

2
:

(b) Show that H;G; and A are the side lengths of a right triangle if and only if
A=H is the golden mean:

A

H
D 1C p

5

2
:

2.17. [56]

(a) Prove that for any natural number n, we have
nP

kD1
k D n.nC1/

2
:
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(b) For n D 1; it is clear that nŠ D �
nC1
2

�n
: Use (a) and the AGM Inequality

(Theorem 2.10) to prove that for integers n � 2,

nŠ <
�
nC1
2

�n
:

2.18. [31] Let a; b > 0; with aC b D 1: Show, as follows, that

�
aC 1

a

�2
C
�
b C 1

b

�2
� 25

2
:

(a) For such a; b; show that 1
ab

� 4:

(b) Use Lemma 2.7 to show that .aC1=a/2 C .bC1=b/2 � 2 .aC1=a/ .b C 1=b/ :
(c) Combine (a) and (b) to show that

�
aC 1

a

�2
C
�
b C 1

b

�2
�2

�
aC 1

a

��
b C 1

b

�
� .1C4/2�

�
aC 1

a

�2
�
�
b C 1

b

�2
:

(d) Use this to obtain the desired result.

2.19. In Fig. 2.5, which shows a semicircle with diameter a C b, we can see that
A > G > H as labeled. Use elementary geometry to show that A;G; and H are
respectively the Arithmetic, Geometric and Harmonic Means of a and b:

Fig. 2.5 For Exercise 2.19

a b

A H
G

2.20. (a) Suppose that a car travels at a miles per hour from point A to point B,
then returns at b miles per hour. Show that the average speed for the trip is the
Harmonic Mean of a and b.

(b) Show that G �H < A�G; where H;G and A the Harmonic, Geometric, and
Arithmetic Means of two numbers a; b > 0.

(c) For a; b > 0, Heron’s Mean, named for Heron of Alexandria (c. 10–70 AD), is

OH D aC p
ab C b

3
:

Show that if a ¤ b, then G < OH < A; where G and A are the Geometric and
Arithmetic means of a and b.
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2.21. Let a1; a2; : : : ; an > 0: We saw in (2.2) that

nX
jD1

aj

nX
jD1

1

aj
� n2:

Apply this to the three numbers aCb, aCc; and bCc to obtain Nesbitt’s Inequality:

a

b C c
C b

aC c
C c

aC b
� 3

2
:

2.22. Denote by H;G and A the Harmonic, Geometric, and Arithmetic Means of
two numbers a; b > 0. We have seen that H � G � A:

(a) Show that A �H D .b � a/=2:
(b) Let a1 D H.a; b/ and b1 D A.a; b/: Then for n D 1; 2; 3; : : : ; let

anC1 D H.an; bn/ and bnC1 D A.an; bn/:

Show that fŒan; bn�g is a sequence of nested intervals, with bn � an ! 0:

Conclude by the Nested Interval Property (Theorem 1.41) that there is c
belonging to each of these intervals.

(c) Show that
p
anbn D p

ab D G for all n to conclude that c D G:

(For example, if a D 1 and b D 2; then fang is an increasing sequence of
rational numbers which converges to

p
2:)

2.23. [43] In Example 2.5 we used Bernoulli’s Inequality (Lemma 2.1) to show
that n

p
n ! 1 as n ! 1: Prove this using the AGM Inequality (Theorem 2.10), by

setting a1 D a2 D � � � D an�1 and an D p
n:

2.24. Show that

lim
n!1

2C 4C 6C � � � C .2n/

1C 3C 5C � � � C .2n � 1/ D e:

2.25. [30]

(a) In Example 2.6 we used Bernoulli’s Inequality (Lemma 2.1) to show thatn�
1C 1

n

�no
is an increasing sequence. Show this using the AGM Inequality

(Theorem 2.10). Hint: Consider the nC 1 numbers 1; nC1
n
; nC1

n
; : : : ; nC1

n
.

(b) Show that
n�
1C 1

n

�nC1o
is a decreasing sequence using the AGM Inequality

(Theorem 2.10). Hint: Consider the nC2 numbers 1; n
nC1 ;

n
nC1 ; : : : ;

n
nC1 , apply

the AGM Inequality, then take reciprocals.

(c) Use the AGM Inequality (Theorem 2.10) to show that
n�
1 � 1

n

��no
is a

decreasing sequence (for n D 2; 3; : : :).
Hint: Consider the nC 1 numbers 1; 1 � 1

n
; 1 � 1

n
; : : : ; 1 � 1

n
:
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Note: Many variations of Exercise 2.25 have been discovered and rediscovered
over the years (e.g., [15, 22, 27, 29–31, 41, 57]). Other approaches can be found in
[3, 17, 42, 44].

2.26. [59] Apply the AGM Inequality (Theorem 2.10) to the nC k numbers

�
1C 1

n

�
;

�
1C 1

n

�
; � � � ;

�
1C 1

n

�
;
k � 1
k

;
k � 1
k

; � � � ; k � 1
k

to show that

�
1C 1

n

�n
<

�
k

k � 1
�k
:

So, for example, taking k D 6, we may conclude that e � . 6
5
/6 Š 2:986 < 3:

2.27. [22] Use .1C 1=n/n < e and induction to show that .n=e/n < nŠ:

2.28. [32, 49] Let

p.x/ D xn C an�1xn�1 C � � � C a1x C a0

be a polynomial with roots x1; x2; : : : ; xn.

(a) Show that a0 D .�1/nx1x2 � � � xn:
(b) Show that an�1 D �

nP
jD1

xj :

(c) Show that a1 D .�1/n�1�x2x3 � � � xn C x1x3 � � � xn C � � � C x1x2 : : : xn�1
�
:

(d) Show that if all of the roots are positive, then a1an�1=a0 � n2:

2.29. Suppose a quadrilateral has side lengths a; b; c; d > 0 and denote by s its
semi perimeter: s D .a C b C c C d/=2. Bretschneider’s formula says that the
area of the quadrilateral is given by

A D
p
.s � a/.s � b/.s � c/.s � d/ � abcd cos2.�/;

where � is half of the sum of any pair of opposite angles. If the quadrilateral can
be inscribed in a circle then elementary geometry shows that � D  =2 and we get
Brahmagupta’s formula

A D
p
.s � a/.s � b/.s � c/.s � d/:

(And if d D 0 then the quadrilateral is in fact a triangle and we get Heron’s formula.)
Show that among all quadrilaterals with a given perimeter, the square has the largest
area.
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2.30. In our proof (that is, K.M. Chong’s) of the AGM Inequality (Theorem 2.10)
we focused on A and used the inequality (2.1). Fill in the details of the following
proof, which focuses instead on G.

(a) Show (assuming again a1 � a2 � � � � � an) that

a1 C an �G � a1an

G
:

(b) Use this to prove the AGM Inequality.

2.31. Fill in the details of H. Dorrie’s beautiful 1921 proof of the AGM Inequality
(Theorem 2.10), as follows. (This proof was rediscovered by P.P. Korovkin in 1952
[22] and again by G. Ehlers in 1954 [5].) Lemma 2.7 is the case n D 2; so we
proceed by induction, assuming that the result is true for n � 1 numbers. What we

want to show is that
nP

jD1
aj � nG:

(a) Argue that since Gn D
nQ

jD1
aj ; at least one aj must be � G; and some other aj

must be � G: So we may assume that a1 � G and a2 � G:

(b) Show that a1 � G and a2 � G imply that

a1 C a2 � G C a1a2

G
; and so

nX
jD1

aj � G C a1a2

G
C

nX
jD3

aj :

(c) Now apply the assumed result to the n � 1 numbers a1a2
G
; a3; a4; : : : ; an.

2.32. [7, 50] Let a1; a2; : : : ; an be nonnegative real numbers. Show that

1 C
nY

jD1
a
1=n
j �

nY
jD1

.1C aj /
1=n:

Hint: Consider the left-hand side divided by the right-hand side, apply the AGM
Inequality (Theorem 2.10), then tidy up.

2.33. [11] Let A;B and C be the interior angles of a triangle. Show that

sin.A/C sin.B/C sin.C / � 3
p
3

2
:

Hint:
ACBCC D   ) sin.A/Csin.B/Csin.C / D 4 cos.A=2/ cos.B=2/ cos.C=2/:

2.34. [6] Prove that

	p
2 � 1


 	
3

p
6 � p

2


: : :
	

nC1
p
.nC 1/Š � n

p
nŠ


<

nŠ

.nC 1/n
:
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2.35. Analyze Cauchy’s proof of the AGM Inequality (Theorem 2.10) given at the
end of Sect. 2.2 to obtain necessary and sufficient conditions for equality.

2.36. In Cauchy’s proof of the AGM Inequality (Theorem 2.10) given at the end of
Sect. 2.2, we focused on A and had (for 2m > n):

A D a1 C a2 C � � � C an C .2m � n/A
2m

:

Then we applied the result for the 2m case. For a proof which focuses instead on G,
verify (for 2m > n) that

G2m D a1 � a2 � � � an �G2m�n;

then apply the result for the 2m case.

2.37. We used Lemma 2.7 to prove the Cauchy–Schwarz Inequality (Theo-
rem 2.18). Then we used the Cauchy–Schwarz Inequality to show that A � R.
Show that A � R using Lemma 2.7 directly. When does equality hold?

2.38. Fill in the details of the following proof of the Cauchy–Schwarz Inequality
(Theorem 2.18), which is very similar to Schwarz’s.

(a) Dispense with the case a1 D a2 D � � � D an D 0:

(b) Expand the sum in the expression 0 �
nP

jD1
.taj C bj /

2.

(c) Set t D �
nP

jD1
aj bj =

nP
jD1

a2j :

(This is the t at which the quadratic
nP

jD1
.taj C bj /

2 attains its minimum.)

2.39. Fill in the details of another proof of the Cauchy–Schwarz Inequality
(Theorem 2.18), as follows.

(a) Replace a with a2 and b with b2 in Lemma 2.7 to get ab � 1
2
a2 C 1

2
b2 :

(b) Write ab D p
ta 1p

t
b in (a) to show that for numbers a; b and any t > 0,

ab � t

2
a2 C 1

2t
b2 :

(c) Now write aj bj D p
taj

1p
t
bj then sum from j D 1 to n to get

nX
jD1

aj bj � t

2

nX
jD1

a2j C 1

2t

nX
jD1

b2j :
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(d) Dispense with the case a1 D a2 D � � � D an D 0; then set

t D
0
@ nX
jD1

b2j

1
A
1=2.0@ nX

jD1
a2j

1
A
1=2

;

then simplify. (This is the t at which t
2

nP
jD1

a2j C 1
2t

nP
jD1

b2j attains its minimum.)

2.40. Apply Schwarz’s idea, as in his proof of the Cauchy–Schwarz Inequality

(Theorem 2.18), to
nP

jD1
.aj C t /2: What do you get? Can you prove whatever you

got using the Cauchy–Schwarz Inequality?

2.41. [53] Fill in the details of the following proof of the Cauchy–Schwarz
Inequality (Theorem 2.18), which is quite possibly just as slick as Schwarz’s.
Observe that

nP
jD1

aj bj

s
nP

jD1

a2j

s
nP

jD1

b2j

D 1 � 1

2

nX
jD1

0
B@ ajs

nP
jD1

a2j

� bjs
nP

jD1

b2j

1
CA
2

:

2.42. Fill in the details of the following (ostensibly) different proof of the Cauchy–
Schwarz Inequality (Theorem 2.18).

(a) Replace a with a2 and b with b2 in Lemma 2.7 to get ab � 1
2
a2 C 1

2
b2 :

(b) Dispense with the cases a1 D a2 D � � � D an D 0 or b1 D b2 D � � � D bn D 0:

(c) Set a D aj

 
nP

jD1
a2j

!�1=2
and b D bj

 
nP

jD1
b2j

!�1=2
in (a), then sum from 1

to n:

2.43. Find necessary and sufficient conditions for equality to hold in the Cauchy–
Schwarz Inequality (Theorem 2.18).

2.44. [33] Let a1; a2; : : : ; an be positive real numbers and let r � n be a positive
integer. Set

A1 D 1

r

rX
jD1

aj ; A D 1

n

nX
jD1

aj ; and �2 D 1

n

nX
jD1

.aj � A/2:

The number �2 is called the variance of a1; a2; : : : ; an. Show that

r.A1 � A/2 � .n � r/�2:
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2.45. [58] Let x1; x2; : : : ; xn 2 R. Show that

x1

1C x21
C x2

1C x21 C x22
C � � � C xn

1C x21 C x22 C � � � C x2n
� p

n :

2.46. [14] Show that

0
@ nX
kD1

vuutk � p
k2 � 1p

k.k C 1/

1
A
2

� n

r
n

nC 1
:

2.47. [23, 38] For n data points .a1; b1/; : : : ; .an; bn/;

A D 1

n

nX
jD1

aj ; and B D 1

n

nX
jD1

bj ;

Pearson’s coefficient of linear correlation is

� D

nP
jD1

.aj � A/.bj � B/
s

nP
jD1

.aj � A/2
s

nP
jD1

.bj � B/2
:

Clearly the Cauchy–Schwarz Inequality (Theorem 2.18) implies that j�j � 1: Show
that j�j � 1 implies the Cauchy–Schwarz Inequality. (For readers who know a little
linear algebra, [21] contains a neat relationship between � and something called the
Gram determinant.)

2.48. [1, 50]

(a) Show that for x1; x2; : : : ; xn 2 R and y1; y2; : : : ; yn > 0 ,

.x1 C x2 C � � � C xn/
2

y1 C y2 C � � � C yn
� x21
y1

C x22
y2

C � � � C x2n
yn
:

(b) Set xj D aj bj and yj D b2j to obtain the Cauchy–Schwarz Inequality
(Theorem 2.18).

(c) Let a; b; c > 0: Use (a) to obtain Nesbitt’s Inequality:

a

b C c
C b

aC c
C c

aC b
� 3

2
:

(d) Use (a) to show that for a; b > 0,

a4 C b4 � 1
8
.a4 C b4/:
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2.49. [8, 46] Let a; b; c > 0:

(a) Show that if

a cos2.x/C b sin2.x/ < c ;

then

p
a cos2.x/C

p
b sin2.x/ <

p
c:

(b) Show that

.abc/2=3 � ab C ac C bc

3
�
�
aC b C c

3

�2
:

2.50. [20] We saw in Remark 2.14 that the isoperimetric inequality for an n-sided
polygon with area T and perimeter P is

T � P 2

4n tan .�=n/
:

Show that if a1; a2; : : : ; an are the side lengths of an n-sided polygon, then

nX
jD1

a2j � 4T tan .�=n/ :

2.51. Let a1; a2; : : : ; an; and b1; b2; : : : ; bn be real numbers, with
nP

jD1
bj D 0: Show

that

0
@ nX
jD1

aj bj

1
A
2

�

0
B@

nX
jD1

a2j �
0
@ nX
jD1

aj

1
A
2
1
CA

nX
jD1

b2j :

2.52. cf. [36] Let a1; a2; : : : ; an; and b1; b2; : : : ; bn be real numbers with 0 < a �
aj � A and 0 < b � bj � B: Fill in the following details to obtain a reversed
version of the Cauchy–Schwarz Inequality:

nP
jD1

a2j

nP
jD1

b2j

 
nP

jD1
aj bj

!2 � 1

4

 r
AB

ab
C
r
ab

AB

!
:
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(a) Verify that
	
aj
bj

� a
B


 	
bj
aj

� A
b



� 0:

(b) Use this to verify that

a2j C aA

bB
b2j �

�
a

B
C A

b

�
aj bj :

(c) Write

0
@ nX
jD1

a2j

1
A
1=20
@ nX
jD1

b2j

1
A
1=2

D
r
Bb

Aa

0
@ nX
jD1

a2j

1
A
1=20
@ nX
jD1

Aa

Bb
b2j

1
A
1=2

;

then use Lemma 2.7 and (b) to obtain the desired result.

2.53. Use the Cauchy–Schwarz Inequality (Theorem 2.18) to prove Minkowski’s
Inequality: Let a1; : : : ; an; b1; : : : ; bn 2 R. Then

0
@ nX
jD1

�
aj C bj

�2
1
A
1=2

�
0
@ nX
jD1

a2j

1
A
1=2

C
0
@ nX
jD1

b2j

1
A
1=2

:

(Notice that if n D 1 this is simply the triangle inequality jaC bj � jaj C jbj :)
Hint: Write

�
aj C bj

�2 D aj
�
aj C bj

� C bj
�
aj C bj

�
, then sum, then apply the

Cauchy–Schwarz Inequality (Theorem 2.18) to each piece.

2.54. [45] The Cauchy–Schwarz Inequality (Theorem 2.18) gives an upper bound

for
nP

jD1
aj bj : Under certain circumstances, a lower bound is given by Chebyshev’s

Inequality: Let fa1; a2; : : : ; ang and fb1; b2; : : : ; bng be sequences of real numbers,
with either both increasing or both decreasing. Then

1

n

nX
jD1

aj � 1
n

nX
jD1

bj � 1

n

nX
jD1

aj bj :

And the inequality is reversed if the sequences have opposite monotonicity. Fill in
the details of the following proof of Chebyshev’s Inequality, for the a0

j s and b0
j s

both increasing. (The other case is handled similarly.) First, let A D 1
n

nP
jD1

aj :

(a) Show that there is k between 1 and n such that

a1 � a2 � � � � � ak � A � akC1 � � � � � an:

(b) Conclude that
�
aj � A� .bj � bk/ � 0 for j D 1; 2; : : : ; n;
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and therefore

1

n

nX
jD1

�
aj � A� .bj � bk/ � 0:

(c) Expand then simplify the sum on the left hand side in (b).

2.55. [45] (If you did Exercise 2.54.) (a) Use Chebyshev’s Inequality to prove that
for 0 � a1 � a2 � � � � � an and n � 1,

0
@1
n

nX
jD1

aj

1
A
n

� 1

n

nX
jD1

a nj :

(b) Let a; b; c be the side lengths of a triangle with area T and perimeter P: Show

that a3 C b3 C c3 � 4
p
3

3
PT and that a4 C b4 C c4 � 16T 2:

2.56. [40] (If you did Exercise 2.54.) Use Chebyshev’s Inequality and the AGM
Inequality (Theorem 2.10) to prove that for 0 < a1 � a2 � � � � � an;

nX
jD1

anC1
j � a1a2 � � � an

nX
jD1

aj :

2.57. For a1; a2; : : : ; an 2 R; their variance is the number �2 D 1
n

nP
jD1

.aj � A/2;

where A D 1
n

nP
jD1

aj is their Arithmetic Mean. Suppose that m � aj � M for

all j .

(a) Verify that

1

n

nX
jD1

.aj � A/2 D .M � A/ .A �m/ � 1

n

nX
jD1

.M � aj /.aj �m/;

in order to conclude that 1
n

nP
jD1

.aj �A/2 � .M � A/ .A �m/. (This inequality

was obtained differently, and generalized considerably, in [4].)
(b) Show that this inequality is better than, that is, is a refinement of Popoviciu’s

Inequality:

1

n

nX
jD1

.aj � A/2 � 1

4
.M �m/2:

Hint: Show that the quadratic .Q�x/.x�q/ is maximized when x D 1
2
.QCq/:
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2.58. [32]

(a) Extend Exercise 2.57 to prove Grüss’s Inequality: Let a1; a2; : : : ; an; and
b1; b2; : : : ; bn be real numbers, with m � aj � M and � � bj � 	: Then

ˇ̌̌
ˇ̌̌1
n

nX
jD1

aj bj � 1

n

nX
jD1

aj � 1
n

nX
jD1

bj

ˇ̌̌
ˇ̌̌ � 1

4
.M �m/.	 � �/:

Hint: Let A D 1
n

nP
jD1

aj ; B D 1
n

nP
jD1

bj and begin by applying the Cauchy–

Schwarz Inequality (Theorem 2.18) to

0
@1
n

nX
jD1

.aj � A/.bj � B/
1
A
2

:

(b) Show by providing an example (take aj D bj for simplicity) that the constant
1=4 in Grüss’s Inequality cannot be replaced by any smaller number. That is,
the 1=4 is sharp.
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Chapter 3
Continuous Functions

It is easy to be brave from a safe distance.

—Aesop

Let I 	 R be an interval—open, closed, or otherwise. For the sake of simplicity, but
without great loss, we mainly consider functions f W I ! R: Roughly speaking,
if f is continuous then f .x/ is close to f .x0/ whenever x 2 I is close to
x0 2 I: Many functions which arise naturally in applications are continuous on
some interval I . We shall see that continuous functions have very nice properties.
The two big theorems in the world of continuous functions are the Intermediate
Value Theorem and the Extreme Value Theorem. We prove these using bisection
algorithms.

3.1 Basic Properties

Let I be an interval (open, closed, or otherwise) and let f W I ! R. We say that f
is continuous on I if f is continuous at every x0 2 I: That is, for every x0 2 I and
for any sequence fxng in I for which xn ! x0;

lim
n!1f .xn/ D f . lim

n!1 xn/ D f .x0/:

So the operation defined by f and the operation of taking the limit can be
interchanged. More precisely: For any sequence fxng in I for which xn ! x0 2 I;
and for any " > 0, there is a number N such that jf .xn/ � f .x0/j < " for n > N:

If a function is continuous on I then its graph has no jumps nor breaks on I .
(So one cannot really know that a particular function has a graph with no jumps
nor breaks until it has been verified that the function is continuous.) In Fig. 3.1, the
graphed function is continuous on .a; b/; except at two points.

Example 3.1. We can rely very heavily on what we know about sequences to prove
things about continuous functions. For example, if f and g are each continuous at x0
then so is f Cg: Here’s why: If xn ! x0 then f .xn/ ! f .x0/ and g.xn/ ! g.x0/;

© Springer Science+Business Media New York 2014
P.R. Mercer, More Calculus of a Single Variable, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-1926-0__3
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because f and g are continuous. Therefore f .xn/ C g.xn/ ! f .x0/ C g .x0/,
because we know this about sequences (Lemma 1.24). So f C g is continuous
at x0: ˘

Fig. 3.1 A function
continuous on .a; b/; except
at two points

y

x

y = f(x)

a b

Example 3.2. For any y0 2 R, the function

f .x/ D

8̂̂
<
ˆ̂:

x

jxj if x ¤ 0

y0 if x D 0

is continuous on .�1; 0/ and on .0;C1/, but f is not continuous at x0 D 0 :
Consider xn D .�1/n=n: Then xn ! 0; yet ff .xn/g D f�1; 1;�1; 1; : : :g; which
diverges (Example 1.14). So we do not have f .xn/ ! f .0/: See Fig. 3.2. ˘

Fig. 3.2 For Example 3.2.
Here, xn D .�1/n=n ! 0

and ff .xn/g D
f�1; 1;�1; 1; : : :g, which
diverges. So we do not have
f .xn/ ! f .0/

x

y

y = f(x)

y = f(x)

1

−1

−1

y0

1
2

−1
3

1
4

−1
5

1
6
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Example 3.3. For any y0 ¤ 1, the function

f .x/ D
8<
:
1 if x ¤ 0

y0 if x D 0

is continuous on .�1; 0/ and on .0;C1/, but f is not continuous at x0 D 0 : Any
sequence fxng for which xn ! 0 (and xn ¤ 0) has jf .xn/ � f .0/j D j1 � y0j and
so we do not have f .xn/ ! f .0/. See Fig. 3.3. ˘

Fig. 3.3 For Example 3.3.
Here, xn ! 0 can be
arbitrarily close to 0, but with
f .xn/ always being a fixed
positive distance from f .0/:

So f .x/ does not get close to
f .0/ as x gets close to 0

y = f(x)

y0

−1 1

1

y

x

Roughly, the idea is that for a continuous function f defined on I; if x 2 I

is close to x0 2 I then f .x/ is close to f .x0/. (The formal definition is needed
to make precise the two instances of the word close.) The following useful result
illustrates this idea very nicely.

Lemma 3.4. Let f be continuous on Œa; b�; with f .x0/ ¤ 0 for some x0 2 Œa; b�:

Then there is a closed interval J � Œa; b� containing x0 such that f .x/ ¤ 0 for
every x 2 J:
Proof. For n D 1; 2; 3 : : : ; let Jn be any closed interval of length .b�a/

n
which

contains x0. If the conclusion of the lemma is not true, then there is a point xn 2 Jn
such that f .xn/ D 0: Now .b�a/

n
! 0 and so xn ! x0, and since f is continuous

we must have f .xn/ ! f .x0/. Finally, f .xn/ D 0 implies that f .x0/ D 0, a
contradiction. ut

We assume that the reader has some familiarity with continuous functions.
We cite the following simple facts which are inherited from Lemmas 1.24–1.26.
We shall use these facts freely, often without explicit mention. Their proofs are
left as Exercises 3.2, 3.4 and 3.6, respectively. If f and g are each continuous
functions on I; then so are ’f C “g (for any ’; “ 2 R); f � g; and f=g (as long as
g ¤ 0 on I ):

The reader should agree that it is immediate from the definition, that the functions
f .x/ D 1 and g.x/ D x are continuous on R. Therefore, by the first two facts from
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the previous paragraph, any polynomial is continuous on R. And by the third fact,
any rational function (a polynomial divided by a polynomial) is continuous wherever
it is defined—that is, wherever its denominator is not zero.

We can add many more functions to our collection of continuous functions using
the fact that a composition of continuous functions is a continuous function. More
precisely: Let g W J ! I and f W I ! R be continuous functions. Then the
composition f ı g W J ! R defined by .f ı g/.x/ D f .g.x// is a continuous
function. Here’s why: If xn ! x0 then g.xn/ ! g.x0/; because g is continuous.
And then f .g.xn// ! f .g.x0//, because f is continuous.

Example 3.5. We show that if g is continuous, then jgj is continuous. Let y0 2 R.
If yn ! y0 then by the reverse triangle inequality,

ˇ̌ jynj � jy0j
ˇ̌ � jyn � y0j ! 0;

and so f .y/ D jyj is continuous at y0: Now if g is continuous at x0 and g.x0/ D y0
then, being a composition of continuous functions, f .g.x// D jg.x/j is also
continuous at x0: That is, jgj is continuous if g is continuous. ˘

The trigonometric function sin.x/ is continuous on R. We leave the verification
of this claim for Exercise 3.8. Then, being a composition of continuous functions,
cos.x/ D sin. =2 � x/ is continuous on R. Then, being quotients of continuous
functions, tan.x/; csc.x/; sec.x/; and cot.x/ are continuous wherever they are
defined, i.e., wherever their denominators are not zero.

One can define the exponential function f .x/ D ex for x 2 R and then after
some justification, name f �1.x/ D ln.x/ as its inverse (for x > 0). Alternatively,
one can define the natural logarithmic function f .x/ D ln.x/ for x > 0 and then
after some justification, name f �1.x/ D ex as its inverse (for x 2 R). We shall say
more about each of these approaches, in Chaps. 6 and 10 respectively. Either way, ex

is continuous on .�1;C1/, and ln.x/ is continuous on .0;C1/: We assume that
the reader is comfortable in accepting these two claims, even though we postpone
their proper verification. Graphs of ex and ln.x/ are shown in Fig. 3.4.

Example 3.6. f .x/ D cos.x/
x2C1 C ecos.x3/ C x ln.sin.x/ C 2/ is continuous for

x 2 R. ˘

3.2 Bolzano’s Theorem

The following important result is named for Italian mathematician Bernhard
Bolzano (1781–1848). For its statement, we use the fact that two real numbers A
and B have opposite signs if and only if AB < 0:

Theorem 3.7. (Bolzano’s Theorem) Let f be a continuous function on Œa; b� with
f .a/f .b/ < 0: Then there is at least one c 2 .a; b/ for which f .c/ D 0:
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y

x
1

1

y= x

y = ln(x)

y = ex

Fig. 3.4 The graphs of y D ex and its inverse, y D ln.x/: Each is the graph of the other, reflected
the line y D x

Proof. We employ a bisection algorithm. Write Œa; b� D Œa0; b0�; let c0 D a0Cb0
2
;

the midpoint of Œa0; b0�; and bisect Œa0; b0� into intervals Œa0; c0� and Œc0; b0�: Now
if f .c0/ D 0 then we are done—that is, c D c0 (and we count ourselves very
fortunate). Otherwise, since f changes sign on Œa0; b0�; it must change sign on
either Œa0; c0� or on Œc0; b0� (or on both). Keep an interval on which f changes sign,
rename it Œa1; b1� and discard the other. Now we continue this process. That is, for
n D 1; 2; 3; : : : do the following:

.
/ Let cn D anCbn
2
:

If f .cn/ D 0 then we are done—that is, c D cn:

If f .an/f .cn/ < 0 then set anC1 D an and bnC1 D cn, and go back to .
/:
If f .cn/f .bn/ < 0 then set anC1 D cn and bnC1 D bn, and go back to .
/:

Then Œa; b� � Œa1; b1� � Œa2; b2� � Œa3; b3� � : : : is a sequence of nested intervals
with bn � an D b�a

2n
! 0: So by the Nested Interval Property of R (Theorem 1.41),

there is a unique point c belonging to each interval. Now an ! c and bn ! c and
f is continuous, so we must therefore have f .an/ ! f .c/ and f .bn/ ! f .c/:

Now we observe that f .an/f .bn/ < 0 after each pass through the algorithm, and
so we must have f .c/2 � 0 (by Lemma 1.27). This is only possible if f .c/ D 0; as
desired. ut

See Fig. 3.5 for an illustration of Bolzano’s Theorem (Theorem 3.7). For its
proof, we employed what is known as a bisection algorithm. At each step of
such an algorithm an interval is bisected, then one of the halves is kept (and the
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other discarded), based on some particular criterion. We shall employ a bisection
algorithm again in our proof of the Extreme Value Theorem (Theorem 3.23).
Bisection algorithms are also used in a number of the exercises.

Example 3.8. Consider the equation x sin.x/ D 1: Set f .x/ D x sin.x/�1;which
is continuous on R: Now f .0/ D �1 < 0; f . =2/ D  =2 � 1 > 0; and f . / D
�1 < 0; so applying Bolzano’s Theorem (Theorem 3.7) we see that the equation
has (at least) one solution in .0;  =2/ and (at least) one solution in . =2;  /. ˘

Let f be a function defined on I and let p 2 I . Then f has a fixed point p if
f .p/ D p: That is, the point p is not changed by f —it is fixed. If f has fixed point
p, then the function f .x/ � x has a zero at x D p; and conversely. This simple
observation can be very useful.

Fig. 3.5 Bolzano’s Theorem
(Theorem 3.7): The
continuous function f goes
from negative to positive,
so its graph must cross the
x-axis

y

xa bc

y = f(x)

Example 3.9. Let f .x/ D x2 � x � 1=
p
x: Then p > 0 is a zero of f if and only

if p is a fixed point of F.x/ D x2 � 1=px ; p > 0 is a zero of f if and only if p is
a fixed point ofH.x/ D 1C 1=x3=2 ; p > 0 is a zero of f if and only if p is a fixed
point of G.x/ D

p
x C 1=

p
x: ˘

The following result shows that if the graph of a continuous function f is entirely
contained within the rectangle Œa; b��Œa; b�; then f must have a fixed point in Œa; b�:
That is, the graph must intersect the line y D x at least once. See Fig. 3.6.

Lemma 3.10. (Fixed Point Lemma) Let f W Œa; b� ! Œa; b� be continuous. Then f
has at least one fixed point in Œa; b�:

Proof. If f .a/ D a then a is a fixed point, or if f .b/ D b then b is a fixed point.
So we may assume that f .a/ ¤ a and f .b/ ¤ b: Let g.x/ D f .x/ � x: Then g is
continuous on Œa; b�; with g.a/ D f .a/�a > 0 and g.b/ D f .b/� b < 0: That is,
g.a/g.b/ < 0: So we apply Bolzano’s Theorem (Theorem 3.7) to g to see that there
is p 2 .a; b/ for which g.p/ D 0: That is, g.p/ D f .p/�p D 0; or f .p/ D p; as
desired. ut
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Fig. 3.6 A continuous
f W Œa; b� ! Œa; b� has a
fixed point: f .x0/ D x0

xa

a

b

bx0

f(x
0
) = x

0 y = f(x)

y

Remark 3.11. The Fixed Point Lemma (Lemma 3.10) is a special case of
Brouwer’s Theorem, due to Dutch mathematician L.E.J. Brouwer (1881–1966),
which holds in much more generality. Here is an amusing instance of the theorem
being applied in two dimensions. A map of Wyoming say, can be regarded as a
function from Wyoming to a large piece of paper: Each actual point in Wyoming
is mapped by the function to a dot on the paper which represents that point. Then
placing the map flat and wholly within Wyoming (anywhere on the ground, say)
can be regarded as a mapping from Wyoming to a subset of Wyoming. Brouwer’s
Theorem says that there must be a dot on the map which sits exactly over the actual
point in Wyoming which the dot represents. (See also Exercise 3.20, and the reader
might consult [3, 4, 9] for other amusing examples.) ı

3.3 The Universal Chord Theorem

A function f defined on I has a horizontal chord if f .a/ D f .b/ for some
a < b 2 I: The length of this horizontal chord is then b � a: A continuous function
need not, of course, have any horizontal chords (f .x/ D x, for example). The result
below shows however, that if a continuous function happens to have a horizontal
chord of length b� a; then it must also have a horizontal chord of length .b� a/=2.
See Fig. 3.7. We state and prove this result on Œ0; 1� instead of Œa; b�; only for the
sake of simplicity; the Œa; b� case is left for Exercise 3.25. (See also Exercise 3.26.)

Lemma 3.12. (Half-Chord Lemma) Let f be continuous on Œ0; 1�, with
f .0/ D f .1/: Then there is c 2 Œ0; 1=2� such that f .c C 1=2/ D f .c/:

Proof. Define the function g on Œ0; 1=2� via g.x/ D f .x C 1=2/ � f .x/: Then g
is continuous on Œ0; 1=2�. We want to show that g has a zero in Œ0; 1=2�. If g does
not have a zero in Œ0; 1=2� then, by Bolzano’s Theorem (Theorem 3.7), g is either
always positive or always negative on Œ0; 1=2�: Say it’s positive; if it’s negative we
would consider �g: Then f .x/ < f .x C 1=2/ on Œ0; 1=2�: Setting x D 0 and then
x D 1=2, we get
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f .0/ < f .1=2/ < f .1=2C 1=2/ D f .1/:

But f .0/ D f .1/ and so we have a contradiction. Therefore g indeed has a zero c
in Œ0; 1=2�: Then g.c/ D 0 yields f .c C 1=2/ D f .c/; as desired. ut
Remark 3.13. Think of a loop of wire shaped like a circle, heated in any manner
whatsoever. Then since temperature along the wire is a continuous function,
and since the wire forms a circle (i.e., f .0/ D f .1/), the Half-Chord Lemma
(Lemma 3.12) implies that at any given moment, there is a pair of opposite points on
the wire having the same temperature. Notice that the wire doesn’t really need to be a
circular loop—we only need to have a well defined notion of opposite. For example,
at any given moment in time there is a pair of antipodal points on the earth’s equator
having the same temperature, and another pair of antipodal points having the same
wind speed (and another pair having the same atmospheric pressure, etc.). ı

Fig. 3.7 The Half-Chord
Lemma (Lemma 3.12) on
Œa; b�: The continuous
function f has a horizontal
chord of length b � a so it
must also have a horizontal
chord of length .b � a/=2

y

x
a b

b − a

(b−a)/2

y = f(x)

Applying the Half-Chord Lemma (Lemma 3.12), or more precisely Exercise 3.25,
over and over again, we can see that if a continuous function has a horizontal chord
of length L; then it must also have horizontal chords of lengths L=2k; for each
k 2 N: But even more is true, as follows. Again, we take Œa; b� D Œ0; 1� for
the sake of simplicity; the general Œa; b� case is left for Exercise 3.27. (See also
Exercise 3.28.)

Theorem 3.14. (Universal Chord Theorem) Let f be continuous on Œ0; 1� with
f .0/ D f .1/; and let k be any positive integer. Then there is c 2 Œ0; 1 � 1=k�

such that f .c C 1=k/ D f .c/: That is, f has a horizontal chord of length 1=k:

Proof. The hypothesis of the theorem is k D 1; so we let k � 2. Consider the
function g.x/ D f .x C 1=k/ � f .x/ on Œ0; 1 � 1=k�: Then g is continuous on
Œ0; 1 � 1=k�. We want to show that g has a zero in Œ0; 1 � 1=k�. If not, then by



3.4 The Intermediate Value Theorem 61

Bolzano’s Theorem (Theorem 3.7), g is either always positive or always negative
on Œ0; 1 � 1=k�: Let’s say it’s positive; if it’s negative we could consider �g: Then
f .x/ < f .x C 1=k/ on Œ0; 1 � 1=k�: Setting x D 0, x D 1=k; x D 2=k; : : : ; and
x D .k � 1/=k we get

f .0/ < f .1=k/ < f .2=k/ < f .3=k/ < � � � < f .k=k/ D f .1/:

But f .0/ D f .1/ and so we have a contradiction. Therefore g indeed has a zero c
in Œ0; 1 � 1=k�: Then g.c/ D 0 yields f .c C 1=k/ D f .c/; as desired. ut
Remark 3.15. Think again of a circular wire of length L, heated in any manner
whatsoever. The Universal Chord Theorem (Theorem 3.14) implies that for each
m 2 N, there is a pair of points on the wire of distance L=m from each other
(measured along the wire) which have the same temperature. ı

We leave it for Exercise 3.29 to show that a continuous function f on Œ0; 1� with
f .0/ D f .1/ need not have a horizontal chord of length t; if t 2 .1=2; 1/: But
more interesting is the fact that f need not have a horizontal chord of length 1=m;
if m ¤ 1; 2; 3; : : : : In this sense the Universal Chord Theorem (Theorem 3.14) is
as good as it can be. This is demonstrated by the function

f .x/ D x sin2.m / � sin2.m x/:

Here, f is continuous on Œ0; 1�; with f .0/ D f .1/ D 0; yet one can check that

f .x C 1
m
/ � f .x/ D 1

m
sin2.m / D 0

only if m is an integer. This is Exercise 3.30.

Remark 3.16. This section owes much to the excellent book [3]. From there: “Even
though the Universal Chord Theorem was discovered by A.M. Ampere in 1806, it is
commonly attributed to P. Levy, who rediscovered it in 1934, but also showed that
it is optimal.” Levy showed that it is optimal by using precisely the f .x/ from the
above paragraph. ı

3.4 The Intermediate Value Theorem

The Intermediate Value Theorem is arguably the most important theorem about
continuous functions. It amounts to improving Bolzano’s Theorem (Theorem 3.7) to
allow f .a/ and f .b/ to be any two values—not just one negative and one positive.
It is equivalent to Bolzano’s Theorem but it gets used more often in this latter form.
The theorem says that a continuous function on a closed interval Œa; b� attains every
value between f .a/ and f .b/: See Fig. 3.8. This property is called the Intermediate
Value Property on Œa; b�.
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Fig. 3.8 The Intermediate
Value Theorem
(Theorem 3.17): There is
c 2 Œa; b� for which
f .c/ D y0

a bc

f (a)

f (b)

y0

x

y

y = f (x)

Theorem 3.17. (Intermediate Value Theorem) Let f be continuous on Œa; b� and
let y0 be any number between f .a/ and f .b/: Then there is at least one c 2 Œa; b�

for which f .c/ D y0:

Proof. If y0 D f .a/ or y0 D f .b/ then we take c D a or c D b and we are
done. So let y0 be strictly between f .a/ and f .b/ and consider the function g.x/ D
f .x/ � y0: Then g is continuous on Œa; b�: And since y0 is strictly between f .a/
and f .b/ we have g.a/g.b/ D Œf .a/ � y0�Œf .b/ � y0� < 0. Applying Bolzano’s
Theorem (Theorem 3.7) to g we see that there is c 2 .a; b/ for which g.c/ D 0:

That is, f .c/ D y0 as desired. ut
Remark 3.18. The reader should agree, perhaps after making a sketch or two, that
a function may have the Intermediate Value Property on some particular interval, yet
not be continuous on that interval. Nevertheless, it might seem that the Intermediate
Value Property should characterize continuous functions in the following way: If
f satisfies the Intermediate Value Property on every subinterval of Œa; b�, then f
should be continuous on Œa; b�. But this is not the case either, as the following
function demonstrates. Let ’ 2 R and define

f .x/ D
�

sin
�
1
x

�
if x ¤ 0

’ if x D 0 :

This function attains every value between �1 and C1 (infinitely many times) on
any interval which contains x D 0; yet it is not continuous on any such interval,
no matter what value is chosen for ’. We leave the verification of this claim for
Exercise 3.34. The graph of y D f .x/ is shown (very roughly) in Fig. 3.9. ı

The following is a useful consequence of the Intermediate Value Theorem
(Theorem 3.17). Among other things, it is the basis for some important results that
we shall meet in Chap. 9.
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y

x

y= sin
(

1
x

)

Fig. 3.9 The graph of f .x/ D sin
�
1
x

�
. This function has the Intermediate Value Property on any

interval which contains x D 0; yet it is not continuous on any such interval

Theorem 3.19. (Average Value Theorem for Sums) Let f be continuous on
Œa; b�; and let x1; x2; : : : ; xn 2 Œa; b�: Then the average value of f; evaluated at
x1; x2; : : : ; xn; is attained. That is, there is c 2 Œa; b� such that

f .c/ D 1

n

nX
jD1

f .xj /:

Proof. By suitably rearranging the xj 0s, if necessary, we may assume that

f .x1/ � f .x2/ � � � � � f .xn/:

And then since the average value (i.e., the Arithmetic Mean) is a mean, we have

f .x1/ � 1

n

nX
jD1

f .xj / � f .xn/:

So by the Intermediate Value Theorem (Theorem 3.17), there is c between x1 and

xn such that f .c/ D 1
n

nP
jD1

f .xj /, as desired. ut

Example 3.20. Here is another way to prove the Half-Chord Lemma (Lemma 3.12).
Still, consider function g.x/ D f .x C 1=2/ � f .x/ on Œ0; 1=2�: However, notice
that g.0/ D �g.1=2/; and so

1
2

�
g.0/C g.1

2
/
� D 0:
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Therefore, by the Average Value Theorem for Sums (Theorem 3.19) there exists
c 2 Œ0; 1=2� such that g.c/ D 0: That is, f .c C 1=2/ D f .c/: This idea is extended
in Exercise 3.28 to prove the Universal Chord Theorem (Theorem 3.14). ˘

Let p1; p2; : : : ; pn be any n positive numbers. The associated weighted Arith-
metic Mean, of any a1; a2; : : : ; an 2 R, is the number

nP
jD1

pj aj

nP
kD1

pk

:

In this context, each wj D pj =
nP

kD1
pk is naturally called a weight. (Taking each

pj D 1 makes each wj D 1=n; and we get the Arithmetic Mean.)

Example 3.21. In the weighted Arithmetic Mean

2a1C7a2Ca3C5a4C6a5
21

we have w1 D 2=21; w2 D 1=3; w3 D 1=21; w4 D 5=21; and w5 D 2=7. Then

2a1C7a2Ca3C5a4C6a5
21

D 2
21
a1 C 1

3
a2 C 1

21
a3 C 5

21
a4 C 2

7
a5 D

5X
jD1

wj aj : ˘

It is easily verified that the weighted Arithmetic Mean is indeed a mean and so
the following result holds in very much the same way as the Average Value Theorem
for Sums (Theorem 3.19).

Theorem 3.22. (Mean Value Theorem for Sums) Let f be continuous on Œa; b�, let
x1; x2; : : : ; xn 2 Œa; b�; and let p1; p2; : : : ; pn be any n positive numbers. Then the
weighted Arithmetic Mean of f; evaluated at x1; x2; : : : ; xn; is attained. That is,
there is c 2 Œa; b� such that

f .c/ D

nP
jD1

pj f .xj /

nP
jD1

pj

:

Proof. This is Exercise 3.35. ut
We point out that the conclusion of the Average Value Theorem for Sums

(Theorem 3.19) reads
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f .c/ D 1

n

nX
jD1

f .xj / D

nP
jD1

1f .xj /

nP
jD1

1

:

Replacing the 10s on the right-hand side with pj > 0 yields the Mean Value
Theorem for Sums (Theorem 3.22).

3.5 The Extreme Value Theorem

The following theorem is attributed to the great German mathematician Karl
Weierstrass (1815–1897). If the Intermediate Theorem (Theorem 3.17) is not the
most important theorem about continuous functions, then this one surely is. The
theorem says that a continuous function on a closed interval attains smallest and
largest values; see Fig. 3.10. Our proof follows [6], but see also [1, 4].

Theorem 3.23. (Extreme Value Theorem) Let f be continuous on Œa; b�: Then
there are numbers xm; xM 2 Œa; b� such that

f .xm/ � f .x/ � f .xM / for every x 2 Œa; b�:

Proof. We prove the part of the theorem pertaining to xM : The part pertaining to xm
is proved very similarly; we leave it as Exercise 3.38. We employ another bisection
algorithm. Write Œa; b� D Œa0; b0�, let c0 D a0Cb0

2
; the midpoint of Œa0; b0�; and

bisect Œa0; b0� into intervals Œa0; c0� and Œc0; b0�: If there is a point t 2 Œa0; c0� such
that f .t/ � f .x/ for each x 2 Œc0; b0� then we keep Œa0; c0�, rename it Œa1; b1�; and
discard Œc0; b0�: Otherwise we keep Œc0; b0�, rename it Œa1; b1�; and discard Œa0; c0�:
We continue this process. That is, for n D 1; 2; 3; : : : we do the following:

.
/ Let cn D anCbn
2
:

If there is t 2 Œan; cn� such that f .t/ � f .x/ for each x 2 Œcn; bn�;
then set anC1 D an and bnC1 D cn; and go back to .
/:
Otherwise, set anC1 D cn and bnC1 D bn, and go back to .
/:

Then Œa; b� � Œa1; b1� � Œa2; b2� � Œa3; b3� � : : : is a sequence of nested intervals
with bn � an D b�a

2n
! 0: As such there is a point c belonging to each interval, by

the Nested Interval Property of R (Theorem 1.41). We claim that f .c/ � f .x/ for
all x 2 Œa; b�:

If not (looking for a contradiction), there is u 2 Œa; b� such that f .u/ > f .c/:

Then the function g.x/ D f .u/ � f .x/ is continuous on Œa; b�, and it is positive
at c: Therefore by Lemma 3.4, g is positive on some closed interval J containing c:
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For n large enough we shall have Œan; bn� � J , with u … Œan; bn�; and therefore
f .u/ > f .x/ for all x 2 Œan; bn�: But by the choice of Œan; bn� at each stage of the
algorithm, there is t 2 Œan; bn� such that

f .t/ � f .x/ for all x 62 Œan; bn�:

So f .u/ > f .c/ cannot occur. This is our contradiction, as desired. ut

Fig. 3.10 The Extreme Value
Theorem (Theorem 3.23):
f .xm/ � f .x/ � f .xM / for
every x 2 Œa; b�

a bxM

xm

y = f(x)

f(xm)

f(xM)

x

y

Again, the Extreme Value Theorem (Theorem 3.23) says that f attains smallest
and largest values. In particular, a continuous function f on Œa; b� is necessarily
bounded. That is, there exists a number M such that jf .x/j � M for every x 2
Œa; b�: Indeed, taking any M � maxfjf .xm/j ; jf .xM /jg will suffice.

The Intermediate Value Theorem (Theorem 3.17) then implies that the function
f W Œa; b� ! Œf .xm/; f .xM /� is onto: for each y0 2 Œf .xm/; f .xM /�; there is
x0 2 Œa; b� such that f .x0/ D y0: Therefore, the set f

�
Œa; b�

�
is an interval.

Exercises

3.1. Let f be a function defined on I .

(a) Suppose that for every " > 0 there is ı > 0 such that jf .x/ � f .x0/j < "

whenever x 2 I and jx � x0j < ı. Show that f is continuous at x0:
(b) Suppose that f is continuous at x0. Show that for any " > 0 there is ı > 0 such

that jf .x/ � f .x0/j < " whenever x 2 I and jx � x0j < ı.
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3.2. Let ’; “ 2 R. Use Lemma 1.24 to prove that if f and g are continuous on I ,
then ’f C “g is continuous on I . (In particular, f ˙ g is continuous on I .)

3.3. Let f and g be continuous functions on I . Show that the functions

.f ^ g/.x/ D min
˚
f .x/; g.x/

�
and .f _ g/.x/ D max

˚
f .x/; g.x/

�

are each continuous on I: Hint: Verify that .f ^ g/.x/ D 1
2
.f .x/ C g.x/ �

jf .x/ � g.x/j/ and .f _ g/.x/ D 1
2
.f .x/C g.x/C jf .x/ � g.x/j/:

3.4. Use Lemma 1.25 to prove that if f and g are continuous on I , then the product
f � g is continuous on I:

3.5. (a) Prove directly from the definition that if f is continuous, then so is f 2:

Hint: Look at Example 1.23.
(b) Write f �g D 1

4

�
.f C g/2 � .f � g/2� to prove that if f and g are continuous,

then f � g is continuous. Hint: Look at Example 1.28.

3.6. Use Lemma 1.26 to prove that if f and g are continuous at on I and g.x/ ¤ 0

for x 2 I; then the quotient f=g is continuous on I .

3.7. Let f be continuous on I , with f � 0: Show that
p
f is continuous on I .

3.8. In this exercise we show that sin.x/ is continuous at every x0 2 R.

(a) Show (a picture will be helpful) that

0 � sin.x/ � x for x 2 Œ0;  =2�:

(b) Use this and sin.�x/ D � sin.x/ to show that lim
x!0

sin.x/ D 0 D sin.0/:

Conclude that sin.x/ is continuous at x0 D 0:

(c) Write x D xCx0
2

C x�x0
2

and x0 D xCx0
2

� x�x0
2
; then use the trigonometric

identities

sin.A˙ B/ D sin.A/ cos.B/˙ cos.A/ sin.B/

to show that

sin.x/ � sin.x0/ D 2 cos
�
xCx0
2

�
sin
�
x�x0
2

�
:

(d) Use (c) to show that sin.x/ is continuous at every x0 2 R.

3.9. (a) Prove that the function f .x/ D x2 � x � e�x has a positive root.
(b) Prove that the equation cos.x/ D x has a solution in Œ0;  =2�: Make a sketch.

3.10. Show that the equation x4 � x2 � 2 D x has one negative solution and one
positive solution. Draw a picture.

3.11. Prove that the equation ex D x4 has three solutions. Make a sketch.
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3.12. Prove that a polynomial of odd degree has at least one root.

3.13. Consider the polynomial p.x/ D a0 C a1x C a2x
2 C � � � C anx

n: Prove that
if a0an < 0 then p has a positive root.

3.14. (a) Draw the graph of a continuous function f W Œa; b� ! Œa; b� which has
exactly two fixed points.

(b) Draw the graph of a continuous function f W Œa; b� ! Œa; b� which has exactly
three fixed points.

3.15. [2] Show that if x D x0 is a solution to any of

2x3 C 4x2 � 5
2

D x;

r
2x C 5

2x C 4
D x; or

3

r
2x C 5 � 4x2

2
D x;

then x0 is a solution to 2x3 C 4x2 � 2x � 5 D 0:

3.16. (a) Show that f .x/ D 1 � x2
1C x2

has a fixed point in Œ0; 1�.

(b) Sketch the graphs y D f .x/ and y D x on Œ0; 1�:

(c) Show that g.x/ D 1

1C x
has a fixed point in Œ0; 1�. What is this fixed point?

(d) Sketch the graphs y D g.x/ and y D x on Œ0; 1�:

3.17. (a) Show that f .x/ D 1C 2 cos.x/

.cos.x/C 2/2
has a fixed point in Œ0;  =2�:

(b) Can you show that the fixed point is in fact in Œ1=4; 1=2�?

3.18. Let f W Œ0; 1� ! Œ0; 1� be continuous.

(a) Show that there is a 2 Œ0; 1� such that f .a/ D a2:

(b) Show that there is b 2 Œ0; 1� such that f .b/ D p
b:

(c) Show that there is c 2 Œ0; 1� such that f .c/ D sin. c=2/:

3.19. [7] Let f be continuous on Œ�1; 1�; with f .�1/ � �1 and f .1/ � 1. Show
that f has a fixed point.

3.20. We saw in Remark 3.11 that the Fixed Point Lemma (Lemma 3.10) is a
special case of Brouwer’s Theorem, which holds in two dimensions. Use the fact
that Brouwer’s Theorem also holds in three dimensions to argue the following: After
stirring a cup of coffee in any manner whatsoever and then letting it settle, there is
a point in the coffee which ends up exactly where it began.

3.21. Suppose that one ride on a particular roller coaster lasts exactly 3min. To keep
people moving along, the amusement park staff runs a set of cars exactly 1:5min
after the previous set has left. Suppose that Hannah rides at the front of a set and
Sarah rides at the front of the next set. Show that during Hannah’s ride there is an
instant at which she is at precisely the same elevation as Sarah.

3.22. [5] A snail begins to crawl up a stick at 6 am and reaches the top of the stick
at noon. It spends the rest of the day and that night at the top. The next morning
it leaves the top at 6 am and descends by the same route it used the day before,
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reaching the bottom at noon. Prove that there is a time between 6 am and noon at
which the snail was at exactly the same spot on the stick on both days. Note: The
snail may crawl at different speeds, rest, or even go backwards. Snails do that. (This
problem has appeared in many places in many forms. It was originally posed by the
American mathematician and science writer Martin Gardner (1914–2010).)

3.23. Suppose that one ride on a particular roller coaster lasts exactly 2min and
you take a ride. Show that there is a time interval 15 s in length after which your net
change in elevation is zero.

3.24. Suppose that a roller ride coaster is 1:2 miles long and you take a ride. Show
that there is a stretch of 0:24 miles after which your net change in elevation is zero.

3.25. Modify the proof of the Half-Chord Lemma (Lemma 3.12) to obtain a version
for Œa; b�, as follows. Let f be a continuous function on Œa; b�; with f .a/ D f .b/:

Show that there is at least one c 2 Œa; aCb
2
� such that f .c C b�a

2
/ D f .c/: That is,

f has a horizontal chord of length .b � a/=2:
Hint: Consider g.x/ D f .x C .b � a/=2/ � f .x/ on Œa; .aC b/=2�:

3.26. (a) Prove the Half-Chord Lemma (Lemma 3.12) another way: Consider the
function g.x/ D f .xC1=2/�f .x/ on Œ0; 1=2� and observe that g.0/g.1=2/ <
0: Now apply Bolzano’s Theorem (Theorem 3.7).

(b) Is this proof preferable to the one in the text? Why or why not?
(c) Modify the argument in (a) to prove the Half-Chord Lemma on Œa; b�:

3.27. Modify the proof of the Universal Chord Theorem (Theorem 3.14) to obtain a
version for Œa; b�, as follows. Let f be a continuous function on Œa; b� with f .a/ D
f .b/; and let k be any positive integer. Show that there exists c in Œa; b� .b�a/=k�
such that

f .c C .b � a/=k/ D f .c/:

That is, f has a horizontal chord of length .b � a/=k:
Hint: Consider g.x/ D f .x C .b � a/=k/ � f .x/ on Œa; b � .b � a/=k�:
3.28. [3]

(a) Prove the Universal Chord Theorem (Theorem 3.14) another way, as follows.
Let g.x/ D f .x C 1=k/ � f .x/: Verify that g continuous on Œ0; 1 � 1=k�

and that 1
k

kP
jD1

g.
j�1
k
/ D 0: Apply the Average Value Theorem for Sums

(Theorem 3.19).
(b) Modify the argument in (a) to prove the Universal Chord Theorem on Œa; b�:

3.29. [3]

(a) Find an example which shows that even if f is continuous on Œ0; 1� with
f .0/ D f .1/; f need not have a horizontal chord of length t; if t 2 .1=2; 1/:

A picture will suffice.
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(b) Find an example which shows that even if f is continuous on Œ0; 1� with
f .0/ D f .1/; f need not have a horizontal chord of length t; for t 2
.1=3; 1=2/: A picture will suffice.

3.30. Verify the claim made prior to Remark 3.16, that P. Levy’s example

f .x/ D x sin2.m / � sin2.m x/

has f .0/ D f .1/; yet has no horizontal chord of length 1=m unless m is a natural
number. This shows that the Universal Chord Theorem (Theorem 3.14) is as good
as it can be.

3.31. A snail begins to crawl up a stick at 6 am and reaches the top of the stick
at noon. It spends the rest of the day and that night at the top. The next morning
it leaves the top at 6 am and descends by the same route it used the day before,
reaching the bottom at noon. Prove that there are two times, 21 h apart, at which the
snail was at exactly the same spot on the stick. (The snail may crawl at different
speeds, rest, or even go backwards. Snails do that.)

3.32. (a) Show that a 12-h clock that is stopped is correct twice a day.
(b) Show that the conclusion of the Intermediate Value Theorem (Theorem 3.17)

no longer holds if f is not continuous on Œa; b�.

3.33. Let a > 0: Show that the equation x4 �x2 �x D a has one negative solution
and one positive solution.

3.34. Let y0 2 R and consider the function

f .x/ D
�

sin
�
1
x

�
if x ¤ 0

y0 if x D 0 :

Find two sequences fxng and fyng for which xn ! 0 and yn ! 0, and f .xn/ !
A; f .yn/ ! B; yet A ¤ B: So f is not continuous at x D 0; even though f
satisfies the Intermediate Value Property on any interval with contains 0: See [8] for
an interesting classroom approach to this example.

3.35. (a) Let a1; a2; : : : ; an 2 R and let p1; p2; : : : ; pn be n positive numbers.
Show that

min
1�j�nfaj g �

nP
jD1

pj aj

nP
jD1

pj

� max
1�j�nfaj g:

That is, the weighted Arithmetic Mean is indeed a mean.
(b) Prove the Mean Value Theorem for Sums (Theorem 3.22).
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3.36. Let f be continuous on Œa; b� and let x1; x2; : : : ; xn 2 Œa; b�: Prove that there
is a number c 2 Œa; b� at which the Root Mean Square of f evaluated at these points
is attained. That is, prove that there is a number c 2 Œa; b� such that

f .c/ D
r
1

n

�
f .x1/2 C f .x2/2 C � � � C f .xn/2

�
:

3.37. Let f be continuous on Œa; b� and let x1; x2; : : : ; xn 2 Œa; b�: Prove that there
is a number c 2 Œa; b� at which the Geometric Mean of f evaluated at these points
is attained. That is, prove that there is a number c 2 Œa; b� such that

f .c/ D
	 nY
jD1

f .xj /

1=n D

	
f .x1/ � f .x2/ � � � f .xn/


1=n
:

3.38. Prove the part of the Extreme Value Theorem (Theorem 3.23) which pertains
to xm:

3.39. (a) Show that the conclusion of the Extreme Value Theorem (Theorem 3.23)
is no longer true if f is not continuous on Œa; b�.

(b) What happens if f is continuous, but on an interval that is not closed?
(c) Is the Extreme Value Theorem (Theorem 3.23) true if we assume only that f

has the Intermediate Value Property on Œa; b�?
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Chapter 4
Differentiable Functions

Where the telescope ends the microscope begins, and who can
say which has the wider vision?

—Les Misérables, by Victor Hugo

Again we denote by I 	 R a generic interval, and we mainly consider functions
f W I ! R: Roughly speaking, if a function has a derivative at x 2 I then it has a
well-defined tangent line at .x; f .x//: Asking for a function to have a derivative is
more than asking for it to be continuous. Still, many functions which arise naturally
in applications do have a derivative for all x in some interval I . After defining the
derivative, we remind the reader how to find derivatives of many different kinds of
functions. And we shall see, for the sake of applications, that horizontal tangent
lines are particularly desirable.

4.1 Basic Properties

Let I be an interval (open, closed, or otherwise) and let f W I ! R. We say that
f is differentiable on I if f is differentiable at every x0 2 I: That is, for every
x0 2 I and for any sequence fxng in I for which xn ! x0; and xn ¤ x0; it happens
that

lim
n!1

f .xn/ � f .x0/
xn � x0 exists,

and depends only on x0 (that is, not on fxng). When this is the case, we call the limit
the derivative of f at x0 and we denote it by f 0.x0/.

To be more precise, if f 0.x0/ exists then for any sequence fxng � I for which
xn ! x0 and xn ¤ x0; and for any " > 0, there is a number N such that

ˇ̌̌
ˇ f .xn/ � f .x0/

xn � x0 � f 0.x0/
ˇ̌̌
ˇ < " for n > N:
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The quotient

f .xn/ � f .x0/
xn � x0

is the slope of the line through the points .xn; f .xn// and .x0; f .x0//: So when it
exists, the limit

f 0.x0/ is the slope of the tangent line to y D f .x/ at .x0; f .x0//:

The equation for this tangent line is

y � y0 D f 0.x0/. x � x0 / . y0 D f .x0/ /:

Another way to think of f 0.x0/ is as follows: Continually zooming in on the
graph of y D f .x/ in the vicinity of .x0; f .x0//; the graph looks more and more
like a straight line and the slope of this straight line is f 0.x0/: See Fig. 4.1.

Fig. 4.1 The tangent line to
y D f .x/ at x D x0

x0

y = f(x)

f(x0)

x

y

y − y0 = f ′(x0)(x−x0)

Remark 4.1. A function may have a nonvertical tangent line at x0 and not be
differentiable at x0, as the following example shows (for any jx0j < 1).

f .x/ D
8<
:
p
.1 � x2/ if jxj � 1 and x is rational

�p.1 � x2/ if jxj < 1 and x is irrational.

This function is not continuous. For a continuous function, having a (nonvertical)
tangent line and having a derivative are equivalent [27]. ı

Example 4.2. Let f .x/  C (constant) and let xn ! x0 with xn ¤ x0: Then

f .xn/ � f .x0/
xn � x0 D C � C

xn � x0 D 0:

Therefore f is differentiable on R and f 0.x0/ D 0 for all x0 2 R: ˘
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Example 4.3. Let f .x/ D x and let xn ! x0 with xn ¤ x0: Then

f .xn/ � f .x0/
xn � x0 D xn � x0

xn � x0 D 1:

Therefore f is differentiable on R and f 0.x0/ D 1 for all x0 2 R: ˘
Example 4.4. Let f .x/ D x2 and let xn ! x0 with xn ¤ x0: Then

f .xn/ � f .x0/
xn � x0 D x2n � x20

xn � x0 D .xn � x0/.xn C x0/

xn � x0 D xn C x0:

Therefore f is differentiable on R and f 0.x0/ D 2x0; for x0 2 R: For example
(with x0 D 3/, the equation of the tangent line to f .x/ D x2 at .3; f .3// D .3; 9/ is

y � 9 D 6.x � 3/; that is, y D 6x � 9: ˘

Example 4.5. Let f .x/ D jxj and consider the sequence f.�1/n=ng; which
converges to x0 D 0: Then

f .xn/ � f .x0/
xn � x0 D jxnj � j0j

xn � x0 D 1=n � 0
.�1/n=n � 0 D .�1/n:

Now since the sequence f.�1/ng diverges, f 0.0/ does not exist. Therefore f is not
differentiable at x D 0: The problem here is that the graph of f .x/ D jxj has a
cusp/corner at .0; 0/ and so there is no well-defined tangent line at .0; 0/. (However,
f is differentiable on .�1; 0/ [ .0;C1/.) See Fig. 4.2. ˘

Fig. 4.2 For Examples 4.5
and 4.10 : The graph of
y D jxj: The derivative does
not exist at x0 D 0

x

y

y = |x|

Observe that if f is differentiable at x; then for any sequence fxng with xn ! x

(and xn ¤ x),

lim
n!1

f .xn/ � f .x/
xn � x exists:
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Clearly the denominator here xn � x ! 0, so for the limit to exist it must be the
case that the numerator f .xn/ � f .x/ ! 0 also. That is, f .xn/ ! f .x/: This
simple observation yields a connection between the differentiable functions and the
continuous functions, as follows.

Lemma 4.6. If f is differentiable at x 2 I; then f is continuous at x:

Proof. This is Exercise 4.1. ut
Lemma 4.6 shows that the differentiable functions form a subset of the contin-

uous functions. And it is a proper subset because f .x/ D jxj is continuous at
x D 0 (Example 3.5) but as we saw in Example 4.5, it is not differentiable at x D 0.
Still, many functions which arise naturally in applications are differentiable on some
interval I .

Remark 4.7. It was long believed by mathematicians that a continuous function
must be differentiable, except perhaps at some isolated points, just as f .x/ D jxj
is differentiable everywhere except at x D 0. But around 1872, the German
mathematician Karl Weierstrass (1815–1897) constructed a function which is
continuous at each point of R, yet is differentiable at no point of R. Weierstrass’s
example has an important place in the history of mathematics. ı
Example 4.8. Suppose that h is differentiable at x0 2 R and let H.x/ D h.x/2.
Then for xn ! x0 with xn ¤ x0;

H.xn/ �H.x0/
xn � x0 D h.xn/

2 � h.x0/2
xn � x0 D

�
h.xn/C h.x0/

��
h.xn/ � h.x0/

�
xn � x0

D �
h.xn/C h.x0/

�h.xn/ � h.x0/
xn � x0 :

Now since h is differentiable at x0, it is continuous at x0, by Lemma 4.6. Therefore
h.xn/ ! h.x0/. Finally then, h2 is differentiable on R and

.h2/0.x0/ D 2h.x0/h
0.x0/ for x0 2 R: ˘

Remark 4.9. In Example 4.8, Lemma 4.6 is essential. Example 4.8 is a special case
of the Chain Rule, which we meet in Sect. 4.2. ı

Suppose for the moment that I D Œa; b� is a closed interval and that f is
differentiable on I: Then in particular, f is differentiable at x0 D a: That is, the
derivative from the right exists at x0 D a: We denote this by f 0

R.a/. Likewise, f
is differentiable at x0 D b: That is, the derivative from the left exists at x0 D b.
This is denoted by f 0

L.b/.

Example 4.10. For f .x/ D jxj ; we have f 0
R.0/ D 1 and f 0

L.0/ D �1: Indeed,
f 0.0/ does not exist because these two limits are not equal. Again, see Fig. 4.2. ˘
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If x0 is not an endpoint of I; then for jhj small enough, x0 C h 2 I . Therefore
we may write

f 0.x0/ D lim
h!0

f .x0 C h/ � f .x0/
h

:

When the derivative is to be thought of as a function, which is typically the case,
the x0 in f 0.x0/ is usually replaced simply by x (or by t , or by s; etc.).

It is customary to denote a small increment in x by 
x. Then for y D f .x/; the
resulting increment in f .x/ is denoted by 
y D f .x C
x/ � f .x/: As such, we
write

f 0.x/ D lim

x!0

f .x C
x/ � f .x/

x

D lim

x!0


y


x
D dy

dx
:

Since 
y


x
is the average rate of change of f between x and x C 
x; this notation

emphasizes the important fact that f 0.x/ D dy

dx
is the instantaneous rate of change

of f with respect to x: Other notations are, depending on the context,

y0 D f 0.x/ D dy

dx
D d

dx
y D d

dx
f .x/ D df

dx
:

4.2 Differentiation Rules

In practice, appealing to the definition of the derivative is often unnecessary. Instead
one uses various differentiation rules. Here we take a whirlwind tour of these rules.

The simplest differentiation rule—that derivatives respect linear combinations—
is as follows. It is a direct consequence of Lemma 1.24.

Linear Combination Rule: Let ’; “ 2 R: If f and g are each differentiable for
x 2 I , then ’f C “g is differentiable for x 2 I; with

�
’f .x/C “g.x/

�0 D ’f 0.x/C “g0.x/:

Proof. This is Exercise 4.2. ut
For the case of a product of functions, the differentiation rule is not quite so

straightforward.

Product Rule: If f and g are each differentiable for x 2 I then the product f � g
is differentiable for x 2 I; with

�
f .x/g.x/

�0 D f .x/g0.x/C g.x/f 0.x/:
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Proof. (cf. Example 1.28.) As in [9], we write

f .x/g.x/ D 1

4

h�
f .x/C g.x/

�2 � �
f .x/ � g.x/�2i :

Then by Example 4.8 (which uses Lemma 4.6) and the Linear Combination Rule,

�
f .x/g.x/

�0 D 1

4

�
2
�
f .x/Cg.x/��f 0.x/Cg0.x/

��2�f .x/�g.x/��f 0.x/�g0.x/
��
:

Expanding the right-hand side, then some tidying, yields the desired result. ut
The usual textbook proof of the Product Rule is the content of Exercise 4.3. In it,

Lemma 4.6 is still indispensable.
Now we use the Product Rule to obtain derivatives of functions like x3; x4; x5;

etc. (See Exercises 4.7 and 4.8 for other methods.)

Power Rule for Positive Integer Powers: Let n be a positive integer and for
x 2 R; let f .x/ D xn: Then f is differentiable, and f 0.x/ D nxn�1:

Proof. We saw in Examples 9.18 and 9.19 that .x/0 D 1 and .x2/0 D 2x: For x3 we
write x3 D x � x2 and use the Product Rule:

�
x3
�0 D �

x � x2�0 D x.2x/C .1/x2 D 3x2:

For x4 we do the same sort of thing:

�
x4
�0 D �

x � x3�0 D x.3x2/C .1/x3 D 4x3:

Clearly we could continue this procedure indefinitely. So for any positive integer n,

.xn/0 D �
x � xn�1�0 D x.n � 1/xn�2 C .1/xn�1 D nxn�1;

as desired. ut
We have seen that the function f .x/  1 is differentiable on R (with

f 0.x/  0). Therefore, by the Power Rule for Positive Integer Powers, and the
Linear Combination Rule, any polynomial is differentiable on R.

Assume that f and g are differentiable, and consider their quotient h D f=g

(wherever g ¤ 0). As in [28], we write hg D f and use the Product Rule to obtain

hg0 C gh0 D f 0:

That is,

h0 D f 0 � hg0

g
D
f 0 � f

g
g0

g
D gf 0 � fg0

g2
:

These manipulations suggest the following.
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Quotient Rule: Let f and g be differentiable on I: Then the quotient f=g is
differentiable at x 2 I for which g.x/ ¤ 0, and

�
f .x/

g.x/

�0
D g.x/f 0.x/ � f .x/g0.x/

g.x/2
:

Proof. This is Exercise 4.4 (or Exercise 4.5). ut
The argument above only suggests the Quotient Rule, because it assumes that the

derivative of f=g exists. In any proper proof, Lemma 4.6 is (again) essential. This
argument is credited originally (editor’s note in [9]) to Italian mathematician Maria
Agnesi (1718–1799), who published a successful calculus textbook in 1748 [1, 10].

We have seen that any polynomial is differentiable on R: Then by the Quotient
Rule any rational function (a polynomial divided by a polynomial) is differentiable
on R; except wherever its denominator is zero.

Power Rule for All Integer Powers: Let n be an integer and let f .x/ D xn for
x 2 R (but x ¤ 0 for n < 0/: Then f is differentiable on R, and f 0.x/ D nxn�1.

Proof. We have already proved the result for n D 0; 1; 2; : : : : For n D
�1;�2;�3; : : : we use the result for n D 1; 2; 3; : : : and apply the Quotient Rule:

.xn/0 D
�
1

x�n

�0
D x�n.0/ � .1/.�n/x�n�1

.x�n/2
D nx�n�1

x�2n D nxn�1;

as desired. ut
Thus far, we have seen how to obtain derivatives of linear combinations (includ-

ing sums and differences), products, and quotients of functions. For compositions
of functions, we use the Chain Rule below. Proofs of the Chain Rule are somewhat
tricky so we supply one, which is motivated by [26]. (See also [5] and [23].) Another
proof is outlined in Exercise 4.13.

Chain Rule: Let g W J ! I and f W I ! R. If g is differentiable on J; and f is
differentiable on I , then their composition f ı g is differentiable on J; and

.f ı g/0.x/ D f 0.g.x//g0.x/:

Proof. Let x0 2 J and let fxng be a sequence in J , with xn ! x0 and xn ¤ x0. If
there exists N such that g.xn/ ¤ g.x0/ for n > N then we may write (for such n):

f .g.xn// � f .g.x0//
xn � x0 D f .g.xn// � f .g.x0//

g.xn/ � g.x0/
g.xn/ � g.x0/
xn � x0 :

Then as n ! 1,

f .g.xn// � f .g.x0//
xn � x0 ! f 0.g.x0//g0.x0/;
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and the theorem is proved. However, there are functions g for which there exists no
such N as above. (See Exercise 4.11.) So if there is no such N , let a1 be the xj in
fx1; x2; x3; x4; : : :g which has the smallest subscript, and for which g.xj / D g.x0/:

Let a2 be the xj in fx2; x3; x4; : : :g which has the smallest subscript, and for which
g.xj / D g.x0/: Let a3 be the xj in fx3; x4; : : :g which has the smallest subscript,
and for which g.xj / D g.x0/ etc. Then fang is a sequence in J , with an ! x0 and
an ¤ x0: Here we have

g.an/ � g.x0/
an � x0 D 0 for each n:

Therefore g0.x0/ D 0. But we also have

f .g.an// � f .g.x0//
an � x0 D 0 for each n;

and therefore

f .g.an// � f .g.x0//
an � x0 ! f 0.g.x0//g0.x0/;

as desired. ut
In terms of instantaneous rates of change, the Chain Rule can be stated as follows.

If f is a function of g, and g is a function of x, then ultimately f is a function of x.
And if f and g are also differentiable, then

df

dx
D df

dg

dg

dx
:

Indeed, if Fergus runs three times faster than Giuseppina and Giuseppina runs two
times faster than Xavier, then Fergus runs six times faster than Xavier.

For f .x/ D xp=q we write f .x/q D xp; then the Chain Rule and the Power
Rule for Integer Powers can be used to obtain a Power Rule for Rational Powers, as
stated below.

Power Rule for Rational Powers: Let p=q 2 Q be a rational number and for

x > 0; let f .x/ D xp=q . Then f is differentiable for x > 0, and f 0.x/ D p

q
x
p
q �1.

Proof. This is Exercise 4.14. (See also Exercise 4.12.) ut

4.3 Derivatives of Transcendental Functions

A transcendental function is a function that cannot be expressed as a finite
combination of the operations of addition, subtraction, multiplication, division,
raising to powers, and taking roots. That is, it transcends the basic algebraic
operations.
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The simplest examples of transcendental functions are the trigonometric
functions and their inverses, and the exponential function ex and its inverse the
natural logarithmic function ln.x/: It is beyond the scope of this book to show
that these functions are indeed transcendental, so we shall have to be content with
transcendental being simply a name.

We leave it for Exercise 4.15 to show that
�

sin.x/
�0 D cos.x/:

Here, x is in radians—otherwise this formula would not be quite so nice. Then since
cos.x/ D sin. 

2
� x/; the Chain Rule gives:

�
cos.x/

�0 D � cos. 
2

� x/ D � sin.x/:

The derivatives of the other four trigonometric functions can then be obtained using
the Quotient Rule (Exercise 4.15). For example,

�
tan.x/

�0 D sec2.x/:

For x 2 R, we denote by arctan.x/ (often denoted by tan�1.x/ as well) the
inverse of the function tan.x/ on .� =2;  =2/. That is, arctan.x/ is the angle � 2
.� =2;  =2/ for which tan.�/ D x :

arctan.tan.�// D � for � 2 .� =2;  =2/; and

tan.arctan.x// D x for x 2 R:

Differentiating the latter expression, the Chain Rule gives:

sec2.arctan.x//.arctan.x//0 D 1:

Therefore

�
arctan.x/

�0 D 1

sec2.arctan.x//
D 1

tan2.arctan.x//C 1
D 1

x2 C 1
:

However, these manipulations only suggest the answer because they assume
that the derivative of arctan.x/ exists. One can show that it indeed exists using
Exercise 4.16. But here, following [13], we do so more directly.

For 0 � x < y; set

� D arctan.y/ � arctan.x/:

Then since sin.�/ � � < tan.�/ for 0 � � <  =2;

sin.arctan.y/ � arctan.x// � arctan.y/ � arctan.x/ < tan.arctan.y/ � arctan.x//:
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Applying the trigonometric identities

sin.A � B/ D sin.A/ cos.B/ � cos.A/ sin.B/ and

tan.A � B/ D tan.A/ � tan.B/

1C tan.A/ tan.B/

with y D tan.A/ and x D tan.B/ on the left-hand and right-hand sides respectively,
we get

1p
1C y2

p
1C x2

� arctan.y/ � arctan.x/

y � x <
1

1C xy
:

Therefore, letting y ! x (or x ! y), we get

�
arctan.x/

�0 D �
tan�1.x/

�0 D 1

1C x2
; for x � 0:

Now since arctan.x/ is an odd function: arctan.�x/ D � arctan.x/ for all x, this is
sufficient to show that the formula holds for all real x:

The exponential function ex and its inverse function ln.x/ are related by

ln.ex/ D x for x 2 R; and

eln .x/ D x for x > 0:

For the moment we assume that the reader is familiar with the basic properties of ex

and ln.x/. One such property is

.ex/0 D ex for x 2 R:

Then differentiating eln.x/ D x using the Chain Rule gives

eln.x/.ln.x//0 D 1:

Therefore

�
ln.x/

�0 D 1

x
for x > 0:

But again, these manipulations are only suggestive because in them, we have
assumed that the derivative of ln.x/ exists. One can show that it indeed exists using
Exercise 4.16 but we shall do so more directly in Sect. 6.3—in a similar spirit to
how we obtained the derivative of arctan.x/ above.
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Then the Chain Rule gives

�
e’.x/

�0 D ’0.x/e’.x/ for differentiable functions ’; and

�
lnˇ.x/

�0 D ˇ0.x/
ˇ.x/

for positive differentiable functions ˇ:

For x > 0, r 2 R and ’.x/ D ln.xr / D r ln.x/, we obtain

�
xr
�0 D �

er ln.x/
�0 D r

x
er ln.x/ D r

x
xr D rxr�1;

which we highlight as follows.

Power Rule for Real Powers: Let r 2 R and for x > 0; let f .x/ D xr . Then f is
differentiable, with f 0.x/ D rxr�1.

Proof. As outlined above; a proper proof is postponed until Sect. 6.3. ut
A similar trick can be used to find derivatives of functions for which the variable

appears as part of an exponent. This is called logarithmic differentiation. Here are
two more examples.

Example 4.11. Let f .x/ D 2x: We write this as f .x/ D eln.2/x D ex ln.2/; then use
the Chain Rule:

f 0.x/ D ex ln.2/ ln.2/ D 2x ln.2/: ˘

Example 4.12. For a more complicated example, let g.x/ D �
1 C x2

�sin.x/
: Here

we write g.x/ D eln
�
1Cx2

�sin.x/

D esin.x/ ln.1Cx2/: Then by the Chain Rule and the
Product Rule,

g0.x/ D �
1C x2

�sin.x/
�

sin.x/
2x

1C x2
C cos.x/ ln.1C x2/

�
: ˘

4.4 Fermat’s Theorem and Applications

Surely the most practical application of the derivative is to find maximum and
minimum values (these are called extrema) for various functions. To this end, the
following result is very useful.

Theorem 4.13. (Fermat’s Theorem) Let f be defined on .a; b/ and let c 2 .a; b/

be such that f .c/ � f .x/ for all x 2 .a; b/: Then either f 0.c/ D 0 or f 0.c/ does
not exist.
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Proof. Let fxng be any sequence in .a; b/ with xn ! c (and xn ¤ c) so by
hypothesis, f .c/ � f .xn/: Now whenever c > xn, we have

f .xn/ � f .c/
xn � c � 0 :

But whenever c < xn, we have

f .xn/ � f .c/
xn � c � 0 :

So if f 0.c/ exists then we must have f 0.c/ D 0: (Otherwise, of course, f 0.c/ does
not exist.) ut

This theorem is named for French mathematician Pierre de Fermat (1601–
1665). Although his life predates the discovery of calculus proper, Fermat computed
tangent lines and extrema for many families of curves.

The number f .c/ in this context is called a local maximum for f . It is
local because f may attain larger values outside .a; b/. Fermat’s Theorem
(Theorem 4.13) holds also for c yielding a local minimum: f .c/ � f .x/ for
all x 2 .a; b/:We leave the verification of this claim for Exercise 4.24. The number
f .c/ is called a local extremum if it is either a local maximum or a local minimum.

The number f .c/ is called an absolute maximum for f if f .c/ � f .x/ for
all x in the domain of f; and the number f .c/ is called an absolute minimum if
f .c/ � f .x/ for all x in the domain of f: The number f .c/ is called an absolute
extremum if it is either an absolute maximum or an absolute minimum.

Any point c for which either f 0.c/ D 0 or f 0.c/ does not exist is called a
critical point for f: So Fermat’s Theorem (Theorem 4.13) says, in short, that a
local extremum for f must occur at a critical point for f: These are places at which
f has either a horizontal tangent line or a cusp/corner. In either case, f .c/ is called
a critical value for f:

The converse of Fermat’s Theorem (Theorem 4.13) does not hold—that is, a
critical value need not be a local extremum: Consider f .x/ D x3 at x D 0. (The
paper [7] amusingly calls such points “duds.”) So Fermat’s Theorem only tells us
where to look for local extrema; it does not guarantee success. (If someone has
caught a fish, then they must have been at a body of water. So suggesting that your
friend goes fishing at a body of water is good advice, but this of course does not
guarantee success.)

Example 4.14. Let us seek the point(s) on the curve y D x2 closest to the point
.0; 1/. See see Fig. 4.3.
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Fig. 4.3 For Example 4.14.
Distance d from .0; 1/ to
y D x2

1−1

1

d

y = x2

x

y

The distance from any point .x; x2/ on the curve to the point .0; 1/ is given by

d D d.x/ D
p
.x � 0/2 C .x2 � 1/2 D

p
x2 C .x2 � 1/2 :

Now it is clear from Fig. 4.3, or observe that d.x/ ! C1 as x ! ˙1, that
d indeed has an absolute minimum (and no absolute maximum). An absolute
minimum is also a local minimum and by Fermat’s Theorem (Theorem 4.13), it
must occur at a critical point. By the Chain Rule, and after some simplifying,

d 0.x/ D x.2x2 � 1/p
x2 C .x2 � 1/2 ;

and so d has critical points at x D 0 and x D ˙1=p2; at which d 0 D 0: Now
d.0/ D 1 and d.1=

p
2/ D d.�1=p2/ D p

3=2 < 1: Therefore the points
on y D x2 closest to .0; 1/ are .1=

p
2; 1=2/ and .�1=p2; 1=2/; each attains the

minimum distance
p
3=2: (The value d.0/ D 1 is a local maximum.) ˘

In Example 4.14 we were able to justify, within the context, that Fermat’s
Theorem (Theorem 4.13) indeed led us to the absolute minimum that we sought.
Generally however, deciding which critical points yield absolute extrema can be a
delicate matter. We pursue this further in Sect. 5.2.

But if the interval under consideration is Œa; b�; that is, if it is closed, then
Fermat’s Theorem (Theorem 4.13) and the Extreme Value Theorem (Theorem 3.23)
together give a recipe by which the absolute extrema of a continuous function can
be found quite easily:

The absolute maximum value of a continuous function f on Œa; b� is the largest of

fthe critical values of f; f .a/; and f .b/g:
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The absolute minimum value of a continuous function f on Œa; b� is the smallest of

fthe critical values of f; f .a/; and f .b/g:
(Here, if your friend goes to the right body of water then there are definitely fish to
be caught. And if your friend employs impeccable fishing techniques, then success
is guaranteed!)

Example 4.15. Consider the function

f .x/ D ex
p
5 � 4x ;

which is continuous on Œ�1; 1�: Here, by the Product and Chain Rules and after
some simplifying,

f 0.x/ D ex.3 � 4x/p
5 � 4x :

The only critical point that f has in Œ�1; 1� is x D 3=4; at which f 0 D 0: Now
f .3=4/ Š 2:99; f .�1/ Š 1:1; and f .1/ D e Š 2:718. Therefore, on Œ�1; 1�, f
has a maximum value of about 2:99 and a minimum value of about 1:1 : ˘
Example 4.16. John is on one side of a river 1/2 a mile wide, say at point A. He
notices his house burning 2 miles downstream, but it is on the opposite side of the
river; naturally, he wants to get to his house as quickly as possible. John can run at
5 miles per hour and he can swim downstream at 3 miles per hour. How should he
proceed?

For a solution, consider Fig. 4.4, which helps us to obtain an expression for the
time T that it takes John to get to his house (point B). We denote by P any point on
the opposite bank to which he may swim. The distance from P to the point directly
across the river from A (let’s call it A0) is x:

Fig. 4.4 For Example 4.16.
John swims from A to P ,
then runs from P to B

B A′P

A

x2 − x

√
x2+1/4

1
2

As time is distance divided by speed,

T .x/ D
p
x2 C 1=4

3
C 2 � x

5
:
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Obviously, we need only consider T .x/ for 0 � x � 2. So we want to find a value
for x which minimizes T .x/ on the closed interval Œ0; 2�: The reader may verify that

T 0.x/ D 5x � 3px2 C 1=4

15
p
x2 C 1=4

;

and so T is differentiable for all x; and T 0.3=8/ D 0: That is, T has a critical
point at x D 3=8: Now T .3=8/ D 8=15 D 0:53 ; T .0/ D 17=30 D 0:56 ; and
T .2/ D p

17=6 Š 0:687 : Therefore, John should swim to the point exactly 3=8 of
a mile downstream, and run the rest of the way. In doing so, it would take him 0:53

of an hour to get to his house. (If John wanted to allow his house to burn in order
to collect insurance money, then try to convince investigators that he did his best in
attempting to save his house, he might swim the entire way.) ˘
Remark 4.17. Example 4.16 is a classic [20]. A version of it, in which a man can
walk on smooth ground at a certain speed, and walk on plowed ground at a certain
(slower) speed, appears in a 1691–1692 manuscript by the Swiss mathematician
Johann Bernoulli (1667–1748). The manuscript was published in 1742, just 6 years
before Maria Agnesi’s book. ı

Exercises

4.1. Prove Lemma 4.6: If f is differentiable at x 2 I; then f is continuous at x:

4.2. Let ’; “ 2 R. Use Lemma 1.24 to prove the Linear Combination Rule: If f
and g are each differentiable on I and ’; “ 2 R, then ’f C “g is differentiable on
I; with .’f .x/C “g.x//0 D ’f 0.x/C “g0.x/: So in particular, .f .x/˙ g.x//0 D
f 0.x/˙ g0.x/.

4.3. (a) Begin by writing

f .x/g.x/�f .x0/g.x0/ D f .x/g.x/�f .x/g.x0/Cf .x/g.x0/�f .x0/g.x0/

to prove the Product Rule.
(b) Prove it again, beginning instead with

f .x/g.x/�f .x0/g.x0/ D f .x/g.x/�f .x0/g.x/Cf .x0/g.x/�f .x0/g.x0/:

4.4. (a) Begin by writing

f .x/

g.x/
� f .x0/

g.x0/
D f .x/g.x0/ � f .x0/g.x0/C f .x0/g.x0/ � g.x/f .x0/

g.x/g.x0/

to prove the Quotient Rule.
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(b) Prove it again, beginning instead with

f .x/

g.x/
� f .x0/

g.x0/
D f .x/g.x0/ � f .x/g.x/C f .x/g.x/ � g.x/f .x0/

g.x/g.x0/
:

4.5. (a) Prove directly that (wherever g.x/ ¤ 0),

�
1

g.x/

�0
D � g

0.x/
g.x/2

:

(b) Now prove the Quotient Rule by applying the Product Rule to
f .x/

g.x/
D

f .x/
1

g.x/
.

4.6. [8]

(a) Show that

.fg/0

fg
D f 0

f
C g0

g
:

(b) Show that

.f =g/0

f=g
D f 0

f
� g0

g
:

4.7. (a) Let n be a natural number. Verify that

bn � an
b � a D bn�1 C abn�2 C a2bn�3 C � � � C an�3b2 C an�2b C an�1:

(b) Use (a) to prove the Power Rule for Positive Integer Powers.

4.8. [2] Here’s a neat direct proof of the Power Rule for Positive Integer Powers.

(a) In the quotient

yn � xn
y � x ;

make the substitution q D y=x to get

yn � xn
y � x D xn�1 qn � 1

q � 1 :

(b) Now write

qn � 1
q � 1 D 1C q C q2 C � � � C qn�1; and let q ! 1:
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4.9. [4] Consider the function

f .x/ D
�
x2 if x � 0

0 if x < 0 :

Show that f 0 exists at x D 0; that f 0 is continuous at x D 0; but that f 0 is not
differentiable at x D 0:

4.10. Suppose that f is differentiable on an open interval containing x.

(a) Show that

lim
h!0

f .x C h/ � f .x � h/
2h

D f 0.x/:

Hint: Consider the average of the right-hand and left-hand derivatives at x.
(b) Show that this limit can exist even when f 0.x/ does not.

4.11. Consider the function

g.x/ D
8<
:
x2 sin

�
1
x

�
if x ¤ 0

0 if x D 0:

(a) Show that g is differentiable at x D 0:

(b) Show that g.xn/ D g.0/ D 0 for the sequence fxng D f 1
n 

g, which has xn ! 0.
(c) Show that g0 is not continuous at x D 0:

4.12. [17] Here is a way to obtain the Power Rule for Rational Powers more
directly—that is, without the Chain or Product Rules. For f .x/ D xp=q; write

f 0.x/ D lim
h!0

.x C h/p=q � xp=q
h

D lim
h!0

�
.x C h/1=q

�p � �
x1=q

�p
�
.x C h/1=q

�q � �
x1=q

�q
then use the formula

.aN � bN / D .a � b/.aN�1 C aN�2b C � � � C abN�2 C bN�1/:

4.13. Fill in the details of another proof of the Chain Rule, as follows. Set g.x0/ D
y0; and consider the function h defined on I by

h.y/ D

8̂̂
<
ˆ̂:

f .y/ � f .y0/
y � y0 if y ¤ y0

f 0.y0/ if y D y0:
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(a) Show that h is continuous on I and verify that for y 2 I ,

f .y/ � f .y0/ D .y � y0/h.y/;

so that for x 2 J ,

f .g.x// � f .g.x0// D .g.x/ � g.x0//h.g.x//:

(b) Now, for xn ¤ x0, consider the quotient

f .g.xn// � f .g.x0//
xn � x0 D .g.xn/ � g.x0//h.g.xn//

xn � x0 :

Observe that h ı g is continuous on J; and let xn ! x0:

4.14. Use the Chain Rule and the Power Rule for Integer Powers to prove the Power
Rule for Rational Powers.

4.15. (a) Show that

lim
h!0

sin.h/

h
D 1:

(b) Use this to show that

lim
h!0

1 � cos.h/

h
D 0:

(c) Now write

sin.x C h/ D sin.x C h/ D sin.x/ cos.h/C cos.x/ sin.h/

to show that

�
sin.x/

�0 D cos.x/:

(d) What if x is in degrees, rather than radians?
(e) In a similar way, show that .cos.x//0 D � sin.x/:
(f) Find the derivatives (where they exist) of the other four trigonometric functions.
(See [11,19,25] for neat ways of showing that .sin.x//0 D cos.x/ using some simple
geometry then taking a limit.)

4.16. A function f is strictly increasing on I if

f .x1/ < f .x2/ whenever x1; x2 2 I with x1 < x2:
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And f is strictly decreasing on I if �f is strictly increasing there. A function
which is either strictly increasing or strictly decreasing is called strictly monotonic.
A function f W I ! J is onto if for each y0 2 J; there is x0 2 I such that
f .x0/ D y0: If f W .a; b/ ! .p; q/ is strictly monotonic and onto, then the inverse
f �1 W J ! I exists. It is defined by f �1.y/ D x , y D f .x/: Suppose that
f W .a; b/ ! .p; q/ is strictly monotonic and onto.

(a) Prove that f is continuous on .a; b/.
(b) Prove that f �1 is strictly monotonic and onto, and therefore continuous.
(c) Show that if f is also differentiable and f 0.x/ ¤ 0 then f �1 is differentiable,

with

.f �1/0.y/ D 1

f 0.f �1.y//
:

(d) [24] Explain what the formula in (c) has to do with Fig. 4.5.

Fig. 4.5 For Exercise 4.16.
Observe that
tan.“/ D 1= tan.’/, since
’C “ D  =2

x

y

y = f(x)

a

b

4.17. [16] Show that for any n distinct real numbers (n � 4) there are at least two
which satisfy

0 <
x � y
1C xy

< tan
	  

n � 1


:

Hint: Each number can be written as tan.u/; where � =2 < u <  =2: The
trigonometric identity tan.A � B/ D tan.A/�tan.B/

1Ctan.A/ tan.B/ will be useful.
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4.18. (a) Verify the identities

arcsin.x/ D arctan

�
xp
1 � x2

�
and arccos.x/ D  

2
� arcsin.x/:

(b) Use these identities to show that

�
arcsin.x/

�0 D 1p
1 � x2

and

�
arccos.x/

�0 D � 1p
1 � x2 :

4.19. Find derivatives for the following functions:
(a) f .x/ D arctan

�
cos.x/ C x3/

�
, (b) g.x/ D esin2.x/Csec.x/, (c) h.x/ D 3x C

csc.x/Cx5, (d) k.x/ D ln
�
1Cx2
1�x2

�Ccot.x/; (e) F.x/ D x
p
x , (f)G.x/ D xln.x/,

(g) H.x/ D sin.x/cos.x/.

4.20. Let p.x/ be a polynomial of degree n; with roots x1; x2; : : : ; xn:

(a) Show that for x ¤ xj ,

p0.x/
p.x/

D
nX

jD1

1

x � xj :

(b) Show that

p0.x/2 � p.x/p00.x/:

Here, p00.x/ means
�
p0.x/

�0
: (More in Chap. 8 . . . )

4.21. [14] Let f W R ! R be strictly positive and suppose that

lim
h!0

�
f .x C h/

x

�1=h
D L ¤ 0:

(a) Show that f is differentiable at x. (b) Find L:

4.22. [12] For x 2 Œ�1; 1�; consider the function

f .x/ D
8<
:
x4=3 sin

�
1

x

�
if x ¤ 0

0 if x D 0:

Show that f is continuous on Œ�1; 1�; but has unbounded derivative there.
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4.23. [3] Let p.x/ D xn C an�1xn�1 C � � � C a1xC a0 be a polynomial with zeros
x1; x2; : : : ; xn and denote by Ox1; Ox2; : : : ; Oxn�1 the zeros of p0: Show that

x1 C x2 C � � � C xn

n
D Ox1 C Ox2 C � � � C Oxn�1

n � 1 :

That is, the Arithmetic Mean of the zeros of p equals the Arithmetic Mean of the
zeros of p0:

4.24. Prove Fermat’s Theorem (Theorem 4.13) for the local minimum case.

4.25. Let x1; x2; : : : ; xn 2 R. Find the value of x for which the sum of squares

nX
jD1

.x � xj /2 is least.

4.26. (a) Find the point on the line y D 2x C 3 closest to .2; 1/ and find the
minimum distance thus attained.

(b) Find the point on the line y D mx C b closest to .p; q/ and find the minimum
distance thus attained.

�
Answer:

�
mq�mbCp
m2C1 ;m

mq�mbCp
m2C1 C b

�I distance is
jb�qCmpjp

m2C1 :
�

4.27. Find the point on the curve y D p
x2 C 2 closest to the point .1; 0/ and find

the minimum distance thus attained.

4.28. Find an equation for the tangent line to the graph of y D x3�3x2C2x which
has the least slope.

4.29. [18]

(a) Show that the maximum value of f .x/ D x.b � x/ on Œ0; b� is b2=4:

(b) Let b1; b2; : : : ; bn 2 R, with
nP

jD1
bj D b. Show that

n�1P
jD1

bj bjC1 � b2=4:

4.30. [22] Let f be differentiable on an open interval which contains Œ�1; 1�; with
jf 0.x/j � 1 for x 2 Œ�1; 1�: Show that there is x0 2 .�1; 1/ for which jf 0.x0/j < 4:
Hint: Consider g.x/ D f .x/C 2x2:

4.31. (a) Let f .x/ D 2x2 � x: Consider a rectangle in the first quadrant with one
side on the positive x-axis and inscribed under the graph of y D f .x/: Find the
rectangle so described which has maximal area.

(b) [15] Let g.x/ D x
x2C1 : Consider a rectangle in the first quadrant with one side

on the positive x-axis and inscribed under the graph of y D g.x/: Show that
there is no such rectangle which has maximal area.

4.32. A piece of wire L inches long is cut into two pieces—one the shape of a
square, and one the shape of a circle. How should the wire be cut so that the total
area of the two shapes is as small as possible? How should the wire be cut so that
the total area of the two shapes is as large as possible?
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4.33. Show, using calculus, that the rectangle with given perimeter which has the
greatest area is a square. Show that the rectangle with given area which has the least
perimeter is a square. (We’ve already shown these in Example 2.9, using the AGM
Inequality. Using calculus here is rather like killing a mite with a sledgehammer.)

4.34. (a) A rectangular plot of ground is to be enclosed by fencing on three sides,
with a long existing wall serving as boundary for the fourth side. Find the
dimensions of the plot of greatest area which can be enclosed with 1,000 ft
of fencing. Can you do this without using calculus?

(b) Suppose now that we have the same situation as in (a), but that the existing wall
is 400 ft long. Find the dimensions of the plot of greatest area which can be
enclosed with 1,000 ft of fencing. Can you do this without using calculus? For
a thorough study of problems such as these, see [21].

4.35. A box with open top is made from a rectangular piece of cardboard 12 in. by
18 in.; congruent squares are cut from each corner and the edges are folded up. Find
the dimensions of such a box which has largest volume.

4.36. (a) Find the dimensions of the rectangle of maximum area that can be
inscribed in a circle with radius R.

(b) Find the dimensions of the right circular cylinder of maximum volume that can
be inscribed in a sphere with radius R.

4.37. A wooden beam is to be carried horizontally around a corner, from a hallway
of width 12 ft into a hallway of width 8 ft Find the length of the longest beam that
can be so carried. Can you do this without using calculus?

4.38. A rectangular piece of paper is 6 in. wide and 25 in. long. The paper is folded,
creating a crease, so that the lower right corner just touches the left side. Describe
the fold which minimizes the length of the crease.

4.39. (e.g., [6]) Let A > 0; a > 0 and B > 0; so that P D .0; A/ and Q D .a; B/

are points on the positive y-axis and in the first quadrant respectively. Find the point
C on the x-axis so that the sum of distances PC C CQ is minimized. The answer
is known as Fermat’s Law of Reflection.

4.40. (e.g., [6]) Let A > 0; a > 0 and B < 0; so that P D .0; A/ and Q D .a; B/

are points on the positive y-axis and in the fourth quadrant respectively. Suppose
that light travels with velocity p above the x-axis and velocity q below the x-axis.
Find the path from P to Q which takes the least time. The answer is known as
Snell’s Law of Refraction.
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Chapter 5
The Mean Value Theorem

Up the airy mountain, Down the rushy glen . . .

– The Fairies, by William Allingham

The main focus of this chapter is the Mean Value Theorem and some of its
applications. This is the big theorem in the world of differentiable functions. Many
important results in calculus (and well beyond!) follow from the Mean Value
Theorem. We also look at an interesting and useful generalization, due to Cauchy.

5.1 The Mean Value Theorem

The following result is named for French mathematician Michel Rolle (1652–1719).

Theorem 5.1. (Rolle’s Theorem) Let f be continuous on Œa; b� and differentiable
on .a; b/; with f .a/ D f .b/: Then there exists c 2 .a; b/ such that f 0.c/ D 0:

Proof. If f is constant on Œa; b�, then its derivative is zero and so any c 2 .a; b/

satisfies the conclusion of the theorem. So we assume that f is not constant on Œa; b�.
By the Extreme Value Theorem (Theorem 3.23), f attains an absolute maximum
and an absolute minimum on Œa; b�: Since f is not constant, at least one of these
absolute extrema must occur at c 2 .a; b/. Then since f is differentiable on .a; b/,
an application of Fermat’s Theorem (Theorem 4.13) gives f 0.c/ D 0; as desired.

ut
Rolle’s Theorem (Theorem 5.1) is fairly obvious, upon drawing a picture: If a

differentiable function starts at f .a/ then returns to f .b/ D f .a/; there must be at
least one place on its graph at which the tangent line is horizontal. See Fig. 5.1.

Here is a another neat proof [2,7,41] of Rolle’s Theorem (Theorem 5.1); we leave
the details for Exercise 5.3. Since f is continuous and f .a/ D f .b/; by the Half-
Chord Lemma there are a1; b1 2 Œa; b�with f .a1/ D f .b1/ and b1�a1 D .b�a/=2.
Again by the Half-Chord Lemma, there are a2; b2 2 Œa1; b1� with f .a2/ D f .b2/

and b2 � a2 D .b � a/=22: Continuing in this way, we obtain a sequence of nested
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intervals Œan; bn� with f .an/ D f .bn/ and bn � an D .b � a/=2n ! 0: So by the
Nested Interval Property (Theorem 1.41) there is a point c 2 Œa; b� which belongs to
each interval. Since f is differentiable on .a; b/; f 0.c/ D 0 (explain!), as desired.

Fig. 5.1 Rolle’s Theorem
(Theorem 5.1):
f .a/ D f .b/; here there are
three horizontal tangent lines

y = f(x)

a b
x

y

The Mean Value Theorem, which is commonly attributed to French mathe-
matician Joseph-Louis Lagrange (1736–1813), extends Rolle’s Theorem to allow
f .a/ ¤ f .b/: It is equivalent to Rolle’s Theorem but since f .a/ D f .b/ is
generally not the case, it gets used most often in this form. Our proof follows [43].
This proof is a little different from the one found in most textbooks, which we leave
for Exercise 5.9.

Theorem 5.2. (Mean Value Theorem) Let f be continuous on Œa; b� and differen-
tiable on .a; b/: Then there exists c 2 .a; b/ such that

f 0.c/ D f .b/ � f .a/
b � a :

Proof. The equation of the line L through the origin .0; 0/ which is parallel to the
line through .a; f .a// and .b; f .b// is given by

y D f .b/ � f .a/
b � a x:

See Fig. 5.2. Therefore the vertical displacement between f .x/ and L is given by
the function

h.x/ D f .x/ � f .b/ � f .a/
b � a x:

It is clear from Fig. 5.2 that h.a/ D h.b/; or the reader may verify directly that

h.a/ D h.b/ D bf .a/ � af .b/
b � a :
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Now h is continuous on Œa; b� and differentiable on .a; b/; so by Rolle’s Theorem
there is c 2 .a; b/ for which h0.c/ D 0: Finally,

h0.x/ D f 0.x/ � f .b/ � f .a/
b � a ;

and so h0.c/ D 0 gives f 0.c/ D f .b/�f .a/
b�a , as desired. ut

Fig. 5.2 The proof of the
Mean Value Theorem
(Theorem 5.2): Line L is
parallel to the line through
.a; f .a// and .b; f .b//

y

x
a b

f(b)

f(a)

y = f(x)

L

Remark 5.3. The quotient bf .a/�af .b/
b�a is the y-intercept of the line through the

points .a; f .a// and .b; f .b//: We shall meet this quotient again in Sect. 7.3. ı
Remark 5.4. We outlined just above a proof of Rolle’s Theorem (Theorem 5.1)
which uses the Half-Chord Lemma (Lemma 3.12) and the Nested Interval Property
(Theorem 1.41). In [16], this idea is eloquently modified to prove the Mean Value
Theorem (Theorem 5.2). ı

The Mean Value Theorem (Theorem 5.2) says that between points .a; f .a//
and .b; f .b//; the graph of a differentiable function must have at least one place
.c; f .c// at which the tangent line is parallel to the line through the points .a; f .a//
and .b; f .b//: See Fig. 5.3.

Suppose that over some journey, a car has some particular average speed. Then
by the Mean Value Theorem (Theorem 5.2) there must have been an instant during
the journey at which the car was travelling at precisely that average speed. (There is
a rumor that if someone arrives in their car at a toll booth too soon after leaving a
previous toll booth, then they could get a ticket for speeding.) But it is not really
the full Mean Value Theorem that is required here because a car travels with a
continuous position function certainly, but it travels with continuous speed as well.
The Mean Value Theorem only requires that the speed function exists. It is an
interesting fact that there seems to be no simpler proof of the Mean Value Theorem
assuming also that f 0 is continuous—even though this is the context in which it is
usually applied [24].
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Fig. 5.3 The Mean Value
Theorem (Theorem 5.2):
There is least one place
.c; f .c// at which the tangent
line is parallel to the line
through .a; f .a// and
.b; f .b// (In Fig. 5.2 there
are three such places)

y

xa bc

f(a)

f(b)
f(c)

y = f(x)

Example 5.5. Recall the Fixed Point Lemma (Lemma 3.10): If f W Œa; b� ! Œa; b�

is continuous, then f has a fixed point in Œa; b�: If we know also that f 0.x/ < 1 for
each x 2 Œa; b�; then the fixed point is unique. (This is reasonable upon drawing a
picture.) Here’s why: If there are two fixed points, say f .x0/ D x0 and f .y0/ D y0;

then by the Mean Value Theorem (Theorem 5.2) there is c between x0 and y0 such
that

f 0.c/ D f .x0/ � f .y0/
x0 � y0 :

But this reads

f 0.c/ D x0 � y0
x0 � y0 D 1;

which contradicts f 0 < 1: So we must have x0 D y0: ˘
It may seem that we could prove the Mean Value Theorem (Theorem 5.2) by

suitably rotating the x- and y-axes, to get f .a/ D f .b/, and then applying Rolle’s
Theorem (Theorem 5.1). But the function f .x/ D x3 � x, for example, shows that
this idea does not work. See Fig. 5.4. Here, f .�2/ D �6 and f .2/ D 6: If we
rotate the axes so that the line through .�2;�6/ and .2; 6/ is the new x-axis, then
the image of the graph of f under this rotation is not a function. Indeed, the new
y-axis (which is the old y D �x=3 line) intersects the graph of f three times. See
[17, 51].

5.2 Applications

Many of the most basic results in calculus follow from the Mean Value Theorem
(Theorem 5.2). A function f defined on .a; b/ is increasing if f .x1/ � f .x2/

whenever a < x1 < x2 < b; and f is decreasing on .a; b/ if f .x1/ � f .x2/
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Fig. 5.4 The function
f .x/ D x3 � x shows that
we cannot simply rotate axes
then apply Rolle’s Theorem,
to prove the Mean Value
Theorem (Theorem 5.2)

y = x3−x

y=−1
3
x

y

x

whenever a < x1 < x2 < b: (So f is decreasing on .a; b/ , �f is increasing
on .a; b/:) The function f being strictly increasing means that the � above can
be replaced with <; and the function f being strictly decreasing means that the �
above can be replaced with > :

Lemma 5.6. Suppose that f is differentiable on .a; b/:

(i) If f 0 � 0 on .a; b/ then f is increasing on .a; b/.
(ii) If f 0 � 0 on .a; b/ then f is decreasing on .a; b/.

(iii) If f 0.x/ D 0 for every x 2 .a; b/; then f is constant on .a; b/:

Proof. We let a < x1 < x2 < b and apply the Mean Value Theorem (Theorem 5.2)
to f on Œx1; x2�: Then there is c 2 .x1; x2/ such that

f 0.c/ D f .x2/ � f .x1/
x2 � x1 :

That is,

f .x2/ � f .x1/ D f 0.c/.x2 � x1/:

Now for (i), if f 0 � 0 then the right-hand side is � 0; and so the left-hand side is
� 0. That is, f .x2/ � f .x1/:

For (ii), if f 0 � 0 then the right-hand side is � 0; and so the left-hand side is � 0.
That is, f .x2/ � f .x1/:

For (iii), we must have f 0.c/ D 0 and so the right-hand side is D 0: Therefore
f .x1/ D f .x2/: This is true for any choice of x1 < x2 in .a; b/ and so f must be
constant. ut
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The following consequence of part (iii) of Lemma 5.6 is particularly important.
It says that two functions with the same derivative must differ by a constant.

Corollary 5.7. Suppose that f 0.x/ D g0.x/ for all x 2 .a; b/: Then there is C 2 R
such that f .x/ D g.x/C C for all x 2 .a; b/:
Proof. Set h.x/ D f .x/ � g.x/: Then h0.x/ D 0 for every x 2 .a; b/: Therefore
by part (iii) of Lemma 5.6, there is C 2 R such that h.x/ D C for every x 2 .a; b/:
That is, f .x/ D g.x/C C: ut

Example 5.8. Let a1; a2; : : : ; an; b1; b2; : : : ; bn 2 R, and let A D 1
n

nP
jD1

aj : For

x 2 R, the identity

nX
jD1

.aj � A/.bj � x/ D
nX

jD1
aj bj � 1

n

nX
jD1

aj

nX
jD1

bj

can be verified by expanding the left-hand side then tidying up. But here is an easier
way: The derivative of the left-hand side with respect to x is

�
nX

jD1
.aj � A/ D �

nX
jD1

aj C
nX

jD1
A D 0 :

The derivative of the right-hand side with respect to x is zero, since x does not
appear there. By Corollary 5.7 then, the left-hand and right-hand sides differ by a
constant. Setting x D 0 reveals that the constant is zero, as we wanted to show.
To illustrate one instance in which the identity can be used, we take bj D aj for
each j . Then

0 �
nX

jD1
.aj � A/2 D

nX
jD1

a2j � 1

n

0
@ nX
jD1

aj

1
A
2

:

That is,

0
@1
n

nX
jD1

aj

1
A
2

� 1

n

nX
jD1

a2j :

This can also be obtained from the Cauchy-Schwarz Inequality (Theorem 2.18). We
leave this for the reader to verify; see also Exercise 2.40. ˘

With parts (i) and (ii) of Lemma 5.6, we are better equipped to handle many
extrema problems. But we continue to rely on Fermat’s Theorem (Theorem 4.13)
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which says that we should look for extrema of a function f defined on .a; b/ at the
critical points for f: That is, at c 2 .a; b/ for which either f 0.c/ D 0 or f 0.c/ does
not exist.

Example 5.9. Consider f .x/ D x7=3 C x4=3 � x1=3; for x 2 R: Then

f 0.x/ D 7

3
x4=3 C 4

3
x1=3 � 1

3
x�2=3 D 7x2 C 4x � 1

3x2=3
:

So (using the quadratic formula for c1 and c3) f has critical points

c1 D �2 � p
11

7
Š �0:76; where f 0.c1/ D 0;

c2 D 0; where f 0.c2/ does not exist, and

c3 D �2C p
11

7
Š 0:188; where f 0.c3/ D 0:

By Fermat’s Theorem, these are the only places where local extrema for f can
occur. Now observe that:

On .�1; c1/; f
0 is > 0 ( e.g., f 0.�100/ > 0 ), so f is increasing there.

On .c1; c2/; f 0 is < 0 ( e.g., f 0.�0:1/ < 0 ), so f is decreasing there.
On .c2; c3/; f 0 is < 0 ( e.g., f 0.0:1/ < 0 ), so f is decreasing there.
On .c3;C1/; f 0 is > 0 ( e.g., f 0.100/ > 0 ), so f is increasing there.

Therefore f has a local maximum value of f .c1/ Š 1:079; and a local minimum
value of f .c3/ Š �0:445: Neither of these extrema is absolute; f has no absolute
extrema. The graph y D f .x/ is shown in Fig. 5.5. ˘

Fig. 5.5 For Example 5.9.
The graph of
f .x/ D x7=3 C x4=3 � x1=3

x

y

y = x7/3+x4/3−x1/3

1

2
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Example 5.10. Recall Lemma 2.7: If a and b are nonnegative real numbers then

p
ab � aC b

2
;

and equality occurs if and only if a=b. Here we prove this using calculus (though
this is rather like killing a mosquito with a bazooka). Fix a � 0 and for x 2 Œ0;1/;

consider the function

f .x/ D aC x

2
� p

ax:

Here,

f 0.x/ D 1

2
�

p
a

2
p
x
:

So the only critical point for f is x D a; at which f 0.a/ D 0: Now observe that:

On .0; a/; f 0 is < 0 ( e.g., f 0.a=4/ < 0 ), so f is decreasing there.
On .a;C1/; f 0 is > 0 ( e.g., f 0.4a/ > 0), so f is increasing there.

Therefore f has an absolute minimum value of f .a/ D 0; and so

f .x/ D aC x

2
� p

ax > 0 , x ¤ a: ˘

5.3 Cauchy’s Mean Value Theorem

If we apply the Mean Value Theorem (Theorem 5.2) to each of two functions f and
g continuous on Œa; b� and differentiable on .a; b/, we can conclude that there are
c1; c2 2 .a; b/ such that

f 0.c1/ D f .b/ � f .a/
b � a and g0.c2/ D g.b/ � g.a/

b � a :

This gives

f 0.c1/
�
g.b/ � g.a/� D g0.c2/

�
f .b/ � f .a/�:

But it happens that there is in fact one c 2 .a; b/ which works for both functions, as
follows.

Theorem 5.11. (Cauchy’s Mean Value Theorem) Let f and g be continuous on
Œa; b� and differentiable on .a; b/: Then there exists c 2 .a; b/ such that

f 0.c/Œg.b/ � g.a/� D g0.c/Œf .b/ � f .a/�:
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Proof. If g.a/ D g.b/ then the result holds, by Rolle’s Theorem (Theorem 5.1)
applied to g: So we assume that g.a/ ¤ g.b/: In our proof of the Mean Value
Theorem (Theorem 5.2) we used the auxiliary function

h.x/ D f .x/ � f .b/ � f .a/
b � a x :

The idea here is to replace the identity function x above with g.x/: So we consider

h.x/ D f .x/ � f .b/ � f .a/
g.b/ � g.a/ g.x/:

Then h is continuous on Œa; b� and differentiable on .a; b/. And one can easily verify
that h.a/ D h.b/: So by Rolle’s Theorem (Theorem 5.1) there is c 2 .a; b/ such
that h0.c/ D 0: Finally, h0.c/ D 0 gives f 0.c/Œg.b/� g.a/� D g0.c/Œf .b/� f .a/�;
as desired. ut

Evidently, if g.x/ D x in Cauchy’s Mean Value Theorem (Theorem 5.11) then
we get simply the Mean Value Theorem. As long as g.b/ ¤ g.a/, the conclusion of
Cauchy’s Mean Value Theorem is usually written

f 0.c/
g0.c/

D f .b/ � f .a/
g.b/ � g.a/ :

Remark 5.12. We saw the geometrical interpretation of the Mean Value Theorem
(Theorem 5.2) in Fig. 5.3. Cauchy’s Mean Value Theorem also has a geometrical
interpretation, though perhaps not so obvious (e.g., [17,35]). If P.t/ D .g.t/; f .t//

is a point in the xy-plane which depends on t; then f 0.t/=g0.t/, when it exists,
is the slope of the tangent line to the curve that P.t/ traces as t varies in Œa; b�.
What Cauchy’s Mean Value Theorem says is that as long as g0 ¤ 0; there is at
least one place on the curve at which the tangent line is parallel to the line through
.g.a/; f .a// and .g.b/; f .b//: See Fig. 5.6. If g.t/ D t then we recover the Mean
Value Theorem (Theorem 5.2) and its geometric interpretation. ı

Probably the best known application of Cauchy’s Mean Value Theorem
(Theorem 5.11) is L’Hospital’s Rule, as follows. (But we shall see others.)

Theorem 5.13. (L’Hospital’s Rule) Let f and g be continuous on Œa; b� and
differentiable on .a; b/ and let x0 2 .a; b/: Let f .x0/ D g.x0/ D 0; but suppose
that g ¤ 0 at all other points of .a; b/. Suppose also that g0 ¤ 0 on .a; b/: Then

lim
x!x0

f 0.x/
g0.x/

D L ) lim
x!x0

f .x/

g.x/
D L :

Proof. Since f .x0/ D g.x0/ D 0; for x ¤ x0 we may write

f .x/

g.x/
D f .x/ � f .x0/
g.x/ � g.x0/ :
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y

g(a) g(b)

f(b)

f(a)

x

P(g(t), f(t))

Fig. 5.6 Cauchy’s Mean Value Theorem (Theorem 5.11): There is at least one place on the curve
at which the tangent line is parallel to the line through .g.a/; f .a// and .g.b/; f .b//. In this
picture, there are two such places

Then by Cauchy’s Mean Value Theorem (Theorem 5.11) there is c between x and
x0 such that

f .x/

g.x/
D f .x/ � f .x0/
g.x/ � g.x0/ D f 0.c/

g0.c/
:

Now as x ! x0; we must also have c ! x0 because c is between x and x0: So if

lim
x!x0

f 0.x/
g0.x/

D L;

then

lim
x!x0

f 0.c/
g0.c/

D L:

Therefore

lim
x!x0

f .x/

g.x/
! L;

as desired. ut

Example 5.14. By L’Hospital’s Rule applied twice,

lim
x!0

�
1

x
� 1

sin.x/

�
D lim

x!0

sin.x/ � x
x sin.x/

D lim
x!0

cos.x/ � 1
sin.x/C x cos.x/

D lim
x!0

� sin.x/

cos.x/C cos.x/ � x sin.x/
D 0:

As regards the statement of L’Hospital’s Rule, we point out that the second and third
equals signs above are not really justified until the fourth one has been reached. ˘
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In Exercises 5.43 and 5.44 we consider the roles that some of the various
hypotheses in L’Hospital’s Rule play. There are also many variants of L’Hospital’s
Rule, a few of which we explore in Exercises 5.45 and 5.46.

Remark 5.15. L’Hospital’s Rule is in fact due to Swiss mathematician Johann
Bernoulli (1667–1748). Guillaume de L’Hospital (1661–1704) was a French student
of Bernoulli’s who, with permission, published notes from his teacher’s lectures in
1696. This was the first-ever calculus textbook. ı
Remark 5.16. [9] There is some disagreement among historians of mathematics on
the spelling of L’Hospital’s name. He himself spelled it, at times, Lhospital. That is,
without the apostrophe and with a lower case h. R.P. Boas Jr. used this spelling on
occasion (e.g., [5]). On the cover of the 1696 calculus book, it is spelled l’Hospital.
The official French national bibliographic entry is L’Hospital, which is what most
historians choose. ı

Exercises

5.1. (a) Show that a polynomial of degree n cannot have more than n real zeros.
(b) Show that if a polynomial p has n distinct real zeros then p0 has n � 1 distinct

real zeros.

5.2. [30] Let p be a cubic polynomial with real zeros a1 < a2 < a3:

(a) Show that p has a critical point c, with a1 < c < a2.
(b) Show that c is closer to a1 than to a2:

5.3. (a) Fill in the details of the proof of Rolle’s Theorem (Theorem 5.1) outlined
in Sect. 5.1, which uses the Half-Chord Lemma (Lemma 3.12) and the Nested
Interval Property of R (Theorem 1.41).

(b) Is the “c 2 .a; b/” from our proof of Rolle’s Theorem (Theorem 5.1)
necessarily the same as the “c 2 .a; b/” from the proof in (a) ? Explain.

5.4. [54]

(a) Let f be continuous on Œa; b� and differentiable on .a; b/ such that f .a/ D
f .b/ D 0. Show that there is c 2 .a; b/ such that f 0.c/ D f .c/:

Hint: Consider g.x/ D e�xf .x/:
(b) Interpret the result in (a) geometrically.

5.5. [25]

(a) Let f be continuous on Œa; b� and differentiable on .a; b/ such that f .a/ D
f .b/ D 0; but f is not the zero function. Show that for any real number r ¤ 0

there is c 2 .a; b/ such that rf 0.c/ C f .c/ D 0: Hint: Consider g.x/ D
ex=rf .x/:

(b) Interpret the result in (a) geometrically.
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5.6. [50]

(a) Let f be continuous on Œa; b� and differentiable on .a; b/: Set

F.x/ D f .x/.x � a/.x � b/
to show that there is c 2 .a; b/ such that

f 0.c/C f .c/

c � a C f .c/

c � b D 0 :

(b) Interpret the result in (a) geometrically.

5.7. [48] Suppose that f is a quadratic, say f .x/ D a2x
2Ca1xCa0: Show that the

point c as given by the Mean Value Theorem (Theorem 5.2) applied to f on Œa; b�
is the midpoint .aC b/=2: (This property in fact characterizes parabolas [13, 40].)

5.8. Let f be continuous on Œa; b� and differentiable on .a; b/: Is it always possible,
for each c 2 .a; b/; to find x1; x2 2 Œa; b� with x1 < x2 such that

f .x2/ � f .x1/
x2 � x1 D f 0.c/ ‹

5.9. The proof of the Mean Value Theorem (Theorem 5.2) given in the text is
slightly different from the one given in most textbooks. Typically, one uses the
auxiliary function

h.x/ D f .x/ � f .a/ � f .b/ � f .a/
b � a .x � a/:

(a) Prove the Mean Value Theorem using this h.
(b) What is the significance of this h, geometrically?
(c) Is the “c 2 .a; b/” from the proof supplied in the text necessarily the same as

the “c 2 .a; b/” from the proof in (a) ?

5.10. [53] Apply Rolle’s Theorem (Theorem 5.1) to

g.x/ D .f .x/ � f .a//.x � b/ � .f .x/ � f .b//.x � a/

to obtain another proof of the Mean Value Theorem (Theorem 5.2). The function
g.x/ is ˙ twice the area of the triangle determined by the points .a; f .a//;
.x; f .x//; and .b; f .b//: See Exercise 1.12.

5.11. Show that the conclusion of the Mean Value Theorem (Theorem 5.2) can be
written

f 0.aC t .b � a// D f .b/ � f .a/
b � a ;

for some t 2 .0; 1/:
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5.12. [11, 33] Let f be differentiable on Œ0; 1� with f .0/ D f .1/ D 0:

(a) For a given positive integer n; show that there are distinct x1; x2; : : : ; xn such
that

nX
jD1

1

f 0.xj /
D n:

(b) For a given positive integer n and positive numbers k1; k2; : : : ; kn show that
there are distinct x1; x2; : : : ; xn such that

nX
jD1

kj

f 0.xj /
D

nX
jD1

kj :

5.13. [52] Let b1; b2; : : : ; bn be nonnegative integers such that
nQ

jD1
.1 C bj / > 2t :

Show that
nP

jD1
bj > t: Hint: Apply the Mean Value Theorem to ln.1Cx/ on Œ1; bj �:

5.14. [27] Prove the following converse to the Mean Value Theorem (Theorem 5.2).
Let F and f be defined on .a; b/ and let f be continuous there. Suppose that for
every x; y 2 .a; b/ there is c between x and y such that

F.x/ � F.y/ D .x � y/f .c/:

Show that F is differentiable on .a; b/; and that f is its derivative.

5.15. [29] Let a; b > 0 and x > 0: Prove, as follows, that

�
aC x

b C x

�bCx
>
	a
b


b
:

(a) But first, set x D 1; a D nC1; and b D n here to show (again) that
˚ �
1C 1

n

�n �
is an increasing sequence.

Now set f .x/ D �
aCx
bCx

�bCx
:

(b) Show that f 0.x/ D f .x/
�
b�a
aCx C ln

�
aCx
bCx

��
:

(c) Show that g0.x/ < 0; where g.x/ D b�a
aCx C ln

�
aCx
bCx

�
.

(d) Conclude that f is strictly increasing and so
�
aCx
bCx

�bCx
>
�
a
b

�b
.

5.16. Suppose that f and g are continuous on Œa; b� and differentiable on .a; b/;
with f .a/ D g.a/ and f .b/ D g.b/:

(a) Show that there exists c 2 .a; b/ such that f 0.c/ D g0.c/:
(b) Explain how this is a generalization of the Mean Value Theorem (Theorem 5.2).
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5.17. Prove part (iii) of Lemma 5.6 by going at it in the contrapositive direction.
That is, show that if f is not constant then there is a c 2 .a; b/ for which f 0.c/ ¤ 0:

(For another interesting proof, which uses a bisection algorithm and not the Mean
Value Theorem, see [39].)

5.18. Suppose that f is differentiable on .a; b/ with f 0.x/ ¤ 0 for every
x 2 .a; b/. Prove that f is one-to-one on .a; b/:

5.19. [36] Have a look again at Example 5.8. Under what conditions do the real
numbers a1; a2; : : : ; an satisfy

nX
jD1

a2j D 1

n

0
@ nX
jD1

aj

1
A
2

‹

5.20. [1] Here’s a slick way of verifying the trigonometric identities

sin.x C y/ D sin.x/ cos.y/C sin.y/ cos.x/ and

cos.x C y/ D cos.x/ cos.y/ � sin.x/ sin.y/ :

(a) Fix y and set

u.x/ D sin.x C y/ � �
sin.x/ cos.y/C sin.y/ cos.x/

�
;

v.x/ D cos.x C y/ � �
cos.x/ cos.y/C sin.x/ sin.y/

�
;

then verify that u0.x/ D v.x/ and v0.x/ D �u.x/:
(b) For f .x/ D Œu.x/�2 C Œv.x/�2; show that f 0  0:

(c) Therefore f is constant. Find the constant, then conclude that u  v  0:

5.21. [21, 28]

(a) Show that 2
�

sin6.x/C cos6.x/
� � 3� sin4.x/C cos4.x/

�
is constant.

(b) Show that
�

tan.x/C 1
�2 C �

cot.x/C 1
�2 � �

sec.x/C csc.x/
�2

is constant.

(c) Show that cos.x/ cos.x C 2/ � �
cos.x C 1/

�2
is constant.

(d) Find the constant in each of (a), (b), and (c).

5.22. Let a1; a2; : : : ; an be real numbers, A D 1
n

nP
jD1

aj ; and let x be any real

number.

(a) Show that

nX
jD1

	
a2j � A2



D

nX
jD1

	�
aj � x�2 � .A � x/2



:
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(b) Conclude that
nP

jD1
.a2j � A2/ D

nP
jD1

�
aj � A�2 :

(c) Conclude that

nX
jD1

�
aj � x�2 �

nX
jD1

.aj � A/2:

5.23. Let f be differentiable on .a; b/ and suppose that there are m;M 2 R such
that m � f 0.x/ � M for every x 2 .a; b/: Show that for all x; y 2 .a; b/,

m jx � yj � jf .x/ � f .y/j � M jx � yj :

5.24. Find any absolute extrema for the following functions.
(a) f .x/ D x4=3 C x1=3; (b) g.x/ D x1=3.x C 1/�2=3;
(c) h.x/ D 2x=.x2 C 1/; (d) k.x/ D x=.x2 C 8/2:

5.25. [38] Let f be differentiable on .0;1/: Show that if f 0.x/ < f .x/=x on
.0;1/ then f .x/=x is decreasing.

5.26. [45] Let 0 < a < b and for x 2 Œ �4a
b�a ;

4b
b�a �; let

M.x/ D 1

2

p
x.b � a/2 C 4ab:

(a) Show that f .x/ D M.x/2 is increasing and conclude that M.x/ is increasing.
(b) Evaluate

M
� �4ab
.aCb/2

�
; M.0/; M.1/; and M.2/:

(c) Conclude that H < G < A < R; where H is the Harmonic Mean, G is the
Geometric Mean, A is the Arithmetic Mean, and R is the Root Mean Square,
of a, b.

5.27. [47] Let 0 < a < b: Show that h.x/ D ln.ax C 1/

ln.bx C 1/
is increasing for x > 0:

5.28. [44] Show that for x > 0,

arctan.x/ >
3x

1C 2
p
1C x2

:

5.29. [12] Let x 2 .0; 1/:
(a) Show that tan2.x/ � 4 tan.x/C 4x > 0:

(b) Conclude that

1C p
1 � x

2x
< cot.x/:
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5.30. (a) Show that the equation x7 C x3 C x C 2 D 0 has exactly one solution.
(b) Show that the equation x3 � x � cos.x/ D 0 has exactly one solution in Œ0;  �.

5.31. [31] Let x; y > 0: Prove, as follows, that

xyyx �
�
x C y

2

�xCy
� xxyy;

with equality if and only if x D y. For 0 < t < 1; set

f .t/ D .tx C .1 � t /y/x.ty C .1 � t /x/y;

and consider f 0: This in fact proves a bit more - explain.

5.32. [42] Let 0 < a < b: Apply the Mean Value Theorem (Theorem 5.2), on
Œa; b�; to the function

f .x/ D x ln.x/ � x

to show that

	a
b


b
<

ea

eb
<
	a
b


a
:

5.33. [46] Show that x D 2 is the only x > �1 for which

.1C x/x C .2C x/x D .3C x/x:

5.34. [14, 20] Let n be a positive integer.

(a) Find a > 1 such that ax D xn has exactly one positive solution.
(b) Find the solution in (a). [Answer: a D en=eI solution is x D e:]

5.35. [19,37] Denote by the positive root of x2Cx�1 D 0. This is the reciprocal
of the golden mean ' (the positive root of x2�x�1 D 0), which we met in Sect. 1.5
and in Exercises 1.40 and 1.42. Let 0 � a � b: Prove Dalzell’s Theorem:

ˇ̌̌
ˇ b

aC b
�  

ˇ̌̌
ˇ �

ˇ̌
ˇa
b

�  
ˇ̌
ˇ :

This result implies the well-known fact that for any Fibonacci-like sequence
f1 D a, f2 D b; fnC2 D fn C fnC1, it is the case that fn=fnC1 !  : (And so
fnC1=fn ! ':) The classic Fibonacci sequence has a D b D 1:

5.36. Let f be continuous on R. Let x0 2 R and consider the fixed point iteration
scheme:

xn D f .xn�1/ for n D 1; 2; 3; : : : :



Exercises 113

(a) Show that if it is the case that the sequence fxng converges to some number p;
then p is necessarily a fixed point for f:

(b) Now suppose that f W Œa; b� ! Œa; b� has a continuous derivative. Let
0 < k < 1 and suppose that jf 0.x/j � k for all x 2 .a; b/: Show that for
any x0 2 Œa; b�; the iteration scheme defined in (a) converges.

(c) Verify the hypotheses in (b), for f .x/ D 1
1Cx on Œ0; 1�. To what number does

the fixed point iteration scheme converge in this case? (Take x0 D 0, say.)

5.37. [22] Let x; y; z � 0. Schur’s Inequality is: For any � 2 R;

.x � y/.x � z/x� C .y � x/.y � z/y� C .z � x/.z � y/z� � 0;

with equality if and only if x D y D z D 0: Prove Schur’s Inequality, as follows.

(a) Show that we may assume, with no loss of generality, that x < y < z and
� > 0:

(b) For such x; y; z and �; apply the Mean Value Theorem (Theorem 5.2) to the
function f .t/ D .t � x/t� on Œy; z�.

5.38. Try proving L’Hospital’s Rule using only the Mean Value Theorem (Theo-
rem 5.2), i.e., not using Cauchy’s Mean Value Theorem (Theorem 5.11). What goes
wrong?

5.39. [15]

(a) Verify that for x ¤ 1,

nX
kD0

xk D xnC1 � 1
x � 1 :

(b) Differentiate both sides of the equation in (a) with respect to x; then let x ! 1

to obtain the familiar formula

nX
kD1

k D n.nC 1/

2
:

(c) For the intrepid reader: Use similar reasoning to show that

nX
kD1

k2 D n.nC 1/.2nC 1/

6
and

nX
kD1

k3 D n2.nC 1/2

4
:

5.40. [32] Suppose that the function f is such that f 0 is defined at c, and that
lim
x!c

f 0.x/ exists. Show that f is continuous at c.

5.41. Evaluate the following limits.

(a) lim
x!0

sin.5x/

x
; (b) lim

x!0

x2� sin2.x/

x2 sin2.x/
; (c) lim

x!0

x� tan x

x� sin x
; (d) lim

x!�

1C cos.x/

.x��/2 :
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5.42. [18] Evaluate lim
x!0C

xp
1 � e�x2 : Hint: Consider lim

x!0C

x2

1 � e�x2 :

5.43. [10]

(a) Let f .x/ D x2 sin.1=x/ [with f .0/ D 0] and g.x/ D sin x: Show that

lim
x!0

f 0.x/
g0.x/

does not exist, but lim
x!0

f .x/

g.x/
D 0:

(b) Let f .x/ D x sin.1=x/ [with f .0/ D 0] and g.x/ D sin x: Show that neither

lim
x!0

f 0.x/
g0.x/

nor lim
x!0

f .x/

g.x/
exists.

(c) Explain how the examples in (a) and (b) fit in with L’Hospital’s Rule.

5.44. [6,8] Let g.x/ D 2=xCsin.2=x/ and g.x/ D 1=x sin.1=x/Ccos.1=x/:

(a) Show that lim
x!0

f 0.x/
g0.x/

D 0, but that lim
x!0

f .x/

g.x/
does not exist.

(b) Explain how this example fits in with L’Hospital’s Rule.

5.45. [3]

(a) Define what we would mean by lim
x!x0

f .x/ D C1 and lim
x!x0

g.x/ D �1:

(b) Prove the following variant of L’Hospital’s Rule. Let f and g be differentiable
on .a; b/; except possibly at x0 2 .a; b/: Suppose that g0.x/ ¤ 0 on .a; b/;
except possibly at x0. Suppose that lim

x!x0
f .x/ D lim

x!x0
g.x/ D ˙1: Then

lim
x!x0

f 0.x/
g0.x/

D L ) lim
x!x0

f .x/

g.x/
D L :

(c) Evaluate lim
x!0C

ln.sin.x//

1=x
and lim

x!0C

1

x.ln.x//2
.

5.46. [3] For a function f defined on an interval Œa;1/; lim
x!C1f .x/ means

lim
x!0C

f .1=x/:

(a) State and prove a variant of L’Hospital’s Rule which allows x0 D C1.
(b) Evaluate the limit referred to in Remark 2.14 in the context of isoperimetric

inequalities, namely

lim
n!1

�
n tan.�

n
/
�
:

(c) Evaluate lim
x!C1

tan.1=x/

1=x
and lim

x!C1
arctan.4=x/

sin.3=x/
.

(d) State and prove variants of L’Hospital’s Rule as in (a) which also allow
L D ˙1.

(e) Evaluate lim
x!C1

x

ln.x/
and lim

x!C1
ex

xn
.
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5.47. [3] Evaluate the following limits.

(a) lim
x!0C

xx , (b) lim
x!0C

�
1C 1

x

�x
, (c) lim

x!C1
�
1C 1

x

�x
, (d) lim

x!C1 x1=x:

5.48. [26] Show that if

lim
x!1

�
f .x/C f 0.x/

� D a

then

lim
x!1f .x/ D a and lim

x!1f 0.x/ D 0:

Hint: Write f .x/ D exf .x/=ex:

5.49. [23] Suppose that x 2 .0; 1/ and that m and n are integers with m > n � 1:

Prove, as follows, that

.mC n/.1C xm/ � 2n
1 � xmCn

1 � xn :

(a) Let

F.x/ D .1 � xn/.1C xm/

1 � xmCn :

Use Cauchy’s Mean Value Theorem (Theorem 5.11) to show that there is
t 2 .x; 1/ such that

F.x/ D nt�m CmC n �mt�n
mC n

:

(b) Now show that nt�m CmC n �mt�n > 2n: Hint: Show that

g.t/ D .m � n/tm �mtm�n C n

is strictly decreasing on .0; 1/ and observe that g.1/ D 0 to conclude that
g.t/ > 0:

5.50. [34]

(a) Prove the following generalization of Cauchy’s Mean Value Theorem
(Theorem 5.11). Let f; g; p; q be continuous on Œa; b� and differentiable on
.a; b/: Then there exist �1; �2 2 .a; b/ such that

f .a/g.b/ � f .b/g.a/
p.a/q.b/ � p.b/q.a/ D f .�1/g

0.�2/ � f 0.�2/g.�1/
p.�1/q0.�2/ � p0.�2/q.�1/

:
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(b) Verify that if g D q D 1 we get Cauchy’s Mean Value Theorem, and if further
p.x/ D x; we get the Mean Value Theorem (Theorem 5.2).

5.51. [4, 49]

(a) Let ’; “ 2 R, with ’C “ D 1: Apply Rolle’s Theorem to

F.x/ D ’
�
f .b/ � f .a/��h.b/ � h.a/��g.x/ � g.a/�

C “
�
f .b/ � f .a/��g.b/ � g.a/��h.x/ � h.a/�

� �
g.b/ � g.a/��h.b/ � h.a/��f .x/ � f .a//�

to prove the following generalization of Cauchy’s Mean Value Theorem
(Theorem 5.11). Let f ,g; and h be continuous on Œa; b� and differentiable on
.a; b/. Then there is c 2 .a; b/ such that

f 0.c/
�
g.b/ � g.a/��h.b/ � h.a/� D ’g0.c/

�
f .b/ � f .a/��h.b/ � h.a/�

C “h0.c/
�
f .b/ � f .a/��g.b/ � g.a/�:

(b) Verify that if ˇ D 0; we get Cauchy’s Mean Value Theorem.
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Chapter 6
The Exponential Function

The greatest shortcoming of the human race is our inability to
understand the exponential function.

—Albert A. Bartlett

By now we know Euler’s number e D e1 quite well. In this chapter we define
the exponential function ex for any x 2 R, and its inverse the natural logarithmic
function ln.x/; for x > 0. (In the first section of the chapter we take a concise
approach to the exponential function; in the second section we do things carefully.)
These functions enable us to extend many of our previous results to allow for
real exponents. For example, we obtain the Power Rule for real exponents, we
extend Bernoulli’s Inequality, and we obtain a more strapping version of the AGM
Inequality. We also meet the Logarithmic Mean, the Harmonic series and its close
relatives the Alternating Harmonic series and p-series, and Euler’s constant ”.

6.1 The Exponential Function, Quickly

In this section we take a concise approach (e.g., [52]) to the exponential function,
while omitting some details of rigor. In the next section we offer an entirely rigorous
and self-contained approach. The reader may choose to concentrate on this section
or on the next before proceeding to Sect. 6.3, but understanding both would be best.

We begin with the basic assumption that there exists a function .x/ defined for
all x 2 R such that

.0/ D 1 and .x/ D 0.x/ for all x 2 R:

Then we verify below .x/ that has the following five properties:

(i) .x/.�x/ D 1 for all x 2 R;
(ii) .x/ > 0 for all x 2 R;

(iii) .x/.y/ D .x C y/ for all x; y 2 R;
(iv) .x/ is unique,
(v) 1C x < .x/ for x ¤ 0:
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120 6 The Exponential Function

For (i), set f .x/ D .x/.�x/: Since 0 D , the Product Rule and the Chain Rule
give

f 0.x/ D 0.x/.�x/ � .x/0.�x/ D 0:

Therefore f is a constant function, by Corollary 5.7. Now f .0/ D .0/.0/ D 1;

and so we must have f .x/ D 1 for all x 2 R:
For (ii), we first notice that .x/ is never zero, by property (i). Now since  is
differentiable it is continuous, by Lemma 4.6. So by the Intermediate Value Theorem
(Theorem 3.17)  is either positive or negative. Since .0/ D 1; .x/ must be
positive.
For (iii), fix x and for t 2 R; consider the function

g.t/ D .x C t /

.t/
:

Again since 0 D , the Quotient Rule and the Chain Rule give

g0.t/ D .t/0.x C t / � 0.t/.x C t /

.t/2
D 0:

Therefore g is constant (Corollary 5.7) and so it equals g.0/ D .x/ for every t ,
and in particular for t D y. That is, .xCy/

.y/
D .x/:

For (iv), suppose  is a function which also satisfies  .0/ D 1 and  .x/ D  0.x/
for all x 2 R: Consider then the function

h.x/ D .x/

 .x/
:

Then by the Quotient Rule,

h0.x/ D  .x/0.x/ �  0.x/.x/
 .x/2

D 0:

Therefore h is constant (Corollary 5.7) and so it equals h.0/ D 1 everywhere. That
is, .x/ D  .x/ for all x 2 R:
For (v), we first let x > 0. Then the Mean Value Theorem (Theorem 5.2) applied to
.t/ on Œ0; x� gives a c 2 .0; x/ such that

.x/ � .0/
x � 0 D 0.c/ D .c/:

Now .0/ D 1 and by item (ii),  is increasing. Therefore

.x/ � 1
x

D .c/ > .0/ D 1;

which yields the desired result. (The case x < 0 is handled similarly.) �
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The number e is then defined by

e D .1/:

(This number is unique because  is strictly increasing: 0.x/ D .x/ > 0.)
To obtain an approximation for e D .1/, we divide the interval Œ0; 1� into n

equal subintervals:

�
0; 1

n

�
;
�
1
n
; 2
n

�
;
�
2
n
; 3
n

�
; : : : ;

h
.n�1/
n
; 1
i
:

By the definition of the derivative we have (for n large):


�
1
n

� � .0/ Š 0.0/
�
1
n

� 0� :
Then since .0/ D 1 and .x/ D 0.x/,


�
1
n

� Š .0/C 0.0/
�
1
n

� 0� D 1C 1
n
:

Likewise


�
2
n

� Š 
�
1
n

�C 0� 1
n

� �
2
n

� 1
n

� Š 1C 1
n

C �
1C 1

n

�
1
n

D �
1C 1

n

�2
:

And continuing in this way, we get


�
n
n

� D 
�
1
� Š �

1C 1
n

�n
:

Taking n as large as we please we can obtain e Š 2:71828 , say.
The symbol e is used in honor of the Swiss mathematician Leonhard Euler

(1701–1783). It is often called Euler’s number.

Remark 6.1. The scheme used above for approximating e is a special case of
Euler’s method of tangent lines. This is a method for obtaining approximate
solutions to differential equations, like 0.x/ D .x/: See also Exercise 6.2. ı

Finally, because .1/ D e, and because of item (iii) which is evocative of the
“same base add the exponents” rule, it is customary to write

.x/ D ex:

The most important properties of this, the exponential function ex; are (arguably):

exey D exCy ; .ex/0 D ex ;

and

1C x � ex for x 2 R (with strict inequality for x ¤ 0) :
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This last inequality is tremendously useful, as we shall see many times. A graph
of 1C x and ex over Œ�1; 2� is shown in Fig. 6.1.

e ∼= 2.718

e2 ∼= 7.389

−1 21
x

y

1

5

e−1 ∼= 0.368

y = ex

y = 1+x

Fig. 6.1 The tremendously useful inequality 1C x � ex

6.2 The Exponential Function, Carefully

We saw in Examples 1.32 and 1.43, then again after Example 2.6, that

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
for n D 1; 2; 3; : : : : (6.1)

And we saw that f�1C 1
n

�ng increases, and f�1C 1
n

�nC1g decreases, to the common
limit e Š 2:71828 (Euler’s number).

Obviously e1 D e and e0 D 1. In this section we define what ex means, for any
real number x. The approach we take has been influenced mainly by [23,24,54] but
see also [32, 53, 78, 81].

Looking at the right-hand side of (6.1), since

�
1C 1

n

�nC1
D
�
1 � 1

nC 1

��.nC1/
;
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we might just as well have considered

�
1C 1

n

�n
< e <

�
1 � 1

n

��n
for n D 2; 3; 4; : : : :

Indeed, this latter form will be more suitable for the present purposes. Among other
things, its obvious symmetry will be useful.

For a given x 2 R, we consider now the sequences

n	
1C x

n


no
and

n	
1 � x

n


�no
; for natural numbers n > jxj :

Now because
�
1C x

n

�n �
1 � x

n

�n D
	
1 � x2

n2


n
< 1; we have immediately that

	
1C x

n


n
<
	
1 � x

n


�n
:

But we can say much more, as follows in the next two results.

Lemma 6.2. Let x 2 R. Then f�1C x
n

�ng is increasing and f�1 � x
n

��ng is
decreasing, for natural numbers n > jxj :
Proof. Since n > jxj ; each member of the following two lists of nC 1 numbers is
positive:

1;
	
1C x

n



;
	
1C x

n



; : : : ;

	
1C x

n



and 1;

	
1 � x

n



;
	
1 � x

n



; : : : ;

	
1 � x

n



:

So we may apply the AGM Inequality (Theorem 2.10) to each list (using ˙ for
brevity) to get:

	
.1/

	
1˙ x

n


n
 1
nC1 � 1

nC 1

	
1C

	
1˙ x

n



C
	
1˙ x

n



C � � � C

	
1˙ x

n


 


D 1

nC 1

	
1C n˙ n

x

n



D 1˙ x

nC 1
:

Therefore

	
1˙ x

n


n �
�
1˙ x

nC 1

�nC1
:

Taking the C’s, this says that
˚�
1C x

n

�n�
is increasing. And taking the �’s, we get�

1 � x
nC1

��.nC1/ � �
1 � x

n

��n
; which says that

˚ �
1 � x

n

��n �
is decreasing. ut

Remark 6.3. The paper [73] contains the interesting fact that f�1C x
n

�ng being
increasing implies the AGM Inequality (Theorem 2.10). ı
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Lemma 6.4. Let x 2 R. Then
�
1 � x

n

��n � �
1C x

n

�n ! 0 as n ! 1:

Proof. Observe that

0 <
	
1 � x

n


�n �
	
1C x

n


n D
	
1 � x

n


�n
 
1 �

�
1 � x2

n2

�n!
:

Taking n large enough, we shall have n > jxj : Then we can apply Bernoulli’s
Inequality (Lemma 2.1) to get:

1 �
�
1 � x2

n2

�n
� x2

n
:

Therefore

0 <
	
1 � x

n


�n �
	
1C x

n


n �
	
1 � x

n


�n x2

n
:

And since f�1 � x
n

��ng is decreasing (Lemma 6.2), the right hand side here ! 0 as
n ! 1; and the proof is complete. ut

Lemmas 6.2 and 6.4 together with the Nested Interval Property of R
(Theorem 1.41), allow us to denote by .x/ the common limit to which f�1C x

n

�ng
increases and f�1 � x

n

��ng decreases. So .0/ D 1; .1/ D e; and

	
1C x

n


n � .x/ �
	
1 � x

n


�n
for natural numbers n > jxj : (6.2)

In particular, for jxj < 1; we have the estimates

1C x �
	
1C x

n


n � .x/ �
	
1 � x

n


�n � 1

1 � x for n D 1; 2; 3; : : : :

(6.3)

But also, for any x � �1; we have 1 C x � �
1C x

n

�n
by Bernoulli’s Inequality

(Lemma 2.1). So taking n as large as we please in (6.2), we get

1C x � .x/ for x � �1:

Two very important properties of  are contained in the next two results.

Lemma 6.5. The function  satisfies the functional equation

.x/.y/ D .x C y/ for all x; y 2 R: (6.4)

Proof. We show that

�
1C x

n

�n �
1C y

n

�n
	
1C xCy

n


n ! 1 as n ! 1;
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from which the result follows. One can verify by cross multiplying that

�
1C x

n

� �
1C y

n

�
	
1C xCy

n


 D
�
1C xy

n.nC x C y/

�
:

And setting h D xy

nCxCy ; we get

�
1C xy

n.nC x C y/

�n
D
�
1C h

n

�n
:

Taking n large we can ensure that jhj < 1, and so by (6.3),

1C h �
�
1C h

n

�n
� 1

1 � h:

In fact, by taking n large enough, we can make jhj as small as we please. Therefore�
1C h

n

�n D .1C x
n /

n
.1C y

n /
n

	
1C xCy

n


n ! 1, as we wanted to show. ut

Lemma 6.6. 0.x/ D .x/ for all x 2 R.

Proof. Using the functional equation (6.4),

.x C h/ � .x/
h

D .x/.h/ � .x/
h

D .x/
.h/ � 1

h
:

And for jhj < 1 the estimates (6.3) give

1C h � .h/ � 1

1 � h D 1C h

1 � h:

Therefore

1 � .h/ � 1
h

� 1

1 � h:

The result now follows upon letting h ! 0. ut
Now if we take y D �x in the functional equation (6.4), we get

.x/.�x/ D 1 for all x 2 R:

Therefore  is never zero. Also, since  is differentiable (Lemma 6.6), it is
continuous (Lemma 4.6). So by the Intermediate Value Theorem (Theorem 3.17)
 is either positive or negative. Since .0/ D 1;  must be positive.
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We have already seen that 1 C x � .x/ for x � �1: Since  is positive, we
must therefore have

1C x � .x/ for all x 2 R:

Now because  satisfies the functional equation .x/.y/ D .x C y/ which
is evocative of the “same base add the exponents” rule, and because .1/ D e, it is
customary to write

.x/ D ex:

The most important properties of this, the exponential function ex; are (arguably)
the contents of Lemmas 6.5 and 6.6:

exey D exCy ; .ex/0 D ex ;

and

1C x � ex for x 2 R (with strict inequality for x ¤ 0) : (6.5)

The inequality (6.5) is tremendously useful, as we shall see many times. A graph
of 1C x and ex over Œ�1; 2� is shown in Fig. 6.1 in Sect. 6.1.

6.3 The Natural Logarithmic Function

In this section we show that the exponential function has an inverse. To do so, we
establish a few more of its properties.

Lemma 6.7. The exponential function ex has the following properties:

(i) ex is strictly increasing on .�1;C1/,
(ii) ex ! C1 as x ! C1;

(iii) ex ! 0 as x ! �1:

Proof. For (i), we have seen that ex > 0. Then since .ex/0 D ex , we must have
.ex/0 > 0: Therefore ex is strictly increasing, by Lemma 5.6.
For (ii), we saw in (6.5) that 1C x � ex: As such, ex ! C1 as x ! C1:

For (iii), by (ii) we have ex ! C1 as x ! C1: Then since e�x D 1=ex by
the functional equation (6.4), we have e�x ! 0 as x ! C1: That is, ex ! 0 as
x ! �1: ut
Example 6.8. As regards item (ii) of Lemma 6.7, much more can be said:

For any n 2 N; lim
x!C1

ex

xn
D C1 :



6.3 The Natural Logarithmic Function 127

This follows from applying L’Hospital’s Rule (Theorem 5.13) n times. It says that
as x ! C1; ex ! C1 faster than any polynomial. ˘

Lemma 6.7 shows that .x/ D ex has an inverse, defined on .0;1/: This inverse
is denoted by �1.x/ D ln.x/; and its range is .�1;C1/: This is the natural
logarithmic function. Being the inverse of ex; ln.x/ satisfies:

eln.x/ D x for x > 0 and ln.ex/ D x for x 2 R:

Graphs of ex and ln.x/ are shown in Fig. 6.2.

y

x
1

1

y = x

y = ln(x)

y = ex

Fig. 6.2 The graphs of y D ex and y D ln.x/: Each is the graph of the other, reflected the line
y D x

Any property of the exponential function gives rise to a property of the natural
logarithmic function, since the latter is the inverse of the former. We list some of
these properties below and leave their proofs as an exercise. We shall use them
freely without explicit mention.

Lemma 6.9. The natural logarithmic function ln.x/ has the following properties:

(i) ln.ab/ D ln.a/C ln.b/ for a; b > 0;
(ii) ln.a=b/ D ln.a/ � ln.b/ for a; b > 0;

(iii) ln.ar / D r ln.a/ for a > 0 and r 2 R;
(iv) ln.x/ is a strictly increasing function,
(v) ln.x/ ! C1 as x ! C1;

(vi) ln.x/ ! �1 as x ! 0C:
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Proof. This is Exercise 6.15. ut
We saw in Lemma 6.6 that .ex/0 D ex for all x and so by the Chain Rule,

�
e’.x/

�0 D ’0.x/e’.x/ ; for differentiable functions ’.x/:

Then the relationship eln.x/ D x appears to imply that
�
eln.x/

�0 D eln.x/.ln.x//0D1,
and so .ln.x//0 D 1=x for x > 0: But this only shows that if .ln.x//0 exists, then it
equals 1=x (for x > 0/. One really must show that .ln.x//0 indeed exists. This can
be done using Exercise 4.16, but here we do so more directly—similarly in spirit to
how we obtained the derivative of arctan.x/ in Sect. 4.3.

In inequality (6.5), we replace x with u � v and then with v � u to get

1C .u � v/ < eu�v and

1C .v � u/ < ev�u; both for u ¤ v:

Together these read

1 � eu�v < v � u < ev�u � 1;

or

e�v <
v � u

ev � eu
< e�u for u < v:

Now setting u D ln.x/ and v D ln.y/ we get

1

y
<

ln.y/ � ln.x/

y � x <
1

x
for 0 < x < y:

Therefore, letting y ! x (or x ! y), we get

�
ln.x/

�0 D 1

x
for x > 0:

For x < 0 we have ln.jxj/ D ln.�x/; and the so Chain Rule gives

�
ln.jxj/�0 D 1

x
for x ¤ 0:

Applying the Chain Rule further, we get

�
ln j“.x/j �0 D “0.x/

“.x/
; for differentiable functions “.x/ which are never zero:
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We close this section with two more examples (the first is very simple), in which
a property of the exponential function gives rise to a corresponding property of the
natural logarithmic function.

Example 6.10. The reader may verify by taking logarithms then dividing by n and
nC1 in turn, that the estimates (6.1), i.e.,

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
are equivalent

to the equally useful estimates

1

nC 1
< ln

�
1C 1

n

�
<
1

n
: (6.6)

˘
Example 6.11. Again, the inequality (6.5) reads ex � 1 C x for all real x: Since
ln.t/ is increasing, x � ln.1C x/ for x > �1: Or, replacing x with x � 1 here, we
get

ln.x/ � x � 1 for x > 0 : (6.7)

And replacing x with 1=x in (6.7) we get

1 � 1

x
� ln.x/ for x > 0 ;

or

e

x
� e

1
x for x > 0 :

The inequalities 1 � 1
x

� ln.x/ � x � 1 are shown in Fig. 6.3. ˘

Fig. 6.3 Example 6.11: The
inequalities
1� 1

x
� ln.x/ � x � 1; for

x > 0

y

x

1

1

−1

y = x−1

y = ln(x)

y=1−1
x
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6.4 Real Exponents

The exponential function (along with its inverse, the natural logarithmic function)
enables us to define xr for any exponent r 2 R, not only for r 2 Q. By item (iii) of
Lemma 6.9,

xr D eln.xr / D er ln.x/ for x > 0:

And now we can establish the following important fact, which we only stated in
Sect. 4.2.

Power Rule for Real Exponents: Let r 2 R and for x > 0; let f .x/ D xr . Then
f is differentiable for x > 0, and f 0.x/ D rxr�1.

Proof. By the Chain Rule,

.xr /0 D .er ln.x//0 D er ln.x/ r

x
D xr

r

x
D rxr�1

as desired. ut
As the next two examples show, we can extend other results which contain integer

or rational exponents by allowing them to contain real exponents.

Example 6.12. We improve Bernoulli’s Inequality (Lemma 2.1) to allow it to
contain real exponents � 1, not just integers � 1: Let ’ � 1 be any real number.
Then for x > �1,

.1C x/’ � 1C ’x:

Here’s a proof. We take x > 0 and consider f .t/ D .1C t /’ for t 2 Œ0; x�: By the
Mean Value Theorem (Theorem 5.2) there is c 2 .0; x/ such that

f .x/ � f .0/
x

D ’.1C c/’�1:

Now ’.1 C c/’�1 > ’ and so f .x/ � f .0/ D .1 C x/’ � 1 > ’x; as desired.
Now we take x < 0 and consider t 2 Œx; 0�: By the Mean Value Theorem there is
c 2 .x; 0/ such that

f .0/ � f .x/
�x D ’.1C c/’�1:

Here, 0 < ’.1C c/’�1 < ’ and so f .0/�f .x/ D 1� .1Cx/’ < �’x; as desired.
(For values of ’ other than ’ � 1; see Exercise 6.5.) ˘
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Example 6.13. We saw in (6.1) that

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
for n D 1; 2; 3; : : : ;

and that each of the sequences
˚
.1C 1

n
/n
�

and
˚
.1C 1

n
/nC1� converges to e. The

former sequence is increasing and the latter sequence is decreasing. But rather more
is true: the natural number n can be replaced with x 2 R, as follows. For x > 0; the
Mean Value Theorem (Theorem 5.2) applied to f .t/ D ln.t/ on Œx; x C 1� gives a
c 2 .x; x C 1/ such that

f 0.c/ D 1

c
D ln.x C 1/ � ln.x/

.x C 1/ � x D ln

�
x C 1

x

�
:

Since x < c < x C 1; we have 1
xC1 <

1
c
< 1

x
; and so

1

x C 1
< ln

�
x C 1

x

�
<

1

x
for x > 0: (6.8)

These inequalities extend those of (6.6), and imply

�
1C 1

x

�x
< e <

�
1C 1

x

�xC1
for all x 2 R; (6.9)

which extend (6.1). One can also verify that

�
x ln

�
x C 1

x

��0
D ln

�
x C 1

x

�
� 1

x C 1
> 0

by the left-hand side of (6.8), and that

�
.x C 1/ ln

�
x C 1

x

��0
D ln

�
x C 1

x

�
� 1

x
< 0

by the right-hand side of (6.8) (cf. [30], sec 4.2). Therefore,
�
1C 1

x

�x
is increasing

and
�
1C 1

x

�xC1
is decreasing. Finally,

�
1C 1

x

�xC1
�
�
1C 1

x

�x
D
�
1C 1

x

�x �
1 �

�
1C 1

x

��
D 1

x

�
1C 1

x

�x
<

e

x

and so each of

�
1C 1

x

�x
and

�
1C 1

x

�xC1
converges to e as x ! C1: ˘
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6.5 The AGM Inequality Again

In this section use the exponential function to extend the AGM Inequality
(Theorem 2.10) as well.

Let p1; p2; : : : ; pn be positive numbers. For a1; a2; : : : ; an 2 R, we saw in
Sect. 3.4 that their associated weighted Arithmetic Mean is the expression

1
nP

kD1

pk

nX
jD1

pj aj :

By setting

wj D pj
nP

kD1

pk

;

this reads

nX
jD1

wj aj ; with
nX

jD1
wj D 1:

In this context, the wj 0s are called weights. For the special case in which p1 D
p2 D � � � D pn D 1; we get wj D 1

n
for each j and so indeed

nP
jD1

wj D 1; and

nP
jD1

wj aj is the ordinary Arithmetic Mean A D a1Ca2C���Can
n

:

Example 6.14. In the weighted Arithmetic Mean

2a1 C 7a2 C a3 C 5a4

15
;

we set w1 D 2=15; w2 D 7=15; w3 D 1=15; and w4 D 5=15. Then

2a1 C 7a2 C a3 C 5a4

15
D 2

15
a1 C 7

15
a2 C 1

15
a3 C 1

3
a4 D

4X
jD1

wj aj : ˘

The AGM Inequality (Theorem 2.10) can be extended without too much
difficulty to allow for positive rational weights. This is Exercise 6.25.

But there is an even more general version of the AGM Inequality, as follows,
which allows all positive real numbers as weights, not only positive rationals. We
provide the beautiful proof [30, 81] by American (Hungarian born) mathematician
George Polya (1887–1985) which uses (6.5) (or see (6.7)) in the form:

x � ex�1 for x 2 R (with strict inequality for x ¤ 1) :
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Theorem 6.15. (Weighted AGM Inequality) Let a1; a2; : : : ; an be positive real

numbers and let w1;w2; : : : ;wn be positive real numbers satisfying
nP

jD1
wj D 1:

Then

nY
jD1

a
wj
j �

nX
jD1

wj aj ;

and equality occurs here , a1 D a2 D � � � D an:

Proof. Set A D
nP

jD1
wj aj . Since x � ex�1, we have

aj

A
� e

aj
A �1 for j D 1; 2; : : : ; n:

Therefore

nY
jD1

	aj
A


wj �
nY

jD1

	
e
aj
A �1
wj

D
nY

jD1

	
e

wj aj
A �wj




D e

nP
jD1

	 wj aj
A �wj



D e

1�1 D e
0 D 1:

That is,
nQ

jD1
a

wj
j � A, as desired. Moreover, x D ex�1 if and only if x D 1; so

equality occurs here if and only if a1 D a2 D � � � D an .D A/: ut
Some other proofs of the weighted AGM Inequality (Theorem 6.15) are explored

in Exercises 6.26–6.28 and 6.30. We isolate below an important special case, which
extends Lemma 2.7. (Lemma 2.7 is the result below, with t D 1=2.)

Corollary 6.16. (Weighted AGM Inequality with n D 2) Let a; b � 0 and
0 � t � 1. Then

at b1�t � taC .1 � t /b;

and equality occurs here , a D b:

Proof. This is Theorem 6.15, with n D 2; a1 D a; a2 D b; w1 D t; and w2 D 1� t:
ut
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Example 6.17. [16] Here we use the weighted AGM Inequality with n D 2

(Corollary 6.16) to obtain the neat inequality

�
sin x

�sin x
<
�

cos x
�cos x

for 0 < x <  =4:

For 0 < x <  =4; we have 0 < tan x < 1. So we may apply the weighted AGM
inequality for n D 2 to tan2 x and 1C tan2 x, and with weights tan x and 1 � tan x
to get

�
tan2 x

�tan x�
1C tan2 x

�1�tan x � �
tan x

��
tan2 x

�C �
1 � tan x

��
1C tan2 x

�
:

The left-hand side here is
�
sin2 x

�tan x
= cos2 x, and the right-hand side is

1C tan2 x � tan x < 1:

Therefore
�

sin2 x
�tan x

< cos2 x: The desired inequality now follows by raising each
side to the power .cos x/=2. ˘

In Sect. 2.3 we saw how Lemma 2.7 can be used to obtain the Cauchy–Schwarz
Inequality (Theorem 2.18). In an entirely similar way, the weighted AGM Inequality
with n D 2 (Corollary 6.16) yields the following extension of the Cauchy–Schwarz
Inequality. (In it, taking p D q D 2 gives the Cauchy–Schwarz Inequality.)

Lemma 6.18. (Hölder’s Inequality) Let a1; a2; : : : ; an; and b1; b2; : : : ; bn be posi-
tive real numbers and let p; q > 1 satisfy 1

p
C 1

q
D 1 (p and q are called conjugate

exponents). Then

nX
jD1

aj bj �
0
@ nX
jD1

a
p
j

1
A
1=p 0
@ nX
jD1

b
q
j

1
A
1=q

:

Proof. If
nP

jD1
a
p
j D 0 or

nP
jD1

b
q
j D 0 then the equality holds. Otherwise, set a D

a
p

k
nP

jD1

a
p
j

and b D b
q

k
nP

jD1

b
q
j

in the weighted AGM Inequality with n D 2 (Corollary 6.16),

taking t D 1
p

there, to obtain

ak 
nP

jD1

a
p
j

!1=p bk 
nP

jD1

b
q
j

!1=q � 1

p

a
p

k
nP

jD1

a
p
j

C 1

q

b
q

k
nP

jD1

b
q
j

:

Then summing from k D 1 to n we get
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nP
kD1

akbk

 
nP

jD1

a
p
j

!1=p 
nP

jD1

b
q
j

!1=q � 1

p

nP
kD1

a
p

k

nP
jD1

a
p
j

C 1

q

nP
kD1

b
q

k

nP
jD1

b
q
j

D 1

p
C 1

q
D 1;

as desired. ut
Sometimes the weighted AGM Inequality (Corollary 6.16) is more convenient to

apply in the following (equivalent) form.

Corollary 6.19. (Young’s Inequality) Let a; b � 0 and p; q > 1 with 1
p

C 1
q

D 1.
Then

ab � ap

p
C bq

q
;

and equality occurs here , ap D bq:

Proof. in the weighted AGM Inequality with n D 2 (Corollary 6.16), replace a
with a1=t ; b with b1=.1�t/; and take t D 1=p; 1 � t D 1=q. ut

Naturally then, Young’s Inequality can also be used to obtain Hölder’s Inequality
(Lemma 6.18). We leave the details for Exercise 6.34.

In Exercise 6.37 we see how the weighted AGM Inequality (Theorem 6.15) can
be used to extend Hölder’s Inequality. In Exercise 6.38 we see how the weighted
AGM Inequality (Theorem 6.15) can be used to extend Young’s Inequality.

6.6 The Logarithmic Mean

The Logarithmic Mean of the positive numbers a and b is given by

L D L.a; b/ D

8̂
<̂
ˆ̂:

b � a
ln.b/ � ln.a/

if a ¤ b

a if a D b:

As well as having intrinsic interest, the Logarithmic Mean arises in problems dealing
with heat transfer and fluid mechanics. Since L.a; b/ D L.b; a/, we may suppose
that a � b. Applying Cauchy’s Mean Value Theorem (Theorem 5.11) to

f .x/ D x � a and g.x/ D ln.x/ � ln.a/

on Œa; b�, there is c 2 .a; b/ such that

b � a
ln.b/ � ln.a/

D f .b/ � f .a/
g.b/ � g.a/ D f 0.c/

g0.c/
D 1

1=c
D c:
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Therefore

minfa; bg � L � maxfa; bg;

and so L is indeed a mean. And this justifies the choice L.a; a/ D a; making L
continuous. (The reader might also verify that L.ta; tb/ D tL.a; b/; for t > 0:)

Of course we didn’t really use Cauchy’s Mean Value Theorem here, just the Mean
Value Theorem (Theorem 5.2) upside down. But the idea of using Cauchy’s Mean
Value Theorem can give us more, as follows. First, recall that for positive numbers
a and b; their Arithmetic Mean is

A D aC b

2

and their Geometric Mean is

G D
p
ab:

Lemma 6.20. Let a and b be positive real numbers. Then

G � L � A:

Proof. For the right-hand inequality, for x 2 Œa; b� we set

f .x/ D x � a
x C a

and g.x/ D ln.x/ � ln.a/:

Then by Cauchy’s Mean Value Theorem (Theorem 5.11), there is c 2 .a; b/ such
that

b�a
bCa

ln.b/ � ln.a/
D f .b/ � f .a/
g.b/ � g.a/ D f 0.c/

g0.c/
:

It is easily verified that

f 0.c/
g0.c/

D 2ac

.c C a/2
;

and this is � 1
2
, by Lemma 2.7. Therefore L � A:

For the left-hand inequality, for x 2 Œa; b� we set

f .x/ D x � ap
xa

and g.x/ D ln.x/ � ln.a/:

Then by Cauchy’s Mean Value Theorem, there is c 2 .a; b/ such that
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b�ap
ba

ln.b/ � ln.a/
D f .b/ � f .a/
g.b/ � g.a/ D f 0.c/

g0.c/
:

Here it is easily verified that

f 0.c/
g0.c/

D
cCa
2p
ac
;

and this is � 1; by Lemma 2.7. Therefore G � L: ut
Remark 6.21. The inequalities in Lemma 6.20 were first obtained (by more
complicated methods) in [60]; see also [11,15]. In Exercises 6.43, 6.44, and 6.46 we
obtain refinements of these inequalities, also via Cauchy’s Mean Value Theorem. ı

Setting a D x and b D x C 1 in Lemma 6.20 , we get

p
x.x C 1/ � 1

ln.x C 1/ � ln.x/
� 2x C 1

2
:

After a little manipulation, this yields

�
1C 1

x

�p
x.xC1/

� e �
�
1C 1

x

�xC1=2
: (6.10)

These estimates improve (6.9) considerably. See also Exercises 6.9 and 6.45.
Since

p
x.x C 1/ is the Geometric Mean of x C 1 and x, and x C 1=2 is their

Arithmetic Mean, we point out the rather satisfying fact that (6.10) reads:

�
x C 1

x

�G.xC1; x/
� e �

�
x C 1

x

�A.xC1; x/
:

6.7 The Harmonic Series and Some Relatives

(i) The Harmonic series is the infinite series

1X
nD1

1

n
D 1C 1

2
C 1

3
C 1

4
C 1

5
C � � � :

Each term (after the first) is the Harmonic Mean of the term just before it and the
term just after it. As with any infinite series, this expression denotes the limit (if

it exists) of the sequence of partial sums fSN g : In this case, fSN g D
�

NP
nD1

1
n

�
:
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We saw in the course of obtaining (6.7) that ln.1 C x/ � x for x > �1:
Therefore, as in [7, 48] for example,

ln.N C 1/ D
NX
nD1

�
ln.nC 1/ � ln.n/

�

D
NX
nD1

ln

�
1C 1

n

�
�

NX
nD1

1

n
:

Now since ln.N C 1/ ! C1 as N ! C1; we must also have SN ! C1. So
we write

1X
nD1

1

n
D C1:

We might say that the Harmonic series diverges to C1: Exercises 6.47–6.50 contain
several other proofs of this important fact.

Remark 6.22. The partial sums of the Harmonic series grow without bound, but
they do so very slowly. For example, S10;000 Š 9:8; the smallest N for which SN >
20 is 272400600; and the smallest N for which SN > 1;000 is greater than 10434. ı
(ii) Euler’s constant. In (6.6) we saw that

1

nC 1
< ln

�
nC 1

n

�
<
1

n
for n D 1; 2; 3; : : : :

For such n, set

”n D
nX

kD1

1

k
� ln.n/:

Then

”nC1�”n D
 
nC1X
kD1

1

k
� ln.nC 1/

!
�
 

nX
kD1

1

k
� ln.n/

!
D 1

nC 1
�ln

�
nC 1

n

�
:

And 1
nC1 � ln

�
nC1
n

�
< 0; by the left-hand side of (6.6). Therefore f”ng is a

decreasing sequence. Moreover,

”n D 1

n
C

n�1X
kD1

1

k
� ln.n/ D 1

n
C

n�1X
kD1

�
1

k
� ln

�
k C 1

k

��
;
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and this is > 1
n
; by the right-hand side of (6.6). Therefore f”ng is bounded

below. So by the Increasing Bounded Sequence Property (Theorem 1.34), f”ng
converges to some real number ” � 0. The number ” is called Euler’s constant.
Since ”n is decreasing, ” < ”1 D 1; ” < ”2 Š 0:807; ” < ”3 Š 0:735 etc. In
fact,

” Š 0:577216 :

Remark 6.23. Euler’s constant arises often, in apparently disparate mathematical
contexts. Mathematicians typically rate ” just below   and e in its overall impor-
tance in mathematical analysis. Still, ” remains elusive. It is not even known whether
” is irrational. Another approach to ” can be found in [12]. Also, the book [31] is
highly recommended. ı
(iii) The Alternating Harmonic series is the infinite series

1X
nD1
.�1/nC1 1

n
D 1 � 1

2
C 1

3
� 1

4
C � � � :

Here fSN g D
�

NP
nD1
.�1/nC1 1

n

�
; and so

S2N D 1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � � C 1

2N � 1 � 1

2N

D
�
1 � 1

2

�
C
�
1

3
� 1

4

�
C
�
1

5
� 1

6

�
C � � � C

�
1

2N � 1 � 1

2N

�
:

Therefore fS2N g is increasing. But also,

S2N D 1 �
�
1

2
� 1

3

�
�
�
1

4
� 1

5

�
� � � � �

�
1

2N � 2 � 1

2N � 1
�

� 1

2N
;

and therefore fS2N g is bounded above, by 1: So by the Increasing Bounded
Sequence Property (Theorem 1.34), fS2N g converges to some real number
S � 1. Now

S2NC1 D S2N C 1

2N C 1
;

so that fS2NC1g must converge to S also. Therefore, fSN g converges to S .
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Using Euler’s constant ”, we can find S as follows. Observe that

1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � � � 1

2n

D 1C
�
1

2
� 2

2

�
C 1

3
C
�
1

4
� 2

4

�
C 1

5
C
�
1

6
� 2

6

�
C � � � C

�
1

2n
� 2

2n

�

D 1C 1

2
C 1

3
C 1

4
C 1

5
C 1

6
C � � � C 1

2n
�
�
1C 1

2
C 1

3
C 1

4
C 1

5
C 1

6
C � � � C 1

n

�

D �
ln.2n/C ”2n

� � �
ln.n/C ”n

�
:

Notice that ln.2n/ � ln.n/ D ln.2/ and ”n ! Euler’s constant ”: So we have
at hand the sum of the Alternating Harmonic series:

1X
nD1
.�1/nC1 1

n
D ln.2/ Š 0:693147 :

We shall show in Corollary 12.6 that ln.2/ is irrational.

Remark 6.24. For the Alternating Harmonic series we have (for example)

S D 1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � �

D
�
1 � 1

2

�
� 1

4
C
�
1

3
� 1

6

�
� 1

8
C
�
1

5
� 1

10

�
� 1

12
C � � �

D 1

2
� 1

4
C 1

6
� 1

8
C 1

10
� 1

12
C � � �

D 1

2

�
1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � �

�

D 1

2
S:

This means that the sum S is dependent on how the terms are arranged! There is
a theorem (see [42] or [61]) due to the German mathematician Bernhard Riemann
(1826–1866) which implies that for any real number S; there is a rearrangement
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of the Alternating Harmonic series which sums to S: And there are rearrangements
which diverge to each of ˙1 as well. We address this phenomenon a little more
in Exercise 6.57 and in Sect. 10.1. But for more about rearrangements of the
Alternating Harmonic series, see for example, [5, 8, 20, 46]. ı
(iv) For any real number p, the associated p-series is the infinite series

1X
nD1

1

np
D 1C 1

2p
C 1

3p
C 1

4p
C 1

5p
C � � � :

For p D 1 this is simply the Harmonic series and so it diverges. It is easy to
see, and we leave this for Exercise 6.58, that a p-series diverges also for p < 1:

Here we show, as in [19], that a p-series converges for p > 1: For the N th
partial sum

SN D
NX
nD1

1

np
;

we have

S2NC1 D 1C
�
1

2p
C 1

4p
C � � � C 1

.2N /p

�
C
�
1

3p
C 1

5p
C � � � C 1

.2N C 1/p

�

< 1C
�
1

2p
C 1

4p
C � � � C 1

.2N /p

�
C
�
1

2p
C 1

4p
C � � � C 1

.2N /p

�

D 1C 1

2p
SN C 1

2p
SN D 1C 1

2p�1 SN < 1C 1

2p�1 S2NC1 :

That is, �
1 � 1

2p�1

�
S2NC1 < 1:

Therefore, the increasing sequence fSN g is bounded above by
�
1 � 1

2p�1

��1
and so it converges, by the Increasing Bounded Sequence Property (Theo-
rem 1.34). We have then:

the p-series
1X
nD1

1

np
converges , p > 1:

Taking p D 2 in the analysis above, we get

1X
nD1

1

n2
< 2:
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We shall see in Theorem 12.7 that in fact,

1X
nD1

1

n2
D  2

6
Š 1:645 :

Being the first to find the sum of this series was one of Euler’s many great
triumphs.

Remark 6.25. Taking p D 3, it is the case that

1X
nD1

1

n3
<

�
1 � 1

4

��1
D 4

3
;

but the precise value of this sum is not known. It was proved in only 1979, by the

French mathematician Roger Apéry (1916–1994), that
1P
nD1

1

n3
Š 1:202 is irrational.

The values of the sums
1P
nD1

1

np
are known if p is a positive even integer. ı

Remark 6.26. We have seen (essentially) that

lim
p!1C

1X
nD1

1

np
D C1:

We finish by pointing out that, however, it is the case that

lim
p!1C

 1X
nD1

1

np
� 1

p � 1

!
D ”:

Pretty cool—see [31], for example. ı

Exercises

6.1. Show that C ekx is the is the only function which satisfies

f .0/ D C and f 0.x/ D kf .x/ for all x 2 R:

6.2. Consider the differential equation y 0 D y with initial condition y.0/ D 1:

Apply Euler’s method of tangent lines on Œ0; x�, for x > 0, with n equal subintervals
to obtain the approximation y.x/ Š �

1C x
n

�n
: What happens as n ! 1 ?

6.3. [1] Show that   0 and   1 are the only functions defined on .0;1/which
satisfy .x/.y/ D .x � y/:
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6.4. Show that .ex/y D exy for all x; y 2 R:

6.5. Consider again the improved Bernoulli’s Inequality from Example 6.12:

.1C x/’ � 1C ’x ; for ’ > 1 and x > �1:

Show that this inequality persists for ’ < 0; and is reversed for 0 < ’ < 1:

6.6. (a) Show that for x � 0;

ex � 1C x C 1

2
x2; with equality only for x D 0:

(b) Show that for x � 0;

ex � 1C x C 1

2
x2 C 1

3Š
x3 C � � � C 1

nŠ
xn; with equality only for x D 0:

(c) Conclude that
	n

e


n
< nŠ

(d) For which n is ex � 1C x C 1
2
x2 C 1

3Š
x3 C � � � C 1

nŠ
xn true for all x 2 R?

6.7. [65]

(a) Show that

ex >

�
1C x

y

�y
for x; y > 0:

(b) Set x D   � e and y D e to conclude that e  >  e.

6.8. [67]

(a) Show that f .x/ D x1=x (x > 0) has an absolute maximum at x D e.
(b) Conclude that ex � xe for all x. (In particular, e  >  e.)
(c) Use ex � xe to prove the AGM Inequality (Theorem 2.10) as follows: Set

x D aj e
G

for each of j D 1; 2; : : : n; then multiply all these together.

6.9. [35, 36, 77] We saw in (6.1) that for n D 1; 2; 3; : : : ,

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
:

(a) Show that ’ D 1=2 is the least ’ for which

e �
�
1C 1

n

�nC’
for n D 1; 2; 3; : : : :

(b) Find the largest “ for which
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�
1C 1

n

�nC“
� e for n D 1; 2; 3; : : : :

6.10. [22] Evaluate

lim
n!1

 
n2

"�
1C 1

nC 1

�nC1
�
�
1C 1

n

�n#!
:

6.11. [62]

(a) Apply Cauchy’s Mean Value Theorem (Theorem 5.11) to the functions f .x/ D
.x C 1/’ and g.x/ D x’ on Œn; nC 1� to show that

�
nC 2

nC 1

�’
� .nC 2/’C1 � .nC 1/’C1

.nC 1/’C1 � n’C1 �
�
nC 1

n

�’
:

(b) Conclude, in particular, that

e <

�
1C 1

nC 1

�nC1
� .nC 2/nC2 � .nC 1/nC2

.nC 1/nC1 � nnC1 �
�
1C 1

n

�nC1
< e

�
1C 1

n

�
:

6.12. [63]

(a) Show that

lim
n!1

.nŠ/1=n

n
D 1

e
:

Hint: In
�
1C 1

k

�k
< e <

�
1C 1

k

�kC1
; take the product for k D 1; 2; : : : n:

(b) Denote by An the Arithmetic Mean and by Gn the Geometric Mean, of the first
n natural numbers. Show that the result in (a) is the same as

lim
n!1

Gn

An
D 2

e
:

Other approaches to this problem can be found in [13, 44, 82]. It is generalized
in various directions in [43, 68, 71, 83].

6.13. Suppose that a certain population at year t � 0 is given (approximately)
by P.t/ D C ekt , and that the population’s growth is r % per year. Show that the
population doubles in size every ln.2/= ln.1C r=100/ years.

6.14. Let x1 > 1 and for n D 1; 2; : : : ; let xnC1 D xn

ln.xn/
: Show that fxng

converges and find the limit.

6.15. Prove Lemma 6.9.
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6.16. [41] Here’s a way to show that .ln.x//0 D 1
x
; assuming we already know that�

1C 1
u

�u ! e as u ! 1: Verify that

ln.x C h/ � ln.x/

h
D 1

x
ln

�
1C h

x

�x=h
; then let h ! 0:

6.17. Show that for a > 0,

.ax/0 D ax ln.a/

and for differentiable functions ’.x/,

�
a’.x/

�0 D a’.x/ ln.a/’0.x/:

6.18. (a) Use the Chain Rule to find .ln.ax//0.
(b) Conclude that ln.ab/ D ln.a/C ln.b/ for a; b > 0:

6.19. The logarithmic function with base a > 0 but a ¤ 1 is defined by

y D loga.x/ , ay D x:

For example, loge.x/ D ln.x/:

(a) Prove the change of base formula (for b > 0)

loga.x/ D logb.x/

logb.a/
:

So in principle, by taking b D e; one only needs to know natural logarithms.
For example, log10.x/ D ln.x/= ln.10/.

(b) Show that for x > 0 we have .loga.x//
0 D loga.e/

x
and that (for functions ’ > 0

differentiable),

.loga ’.x//
0 D loga.e/

’.x/
’0.x/:

(c) Show that for x > 1 and L > 0,

d

dx
logx.L/ D � logx L

x ln.x/
:

6.20. [28] Fill in the details of the following proof that ln.x/ is not a rational
function. If it were, we could write ln.x/ D p.x/

q.x/
; where p and q are polynomials

with no common factors. Now differentiate both sides of this expression to obtain a
contradiction.
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6.21. (a) Use L’Hospital’s Rule (Theorem 5.13) to show that lim
x!C1 ln

�
1C 1

x

�xD1.

(b) Conclude that lim
x!C1

�
1C 1

x

�x D e:

6.22. Evaluate the following limits (n is a positive integer).

(a) lim
x!C1 x.1 � e1=x/ , (b) lim

x!C1
ln.1C ex/

2x
;

(c) lim
x!C1

xn

ex
; (d) lim

x!C1
xn

ln.x/
:

6.23. [49]

(a) Show how we might (to some extent) improve inequality (6.7), namely ln.x/ �
x � 1 for x > 0; by writing ln.x/ D 2 ln

p
x:

(b) On the way to inequality (6.7) we saw that ln.x C 1/ � x for x > �1: Show
that

x

1C x
� ln.1C x/ for x > �1:

(c) Show that

x

1C 1
2
x

� ln.1C x/ for x � 0:

6.24. [56, 72]

(a) In Example 6.11 we saw that x ln.x/ � x � 1 for x > 0: In this inequality,
set x D pj =qj then sum to obtain the following inequality, which is basic in
Information Theory: Let pj ; qj > 0 for j D 1; 2; : : : ; n; with

Pn
jD1 pj DPn

jD1 qj : Then

nX
jD1

pj ln.pj / �
nX

jD1
pj ln.qj /:

(b) Show that for a; b; c > 0,

aabbcc �
�
aC b

2

�a �
b C c

2

�b �
aC c

2

�c
:

Can you extend this to more than three numbers?

6.25. [75] Use the AGM Inequality (Theorem 2.10) to prove the AGM Inequality
with rational weights: Let a1; a2; : : : ; an be distinct nonnegative real numbers and

let w1;w2; : : : ;wn be positive rational numbers satisfying
nP

jD1
wj D 1: Then

nY
jD1

a
wj
j <

nX
jD1

wj aj :
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Hint: Let M denote a common denominator for the fractions w1;w2; : : : ;wn: Now
apply the AGM Inequality to a suitable collection of M numbers, which contains
(perhaps lots of) repetition.

6.26. [30] Fill in the details of another proof of the weighted AGM Inequality

(Theorem 6.15), as follows. Set A D
nP

jD1
wj aj and x D aj =A in (6.7), i.e., in

ln.x/ � x � 1 for x > 0:

Now multiply by wj ; and sum. This is a 1930 proof by Hungarian mathematician
Frigyes Riesz (1880–1956). It is the logarithmic companion of the proof we gave
(i.e., G. Polya’s) of Theorem 6.15.

6.27. [50,64,66] Fill in the details of another proof of the weighted AGM Inequality

(Theorem 6.15), as follows. SetG D
nQ

jD1
a

wj
j and x D aj =G in (6.7): ln.x/ � x�1

for x > 0. Now multiply by wj ; and sum. This is the Geometric Mean companion
to Riesz’s proof from Exercise 6.26.

6.28. [69] Fill in the details of another proof of the weighted AGM Inequality
(Theorem 6.15), as follows.

(a) Verify that

nA � nG
G

D
nX

jD1

	aj
G

� 1


:

(b) Now use this in (6.7), i.e., ln.x/ � x � 1 for x > 0:

6.29. [38, 39] Let a; b � 0, 0 � t � 1, and r D minft; 1 � tg: Prove the following
refinements of the weighted AGM Inequality with n D 2 (Corollary 6.16).

(a) at b1�t C r
�p
a � p

b
�2 � taC .1 � t /b :

(b)
�
at b1�t

�2 C r
�
a � b�2 � �

taC .1 � t /b�2 :
Hint: In each case, treat t � 1=2 and t > 1=2 separately.

(c) Is the inequality in (a) better than the one in (b)? Or vise-versa? Or neither?

6.30. [4] In Exercise 6.5 we showed that the improved Bernoulli’s Inequality
(’ > 1)

.1C x/’ � 1C ’x ; for x > �1

persists for ’ < 0; and is reversed for 0 < ’ < 1: Use the 0 < ’ < 1 case to prove
the weighted AGM Inequality (Theorem 6.15), as follows.

(a) For a1; a2 > 0; substitute x D a1
a2

� 1 to obtain the n D 2 case.
(b) Proceed by induction: Assume the result holds for a1; a2; : : : ; an > 0 then

replace an with a
wn=.wnCwnC1/
n a

wnC1=.wnCwnC1/

nC1 :
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6.31. [74] Show that if a; b and c are the side lengths of a triangle, then

.aC b � c/a.b C c � a/b.aC c � b/c � aabbcc:

6.32. [70] Show that if a; b; c 2 .0; 1/ and aC b C c D 2; then

a1�ab1�bc1�c C a1�bb1�cc1�a C a1�cb1�ac1�2 � 2:

6.33. [55] Let x1; x2; : : : ; xn > 0. Use the weighted AGM Inequality (Theo-
rem 6.15) two different ways to show that

0
@ nY
jD1

xj

1
A

1
n

nP
jD1

xj

�
nY

jD1
x
xj
j �

0
BBB@

nP
jD1

x2j

nP
jD1

xj

1
CCCA

nP
jD1

xj

:

6.34. [76] Here is an ostensibly different proof of Hölder’s Inequality
(Lemma 6.18). (a) Dispense with the cases a1 D a2 D � � � D an D 0 or
b1 D b2 D � � � D bn D 0: (b) In Young’s Inequality (Corollary 6.19), set

a D aj

0
@ nX
jD1

a
p
j

1
A

�1=p

and b D bj

0
@ nX
jD1

b
q
j

1
A

�1=q

;

then sum from 1 to n: (Compare with Exercise 2.42.)

6.35. [40] Use Hölder’s Inequality (Lemma 6.18) to show that

xyz

.x C y C a/.y C z C a/.x C z C a/
� 1

81a
for a > 0 and x; y; z > 0:

6.36. Find necessary and sufficient conditions for equality to hold in Hölder’s
Inequality (Lemma 6.18).

6.37. [30] We used the weighted AGM Inequality with n D 2 (Corollary 6.16) to
obtain Hölder’s Inequality (Lemma 6.18). Use the full weighted AGM Inequality
(Theorem 6.15) to obtain the following extension of Hölder’s Inequality. Let
a11; a2 1; a3 1; : : : ; an 1; a1 2; a2 2; a3 2 : : : ; an 2; : : : ; a1m; a2m; a3m : : : ; anm; be
nm nonnegative real numbers and let p1; p2; : : : ; pm > 1 satisfy 1

p1
C 1

p2
C � � � C

1
pm

D 1. Then

nX
jD1

 
mY
kD1

aj k

!
�

mY
kD1

0
@ nX
jD1

a
pk

j k

1
A
1=pk

:
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6.38. We saw that Young’s Inequality (Corollary 6.19)) follows directly from the
weighted AGM Inequality with n D 2 (Corollary 6.16). Use the full weighted AGM
Inequality (Theorem 6.15) to obtain the following extension of Young’s Inequality.
(See also [2].) Let a1; a2; : : : ; an be nonnegative and let p1,p2; : : : ; pn > 1 satisfy
1
p1

C 1
p2

C � � � C 1
pn

D 1. Then

nY
jD1

aj �
nX

jD1

a
pj
j

pj
:

6.39. In Exercise 2.53 we used the Cauchy–Schwarz Inequality (Theorem 2.18) to
prove Minkowski’s Inequality. Use Hölder’s Inequality (Lemma 6.18) to prove
the following extension of Minkowski’s Inequality: Let a1; a2; : : : ; an; and
b1; b2; : : : ; bn be real numbers and let p > 0: Then

0
@ nX
jD1

�
aj C bj

�p
1
A
1=p

�
0
@ nX
jD1

a
p
j

1
A
1=p

C
0
@ nX
jD1

b
p
j

1
A
1=p

:

Hint: Write
�
aj C bj

�p D aj
�
aj C bj

�p�1 C bj
�
aj C bj

�p�1
; then sum, then

apply Hölder’s Inequality to each piece.

6.40. In Exercise 2.54 we proved Chebyshev’s Inequality: Let fa1; a2; : : : ; ang,
fb1; b2; : : : ; bng be two sequences of real numbers, with either both increasing or
both decreasing. Then

1

n

nX
jD1

aj � 1
n

nX
jD1

bj � 1

n

nX
jD1

aj bj :

(a) Prove the weighted Chebyshev’s Inequality:
Let f’1; ’2; : : : ; ’ng and f“1; “2; : : : ; “ng be sequences of real numbers, with
either both increasing or both decreasing. Let w1; w2; � � �;wn be any n

nonnegative numbers. Then

nX
jD1

wj ’j �
nX

jD1
wj “j �

nX
jD1

wj �
nX

jD1
wj ’j “j :

(b) Use this to prove the Cauchy–Schwarz Inequality (Theorem 2.18). Hint: First
dispense with any b0

j s which equal zero (and explain). Then set wj D “2j ; and
’j D “j D aj =bj :

6.41. [9, 10] In Lemma 6.20 we saw that for a; b > 0,

p
ab � a � b

ln.a/ � ln.b/
� aC b

2
i.e G � L � A:
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(a) Set a D x and b D 1=x to show that

1

x2 C 1
� ln.x/

x2 � 1 � 1

2x
for x > 0:

(b) How do the inequalities in (a) compare with

1 � 1

x
� ln.x/ � x � 1 for x > 0 ‹

(c) Suppose now that 0 < a � b and let b=a D 1C x to show that

x

1C 1
2
x

� ln.1C x/ � xp
1C x

:

6.42. [80] Denote by L.a; b/ the Logarithmic Mean of a; b > 0:

(a) Show that for n � 7,

L
�

ln.nC 1/; ln.n/
�
> 2:

(b) Conclude that for n � 7,

n
p
nC1 >

�
nC 1

�pn
:

(c) How about n < 7 ?

6.43. Let a; b > 0 and denote by L and A the Logarithmic and Arithmetic Means
of a and b respectively. Apply Cauchy’s Mean Value Theorem (Theorem 5.11) to

f .x/ D x � a
2
3

p
xaC 1

3
aCx
2

D 6.x � a/
4
p
xaC x C a

and g.x/ D ln.x/ � ln.a/

on Œa; b� to show that L � 2
3
G C 1

3
A � A: This refines the inequality L � A

from Lemma 6.20. (This was first obtained by other methods in [60].)

6.44. Let a; b > 0 and denote by G and L the Geometric and Logarithmic Means
of a and b respectively. Apply Cauchy’s Mean Value Theorem (Theorem 5.11) to

f .x/ D x � a
.
p
xa/2=3

�
xCa
2

�1=3 D 21=3.x � a/
.x2aC a2x/1=3

and g.x/ D ln.x/ � ln.a/

on Œa; b� to show that

G � G2=3A1=3 � L:
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This refines the inequality G � L from Lemma 6.20. (This was first obtained,
by rather sophisticated methods, in [45].) Hint: Near the end, you will use the
weighted AGM Inequality with n D 2 (Corollary 6.16) applied to A2 and G2:�
A2
�1=3 �

G2
�2=3 � 1

3
A2 C 2

3
G2:

6.45. [27] Taken together, Exercises 6.43 and 6.44 give

G2=3A1=3 � L � 2

3
G C 1

3
A:

(a) Apply these to x and x C 1 to obtain the further improvement of (6.9):

�
1C 1

x

� 2
3

p
x.xC1/C 1

3
2xC1
2

� e �
�
1C 1

x

�.px.xC1/2=3
	
2xC1
2


1=3
:

(b) Show that 1 � �
cosh.t/

�1=3 � sinh.t/
t

� 2
3

C 1
3

sinh.t/ � cosh.t/:

6.46. [47] For x; y > 0, consider the Lorentz Mean

M1=3 D
�
x1=3 C y1=3

2

�3
;

which comes up in the theory of equations of state for gases. Show that this is indeed
a mean then show, as follows, that

L < M1=3 for x ¤ y;

where L is the Logarithmic Mean of x and y.

(a) For t � 1; set

f .t/ D 3

8
ln.t/ � t 3 � 1

.t C 1/3
:

Show that f 0.t/ > 0 for t > 1; so that f is increasing.
(b) Conclude that f .t/ > 0 for t > 1:
(c) Assume that 0 < y < x and substitute t D x1=3=y1=3:

(This argument is due to American mathematician Harley Flanders (1925–
2013.))
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6.47. [18, 19, 25, 26]

(a) Fill in the details of the following proof, due to American mathematician
Leonard Gillman (1917–2009), that the Harmonic series diverges:

S D
�
1C 1

2

�
C
�
1

3
C 1

4

�
C
�
1

5
C 1

6

�
C � � �

>

�
1

2
C 1

2

�
C
�
1

4
C 1

4

�
C
�
1

6
C 1

6

�
C � � �

D S:

(b) And here’s a similar argument, though slightly more complicated. If S D
1P
nD1

1
n
;

then 1
2
S D 1

2

1P
nD1

1
n

D
1P
nD1

1
2n

and so we must have
1P
nD1

1
2n�1 D 1

2
S also. Show

that this leads to a contradiction.

6.48. [79] Fill in the details of another proof that the Harmonic series diverges: If

S D
1P
nD1

1
n

exists then S2N �SN ! 0; where SN D
NP
nD1

1
n

. Show that S2N �SN > 1
2

to obtain a contradiction.

6.49. [21] Fill in the details of another proof that the Harmonic series diverges:
Obtain a contradiction by observing that

1X
nD1

1

n
D

1X
nD0

�
1

2nC 1
C 1

2nC 2

�

D
1X
nD0

�
1

nC 1
C 1

.2nC 1/.2nC 2/

�
:

6.50. [17] Fill in the details of another proof that the Harmonic series diverges:

(a) Prove (or at least recall) the well-known fact (e.g., Exercise 5.35) that for the
Fibonacci sequence f1 D 1; f2 D 1; fnC2 D fn C fnC1, it is the case
that fnC1=fn ! '; where ' is the golden mean, i.e., the positive root of
x2 � x � 1 D 0.

(b) By collecting successive blocks of the Harmonic series whose lengths are the
Fibonacci numbers, show that

1X
nD1

1

n
� 1C

1X
nD1

fn�1
fnC1

:
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6.51. [34]

(a) Show that
1P
nD1

�
n1=n � 1� diverges to C1:

(b) Show that
1P
nD1

	
e � �

1C 1
n

�n

diverges to C1:

6.52. [3] Here’s another approach to Euler’s constant. Define ak by

e D ak

�
1C 1

k

�k
;

(a) Verify that 1 D ln.ak/C k
�

ln.k C 1/ � ln.k/
�
:

(b) Sum these from k D 1 to n to get

nX
kD1

1

k
� ln.nC 1/ D ln

 
nY

kD1
a
1=k

k

!
:

(c) Show that

�
ln

�
nQ

kD1
a
1=k

k

��
is increasing.

(d) On the way to inequality (6.7) we saw that ln.x C 1/ � x for x > �1: Use this
to show that

ln

 
nY

kD1
a
1=k

k

!
<

nX
kD1

1

k2
;

so that

�
ln

�
nQ

kD1
a
1=k

k

��
is bounded above (by  2=6/.

6.53. (a) Show that we may define Euler’s constant by way of

”n D
nX

kD1

1

k
� ln.nC ’/;

for any ’ > �n. Therefore

” D lim
n!1

 
nX

kD1

1

k
� ln.nC ’/

!
:

(b) Take ’ D 1 in (a) then show that

” D lim
n!1

 
nX

kD1

1

k
� ln

�
1C 1

k

�!
:
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6.54. [33] Let Kj be the least integer for which
KjP
nD1

1
n

� j: Show that

lim
j!1

KjC1
Kj

D e:

6.55. [58]

(a) Show that x � x3

6
� sin.x/ � x; for 0 < x <  =2.

(b) Set x D 1=k and use
nP

jD1
j D n.nC1/

2
to show that

lim
n!1

0
@ 1

n2

nX
jD1

csc

�
1

k

�1A D 1

2
:

6.56. [14, 59] The Alternating Harmonic series has N th partial sum

SN D
NX
nD1

.�1/nC1

n
:

Show that

jS � SN j � 1

2N
:

6.57. In Sect. 6.7 we considered ”2n � ”n to show that

ln.2/ D
1X
nD1

.�1/nC1

n
D 1 � 1

2
C 1

3
� 1

4
C � � � :

(a) Consider ”2n � 1
2
”n � 1

2
”2n to sum a certain rearrangement of this series.

(b) Can you sum other rearrangements in a similar way?

6.58. (a) Show that
1P
nD1

1
np

diverges for p � 1:

(b) Use

SN D
NX
nD1

1

n2
D 1C

NX
nD2

1

n2
< 1C

NX
nD2

1

.n � 1/n
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to show that
1P
nD1

1
n2

� 2. (The series on the right-hand side is a telescoping

series).

(c) Use (b) to show that
1P
nD1

1
np

converges for p � 2: (We showed in Sect. 6.7 that

it also converges for 1 < p < 2:)

6.59. [57] Here is an extension of Example 1.32, which shows that
1P
nD1

1
np

converges for p > 1:

(a) Verify that for natural numbers r > 1,

br � ar
b � a D br�1 C abr�2 C a2br�3 C : : :C ar�3b3 C ar�2b2 C ar�1:

(b) Conclude that for a < b, br � ar � rbr�1.b � a/:
(c) Set a D n1=r and b D .nC 1/r to get

1 D
1X
nD1

�
1

n1=r
� 1

.nC 1/1=r

�
� 1

r

1X
nD1

1

.nC 1/1C1=r
:

(d) Conclude that
1P
nD1

1

.nC1/1C1=r is convergent.

(e) Finally, for p > 1 observe that there is a natural number r > 1 such that
1C 1

r
< p:

6.60. [51] Evaluate lim
n!1

�
1C 1

2
C 1

3
C � � � C 1

n
� �

1
nC1 C 1

nC2 C � � � C 1
n2

��
:

6.61. [37]

(a) Show that the sequence f•ng is increasing for n � 2, where

•n D ln.n/ � 2

1

3
C 1

5
C 1

7
C � � � C 1

2n � 1
�
:

(b) Show that •n ! �” C 2
�
1 � ln.2/

�
; as n ! 1 (where ” is Euler’s constant).

6.62. [29] Show that if S is the sum of a particular p-series (of course p > 1) then

2p � 1
2p � 2 < S <

2p

2p � 2 :

6.63. [6] Fill in the details of the following neat visual description of why

1X
nD1

1

n
D C1 ;

1X
nD1

1

n2
< 2 ; and

1X
nD1

1

n3
<
3

2
:
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Suppose that we stack cubes with side lengths 1; 1=2; 1=3; 1=4; 1=5 : : : together, as
shown in Fig. 6.4.

(a) Looking at the side view, the height of each vertical stack is > 1=2 and so we

have
1P
nD1

1
n

D C1:

(b) Looking again at the side view, the total area obtained by taking one face of

each cube gives
1P
nD2

1
n2
< 1; and so

1P
nD1

1
n2
< 2:

(c) Looking at the full view, all of the cubes are inside a 1 � 1 � 3
2

box. Therefore

their total volume gives
1P
nD1

1
n3
< 3

2
:

1 1
2

1

1

1
2

1
3

1
2

1
4

1
8

·· ·

1

Full view Side view

Fig. 6.4 For Exercise 6.63:
1P
nD1

1
n

D C1 ,
1P
nD1

1
n2
< 2 ; and

1P
nD1

1
n3
< 3

2
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Chapter 7
Other Mean Value Theorems

One cannot fix one’s eyes on the commonest natural production
without finding food for a rambling fancy.

—Mansfield Park, by Jane Austen

In this chapter, which is independent of all subsequent chapters, we allow our-
selves a brief diversion. We have met and used Rolle’s Theorem (Theorem 5.1),
its extension the Mean Value Theorem (Theorem 5.2), and its extension Cauchy’s
Mean Value Theorem (Theorem 5.11). Here we consider other Mean Value –
type theorems. Each of these, as with their namesake, has an appealing geometric
interpretation. For convenience we recall below the Mean Value Theorem.

Theorem 5.2. (Mean Value Theorem): Let f be continuous on Œa; b� and
differentiable on .a; b/: Then there exists c 2 .a; b/ such that

f 0.c/ D f .b/ � f .a/
b � a : �

7.1 Darboux’s Theorem

We begin with a preliminary result, which extends Rolle’s Theorem (Theorem 5.1),
to cases in which f 0.b/ exists. It was obtained by D.H. Trahan [18] in 1966.

Lemma 7.1. Let f be continuous on Œa; b� and differentiable on .a; b�; with

�
f .b/ � f .a/�f 0.b/ � 0:

Then there exists c 2 .a; b� such that f 0.c/ D 0:

Proof. If f .b/�f .a/ D 0 then the result holds, by Rolle’s Theorem (Theorem 5.1).
If f 0.b/ D 0 then the result holds, with c D b: Otherwise, we consider the function
g defined on Œa; b� via

© Springer Science+Business Media New York 2014
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g.x/ D
8<
:

f .b/�f .x/
b�x if x ¤ b

f 0.b/ if x D b:

Then g is continuous on Œa; b�, and by hypothesis it satisfies

g.a/g.b/ D f .b/ � f .a/
b � a f 0.b/ < 0:

So by Bolzano’s Theorem (Theorem 3.7) there is � 2 .a; b/ such that g.�/ D 0:

That is, f .�/ D f .b/: Then by Rolle’s Theorem (Theorem 5.1), there is c 2 .�; b/
such that f 0.c/ D 0; as desired. ut

Figure 7.1 contains a generic picture for Lemma 7.1.

y

x
a bc

f(a)

f(b)
y = f(x)

Fig. 7.1 Lemma 7.1: Here f .b/� f .a/ > 0, f 0.b/ < 0; and f 0.c/ D 0

The Intermediate Value Theorem (Theorem 3.17) says, in short, that a continuous
function satisfies the Intermediate Value Property. It is a rather surprising fact
that derivatives (which need not be continuous) also satisfy the Intermediate Value
Property. This discovery was made in 1875 by French mathematician J.G. Darboux
(1842–1917).

We provide a 2004 proof due to L. Olsen [10], which is a natural extension of
the proof of Lemma 7.1: the g in the proof of Lemma 7.1 is the g1 in the proof
below. This is different from the proof found in most textbooks, which we leave
for Exercise 7.3. (See [4, 8] for two other clever proofs.)

Theorem 7.2. (Darboux’s Theorem) Let f be differentiable on Œa; b�: Let y be
between f 0.a/ and f 0.b/: Then there is c 2 .a; b/ such that f 0.c/ D y:
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Proof. We may suppose that y is strictly between f 0.a/ and f 0.b/: The functions

g1.x/ D
8<
:

f .b/�f .x/
b�x if x ¤ b

f 0.b/ if x D b

and g2.x/ D
8<
:

f 0.a/ if x D a

f .x/�f .a/
x�a if x ¤ a

are each continuous on Œa; b� and satisfy g1.a/ D g2.b/: So since y lies between
f 0.a/ D g2.a/ and f 0.b/ D g1.b/; y must either lie between g1.a/ and g1.b/ or
between g2.a/ and g2.b/: If y lies between g1.a/ and g1.b/ then by the Intermediate
Value Theorem (Theorem 3.17) there is p 2 Œa; b/ such that

y D g1.p/ D f .b/ � f .p/
b � p :

Then by the Mean Value Theorem (Theorem 5.2) there is c 2 .p; b/ such that

f .b/ � f .p/
b � p D f 0.c/:

Therefore f 0.c/ D y, as we wanted to show. The case of y lying between g2.a/
and g2.b/; which is left to the reader, is handled in a similar fashion. ut
Example 7.3. Consider the function

f .x/ D
8<
:
x2 sin. 1

x
/ if x ¤ 0

0 if x D 0:

By definition,

f 0.0/ D lim
x!0

f .x/ � f .0/
x � 0 D lim

x!0

�
x sin. 1

x
/
� D 0:

For x ¤ 0, the Product and Chain Rules give

f 0.x/ D 2x sin. 1
x
/ � cos. 1

x
/:

Now since lim
x!0

�
cos. 1

x
/
�

does not exist, lim
x!0

�
2x sin. 1

x
/ � cos. 1

x
/
�

does not exist,

and so

lim
x!0

f 0.x/ ¤ f 0.0/:

Therefore f 0 is not continuous at x D 0. Even so, by Darboux’s Theorem
(Theorem 7.2), f 0.x/ has the Intermediate Value Property on any interval containing
x D 0. ˘
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7.2 Flett’s Mean Value Theorem

The following Mean Value – type theorem was discovered by T.M. Flett in 1958 [3].
Our proof follows Trahan’s paper [18], which uses Lemma 7.1. (And the g2 in the
proof of Darboux’s Theorem (Theorem 7.2) is the g in the proof below.) Another
proof can be found in [12]; see also [1].

Theorem 7.4. (Flett’s Mean Value Theorem) Let f be differentiable on Œa; b�, with
f 0.a/ D f 0.b/: Then there exists c 2 .a; b/ such that

f 0.c/ D f .c/ � f .a/
c � a :

Proof. Consider the function g defined on Œa; b� via

g.x/ D
8<
:

f 0.a/ if x D a

f .x/�f .a/
x�a if x ¤ a:

Then

g0.x/ D .x � a/f 0.x/ � .f .x/ � f .a//
.x � a/2 D 1

x � a
�
f 0.x/ � f .x/ � f .a/

x � a
�
;

and so

g0.b/ D 1

b � a
�
f 0.b/ � f .b/ � f .a/

b � a
�
:

By the definition of g;

g.b/ � g.a/ D f .b/ � f .a/
b � a � f 0.a/:

Now since f 0.a/ D f 0.b/ by hypothesis, g0.b/Œg.b/�g.a/� < 0: So by Lemma 7.1
there is c 2 .a; b/ such that g0.c/ D 0: That is,

f 0.c/ D f .c/ � f .a/
c � a ;

as desired. ut
Geometrically, Flett’s Mean Value Theorem (Theorem 7.4) says that there exists

c 2 .a; b/ such that the line through .a; f .a// and .c; f .c// coincides with the
tangent line at x D c. See Fig. 7.2.
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Fig. 7.2 Flett’s Mean Value
Theorem (Theorem 7.4):
The line through .a; f .a//
and .c; f .c// coincides with
the tangent line at x D c y = f(x)

y

x
a c b

f(c)

f(a)

For Mean Value – type theorems having difference quotients other than f .b/�f .a/
b�a

(Mean Value Theorem) and f .c/�f .a/
c�a (Flett’s Mean Value Theorem) in their

conclusions, see [7]. See also Exercise 7.10.

7.3 Pompeiu’s Mean Value Theorem

For a function f defined on Œa; b�; the equation of the line through .a; f .a// and
.b; f .b// is

y D f .b/ � f .a/
b � a .x � a/C f .a/:

Setting x D 0; this line has y-intercept bf .a/�af .b/
b�a : (We met this quotient in our

proof of the Mean Value Theorem (Theorem 5.2)). For f also differentiable on
Œa; b�; the equation of the tangent line at c 2 Œa; b� is

y D f 0.c/.x � c/C f .c/:

This line has y-intercept f .c/� cf 0.c/: The following theorem says that as long as
0 … Œa; b�; there is c 2 .a; b/ for which these two y-intercepts coincide. See Fig. 7.3.
This theorem was discovered by D. Pompeiu in 1946 [11].

Theorem 7.5. (Pompeiu’s Mean Value Theorem) Let Œa; b� be an interval not
containing 0 and let f be differentiable on Œa; b�. Then there exists c 2 .a; b/

such that

bf .a/ � af .b/
b � a D f .c/ � cf 0.c/:
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Fig. 7.3 Pompeiu’s Mean
Value Theorem
(Theorem 7.5): The line
through .a; f .a// and
.b; f .b// has the same
y-intercept as the tangent line
at x D c

f(a)

f(b)

y

xa c b

y = f(x)

Proof. We may suppose that 0 < a < b: On Œ 1
b
; 1
a
�, define the function F by

F.t/ D tf . 1
t
/:

Then F is continuous on Œ 1
b
; 1
a
� and differentiable on . 1

b
; 1
a
/. By the Chain and

Product Rules,

F 0.t/ D f
�
1
t

� � 1

t
f 0� 1

t

�
:

Applying the Mean Value Theorem (Theorem 5.2) to F , there is � 2 . 1
b
; 1
a
/ such that

F. 1
a
/ � F. 1

b
/

1
a

� 1
b

D F 0.�/:

Finally, setting c D 1
�
; this reads

bf .a/ � af .b/
b � a D f .c/ � cf 0.c/;

as desired. ut
The proof given here follows [13]. We leave it for Exercise 7.11 to investigate

whether the condition 0 … Œa; b� is necessary.
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7.4 A Related Result

We close this chapter with another Mean Value – type theorem [6], some variants
of which we explore in the exercises. Let f be defined on Œa; b�: For c 2 Œa; b� we
denote by C D .c; f .c// any point on the graph of f and by

M D
	
aCb
2
;
f .a/Cf .b/

2




the midpoint of the chord from .a; f .a// to .b; f .b//:
Recall that two lines are perpendicular if their slopes are negative reciprocals of

each other. The following result says that for a function f differentiable on .a; b/,
either M is on the graph of f or there is a C such that the line through M and C is
perpendicular to the tangent line at C . See Fig. 7.4.

Theorem 7.6. Let f be continuous on Œa; b� and differentiable on .a; b/: Then
there exists c 2 Œa; b� such that

f 0.c/
h
f .c/ � f .a/Cf .b/

2

i
D � �c � aCb

2

�
:

Proof. Define h on Œa; b� via

h.x/ D �
x � a�2 C �

f .x/ � f .a/�2 C �
x � b�2 C �

f .x/ � f .b/�2:
Then h is continuous on Œa; b� and differentiable on .a; b/ and, as the reader can
easily verify, h.a/ D h.b/: So we apply Rolle’s Theorem (Theorem 5.1) to h to
conclude that there is c 2 .a; b/ such that

h0.c/ D 2.c � a/C 2
�
f .c/� f .a/�f 0.c/C 2.c � b/C 2

�
f .c/� f .b/�f 0.c/ D 0:

After some simplification, we get

f 0.c/
�
4f .c/ � 2f .a/ � 2f .b/� D �4c C 2aC 2b:

Finally, division by 4 and a little more simplification yields the desired result. ut

Exercises

7.1. [16] Here is an extension of the Mean Value Theorem (Theorem 5.2) which
contains two functions (but is different from Cauchy’s Mean Value Theorem
(Theorem 5.11)). (a) Apply Rolle’s Theorem to

F.x/ D Œf .x/ � f .a/�.x � b/ � Œg.x/ � g.b/�.x � a/
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Fig. 7.4 Theorem 7.6: Either
M D . aCb

2
;
f .a/Cf .b/

2
/ is on

the graph of f or there is
C D .c; f .c// such that the
line through M and C is
perpendicular to the tangent
line at C

M

x

x

a

a

b

b

f(a)

f(a)     

f(b)

f(b)

y

y

y = f(x)

y = f(x)

M

or:

C

to prove the following. Let f and g be continuous on Œa; b� and differentiable on
.a; b/: Then there is c 2 .a; b/ such that

f 0.c/.b � c/C g0.c/.c � a/ D Œg.b/ � g.c/�C Œf .c/ � f .a/�:

(b) Verify that if f D g; this is the Mean Value Theorem (Theorem 5.2).

7.2. Consider Lemma 7.1, but from the other side. That is: Let f be continuous on
Œa; b� and differentiable on Œa; b/; with f 0.a/Œf .b/ � f .a/� � 0: Then there exists
c 2 Œa; b/ such that f 0.c/ D 0:

(a) Deduce this result from Lemma 7.1. (b) Prove it directly, by suitably adapting the
proof of Lemma 7.1. (c) Draw a picture which illustrates this result geometrically.

7.3. Here is the proof of Darboux’s Theorem (Theorem 7.2) found in most
textbooks. Let y be between f 0.a/ and f 0.b/; say f 0.a/ < y < f 0.b/: Consider
the function g.x/ D yx � f .x/; and show that g0 has a zero in Œa; b�: Hint: Apply
the Extreme Value Theorem (Theorem 3.23) to g, and look carefully at the proof of
Fermat’s Theorem (Theorem 4.13).

7.4. [2] Let f be continuous on Œa; b�; differentiable on .a; b�; with f 0.b/ D 0;

and let K > 0: Prove, as follows, that there is c 2 .a; b/ such that

f 0.c/ D K.f .c/ � f .a//:
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(a) Argue that we may take a D 0 and f .a/ D 0:

(b) Looking for a contradiction, suppose that f 0.x/ > Kf .x/ for x 2 .a; b/. Use
g.x/ D e�Kxf .x/ to show that f .b/ > 0:

(c) Then by Darboux’s Theorem (Theorem 7.2), f 0.b/ � Kf .b/; a contradiction.
(d) Show that the f 0.x/ < Kf .x/ case can be handled similarly.

7.5. [9] Here is a curious fact. Consider the functions

F.t/ D
�
t 2 sin.1=t/ if t ¤ 0

0 if t D 0
and G.t/ D

�
t 2 cos.1=t/ if t ¤ 0

0 if t D 0 :

Show that f .t/ D F 0.t/2 and g.t/ D G0.t/2 each have the Intermediate Value
Property on any interval which contains 0, but f .t/C g.t/ does not.

7.6. [14] Let f be differentiable on .a; b/ and let x1; x2; : : : ; xn 2 .a; b/: Prove

that there is c 2 .a; b/ such that f 0.c/ D 1
N

NP
jD1

f 0.xj /:

7.7. Suppose that you take a ride on a roller coaster. Show that there is a moment
during the ride at which your instantaneous speed is equal to your average speed up
to that moment.

7.8. Consider Flett’s Mean Value Theorem (Theorem 7.4), but from the other side.
That is: Let f be differentiable on Œa; b� with f 0.a/ D f 0.b/: Then there exists
c 2 .a; b/ such that

f .b/ � f .c/
b � c D f 0.c/:

(a) Deduce this result from Flett’s Mean Value Theorem.
(b) Prove this directly by suitably adapting the proof of Flett’s Mean Value

Theorem.
(c) Draw a picture which illustrates geometrically what this says.

7.9. [13] Apply Flett’s Mean Value Theorem (Theorem 7.4) to the function

g.x/ D f .x/ � 1

2

f 0.b/ � f 0.a/
b � a .x � a/2

to obtain a version which does not require f 0.a/ D f 0.b/:

7.10. [5, 7, 17]

(a) Apply Rolle’s Theorem (Theorem 5.1) to

h.x/ D .b � x/Œf .x/ � f .a/�
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to prove the following: Let f be continuous on Œa; b� and differentiable on
.a; b/: Then there exists c 2 .a; b/ such that

f 0.c/ D f .c/ � f .a/
b � c :

(b) Show that the triangle formed by the x-axis, the tangent line at .c; f .c//; and
the line through .c; f .c// and .b; f .a//; is isosceles.

7.11. In Pompeiu’s Mean Value Theorem (Theorem 7.5), is it necessary that the
interval Œa; b� does not contain 0? Explain.

7.12. (a) What does the function h in the proof of Theorem 7.6 represent
geometrically?

(b) Prove Theorem 7.6 by instead applying Rolle’s Theorem (Theorem 5.1) to

g.x/ D

x � aC b

2

�2
C

f .x/ � f .a/C f .b/

2

�2
:

(c) What does the function g in (b) represent geometrically?

7.13. [6]

(a) Apply Rolle’s Theorem (Theorem 5.1) to

h.x/ D Œx � a�2 � Œf .x/ � f .a/�2 C Œx � b�2 � Œf .x/ � f .b/�2

to prove the following: Let f be continuous on Œa; b� and differentiable on
.a; b/: Then there exists c 2 .a; b/ such that

f 0.c/
h
f .c/ � f .a/Cf .b/

2

i
D �

c � aCb
2

�
:

(b) Draw a picture which illustrates geometrically what this says.
(c) Extending the results in (a) and in Theorem 7.6, state and prove results which

have conclusions

f 0.c/
h
f .c/ � f .a/Cf .b/

2

i
D ˙g0.c/

h
g.c/ � g.a/Cg.b/

2

i
:

7.14. [15] In Exercise 5.39 we saw that applying Rolle’s Theorem (Theorem 5.1) to

g.x/ D Œf .x/ � f .a/�.x � b/ � Œf .x/ � f .b/�.x � a/

yields a proof of the Mean Value Theorem (Theorem 5.2).

(a) Apply Rolle’s Theorem to

h.x/ D Œf .x/ � f .a/�.x � b/C Œf .x/ � f .b/�.x � a/
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to prove the following: Let f be continuous on Œa; b� and differentiable on
.a; b/: Then there exists c 2 .a; b/ such that

f 0.c/
�
c � aCb

2

� D �
h
f .c/ � f .a/Cf .b/

2

i
:

(b) Draw a picture which illustrates geometrically what this says.
(c) Extending the result in (a), state and prove a result which has conclusion

f 0.c/
h
g.c/ � g.a/Cg.b/

2

i
D �g0.c/

h
f .c/ � f .a/Cf .b/

2

i
:

7.15. Is there a Mean Value—type theorem similar to those in Exercises 7.13
and 7.14, but having conclusion

f 0.c/
�
c � aCb

2

� D
h
f .c/ � f .a/Cf .b/

2

i
?

If yes, prove it. If no, provide a counterexample.
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Chapter 8
Convex Functions and Taylor’s Theorem

A smile is a curve that sets everything straight.

– Phyllis Diller

In this chapter we consider the higher derivatives of a function f: These are f 00 D
.f 0/0; f .3/ D .f 00/0; etc. We extend the Mean Value Theorem to an analogous
statement about the second derivative, and this takes us naturally to the notion of
convexity. Once there, we meet the very important Jensen’s Inequality. Then we
extend the Mean Value Theorem to the (n+1)st derivative—this is Taylor’s Theorem.
We prove that e is irrational and we take a brief look at Taylor series.

8.1 Higher Derivatives

We saw in Sect. 4.1 that

f 0.x0/ D lim
h!0

f .x0 C h/ � f .x0/
h

;

whenever this limit exists. It is often useful to consider higher derivatives of f ,
whenever possible:

f 00.x0/ D lim
h!0

f 0.x0 C h/ � f 0.x0/
h

; f .3/.x0/ D lim
h!0

f 00.x0 C h/ � f 00.x0/
h

; etc.

Generally, we write f .0/ D f and f .1/ D f 0, then

f .n/.x0/ D lim
h!0

f .n�1/.x0 C h/ � f .n�1/.x0/
h

for n D 2; 3; 4; : : :

whenever these limits exist. f .n/.x0/ is called the nth derivative of f at x0:
As we have already seen with f 0, it is common to replace x0 with simply x; when
f 00; f .3/; f .4/ etc. are to be thought of as functions.

© Springer Science+Business Media New York 2014
P.R. Mercer, More Calculus of a Single Variable, Undergraduate
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172 8 Convex Functions and Taylor’s Theorem

Example 8.1. Let n D 1; 2; 3; : : : :

(i) For f .x/ D ex we have f .n/.x/ D ex .
(ii) For f .x/ D ln.x/ and x > 0; we have f .n/.x/ D .�1/nC1.n � 1/Š=xn:

(iii) If f is a polynomial of degree n then f .n/ is constant and f .nC1/  0:

(iv) For f .x/ D sin.x/; we have

f .2n�1/.x/ D .�1/n�1 cos.x/; f .2n/.x/ D .�1/n sin.x/;

and

f .n/.x/ D sin
	
x C n 

2



: ˘

Example 8.2. Let us assume (and this is reasonable) that for n 2 N,

.1C x/n D
nX

kD0
akx

k:

Then we find a0
ks as follows. Taking derivatives up to order j .0 � j � n/ of each

side we get

n
�
n � 1� � � � �n � .j � 1/��1C x

�n�j D
nX

kDj
k
�
k � 1� � � � �k � .j � 1/�ak xk�j :

If we set x D 0 here, the only nonzero term on the right-hand side is that for which
k D j . Then solving for aj we get

aj D n.n � 1/ � � � .n � .j � 1//
j.j � 1/ � � � .j � .j � 1// D nŠ

.n � j /Šj Š :

And so we have obtained the Binomial formula

.1C x/n D
nX

kD0

 
n

k

!
xk;

where the
�
n
k

�
’s are the binomial coefficients

 
n

k

!
D nŠ

.n � k/ŠkŠ :

We leave it for Exercise 8.3 to find an expression for .aC b/n: See also [19]. ˘



8.1 Higher Derivatives 173

Remark 8.3. Let k; n 2 N, with k � n. The number of ways of selecting
a k-element set from a set having n elements is the binomial coefficient

�
n
k

�
:

The number of ways of arranging k distinct elements is kŠ : The number of
arrangements of k elements taken from a set having n elements is kŠ

�
n
k

� D nŠ
.n�k/Š : ı

Example 8.4. Here is a neat fact about derivatives which we will use in the next
section. It provides a way of computing f 00 using f , but not f 0. We show that if f
is defined on an open interval containing x; and if f 00 exists, then

f 00.x/ D lim
h!0

f .x C h/ � 2f .x/C f .x � h/
h2

:

With h as the independent variable, we apply L’Hospital’s Rule (Theorem 5.13)
to get

lim
h!0

f .x C h/ � 2f .x/C f .x � h/
h2

D lim
h!0

f 0.x C h/ � f 0.x � h/
2h

:

Now if f 00 were continuous, we could apply L’Hospital’s Rule again to get

lim
h!0

f 00.x C h/C f 00.x � h/
2

D f 00.x/:

But since we only assumed that f 00 exists we must take more care. Instead, we write

lim
h!0

f 0.x C h/ � f 0.x � h/
2h

D lim
h!0

1

2

�
f 0.x C h/ � f 0.x/

h
C f 0.x � h/ � f 0.x/

�h
�
;

and this D 1
2
.f 00.x/C f 00.x// D f 00.x/; just as we wanted to show. ˘

Remark 8.5. The quantity

lim
h!0

f .x C h/ � f .x � h/
2h

D lim
h!0

1

2

�
f .x C h/ � f .x/

h
C f .x � h/ � f .x/

�h
�

is the average of the right-hand and left-hand derivatives of f at x. (See
Exercise 4.10.) This average is called the Schwarz derivative, or the symmetric
derivative. It may exist even when f 0.x/ does not: Consider f .x/ D jxj at x D 0:

For Rolle – type theorems and Mean Value – type theorems for the symmetric
derivative, see [2]. For Flett’s Mean Value Theorem (Theorem 7.4) as regards the
symmetric derivative, see [39]. See also Exercise 8.17. ı

Suppose now that f is differentiable on an open interval I and that x0 2 I: The
Mean Value Theorem (Theorem 5.2) says that for each x 2 I there is c between x
and x0 such that

f .x/ � f .x0/ D f 0.c/.x � x0/:
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Therefore jf 0.c/.x � x0/j is the error which comes about, in approximating f .x/
with the constant function f .x0/: The following result carries this one step further—
it provides an expression for the error in approximating f .x/with the linear function

L.x/ D f .x0/C f 0.x0/.x � x0/:
L.x/ mimics f .x/; to the extent that L.x0/ D f .x0/, and L0.x0/ D f 0.x0/: See
Fig. 8.1.

xx0

y

f(x0)
L(x)= f(x0)+ f′(x0)(x−x0)

y = f(x) f(x)−L(x)

Fig. 8.1 L.x/ mimics f .x/; to the extent that L.x0/ D f .x0/ and L0.x0/ D f 0.x0/

Theorem 8.6. (Mean Value Theorem for the Second Derivative) Let f be defined
on an open interval I , let f 00 exist there, and let x0 2 I: Then for each x 2 I; there
is c between x and x0 such that

f .x/ D f .x0/C f 0.x0/.x � x0/C f 00.c/
2

.x � x0/2:

Proof. Let

F.x/ D f .x/ � f .x0/ � f 0.x0/.x � x0/:
Then F.x0/ D F 0.x0/ D 0. So it is reasonable to compare F with the function

G.x/ D .x � x0/2;
which also has G.x0/ D G0.x0/ D 0. Applying Cauchy’s Mean Value Theorem
(Theorem 5.11) two times, there are c1 and c2 between x and x0 such that

F.x/

G.x/
D F.x/ � F.x0/
G.x/ �G.x0/ D F 0.c1/

G0.c1/

D F 0.c1/ � F 0.x0/
G0.c1/ �G0.x0/

D F 00.c2/
G00.c2/

:
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That is, F.x/ D F 00.c2/
G00.c2/

G.x/: Now we observe that F 00.c2/ D f 00.c2/ and that

G00.c2/ D 2: This gives

F.x/ D f 00.c2/
2

.x � x0/2;

as desired (with c D c2). ut
So the Mean Value Theorem for the Second Derivative (Theorem 8.6) says thatˇ̌̌

f 00.c/

2
.x � x0/2

ˇ̌̌
is the error which comes about, in approximating f .x/ with the

linear function L.x/ D f .x0/C f 0.x0/.x � x0/.
If f 00.x/ D 0 for all x 2 .a; b/ then by the Mean Value Theorem for the Second

Derivative (Theorem 8.6), f must be a linear function. (Compare with Lemma 5.6.)
If f 00.x/ � 0 for all x 2 .a; b/ then applying Lemma 5.6 to f 00 D .f 0/0; we see

that f 0 is increasing on .a; b/: In freshman calculus, the graph of such a function is
usually called concave upward. (And �f is called concave downward.)

The following is immediate from the Mean Value Theorem for the Second
Derivative (Theorem 8.6). It says that the graph of a function which is concave
upward lies on or above all of its tangent lines.

Lemma 8.7. Let f be such that f 00 � 0 on .a; b/; and let x0 2 .a; b/: Then for
each x 2 .a; b/;

f .x/ � f .x0/C f 0.x0/.x � x0/:

Proof. Let x0 2 .a; b/: By the Mean Value Theorem for the Second Derivative
(Theorem 8.6), there is c between x and x0 such that

f .x/ D f .x0/C f 0.x0/.x � x0/C f 00.c/
2

.x � x0/2:

Now observing simply that f 00.c/ � 0; the proof is complete. ut
Example 8.8. f .x/ D ex satisfies f 00.x/ > 0 for all x 2 R. The tangent line to
y D f .x/ at x D 0 has equation y D x C 1: So by Lemma 8.7, we have again the
inequality (6.5):

ex > 1C x; except at x D 0 where we have equality: ˘

Example 8.9. f .x/ D ln.x/ satisfies f 00.x/ < 0 for x > 0. The tangent line to
y D f .x/ at x D 1 has equation y D x � 1: So by Lemma 8.7, we have again the
inequality (6.7):

ln.x/ < x � 1; except at x D 1 where we have equality: ˘
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Example 8.10. Again, f .x/ D ln.x/ satisfies f 00.x/ < 0 for x > 0. The tangent
line to y D f .x/ at x D e has equation y D x=e: Therefore, by Lemma 8.7,
ln.x/ < x=e for x > 0: That is,

xe < ex;

and in particular,

 e < e :

Exercise 8.19 contains a neat proof that xe < ex implies the AGM Inequality
(Theorem 2.10). ˘

Also Immediate from the Mean Value Theorem for the Second Derivative
(Theorem 8.6) is the Second Derivative Test, which we leave for Exercise 8.18.
It says that if f 00 exists on .a; b/ and if for some c 2 .a; b/ we have f 0.c/ D 0;

then f 00.c/ > 0 implies that f has a local minimum at c; and f 00.c/ < 0 implies
that f has a local maximum at c: See also Exercise 8.54.

8.2 Convex Functions

Let x; y 2 R with x < y. For t 2 Œ0; 1�; the expression .1 � t /x C ty is a natural
parameterization of the interval Œx; y�. For example, t D 0 gives x; t D 1=3 gives
2
3
x C 1

3
y; t D 1=2 gives the midpoint .x C y/=2; and t D 1 gives y: See Fig. 8.2.

t=1
3

t=1
2

t=7
8

t=1t=0

(1−t)x + ty:
x y

Fig. 8.2 .1� t /x C ty for a few values of t 2 Œ0; 1�

Now let f be a function defined on some interval I . Then f is convex on I
means that for any x; y 2 I with x < y,

f
�
.1 � t /x C ty

� � .1 � t /f .x/C tf .y/ for every t 2 .0; 1/:

And f being strictly convex means that the � above can be replaced with < . So
geometrically, a strictly convex function is one whose graph lies below all of its
chords. See Fig. 8.3.
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v = f(u)
v

u
x y(1−t)x+ty

f((1−t)x+ty)

(1−t)f(x) + tf(y) 

Fig. 8.3 A convex function: f
�
.1� t /x C ty

� � .1� t /f .x/C tf .y/ for every t 2 Œ0; 1�

The function f is concave, or strictly concave if these inequalities are reversed.
Consequently, f being concave means that �f is convex.

Remark 8.11. Let f be continuous on Œa; b� and differentiable on .a; b/: Applying
Rolle’s Theorem (Theorem 5.1) to g.t/ D f ..1 � t /aC tb/��.1�t /f .a/Ctf .b/�
on Œ0; 1� gives another proof of the Mean Value Theorem (Theorem 5.2). This is
essentially the proof outlined in Exercise 5.9; see also Exercise 5.11. ı

The convexity condition can be tricky to verify, depending on the nature of f:
So the following result is often used in practice. It gives a sufficient condition for a
function to be convex.

Lemma 8.12. If f 00 � 0 on .a; b/; then f is convex on .a; b/. That is, if f is
concave upward on .a; b/; then f is convex on .a; b/.

Proof. Let x; y 2 .a; b/. Then ’ D .1 � t /x C ty 2 .a; b/ for t 2 Œ0; 1�.
By Lemma 8.7,

f .x/ � f .’/C f 0.’/.x � ’/ and f .y/ � f .’/C f 0.’/.y � ’/:

Therefore

.1 � t /f .x/C tf .y/ � .1 � t /f .’/C tf .’/C .1 � t /f 0.’/.x � ’/C tf 0.’/.y � ’/
D f .’/C f 0.’/

�
.1 � t /x � .1 � t /’C ty � t’�

D f .’/C f 0.’/
�
’ � ’� D f .’/:

That is, .1 � t /f .x/ C tf .y/ � f .’/ D f
�
.1 � t /x C ty

�
; and so f is convex.

(We point out that the same argument shows that if f 00 > 0 then f is strictly
convex.) ut
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Example 8.13. One can use Lemma 8.12 (checking that f 00 � 0; or > 0; or � 0;

or < 0; as the case may be) to verify the following.

(i) xr is convex on Œ0;1/ if r > 1:
(ii) x3 is strictly concave on .�1; 0/ and strictly convex on .0;1/:

(iii) ex strictly convex on .�1;C1/.
(iv) ln.x/ is strictly concave on .0;C1/:

(v) x ln.x/ is strictly convex on .0;C1/:

(vi) sin.x/ is strictly concave on .0;  /:
(vii) cos.x/ is strictly concave on Œ0;  =2/ and strictly convex on . =2;  �:

(viii) tan.x/ is strictly concave on .� =2; 0/ and strictly convex on .0;  =2/: ˘
Example 8.14. What is known as Jordan’s Inequality is the left-hand side of the
pair of inequalities

2

 
x � sin.x/ � x for x 2 Œ0;  =2�:

These are illustrated in Fig. 8.4. Here we provide a simple proof using the fact
that f .x/ D sin.x/ is concave on Œ0;  =2�: Here, f 00.x/ D � sin.x/ � 0; so by
Lemma 8.7 the graph of f lies below its tangent lines on Œ0;  =2� and at x D 0

in particular. This is the right-hand inequality. By Lemma 8.12, the graph of f lies
above the chord between the points .0; 0/ and . =2; sin. =2// D . =2; 1/: This is
the left-hand inequality. ˘

y

x
π

2

1

y=x
y= 2

π
x

y = sin(x)

Fig. 8.4 Example 8.14. Jordan’s Inequality: 2
 
x � sin.x/ � x for x 2 Œ0;  =2�

Example 8.15. We have observed that ln.x/ is strictly concave on .0;1/:

So � ln.x/ is strictly convex there, and the definition of convexity gives

.1 � t / ln x C t lny < ln
�
.1 � t /x C ty

�
; for t 2 Œ0; 1� and x; y 2 .0;1/:
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Applying the exponential function to both sides we obtain

x.1�t/yt < .1 � t /x C ty :

This is the weighted AGM Inequality with n=2 (Corollary 6.16). We have seen that
this is equivalent to Young’s Inequality (Corollary 6.19):

ab � ap

p
C bq

q

�
where

1

p
C 1

q
D 1

�
:

These results can also be obtained by using the fact that ex is convex on .�1;C1/.
We leave this for Exercise 8.34. ˘

We close this section by showing that the converse of Lemma 8.12 is also true,
as long as f 00 exists.

Lemma 8.16. If f is convex on .a; b/ and f 00 exists, then f 00 � 0: That is, if f is
convex on .a; b/ and f 00 exists there, then f is concave upward on .a; b/.

Proof. Let x 2 .a; b/ and choose h > 0 small enough that .x � h; x C h/ � .a; b/:

We write x D .1 � 1
2
/.x � h/C 1

2
.x C h/: Then since f is convex,

f .x/ D f
�
.1 � 1

2
/.x � h/C 1

2
.x C h/

� � .1 � 1
2
/f .x � h/C 1

2
f .x C h/:

Therefore f .x � h/ � 2f .x/ C f .x C h/ � 0: Now we saw in Example 8.4 that
since f 00 exists,

f 00.x/ D lim
h!0

f .x C h/ � 2f .x/C f .x � h/
h2

;

and so must have f 00.x/ � 0; as desired. ut
The paper [7] contains a thorough treatment of many of the various geometric

characterizations of a convex function.

8.3 Jensen’s Inequality

The big theorem in the world of convex functions is due to Danish mathematician
J.W. Jensen (1859–1925). Many of the most important results related to convexity
follow from Jensen’s Inequality. In the definition of convexity, we have

f
�
.1 � t /x C ty

� � .1 � t /f .x/C tf .y/:

The idea in Jensen’s Inequality is that the x and y can be replaced by any number of
points in I; and the .1� t /xC ty can be replaced by any weighted Arithmetic Mean
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of these points. The proof is an easy consequence of Lemma 8.16 if we assume that
f 00 exists; we discuss a more general version at the end of this section.

Theorem 8.17. (Jensen’s Inequality) Let f be convex on .a; b/ and let f 00 exist
there. For n � 2; let x1; x2; : : : ; xn 2 .a; b/; and let w1;w2; : : : ;wn satisfy wj > 0;

with
nP

jD1
wj D 1: Then

f

0
@ nX
jD1

wj xj

1
A �

nX
jD1

wj f .xj /:

Proof. Let A D
nP

jD1
wj xj which is in .a; b/, because A is a weighted Arithmetic

Mean of the xj ’s. Since f is convex and f 00 exists, f 00 � 0 by Lemma 8.16. Then
by Lemma 8.7, for each xj we have

f .xj / � f .A/C f 0.A/.xj � A/:

Now multiplying by wj and summing from 1 to n we get

nX
jD1

wj f .xj / �
nX

jD1
wj f .A/C

nX
jD1

wj f
0.A/.xj � A/

D
nX

jD1
wj f .A/C f 0.A/

nX
jD1

wj .xj � A/

D
nX

jD1
wj f .A/C f 0.A/.0/:

That is,
nP

jD1
wj f .xj / �

nP
jD1

wj f .A/ D f
� nP
jD1

wj xj
�
; as desired. ut

For an interesting geometric explanation of Jensen’s Inequality (Theorem 8.17),
see [35]. We point out that in the equal weights case w1 D w2 D � � � D wn D 1=n,
Jensen’s Inequality reads:

f

0
@1
n

nX
jD1

xj

1
A � 1

n

nX
jD1

f .xj /: (8.1)

Example 8.18. We showed in Example 8.15 that the concavity of ln.x/ can be used
to obtain the weighted AGM Inequality with n D 2 (Corollary 6.16). More generally,
the concavity of ln.x/ and Jensen’s Inequality (Theorem 8.17) can be used to obtain
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the full weighted AGM Inequality (Theorem 6.15), as follows. Let x1; x2; : : : ; xn

and w1;w2; : : : ;wn be positive numbers with
nP

jD1
wj D 1: Let f .x/ D ln.x/; which

is strictly concave on .0;1/: Jensen’s Inequality (� ln.x/ is strictly convex) gives

nX
jD1

wj ln.xj / � ln

0
@ nX
jD1

wj xj

1
A :

The left-hand side here is
nP

jD1
ln.x

wj
j / D ln.xw1

1 � xw2
2 � � � xwn

n /; and applying the

exponential function to both sides we obtain

x
w1
1 � xw2

2 � � � xwn
n �

nX
jD1

wj xj ;

just as we wanted to show. Of course this can also be obtained by using the fact that
ex is convex on .�1;C1/. We leave this for Exercise 8.43. ˘
Example 8.19. Jensen’s Inequality (Theorem 8.17) can be used to obtain the
Cauchy–Schwarz Inequality (Theorem 2.18), as follows. Let a1; a2; : : : ; an; and

b1; b2; : : : ; bn be real numbers. We may assume that
nP

kD1
a2k ¤ 0: Then applying

Jensen’s Inequality to the convex function f .x/ D x2; with wj D a2j =
nP

kD1
a2k (so

that
nP

jD1
wj D 1) and xj D aj bj =wj , we get

0
@ nX
jD1

wj xj

1
A
2

�
nX

jD1
wj x

2
j :

After some tidying, this reads

0
@ nX
jD1

aj bj

1
A
2

�
nX

jD1
a2j

nX
jD1

b2j ;

which is the Cauchy–Schwarz Inequality. ˘
We close this section by showing that Jensen’s Inequality (Theorem 8.17)

actually holds assuming only that f is convex—that is, without assuming even that
f is continuous, much less f 00 � 0:We prove it for the equal weights case (8.1) and
leave the more general version for Exercise 8.39. The proof is exactly analogous to
Cauchy’s proof of the AGM Inequality (Theorem 2.10) which we provided at the
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end of Sect. 2.2. In fact, it was a careful analysis of Cauchy’s proof of the AGM
inequality which led Jensen to discover his inequality and thus initiate the study of
convex functions [40].

Proof. If n D 2 then Jensen’s Inequality is simply the convexity condition (with
t D 1=2). If n D 4 we use the condition twice:

f

�
1

4
.x1 C x2 C x3 C x4/

�
D f

�
1

2

�
1
2
Œx1 C x2�C 1

2
Œx3 C x4�

��

� 1

2

�
f
�
1
2
Œx1 C x2�C 1

2
Œx3 C x4�

��

D 1

2

�
f
�
1
2

�
Œx1 C x2�C Œx3 C x4�

���

� 1

2

1

2
f
�
Œx1 C x2�C Œx3 C x4�

�

D 1

4
f .x1 C x2 C x3 C x4/:

And for n D 8; we would use the n D 4 case twice. Etcetera: We could continue
this procedure indefinitely, and so we may assume that Jensen’s Inequality holds for
any n of the form 2m .m � 0/: For any (other) n; we choosem so large that 2m > n:
Now writing

A D 1

n

nX
jD1

xj ;

we observe that

x1 C x2 C � � � C xn C .2m � n/A
2m

D A:

The numerator of the left-hand side here has 2m members in the sum and so we can
apply what we have proved so far to see that

f .A/ D f

�
x1 C x2 C � � � C xn C .2m � n/A

2m

�

� 1

2m

�
f .x1/C f .x2/C � � � C f .xn/C .2m � n/f .A/ �:
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That is,

f .A/ � 1

2m

�
f .x1/C f .x2/C � � � C f .xn/ � nf .A/ �C f .A/;

and so

f .A/ � 1

n

�
f .x1/C f .x2/C � � � C f .xn/

�
:

This is (8.1), as desired. ut

8.4 Taylor’s Theorem: e Is Irrational

Looking at the Mean Value Theorem (Theorem 5.2) and then the Mean Value
Theorem for the Second Derivative (Theorem 8.6) one might ask, “why stop at two
derivatives?” Indeed, continuing on to the (n+1)st derivative yields the important
theorem below, named for English mathematician Brook Taylor (1685–1731). The
proof we provide is just an extension of the proof of the Mean Value Theorem for
the Second Derivative. (We shall prove it an entirely different way in Sect. 11.4.)

Theorem 8.20. (Taylor’s Theorem) Let f be such that f .nC1/ exists on some open
interval I and let x0 2 I: Then for each x 2 I there is c between x and x0 such that

f .x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.c/

.nC 1/Š
.x � x0/nC1:

Proof. Let

F.x/ D f .x/ �
nX

kD0

f .k/.x0/

kŠ
.x � x0/k:

Then F.x0/ D F 0.x0/ D � � � D F .n/.x0/ D 0. So it is reasonable to compare F
with the function

G.x/ D .x � x0/nC1;

which also has G.x0/ D G0.x0/ D � � � D G.n/.x0/ D 0. Applying Cauchy’s Mean
Value Theorem (Theorem 5.11) n+1 times, there are c1; c2; : : : cnC1 between x and
x0 such that

F.x/

G.x/
D F.x/ � F.x0/
G.x/ �G.x0/ D F 0.c1/

G0.c1/
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D F 0.c1/ � F 0.x0/
G0.c1/ �G0.x0/

D F 00.c2/
G00.c2/

D F 0.c2/ � F 0.x0/
G0.c2/ �G0.x0/

D � � � D F .nC1/.cnC1/
G.nC1/.cnC1/

:

That is,

F.x/ D F .nC1/.cnC1/
G.nC1/.cnC1/

G.x/:

Now we observe that F .nC1/.cnC1/ D f .nC1/.cnC1/ and that G.nC1/.cnC1/ D
.nC 1/Š : This gives

F.x/ D f .nC1/.cnC1/
.nC 1/Š

.x � x0/nC1;

as desired (with c D cnC1.) ut
In Taylor’s Theorem (Theorem 8.20), the polynomial

pn.x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k

is called the Taylor polynomial of degree n; at x D x0: The term

f .nC1/.c/
.nC 1/Š

.x � x0/nC1

is called the remainder term. It gives the error which arises, in approximating f .x/
with pn.x/: The polynomial pn.x/ mimics f .x/ to the extent that

f .x0/ D p.x0/; f 0.x0/ D p0.x0/; : : : ; f .n/.x0/ D p.n/.x0/:

So we might expect that the error should be small if n is large and/or if x is close
to x0:And this expectation seems to be supported by the form of the remainder term.
(See also Exercise 8.59.) Of course, having n D 0 and n D 1 gives the Mean Value
Theorem (Theorem 5.2) and the Mean Value Theorem for the Second Derivative
(Theorem 8.6) respectively.

Example 8.21. For f .x/ D ex and for k D 0; 1; 2; : : : ;

f .k/.x/ D ex and so f .k/.0/ D 1:
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So by Taylor’s Theorem (Theorem 8.20), with x0 D 0; there is c between 0 and x
such that

ex D
nX

kD0

f .k/.0/

kŠ
xk C f .nC1/.c/

.nC 1/Š
xnC1

D
nX

kD0

xk

kŠ
C ecxnC1

.nC 1/Š

D 1C x C x2

2Š
C x3

3Š
C � � � C xn

nŠ
C ecxnC1

.nC 1/Š
:

In particular, if n is odd then

ex � 1C x C x2

2Š
C x3

3Š
C � � � C xn

nŠ
;

with equality holding only for x D 0. This vastly improves inequality (6.5), namely
ex � 1C x: (For n even the same inequality holds for x � 0, and it is reversed for
x � 0:) ˘
Example 8.22. We prove that e is irrational. Taking x D 1 in Example 8.21, there
is c between 0 and 1 such that

e D 1C 1C 1

2Š
C 1

3Š
C � � � C 1

nŠ
C ec

.nC 1/Š
:

Looking for a contradiction, we suppose that e is rational. That is, e D a=b; where
a and b are positive integers (since e > 0). Then

a

b
D 1C 1C 1

2Š
C � � � C 1

nŠ
C ec

.nC 1/Š
;

and so

nŠ
a

b
D nŠ

�
1C 1C 1

2Š
C � � � C 1

nŠ

�
C nŠ

ec

.nC 1/Š

D nŠ

�
1C 1C 1

2Š
C � � � C 1

nŠ

�
C ec

nC 1
:
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The first term on the right-hand side is an integer for any n. If n � b; then the
left-hand side is an integer. And if n > ec then the second term on the right-
hand side is between 0 and 1: So choosing n > maxfec; bg yields a contradiction.
Therefore, e must be irrational. ˘

We generalize Example 8.22 considerably in Theorem 12.3 and then
Corollary 12.4, showing that er is irrational for any nonzero rational number r:

Remark 8.23. Euler was the first to prove that e is irrational, in 1737. Saying that e
is irrational is the same as saying that e is not the solution to any linear equation axC
b D 0with integer coefficients. The French mathematician J. Liouville (1809–1882)
proved around 1844 that e is not a solution to any quadratic equation ax2 C bx C
c D 0with integer coefficients. The French mathematician C. Hermite (1822–1901)
proved in 1873 that e is not a solution to any polynomial equation of any degree with
integer coefficients. That is, e is not an algebraic number; it is a transcendental
number. ı
Example 8.24. For x > 0 and f .x/ D ln.x/; and for k D 1; 2; 3; : : : ;

f .k/.x/ D .�1/kC1.k � 1/Š
xk

and so f .k/.1/ D .�1/kC1.k � 1/Š:

So by Taylor’s Theorem (Theorem 8.20), with x0 D 1; there is c between 1 and x
such that

ln.x/ D
nX

kD0

f .k/.1/

kŠ
.x � 1/k C f .nC1/.c/

.nC 1/Š
.x � 1/nC1

D
nX

kD1

.�1/kC1.k � 1/Š
kŠ

.x � 1/k C .�1/nC2nŠ
cnC1.nC 1/Š

.x � 1/nC1

D
nX

kD1

.�1/kC1

k
.x � 1/k C .�1/n

cnC1
.x � 1/nC1

nC 1

D .x � 1/ � .x � 1/2
2

C .x � 1/3
3

� .x � 1/4
4

C � � � C .�1/n
cnC1

.x � 1/nC1

nC 1
:

In particular, if n is odd then

ln.x/ � .x � 1/ � .x � 1/2
2

C .x � 1/3
3

� .x � 1/4
4

C � � � C .x � 1/n
n

;

with equality holding only for x D 1. This considerably improves (6.7), namely
ln.x/ � x � 1: (If n is even the inequality holds for x � 1 and it is reversed for
x � 1:) ˘
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8.5 Taylor Series

The conclusion of Taylor’s Theorem (Theorem 8.20), says that for each x 2 I there
is c between x and x0 such that

f .x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.c/

.nC 1/Š
.x � x0/nC1:

Now if f has derivatives of all orders and it so happens that for a given x; it is the
case that the remainder term

f .nC1/.c/
.nC 1/Š

.x � x0/nC1 ! 0 as n ! 1;

then we may reasonably write (for such x):

f .x/ D
1X
nD0

f .n/.x0/

nŠ
.x � x0/n:

This is called the Taylor series for f about the point x D x0: If x0 D 0 it is often
called the Maclaurin series for f , for Scottish mathematician Colin Maclaurin
(1698–1746).

Example 8.25. Again, for f .x/ D ex and x0 D 0; the remainder term is

f .nC1/.c/
.nC 1/Š

.x � x0/nC1 D ecxnC1

.nC 1/Š
:

We claim that for any given x 2 R;

xN

N Š
! 0 as N ! 1:

Then since c is between 0 and x; the remainder term

ecxnC1

.nC 1/Š
! 0 as n ! 1;

and so the Taylor series for f .x/ D ex about x0 D 0 is

ex D
1X
nD0

f .n/.0/

nŠ
xn D

1X
nD0

xn

nŠ
D 1CxC 1

2Š
x2C 1

3Š
x3C 1

4Š
x4C � � � for all x 2 R :



188 8 Convex Functions and Taylor’s Theorem

Now to verify the claim. Suppose first that x > 0 and take M to be the greatest
integer � x: That is, M � x < M C 1: Then for any N > M;

xN

N Š
D x

N

x

N � 1 � � � x

M C 1

x

M

x

M � 1 � � � x
2

x

1

<
x

N

x

M

x

M � 1 � � � x
2

x

1
D x

N

xM

MŠ
;

which clearly ! 0 as N ! 1: We leave the (very similar) proof for x < 0 to
Exercise 8.62. So the claim is verified. ˘

From Example 8.25 we see that in particular (taking x D 1):

e D
1X
nD0

1

nŠ
D 1C 1C 1

2
C 1

3Š
C 1

4Š
C � � � :

See [50] for a neat geometric argument, based on this series, which shows that e is
irrational.

Example 8.26. For f .x/ D ln.x/ and x0 D 1; the remainder term is

f .nC1/.c/
.nC 1/Š

.x � x0/nC1 D .�1/n
cnC1

.x � 1/nC1

nC 1
D
�
x � 1
c

�nC1
.�1/n
nC 1

:

The reader may verify that for 1=2 � x � 2 and c between x and 1,

�1 � x � 1
c

� 1:

(The cases 1=2 � x � c � 1 and 1 � c � x � 2 should be considered separately.)
Therefore

�
x � 1
c

�nC1
.�1/n
nC 1

! 0 as n ! 1:

So, for 1=2 � x � 2; the Taylor series for f .x/ D ln.x/ about x0 D 1 is

ln.x/ D
1X
nD1

.�1/nC1

n
.x � 1/n

D .x � 1/ � .x � 1/2
2

C .x � 1/3
3

� .x � 1/4
4

C � � � :
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(We shall see in Example 10.10 that this equality in fact holds for 0 < x � 2:)
In particular, taking x D 2 :

ln.2/ D
1X
nD1

.�1/nC1

n
D 1 � 1

2
C 1

3
� 1

4
C � � � :

So we have again found the sum of the Alternating Harmonic series. ˘
We leave it for Exercises 8.65 and 8.66 to verify that for each x 2 R, we have

the Maclaurin series

sin.x/ D
1X
nD0

.�1/nx2nC1

.2nC 1/Š
D x � 1

3Š
x3 C 1

5Š
x5 � 1

7Š
x7 C � � � ;

and

cos.x/ D
1X
nD0

.�1/nx2n
.2n/Š

D 1 � 1

2Š
x2 C 1

4Š
x4 � 1

6Š
x6 C � � � :

(Recall that sine is an odd function, and cosine is an even function. . . )

Exercises

8.1. [18]

(a) Show that
.fg/00

fg
D f 00

f
C g00

g
C 2

f 0

f

g0

g
.

(b) Show that
.f =g/00

f=g
D f 00

f
� g00

g
� 2.f=g/

0

f=g

g0

g
.

8.2. [52] This is an extension of Exercise 5.4.

(a) Let f be continuous on Œa; b� and differentiable on .a; b/ with f .a/ D f .b/

D 0. Show that there is c 2 .a; b/ such that f 0.c/ D f .c/: Hint: Consider
g.x/ D e�xf .x/:

(b) Let f be continuous on Œa; b�, differentiable on .a; b/, and f .k/.a/ D
f .k/.b/ D 0 for k D 0; 1; 2; : : : ; n. Show that there is c 2 .a; b/ such that
f .nC1/.c/ D f .c/:

8.3. (a) Show that

1

2n

nX
kD0

 
n

k

!
D 1 and

nX
kD0
.�1/k

 
n

k

!
D 0:
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(b) Use the Binomial formula .1 C x/n D
nP

kD0
�
n
k

�
xk to find an expression for

.aC b/n.

8.4. (e.g., [5]) Here’s another proof that the sequence f.1C 1
n
/ng is increasing and

bounded above (and hence converges).

(a) Apply the Binomial formula .1C x/n D
nP

kD0

 
n

k

!
xk to

�
1C 1

n

�n
, then simplify

to get

�
1C 1

n

�n
D 1C 1C 1

2Š

�
1 � 1

n

�
C 1

3Š

�
1 � 1

n

��
1 � 2

n

�

C � � � C 1

nŠ

�
1 � 1

n

��
1 � 2

n

�
� � �
�
1 � n � 1

n

�
:

(b) Do the same for
�
1C 1

nC1
�nC1

then conclude that
�
1C 1

n

�n
<
�
1C 1

nC1
�nC1

:

(c) Show that

�
1C 1

n

�n
< 1C 1C 1

2Š
C 1

3Š
C � � � C 1

nŠ
< 1C 1C 1

2
C 1

22
C � � � C 1

2n�1 < 3:

8.5. Let h.x/ D f .x/g.x/: Here we obtain Leibniz’s formula

h.n/.x/ D
nX

kD0

 
n

k

!
f .k/.x/g.n�k/.x/;

where
�
n
k

�
is the binomial coefficient

�
n
k

� D nŠ
kŠ.n�k/Š :

(a) Argue that it is reasonable to assume that

h.n/.x/ D
nX

kD0
akf

.k/.x/g.n�k/.x/ :

(b) Set f .x/ D xp and g.x/ D xq with pCq D n; to show that nŠ D akkŠ.n�k/Š:
Now solve for ak .

8.6. [37]

(a) Show that

2nC1 � 2 D
nX

kD1

 
nC 1

k

!
:
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(b) Use the AGM Inequality (Theorem 2.10) to show that

.2nC1 � 2/n � .n.nC 1/Š/n

nQ
kD1
.kŠ/2

;

and that equality holds if and only if n D 1 or n D 2:

8.7. [20] Here’s a slick way of verifying the trigonometric identities

sin.x C y/ D sin.x/ cos.y/C sin.y/ cos.x/ and

cos.x C y/ D cos.x/ cos.y/ � sin.x/ sin.y/:

(a) Fix y and set

f .x/ D sin.x C y/ � �
sin.x/ cos.y/C sin.y/ cos.x/

�
;

then show that f 0 C f 00 D 0:

(b) Set

g.x/ D �
f 0.x/

�2 C �
f .x/

�2
;

and conclude that g0 D 0:

(c) So g is constant—find the constant.
(d) What does this say about f and f 0 ?

8.8. [8]

(a) Show that y D sin.x/ and y D cos.x/ each satisfy the differential equation

y00 C y D 0:

(b) Show, as follows, that any solution to this differential equation is of the form
y D c1 sin.x/C c2 cos.x/; where c1 and c2 are constants. Set

p.x/ D y cos.x/ � y0 sin.x/

q.x/ D y sin.x/C y0 cos.x/:

Show that p0.x/  q0.x/  0; so that p.x/ and q.x/ are each constant. Now
eliminate y0 in the pair of equations above.

8.9. [24] For x > 0 and n D 1; 2; : : : let f .x/ D xn ln.x/:

(a) Show that

1

nŠ
f .n/.x/ D 1

n
C 1

nC 1
C � � � C 1

3
C 1

2
C 1C ln.x/:

(b) Conclude that Euler’s constant ” D lim
n!1

1
nŠ
f .n/. 1

n
/.
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8.10. [27] Let

p.x/ D anx
n C an�1xn�1 C � � � C a1x C a0

be a polynomial of degree n; with roots x1; x2; : : : ; xn:

(a) Show that for x ¤ xj ,

p0.x/
p.x/

D
nX

jD1

1

x � xj :

(b) Show that if each root xj is real, then

.p0.x//2 � p.x/p00.x/ � .p0.x//2

n
; or .n� 1/.p0.x//2 � np.x/p00.x/ � 0:

Hint: Differentiate the result in (a) and apply the Cauchy–Schwarz Inequality
(Theorem 2.18) to the result.

Notice that if x D 0 this reduces to simply .n � 1/a21 � 2na2a0 � 0: Therefore,
if .n � 1/a21 � 2na2a0 < 0; then p must have at least one, and hence at least two,
complex roots. So if p is a quadratic we get the familiar discriminant condition
a21 � 4a2a0 � 0 for real roots.

8.11. Prove, using Cauchy’s Mean Value Theorem (Theorem 5.11) instead of
L’Hospital’s Rule, that if f 00 exists then

f 00.x/ D lim
h!0

f .x C h/ � 2f .x/C f .x � h/
h2

:

8.12. (a) Show that if f 00 is continuous, then

f 00.x/ D lim
h!0

f .x C 3h/C 3f .x � h/
6h2

:

(b) Show that this still holds even if we assume only that f 00 exists.

8.13. (a) Show that if f .3/ is continuous, then

f .3/.x/ D lim
h!0

3f .x C 2h/ � 10f .x C h/ � 6f .x � h/ � f .x � 2h/
2h3

:

(b) Find a; b; c such that if f .3/ is continuous, then

f .3/.x/ D lim
h!0

af .x C 3h/C bf .x C 2h/C cf .x � h/ � f .x/
h3

:
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8.14. [29] In Exercise 1.12 we showed that

ˇ̌
f .x C h/h � 2hf .x/C hf .x � h/ˇ̌

is twice the area A.x; h/ of the triangle determined by .x�h; f .x�h//; .x; f .x//;
and .x C h; f .x C h//: Conclude that if f 00 exists, then f 00.x/ D lim

h!0

2A.x; h/

h3
:

8.15. [5] Suppose that f is continuous on Œa; b� and that f 00 exists on .a; b/:
Suppose that the chord between the points .a; f .a// and .b; f .b// intersects the
graph of f at .x0; f .x0//; where a < x0 < b: Prove that there is a point
c 2 .a; b/ such that f 00.c/ D 0: Hint: Begin by applying the Mean Value Theorem
(Theorem 5.2) on Œa; x0� and on Œx0; b�:

8.16. [32] Here’s another proof of the Mean Value Theorem for the Second
Derivative (Theorem 8.6). Let

F.t/ D f .t/ � f .x0/ � f 0.x0/.t � x0/CK.t � x0/2;

where K is chosen so that F.x/ D 0:

(a) Verify that

K D f .x/ � f .x0/ � f 0.x0/.x � x0/
.x � x0/2 :

(b) Apply Rolle’s Theorem (Theorem 5.1) to F on Œx; x0� to show there is c 2
.x; x0/ such that F 0.c/ D 0:

(c) Now apply Rolle’s Theorem to F 0 on Œx; c�:

8.17. [33] Write

f Œ1�.x/ D lim
h!0

f .x C h/ � f .x � h/
2h

for the Schwarz derivative, or the symmetric derivative. The second Schwarz
derivative, or the second symmetric derivative is:

f Œ2�.x/ D lim
h!0

f .x C h/ � 2f .x/C f .x � h/
h2

:

It is easy to see (e.g., Exercise 4.10) that if f 0.x/ exists, then f 0.x/ D f Œ1�.x/ and
we know that if f 0  0 then f is constant.

(a) If f Œ1� D 0 then is f necessarily constant?
(b) In Example 8.4 we showed that if f 00.x/ exists, then f 00.x/ D f Œ2�.x/ and we

know that if f 00  0 then f is a linear function. Show that if f Œ2�.x/ D 0 for
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all x 2 .a; b/ then f is a linear function on Œa; b�, as follows. If f is linear, it
must look like f .b/�f .a/

b�a .x � a/C f .a/: So consider

F.x/ D Fn.x/ D f .x/ �
�
f .b/ � f .a/

b � a .x � a/C f .a/

�
C .x � a/.x � b/

n
:

Now use F Œ2�.x/ D 2=n to show that F.x/ � 0:

(c) Consider

G.x/ D Gn.x/ D f .b/ � f .a/
b � a .x � a/C f .a/ � f .x/C .x � a/.x � b/

n
;

and show that G.x/ � 0:

(d) Combine (b) and (c) and let n ! 1:

8.18. This is the Second Derivative Test. Suppose that f 00 exists on .a; b/ and that
for some c 2 .a; b/; we have f 0.c/ D 0: Show that if f 00.c/ > 0 then f has a local
minimum at c: Show that if f 00.c/ < 0 then f has a local maximum at c: What if
f 00.c/ D 0‹ What if f 00.c/ does not exist? Draw generic pictures which illustrate
these cases.

8.19. [44] We saw in Example 8.10 that xe < ex for x ¤ e: Use this to prove the
AGM Inequality (Theorem 2.10) as follows. Set x D eaj =G for j D 1; 2; : : : n;

then multiply.

8.20. [14] Suppose that f > 0 and has two derivatives on R. Show that there is
x0 2 R such that f 00.x0/ � 0:

8.21. [13] Let f be a function with continuous second derivative on R. Show that
if lim
n!1f .x/ D 0 and f 00 is bounded, then lim

n!1f 0.x/ D 0.

8.22. [12] Extend Lemma 8.7 as follows. Show that if f is convex and differen-
tiable on .a; b/ with x0 2 .a; b/ then for x 2 .a; b/,

f .x/ � f .x0/C f 0.x0/.x � x0/:

Hint: Show that the convexity condition can be manipulated to obtain (for t ¤ 0 and
x ¤ x0)

f .t.x � x0/C x0/ � f .x0/
t.x � x0/ .x � x0/ � f .x/ � f .x0/;

then let t ! 0; and hence t .x � x0/ ! 0:

8.23. [12] Show that the converse of the Exercise 8.22 holds: Suppose that f is
differentiable on .a; b/ and for each x; x0 2 .a; b/,

f .x/ � f .x0/C f 0.x0/.x � x0/:
Then f is convex on .a; b/:
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8.24. [10]

(a) Suppose that f is convex on Œa; b�, f 00 exists, and that f < 1. Show that
1=.1 � f / is convex.

(b) Let f be such that f 00 is continuous on Œa; b�: Show that

f .x/ �mx
2

2
and M

x2

2
� f .x/

are each convex, where m D min
x2Œa;b�ff

00.x/g and M D max
x2Œa;b�ff

00.x/g
(m and M exist by the Extreme Value Theorem (Theorem 3.23).)

8.25. Here is another proof of Lemma 8.12, that if f 00 � 0 on .a; b/ then f is
convex on .a; b/.

(a) Since f 00 � 0; f 0 is increasing. Conclude that for x < c < y,

f .c/ � f .x/
c � x � f .y/ � f .c/

y � c :

(b) Therefore

f .c/ � .y � c/f .x/C .c � x/f .y/
y � x :

(c) Now translate this to a statement involving t and 1 � t:
8.26. (a) Suppose that f is convex on Œa; b� and let a � x1 < x2 < x3 � b. In the
definition of convexity set x D x1; y D x3; and x2 D .1 � t /x1 C tx3 to show that

.x3 � x2/f .x1/C .x3 � x1/f .x2/C .x2 � x1/f .x3/ � 0:

(b) Let x1 < x2 < x3: In Exercise 1.12 we saw that the area A of the triangle T
with vertices .x1; y1/; .x2; y2/; .x3; y3/ is

A D 1

2

ˇ̌
ˇx1.y2 � y3/C x3.y1 � y2/C x2.y3 � y1/

ˇ̌
ˇ;

for x1 < x2 < x3: Show that if f is convex on Œa; b� then

1

2

�
x1.f .x2/ � f .x3//C x3.f .x1/ � f .x2//C x2.f .x3/ � f .x1//

� � 0

whenever a � x1 < x2 < x3 � b:

(c) Draw a picture which shows what (b) says.
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8.27. [31] Let a; b > 0; with aC b D 1: Exercise 2.18 asks to show that

�
aC 1

a

�2
C
�
b C 1

b

�2
� 25

2
:

Here’s another way. (a) Show that f .x/ D .x C 1=x/2 is convex on .0; 1/; and so

f .a/C f .b/

2
� f

�aC b

2

�
:

(b) Let ’ > 0: Prove the more general inequality

�
aC 1

a

�’
C
�
b C 1

b

�’
� 5’

2’�1 :

8.28. [3] Let 0 < a � b: Show that

aC b

2
� �

aabb
� 1
aCb :

Hint: Set x D a=b and show that

ln

�
x C 1

2

�
� x

x C 1
ln.x/:

8.29. Show that for x 2 .0;  =4/,

x < tan.x/ <
4

 
x:

8.30. [25, 45]

(a) Show that for x 2 .0;  =2/; we have cos.x/ > 1 � 2x= :
(b) Conclude that for such x,

tan.x/ <
 x

  � 2x :

(c) Show that for x 2 .0;  =6/,
2x

  � 2x < sin.x/:

8.31. [34] Let � =2 < �j <  =2 for j D 1; 2; : : : ; n: Show that

�
cos.�1/ cos.�2/ � � � cos.�n/

�1=n � cos
	
�1C�2C���C�n

n



:

Hint: Consider f .x/ D ln.cos.x//:
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8.32. [47] Let x; y 2 .0;  /, with x ¤ y: Show that

sin
�p
xy
�
>
p

sin.x/ sin.y/:

Hint: Consider f .x/ D ln.sin.ex//: Can you show that

sin .xpyq/ > .sin.x//p .sin.y//q ;

with p; q > 1 satisfying 1=p C 1=q D 1?

8.33. [1]

(a) Let f be convex on Œa; c� and let a < b < c: Show that

f .a � b C c/ � f .a/ � f .b/C f .c/:

Hint: Write b D .1 � t /aC tc and observe that a � b C c D taC .1 � t /c:
(b) Draw a picture which illustrates this inequality.

8.34. Use the fact that ex is convex on .�1;C1/ to prove the weighted
AGM Inequality with n D 2 (Corollary 6.16). Deduce Young’s Inequality
(Corollary 6.19).

8.35. A function f W Œa; b� ! R is logarithmically convex if for every
x; y 2 Œa; b�,

f ..1 � t /x C ty/ � f .x/1�t f .y/t for every t 2 Œ0; 1�:

(a) Show that for f > 0; f being logarithmically convex is equivalent to ln.f /
being convex.

(b) Show that if f is logarithmically convex then f convex.
(c) Show that for a; b 2 Œ0;  =4�,

p
ab � tan

�aC b

2

� � tan aC tan b

2

(d) Find a function which is convex but not logarithmically convex.

8.36. [15, 16] Let a1; a2; : : : ; an be positive numbers and denote by G their
Geometric Mean. Prove the AGM Inequality (Theorem 2.10) as follows.

(a) Show that

g.x/ D G

n

nX
jD1

	aj
G


x
is convex.
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(b) Verify that g0.0/ D 0 and use this to conclude that g.0/ � g.1/:

(c) Can you extend this to prove the weighted AGM Inequality (Theorem 6.15)?

8.37. [30, 46] Fill in the details of another proof of Jensen’s Inequality (Theo-

rem 8.17), as follows. Set A D
nP

jD1
wj xj ; and for 0 � t � 1, let

g.t/ D
nX

jD1
wj f ..1 � t /xj C tA/:

(a) Show that g00 � 0: (b) Conclude that g0.t/ � g0.1/: (c) Compute g00.1/ then
conclude that g.0/ � g.1/: (d) Write down what g.0/ � g.1/ says.

8.38. Fill in the details of another proof of Jensen’s Inequality (Theorem 8.17)

which is closely related to the proof in Exercise 8.37. Set A D
nP

jD1
wj xj ; and for

0 � t � 1, let

g.t/ D
nX

jD1
wj f ..1 � t /xj C tA/:

(a) Apply the Mean Value Theorem for the Second Derivative (Theorem 8.6) to get
g.0/ D g.1/C g0.1/.0 � 1/C g00.c/

2
.0 � 1/2.

(b) Compute each of g.0/; g.1/; g0.1/; and g00.c/ to see what (a) says.
(c) Now use the convexity of f:

8.39. Fill in the details, as follows, of a proof of Jensen’s Inequality (Theorem 8.17)
which does not assume that f 00 exists. The n D 2 case is the definition of convexity.
Now write

f

0
@ nX
jD1

wj xj

1
A D f

0
@.1 � wn/

n�1X
jD1

wj
1 � wn

xj C wnxn

1
A

and proceed by induction. (Compare with Exercise 6.30.)

8.40. [43]

(a) Show that

1

n

nX
jD1

sin.xj / � sin

0
@ 1
n

nX
jD1

xj

1
A for xj 2 .0;  /

and

1

n

nX
jD1

tan.xj / � tan

0
@1
n

nX
jD1

xj

1
A for xj 2 .0;  =2/:
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(b) Find and prove a similar inequality for cos.x/; on .� =2;  =2/:
(c) Show that a triangle with interior angles A;B;C satisfies

sin.A/C sin.B/C sin.C / � 3
p
3

2
and sin.A/ sin.B/ sin.C / � 3

p
3

8
:

8.41. Apply Jensen’s Inequality (Theorem 8.17) to f .x/ D x ln.x/; with n D 3; to

prove that for a; b; c > 0 we have aabbcc � �
aCbCc

3

�aCbCc
:

8.42. [41] Use Jensen’s Inequality (Theorem 8.17) and the AGM Inequality
(Theorem 2.10) to show that for 0 < a1 � a2 � � � � � an,

nX
jD1

anC1
j � a1a2 � � � an

nX
jD1

aj :

(We saw another way to do this in Exercise 2.56.)

8.43. Use Jensen’s Inequality (Theorem 8.17) and the fact that ex is convex on
.�1;C1/ to prove the weighted AGM Inequality (Theorem 6.15).

8.44. [26, 51] Let w1; : : : ;wn > 0 satisfy
nP

jD1
wj D 1: Let 0 < x1 < � � � < xn <

1=2; yj D 1 � xj ,

A1 D
nX

jD1
wj xj ; and A2 D

nX
jD1

wj yj D 1 � A1 :

Apply Jensen’s Inequality (Theorem 8.17) to f .1� x/� f .x/ to on .0; 1/ to prove
Levinson’s Inequality:

f .3/ � 0 on .0; 1/ ) f .A2/ � f .A1/ �
nX

jD1
wj f .yj / �

nX
jD1

wj f .xj / :

8.45. [17]. Let ’1; ’2; ’3 be the measures (in radians) of the angles in an acute
triangle. (a) Show that

’1

’2’3
tan.’1/C ’2

’1’3
tan.’2/C ’3

’1’2
tan.’3/ � 3

p
3:

(b) Show that

’1
’2’3

.3C tan2.’1//
1=4 C ’2

’1’3
.3C tan2.’2//

1=4 C ’3
’1’2

.3C tan2.’3//
1=4 � 3

p
3:

Hint for both: Chebyshev’s Inequality (Exercise 2.54), AGM Inequality
(Theorem 2.10), and Jensen’s Inequality (Theorem 8.17).
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8.46. [49] The conclusion of Jensen’s Inequality (Theorem 8.17) on Œa; b� reads

0 �
nX

jD1
wj f .xj / � f �

nX
jD1

wj xj
�
:

Prove the upper bound

nX
jD1

wj f .xj /�f �
nX

jD1
wj xj

� � max
0�t�1

�
.1� t /f .a/C tf .b/�f �.1� t /aC tb

��
:

Hint: In
nP

jD1
wj f .xj / � f .

nP
jD1

wj xj /; begin by writing xj D .1 � tj /a C tj b and

use the fact that f is convex.

8.47. [22] For j D 1; 2; : : : ; n; let 0 � xj � 1 and wj > 0 with
nP

jD1
wj D 1:

Show that

w1
1C x1

C w2
1C x2

C � � � C wn
1C xn

� 1

1C x
w1
1 x

w2
2 � � � xwn

n

:

Hint: First dispense with cases in which any xj D 0. Then show that

f .t/ D 1

1C et

is concave, and apply Jensen’s Inequality (Theorem 8.17), with tj D ln.xj /:

8.48. Let x1; x2; � � �; xn be positive numbers. For r ¤ 0 their Power Mean Mr is:

Mr D
0
@1
n

nX
jD1

xrj

1
A
1=r

:

(a) Verify, for example, that M1 is the Arithmetic Mean, M�1 is the Harmonic
Mean, and M2 is the Root Mean Square.

(b) Use Jensen’s Inequality (Theorem 8.17) to show that if s < r , then Ms < Mr:

(c) Show that it is reasonable, for the sake of continuity, to define M0 D the
Geometric Mean G D .x1 � x2 � � � xn/1=n :

(d) What are reasonable definitions of M�1 and M1 ?
(e) How would you define the weighted Power Means?
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8.49. [10] Let f be convex on Œa; b�; and let a D x1 � x2 � � � � � xn D b:

Show that

1

n

nX
jD1

f .xj / � b � 1
n

Pn
jD1 f .xj /

b � a f .a/C
1
n

Pn
jD1 f .xj / � a
b � a f .b/:

8.50. We in Example 8.19 how Jensen’s Inequality (Theorem 8.17) can be used to
prove the Cauchy–Schwarz Inequality (Theorem 2.18). Use Jensen’s Inequality to
prove Hölder’s Inequality (Lemma 6.18) : Let a1; : : : ; an > 0 and b1; : : : ; bn > 0,
and let p; q > 1 satisfy 1

p
C 1

q
D 1: Then

nX
jD1

aj bj �
0
@ nX
jD1

a
p
j

1
A
1=p 0
@ nX
jD1

b
q
j

1
A
1=q

:

8.51. [10, 42] The conclusion of the Mean Value Theorem (Theorem 5.2) is: there
exists c 2 .a; b/ such that f 0.c/ D f .b/�f .a/

b�a : Assume for this problem that
f 00 > 0:

(a) Show that the c above is unique.
(b) For a > 0; the number

c D �
f 0��1 	 f .b/�f .a/

b�a



is called the Lagrangian Mean of a and b: So that the Lagrangian Mean is
continuous, what should we define as the Lagrangian Mean of a and b; if
a D b?

(c) Compute the Lagrangian Mean for f .x/ D x2; for f .x/ D 1=x; and for a few
other functions of your choice. Try f .x/ D xr and let r ! 0:

8.52. Extend Exercise 8.16 above to prove Taylor’s Theorem (Theorem 8.20). This
is essentially the proof to be found in most textbooks. Yet another proof can be
found in [5].

8.53. Let n be a positive integer. Prove the Binomial formula

.1C x/n D
nX

kD0

 
n

k

!
xk;

where the coefficient of xk is the binomial coefficient
 
n

k

!
D nŠ

.n � k/ŠkŠ D n.n � 1/.n � 2/ � � � .n � k C 1/

k.k � 1/.k � 2/ � � � 2 � 1 :

by using Taylor’s Theorem (Theorem 8.20), as follows.
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(a) Let f .x/ D .1C x/n and verify that for k � n,

f .k/.x/ D n.n � 1/ � � � .n � k C 1/.1C x/n�k:

(b) Conclude that

f .k/.0/ D
8<
:
n.n � 1/ � � � .n � k C 1/ if k � n

0 if k > n:

(c) Now apply Taylor’s Theorem with x0 D 0:

8.54. Here we extend the Second Derivative Test from Exercise 8.18. Suppose
that each of f; f 0; f 00; : : : ; f .nC1/ is continuous on an open interval I containing
c, that

0 D f 0.c/ D f 00.c/ D � � � D f .n/.c/; but that f .nC1/.c/ ¤ 0:

Show that if f .nC1/.c/ > 0 and n is even, then c yields a local minimum for f . Can
you summarize the other possibilities—for example f .nC1/.c/ < 0 and n odd?

8.55. Use the Taylor polynomial of degree n and corresponding remainder for ex

with x0 D 0; to show that nŠ >
�
n
e

�n
: We did this another way in Exercise 2.27. In

Exercise 2.17 we saw that nŠ <
�
nC1
2

�n
:

8.56. [11] Suppose that f 00.x/ exists for all x and that p; q > 1 satisfy
1=p C 1=q D 1. Show that if

f .x/ � f .y/
x � y D f 0.px C qy/

for all x; y 2 R; then f is either linear (for p ¤ q) or a quadratic.

8.57. [28] Suppose that f .3/.x/ exists for all x 2 R. Show that

f .x C y/ D f .x � y/C y
�
f 0.x C y/C f 0.x � y/�

for all x; y 2 R if and only if f is a quadratic.

8.58. [38] Let p be a polynomial of degree n: Show that

nX
kD0

p.k/.0/

.k C 1/Š
xkC1 D

nX
kD0
.�1/k p

.k/.x/

.k C 1/Š
xkC1:

Hint: Show that the left and right hand sides differ by a constant, then show that the
constant is zero.
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8.59. Under the hypotheses of Taylor’s Theorem (Theorem 8.20),

f .x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.c/

.nC 1/Š
.x � x0/nC1

D pn.x/ C f .nC1/.c/
.nC 1/Š

.x � x0/nC1:

Show that

lim
x!x0

f .x/ � pn.x/
.x � x0/n D 0:

8.60. [21] Taylor’s Theorem (Theorem 8.20) is often used to prove things about
functions which satisfy various specific conditions. Here’s an example. Let f be a
function with continuous third derivative on Œ0; 1�: Suppose that f .0/ D f 0.0/ D
f 00.0/ D f 0.1/ D f 00.1/ D 0 and f .1/ D 1: Show that there exists x 2 Œ0; 1� such
that f .3/.x/ � 24:

8.61. [31] Taylor’s Theorem (Theorem 8.20) is often used to prove inequalities
for functions which satisfy various general conditions. Here’s an example which is
essentially due to German mathematician E. Landau (1877–1938): Let f; f 0; and
f 00 be continuous on Œ0; 2�; with jf .x/j � 1 and jf 00.x/j � 1 there. Then jf 0.x/j �
2 for all x 2 Œ0; 2�: Fill in the details of the following proof.

(a) Show that by Taylor’s Theorem we have, for some c1; c2 2 .0; 2/;

f .0/ D f .x/C f 0.x/.0 � x/C f 00.c1/
2

.0 � x/2

D f .x/ � f 0.x/x C f 00.c1/
2

x2

and

f .2/ D f .x/C f 0.x/.2 � x/C f 00.c2/
2

.2 � x/2

D f .x/C 2f 0.x/ � f 0.x/x C f 00.c2/
2

.2 � x/2:

(b) Subtract the first equation from the second to get

2f 0.x/ D f .2/ � f .0/ � f 00.c2/
2

.2 � x/2 C f 00.c1/
2

x2:

(c) Show then, by the hypotheses and the triangle inequality, that

ˇ̌
2f 0.x/

ˇ̌ � 1C 1C 1

2
.2 � x/2 C 1

2
x2 D 4 � x.2 � x/ � 4:
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(d) Consider the function f .x/ D 1
2
x2�1 on Œ0; 2� to show that equality can occur.

8.62. Show that for each x 2 R;

xN

N Š
! 0 as N ! 1:

We showed this for x > 0; in Example 8.25. So only x � 0 needs consideration.

8.63. (a) Use the Taylor polynomial of degree n and corresponding remainder, for
f .x/ D ln.x/ and x0 D 1 (see Example 8.24) to obtain the Taylor polynomial of
degree n and corresponding remainder, for f .x/ D ln.1C x/ and x0 D 0:

(b) Show that for �1=2 � x � 1,

ln.1C x/ D x � x2

2
C x3

3
� x4

4
C � � � :

8.64. (a) Compute the Taylor polynomial of degree n at x0 D 1 and corresponding
remainder, for f .x/ D 1=x:

(b) Find the Taylor series for f .x/ D 1=x at x0 D 1 and show that it converges for
1=2 � x � 2:

8.65. (a) Compute the Taylor polynomial of degree n at x0 D 0 and corresponding
remainder, for f .x/ D cos.x/:

(b) Show that for x 2 R,

1 � x2

2
� cos.x/ � 1:

(In particular, lim
x!0

.cos.x// D 1:)

(c) Show that for x 2 R,

1 � x2

2
� cos.x/ � 1 � x2

2
C x4

24
:

(d) Show that for x 2 R,

cos.x/ D
1X
nD0

.�1/nx2n
.2n/Š

D 1 � 1

2
x2 C 1

4Š
x4 � 1

6Š
x6 C � � � :

8.66. (a) Compute the Taylor polynomial of degree n at x0 D 0 and corresponding
remainder, for f .x/ D sin.x/:

(b) Show that for x � 0,

x � x3

6
� sin.x/ � x:
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(c) Show that the inequalities in (b) are reversed for x � 0: (So lim
x!0

sin.x/
x

D 1:)

(d) Show that for x 2 R,

sin.x/ D
1X
nD0

.�1/nx2nC1

.2nC 1/Š
D x � 1

3Š
x3 C 1

5Š
x5 � 1

7Š
x7 C � � � :

8.67. [23]

(a) Apply the Mean Value Theorem (Theorem 5.2) to f .t/ D sin.t/ on Œ0; x�, with
x <  =2, to show that

sin.x/ � xp
1C x2

:

(b) How does this compare with Jordan’s Inequality sin.x/ � 2
 
x from

Example 8.14 ?
(c) How does this compare with the sin.x/ � x � x3

6
from Exercise 8.66 ?

8.68. (a) Compute the Taylor polynomial of degree n at x0 D 0 and corresponding
remainder, for

cosh.x/ D ex C e�x

2
:

(b) Find (with justification) the Maclaurin series for cosh.x/:
(c) Compute the Taylor polynomial of degree n at x0 D 0 and corresponding

remainder, for

sinh.x/ D ex � e�x

2
:

(d) Find (with justification) the Maclaurin series for sinh.x/:

8.69. [48] Show that

1X
nD0

1

nŠ.n4 C n2 C 1/
D e

2
:

8.70. Define

f .x/ D
8<
:

e�1=x2 if x ¤ 0

0 if x D 0:
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Show that f has derivatives of all orders at x0 D 0, but that

f .x/ ¤
1X
nD0

f .n/.0/

nŠ
xn;

unless x D 0: (This function is not analytic except at zero. A function is analytic
wherever it equals its Taylor series.)

8.71. Newton’s method (Sir Isaac Newton, English (1642–1727); no introduction
necessary) is a method for approximating a root c of a function f; i.e., a number c
for which f .c/ D 0: It begins with an initial guess x0; then the iteration scheme

xnC1 D xn � f .xn/

f 0.xn/
for n D 0; 1; 2; 3; : : : :

As long as f 0.c/ ¤ 0 and x0 is close to c; the scheme converges to c. (See, for
example, [5] or [12] for details).

(a) Show that xnC1 is the x intercept of the tangent line to y D f .x/ at x D xn:

That is, xnC1 is where the Taylor polynomial p1 of degree 1 at x D xn has a
zero.

(b) Show that if we take instead xnC1 as a zero the Taylor polynomial p2 of degree
2 then we get the expression

xnC1 D xn � f .xn/

f 0.xn/C f 00.xn/

2
.xnC1 � xn/

:

(c) [36] Solve this for xnC1 to get another iteration scheme.
(d) [9] A different approach from (c) is to use Newton’s method to approximate the

xnC1 on the right-hand side. Show that this leads to the iteration scheme

xnC1 D xn � 2f .xn/f
0.xn/

2f 0.xn/f 0.xn/ � f .xn/f 00.xn/
:

This scheme is known as Halley’s method, named for English mathematician
and astronomer Edmond Halley (1656–1742). (Yes, this is the same Halley as
the comet: Halley’s comet can be seen from Earth with the naked eye every
75 years or so. It is due to next come around in 2061.)

(e) [6] Show that Newton’s method applied to

g.x/ D f .x/p
f 0.x/

yields Halley’s method.
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(f) Show that Newton’s method is fixed point iteration (see Exercise 5.36)
applied to

g.x/ D x � f .x/

f 0.x/
:

(g) Show that Halley’s method is fixed point iteration (see Exercise 5.36) applied to

g.x/ D x � 2f .x/f 0.x/
2f 0.x/f 0.x/ � f .x/f 00.x/

:

See [4] for an interesting historical account of iteration methods.
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Chapter 9
Integration of Continuous Functions

It has long been an axiom of mine that the little things are
infinitely more important.

– Sherlock Holmes, in A Case of Identity,
by Sir Arthur Conan Doyle

A function’s range is a collection of values and so we might expect that it should
have an average value, as long as the function is reasonably well behaved. A fence
or a wall for example, no matter how long or how irregular in height, should have
an average height.

In Sect. 3.4 we considered the average value

1

N

NX
jD1

f .xj /

of a continuous function f W Œa; b� ! R evaluated at N sample points
x1; x2; : : : ; xN from Œa; b�: By choosing these sample points in a systematic way
and then letting N ! 1; we define the average value of f over the interval Œa; b�:
This naturally gives rise to the notion of area under a curve and the definite integral.
Then, since the definite integral is defined in terms of sums, we see that many
properties of sums give rise to properties of definite integrals—and vice-versa. For
example, we obtain integral analogues for many of the inequalities from Chaps. 2
and 6.

9.1 The Average Value of a Continuous Function

Consider the closed interval Œa; b� and let N 2 N. Choose the points

a D x0 < x1 < x2 < � � � < xN�1 < xN D b

© Springer Science+Business Media New York 2014
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according to

xj D aC j b�a
N

for j D 0; 1; 2; : : : ; N:

Then the xj ’s are equally spaced: each is distance b�a
N

from its closest neighbor(s).
Now however, we consider only N of the form

N D 2n for n D 0; 1; 2; 3; : : : ; so that N D 1; 2; 4; 8; 16; 32; : : : :

This way, points xj of each partition Pn D fx0; x1; x2; : : : ; xN�1; xN g of Œa; b� are
also points of any partition arising from a larger n. As such, each partition (after
n D 0) is called a refinement of every previous partition. See Fig. 9.1.

Fig. 9.1 Each partition Pn of
Œa; b� gives N D 2n

subintervals of Œa; b�, for
n D 0; 1; 2; : : :

n = 0, N = 20 = 1

n = 1, N = 21 = 2

n = 2, N = 22 = 4

n = 3, N = 23 = 8

a

a

a

a

b

b

b

b

Finally, we denote by x�
j any particular point of each subinterval Œxj�1; xj � W

x�
j 2 Œxj�1; xj � for j D 1; 2; : : : ; N:

That is,

x�
1 2 Œx0; x1�; x�

2 2 Œx1; x2�; : : : ; x�
N 2 ŒxN�1; xN �:

With all of this notation in place, it is a very important fact that if f is continuous
on Œa; b�; then lim

N!1
�
1
N

PN
jD1 f .x�

j /
�

exists and is independent of the choices

for x�
j : This limit is the average value of f over Œa; b� and we denote it by

Af
�
Œa; b�

�
:
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We merely state this fact as a theorem below. Its proof requires some rather deep
ideas that would take us somewhat off course, so we leave it for Appendix A.

Theorem 9.1. Let f be continuous on Œa; b�:With the notation as above (in partic-
ular N D 2n),

Af
�
Œa; b�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A exists,

and is independent of the choices x�
j 2 Œxj�1; xj �:

Proof. See the Appendix, Sect. A.3. ut
Example 9.2. For a constant function f .x/  C;we should expect that the average
value Af

�
Œa; b�

� D C . Indeed, for any choice of the x�
j ’s,

Af
�
Œa; b�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A D lim

N!1

0
@ 1

N

NX
jD1

C

1
A D C : ˘

In practice, since x�
j can be any particular point of each interval Œxj�1; xj �; a

convenient choice is usually made—like for example x�
j D xj�1, or x�

j D xj ,

or x�
j D the midpoint: x�

j D xj�1Cxj
2

. We shall make such choices in next few
examples. We shall also make use of the formulas (for N being a natural number)

NX
jD1

j D N.N C 1/

2
and

NX
jD1

j 2 D N.N C 1/.2N C 1/

6
:

These were verified in Exercises 2.17 and 5.39 (and again in Exercise 9.1).

Example 9.3. We compute Af
�
Œa; b�

�
for f .x/ D x2; and Œa; b� D Œ0; 1�: Here we

have x0 D a D 0,

xj D aC j b�a
N

D 0C j 1�0
N

D j

N
; and we take x�

j D xj for j D 1; 2; : : : ; N:

Then

1

N

NX
jD1

f .x�
j / D 1

N

NX
jD1

�
j

N

�2
D 1

N 3

NX
jD1

j 2:

Therefore,

Af
�
Œ0; 1�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A D lim

N!1

�
1

N 3

N.N C 1/.2N C 1/

6

�
D 1

3
:

˘
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Example 9.4. Extending Example 9.3, we compute Af
�
Œa; b�

�
for f .x/ D x2; and

for any interval Œa; b�: Here x0 D a,

xj D aC j b�a
N
; and we take x�

j D xj for j D 1; 2; : : : ; N:

Then

1

N

NX
jD1

f .x�

j / D 1

N

NX
jD1

�
aC j

b � a
N

�2

D 1

N

0
@ NX
jD1

a2 C 2a
b � a
N

NX
jD1

j C .b � a/2
N 2

NX
jD1

j 2

1
A

D 1

N

�
Na2 C 2a

b � a
N

N.N C 1/

2
C .b � a/2

N 2

N.N C 1/.2N C 1/

6

�
:

Therefore,

Af
�
Œa; b�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A D a2Ca.b�a/C .b � a/2

3
D b2 C ab C a2

3
:

˘
Example 9.5. [10] We compute Af

�
Œa; b�

�
for f .x/ D ex: Here x0 D a,

xj D aC j b�a
N
; and we take x�

j D xj�1 for j D 1; 2; : : : ; N:

Then

1

N

NX
jD1

f .x�
j / D 1

N

N�1X
jD0

f .xj / D 1

N

N�1X
jD0

eaCj.b�a/=N D ea

N

N�1X
jD0

�
e.b�a/=N �j :

Now for R ¤ 1 and natural numbers N � 2; the following identity can be
found by doing long division on the right-hand side, or simply verified by cross
multiplication:

1CRCR2 CR3 C � � � CRN�1 D 1 �RN
1 �R :

So taking R D e.b�a/=N ¤ 1 here, we get

1

N

NX
jD1

f .x�
j / D ea

N

N�1X
jD0

.e.b�a/=N /j D ea

N

1 � �
e.b�a/=N �N

1 � e.b�a/=N
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D ea

N

1 � eb�a

1 � e.b�a/=N D
b�a
N

e.b�a/=N � 1
eb � ea

b � a :

Now because the derivative of ex at x D 0 is 1 (or use L’Hospital’s Rule
(Theorem 5.13)), we get

lim
N!1

b�a
N

e.b�a/=N � 1 D 1:

Therefore

Af
�
Œa; b�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A D eb � ea

b � a : ˘

Remark 9.6. In a very similar fashion, for f .x/ D e�x on Œa; b�,

Af
�
Œa; b�

� D e�a � e�b

b � a D 1=ea � 1=eb

b � a :

This is the content of Exercise 9.3. ı
Example 9.7. [6] We compute Af

�
Œa; b�

�
for f .x/ D sin.x/. Here x0 D a;

xj D aC j b�a
N
; and we take x�

j D xj for j D 1; 2; : : : ; N:

Then

1

N

NX
jD1

f .x�
j / D 1

N

NX
jD1

sin
�
aC j

b � a
N

�
:

Now we use the trigonometric identity

2 sin .A/ sin .B/ D cos .A � B/ � cos .AC B/ ;

with A D aC j b�a
N

and B D 1
2
b�a
N

, to get

2 sin
�
aC j b�a

N

�
sin
�
1
2
b�a
N

� D cos
�
a � .2j�1/.b�a/

2N

� � cos
�
aC .2jC1/.b�a/

2N

�
:

Then summing from j D 1 to N we get lots of cancellation (the sum telescopes):

2

NX
jD1

sin
�
aC j b�a

N

�
sin
�
1
2
b�a
N

� D cos
�
a � b�a

2N

� � cos
�
aC .2NC1/.b�a/

2N

�
:
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Therefore,

1

N

NX
jD1

sin
�
aC j b�a

N

� D 1

2N

1

sin
�
1
2
b�a
N

� hcos
�
a � b�a

2N

� � cos
�
aC .2NC1/.b�a/

2N

�i

D 1

b � a
b�a
2N

sin
�
b�a
2N

� hcos
�
a � b�a

2N

� � cos
�
aC .2NC1/.b�a/

2N

�i
:

Now because the derivative of sin.x/ at x D 0 is 1 (or use L’Hospital’s Rule
(Theorem 5.13)), we have

lim
N!1

b�a
2N

sin
�
b�a
2N

� D 1:

And because the cosine function is continuous we get finally, for f .x/ D sin.x/:

Af
�
Œa; b�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A D 1

b � a
�

cos .a/ � cos .b/
�
: ˘

Remark 9.8. For f .x/ D cos.x/ on Œa; b�,

Af
�
Œa; b�

� D 1

b � a
�

sin .b/ � sin .a/
�
:

This is the content of Exercise 9.4. ı
If f is continuous on Œa; b� then min

x2Œa;b�ff .x/g and max
x2Œa;b�ff .x/g exist by the

Extreme Value Theorem (Theorem 3.23). Obviously

min
x2Œa;b�ff .x/g � f .x/ � max

x2Œa;b�ff .x/g;

and therefore, essentially by Example 9.2,

min
x2Œa;b�ff .x/g � Af

�
Œa; b�

� � max
x2Œa;b�ff .x/g: (9.1)

Now recall from Sect. 2.2 that the average, or Arithmetic Mean, A D 1
n

nP
jD1

aj of

the n numbers a1; a2; : : : ; an is called a mean simply because it satisfies

min
1�j�nfaj g � A � max

1�j�nfaj g:
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So in view of (9.1), calling Af
�
Œa; b�

�
an average is natural. This is the analogue,

for functions, of the Arithmetic Mean. But somewhat more than (9.1) is true, as
follows.

Lemma 9.9. Let f and g be continuous on Œa; b�; with f � g there. Then

Af
�
Œa; b�

� � Ag.Œa; b�/:

Proof. This is Exercise 9.5. ut
The following important result is the analogue, for functions, of the Average

Value Theorem for Sums (Theorem 3.19). It says that the average value of a
continuous function on a closed interval is actually attained by the function.

Theorem 9.10. (Average Value Theorem) Let f be continuous on Œa; b�: Then
there is c 2 Œa; b� such that

Af
�
Œa; b�

� D f .c/:

Proof. By the Extreme Value Theorem (Theorem 3.23), there exist numbers
xm; xM 2 Œa; b� such that

f .xm/ � f .x/ � f .xM / for every x 2 Œa; b�:

So by (9.1),

f .xm/ � Af
�
Œa; b�

� � f .xM /:

Therefore, by the Intermediate Value Theorem (Theorem 3.17) there is c between
xm and xM (and so c 2 Œa; b�) such that

f .c/ D Af
�
Œa; b�

�
;

as desired. ut

9.2 The Definite Integral

In the sum 1
N

NP
jD1

f .x�
j /; if we let 
xN D b�a

N
then we get

1

N

NX
jD1

f .x�
j / D 1

b � a
NX
jD1

f .x�
j /
xN :
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So it is customary to denote the average value of the continuous function f on
Œa; b� by

Af
�
Œa; b�

� D 1

b � a

bZ
a

f .x/ dx:

This notation serves vaguely as a reminder of where it comes from: As N ! 1,
the idea is that

NX
jD1

!
bZ
a

; f .x�
j / ! f .x/ ; and 
xN ! dx :

Here,

bZ
a

f .x/ dx

is called the definite integral (or simply the integral) of f from a to b.
In case we need to interchange the roles of a and b, we define

aZ
b

f .x/ dx D �
bZ
a

f .x/ dx; (9.2)

which is consistent with the set-up: for b < a; we have x0 D b and xN D a;

and 
xN < 0: And notice that taking a D b in (9.2), we get
Z a

a

f .x/ dx D

�
Z a

a

f .x/ dx; so that (as we should expect):

aZ
a

f .x/ dx D 0:

With this notation in place, Lemma 9.9 reads, for f and g continuous on Œa; b�:

f � g )
bZ
a

f .x/ dx �
bZ
a

g.x/ dx: (9.3)

This says that the definite integral is a positive operator. This simple but very
important property of the definite integral is sometimes taken for granted. This
property is not shared, for example, by the derivative: The reader should agree that
it is not the case that f .x/ � g.x/ ) f 0.x/ � g0.x/:
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Remark 9.11. The expression

NX
jD1

f .x�
j /
xN

is called a Riemann sum, after the great German mathematician Bernhard Riemann
(1826–1866). For N large,

NX
jD1

f .x�
j /
xN Š

bZ
a

f .x/ dx:

This is made more precise in the Appendix (Theorem A.9 of Sect. A.3). ı
Remark 9.12. In any sum, the index of summation plays no essential role. For
example,

NX
jD1

f .x�
j /
xN D

NX
jD1

f .t�j /
tN D
NX
jD1

f .u�
j /
uN etc.

In the same way, the variable of integration in a definite integral plays no essential
role. It might be x, or just as well be t; or u; or virtually anything else:

bZ
a

f .x/ dx D
bZ
a

f .t/ dt D
bZ
a

f .u/ du etc. ı

Since integrals are defined in terms of sums, we can often use a property of sums
to deduce a property of integrals. For example, the property

NX
jD1

�
’f .xj /C “g.xj /

� D ’

NX
jD1

f .xj /C “

NX
jD1

g.xj / for ’; “ 2 R

easily gives rise to the following.

Lemma 9.13. Let f and g be continuous on Œa; b�: Then for any ’; “ 2 R;

bZ
a

�
’f .x/C “g.x/

�
dx D ’

bZ
a

f .x/ dx C “

bZ
a

g.x/ dx:
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Proof. This is Exercise 9.6. ut
Lemma 9.13 says that the definite integral is a linear operator. The derivative is also
a linear operator—we saw in Sect. 4.2 that the derivative obeys what we called the
Linear Combination Rule.

Observe now that the conclusion of the Average Value Theorem (Theorem 9.10)
reads

f .c/ D 1

b � a

bZ
a

f .x/ dx D

bR
a

f .x/1 dx

bR
a

1 dx

:

If we replace the 1’s in the numerator and the denominator of the right-hand side
above with a suitable continuous function g then we get the more general Mean
Value Theorem for Integrals below. It is the analogue, for functions, of the Mean
Value Theorem for Sums (Theorem 3.22).

Theorem 9.14. (Mean Value Theorem for Integrals) Let f and g be continuous on
Œa; b� and suppose that g does not change signs on Œa; b�, and that g.x/ 6 0. Then
there is c 2 Œa; b� such that

f .c/ D

bR
a

f .x/g.x/ dx

bR
a

g.x/ dx

:

Proof. We may assume that g.x/ � 0 on Œa; b� for otherwise, we would consider
�g.x/: By the Extreme Value Theorem (Theorem 3.23), there are xm; xM 2 Œa; b�

such that

f .xm/ � f .x/ � f .xM / for every x 2 Œa; b�:

Multiplying through by g.x/, we get

f .xm/g.x/ � f .x/g.x/ � f .xM /g.x/ for every x 2 Œa; b�:

Then integrating and using (9.3) and Lemma 9.13 we obtain

f .xm/

bZ
a

g.x/ dx �
bZ
a

f .x/g.x/ dx � f .xM /

bZ
a

g.x/ dx:
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Now since g.x/ 6 0, there exists x0 2 Œa; b� such that g.x0/ > 0. Then by
Lemma 3.4 there is a closed interval J containing x0 such that g.x/ > 0 for x 2 J .

Therefore
Z b

a

g.x/ dx > 0, and we may divide through to obtain

f .xm/ �

bR
a

f .x/g.x/ dx

bR
a

g.x/ dx

� f .xM /:

Then by the Intermediate Value Theorem (Theorem 3.17) there exists c between xm
and xM (and so c 2 Œa; b�) such that

f .c/ D

bR
a

f .x/g.x/ dx

bR
a

g.x/ dx

;

as desired. ut
In the context of the Mean Value Theorem for Integrals (Theorem 9.14), for

g.x/ > 0 on Œa; b� one often sets

w.x/ D g.x/

bR
a

g.t/ dt

:

Then w is continuous, w.x/ > 0 for x 2 Œa; b�, and
Z b

a

w.x/ dx D 1: Here, w.x/ is

naturally called a weight function, and

bZ
a

w.x/f .x/ dx

is the analogue, for functions, of the weighted Arithmetic Mean. Then the conclu-
sion of the Mean Value Theorem for Integrals (Theorem 9.14) reads

f .c/ D
bZ
a

w.x/f .x/ dx:
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9.3 The Definite Integral as Area

For f continuous on Œa; b�, the conclusion of the Average Value Theorem
(Theorem 9.10) reads:

f .c/ D 1

b � a

bZ
a

f .x/ dx :

Therefore f .c/.b�a/ is the average value of f over Œa; b�;multiplied by the length
of Œa; b�: So if f is also nonnegative we adopt this (very naturally) as the definition
of the area between the graph of f and the x-axis, from x D a to x D b:

That is,

bZ
a

f .x/ dx D the area between the graph of f and the x-axis,

from x D a to x D b: (See Fig. 9.2.)

Fig. 9.2 The area of the

shaded region is

Z b

a

f .x/ dx
y = f(x)

y

x
a b

∫ b

a
f(x)dx

So for example, if f defines the varying height of a wall running straight along
the ground from a to b, then the area of the wall’s face is

bZ
a

f .x/ dx:

The average height of the wall is

1

b � a

bZ
a

f .x/ dx;
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and the Average Value Theorem (Theorem 9.10) says that there is at least one place
along the ground over which the wall is exactly its average height.

For any continuous function f; not just nonnegative ones,
Z b

a

f .x/ dx is the

signed area between the graph of f and the x-axis, from x D a to x D b: The
area is signed because function values below the x-axis give negative contributions
in the sums which ultimately define the integral. The total area between the graph
of f and the x-axis, from x D a to x D b is then

bZ
a

ˇ̌
f .x/

ˇ̌
dx:

The following is the analogue, for functions, of the triangle inequality
(Lemma 1.1). It appears reasonable upon drawing a picture. Not surprisingly,
its proof comes from the triangle inequality.

Lemma 9.15. Let f be continuous on Œa; b�: Then
ˇ̌̌
ˇ̌̌
bZ
a

f .x/ dx

ˇ̌̌
ˇ̌̌ �

bZ
a

ˇ̌
f .x/

ˇ̌
dx:

Proof. This is Exercise 9.10. ut

Example 9.16. We saw in Example 9.2 that
Z b

a

C dx D C.b � a/. For a < b and

C > 0, this is the area of the rectangle with base Œa; b� and height C: ˘
Example 9.17. For r > 0 the graph of f .x/ D p

r2 � x2 on Œ�r; r� is the top half
of the circle with radius r; centered at the origin. Therefore

rZ
�r

p
r2 � x2 dx D �r2

2
: ˘

Example 9.18. By interpreting the definite integral as a signed area (and knowing
the formula for the area of a trapezoid), one can verify that

bZ
a

x dx D aC b

2
.b � a/ D 1

2

�
b2 � a2� : ˘

Example 9.19. Let f .x/ D x2. We saw in Example 9.4 that

Af
�
Œa; b�

� D b2 C ab C a2

3
:
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Therefore the signed area between the graph of f .x/ D x2 and the x-axis, from
x D a to x D b, is

bZ
a

x2 dx D .b � a/Af
�
Œa; b�

� D .b � a/b
2 C ab C a2

3
D 1

3

�
b3 � a3�: ˘

Let P; Q; R 2 R. Then by Examples 9.16, 9.18 and 9.19, and Lemma 9.13,

bZ
a

�
Px2 CQx CR

�
dx D P

bZ
a

x2 dx CQ

bZ
a

x dx CR

bZ
a

1 dx

D P

3

�
b3 � a3�C Q

2
.b2 � a2/CR.b � a/:

Example 9.20. We saw in Example 9.5 that for f .x/ D ex ,

Af
�
Œa; b�

� D eb � ea

b � a :

Therefore the area between the graph of f .x/ D ex and the x-axis, from x D a to
x D b, is

bZ
a

ex dx D eb � ea: ˘

Example 9.21. We saw in Example 9.7 that for f .x/ D sin.x/,

Af
�
Œa; b�

� D cos.a/ � cos.b/

b � a :

Therefore the signed area between the graph of f .x/ D sin.x/ and the x-axis, from
x D a to x D b, is

bZ
a

sin.x/ dx D cos.a/ � cos.b/:

So, for example,

3 =2Z
0

sin.x/ dx D cos.0/ � cos.3 =2/ D 1:
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And using the symmetry of the sine function,

3 =2Z
0

ˇ̌
sin.x/

ˇ̌
dx D 3

 =2Z
0

sin.x/ dx D 3
�

cos.0/ � cos. =2/
� D 3: ˘

9.4 Some Applications

The following lemma seems perfectly reasonable but its proof is surprisingly tricky,
so we leave it for Appendix A. It enables us to consider the definite integral of
certain functions which are not continuous. See Fig. 9.3.

Lemma 9.22. Let f be continuous on Œa; b� and let c 2 .a; b/: Then

bZ
a

f .x/ dx D
cZ
a

f .x/ dx C
bZ
c

f .x/ dx :

Proof. See the Appendix, Sect. A.3. ut

a c xb

y

y = f(x)

Fig. 9.3 Lemma 9.22:

Z b

a

f .x/ dx D
Z c

a

f .x/ dx C
Z b

c

f .x/ dx

Example 9.23. Consider the function

f .x/ D
8<
:
x � a if x 2 �a; aCb

2

�

x � b if x 2 � aCb
2
; b
�
:

See the graph of f in Fig. 9.4.
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a b
x

y

a+b
2

y = x−a

y = x−b

Fig. 9.4 Example 9.23. f .x/ D x � a on Œa; aCb
2
�, and f .x/ D x � b on . aCb

2
; b�

Now f is not continuous on Œa; b�; but in view of Lemma 9.22 (with
c D .aC b/=2 there), we write

bZ
a

f .x/ dx D
.aCb/=2Z
a

f .x/ dx C
bZ

.aCb/=2
f .x/ dx D 0:

Also in view of Lemma 9.22 (for any t 2 Œa; b�), we write

tZ
a

f .x/ dx D

8̂
ˆ̂̂<
ˆ̂̂̂
:

Z t

a

.x � a/ dx if t 2 Œa; aCb
2
�

Z .aCb/=2

a

.x � a/ dx C
Z t

.aCb/=2
.x � b/ dx if t 2 . aCb

2
; b�:

Then by interpreting these integrals as areas of triangles or trapezoids (depending
on t ), we get

tZ
a

f .x/ dx D
8<
:

1
2
.t � a/2 if t 2 Œa; aCb

2
�

1
2
. b�a
2
/2 C 1

2

�
.t � b/2 � . b�a

2
/2
�

if t 2 . aCb
2
; b�:

Here, as the reader may check, we get
Z b

a

f .x/ dx D 0 as we should. Also, the

reader may verify that
Z b

a

ˇ̌
f .x/

ˇ̌
dx D .b�a/2

4
: ˘

Here is an application of the definite integral wherein a property of integrals
yields a useful property of sums, and vice-versa.
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Theorem 9.24. (The Integral Test) Let f be continuous, positive, and

decreasing on Œ1;1/. Then
1P
nD1

f .n/ converges if and only if
Z 1

1

f .x/ dx D

lim
N!1

Z N

1

f .x/ dx exists.

Proof. Since f is decreasing, f .b/ � f .x/ � f .a/ for 1 � a � x � b; and so

f .b/
�
b � a� �

bZ
a

f .x/ dx � f .a/
�
b � a�:

Therefore f .nC 1/ �
Z nC1

n

f .x/ dx � f .n/ for each integer n � 1. See Fig. 9.5.

n n + 1
x

y

y = f(x)

f(n+1)
f(n)

Fig. 9.5 In the proof of the Integral Test (Theorem 9.24), f is decreasing on Œ1;1/. Therefore

we have f .nC 1/ �
Z nC1

n

f .x/ dx � f .n/ for integers n � 1

Then

N�1X
nD1

f .nC 1/ �
N�1X
nD1

nC1Z
n

f .x/ dx �
N�1X
nD1

f .n/;

which, by applying Lemma 9.22 N � 1 times, reads

N�1X
nD1

f .nC 1/ �
NZ
1

f .x/ dx �
N�1X
nD1

f .n/:

Now since f is positive, the right-hand inequality shows that if
1P
nD1

f .n/ exists, thenZ 1

1

f .x/ dx exists. And the left-hand inequality shows that if
Z 1

1

f .x/ dx exists,

then
1P
nD1

f .nC 1/ exists; therefore so does
1P
nD1

f .n/. ut
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Example 9.25. We showed in Sect. 6.7 that a p-series

1X
nD1

1

np

converges for p > 1 and diverges to C1 for p � 1. In Example 10.5 we shall show
that for p ¤ 1:

NZ
1

1

xp
dx D 1

1 � p
�
N

Np
� 1

�
; and for p D 1 W

NZ
1

1

x
dx D ln.N /:

Therefore (as we shall conclude in Example 10.6) the convergence/divergence of a
p-series also follows from the Integral Test (Theorem 9.24). ˘

For another application of the definite integral, we suppose that f and f 0 are
continuous on Œa; b�: Then we define the length of the curve described by y D f .x/

from x D a to x D b, as follows. (But see also [9, 21].) Again, let

a D x0 and xj D aC j b�a
N

D aC j
xN for j D 0; 1; 2; : : : ; N D 2n:

Joining the successive points

.x0; f .x0//; .x1; f .x1//; .x2; f .x2//; : : : ; .xN ; f .xN //

with N line segments yields a polygonal approximation to the graph of y D f .x/

over Œa; b�. By the Pythagorean Theorem, each segment has length

q
.xj � xj�1/2 C �

f .xj / � f .xj�1/
�2
:

So (see Fig. 9.6) the total length of these segments is

NX
jD1

q
.xj � xj�1/2 C �

f .xj / � f .xj�1/
�2
:

And taking very N large it seems that the total length of these segments would
provide a pretty good approximation to what we think would be the length of the
curve y D f .x/ from x D a to x D b.

Now applying the Mean Value Theorem (Theorem 5.2) on each interval
Œxj�1; xj �, there is x�

j 2 .xj�1; xj / such that
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y = f(x)

(x
2 
, f(x

2
))

(x
1 
, f(x

1
))

(x
7 
, f(x

7
))

x

y

a bx
1

x
2

x
3

x
4

x
5

x
6 x

7

Fig. 9.6 A polygonal approximation for y D f .x/. Here n D 3; so there are N D 23 D 8

subintervals

NX
jD1

q
.xj � xj�1/2 C �

f .xj /� f .xj�1/
�2 D

NX
jD1

q
.xj � xj�1/2 C f 0.x�

j /
2.xj � xj�1/2

D
NX
jD1

q
1C f 0.x�

j /
2 .xj � xj�1/

D
NX
jD1

q
1C f 0.x�

j /
2 
xN :

Since f 0 is continuous, so is
p
1C .f 0/2 and therefore

lim
N!1

NX
jD1

q
.xj � xj�1/2 C �

f .xj / � f .xj�1/
�2 D

bZ
a

p
1C f 0.x/2 dx exists:

This is the length of the curve y D f .x/ over Œa; b�. It is typically denoted by
the letter s. For example, if f defines the varying height of a fence that runs straight
along the ground from a to b, then

s D
bZ
a

p
1C f 0.x/2 dx

is the length of the top of the fence.

Example 9.26. We compute the length of the curve

f .x/ D cosh.x/ D ex C e�x

2
; from x D 0 to x D 1:
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Here we have

f 0.x/ D ex � e�x

2
D sinh.x/ and 1C sinh.x/2 D cosh.x/2:

Therefore

s D
1Z
0

p
1C f 0.x/2 dx

D
1Z
0

cosh.x/ dx:

Then using Remark 9.6 and Lemma 9.13, we get

s D 1

2

�
e � 1

e

�
: ˘

9.5 Famous Inequalities for the Definite Integral

Continuing the theme that properties of sums can give rise to corresponding
properties of integrals, we extend some of the famous inequalities for sums to obtain
analogous inequalities for integrals. And quite often, their proofs are really no more
difficult.

In Sect. 6.4 we obtained Hölder’s Inequality (Lemma 6.18) using the weighted
AGM Inequality with n = 2 (Corollary 6.16). In an entirely similar way we obtain
the following.

Theorem 9.27. (Hölder’s Integral Inequality) Let f and g be continuous and
nonnegative on Œa; b� and let p; q > 1 satisfy 1

p
C 1

q
D 1. Then

bZ
a

f .x/g.x/ dx �
0
@

bZ
a

f .x/p dx

1
A
1=p 0
@

bZ
a

g.x/q dx

1
A
1=q

:

Proof. If f .x/  0 or g.x/  0, then the desired inequality holds, with
equality. Otherwise, take t D 1

p
in the weighted AGM Inequality with n D 2

(Corollary 6.16), with
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a D f .x/p

bR
a

f .x/p dx

and b D g.x/q

bR
a

g.x/q dx

; to get

f .x/ 
bR
a

f .x/p dx

!1=p g.x/ 
bR
a

g.x/q dx

!1=q � f .x/p

p
bR
a

f .x/p dx

C g.x/q

q
bR
a

g.x/q dx

:

Then integrating from a to b we obtain

bR
a
f .x/g.x/ dx

 
bR
a
f .x/p dx

!1=p  
bR
a
g.x/q dx

!1=q �

bR
a
f .x/p dx

p
bR
a
f .x/p dx

C

bR
a
g.x/q dx

q
bR
a
g.x/q dx

D 1

p
C 1

q
D 1 ;

as desired. ut
The case of p D q D 2 in Hölder’s Integral Inequality (Theorem 9.27) gives

the integral analogue of the Cauchy–Schwarz Inequality (Theorem 2.18) as follows.
(For a sharpened version of this result, see [33].)

Corollary 9.28. (Cauchy–Schwarz Integral Inequality) Let f and g be continuous
on Œa; b�. Then

0
@

bZ
a

f .x/g.x/ dx

1
A
2

�
bZ
a

f .x/2 dx

bZ
a

g.x/2 dx: �

Now let us recall Jensen’s Inequality (Theorem 8.17): Let x1; x2; : : : ; xn 2 Œa; b�
and let w1;w2; : : : ;wn satisfy wj > 0; with

nP
jD1

wj D 1: Let ' satisfy '00 � 0 on

Œa; b� (so that ' is convex there). Then

'

0
@ nX
jD1

wj xj

1
A �

nX
jD1

wj '.xj / .

There is also an integral analogue for Jensen’s Inequality, as follows.

Theorem 9.29. (Jensen’s Integral Inequality) Let f be continuous on Œa; b� and let

w � 0 be continuous on Œa; b�; with
bR
a

w.x/ dx D 1: Let ' satisfy '00 � 0 on the

range of f (so that ' is convex there). Then
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'

0
@

bZ
a

w.x/f .x/ dx

1
A �

bZ
a

w.x/'.f .x// dx :

Proof. Let A be in the range of f: Since '00 � 0, the tangent line to ' at x D A is
on or below the graph of '; by Lemma 8.7. That is, for any t for which ' is defined,

'.t/ � '.A/C '0.A/ .t � A/ :

Now let A D
Z b

a

w.x/f .x/ dx; which is indeed in the range of f , by the Mean

Value Theorem for Integrals (Theorem 9.14), and write t D f .x/. Then

'.f .x// � '.A/C '0.A/ .f .x/ � A/ :

Multiplying through by w.x/ � 0,

w.x/'.f .x// � w.x/'.A/C w.x/'0.A/ .f .x/ � A/ :

Now integrating from a to b, we get

bZ
a

w.x/'.f .x// dx � '.A/

bZ
a

w.x/ dx C '0.A/

0
@

bZ
a

w.x/f .x/ dx � A
bZ
a

w.x/ dx

1
A

D '.A/C '0.A/ .A � A/ D '

0
@

bZ
a

w.x/f .x/ dx

1
A ;

as desired. ut
Example 9.30. We saw in Example 8.19 how Jensen’s Inequality (Theorem 8.17)
can be used to obtain the Cauchy–Schwarz Inequality (Theorem 2.18). Here, in an
entirely similar way, we use Jensen’s Integral Inequality (Theorem 9.29) to obtain
the Cauchy–Schwarz Integral Inequality (Corollary 9.28). Let p and q be continuous
on Œa; b� with p not identically zero. We shall apply Jensen’s Integral Inequality
(Theorem 9.29) to the convex function '.x/ D x2; with

w.x/ D p.x/2

bR
a

p.t/2 dt

; so that

bZ
a

w.x/ dx D 1:
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Jensen’s Integral Inequality is

0
@

bZ
a

w.x/f .x/ dx

1
A
2

�
bZ
a

w.x/f .x/2 dx:

Now setting f .x/ D p.x/q.x/

w.x/
; this reads

0
@

bZ
a

p.x/q.x/ dx

1
A
2

�
bZ
a

p.x/2q.x/2

p.x/2

0
@

bZ
a

p.x/2 dx

1
A dx D

bZ
a

p.x/2 dx

bZ
a

q.x/2 dx;

which is the Cauchy–Schwarz Integral Inequality (Corollary 9.28). ˘
We saw at the end of Sect. 8.3 with Cauchy’s proof of Jensen’s Inequality

(Theorem 8.17) and again in Exercise 8.39, that Jensen’s Inequality continues to
hold even if f is only assumed to be convex and continuous, i.e., not requiring
that f 00 � 0, or even that f 0 exists. Likewise, Jensen’s Integral Inequality
(Theorem 9.29) holds under less restrictive conditions than the ones we have
imposed on the function '. But ' must still be convex; see Exercise 9.35.

For the remainder of this section we focus on the important special case of
Jensen’s Integral Inequality (Theorem 9.29) in which w.x/  1

b�a : That is, for f
continuous and  convex on the range of f :

'

0
@ 1

b � a

bZ
a

f .x/ dx

1
A � 1

b � a

bZ
a

'.f .x// dx.

Example 9.31. (i) Let '.x/ D xr ; with r � 1. Then for f continuous on Œa; b�;
with a � 0; Jensen’s Inequality gives

0
@ 1

b � a

bZ
a

f .x/ dx

1
A
r

� 1

b � a

bZ
a

f .x/r dx:

For r D 2 this is a special case (i.e., g.x/  1) of the Cauchy–Schwarz Integral
Inequality (Corollary 9.28).

(ii) Let '.x/ D ln.x/; which is concave on .0;C1/. For f continuous on Œa; b�
and f > 0 there, Jensen’s Inequality gives

ln

0
@ 1

b � a

bZ
a

f .x/ dx

1
A � 1

b � a

bZ
a

ln .f .x// dx:
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(iii) Let '.x/ D ex; which is convex on .�1;C1/. For f continuous on Œa; b�,
Jensen’s Inequality gives

e

1
b�a

Z b

a

f .x/ dx

� 1

b � a

bZ
a

ef .x/ dx: ˘

Example 9.32. Let f be continuous and positive on Œa; b�. Replacing the f with
ln.f / in Example 9.31 (iii) gives

e

1
b�a

Z b

a

ln.f .x// dx
� 1

b � a

bZ
a

f .x/ dx: (9.4)

This is the AGM Inequality for Functions—it is the analogue, for continuous
functions, of the weighted AGM Inequality (Theorem 6.15). The left-hand side
above is the Geometric Mean of f , and the right-hand side is of course the Average
Value, or the the Arithmetic Mean of f .

Here is a very simple example which shows how the AGM Inequality for
Functions can reduce to the weighted AGM Inequality (Theorem 6.15). Let

w1; w2; w3 > 0 with
3X

jD1
wj D 1:

And for x 2 Œa; b� D Œ0; 1�, consider the function

f .x/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

a1 if 0 � x � w1

a2 if w1 < x � w1 C w2

a3 if w1 C w2 < x � 1 :

A graph of f is shown in Fig. 9.7.
Using Lemma 9.22 two times, the left-hand side of (9.4), i.e., the Geometric

Mean of f , is

e

1
b�a

Z b

a

ln.f .x// dx
D ew1 ln.a1/Cw2 ln.a2/Cw3 ln.a3/ D a

w1
1 a

w2
2 a

w3
3 :
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w1 w2 w3
x

y

y = f(x)

a3

a2

a1

Fig. 9.7 For Example 9.32. Here, n D 3. Each aj is assigned the weight wj , and
3P

jD1

wj D 1

The right-hand side of (9.4), i.e., the Average Value of f , is

1

b � a

bZ
a

f .x/ dx D w1a1 C w2a2 C w3a3:

Together then, (9.4) gives the weighted AGM Inequality (Theorem 6.15) with
n D 3:

a
w1
1 a

w2
2 a

w3
3 �

3X
jD1

wj aj :

The reader should agree that this procedure could be carried out for any number of

weights. That is, for any w1; w2; : : : ;wn > 0 with
nP

jD1
wj D 1: ˘

9.6 Epilogue

The (definite) integral that we have considered is called the Riemann integral. We
defined it only for continuous functions (and we were to able extend it somewhat,
using Lemma 9.22). This is usually quite adequate for calculus. But there are
functions which are not continuous, and not covered by Lemma 9.22—in fact, very
nasty ones—which nevertheless possess a Riemann integral. A nice approach to the
Riemann integral, to which ours can be viewed as a precursor, can be found in [29].

Recall from Chap. 1 that the set Q was not (for us) a large enough place in which
to work: the Increasing Bounded Sequence Property does not hold within Q. In the
same way, the collection of Riemann integrable functions is not large enough, in the
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sense that there lacks an analogue of the Increasing Bounded Sequence Property.
(That is, one can construct a sequence of Riemann integrable functions which is
increasing and bounded above, whose limit is not a Riemann integrable function.)

So in Chap. 1 we extended Q to get R, a set in which the Increasing Bounded
Sequence Property does hold. The analogue here, for integrals, is the Lebesgue inte-
gral, developed by French mathematician Henri Lebesgue (1875–1941). Enough
functions are Lebesgue integrable that the analogue of the Increasing Bounded
Property does hold, and the Lebesgue integral reduces to the Riemann integral when
applied to functions which are Riemann integrable.

It is the Lebesgue integral which makes many areas of modern mathematical
analysis possible. It is typically first encountered in a graduate level real analysis
course. An excellent account of the historical development of the Riemann and
Lebesgue integrals, and many other topics from calculus, can be found in [8].

Exercises

9.1. [6] Show, as follows, that

S D
NX
jD1

j 2 D N.N C 1/.2N C 1/

6
:

(a) Verify that T D
NP
jD1

j D N.NC1/
2

:

(b) In the identity

.k C 1/3 � k3 D 3k2 C 3k C 1;

set k D 0; 1; 2; : : : ; N and add each of these together to get

.N C 1/3 D 3S C 3T CN C 1:

(c) Now solve for S and use (a).

9.2. (a) Show that

NX
jD1

j 3 D N2.N C 1/2

4
D
0
@ NX
jD1

j

1
A
2

:

(b) Find the average value of f .x/ D x3 over Œ0; 1�:

9.3. Find the average value of f .x/ D e�x over Œa; b�:
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9.4. [18] Find the average value of f .x/ D cos.x/ over Œa; b�:

9.5. Prove Lemma 9.9: Let f and g be continuous on Œa; b�; with f � g. Then

Af
�
Œa; b�

� � Ag.Œa; b�/:

9.6. Prove Lemma 9.13: Let f and g be continuous on Œa; b�: Then for any
’; “ 2 R;

bZ
a

.’f .x/C “g.x// dx D ’

bZ
a

f .x/ dx C “

bZ
a

g.x/ dx:

9.7. [1] Let f and g be continuous and nonnegative on Œ0; 1�; with

1Z
0

e�xf .x/ dx �
1Z
0

e�xg.x/ dx:

Show that

1Z
0

xg.x/e�xf .x/ dx �
1Z
0

xf .x/e�xg.x/ dx:

9.8. Let f be continuous on Œa; b�. (a) Show that

 
1
b�a

Z b

a

f .x/2 dx

!1=2
is a

mean. Which mean of n numbers, that we have met before, does this generalize?
(b) Show that there is c 2 Œa; b� such that

f .c/ D
0
@ 1

b � a

bZ
a

f .x/2 dx

1
A
1=2

:

9.9. [22] Let f be a continuous function on Œ0; 1� with
Z b

a

f .x/ dx D 1 and let

n 2 N:

(a) Apply the Average Value Theorem (Theorem 9.10) on each of Œ.k�1/=n; k=n�
for k D 1; 2; : : : n to show that there are distinct c1; c2; : : : ; cn 2 .a; b/ such
that

f .c1/C f .c2/C � � � C f .cn/ D n:
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(b) Show that there are distinct c1; c2; : : : ; cn 2 .a; b/ such that

1

f .c1/
C 1

f .c2/
C � � � C 1

f .cn/
D n:

9.10. Prove Lemma 9.15: Let f be continuous on Œa; b�: Then
ˇ̌
ˇ̌̌
ˇ
bZ
a

f .x/ dx

ˇ̌
ˇ̌̌
ˇ �

bZ
a

ˇ̌
f .x/

ˇ̌
dx:

9.11. [15] Let a; b; c > 0 with b < c: Evaluate the following definite integrals by
only interpreting the definite integral as an area:

(a)

bZ
�a

jxj dx (b)

bZ
�a

jx� cj dx (c)

bZ
�a

ˇ̌jx� cj� jxC cjˇ̌ dx.

9.12. [3] Evaluate
Z 2

0

p
8 � x2 dx by only interpreting the definite integral as an

area.

9.13. [7] Let f be nonnegative and continuous on Œ0; 1� : Set

Pn D
nY

kD1

�
1C 1

n
f

�
k

n

��
:

Show that as n ! 1 ,

Pn ! e

1R
0
f .x/ dx

:

Hint: Verify, then use, 0 � x � ln.1C x/ � x2=2:

9.14. Assume the hypotheses of the Integral Test (Theorem 9.24). Show that if
1P
nD1

f .n/ D S exists, then

NX
nD1

f .n/ C
1Z

NC1
f .x/ dx � S �

NX
nD1

f .n/ C
1Z
N

f .x/ dx:

9.15. Assume the hypotheses of the Integral Test (Theorem 9.24).

(a) Show that

0 �
NX
nD1

f .n/ �
NZ
1

f .x/ dx C f .1/:
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(b) Show that the sequence

�
NP
nD1

f .n/ �
Z N

1

f .x/ dx

�
is convergent.

9.16. [16] Let f and f 0 be continuous on Œa; b� with jf 0.x/j � M there. Show
that

ˇ̌
ˇ̌̌
ˇ̌
.aCb/=2Z
a

f .x/ dx �
bZ

.aCb/=2
f .x/ dx

ˇ̌
ˇ̌̌
ˇ̌ � M

�
b � a
2

�2
:

Hint: Write
ˇ̌̌
ˇ̌
ˇ̌
.aCb/=2Z
a

f .x/ dx �
bZ

.aCb/=2
f .x/ dx

ˇ̌̌
ˇ̌
ˇ̌ D

ˇ̌̌
ˇ̌
ˇ
.aCb/=2Z
a

�
f .x/ � f .aCb

2
/
�
dx

C
bZ

.aCb/=2

�
f .aCb

2
/ � f .x/� dx

ˇ̌̌
ˇ̌̌
ˇ
;

apply the triangle inequality, use the Mean Value Theorem (Theorem 5.2) on each
piece, and bring the absolute value signs inside using Lemma 9.15.

9.17. [19] Let f and g be continuous on Œa; b�, with m � f � M andZ b

a

g.x/ dx D 0:

(a) Write
Z b

a

f .x/g.x/ dx D 1

2

Z b

a

.2f .x/ �M �m/g.x/ dx to show that

ˇ̌̌
ˇ̌̌
bZ
a

f .x/g.x/ dx

ˇ̌̌
ˇ̌̌ � M�m

2

bZ
a

jg.x/j dx :

(b) Prove this another way, by writing

Z b

a

f .x/g.x/ dx D
Z b

a

�
f .x/ � M Cm

2

�
g.x/ dx:

9.18. Let f be continuous on Œa; b� and suppose that
Z b

a

f .x/g.x/ dx D 0 for

every continuous function g on Œa; b�: Show that f .x/  0 on Œa; b�:

9.19. [31]

(a) Suppose that f and g are continuous on Œa; b�: Show that there is c 2 Œa; b�

such that
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cZ
a

f .x/ dx C
bZ
c

g.x/ dx D f .c/.b � c/C g.c/.c � a/:

(b) Draw a picture to show what this says.
(c) Show that this generalizes the Average Value Theorem (Theorem 9.10).

9.20. [2] Suppose that f is continuous on Œa; b�, and that there are m;M 2 Œa; b�

such that

1

2
f .m/.b � a/ �

bZ
a

f .x/ dx � 1

2
f .M/.b � a/:

Show that one of the following holds, for some c 2 Œa; b�:
bZ
a

f .x/ dx D f .c/.c � a/; or

bZ
a

f .x/ dx D f .c/.b � c/:

Hint: Consider

G.t/ D
Z b

a

f .x/ dx � f .t/.t � a/ and H.t/ D
Z b

a

f .x/ dx � f .t/.b � t /:

Notice that

G.t/CH.t/ D 2

Z b

a

f .x/ dx � f .t/.b � a/;

and show that there is c 2 Œa; b� such that G.c/ D �H.c/:
9.21. [27] In the interval Œa; b�; let a D x0 < x1 < x2 < � � � < xn�1 < xn D b;

with the xj ’s not necessarily equally spaced. Fix t 2 Œ0; 1� and let

cj D xj�1 C t .xj � xj�1/ for j D 1; 2; : : : ; n :

So each cj is the same proportion along each subinterval Œxj�1; xj �. Let

r.t/ D
nX

jD1
f .cj /Œxj � xj�1� D

nX
jD1

f
�
xj�1 C t .xj � xj�1/

�
Œxj � xj�1�:

Show that there is c 2 Œ0; 1� such that r.c/ D
Z b

a

f .x/ dx: (If n D 1 this reduces

to the Average Value Theorem (Theorem 9.10).)
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9.22. Let f be continuous on Œa; b� and let c 2 .a; b/. Show that the average value
of f on Œa; b� is a weighted average of the average value of f on Œa; c� and the
average value of f on Œc; b�:

9.23. Let f be increasing and continuous on Œa; b�, with f 0 is continuous.
Show that

bZ
a

p
1C f 0.x/2 dx � .b � a/2 C .f .b/ � f .a//2:

What is this saying geometrically?

9.24. [5]] Show that

Z ’

0

q
1C .cos.x//2 dx >

q
’2 C .sin.’//2; for 0 < ’ �  =2:

9.25. [32] Suppose that f is continuous on Œa; b�. Let a D x0 and xj D aC j b�a
N

for j D 0; 1; 2; : : : ; N D 2n: Denote by s the length of the curve described by
y D f .x/; from x D a to x D b.

(a) Draw a picture which illustrates the approximation

s D
bZ
a

p
1C f 0.x/2 dx Š

NX
jD1

r�
xj � xj�1

�2 C
	
f 0.x�

j /.xj � xj�1/

2
;

where x�
j D xj�1Cxj

2
is the midpoint of Œxj�1; xj �:

(b) Show that if f 0 is continuous, then

lim
n!1

NX
jD1

r�
xj � xj�1

�2 C
	
f 0.x�

j /.xj � xj�1/

2 D

Z b

a

p
1C f 0.x/2 dx:

9.26. [13]

(a) Prove the following Mean Value – type theorem for the length of a curve. Let
f and f 0 be continuous on Œa; b�. Denote by t .x/ the length of the tangent line
to y D f .x/ at x, between the vertical lines x D a and x D b: Then there is
c 2 Œa; b� such that

t .c/ D
bZ
a

p
1C f 0.x/2 dx:

(b) Draw a picture which shows what this is saying geometrically.
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9.27. [14] Let f and g be continuous on Œa; b� with f � 0; and g � 0 and
decreasing. Show that

bR
a

xf .x/g.x/ dx

bR
a

f .x/g.x/ dx

�

bR
a

xf .x/ dx

bR
a

f .x/ dx

:

9.28. [23] Let f be differentiable on Œa; b� with f .a/ D f .b/ D 0: Show that as
long as f .x/ 6 0, there is c 2 .a; b/ such that

ˇ̌
f 0.c/

ˇ̌
> 4

.b�a/2

bZ
a

f .x/ dx:

Hint: Apply Mean Value Theorem (Theorem 5.2) to f on
�
a; aCb

2

�
and on

�
aCb
2
; b
�
;

integrate each, then add.

9.29. Let f be differentiable on Œa; b� with M D max
x2Œa;b� jf

0.x/j : Show that

ˇ̌̌
ˇ̌
ˇ
bZ
a

f .x/ dx � f .a/Cf .b/
2

.b � a/
ˇ̌̌
ˇ̌
ˇ � M

�
b�a
2

�2
:

What is this saying geometrically?
Hint: Apply the Mean Value Theorem (Theorem 5.2) to f on Œa; x� � �

a; aCb
2

�
and on

�
aCb
2
; x
� � �

aCb
2
; b
�
; integrate each expression, then add them together.

9.30. [23] Let f be defined on Œ�r; r�, with f 00 continuous (r > 0). Show that there

is c 2 .�r; r/ such that f 00.c/ D 3
r3

Z r

�r
�
f .x/ � f .0/� dx:

Hint: Start with the Mean Value Theorem for the Second Derivative
(Theorem 8.6), then integrate, then use the Mean Value Theorem for Integrals
(Theorem 9.14).

9.31. [12] Let f be continuous and increasing on Œ0; 1�: (a) Show that for any
positive integer n,

1

n

nX
kD1

f

�
k

n

�
�

1Z
0

f .x/ dx:

(b) If f is also convex, then these sums decrease to
Z 1

0

f .x/ dx: Verify and fill in

the details of the following proof. Since f is convex, for x; y 2 Œ0; 1�,
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�
1 � t�f .x/C tf .y/ � f

�
.1 � t /x C ty

�
for every t 2 Œ0; 1�:

Set x D k
n

, y D k�1
n
; and t D k�1

n
: Then we have

�
1 � k � 1

n

�
f

�
k

n

�
C k � 1

n
f

�
k � 1
n

�
� f

��
1 � k � 1

n

�k
n

C k � 1
n

k � 1
n

�

D f

�
kn2 � k C nC 1

n2.nC 1/

�

� f

�
k

nC 1

�
:

Now sum from k D 1 to n:
(c) Show that the assumption that f is increasing is necessary.

(d) Show that if f is concave the sums also decrease to
Z 1

0

f .x/ dx.

9.32. Prove the Cauchy–Schwarz Integral Inequality (Corollary 9.28) by suitably
modifying H. Schwarz’s proof, from Sect. 2.3, of the Cauchy–Schwarz Inequality
(Theorem 2.18) for sums. (It was in fact in the context of integrals that Schwarz’s
proof first appeared [30].)

9.33. [4] Apply Schwarz’s idea as in Exercise 9.32 to
Z b

a

�
f .x/C t

�2
dx:

What do you get?

9.34. [25, 26]

(a) Take f .x/ D 1=x and g  1, then f .x/ D 1=
p
x and g  1, in the

Cauchy–Schwarz Integral Inequality (Corollary 9.28) to give another proof of
Lemma 6.20:

G < L < A;

where G; L; and A are respectively, the Geometric, Logarithmic, and Arith-
metic Means of a and b:

(b) Manipulate the latter case carefully, to show that in fact L < ACG
2

< A:

9.35. (a) Show that Jensen’s Integral Inequality (Theorem 9.29) still holds for '
convex, but ' is only assumed to be differentiable. Hint: Look at
Exercise 8.22.

(b) Can you show that Jensen’s Integral Inequality (Theorem 9.29) still holds for '
convex, but ' is only assumed to be continuous?

9.36. Fill in the details of another proof of the Cauchy–Schwarz Integral Inequality
(Corollary 9.28) which is similar to Schwarz’s. (The sum version of this is the
content of Exercise 2.38). First dispense with the case in which g.x/  0. Observe
that for any real number t ,
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bZ
a

�
f .x/ � tg.x/�2dx � 0:

Now expand this and set

t D
�

bR
a

f .x/g.x/ dx

bR
a

g.x/2 dx

:

(This is the t at which the quadratic
Z b

a

�
f .x/ � tg.x/�2dx attains its minimum.)

9.37. Here is an ostensibly different proof of Hölder’s Integral Inequality
(Theorem 9.27). (The sum version of this is the content of Exercise 6.34).

(a) First dispense with the cases
Z b

a

f .x/p dx D 0 or
Z b

a

g.x/q dx D 0.

(b) In Young’s Inequality (Corollary 6.19) ab � ap

p
C bq

q
, set

a D f .x/

0
@

bZ
a

f .x/p dx

1
A

�1=p

and b D g.x/

0
@

bZ
a

g.x/q dx

1
A

�1=q

;

then integrate from a to b:

9.38. Find necessary and sufficient conditions for equality to hold in (a) the
Cauchy–Schwarz Integral Inequality (Corollary 9.28), and (b) Hölder’s Integral
Inequality (Theorem 9.27).

9.39. Suppose that f and g are continuous on Œ0; 1� with
Z 1

0

g.x/ dx D 0:

(a) Show that

0
@

1Z
0

f .x/g.x/ dx

1
A
2

�

0
B@

1Z
0

f .x/2 dx �
0
@

1Z
0

f .x/ dx

1
A
2
1
CA

1Z
0

g.x/2 dx:

(b) How would this read on Œa; b� instead of Œ0; 1�?
(The sum version of this exercise is the content of Exercise 2.51.)

9.40. [11] We used the weighted AGM Inequality with n = 2 (Corollary 6.16) to
obtain Hölder’s Integral Inequality (Theorem 9.27). Use the full weighted AGM
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Inequality (Theorem 6.15) to obtain the following extension of Hölder’s Integral
Inequality. Let f1; f2; : : : ; fn be continuous and nonnegative on Œa; b� and let
p1,p2; : : : ; pn > 1 satisfy 1

p1
C 1

p2
C � � � C 1

pn
D 1. Then

bZ
a

nY
jD1

fj .x/ dx �
nY

jD1

0
@

bZ
a

fj .x/
pj dx

1
A
1=pj

(The sum version of this is the content of Exercise 6.37.)

9.41. Use Hölder’s Integral Inequality (Theorem 9.27) to prove Minkowski’s
Integral Inequality: Let f and g be continuous on Œa; b� and let p > 0: Then

0
@

bZ
a

�
f .x/C g.x/

�p
dx

1
A
1=p

�
0
@

bZ
a

f .x/pdx

1
A
1=p

C
0
@

bZ
a

g.x/pdx

1
A
1=p

(The sum version of this for p D 2 is the content of Exercise 2.53 and the sum
version of this for p > 0 is the content of Exercise 6.39.)

Hint: Write
�
f .x/C g.x/

�p D f .x/
�
f .x/C g.x/

�p�1 C g.x/
�
f .x/C g.x/

�p�1
;

then integrate, then apply Hölder’s Integral Inequality (Theorem 9.27) to each piece.
Note: If p D 2; then Minkowski’s Integral Inequality is a sort of a triangle

inequality for integrals:
vuuut

bZ
a

�
f .x/C g.x/

�2
dx �

vuuut
bZ
a

f .x/2 dx C

vuuut
bZ
a

g.x/2 dx:

9.42. [17]

(a) Show that .pq � rs/2 � �
p2 � r2� �q2 � s2� :

(b) Let f and g be continuous on Œa; b�. Use (a) and the Cauchy–Schwarz Integral
Inequality (Corollary 9.28) to show that for any p; q 2 R,

0
@pq �

bZ
a

f .x/g.x/ dx

1
A
2

�
0
@p2 �

bZ
a

f .x/2 dx

1
A
0
@q2 �

bZ
a

g.x/2 dx

1
A :

9.43. [24] Show that if f is continuous and increasing on Œa; b�; then

1

b � a

bZ
a

.x � c/ f .x/ dx � f .c/
�
aCb
2

� c� for any c 2 Œa; b�:
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9.44. The Cauchy–Schwarz Integral Inequality (Corollary 9.28) gives an upper
bound for

bZ
a

f .x/g.x/ dx:

Chebyshev’s Integral Inequality gives a lower bound under certain circumstances:
Let f and g be continuous on Œa; b� with either both increasing or both decreas-
ing. Then

1

b � a

bZ
a

f .x/ dx � 1

b � a

bZ
a

g.x/ dx � 1

b � a

bZ
a

f .x/g.x/ dx:

And the inequality is reversed if f and g have opposite monotonicity. (The sum
version of this is the content of Exercise 2.54.) Fill in the details of the following
proof of Chebyshev’s Integral Inequality. If f and g have the same monotonicity,
then

�
f .x/ � f .c/��g.x/ � g.c/� � 0 for any c 2 Œa; b�:

So by Lemma 9.9,

bZ
a

�
f .x/ � f .c/��g.x/ � g.c/� dx � 0:

Now take c 2 Œa; b� as given for f by the Average Value Theorem (Theorem 9.10):

f .c/ D 1
b�a

Z b

a

f .x/ dx and expand the left-hand side.

9.45. [28] Suppose that f is positive and has two continuous derivatives on
Œa; b�; with each of f and 1=f convex. Use Chebyshev’s Integral Inequality
(Exercise 9.44) to show that

bZ
a

�
f 0.x/
f .x/

�2
dx � 1

.b � a/
.f .b/ � f .a//2
f .a/f .b/

:

9.46. (a) In Exercise 9.44 is Chebyshev’s Integral Inequality. Prove the weighted
version of Chebyshev’s Integral Inequality: Let F and G be continuous
on Œa; b� with either both increasing or both decreasing. Let w > 0 be
continuous on Œa; b�: Then
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bZ
a

w.x/F.x/ dx �
bZ
a

w.x/G.x/ dx �
bZ
a

w.x/ dx

bZ
a

w.x/F.x/G.x/ dx:

And the inequality is reversed if f and g have opposite monotonicity. (A sum
version of this is the content of Exercise 6.40.)

(b) Use this to prove the Cauchy–Schwarz Integral Inequality (Corollary 9.28).
Hint: Set w D G2; and F D G D f=g: (A sum version of this is also contained
in Exercise 6.40.)

9.47. Let f be continuous on Œa; b� with m � f � M; and set A D
1
b�a

Z b

a

f .x/ dx:

(a) Verify that

1

b � a

bZ
a

.f .x/ � A/2 dx D .M � A/.A �m/ � 1

b � a

bZ
a

.M � f .x// .f .x/ �m/ dx:

(b) Conclude that 1
b�a

Z b

a

.f .x/ � A/2 dx � .M � A/.A �m/:
(c) Show that the inequality in (b) is better than—that is, is a refinement of—the

integral version of Popoviciu’s Inequality:

1

b � a

bZ
a

.f .x/ � A/2 dx � 1

4
.M �m/2:

Hint: Show that for q < Q; the quadratic .Q�x/.x�q/ is maximized precisely
when x D 1

2
.QC q/: (A sum version of this is the content of Exercise 2.57.)

9.48. [20]

(a) Look carefully at Exercise 9.47. Extend the ideas there to prove Grüss’s
Integral Inequality: Let f; g be continuous on Œa; b�; with m � f � M and
� � g � 	: Then

ˇ̌
ˇ̌̌
ˇ
1

b � a

bZ
a

f .x/g.x/ dx � 1

b � a

bZ
a

f .x/ dx � 1

b � a

bZ
a

g.x/ dx

ˇ̌
ˇ̌̌
ˇ � 1

4
.M �m/.	 � �/:
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Hint: Let A D 1
b�a

Z b

a

f .x/ dx, B D 1
b�a

Z b

a

g.x/ dx and begin

by applying the Cauchy–Schwarz Integral Inequality (Corollary 9.28) to Z b

a

.f .x/ � A/.g.x/ � B/
!2

.

(b) Consider the functions f .x/ D g.x/ D sign.x� aCb
2
/ to show that the constant

1=4 above cannot be replaced with anything smaller. That is, it is sharp. (A sum
version of this is the content of Exercise 2.58.)

9.49. Use Jensen’s Integral Inequality (Theorem 9.29), with an appropriate choice
of weight function, to prove Hölder’s Integral Inequality (Theorem 9.27). (A sum
version of this is the content of Exercise 8.50.)

9.50. Extend Example 9.32: State and prove a weighted AGM Inequality for
Functions, thus generalizing the AGM Inequality for Functions.

9.51. Let f be continuous on Œa; b�: For r > 0 define the Power Mean Mr by

Mr D
0
@ 1

b � a

bZ
a

f .x/r dx

1
A
1=r

:

For example, M1 is the average value of f and M2 is called the Root Mean
Square.

(a) Apply Jensen’s Integral Inequality (Theorem 9.29) with '.x/ D xr=s to show
that Ms < Mr if s < r:

(b) What is a reasonable way to define M0?
(c) What is a reasonable definition of M1?
(d) How might you define weighted Power Means?

(A sum version of this exercise is the content of Exercise 8.48 and another approach
is the content of Exercise 10.18.)

9.52. [20] Let f and g be continuous on Œ0; 1�, with f decreasing and 0 � g � 1:

Let � D
Z 1

0

g.x/ dx: Steffensen’s Inequalities are:

1Z
1��

f .x/ dx �
1Z
0

f .x/g.x/ dx �
�Z
0

f .x/ dx:

(a) By considering 1 � g.x/; show that the left-hand inequality follows from the
right-hand inequality.
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(b) Prove the right-hand inequality. Hint: Verify that

�Z
0

f .x/ dx �
1Z
0

f .x/g.x/ dx D
�Z
0

.1 � g.x//f .x/ dx �
1Z
�

f .x/g.x/ dx

� f .�/

�Z
0

.1 � g.x// dx �
1Z
�

f .x/g.x/ dx;

then show that this is � 0:

(c) Prove the left-hand inequality directly—that is, without using (a).
(d) How would Steffensen’s Inequalities read on Œa; b�?
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Chapter 10
The Fundamental Theorem of Calculus

There is nothing more thrilling than getting a new song – when
you think of the piece that will fit the puzzle.

—James Taylor, in Rolling Stone #1062, October 2008

In Chap. 9 we evaluated a few definite integrals by using Riemann sums, a method
that is generally not easy, even for simple integrands. Then we evaluated a few more,
by interpreting the definite integral as a certain familiar area. For example:

bZ
a

.Mx C B/ dx D M

2
.b2 � a2/C B.b � a/ and

rZ
�r

p
r2 � x2 dx D �r2

2
:

Generally however, computing integrals
Z b

a

f .x/ dx which routinely appear in

problems with no apparent notion of area or of average value in sight, can be
very difficult. Coming to the rescue in many cases is the Fundamental Theorem
of Calculus. With it, many more definite integrals can be computed relatively easily.
But this—the most important theorem in all of calculus—gives us a great deal more.

10.1 The Fundamental Theorem

Theorem 10.1. (The Fundamental Theorem of Calculus)

(i) Let f be continuous on Œa; b�. Then for each x 2 Œa; b�;
0
@

xZ
a

f .t/ dt

1
A

0

D f .x/:

© Springer Science+Business Media New York 2014
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(ii) Let f 0 be continuous on Œa; b�. Then for each x 2 Œa; b�;
xZ
a

f 0.t/ dt D f .x/ � f .a/:

Proof. For part (i), set F.x/ D
Z x

a

f .t/ dt: Then by Lemma 9.22,

F.x C h/ � F.x/ D
xChZ
x

f .t/ dt:

So by the Average Value Theorem (Theorem 9.10) there is c 2 Œx; x C h� such that

1

.x C h/ � x

xChZ
x

f .t/ dt D F.x C h/ � F.x/
h

D f .c/:

Now as h ! 0we must have c ! x, and so f .c/ ! f .x/ because f is continuous.
Therefore

lim
h!0

F.x C h/ � F.x/
h

D f .x/; as desired.

For part (ii), we use part (i) to see that

�Z x

a

f 0.t/ dt
�0

D f 0.x/: So having the

same derivative, the functions
Z x

a

f 0.t/ dt and f .x/ must differ by a constant, by

Lemma 5.6. That is, for some C 2 R,

f .x/ D
xZ
a

f 0.t/ dt C C:

Therefore f .x/ � f .a/ D
�Z x

a

f 0.t/ dt C C

�
�
�Z a

a

f 0.t/ dt C C

�
DZ x

a

f 0.t/ dt . ut

The Fundamental Theorem (Theorem 10.1) contains the astonishing fact that if
f 0 is continuous, then the operations of differentiation and (definite) integration are
inverses of one another—that is, except for the “�f .a/” which appears in Part (ii).

So virtually any useful or interesting fact about derivatives corresponds to a
useful or interesting fact about integrals, and vice-versa. Here is a good example.
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Example 10.2. We show how the Mean Value Theorem (Theorem 5.2) yields the
Average Value Theorem (Theorem 9.10), and vice versa, by way of the Fundamental
Theorem (Theorem 10.1). For f continuous on Œa; b�, the Fundamental Theorem

Part (i) says in particular that F.x/ D
Z x

a

f .t/ dt is differentiable. Then the Mean

Value Theorem applied to F says that there is c 2 .a; b/ such that

F.b/ � F.a/
b � a D F 0.c/:

Again by the Fundamental Theorem Part (i), this reads 1
b�a

Z b

a

f .x/ dx D f .c/;

which is the Average Value Theorem. (In Exercise 10.5 we see how to obtain the
Mean Value Theorem for Integrals (Theorem 9.14) this way.) Conversely, if f 0 is

continuous then
Z b

a

f 0.x/ dx D f .b/ � f .a/; by the Fundamental Theorem Part

(ii). Then the Average Value Theorem applied to f 0 implies that there is c 2 .a; b/
such that

f 0.c/ D 1

b � a

bZ
a

f 0.x/ dx:

This reads

f 0.c/ D f .b/ � f .a/
b � a ;

which is the Mean Value Theorem. In this latter analysis, we require that f 0 is

continuous because if f is only differentiable, then
Z b

a

f 0.x/ dx may not be

defined. And even if it were defined, the Average Value Theorem might not be
applicable. A function f for which f 0 is continuous is often called continuously
differentiable. ˘
Example 10.3. Here is the integral analogue of Cauchy’s Mean Value Theorem
(Theorem 5.11). For f and g continuous on Œa; b�, Cauchy’s Mean Value Theorem
applied to

F.x/ D
xZ
a

f .t/ dt and G.x/ D
xZ
a

g.t/ dt

says that there is c 2 .a; b/ such that

F 0.c/
�
G.b/ �G.a/� D G0.c/

�
F.b/ � F.a/�:
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That is,

f .c/

bZ
a

g.t/ dt D g.c/

bZ
a

f .t/ dt:

This is Cauchy’s Mean Value Theorem for Integrals. ˘

For f .b/�f .a/ the notation f .t/
ˇ̌
ˇb
a

is commonly used. This way, Part (ii) of the

Fundamental Theorem with x D b is written

bZ
a

f 0.t/ dt D f .t/
ˇ̌̌b
a
:

As we saw in the proof of Part (ii), an antiderivative f of a given f 0 is not unique:
f C C is also an antiderivative of f 0 for any C 2 R: But we also saw in the proof
that whichever constant C is chosen does not matter—the C ’s cancel out. So in
practice one usually chooses C D 0:

The string of symbols

Z
f .t/ dt

is used to denote an antiderivative of f , but when written this way it is referred to as
an indefinite integral. It is the Fundamental Theorem which makes this terminology
and notation reasonable; indeed, Part (i) tells how to produce an antiderivative of a
continuous function. And again, since any two indefinite integrals of f differ by a
constant, the expression

Z
f .t/ dt C C

is used to denote all indefinite integrals of f; that is, all antiderivatives of f .
The Fundamental Theorem Part (ii) (Theorem 10.1) contains another astonishing

fact—that for a continuous function f; evaluating a definite integral
Z b

a

f .x/ dx

(which remember, is defined in terms of averages or area) comes down to the
apparently very different problem of finding an antiderivative for f:

Example 10.4. In Example 9.7 we showed that

bZ
a

sin.x/ dx D cos.a/ � cos.b/;
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by considering an appropriate sequence of Riemann sums. But .cos.x//0 D � sin.x/
and so by the Fundamental Theorem (Theorem 10.1),

bZ
a

sin.x/ dx D � cos.x/
ˇ̌̌b
a

D � .cos.b/ � cos.a// D cos.a/ � cos.b/:

Likewise, since .sin.x//0 D cos.x/;

bZ
a

cos.x/ dx D sin.x/
ˇ̌̌b
a

D sin.b/ � sin.a/: ˘

Example 10.5. For r 2 R with r ¤ �1 we have

�
xrC1

r C 1

�0
D xr , by the Power

Rule. So by the Fundamental Theorem,

bZ
a

xr dx D xrC1

r C 1

ˇ̌
ˇ̌̌b
a

D brC1 � arC1
r C 1

.r ¤ �1/:

As an indefinite integral, this reads
Z
xr dx D xrC1

r C 1
C C .r ¤ �1/:

To see what happens when r D �1, observe that
�

ln.x/
�0 D 1

x
for x > 0. So by

the Fundamental Theorem,

bZ
a

1

x
dx D ln.x/

ˇ̌̌b
a

D ln.b/ � ln.a/ D ln

�
b

a

�
.a; b > 0/:

And as an indefinite integral, this reads

Z
1

x
dx D ln.x/C C .x > 0/:

Sometimes it is convenient to write
Z b

a

1

x
dx D ln.x/

ˇ̌b
a

D ln.b/�ln.a/ for a; b > 0

in the equivalent form (for p; q > �1):

qZ
p

1

1C x
dx D ln.1C x/

ˇ̌̌q
p

D ln.1C q/ � ln.1C p/ D ln

�
1C q

1C p

�
: ˘
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Example 10.6. Taking r D �p ¤ �1 in Example 10.5,

lim
N!1

NZ
1

1

xp
dx D lim

N!1


1

1 � p
�
N

Np
� 1

��
:

This limit exists if p > 1, and it diverges to C1 if p < 1: Also from Example 10.5,

lim
N!1

NZ
1

1

x
dx D lim

N!1 .ln.N // ;

which diverges to C1. Therefore, by the Integral Test (Theorem 9.24), the p-series

1X
nD1

1

np
converges if and only if p > 1:

(We obtained this result differently in Sect. 6.7.) For example, the Harmonic series
1P
nD1

1
n

diverges to C1 and
1P
nD1

1
n2

converges. We will see in Theorem 12.7 that

in fact,

1X
nD1

1

n2
D �2

6
Š 1:645 :

Being the first to find the sum of this series was one of Euler’s many triumphs. ˘
Example 10.7. We have met several times, beginning with Example 6.11
(line (6.7)), the useful inequality:

ln.x/ � x � 1 for x > 0 : (10.1)

Here is a way to obtain it using integrals. Again by Example 10.5,

xZ
1

1

t
dt D ln.x/ � ln.1/ D ln.x/:

Now if x > 1; then 1
t

� 1 on Œ1; x� and so

ln.x/ D
xZ
1

1

t
dt �

xZ
1

1 dt D x � 1:
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If 0 < x < 1; then 1
t

� 1 on Œx; 1� and so

1Z
x

1

t
dt �

1Z
x

1 dt D 1 � x:

Therefore

ln.x/ D
xZ
1

1

t
dt D �

1Z
x

1

t
dt � �

1Z
x

1 dt D x � 1:

Either way, ln.x/ � x � 1 for x > 0: ˘
Example 10.8. Sometimes a complicated limit can be viewed as the limit of a
Riemann sum, so that evaluating the limit comes down to evaluating a definite
integral. For example, let us consider the limit (for k ¤ �1)

lim
n!1

�
1

n

1k C 2k C � � � C nk

nk

�
:

We write

1

n

1k C 2k C � � � C nk

nk
D 1

n

 �
1

n

�k
C
�
2

n

�k
� � � C

�
k

n

�k!
;

and notice that this is a Riemann sum for
Z 1

0

xk dx: Therefore

lim
n!1

�
1

n

1k C 2k C � � � C nk

nk

�
D

1Z
0

xk dx D 1

k C 1
: ˘

Example 10.9. We have seen that for a function u which is differentiable and never
zero,

�
ln
ˇ̌
u.x/

ˇ̌�0 D u0.x/
u.x/

:

So by the Fundamental Theorem,

Z
u0.x/
u.x/

dx D ln
ˇ̌
u.x/

ˇ̌C C:
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Following [46], we use this to show that

Z
sec.x/ dx D ln

ˇ̌
sec.x/C tan.x/

ˇ̌C C:

Observe that

.sec.x/C tan.x//0 D sec.x/ tan.x/C sec2.x/ D sec.x/ .tan.x/C sec.x// :

Therefore

.sec.x/C tan.x//0

sec.x/C tan.x/
D sec.x/;

and so indeed
Z

sec.x/ dx D ln
ˇ̌
sec.x/C tan.x/

ˇ̌C C:

Similarly (Exercise 10.21),

Z
csc.x/ dx D ln

ˇ̌
csc.x/ � cot.x/

ˇ̌C C: ˘

Example 10.10. Here we show that for 0 < x � 2,

ln.x/ D .x � 1/ � .x � 1/2
2

C .x � 1/3
3

� .x � 1/4
4

C � � �

D
1X
nD0

.�1/n
nC 1

.x � 1/nC1;

thus extending Example 8.26, in which we obtained this series only for
1=2 � x � 2: And again, setting x D 2 here we obtain the sum of the Alternating
Harmonic series:

ln.2/ D 1 � 1

2
C 1

3
� 1

4
C � � � D

1X
nD0

.�1/n
nC 1

:

For x ¤ �1, the following identity can be found by doing long division on the
left-hand side, or simply verified by cross multiplication:

1C .�1/nxnC1

1C x
D 1 � x C x2 � x3 C � � � C .�1/nxn:



10.1 The Fundamental Theorem 257

Therefore

1

1C x
D 1 � x C x2 � x3 C � � � C .�1/nxn C .�1/nC1xnC1

1C x
:

Integrating from 0 to u > �1 and using Example 10.5, we get

ln.1C u/ D
uZ
0

1

1C x
dx

D u � 1

2
u2 C 1

3
u3 � � � � C .�1/n

nC 1
unC1 C .�1/nC1

uZ
0

xnC1

1C x
dx:

Now for u � 0 and x 2 Œ0; u�; we have 1 � 1C x � 1C u, so that

xnC1

1C u
� xnC1

1C x
� xnC1:

Integrating with respect to x from 0 to u; we get

1

1C u

unC2

.nC 2/
�

uZ
0

xnC1

1C x
dx � unC2

.nC 2/
:

For �1 < u < 0 and t 2 Œu; 0�; a similar analysis leads to the same inequalities, but
reversed. So either way, if �1 < u � 1; each of the right-hand and left-hand sides
! 0 as n ! 1: Therefore we are justified in writing (for �1 < u � 1):

ln.1C u/ D u � 1

2
u2 C 1

3
u3 � 1

4
u4 C � � � D

1X
nD0

.�1/n
nC 1

unC1:

Setting u D x � 1 here we get, for 0 < x � 2:

ln.x/ D .x�1/� .x � 1/2
2

C .x � 1/3
3

� .x � 1/4
4

C� � � D
1X
nD0

.�1/n
nC 1

.x�1/nC1: ˘

Example 10.11. For t 2 .�1;1/, we have .arctan.t//0 D 1
1Ct2 : So by the

Fundamental Theorem,

xZ
0

1

1C t 2
dt D arctan.t/

ˇ̌̌x
0

D arctan.x/:
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And in particular,

1Z
0

1

1C t 2
dt D �

4
: ˘

Example 10.12. Here we verify the curious fact that (e.g., [32])

  D 22

7
�

1Z
0

x4.1 � x4/
1C x2

dx:

Since the integrand here is positive,   < 22
7

. In particular   ¤ 22
7

!! The following
identity can be found by doing long division on the left-hand side, or by obtaining a
common denominator on the right-hand side:

x4.1 � x4/
1C x2

D x6 � 4x5 C 5x4 � 4x2 C 4 � 4

1C x2
:

Then using Examples 10.5 and 10.11,

1Z
0

x4.1 � x4/
1C x2

dx D
1Z
0

.x6 � 4x5 C 5x4 � 4x2 C 4/ dx � 4
1Z
0

1

1C x2
dx

D 1

7
� 2

3
C 1 � 4

3
C 4 � 4 

4

D 22

7
�  :

See Exercises 10.38 and 10.39 for similar results. ˘
Example 10.13. Here (see also [42]) we obtain the well known Leibniz series,
named for German mathematician Gottfried W. Leibniz (1646–1716):

arctan.u/ D u � 1

3
u3 C 1

5
u5 � 1

7
u7 C � � � D

1X
nD0

.�1/n
2nC 1

u2nC1; for � 1 � u � 1:

Replacing x with t 2 in the identity (see Example 10.10)

1

1C x
D 1 � x C x2 � x3 C � � � C .�1/nxn C .�1/nC1xnC1

1C x
;
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we get

1

1C t 2
D 1 � t 2 C t 4 � t 6 C � � � C .�1/nt2n C .�1/nC1t2nC2

1C t 2
:

Then integrating from 0 to u and using Examples 10.5 and 10.11, we get

arctan.u/ D
uZ
0

1

1C t 2
du

D u � 1

3
u3 C 1

5
u5 � � � � C .�1/n

2nC 1
u2nC1 C .�1/nC1

uZ
0

t2nC2

1C t 2
dt:

Now for u > 0 and t 2 Œ0; u�; we have 1 � 1C t 2 � 1C u2, so that

t 2nC2

1C u2
� t 2nC2

1C t 2
� t 2nC2:

Integrating with respect to t from 0 to u; we get

1

1C u2
u2nC3

.2nC 3/
�

uZ
0

t2nC2

1C t 2
dt � u2nC3

.2nC 3/
:

For u < 0 and t 2 Œu; 0�; a similar analysis leads to the same inequalities, but
reversed. So either way, if �1 � u � 1; each of the right-hand and left-hand sides
! 0 as n ! 1: Therefore we are indeed justified in writing (for �1 � u � 1):

arctan.u/ D u � 1

3
u3 C 1

5
u5 � 1

7
u7 C � � � D

1X
nD0

.�1/n
2nC 1

u2nC1:

Taking u D 1 in this, the Leibniz series, we get the Gregory-Leibniz series named
also for Scottish mathematician James Gregory (1638–1675):

 

4
D 1 � 1

3
C 1

5
� 1

7
C 1

9
� 1

11
C � � � D

1X
nD0

.�1/n
2nC 1

: ˘

Remark 10.14. A result similar to the Integral Test (Theorem 9.24) is used in [2]
to obtain sums of rearrangements of various alternating series. For example, taking
three positive terms then two negative terms and so on, in the Gregory-Leibniz
series, one has:
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1C 1

5
C 1

9
� 1

3
� 1

7
C 1

13
C 1

17
C 1

21
� 1

11
� � � � D  

4
C 1

4
ln

�
3

2

�
:

See also [7]. And taking three positive terms then two negative terms and so on, in
the Alternating Harmonic series, one has:

1C 1

3
C 1

5
� 1

2
� 1

4
C 1

7
C 1

9
C 1

11
� 1

6
� � � � D ln.2/C 1

2
ln

�
3

2

�
:

In these formulas, replacing the 3 positive terms and 2 negative terms with m
positive terms and n negative terms respectively, we get ln

�
m
n

�
instead of the

ln
�
3
2

�
. ı

10.2 The Natural Logarithmic and Exponential
Functions Again

In Chap. 6 we defined the exponential function then showed that its inverse exists—
this is natural logarithmic function. An alternative way is to define the natural
logarithmic function then show that its inverse exists—this is the exponential
function. Here we outline the latter approach, made possible by the Fundamen-
tal Theorem of Calculus (Theorem 10.1).

Let a; b > 0: The Power Rule for Rational Powers does not apply to
Z b

a

xn dx

when n D �1; but the integral still makes sense for n D �1. Therefore we can
define the natural logarithmic function ln.x/ by

ln.x/ D
xZ
1

1

t
dt; for x > 0:

The integrand is positive and so ln.x/ is an increasing function, with ln.x/ < 0 for
x 2 .0; 1/; ln.1/ D 0; and ln.x/ > 0 for x 2 .1;1/: By its very definition, ln.x/ is
differentiable by the Fundamental Theorem (Theorem 10.1), and that theorem gives

.ln.x//0 D 1

x
for x > 0:

For x < 0 we have ln.jxj/ D ln.�x/; and so the Chain Rule gives

.ln.jxj//0 D 1

x
for x ¤ 0: That is,

Z
1

x
dx D ln.jxj/C C:
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Then further by the Chain Rule, for differentiable functions u which are never zero,

.ln ju.x/j/0 D u0.x/
u.x/

:

That is,

Z
u0.x/
u.x/

dx D ln.ju.x/j/C C :

Lemma 10.15. The natural logarithmic function ln.x/ has the following properties:

(i) ln.ab/ D ln.a/C ln.b/ for a; b > 0;
(ii) ln.a=b/ D ln.a/ � ln.b/ for a; b > 0;

(iii) ln.ar / D r ln.a/ for a > 0 and r 2 Q;
(iv) ln.x/ is a strictly increasing function,
(v) ln.x/ ! 1 as x ! 1;

(vi) ln.x/ ! �1 as x ! 0C:

Proof. For (i), observe that for a > 0 we have .ln.ax//0 D a
ax

D 1
x

D .ln.x//0;
and so ln.ax/ D ln.x/CC for some C 2 R; by Corollary 5.7. To determine C; set
x D 1: Now set x D b:

For (ii), write ln.a/ D ln. a
b
b/ and apply (i).

For (iii), by the Chain Rule and the Power Rule for Rational Powers,

.ln.xr //0 D 1

xr
.xr /0 D 1

xr
.rxr�1/ D r

x
D r.ln.x//0 D .r ln.x//0:

Therefore ln.xr / D r ln.x/CC for some C 2 R; by Corollary 5.7. To determine C;
set x D 1: Now set x D a:

For (iv) we have observed already that 1
x
> 0 for x > 0 and so ln.x/ is in fact

strictly increasing.
For (v), notice that ln.2n/ D n ln.2/: Now ln.x/ is increasing, so ln.x/ > n ln.2/
for x > 2n. Therefore, since ln.2/ > 0; we can make ln.x/ as large as we please, by
taking x large.
For (vi), we simply write ln.x/ D � ln.1=x/ and appeal to (v). ut

Since ln.x/ is continuous (it is differentiable) and ln.1/ D 0, by Lemma 10.15
part (v) and the Intermediate Value Theorem (Theorem 3.17) we may define the
number e > 1 as that number for which ln.e/ D 1: That is,

ln.e/ D
eZ
1

1

t
dt D 1:

This number is unique, by Rolle’s Theorem (Theorem 5.1) and Lemma 10.15
part (iv). Then by Lemma 10.15 parts (iv)–(vi), we see that f .x/ D ln.x/ has an
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inverse function, defined on .�1;1/; with range .0;1/: It is denoted by exp.x/.
Since ln.e/ D 1; we have exp.1/ D e: And since ln.1/ D 0; we have exp.0/ D 1:

Now any property of ln.x/ gives rise to a property of exp.x/, since the latter is
the inverse of the former. We list those, in order, which correspond to the properties
listed in Lemma 10.15. We leave their proofs as an exercise.

Lemma 10.16. The function exp.x/ has the following properties:

(i) exp.aC b/ D exp.a/ exp.b/ for a; b 2 R;
(ii) exp.a � b/ D exp.a/= exp.b/ for a; b 2 R;

(iii) .exp.a//r D exp.ar/ for a 2 R and r 2 Q;
(iv) exp.x/ is a strictly increasing function,
(v) exp.x/ ! 1 as x ! 1;

(vi) exp.x/ ! 0 as x ! �1:

Proof. This is Exercise 10.43. ut
We now show that exp.t/ is continuous at every t 2 R. (Or we could apply

Exercise 4.16.) First, using Lemma 10.16 (i) or (ii), observe that

exp.t/ � exp.s/ D exp.t/ Œ1 � exp.s � t /� :
Therefore, since exp.0/ D 1, it suffices to show that exp.t/ is continuous at t D 0.
We use the inequality (10.1), which we obtained using integrals in Example 10.7:

ln.t/ � t � 1 for t > 0 :

Replacing t with exp.t/ in this inequality, we get

1C t � exp.t/ for t 2 R :

Notice that exp.t/ is increasing, so

1C t � exp.t/ � 1 for t � 0:

This shows that exp.t/ is continuous from the left at t D 0.
Now replacing t with 1=t in (10.1) we get

1 � 1

t
< ln.t/ for t > 0 :

And replacing t with exp.t/ here, we get

exp.t/ < 1C t exp.t/ for t > 0 :

Again 1C t � exp.t/ and exp.t/ is increasing, so

1C t � exp.t/ < 1C t exp.t/ � 1C te for 0 < t � 1 :
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This shows that exp.t/ is continuous from the right at t D 0. So exp.t/ is indeed
continuous at t D 0.

In view of Lemma 10.15 (iii), ar D exp.ln.ar // D exp.r ln.a// for any a > 0

and any rational number r: But since exp.x/ is continuous, for any a > 0 and any
real number x it is reasonable to define

ax D exp.x ln.a//:

(Then Lemma 10.16 (iii) extends to .exp.a//b D exp.ab/ for a; b 2 R.) Then
taking a D exp.1/ D e, we get

ex D exp.x ln.e// D exp.x/:

This being the case, it is most customary to denote the inverse of ln.x/ by ex instead
of exp.x/.

This function is called the exponential function. It satisfies

eln.x/ D x for x > 0 and ln.ex/ D x for x 2 R:

The graphs of ln.x/ and ex are shown in Fig. 10.1.

y

x
1

1

y = x

y = ln(x)

y = ex

Fig. 10.1 The graphs of y D ln.x/ and its inverse, y D ex: Each is the graph of the other,
reflected in the line y D x

The relationship ln.ex/ D x seems to imply, by the Chain Rule, that 1
ex .e

x/0 D 1

and so .ex/0 D ex: But this only shows that if .ex/0 exists, then it equals ex . One



264 10 The Fundamental Theorem of Calculus

really must show first that .ex/0 exists. This can be done using Exercise 4.16, but
here we do so more directly. We show that ex is differentiable at every x 2 R; and
we find its derivative while doing so.

In (10.1), we replace x with each of ex�y and ey�x , to get

1C .x � y/ � ex�y

and

1C .y � x/ � ey�x:

Taken together, these give (for x � y; say):

ex <
ey � ex

y � x � ey:

Therefore, since et is continuous, letting y ! x (or x ! y), we get .ex/0 D ex for
x 2 R:

Then for differentiable functions u the Chain Rule gives

.eu.x//0 D eu.x/ u0.x/:

That is, by the Fundamental Theorem (Theorem 10.1),

Z
eu.x/u0.x/ dx D eu.x/ C C:

Exercises

10.1. Let f be continuous on Œa; b�; and let A D 1
b�a

Z b

a

f .x/ dx: Apply Rolle’s

Theorem (Theorem 5.1) and the Fundamental Theorem (Theorem 10.1) to

h.x/ D
xZ
a

.f .t/ � A/ dt

to prove the Average Value Theorem (Theorem 9.10).

10.2. Let f and g be continuous on Œa; b� with
Z b

a

f .x/ dx D
Z b

a

g.x/ dx: Show

that there is c 2 Œa; b� such that f .c/ D g.c/:

10.3. Show that
Z x

0

.x � u/f .u/ du D
Z x

0

Z u

0

f .t/ dt du; for f continuous on R:

Hint: Differentiate each side with respect to x.
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10.4. Assume the hypotheses which yield Cauchy’s Mean Value Theorem for
Integrals (Example 10.3). Show how, if we assume further that one of the two
functions is never zero, we can obtain the Mean Value Theorem for Integrals
(Theorem 9.14).

10.5. [41] Let f and g be continuous on Œa; b�; with g nonnegative and not
identically zero. Set

F.x/ D
xZ
a

f .t/g.t/ dt and G.x/ D
xZ
a

g.t/ dt:

Apply Rolle’s Theorem (Theorem 5.1) and the Fundamental Theorem (Theo-
rem 10.1) to

H.x/ D F.x/G.b/ � F.b/G.x/

to obtain the Mean Value Theorem for Integrals (Theorem 9.14). (The func-
tion H.x/ is ˙ twice the area of the triangle determined by the points .0; 0/;
.F.x/; F.b//; and .G.x/;G.b//: See Exercise 1.12.)

10.6. [51] Let f be continuous on Œ1; 2�; with
Z 2

1

f .x/ dx D 0: Show that there is

c 2 .1; 2/ such that

2Z
c

f .t/ dt D cf .c/:

Hint: Consider

F.x/ D x

2Z
1

f .t/ dt:

10.7. Here is a slightly different proof of Part (i) of the Fundamental Theorem

(Theorem 10.1). (a) Again set F.x/ D
Z x

a

f .t/ dt; and show that

ˇ̌
ˇ̌F.x C h/ � F.x/

h
� f .x/

ˇ̌
ˇ̌ D 1

jhj

ˇ̌
ˇ̌̌
ˇ
xChZ
x

.f .t/ � f .x// dt
ˇ̌
ˇ̌̌
ˇ :

(b) Now use the fact that f is continuous.

10.8. Here is another proof of Part (i) of Fundamental Theorem (Theorem 10.1).
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(a) Again set F.x/ D
Z x

a

f .t/ dt: Use the Extreme Value Theorem (Theo-

rem 3.23) to show that there are tm and tM (depending on x and h) such that
f .tm/ � f .t/ � f .tM / for all x 2 Œx; x C h�:

(b) Show that hf .tm/ � F.x C h/� F.x/ � hf .tM /; then use the continuity of f:

10.9. [6, 9] Fill in the details of the following proof of Part (ii) of the Fundamental
Theorem (Theorem 10.1), which does not rely on Part (i). With f 0 continuous on
Œa; b�; let a D x0 < x1 < � � � < xn�1 < xN D b; with xjC1 � xj D .b�a/

N
for

each j:

(a) Verify that

f .b/ � f .a/ D
NX
jD1

�
f .xj / � f .xj�1/

�
:

(b) Apply the Mean Value Theorem (Theorem 5.2) to each term in the sum.
(c) Let N ! 1 in a suitable way.

10.10. Let f .t/ D 0 for t < 0; and f .t/ D 1 for t � 0:

(a) For a < 0; compute F.x/ D
Z x

a

f .t/ dt:

(b) Is F differentiable?
(c) How, if at all, does this fit into the Fundamental Theorem (Theorem 10.1)?

10.11. [16] Use the Fundamental Theorem (Theorem 10.1) to show that if f is

continuous on R and periodic with period T , then
Z aCT

a

f .x/ dx is independent

of a: Conclude that
Z aCT

a

f .x/ dx D
Z T

0

f .x/ dx:

10.12. Let f be a function defined (for simplicity) on all of R. Then f is an odd
function if f .�x/ D �f .x/ for all x and f is an even function if f .�x/ D f .x/

for all x:

(a) Show that x; x3 and sin.x/ are odd, while 1; x2, and cos.x/ are even.
(b) Use the Fundamental Theorem (Theorem 10.1) to show that if f is odd and

continuous then
Z a

�a
f .x/ dx D 0 for all a:

(c) Use the Fundamental Theorem (Theorem 10.1) to show that if f is even and

continuous then
Z a

�a
f .x/ dx D 2

Z a

0

f .x/ dx for all a:

(d) Show that any function defined on R can be written as the sum of an odd
function and an even function. (For example, ex D sinh.x/C cosh.x/.)

10.13. [18] Show that

lim
n!1

0
@

1Z
0

�
1C xn

�n
dx

1
A
1=n

D 2:
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Hint: First show that
Z 1

0

�
1 C xn

�n
dx � 2n: Then use the AGM Inequality

(Theorem 2.10) to show that
Z 1

0

�
1C xn

�n
dx �

Z 1

0

2nxn
2=2 dx � 2n

2

n2 C 2
:

10.14. [5] We have seen that the Harmonic series diverges, so for each n D
1; 2; 3; : : : there is a least positive integer an such that

1

n
C 1

nC 1
C 1

nC 2
C � � � C 1

an
> 1:

Show that
an

n
! e as n ! 1:

10.15. [10, 39]

(a) Let a > 0: Show that

lim
n!1

�
1

n
C 1

nC a
C 1

nC 2a
C � � � C 1

nC .n � 1/a
�

D 1

a
ln.1C a/:

(b) Find

lim
n!1

�
1

n
C 2

n
C 3

n
C � � � C 1

2n � 1
�
:

(c) Let a > 1: Find

lim
n!1

�
1

n
C 1

nC 1
C 1

nC 2
C � � � C 1

nC na

�
:

10.16. [14] Let a > 0: Find

lim
n!1

nY
jD1

�
aC j � 1

n

�1=n
:

Hint: For x > 0;
�
x ln.x/ � x�0 D ln.x/; and so

Z
ln.x/ dx D x ln.x/ � x C C:

10.17. [55] Consider the function

wr .x/ D
xZ
0

t r�1 dt D

8̂̂
<
ˆ̂:

xr � 1
r

if r ¤ 0

ln.x/ if r D 0:
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(a) Show that wr .x/ increases with r:
(b) Use (a) to show that for ’ > 1,

.1C x/’ � 1C ’x for x > �1;

and that this inequality persists for ’ < 0; and is reversed for 0 < ’ < 1: Hint:
Substitute x D t C 1 and use (a) for the two cases r � 1 and 1 � r .

This is the improved Bernoulli’s Inequality from Example 6.12, extended as in
Exercise 6.5.

10.18. [55] (cf. Exercises 8.48 and 9.51.) For f continuous on Œ0; 1� and r > 0;

define the Power Mean Mr by

Mr D
0
@

1Z
0

f .t/r dt

1
A
1=r

:

Here we show that Mr < Ms for r < s: Consider the function

wr .x/ D
xZ
0

t r�1 dt D

8̂̂
<
ˆ̂:

xr � 1
r

if r ¤ 0

ln.x/ if r D 0:

(a) Show that wr .x/ increases with r:

(b) Show that
Z 1

0

wr .
f .t/

Mr
/ dt D 0:

(c) Conclude that

0 D
1Z
0

wr

�
f .t/

Mr

�
dt <

1Z
0

ws

�
f .t/

Mr

�
dt for r < s:

(d) Deduce the desired result.
(e) Bonus: What is the natural thing to take as the definition for M0 ?

10.19. Here is another way to obtain inequality (6.7): ln.x/ � x�1; for x > 0:

(a) Verify that

�
t � ln.t/

�0 D t � 1
t
;
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and so

xZ
1

t � 1
t

dt D x � ln.x/ � 1:

(b) Consider x � 1 and 0 < x < 1 and show that either way, x � ln.x/ � 1 � 0:

10.20. (a) Find the length of the curve y D x3

6
C 1

2x
; from x D 1 to x D 2:

(b) Find the length of the curve y D x2

8
� ln x; from x D 1 to x D 4:

10.21. [15]

(a) Show that

Z
csc.x/ dx D ln jcsc.x/ � cot.x/j C C:

(b) Use (a) to find the length of the curve y D 1
2

ln.sin.2x// from x D  =6 to
x D  =3:

10.22. [13] Let f be defined on Œa; b�with f 0 continuous there, and let P andQ be
points on the graph of f: Denote byL.P;Q/ the length of the curve y D f .x/ from
P to Q and denote by D.P;Q/ the length of the chord from P to Q: Show that

lim
Q!P

L.P;Q/

D.P;Q/
D 1:

Hint: First take Œa; b� D Œ0; 1�; f .0/ D 0; and P D .0; 0/:

10.23. [53] Let 0 < a < e. (a) Show that a < ex on the interval .ln.a/; 1/:
(b) Show that

x � ln.a/ < e � x for 0 < a < e:

10.24. [49] Here is another way to show that

e D
1X
nD0

1

nŠ
:

Let 0 < t � 1.

(a) Show that there is c 2 .0; t/ such that

et � 1
t

D ec :
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(b) Conclude that 1C et > et > 1C t:

(c) Integrate from 0 to x to show that

1C x C ex2

2
> ex > 1C x C x2

2
:

(d) Continue, showing that

1C xC x2

2
C x3

3Š
C � � � C exnC1

.nC 1/Š
> ex > 1C xC x2

2
C x3

3Š
C � � � C xnC1

.nC 1/Š
:

(e) Now set x D 1; and let n ! 1:

10.25. Let x > 0: Since ex � 1 D
Z x

0

et dt �
Z x

0

1 dt D x we have (again)

ex � 1C x:

(a) Continue this, showing that

ex � 1C x C x2

2Š
C x3

3Š
C � � � C xn

nŠ
for x > 0:

(b) Show that if n is even this inequality persists for x � 0, but is reversed for
x � 0:

10.26. [4, 30] Let x > 0: Since cos.t/ � 1; we have
Z x

0

cos.t/ dt �
Z x

0

dt: That

is, sin.x/ � x: Integrating again we get 1 � cos.x/ � x2=2 � 1:

(a) Continue this, showing that

x � x3

3Š
� sin.x/ � x

1 � x2

2Š
C x4

4Š
� x6

6Š
� cos.x/ � 1 � x2

2Š
C x4

4Š

x � x3

3Š
C x5

5Š
� x7

7Š
� sin.x/ � x � x3

3Š
C x5

5Š
; etc.

(b) Show that for x < 0 these inequalities persist for cos.x/ and are reversed for
sin.x/: (We remark that sine is an odd function: sin.�u/ D � sin.u/; and cosine
is an even function: cos.�u/ D cos.u/:)

10.27. [22] Observe that 1
t2

� 1
t

� 1 for t � 1, and 1 � 1
t

� 1
t2

for 0 < t � 1:
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(a) Integrate these from 1 to 1C x, (for x > �1) to obtain

x

1C x
� ln.1C x/ � x:

(b) Integrate this from 0 to y (for y > 0) to obtain, after some rearrangement,

y � ln.1C y/ � ln.1C y/C y ln.y/ � y � y2

2
:

(c) Show that the inequalities in (b) can be rearranged to improve the inequality
y

1C 1
2 y

� ln.1C y/ for y � 0. (This was in Exercise 6.23.)

10.28. [20, 28] Let x 2 R and " > 0. Suppose that f is defined on Œx � "; x C "�;

with f .3/ continuous there. Show that

f 0.x/ D lim
h!0

0
@ 3

2h3

hZ
�h
tf .x C t / dt

1
A :

10.29. [45] Suppose that f has two continuous derivatives on Œa; b�; with f 0 and
f 00 each positive there. Set

Mf .a; b/ D
bZ
a

xf 0.x/
f .b/ � f .a/ dx:

(a) Show that Mf .a; b/ is a mean: a � b implies a � Mf .a; b/ � b:

(b) Show that

1

b � a

bZ
a

f .x/ dx < f .Mf .a; b//:

(c) Use Chebyshev’s Integral Inequality (Exercise 9.44) to show that A D aCb
2

< Mf :

10.30. [11] Let f be defined on .0;1/ with f 00 continuous and positive. For 0 <
a < b; set

Sf .a; b/ D

bR
a

xf 00.x/ dx

bR
a

f 00.x/ dx
:
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(a) Show that Sf .a; b/ is a mean: a < Sf .a; b/ < b:
(b) Now let f .x/ D xr : Compute Sf .a; b/ for r D �1; 1=2; and 2: Do these look

familiar?
(c) Compute Sf .a; b/ for f .x/ D x ln.x/: Does this look familiar?

Hint: For x > 0; .x ln.x/ � x/0 D ln.x/; and so
Z

ln.x/ dx D x ln.x/ � x C C:

10.31. [37] In Example 8.14 we met Jordan’s Inequality:

sin.x/ � 2

�
x for x 2 Œ0; �=2�:

Fill in the details of the following way to obtain this inequality using integrals.

(a) Show that

sec2.t/ � 1 for t 2 Œ0; �=2/:

(b) Conclude that

tan.x/ � x for x 2 Œ0; �=2/:

(c) Show that (b) implies that the function

g.x/ D

8̂
<̂
ˆ̂:

sin x

x
if x ¤ 0

1 if x D 0

is decreasing on .0; �=2/:
(d) Use the fact that g is continuous everywhere to deduce Jordan’s Inequality.

10.32. [50] Let f be continuous on Œ0; 1�;with
Z 1

0

f .x/ dx D 0: Show, as follows,

that there is c 2 .0; 1/ such that

cZ
0

.x C x2/f .x/ dx D c2f .c/:

Let F.x/ D x2f .x/ �
Z x

0

.t C t 2/f .t/ dt: Show that F is continuous and

that F changes signs on Œ0; 1�; then use Bolzano’s Theorem (Theorem 3.7). (See
Exercise 10.33 for another approach.)
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10.33. [50] Let f be continuous on Œ0; 1�;with
Z 1

0

f .x/ dx D 0: Show, as follows,

that there is c 2 .0; 1/ such that

cZ
0

.x C x2/f .x/ dx D c2f .c/:

(a) Show that there is a 2 .0; 1/ such that
Z a

0

xf .x/ dx D 0:

Hint: Consider F.x/ D x

Z x

0

f .t/ dt�
Z x

0

tf .t/ dt and use Flett’s Mean Value

Theorem (Theorem 7.4).

(b) Show that there is b 2 .0; a/ such that
Z b

0

xf .x/ dx D bf .b/:

Hint: Consider G.x/ D e�x
Z x

0

tf .t/ dt:

(c) Now consider H.x/ D x

Z x

0

tf .t/ dt �
Z x

0

.t C t 2/f .t/ dt; and apply

Flett’s Mean Value Theorem (Theorem 7.4). (See Exercise 10.32 for another
approach.)

10.34. [27] Show, as follows, that

tan.x/ <
 x

  � 2x for x 2 .0;  =2/:

(a) Show that for t 2 .0;  =2/; we have cos.t/ > 1 � 2t= :
(b) Conclude that for such for t we have .sec.t//2 < 1

.1�2t= /2 :
(c) Integrate both sides of (b) from 0 to x to obtain the desired result.

10.35. Show that

lim
n!1

0
@ nX
jD1

n

n2 C j 2

1
A D  

4
:

10.36. [24, 25] We saw in Example 10.10 that for �1 < x � 1; we have

ln.1C x/ D x � 1

2
x2 C 1

3
x3 � 1

4
x4 C � � � :

(a) Show that for �1 � x < 1; we have

ln.1 � x/ D �x � 1

2
x2 � 1

3
x3 � 1

4
x4 � � � � :
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(b) Use these to find a series for ln. 1Cx
1�x /; for jxj < 1:

(c) Set x D 1=.2n/ in the series in (b), then replace n with nC 1=2 to show that

e <

�
1C 1

n

�nC1=2
;

which we obtained in Sect. 6.3.
(d) Solve t D 1Cx

1�x for x and use the series in (b) to show that for t > 1,

ln.t/ D 2

 �
t � 1
t C 1

�
C 1

3

�
t � 1
t C 1

�3
C 1

5

�
t � 1
t C 1

�5
C � � �

!
:

10.37. In summing the Alternating Harmonic series and in obtaining the Leibniz
series we showed, respectively, that as n ! 1,

1Z
0

xnC1

1C x
dx ! 0 and

xZ
0

t2nC2

1C t 2
dt ! 0 :

Show these by instead using the Mean Value Theorem for Integrals (Theorem 9.14).

10.38. [32] We saw in Example 10.12 that

1Z
0

x4.1 � x4/
1C x2

dx D 22

7
�   ; and so   <

22

7
:

Verify that
Z 1

0

x4.1 � x4/ dx D 1=630 and use this to obtain the improvement

22

7
� 1

630
<   <

22

7
� 1

1;260
:

10.39. [31] It is a fact that

x8.1 � x/8.25C 816x2/

1C x2
D 12;656x4 � 12;656x2 � 12;656x6 C 12;681x8 � 200x9

� 11;165x10�7;728x11C35;763x12 � 39;368x13 C 22;057x14

� 6;528x15 C 816x16 � 12;656

x2 C 1
C 12;656;
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which makes

1Z
0

x8.1�x/8.25C816x2/
1Cx2 dx

easy (but still horribly tiresome) to evaluate. In fact,

1

3;164

1Z
0

x8.1�x/8.25C816x2/
1Cx2 dx D 355

113
�  :

Therefore   < 355=113: Can you get better estimates, as in Exercise 10.38 ?

10.40. [8]

(a) Justify the following:

ln.2/ D 1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � �

D
�
1 � 1

2

�
C
�
1

3
� 1

4

�
C
�
1

5
� 1

6

�
C � � �

D 1

1 � 2 C 1

3 � 4 C 1

5 � 6 C � � � :

(b) Justify the following:

 

4
D 1 � 1

3
C 1

5
� 1

7
C 1

9
� 1

11
C � � �

D
�
1 � 1

3

�
C
�
1

5
� 1

7

�
C
�
1

9
� 1

11

�
C � � �

D 2

�
1

1 � 3 C 1

5 � 7 C 1

9 � 11 C � � �
�
:

10.41. [17]

(a) Verify that for k ¤ 0,
Z x

1

tk�1 dt D xk � 1
k

:

(b) Evaluate lim
k!0

xk�1
k
: (The reader may find this comforting.)
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10.42. (a) Set x D 1=
p
3 in the Leibniz series (Example 10.13) to obtain a series

for  =6.
(b) Set ’ D 1=2 and “ D 1=3 in the trigonometric identity

tan.’C ˇ/ D tan˛ C tanˇ

1 � tan˛ tanˇ

to obtain Euler’s formula

�

4
D arctan

�
1

2

�
C arctan

�
1

3

�
:

(c) Use Euler’s formula to obtain another series for �=4; which converges much
more quickly than does the Gregory-Leibniz series (Example 10.13).

Note: Machin’s formula, obtained in 1706 by John Machin,

 

4
D 4 arctan

�
1

5

�
� arctan

�
1

239

�

yields a series which converges even more quickly. William Shanks, around 1873,
used Machin’s formula to compute   to 707 decimal places. It took him 15 years.
It was discovered in the 1950s with the aid of contemporary computers that his
computation was incorrect at the 528th decimal place.

10.43. Prove Lemma 10.16.

10.44. [12, 33]

(a) Show that f .x/ D c ln.x/; for x > 0 and arbitrary c 2 R; is the only continuous
function which satisfies

f .xy/ D f .x/C f .y/ for x; y > 0:

(b) Find all continuous functions f which satisfy

f .xy/ D yf .x/C xf .y/ for x; y > 0:

10.45. [34] Let x > 0: (a) Use
Z xC1

x

1

t
dx <

1

x
and

Z xC2

xC1
1

t
dx >

1

x C 2
to show

that

ln

�
x C 1

x

�
1

x C 2
< ln

�
x C 2

x C 1

�
1

x
:

(b) Show that f .x/ D ln
	
xC2
xC1




ln
	
xC1
x


 is an increasing function on .0;1/:
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10.46. [3] Here’s another way to obtain inequalities (6.1) :

�
1C 1

n

�n
< e <

�
1C 1

n

�nC1
for n D 1; 2; 3; : : : :

Let r D 1C 1

n
: (a) For the left side, show that

nP
jD1

1

rj�1 .r
j � rj�1/ D 1 and that

nX
jD1

1

rj�1 .r
j � rj�1/ >

rnZ
1

1

x
dx:

(b) For the right side, show that
nC1P
jD1

1

rj
.rj � rj�1/ D 1 and that

nC1X
jD1

1

rj
.rj � rj�1/ <

rnC1Z
1

1

x
dx:

10.47. [38]

(a) Use .x ln.x/ � x/0 D ln.x/ to show that lim
a!0C

Z 1

a

ln.x/ dx D �1:
(b) Prove that

lim
n!1

n
p
nŠ

n
D 1

e
:

Hint: Show that ln
	

n
p
nŠ
n



D

nP
kD1

1
n

ln

�
k

n

�
, and recognize this as a Riemann

sum related to (a).
(c) Denote by An the Arithmetic Mean and by Gn the Geometric Mean, of the first

n natural numbers. Show that the result in (b) is the same as

lim
n!1

Gn

An
D 2

e
:

Other methods can be found in [29,47,54], and are generalized in [26] and [48].
(Also, cf. Exercise 6.12.)

10.48. Fill in the details of the following argument, which shows how to obtain
Jensen’s Inequality (Theorem 8.17) from Steffensen’s Inequality (Exercise 9.52):
Let f and g be continuous on Œa; b�, with f increasing, 0 � g � 1; and � DZ b

a

g.x/ dx: Then
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aC�Z
a

f .x/ dx �
bZ
a

f .x/g.x/ dx:

(a) Let a D x0 � x1 � x2 � � � � � xn and let w1; : : : ;wn be positive, with
nP

jD1
wj D 1: Define g on Œa; xn� via

g D
kX

jD1
wj on Œxk�1; xk�; for k D 1; 2; � � �; n:

Verify that 0 � g � 1 and that

� D
xnZ
0

g.t/ dt D
nX

jD1
xjwj :

(b) If f is convex then f 00 � 0; so that f 0 is increasing. Apply Steffensen’s
Inequality to f 0 and g as above, and use the Fundamental Theorem
(Theorem 10.1).

10.49. [43, 44, 52]

(a) Prove the following integral analogue of Flett’s Mean Value Theorem
(Theorem 7.4). Let f be continuous on Œa; b� with f .a/ D f .b/: Show that
there is c 2 .a; b/ such that

f .c/ D 1

c � a

cZ
a

f .x/ dx:

Hint: Consider F.t/ D .t � a/f .t/ �
Z t

a

f .x/ dx:

(b) Draw a picture which shows what this result says geometrically.
(c) Apply the result to the function g.x/ D f .x/ � f .b/�f .a/

b�a .x � a/ to obtain a
version which does not require that f .a/ D f .b/:

10.50. [21] Let f be continuously differentiable on Œa; b� with f 0.a/ ¤ 0: Let
c 2 Œa; b� be as given by the Average Value Theorem (Theorem 9.10):

f .c/ D 1

b � a

bZ
a

f .x/ dx:
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(a) Show that if b is near enough to a; then c is unique.
(b) Evaluate

lim
b!a

bR
a

f .x/ dx � .b � a/f .a/
.b � a/2

two different ways, to show that

lim
b!a

c � a
b � a D 1

2
:

(This result is generalized to the case where f 0.a/ D 0 in [1, 19, 40], and in
other ways in [23, 36].)

(c) Draw a picture which shows that the result in (b) is really not very surprising—
remember that f 0.a/ ¤ 0.

10.51. [44] Let f be continuously differentiable on Œa; b� with f 00.a/ ¤ 0: Let
c 2 Œa; b� be as given by the Mean Value Theorem (Theorem 5.2):

f .b/ � f .a/
b � a D f 0.c/:

(a) Show that if b is near enough to a; then c is unique.
(b) Use the Fundamental Theorem (Theorem 10.1) along with the result of

Exercise 10.50 to show that if f 00 is continuous and f 00.a/ ¤ 0 then

lim
c!a

c � a
b � a D 1

2
:

(c) Prove the result in (b) above directly—that is, without the Fundamental
Theorem. (All of this is generalized considerably, in [35].)
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Chapter 11
Techniques of Integration

Let us be resolute in prosecuting our ends, and mild in our
methods of doing so.

—Claudio Aquaviva

By way of the Fundamental Theorem of Calculus (Theorem 10.1), many properties
of integrals come from properties of derivatives and vice-versa. For example, the
most basic technique of integration is to recognize the integrand as the derivative of
some particular function. We saw a few examples of this sort of thing in the previous
chapter. Here we focus on arguably the next two most important techniques of
integration: u-Substitution which comes from the Chain Rule for derivatives, and
Integration by Parts which comes from the Product Rule for derivatives.

11.1 Integration by u-Substitution

Let F be an antiderivative of f; that is F 0 D f: Then for differentiable functions
u, an application of the Chain Rule gives .F.u.x///0 D f .u.x//u0.x/. Integrating
through with respect to x (and using the Fundamental Theorem (Theorem 10.1)) we
get the following technique of integration.

u-Substitution:
Z
f .u.x//u0.x/ dx D F.u.x//C C; where F 0 D f:

For definite integrals this translates to the statement

bZ
a

f .u.x//u0.x/ dx D F.u.x//
ˇ̌
ˇb
a
:

The general strategy for employing u-Substitution is as follows: Faced with
something which resembles the left-hand side above, we look for a part of the
integrand (which we will call u) whose derivative is very much like another part
of the integrand—this will be the u0. At the same time we try to recognize the f; and
find an antiderivative (which we have denoted by F ).

© Springer Science+Business Media New York 2014
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Example 11.1. Beginning simply, we evaluate
Z

cos.x2 C 1/2x dx: Observe first

that .x2 C 1/0 D 2x; so we set u D x2 C 1: Then the integral reads

Z
cos.x2 C 1/2x dx D

Z
cos.u.x//u0.x/ dx:

Here the f is f .u/ D cos.u/; and so F.u/ D
Z

cos.u/ du D sin.u/ C C:

Finally then,

Z
cos.x2 C 1/2x dx D sin.x2 C 1/C C: ˘

Let us look again at Example 11.1, to illustrate an informal scheme for carrying
out u-Substitution which is typically used in practice. We set

u D x2 C 1;

so that

du

dx
D 2x:

Now (this is the key part) we write this as

du D 2x dx:

This last step, treating du
dx

as a fraction and clearing its denominator, can be made
entirely rigorous in a number of ways; see [9], for example. Here, du is called the
differential of the function u D x2 C 1: Substituting these into the integral, we get

Z
cos.x2 C 1/2x dx D

Z
cos.u/ du

D sin.u/C C

D sin.x2 C 1/C C:

We shall employ this scheme again in the next few examples.

Example 11.2. We evaluate
Z

tan.x/ dx D
Z

sin.x/

cos.x/
dx. First we make the

observation that .cos.x//0 D � sin.x/; and so we set u D cos.x/: Then du D
� sin.x/dx and the integral reads
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Z
tan.x/ dx D �

Z
1

u
du D � ln

ˇ̌
u
ˇ̌C C

D � ln
ˇ̌
cos.x/

ˇ̌C C D ln
ˇ̌
sec.x/

ˇ̌C C:

Then, for example,

 =4Z
0

tan.x/ dx D ln
ˇ̌
sec.x/

ˇ̌ˇ̌̌ =4
0

D ln.
p
2/ D 1

2
ln.2/: ˘

Example 11.3. To evaluate
Z

ln.x/

x
dx, we notice that

�
ln.x/

�0 D 1

x
; and so we

set u D ln.x/: Then du D 1

x
dx and the integral reads

Z
ln.x/

x
dx D

Z
ln.x/

1

x
dx D

Z
u du

D 1

2
u2 C C D 1

2

�
ln.x/

�2 C C:

Then, for example,

eZ
1

ln.x/

x
dx D 1

2

�
ln.x/

�2 ˇ̌̌e
1

D 1

2
: ˘

Example 11.4. Let n � 1 be an integer. Using a trigonometric identity,

Z
tannC2.x/ dx D

Z
tann.x/ tan2.x/ dx D

Z
tann.x/.sec2.x/ � 1/ dx

D
Z

tann.x/ sec2.x/ dx �
Z

tann.x/ dx:

Then since
�

tan.x/
�0 D sec2.x/; we set u D tan.x/ to get du D sec2.x/dx: Doing

this, we obtain the reduction formula

Z
tannC2.x/ dx D

Z
un du �

Z
tann.x/ dx

D 1

nC 1
unC1 �

Z
tann.x/ dx:

D 1

nC 1
tannC1.x/ �

Z
tann.x/ dx:
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Then, for example, setting In D
Z �=4

0

tann.x/ dx, we obtain InC2 D 1
nC1 � In:And

taking n D 3 here, for example, we get (using also the last part of Example 11.2):

�=4Z
0

tan5.x/ dx D 1

4
�

�=4Z
0

tan3.x/ dx D 1

4
�
0
@1
2

�
�=4Z
0

tan.x/ dx

1
A D �1

4
C 1

2
ln.2/:

˘
After a walk in the mountains, a hiker must have achieved some particular

average elevation. Whether the independent variable is time or distance or perhaps
something else, the hiker’s average elevation should remain the same. This simple
fact is the essence of the following, which describes how a definite integral
transforms under a u-Substitution.

Theorem 11.5. (Change of Variables) Let u have a continuous derivative on Œa; b�
and let f be continuous on an interval I which contains the range of u: Then

bZ
a

f .u.x//u0.x/ dx D
u.b/Z

u.a/

f .u/ du:

Proof. For x 2 I , let F.x/ D
Z x

u.a/
f .t/ dt; and H.x/ D F.u.x//: Then by the

Chain Rule and the Fundamental Theorem (Theorem 10.1),

H 0.x/ D F 0.u.x//u0.x/ D f .u.x//u0.x/:

Therefore

u.b/Z
u.a/

f .u/ du D F.u.b// � F.u.a// D H.b/ �H.a/

D
bZ
a

H 0.x/ dx D
bZ
a

f .u.x//u0.x/ dx;

as we wanted to show. ut
Example 11.6. For an integral of the form

Z
g0.x/
g.x/

dx, where g0 is continuous, we

set u D g.x/, so that du D g0.x/dx. Therefore

Z
g0.x/
g.x/

dx D
Z
1

u
du:
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Then by Theorem 11.5, as a definite integral this translates to

bZ
a

g0.x/
g.x/

dx D
g.b/Z
g.a/

1

u
du;

as long as g.a/ and g.b/ are on the same side of zero, that is, g.a/g.b/ > 0.
So for example, with u D 1C x2, we have

1Z
0

2x

1C x2
dx D

2Z
1

1

u
du D ln.2/:

Or, looking again at Example 11.2, wherein u D cos.x/,

 =4Z
0

tan.x/ dx D �
1=

p
2Z

1

1

u
du D ln

�p
2
� D 1

2
ln.2/: ˘

11.2 Integration by Parts

If F is an antiderivative of f; that is F 0 D f; then by the Product Rule we have
.Fg/0 D F 0g C Fg0 D fg C Fg0: That is, fg D .Fg/0 � Fg0: Then integrating
through, using the Fundamental Theorem (Theorem 10.1) and taking the CC D 0;

we get the following technique of integration.

Integration by Parts:

Z
f .x/g.x/ dx D F.x/g.x/ �

Z
F.x/g0.x/ dx; where F 0 D f:

For definite integrals this translates to the statement

bZ
a

f .x/g.x/ dx D F.x/g.x/
ˇ̌̌b
a

�
bZ
a

F.x/g0.x/ dx: .F 0 D f:/

The strategy for employing Integration by Parts is (vaguely) as follows: Part
of the integrand (the f ) will be integrated and the rest of it will be differentiated
(the g). If some particular choice of these two parts appears to make things simpler,

that is,
Z
F.x/g0.x/ dx is simpler than

Z
f .x/g.x/ dx, then it is probably worth

pursuing.
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Example 11.7. To evaluate
Z

exx dx; we notice that differentiating ex or integrat-

ing ex really makes no difference as far as making things simpler goes (particularly
if we choose the CC D 0). But differentiating x, to get 1, makes things much
simpler than integrating x, which gives .1=2/x2: So setting f .x/ D ex and
g.x/ D x; we get

Z
exx dx D

Z
f .x/g.x/ dx D F.x/g.x/ �

Z
F.x/g0.x/ dx:

That is,

Z
exx dx D exx �

Z
ex1 dx D xex � ex C C: ˘

Remark 11.8. Taking the CC D 0 as we did in Example 11.7 is not always
advantageous. See Exercise 11.30, and the proof of Theorem 11.17 below. ı

Example 11.9. Here we evaluate
Z
t sin.t/ dt: Again, differentiating or integrat-

ing sin.t/ makes little difference, but differentiating t makes things much simpler
than integrating t . Therefore, setting f .t/ D sin.t/ and g.t/ D t , we obtain

Z
sin.t/.t/ dt D

Z
f .t/g.t/ dt D F.t/g.t/ �

Z
F.t/g0.t/ dt:

That is,

Z
t sin.t/ dt D � cos.t/.t/C

Z
cos.t/1 dt D �t cos.t/C sin.t/C C: ˘

Example 11.10. In Example 8.14 we met Jordan’s Inequality:

sin.x/ � 2

�
x for x 2 Œ0; �=2�:

In Exercise 10.31 we saw a way to obtain this using integrals. Here is another way to
obtain Jordan’s Inequality using integrals, which begins with Example 11.9. (This
method lends itself nicely to a refinement; see Exercise 11.24.) Observe that

t sin.t/ � 0 for t 2 Œ0;  =2�;

and so

uZ
0

t sin.t/ dt D sin.u/ � u cos.u/ � 0 for u 2 Œ0;  =2�:
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Therefore

�
sin.u/

u

�0
D u cos.u/ � sin.u/

u2

D � 1

u2

uZ
0

t sin.t/ dt � 0 for u 2 .0;  =2�:

Then by the Fundamental Theorem (Theorem 10.1),

 =2Z
x

�
sin.u/

u

�0
du D sin.u/

u

ˇ̌̌ =2
x

D 2

 
� sin.x/

x
� 0 for x 2 .0;  =2�;

which yields Jordan’s Inequality. ˘

Example 11.11. To evaluate the integral
Z

ln.x/ dx; we have little choice: we

cannot set f .x/ D ln.x/ because the problem itself asks for an antiderivative of
ln.x/: So we set f .x/ D 1 and g.x/ D ln.x/; to obtain

Z
ln.x/ dx D

Z
1 ln.x/ dx D

Z
f .x/g.x/ dx

D F.x/g.x/ �
Z
F.x/g0.x/x dx

D x ln.x/ �
Z
x
1

x
dx

D x ln.x/ � x C C:

˘
Remark 11.12. Example 11.11 is an important one. And it has an equally impor-
tant partner which is evaluated in a very similar way:

Z
tan�1.x/ dx D 1

1C x2
C C:

See Exercise 11.25. ı
Example 11.13. In Sects. 6.5, 8.5, and 10.1 we summed the Alternating Harmonic
series:

ln.2/ D 1 � 1

2
C 1

3
� 1

5
C � � � :
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Here is a series of positive terms for ln.2/, which converges much more quickly.
Integrating by parts repeatedly (the first step has f .x/  1 and g.x/ D 1=.1C x/),
we get

ln.2/ D
1Z
0

1 dx

1C x
D x

1

1C x

ˇ̌̌
ˇ
1

0

C
1Z
0

x dx

.1C x/2

D 1

2
C 1

2
x2

1

.1C x/2

ˇ̌̌
ˇ
1

0

C
1Z
0

1

2
x2

2 dx

.1C x/3

D 1

2
C 1

2

1

22
C 1

3
x3

1

.1C x/3

ˇ̌̌
ˇ
1

0

C
1Z
0

1

3
x3

3 dx

.1C x/4

D 1

2
C 1

2

1

22
C 1

3

1

23
C � � � C 1

n2n
C

1Z
0

xn

.1C x/nC1 dx:

Now 0 � xn

.1C x/nC1 � xn for x 2 Œ0; 1� and so

0 �
1Z
0

xn

.1C x/nC1 dx �
1Z
0

xn dx D 1

nC 1
:

Therefore, letting n ! 1, we may write

ln.2/ D 1

2
C 1

2

1

22
C 1

3

1

23
C � � � D

1X
nD1

1

n2n
:

This series was obtained first by—you guessed it—Euler. A similar method can be
applied with an eye on the Gregory-Leibniz series for �=4 which we obtained in
Sect. 10.1. See Exercise 11.35. ˘

11.3 Two Consequences

Integration by Parts yields the following classical result.

Theorem 11.14. (Second Mean Value Theorem for Integrals) Let f and g be
continuous on Œa; b�, with f 0 continuous, and f 0 > 0: Then there is c 2 Œa; b�

such that
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bZ
a

f .x/g.x/ dx D f .a/

cZ
a

g.x/ dx C f .b/

bZ
c

g.x/ dx:

Proof. On Œa; b�, define G.x/ D
Z x

a

g.t/ dt: Integrating by parts, and using the

Fundamental Theorem (Theorem 10.1), we get

bZ
a

f .x/g.x/ dx D f .x/G.x/
ˇ̌̌b
a

�
bZ
a

f 0.x/G.x/ dx D f .b/G.b/ �
bZ
a

f 0.x/G.x/ dx:

Now since f 0 is continuous and f 0 > 0; we may apply the Mean Value Theorem
for Integrals (Theorem 9.14) to see that there is c 2 Œa; b� such that this

D f .b/G.b/ �G.c/
bZ
a

f 0.x/ dx D f .b/G.b/ �G.c/�f .b/ � f .a/�;

again by the Fundamental Theorem (Theorem 10.1). Therefore

Z b

a

f .x/g.x/ dx D f .b/

bZ
a

g.x/ dx � f .b/
cZ
a

g.x/ dx C f .a/

cZ
a

g.x/ dx

D f .b/

bZ
c

g.x/ dx C f .a/

cZ
a

g.x/ dx;

which is what we wanted to show. ut
See Exercise 11.40 for another proof of this theorem. As well as having intrinsic

appeal, the Second Mean Value Theorem for Integrals has applications in what is
known as series of functions, and trigonometric series in particular. If g.x/  1;

its conclusion reads

bZ
a

f .x/ dx D f .a/
�
c � a�C f .b/

�
b � c�:

That is to say, in Fig. 11.1 the two shaded regions have equal area.
Integration by Parts together with u-Substitution yields the following classical

inequality. Its geometric interpretation is shown in Fig. 11.2.
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Fig. 11.1 The Second Mean
Value Theorem for Integrals
(Theorem 11.14) with
g.x/ � 1: the two shaded
regions have equal area

a c b
x

y

f(b)

f(a)

y = f(x)

Theorem 11.15. (Young’s Integral Inequality) Let f be continuous on Œ0; A� and
strictly increasing there (so that f �1 exists and is continuous) and let f .0/ D 0:

Let a 2 Œ0; A� and b 2 Œ0; f .A/�: Then

aZ
0

f .x/ dx C
bZ
0

f �1.x/ dx � ab:

Further, there is equality if and only if b D f .a/: And the inequality is reversed for
f strictly decreasing.

Fig. 11.2 For Young’s
Inequality (Theorem 11.15):
The difference between the
left-hand side and the
right-hand side is the area of
the shaded region

y = f(x) 

f(a)

b

a x

y

Proof. Using the u-Substitution u D f �1 .x/, so that x D f .u/ and dx D f 0.u/du,

bZ
0

f �1.x/ dx D
f �1.b/Z
0

uf 0.u/ du:
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Integrating by Parts we obtain

bZ
0

f �1.x/ dx D
f �1.b/Z
0

uf 0.u/ du D uf .u/
ˇ̌̌f �1.b/

0
�

f �1.b/Z
0

f .u/ du

D f �1.b/b �
f �1.b/Z
0

f .u/ du:

Then adding

aZ
0

f .x/ dx to each side we get

aZ
0

f .x/ dx C
bZ
0

f �1.x/ dx D bf �1.b/C
aZ
0

f .x/ dx �
f �1.b/Z
0

f .x/ dx

D bf �1.b/ C
aZ

f �1.b/

f .x/ dx

D ab C
aZ

f �1.b/

�
f .x/ � b� dx:

Now on the right-hand side, if f �1.b/ < a then the integrand is positive and so the
integral is positive. If f �1.b/ > a; then the integrand is negative and so the integral

is positive. In either case we have

aZ
0

f .x/ dx C
bZ
0

f �1.x/ dx > ab; as desired.

The condition for equality is clear, as well as the last statement in the theorem. ut
Remark 11.16. The proof above follows [6]; the method there is refined somewhat
in [19]. See also [2, 34], and [43]. ı

If we apply Young’s Integral Inequality (Theorem 11.15) to f .x/ D xp�1
.p > 1/, we obtain Young’s Inequality (Corollary 6.19) :

1

p
ap C 1

q
bq � ab

�
for

1

p
C 1

q
D 1

�
:

And (as we have seen) replacing a with a1=p and b with b1=p yields the weighted
AGM Inequality with n D 2 (Corollary 6.16). And taking p D q D 2 gives
Lemma 2.7.
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11.4 Taylor’s Theorem Again

We employed Integration by Parts repeatedly in Example 11.13. Here is another
result that is obtained by repeatedly employing Integration by Parts.

Theorem 11.17. (Integration by Parts Identity) Let f; f 0; f 00; : : : ; f .nC1/ each be
continuous on some open interval I containing x0: Then for x 2 I;

f .x/ D f .x0/ C .x � x0/f 0.x0/ C .x � x0/2
2Š

f 00.x0/

C � � � C .x � x0/n
nŠ

f .n/.x0/ C
xZ

x0

.x � t /n
nŠ

f .nC1/.t/ dt:

Proof. The Fundamental Theorem (Theorem 10.1) gives, for x 2 I ,

f .x/ D f .x0/C
xZ

x0

f 0.t/ dt:

Using Integration by Parts while choosing the CC D �x, we get

f .x/ D f .x0/ � .x � t /f 0.t/
ˇ̌̌x
x0

C
xZ

x0

.x � t /f 00.t/ dt:

The desired result is now obtained by employing Integration by Parts repeatedly in
the usual way. We show just the first few steps, up to n D 3.

f .x/ D f .x0/ � .x � t /f 0.t/
ˇ̌̌x
x0

C
xZ

x0

.x � t /f 00.t/ dt

D f .x0/C .x � x0/f 0.x0/ � .x�t/2
2 f 00.t/

ˇ̌
ˇx
x0

C
xZ

x0

.x�t/2
2 f .3/.t/ dt:

D f .x0/C .x � x0/f 0.x0/C .x�x0/2f 00.x0/
2 C

xZ
x0

.x�t/2
2 f .3/.t/ dt:

D f .x0/C.x � x0/f 0.x0/C .x�x0/2f 00.x0/
2 � .x�t/3

6 f .3/.t/
ˇ̌̌x
x0

C
xZ

x0

.x�t/3
6 f .4/.t/dt:

ut
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Example 11.18. Suppose that each of f; f 0; f 00; : : : ; f .nC1/ is continuous on an
open interval I containing x0, with

0 D f 0.x0/ D f 00.x0/ D � � � D f .n/.x0/; but f .nC1/.x0/ ¤ 0:

Since f .nC1/ is continuous, f .nC1/.x/ ¤ 0 for x sufficiently close to x0; by
Lemma 3.4. So if f .nC1/.x0/ > 0 and n is even say, then for such x the Integration
by Parts Identity (Theorem 11.17) reads:

f .x/ D f .x0/C 0C 0C � � � C 0C
xZ

x0

.x � t /n
nŠ

f .nC1/.t/ dt > f .x0/:

Therefore x0 yields a local minimum for f . The reader may wish to consider other
possibilities, for example f .nC1/.x0/ < 0 and n odd, etc. ˘

For n D 1 Example 11.18 is the Second Derivative Test (Exercise 8.18), so this
example extends the Second Derivative Test. Example 11.18 also follows from the
following consequence of the Integration by Parts Identity (Theorem 11.17); that
was the content of Exercise 8.54.

Corollary 11.19. (Taylor’s Theorem (Theorem 8.20)) Let f; f 0; f 00; : : : ; f .nC1/
each be continuous on some open interval I containing x0: For each x 2 I; there is
c between x and x0 such that

f .x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.c/

.nC 1/Š
.x � x0/nC1:

Proof. For x 2 I , the Integration by Parts Identity (Theorem 11.17) reads

f .x/ D f .x0/C .x � x0/f 0.x0/C .x � x0/2
2Š

f 00.x0/

C � � � C .x � x0/n
nŠ

f .n/.x0/C
xZ

x0

.x � t /n
nŠ

f .nC1/.t/ dt:

Now whether x0 � x or x < x0; the function .x� t /n does not change sign over the
interval of integration. So by the Mean Value Theorem for Integrals (Theorem 9.14),
there is c between x and x0 such that

xZ
x0

.x � t /n
nŠ

f .nC1/.t/ dt D f .nC1/.c/
xZ

x0

.x � t /n
nŠ

dt D f .nC1/.c/
.nC 1/Š

.x � x0/nC1:

ut
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Remark 11.20. Corollary 11.19 is in fact a little weaker than Taylor’s Theorem
(Theorem 8.20), because we require that f .nC1/ is continuous. In Taylor’s Theorem
we only require that f .nC1/ exists. ı

Exercises

11.1. Let f be a function defined (for simplicity) on R. Then f is an odd function
if f .�x/ D �f .x/ for all x and f is an even function if f .�x/ D f .x/ for
all x:

(a) Show that 1; x2, and cos.x/ are even functions.
(b) Show that x; x3; sin.x/; and arctan.x/ are odd functions.
(c) Use a u-Substitution to show that if f is odd and continuous, then for all a 2 R,

aZ
�a
f .x/ dx D 0

Interpret this geometrically.
(d) Use a u-Substitution to show that if f is even and continuous, then for all a 2 R,

aZ
�a
f .x/ dx D 2

aZ
0

f .x/ dx

Interpret this geometrically.
(e) Show that any function defined on R can be written as the sum of an odd

function and an even function. (For example, ex D sinh.x/C cosh.x/./

11.2. [21]

(a) Show that if f is an even function on R (i.e., f .�x/ D f .x/ for all x) then
for a 2 R and r > 0,

rZ
�r

f .x/

eax C 1
dx D

rZ
0

f .x/ dx:

Hint: Verify that for u ¤ �1, 1
1Cu C 1

1C1=u D 1.

(b) Evaluate
Z r

�r
1

eax C 1
dx;

Z  =2

� =2
cos.x/

eax C 1
dx; and

Z r

�r
1

.x2 C 1/.eax C 1/
dx:
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11.3. [32]

(a) Let f be continuous on Œa; b� with f .x/C f .a C b � x/ constant for all x 2
Œa; b�: Show that

bZ
a

f .x/ dx D .b � a/f .aCb
2
/ D b � a

2
Œf .a/C f .b/� :

(b) Can you interpret this geometrically?

(c) Evaluate
Z �=2

0

.sin.x//2 dx:

11.4. Evaluate

1Z
0

e�x2x dx D lim
A!1

AZ
0

e�x2x dx:

11.5. Show that

1Z
0

1p
1 � x2 dx D lim

a!1C

aZ
0

1p
1 � x2 dx D  

2
:

11.6. [39] Use the Cauchy–Schwarz Integral Inequality (Corollary 9.28) and a
u-Substitution to show that

2Z
1

x dxp
x3 C 8

�
q

2
3

ln 4
3

Š 0:4379 :

11.7. Show that ln.ab/ D ln.a/C ln.b/ for a; b > 0 as follows.

(a) Verify that

ln.ab/ D ln.a/C
abZ
a

1

x
dx:

(b) In the integral, make the substitution u D x=a:

11.8. (a) Let a > 0 and r 2 Q: Make the substitution u D x1=r in the integral

ln.ar / D
arZ
1

1

x
dx ;

to show that ln.ar / D r ln.a/:
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(b) Combine (a) with Exercise 11.7 to show that ln.a=b/ D ln.a/ � ln.b/:

11.9. (a) Make the substitution x D tan.u/ to verify that

Z
1

1C x2
dx D arctan.x/C C:

(b) Make the substitution x D sin.u/ to find

Z
1p
1 � x2 dx:

(c) Make the substitution x D sec.u/ to find

Z p
x2 � 1 dx:

Theses are called trigonometric substitutions.

11.10. [5] Substituting u D 1=x to evaluate I D
Z 1

�1
1

1C x2
dx yields I D 0;

which clearly cannot be correct. Verify this, then explain what is wrong here.

11.11. [1, 4] Make the substitution x D  =2 � u to show that for ’ 2 R,

�=2Z
0

dx

1C .tan.x//’
D �

4
:

11.12. [16]

(a) Make the substitution x D  =2 � u to show that

I D
�=2Z
0

p
sin xp

sin x C p
cos x

dx D  

4
:

(b) Make the substitution x D   � u to show that

I D
�Z
0

x sin x

1C cos2 x
dx D  2

4
:

11.13. Evaluate:

(a)
Z

dx

x ln.x/
(b)

Z t2

t

dx

x ln.x/
(c)
Z

ln.ln.x//

x ln.x/
dx (d)

Z
ln.ln.ln.x///

x ln.x/
dx.



Exercises 299

11.14. Let x; y > 0 with x ¤ y:

(a) [12] Show that their Logarithmic Mean L D L.x; y/ D x�y
ln.x/�ln.y/ satisfies

L D
0
@

1Z
0

�
tx C .1 � t /y��1 dt

1
A

�1

:

For r ¤ 0; set

Qr D
1Z
0

�
txr C .1 � t /yr�1=r dt:

(b) Verify that Q1 D xCy
2

D A; the Arithmetic Mean of x and y and use (a) to see
that Q�1 D G2=L; where G D p

xy; the Geometric Mean of x and y:
(c) Use Jensen’s Inequality to show that Œ.1 � t /xr C tyr �1=r decreases as r

decreases, so that Qr decreases as r decreases.
(d) To make Qr continuous on .�1;1/, show that we should we define

Q0 D
1Z
0

xty.1�t/ dt D L:

(e) Conclude that G � L � A:

(f) Show that Q0 < Q1=2 implies that L < 1
3
G C 2

3
A: Note: We obtained the

sharper inequality L < 1
3
AC 2

3
G in Exercise 6.43. We shall meet this again in

Sect. 14.5.

11.15. [15] Show that

lim
n!1

1

n

nZ
0

x ln.1C x=n/

1C x
dx D 2 ln.2/ � 1 :

11.16. [8] Let f be nonnegative, continuous, and concave on Œ0; 1�; with
f .0/ D 1:

(a) Show that

2

1Z
0

x2f .x/ dx C 1

12
�
0
@

1Z
0

f .x/ dx

1
A
2

:

(b) Show that equality holds if and only if f .x/ D 1 � x:
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11.17. [33]

(a) Let G be increasing and differentiable on Œa; b� and let f be continuous and
decreasing on some interval which contains a; b;G.a/; and G.b/: Prove that if
G.t/ � t; then

bZ
a

f .t/G0.t/ dt �
G.b/Z
G.a/

f .t/ dt:

(b) Show that if G.t/ � t; the inequality is reversed.

(c) LetG.t/ D b�
Z b

t

g.x/ dx;where g is continuous and 0 � g.x/ � 1; to obtain

the left side of Steffensen’s Inequalities (see also Exercises 9.52 and 10.48):
Let f and g be continuous on Œa; b�, with f decreasing and 0 � g � 1: Then

for � D
Z b

a

g.x/ dx,

bZ
b��

f .x/ dx �
bZ
a

f .x/g.x/ dx �
�Z
0

f .x/ dx:

(d) Prove the right side of Steffensen’s Inequalities.

11.18. (a) Evaluate
Z

sin4.x/ cos.x/ dx by u-Substitution.

(b) Evaluate
Z

sin4.x/ cos.x/ dx by Integration by Parts.

11.19. By employing Integration by Parts on the right-hand side, show that

for f continuous on R,
Z x

0

.x � u/f .u/ du D
Z x

0

Z u

0

f .t/ dt du; (See also

Exercise 10.3.)

11.20. [18] Show that

1Z
0

tn�1 ln
	
.1Ctn2 /.1Ct/



1Ctn dt D .ln.2//2

n

two ways: using u-Substitution and using Integration by Parts.

11.21. Evaluate
Z
x ln.x/ dx by Integration by Parts, two ways:

(a) Integrate x and differentiate ln.x/: (b) Integrate ln.x/ and differentiate x:
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11.22. Show that
Z

sec3.x/ dx D 1

2

	
sec.x/ tan.x/C ln

ˇ̌
sec.x/C tan.x/

ˇ̌C C


:

Notice that the right-hand side here is the average (Arithmetic Mean) of the
derivative of sec.x/ and the (most general) antiderivative of sec.x/: The interesting
paper [17] investigates this further.

11.23. For n � 2 an integer, verify the reduction formula

Z
secn.x/ dx D 1

n � 1 secn�1.x/ sin.x/C n � 2
n � 1

Z
secn�2.x/ dx:

11.24. [28] Here is a refinement of Jordan’s Inequality

sin.t/ � 2

�
t for t 2 Œ0; �=2�:

(a) Agree that in Example 11.10 we showed that

sin x

x
D 2

�
C

�=2Z
x

1

u2

uZ
0

t sin.t/ dt du:

(b) Substitute Jordan’s Inequality into the integrand to show that, in fact,

sin.x/ �
�
2

�
C 1

12�

�
�2 � 4x2�

�
x for x 2 Œ0; �=2�:

11.25. (a) Evaluate
Z

tan�1.x/ dx by Integration by Parts.

(b) Show that
Z 1

0

tan�1.x/ dx D �

4
� 1

2
ln 2.

(c) Find
Z
x tan�1.x/ dx:

11.26. (a) Let f 00 and g00 be continuous on Œa; b�: Show that

Z �
f 00.x/g.x/ � g00.x/f .x/

�
dx D f 0.x/g.x/ � g0.x/f .x/C C:

(b) Use this to evaluate, for example,
Z

eax sin.bx/ dx:
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11.27. [14, 37]

(a) Show that

Z
f 0.x/
g.x/

dx D f .x/

g.x/
�
Z
f .x/g.x/

g.x/2
dx:

(b) Show that

Z
F.x/g0.x/
g.x/2

dx D
Z
f .x/

g.x/
dx � F.x/

g.x/
; where F 0 D f:

(c) Evaluate
Z

ln.x/

x2
dx:

11.28. [26] Use Integration by Parts to show that

 Z
3 =4

�
.tan.x//2 � tan.x/

�
e�x dx D e� :

11.29. [23] Show that for x > 0,

ˇ̌
ˇ̌̌
ˇ
xC1Z
x

sin.t2/ dt

ˇ̌
ˇ̌̌
ˇ <

1

x
:

Hint: Write
Z xC1

x

sin.t2/ dt D
Z xC1

x

t
sin.t2/

t
dt and use Integration by Parts.

11.30. [7, 36, 40] In the Integration by Parts formula

Z
f .x/g.x/ dx D F.x/g.x/ �

Z
F.x/g0.x/ dx

we are implicitly taking C D 0; when any other C might also do.

(a) Show that evaluating
Z
x tan�1.x/ dx with f .x/ D x and g.x/ D tan�1.x/ is

considerably easier if we take C D 1=2 than if we take C D 0:

(b) Evaluate
Z
1

x
dx by parts, setting f .x/  1 and g.x/ D 1

x
, to show that

choosing C D 0 can be spurious.
(c) Show that the Integration by Parts formula, even with the arbitrary C; is of no

use if Fg is constant. Can you find another instance for which the Integration
by Parts formula is of no use?
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11.31. For n D 0; 1; 2; : : : ; the Legendre polynomials are given (among other
ways) by Rodrigues’s formula

Pn.x/ D 1

2nnŠ

dn

dxn

�
.1 � x2/n� :

(a) Verify that P0.x/ D 1; P1.x/ D x; P2.x/ D 3x2�1
2
; and P3.x/ D 5x3�3x

2
:

(b) Verify that for n D 0; 1; 2 and 3; the Pn’s in (a) satisfy Legendre’s Differential
Equation

d

dx


.1 � x2/ d

dx
Pn.x/

�
C n.nC 1/Pn.x/ D 0:

(c) [13] Use Rodrigues’s formula and Integration by Parts repeatedly to prove the
following result, which is evocative of the Mean Value Theorem for Integrals
(Theorem 9.14): Let f be continuous on Œ�1; 1�: Then there is c 2 Œ�1; 1� such
that

1Z
�1
f .x/Pn.x/ dx D f .n/.c/

nŠ

1Z
�1
xnPn.x/ dx:

11.32. [35] Let f be such that f 00 > 0 on Œa; b�.

(a) Show that if f .a/ D f .a/ D 0 then

bZ
a

f .t/ dt >
.b � a/2

2

f 0.a/f 0.b/
f 0.b/ � f 0.a/

:

Hint: Apply the Cauchy–Schwarz Integral Inequality (Corollary 9.28) to
t
p
f 00.t/ and

p
f 00.t/, then use Integration by Parts.

(b) Let c D f .b/�f .a/
b�a : Show, not assuming f .a/ D f .a/ D 0; that

bZ
a

f .t/ dt > .b � a/f .a/C f .b/

2
� .b � a/2

2

.c � f 0.a//.f 0.b/ � c/
f 0.b/ � f 0.a/

:

Hint: Transform the situation here to that of (a), using a certain auxiliary
function—just as we transformed the situation of the Mean Value Theorem
(Theorem 5.2) to that of Rolle’s Theorem (Theorem 5.1). See also Exercise 5.9.

11.33. [11, 22, 31, 42] Here is a unified way to obtain the Gregory-Leibniz series
and the Alternating Harmonic series. Consider again the reduction formula that we
obtained in Example 11.4:
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In D
�=4Z
0

tann.x/ dx D 1

n � 1 �
�=4Z
0

tann�2.x/ dx D 1

n � 1 � In�2:

(a) Let n D 2m and apply the formula m times to obtain

�=4Z
0

tan2m.x/ dx D .�1/m

�

4
�
�
1 � 1

3
C 1

5
� � � � C .�1/mC1

2m � 1
��
:

(b) Let n D 2mC 1 and apply the formula m times to obtain

�=4Z
0

tan2mC1.x/ dx D .�1/m
2


ln.2/ �

�
1 � 1

2
C 1

3
� � � � C .�1/mC1

m

��
:

(c) Obviously, In C In�2 D 1
n�1 : Verify that In C InC2 D 1

nC1 :

(d) Verify that
Z �=4

0

tann x dx decreases as n increases.

(e) Show that 1
2.nC1/ � In � 1

2.n�1/ ; and therefore In ! 0:

(f) Conclude that �
4

D
1P
nD0

.�1/n
2nC1 and ln.2/ D

1P
nD1

.�1/nC1

n
.

11.34. [11, 42] Exercise 11.33 contained the fact that
Z �=4

0

tann x dx ! 0 as

n ! 1:

(a) Fill in the details of another way to show this: Use the fact that tan.x/ is convex
on Œ0; �

4
� to show that

x � tan x � 4

�
x:

(b) Fill in the details of yet another way to show this: In the integral, make the
substitution u D tan.x/ then find bounds for the integrand.

11.35. Write
�

4
D tan�1.1/ D

Z 1

0

dx

1C x2
, then proceed similarly to how we did

in Example 11.13 which dealt with ln.2/, to show that

�

4
D 1

2

�
1C 1

3
C 1 � 2
3 � 5 C 1 � 2 � 3

3 � 5 � 7 C 1 � 2 � 3 � 4
3 � 5 � 7 � 9 C � � �

�
:

11.36. (a) Show that if ˛0 is continuous on Œa; b�; then

bZ
a

˛.x/˛0.x/ dx D 1

2
Œ˛.b/2 � ˛.a/2�:
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(b) Let g be continuous on Œ0; 1�; with 0 � g � 1: Apply the formula in (a), with

˛.x/ D
Z x

0

g.u/ du, to show that

�Z
0

x dx �
1Z
0

xg.x/ dx; where � D
1Z
0

g.u/ du:

Note: This is a special case of Steffensen’s Inequalities—see Exercises
9.52, 10.48, and 11.17.

(c) [38] Let f be continuous and nonconstant on Œ0; 1� with m � f � M there,

and
Z 1

0

f .x/ dx D 0. Show that

ˇ̌̌ 1Z
0

xf .x/ dx
ˇ̌̌

� �mM
2.M �m/:

11.37. [10] Let f be continuous on Œ0; 1�; with f 0 continuous there also. Apply

Integration by Parts to
Z 1

0

.1 � x/f 0.x/ dx; then the Cauchy–Schwarz Integral

Inequality (Corollary 9.28), to show that

0
@

1Z
0

f .x/ dx

1
A
2

� 1

3

1Z
0

ˇ̌
f 0.x/

ˇ̌2
dx:

11.38. For x > 0; the Gamma function is defined by

	 .x/ D
1Z
0

tx�1e�t dt D lim
A!1

AZ
0

tx�1e�t dt:

(a) Show that 	 .1/ D 1; 	 .2/ D 1; and 	 .3/ D 2:

(b) Use Integration by Parts to show that if n is a positive integer then
	 .nC 1/ D nŠ :

(c) Use Hölder’s Integral Inequality to show that 	 .x/ is logarithmically convex
(see also Exercise 8.35):

ln
�
	
�
.1 � t /x C ty

�� � .1 � t / ln.	 .x//C t ln.	 .y//:

(	 .n C 1/ D nŠ says that 	 essentially interpolates the factorial function at
the positive integers. Of course there are many functions which interpolate the
factorial function at the positive integers; it is the property in (c) that makes 	
so special. But see also [24].)
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11.39. [25] Let f be continuous on Œa; b� with f 0 continuous also, and jf 0.x/j �
M for x 2 Œa; b�. Show that

ˇ̌
ˇ̌̌
ˇ̌
.aCb/=2Z
a

f .x/ dx �
bZ

.aCb/=2
f .x/ dx

ˇ̌
ˇ̌̌
ˇ̌ � M

�
b � a
2

�2
:

Hint: Let g.x/ D
�
1 if x 2 Œa; aCb

2
�

�1 if x 2 . aCb
2
; b�

then integrate

bZ
a

f .x/g.x/ dx by parts.

11.40. Fill in the details, as follows, of another proof of the Second Mean Value
Theorem for Integrals (Theorem 11.14). (a) Setting

h.x/ D f .a/

xZ
a

g.t/ dt C f .b/

bZ
x

g.t/ dt;

show that

h.b/ �
bZ
a

f .t/g.t/ dt � h.a/:

(b) Apply the Intermediate Value Theorem (Theorem 3.17) to h.

11.41. [3]

(a) Use the Second Mean Value Theorem for Integrals (Theorem 11.14) to prove
the following. Let f 00 be continuous and nonzero on Œa; b�; with f 0.x/ � m > 0

for all x in Œa; b�: Then

ˇ̌̌
ˇ̌
ˇ
bZ
a

sin.f .x// dx

ˇ̌̌
ˇ̌
ˇ � 4

m
:

(b) Let a > 0: Show that for all b > a,

ˇ̌̌
ˇ̌̌
bZ
a

sin.x2/ dx

ˇ̌̌
ˇ̌̌ � 2

a
:

11.42. [29] Let f and g be continuous on Œa; b�, with f 0 continuous also, and
f 0 > 0. (These are the hypotheses for the Second Mean Value Theorem for
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Integrals (Theorem 11.14)). Suppose further that
Z t

a

g.x/ dx and
Z b

t

g.x/ dx are

each nonnegative for t 2 Œa; b�: Prove that there is c 2 Œa; b� such that

bZ
a

f .x/g.x/ dx D f .c/

bZ
a

g.x/ dx:

(b) This resembles the Mean Value Theorem for Integrals (Theorem 9.14), but
without requiring that g � 0: Find a g that changes sign, but satisfies these
hypotheses.

11.43. Bonnet’s form of the Second Mean Value Theorem for Integrals is: Let
f and g be continuous on Œa; b�, with f nonnegative, f 0 continuous and f 0 > 0:

Then there is c 2 Œa; b� such that

bZ
a

f .x/g.x/ dx D f .b/

bZ
c

g.x/ dx:

(a) Show that this is a consequence of the Second Mean Value Theorem for
Integrals (Theorem 11.14). Hint: Set F.x/ D f .x/ on .a; b� and F.a/ D 0;

then apply the Second Mean Value Theorem for Integrals to F: (The Second
Mean Value Theorem for Integrals is sometimes referred to as Weierstrass’s
form of Bonnet’s Theorem.)

(b) Prove Bonnet’s form directly—that is, without any appeal to the Second Mean
Value Theorem for Integrals.

(c) Formulate an equivalent version of Bonnet’s form for f 0 < 0.
(d) Prove that for 0 < a < b;

ˇ̌̌
ˇ̌
ˇ

bZ
a

sin x

x
dx

ˇ̌̌
ˇ̌
ˇ <

2

a
:

11.44. [30] Let f and g be positive, with f 0 and g0 nonnegative and continuous on
Œ0; b�: Let f .0/ D 0: Show that for 0 < a � b,

f .a/g.b/ �
aZ
0

g.x/f 0.x/ dx C
bZ
0

f .x/g0.x/ dx;

with equality if and only if either a D b; or a < b and g is constant.

11.45. [41] Fill in the details of another proof of Young’s Integral Inequality
(Theorem 11.15). Observe that if f is strictly increasing, then its antiderivative is
strictly convex. Therefore, for any 0 < c ¤ a < A;
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aZ
0

f .t/ dt >

cZ
0

f .t/ dt C f .c/.a � c/:

Now set c D f �1.a/ and use (which we also used in the proof in the text):

bZ
0

f �1.x/ dx D bf �1.b/ �
f �1.b/Z
0

f .u/ du :

11.46. [19] Apply Young’s Integral Inequality (Theorem 11.15) to

f .x/ D 4
p
x4 C 1 � 1

to show that

3Z
0

4
p
x4 C 1 dx C

3Z
1

4
p
x4 � 1 dx � 9:

11.47. Use the substitution t D .1 � u/a C ub for u 2 Œ0; 1� to show that (c.f. the
Integration by Parts Identity (Theorem 11.17)):

bZ
a

.b � t /n
nŠ

f .nC1/.t/ dt D .b � a/n
nŠ

1Z
0

.1 � u/nf .nC1/..1 � u/aC ub/ du:

11.48. [27] Here’s a proof of the Integration by Parts Identity that doesn’t use
Integration by Parts! Set

Ft .x/Df .t/C.x � t /f 0.t/C .x � t /2
2

f 00.t/C .x � t /3
3Š

f .3/.t/C � � � C .x � t /n
nŠ

f .n/.t/:

(a) Treat x as fixed and show that

d

dt
Ft .x/ D .x � t /n

nŠ
f .nC1/.t/:

(b) Integrate from t D a to t D x; and use the Fundamental Theorem
(Theorem 10.1).

11.49. [20] Show that for x < 1 and n D 0; 1; 2; : : : ,

.nC 1/

xZ
0

.x � t /n
.1 � t /nC2 dt D xnC1

1 � x :
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11.50. Show that the conclusion of Taylor’s Theorem (Theorem 8.20 or Corol-
lary 11.19) can be written (this form for the remainder is called Cauchy’s form):

f .x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.c/.x � c/n

nŠ
.x � x0/:
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Chapter 12
Classic Examples

It can be of no practical use to know that   is irrational, but if
we can know, it surely would be intolerable not to know.

—E.C. Titchmarsh

In this chapter we allow ourselves another brief diversion. Except for Wallis’s
product for   (Lemma 12.1), this chapter is independent of all subsequent chapters.

After obtaining Wallis’s product, we show that   is irrational. Then we show that
er is irrational whenever r ¤ 0 is rational. This implies in particular that the sum of
the Alternating Harmonic series, namely ln.2/; is irrational.

We also show that Euler’s sum
P1

nD1 1=n2 D  2=6; and that the sum
P
1=p,

of the reciprocals of all of the prime numbers, diverges. Among other things, the
exercises contain Vieta’s formula, an evaluation of the Probability integral, and a
tiny glimpse of transcendental numbers.

12.1 Wallis’s Product

We begin by deriving another reduction formula, to be used presently and in the
next section.

Let n � 2 be an integer. Applying Integration by Parts (differentiating the
cosn�1.x/ and integrating the cos.x/) to

Z
cosn.x/ dx D

Z
cosn�1.x/ cos.x/ dx;

we get

Z
cosn.x/ dx D cosn�1.x/ sin.x/C

Z
.n � 1/ cosn�2.x/ sin2.x/ dx

D cosn�1.x/ sin.x/C .n � 1/
Z

cosn�2.x/.1 � cos2.x// dx:

© Springer Science+Business Media New York 2014
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Then solving for
Z

cosn.x/ dx; we obtain the reduction formula:

Z
cosn.x/ dx D 1

n
cosn�1.x/ sin.x/C n � 1

n

Z
cosn�2.x/ dx:

In particular,

 =2Z
0

cosn.x/ dx D n � 1
n

 =2Z
0

cosn�2.x/ dx:

In an entirely similar way, which we leave for Exercise 12.1, we have

Z
sinn.x/ dx D �1

n
sinn�1.x/ cos.x/C n � 1

n

Z
sinn�2.x/ dx;

and in particular,

 =2Z
0

sinn.x/ dx D n � 1
n

 =2Z
0

sinn�2.x/ dx:

The following beautiful infinite product for   was obtained in 1658 by English
mathematician John Wallis (1616–1703). Our proof uses the above reduction
formula involving cosn.x/.

Lemma 12.1. (Wallis’s Product)

 

2
D lim

m!1

�
2

1

2

3

4

3

4

5

6

5

6

7
� � � 2m

2m � 1
2m

2mC 1

�
D

1Y
mD1

2m

2m � 1
2m

2mC 1
:

Proof. Setting In D
Z  =2

0

cosn.x/ dx; we obtained the reduction formula

In D n � 1
n

In�2: (12.1)

If we set n D 2m and apply (12.1) m times, we get (using I0 D  =2):

I2m D 2m � 1
2m

I2m�2 D 2m � 1
2m

2m � 3
2m � 2I2m�4 D � � �

D 2m � 1
2m

2m � 3
2m � 2 � � � 3

4

1

2

 

2
:
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On the other hand, if we set n D 2m C 1 and apply (12.1) m times, we get (using
I1 D 1):

I2mC1 D 2m

2mC 1
I2m�1 D 2m

2mC 1

2m � 2
2m � 1I2m�3 D � � �

D 2m

2mC 1

2m � 2
2m � 1 � � � 4

5

2

3
.1/:

Therefore,

I2m

I2mC1
D

2m�1
2m

2m�3
2m�2 � � � 3

4
1
2
 
2

2m
2mC1

2m�2
2m�1 � � � 4

5
2
3

D 2mC 1

2m

2m � 1
2m

2m � 1
2m � 2 � � � 7

6

5

6

5

4

3

4

3

2

1

2

 

2
:

We claim that

I2m

I2mC1
! 1 as m ! 1;

which would yield Wallis’s product:

 

2
D lim

m!1

�
2

1

2

3

4

3

4

5

6

5

6

7
� � � 2m

2m � 1
2m

2mC 1

�
D

1Y
mD1

2m

2m � 1
2m

2mC 1
:

Now to verify the claim. Again by (12.1) with m D 2mC 1,

I2mC1 D 2m

2mC 1
I2m�1 ;

and so

I2m�1
I2mC1

D 1C 1

2m
:

Then since 0 � cos.x/ � 1 on Œ0;  =2�,

1 � I2m

I2mC1
� I2m�1

I2mC1
D 1C 1

2m
;

and so the claim is verified and the proof is complete. ut
The above treatment is essentially from [4,12], but see also [19]. For an elemen-

tary (but still tricky) proof, see [28]. For an interesting geometric interpretation of



314 12 Classic Examples

Wallis’s product, see [25]. For an analogous infinite product for e; see [24], and for
other related infinite products, see [26].

We remark that each factor in Wallis’s product is >1. Therefore for any N 2 N,

NY
mD1

2m

2m � 1
2m

2mC 1
<
 

2
:

See Exercise 12.2 for a related upper estimate for  =2:

12.2   Is Irrational

In this section we provide the wonderful 1947 proof [20] by the American (Canadian
born) mathematician Ivan Niven (1915–1999), that   is irrational. (See also [8,31].)
This fact was first proved in 1761 by the Swiss mathematician J.H. Lambert
(1728–1777).

Theorem 12.2.   is irrational.

Proof. Seeking a contradiction we assume that   D p=q where p and q are positive
integers. (And p > q, since   > 1.) For the polynomial of degree 2n given by

g.x/ D qn

nŠ
xn.  � x/n;

we have g.2n/.x/  .�1/nqn.2n/.2n � 1/ � � � .nC 1/, and for k � 2nC 1 we have
g.k/.x/  0. We make the following additional observations about g:

(i) g.k/.0/ D 0 for k D 0; 1; 2; : : : ; n � 1I
(ii) g.k/.0/ is an integer for n � k � 2n:

Also g.x/ D g.  � x/; and so g.k/.0/ D .�1/kg.k/. /: Therefore,

(iii) g.k/. / D 0 for k D 0; 1; 2; : : : ; n � 1; and
(iv) g.k/. / is an integer for n � k � 2n:

In summary then: g.2n/.x/ is an integer, and g.k/.0/ and g.k/. / are integers for
k D 0; 1; 2; 3; : : : :

Now let us consider the integral
Z  

0

sin.x/g.x/ dx: Since g is a polynomial of

degree 2n, to evaluate this integral, we shall employ Integration by Parts 2n times.
In doing so, we shall integrate the sin.x/ part and all of its descendants, while
differentiating the g.x/ part and all of its descendants. The first four steps look
like this:
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 Z
0

sin.x/g.x/ dx D � cos.x/g.x/
ˇ̌̌ 
0

C
 Z
0

cos.x/g0.x/ dx

D integer C sin.x/g0.x/
ˇ̌
ˇ 
0

�
 Z
0

sin.x/g00.x/ dx

D integer C 0 C cos.x/g00.x/
ˇ̌̌ 
0

�
 Z
0

cos.x/g.3/.x/ dx

D integer C 0 C integer C sin.x/g.3/.x/
ˇ̌
ˇ 
0

C
 Z
0

sin.x/g.4/.x/ dx :

Then after 2n steps, we obtain

 Z
0

sin.x/g.x/ dx D integer C .�1/n
 Z
0

g.2n/.x/ sin.x/ dx

D integer C (integer) �
 Z
0

sin.x/ dx;

which is an integer. Observe now that

0 <

 Z
0

sin.x/g.x/ dx <

 Z
0

g.x/ dx <  
qn

nŠ
 n n D  

pn

nŠ
 n D  

.p /n

nŠ
:

In Example 8.25 we showed that for any u 2 R,

un

nŠ
! 0 as n ! 1:

So if we choose n very large, then 0 <

Z  

0

sin.x/g.x/ dx < 1 and soZ  

0

sin.x/g.x/ dx cannot be an integer. This is a contradiction, and so   is

irrational. ut

12.3 More Irrational Numbers

Niven’s proof above that   is irrational (Theorem 12.2) is a simplification of a more
general approach which goes back to the French mathematician Charles Hermite
(1822–1901). See [7, 23], also [2]. Here is another instance of Hermite’s approach.
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Theorem 12.3. eu is irrational for any nonzero integer u:

Proof. For the polynomial of degree 2n given by

g.x/ D xn.1 � x/n
nŠ

;

we have g.2n/.x/  .�1/n.2n/.2n � 1/ � � � .n C 1/, and for k � 2n C 1 we have
g.k/.x/  0. We make the following additional observations about g:

(i) g.k/.0/ D 0 for k D 0; 1; 2; : : : ; n � 1I
(ii) g.k/.0/ is an integer for n � k � 2n:

Also g.x/ D g.1 � x/; and so g.k/.0/ D .�1/kg.k/.1/: Therefore

(iii) g.k/.1/ D 0 for k D 0; 1; 2; : : : ; n � 1; and
(iv) g.k/.1/ is an integer for n � k � 2n:

In summary then: g.2n/.x/ is an integer, and g.k/.0/ and g.k/.1/ are integers for
k D 0; 1; 2; 3; : : : :

We need only show that eu is irrational for any positive integer u: (If eu is
irrational then so is e�u.) Seeking a contradiction let us assume that eu D p=q,
where p and q are positive integers. Consider now

qu2nC1
1Z
0

euxg.x/ dx :

Since g is a polynomial of degree 2n, to evaluate the integral here, we shall employ
Integration by Parts 2n times. In doing so, we shall we integrate the eux part and
all of its descendants, while differentiating the g.x/ part and all of its descendants.
With our assumption that eu D p=q, the first three integrations by parts yield:

qu2nC1
1Z
0

euxg.x/ dx

D qu2nC1
0
@1

u
euxg.x/

ˇ̌
ˇ1
0

�
1Z
0

1

u
euxg0.x/ dx

1
A

D integer C qu2nC1
0
@�

1Z
0

1

u
euxg0.x/ dx

1
A

D integer C qu2nC1
0
@� 1

u2
euxg0.x/

ˇ̌
ˇ̌1
0

C
1Z
0

1

u2
euxg00.x/ dx

1
A
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D integer C integer C qu2nC1
0
@

1Z
0

1

u2
euxg00.x/ dx

1
A

D integer C integer C qu2nC1
0
@ 1

u3
euxg00.x/

ˇ̌̌
ˇ
1

0

�
1Z
0

1

u3
euxg.3/.x/ dx

1
A

D integer C integer C integer C qu2nC1
0
@�

1Z
0

1

u3
euxg.3/.x/ dx

1
A :

Then after 2n integrations by parts, we get

qu2nC1
Z 1

0

euxg.x/ dx D integer C qu2nC1
0
@

1Z
0

1

u2n
euxg.2n/.x/ dx

1
A

D integer C qu2nC1.integer/

0
@

1Z
0

1

u2n
eux dx

1
A

D integer C qu2nC1.integer/ � 1

u2nC1 eux

ˇ̌̌
ˇ
1

0

;

which is an integer. Observe now that

0 < qu2nC1
1Z
0

euxg.x/ dx < qu2nC1 eu

nŠ
D p

u2nC1

nŠ
:

In Example 8.25 we showed that for any u 2 R,

un

nŠ
! 0 as n ! 1:

This is easily extended (see Exercise 12.7) to show that for any u 2 R,

u2nC1

nŠ
! 0 as n ! 1:

So if we choose n very large, then 0 < qu2nC1
Z 1

0

euxg.x/ dx < 1 and therefore

qu2nC1
Z 1

0

euxg.x/ dx cannot be an integer. This is a contradiction, and so eu is

irrational. ut
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Corollary 12.4. er is irrational for any nonzero rational number r:

Proof. Let r D p=q for integers p and q, with q ¤ 0. If er D x is rational then
ep D xq is also rational. But by Theorem 12.3 this cannot be the case, unless p D 0.

ut
Remark 12.5. The German mathematician F. Lindemann (1852–1939) proved in
1882 that er is in fact transcendental if r is a nonzero rational number. That
is, it is not the root of any polynomial of any degree, with integer coefficients.
Lindemann actually proved much more: er is transcendental if r is nonzero and not
transcendental. Readers who have studied complex variables will know that ei  D
�1: (This formula is attributed to, yes, L. Euler.) Therefore   is transcendental.
The Russian mathematician A.O. Gelfond (1906–1968) proved in 1929 that e  is
transcendental. It is currently not known if any of the numbers  e;  e;   C e; or
ln. / are even irrational, much less transcendental. ı
Corollary 12.6. ln.t/ is irrational for any positive rational number t ¤ 1:

Proof. If ln.t/ D ln.p=q/ D u is rational, then eu D p=q is rational. But this
contradicts Corollary 12.4 unless u D 0, in which case t D 1. ut

In Sect. 6.5, and again in Examples 8.26 and 10.10, we showed that the
Alternating Harmonic series

1X
nD1
.�1/nC1 1

n
D 1 � 1

2
C 1

3
� 1

4
C � � � D ln.2/ Š 0:693147 :

Corollary 12.6 says in particular that this number is irrational.

12.4 Euler’s Sum
P

1=n2 D  2=6

In Sect. 6.5 we saw that the series
1P
nD1

1
n2

converges, and that its sum is< 2. Showing

that a particular series converges is one thing, but finding its sum is often much more
difficult.

The following monumental result was discovered by L. Euler, in 1741. Our proof
mainly follows the modifications given in [5], of the argument in [18]. A good
number of other proofs are known (see for example [3,9]), but most of them extend
beyond the scope of this book.

Theorem 12.7.
1P
nD1

1

n2
D  2

6
:

Proof. Consider the integral In D
Z  =2

0

cos2n.x/ dx: The reduction formula (12.1)

gives
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In D 2n � 1
2n

In�1;

which is easily rewritten as

2n � 1
nIn

D 2

In�1
: (12.2)

Or, by replacing n with nC 1 in (12.2) and then doing a little algebra we get

In � InC1 D In

2.nC 1/
: (12.3)

Each of (12.2) and (12.3) will be of use in what follows. Now for n � 1; Integration
by Parts employed twice gives

In D
 =2Z
0

1 cos2n.x/ dx D x cos2n.x/
ˇ̌̌ =2
0

C
 =2Z
0

x2n cos2n�1.x/ sin.x/ dx

D n

 =2Z
0

2x cos2n�1.x/ sin.x/ dx

D nx2 cos2n�1.x/ sin.x/
ˇ̌
ˇ =2
0

�
 =2Z
0

nx2
h

cos2n.x/ � .2n � 1/ cos2n�2.x/ sin2.x/
i
dx

D �
 =2Z
0

nx2
h

cos2n.x/ � .2n � 1/ cos2n�2.x/
�
1 � cos2.x/

� i
dx

D
 =2Z
0

nx2
h
.2n � 1/ cos2n�2.x/ � 2n cos2n.x/

i
dx:

So setting

Jn D
 =2Z
0

x2 cos2n.x/ dx ;

this reads

In D n.2n � 1/Jn�1 � 2n2Jn:
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Therefore,

1

n2
D 2n � 1

n

Jn�1
In

� 2Jn
In
:

And using (12.2), this reads

1

n2
D 2

Jn�1
In�1

� 2Jn
In
:

Then summing from 1 to N we get lots of cancellation. More precisely, the sum is
telescoping:

NX
nD1

1

n2
D 2

NX
nD1

�
Jn�1
In�1

� Jn

In

�
D 2

�
J0

I0
� JN

IN

�
:

Now

I0 D
 =2Z
0

1 dx D  

2
and J0 D

 =2Z
0

x2 dx D  3

24
;

and so

2
J0

I0
D  2

6
:

We claim now that JN
IN

! 0 as N ! 1, which will complete the proof. Jordan’s
Inequality from Example 8.14 (also Exercise 10.31 and Example 11.10) reads:

2

 
x � sin.x/ for x 2 Œ0;  =2�:

Therefore

JN D
 =2Z
0

x2 cos2N .x/ dx �  2

4

 =2Z
0

sin2.x/ cos2N .x/ dx

D  2

4

 =2Z
0

�
1 � cos2.x/

�
cos2N .x/ dx

D  2

4

�
IN � INC1

�
:



12.5 The Sum
P
1=p of the Reciprocals of the Primes Diverges 321

Then using (12.3),

JN �  2

4

�
IN � INC1

� D  2

4

IN

2.N C 1/
:

Finally then,

0 � JN

IN
�  2

4

1

2.N C 1/
:

So the claim is verified and the proof is complete. ut

Remark 12.8. It is the case that  2 is irrational (Exercise 12.6), and so
1P
nD1

1
n2

is irrational. Euler found exactly all the sums
1P
nD1

1

nk
; for k even. For example,

1P
nD1

1
n4

D  4

90
and

1P
nD1

1
n6

D  6

945
. Very little is known about these sums for k � 3 odd.

It was proved only in 1979, by the French mathematician R. Apéry (1916–1994),

that
1P
nD1

1
n3

is irrational. (Very much less if known if k > 1 is not an integer!) ı

12.5 The Sum
P

1=p of the Reciprocals
of the Primes Diverges

Below we prove, following [13], the interesting fact that the sum of the reciprocals
of all of the prime numbers diverges to infinity. Another proof is outlined in
Exercise 12.15.

This fact implies immediately that there are infinitely many prime numbers. But
we have also seen that

1X
nD1

1

n2
< C 1 ;

(this sum D  2=6; by Theorem 12.7) so this fact also suggests—at least in a vague
way—that there are many more prime numbers than there are perfect squares.

Theorem 12.9. Denote by ˘ D f2; 3; 5; 7; 11; 13; 17; : : :g the set of prime num-
bers. Then

X
p2˘

1

p
D C 1 :
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Proof. For m � 2, let M D fp prime W 2 � p � mg: Observe that

Y
p2M

�
1C 1

p � 1
�

D
Y
p2M

�
1

1 � 1=p
�

D
Y
p2M

�
1C 1

p
C 1

p2
C � � �

�
;

wherein each
	
1C 1

p
C 1

p2
C � � �



is a convergent geometric series (Example 2.3),

since p � 2. Now any integer k, with 2 � k � m; is a product of powers of primes
and each of these primes is obviously � m. So any 1=k arising from such a k must
appear somewhere in the product

Y
p2M

�
1C 1

p
C 1

p2
C � � �

�
:

(For example,

1

2;793
D 1

3 � 72 � 19 D 1 � 1
3

� 1 � 1
72

� 1 � 1 � 1 � 1
19

� 1 � � � � 1 :/

Therefore,

mX
kD1

1

k
<
Y
p2M

�
1C 1

p � 1
�
:

We saw in Example 6.11 that ln.1C x/ � x for x > �1, and so

ln

 
mX
kD1

1

k

!
< ln

0
@Y
p2M

�
1C 1

p � 1
�1A D

X
p2M

ln

�
1C 1

p � 1
�

�
X
p2M

1

p � 1 :

Now since p � 2,

X
p2M

1

p � 1 �
X
p2M

2

p
:

Therefore

1

2
ln

 
mX
kD1

1

k

!
<

X
p2M

1

p
:

And finally, since the Harmonic series diverges to infinity (Sect. 6.5), the proof is
complete upon letting m ! 1. ut
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Remark 12.10. Twin primes are two prime numbers p and q such that pC 2 D q:

For example, 3& 5 are twin primes, as are 5& 7, 11& 13, and 101& 103. It was
proved in 1919 by Norwegian mathematician V. Brun (1885–1978) that

P
1=p

converges, where the sum is taken over all twin primes. It is not known whether
there are infinitely many twin primes. If there are not, then Brun’s result is trivial.
Either way, it is known that this sum (called Brun’s constant) is between 1:9021
and 1:9022. It was proved in 2013 by Tom Zhang [30] of the University of New
Hampshire that there does exist some integer N such that there infinitely many
primes p and q satisfying p C N D q: He also showed that N � 70;000;000:

(N is certainly even!) Since then, mathematicians have been continually working to
improve Zhang’s estimate forN . It is currently know thatN � 246: See the website
Polymath8 for updates. ı

Exercises

12.1. (a) Show thatZ
sinn.x/ dx D �1

n
sinn�1.x/ cos.x/C n � 1

n

Z
sinn�2.x/ dx;

and consequently

 =2Z
0

sinn.x/ dx D n � 1
n

 =2Z
0

sinn�2.x/ dx:

(b) Derive Wallis’s product (Lemma 12.1) using this reduction formula.

12.2. [19] We observed at the end of Sect. 12.1 that in Wallis’s product
(Lemma 12.1), each factor in the product is >1 and so for any N 2 N,

NY
mD1

2

1

2

3

4

3

4

5

6

5

6

7
� � � 2m

2m � 1
2m

2mC 1
<
 

2
:

Fill in the details, as follows, for obtaining an upper estimate for  =2.

(a) Write

 

2
D

1Y
mD1

2m

2m � 1
2m

2mC 1
D

1Y
mD1

.2m/2

.2m/2 � 1

D
NY
mD1

.2m/2

.2m/2 � 1
1Y

mDNC1

.2m/2

.2m/2 � 1 ;



324 12 Classic Examples

and then

1Y
mDNC1

.2m/2

.2m/2 � 1 D exp

 
ln

1Y
mDNC1

.2m/2

.2m/2 � 1

!

D exp

 1X
mDNC1

ln

�
.2m/2

.2m/2 � 1
�!

D exp

 1X
mDNC1

ln

�
1C 1

.2m/2 � 1
�!

:

(b) Now use ln.1Cx/ < x (obtained in Example 6.11) and notice that the resulting
sum telescopes to 1

2.2NC1/ D 1
4NC2 :

(c) Conclude that

 

2
<

NY
mD1

.2m/2

.2m/2 � 1e
1

4NC2 :

(d) Show that this upper estimate is closer to  
2

than is the lower estimate
NQ
mD1

.2m/2

.2m/2�1 :

12.3. [27] Show that

1C
1X
nD1

1

nC 1

�
1 � 3 � � � .2n � 1/
2 � 4 � � � .2n/

�2
D 4

 
:

12.4. Derive, as follows, F. Vieta’s 1593 formula

2

 
D
r
1

2

s
1

2
C 1

2

r
1

2

vuut1

2
C 1

2

s
1

2
C 1

2

r
1

2
� � � :

(a) Show that

sin.�/

�
D cos.�=2/

sin.�=2/

�=2
D cos.�=2/ cos.�=4/

sin.�=4/

�=4
D � � �

D cos.�=2/ cos.�=4/ � � � cos.�=2n/
sin.�=2n/

�=2n
:
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(b) Show that lim
n!1

sin.�=2n/
�=2n

D 1; and so we may write

sin.�/

�
D cos.�=2/ cos.�=4/ � � � cos.�=2n/ � � � :

(c) Write cos.�=2/ D
q

1
2
.1C cos.�//; and set � D  =2:

12.5. [15] (See also [16].) Here we evaluate the Probability integral

1Z
0

e�x2 dx D lim
n!1

nZ
0

e�x2 dx D
p
 

2
:

The idea is to replace the e�x2 in the integrand with
	
1 � x2

n


n
, then let n ! 1.

(a) Show that for x 2 Œ0; n�,

0 � e�x �
	
1 � x

n


n � e�1

n
:

(The right-hand inequality is the harder one.)
(b) Show that

0 �
p
nZ

0

e�x2 dx �
p
nZ

0

�
1 � x2

n

�n
dx � e�1

p
n
:

(c) Conclude that

1Z
0

e�x2 dx D lim
n!1

p
nZ

0

�
1 � x2

n

�n
dx:

(d) Set x D p
n sin.t/ and use Integration by Parts to show that

p
nZ

0

�
1 � x2

n

�n
dx D p

n

 =2Z
0

cos2nC1.t/ dt:

(e) Use Wallis’s product (Lemma 12.1) to show that this last integral ! p
 =2 as

n ! 1:

12.6. [22] Look carefully at the proof that   is irrational. Now prove the stronger
statement that  2 is irrational. (This is not easy.)
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12.7. Show that for any u 2 R,

u2nC1

nŠ
! 0 as n ! 1:

(Example 8.25 might be helpful.)

12.8. Use
1P
nD1

1

n2
D  2

6
to show that

1P
nD1

1

.2n � 1/2 D  2

8
:

12.9. [5] Show that

0 �  2

6
�

1X
nD1

1

n2
�  2

4.nC 1/
:

12.10. [10] For natural numbers a and b, denote by lcm.a; b/ and gcd.a; b/ their
least common multiple and greatest common divisor respectively.

(a) Show that lcm.a; b/gcd.a; b/ D ab:

(b) Let fang be a strictly increasing sequence of natural numbers. Show that

1X
nD1

1

lcm.an; anC1/
converges.

Hint: Use (a) to write this as a telescoping series.

12.11. (e.g., [11, 29]) Consider the Liouville number

x0 D
1X
jD1

1

10j Š
D 0:1100010 : : : ;

which has a 1 in the .j Š/th decimal place, and zeros elsewhere. Liouville showed
in 1844 that x0 is transcendental—that is, x0 is not the root of any polynomial of
any degree, with integer coefficients. Fill in the details of the following proof that
x0 is transcendental. Denote by aj =bj the fraction obtained by truncating x0 after
the .j Š/th decimal place (e.g., a3=b3 D 0:110001).

(a) Show that bj D 10j Š:

(b) Show that

ˇ̌̌ aj
10j Š

� x0
ˇ̌̌
<

2

10.jC1/Š D 2

10.jC1/j Š � 2

.10j Š/nC1 for j � n:

(c) Looking for a contradiction, suppose that x0 is a solution to P.x/ D 0, where
P is a polynomial of degree n with integer coefficients. Apply the Mean Value
Theorem (Theorem 5.2) to P.x/ on Œ aj

10j Š
; x0� to show that there is M > 0 such

that
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ˇ̌
ˇP 	 aj

10j Š


ˇ̌ˇ � 2M

.10j Š/nC1 :

(d) Conclude that
ˇ̌
P.

aj

10j Š
/.10j Š/n

ˇ̌ � 2M
10j Š
; and the left side is necessarily an integer.

Now take j large to obtain the desired contradiction.

Remark 12.11. Truly, this exercise is just the tip of the iceberg—see Exer-
cise 12.12 below. By the late 1830s, mathematicians believed that numbers like
  and e were transcendental, yet it hadn’t even been shown that transcendental
numbers exist. This is the significance of Liouville’s 1844 result [11].

12.12. [21] Much of this exercise appeared already as Exercise 1.44. A set A is
countable if there is a one-to-one onto function � W N !A. (So its elements can be
listed off: �.1/; �.2/; �.3/; : : : :) Fill in the details of the following proof that the
set of algebraic numbers—that is, all roots of all polynomials of any degree, with
integer coefficients—is countable. This amazing fact was discovered in 1871 by the
German mathematician Georg Cantor (1845–1918).

(a) Let a0; a1; : : : ; an be integers and consider the polynomial equation

p.x/ D anx
n C an�1xn�1 C � � � C a1x C a0 D 0;

which has at most n roots. We may assume that an � 1: Why?
(b) Define the index of any such polynomial as

index.p/ D janj C jan�1j C � � � C ja1j C ja0j :

Show, for example, that there is only one such polynomial with index 2. There
are 4 such polynomials with index 3. There are 11 such polynomials with
index 4. Show that there are only finitely many polynomials with a given index.

(c) Now use the index to show how the algebraic numbers can be put in one-to-one
onto correspondence with the natural numbers. (This proof actually shows that
the set of all algebraic numbers, not just the real ones, is countable.)

(d) An immediate consequence is that the set of rational numbers is countable—
explain.

(e) Show that R is not countable. Conclude that the set of transcendental numbers is
not countable—not intending to take anything away from Liouville’s excellent
result from Exercise 12.11!

12.13. [1, 9, 14] Denote by gcd.a; b/ the greatest common divisor of integers a; b
and let p be the probability that gcd.a; b/ D 1:

(a) For integers a,b, show that the probability that n divides both a and b is 1=n2:
(b) Show that the probability that gcd.a; b/ D n is p=n2:
(c) Show that

P1
nD1 p=n2 D 1 and conclude that p D 6= 2 Š 0:608 .

(The probability that three integers, a; b; c have gcd D 1 is
P1

nD1 1=n3; etc.)
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12.14. [17] Show that

1X
nD2

X
p2˘

1

pn
<

3

2
� ln.2/ Š 0:8069:

12.15. [6] Fill in the details, as follows, of another proof that the sum of the
reciprocals

P
1=p of all of the prime numbers p diverges.

(a) Verify that

�
1C 1

p

��
1C 1

p2
C 1

p4
C 1

p6
C � � � C 1

p2k

�

D
�
1C 1

p
C 1

p2
C 1

p3
C � � � C 1

p2kC1

�
:

(b) Let M D fp prime: 2 � p � mg: Show that

Y
M

�
1C 1

p

� X
n integer with

all divisors in M

1

n2
D

X
n integer with

all divisors in M

1

n
:

(c) Conclude that
Q
M

	
1C 1

p



! 1 as m ! 1:

(d) Finally, use 1 C x � ex (there’s that inequality again) to show that
P
1=p

diverges.
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Chapter 13
Simple Quadrature Rules

It is the mark of an educated mind to rest satisfied with the
degree of precision which the nature of the subject admits.

—Aristotle

In practice most definite integrals cannot be evaluated exactly. In such cases one
must resort to various approximation methods, which can be quite complicated.
Any method used to approximate a definite integral is called a quadrature rule.
(Quadrature is any process used to construct a square equal in area to that of some
given figure.) But in this chapter we see that even the simplest of quadrature rules
can be useful, even when the exact value of the integral is known.

13.1 The Rectangle Rules

For a function f defined on Œa; b�; the Left Rectangle Rule is the approximation

bZ
a

f .x/ dx Š f .a/
�
b � a� :

The quantity f .a/Œb � a� is the signed area of the rectangle with base Œa; b�; and
height f .a/: See Fig. 13.1.

Likewise, the Right Rectangle Rule is the approximation

bZ
a

f .x/ dx Š f .b/
�
b � a� :

The quantity f .b/Œb � a� is the signed area of the rectangle with base Œa; b�; and
height f .b/: See Fig. 13.2.

The following result is pretty well obvious, upon drawing a picture. We have
already seen it (essentially) in our proof of the Integral Test (Theorem 9.24).

© Springer Science+Business Media New York 2014
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Fig. 13.1 Left Rectangle

Rule:

Z b

a

f .x/ dx is

approximated by the area of
the shaded rectangle

a b x

y

f(a)

y = f(x)

Fig. 13.2 Right Rectangle

Rule:

Z b

a

f .x/ dx is

approximated by the area of
the shaded rectangle

y = f(x)

f(b)

a b x

y

Lemma 13.1. Let f be continuous and increasing on Œa; b�. Then

f .a/
�
b � a� �

bZ
a

f .t/ dt � f .b/
�
b � a� ;

and these inequalities are reversed for f continuous and decreasing.

Proof. This is Exercise 13.1. (See the proof of the Integral Test (Theorem 9.24).)
ut

Example 13.2. In (6.8) we obtained the estimates

1

x C 1
< ln

�
x C 1

x

�
<
1

x
for x > 0 : (13.1)

These follow quickly from Lemma 13.1. Indeed, for x > 0,

xC1Z
x

1

t
dt D ln

�
x C 1

x

�
:
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Then since 1=t is strictly decreasing we have, by Lemma 13.1,

1

x C 1

�
.x C 1/ � x� <

xC1Z
x

1

t
dt <

1

x

�
.x C 1/ � x� for x > 0 ;

from which (13.1) follows. The inequalities in (13.1) are equivalent to

�
1C 1

x

�x
< e <

�
1C 1

x

�xC1
for x 2 R;

which we have seen and used many times. ˘
Example 13.3. Let 0 � a < b and n 2 N. Observe that

bZ
a

xn dx D bnC1 � anC1

nC 1
:

Then since xn is strictly increasing, Lemma 13.1 gives

an.b � a/ < bnC1 � anC1

nC 1
< bn.b � a/:

We obtained these inequalities differently, and used them, in Example 1.32, and in
Exercises 1.39 and 6.59. ˘

13.2 The Trapezoid and Midpoint Rules

For a function f defined on Œa; b�; the Trapezoid Rule is the approximation

bZ
a

f .x/ dx Š f .a/C f .b/

2

�
b � a� :

The quantity f .a/Cf .b/
2

Œb � a� is the signed area of the trapezoid with base Œa; b�;
and heights f .a/ and f .b/: See Fig. 13.3.

The Midpoint Rule is the approximation

bZ
a

f .x/ dx Š f .
aC b

2
/
�
b � a�:
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Fig. 13.3 Trapezoid Rule:Z b

a

f .x/ dx is approximated

by the area of the shaded
trapezoid

y

x
a b

f(a)

f(b)

y = f(x)

The quantity f .aCb
2
/Œb � a� is the signed area of the rectangle with base Œa; b�; and

height f .aCb
2
/: See Fig. 13.4.

Fig. 13.4 Midpoint Rule:Z b

a

f .x/ dx is approximated

by the area of the shaded
rectangle

y = f(x)

a + ba b
x

y

f( a+b
2 )

2

The following inequalities are named for French mathematicians Charles
Hermite (1822–1901) and Jacques Hadamard (1865–1963). We shall refer to these
as the HH Inequalities for short [36]. These are similar in spirit to those of
Lemma 13.1 and are also fairly obvious, upon drawing a picture: See Fig. 13.5—the
Midpoint Rule is sometimes called the Tangent Rule.

Lemma 13.4. (the HH Inequalities) Let f be defined on Œa; b� with f 00 � 0, so
that f is convex. Then

f .
aC b

2
/
�
b � a� �

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a�:

And these inequalities are reversed for f 00 � 0.

Proof. For the right-hand inequality we let x D .1 � t /a C tb; so that dx D
.b � a/ dt: Then since f is convex,
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Fig. 13.5 The Midpoint Rule
is sometimes called the
Tangent Rule. The area of the
shaded trapezoid here equals
the area of the shaded
rectangle from the Midpoint
Rule, in Fig. 13.4

a+b
2

y = f(x)

y

xa b

1

b � a

bZ
a

f .x/ dx D
bZ
a

f
�
.1 � t /aC tb

�
dt �

1Z
0

.1 � t /f .a/ dt C
1Z
0

tf .b/ dt

D f .a/

1Z
0

.1 � t / dt C f .b/

1Z
0

t dt D f .a/C f .b/

2
:

For the left-hand inequality, notice that since f is convex its graph lies on or above
its tangent lines on Œa; b�, by Lemma 8.7. So in particular, its graph lies above the
tangent line at . aCb

2
; f . aCb

2
//: That is,

f .x/ � f 0. aCb
2
/
�
x � aCb

2

�C f .aCb
2
/:

Integrating this with respect to x, we get

bZ
a

f .x/ dx � f 0. aCb
2
/

bZ
a

�
x � aCb

2

�
dx C f .aCb

2
/
�
b � a�:

Now the reader may verify directly that
Z b

a

.x� aCb
2
/ dx D 0; or see Example 9.23

(or just draw a picture). Therefore

bZ
a

f .x/ dx � f .
aC b

2
/
�
b � a�;

as desired. ut



336 13 Simple Quadrature Rules

Remark 13.5. Denote by M the Midpoint Rule and by T the Trapezoid Rule,
applied to some function f over Œa; b�. For f strictly convex, the HH Inequalities
(Lemma 13.4) say that for any t 2 .0; 1/;

tM C .1 � t /T

is a better approximation to
Z b

a

f .x/ dx than either of M or T: ı

Example 13.6. [7] Let x; y > 0 and denote by G;L; and A the Geometric,
Logarithmic and Arithmetic Means, respectively, of x and y. Here we show another
way of proving Lemma 6.20: G � L � A: Applying the HH Inequalities
(Lemma 13.4) to the convex function f .t/ D et gives

e
aCb
2 � 1

b � a

bZ
a

et dt � ea C eb

2
:

Now since x; y > 0; we may set a D ln.x/ and b D ln.y/ to get

�
eln.xy/

�1=2 � 1
ln.y/�ln.x/

ln.y/Z
ln.x/

ex dx � eln.x/ C eln.y/

2
:

That is,

p
xy � y � x

ln.y/ � ln.x/
� x C y

2
;

just as we wanted to show. ˘
Remark 13.7. In Exercises 13.8 and 13.9 we see how the HH Inequalities
(Lemma 13.4) can be applied to other functions to yield the same inequalities
G � L � A: ı
Example 13.8. [26, 32] For the convex function f .t/ D 1=t on Œx; x C 1�; the
right-hand side of the HH Inequalities (Lemma 13.4) gives

xC1Z
x

1

t
dt D ln

�
x C 1

x

�
� 1

2

�
1

x C 1
C 1

x

�
for x > 0 :

And the left-hand side of the HH Inequalities (Lemma 13.4) gives

2

2x C 1
�

xC1Z
x

1

t
dt D ln

�
x C 1

x

�
for x > 0 :
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These two inequalities improve (13.1) considerably. Restricting to natural numbers,
they imply

2n

2nC 1
� ln

�
1C 1

n

�n
� 2nC 1

2.nC 1/
for n 2 N: (13.2)

We shall see in the next section that these are pretty good inequalities. ˘
Example 13.9. The left-hand side of (13.2), but with nC 1 instead of n; is

2nC 2

2nC 3
:

Now the reader can easily verify that

2nC 2

2nC 3
>

2nC 1

2.nC 1/
;

which is the right hand side of (13.2). Therefore, as we have seen,
˚�
1C 1

n

�n�
is an

increasing sequence. A very similar argument, which we leave for Exercise 13.20,
shows that

˚�
1C 1

n

�nC1�
is a decreasing sequence. ˘

Example 13.10. [33] The right-hand inequality in (13.2) improves the right-hand
inequality in (13.1), which we used in Sect. 6.7 to show that Euler’s constant ” is
� 0: So with (13.2), we should be able to obtain a better lower bound for ”. Indeed,
for n D 1; 2; 3; : : :,

ln.n/ D
n�1X
kD1

ln

�
k C 1

k

�
� 1

2

n�1X
kD1

�
1

k
C 1

k C 1

�
D 1

2

 
1C

n�1X
kD2

2

k
C 1

n

!

D 1

2

 
2C

n�1X
kD2

2

k
C 2

n
� 1 � 1

n

!
D

nX
kD1

1

k
� 1

2

�
1C 1

n

�
:

Therefore ”n D
nP

kD1
1
k

� ln.n/ > 1
2

�
1C 1

n

�
; and so in fact ” � 1=2: ˘

13.3 Stirling’s Formula

For n 2 N, the factorial function is given by

nŠ D n.n � 1/.n � 2/ � � � .2/.1/:
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This function comes up in many areas of mathematics, like combinatorics,
probability and algebra, as well as real and complex analysis. Factorials grows
incredibly quickly as n gets large. (For a neat description of just how quickly nŠ
grows with n, see [29].) For example, the number of different ways of shuffling a
standard deck of 52 cards is 52Š, a number which has 68 digits.

Unfortunately, there is no shortcut formula for computing the factorial of a
particular number—one really must do all the multiplying, i.e., get a calculator
or computer to do it. But the huge numbers that result from these multiplications
are difficult even for calculators and mathematical software to handle. So good
estimates for nŠ are very useful.

Using inequalities (13.2) we shall see below that for n large,

p
2 

p
n
	n

e


n � nŠ � p
2 

p
n
	n

e


n
e
1
4n
: (13.3)

These estimates are very good because e
1
4n ! 0 as n ! C1. In particular, (13.3)

implies the following result, named for Scottish mathematician James Stirling
(1692–1770).

Theorem 13.11. (Stirling’s formula) lim
n!C1

nŠen

nn
p
n

D p
2 :

Proof. We divide the proof into two parts, (i) and (ii). In part (i), as regards
estimates (13.3), we show that there exists L > 0 such that

L
p
n
	n

e


n � nŠ � L
p
n
	n

e


n
e
1
4n
; (13.4)

which gives lim
n!C1

nŠen

nn
p
n

D L: Then in part (ii), we show that L D p
2 .

(i) First we rewrite the inequalities (13.2) in a form which will be more useful for
our purposes. Multiplying (13.2) by 2nC1

2n
D 1

n
.nC 1

2
/; we get

1 �
�
nC 1

2

�
ln

�
nC 1

n

�
� .2nC 1/2

4n.nC 1/
D 1C 1

4n
� 1

4.nC 1/
:

Therefore

e �
�
nC 1

n

�nC1=2
� e

1C 1
4n�

1
4.nC1/

: (13.5)

Now, looking at (13.4), consider the sequence fang given by

an D
p
n

nŠ

	n
e


n D nnC1=2

en nŠ
:
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Then fang is increasing , anC1 � an ,

.nC 1/nC1C1=2

enC1.nC 1/Š
� nnC1=2

en nŠ
,

�
nC 1

n

�nC1=2
� e ;

which is the left-hand inequality in (13.5). Now consider the sequence fbng given by

bn D an e
1
4n D nnC1=2

en nŠ
e
1
4n
:

Here, fbng is decreasing , bnC1 � bn ,

.nC 1/nC1C1=2

enC1 .nC 1/Š
e

1
4.nC1/ � nnC1=2

en nŠ
e
1
4n ,

�
nC 1

n

�nC1=2
e

1
4.nC1/ � e

1C 1
4n
;

which holds by the right-hand side of (13.5).
Now an < bn for all n, and since fang is increasing and fbng is decreasing,˚

Œan; bn�
�

is a nested sequence of intervals, with

bn � an D bn
�
1 � e

1
4n

�
< b1

�
1 � e

1
4n

� ! 0:

So by the Nested Interval Property (Theorem 1.41) there is a point c which belongs
to each of these intervals. And c > 0 because a1 D 1=e > 0: Therefore

an � c � an e
1
4n
:

That is,

p
n

nn

en nŠ
� c � p

n
nn

en nŠ
e
1
4n
:

which gives (13.4), with L D 1=c.

(ii) We show now that L D p
2 . Replacing n with 2n in lim

n!C1
nŠ en

nn
p
n

D L then

squaring both sides, we get

..2n/Š/2 e4n

.2n/
4n
2n

! L2 as n ! C1 :

And taking the 4th power of both sides of lim
n!C1

nŠ en

nn
p
n

D L, we get

.nŠ/4 e4n

n
4n
n2

! L4 as n ! C1 :



340 13 Simple Quadrature Rules

Therefore

..2n/Š/2 e4n

.2n/
4n
2n

� .nŠ/4 e4n

n
4n
n2

! L2 � L4 as n ! C1 :

That is,

n ..2n/Š/2

.nŠ/4 2
4nC1

! 1

L2
as n ! C1 :

So to finish the proof, it remains to show that

n ..2n/Š/2

.nŠ/4 2
4nC1

! 1

2 
as n ! C1 : (13.6)

Now in our proof of Wallis’s product (Lemma 12.1) we showed that

I2n

I2nC1
D

2n�1
2n

2n�3
2n�2 � � � 3

4
1
2

2n
2nC1

2n�2
2n�1 � � � 4

5
2
3

D .2nC 1/

�
2n � 1
2n

�2 �
2n � 3
2n � 2

�2
� � �
�
5

6

�2 �
3

4

�2 �
1

2

�2

! 2

 
as n ! C1 :

Looking at the numerators here, observe that

.2n � 1/.2n � 3/ � � � .5/.3/.1/ D .2n/Š

.2n/.2n � 2/.2n � 4/ � � � .4/.2/ D .2n/Š

2nnŠ
:

And looking at the denominators, observe that

.2n/.2n � 2/ � � � .4/.2/ D .2n/.2.n � 1//.2.n � 2// � � � .2.2//.2.1// D 2nnŠ :

Therefore,

I2n

I2nC1
D .2nC 1/

..2n/Š/2

2
4n
.nŠ/4

! 2

 
as n ! C1 :

This is equivalent to

.2nC 1/

2n

n ..2n/Š/2

2
4nC1

.nŠ/4
! 1

2 
as n ! C1 ;

from which (13.6) follows, and the proof is complete. ut
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The approach above was motivated in part by [10, 11, 28], but see also [8, 14,
17, 22]. We consider alternative ways to show that L exists and is positive, in
Exercises 13.34 and 13.35. In Exercise 13.37 we see another way of computing
L using Wallis’s product (Lemma 12.1).

Remark 13.12. Less precise estimates for nŠ, like

e
	n

e


n � nŠ � e

�
nC 1

e

�nC1
;

can be obtained more easily—see for example Exercise 13.2. There, the Rectangle
Rules are used instead of the more accurate Midpoint and Trapezoid Rules.
Depending on the context, such inequalities are often sufficient for estimating nŠ . ı

13.4 Trapezoid Rule or Midpoint Rule: Which Is Better?

Neither. For some functions the Trapezoid Rule is better, and for others the Midpoint
Rule is better. (The reader should agree with this statement, perhaps after making a
few sketches; see Exercise 13.39.)

But we show below (following [41]) that for functions which are either convex
or concave, the Midpoint Rule is always at least as good as the Trapezoid Rule
[3,6,21,41,47]. See Fig. 13.6. (So, for example, the left-hand inequality in (13.2) is
at least as sharp as the right-hand inequality in (13.2).)

Fig. 13.6 Lemma 13.13, for
a convex function. The lighter
shaded area is the error for
the Trapezoid Rule and the
darker shaded area is the error
for the Midpoint Rule

ba
x

y y = f(x)

Lemma 13.13. Let f be such that f 00 exists on Œa; b�. If f is convex then

0 �
bZ
a

f .x/ dx � f .aC b

2
/
�
b � a� � f .a/C f .b/

2

�
b � a� �

bZ
a

f .x/ dx ;

and these inequalities are reversed for f concave.
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Proof. We prove the statement for f being convex. (If f is concave then �f is
convex.) Let c D .a C b/=2: Applying the Trapezoid Rule on each of Œa; c� and
Œc; b� we get, by the right-hand side of the HH Inequalities (Lemma 13.4),

cZ
a

f .x/ dx C
bZ
c

f .x/ dx � f .a/C f .c/

2

�
c � a� C f .c/C f .b/

2

�
b � c�:

Then after some manipulations, using c � a D b � c D .b � a/=2; this reduces to

2

bZ
a

f .x/ dx � f .c/
�
b � a� C f .a/C f .b/

2

�
b � a� ;

which is equivalent to the desired inequality. ut
Again we denote by M the Midpoint Rule and by T the Trapezoid Rule, applied

to a function f over Œa; b�. In Remark 13.5 we saw that if f is strictly convex then

for any t 2 .0; 1/, tM C .1 � t /T is a better approximation to
Z b

a

f .x/ dx than

either of M or T . Lemma 13.13 says that in the approximation tM C .1 � t /T , we
should take t � 1=2. We shall explore this matter further in Sect. 14.5.

Exercises

13.1. Prove Lemma 13.1: If f is continuous and increasing on Œa; b�; then

f .a/
�
b � a� �

bZ
a

f .x/ dx � f .b/
�
b � a� :

13.2. [46] In this problem we obtain estimates for nŠwhich are not as sharp as those
appearing in Stirling’s formula (Theorem 13.11), but are still of practical use.

(a) Verify that Lemma 13.1 gives

ln.k � 1/ �
kZ

k�1
ln.x/ dx � ln.k/ for k 2 N: (13.7)

(b) Sum the right-hand side of (13.7) from k D 2 to n then integrate, to show that

e
	n

e


n � nŠ
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(c) Sum the left-hand side of (13.7) from k D 3 to n then integrate, to show that

nŠ � e2
n

4

	n
e


n
:

(d) Sum the left-hand side of (13.7) from k D 3 to nC 1 to show that

nŠ � e

�
nC 1

e

�n
:

(The rougher estimates
�
n
e

�n � nŠ � �
nC1
2

�n
were obtained in Exercises

2.17, 2.27 and 8.55.)

13.3. [20] In Exercise 13.2 we saw that

e
	n

e


n � nŠ for n D 3; 4; 5; : : : :

Use this to show that for n D 3; 4; 5; : : : ,

�
.n � 1/Š�nŠ e 	n

e


nŠ
< .nŠ/Š :

13.4. [46] Show that for natural numbers n � 3,

nŠ ln.nŠ/ < nn :

13.5. [12] Here’s a way to show that
˚�
1C 1

n

�n�
is increasing, using Lemma 13.1.

(a) Apply Lemma 13.1 on Œn; nC 1� to f .x/ D 1=x to show that

1

nC 2
<

1C 1
nC1Z

1

1

x
dx:

(b) Verify that

1

nC 2
D n.nC 1/

nC 2

1C 1
nZ

1C 1
nC1

1 dx > n

1C 1
nZ

1C 1
nC1

1

x
dx:

(c) Conclude that

n ln

�
1C 1

n

�
D n

1C 1
nZ

1

1

x
dx < .nC 1/ ln

�
1C 1

nC 1

�
;

and so f�1C 1
n

�ng is increasing.



344 13 Simple Quadrature Rules

(d) Modify the above analysis to show that
˚�
1C 1

n

�nC1�
is decreasing.

Hint: 1
nC1 D nC1

1C 1
n

�
.1C 1

n
/ � .1C 1

nC1 /
�
:

13.6. Denote by T the Trapezoid Rule and by M the Midpoint Rule, applied to a
function f over some particular interval. Show that .T CM/=2 applied on Œa; b� is
the same as T applied on Œa; .aC b/=2� and on Œ.aC b/=2; b�; then added together.

13.7. (a) Show that if the quadrature rule

bZ
a

f .x/ dx Š Af .a/C Bf .b/

is exact for f .x/ D 1 and f .x/ D x; then it’s the Trapezoid Rule: A D B D
.b � a/=2:

(b) Show that if the quadrature rule

bZ
a

f .x/ dx Š Af .
aC b

2
/

is exact for f .x/ D 1 and f .x/ D x; then it’s the Midpoint Rule: A D .b�a/:
13.8. [38] Let x; y > 0 and let f .t/ D xty.1�t/ D yet ln.x=y/:

(a) Verify that f 00.t/ � 0; so that f is convex.
(b) Apply the HH Inequalities (Lemma 13.4) on Œ0; 1� to give another proof of

Lemma 6.20: G � L � A:

13.9. [2, 5, 42] Let 0 < x < y: Apply the left-hand side of the HH Inequalities
(Lemma 13.4) to f .t/ D 1=t on Œx; y� and the right-hand side of the HH Inequalities
to the function f .t/ D 1=t on Œ

p
x;

p
y� to give another proof of Lemma 6.20:

G � L � A:

13.10. [39] Denote by G; L; and A respectively, the Geometric, Logarithmic, and
Arithmetic Means of x; y > 0. Show, as follows, that if e3=2 � x < y then

A
L

< G
A

;

and that these inequalities are reversed for 0 < x < y � e3=2.

(a) Let f .x/ D ln.x/=x for x > 0. Verify that f is convex on .e3=2;1/; and
concave on .0; e3=2/:

(b) Apply the HH Inequalities (Lemma 13.4) for each case in (a).

13.11. The estimate 1=2 � ” (Euler’s constant) from Example 13.10 was obtained
by applying the right-hand side of the HH Inequalities (Lemma 13.4) to the convex
function 1=x on Œa; b�:
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(a) Do this on each of
�
a; aCb

2

�
and

�
aCb
2
; b
�

to show that ” � 5=4�ln.2/ Š 0:556:

(b) For only the most intrepid reader: Do this on each of the intervals Œa; .aCb/=4�,
Œ.aC b/=4; .a C b/=2�, Œ.a C b/=2; 3.a C b/=4�, and Œ3.a C b/=4; b� to show
that ” � 47=24 � 2 ln.2/ Š 0:572:

13.12. [27] For 0 < a < b; the Identric Mean of a and b is

I.a; b/ D 1

e

�
bb

aa

� 1
b�a

:

(a) Show that I.a; b/ is indeed a mean.
(b) How should we define I.a; a/‹
(c) Show that

 p
aC p

b

2

!2
< I.a; b/ < b

p
ba

p
a:

Hint: Apply the HH Inequalities (Lemma 13.4) to f .t/ D t ln.t/ on
�p
a;

p
b
�
:

13.13. [19] Let f be concave and differentiable on Œa; b�. Find the point c 2 .a; b/
such that the total area of the two inscribed trapezoids on Œa; c� and Œc; b� gives the

best approximation to
Z b

a

f .x/ dx.

13.14. [44]

(a) Let f be differentiable on Œa; b�. Use Integration by Parts to show that

bZ
a

�
x � aCb

2

�
f 0.x/ dx D f .a/Cf .b/

2
.b � a/ �

bZ
a

f .x/ dx:

(b) Show that if g is continuous and increasing on Œa; b�; then

Z b

a

�
x � aCb

2

�
g.x/ dx � 0 :

(c) Put these together to obtain the right-hand side of the HH Inequalities
(Lemma 13.4).

13.15 ([18, 40]). Let f be a function with f 00 > 0 on Œa; b�: Show the best

approximation to
Z b

a

f .t/ dt by an inscribed trapezoid (the top of the trapezoid

is tangent to y D f .t/ at t D x) occurs precisely when x D aCb
2
: In this sense

the left-hand side of the HH Inequalities (Lemma 13.4) is as good as it can be. See
Fig. 13.7.
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Fig. 13.7 For
Exercise 13.15: For f
convex, an inscribed
trapezoid best approximatesZ b

a

f .x/ dx when it is

tangent to y D f .x/ at
x D .aC b/=2

y

x ta b

y = f(t)

13.16. [15, 16] Let f be defined on Œa; b� with f 00 � 0, so that f is convex.

(a) Fix t 2 Œa; b� and integrate (with respect to x) the result of Lemma 8.7, i.e.,

f .x/ � f 0.t/
�
x � t�C f .t/;

to obtain

bZ
a

f .x/ dx � f 0.t/
�
b � a�� aCb

2
� t�C f .t/

�
b � a�:

(b) What happens if t D .aC b/=2?
(c) Show that for any t 2 Œa; b�; the inequality in (a) is a refinement of the left-hand

side of the HH Inequalities.

13.17. [15, 16] Let f be defined on Œa; b� with f 00 � 0, so that f is convex.

(a) For t 2 Œa; b�, integrate (with respect to t ) the result of Lemma 8.7, i.e.,

f .x/ � f 0.t/.x � t /C f .t/;

to obtain

bZ
a

f .t/ dt � .b � a/
2

f .x/ C bf .b/ � af .a/ � x�f .b/ � f .a/�
2

:

(b) What happens if x D a or x D b?
(c) Show that for any x 2 Œa; b�; the inequality in (a) is a refinement of the right-

hand side of the HH Inequalities.
Hint: Observe that

x D b � x
b � aaC x � a

b � a b ;
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so that

f .x/ � b � x
b � af .a/ C x � a

b � a f .b/;

by convexity. Now write

1
b�a

	
.b�a/
2
f .x/C bf .b/�af .a/�x.f .b/�f .a//

2



D f .x/

2
C 1
2

�
b�x
b�a f .b/C x�a

b�a f .a/
�
:

13.18. [35] Let f and g be continuous on Œ0; 1�, with f decreasing and 0 � g � 1:

From Exercises 9.52 and/or 10.48 and/or 11.17 (also Exercise 11.36), Steffensen’s
Inequalities are:

1Z
1��

f .x/ dx �
1Z
0

f .x/g.x/ dx �
�Z
0

f .x/ dx; where � D
Z 1

0

g.x/ dx:

Apply Steffensen’s Inequalities to f 0 and g.t/ D
8<
:
t C 1=2 if t 2 Œ0; 1=2�

t � 1=2 if t 2 .1=2; 1�
then

to f 0 and g.t/ D t (in each case � D
Z 1

0

g.x/ dx D 1=2), to obtain the HH

Inequalities (Lemma 13.4). Can you do this on Œa; b� ?

13.19. (a) Show that (13.2) implies

�
1C 1

n

�nC n
2nC1

< e <

�
1C 1

n

�nC1=2
for n 2 N:

(b) Which is better, the left-hand side here or the left-hand side of (6.10), for n 2 N?

13.20. [32] Use (13.2) to show that
˚ �
1C 1

n

�nC1 �
is a decreasing sequence.

13.21. Recall that for n D 1; 2; 3 : : : ;

”n D
nX

kD1

1

k
� ln.n/:

Use (13.2) to show that f”n � 1
2n

g is an increasing sequence. (Another approach to
this can be found in [1].)

13.22. (a) Show that if f 00 � 0 on Œa; b�; then

f .a/
�
b�a� C f 0.a/

.b � a/2
2

�
bZ
a

f .x/ dx � f .b/
�
b�a� C f 0.b/

.b � a/2
2

:



348 13 Simple Quadrature Rules

(b) Draw a picture which shows what these estimates are saying geometrically.
(c) How do these estimates compare with the HH Inequalities (Lemma 13.4)?

13.23. [23] If f is increasing on Œ0; 1�; then clearly

1Z
0

f .x/ dx � 1

n

nX
kD1

f
�
k
n

� � 0 :

Use the right-hand side of the HH Inequalities (Lemma 13.4) to sharpen this: If f
is continuous and convex on Œ0; 1�; then

1Z
0

f .x/ dx � 1

n

nX
kD1

f
�
k
n

� � 1

2n

�
f .0/ � f .1/�:

13.24. [4, 34]

(a) Verify that for x > 0;

xZ
1

1 � t
t

dt D ln.x/ � x C 1:

(b) Use this to conclude that ln.x/ � x � 1; with equality only for x D 1:

(c) Show that the integrand is convex.
(d) Apply the HH Inequalities (Lemma 13.4) to obtain the better estimates

.x � 1/2
x C 1

C ln.x/ � x � 1 � .x � 1/2
2x

C ln.x/ for 0 < x � 1;

and

.x � 1/2
2x

C ln.x/ � x � 1 � .x � 1/2
x C 1

C ln.x/ for x > 1:

13.25. [45] Let f be continuous and differentiable on Œa; b�.

(a) Apply Rolle’s Theorem (Theorem 5.1) to

h.t/ D f .t/Cf .a/
2

.t � a/ �
tZ

a

f .x/ dx

to show that if the Trapezoid Rule is exact—that is, if
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f .a/Cf .b/
2

.b � a/ D
bZ
a

f .x/ dx;

then the conclusion of Flett’s Mean Value Theorem (Theorem 7.4) holds.
(b) Draw a picture which shows what this is saying geometrically.

13.26. [9] Let f be such that f 00 is continuous on Œa; b� and let M D
max
x2Œa;b�ff

00.x/g: Fill in the details of the following proof of Ostrowski’s Inequality:

ˇ̌
ˇf .x/ � 1

b � a

bZ
a

f .t/ dt
ˇ̌
ˇ � M.b � a/

 
1
4

C
�
x� aCb

2

b�a

�2!
:

(a) Use Integration by Parts to show that

xZ
a

�
t � a�f 0.t/ dt D �

x � a�f .x/ �
xZ
a

f .t/ dt

and

bZ
x

�
t � b�f 0.t/ dt D �

b � x�f .x/ �
bZ
x

f .t/ dt:

(b) Add these to get

�
b � a�f .x/ D

bZ
a

f .t/ dt C
bZ
a

gx.t/f
0.t/ dt;

where

gx.t/ D
8<
:
t � a if t 2 Œa; x�

t � b if t 2 .x; b�:

(c) Show that

ˇ̌̌ bZ
a

gx.t/f
0.t/ dt

ˇ̌̌
� M

	
.x�a/2C.b�x/2

2



D M.b � a/

 
1
4

C
�
x� aCb

2

b�a

�2!
:
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13.27. [30] Let f and f 0 be continuous on Œa; b�, with jf 0j < M there. Show that

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a� � M

�
b � a
2

�2
:

Hint: Write
Z b

a

f .x/ dx D
Z .aCb/=2

a

f .x/ dx C
Z b

.aCb/=2
f .x/ dx:

13.28. We saw in Example 8.25 that for any x 2 R,

lim
n!C1

xn

nŠ
D 0 :

Show this using Stirling’s formula (Theorem 13.11).

13.29. [24] In our proof of Stirling’s formula (Theorem 13.11), we saw that

nŠ >
	n

e


n p
2 n :

Use this to show that

n�1Y
kD0

kŠ >
	n

e


n
:

13.30. [25] Stirling’s formula (Theorem 13.11) is often written compactly as

nŠ � p
2 n

	n
e


n
:

Use this to show that in fact

nŠ � p
2 

�
nC 1=2

e

�nC1=2
:

For n very large the error in this latter estimate is about half that of the former. It is
really the latter estimate that Stirling obtained; the former was obtained by French
mathematician Abraham DeMoivre (1667–1754) [31, 43].

13.31. (a) Show that the fact that lim
n!1

nŠen

nn
p
n

exists, by Theorem 13.11, implies

that

lim
n!1

n
p
nŠ

n
D 1

e
:

We met this latter limit, in Exercises 6.12 and 10.47.
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(b) If An is the Arithmetic Mean of the first n natural numbers, and Gn is their
Geometric Mean, show that the result in (a) is the same as

lim
n!1

Gn

An
D 2

e
:

13.32. [37] Apply the Trapezoid Rule and the HH Inequalities (Lemma 13.4) toZ kC1

k

ln.x/ dx then sum from k D 1 to n � 1, to show that

nŠ � nn
p
n e

en
for n D 1; 2; 3; : : : :

13.33. [37] Show, as follows, that

nn
p
n

p
e

en
� nŠ for n D 1; 2; 3; : : : :

(a) Verify that
Z kC1

k

ln.x/ dx is bounded by the area of the trapezoid whose base

is the interval Œk; k C 1�; and top is part of the tangent line to f .x/ D ln.x/ at
x D k.

(b) Use the bound obtained in (a), sum from k D 1 to n � 1, then manipulate.

13.34. [33] Here’s another way to show that the limit L > 0 in Stirling’s formula
(Theorem 13.11) exists. We showed in the proof that fang given by

an D nn
p
n

nŠ en

is an increasing sequence. So if we can show that fang is bounded above then we
are finished, by the Increasing Bounded Sequence Property (Theorem 1.34).

(a) Use (13.2) to show that

�
1C 1

k

�k.1C 1
2kC1 /

< e <

�
1C 1

k

�kC1=2
:

(b) Use the left-hand inequality from (a) to show that

.nC 1/n

nŠ

nY
kD1

�
k C 1

k

�k=.2kC1/
< en:

(c) Use both inequalities from (a) to show that fang is bounded above.
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13.35. cf. [37] Here’s another way to show that the limitL > 0 in Stirling’s formula
(Theorem 13.11) exists. We showed in the proof that fqng D f1=ang given by

qn D nŠ en

nn
p
n

is a decreasing sequence. So if we can show that fqng is bounded below by a positive
constant then we are finished.

(a) Show that the Midpoint Rule and the HH Inequalities (Lemma 13.4) give

kC1Z
k

ln.x/ dx � ln

�
2k C 1

2

�
:

(b) Show that

ln

�
2k C 1

2

�
D ln.k/Cln

�
2k C 1

2k

�
D ln.k/Cln

�
1C 1

2k

�
� ln.k/C 1

2k
:

(c) Conclude that

kC1Z
k

ln.x/ dx � ln.k/C 1

2k
:

(d) Sum from k D 1 to n � 1; to get

nZ
1

ln.x/ dx �
n�1X
kD1

ln.k/C 1

2

�
ln.n/C 1

�
:

(e) Evaluate the integral and do some rearranging to get

1

2
� ln.nŠ/C n � �

nC 1

2

�
ln.n/:

(f) Conclude that fqng is indeed bounded below, by
p

e.

13.36. (a) Apply the Midpoint Rule and the HH Inequalities (Lemma 13.4) to ln.x/
on Œk; k C 1� (for k > 0) then sum from k D 1 to n to show that

�
nC 1

�nC1
�
4

e

�n
� .2nC 1/Š

nŠ
:
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Note: The number

Cn D 1

nC 1

 
2n

n

!
D 1

nC 1

.2n/.2n � 1/ � � � .nC 1/

nŠ

is called the nth Catalan number, named for Belgian/French mathematician
Eugène Catalan (1814–1894). This number comes up often in combinatorics.
(Cn is, for example, the number of ways one can triangulate an n C 2 sided
convex polygon i.e., cut the polygon into triangles by connecting its vertices with
straight lines. See [13].) So the result shows that

Cn �
�
nC 1

�n
.2nC 1/nŠ

�
4

e

�n
:

(b) Can you get a better estimate using Stirling’s formula (Theorem 13.11) ?

13.37. [28] Here’s another way to show that L D p
2  in Stirling’s formula

(Theorem 13.11), using Wallis’s product (Lemma 12.1)

 

2
D lim

m!C1
2

1

2

3

4

3

4

5

6

5

6

7
� � � 2m

2m � 1
2m

2mC 1
:

(a) Show that Wallis’s product may be rewritten as

 

2
D lim

m!C1
22

32
42

52
62

72
� � � .2m � 2/2
.2m � 1/2 2m:

(b) Conclude that

p
2  D lim

m!C1
2

3

4

5

6

7
� � � .2m � 2/
.2m � 1/2

p
2
p
m:

(c) Show that

lim
m!C1

2

3

4

5

6

7
� � � .2m � 2/
.2m � 1/2

p
2
p
m D lim

m!C1
22m.mŠ/2

.2m/Š

p
2p
m
:

(d) Show that

L D lim
n!C1

nŠen

nnC1=2
D lim

m!C1
.2m/Še2m

.2m/2mC1=2

D lim
m!C1

�
.2m/Š

p
m

22m.mŠ/2
p
2

��
mŠem

mmC1=2

�2
:

(e) Conclude that L D 1p
2 
L2; and so L D p

2 :
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13.38. [47] Fill in the details, as follows, of another proof of Lemma 13.13, for f
convex. (If f is concave then �f is convex.)

(a) Set g.x/ D f .x/C f .aC b � x/: Verify that g is convex, and symmetric with
respect to .aC b/=2:

(b) Verify that for g nonnegative,

bZ
a

g.x/ dx � b � a
2

�
g.a/C g.aCb

2
/
�
:

(c) Write down what (b) means, in terms of f .
(d) What if g is sometimes negative?

13.39. (a) Sketch the graph of a function on Œa; b� for which the Trapezoid Rule
is better than the Midpoint Rule. (b) Sketch the graph of a function, which is
neither convex nor concave on Œa; b�; for which the Midpoint Rule is better than
the Trapezoid Rule.

13.40. Show that
�
1C 1

x

�xC1=2 � e � e � �
1C 1

x

�px.xC1/
for x > 0.
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Chapter 14
Error Terms

From error to error one discovers the entire truth.

—Sigmund Freud

Any inequalityA � B can be restated, at least in principle, as an equalityA D B�E
where E � 0 is an error term. Of course, if A � B is complicated, then the error
term probably cannot be known exactly. But quite often in calculus, something can
be said about the error term. When this is the case, interesting and useful things
usually follow.

14.1 The Mean Value Theorem Again

Let f be a differentiable function defined on an open interval J and let x0 2 J be
fixed. By the Mean Value Theorem (Theorem 5.2), for x 2 J (with x ¤ x0) there
exists c between x and x0 such that

f .x/ � f .x0/ D f 0.c/
�
x � x0

�
:

Or stated another way,

f .x/ � f .x0/ D f 0.c/
�
I.x/ � I.x0/

�
;

where I is the identity function I.x/ D x:

So the error E D f .x/ � f .x0/ that results from the approximation

f .x/ Š f .x0/

is given by the error term f 0.c/ŒI.x/ � I.x0/�.
Equivalently, the error in f .x/ Š f .x0/ is given by that error which results from

the approximation I.x/ Š I.x0/, but scaled by a factor of f 0.c/:
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If f is a constant function then the error E D 0, but if f is the identity function
I.x/ D x then E ¤ 0. This is why the error term involves the first derivative of f:

These simple observations show themselves in many results which follow from
the Mean Value Theorem (Theorem 5.2). Here is one such example, which provides
an error term for the Right Rectangle Rule.

Lemma 14.1. Let f be defined on Œa; b� with f 0 continuous. Then there is
c 2 Œa; b� such that

bZ
a

f .x/ dx � f .b/
�
b � a� D �f 0.c/

.b � a/2
2

:

Proof. Let x 2 Œa; b/: By the Mean Value Theorem (Theorem 5.2), there is
� 2 .a; b/ such that

f .b/ � f .x/ D f 0.�/
�
b � x�:

Integrating from a to b we get

f .b/
�
b � a� �

bZ
a

f .x/ dx D
bZ
a

f 0.�/
�
b � x� dx:

Now .b�x/ � 0 for x 2 Œa; b� and f 0 is continuous, so by the Mean Value Theorem
for Integrals (Theorem 9.14) there is c 2 .a; b/ such that

f .b/
�
b � a� �

bZ
a

f .x/ dx D f 0.c/
bZ
a

�
b � x� dx D f 0.c/

.b � a/2
2

;

as desired. ut
The reader may verify that for I being the identity function I.x/ D x,

bZ
a

I.x/ dx � I.b/�b � a� D
bZ
a

x dx � b�b � a� D � .b � a/2
2

;

so that the conclusion of Lemma 14.1 can be written as

bZ
a

f .x/ dx � f .b/�b � a� D f 0.c/

2
4

bZ
a

I.x/ dx � I.b/�b � a�
3
5 :
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That is, the error that results from the approximation

bZ
a

f .x/ dx Š f .b/
�
b � a�;

is precisely the error that results from the approximation
Z b

a

I.x/ dx Š I.b/
�
b�a�;

but scaled by a factor of f 0.c/:

Also, the errorE D
Z b

a

f .x/ dx�f .b/�b�a� is zero if f is a constant function,

but if f is the identity function I.x/ D x then E ¤ 0. This is why the error term

f 0.c/
"Z b

a

I.x/ dx � I.b/�b � a�
#

involves the first derivative of f:

We leave it for Exercise 14.1 so show that for the Left Rectangle Rule we get a
similar error term (but with a different c):

f .a/
�
b � a� �

bZ
a

f .x/ dx D �f 0.c/
.b � a/2

2

D f 0.c/

2
4I.a/�b � a� �

bZ
a

I.x/ dx

3
5 :

So putting Lemma 14.1 and Exercise 14.1 together, we obtain the following.

Theorem 14.2. (Error Terms for the Rectangle Rules) Let f be defined on Œa; b�;
with f 0 continuous. Then there exists c1; c2 2 Œa; b� such that

f .a/
�
b�a�Cf 0.c1/

.b � a/2
2

D
bZ
a

f .x/ dx D f .b/
�
b�a��f 0.c2/

.b � a/2
2

:

Finally, recall that if f 0 � 0 then the Mean Value Theorem (Theorem 5.2)
implies that f .x/ � f .x0/ for x > x0. This is Lemma 5.6. Here, if f 0 � 0 then
Theorem 14.2 gives the conclusion of Lemma 13.1:

f .a/
�
b � a� �

bZ
a

f .t/ dt � f .b/
�
b � a�:
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14.2 Jensen’s Inequality Again

Let f be twice differentiable on an open interval J and let x0 2 J be fixed. By
the Mean Value Theorem for the Second Derivative (Theorem 8.6), for each x 2 J
(with x ¤ x0) there exists c between x and x0 such that

f .x/ � f .x0/ � f 0.x0/.x � x0/ D f 00.c/
2

.x � x0/2:

With I2.x/ D x2, this reads (as the reader may verify):

f .x/ � f .x0/ � f 0.x0/
�
x � x0

� D f 00.c/
2Š

�
I2.x/ � I2.x0/ � I 0

2.x0/
�
x � x0

��
:

This says that the error E D f .x/� �f .x0/C f 0.x0/.x � x0/
�

that results from
the approximation

f .x/ Š f .x0/C f 0�x0/.x � x0
�

is the error that results from the approximation I2.x/ Š I2.x0/C I 0
2.x0/

�
x � x0

�
;

but scaled by a factor of f 00.c/=2:
If f is a constant function then the error E D 0, and E D 0 if f is the identity

function I.x/ D x: ButE ¤ 0 if f is the function I2.x/ D x2: This is why the error
term .f 00.c/=2Š/ŒI2.x/ � I2.x0/ � I 0

2.x0/.x � x0/� involves the second derivative.
These observations show themselves in many results which follow from the

Mean Value Theorem for the Second Derivative (Theorem 8.6). Here is an example
which provides an error term for Jensen’s Inequality (Theorem 8.17). Our proof
follows [17]; see also [7, 31].

Theorem 14.3. (Error Term for Jensen’s Inequality) Let f be defined on Œa; b�,
with f 00 continuous. For n � 2; let x1; x2; : : : ; xn 2 Œa; b� and let w1;w2; : : : ;wn be

positive, with
nP

jD1
wj D 1: Then there exists c 2 Œa; b� such that

f

0
@ nX
jD1

wj xj

1
A �

nX
jD1

wj f .xj / D �f
00.c/
2

nX
jD1

wj .xj � A/2:

Proof. With A D
nP

jD1
wj xj ; by the Mean Value Theorem for the Second Derivative

(Theorem 8.6) there is cj between xj and A such that

f .xj / D f .A/C f 0.A/.xj � A/C 1

2
f 00.cj /.xj � A/2:
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Multiplying by wj and summing from 1 to n we get

nX
jD1

wj f .xj / D
nX

jD1

wj f .A/ C
nX

jD1

wj f
0.A/.xj � A/ C 1

2

nX
jD1

wj f
00.cj /.xj � A/2

D f .A/

nX
jD1

wj C f 0.A/.A � A/ C 1

2

nX
jD1

wj f
00.cj /.xj � A/2

D f .A/ C 0 C 1

2

nX
jD1

wj f
00.cj /.xj � A/2:

Now since f 00 is continuous and wj .xj � A/2 � 0 for each j , by the Mean Value
Theorem for Sums (Theorem 3.22) there is c 2 .a; b/ such that

1

2

nX
jD1

wj f
00.cj /.xj � A/2 D f 00.c/

2

nX
jD1

wj .xj � A/2;

as desired. ut
Observe that

nX
jD1

wj .xj � A/2 D
nX

jD1
wj x

2
j �

nX
jD1

2wj xjAC
nX

jD1
wjA

2

D
nX

jD1
wj x

2
j � 2A2 C A2

D
nX

jD1
wj x

2
j �

0
@ nX
jD1

wj xj

1
A
2

D
nX

jD1
wj I2.xj / � I2

0
@ nX
jD1

wj xj

1
A ;

where I2.x/ D x2: So the conclusion of Theorem 14.3 can be written as

f

0
@ nX
jD1

wj xj

1
A �

nX
jD1

wj f .xj / D f 00.c/
2

2
4I2

0
@ nX
jD1

wj xj

1
A �

nX
jD1

wj I2.xj /

3
5 :
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That is, the error that results from the approximation

f

0
@ nX
jD1

wj xj

1
A Š

nX
jD1

wj f .xj /

is precisely the error that results from the approximation

I2

0
@ nX
jD1

wj xj

1
A Š

nX
jD1

wj I2.xj /;

but scaled by a factor of f 00.c/=2:

If f is a constant function then the error E D f

 
nP

jD1
wj xj

!
�

nP
jD1

wj f .xj / D
0; and E D 0 if f is the identity function I.x/ D x: But E ¤ 0 if f is the function
I2.x/ D x2: This is why the error term involves the second derivative of f:

These observations should not be surprising, in hindsight, because we used the
Mean Value Theorem for the Second Derivative (Theorem 8.6) to obtain the error
term. In the next sections we shall rely on this pattern to guess what error terms
might look like in other contexts.

Finally, if we assume also that f is convex, i.e., f 00 � 0, then Theorem 14.3
yields the conclusion of Jensen’s Inequality (Theorem 8.17) :

f

0
@ nX
jD1

wj xj

1
A �

nX
jD1

wj f
�
xj
�
:

Remark 14.4. In Exercises 14.4 and 14.5 we look at other ways of obtaining the
Error Term for Jensen’s Inequality (Theorem 14.3). In Exercise 14.8 we see that
Jensen’s Integral Inequality (Theorem 9.29) has an error term completely analogous
to that of Theorem 14.3. ı
Example 14.5. [24] We saw in Example 8.18 that letting f .x/ D � ln.x/ in
Jensen’s Inequality (Theorem 8.17) then applying the exponential function to both
sides, yields the weighted AGM Inequality (Theorem 6.15):

G D
0
@ nY
jD1

x
wj
j

1
A �

nX
jD1

wj xj D A :

Here, the Error Term for Jensen’s Inequality (Theorem 14.3) gives

G D Ae
�

1
2 f

00.c/
nP

jD1
wj .xj�A/2

D Ae
�

1
2c2

nP
jD1

wj .xj�A/2

:
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This gives a lower bound for, and a refinement of, the weighted AGM Inequality
(Theorem 6.15) G � A as follows. If 0 < x1 � x2 � � � � � xn then c 2 .x1; xn/

and so

A e
�

1

2x21

nP
jD1

wj .xj�A/2

� G � Ae
�

1

2x2n

nP
jD1

wj .xj�A/2

� A: ˘

Let us now take n D 2 in the Error Term for Jensen’s Inequality (Theorem 14.3),
with w1 D 1 � t and w2 D t (for t 2 Œ0; 1�). After some manipulations, which we
leave for Exercise 14.6, we get the following error term for the convexity condition.

Corollary 14.6. Let f be defined on Œa; b�;with f 00 continuous. Let a � x < y � b

and 0 � t � 1: Then there exists c 2 Œa; b� such that

f
�
.1 � t /x C ty

� � �
.1 � t /f .x/C tf .y/

� D f 00.c/
2

t.t � 1/.x � y/2:

Proof. This is Exercise 14.6. ut
Notice that in Corollary 14.6, since 0 � t � 1; we have t .t � 1/ � 0: So for

f 00 � 0 we get the convexity condition

f
�
.1 � t /x C t

� � .1 � t /f .x/C tf .y/;

exactly as we should.
We have seen that the Mean Value Theorem (Theorem 5.2) is Taylor’s Theorem

(Theorem 8.20) with n D 0, and the Mean Value Theorem for the Second Derivative
(Theorem 8.6) is Taylor’s Theorem with n D 1: Error terms continue the pattern we
have seen thus far, for larger n.

For example, for the n D 2 case, writing I3.x/ D x3,

E D f .3/.c/

3Š
.x � x0/3

D f .3/.c/

3Š

�
I3.x/ � I3.x0/ � I 0

3.x0/.x � x0/ � I 00
3 .x0/

2Š
.x � x0/2

�
:

This is the error that arises from the approximation

I3.x/ Š I3.x0/C I 0
3.x0/.x � x0/C I 00

3 .x0/

2Š
.x � x0/2;

scaled by a factor of f .3/.c/=3Š: And for the n D 3 case, writing I4.x/ D x4,

E D f .4/.c/

4Š
.x � x0/4

D f .4/.c/

4Š

�
I4.x/ � I4.x0/ � I 0

4.x0/.x � x0/ � I 00
4 .x0/

2Š
.x � x0/2 � I

.3/
4 .x0/

3Š
.x � x0/3

�
;
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This is the error that arises from the approximation

I4.x/ Š I4.x0/C I 0
4.x0/.x � x0/C I 00

4 .x0/

2Š
.x � x0/2 C I

.3/
4 .x0/

3Š
.x � x0/3;

scaled by a factor of f .4/.c/=4Š, etcetera. Verifying these facts is the content of
Exercise 14.2. These general observations are manifest in many results which follow
from Taylor’s Theorem (Theorem 8.20).

14.3 The Trapezoid Rule Again

For f defined on Œa; b�, the Trapezoid Rule is the approximation

bZ
a

f .x/ dx Š f .a/C f .b/

2

�
b � a� :

Here, we get equality if f is a constant function or if f .x/ D I.x/ D x; but not if
f .x/ D I2.x/ D x2: So we might expect that an error term for this inequality should
involve f 00.c/=2. And we might also expect that in such an error term, the multiplier

of f 00.c/=2 would be
Z b

a

f .x/ dx � f .a/Cf .b/
2

.b � a/; but with f .x/ D I2.x/:

Theorem 14.7. (Trapezoid Rule Error) Let f be defined on Œa; b� with f 00
continuous. Then there is c 2 Œa; b� such that

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a� D �f 00.c/ .b � a/3

12

D f 00.c/
2

2
4

bZ
a

I2.x/ dx � I2.a/C I2.b/

2
Œb � a�

3
5 :

Proof. We begin with Corollary 14.6: For some � 2 Œa; b�,

f
�
.1 � t /aC tb

� � �
.1 � t /f .a/C tf .b/

� D f 00.�/
2

t.t � 1/.b � a/2:

Integrating from t D 0 to t D 1 we get

1Z
0

f
�
.1 � t /aC tb

�
dt �

1Z
0

�
.1 � t /f .a/C tf .b/

�
dt D

1Z
0

f 00.�/
2

t.t � 1/.b � a/2 dt

D .b � a/2
2

1Z
0

f 00.�/t.t � 1/ dt:
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For the first integral on the left-hand side above, we make the change of variables
x D .1 � t /a C tb so that dx D .b � a/ dt , and the second integral is easily
evaluated:

1

b � a

bZ
a

f .x/ dx � f .a/C f .b/

2
D .b � a/2

2

1Z
0

f 00.�/t.t � 1/ dt:

Now t .t � 1/ � 0 on Œ0; 1� and so by the Mean Value Theorem for Integrals
(Theorem 9.14) there is c 2 Œa; b� such that

1

b � a

bZ
a

f .x/ dx � f .a/C f .b/

2
D .b � a/2

2
f 00.c/

1Z
0

t.t � 1/ dt

D � .b � a/2
12

f 00.c/;

which yields the first equality. For the second equality, the reader may verify that

bZ
a

I2.x/ dx � I2.a/C I2.b/

2

�
b � a� D

bZ
a

x2 dx � a2 C b2

2

�
b � a� D � .b � a/3

6
:

ut
For f 00 � 0, so that f is convex, the Trapezoid Rule Error (Theorem 14.7) implies
the right-hand side of the HH Inequalities (Lemma 13.4) :

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a�:

Remark 14.8. In Exercises 14.11–14.15, 14.19, and 14.27, we look at other ways
of obtaining the Trapezoid Rule Error (Theorem 14.7). ı
Example 14.9. Applying the Trapezoid Rule to the convex function f .t/ D 1=t

on Œx; x C 1�; the right-hand side of the HH Inequalities (Lemma 13.4) yields (see
Example 13.8):

ln

�
x C 1

x

�
� 1

2

�
1

x C 1
C 1

x

�
D 2x C 1

2x.x C 1/
for x > 0 :

This is equivalent to

�
1C 1

x

�xC x
2xC1

< e for x > 0: (14.1)
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Now the Trapezoid Rule Error (Theorem 14.7) gives, for some c 2 Œx; x C 1�;

ln

�
1C 1

x

�
D 2x C 1

2x.x C 1/
� 2

c3
1

12
D 2x C 1

2x.x C 1/
� 1

6c3
:

Therefore

ln

�
1C 1

x

�
� 2x C 1

2x.x C 1/
� 1

6.x C 1/3
:

This is equivalent to

�
1C 1

x

�xC 3x3C7x2C3x

6x3C15x2C11xC3

< e for x > 0; (14.2)

which improves (14.1). ˘

Example 14.10. We saw in Sect. 6.7, that with ”n D
nP

kD1
1
k

� ln.n/,

lim
n!1 ”n D ” D Euler’s constant Š 0:577216 :

As is suggested in [13], here we use the Trapezoid Rule Error (Theorem 14.7) to
obtain bounds for approximating ” with ”n: Specifically, we show that

1

2n
� 1

12.n � 1/2 < ”n � ” <
1

2n
for n D 2; 3; 4; : : : :

Applying the Trapezoid Rule Error to f .x/ D 1=x on Œk � 1; k� (k > 1) we get, for
some ck 2 Œk � 1; k�;

kZ
k�1

1

x
dx � 1

2

�
1

k
C 1

k � 1
�

D � 1

6c3k
:

Summing from k D 2 to n; we get

nZ
1

1

x
dx � 1

2

nX
kD2

�
1

k
C 1

k � 1
�

D ln.n/ �
nX

kD1

1

k
C 1

2

�
1C 1

n

�
D �

nX
kD2

1

6c3k
:

That is,

”n D 1

2

�
1C 1

n

�
C

nX
kD2

1

6c3k
:
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Therefore (since we already know that ” exists),

” D 1

2
C

1X
kD2

1

6c3k
;

and

”n � ” D 1

2n
�

1X
kDnC1

1

6c3k
<

1

2n
:

On the other hand, since k � 1 � ck we also have

1X
kDnC1

1

6c3k
�

1X
kDnC1

1

6.k � 1/3 D 1

6

1X
kDn

1

k3
<

1

6

1Z
n�1

1

x3
dx D 1

12.n � 1/2 :

Therefore

”n � ” > 1

2n
� 1

12.n � 1/2 ;

as we set out to show. The reader can verify that 1
2n

� 1
12.n�1/2 � 1

2.nC1/ for n � 2,
and so we have the weaker but tidier estimates

1

2.nC 1/
< ”n � ” < 1

2n
:

Another interesting approach to estimating ”n � ” can be found in [33]. ˘

14.4 The Midpoint Rule Again

For f defined on Œa; b�, the Midpoint Rule is the approximation

bZ
a

f .x/ dx Š f .
aC b

2
/
�
b � a�:

Here again, we get equality if f is a constant function or if f .x/ D I.x/ D x;

but not if f .x/ D I2.x/ D x2: So we might expect that an error term for this
inequality should involve f 00.c/=2. We obtain an error term below, again by way of
the Mean Value Theorem for the Second Derivative (Theorem 8.6). And the error

term is, as expected, f 00.c/=2multiplied by f .aCb
2
/.b�a/�

Z b

a

f .x/ dx; but with

f .x/ D x2:
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Theorem 14.11. (Midpoint Rule Error) Let f be defined on Œa; b� with f 00
continuous. Then there is c 2 Œa; b� such that

f .aCb
2
/Œb � a� �

bZ
a

f .x/ dx D �f 00.c/
.b � a/3
24

D f 00.c/
2

2
4I2. aCb

2
/
�
b � a� �

bZ
a

I2.x/ dx

3
5 :

Proof. By the Mean Value Theorem for the Second Derivative (Theorem 8.6) we
have, for some � between x and .aC b/=2,

f .x/ D f .aCb
2
/C f 0. aCb

2
/
�
x � aCb

2

�C f 00.�/
2

�
x � aCb

2

�2
:

Integrating from a to b, we get

bZ
a

f .x/ dx D f . aCb
2 /

�
b � a� C f 0. aCb

2 /

bZ
a

�
x � aCb

2

�
dx C

bZ
a

f 00.�/
2

�
x � aCb

2

�2
dx

D f . aCb
2 /

�
b � a� C 0 C 1

2

bZ
a

f 00.�/
�
x � aCb

2

�2
dx:

Now .x � aCb
2
/2 � 0 on Œa; b� and so by the Mean Value Theorem for Integrals

(Theorem 9.14) there is c 2 Œa; b� such that

1

2

bZ
a

f 00.c/
�
x � aCb

2

�2
dx D f 00.c/

2

bZ
a

�
x � aCb

2

�2
dx D f 00.c/

.b � a/3
24

:

This gives the first equality. For the second equality, the reader may verify that

I2.
aCb
2
/
�
b � a� �

bZ
a

I2.x/ dx D �
aCb
2

�2 �
b � a� �

bZ
a

x2 dx D � .b � a/3
12

:

ut
For f 00 � 0, so that f is convex, the Midpoint Rule Error (Theorem 14.11) yields

the left-hand side of the HH Inequalities (Lemma 13.4) :

f .aCb
2
/
�
b � a� �

bZ
a

f .x/ dx:
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Remark 14.12. In Exercises 14.17–14.19 and 14.27, we look at other ways of
obtaining the Midpoint Rule Error (Theorem 14.11). ı
Example 14.13. Applying the Midpoint Rule to the convex function f .t/ D 1=t

on Œx; x C 1�; the left-hand side of the HH Inequalities (Lemma 13.4) yields (see
Example 13.8):

2

2x C 1
� ln

�
x C 1

x

�
for x > 0 :

This is equivalent to the rather good inequality

e <

�
1C 1

x

�xC1=2
for x > 0: (14.3)

Now the Midpoint Rule Error (Theorem 14.11) gives, for some c 2 Œx; x C 1�;

ln

�
x C 1

x

�
D 2

2x C 1
C 2

c3
1

24
D 2

2x C 1
C 1

12c3
:

Therefore

ln

�
x C 1

x

�
� 2

2x C 1
C 1

12.x C 1/3
D 24x3 C 72x2 C 74x C 25

12.2x C 1/.x C 1/3
:

This is equivalent to the following improvement of (14.3):

e <

�
1C 1

x

�xC 12x3C34x2C35xC12

24x3C72x2C74xC25

for x > 0: ˘

14.5 Simpson’s Rule

By Theorem 14.7, the error for the Trapezoid Rule is

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a� D � .b � a/3

12
f 00.c/;

and by Theorem 14.11, the error for the Midpoint Rule is

bZ
a

f .x/ dx � f .aCb
2
/
�
b � a� D .b � a/3

24
f 00.c/:
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These are of course different c 0s. But still, these error terms suggest that the
Midpoint Rule may often be better than the Trapezoid Rule, by approximately a
factor of two, at least if b � a is very small. (We saw in Lemma 13.13 that for f
either strictly convex or strictly concave, the Midpoint Rule is always better than the
Trapezoid Rule.)

Looking again at these error terms, observe also that

1

3

�
� 1

12

�
C 2

3

�
1

24

�
D 0:

This suggests that the weighted mean 1
3
.Trapedoid Rule/C 2

3
(Midpoint Rule/might

be a good approximation to
Z b

a

f .x/ dx. Indeed it is—this is Simpson’s Rule:

bZ
a

f .x/ dx Š 1

3

�
f .a/C f .b/

2

�
b � a�

�
C 2

3

�
f .
aC b

2
/
�
b � a�

�

D 1

6

�
f .a/C 4f .

aC b

2
/C f .b/

� �
b � a�:

Simpson’s Rule turns out to be a very good quadrature rule, considering its relative
simplicity. Its error term is given in the theorem below. We don’t prove it here—
instead we leave several proofs for the Exercises.

Theorem 14.14. (Simpson’s Rule Error) Let f be defined on Œa; b� with f .4/

continuous. Then there is c 2 Œa; b� such that

bZ
a

f .x/ dx � 1

6

�
f .a/C 4f .

aC b

2
/C f .b/

� �
b � a� D � .b � a/5

2;880
f .4/.c/:

Proof. See any of Exercises 14.19, 14.24, 14.25, 14.26, or 14.27. ut
Example 14.15. Applying Simpson’s Rule to f .t/ D 1=t on Œx; x C 1� we get

ln

�
x C 1

x

�
D

xC1Z
x

1

t
dt Š 12x2 C 12x C 1

6x.x C 1/.2x C 1/
:

Here, f .4/.t/ D 24=t5 > 0 and so the Simpson’s Rule Error (Theorem 14.14), tells
us that this is an overestimate. That is,

ln

�
x C 1

x

�
<

12x2 C 12x C 1

6x.x C 1/.2x C 1/
:
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This in turn gives the following improvement of (14.2):

�
1C 1

x

�xC 6x2C5x

12x2C12xC1

< e for x > 0 : ˘

Example 14.16. [26] Let x; y > 0: In Example 13.6 we applied the HH Inequali-
ties (Lemma 13.4) to the convex function f .t/ D et to get

e
ln.x/Cln.y/

2

�
ln.y/ � ln.x/

� �
ln.y/Z

ln.x/

et dt � eln.x/Celn.y/

2

�
ln.y/ � ln.x/

�
:

This gives the conclusion of Lemma 6.20:

G � L � A;

where G;L; and A are the Geometric, Logarithmic and Arithmetic Means, respec-
tively, of x and y. Here, f .4/.t/ D et > 0 and so Simpson’s Rule (Theorem 14.14)
gives overestimate for L. Therefore

L � 2

3
G C 1

3
A � A:

We obtained this inequality differently in Exercise 6.43. See also Exercise 14.28. ˘
The Midpoint Rule is obtained by interpolating f with the constant function

p0.x/ which passes through ..aC b/=2; f ..aC b/=2//; then integrating p0 instead
of f . (The reader may verify this fact.)

Likewise (as the reader may also verify), the Trapezoid Rule is obtained by
interpolating f with the linear function p1.x/ which passes through .a; f .a// and
.b; f .b//; then integrating p1 instead of f .

Exercise 14.22 shows that Simpson’s Rule is obtained by interpolating f with the
quadratic function p2.x/which passes through the points .a; f .a//; . aCb

2
; f . aCb

2
//;

and .b; f .b//; then integrating p2 instead of f .
As such, Simpson’s Rule must be exact when applied to a quadratic function.

That is,

E D
bZ
a

p2.x/ dx � 1

6

�
p2.a/C 4p2.

aC b

2
/C p2.b/

� �
b � a� D 0 :

But it is a fortunate fact that Simpson’s Rule applied to a cubic polynomial also
yields the exact answer. Here’s why, but see also [9, 12, 32]:

Suppose that p.x/ is a cubic that agrees with the quadratic p2.x/ at the points
x D a; x D .a C b/=2; and x D b: Then E.x/ D p.x/ � p2.x/ is a cubic with
zeros at these three points. Therefore, for some constant C ,

E.x/ D C � .x � a/.x � aCb
2
/.x � b/:
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So E.x/ is an odd function with respect to aCb
2
: That is,

E.aCb
2

C x/ D �E.aCb
2

� x/ for x 2 Œ0; b�a
2
�:

Therefore (as the change of variables t D x � .aC b/=2/ reveals),

bZ
a

E.x/ dx D 0 :

This is why, in Theorem 14.14, the error term for Simpson’s Rule involves f .4/

rather than the f .3/ that one might expect. And looking at the error term there,
wherein 2;880 D .120/4Š, the energetic reader may verify that (with I4.x/ D x4):

bZ
a

I4.x/ dx � 1

6

�
I4.a/C 4I4.

aCb
2
/C I4.b/

� �
b � a� D � .b � a/5

120
:

Interpolating f with polynomials of degree n generally yields better quadrature
rules as n gets larger. These are called Newton-Cotes Quadrature Rules. But the
price is that the quadrature rules then become more complicated. And, as with
Simpson’s Rule, interpolating f with a polynomial of degree n when is n even
always yields a quadrature rule which is exact for polynomials up to degree nC 1:

See Exercise 14.23. As such, the error term involves f .nC2/ (e.g., [14, 28, 32]).
Subdividing Œa; b� into smaller subintervals and applying a quadrature rule on

each of the subintervals also generally leads to better approximations, but again, at
the expense of simplicity. These are called composite rules. For a composite rule
which comes from a variation of Simpson’s Rule, see [27]. In [29] is an interesting
quadrature rule which uses quadratics, but is different from Simpson’s Rule.

14.6 Error Terms for Other Inequalities

The proof of many an inequality can be modified to obtain an equality which
includes an error term. We finish here by looking at one more example; we explore
some others in the exercises.

Young’s Integral Inequality (Theorem 11.15) says that if f is continuous on
Œ0; A� and strictly increasing with f .0/ D 0; then for any a 2 Œ0; A� and b 2
Œ0; f .A/�,

ab �
aZ
0

f .x/ dx C
bZ
0

f �1.x/ dx:
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This inequality is reversed for f strictly decreasing. And in either case, there is
equality if and only if b D f .a/: Young’s Integral Inequality has a geometric
interpretation, as shown in Fig. 14.1.

Fig. 14.1 For Young’s
Inequality (Theorem 11.15):
the difference between the
right-hand and left-hand sides
is the area of the shaded
region

y = f(x)

f(a)

b

a x

y

The following result provides an error term, which indicates the size of the area
of the shaded region in Fig. 14.1.

Theorem 14.17. (Error Term for Young’s Integral Inequality) Let f be continuous
on Œ0; A� with f .0/ D 0. Suppose also that f 0 is continuous and that f is
monotonic. Let a 2 Œ0; A� and let b be between 0 and f .A/: Then there is c between
f �1.b/ and a such that

ab �
0
@

aZ
0

f .x/ dx C
bZ
0

f �1.x/ dx

1
A D �f

0.c/
2

�
a � f �1.b/

�2
:

Proof. Exactly as in the proof of Young’s Integral Inequality (Theorem 11.15), we
obtain

aZ
0

f �1.x/ dx C
bZ
0

f �1.x/ dx � ab D
aZ

f �1.b/

�
f .x/ � b� dx:

We may assume that f .a/ ¤ b. Then we write

aZ
f �1.b/

�
f .x/ � b� dx D

aZ
f �1.b/

�
f .x/ � f .f �1.b//

�
dx:

By the Mean Value Theorem (Theorem 5.2) there is �x is between x and f �1.b/
such that

aZ
f �1.b/

�
f .x/ � b� dx D

aZ
f �1.b/

f 0.�x/
�
x � f �1.b/

�
dx:
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Now in either of the cases f �1.b/ < a or a < f �1.b/; the term Œx � f �1.b/� does
not change sign over Œf �1.b/; a�, and so by the Mean Value Theorem for Integrals
(Theorem 9.14) there is c between f �1.b/ and a such that

aZ
f �1.b/

�
f .x/ � b� dx D f 0.c/

aZ
f �1.b/

�
x � f �1.b/

�
dx D f 0.c/

2

�
a � f �1.b/

�2
;

which yields the desired result. ut
If f 0 is continuous and f is increasing (so that f 0 � 0), then the Error Term for

Young’s Integral Inequality (Theorem 14.17) implies Young’s Integral Inequality
(Theorem 11.15):

ab �
0
@

aZ
0

f .x/ dx C
bZ
0

f �1.x/ dx

1
A D �f

0.c/
2

�
a � f �1.b/

�2 � 0 :

Example 14.18. We saw in Sect. 11.3 that applying Young’s Integral Inequality to
f .x/ D x2 gives

ab � 1

2
a2 � 1

2
b2 � 0:

In this case, as the reader may verify, the error term provided by Theorem 14.17 is
precisely � 1

2
.b � a/2, so we get the identity (see Fig. 14.2)

ab � 1

2
a2 � 1

2
b2 D �1

2
.b � a/2:

This is equivalent to .aC b/2 � 4ab D .a � b/2; which is what we used to prove
Lemma 2.7—the simplest version of the AGM Inequality. ˘

Fig. 14.2 For
Example 14.18. The area of
the shaded region is
1
2
.b � a/2

y = x

a

ab

b

x

y
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Exercises

14.1. Theorem 14.2 (Error Terms for the Rectangle Rules) is: Let f be defined on
Œa; b�; with f 0 continuous. Then there exists c1; c2 2 Œa; b� such that

f .a/
�
b � a�C f 0.c1/

.b � a/2
2

D
bZ
a

f .x/ dx D f .b/
�
b � a� � f 0.c2/

.b � a/2
2

:

(a) We proved the right-hand side. Prove the left-hand side.
(b) Verify, for I.x/ D x, that

� .b � a/2
2

D
2
4I.a/�b � a� �

bZ
a

I.x/ dx

3
5 :

14.2. (a) Let I3.x/ D x3: Verify that the conclusion of Taylor’s Theorem
(Theorem 8.20) with n D 2 reads: There exists c between x and x0 such that

f .x/ � f .x0/ � f 0.x0/.x � x0/ � f 00.x0/
2

.x � x0/2

D f .3/.c/

3Š


I3.x/ � I3.x0/ � I 0

3.x0/.x � x0/ � I 00
3 .x0/

2
.x � x0/2

�
:

(b) Let I4.x/ D x4:Verify that the conclusion of Taylor’s Theorem (Theorem 8.20)
with n D 3 reads: There exists c between x and x0 such that

f .x/� f .x0/� f 0.x0/.x � x0/� f 00.x0/

2
.x � x0/

2 � f .3/.x0/

3Š
.x � x0/

3

D f .4/.c/

4Š

"
I4.x/� I4.x0/� I 0

4.x0/.x � x0/� I 00

4 .x0/

2Š
.x � x0/

2 � I
.3/
4 .x0/

3Š
.x � x0/

3

#
:

14.3. After the proof of the Error Term For Jensen’s Inequality (Theorem 14.3), we
saw that

0
@ nX
jD1

wj xj

1
A
2

�
nX

jD1
wj x

2
j � 0:

Use the Cauchy–Schwarz Inequality (Theorem 2.18) to show this directly.
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14.4. [7,31] Fill in the details of another way to obtain the Error Term for Jensen’s
Inequality (Theorem 14.3).

(a) First, explain how we may suppose that there exist m and M such that

0 � m � f 00.x/ � M:

(b) Set g.x/ D 1
2
Mx2 � f .x/: Verify that g is convex, and apply Jensen’s

Inequality (Theorem 8.17) to g to get

nX
jD1

wj f .xj / � f .
nX

jD1
wj xj / � �M

2

nX
jD1

wj .xj � A/2:

(c) Set h.x/ D f .x/� 1
2
mx2:Verify that h is convex, and apply Jensen’s Inequality

(Theorem 8.17) to h to get

m

2

nX
jD1

wj .xj � A/2 �
nX

jD1
wj f .xj / � f .

nX
jD1

wj xj /:

(d) Now ifm andM were chosen carefully, then an application of the Intermediate
Value Theorem (Theorem 3.17) would finish the proof—explain.

14.5. [18] Fill in the details of another way to obtain the Error Term For Jensen’s

Inequality (Theorem 14.3). Let A D
nP

jD1
wj xj , and for 0 � t � 1, set

g.t/ D
nX

jD1
wj f

�
.1 � t /xj C tA

�
:

(a) Apply the Mean Value Theorem for the Second Derivative (Theorem 8.6) to g
on Œ0; 1� to get, for some c between 0 and 1 :

g.0/ D g.1/C g0.1/.0 � 1/C g00.c/
2

.0 � 1/2:

(b) Now write down what this says, in terms of f .

14.6. Prove Corollary 14.6.

14.7. Let x1; x2; : : : ; xn and w1;w2; : : : ;wn be positive numbers with
nP

jD1
wj D 1:

For r > 0 their Power Mean is:

Mr D
0
@ nX
jD1

wj x
r
j

1
A
1=r

:
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(a) Verify that M1 is the Arithmetic Mean, and M2 is the Root Mean Square.
(b) Show that, by continuity, we should define M0 to be the weighted Geometric

Mean G D x
w1
1 � xw2

2 � � � xwn
n .

(c) Apply the error term for Jensen’s Inequality to f .x/ D x.sC1/=s to obtain upper
and lower bounds for MsC1 �Ms: See also Exercises 8.48, 9.51, and 10.18.

14.8. [25] Recall Jensen’s Integral Inequality (Theorem 9.29) then obtain the
following Error Term for Jensen’s Integral Inequality. Let f be continuous on Œa; b�
with f 00 continuous also. Let ' be such that '00 � 0 on the range of f . Let w � 0

be continuous on Œ0; 1�; with
Z 1

0

w.x/ dx D 1: Then there is c 2 .a; b/ such that

'

0
@

1Z
0

w.x/f .x/ dx

1
A �

1Z
0

w.x/'.f .x// dx

D f 00.�/
2

2
64
0
@

1Z
0

w.x/f .x/ dx

1
A
2

�
1Z
0

w.x/f 2.x/ dx

3
75 :

14.9. Let f be a function defined on Œa; b� with f 00 bounded (but not necessarily
continuous), say jf 00j � M: Show that

ˇ̌
ˇ

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a�ˇ̌ˇ � M

.b � a/3
12

:

14.10. [13, 15, 22] Use the Trapezoid Rule Error (Theorem 14.7), as follows, to

show that the limit in Stirling’s formula (Theorem 13.11) lim
n!1

nŠen

nn
p
n

D L exists

and is positive. With

an D nn
p
n

nŠen
;

we showed in the first part of our proof of Theorem 13.11 that fang is increasing, so
by the Increasing Bounded Sequence Property (Theorem 1.34), it is enough to show
that fang is bounded above.

(a) Let k > 1: Show that for some �k 2 Œk � 1; k�;
kZ

k�1
ln.x/ dx � 1

2

�
ln.k � 1/C ln.k/

� D 1

12�2k
:
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(b) Sum from k D 2 to n and evaluate the resulting integral, to show that

n ln.n/ � nC 1 � ln.nŠ/C 1

2
ln.n/ D

nX
kD2

1

12�2k
:

(c) Conclude that

ln

�
nn

p
n

nŠen

�
D

nX
kD2

1

12�2k
� 1 :

(d) Show that

nX
kD2

1

�2k
�

n�1X
kD1

1

k2
;

and so fang is bounded above, as we wanted to show.
(e) Bonus: Show further, that

2:370 Š e1� 2=72 � L � e13=12� 2=72 Š 2:576 :

14.11. [11] Here is another proof of the Trapezoid Rule Error (Theorem 14.7). Let
c D .aC b/=2 and consider the function

F.t/ D
cCtZ
c�t

f .x/ dx � t�f .c C t /C f .c � t /�:

(a) Verify that

F
�
b�a
2

� D
bZ
a

f .x/ dx � .b � a/
2

�
f .a/C f .b/

�
:

(b) Compute F 0.t/:
(c) Observe that .c C t / � .c � t / D 2t; then apply the Mean Value Theorem

(Theorem 5.2) to f 0 to show that there is �1 between c � t and c C t such that

F 0.t/
2t2

D �f 00.�1/:

(d) Apply Cauchy’s Mean Value Theorem (Theorem 5.11) to F.x/ (numerator) and
x3 (denominator) on Œ0; b�a

2
� to show that there is �2 2 .0; b�a

2
/ such that

F.b�a
2
/

. b�a
2
/3

D F 0.�2/
3�32

:
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(e) Show that there is �3 2 .c � b�a
2
; c C b�a

2
/ D .a; b/ such that

F.b�a
2
/

. b�a
2
/3

D �2
3
f 00.�3/:

(d) Conclude that F.b�a
2
/ D � 2

3
. b�a
2
/3f 00.�3/ D � 1

12
.b � a/3f 00.�3/:

14.12. [3] Here’s another proof of the Trapezoid Rule Error (Theorem 14.7). Define
the constant C by

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a� D C

�
b � a�3 :

(a) Verify that the function

F.t/ D
tZ

a

f .x/ dx � f .a/C f .b/

2

�
t � a� � C �t � a�3

satisfies F.a/ D F.b/ D 0: Conclude that F 0 vanishes somewhere in .a; b/:
(b) Verify that F 0.a/ D 0: Conclude that F 00 vanishes somewhere in .a; b/:
(c) Write down what (b) means, and solve for C .

14.13. [8] Here’s another proof of the Trapezoid Rule Error (Theorem 14.7).
Denote by L.x/ the line through .a; f .a// and .b; f .b//: Let h D .b�a/

2
, fix

x 2 .a; b/; and set

F.t/ D f .t/ � L.t/ � f .x/ � L.x/
x2 � h2

�
t � h�2:

(a) Verify that F.a/ D F.b/ D F.x/ D 0:

(b) Apply Rolle’s Theorem to show that F 0 vanishes at least twice and F 00 vanishes
at least once, say at c D cx:

(c) Solve F 00.c/ D 0 for c to see that f .x/ � L.x/ D .x�h/.xCh/
2

f 00.cx/:
(d) Now apply the Mean Value Theorem for Integrals (Theorem 9.14) to see that

bZ
a

f .x/ dx � f .a/C f .b/

2

�
b � a� D �2

3
h3f 00.�/ D � 1

12
f 00.�/.b � a/3

for some � 2 Œa; b�:
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14.14. [2] Here’s another proof of the Trapezoid Rule Error (Theorem 14.7).

(a) Apply Integration by Parts twice to show that

bZ
a

.x � a/.x � b/f 00.x/ dx D .b � a/�f .a/C f .b/
� � 2

bZ
a

f .x/ dx:

(b) Apply the Mean Value Theorem for Integrals (Theorem 9.14) on the left side.

14.15. (L. Livshutz, private communication) Here’s another proof of the Trapezoid
Rule Error (Theorem 14.7).

(a) Apply Integration by Parts twice to show that

bZ
a

f .x/ dx D f .x/

�
x � A

2

�ˇ̌ˇ̌b
a

� f 0.x/
�
x2

2
� A

2
x C B

2

�ˇ̌ˇ̌b
a

C 1

2

bZ
a

f 00.x/.x2 � Ax C B/ dx;

where A and B are arbitrary constants.
(b) Set A D a C b, B D ab and apply the Mean Value Theorem for Integrals

(Theorem 9.14).

14.16. Let f be a function on Œa; b� with f 00 bounded (but not necessarily
continuous), say jf 00j � M: Show that

ˇ̌̌ bZ
a

f .x/ dx � f .aCb/
2
/
�
b � a�ˇ̌̌ � M

.b � a/3
24

:

14.17. [2] In this problem we use Corollary 14.6 to obtain the Midpoint Rule Error
(Theorem 14.11).

(a) Verify that

f
�
aCb
2

� D f
�
1
2
..1 � t /aC tb/C 1

2
.taC .1 � t /b/�:

(b) Show that Corollary 14.6 gives

f
�
aCb
2

� D 1
2
f
�
.1 � t /aC tb

�C 1
2
f
�
taC .1 � t /b�

C f 00.c/

2
1
2
. 1
2

� 1/��.1 � t /aC tb
�2 � �

taC .1 � t /b�2�:
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(c) Simplify this to get

f .aCb
2
/ D 1

2
f
�
.1� t /aC tb

�C 1
2
f
�
taC .1� t /b�� f 00.c/

8

�
b � a�2�2t � 1�2:

(d) Now integrate from t D 0 to t D 1; and use the Mean Value Theorem for
Integrals (Theorem 9.14).

14.18. Here is another proof of the Midpoint Rule Error (Theorem 14.11), moti-
vated by [11]. Let c D .aC b/=2, and consider the function

F.t/ D
cCtZ
c�t

f .x/ dx � 2tf .c/;

(a) Verify that

F
�
b�a
2

� D
bZ
a

f .x/ dx � .b � a/f � aCb
2

�
:

(b) Compute F 00.t/:
(c) Observe that .c C t / � .c � t / D 2t; then apply the Mean Value Theorem

(Theorem 5.2) to f 0 to show that there is �1 between c � t and c C t such that

F 00.t/
2t

D f 00.�1/:

(d) Apply Cauchy’s Mean Value Theorem (Theorem 5.11) to F.x/ (numerator) and
x3 (denominator) two times on Œ0; b�a

2
� to show that there is �2 2 .0; b�a

2
/ such

that

F.b�a
2
/

. b�a
2
/3

D F 00.�2/
6�2

:

(e) Show that there is �3 2 .c � b�a
2
; c C b�a

2
/ D .a; b/ such that

F.b�a
2
/

. b�a
2
/3

D 1

3
f 00.�3/:

(f) Conclude that F.b�a
2
/ D 1

3
. b�a
2
/3f 00.�3/ D 1

24
.b � a/3f 00.�3/:

14.19. [4, 6] Here is a rather unified way to obtain the Trapezoid Rule Error
(Theorem 14.7), the Midpoint Rule Error (Theorem 14.11), and Simpson’s Rule
Error (Theorem 14.14). Suppose that f 00 and h are continuous and set H.x/ DZ x

a

h.t/ dt:
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(a) Verify the Integration by Parts formula

bZ
a

f .x/h0.x/ dx � h.x/f .x/
ˇ̌̌b
a

D
bZ
a

H.x/f 00.x/ dx � f 0.x/H.x/
ˇ̌̌b
a
:

(b) With h.x/ D x � .aC b/=2; apply this formula then the Mean Value Theorem
for Integrals (Theorem 9.14) to obtain the Trapezoid Rule Error.

(c) Set

h.x/ D
8<
:
x � a if x 2 Œa; aCb

2
�

x � b if x 2 . aCb
2
; b� :

Apply the formula in (a) then the Mean Value Theorem for Integrals
(Theorem 9.14) to obtain the Midpoint Rule Error.

(d) Simpson’s Rule is 1
3
(Trapezoid Rule) C 2

3
(Midpoint Rule). So consider

1

3
h1.x/C 2

3
h2.x/;

where h1 is the h from (b) and h2 is the h from (c) to obtain the Simpson’s Rule
Error (Theorem 14.14). (Warning: This is very messy!)

14.20. [19] Suppose that f 00 and h are continuous and set H.x/ D
Z x

a

h.t/ dt:

(a) Verify the Integration by Parts formula

bZ
a

f .x/h0.x/ dx � h.x/f .x/
ˇ̌̌b
a

D
bZ
a

H.x/f 00.x/ dx � f 0.x/H.x/
ˇ̌̌b
a
:

With h.x/ D .x�a/.b�x/� 1
6
.b�a/2; apply this formula then the Mean Value

Theorem for Integrals (Theorem 9.14) to obtain the Corrected Trapezoid Rule
error estimate

bZ
a

f .x/ dx�f .a/C f .b/

2
.b�a/�f

0.b/ � f 0.a/
12

.b�a/2 D f .4/.c/
.b � a/5
720

;

for some c 2 .a; b/:
Note: The Corrected Trapezoid Rule is motivated by the fact that for b � a

small, the error in the Trapezoid Rule is

1

12
f 00.�/

�
b � a�3 Š 1

12

�
f 0.b/ � f 0.a/

��
b � a�2:
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(b) We have seen that L < A; where L and A are respectively, the Logarithmic
and Arithmetic Means of the positive numbers x ¤ y: Apply the Corrected
Trapezoid Rule to f .t/ D xty1�t to obtain the refinement

L C 1
12

ln
	
x
y


 �
x � y� < A :

14.21. In Exercise 14.10 we used the Trapezoid Rule Error (Theorem 14.7) to show
that the L > 0 in Stirling’s formula (Theorem 13.11) exists, and we obtained

2:370 Š e1� 2=72 � L � e13=12� 2=72 Š 2:576 :

Use the Corrected Trapezoid Rule Error (see Exercise 14.20)

bZ
a

f .x/ dx � f .a/Cf .b/
2

�
b � a� � f 0.b/�f 0.a/

12

�
b � a�2 D f .4/.�/

.b�a/5
720

;

for some � 2 .a; b/, and the fact that
1P
kD1

1=k4 D  4=90; to obtain the better bounds

2:503 Š e11=12C.6=720/. 4=90�1/ � L � e11=12C.6=720/. 4=90/ Š 2:524 :

14.22. Show that Simpson’s Rule is obtained by interpolating f with the quadratic
function p2.x/which passes through the three points .a; f .a//; . aCb

2
; f . aCb

2
//; and

.b; f .b//; then integrating p2 instead of f .

14.23. [32] Suppose that p.x/ is a polynomial of degree 2k C 1 with the 2k C 1

zeros

x D �kh; x D �.k�1/h; : : : ; x D �h; x D 0; x D h; x D 2h; : : : ; x D kh:

(a) Show that p.x/ is an odd function: p.x/ D �p.�x/ for all x 2 R:
(b) Conclude that

hZ
�h
p.x/ dx D 0:

14.24. [8] Here is a proof of the Simpson’s Rule Error (Theorem 14.14). Let S.g/
denote Simpson’s Rule applied to the function g on Œ�h; h�:
(a) Let p be the unique cubic polynomial such that p.˙h/ D f .˙h/,

p.0/ D f .0/, and p0.0/ D f 0.0/: Show that
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hZ
�h
f .x/ dx � S.f / D

hZ
�h
f .x/ dx � S.p/ D

hZ
�h

�
f .x/ � p.x/� dx:

(b) Fix x 2 .�h; h/ and for t 2 .�h; h/; consider

F.t/ D f .t/ � p.t/ � f .x/ � p.x/
x2.x2 � h2/ t

2.t2 � h2/:

Verify that F.˙h/ D F.0/ D F.x/ D 0; and conclude that F 0 vanishes at
least three times in .�h; h/:

(c) Verify that F 0.0/ D 0; and conclude that F 0 vanishes at least four times in
.�h; h/:

(d) Show that F .4/ vanishes at least once in .�h; h/, say at t D c1; and conclude
that

f .x/ � p.x/ D x2.x2 � h2/
4Š

f .4/.c1/:

Therefore,

hZ
�h
f .x/ dx � S.f / D

hZ
�h

x2.x2 � h2/
4Š

f .4/.c1/ dx:

(f) Apply the Mean Value Theorem for Integrals (Theorem 9.14) to obtain

hZ
�h
f .x/ dx � S.f / D f .4/.c2/

hZ
�h

x2.x2 � h2/
4Š

dx D � 1

90
h5f .4/.c2/:

14.25. [5] (see also [10]) Here’s another proof of the Simpson’s Rule Error
(Theorem 14.14).

(a) Use Integration by Parts to verify that

72

hZ
�h

f .x/ dx D
0Z

�h

.xCh/3.3x�h/f .4/.x/ dx C
hZ
0

.x�h/3.3xCh/f .4/.x/ dx:

(b) Use the Mean Value Theorem for Integrals (Theorem 9.14) then the Interme-
diate Value Theorem (Theorem 3.17) to show that there is c 2 .�h; h/ such
that
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72

hZ
�h
f .x/ dx D 2f .4/.c/

hZ
0

.x � h/3.3x C h/ dx

D 2f .4/.c/
4

5
h5:

14.26. [11] Here’s another proof of the Simpson’s Rule Error (Theorem 14.14). Set
c D .aC b/=2 and consider the function

F.t/ D
cCtZ
c�t

f .x/ dx � t

3

�
f .c � t /C 4f .c/C f .c C t /

�
:

(a) Verify that

F
�
b�a
2

� D
bZ
a

f .x/ dx � .b � a/
6

�
f .a/C 4f .c/C f .b/

�
:

(b) Verify that

F 0.t/ D 2

3

�
f .c C t / � 2f .c/C f .c � t /� � t

3

� � f 0.c � t /C f 0.c C t /
�
;

F 00.t/ D 1

3

�
f 0.c C t / � f 0.c � t /� � t

3

�
f 00.c � t /C f 00.c C t /

�
; and

F .3/.t/ D � t
3

�
f .3/.c C t / � f .3/.c � t /�:

(c) Verify that F.0/ D F 0.0/ D F 00.0/ D F 000.0/ D 0 and conclude, by the Mean
Value Theorem (Theorem 5.2), that there is � 2 .c � t; c C t / such that

F .3/.t/ D �2t
2

3
f .4/.�/:

(d) Apply Cauchy’s Mean Value Theorem (Theorem 5.11) three times, beginning
with F.t/ and g.t/ D t 5; to see that there is c between 0 and b�a

2
such that

F.b�a
2
/ � F.0/

g. b�a
2
/ � g.0/ D F .3/.c/

g.3/.c/
D � 2c23

3
f .4/.�/

.5/.4/.3/c2
D � 1

90
f .4/.�/:
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(e) Show, finally, that

F.b�a
2
/ D g.b�a

2
/
� � 1

90
f .4/.�/

� D � .b � a/5
2;880

f .4/.�/:

See [30] for an approach which unifies Exercises 14.11, 14.18 and 14.26.

14.27. (L. Livshutz, private communication) Here is a rather unified way to
obtain the errors for the Trapezoid Rule (Theorem 14.7), the Midpoint Rule
(Theorem 14.11) and Simpson’s Rule (Theorem 14.14). For a continuous function
f on Œ�a; a�; write f .x/ D fE.x/C fO.x/; where

fE.x/ D f .x/C f .�x/
2

and fO.x/ D f .x/ � f .�x/
2

:

For example, ex D cosh.x/C sinh.x/:

(a) Verify that fE is an even function and that fO is an odd function.
(b) Show that

aZ
�a

f .x/ dx D 2

aZ
0

fE.x/ dx; f
.2k�1/
E .0/ D 0; and f .2k/

E .0/ D f 00.0/ for k D 1; 2; 3; : : : :

(c) Integrate by parts twice to show that

aZ
0

fE.x/ dx D fE.x/
�
.x � a/C A

�ˇ̌ˇa
0

�
aZ
0

f 0

E.x/
	
.x�a/2

2
C A.x � a/



dx

D fE.a/A � fE.0/
�
A � a� � f 0

E.x/
	
.x�a/3

6
C A.x�a/2

2


 ˇ̌̌a
0

C
aZ
0

f 00

E .x/
	
.x�a/2

2
C A.x � a/



dx

D fE.a/A � fE.0/
�
A � a�C

aZ
0

f 00

E .x/
.x � a/
2

�
x � aC 2A

�
dx:

(d) Set A D 0; apply the Mean Value Theorem for Integrals (Theorem 9.14), and

write what you get in terms of
Z a

�a
f .x/ dx to obtain the Midpoint Rule Error

(Theorem 14.11).
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(e) Set A D a; apply the Mean Value Theorem for Integrals (Theorem 9.14), and

write what you get in terms of
Z a

�a
f .x/ dx to obtain the Trapezoid Rule Error

(Theorem 14.7).
(f) Integrate by parts as above, but four times, and take A D a=3; to show that

aZ
0

fE.x/ dx D fE.x/
�
x � 2

3
a
�ˇ̌ˇa
0

C 1

72

aZ
0

f 00
E .x/ .x � a/3 .3x C a/ dx:

(g) Apply the Mean Value Theorem for Integrals (Theorem 9.14), and write what

you get in terms of
Z a

�a
f .x/ dx to obtain the Simpson’s Rule Error.

14.28. Let x; y > 0: Apply Simpson’s Rule to f .t/ D xty.1�t/ on Œx; y� to obtain
the result of Example 14.16 (also Exercise 6.43):

L � 2

3
G C 1

3
A � A;

where G;L; and A are respectively, the Geometric, Logarithmic and Arithmetic
Means of x and y: The reader may want to look at Exercise 13.8 in which we
applied the HH Inequalities (Lemma 13.4) to f .t/ D xty.1�t/ on Œx; y�, to get

G � L � A:

14.29. [1, 16] Simpson’s 3/8 Rule and its error term is given by

bZ
a

f .x/ dx D 1
8

�
f .a/C 3f . 2aCb

3
/C 3f .aC2b

3
/C f .b/

�
.b � a/ � .b�a/5

6;480
f .4/.�/;

for some � between a and b. Apply this to f .x/ D ex; to show that

L.x; y/ D x�y
ln.x/�ln.y/ �

	
x1=3Cy1=3

2


3 D M1=3.x; y/:

M1=3.x; y/ is called the Lorentz Mean; see also Exercise 6.46.

14.30. [20, 23] Fill in the details in obtaining the following error term for Cheby-
shev’s Integral Inequality (see Exercises 9.44, 9.45, and 10.29): Let f 0 and g0 be
continuous on Œa; b�: Then there are c1; c2 2 .a; b/ such that

bZ
a

f .x/g.x/ dx � 1

b � a

bZ
a

f .x/ dx

bZ
a

g.x/ dx D 1

12
f 0.c1/g0.c2/.b � a/3:
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(a) Verify that

bZ
a

f .x/g.x/ dx�
bZ
a

f .x/ dx

bZ
a

g.x/ dx D 1
2.b�a/

bZ
a

bZ
a

.f .x/�f .y//.g.x/�g.y// dxdy:

(b) Apply the Mean Value Theorem (Theorem 5.2) then the Mean Value Theorem
for Integrals (Theorem 9.14) to show that for some c1; c2 2 .a; b/,
bZ
a

bZ
a

.f .x/ � f .y/.g.x/ � g.y// dxdy D f 0.c1/g0.c2/
bZ
a

bZ
a

.x � y/2 dxdy:

(c) Now evaluate the double integral in (b). (Work from the inside out: integrate
with respect to x; then with respect to y:)

14.31. [21] In Exercise 8.44 we applied Jensen’s Inequality (Theorem 8.17) to the
function f .1 � x/ � f .x/ to obtain Levinson’s Inequality : Let 0 < x1 < � � � <
xn < 1=2; set yj D 1� xj , A1 D

nP
jD1

wj xj ; and A2 D
nP

jD1
wj yj D 1�A1 (where

w1;w2; : : : ;wn satisfy wj > 0 and
nP

jD1
wj D 1/: Then for f .3/ � 0 on .0; 1/,

f .A2/ � f .A1/ �
nX

jD1
wj f .yj / �

nX
jD1

wj f .xj / :

Use the Error Term for Jensen’s Inequality (Theorem 14.3) to obtain an error term
for Levinson’s Inequality.

14.32. [20] Fill in the details for obtaining the following error term for Steffensen’s
Inequality (see Exercises 9.52, 10.48, 11.17, and 11.36): Let f 0 be continuous and

let gbe continuous on Œa; b�; with 0 � g � 1 and � D
bR
a

g.t/ dt: Then there exists

� 2 .a; b/ such that

bZ
a

f .t/g.t/ dt �
aC�Z
a

f .t/ dt D f 0.�/

2
4

bZ
a

tg.t/ dt � �.aC �

2
/

3
5 :
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(a) Verify that

bZ
a

f .t/g.t/ dt �
aC�Z
a

f .t/ dt D
aC�Z
a

�
f .aC �/ � f .t/��1 � g.t/�dt

C
bZ

aC�

�
f .t/ � f .aC �/

�
g.t/ dt:

(b) Apply the Mean Value Theorem (Theorem 5.2) then the Mean Value Theorem
for Integrals (Theorem 9.14) to see that there are p; q 2 .a; b/ such that

bZ
a

f .t/g.t/ dt �
aC�Z
a

f .t/ dt D f 0.p/
aC�Z
a

�
aC � � t��1 � g.t/� dt

C f 0.q/
bZ

aC�

�
t � .aC �/

�
g.t/ dt:

(c) Apply the Intermediate Value Theorem to see that there is � 2 .a; b/ such that
this

D f 0.�/

2
4
aC�Z
a

�
aC � � t��1 � g.t/� dt C

bZ
aC�

�
t � .aC �/

�
g.t/ dt

3
5

D f 0.�/

2
4

bZ
a

tg.t/ dt � �.aC �

2
/

3
5 :

14.33. Use the error term for Steffensen’s Inequalities from Exercise 14.32 to
obtain the error term for Jensen’s Inequality (Theorem 14.3). (See Exercise 10.48.)

14.34. Use the error term for Steffensen’s Inequalities from Exercise 14.32 to
obtain the error terms for the Trapezoid Rule (Theorem 14.7) and for the Midpoint
Rule (Theorem 14.11). (See Exercise 13.18.)

14.35. In Exercise 1.12 we saw that the areaA of a triangle T with vertices .x1; y1/;
.x2; y2/; .x3; y3/ is given by

A D 1

2

ˇ̌̌
x1.y2 � y3/C x3.y1 � y2/C x2.y3 � y1/

ˇ̌̌
:
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Readers who know some Linear Algebra might recognize that A D 1
2

jdet.M/j ;

where M is the matrix

2
4 1 1 1

x1 x2 x2
y1 y2 y3

3
5. In Exercise 8.26 we saw that if f 00 � 0 on

Œa; b� then whenever a � x1 < x2 < x3 � b,

1

2

�
x1
�
f .x2/ � f .x3/

�C x3
�
f .x1/ � f .x2/

�C x2
�
f .x3/ � f .x1/

�� � 0 :

Show that if f has continuous second derivative then there is c 2 Œa; b� such that

det

2
4 1 1 1

x1 x2 x3
f .x1/ f .x2/ f .x3/

3
5 D det

2
4 1 1 1

x1 x2 x3
x21 x

2
2 x

2
3

3
5 f 00.c/

2
:

Note: The conclusion of the Mean Value Theorem (Theorem 5.2) reads

det


1 1

f .x1/ f .x2/

�
D det


1 1

x1 x2

�
f 0.c/:

14.36. The content of Exercise 8.33 was: Let f be convex on Œa; c� and let
a < b < c: Then

f .a � b C c/ � f .a/ � f .b/C f .c/:

Suppose that f 00 is continuous, then find and prove an error term for this inequality.
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Appendix A
The Proof of Theorem 9.1

This morning, when I looked out of my window, I saw a problem
standing outside the door of the house. When I went out, it was
still standing there in exactly the same posture as before. In the
afternoon I found it as I had left it. Only in the evening did it
shift its weight from one foot to the other.

—Modern Life, by Slawomir Mrożek

Here we prove Theorem 9.1, which says that the average value of a continuous
function on a closed interval exists. Then we prove some crucial properties of the
definite integral, including Lemma 9.22. But we first do some preliminary work,
on subsequences and uniform continuity. These notions are indispensable for any
advanced study of calculus.

A.1 Subsequences

Given a sequence fang of real numbers, it is often useful to discriminate among
various parts of the sequence. For example, the sequence

fang D ˚
.�1/n � n

nC1
�� D ˚� 1

2
; 2
3
; � 3

4
; 4
5
; � 5

6
; 6
7
; : : :

�
diverges. But it is worth pointing out that the subsequences

fa2n�1g D fa1; a3; a5; : : :g D ˚� 1
2
; � 3

4
; � 5

6
; : : :

�
and

fa2ng D fa2; a4; a6; : : :g D ˚
2
3
; 4
5
; 6
7
; : : :

�
have the properties that

a2n�1 ! �1 and a2n ! 1:

Indeed it is because these two limits are not equal that fang diverges.

© Springer Science+Business Media New York 2014
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To be precise, let fang be a sequence and let n1 < n2 < n3 < � � � be natural
numbers. Then fan1 ; an2 ; an3 ; : : :g is called a subsequence of fang: A subsequence
of fang is denoted by fanj g: And a subsequence of fanj g is denoted by fanjk g; etc.

Example A.1.
˚
1
2n

�
,
˚
1
10n

�
, and

˚
1
nŠ

�
are each subsequences of

�
1

n

�
D

�
1;
1

2
;
1

3
;
1

4
;
1

5
;
1

6
;
1

7
; : : :

�
:

Neither
�
1;
1

3
;
1

2
;
1

4
;
1

5
;
1

7
;
1

6
;
1

8
; : : :

�
; nor

�
1; 1;

1

2
;
1

3
;
1

4
;
1

5
; : : :

�

is a subsequence of
˚
1
n

�
: ˘

Remark A.2. Exercise A.1 contains the reasonable fact that a sequence fang
converges to A 2 R if and only if every subsequence of fang converges to A: ı
Remark A.3. The reader might look back at the proof of the Chain Rule, in
Sect. 4.2. There we used a certain subsequence, we just didn’t call it that at the
time. ı

A monotone sequence is a sequence which is either increasing or decreasing.
The following result is very useful. Our proof follows [9]. See also [6].

Lemma A.4. Every sequence fang contains a monotone subsequence.

Proof. If there is a number k such that the set fak; akC1; akC2; : : :g has no
largest member, then fang clearly has an increasing subsequence. Otherwise, let
A1 be a largest member of fa1; a2; a3; a4; : : :g ; let A2 be a largest member of
fa2; a3; a4; : : :g ; let A3 be a largest member of fa3; a4; : : :g ; etc. Then fAng is a
decreasing subsequence of fang and the proof is complete. ut
Example A.5. Here we prove the Bolzano-Weierstrass Theorem: Every (infinite)
bounded sequence fang in R contains a convergent subsequence. By Lemma A.4,
fang contains a monotone subsequence fanj g. Since fang is bounded, fanj g must
also be bounded. Therefore, by the Increasing Bounded Sequence Property of R
(Theorem 1.34), fanj g converges. ˘

A.2 Uniform Continuity

Let f be a function defined on some interval I � R: Recall now that f is
continuous at x0 2 I means that for any sequence fxng in I for which xn ! x0 and
for any " > 0, there is a number N such that jf .xn/ � f .x0/j < " for every n > N:
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Careful consideration here reveals that N depends not only on ", but also on x0
in the following way. For a given " > 0; there may be y0 2 I and a sequence fyng
with jyn � y0j D jxn � x0j ! 0; yet jf .yn/ � f .y0/j � " for some value(s) of
n > N: The stronger notion of uniform continuity removes the dependence on any
particular point x0 2 I:

We say that f is uniformly continuous on I to mean that for any pair
of sequences fxng ; fyng in I for which xn � yn ! 0; it is the case that
f .xn/ � f .yn/ ! 0: The reader should agree that if f is uniformly continuous on
I then f is continuous at each x0 2 I: Indeed, just take yn D x0 for every n:

Example A.6. The function f .x/ D 1=x is continuous on .0;1/ but not
uniformly continuous on .0;1/: The sequences given by xn D 1

n
and yn D 1

nC1
each belong to .0;1/; and xn �yn ! 0; but jf .xn/ � f .yn/j D 1 for every n: It is
really the fact that f .x/ D 1=x is unbounded near 0 that spoils f being uniformly
continuous on .0;1/: We look at this in Exercise A.7. ˘

The following important theorem is named for the German mathematician
Heinrich Eduard Heine (1821–1881).

Theorem A.7. (Heine’s Theorem) Let f be continuous on the closed interval
Œa; b�. Then f is uniformly continuous on Œa; b�:

Proof. If f is not uniformly continuous on Œa; b�; then there is " > 0 and there
are sequences

˚
xn
�
; fyng � I with xn � yn ! 0; yet

ˇ̌
f .xn/ � f .yn/

ˇ̌
> " for

each n: By Lemma A.4,
˚
xn
�

contains a monotone subsequence
˚
xnj
�
: And again

by Lemma A.4, fynj g contains a monotone subsequence
˚
ynjk

�
: So each of

˚
xnjk

�
and

˚
ynjk

�
is a monotone sequence and each is bounded, since they are in Œa; b�.

Then by the Increasing Bounded Sequence Property of R (Theorem 1.34), there are
c1; c2 2 Œa; b� such that xnjk ! c1 and ynjk ! c2: But since xn � yn ! 0; we have
c1 D c2 D c, say. Finally, f is continuous at c by hypothesis, so f .xnjk / ! f .c/

and f .ynjk / ! f .c/. This, as desired, contradicts
ˇ̌
f .xn/� f .yn/

ˇ̌
> " for each n:

ut

A.3 The Proof of Theorem 9.1

Let us recall the set-up for Theorem 9.1 Consider the closed interval Œa; b� and let
N 2 N. We choose the points

a D x0 < x1 < x2 < � � � < xN�1 < xN D b

according to

xj D aC j
.b�a/
N

for j D 0; 1; 2; : : : ; N:

But we consider only N of the form N D 2n, for n D 0; 1; 2; 3; : : :.
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This way, any partition (after n D 0) is a refinement of every previous partition:
points xj of Pn D fx0; x1; x2; : : : ; xN�1; xN g are also points of PnC1. Finally, let
x�
j be any particular point of each subinterval Œxj�1; xj � W

x�
j 2 Œxj�1; xj � for j D 1; 2; : : : ; N:

With all of this notation in place, we recall and then prove Theorem 9.1.

Theorem 9.1. Let f be continuous on Œa; b�. With the notation as above (in
particular N D 2n),

Af
�
Œa; b�

� D lim
N!1

0
@ 1

N

NX
jD1

f .x�
j /

1
A exists:

Proof. First, we set 
xN D .b�a/
N

and observe that

1

N

NX
jD1

f .x�
j / D 1

.b � a/
NX
jD1

f .x�
j /
.b � a/
N

D 1

.b � a/
NX
jD1

f .x�
j /
xN :

By the Extreme Value Theorem (Theorem 3.23) there are uj ; vj 2 Œxj�1; xj �
such that

f .uj / � f .x/ � f .vj / for every x 2 Œxj�1; xj �:

(We should keep in mind that uj ; vj 2 Œxj�1; xj � depend on N as well as on j .)
Notice also that if J � I , then

min
x2I ff .x/g � min

x2J ff .x/g and max
x2J ff .x/g � max

x2I ff .x/g:

Therefore, since each partition is a refinement of every previous partition, the
sequence of intervals

8<
:
2
4 1

.b � a/
NX
jD1

f .uj /
xN ;
1

.b � a/
NX
jD1

f .vj /
xN

3
5
9=
;

1

nD1

is a nested sequence of intervals in R:
We claim that

1

.b � a/
NX
jD1

f .vj /
xN � 1

.b � a/
NX
jD1

f .uj /
xN ! 0 as N ! 1:
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Then once the claim is verified, there must be a unique point � belonging to each of
these intervals, by the Nested Interval Property of R (Theorem 1.41). And since

1

.b � a/
NX
jD1

f .uj /
xN � 1

.b � a/
NX
jD1

f .x�
j /
xN � 1

.b � a/
NX
jD1

f .vj /
xN ;

we must have that � D lim
N!1

 
1

N

NP
jD1

f .x�
j /

!
D Af

�
Œa; b�

�
indeed exists.

To verify the claim, let " > 0 be given. Since 
xN ! 0 as N ! 1, we have
vj � uj ! 0 also. Being continuous on Œa; b�; f is uniformly continuous there by
Heine’s Theorem (Theorem A.7), so for N large enough, f .vj / � f .uj / < " for
each j .

Therefore

1

.b�a/
NX
jD1

f .vj /
xN � 1

.b�a/
NX
jD1

f .uj /
xN D 1

.b � a/
NX
jD1

�
f .vj /�f .uj /

�

xN

<
"

.b � a/
NX
jD1


xN

D "

.b � a/
NX
jD1

.b � a/
N

D "

.b � a/.b � a/ D ";

and the proof is complete. ut
In the proof of Theorem 9.1, notice that the factor 1

b�a appearing in the sequence
of nested intervals doesn’t really play an essential role. Indeed, the same sequence
of partitions there gives rise to the sequence of nested intervals

8<
:
2
4 NX
jD1

f .uj /
xN ;
NX
jD1

f .vj /
xN

3
5
9=
;

1

nD1
which contains the single point

.b � a/Af
�
Œa; b�

� D
bZ
a

f .x/ dx :

To prove this, we would simply deal with "=.b � a/ rather than with ":
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Notice also that in the proof of Theorem 9.1, the sequence of partitions under
consideration is very specific. However, as long as the sequence of partitions is
chosen in a reasonable way, the associated sequence of nested intervals always
contains the same single point. This crucial fact is the content of the following.

Theorem A.8. If f is continuous on Œa; b�, then the number

bZ
a

f .x/ dx

is independent of the sequence of partitions used, as long as

(i) Each partition Pn (after the first) is a refinement of the previous one, and
(ii) The length of the largest subinterval in each partition Pn tends to zero

as n ! 1:

Proof. The argument is not overly difficult, but the necessary sea of symbols
can make things confusing. We shall rely on the sequence of partitions from
Theorem 9.1, but we change the notation very slightly, to accommodate
what is to come. The sequence of partitions there is given by Pn D˚
x0; x1; x2; : : : ; xp.n/�1; xp.n/

�
; where p.n/ D 2n; a D x0 and xj D a C j

.b�a/
p.n/

for j D 0; 1; 2; : : : ; p.n/: That is,

a D x0 < x1 < x2 < � � � < xp.n/�1 < xp.n/ D b; and


xp.n/ D xj � xj�1 D .b � a/
p.n/

; for j D 1; 2; : : : ; p.n/:

As we observed then,

8<
:
2
4p.n/X
jD1

f .uj /
xp.n/ ;
p.n/X
jD1

f .vj /
xp.n/

3
5
9=
;

1

nD1

is a sequence of nested intervals which contains the single point �P : (The points
uj ; vj 2 Œxj�1; xj � depend on p.n/ as well as on j .)

Now let Qn D ˚
x0; x1; x2; : : : ; xq.n/�1; xq.n/

�
; where q W N !N is some

increasing unbounded function, be another sequence of partitions of Œa; b� having
the properties described in the statement of the theorem. Here,

a D x0 < x1 < x2 < � � � < xq.n/�1 < xq.n/ D b; and


xj D xj � xj�1 for j D 1; 2; : : : ; q.n/:
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We have written 
xj here, instead of 
xq.n/, because the subintervals within
Qn need not each have the same length. (That is, the partitions Qn need not be
regular.) In exactly the same way as for the sequence of partitions Pn in the proof
of Theorem 9.1, we see that

8<
:
2
4q.n/X
jD1

f .Ouj /
xj ;
q.n/X
jD1

f .Ovj /
xj
3
5
9=
;

1

nD1
is sequence of nested intervals which contains the single point �Q: (The points
Ouj ; Ovj 2 Œxj�1; xj � depend on q.n/ as well as on j .) Now, taking the union of
Pn and Qn we get a third sequence of partitions Rn, and a third sequence of nested
intervals, which contains the single point �R: Again, if J � I , then

min
x2I ff .x/g � min

x2J ff .x/g and max
x2J ff .x/g � max

x2I ff .x/g:

So each interval in the third sequence of nested intervals is necessarily a subinterval
of each corresponding interval arising from the first two partitions. Therefore we
must have �R D �P and �R D �Q, so that �P D �Q as desired. ut

We lean heavily on Theorem A.8 to prove the following important property of
the definite integral, which was deferred in Sect. 9.4.

Lemma 9.22. Let f be continuous on Œa; b� and let c 2 .a; b/: Then

bZ
a

f .x/ dx D
cZ
a

f .x/ dx C
bZ
c

f .x/ dx :

Proof. Let Pn be any sequence of partitions of Œa; b�; as in the proof of Theo-
rem A.8: (i) each PnC1 is a refinement of Pn and (ii) the length of the largest
subinterval in Pn tends to zero as n ! 1: The reader should agree that if c happens
to be a point of one of the partitions Pn (and hence all subsequent partitions), then
the proof is immediate. Otherwise, we add c to each Pn to get another sequence
of partitions with the same two essential properties and we denote it by P c

n : By
Theorem A.8, the associated sequences of nested intervals contain the same single
point

bZ
a

f .x/ dx ;

whether we use Pn or P c
n : But using P c

n , together with each of the partitions P c
n \

Œa; c� and P c
n \ Œc; b�,

bZ
a

f .x/ dx D
cZ
a

f .x/ dx C
bZ
c

f .x/ dx: ut
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The following result is often used in practice. It says that we can approximate the
definite integral of a continuous functions as closely as we please with a Riemann
sum, as long as the partition for the Riemann sum is fine enough. And the partition
does not need to be regular.

Theorem A.9. Let f be continuous on Œa; b�, so that
Z b

a

f .x/ dx exists, and let

" > 0. Then there is ı > 0 such that for any partition P D fx0; x1; x2; : : : ; xn�1; xng
of Œa; b�; and for any choice of points x�

j 2 �xj�1; xj
�
; it is the case that

ˇ̌̌
ˇ̌̌

bZ
a

f .x/ dx �
nX

jD1
f .x�

j /
xj

ˇ̌̌
ˇ̌̌ < ";

as long as max
1�j�nf
xj g < ı:

Proof. By the Extreme Value Theorem (Theorem 3.23) there are uj ; vj 2�
xj�1; xj

�
such that

f .uj / � f .x/ � f .vj / for all x 2 �xj�1; xj
�
:

Then for any Riemann sum
nP

jD1
f .x�

j /
xj ,

nX
jD1

f .uj /
xj �
nX

jD1
f .x�

j /
xj �
nX

jD1
f .vj /
xj :

But we also have

nX
jD1

f .uj /
xj �
Z b

a

f .x/ dx �
nX

jD1
f .vj /
xj :

Therefore

ˇ̌̌
ˇ̌̌

bZ
a

f .x/ dx �
nX

jD1
f .x�

j /
xj

ˇ̌̌
ˇ̌̌ �

nX
jD1

f .vj /
xj �
nX

jD1
f .uj /
xj

D
nX

jD1

�
f .vj / � f .uj /

�

xj :
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Now since f is continuous on Œa; b� it is uniformly continuous there, by Heine’s
Theorem (Theorem A.7). So there is ı > 0 such if each 
xj is < ı ,

f .vj / � f .uj / < "

b � a :

That is, if max
1�j�nf
xj g < ı; then

ˇ̌̌
ˇ̌̌

bZ
a

f .x/ dx �
nX

jD1
f .x�

j /
xj

ˇ̌̌
ˇ̌̌ D

nX
jD1

�
f .vj / � f .uj /

�

xj

<
"

b � a
nX

jD1

xj D ";

as desired. ut

Exercises

A.1. Prove that fang converges to A if and only if every subsequence
˚
anj
�

of fang
converges to A:

A.2. The sequence fang is a Cauchy sequence if for any " > 0; there is a number
N such that jan � amj < " for n;m > N:

(a) Prove that if an ! A; then fang is a Cauchy sequence. (Roughly, this says that
if the an’s are getting close to A; then they must be getting close to each other.)

(b) Prove that if fang is a Cauchy sequence then fang is bounded.
(c) Prove that if fang is a Cauchy sequence then there exists A 2 R such that fang

converges to A:
(Roughly, this says that if the an’s are getting close to each other, then they are
getting close to some A 2 R:) Hint: Use Exercise A.1 and Lemma A.1.

A.3. The sequence fxng is a Cauchy sequence if for any " > 0; there is a number
N such that jxn � xmj < " for n;m > N: Show that if fxng is a Cauchy sequence in
I and f is uniformly continuous on I , then ff .xn/g is a Cauchy sequence.

A.4. Prove that f defined on some interval I is uniformly continuous if and only
if for any " > 0 there is a ı > 0 such that whenever x; y 2 I with jx � yj < ı; we
have jf .x/ � f .y/j < ":
A.5. Show that if f is uniformly continuous on R; then so is jf j :
A.6. Show that f .x/ D x2 is continuous at each point of Œ0;1/ but is not
uniformly continuous on Œ0;1/:
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A.7. Show that if f is uniformly continuous on .0; 1/; then f is bounded. Does an
Extreme Value Theorem (Theorem 3.23) hold in this case?

A.8. [3]

(a) Show that if f .x/ is continuous and has a bounded derivative on .a; b/, then f
is uniformly continuous on .a; b/:

(b) For x 2 Œ�1; 1�; consider the function

f .x/ D
8<
:
x4=3 sin. 1

x
/ if x ¤ 0

0 if x D 0:

Show that f is uniformly continuous on Œ�1; 1�; yet has unbounded derivative
there.

A.9. Verify that f .x/ D x and g.x/ D sin.x/ are uniformly continuous on
.�1;C1/; but their product is not.

A.10. [5]

(a) Consider the closed interval Œa; b� and suppose that C is a collection of
open intervals such that Œa; b� � S

I2C
I: Prove Borel’s Theorem, named for

French mathematician Émile Borel (1871–1956): There is a finite subcollection

I1; I2; : : : In of intervals from C such that Œa; b� �
nS

jD1
Ij : Hint: Assume the

conclusion does not hold, then employ a bisection algorithm, keeping at each
step the half-interval which cannot be covered by a finite subcollection.

(b) What happens if the interval is Œa; b/?

A.11. Prove Heine’s Theorem (Theorem A.7) using Borel’s Theorem from
Exercise A.10 above.

A.12. Use a bisection algorithm to prove the Bolzano-Weierstrass Theorem from
Example A.5.

A.13. The sequence fang is a Cauchy sequence if for any " > 0; there is a number
N such that jan � amj < " for n;m > N:

(a) Prove that if an ! A; then fang is a Cauchy sequence. (Roughly, this says that
if the an’s are getting close to A; then they must be getting close to each other.)

(b) Prove that if fang is a Cauchy sequence then fang is bounded.
(c) Use the Bolzano-Weierstrass Theorem from Example A.5 to prove that if fang

is a Cauchy sequence then there is A 2 R such that an ! A: (Roughly, this
says that if the an’s are getting close to each other, then they are getting close
to some A 2 R:)

A.14. The sequence fang is a Cauchy sequence if for any " > 0; there is a number
N such that jan � amj < " for n;m > N: Prove that if ff .an/g is a Cauchy sequence
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whenever fang is a Cauchy sequence in I , then f is uniformly continuous on I .
Suggestion: Use the Bolzano-Weierstrass Theorem from Example A.5.

A.15. Let f be continuous on Œa; b� and let c 2 .a; b/. Show that the average value
of f on Œa; b� is a weighted average of the average value of f on Œa; c� and the
average value of f on Œc; b�:

A.16. [1] Let a > 0. Show, as follows, that

lim
n!1n

�
1 � a�1=n� D lim

n!1n
�
a1=n � 1� D ln.a/:

The case a D 1 is trivial. We may assume that a > 1: (Otherwise, consider 1=a).

(a) Consider the irregular partition Pn D fa0; a1; a2; : : : ; an�1; ang of Œ1; a�
given by

aj D aj=n for j D 0; 1; 2; : : : ; n:

(b) Use the Right and Left Rectangle Rules to show that

n
�
1 � a�1=n� <

aZ
1

1

x
dx < n

�
a1=n � 1�:

(c) Verify that 0 < a1=n � 1 < a�1
n

, then use this and (b) to show that

0 < ln.a/ � n�1 � a�1=n� < n
�
a1=n � 1� � n�1 � a�1=n� < n

�
a � 1
n

�2

and

0 < n
�
a1=n � 1� � ln.a/ < n

�
a � 1
n

�2
:

(d) Finally, let n ! 1.
(e) Bonus: Show that if we double the number of points in any given partition as

above, then the new points which result are those given by the Mean Value
Theorem (Theorem 5.2) applied to f .x/ D 1=x on each subinterval of the
original partition.

A.17. [4]

(a) Consider the partition Pn D fx0; x1; x2; : : : ; xn�1; xng of Œ0; x� given by

xj D j 2x

n2
for j D 0; 1; 2; : : : ; n:

Use a limit of Riemann sums, with

x�
j D xj for j D 1; 2; : : : ; n
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to show that

xZ
0

p
t dt D 2x3=2

3
:

(b) Extend the idea in (a) to show that
Z x

0

t4=3 dt D 3x7=3

7
:

(c) How about
Z x

0

tp=q dt ‹

A.18. Let a D x0 and xj D a C j
.b�a/
n

for j D 0; 1; 2; : : : ; n: Let x�
j ; y

�
j 2

Œxj�1; xj �: Show that if f and g are continuous on Œa; b�; then

lim
n!1

2
41
n

NX
jD1

f .x�
j /g.y

�
j /

3
5 exists:

Hint: Write f .x�
j /g.y

�
j / D f .x�

j /g.x
�
j /C f .x�

j /Œg.y
�
j / � g.x�

j /�.

A.19. A set S which is bounded above has a least upper bound lub.S/ if (i)
lub.S/ is an upper bound, and (ii) any upper boundU for S satisfies lub.S/ � U:

(a) Show that if S has a least upper bound, then it is unique.
(b) Show that if we assume that every nonempty set in R which is bounded above

has a least upper bound (this is called the Least Upper Bound Property), then
R has the Increasing Bounded Sequence Property (Theorem 1.34).

(c) Show that R having the Increasing Bounded Sequence Property implies that R
has the Least Upper Bound Property. Hint: Begin with a set S that has upper
bound b and let a 2 A: Employ a bisection algorithm on Œa; b�, keeping at each
step the half-interval whose left-hand endpoint is not an upper bound for S and
whose right-hand endpoint is an upper bound for S: (Make sure that you can
justify this too.)

A.20. The Completeness Axiom for R says that every Cauchy sequence (see
Exercises A.2 or A.13) in R converges to some A 2 R. The short phrase for this
is: R is complete. Show that in R, the Completeness Axiom implies the Increasing
Bounded Sequence Property (Theorem 1.34).

A.4 An Epilogue

Exercises A.2 (or A.13), A.19, and A.20 together show that in R, the following are
equivalent:

(A) Increasing Bounded Sequence Property,
(B) Least Upper Bound Property,
(C) Completeness Axiom.
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That (C ) follows from either of (A) or (B) is because in R, either of (A) or (B)
implies the Archimedean Property: For any a 2 R with a > 0; there is n 2 N
such that 1=n < a:

Roughly speaking, a field F is a set in which we can sensibly add, subtract,
multiply, and divide. Each of Q and R is a field; Z is not a field. A field is ordered
if there is also a sensible notion of “<” defined on it. For example, Q and R are
ordered fields but the set of complex numbers C is a field which is not ordered.

For any ordered field F, the following are equivalent (e.g., [2, 7, 8]):

(A0) Increasing Bounded Sequence Property,
(B 0) Least Upper Bound Property,
(C 0) Completeness Axiom C Archimedean Property.

Still, either of (A0) or (B 0) implies the Archimedean Property, but there are
complete ordered fields which are not Archimedean. The Completeness Axiom is
sometimes preferable to either of (A0) or (B 0), because these require the field to be
ordered. For example, C is a complete field which is not ordered.

Finally, if any of (A0) or (B 0) or (C 0) holds for an ordered field F, then F is really
just R. That is, there is an order preserving (i.e. � is preserved) one-to-one and onto
mapping between F and R. So R is a pretty good place to do mathematics.
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concave function, 177
conjugate exponents, 134
continuous function, 53
continuously differentiable, 251
convex function, 176
Corrected Trapezoid Rule, 382, 383
countable set, 23, 327
critical point, 84
critical value, 84

D
Dalzell’s Theorem, 112
Darboux’s Theorem, 160, 161, 166, 167
Darboux, J.G., 160
decreasing function, 100
definite integral, 216
definite integral as area, 220
DeMoivre, A., 350
derivative, 73
derivative from the left, 76
derivative from the right, 76
differentiable function, on an interval, 73
dot product, 35
double integral, 388

E
Euler’s constant, 139, 140, 153–155, 191, 337,

344
Euler’s formula, 318
Euler’s formula (another one), 276
Euler’s method of tangent lines, 121, 142
Euler’s number, 15, 17, 27, 121
Euler’s sum, 318
Euler, L., 15, 121, 186, 290, 318, 321
even function, 189, 266, 270, 296, 386
exponential function, 56, 121, 126, 263
Extreme Value Theorem, 53, 65, 66, 71, 85,

166, 214, 215, 218, 266, 396, 400, 402

F
Fermat’s Law of Reflection, 94
Fermat’s Theorem, 83–85, 93, 103, 166
Fermat, Pierre de, 84
Fibonacci sequence, 112, 152
field, ordered, 405
fixed point, 58, 100, 113
fixed point iteration, 113, 207
Fixed Point Lemma, 58, 59, 68
Flanders, H., 151
Flett’s Mean Value Theorem, 162, 167, 273,

278, 349

Floor function, 38
Fundamental Theorem of Calculus, 249–253,

255, 257, 260, 264–266, 278, 279, 283,
286, 287, 289, 291, 308

G
Gamma function, 305
Gardner, Martin, 69
Gelfond, A.O., 318
Geometric Mean, 28, 29, 39–41, 71, 111, 144,

200, 241, 277, 299, 336, 344, 351, 371,
377

Geometric Mean for functions, 232, 246
geometric series, 26, 322
Gillman, L., 152
Giuseppina, 80
golden mean, 16, 23, 39, 68, 112, 113, 152
Grüss’s Inequality, 50
Grüss’s Integral Inequality, 245
greatest common divisor, 326, 327
Gregory, J., 259
Gregory-Leibniz series, 259, 276, 290, 303

H
Hölder’s Inequality, 134, 135, 148, 149, 201
Hölder’s Integral Inequality, 228, 229, 242,

243, 246, 305
Hadamard, J., 334
Half-Chord Lemma, 59, 69, 97
Halley’s method, 206, 207
Halley, E., 206
Hannah, 68
Harmonic Mean, 32, 40, 41, 111, 137, 200
Harmonic series, 137, 152, 254, 322
Heine’s Theorem, 395, 397, 401, 402
Heine, H.E., 395
Hermite, C., 15, 186, 315, 334
Hermite-Hadamard Inequalities, 334, 336, 342,

344–348, 351, 352, 365, 368, 369, 371,
387

Heron’s formula, 31, 42
Heron’s Mean, 40
higher derivatives, 171
horizontal chord, 59

I
Identric Mean, 345
Increasing Bounded Sequence Property, 15–17,

23, 27, 139, 141, 233, 234, 351, 377,
394, 395, 404, 405

increasing function, 100
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indefinite integral, 252
Information Theory inequality, 146
integers, 3
Integral Test, 225, 236, 254, 259, 331, 332
Integration by Parts, 287
Integration by Parts Identity, 294, 295
Intermediate Value Property, 61, 62, 70, 71,

160, 161, 167
Intermediate Value Theorem, 53, 61, 62, 66,

70, 120, 125, 160, 161, 215, 219, 261,
306, 376, 384, 389

interval notation, 1
isoperimetric inequalities, 31, 32, 47, 114

J
Jensen’s Inequality, 179–181, 198–201,

229–231, 277, 299, 362, 376, 388
Jensen’s Inequality, error for, 360, 362, 363,

375–377, 388, 389
Jensen’s Integral Inequality, 229–231, 241,

246, 362, 377
Jensen’s Integral Inequality, error for, 362, 377
Jensen, J.W., 179
John, 86
Jordan’s Inequality, 178, 205, 272, 288, 301,

320

L
L’Hospital’s Rule, 32, 105, 107, 113, 114, 127,

146, 173, 213, 214
L’Hospital, G., 107
Lagrange, J.L., 98
Lagrangian Mean, 201
Lambert, J.H, 314
Landau, E., 203
least common multiple, 326
least upper bound, 404
Least Upper Bound Property, 404, 405
Lebesgue integral, 234
Lebesgue, H., 234
Legendre polynomials, 303
Leibniz series, 258, 274, 276
Leibniz’s formula, 190
Leibniz, G.W., 258
length of a cuve, 226
Levinson’s Inequality, 199, 388
Lindemann, F., 318
Liouville number, 326
Liouville, J., 186, 326
local extremum, 84

logarithmic differentiation, 83
Logarithmic Mean, 135, 150, 151, 241, 299,

336, 344, 371
logarithmically convex, 197, 305
Lorentz Mean, 151, 387
lower bound, 11

M
Machin’s formula, 276
Maclaurin, C., 29, 187
Mean Value Theorem, 97–100, 104, 105, 108,

109, 112, 113, 116, 120, 130, 131, 136,
159, 161, 164–166, 168, 173, 177, 184,
193, 205, 226, 237, 240, 251, 266, 303,
326, 357–359, 363, 373, 378, 381, 385,
388–390

Mean Value Theorem for Integrals, 218,
219, 230, 240, 265, 274, 291, 295, 303,
307, 358, 365, 368, 374, 379–382, 384,
386–389

Mean Value Theorem for Sums, 64, 65, 70,
218, 361

Mean Value Theorem for the Second
Derivative, 174–176, 183, 184, 193,
240, 360, 362, 363, 367, 368, 376

Midpoint Rule, 333, 334, 341, 344, 367, 371
Midpoint Rule, error for, 368, 369, 380, 381,

386, 389
Minkowski’s Inequality, 48, 149
Minkowski’s Integral Inequality, 243
monotone sequence, 394

N
natural logarithmic function, 56, 127, 260
natural numbers, 3
Nesbitt’s Inequality, 41, 46
Nested Interval Property, 17, 23, 41, 65, 98,

124, 339, 397
Newton’s method, 206, 207
Newton, I., 206
Niven, I., 20, 314

O
odd function, 82, 189, 266, 270, 296, 372, 383,

386
operator, linear, 218
operator, positive, 216
Ostrowski’s Inequality, 349
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P
p-series, 141, 155, 254
Pearson’s coefficient, 46
Polya, G., 30, 132
polygonal approximation, 226
Pompeiu’s Mean Value Theorem, 163, 168
Popoviciu’s Inequality, 49, 245
Power Mean, 200, 246, 268, 376
Power Rule, 78–80, 83, 130
Probability integral, 325
Product Rule, 77, 87

Q
Quotient Rule, 79, 87, 88

R
rational numbers, 3
real numbers, 5, 13
Rectangle Rule, Left, 331, 359, 403
Rectangle Rule, Right, 331, 358, 359, 403
reduction formula, 285, 301, 311, 312
reverse triangle inequality, 3
Riemann integral, 233
Riemann sum, 217, 255, 277
Riemann, B., 140, 217
Riesz, F., 147
Rodrigues’s formula, 303
Rolle’s Theorem, 97, 99, 105, 107, 108, 116,

159, 160, 165, 167, 168, 177, 193, 264,
265, 303, 348, 379

Rolle, M., 97
Root Mean Square, 35, 71, 111
Root Mean Square for functions, 246

S
Sarah, 68
Schur’s Inequality, 113
Schwarz derivative, 173, 193
Schwarz, H., 36, 44, 45, 241
Second Derivative Test, 194, 202, 295
Second Mean Value Theorem for Integrals,

290, 291, 306, 307
Second Mean Value Theorem for Integrals,

Bonnet’s form, 307
sequence, 5
sequence, bounded, 11
sequence, convergent, 6
sequence, divergent, 10
sequence, increasing, 11

sequence, limit, 10
Shanks, W., 276
Simpson’s 3=8 Rule, 387
Simpson’s Rule, 370–372, 383
Simpson’s Rule, error for, 370, 381–387
Snell’s Law of Refraction, 94
Steffensen’s Inequalities, 246, 277, 300, 305,

347
Steffensen’s Inequalities, error for, 388, 389
Stirling’s formula, 342, 350–353, 377, 383
subsequence, 394
symmetric derivative, 173, 193

T
Tangent Rule, 334
Taylor polynomial, 184, 202, 204–206
Taylor series, 171
Taylor’s Theorem, 171, 183, 184, 187, 201,

203, 295, 309, 363, 364, 375
Taylor’s Theorem, Cauchy Form, 309
Taylor, B., 183
telescoping series, 155, 213, 320, 324, 326
transcendental number, 15, 16, 24, 318, 326,

327
Trapezoid Rule, 333, 341, 342, 344, 348, 364,

371
Trapezoid Rule, error for, 364–366, 369,

377–381, 383, 386, 387, 389
triangle inequality, 3, 36
trigomometric substitution, 298
twin primes, 323

U
u-Substitution, 283
uniformly continuous, 395
Universal Chord Theorem, 60, 61, 64, 69
upper bound, 11

V
variance, 45, 49
Vieta’s formula, 324

W
Wallis’s product, 312, 314, 323, 325, 340, 341,

353
Wallis, J., 312
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Weierstrass, K., 65, 76, 307
weight function, 219

Y
Young’s Inequality, 135, 148, 149, 179, 180,

197, 242, 293

Young’s Integral Inequality, 292, 293, 307,
308, 372–374

Young’s Integral Inequality, error for, 373

Z
Zhang, Y., 323
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